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ABSTRACT OF THE DISSERTATION 

A RESILIENCE ASSESSMENT FRAMEWORK OF INFRASTRUCTURE SYSTEMS BY 

INTERGRATING SOCIAL EQUITY TO SUPPORT DISASTER RESILIENCE DECISION 

MAKING 

by 

Sunil Dhakal 

Florida International University, 2022 

Miami, Florida 

Assistant Professor Lu Zhang, Major Professor 

Resilient infrastructure, which better withstands, adapts, and quickly recovers from disasters, can 

limit disaster impacts, such as disruptions to infrastructure services and time and efforts needed for 

recovery. However, in the context of a disaster, the impacts or disruptions on the infrastructure are 

not evenly distributed across different communities. Thus, we need to account for such disparities 

(or inequalities) when assessing infrastructure resilience.  

To address this need, this dissertation presents a new social-welfare-based infrastructure resilience 

assessment (SW-Infra-RA) model for quantifying the collective resilience of infrastructure serving 

multiple communities. This model accounts for (1) disaster inequality – the unequal distribution of 

disaster impacts on infrastructure across different communities, and (2) disaster vulnerability – the 

disaster impacts on infrastructure of the communities that suffer from the most severe impacts, both 

of which have impacts on the collective resilience of infrastructure. The proposed model is 

theoretically grounded on the social welfare theory and social welfare functions. It also leverages 

studies related to Social Vulnerability Index and the Resilient Triangle framework. The dissertation 

presents the conceptual notions and mathematical functions of the SW-Infra-RA model. A set of 
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hypothetical and real case studies were conducted to illustrate the use of the proposed model to 

assess infrastructure resilience. 

The results generated using this model could be utilized by decision makers to better understand 

the uneven distribution of disaster impacts across communities and identify communities that are 

severely impacted from a disaster. Such information about inequalities and vulnerabilities of the 

impacted region could help decision makers prioritize disaster assistance, resources for recovery, 

and future infrastructure investment toward the vulnerable communities. Overall, the study has the 

potential to facilitate equitable resilience planning by allowing both decision makers and 

community personnel to better understand the links between resilience planning and equity in their 

communities.  
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CHAPTER 1 INTRODUCTION 

1.1  Background 

Infrastructure systems provide essential services including electricity, water supply, 

communication, and transportation services to communities. With the increase in frequency and 

intensity of extreme weather events and natural disasters by climate change, these infrastructure 

systems serving different communities remain at high risk to from disasters. Failures on 

infrastructure systems due to disaster impacts could result in severe consequences on the regional 

economic system and affects people’s accessibility to infrastructure services. Past experience in 

disaster have shown that the disaster accounts for huge economic losses mostly in the form of 

damage to infrastructure systems (UN 2016). To allow infrastructure to resist or absorb disturbance, 

and remain basic functional and service capacities, investing on and implementing disaster 

resilience strategies have become a “national imperative” (NRC 2012). Thus, it is crucial that we 

focus on improving the resilience of our infrastructure systems, so they offer the essential services 

to society in the aftermath of disruptive events. Government and scientific scholars in the domain 

of disaster management have made significant contributions on improving infrastructure resilience 

(Ouyang and Wang 2015, Chang et al. 2013, UN 2016). However, one of the overlooked problems 

with infrastructure resilience is that a damaged infrastructure due to disaster could result in varying 

level of disturbances to the community residents. Such damage is typically not evenly distributed 

across different communities; the low-income and the minority communities are more vulnerable 

to disaster risks, and they are more likely to struggle more to recover (Emrich et al. 2019). For 

example, after Hurricane Harvey, more severe flooding damage was found in communities or 

households with lower income as lower income Americans are more likely to live in neighborhoods 

r buildings that are more susceptible to flooding or other impacts from storms (Krause and Reeves 

2017). 
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To reduce or eliminate disparities of access to infrastructure due to disasters, the 2030 Global 

sustainable development agenda of the United Nations highlights the importance of understanding 

the interlinkages and integrated nature of infrastructure, inequality, and resilience (UN 2016). For 

example, how does the infrastructure resilience affect social equity? How is social equity integrated 

into the infrastructure resilience assessment or planning? How to evaluate resilience of 

infrastructure systems while accounting for social equity? Benchmarking the definitions of social 

equity in a number of literature (e.g., Emrich et al. 2019), in my dissertation, social equity is defined 

as equal opportunities and resources provided to different populations through the functions offered 

by infrastructure. Achieving social equity means reducing or elimination disparate access to goods, 

services, and amenities among different populations, including the socially vulnerable populations. 

Socially vulnerable populations include the economically disadvantaged, racial and ethnic 

minorities, the elderly, the uninsured, the homeless, the disabled, those with chronic health 

conditions, and those with language barriers (Rao et al. 2109, AJMC 2006). They often have the 

fewest resources for disaster preparedness, live in disaster prone areas, and lack social capital, 

political, and economic capital needed to adapt to and recover from disasters (IWR 2016). Multiple 

studies (e.g., Frigerio et al. 2019, Fatemi et al. 2017, Constible 2018) have shown that socially 

vulnerable communities experienced more severe disturbances caused by infrastructure damage, 

which could exacerbate social inequities if not addressed in a timely manner (Fothergill and Peek 

2004). 

 Resilient infrastructure, which is able to withstand disasters and recover quickly, remains vital in 

offering stabilized essential services (e.g., water, power, communication, transportation) to socially 

vulnerable populations. Thus, it plays an important role in supporting social equity in disasters 

(Doorn 2019, UN 2016). A resilient infrastructure has a potential to reduce “disaster-induced 

poverty” - such as shortage of supplies, inaccessibility to goods or services. In addition, 

implementing the disaster resilient strategies in the infrastructure planning could facilitate 
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infrastructure improvement and potentially led to economic growth. This will eventually increase 

productivity and employment opportunities, reduce poverty and contribute to social equity. It also 

has better capabilities of offering “disaster equity” by reducing the vulnerabilities and disparities 

in different regions and communities by allowing less infrastructure damage and access to adequate 

resources for recovery during disasters. Despite such linkage between infrastructure resilience and 

social equity, there is a lack of study that provides more explicit understanding of the complex 

interrelationship between infrastructure resilience and social equity. Without such understanding, 

our “next generation infrastructure” cannot be planned, constructed and operated with great human 

awareness and social adaptability.  

1.2  Problem Statement 

Over the last few decades, many resilience assessment methods and models have been proposed to 

assess the resilience of infrastructure systems. However, there is still a lack of assessment model 

that incorporates the quantification of inequalities and vulnerabilities with it. One of the crucial 

challenges in the domain of disaster resilience is to measure such inequalities and vulnerabilities in 

the context of infrastructure resilience. This knowledge gap creates the need for a change in 

resilience assessment approaches. It remains crucial that we develop a better understanding of the 

relationships between equity and infrastructure resilience as well as improve the assessment of 

infrastructure resilience by accounting for equity. Based on a comprehensive literature review in 

the domain of infrastructure, resilience, and social equity, a number of knowledge gaps were 

identified. These knowledge gaps will be discussed in detail in the following sections. 

1.2.1 Knowledge gaps 

(1) Lack of theoretical and explicit understanding on how infrastructure resilience affects 

social equity. Scholars in the domain of built environments, transportation systems, design 

and manufacturing, logistics systems, and systems operation and management have 
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contributed to understanding, assessing, and enhancing the resilience of infrastructure 

systems (e.g., Aydin et al. 2018, Zhang et al. 2018, Heinimann and Hatfield 2017). 

Research in these domains focused on different aspects of infrastructure resilience, such as 

structural integrity (e.g., Chopra et al. 2016), system reliability (e.g., Nateghi 2018), system 

recovery (e.g., Aydin et al. 2018), resource allocation (e.g., Zhang et al. 2018), and system 

resilience measurement (e.g., Heinimann and Hatfield 2017). Social equity, on the other 

hand, has been extensively studied by social scientists in the domain of social science, 

political science, psychology, and anthropology. A long history of social equity research 

in the disaster domain shows that multiple social characteristics are associated with 

disparate exposures and impacts in disasters -including race, income, age, disability, and 

language proficiency (Domingue and Emrich 2019, Thomas et al. 2013). Most literature in 

social equity, in the domain of disasters, focused on studying social vulnerability (e.g., 

Fatemi et al. 2017, Frigerio et al. 2019, Cutter et al. 2003), equitable recovery (e.g., Emrich 

et al. 2019), social justice (Shively 2017), and social resilience (e.g., Comes et al. 2019). 

Collectively, the research efforts in the domain of engineering and social science have 

offered valuable contributions to infrastructure resilience and social equity in disasters, 

respectively. However, there is still a lack of study that integrates both infrastructure 

resilience and social equity, which can offer a holistic understanding of the 

interrelationships between them to facilitate better infrastructure decision making that 

account for social equity impacts. 

(2) There is a lack of study on the methods for measuring social equity in the context of 

infrastructure resilience. Many studies in the domain of disasters have focused on assessing 

social equity in disaster recovery or analyzing the social vulnerability across different 

regions (Domingue and Emrich 2019, Emrich et al. 2019, Doorn et al. 2019). These studies 

have emphasized the need to pay special attention to socially vulnerable populations and 
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facilitate social equity across different phases of disaster. Although these studies contribute 

to better understanding of social inequality in disasters and support decision makers and 

practitioners to implement policies to maintain equity in the community, there is a lack of 

theoretically grounded quantitative method to measure social equity. To improve the 

collective resilience of infrastructure systems of the communities, it is crucial that we 

understand the unequal distribution of disaster impacts to infrastructure systems across 

different communities and potential severe impacts to infrastructure systems experienced 

by the most vulnerable communities. 

(3) There is a lack of study that quantitatively integrates social equity into infrastructure 

resilience assessment framework. Scholars in the disaster resilience domain have proposed 

different infrastructure resilience assessment framework for quantifying the resilience of 

infrastructure systems (Liu et al. 2019, Panteli et al. 2017). In addition, studies in the 

infrastructure resilience domain have developed multiple resilience metrics to measure the 

resilience of infrastructure, such as Resilience Star developed by Department of Homeland 

Security (Kangior 2013), Resilience-based Earthquake Design Initiative (REDiTM) rating 

system (ARUP 2020), RELi rating system (GBCI 2020). Most of the literature in the field 

of resilience evaluation primarily focuses on evaluating the performance of whole system 

(e.g., Meerow 2019, Comes et al. 2019), while lacking consideration of social equity 

conditions. Thus, there is a need to integrate equity and vulnerability into the resilience 

evaluation framework to develop a better resilience metrics for infrastructure systems. 

1.3  Research Objectives 

The main goal of this research study is to analyze the interrelationships between infrastructure 

resilience and social equity and establish an infrastructure resilience assessment framework that 

accounts for the unequal distribution of disaster impacts on infrastructure serving different 
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communities and potentially severe impacts on infrastructure of the vulnerable communities. In 

order to achieve this goal, the research objectives along with the research questions are formulated: 

Objective 1: 

To understand the interrelationships between social equity and infrastructure resilience in the 

context of a disaster. 

Associated Research Questions: 

RQ 1: How are infrastructure resilience conditions in the disaster-affected communities reflected 

by Twitter activities? 

RQ 2: How are social equity conditions in the disaster-affected communities reflected by Twitter 

activities? 

RQ 3: Do social equity characteristics of communities have impacts on the infrastructure resilience 

conditions of the communities? 

Objective 2 

To develop a new infrastructure resilience assessment framework by integrating equity into the 

resilience assessment framework. 

Associated Research Questions: 

RQ 1: How to quantitatively measure the unequal distribution of disaster impacts on infrastructure 

across different communities? 

RQ 2: How to quantitatively measure the potentially severe disaster impacts on infrastructure of 

the vulnerable communities? 

RQ 3: How to mathematically integrate the disparity and vulnerability in disaster impacts with 

infrastructure resilience assessment? 

Objective 3 

To validate the proposed resilience assessment framework using real case studies and develop a 

decision support system that assesses equity-integrated infrastructure resilience automatically.  
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Associated Research Questions: 

RQ 1:  How do communities with different characteristics (e.g., coastal vs inland, urban vs rural, 

more vulnerable vs less vulnerable) compare against each other in terms of disaster inequality? 

RQ 2: How do communities with different characteristics compare against each other in terms of 

disaster vulnerability? 

RQ 3:  How do communities with different characteristics compare against each other in terms of 

collective resilience? 

To limit the scope of the research work, the dissertation focused on the Florida communities, 

infrastructure systems that serve Florida communities, and disasters that threatened Florida 

communities. 

1.4  Research Methodology 

In order to achieve the above-mentioned research objectives, the research methodology is divided 

into four main research tasks as follows: (a) understanding the social equity, infrastructure 

resilience and their interrelationships in the context of a disaster, (b) develop a new infrastructure 

resilience assessment framework while integrating equity with infrastructure resilience assessment, 

(c) develop a prototype of a decision support system based on the proposed model for facilitating 

automatic infrastructure resilience assessment, and (d) validate the proposed assessment framework 

through multiple case studies. Figure 1-1 shows overview of the research framework. 
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Figure 1-1 Overview of research tasks. 

1.5  Research Significance 

This research study contributed to (1) advancing the fundamental understanding of the 

interrelationships between infrastructure resilience and social equity, (2) developing new methods 

on quantifying the unequal distributions of disaster impacts on infrastructure across different 

communities and evaluating severe impacts on infrastructure of vulnerable communities, and (3) 

formulating a theory-based infrastructure resilience assessment model that integrates disaster 

inequalities and vulnerabilities.  

1.5.1 Benefits to the Society 

The SW-Infra-RA model could allow the decision makers to quantitatively assess the resilience of 

infrastructure system and facilitate equity-incorporated decision making. The results generated by 

the model can be utilized to understand the inequalities that exists during disasters and identify 

communities that are more vulnerable to such disasters. This will help decision makers, emergency 

managers, and infrastructure planners prioritize disaster aids and funds, resources for recovery, and 
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future infrastructure investments and planning efforts to communities that are more vulnerable to 

the disasters. With the help of the model, decision makers can better understand the importance of 

considering inequalities and vulnerabilities in disasters and predict the potential consequences of 

future disasters. In addition, this model could potentially allow community residents and disaster 

practitioners to understand the relationship between resilience planning and social equity and help 

facilitate equitable resilience planning of infrastructure systems. 

1.6  Dissertation Organization 

This dissertation is organized into six chapters. Each of these chapter consists of its own 

introduction, methodology, results and analysis, and conclusions. Chapter 1 introduces the research 

background, knowledge gaps, and problem statement. This chapter also introduces research 

objectives along with research questions that need to be addressed, methodology adopted to achieve 

these objectives, and research significance. Chapter 2 provides a comprehensive literature review 

for all the research tasks. Chapter 3 presents the research task about understanding the 

interrelationships between social equity and infrastructure resilience in the context of a disaster. 

This chapter has been published in Dhakal et al. (2021). Chapter 4 presents the research task about 

developing a new social-welfare-based infrastructure resilience assessment (SW-Infra-RA) model 

that accounts for disaster inequality and vulnerability. This chapter has been published in Dhakal 

and Zhang (2022). Chapter 5 presents the research task about the development of a prototype 

decision support system based on the SW-Infra-RA model. Chapter 6 presents the research task 

about the resilience analysis of different infrastructure systems using four case studies. Chapter 7 

provides a summary of the overall research and conclusions of this dissertation. It also presents the 

contribution of the research study, limitations, and recommendation for future works. 
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CHAPTER 2 LITERATURE REVIEW 

2.1  Introduction 

The main objective of Chapter 2 is to review the literature related to infrastructure resilience, social 

equity, and resilience assessment of infrastructure systems. This comprehensive literature review 

provided a detailed overview of different conceptual notions related to the dissertation topic, 

explored knowledge gaps, and identified parameters required for formulating the infrastructure 

resilience assessment framework. The literature review is divided into five parts: (1) review the 

research about infrastructure resilience, social equity, and their interrelationships, (2) review the 

research about resilience assessment methods and frameworks, (3) review the research about 

resilience analysis of infrastructure systems, (4) review the research about social welfare theory 

and social welfare functions, and (5) review the research about social inequality measurements. 

2.2  Interrelationship between Infrastructure Resilience and Social Equity 

2.2.1 Infrastructure Resilience and Social Equity in Disaster Literature 

Over the last decade, disasters caused by natural hazards have resulted in over $900 billion in 

economic losses worldwide, mostly in the form of damage to infrastructure (UN 2016). Developing 

resilient infrastructure systems becomes a “national imperative” to address the threat caused by 

increasingly frequent and intensive disasters (Chopra et al. 2016). In addition, there are still 

significant disparities in access to infrastructure. For example, over 1.1 billion people still have no 

access to electricity worldwide, and about one-third of the world’s population is not served by all-

weather roads (Badré 2015). Minimizing or closing these disparities would require significant 

investment and development on infrastructure in a way that not only enhances its resilience but also 

reduces inequality of the society. While infrastructure resilience and social equity do not 

automatically go together, facilitating infrastructure resilience could potentially lead to better 

outcomes of social equity. Disasters cause disproportionate impacts to communities through their 
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impacts on infrastructure, which offers essential services (e.g., water supply, energy, 

communication, and transportation) to meet basic needs of disaster victims (Lynn et al. 2011). 

Multiple studies (e.g., Frigerio et al. 2019, Fatemi et al. 2017, Constible 2018) have shown that 

socially vulnerable communities experienced more severe disturbance caused by infrastructure 

damage, which could exacerbate social inequities if not addressed in a timely manner (Fothergill 

and Peek 2004). Resilient infrastructure, which poetically has less functional damage and/or is able 

to refunctionalize rapidly, may close the inequality gaps across different communities; it plays an 

important role in catering the necessities of all communities (Braese et al 2019).  

On one hand, the concept of infrastructure resilience has drawn significant attention among 

researchers in the disaster domain (Karamouz et al. 2019). Infrastructure resilience is defined as 

the ability of infrastructure to withstand, adapt, and quickly recover from the effects of disasters. 

The concept of resilience, originally, was used to indicate the capacity of a system to return to its 

original functional level after disruptive events (Rus et al. 2018). It was first introduced by Holling 

(1973) to define the persistence of relationships within a natural ecosystem and the ability of the 

system to absorb changes (Holling 1973). It was then widely adapted into different scientific fields, 

such as engineering, social science, material science, and economics, etc.  

 Over the last few decades, engineers in the domains of built environments, transportation systems, 

design and manufacturing, logistic systems, and systems operation and management have 

contributed to understanding, assessing, and enhancing the resilience of infrastructure systems 

(e.g., Aydin et al 2018, Zhang et al. 2018, Yodo and Wang 2016, Hosseini and Barker 2016, 

Heinimann and Hatfield 2017). Research in these domains focused on different aspects of 

infrastructure resilience, such as structural integrity (e.g., Chopra et al. 2016, Zhao et al. 2015), 

system reliability (e.g., Nateghi 2018), system recovery (e.g., Aydin et al. 2018, Croope and McNeil 

2011), resource allocation (e.g., Zhang et al. 2018, MacKenzie and Zobel 2016), and system 
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resilience measurement (e.g., Heinimann and Hatifield 2017, Yodo and Wang 2016). For example, 

Chopra and colleagues (2016) developed a multi-pronged framework that analyzes information on 

the network structure, spatial location, passenger flow, and structural and functional vulnerabilities 

for improving the resilience of the London Metro system. Nateghi (2018) proposed a predictive 

tool to assess various investment strategies for enhancing the resilience of electric power systems 

in hurricanes. Aydin and colleagues (2018) proposed a methodology that evaluates road recovery 

strategies for restoring the services after blockage due to natural disasters. Zhang and colleagues 

(2018) proposed a numerical modeling-based approach for allocating restoration resources that 

could enhance the resilience of infrastructure systems. Yodo and Wang (2016) explored and 

evaluated the challenges of incorporating resilience into engineering design, which contributes to 

the development of an engineering resilience analysis framework. 

Social equity, on the other hand, has been extensively studied by social scientists in the domains of 

social science, political science, psychology, and anthropology. In the context of disasters, allowing 

all disaster-affected individuals, including the socially vulnerable populations, to have equal access 

to resource distributions and opportunities is the key to achieve equitable resilience (Emrich et al. 

2019).  A long history of social equity research in the disaster domain shows that multiple social 

characteristics are associated with disparate exposures and impacts in disasters—including race, 

income, age, disability, and language proficiency (Domingue and Emrich 2019, Thomas et al. 

2013). Most literature on social equity, in the domain of disasters, focused on studying social 

vulnerability (e.g., Fatemi et al. 2017, Frigerio et al. 2019, Cutter et al. 2003), equitable recovery 

(e.g., Emrich et al. 2019), social justice (Shively 2017, Gil-Rivas and Kilmer 2016), and social 

resilience (e.g., Comes et al. 2019, Kim et al. 2018). For example, Cutter and colleagues (2003) 

studied socioeconomic and demographic conditions of different counties and developed social 

vulnerability index to encapsulate the socioeconomic conditions associated with disaster 

inequalities. Emrich and colleagues (2019) explored how social characteristics influenced the 
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equitable disaster recovery process for the 2015 South Carolina floods. Gil-Rivas and Kilmer 

(2016) proposed an ecological framework that accounts for social justice, empowerment, and 

diversity in building community resilience. Comes and colleagues (2019) highlighted the role of 

new information and communication technologies for improving social resilience during crisis 

across three different eras (1991-2005, 2005-2015, and 2016-onwards).  

Collectively, the research efforts in the domains of engineering and social science have offered 

valuable contributions to infrastructure resilience and social equity in disasters, respectively; 

research in the engineering domain advances the design, operation, and management of 

infrastructure systems in ways that improve their capabilities to resist, respond, and adapt to 

disasters; while research in the social science domain leads to the important recognition and 

understanding of the disproportionate impacts of disasters on communities.  However, researchers 

focusing on each of these fields are typically from different research backgrounds, making links 

between infrastructure resilience and social equity less commonly studied than any of the two areas 

taken in isolation. There is still limited convergence research that integrates both social equity and 

infrastructure resilience, which can offer a holistic understanding of the interrelationships between 

social equity and infrastructure resilience to support better infrastructure decision making that 

accounts for social impacts.  

2.2.2 Social Media Analysis in Disaster Literature 

Social media is a collection of platforms that allow users to create public or semi-public profiles, 

generate multimedia contents, connect with other users, and share contents, opinions, insights, and 

perspectives in real time (Houston et al. 2015). Social media is characterized as a low-cost, easy-

to-use, scalable, relatively reliable multimedia network that allows for real-time information 

sharing and exchange (Mills et al. 2009).  In addition, with the prevalence of Global Positioning 

System (GPS)-enabled personal mobile devices, every social media user could become part of a 
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location-enabled large sensor network. Thus, compared with traditional data sources, social media 

data is more spatially comprehensive and relatively rich in offering situational awareness 

information (Li et al. 2019). Over the last decade, social media has gained immense popularity for 

understanding information sharing and exchange in different domains, such as healthcare (e.g., 

Surani et al. 2017), emergency management (e.g., Harrison and Johnson 2019), marketing (e.g., 

Shareef et al.2019), politics (e.g., Kwak et al. 2018), and entertainment (e.g., Khan 2017). 

In the disaster domain, social media has been proved to be a good alternative to traditional data 

sources (Beigi et al. 2016, Cobo et al. 2015, Lindsay 2011). The massive data generated from social 

media can be used to analyze human activities in different spatiotemporal dimensions and provide 

insights on disaster-related knowledge. Researchers in the disaster field have worked on analyzing 

social media activities to address a variety of issues, such as damage assessment (e.g., Resch et al. 

2018, Chen et al. 2020), disparities of disaster impacts (e.g., Zou et al. 2018b), crisis 

communication (e.g., Roshan et al. 2016), disaster response and recovery (e.g., Young et al. 2020), 

and real-time disaster mapping (e.g., Li et al. 2018). For example, Resch and colleagues (2018) 

conducted a spatiotemporal analysis of social media data using machine learning techniques to 

analyze the regions with significant damage due to disasters. Chen and colleagues (2020) employed 

a systematic approach to identify and assess the damage on highways using social media in the 

context of Hurricane Harvey. Zou and colleagues (2018b) studied the social and geographical 

disparities that existed in the twitter activities during Hurricane Sandy. Roshan and colleagues 

(2016) analyzed the use of social media for communication among different organizations in the 

time of crisis. Young and colleagues (2020) studied social media and its potential use for 

emergency communication during the response and recovery phases of disasters. Li and colleagues 

(2018) proposed a novel approach for mapping the flood in real time using social media data.  
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The previous research has collectively provided important contributions to the utilization of social 

media data in advancing disaster resilience knowledge. However, existing research also suggests 

that due to the many inherent issues of social media data, such as false information, lack of 

validation, malicious use, using social media data alone to draw scientific conclusions or generate 

new knowledge is still challenging (Li et al. 2018, Zou et al. 2018a). There is a need to integrate 

social media data with traditional data to provide informative analysis results, and more research is 

necessary to address the question of synthesizing social media data with other sources of data to 

offer meaningful knowledge that supports disaster resilience (Zou et al. 2018a).  

2.3  Infrastructure Resilience Assessment in Disaster Literature 

Over the last two decades, the concept of infrastructure resilience has gained significant attention 

from scientific scholars and researchers around the world (Karamoutz et al. 2019, Cimellaro et al. 

2010). The concept of “resilience” was first introduced by Holling (1973) to describe the 

“persistence of relationships within a system” and the ability of the system to “absorb changes of 

state variables, driving variables, and parameters, and still persist” (Holling 1973). Holling (1996) 

also explained the difference between engineering resilience and ecological resilience. Ecological 

resilience measures how a system can persist by absorbing changes and disturbances, while 

engineering resilience measures the capacity of the system to recovery to its original functional 

level after a disturbance. Integrating these definitions, infrastructure resilience is typically defined 

as the ability of infrastructure to anticipate and absorb the shock, adapt to, and quickly recover to 

its original functional level (Berkeley et al. 2010).   

Over the years, many resilience assessment frameworks have been proposed to assess the 

resilience of different types of infrastructure, such as transportation infrastructure (e.g., Tonn et al. 

2020), electric power systems (e.g., Hossain et al. 2019), water and sanitation infrastructure (e.g., 

Assad et al. 2019), and telecommunication infrastructure (e.g., Mawgaud et al. 2021). These studies 

used different approaches to assess infrastructure resilience, including simulation-based approaches 
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(e.g., Hossain et al. 2019, Hosseini and Barker 2016, Lam and Tai 2018), mathematical approaches 

(e.g., Cimellaro et al. 2010, Shin et al. 2018, Bruneau et. al 2003), index-based approaches (e.g., 

Rehak et al. 2019, Petit et al. 2012, Fisher and Norman 2010), and data-driven approaches (e.g., 

MacKenzie and Barker 2020, Zhu et al. 2017).  

Simulation-based approaches were mostly employed in resilience assessment of system 

networks, such as water supply networks (e.g., Assad et al. 2019), electric grid networks (e.g., 

Hossain et al. 2019), and transportation networks (e.g., Hosseini and Barker 2016). In these studies, 

Bayesian networks, Monte Carlo simulation, and Fuzzy models were commonly used for the 

analysis. For example, Hossain et al. (2019) employed Bayesian networks to quantitatively assess 

the resilience of electric infrastructure systems. Similarly, Hosseini and Barker (2016) built a 

resilience assessment framework to quantify the resilience capacity of an inland waterway network 

using Bayesian networks. Nogal et al. (2017) proposed a resilience assessment framework to 

estimate the resilience of a transportation network impacted by extreme events using the Monte 

Carlo simulation method. Lam and Tai (2018) used a fuzzy modeling approach to model the 

interdependencies between entities in infrastructure networks by simulating the effects of 

disruptions.  

Using mathematical approaches, the resilience of infrastructure can be assessed through 

mathematical structures, notions, or equations. The mathematical approaches can be classified into 

deterministic (e.g., Bruneau et al. 2003, Cimellaro et al. 2010) and probabilistic (e.g., Decò et al. 

2013, Nogal et al. 2017) approaches. The deterministic approach utilizes the value of the input 

parameters to obtain a precise outcome without accounting for uncertainties. In contrast, the 

probabilistic approach can model the uncertainties that exist in the inputs of metrics to obtain the 

distributions of infrastructure failure and recovery (Mottahedi et al. 2021). For example, Cimellaro 

et al. (2010) proposed a comprehensive conceptual model that includes a loss estimation model and 
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a recovery model to quantitatively assess the seismic resilience of a network of health care facilities. 

Decò et al. (2013) used a probabilistic approach to assess the seismic resilience of bridges.   

Using index-based approaches, a resilience index is developed by identifying and 

aggregating a set of indicators that represent the characteristics of infrastructure resilience. The 

resilience index can then be used to compare or rank the resilience of several infrastructure 

alternatives by collecting the data of each infrastructure alternative. To frame the resilience index, 

both qualitative (measured with ordinal or nominal scales) and quantitative indicators (measured 

with interval or ratio scales) can be used (Cardoni et al. 2020). Multiple resilience indexes have 

been developed over the years, such as the Resilience Star developed by the Department of 

Homeland Security (Kangior 2013), the U.S. Resiliency Council (USRC) Building Rating System 

(USRC 2021), the Resilience-based Earthquake Design Initiative (REDiTM) rating system (ARUP 

2021), and the Resilience Action List (RELi) rating system (GBCI 2021). Similarly, many 

researchers have used the index-based approaches to develop different infrastructure resilience 

assessment frameworks. For example, Yang et al. (2018) developed the Resilience Index 

Considering Duration of events (RICD), which assesses the resilience of power transmission 

systems under typhoon weather. Argyroudis et al. (2020) built a cost-based resilience index that 

quantifies the seismic resilience of bridges. Cardoni et al. (2020) developed the Power Resilience 

Index (PRI) that assesses the seismic resilience of urban electric power distribution systems.  

Data-driven approaches refer to those methods that rely on collecting, analyzing, and 

interpreting data to derive insight, knowledge, or solutions. This approach can be used to develop 

new models to calibrate and reduce uncertainties when assessing infrastructure resilience 

(Argyroudis et al. 2021). By deriving knowledge from a large amount of data, the data-driven 

approach may provide a high level of reliability that cannot be achieved through other conventional 

scientific approaches (Maass et al. 2018). In the last decade, with the advancement on data analytics 

techniques, there has been a growing tendency of adopting data-driven approaches for resilience 
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assessment. For example, Argyroudis et al. (2021) proposed a data-driven resilience assessment 

framework for critical transportation infrastructure that is exposed to multiple hazards by 

interactively analyzing multiscale monitoring data (e.g., terrestrial data, airborne data), crowd data, 

and environmental measurements. Chandramouleeswaran and Tran (2018) used a data-driven 

approach for quantitatively assessing the resilience of air transportation networks using publicly 

available data (e.g., total cancellation flights, average flight delay). 

The existing research has offered valuable contributions to advance the understanding and 

methods of assessing infrastructure resilience. However, one of the major concerns that lie behind 

the demand for better resilience assessment is the need to pay more attention to equity and 

vulnerability in resilience assessment (Meerow et al. 2019, Meerow and Newell 2019). Much of 

the resilience assessment literature focuses on evaluating the performance of a whole (e.g., a 

complete infrastructure network) while lacking consideration of the inequalities and trade-offs 

among different parts that compose the whole. Some resilience assessment studies (e.g., RF 2021, 

GBCI 2021) proposed to integrate equity as one dimension or a characteristic of resilience. These 

studies tend to mix the conceptualizations of equity and resilience and simplify their relationships. 

Although disaster resilience and equity are interconnected, they are not the same. Integrating equity 

with resilience requires us to explicitly assess the unequal distributions of disaster impacts on 

various communities and evaluate the different levels of vulnerability that these communities face 

(Wescoat et al. 2018). There is, thus, a need to develop a new resilience assessment framework that 

assesses the collective infrastructure resilience while accounting for the disparities among the 

communities and potentially severe impacts on infrastructure of vulnerable communities.  

2.3.1 Resilience Triangle Framework 

The Resilience Triangle framework was based on the work by Bruneau et al. (2003), who defined 

and quantitatively measured the seismic resilience of communities. According to Bruneau et al. 

(2003), a resilient system has three key characteristics: (1) reduced failure probabilities, (2) reduced 



19 

 

consequences from the failures, and (3) reduced time to recovery. They then proposed to measure 

the resilience of a community by defining and measuring the area of a resilience triangle (Figure 

2-1). In the resilience triangle, the vertical axis represents the quality of infrastructure in a 

community [Q(t)], which varies with time. Q(t) ranges from 0% to 100%, where 100% represents 

no degradation in infrastructure quality or service, and 0% means no infrastructure service is 

available. An earthquake occurring at time to would cause damage to infrastructure so that the 

quality of infrastructure service is immediately reduced. Restoration of infrastructure is a process 

that takes time, and the quality of infrastructure gradually increases as the restoration process goes 

on. The infrastructure is completely recovered to its original functional level at time tt. Therefore, 

the community loss of resilience is determined by aggregating the degradation of the quality of 

infrastructure over the total recovery time (tt -to). 

 

Figure 2-1 A conceptual diagram of resilience triangle 

Over the last two decades, many research studies have been conducted to apply or adapt 

Bruneau et al. (2003)’s framework in assessing the resilience of various types of infrastructure, 
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such as healthcare facilities (Shang et al. 2020), electric power systems (Ouyang and Duenas-

Osorio 2014) and transportation infrastructure (Argyroudis et al. 2020). The framework has also 

been adapted to analyze disruptions caused by disasters other than earthquakes, such as hurricanes 

(e.g., Ouyang and Duenas-Osorio 2014) and flooding (e.g., Zamanian et al. 2020).  

2.4  Resilience Analysis of Infrastructure in Disasters 

Over the last decade, changing climatic conditions and frequent extreme weather events have 

caused a detrimental effect on infrastructure serving different communities in the United States. 

According to the National Oceanic and Atmospheric Administration (NOAA), there were 

approximately 323 extreme weather events and other natural disasters since 1980 in which the total 

damage cost of these events exceeded 2.2 trillion US dollars (NOAA 2022). To mitigate the disaster 

impacts on infrastructure, researchers and practitioners have been championing for more resilient 

infrastructure over the last several decades. However, these extreme weather events and natural 

disasters cause disproportionate impacts on infrastructure serving various communities, which may 

be linked to the variations in the quality of infrastructure serving communities with different 

characteristics (e.g., spatial, demographic, and socioeconomic statuses). For example, research 

shows that socially vulnerable communities bear more than their fair share of the physical and 

economic burden (e.g., physical damage, service disruptions, economic losses) caused by disasters 

(Emrich et al. 2019, Domingue and Emrich et al. 2019, SAMSHA 2017). These communities 

typically lack knowledge and resources in disaster risk reduction, mitigation, and infrastructure 

resilience planning. They are found to be neglected or left behind in infrastructure planning due to 

discriminatory policies, practices, and biases within infrastructure planning (NASEM 2022). Thus, 

it remains crucial that we identify the fundamental disaster inequalities and vulnerabilities across 

different communities when assessing the resilience of infrastructure. 

The concept of resilience has gained significant attentions in disaster risk research and applications 

over the last few decades. Improving the resilience of infrastructure can enhance the capabilities of 
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infrastructure in resisting, adapting to, and quickly recovering from extreme events. Systematically 

analyzing the resilience of infrastructure systems and identifying those communities with more 

vulnerable infrastructure is a first step toward building a universally resilient community. Over the 

years, extensive studies (e.g., Diao et al. 2016, Shafieezadeh and Burden 2014, Klise et al. 2017, 

Espinoza et al. 2016, Wei et al. 2020, Zhu et al. 2016) have been conducted to analyze the resilience 

of various infrastructure, such as water infrastructure (e.g., Diao et al. 2016, Klise et al. 2017), 

transportation infrastructure (e.g., Zhu et al. 2016, Shafieezadeh and Burden 2014), and electric 

power system (e.g., Espinoza et al. 2016, Wei et al. 2020). For example, Klise et al. (2017) 

conducted the resilience analysis of a water distribution system after an earthquake. Zhu et al. 

(2016) performed an assessment of the resilience of subway and road networks in Hurricanes Sandy 

and Irene. Espinoza et al. (2016) assessed the resilience of Great Britain’s electric power system 

from the impacts of floods and windstorms. These studies offered valuable contribution to advance 

the understanding and analyses of infrastructure resilience. However, these studies have not 

accounted for disparities in disaster impacts on infrastructure serving various communities.  

Over the years, scholars (e.g., Yabe and Ukkusuri 2020, Emrich et al. 2019, Mitsova et al. 2018, 

Zou et al. 2018b, Cutter et al. 2003) in the domain of disasters have highlighted the importance of 

assessing disparities in disaster impacts to better understand inequities in disaster contexts. Studies 

on disaster disparity analyses aim to understand unique characteristics and challenges that exist in 

the various communities and recommend strategies for resilience planning and investment aligned 

with the severity of needs. Analyzing the disparities of disaster impacts across various communities 

can be helpful to identify those communities that are the most vulnerable in disasters and facilitate 

equitable resilience planning in the future. Extensive studies (e.g., Yabe and Ukkusuri 2020, 

Emrich et al. 2019, Domingue and Emrich 2019, Coleman et al. 2020, Zou et al. 2018b) have been 

conducted to analyze disparities of disaster management efforts of or disaster impacts on 

communities or population groups with various characteristics (e.g., income, race, age). For 
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example, Yabe and Ukkusuri (2020) quantified the effects of income inequality on evacuation 

before disasters and re-entry after disasters, and they found that evacuees from higher income 

communities were more likely to evacuate from the impacted areas. Emrich et al. (2019) analyzed 

how social characteristics influenced the federal disaster recovery fund allocation following the 

2015 South Carolina floods. Coleman et al. (2020) studied disparities in hardships experienced by 

different communities due to infrastructure service disruption caused by Hurricane Harvey. Zou et 

al. (2018b) found social and geographical disparities in social media use during Hurricane Harvey. 

These studies offer valuable insight and contributions toward better understanding of disparities or 

inequalities in disasters. However, they have not integrated such disparities with infrastructure 

resilience assessment. There is also a lack of research on how the integration of disaster inequalities 

would impact the collective resilience of infrastructure. Furthermore, these studies have not 

comprehensively studied how the various characteristics of communities (e.g., coastal, inland, 

urban, rural, more vulnerable and less vulnerable) would impact the level of disaster inequalities 

and/or the collective resilience of their infrastructure.  

 

2.5  Social Welfare Functions 

Welfare economics is the study of how the distribution of resources and goods impacts social 

welfare; it evaluates well-being (welfare) at the aggregate level (Deardorff 2016). In welfare 

economics, several functions were proposed to evaluate or compare alternative social states (e.g., 

income distributions, life expectancy, literacy rate), and these functions are called social welfare 

functions (SWFs) (Weymark 2016). A SWF can be thus defined as a function that measures or 

ranks the collective welfare of the society in different social states (Arrow 1963). It can be used to 

determine the optimal distribution of well-being among individuals to achieve the maximum well-

being for the whole society (Arrow 1963). In a SWF, well-being is generally expressed in terms of 

utilities (e.g., incomes, benefits) or preferences.  
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In welfare economics literature, SWFs can be generally classified into (1) the Bergson-

Samuelson SWFs, (2) the Arrow SWFs, and (3) Cardinal SWFs. The Bergson-Samuelson SWFs 

determine the social preference (in the form of social ordering or ranking) of alternative social 

states (Weymark 2016) based on individual utilities (e.g., income, life expectancy). Through the 

functions, the individual utilities in alternative social states are first determined and further 

aggregated to determine the collective social preference. With the Arrow SWFs, the social 

preference of alternative social states is determined as a function of individual preferences 

(Weymark 2016). Unlike the Bergson-Samuelson SWFs, the Arrow SWFs only use information 

about individual preferences to determine the social preference.  

Cardinal SWFs, on the other hand, are functions that determine the collective welfare (in 

the form of numerical value) based on individual utilities. They do not necessarily require 

comparisons among individual utilities in alternative social states, and they yield a numerical 

representation of the collective welfare for each social state. Some of the Cardinal SWFs found in 

the literature include Utilitarian SWF (Harsanyi 1955), Rawlsian SWF (Rawls 1971), Bernouli-

Nash SWF (Jagtenberg 2017), Sen’s SWF (Sen 1997), and Atkinson and Brandoloni SWF 

(Atkinson and Brandoloni 2010). The Utilitarian SWF measures the social welfare as the average 

welfare of the individuals in the society. With the Utilitarian SWF, the collective social welfare of 

a society increases if the welfare of any individual increases and none decreases, with everyone 

indifferent (Harsanyi 1955, Schneider and Kim 2020). This function does not account for the 

equality of welfare (e.g., fair distributions of income) among the individuals in a society. With the 

Rawlsian SWF, the welfare of the society is determined by the welfare of the individuals with the 

lowest welfare in a society (Rawls 1971). According to the Rawlsian SWF, the social welfare 

increases if the welfare of the poorest individuals increases; it does not consider the welfare of other 

individuals in the society. Similar to Utilitarian SWF, the Rawlsian SWF does not consider equality 

in welfare distributions in a society. The Bernoulli-Nash SWF, in general, can be seen as the 
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mixture of the Rawlsian and the Utilitarian SWFs. With the Bernoulli-Nash SWF, the collective 

social welfare is calculated as the product of all individual welfare (Jagtenberg 2017).  

To account for inequality in welfare distributions, Sen (1997) proposed a SWF (Sens’s 

SWF) that accounts for unequal distributions of welfare across the individuals in a society. In Sen’s 

SWF, a Gini coefficient is used to measure welfare inequality. The Sen’s SWF determines the 

social welfare as the product between average welfare of all individuals and an inequality indicator. 

According to Sen’s SWF, the social welfare increases if the fairness in distributing the welfare 

increases. However, with Sen’s SWF, it is possible that the total amount of welfare increases at the 

expense of increased equality and reduced average welfare. In another word, the social welfare 

could increase by allowing all individuals to be equally poorer (Mostafa and El-Gohary 2014). 

Thus, to account for poverty in social welfare, a poverty line is defined based on the minimum 

amount of income an individual or a household needs to meet their basic needs (Callan and Nolan 

1991). The individual or household whose income falls below the poverty line is considered as 

being poor. Leveraging the poverty line, Atkinson and Brandoloni (2010) proposed a SWF that 

accounts for the poorest individuals with the minimum welfare in a society.  

Over the year, scholars in the domains of social science and economics have used the SWFs 

to solve various problems, such as reducing health inequalities (Dolan and Robinson 2001), 

assessing climate policies (Füssel 2006), and improving cost benefit analysis (Adler 2017). In 

recent years, the SWFs have been further adapted to address issues in other domains, such as 

transportation, architecture, engineering, and construction. For example, Zhang and Sanake (2020) 

proposed a social welfare-based group comfort analysis model to measure the collective comfort 

level of a group of individuals in the indoor environments. Kinjo and Ebina (2017) developed a 

mathematical model based on Utilitarian SWF and Nash SWF to determine autonomous vehicle 

(AV) driving behaviors by evaluating individual utilities of passengers inside the AV and 

pedestrians on a street. Mostafa and El-Gohary (2014) presented a social welfare-based 
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sustainability benefit analysis model that evaluates the distribution of benefits of infrastructure 

project alternatives to their stakeholders by accounting for both equality and poverty in benefit 

distributions. 

2.6  Social Inequality Measurements 

Inequality refers to an absence of equal distributions of goods, services, opportunities, rights, and/or 

dignity (UNCTAD 2021). Inequality is often measured by assigning a certain value to a specific 

distribution in order to facilitate direct and objective comparisons across different distributions 

(UNCTAD 2021). There are multiple methods to measure inequality, and these methods can be 

categorized as using “ratios” or using “indices”.  

Measuring inequality through “ratios” is a relatively easy and straightforward method. The 

most commonly used ratios for measuring inequality are 20/20 ratio and Palma ratio. 20/20 ratio 

represents the ratio of average income of the richest 20 percent of the population to the average 

income of the poorest 20 percent of population (Afonso et al. 2015, UNCTAD 2021). Palma ratio 

is defined as the ratio of total income of the richest 10 percent of households to the poorest 40 

percent of households (Afonso et al. 2015, UNCTAD 2021). Although ratios are relatively easy to 

understand, these methods do not measure how social welfare (e.g., income) is equally or unequally 

distributed across the population. For example, they do not consider the welfare (e.g., income) 

distributions within the highest and lowest percentiles of population (Trapeznikova 2019).  

As compared to “ratios”, “indices” are more commonly used to measure inequality. Some 

of the popular indices are Atkinson’s index (Afonso et al. 2015), Hoover index (Hoover 1941), 

Theil index (Theil 1967), and Gini index (Trapeznikova 2019). Atkinson’s index is a welfare-based 

measure of inequality, and it represents the percentage of total income that could be sacrificed to 

have more equal shares of income among individuals without reducing social welfare (Afonso et 

al. 2015). Hoover index, also known as Schutz index, defines inequality as the share of total income 

that needs to be redistributed from the population with income above mean to the those with income 
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below mean to achieve income equality (Afonso et al. 2015). A higher value of Hoover index 

indicates a higher level of inequality, and more redistributions are needed to achieve equality. Theil 

index belongs to general entropy (GE) measures; it measures an entropic “distance” the population 

is away from the ideal equitable state, in which all individuals have the same income (Conceição 

and Ferreira 2000). Since Theil index is not a relative measure of inequality, the values of this index 

are not always comparable across different groups and sizes of population (Trapeznikova 2019). 

Gini index is the most widely used and recognized measure of inequality (Trapeznikova 2019). It 

can be used to measure the inequality of any distributions. One of the benefits for using Gini 

coefficient is to allow for direct comparisons of inequality states across different groups of 

population, irrespective of their sizes (Afonso et al. 2015). A higher Gini coefficient value indicates 

higher inequality. The Gini coefficient has been used in measuring inequality in various domains, 

such as energy consumption (Jacobson et al. 2005), water consumption (Wang et al. 2012), indoor 

environmental quality (Zhang and Sanake 2020), and healthcare resource allocation (Jian et al. 

2015).  

In our study, we chose to adapt Gini coefficient in measuring the inequality of disaster impacts for 

the following reasons: (1) it allows for measurement of distributions of disaster impacts across 

multiple communities, (2) it allows for comparisons of distributions of disaster impacts across 

communities with different sizes of population, and (3) it is not affected by the characteristics (e.g., 

poverty) of the communities, and (4) it is relatively straightforward and easy to interpret. 
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CHAPTER 3 UNDERSTANDING INFRASTRUCTURE RESILIENCE, SOCIAL 

EQUITY, AND THEIR INTERRELATIONSHIPS: EXPLORATORY STUDY 

USING SOCIAL MEDIA IN HURRICANE MICHAEL 

3.1  Introduction 

Resilience has emerged as an increasingly important factor in developing and maintaining 

infrastructure in response to both acute (e.g., hurricanes, earthquakes) and slow on-set disasters 

(e.g., sea level rise) (Doorn 2019). Over the last decade, the growing intensity and frequency of 

disasters have resulted in huge economic losses mostly in the form of damage to infrastructure, 

which significantly impacts people's access to services, such as clean water, electricity, 

transportation, and health care (UN 2016). To allow infrastructure to resist or absorb disturbance, 

and retain basic functional and service capacities, investing in and implementing disaster resilience 

strategies have become a national imperative for all Americans (NRC 2012). However, one of the 

overlooked problems with infrastructure resilience is that damaged infrastructure due to disasters 

could result in varying levels of disturbance to the residents. Such damage is typically not evenly 

distributed across different communities; low income and minority communities are more 

vulnerable to disaster risks, and they also struggle more to recover (Emrich et al. 2019). For 

example, after Hurricane Harvey, more severe flooding damage was found in communities or 

households with lower incomes as lower income Americans are more likely to live in 

neighborhoods or buildings that are more susceptible to flooding or other impacts from storms 

(Krause and Reeves 2017). 

To reduce or eliminate disparities of access to infrastructure due to disasters, the 2030 Global 

Sustainable Development Agenda of the United Nations highlights the importance of 

understanding the integrated nature of infrastructure, inequality, and resilience (UN 2016). For 

example, how does infrastructure resilience affect social equity? How is social equity integrated 
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into resilience assessment or planning? Benchmarking the definitions of social equity in the 

literature (e.g., Emrich et al. 2019, UN 2019, APA 2021), social equity is defined as this study as 

equal opportunities and resources provided to different populations through the functions offered 

by infrastructure. Achieving social equity means reducing or eliminating disparate access to goods, 

services, and amenities among different populations, including socially vulnerable populations. 

Socially vulnerable population include the economically disadvantaged, racial and ethnic 

minorities, the elderly, the uninsured, the homeless, the disabled, those with chronic health 

conditions, and those with language barriers (Rao et al. 2019, AJMC 2006). They often have the 

fewest resources for disaster preparedness, live in disaster prone areas, and lack social, political, 

and economic capital needed to adapt to and recover from disasters (IWR 2016). Resilient 

infrastructure is vital in offering stabilized essential services (e.g., water, power, communication, 

and transportation) to socially vulnerable populations, thus playing an important role in supporting 

social equity in disasters (Doorn 2019, UN 2016). 

Despite such interlinkage between infrastructure resilience and social equity, there is limited 

research that provides an explicit understanding about the complex relationships between 

infrastructure resilience and social equity. Extensive research efforts have focused on either 

infrastructure resilience or social equity. For instance, on one hand, the research on improving the 

resilience of infrastructure systems has received significant attention in the engineering circles (e.g., 

Karamouz et al. 2019, Rasoulkhani et al. 2019, Karamouz et al. 2018, Aydin et al. 2018). On the 

other hand, social equity has been widely studied in the domains of psychology, social science, 

political science, and anthropology (e.g., Domingue and Emrich 2019, Rodríguez-Izquierdo 2018, 

Castillo et al. 2019, Riccucci and Van Ryzin 2017). However, researchers from different research 

domains or backgrounds usually focus on one of these distinct fields, making links between these 

two areas less commonly studied than any of these areas taken in isolation (UN 2016). Thus, 

researchers and organization (e.g., UN 2016, Rockfeller Foundation 2020) have been calling for 



29 

 

the need to understand the complex links between infrastructure resilience and social equity to 

uncover important synergies and tradeoffs. 

 To fill the knowledge gap, this chapter aims to explore the interlinkages between infrastructure 

resilience and social equity using a data-driven method. Data from different sources were collected 

and analyzed, including social media data, census data, and disaster damage, relief, and recovery 

data. In recent years, social media has become one of the emerging data sources to understand 

human activities and behaviors in a disaster setting (Resch et al. 2018, Zou et al. 2018a). Compared 

with traditional data sources (e.g., surveys), social media offers real time human generated data 

with spatiotemporal characteristics. Social media data allows researchers to conduct diverse studies 

in the context of disasters; the topics range from those that are related to infrastructure, such as 

damage assessment (e.g., Resch et al. 2018, Cervone et al. 2017, Wu and Cui 2018), infrastructure 

accessibility (e.g., Hamstead et al. 2018), and infrastructure recovery (e.g., Nazer et al. 2016, 

Schempp et al. 2019), to those that are relevant to social impacts, such as communication patterns 

(e.g., Wukich et al. 2019Goldgruber et al. 2017), public awareness (e.g., Martín et al. 2017), social 

disparities (e.g., Zou et al. 2018b). Among different sources of social media data (e.g., Facebook, 

Instagram, Twitter, and Tumblr), Twitter is the most widely used data source for conducting 

research as Twitter data are relatively easy to access, cost-effective, have less privacy concerns, 

and have proven to be a relatively reliable source of valuable information (Kryvasheyeu et al. 2016, 

Zou et al. 2018a). 

As a first step toward understanding of the complex relationships between infrastructure resilience 

and social equity, this chapter aims to explore whether social media data can be used as indicators 

of either infrastructure resilience or social equity conditions in the context of a disaster. It aims to 

address the following research questions (RQs): 
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RQ1:  How are infrastructure resilience conditions in the disaster-affected communities reflected 

by Twitter activities? 

RQ2: How are social equity conditions in the disaster-affected communities reflected by Twitter 

activities? 

RQ3: Do social equity characteristics of communities have impacts on the infrastructure resilience 

conditions of the communities? 

To address these questions, Twitter activities generated by 12 disaster-affected counties in Florida 

during Hurricane Michael in 2018 were collected and analyzed. In addition, socioeconomic data 

were selectively collected to represent the social equity conditions of these disaster affected 

counties, while infrastructure damage, relief, and recovery data were collected to reveal the 

infrastructure resilience conditions of these counties. Statistical correlation analyses were then 

conducted (1) between the social equity variables and Twitter variables, (2) between the 

infrastructure resilience variables and the Twitter variables, and (3) between the social equity 

variables and the infrastructure resilience variables. The remainder of the chapter presents the 

research context and methodology, discusses the results and findings, and summarizes the 

contributions and conclusions. 

3.2  Research Context 

Hurricane Michael was a Category 5 hurricane that made landfall near Mexico Beach, Florida on 

October 10, 2018, with a maximum speed sustained wind speed of 257.50 kph (160 mph) (Wamsley 

2019). It is one of the strongest hurricanes to have ever made a landfall in the Florida Panhandle 

region.  
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Figure 3-1 Ratio indices of the disaster affected counties of Florida. 

Hurricane Michael was selected as the research context for three reasons. First, it caused massive 

damage and destruction to the infrastructure of coastal communities in the Florida Panhandle 

region. According to National Oceanic and Atmospheric Administration (NOAA), the storm surges 

brought floods with water levels rising 2.74-4.27 m (9-14 ft) above the normal level in the 

Panhandle area (NOAA 2018a). High storms surges and intense wind speeds caused significant 

damage to buildings and infrastructure. According to a preliminary damage assessment report 

(NHC 2018), Hurricane Michael caused approximately $25 billion in direct damage. These surges 

and wind forces caused complete power outages and a significant portion of the communication 

network outages in the Florida Panhandle region, with some of these outages lasting for more than 

a month. Physical structures, such as communication towers, electric poles, substations, and 

transmission towers, were severely damaged due to intense wind forces combined with fallen and 

flying debris and flash floods. In addition, transportation infrastructure (e.g., roads and bridges), 

was blocked, damaged, or completely washed away due to fallen trees and flash floods (NHC 

2018). Second, the regions struck by Hurricane Michael are among the most socially vulnerable 
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regions in the United States (DirectRelief 2018, Pathak et al. 2020). According to Federal 

Emergency Management Agency (FEMA 2018), 12 counties in Florida were severely impacted 

and issued disaster declaration as of November 15, 2018. These counties include Bay, Calhoun, 

Franklin, Gadsden, Gulf, Holmes, Jackson, Leon, Liberty, Taylor, Wakulla, Washington Counties 

(Figure 3-1). Third, there is relatively limited disaster research that focuses on Hurricane Michael 

as compared to studies on other hurricanes (e.g., Hurricane Sandy, Hurricane Harvey, Hurricane 

Irma). 

3.3  Methodology 

3.3.1 Data Collection Methods 

3.3.1.1 Twitter Data Collection 

In this study, Twitter was used as the source of social media data. Twitter provides an online social 

networking platform where people can communicate in short messages, share images, or webpages 

links, all of which are known as tweets. With 100 million daily active users and around 500 million 

daily tweets (Forsey 2019), Twitter is one of the most popular social networks that allow for the 

collection of a huge amount of information on human thoughts and activities in a disaster setting 

(Zou et al. 2018a). Twitter data collection and processing methods proposed by Zou et al. (2018a) 

was benchmarked, and the following steps were taken to collect and process Twitter data for 

analysis:  

Step 1: Background Tweets Collection 

Background tweets are the tweets generated from the Florida Panhandle area during the 

preparedness, response, and initial recovery phases of Hurricane Michael. The background tweets 

were collected by combining two different types of tweets: geotagged and non-geotagged tweets. 

The geotag of a tweet can be either an exact GPS coordinate (latitude and longitude) that represents 

the precise location of a user’s mobile device or an approximate place name selected by the user 
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from a list of place names suggested by Twitter, such as a city or a neighborhood (Twitter 2020). 

Tweets are generally not embedded with geolocations unless enabled by the users, and it is 

estimated that less than 1% of all the tweets are geotagged (Ajao et al. 2015).  

Twint is used to collect geotagged tweets generated from Florida Panhandle area. Twint is a twitter 

scraping tool that utilizes Twitter search operators to scrape tweets from specific users, certain 

topics, or geographic locations (PyPI 2018). Twint is able to extract all the tweets that fall within a 

predetermined geographical coordinate and a radius of coverage. A Twitter search query was then 

scripted to extract all the geo-tagged tweets that were generated from each of the 12 Florida 

Panhandle counties. The tweets were extracted from October 1, 2018 to November 16, 2018 to 

cover preparedness, response, and initial recovery phases of Hurricane Michael. Each extracted 

tweet contains information including the time of creation, tweet ID, tweet content, tweet status (i.e., 

if the tweet is a reply or retweet), coordinates, place, and information about the user who posted 

the tweets (e.g., names, screen name, locations, numbers of followers, friend, and list).  

The non-geotagged tweets in the background collection are the tweets without geotags but sent by 

users whose addresses are in the Florida Panhandle area. A publicly available Twitter data archive 

(Internet Archive 2020) was used to collect these non-geotagged tweets. The Internet Archive 

provides a chronological collection of tweets randomly selected from general twitter stream since 

2012. In the archive, each tweet is stored in JavaScript Object Notation (JSON) format and contains 

information such as the textual content of the tweet and user profile. To collect non-geotagged 

tweets, a place-name lexicon was created including all the municipality names of each Florida 

Panhandle county. For each tweet, the address in the user profile was examined. The tweet was 

extracted if the address contains any municipality name from the place-name lexicon. Finally, the 

extracted non-geotagged tweets from Internet Archive were combined with extracted geotagged 

tweets to form the background tweets collection. 
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Step 2: Disaster-related Tweets Filtering 

After the background tweets were collected, the disaster-related tweets were further filtered. The 

filtering process includes two main steps. First, all the extracted tweets were filtered to include only 

the following relevant information to this study: (1) time when the tweet was generated, (2) the 

tweet content, (3) user name, (4) user’s profile information, (5) tweet’s geolocation if enabled, and 

(6) user’s location. Second, the disaster-related tweet data were further filtered based on the 

disaster-related keywords. A total of 39 keywords were used, such as hurricane, Michael, storm, 

response, preparedness, power, flood, infrastructure, and damage, etc. These keywords were 

derived through a combination of deductive approach and inductive approach. The deductive 

approach identifies the keywords based on the terms that are commonly used for filtering disaster-

related tweets according to other social media literature (e.g., Zou et al. 2018b, Kryvasheyeu et al. 

2016) in the disaster domain. The inductive approach identifies the keywords based on empirical 

observation of tweet contents. The keywords and the approaches that were used to derive them are 

listed as follows: 

Deductive approach: Hurricane, power, weather, damage, storm, recovery, flood, local 

government, FEMA, climate, safe, food, and water 

Inductive approach: Michael, infrastructure, emergency, rain, wind, surge, panhandle, Panama, 

Mexico, beach, relief, wave, responder, gulf, federal aid, resource, rebuild, supply, response, 

mitigate, prepare, highway, pray, rescue, search, and survivor. 

For each county, the total number of background tweets and disaster-related tweets were counted 

and tabulated. A Python 3.6 script was used to filter the original tweets and count the disaster-

related and total background tweets for each of the 12 studied counties.  
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3.3.1.2 Infrastructure Resilience Data Collection  

Infrastructure resilience can be characterized by robustness, rapidity, resourcefulness, and 

redundancy (Bruneau and Reinhorn 2006). Each of these characteristics can be further represented 

through concrete dimensions and variables (Table 3-1). Eight infrastructure resilience variables 

were selected for analysis in this study for two reasons: (1) these variables can represent the key 

characteristics of infrastructure resilience, and (2) their data can be obtained through public sources. 

The selected variables include damage value per capita (I1), percentage of power outages (I2), 

percentage of communication service outages (I3), power outage recovery time (I4), 

communication service outage recovery time (I5), disaster recovery cost per capita (I6), disaster 

relief and emergency assistance fund per capita (I7), and number of insurance claims per capita 

(I8). As indicated in Table 1, the data for these variables were collected from different public 

sources, including Florida Department of Transportation (FDOT), Federal Emergency 

Management Agency (FEMA), Florida Division of Emergency Management (FDEM), Federal 

Communications Commission (FCC), Florida Department of Economic Opportunity (FDEO), and 

Florida Office of Insurance Regulations (FOIR).  

Table 3-1 Infrastructure resilience variables 
Main 

characteristic 
Dimension Variable Data source 

Robustness 
Functional loss of 

infrastructure 

Damage value per capita (I1) 
(FDEM 

2019) 

Percentage of power outages (I2) (POR 2018) 

Percentage of communication service 

outages (I3) 
(FCC 2018) 

Rapidity 

Time required to recover 

to previous functional 

levels 

Power outage recovery time (I4) (POR 2018) 

Communication service outage 

recovery time (I5) 
(FCC 2018) 

Cost required to recover 

to previous functional 

levels 

Disaster recovery work cost per 

capita (I6) 

(FDOT 

2019) 

Resourceful-

ness 

Availability of economic 

resources 

Disaster relief and emergency 

assistance fund per capita (I7)  

FDEO 

(2019) 

Redundancy 

Alternate plan to maintain 

the functional level of 

infrastructure 

Number of insurance claims per 

capita (I8) 

(FOIR 

2019) 
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3.3.1.3 Social Equity Data Collection 

A total of 18 social equity variables (Table 3-2) were selected based on two main criteria: (1) they 

are representative indicators of social equity verified based on the review of literature (e.g., 

Schneiderbauer et al. 2006, Cutter et al 2010), and (2) they have consistent and high-quality data 

available from the national sources. These variables include percentage of population under 18 

years (S1), percentage of population 65 years and above (S2), percentage of male population (S3), 

percentage of female population (S4), percentage of white population (S5), percentage of black or 

African American population (S6), percentage of Hispanic or Latino population (S7), percentage 

of population speaking other than English language at home (S8),  percentage of households with 

internet connection (S9), percentage of households with computer (S10), percentage of population 

having high school degree and higher (S11), percentage of population without health insurance 

(S12), percentage of population with disability (S13), per capita income (S14), percentage of 

population under poverty (S15), median household income (S16), median value of owner occupied 

housing units (S17), and total employment (S18). For each variable, the data of each of the twelve 

affected counties were collected from the U.S. Census Bureau (U.S. Census 2019). The U.S. Census 

Bureau provides data with quality, reliability, and consistency (Santos 2019). 

Table 3-2 Social equity variables 

Dimension Variable 
Data 

source 

Age  
Percentage of population under 18 years (S1) (U.S. 

Census 

2019)  Percentage of population 65 years and above (S2) 

Gender  

Percentage of male population (S3) (U.S. 

Census 

2019)   Percentage of female population (S4) 

Race 

Percentage of white population (S5) (U.S. 

Census 

2019)  

Percentage of black or African American population (S6) 

Percentage of Hispanic or Latino population (S7) 

Language  
Percentage of population speaking other than English 

language at home (S8) 

(U.S. 

Census 

2019)  

Technology Percentage of households with internet connection (S9) 
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3.3.2 Data Analysis Methods 

3.3.2.1 Twitter Data Indices 

To analyze Twitter activities during Hurricane Michael, the Ratio Index (RI), Normalized Ratio 

Index (NRI), and Sentiment Index (SI) were calculated for each of the twelve affected counties in 

Hurricane Michael. Ratio Index (RI) is a Twitter index that can be used to represent the intensity 

of twitter activities in certain topics or domains. In this study, it is calculated using the number of 

disaster-related tweets divided by the total number of background tweets [Eq.(3-1)] (Zou et al. 

2018b).  

RI =     
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑤𝑒𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑤𝑒𝑒𝑡𝑠
 

(3-1) 

In order to eliminate the effects of disaster threat levels on Twitter activities, a normalized ratio 

index was defined so that disparities of Twitter activities under the same disaster threat level can 

be investigated. The NRI can be calculated as RI divided by the average sustained wind speed 

[Eq.(3-2))]. The sustained wind speed data for each of the most affected counties were collected 

from the National Hurricane Center under NOAA (2018), and the NRI was calculated for each 

county using Eq. (3-2).   

Percentage of households with computer (S10) 

(U.S. 

Census 

2019)  

Education 
Percentage of population having high school degree or higher  

(S11) 

(U.S. 

Census 

2019)  

Health 
Percentage of people without health insurance (S12) (U.S. 

Census 

2019)  
Percentage of population with disability (S13) 

Economics 

Per capita income (S14) 

(U.S. 

Census 

2019)  

Percentage of population under poverty (S15) 

Median household income (S16) 

Median value of owner-occupied housing units (S17) 

Total employment (S18) 
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NRI =  
𝑅𝐼

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑
 

(3-2) 

Sentiment analysis aims to evaluate people’s opinions, thoughts, and feelings, expressed in Twitter 

by assigning sentiment scores based on tweet contents (Caragea et al. 2014). Previous studies on 

social media data analysis have exhibited that sentiment analysis of tweet contents can be used to 

understand human perceptions, concerns, or psychological impacts during disasters (Caragea et al. 

2014, Kryvasheyeu et al. 2016). This study used the valence aware dictionary and sentiment 

reasoner (VADER), a lexicon and rule-based python tool, to quantify the sentiment score for each 

of the tweet contents (Hutto and Gilbert 2014). VADER combines a manually created 

comprehensive sentiment lexicon with a set of grammatical and syntactical heuristics to determine 

the overall sentiment intensity of an input text (Hutto and Gilbert 2014). The comprehensive 

lexicon of VADER was constructed by examining existing well-established sentiment word banks 

[e.g., linguistic inquiry word count (LIWC), affective norms for english words (ANEW), and 

general inquirer (GI)] and incorporating numerous lexicon features related to sentiment 

expressions, including a full list of emotion and sentiment related acronyms (e.g., LOL), and 

commonly used slang with sentiment value (e.g., meh, nah) (Hutto and Gilbert 2014). In developing 

VADER, twenty independent human raters were employed for the intensity rating of lexical 

features, where the features were rated on a scale from extremely negative (-4) to extremely positive 

(+4), with neutral (0) in between (Hutto and Gilbert 2014). VADER has been found to perform 

exceptionally well in the social media domain and even outperform human raters at correctly 

identifying the sentiment intensity of tweets (Hutto and Gilbert 2014).  

In our study, we employed VADER to determine if the text in the tweet content expresses positive, 

negative, or neutral opinion. For each tweet, VADER assigns a sentiment score ranging from 1 

(extremely positive) to -1 (extremely negative), and a score between -0.05 and 0.05 is considered 
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neutral. For a county, the sentiment index is calculated as the mean sentiment score of each tweet 

content from the county [Eq. (3-3)]. 

  SI =  
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒𝑠 𝑓𝑜𝑟 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑤𝑒𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑤𝑒𝑒𝑡𝑠
 (3-3) 

 

3.3.2.2 Infrastructure Variable Index  

When analyzing the infrastructure resilience conditions of the affected communities with different 

social equity characteristics, it is acknowledged that the counties that are close to the hurricane path 

naturally had more severe damage and could also take longer time to recover. Therefore, to 

eliminate the effects of disaster threat levels on the infrastructure, a set of normalized infrastructure 

resilience (NIR) variables were developed. Accordingly, the NIR data were calculated by dividing 

the original infrastructure resilience data with the average sustained wind speed during the 

hurricane period in each county [Eq. (3-4)] 

NIR =  
𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 𝑑𝑎𝑡𝑎

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑
 (3-4) 

 

3.3.2.3 Correlation Analyses  

To answer the research questions, three sets of correlation analyses were conducted (1) between 

Twitter variables (RI and SI) and infrastructure resilience variables, (2) between Twitter variables 

(RI, NRI and SI) and social equity variables, and (3) between normalized infrastructure resilience 

variables (NIR) and social equity variables. Both the Pearson’s Product-Moment Correlation 

(Pearson’s correlation for short) and Spearman’ Rank Order Correlation (Spearman’s correlation 

for short) were used to conduct the correlation analyses. The Pearson’s correlation coefficient is a 

measure of the strength of a linear association that exists between two continuous variables and is 

denoted by r (Laerd 2020a). The Spearman’s correlation is a nonparametric version of the Pearson’s 

correlation. Spearman’s correlation coefficient (ρ) measures the strength and direction of 
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monotonic association between two variables rather than strength and direction of the linear 

relationship between two variables, which is what Pearson’s correlation determines (Laerd 2020b). 

The Spearman’s correlation can be used for both continuous variables and ordinal variables. 

Additionally, compared to Pearson’s correlation, Spearman’s correlation is more robust to outliers 

(Mukaka 2012).  

The results of the analyses were interpreted based on both the correlation coefficients (Pearson’s r 

and Spearman’s ρ) and the probability value (p-value). For the correlation coefficients, an absolute 

value of 0.50 and higher represents a high association between two variables, while an absolute 

value between 0.30 and 0.49 represents a medium association, and an absolute value between 0.10 

to 0.29 represents a small association (SS 2020, Cohen et al. 2013). For the probability value, most 

researchers consider a standard significance level as 0.1, 0.05, or 0.01 for hypothesis tests (Frost 

2020). In our study, a significance level of 0.1 was selected because (1) it allows the test to be more 

sensitive to detect significance in the data, (2) it is suitable for exploratory research to identify new 

hypothesis (Gaus et al. 2015), and (3) it is suitable to use for small sample size data sets (Kim and 

Choi 2019). Thus, if the p-value is less than 0.1, the association results are considered as statistically 

significant. The following sections discuss about the main findings of the analyses. 

3.4  Results Analysis and Discussion 

During the study period (from October 1, 2018, to November 16, 2018), 128 million tweets were 

collected. A total of 1,827,624 tweets were collected as the background tweets. Among the 

background tweets, a total of 103,660 disaster-related tweets were identified based on the disaster-

related keywords. The RIs for the twelve affected counties were first calculated using Eq. (3-1), as 

shown in Fig. 1. Similarly, the NRIs and SIs for the twelve counties were calculated using Eq. (3-2) 

and Eq. (3-3), respectively. The three sets of correlation analyses were then conducted.   
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3.4.1 Analyzing Relationships between Infrastructure Resilience and Twitter Activities 

To answer RQ1, the correlation analyses were conducted to assess the relationships between the 

infrastructure resilience variables and the Twitter activity variables (i.e., RI, SI). Error! Reference 

source not found. and Figure 3-2 present the correlation results that are statistically significant. As 

per Table 3, three infrastructure resilience variables, including damage value per capita (I1) 

(Pearson’s r =0.750, p=0.058), communication service outage recovery time (I5) (Pearson’s r = 

0.556, p=0.060), and disaster recovery cost per capita (I6) (Pearson’s r = 0.547, p =0.066) show 

statistically significant, strong positive linear associations with the Twitter activity variable, RI. In 

general, the results indicate that communities that experienced more severe damage to 

infrastructure and spent a longer time on recovery were more active on Twitter in Hurricane 

Michael. 

Table 3-3 Statistically significant results of correlation analyses between infrastructure resilience 

variables and Twitter activities 

Relationshipa Pearson’s correlation Spearman’s correlation 

r value p-value ρ value p-value 

RI vs I1 0.750 0.058b 0.149 0.645 

RI vs I5 0.556 0.060b 0.467 0.125 

RI vs I6 0.547 0.066b 0.168 0.602 

RI vs I7 0.544 0.068b 0.224 0.484 

RI vs I8 0.626 0.029b 0.427 0.167 

SI vs I4 0.598 0.040b 0.687 0.014b 

Note: RI = ratio index; and SI = sentiment index 
aThe numbering of infrastructure resilience variables follow that in Table 1. 
bThe p-value is significant at 0.1 level. 

These results are consistent with a number of studies (e.g., Zou et al. 2018b, Kryvasheyeu et al. 

2016) that indicate disaster-related Twitter activities are higher in those regions that have severe 

damage and destruction due to disasters. Other studies (Kent and Capello 2013, Starbird and Palen 

2010) show that disaster-related Twitter activities originate more from the communities that are 

proximal to the crisis events compared to the communities located farther away. Social media plays 

an increasingly important role in the context of disasters. It has changed the ways of crisis 
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communication, and it has turned out to be an important tool for information dissemination and 

exchange during emergency events. For example, during Hurricane Michael, the Twitter accounts 

of government officials were used for disseminating hurricane-related news, instructions, and 

educational resources for hurricane preparedness and response. The community residents were 

concerned about the damage and destruction that happened in their surroundings, and they turned 

to Twitter for disaster-related communication and information exchange. In the recovery process, 

social media is more commonly used for locating friends and families, facilitating volunteering 

inquiries, requesting and offering resources, and communicating and coordinating the recovery 

supplies (CivicPlus 2020). After Hurricane Michael, different government officials, public 

agencies, and non-government organizations (NGOs) used their official Twitter accounts to provide 

updates on recovery status, coordinate relief and recovery efforts, and offer resources or support. 
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Figure 3-2 Line charts showing the relationships between infrastructure resilience variables and 

Twitter activities (RI and SI)   

(The numbering of infrastructure resilience variable follow that in Table 1): (a) I1 versus RI; (b) 

I5 versus RI; (c) I6 versus RI; (c) I6 versus RI; (d) I7 versus RI; (e) I8 versus RI; and (f) I4 versus 

SI. 

Besides the previous findings, in our study, the hurricane damage value data from Franklin County 

were found to be an outlier; the relatively high damage value per capita was not aligned with the 

relatively low Twitter activities in that county. A further investigation on the data of damage value 

showed that Franklin County has a significantly higher damage value compared to the other eleven 

affected counties (Figure 3-1) of the Florida Panhandle. This is mainly because of the tremendous 

amount of damage on coastal Highway 98 connecting Carrabelle to Saint George Island in Franklin 

County; the gulf side of the two-lane roadway was completely washed out (FDEM 2019). As a 

scenic highway along the shoreline, coastal Highway 98 has fewer coastal barrier protections 

installed to resist the potential high tides and storm surges. Without adequate and robust barrier 

protections that serve as the mainland’s first line of defense against the impacts of severe storms 

and erosions, the roadway infrastructure along the gulf coast of the county was especially 
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vulnerable during Hurricane Michael. Hurricane Michael generated strong wind forces and storm 

surges that ranged from 1.52 to 5.79 m (5 to 19ft), which caused extensive damage to residential 

buildings, critical facilities, and infrastructure such as roads and highways. The damage value was 

estimated to be $10 billion for Franklin County (FDEM 2019).  

3.4.2 Analyzing Relationships between Social Equity and Twitter Activities 

To answer RQ2, the correlation analyses were conducted to assess the relationships between the 

social equity variables and the Twitter activity variables (i.e., RI, NRI, and SI). Error! Reference 

source not found. and Figure 3-3 present the correlation results that are statistically significant. As 

per Table 4, the RI has statistically significant, strong negative correlations with the percentage of 

population speaking other than English language at home (S8) (Spearman’s ρ = -0.592, p = 0.043), 

the percentage of Hispanic or Latino population (S7) (Spearman’s ρ = -0.573, p = 0.051), and the 

percentage of population with disability (S13) (Spearman’s ρ = -0.565, p = 0.056). In contrast, the 

RI has a statistically significant, strong positive correlation with the percentage of households with 

internet connection (S9) (Spearman’s ρ = 0.566, p = 0.055). In general, these results indicate that 

the communities with a higher percentage of vulnerable populations (e.g., those with language 

barriers, the minority, the disabled) are less represented on social media, while the communities 

with relatively high socioeconomic status are more active on social media. The following 

paragraphs provide the discussion of the main findings from the results. 

Table 3-4 Statistically significant results of correlation analyses between social equity variables 

and Twitter activities 

Relationshipa Pearson’s correlation Spearman’s correlation 

r value p-value ρ value p-value 

RI vs S7 -0.408 0.187 -0.573 0.051b 

RI vs S8 -0.383 0.220 -0.592 0.043b 

RI vs S9 0.390 0.210 0.566 0.055b 

RI vs S13 -0.267 0.402 -0.565 0.056b 

SI vs S13 -0.435 0.158 -0.618 0.032b 

SI vs S15 -0.392 0.208 -0.730 0.007b 

Note: RI = ratio index; and SI = sentiment index. 
aThe numbering of social equity variables follow that in Table 2. 



45 

 

bThe p-value is significant at 0.1 level. 

Based on the results, the communities with higher percentages of vulnerable populations were less 

active on Twitter during Hurricane Michael. Despite the efforts and goals to reduce or eliminate 

disparities in the context of disasters, significant disparities in different aspects such as risk levels, 

access to capital, and disaster-related knowledge and resources, continue in these disaster-affected 

communities. Vulnerable populations could face various obstacles that result in their “silence” on 

social media. For example, people who are disabled are exposed to a higher constant risk in 

disasters due to personal health concerns, higher chance of injuries and mental health problems, 

lack of awareness of situations, isolation from communities, and physical barriers in evacuation 

(Stough 2017). Previous studies (e.g., Morris et al 2014, USDoC 2019) also suggest that people 

with disabilities show a lower rate of technology use. These obstacles often force disabled people 

to strive to address physiological needs and maintain their personal safety in disasters, leaving less 

time and lower chances of using or communicating through social media.  
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Figure 3-3 Line charts showing relationships between social equity variables and Twitter 

activities (RI and SI) 

(The numbering of social equity variables follow that in Table 2): (a) S7 versus RI; (b) S8 versus 

RI; (c) S9 versus RI; (d) S13 versus RI; (e) S13 versus SI; and (f) S15 versus SI. 

Similarly, the minority populations (e.g., Hispanic populations) and the populations speaking other 

than English language, were less active on Twitter during Hurricane Michael. Language barriers 

have a significant impact on how people perceive and prepare for disasters. For example, disaster 

warning alerts, preparedness strategies, and disaster-related knowledge are mostly communicated 

through the English language in the United States. People who do not speak English have to rely 

on the secondary sources of information to prepare for and respond to disasters. Although social 

media, such as Twitter, is a platform for the global community, the analysis of Twitter user behavior 

shows that users tend to confine their connectivity within those who speak the same language; the 

interactions among the users are fragmented and often limited by the language (Young 2020). 

Language barriers impede effective communication through social media between the affected 

minority populations and relief operations during disasters.  
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To eliminate the effects of disaster threat levels on Twitter activities, the correlation analyses 

between NRI and social equity variables were also conducted to explore the relationships between 

Twitter activities and social equity variables under the same disaster threat level. Table 3-5 

summarizes the correlation results between the social equity variables and (1) RI, and (2) NRI. By 

comparing the results between (1) social equity variables vs. RI, and (2) social equity variables vs. 

NRI, it is observed that the correlation coefficients (Spearman’s ρ) of three social equity variables, 

including the percentage of black or African American population (S6), percentage of population 

without health insurance (S12), and percentage of population under poverty (S15), change from 

negative values to positive values. 

Table 3-5 Correlation coefficients of correlation analyses between social equity variables and 

Twitter activities 

Note: RI = ratio index; and NRI = normalized ratio index. 

The number of social equity variables follow that in Table 2. 

On the other hand, the correlation coefficients of eight social equity variables, such as the 

percentage of population having high school degree and higher (S11), per capita income (S14), 

median household income (S16), median value of owner-occupied housing units (S17), and total 

employment (S18), change from positive values to negative values. Collectively, the shifts in 

correlation tendencies reveal that, by accounting for the hurricane wind threat levels, communities 

Social 

equity 

variablea 

Pearson’s r value Spearman’s ρ value 

RI NRI RI NRI 

S5 0.243 0.174 0.245 -0.007 

S6  -0.212 -0.105 -0.238 0.154 

S9 0.390 -0.146 0.566 -0.146 

S10 0.128 -0.327 0.329 -0.327 

 S11 0.129 -0.344 0.252 -0.344 

S12 -0.146 0.263 -0.098 0.277 

S13 -0.267 0.086 -0.565 -0.028 

S14 0.100 -0.329 0.280 -0.329 

S15 -0.071 0.182 -0.425 0.242 

S16 0.068 -0.446 0.224 -0.446 

S17 0.340 -0.215 0.455 -0.215 

S18 -0.034 -0.317 0.259 -0.317 



48 

 

with higher percentages of vulnerable populations became more active on Twitter. In another word, 

under the same threat level, vulnerable populations were more active on Twitter during Hurricane 

Michael. This is probably because, facing with the same level of disaster threat, vulnerable 

populations perceived a greater level of difficulty and hardship in disasters, and they reflected this 

hardship by expressing their concerns, needs, and difficulties on social media. 

3.4.3 Analyzing Relationships between Social Equity and Infrastructure Resilience 

To answer RQ3, correlation analyses were conducted between the normalized infrastructure 

resilience variables and the social equity variables. Table 3-6 and Figure 3-4 present the statistically 

significant correlation results. Three main findings are discussed in the following paragraphs.  

First, according to Table 3-6, under the same disaster threat level, there is a significant and strong 

positive correlation between the damage value per capita (I1*) and the percentage of Hispanic or 

Latino population (S7) (Spearman’s ρ = 0.559, p = 0.059), and there is a significant and strong 

positive correlation between the disaster recovery cost per capita (I6*) and the percentage of 

population without health insurance (S12) (Spearman’s ρ = 0.518, p = 0.084). In addition, there is 

a significant and strong positive linear association between disaster recovery cost per capita (I6*) 

and the percentage of population over 65 years old (S2) (Pearson’s r =0.738, p =0.006). 

Collectively, these results may imply that the communities with higher percentages of vulnerable 

populations (e.g., the minority, the uninsured, the elderly) might have experienced more severe 

damage during Hurricane Michael, which also required higher expenses on recovery. Existing 

research shows that vulnerable populations are often under-prepared before disasters (e.g., lack of 

home insurances or flooding insurances, inadequate financial resources); thus, they may experience 

more severe losses (Constible 2018). These populations are also more likely to live in the disaster-

prone regions with older and structurally deficient houses. In addition, a large percentage of houses, 

in the Florida Panhandle, were not able to withstand the strength of Hurricane Michael as they were 
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constructed before the implementation of stricter building codes, which happened after Hurricane 

Andrew in 1992 (Allen 2018). 

Table 3-6 Statistically significant results of correlation analyses between social equity variables 

and normalized infrastructure resilience variables 

Relationshipa Pearson’s correlation Spearman’s correlation 

r value p-value ρ value p-value 

S1 vs I6b -0.809 0.001c -0.543 0.068c 

S2 vs I6b 0.738 0.006c 0.476 0.118 

S3 vs I6b 0.411 0.184 0.501 0.097c 

S3 vs I7b 0.550 0.064c 0.585 0.046c 

S4 vs I6b -0.411 0.184 -0.501 0.097 

S4 vs I7b -0.550 0.064c -0.585 0.046 

S7 vs I1b 0.010 0.975 0.559 0.059c 

S10 vs I4b -0.385 0.216 -0.517 0.085c 

S10 vs I5b -0.494 0.102 -0.531 0.075c 

S11 vs I5b -0.438 0.154 -0.529 0.077c 

S12 vs I5b 0.424 0.170 0.567 0.054c 

S12 vs I6b 0.330 0.295 0.518 0.084c 
aThe numbering of infrastructure resilience and social equity variables follow that in Tables 1 and 

2, respectively.  
bNormalized infrastructure resilience variables by the wind threat levels. 
c The p-value is significant to 0.1 level. 

Second, as per Table 3-6, under the same disaster threat level, the communication service outage 

recovery time (I5*) has significant and strong negative correlations with the percentage of 

households with computer (S10) (Spearman’s ρ = -0.531, p = 0.075) and percentage of population 

with high school degree and higher (S11) (Spearman’s ρ = -0.529, p = 0.077), and it has a significant 

and strong positive correlation with the percentage of population without health insurance (S12) (ρ 

= 0.567, p = 0.054). The power outage recovery time (I4*) also shows a significantly negative 

correlation with the percentage of households with computer (S10) (Spearman’s ρ = -0.517, p = 

0.085). These results may imply that the communities with higher socioeconomic status are more 

likely to require shorter time for recovery, and vice versa. Previous recovery experiences show that 

wealthier communities typically receive more reinvestment on their infrastructure compared to 

low-income communities (Nexus 2017). In addition, communities with highly educated 

populations tend to take short recovery time after disasters. Highly educated populations are likely 
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to be aware of the ongoing situations in their surroundings during disasters. They have the 

capability to communicate with local agencies, share information, and seek for aid and resources 

to recover from disasters. 

 

Figure 3-4 Line charts showing relationships between social equity variables and normalized 

infrastructure resilience variables 

(The numbering of infrastructure resilience and social equity variables follow that in Tables 1 and 

2, respectively): (a) S1 versus I6*; (b) S2 versus I6*; (c) S3 versus I6*; (d) S3 versus I7*; (e) S4 

versus I6*; (f) S4 versus I7*; (g) S7 versus I1*; (h) S10 versus I4*; (i) S10 versus I5* (j) S11 

versus I5*; (k) S12 versus I5*; and (l) S12 versus I6*. 

 Third, the results in Table 3-6 show the significantly positive correlations between the percentage 

of male population (S3) and (1) the disaster relief and emergency assistance fund per capita (I7*) 

(Spearman’s ρ = 0.585, p = 0.046), and (2) the disaster recovery cost per capita (I6*) (Spearman’s 

ρ = 0.501, p = 0.097). In contrast, significantly negative correlations are observed between the 

percentage of female population (S4) and (1) the disaster relief and emergency assistance fund per 
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capita (I7*) (Spearman’s ρ = -0.585, p = 0.046), and (2) the disaster recovery cost per capita (I6*) 

(Spearman’s ρ = -0.501, p = 0.097). In addition, disaster relief and emergency assistance fund per 

capita (I7*) is found to have a significantly positive linear association with the percentage of male 

population (S3) (Pearson’s r = 0.550, p=0.064), while having a significantly negative linear 

association with the percentage of female population (S4) (Pearson’s r = -0.550, p=0.064). These 

results may reflect gender-based disparities in disaster recovery and relief efforts in Hurricane 

Michael. Existing studies suggest that male populations have a higher sense of responsibility in an 

emergency event (Ariyabandu 2009, Olson 2017); male populations may be more aware of damage 

in their communities, volunteer to take responsibilities in reconstruction works, and seek aid and 

support from relief agencies to support recovery. On the contrary, women are more likely to take 

the role of caregivers; they protect, nurture, and assist family members during emergency events 

(Ashraf and Azad 2015, Ariyabandu 2009), which may inhibit their participation in community 

disaster recovery activities. Some studies (e.g., Neumayer and Plümper 2007, Ariyabandu 2009) 

show that women are marginalized in access to disaster recovery and relief resources compared to 

men within the same community.  

3.4.4 Analyzing Sentiment Indices, Infrastructure Resilience, and Social Equity 

Sentiment scores of each of the tweets in the affected counties were calculated using VADER and 

the mean values of these sentiment scores were calculated to determine the SI for each county. In 

this study, the sentiment scores range from 0.946 (extremely positive) to -0.898 (extremely 

negative). To further exemplify the tweets associated with the sentiment scores, examples of 

positive and negative tweets are listed in Table 3-7. According to the tweet contents, most of the 

negative tweets are related to the damage caused by Hurricane Michael, such as death toll, damaged 

property, power outages, and fallen trees. For the most positive tweets, the contents are related to 

the aid, support, supplies, and services people received after Hurricane Michael.  
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Table 3-7 Partial list of positive and negative Hurricane Michael related tweets with sentiment 

scores 

Rank Tweet Content 
Sentiment 

score 
County 

Examples of highly ranked negative sentiment tweets 

1 

A closer look at damage in Mexico Beach, FL. The death toll 

right now is 4 people in Mexico Beach alone. 15 total in Bay 

County. #hurricanemichael #mexicobeach @ Mexico Beach, 

Florida   

-0.8442 Gulf 

2 

My thoughts and prayers are with our brothers and sisters 

along the #Florida #panhandle. #hurricanemichael looks to be 

devastating. Scary for me to see another storm of this 

magnitude  

-0.8176 Gulf 

3 

Even when power gets restored finding fuel will still be a 

problem around Panama City, FL. Hereâ€™s why. 

@weatherchannel #hurricanemichael @ Lynn Haven, Florida  

-0.8126 Bay 

4 

This is what I #live for.  Poor guy lost his #home in the 

#hurricane, has been outside since #Wednesday and 

overheated. His temp was 106.8.  

-0.8126 Bay 

5 

Every tree down except the new ones #hurricanemichael 

#panhandlestrong @vacasarentals @RickyHaskins @ 

Calhoun County, Florida   

-0.8074 Liberty 

6 

from @WFTV -  CRUSHED: @GWarmothWFTV got a 

bird's eye view of the damage from #HurricaneMichael along 

the panhandle. #hurricane #mexicobeach #florida #orlando 

#floridaweather  

-0.7739 Gulf 

Examples of highly ranked positive sentiment tweets 

1 

Inspiring to see the determination and positive attitudes of 

people hit hard by #hurricanemichael. And the selfless 

service of those here to help.   #recover #rebuild #restore 

#hope 

0.926 Jackson 

2 

Listen, Tallahassee. This is my spot. The whole family ate for 

$11. They were opened after the hurricane. No struggling 

over here. @ Los Compadres Express 

0.9168 Leon 

3 

Our hearts go out to the panhandle and all of the communities 

terribly affected by #hurricanemichael Today, we witnessed, 

firsthand, the devastation in Marianna, FL as we delivered 47 

0.8885 Jackson 

4 

@cityofdeltona Our @DeltonaFireRescue deployment team 

is still working in #calhouncounty They have been doing 

damage assessments for the local 

#emergencyoperationscenter 

0.886 Calhoun 

5 

Thank you edwardcutie mr_chad_barnett and fmpolice for 

driving a truck load of supplies up to Mexico Beach law 

enforcement officers and first responders today 

#buyingthekeys @vacasarentals 

0.8687 Gulf 

6 

I love this beautiful bride. She is such a sweet pure soul. 

During this big mess of a hurricane she offered to help us with 

anything we needed. I sure she was able to help many others  

0.807 Bay 
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The correlation results between SI and (1) infrastructure resilience variables, and (2) social equity 

variables are shown in Table 3-3 and Table 3-4, respectively. According to Table 3-3, a significant 

and strong positive correlation is observed between the SI and the power outage recovery time (I4) 

(Spearman’s ρ = 0.687, p = 0.014). This may imply that the communities tend to have a positive 

and optimistic attitude toward the recovery of the communities and the infrastructure services, even 

though they spend longer time in recovery. This result coincides with another research study on 

Hurricane Michael (Pathak et al. 2020), which indicates that the impacted communities emphasized 

that Hurricane Michael opened doors for growth and change. Local residents look forward to more 

opportunities that Hurricane Michael could bring to their slowly developing communities. In the 

recovery, they were determined to rebuild stronger structures instead of restoring to pre-disaster 

conditions. Many local stakeholders called for a change of policies, such as raising the standards 

of the building codes (Pathak et al. 2020).    

In addition, the results in Table 3-4 show significantly negative correlations between the SI and (1) 

the percentage of population under poverty (S15) (Spearman’s ρ = -0.730, p = 0.007) and (2) the 

percentage of population with disability (S13) (Spearman’s ρ = -0.618, p = 0.032). These results 

suggest that the communities with higher percentages of populations that are disabled or under 

poverty were more likely to show a higher level of anxiety and deeper concerns regarding the 

impacts of Hurricane Michael. This result is supported by a number of studies (e.g., Shultz and 

Galea 2017, Galea et al. 2005, Fothergill and Peek 2004) that indicate vulnerable populations are 

more likely to develop anxiety, depression, and post-traumatic stress disorder (PTSD) as a result 

of exposure to disasters. For example, people with physical and mental disabilities are 

disproportionately affected by the impacts of disasters. These people with pre-existing medical 

conditions are more prone to develop additional mental health problems as a result of disasters. A 

study conducted after Hurricane Sandy found the residents with chronic health conditions and 

disabilities developed sleep disorders, pains, and suicidal ideation as the outcomes of adverse 
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mental health problems (Boscarino et al. 2014). Similarly, the financially disadvantaged individuals 

are at a greater mental and emotional risk in disasters. Previous studies (e.g., Rhodes et al. 2010, 

Kessler et al. 2008, Mills et al. 2007) show that the lack of access to both social and economic 

resources is correlated with declining mental health conditions, which may result in serious mental 

illness and higher perceived stress levels after disasters.  

3.5  Conclusions 

This chapter presents a study that aims to explore the interrelationships between infrastructure 

resilience and social equity in the context of Hurricane Michael. As part of the study, this chapter 

examines whether Twitter data can be used as an indicator of the infrastructure resilience or social 

equity conditions in a disaster setting. Twitter activities generated by the twelve disaster-affected 

counties in Florida during Hurricane Michael in 2018 were collected and analyzed. In addition, the 

socioeconomic data were selectively collected to represent the social equity conditions of these 

disaster-affected counties, while the infrastructure damage, relief, and recovery data were collected 

to reflect the infrastructure resilience conditions of these counties. Statistical correlation analyses 

were then conducted (1) between the social equity variables and the Twitter variables, (2) between 

the infrastructure resilience variables and the Twitter variables, and (3) between the social equity 

variables and the infrastructure resilience variables. The results indicate that, in the context of a 

disaster, Twitter activities have the potential to be used as an important indicator of infrastructure 

resilience conditions. In general, socially vulnerable populations are less active and representative 

on social media. However, under the same disaster threat level, the vulnerable populations become 

more active, and this is probably because of more difficulties and hardship they perceive during 

disasters. In addition, the impacted counties with different social equity conditions experienced 

different levels of damage and different speeds of recovery. The communities with higher 

percentages of socially vulnerable populations experienced relatively higher level of damage and 

required longer time for recovery. While some of the findings were discovered in other literature 
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(e.g., Krause and Reeves 2017, Emrich et al. 2019, Constible 2018) and in the context of other 

disasters, this study offers a data-driven understanding by integrating social media data with 

traditional data and providing synthesized data analysis results that further explore and reinforce 

the knowledge of infrastructure resilience and social equity in disasters. 

  



56 

 

CHAPTER 4 A SOCIAL WELFARE BASED INFRASTRUCTURE RESILIENCE 

ASSESSMENT FRAMEWORK: TOWARD EQUITABLE RESILIENCE FOR 

INFRASTRUCTURE DEVELOPMENT 

4.1  Introduction 

From meeting everyone’s basic needs to supporting trade, economy, and technology advancement, 

infrastructure services are the key enablers of human well-being and development. With climate 

change and the growth in intensities and frequencies of natural hazards, there is an increasing 

urgency and priority on investing in and developing resilient infrastructure (Hallegatte et al. 2019). 

A resilient infrastructure with high quality and robust structural components can potentially limit 

the impacts from natural hazards in terms of physical damage, economic losses, and functional 

disruptions (Braese et al. 2019). Over the last two decades, significant efforts have been made for 

the investment, development, and maintenance of resilient infrastructure to better withstand, adapt 

to, and rapidly recover from disaster impacts. However, in the context of a disaster, large disparities 

may exist in the levels of damage and/or recovery processes of the infrastructure across various 

communities. Such disparities may be caused by the differences in the severity of disaster exposure, 

and it may also be caused by the variations in the quality and adequacy of infrastructure services 

across different communities (Coleman et al. 2020). Some communities (e.g., wealthier 

communities) may have more investment in the development and rehabilitation of existing 

infrastructure (Hirsch et al. 2016, Nexus 2017). In contrast, some disaster vulnerable communities, 

which refer to those communities that suffer from the most severe disaster impacts, may struggle 

with unmet infrastructure needs, such as unreliable electric power systems, lack of adequate water 

and sanitation systems, overstrained transportation networks, and degraded school buildings, even 

before the disaster (Huang and Taylor 2019, Hallegatte et al. 2019). Underinvestment, insufficient 

maintenance, and mismanagement are some of the key factors that result in inadequate 
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infrastructure services in these disaster vulnerable communities (Hallegatte et al. 2019). In addition, 

research (e.g., Hallegatte et al. 2019, SMASHA 2017) shows that such disaster vulnerability is 

associated with social vulnerability. Socially vulnerable communities may include those with 

higher percentages of economically disadvantaged, racial and ethnic minorities, elderly, uninsured, 

homeless, disabled, those with chronic health conditions, and those with language barriers (Rao et 

al. 2019, AJMC 2006). These communities often have the fewest resources for disaster 

preparedness, are located in disaster-prone areas, and lack social, political, and economic capital 

needed to withstand, adapt to, and recover from a disaster. As a result, they are more likely to suffer 

from severe disaster impacts (e.g., higher percentages of power outages and traffic disruptions, 

longer recovery time) (Hallegatte et al. 2019, SAMSHA 2017). Due to the unequal distributions of 

disaster impacts and potentially more severe impacts on the infrastructure of vulnerable 

communities, there is sorely a need to systematically integrate disaster inequality and vulnerability 

with infrastructure resilience assessment.  

Despite such need, we have identified a number of knowledge gaps in the domain of 

infrastructure resilience assessment. Over the last two decades, many research studies (e.g., Panteli 

et al. 2017, Tonn et al. 2020, Cimellaro et al. 2010, Mao and Li 2018, Yang et al. 2018) have 

focused on developing models or frameworks to measure or assess infrastructure resilience. 

Various approaches or methods have been used in resilience assessment, such as simulation-based 

approaches (e.g., Hossain et al. 2019), mathematical approaches (e.g., Cimellaro et al. 2010), index-

based approaches (e.g., Fisher and Norman 2010), and data-driven approaches (e.g., Zhu et al. 

2017). These studies have provided valuable contributions toward advancing the understanding and 

facilitating infrastructure resilience. However, there remains limited research that integrates the 

disparity and vulnerability in disaster impacts with infrastructure resilience assessment. In another 

word, there is a lack of study that (1) measures the unequal distributions of disaster impacts (e.g., 

infrastructure functional loss, infrastructure recovery time) across different communities and 
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potentially more severe impacts on vulnerable communities, and (2) investigates how they would 

impact the collective resilience of infrastructure that serves multiple communities.  

To address these knowledge gaps, we propose a Social-Welfare-Based Infrastructure Resilience 

Assessment (SW-Infra-RA) model that assesses the collective resilience of infrastructure serving 

multiple communities by accounting for (1) disaster inequality – the unequal distribution of disaster 

impacts on infrastructure across the various communities, and (2) disaster vulnerability – the higher 

severity of disaster impacts on infrastructure serving vulnerable communities. The proposed model 

is theoretically grounded on the social welfare theory and social welfare functions. It also adapts 

the methods from Bruneau et al. (2003)’s Resilience Triangle framework and Cutter et al. (2003)’s 

Social Vulnerability Index. The proposed model aims to address the following research questions: 

How to quantitatively measure the unequal distributions of disaster impacts on infrastructure across 

different communities? How to quantitatively measure the potentially more severe disaster impacts 

on infrastructure of vulnerable communities? How to mathematically integrate the disparity and 

vulnerability in disaster impacts with infrastructure resilience assessment? This chapter focuses on 

presenting and discussing the conceptual notions and mathematical functions in the SW-Infra-RA 

model. The remainder of the chapter first reviews and discusses the relevant literature. It then 

presents the SW-Infra-RA model, including all the mathematical functions in the model. At the 

end, it discusses two sets of case studies (including a hypothetical and a real case study) to illustrate 

the use of the SW-Infra-RA model in determining the collective resilience of infrastructure serving 

multiple communities. 

4.2  Proposed Infrastructure Resilience Evaluation Framework 

The proposed SW-Infra-RA model aims to define the collective resilience of infrastructure that 

serves multiple communities by integrating (1) disaster inequality – the unequal distributions of 

disaster impacts on infrastructure across the various communities, and (2) disaster vulnerability – 

the higher severity of disaster impacts on infrastructure serving vulnerable communities. The 
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framework is grounded in the social welfare theory and functions. It also adapts the methods from 

Bruneau et al. (2003)’s Resilience Triangle framework and Cutter et al. (2003)’s Social 

Vulnerability Index. The model assesses the collective resilience of infrastructure in five main 

steps, including (1) determining disaster impacts on individual communities, (2) modeling 

inequality of disaster impacts, (3) modeling vulnerability in disaster impacts, (4) measuring 

collective disaster impacts, and (5) assessing collective infrastructure resilience. The following 

sections discuss about each step in detail.  

4.2.1 Determining Disaster Impacts on Individual Communities 

Disasters may cause severe damage to infrastructure, which results in the reduction of its 

functionality, and it may take weeks or months to restore the infrastructure to its original functional 

level. According to Bruneau et al. (2003)’s Resilience Triangle framework, such characterization 

of infrastructure performance during a disaster leads to a broader conceptualization of resilience. 

Resilience can be understood as the ability of infrastructure (1) to reduce the possibility or extent 

of disaster impacts, and (2) to recover rapidly after a disaster (Bruneau et al. 2003). Such 

conceptualization of resilience is widely adopted in different disaster literature (e.g., Cimellaro et 

al. 2010, Rehak et al. 2019, Yang et al. 2018). Benchmarking the Resilience Triangle framework, 

two main types of indicators were identified to determine the disaster impacts on individual 

communities. These indicators include those that represent (1) the functional loss of infrastructure 

(e.g., percentage of power outages, percentage of road closures), and (2) the recovery time of 

infrastructure (e.g., time required to resume electric power services, time required to resume road 

and highway services).  

Depending on the time of analysis, the selected disaster, the level of analysis (e.g., state 

level, county level, city level, community level), and data availability, there are two main methods 

for collecting the data for these indicators (i.e., functional loss and recovery time of infrastructure). 

For analyzing infrastructure resilience in the context of historical disasters, we can extract the 
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relevant data that are available in public or private sources; the data can be collected directly from 

(1) public sources, such as state, county, or local Department of Emergency Management, 

Department of Transportation, Office of Communications Commission, or Office of Insurance 

Regulations, or (2) private sources, such as electric power companies and telecommunication 

companies. The data then need to be tabulated by the level of analysis (e.g., state, county, city, 

community levels). For analyzing infrastructure resilience in the context of ongoing disasters, we 

need to collect firsthand data on infrastructure damage and recovery works by following damage 

assessment procedures and using the relevant tools and methods. For example, according to Federal 

Emergency Management Agency (FEMA)’s Preliminary Damage Assessment Guide (FEMA 

2021), damage information of infrastructure needs to be captured by visually and technically 

inspecting and confirming the conditions of damaged infrastructure and identifying and 

documenting relevant disaster impacts (FEMA 2021).  

In general, damage assessment is conducted using either a rapid approach or a detailed 

approach (Kwasinski 2011; Massarra 2012). Rapid damage assessment usually takes place as soon 

as conditions allow inspectors to operate after the occurrence of a disaster. It aims to generally 

estimate the nature and magnitude of damage and quickly inspect and assess the damage conditions. 

Thus, rapid assessment typically relies on an exterior observation and investigation of the 

structures. The magnitude of damage recorded on damage assessment forms (e.g., FEMA 2021) is 

typically a general estimate of the percentage of damage without accurate measurements (Massarra 

2012). In recent years, many technologies have been proposed to facilitate the efficiency of rapid 

damage assessment. For example, GIS-based hazard modeling platforms (e.g., HAZUS) can be 

used to estimate potential damage from disasters, such as hurricanes and floods (CCSF 2021). 

Remote sensing technologies, which detect and monitor the physical characteristics of an area by 

measuring its reflected and emitted radiation from a certain distance, can be used to quickly 

estimate locations, causes, and severity of disaster damage conditions (Hao et al. 2020). If more 
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detailed information is required regarding the damage conditions, rapid assessment should be 

followed by detailed assessments. Detailed damage assessment usually takes place in about two to 

four weeks after the occurrence of a disaster (Massarra 2012). Detailed damage assessment aims to 

collect more thorough and accurate information regarding the impacts of a disaster, including 

estimation of loss value, determination of recovery progress, and identification of recovery needs 

(Planitz 1999). Detailed damage assessment is based on the inspection of both structural (e.g., 

girder, column) and non-structural components (e.g., railing, coating) of infrastructure (Massarra 

2012). In our research context, both rapid and detailed assessment can be used to collect the data 

for determining disaster impacts on individual communities. The selection of the methods depends 

on the level of details that is needed for infrastructure resilience analysis.   

4.2.2 Modeling Inequality in Disaster Impacts 

In our research context, disaster inequality refers to the unequal distributions of disaster impacts 

(i.e., functional loss, recovery time) on infrastructure of various communities. The unequal 

distribution of disaster impacts is analogous to the welfare inequality in a society, which is 

commonly measured through the Gini coefficient (Atkinson and Brandolini 2010). Thus, we 

adapted Gini coefficient into the domain of infrastructure resilience assessment to measure the 

unequal distributions of disaster impacts (i.e., functional loss and recovery time) on infrastructure 

that serves multiple communities.  

A Gini coefficient ranges from 0 to 1. A Gini coefficient of 0 means complete equality in 

disaster impacts – the infrastructure of all communities of analysis has the same level of functional 

loss, and/or it takes the same length of time for recovery. A Gini coefficient of 1 means complete 

inequality in disaster impacts – the infrastructure of only one community has the highest level of 

functional loss and spends the longest time for recovery. Graphically, Gini coefficient can be 

represented through the Lorentz curve (Figure 4-1). As per Figure 4-1, it is measured by dividing 

the area between the Lorentz curve and line of complete equality (i.e., Area X) by the area covered 
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under the line of complete equality (i.e., Area X+Y) (Wodon and Yitzhaki 2008, Mostafa and El-

Gohary 2014). In the SW-Infra-RA model, the Lorentz curve illustrates the percentage of 

cumulative infrastructure functional loss (or recovery time) experienced by the percentage of 

communities in analysis. For example, as per Figure 4-1, a point on the Lorenz curve represents a 

statement such as, “the bottom 40% of all communities suffered from 10% of the total disaster 

impacts (e.g., functional loss, recovery time)”. A Lorentz curve is always bowed downward from 

the line of equality or coincides with the line of equality if there exists complete equality among 

the individuals of analysis. The Lorentz curve being farther away from the line of equality indicates 

a higher level of inequality (i.e., the value of Gini coefficient becomes closer to 1) and vice-versa. 

 

Figure 4-1 A Lorenz curve for the distribution of infrastructure functional loss. 

The Gini Coefficient can also be defined through Eqs. (4-1) and (4-2), which are 

mathematically equivalent to the Lorenz Curve. Eq. (4-1) and Eq. (4-2) define the Gini coefficients 

that measure the unequal distributions of functional loss and recovery time (i.e., two main indicators 

of disaster impacts), respectively.  
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𝐺𝑘(𝐹𝐿)  =  
∑ ∑ |𝐹𝐿𝑖𝑘 − 𝐹𝐿𝑗𝑘  |𝑛

𝑗=1
𝑛
𝑖=1  

2𝑛 ∑ 𝐹𝐿𝑖𝑘
𝑛
𝑖=1

 (4-1) 

 

where Gk(FL) = Gini coefficient for functional loss of a group k of multiple communities; FLik = 

functional loss of infrastructure in an individual community i of group k; FLjk = functional loss of 

infrastructure in an individual community j of group k; and n= total number of communities in 

group k.   

𝐺𝑘(𝑅𝑇)  =  
∑ ∑ |𝑅𝑇𝑖𝑘 − 𝑅𝑇𝑗𝑘  |𝑛

𝑗=1
𝑛
𝑖=1  

2𝑛 ∑ 𝑅𝑇𝑖𝑘
𝑛
𝑖=1

 (4-2) 

 

where Gk(RT) = Gini coefficient for recovery time of a group k of multiple communities; RTik = 

recovery time of infrastructure in an individual community i of group k; RTjk = recovery time of 

infrastructure in an individual community j of group k; and n= total number of communities in 

group k.   

4.2.3 Modeling Vulnerability to Disaster Impacts 

In our research context, vulnerable communities in a disaster refer to those communities that suffer 

from the most severe impacts from a disaster. The concept of vulnerability to disaster impacts is 

analogous to the concept of poverty in welfare economics. Thus, benchmarking the methods for 

measuring poverty in welfare economics, we proposed a “line of vulnerability” to define and 

measure vulnerability in the SW-Infra-RA model. The line of vulnerability is a benchmark that 

indicates the vulnerability level of infrastructure serving different communities. If the value of 

disaster impacts (i.e., infrastructure functional loss and recovery time) is above the line of 

vulnerability, the community is identified as one of the vulnerable communities in the disaster. 

However, unlike the poverty line that has been extensively studied, there are no established 

methods to measure the line of vulnerability in the disaster domain. In our research, we adapted 

Cutter et al. (2003)’s work on social vulnerability. Cutter et al. (2003) constructed a Social 



64 

 

Vulnerability Index (SoVI) for all the counties in the U.S. based on the county-level socioeconomic 

and demographic data. The counties with SoVI scores greater than the average plus standard 

deviation are identified as the most vulnerable counties. In our proposed model, the line of 

vulnerability can be defined as the sum of the mean and the standard deviation of infrastructure 

functional loss (or recovery time) experienced by the communities of analysis. Eq. (4-3) and Eq. 

(4-4) define the line of vulnerability for functional loss and recovery time, respectively: 

𝐿𝑉(𝐹𝐿)𝑘
=  

1

𝑛
 ∑ 𝐹𝐿𝑖𝑘

𝑛

𝑖=1

+  𝛼 𝑆𝑛𝑘 (4-3) 

where 𝐿𝑉(𝐹𝐿)𝑘
= line of vulnerability for functional loss of infrastructure serving a group k of 

multiple communities; FLij = functional loss of infrastructure serving an individual community i of 

group k; n = total number of communities in group k; 𝑆𝑛𝑘 = standard deviation for the functional 

losses of infrastructure serving a group k of multiple communities; and 𝛼 = a coefficient that 

controls the line of vulnerability (0 ≤ 𝛼 ≤ 1).  

𝐿𝑉(𝑅𝑇)𝑘
=  

1

𝑛
 ∑ 𝑅𝑇𝑖𝑘

𝑛

𝑖=1

+  𝛽𝑆𝑛𝑘 (4-4) 

where 𝐿𝑉(𝑅𝑇)𝑘
 = line of vulnerability for recovery time of infrastructure serving a group k of 

multiple communities; RTik = recovery time of infrastructure serving an individual community i of 

group k; n = total number of communities in group k; 𝑆𝑛𝑘 = standard deviation for the recovery 

time of infrastructure serving a group k of multiple communities; and 𝛽 = a coefficient that controls 

the line of vulnerability (0 ≤ 𝛽 ≤ 1). 

Depending on the context of analysis, users of the model have the flexibility to define and control 

the line of vulnerability through the coefficients of 𝛼 and 𝛽. If the value of 𝛼 (or 𝛽) is close to 0, 

the line of vulnerability is close to the average value. This means the criterion or benchmark for 

vulnerability is stringent, i.e., approximately half of the communities whose damage (or recovery 

time) is above the average will be accounted as vulnerable communities. If the value of 𝛼 (or 𝛽) is 
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close to 1, the line of vulnerability is close to the average value plus standard deviation. This means 

the criterion or benchmark for vulnerability is loose as a relatively smaller number of communities 

will be accounted as vulnerable communities. Defining such line of vulnerability is important in 

identifying those communities that experience the most severe impacts during a disaster, and this 

could allow decision makers to prioritize efforts and investments on those communities in disaster 

assistance, recovery, and/or future mitigation efforts.  

4.2.4 Measuring Collective Disaster Impacts  

The SW-Infra-RA model measures the collective disaster impacts on infrastructure that serves 

multiple communities based on the distribution of impacts among individual communities. If we 

want to reduce the overall impact of a disaster, attention must be given to improve the overall equity 

and to reduce sensitivity of vulnerable communities to disasters (Nicholson 2014). Previous studies 

(e.g., Tselios and Tompkins 2019, Ward and Shively 2016) also show that higher inequality is 

associated with worse losses from disasters. Thus, when modeling the collective disaster impacts, 

we can assume that inequality and vulnerability are both unfavorable situations. Inequality and 

vulnerability will then be accounted as factors that will further augment the collective disaster 

impacts. 

In the SW-Infra-RA model, the function of collective disaster impacts includes the 

Collective Functional Loss (CFL) function (Eq. (4-5)) and the Collective Recovery Time (CRT) 

function (Eq. (4-6)). Both functions incorporate the unequal distributions of disaster impacts on the 

infrastructure serving multiple communities and the potentially severe impacts on infrastructure in 

the vulnerable communities. These two functions are developed by adapting the social welfare 

functions (e.g., Mostafa and El-Gohary 2014, Zhang and Sanake 2020). The equation for the CFL 

function is presented as:  

𝐶𝐹𝐿𝑘 =
1

𝑛
 ∑ 𝐹𝐿𝑖𝑘

𝑛

𝑖=1

× (1 +  γ𝐺𝑘(𝐹𝐿)) +  δ 
1

𝑛
 ∑ max[0, (𝐹𝐿𝑖𝑘 − 𝐿𝑉(𝐹𝐿)𝑘

)]
𝑛

𝑖=1
 (4-5) 
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where CFLk= the collective functional loss of the infrastructure that serves a group k of multiple 

communities; FLik = the functional loss of the infrastructure that serves an individual community i 

of group k; n = the total number of communities; 𝐺𝑘(𝐹𝐿)= the Gini coefficient for the functional 

loss of group k; 𝐿𝑉(𝐹𝐿)𝑘
= the line of vulnerability for functional loss of infrastructure serving a 

group k of multiple communities; γ = a coefficient that controls the degree of accounting for 

inequality in augmenting the disaster impacts (0 ≤ γ ≤ 1); and δ = a coefficient that controls the 

degree of accounting for vulnerability in augmenting the disaster impacts (0 ≤ δ ≤ 1).  

Similarly, the equation for CRT function is presented as: 

𝐶𝑅𝑇𝑘  =  
1

𝑛
∑ 𝑅𝑇𝑖𝑘

𝑛

𝑖=1

 × (1 +  λ𝐺𝑘(𝑅𝑇)) +  μ 
1

𝑛
 ∑ max[0, (𝑅𝑇𝑖𝑘 − 𝐿𝑉(𝑅𝑇)𝑘

)]
𝑛

𝑖=1
 (4-6) 

 

where CRTk= the collective recovery time of the infrastructure that serves a group k of multiple 

communities; RTik = the recovery time of the infrastructure that serves an individual community i 

of group k; n = the total number of communities; 𝐺𝑘(𝑅𝑇)= the Gini coefficient for the recovery time 

of group k; 𝐿𝑉(𝑅𝑇)𝑘
= the line of vulnerability for recovery time of infrastructure serving a group k 

of multiple communities; 𝜆 = a coefficient that controls the degree of accounting for inequality in 

augmenting the disaster impacts (0 ≤ λ ≤ 1); and μ = a coefficient that controls the degree of 

accounting for vulnerability in augmenting the disaster impacts (0 ≤ μ ≤1).  

Each of the CFL and the CRT functions consists of a subfunction for inequality and a 

subfunction for vulnerability. The inequality subfunction penalizes the unequal distributions of 

disaster impacts across different communities. In another word, inequality further augments the 

collective disaster impacts on these communities. The inequality is measured through the Gini 

Coefficient [𝐺𝑘(𝐹𝐿), 𝐺𝑘(𝑅𝑇) ] using Eq. (4-1) or Eq. (4-2). Additionally, a coefficient γ (or λ) is 

introduced to allow users to adjust the degree of penalizing unequal distributions of disaster 
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impacts. The value of γ (or λ) ranges from 0 to 1, where γ (or λ) =1 represents the full extent of 

penalization, and γ (or λ) = 0 represents no penalization at all. Thus, users of the model have the 

flexibility in determining to what extent they want to account for the inequality factor in 

infrastructure resilience assessment.  

The vulnerability subfunction acknowledges that the potentially severe disaster impacts on 

the infrastructure of vulnerable communities could compromise the overall infrastructure resilience 

and should be penalized when assessing the collective resilience of infrastructure. In another word, 

more severe impacts on some vulnerable communities further augment the collective disaster 

impacts on all communities of analysis. In this function, a coefficient δ (or μ) is introduced, and it 

allows users to control the degree of accounting for vulnerability in collective disaster impacts. The 

value of δ (or μ) ranges from 0 to 1, where δ (or μ) =1 represents the full extent of penalization, 

and δ (or μ) = 0 represents no penalization at all. Thus, users may have the flexibility in determining 

to what extent they want to account for the vulnerability factor in infrastructure resilience 

assessment. 

4.2.5 Assessing Collective Infrastructure Resilience 

The collective infrastructure resilience assessment function aims to measure the collective 

infrastructure resilience based on the collective disaster impacts – collective functional loss and 

collective recovery time. The function was developed by adapting Bruneau et al. (2003)’s 

Resilience Triangle framework.  

Benchmarking Bruneau et al. (2003), the SW-Infra-RA model measures the infrastructure 

resilience by defining and measuring the area of a collective resilience triangle (Figure 4-2). In the 

collective resilience triangle, the vertical axis of the triangle represents the collective functionality 

of infrastructure, which varies over time. The collective functionality of infrastructure ranges from 

0% to 100%, where 100% means no degradation in functions or services and 0% means no service 

is available. A disaster occurring at time t0 could cause damage to the infrastructure that the 
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functionality of the infrastructure immediately reduced. The extent to which the functionality is 

reduced can be measured by the CFL function [Eq. (4-5)]. The recovery of the infrastructure is a 

process that takes time, and the infrastructure is completely restored to the original functional level 

when it is time tt. The collective length of recovery (from time t0 to tt) can be measured through the 

CRT function [Eq. (4-6)]. 

 

Figure 4-2 A conceptual diagram for a collective resilience triangle (adapted from Bruneau et al. 

2003). 

To measure the area of the collective resilience triangle, the collective loss of infrastructure 

resilience can be measured through Eq.(4-7): 

𝐶𝐿𝑅𝑘 =  ∫(𝐶𝐹𝐿𝑘  

𝑡𝑡

𝑡0

)𝑑𝑡  (4-7) 

 

where 𝐶𝐿𝑅𝑘  = the collective loss of resilience of infrastructure that serves a group k of multiple 

communities; CFLk = the collective functional loss of infrastructure that serves a group k of multiple 

communities; t0 = time at which a disruptive event occurs; and tt = time at which the infrastructure 

is fully recovered. 
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If we assume the infrastructure is recovered in a steady pace, the collective loss of infrastructure 

resilience (CLR) function can be further simplified, as shown in Eq. (4-8) 

 

𝐶𝐿𝑅𝑘 =
𝐶𝐹𝐿𝑘   ×  𝐶𝑅𝑇𝑘

2
 (4-8) 

 

where CLRk = the collective loss of resilience of infrastructure that serves a group k of multiple 

communities; CFLk = the collective functional loss of infrastructure that serves a group k of multiple 

communities; and CRTk = the collective recovery time of infrastructure that serves a group k of 

multiple communities. 

As per Eq. (8), a higher value of collective loss of resilience indicates poorer resilience performance 

of the infrastructure against disasters. In other words, the infrastructure is more likely to experience 

severe damage, resulting in longer disruptions to the functions and services of infrastructure. 

4.3  Case Studies 

4.3.1 Hypothetical Case Study 

A hypothetical case study was first conducted to illustrate the use of the SW-Infra-RA model in 

assessing and comparing collective infrastructure resilience across different communities. 

Hypothetical case studies have been widely used in research in different domains to evaluate or 

illustrate the use of new methods, models, or frameworks (Balaei et al. 2018, Mostafa and El-

Gohary 2014, Zhang and Sanake 2020). This case study aims to analyze and compare the collective 

resilience of transportation infrastructure in two cities that are composed of various neighborhoods. 

In this process, we account for the inequality in and vulnerability to disaster impacts among these 

neighborhoods.  

In the case study, Hurricane X caused major damage to the highway infrastructure of City 

A and City B, which were designed as two hypothetical cities that were composed of twenty 

neighborhoods each. The highway infrastructure (e.g., roads, highways, bridges) of both cities 
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connects the neighborhoods and supports socioeconomic development of the local communities. 

In the event of a disaster, the highway infrastructure plays a vital role by offering links to emergency 

services, relief, and evacuation routes. The highway infrastructure, however, were in different 

conditions in City A and City B before struck by Hurricane X. According to a report on the quality 

of highway pavement and bridges of City A, approximately 22% of pavement in City A’s highway 

infrastructure was in “poor” pavement ride quality, and around 17% of bridges were inspected as 

“structurally deficient”. The majority of the pavement and bridges in poor conditions are located in 

the neighborhoods with lower average household income. Further investigation found that these 

neighborhoods received less financial support on maintaining, repairing, or rehabilitating their 

highway infrastructure over the last decade. For City B, the report shows that only 4% of pavement 

in the city was in “poor” pavement ride quality, while 56% was in “good” quality, and 40% was in 

“fair” quality. Similarly, only 6% of bridges were inspected as “structurally deficient”. The 

generally good performance of highway infrastructure in City B is attributed to the higher financial 

support and expenses on maintenance and repair, which may be partially due to relatively better 

socioeconomic backgrounds (e.g., higher average income, higher housing prices, higher 

percentages of educated population) of all the neighborhoods in City B.  

In the event of Hurricane X, the highway infrastructure of both City A and City B suffered 

from severe disaster impacts, such as strong wind forces, storm surges, and flash flooding. The 

damage on the roads, highways, and bridges ranged from pavement failures or structural damage 

to completely washed off road sections, which resulted in road and highway closures lasting days 

to weeks. In City A, disparities on the road and highway damage were observed across the twenty 

neighborhoods. Some neighborhoods suffered from more severe impacts on their highway 

infrastructure. The roads and bridges were blocked, damaged, or partially washed away due to 

fallen trees, flying debris, strong storm surges, and flash floods. The road and highway services 

were disrupted and took three to four weeks to repair before resuming normal operation. On the 
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other hand, some neighborhoods had relatively mild damage, such as erosion of road pavement, 

poles, and trees fallen down on roads. After removing the debris and repairing the damaged 

roadway segments, the highway infrastructure resumed its normal function. In City B, the road and 

highway infrastructure across all neighborhoods experienced a similar level of disaster impacts. 

Table 4-1 presents the hypothetical data on the disaster impacts on the highway infrastructure in 

the twenty neighborhoods of each city. The data include (1) the percentage of road closures 

(functional loss), and (2) the time required to resume road services (recovery time). 

Table 4-1 Functional loss and recovery time of highway infrastructure of City A and City B. 

City A City B 

Neighborhood 

Percentage 

of road 

closures 

(FL) (%) 

Time 

required to 

resume road 

services (RT) 

(days) 

Neighborhood 

Percentage 

of road 

closures (FL) 

(%) 

Time 

required to 

resume road 

services 

(RT) (days) 

A 78 20 a 67 19 

B 68 19 b 65 19 

C 85 24 c 62 18 

D 82 20 d 65 18 

E 96 24 e 72 12 

F 6 8 f 63 16 

G 20 17 g 46 13 

H 14 9 h 42 13 

I 10 8 i 44 17 

J 21 8 j 45 12 

K 95 24 k 51 16 

L 92 19 l 57 18 

M 97 23 m 58 15 

N 88 18 n 54 12 

O 97 18 o 58 11 

P 94 19 p 52 15 

Q 18 10 q 56 15 

R 28 9 r 49 10 

S 13 13 s 60 14 

T 44 6 t 61 17 
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Utilizing the dataset from Table 4-1, we followed five steps to assess the resilience of 

highway infrastructure in Cities A and B. In Step 1, normalization of the values of functional loss 

(percentage of road closures) and recovery time (time required to resume road services) was 

conducted to ensure that their units and scales are comparable (the values range between 0 to 1 

after normalization). In Step 2, the Gini coefficients of functional loss and recovery time were 

determined through the Lorentz curve. The Lorentz curves that represent the distributions of road 

closures and time required for road reopening across the twenty neighborhoods in Cities A and B 

are depicted in Figure 4-3 and Figure 4-4, respectively.  

 

Figure 4-3 Lorenz curves for the distribution of disaster impacts in City A due to Hurricane X  

(a) A Lorenz curve for the distribution of road closures across neighborhoods in City A due to 

Hurricane X. (b) A Lorenz curve for the distribution of time required to resume road services 

across neighborhoods in City A due to Hurricane X. 

The results of Gini coefficients are summarized in Table 4-2. As per Table 4-2, although 

the average disaster impacts on the highway infrastructure were found to be similar for both cities, 

higher inequality in disaster impacts was found in City A. In Step 3, the lines of vulnerability for 

disaster impacts on highway infrastructure were determined using Eqs. (3) and (4). In Step 4, the 

collective disaster impacts on highway infrastructure in Cities A and B were calculated using Eqs. 
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(5) and (6). A 0.5 coefficient γ (and λ) was employed for the analysis; it represents a medium extent 

of penalization on the unequal distributions of disaster impacts on highway infrastructure across 

the twenty neighborhoods in each city. Similarly, a 0.5 coefficient δ (and μ) was used; it represents 

a medium extent of accounting for the severe impacts on the vulnerable neighborhoods in collective 

impact analysis. In Step 5, the collective resilience of highway infrastructure for Cities A and B 

were calculated using Eq. (8). The results of lines of vulnerability, collective disaster impacts, and 

collective loss of resilience for Cities A and B are summarized in Table 4-2. 

 

Figure 4-4 Lorenz curves for the distribution of disaster impacts in City B due to Hurricane X.  

(a) A Lorenz curve for the distribution of road closures across neighborhoods in City B due to 

Hurricane X. (b) A Lorenz curve for the distribution of time required to resume road services across 

neighborhoods in City B due to Hurricane X 

These results indicate that the overall resilience performance of highway infrastructure of 

City B is better than that of City A as lower value in loss of resilience represents better resilience 

performance. The results imply that, collectively, the highway infrastructure of City B had less 

damage and was more likely to resume its services within a short period of time. It is worth noticing 

that although the disaster impact data for the twenty neighborhoods of each city have similar 

average value, City A receives a higher score on collective loss of resilience by using the SW-Infra-
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RA model. This is mainly due to the inequality or unequal distributions of disaster impacts across 

different neighborhoods of City A. As per Table 4-1, neighborhoods M, O, P of City A had much 

higher percentages of road closures and also required almost three weeks to fully resume road 

services, whereas neighborhoods like F, I, S of City A had minimum road closures and resumed 

road services within 8 to 10 days. Furthermore, the low resilience performance of City A could be 

attributed to the severe impacts on the highway infrastructure of some vulnerable neighborhoods 

in City A, which further augments the collective disaster impacts. For example, a high percentage 

of road pavement and bridges in neighborhoods E, K, and M of City A were in poor conditions 

even before the strike of Hurricane X. Hurricane X further damaged these roads and bridges that 

were in vulnerable conditions, resulting in longer time for resuming road services. Thus, more 

neighborhoods were accounted as vulnerable neighborhoods as the disaster impacts on these 

neighborhoods from Hurricane X were above the line of vulnerability. 

 Table 4-2 Results of resilience assessment of highway infrastructure of City A and City B 

Parameter 

City A City B 

Functional 

loss 

Recovery 

time 

Functional 

loss 

Recovery 

time 

Gini coefficient 0.38 0.35 0.32 0.31 

Line of vulnerability 0.76 0.72 0.62 0.71 

Collective disaster impact 0.71 0.68 0.61 0.67 

Collective loss of 

resilience 

0.24 0.19 

 

4.3.2 Hurricane Michael Case Study 

A real case study on Hurricane Michael was conducted to assess the collective resilience of electric 

power systems in twelve counties in the Florida Panhandle region. Hurricane Michael was a 

Category 5 hurricane that made landfall in Florida Panhandle region on October 10, 2018 (NOAA 

2019). Twelve counties (Figure 4-5) in this region issued disaster declarations, including Bay, 

Calhoun, Franklin, Gadsden, Gulf, Holmes, Jackson, Leon, Liberty, Taylor, Wakulla, and 

Washington Counties. Hurricane Michael brought devastating winds and strong storm surges to 
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these counties, and it caused massive damage and destruction to the infrastructure of the local 

communities (NOAA 2019). According to a report (NOAA 2019), the inundation height due to the 

storm surges was estimated to be 9 to 14 feet above ground level in the Florida Panhandle region. 

It was estimated that Hurricane Michael caused $18.4 billion in damage, primarily incurred due to 

damage on infrastructure (NWS 2018). The strong wind forces and storm surges caused damage to 

power substations, resulting in power outages lasting for weeks (FPSC 2021). The physical 

structures, such as utility poles and transmission towers, were severely damaged and destroyed due 

to fallen trees, flying debris, and flash flood (Dhakal et al. 2021, Pathak et al. 2020).  

 

Figure 4-5 Counties of Florida Panhandle region that issued disaster declarations (FEMA 2018). 

In this case study, we selected two disaster impact indicators for analysis: (1) percentage 

of electric power outages, and (2) time required for resuming electric power services. The data on 

electric power systems of the twelve Florida counties that issued disaster declarations were 

collected from Florida Public Service Commission (FPSC 2021). The data are summarized in Table 
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4-3. As per Table 4-3, Hurricane Michael caused disproportionate impacts to the electric power 

systems of the twelve counties. For example, Calhoun, Gulf, and Jackson, and Washington 

Counties suffered from more severe impacts on their electric power systems, with power outages 

ranging from 96.19% to 100%. It took more than three weeks for these counties to fully resume 

their electric power services (FPSC 2021). On the other hand, Taylor County had a relatively lower 

percentage of power outages (20.14%), and the county was able to resume power transmission and 

supply rapidly after the hurricane (FPSC 2021). 

Table 4-3 Functional loss and recovery time of electric power infrastructure in Hurricane Michael 

County 
Percentage of electric 

power outage (FL) (%) 

Time required to resume 

electric power services 

(RT) (days) 

Bay 96.6 23 

Calhoun 100 27 

Franklin 96.79 7 

Gadsden 92.12 17 

Gulf 99.05 23 

Holmes 93.82 12 

Jackson 99.78 27 

Leon 65.69 14 

Liberty 65.94 17 

Taylor 20.14 2 

Wakulla 93.49 14 

Washington 96.19 24 

By using the data in Table 4-3 and following the five steps as described in the Hypothetical 

Case Study section, we performed the resilience assessment of the electric power system of the 

twelve disaster impacted counties in three contexts. In Context I, we did not account for inequality 

in or vulnerability to disaster impacts in infrastructure resilience assessment. Thus, the coefficients 

of γ, δ, λ,  and μ were assigned to 0, and the coefficients of 𝛼 and 𝛽 were assigned to 1. In Context 

II, we accounted for disaster inequality and vulnerability in a medium extent. Thus, all the 
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coefficients, including 𝛼, 𝛽, γ, δ, λ,  and μ, were assigned to 0.5. In Context III, we fully 

accounted for disaster inequality and vulnerability in our analysis. Thus, the coefficients of γ, δ,

λ,  and μ were assigned to 1, and the coefficients of 𝛼 and 𝛽 were assigned to 0. Figure 4-6 shows 

the Lorenz curves for the distributions of power outages and time required to resume electric power 

services. Table 4-4 summarizes the results of the resilience assessment in the three defined contexts. 

Table 4-4 Results of resilience assessment of electric power infrastructure in Hurricane Michael. 

Parameter 

Context I Context II Context III 

Functional 

loss 

Recovery 

time 

Functional 

loss 

Recovery 

time 

Functional 

loss 

Recovery 

time 

Gini 

coefficient 
0.64 0.63 0.64 0.63 0.64 0.63 

Line of 

vulnerability 
1.00 0.93 0.96 0.77 0.81 0.61 

Collective 

disaster 

impact 

0.81 0.61 1.08 0.83 1.44 1.12 

Collective loss 

of resilience 
0.25 0.45 0.81 

As per Table 4-4, the results of collective loss of resilience are 0.25, 0.45, and 0.81 in 

Context I, II, and III, respectively. These results show that the performance of the model is sensitive 

to the intensity of accounting for disaster inequality and vulnerability. The model is designed in a 

way that allows users to flexibly choose the coefficients that controls the intensity of accounting 

for disaster inequality and vulnerability. For example, if an engineer focuses solely on analyzing 

the functional loss and recovery time of infrastructure systems without emphasis on inequality and 

vulnerability among the impacted communities. He/she may assign the coefficients of γ, 𝜆, δ, and 

μ to 0. Thus, as per Eqs. (5), (6), (7), and (8), the collective loss of resilience of these counties under 

study would be only based on the average disaster impacts on infrastructure of those counties. On 

the other hand, if a planner or a mitigation expert would like to consider disaster inequality and 

vulnerability, which may inform future recovery and mitigation efforts, he/she may choose to 

assign a relatively high value (e.g., 1) for the coefficients of γ, 𝜆, δ, and μ, thus placing a higher 

emphasis on the impacts of disaster disparities and vulnerabilities on the collective loss of 
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resilience. In this case, the collective loss of resilience would be augmented as the disproportionate 

disaster impacts across the counties and the potentially severe disaster impacts on the vulnerable 

counties are considered as negative factors that could exacerbate the collective loss of resilience. It 

is thus recommended to use a consistent set of coefficients when assessing the resilience of a set of 

infrastructure alternatives.  

 

Figure 4-6 Lorenz curves for the distribution of disaster impacts due to Hurricane Michael.  

(a) A Lorenz curve for the distribution of power outages of Florida Panhandle counties due to 

Hurricane Michael. (b) A Lorenz curve for the distribution of time required to resume electric 

power services of Florida Panhandle counties due to Hurricane Michael. 

In addition, the results show that, in the case of Hurricane Michael, the impacts of disaster 

inequality and vulnerability on the collective loss of resilience of electric power infrastructure was 

relatively high. The unequal distributions of disaster impacts on electric power infrastructure 

(including both power outages and time required to resume electric power services) across different 

counties in Hurricane Michael can be observed through the relatively high Gini coefficients (GFL = 

0.64 and GRT =0.63). Such disparities in disaster impacts could primarily be caused by the counties’ 

different levels of disaster exposure. In this case study, Hurricane Michael impacted a large 

geographic region. Counties that are located in close proximity to the hurricane path experienced 
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much significant wind and storm forces compared to counties that are relatively farther away. For 

example, counties including Calhoun, Gadsden, Gulf, Jackson, and Washington counties 

experienced strong storm surges and had an average windspeed of approximately 74 mph (Senkbeil 

et al. 2020). The percentage of power losses in these counties range from 92.12% to 100%. On the 

other hand, counties, such as Taylor and Leon counties, had relatively lower average wind speeds 

of approximately 39 mph and 57 mph, respectively (Senkbeil et al. 2020), and their power losses 

are 20.14% and 65.69%, respectively. Thus, in a large-scale disaster such as Hurricane Michael, 

the different levels of disaster exposure are one of the primary reasons that contribute to the 

disparities in disaster impacts. 

Another hidden reason may be the social inequality of these counties. The social inequality situation 

in Florida is among the worst in the U.S. and has been getting worse over time (Johnson 2019). In 

our case, some of the counties (e.g., Gadsden, Calhoun, Franklin, Holmes, Jackson counties) whose 

electric power infrastructure suffered from the most severe impacts are also among the most 

socially vulnerable counties in the region (CDC/ASTDR 2022). In addition, previous research 

(Dhakal et al. 2021) has found that counties with different socioeconomic and demographic 

characteristics (e.g., age, race, income, health) experienced different levels of infrastructure damage 

and speeds of recovery. Those counties with higher percentages of socially vulnerable populations 

experienced a relatively higher level of damage and required longer time for recovery (Dhakal et 

al. 2021). Research on other disasters (e.g., Ward and Shivley 2016, Yoon 2012, Flanagan et al. 

2011) also show that disaster vulnerability is interrelated with social vulnerability; many social 

factors (e.g., age, gender, income, education) may impact the resilience of communities. Under the 

same level of exposure, communities that are socially vulnerable are more likely to suffer from 

severe impacts (e.g., higher power outages, traffic disruptions, higher congestion) (Hallegatte et al. 

2019). This may be attributed to the fact that socially vulnerable populations often have the fewest 
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resources for disaster preparedness, live in disaster-prone areas, and lack social, political, and 

economic capital needed to withstand, adapt to, and recover from a disaster (SAMSHA 2017). 

4.4  Conclusions 

This study presents a new social welfare-based infrastructure resilience assessment (SW-Infra-RA) 

model for assessing the collective resilience of infrastructure serving multiple communities while 

accounting for inequality in and vulnerability to disaster impacts. The SW-Infra-RA model is 

theoretically grounded on social welfare theory and social welfare functions. The Gini coefficient 

was adapted to model unequal distributions of disaster impacts on infrastructure of different 

communities. The line of vulnerability was proposed and measured by leveraging Cutter et al. 

(2003)’s work on Social Vulnerability Index to model disaster vulnerability. The collective disaster 

impact function was then defined by aggregating the impacts on infrastructure of individual 

communities, while integrating unequal distributions of disaster impacts and potentially more 

severe impacts on the vulnerable communities. The collective disaster impacts were then 

considered as input into the collective resilience assessment function, which was developed by 

adapting Bruneau et al. (2003)’s Resilience Triangle framework. The application of the SW-Infra-

RA model was first illustrated through a hypothetical case study, which compares the collective 

resilience of highway infrastructure of two cities impacted by the same disaster. A real case study 

was further conducted to illustrate the use of the model for assessing the collective resilience of 

electric power systems in the context of Hurricane Michael. 
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CHAPTER 5 PROTOTYPE DEVELOPMENT OF DECISION SUPPORT 

SYSTEM TO FACILITATE EQUITABLE INFRASTRUCTURE PLANNING 

This chapter presents completed work of Research Task 3- Developing a decision support system 

to facilitate automatic infrastructure resilience assessment. The following paragraphs present the 

development of prototype for decision support system. 

The proposed system consists of four main modules: (1) disaster inequality module (2) disaster 

vulnerability module (3) collective disaster impact module, and (4) collective infrastructure 

resilience module. The main modules of the proposed system are depicted in Figure 5-1. Figure 5-2 

shows a flowchart that illustrates the main functions and flow of information of the proposed 

system. 

 

Figure 5-1 Main modules of the proposed prototype system 

The disaster inequality module aims to analyze the unequal distribution of disaster impacts on 

infrastructure of various communities. The input of this module includes the data of disaster 

impacts on infrastructure of each individual communities of analysis, which are manually loaded 



82 

 

into the system. The output of the module is disaster inequality, which is represented by the Gini 

coefficient. A screenshot of the user interface of the disaster inequality module is shown in Figure 

5-3. 

 

Figure 5-2 A flowchart of the proposed prototype system 

The disaster vulnerability module aims to analyze the potential severe impacts on infrastructure of 

the vulnerable communities. The input of this module includes the data of disaster impacts on 

infrastructure of each individual communities of analysis. The output of this module includes (1) 

the line of vulnerability, and (2) the percentage of vulnerable communities. 

The collective disaster impact module aims to quantify and analyze the collective disaster impacts 

on infrastructure serving multiple communities based on disaster impacts on infrastructure serving 

individual communities while accounting for disaster inequality and vulnerability. The input of the 

module is the disaster impacts on infrastructure of each individual communities of analysis, disaster 

inequality, disaster vulnerability, and coefficients that control the degrees of accounting for disaster 

inequality and disaster vulnerability. The output of the module is collective disaster impacts. 
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The collective infrastructure resilience module aims to analyze the collective resilience of 

infrastructure serving multiple communities while accounting for disaster inequality and disaster 

vulnerability. The input of the module is collective disaster impacts. The output of the module is 

the collective loss of resilience. A screenshot of the user interface of the collective infrastructure 

resilience module is shown in Figure 5-4. 
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Figure 5-3 A user interface of the disaster inequality module 

 

 

Figure 5-4 A user interface of the collective infrastructure resilience module 
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The main platform of the proposed prototype system was developed through Figma. Figma is an 

open source, web-based application that primarily focuses on user interface design utilizing a 

variety of graphic designing and prototype tools (Kopf 2022). The proposed prototype system was 

utilized to conduct a comparative analysis to analyze the resilience of infrastructure serving 

different communities with various characteristics, which is further discussed in Chapter 6.  
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CHAPTER 6 RESILIENCE ANALYSIS OF INFRASTRUCTURE SYSTEMS 

INTEGRATING SOCIAL EQUITY: CASE STUDIES USING HISTORICAL 

DISASTERS 

6.1  Introduction 

To adapt and thrive in the face of climate change, there has been an increasing trend of adopting 

resilience thinking and/or strategies in infrastructure planning processes. Assessing and analyzing 

infrastructure resilience help planners and decision makers better assess the performance of 

infrastructure and provide the foundation for prioritizing infrastructure investment. However, 

investigation on previous infrastructure investment and policies shows that there have been 

discriminatory policies, practices, and embedded biases within infrastructure planning processes 

for decades (NASEM 2022). As a result, in disasters, large disparities exist in terms of disaster 

impacts (e.g., physical damage, economic losses, service disruption) on infrastructure across the 

various communities (Zou et al. 2018b, SAMSHA 2017). Such disparities, also known as disaster 

inequalities (Dhakal and Zhang 2022), are linked with the variations in infrastructure quality and 

services across different communities, which may be affected by the various characteristics (e.g., 

location, population, socioeconomic status) of communities. For example, socially vulnerable 

communities, which include those with higher percentages of economically disadvantaged, racial 

and ethnic minorities, elderly, uninsured, homeless, disabled, those with chronic health conditions, 

and those with language barriers (Rao et al. 2019), typically experience a disproportionate share of 

physical and economic burden caused by disasters; they may need more time, assistance, support, 

or investment for coping with and recovering from a disaster (Drakes et al. 2021). However, when 

assessing the resilience of infrastructure that serves multiple communities, such disparities and 

vulnerability are often neglected, and the infrastructure of all communities is treated as equally 

impacted by a disaster. Such resilience assessment may not fully reflect the actual damage level 
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and/or recovery processes. Thus, there is a need to account for disaster inequalities and 

vulnerabilities in infrastructure resilience assessment.  

A comprehensive literature review in the disaster domain shows that there are two main knowledge 

gaps.  First, research that focuses on analyzing infrastructure resilience does not typically account 

for disaster inequalities or vulnerabilities. Extensive studies (e.g., Ouyang and Duenas-Osorio 

2014, Chan and Schofer 2016, Diao et al. 2016, Pagano et al. 2019, Tonn et al. 2020) have been 

conducted to assess the resilience of infrastructure of various types, such as transportation 

infrastructure (e.g., Chan and Schofer 2016), water infrastructure (e.g., Pagano et al. 2019), and 

electric power infrastructure (e.g., Ouyang and Duenas-Osorio 2014), etc. These studies have 

offered valuable contributions toward understanding and analyses of infrastructure resilience. 

However, these studies have not incorporated the varying levels of disaster impacts on 

infrastructure serving different communities into their resilience assessment. Second, there is a lack 

of research that focuses on analyzing disaster impacts experienced by communities with different 

characteristics. Studying disparities in disaster impacts would help understand the existing 

challenges faced by different communities and recommend infrastructure investment and resilience 

planning strategies that are prioritized based on the severity of needs. Over the years, research in 

the disaster domain have focused on assessing disaster impacts and/or emergency management 

efforts across various communities during disaster preparedness (Kim and Sutley), response (Yabe 

and Ukkusuri 2020) and recovery (Emrich et al. 2022) phases to better understand disaster 

inequalities. Assessing the resilience of infrastructure serving multiple communities with various 

characteristics could potentially help identify the vulnerable communities and facilitate more 

equitable planning in the future. Currently, there is still limited studies that comprehensively 

analyze or compare infrastructure resilience across communities with different characteristics and 

how such characteristics might impact the collective resilience of infrastructure. 
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To address these gaps, this chapter presents a study that analyzes infrastructure resilience while 

accounting for (a) disaster inequality: the unequal distribution of disaster impacts on infrastructure 

across the communities with various characteristics, and (b) disaster vulnerability: the potentially 

more severe disaster impacts on infrastructure of certain (e.g., socially vulnerabilities) communities 

(Dhakal and Zhang 2022). By utilizing the social welfare-based infrastructure resilience assessment 

(SW-Infra-RA) model proposed by Dhakal and Zhang (2022), the analyses focus on exploring and 

comparing (a) the levels of disaster inequalities, (b) the levels of disaster vulnerabilities, and (c) 

the collective resilience of infrastructure serving communities with various characteristics (e.g., 

spatial, demographic, and socioeconomic statuses). This chapter presents four case studies that 

assesses the resilience of four different types of infrastructure (i.e., electric power, communication 

service, transportation, and wastewater infrastructure) in the context of three hurricanes. The 

following sections of the chapter describe the background of the research, present and discuss the 

results of the case studies, and conclude with the summary and contributions of the study. 

6.2  Case Study Design 

We conducted four case studies in the context of three hurricanes, in order to answer the following 

research questions:  

(1) How do counties with different characteristics (e.g., coastal vs inland, urban vs rural, more 

vulnerable vs less vulnerable) compare against each other in terms of disaster inequality? 

(2) How do counties with different characteristics compare against each other in terms of 

disaster vulnerability? 

(3) How do counties with different characteristics compare against each other in terms of 

collective resilience? 
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We designed the four case studies in a similar manner in terms of structure and content. For each 

case study, by leveraging the SW-Infra-RA, we measured and compared disaster inequalities, 

disaster vulnerabilities, and collective resilience of infrastructure that serves different groups of 

communities in the context of a hurricane disaster. Case Study I focuses on communication 

infrastructure in the context of Hurricane Michael. Case Study II focuses on electric power 

infrastructure in the context of Hurricane Sally. Case Study III focuses on transportation 

infrastructure in the context of Hurricane Irma. Case Study IV focuses on wastewater infrastructure 

in the context of Hurricane Irma. 

6.2.1 Contexts of Cases studies 

We selected three hurricanes for analysis, including Hurricanes Michael, Irma, and Sally. Hurricane 

Michael was a Category 5 hurricane that made landfall near Mexico Beach in Florida Panhandle 

on October 10, 2018. It was one of the strongest hurricanes on record, and the maximum sustained 

windspeed was 161 mph at landfall (NOAA 2019). Hurricane Michael brought catastrophic storm 

surges ranging from 9 to 14 ft above ground level along the portion of Florida Panhandle coast with 

the highest inundation occurring in Mexico Beach (NOAA 2019). In addition to life threatening 

storm surges, Hurricane Michael produced devastating wind gusts that caused extensive structural 

damage and service disruptions to different infrastructure. For example, the damage to 

communication service infrastructure was catastrophic (Burgess 2018). Cellular services were 

knocked down as communication service towers, transformers, and power lines were destroyed by 

falling trees and flying debris (Burgess 2018). In addition, road and highways in the coastal region 

were washed out due to flash flooding in several locations between Panama City and Alligator point 

(NOAA 2019). 

Hurricane Irma was a Category 5 hurricane that made landfall in Florida Keys on September 10, 

2017. The southern region of Florida, especially Florida Keys experienced severe damage from 
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Hurricane Irma. The combined effect of strong winds and storm surges brought flood with 

maximum inundation level of 5 to 8 ft above the normal level for the portions of Lower Florida 

Keys (NOAA 2018b). According to a damage assessment report (NOAA 2018b), Hurricane Irma 

caused approximately $50 billion in damage in the U.S., which made Hurricane Irma the fifth-

costliest hurricane to affect the U.S. The infrastructure serving the communities of South Florida 

experienced the most severe impacts. For example, the strong storm surges and heavy rain from 

Hurricane Irma washed away part of US 1 highway (Lazo 2017). Most of the road and highways 

in southern part of Florida were shut down due to flooding and resumed after clearing debris and 

restoring traffic signals (Lazo 2017). In addition, the floodwater from Hurricane Irma damaged 

wastewater infrastructure, resulting in the sewage flowing from the wastewater systems to the 

surrounding water bodies (Gardner 2019). For example, according to a city record of St Augustine, 

the sewage spill caused the leakage of about 388,116 gallons of waste from the wastewater system 

to the nearby waterways (Gardner 2019).  

Hurricane Sally was a Category 2 hurricane that made landfall along the coast of Alabama 

(immediately west of the Alabama/Florida state line) on September 16, 2020, with a sustained 

windspeed of 105 mph. Hurricane Sally’s strong winds and storm surges caused extensive damage 

and destruction across the northwest coastal regions of Florida. Housing and infrastructure in 

Escambia and Santa Rosa Counties suffered from significant damage by the strong wind and storm 

surges (NOAA 2021a). Furthermore, strong storm surges along with heavy rainfall brought by 

Hurricane Sally caused massive flooding and damage to electric power infrastructure mostly in the 

western Panhandle region of Florida (Saunders 2020). A preliminary report on power outages by 

an electric power company suggests that hurricane Sally caused power outages for about 285,000 

customers (Saunders 2020). 
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We selected these three hurricanes as our research context for three main reasons. First, all three 

hurricanes have impacted Florida communities, which are the geographic focus of our study. 

Second, these disasters caused devastating impacts (e.g., physical damage, service disruptions) on 

various infrastructure, such as electric power infrastructure, communication service infrastructure, 

and roadway infrastructure. Third, the regions that are impacted by these disasters have different 

spatial, demographic, and socioeconomic   characteristics that can offer better understanding of in 

terms of how the characteristics of communities influence the resilience of infrastructure. 

6.2.2 Community Groups under Analysis 

To compare the resilience of infrastructure serving communities with different spatial, 

demographic, and socioeconomic characteristics, we classified all the counties under analysis into 

multiple groups, including (1) the coastal and inland groups, (2) the urban and rural groups, and (3) 

the more vulnerable and less vulnerable groups. In this study, the coastal group include those 

counties that have a coastline bordering of the ocean or contain coastal high hazards areas (NOAA 

2021b). The inland group include those counties that share their borders with other adjacent 

counties with no coastline bordering. The rural counties are those with population densities lower 

than 100 individuals per square mile (Florida Health 2022), while the urban counties have 

population densities higher than 100 individual per square mile. To classify the counties based on 

their socioeconomic statues, we leveraged the Social Vulnerability Index (CDC/ATSDR 2022) 

(ranging from 0 to 1), which uses 15 U.S. census variables (e.g., poverty, access to transportation, 

housing to help identify communities that are vulnerable to disasters (CDC/ATSDR 2022). We 

then classified the counties into two groups based on SVIs; the less vulnerable group include those 

counties with SVIs ranging from 0 to 0.5, and the more vulnerable group include those with SVIs 

ranging from 0.5 to 1.  
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6.2.3 Case Study Data Collection 

Based on the SW-Infra-RA model, to conduct the resilience analysis of infrastructure, we need to 

collect the data for two main types of infrastructure resilience indicators: (1) functional loss of 

infrastructure, and (2) recovery time of infrastructure. Functional loss is broadly defined as the 

reduction of functionality of infrastructure due to the impacts of a disaster, and it can be represented 

through different parameters, such as the percentage of electric power outages, the percentage of 

communication service outages, the percentage of wastewater system failures, and the cost in road 

debris removal. Recovery time is defined as the time required to resume infrastructure services to 

the original functional level, such as the time required to resume electric power and communication 

services, and the time required for road reopening. The data for both types of indicators (i.e., 

functional loss and recovery time) were collected from different public and private sources, 

including Florida Public Service Commission (FPSC), Federal Emergency Management Agency 

(FEMA), Federal Communications Commission (FCC), and Florida Department of Environmental 

Protection (FDEP). Table 6-1 summarizes the data we collected for the case study. 

Table 6-1 List of disaster, infrastructure system and source of infrastructure damage data 

Case 

Study 

No. 

Infrastructure  
Disaster 

context 

Infrastructure damage and recovery 

data 

Data 

source 

I 
Communication 

service 

Hurricane 

Michael 

% Communication service outages 
FCC 

(2018) 

Time required to resume communication 

services 

FCC 

(2018) 

II Electric power 
Hurricane 

Sally 

% Electric power outages 
FPSC 

(2020) 

Time required to resume electric power 

services 

FPSC 

(2020) 

III Transportation 
Hurricane 

Irma 

Cost of road debris removal 
FEMA 

(2017) 

Time required for road reopening 
FDOT 

(2017) 

IV Wastewater 
Hurricane 

Irma 

% Sewage spill from wastewater systems 
FDEP 

(2017) 

Time required to resume normal 

functioning of wastewater systems 

FDEP 

(2017) 
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6.2.4 Case Study Data Analysis 

6.2.4.1 Data Preprocessing 

During disasters (e.g., hurricanes), the geographical regions that are close to the hurricane path 

naturally experience more severe impacts compared to the regions that are located farther. In our 

analysis, we want to analyze the distribution of disaster inequality and disaster vulnerability across 

different counties assuming that all disaster-impacted counties experience the same or similar level 

of disaster impacts. Thus, to eliminate the effects of disaster threat level on infrastructure serving 

different counties, we first determined the normalized disaster impacts. The normalized disaster 

impacts were calculated by dividing the disaster impacts (i.e., functional loss and recovery time) 

experienced by infrastructure across different counties with the average sustained wind speeds 

during the disaster period across each impacted county. 

6.2.4.2 Resilience Assessment 

By leveraging the SW-Infra-RA framework developed in Chapter 4, we assessed infrastructure 

resilience by following four main steps. First, we measured the unequal distributions of disaster 

impacts on infrastructure serving multiple counties by calculating the Gini coefficients. For the 

infrastructure serving each group of counties, we calculated the Gini coefficients of functional loss 

and recovery time using Eqs. ((4-1)1) and (4-2), respectively. Second, we measured the line of 

vulnerability for functional loss and recovery time, using Eqs. (4-3) and (4-4), respectively. We 

then identified those counties whose infrastructure suffered from disaster impacts that are above 

the line of vulnerability as “vulnerable counties” and determined the percentage of vulnerable 

counties in each group. Third, we determined the collective disaster impacts (i.e., collective 

functional loss and collective recovery time) on the infrastructure serving multiple counties, using 
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Eqs. (4-5) and (4-6). Fourth, we quantified the collective loss of resilience of infrastructure serving 

a group of counties by using Eq (8). 

6.3  Case Study Results 

6.3.1 Results of Case Study I 

The results of Case Study I are presented in Table 6-2. As per Table 6-2, in terms of comparisons 

between the coastal counties and inland counties in the context of Hurricane Michael, the Gini 

coefficients of communication infrastructure serving the group of coastal counties (GFL =0.93, GRT 

=0.84) and inland counties (GFL =0.92, GRT =0.92) are generally similar, indicating a similar level 

of disaster inequality between the coastal group and the inland group. By comparing the disaster 

impacts on communication infrastructure of each county to the line of vulnerability, the inland 

group has a higher percentage of vulnerable counties (71%) as compared to the coastal group 

(62%). In addition, the collective loss of resilience of communication infrastructure serving inland 

group (0.29) is higher as compared to that of the coastal group (0.16), which implies that the 

communication infrastructure serving the inland counties had poorer resilience performance against 

the impacts from Hurricane Michael compared to the one serving the coastal counties.  

In terms of comparisons between the urban counties and rural counties, the results show that 

differences exist in the Gini coefficients for the urban group (GFL =0.75, GRT =0.83) and the rural 

group (GFL =0.92, GRT =0.92), and more severe disaster inequality exists in the rural group. There 

is also a higher percentage of vulnerable counties in the rural group (45%) as compared to that in 

the urban group (25%). In addition, there is a higher collective loss of resilience for communication 

service infrastructure serving group of rural counties (0.24) compared to urban counties (0.18).  

In terms of comparisons between the two groups of counties with different levels of social 

vulnerability, the results show that the group with more vulnerable counties (GFL =0.93, GRT =0.89) 

have higher Gini coefficients compared to the group with less vulnerable counties (GFL =0.72, GRT 

=0.52), indicating a higher level of disaster inequality across counties that are more socially 
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vulnerable. In contrast, there is a higher percentage of disaster vulnerable counties in the less 

vulnerable group (66%) compared to the more vulnerable group (41%). In addition, the collective 

loss of resilience is higher in the less vulnerable group (0.37) comparing to the more vulnerable 

group (0.2). 

Table 6-2 Results for case study I 

Communication service infrastructure 

Parameter 
Coastal  Inland Urban  Rural 

More 

vulnerable 

Less 

vulnerable 

FL RT FL RT FL RT FL RT FL RT FL RT 

Gini 

coefficient 
0.93 0.84 0.92 0.92 0.75 0.83 0.92 0..92 0.93 0.89 0.72 0.52 

Line of 

vulnerability 
0.56 0.46 0.56 0.46 0.56 0.46 0.56 0.46 0.56 0.46 0.56 0.46 

% 

Vulnerable 

counties 

62% 12% 71% 28% 25% 25% 45% 36% 41%  25%  66%  66%  

Collective 

disaster 

impacts 

0.78 0.42 0.87 0.67 0.8 0.46 0.73 0.65 0.74 0.55 0.92 0.81 

Collective 

loss of 

resilience 

0.16 0.29 0.18 0.24 0.2 0.37 

Notes: FL = functional loss; RT = recovery time 

6.3.2 Results of Case Study II 

The results of Case Study II are presented in Table 6-3. As per Table 6-3, comparing the results 

between the coastal group and the inland group, the Gini coefficients of electric power 

infrastructure serving the coastal group (GFL= 0.74, GRT =0.77) and the inland group (GFL= 0.76, 

GRT =0.8) are similar. This implies that there is a similar level of disaster inequality across both the 

coastal and inland counties. Comparing the disaster impacts on electric power infrastructure serving 

different counties to the line of vulnerability, the inland group has a higher percentage (50%) of 

vulnerable counties as compared to the coastal group (40%). Furthermore, the collective loss of 

resilience for electric power infrastructure are similar for both inland (0.18) and coastal counties 

(0.19), which shows a similar level of resilience performance of electric power infrastructure for 

both inland and coastal counties in the context of Hurricane Sally. 
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Comparing the results between the urban and rural counties in the context of Hurricane Sally, the 

Gini coefficients of electric power infrastructure serving urban group (GFL= 0.74, GRT =0.76) and 

rural group (GFL= 0.76, GRT =0.78) are generally similar, indicating a similar level of disaster 

inequality between the urban and rural counties. As per Table 3, there is a higher percentage of 

disaster vulnerable counties in the urban group (40%) compared to the rural group (25%). In 

addition, the collective loss of resilience of electric power infrastructure is higher within the urban 

counties (0.21) compared to the rural counties (0.15).  

In terms of comparisons between the more vulnerable group and the less vulnerable group, the 

results show that the Gini coefficients are higher (GFL= 0.86, GRT =0.92) within the more vulnerable 

counties as compared to within the less vulnerable counties (GFL= 0.6, GRT =0.59), which indicates 

a higher level of disaster inequality in the more vulnerable counties. In addition, the percentage of 

disaster vulnerable counties is much higher within the more vulnerable group (50%), in comparison 

to within the less vulnerable group (33%). Overall, the collective loss of resilience of electric power 

infrastructure serving the more vulnerable (0.2) and the less vulnerable (0.21) groups are similar in 

the context of Hurricane Sally. 

Table 6-3 Results for case study II 

Electric power infrastructure 

Parameter 
Coastal Inland Urban Rural 

More 

vulnerable 

Less 

vulnerable 

FL RT FL RT FL RT FL RT FL RT FL RT 

Gini 

Coefficient 
0.74 0.77 0.76 0.8 0.74 0.76 0.76 0.78 0.86 0.92 0.6 0.59 

Line of 

vulnerabilit

y 

0.43 0.52 0.43 0.52 0.43 0.52 0.43 0.52 0.43 0.52 0.43 0.52 

% 

Vulnerable 

counties 

40% 20% 25% 50% 40% 20% 25% 25% 30%  50%  33%  33%  

Collective 

disaster 

impacts 

0.59 0.66 0.51 0.71 0.59 0.7 0.51 0.59 0.5 0.79 0.67 0.63 

Collective 

loss of 

resilience 

0.19 0.18 0.21 0.15 0.2 0.21 
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Notes: FL = functional loss; RT = recovery time 

6.3.3 Results of Case Study III 

Table 6-4 shows the results of Case Study III. As per Table 6-4, in terms of comparisons between 

the coastal group and the inland group, the Gini coefficients of the transportation infrastructure 

serving the coastal counties (GFL= 0.83, GRT =0.96) and the inland counties (GFL= 0.89, GRT =0.8) 

are similar. There is a higher percentage of disaster vulnerable counties in the group of inland 

counties (57%) in comparison to the group of coastal counties (41%). In addition, the transportation 

infrastructure serving the inland counties (0.18) has a much higher collective loss of resilience 

compared to the one serving the coastal counties (0.08) in the context of Hurricane Irma.  

In terms of comparisons between the urban and rural counties, the Gini coefficients of the urban 

group (GFL= 0.95, GRT =0.94) is higher compared to those of the rural group (GFL= 0.76, GRT =0.52), 

which indicates a higher level of disaster inequality within the urban counties. In contrast, there is 

a higher percentage of disaster vulnerable counties in the rural group (66%) than in the urban group 

(25%). In addition, the transportation infrastructure serving the rural counties (0.34) has a much 

higher collective loss of resilience compared to the one serving the urban counties (0.06) in the 

context of Hurricane Irma.  

In terms of comparisons between the more vulnerable and less vulnerable groups of counties, the 

Gini coefficients for the more vulnerable group (GFL= 0.95, GRT =0.91) is higher compared to the 

less vulnerable group (GFL= 0.77, GRT =0.85). In addition, there is a higher percentage of disaster 

vulnerable counties within the more vulnerable group (54%) in comparison to the less vulnerable 

group (50%). Similarly, the transportation infrastructure serving the more vulnerable counties has 

a higher collective loss of resilience (0.16) compared to the one serving the less vulnerable 

counties (0.06) in the context of Hurricane Irma. 
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Table 6-4 Results for case study III 

Transportation infrastructure 

Paramet

er 

Coastal Inland Urban Rural 
More 

vulnerable 

Less 

vulnerable 

FL RT FL RT FL RT FL RT FL RT FL RT 

Gini 

Coeffici

ent 

0.83 0.96 0.89 0.8 0.95 0.94 0.76 0.52 0.95 0.91 0.77 0.85 

Line of 

vulnerab

ility 

0.33 0.37 0.33 0.37 0.33 0.37 0.33 0.37 0.33 0.37 0.33 0.37 

% 

Vulnera

ble 

counties 

41% 16% 57% 28% 25% 25% 66% 33% 54%  15%  16%  50%  

Collecti

ve 

disaster 

impacts 

0.43 0.38 0.55 0.66 0.31 0.36 1.14 0.59 0.77 0.42 0.38 0.31 

Collecti

ve loss 

of 

resilienc

e 

0.08 0.18 0.06 0.34 0.16 0.06 

Notes: FL = functional loss; RT = recovery time 

6.3.4 Results of Case Study IV 

The results for Case study IV is presented in Table 6-5. As per Table 6-5, in terms of comparisons 

between the coastal and inland counties, the Gini coefficients of the wastewater infrastructure 

serving the coastal group (GFL= 0.92, GRT =0.9) and the inland group (GFL= 0.9, GRT =0.85) are 

similar, indicating a similar level of disaster inequality between the coastal and inland counties. 

There is a much higher percentage of disaster vulnerable counties (60%) in the inland group as 

compared to in the coastal group (20%). Furthermore, the wastewater infrastructure serving the 

inland counties (0.14) has a higher collective loss of resilience as compared to the one serving the 

coastal counties (0.07).  

In terms of comparisons between the urban and rural groups, the results show that the Gini 

coefficients of the urban group (GFL= 0.94, GRT =0.95) is higher compared to those of the rural 
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group (GFL= 0.8, GRT = 0.85). There is also a higher percentage of disaster vulnerable counties in 

the rural group (80%) in comparison to the urban group (26%). In addition, the wastewater 

infrastructure serving the rural group (0.29) is higher comparing to the one serving the urban group 

(0.07).  

In terms of comparisons between the more vulnerable and less vulnerable groups, the results show 

that the more vulnerable counties (GFL =0.96, GRT =0.94) have higher Gini coefficients compared 

to the less vulnerable counties (GFL =0.68, GRT =0.77), which indicates a higher level of disaster 

inequality within the counties that are more socially vulnerable. In contrast, there is a higher 

percentage of disaster vulnerable counties in the less vulnerable group (50%) in comparison to the 

more vulnerable group (37%). In addition, the wastewater infrastructure serving the less vulnerable 

counties (0.17) has a higher collective loss of resilience compared to the one serving the more 

vulnerable counties (0.1) in the context of Hurricane Irma. 

Table 6-5 Results for case study IV 

Wastewater infrastructure 

Paramet

er 

Coastal Inland Urban Rural 
More 

vulnerable 

Less 

Vulnerable  

FL RT FL RT FL RT FL RT FL RT FL RT 

Gini 

Coeffici

ent 

0.92 0.9 0.9 0.85 0.94 0.95 0.8 0.85 0.96 0.94 0.68 0.77 

Line of 

vulnerab

ility 

0.49 0.29 0.49 0.29 0.49 0.29 0.49 0.29 0.49 0.29 0.49 0.29 

% 

Vulnera

ble 

counties 

20% 20% 60% 30% 20% 26% 80% 40% 37%  25%  25 %  50%  

Collecti

ve 

disaster 

impacts 

0.42 0.37 0.74 0.38 0.44 0.31 1.17 0.49 0.74 0.27 0.54 0.63 

Collecti

ve loss 

of 

resilienc

e 

0.07 0.14 0.07 0.29 0.1 0.17 

Notes: FL = functional loss; RT = recovery time 
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Overall, the results of Gini Coefficients are similar in both the coastal and inland counties across 

the three hurricane disasters. Higher percentages of disaster vulnerable counties are found in the 

inland group in Hurricanes Michael and Irma. Similarly, the infrastructure serving the inland 

counties tend to have higher collective loss of resilience as compared to the one serving the coastal 

counties in these two hurricanes. However, the context of Hurricane Sally, the coastal group has a 

higher percentage of disaster vulnerable counties and a higher collective loss of resilience in its 

infrastructure. 

For comparisons between the urban and rural counties, the Gini coefficients vary across the three 

hurricane disasters. Higher percentages of disaster vulnerable counties are found in the rural group 

in Hurricanes Michael and Irma. Similarly, the infrastructure serving the rural counties tend to have 

higher collective loss of resilience as compared to the one serving the urban counties in these two 

hurricanes. However, the context of Hurricane Sally, the urban group has a higher percentage of 

disaster vulnerable counties and a higher collective loss of resilience in its infrastructure. 

For comparisons between the two groups of counties with different levels of social vulnerability, 

the Gini coefficients are higher within the more vulnerable groups in all three disasters. However, 

the percentages of disaster vulnerable counties and the collective loss of resilience of the 

infrastructure serving these groups of counties vary in different contexts of disasters.  

6.4  Results Discussion 

6.4.1 Analysis of disaster inequality across different communities 

As per the results presented in the above section, in the context of all three selected hurricanes, 

disaster inequality is at a similar level between the infrastructure serving the inland counties and 

the one serving the coastal counties. The results also show that disaster inequality is more severe 

within the socially vulnerable counties, which may imply that the disaster inequality is associated 

with social vulnerability.   
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The difference in disaster inequality between the groups of counties with varying levels of social 

vulnerability may be due to differences in (1) the quality and adequacy of infrastructure services 

and (2) disaster relief and aid for recovery. First, socially vulnerable communities, in general, lack 

adequate and stable infrastructure services. Studies show that socially vulnerable communities with 

higher percentages of minorities and disabled, poor, or unemployed populations have inadequate 

and substandard infrastructure, unmet infrastructure needs, and may lack even basic infrastructure 

services such as stable water supply, uninterrupted electricity, and safe and durable sanitation, etc. 

(SAMSHA 2017, Constible 2018). During disasters, such unstable infrastructure is more likely to 

experience varying levels of physical damage and/or service disruption. As a result, there is a higher 

possibly that these communities may experience varying levels of disaster impacts to their 

infrastructure, thus suffering from more severe disaster inequality. For example, in the aftermath 

of Hurricane Michael, Bay County experienced significant damage to public infrastructure (e.g., 

transportation), and a preliminary damage assessment showed that Bay County spent more fund for 

debris removal compared to other disaster impacted counties (Moline 2019). Second, socially 

vulnerable communities may lack access to disaster relief and assistance, which results in many 

uncertainties in their recovery. Previous studies show that socially vulnerable communities, 

following a disaster, face barriers in interacting with bureaucratic systems to receive disaster 

assistance (SAMSHA 2017). Socially vulnerable communities typically receive less reinvestment 

or recovery aid compared to those communities with higher socioeconomic statuses, thus they 

generally spend longer time in recovery (Nexus 2017). For example, in Hurricane Irma, the regions 

with higher percentages of minorities (Latinos and Hispanic populations) and disabled populations 

experienced longer electric power outages in the wake of Hurricane Irma (Mitsova et al. 2018). 

6.4.2 Analysis of disaster vulnerability across different communities 

As per above presentation of the results, we found that there are higher percentages of disaster 

vulnerable counties in the rural group as compared to those in the urban group in the contexts of 
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Hurricanes Michael and Irma. This may be due to lack of infrastructure investment funds, delay in 

disaster aid and relief, aging and substandard infrastructure, and socioeconomic statuses of 

individuals living in the rural areas. First, urban areas, comparing to rural areas, are more likely to 

receive federal assistance and funds for developing new infrastructure and maintaining existing 

ones (Todoroff 2022), and they are more likely to implement resilience strategies in new 

infrastructure planning and development (Venema 2017) due to adequacy in funds. In contrast, 

rural areas, with limited funding and support, may have limited capabilities in implementing 

disaster mitigation practices or resilience strategies (Kapucu et al. 2013). Second, rural areas are 

generally left behind in receiving disaster recovery assistance, aid, and resources (Todoroff 2022). 

For example, in the aftermath of Hurricane Irma, comparing to urban counties, rural counties (e.g., 

Taylor County) of Florida were delayed in receiving recovery resources and aid (Stofan 2017). 

Third, rural communities typically have aged, obsolete and substandard infrastructure that requires 

significant repair and maintenance. Unlike urban areas, rural areas lack diverse economic resources 

(e.g., tax base from large corporations and businesses) and may experience difficulty in attracting 

developers (Browne 2022). The infrastructure needs of rural areas are not adequately addressed as 

the infrastructure planning and initiatives have mostly focused on the urban areas. As a result, rural 

communities lack access to reliable essential infrastructure services (NCSL 2020). Fourth, the 

residents in the rural areas generally have lower socioeconomic statuses, such as higher level of 

poverty and unemployment rates, and fewer educational opportunities (Lowe 2017, The 

Conversation 2017). For example, according to the United States Department of Agriculture 

(USDA) Economic Research Service (USDA-ERS 2022), there is a higher poverty rate of rural 

communities (18.8%) in Florida compared to that of the urban communities (12.6%). (USDA-ERS 

2022). In addition, variations in the severity of disaster impacts to infrastructure are found to be 

related to the socioeconomic characteristics of the communities. For example, poor communities 
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and minority communities experienced severe impacts from Hurricane Michael and are deprived 

of necessary resources during the recovery period (Moens 2022). 

6.4.3 Analysis of collective resilience of infrastructure serving different communities  

As per above presentation of the results, in the context of Hurricanes Michael and Irma, the 

infrastructure serving the inland counties has relatively worse overall resilience performance 

compared to the one serving the coastal counties. However, in the context of Hurricane Sally, the 

electric power infrastructure serving both coastal and inland counties has similar resilience 

performance. Such differences may be attributed to the characteristics of the hurricanes. First, 

Hurricanes Irma and Michael were both Category 5 hurricanes. Such hurricanes with high 

intensities have more potential to travel up to 100 to 200 miles inland after their landfall and they 

could bring extreme rainfall and wind forces resulting in extreme inland flooding (Raizner 2022). 

For example, after making landfall in Mexico Beach, Hurricane Michael remained at Category 3 

strength while travelling through seven inland counties of Florida, such as Calhoun, Liberty and 

Gadsden Counties (NOAA 2019). It kept brining extreme rainfall that resulted in flash flooding in 

the inland counties. The combination of strong winds and heavy rainfall caused significant damage 

to roads and highways, interrupted the services of wastewater and communication infrastructure.  

In contrast, as a Category 2 hurricane, Hurricane Sally caused extensive damage and destruction to 

infrastructure mostly across the coastal regions (NOAA 2021). The storm surges along with rainfall 

brought by the Category 2 hurricane caused widespread flash and river flooding on coastal counties 

(e.g., Pensacola and Escambia Counties) resulting in significant damage to electric power lines 

(NOAA 2021). Hurricane Sally started to lose its strength after landfall and travelled toward inland 

regions of Florida as a tropical storm (NOAA 2021). Thus, the electric power infrastructure serving 

inland counties experienced less severe impacts from the hurricane as compared to the one serving 

the coastal counties. 
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6.5  Conclusions 

This chapter presents four case studies that analyze infrastructure resilience while accounting for 

disaster inequalities and vulnerabilities. By utilizing the social welfare-based infrastructure 

resilience assessment (SW-Infra-RA) framework proposed by Dhakal and Zhang (2022), the study 

analyzed (1) the levels of disaster inequality, (2) the levels of disaster vulnerability, and (3) the 

collective resilience of infrastructure serving counties with different characteristics (e.g., spatial, 

demographic, and socioeconomic statuses). These results indicate that the infrastructure serving the 

more vulnerable group of counties experience higher levels of disaster inequality. In the context of 

hurricanes with high intensity (Hurricanes Michael and Irma), there is a higher percentage of 

disaster vulnerable counties in the rural group. Also, the infrastructure of the inland group of 

counties, collectively, has poorer resilience performance compared to that of the coastal group of 

counties. 

From practical perspectives, the results generated through the equity-incorporated resilience 

analysis could facilitate decision makers to better understand the level of inequality in disaster 

impacts across different communities and identify the communities that are highly vulnerable in a 

disaster. The analysis results could help decision makers and infrastructure planners better 

understand the links between collective resilience of infrastructure and the communities with 

various characteristics (e.g., spatial, demographic, and socioeconomic statuses). This study has the 

potential to promote equitable planning by allowing decision makers to prioritize infrastructure 

resilience initiatives and investment and disaster relief resources to those communities that are in 

dire need.  
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CHAPTER 7 CONCLUSIONS 

7.1  Summary 

This dissertation aims to facilitate equitable infrastructure resilience planning by providing a new 

infrastructure resilience assessment framework that accounts for disaster inequality and 

vulnerability. The dissertation presents four chapters to achieve research objectives that includes 

(1) understanding the interrelationships between infrastructure resilience and social equity in the 

context of a disaster, (2) developing a new infrastructure resilience assessment framework that 

incorporates disaster inequality and vulnerability, (3) developing a prototype decision support 

system that facilitates automatic infrastructure resilience assessment, and (4) implementing the 

model by conducting resilience analyses of different infrastructure systems in the context of various 

hurricane disasters.  

The first task of this dissertation focused on understanding infrastructure resilience, social equity, 

and their interrelationships in the context of Hurricane Michael. To perform this task, Twitter 

activities generated by the disaster impacted counties were utilized to examine the social equity 

conditions and infrastructure resilience conditions. Statistical correlation analyses were conducted 

across Twitter activities, social equity conditions, and infrastructure resilience conditions in the 

context of Hurricane Michael. In general, the results indicate that counties with different social 

equity conditions experienced different level of impacts from disasters. In other words, social 

equity factors could potentially impact the infrastructure resilience conditions. 

The second task of this dissertation focused on developing a social-welfare-based infrastructure 

resilience assessment (SW-Infra-RA) framework while accounting for disaster inequalities and 

vulnerabilities. The proposed assessment framework is theoretically based on the social welfare 

theory and social welfare functions. This model utilized Gini coefficient to measure the unequal 

distributions of disaster impacts on infrastructure serving various communities. It proposed the 
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“line of vulnerability” to model disaster vulnerabilities. Two sets of case studies, a hypothetical 

and a real case study, were conducted to illustrate the application of the SW-Infra-RA model. This 

proposed model could potentially support the development of resilient infrastructure and facilitate 

equitable resilience planning. 

The third task of this dissertation focused on developing a prototype of a decision support system 

that could potentially facilitate automatic infrastructure resilience assessment. This prototype 

system allows decision makers to measure infrastructure resilience while accounting for disaster 

inequalities and vulnerabilities. The input of the system is disaster impacts (e.g., functional loss, 

recovery time) data of infrastructure, and the output is the collective resilience of infrastructure 

serving multiple communities. 

The fourth task of this dissertation focused on implementing the proposed infrastructure resilience 

assessment model (SW-Infra-RA) in the context of real disasters. This task analyzed the levels of 

disaster inequality, levels of disaster vulnerability, and resilience performance of infrastructure 

serving counties with different characteristics (e.g., spatial, demographic, and socioeconomic). The 

resilience of four different infrastructure (e.g., communication service, electric power, 

transportation, and wastewater infrastructure) in the context of three hurricanes (e.g., Hurricane 

Michael, Hurricane Irma, and Hurricane Sally) was analyzed.  

7.2  Research Contributions 

This dissertation offers contributions to the body of knowledge in advancing the understanding and 

methods of assessing infrastructure resilience; these contributions include: 

1. This research advances the understanding of the interrelationships between infrastructure 

resilience and social equity in the context of a hurricane disaster. It shows how the communities 

with different social characteristics may experience disproportionate impacts from Hurricane 

Michael due to varying levels of infrastructure damage or time for recovery. This knowledge is 
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critical as it could support the (re)development and (re)investment of infrastructure in a way that 

not only addresses disaster resilience challenges but also facilitates social equity in the impacted 

communities.  

2. This research utilized a data-based approach to derive useful meaning. Social media data 

analysis, which allows for easy collection of timely data, could potentially allow practitioners and 

decision makers to analyze how disasters could impact people and infrastructure in a more efficient 

and timely manner. 

3. This research developed a new infrastructure resilience assessment framework that measures the 

collective resilience of infrastructure serving multiple communities while accounting for disaster 

inequality and vulnerability. It adapted methods from the social science and economics domains to 

mathematically measure the unequal distributions of disaster impacts across various communities 

and proposed new ways of evaluating the severe impacts on vulnerable communities. 

4. The proposed model (SW-Infra-RA) provides a theoretical basis for equity-incorporated decision 

making by allowing decision makers to quantitatively assess infrastructure resilience while 

accounting for inequality and vulnerability. The results generated using this model can be utilized 

by decision makers to better understand the inequalities during disasters and to identify the 

communities that are more vulnerable in these disasters. 

7.3  Limitations and Recommendations for Future Research 

Based on the research development in this study, some research directions can be further 

investigated to improve the performance of the proposed assessment framework and its 

applications. The recommendations for future research are presented as follows. 

 First, this research study explored the interrelationships between infrastructure resilience and 

social equity and proposed a new social-welfare-based infrastructure resilience assessment 
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framework that accounts for disaster inequality and disaster vulnerability. Although the SW-infra 

model focuses on assessing collective resilience of infrastructure through aggregating the disaster 

impacts on the infrastructure of each individual community, it currently doesn’t account for the 

interdependencies of infrastructure serving these communities. Other methods such as system of 

systems approach or system network analysis can be used to measure such interdependencies and 

can be further integrated to the proposed assessment framework. 

Second, the findings about the interrelationships between social equity and infrastructure resilience 

cannot be generalize to the general population. The findings are based on data collected from 

Twitter, which may not fully represent the opinions of the general population. For example, 

previous research shows that, comparing to the older population, younger adults aged 15-34 years 

old are more represented in social media (e.g., Twitter). In general, vulnerable populations (e.g., 

minorities, disabled, low-income, elderly) are more likely to be unaware of communication tools 

and use of social media, and they may be less representative on social media (e.g., Twitter). 

Therefore, further investigations on the communication patterns of vulnerable populations are 

needed to analyze the behaviors of vulnerable populations in disasters. 

Third, the proposed model (SW-Infra-RA) is designed to assess the collective resilience of a single 

type of infrastructure. Assessing the resilience of multiple types of infrastructure may be conducted, 

depending on the input of the data. For example, if the collected data on disaster impacts are for 

multiple types of infrastructure, it may be possible to derive the collective resilience of multiple 

infrastructures. 

Fourth, the SW-Infra-RA model was implemented in analyzing the resilience of different types of 

infrastructure serving communities within Florida. In future studies, there is a need to further apply 

the model in analyzing the resilience of different types of infrastructure serving a larger number of 

communities in other parts of the country. Such application would offer more insight and 
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understanding of how inequalities in and vulnerabilities to disaster impacts could impact 

infrastructure resilience. 

Fifth, the resilience analysis of infrastructure is conducted on a county level, which may not reveal 

the actual infrastructure resilience and social equity conditions within different communities in the 

same county. This can be further addressed by collecting the disaster impacts data based on zip 

codes or different types of communities by grouping several zip codes together. 

Sixth, although multiple sets of case studies have been conducted to implement the proposed model 

in various hurricane disasters, the model requires further validation. Validation of the proposed 

model is a challenging task as there is no agreed upon “gold standard” for the results generated by 

the proposed model to be compared with. Previous studies (e.g., Ouyang and Wang 2015, Singhal 

et al. 2020, Argyroudis et al. 2021) show that infrastructure resilience assessment models or 

methods may lack validation approaches. Some research (e.g., Feldmeyer et al. 2020, Anderson et 

al. 2020, Cai et al. 2016) suggests the use of an empirical approach.  In this research, expert-

involved experiments can be conducted to validate the proposed model. For example, a set of case 

studies that involve domain experts can be conducted to validate the proposed model. The experts 

may include people from government, non-government and private sectors that hold expertise in 

the domain of disaster resilience and social equity. First, the data of a disaster, disaster impacts, 

and infrastructure in the impacted communities will be provided to the experts. Second, the experts 

will be instructed to focus on inequality and vulnerability in the disasters, and they will be asked to 

evaluate how disaster impacts are distributed across different communities and how infrastructure 

of vulnerable communities are impacted during the disaster. Third, through open discussion, the 

experts will be asked to rank the communities based on the collective resilience of their 

infrastructure. Fourth, the collective resilience of infrastructure in different communities will be 
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measured using the SW-Infra-RA model, and a ranking of these communities will be provided. The 

correlation between the expert-based ranking and the model-based ranking will be evaluated.  

Seventh, the proposed prototype system has not been used by the general public or decision makers. 

To address this limitation, community outreach programs can be implemented in the future. For 

example, seminars and workshops can be held at FIU to engage interested stakeholders and 

community collaborators. In these seminars and workshops, this research work including the 

findings and results will be presented. The participants will then have the opportunity to test use 

the prototype system. Additionally, seminars and information sessions regarding this research can 

be held with local resilience-focused organizations, such as 100 Resilient Cities, and the County’s 

Office of Resilience. These meetings and workshops could potentially provide effective venues for 

reaching out to different sectors as they bring together representatives from public, private, and 

non-profit sectors in local communities.  
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