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ABSTRACT OF THE DISSERTATION 

DISTINCT TEMPORAL AND MECHANISTIC CONTRIBUTIONS OF THE 

HIPPOCAMPUS, STRIATUM, AND MEDIAL PREFRONTAL CORTEX 

FACILITATE MEMORY-GUIDED DECISION MAKING 

by 

Amanda G. Renfro 

Florida International University, 2022 

Miami, Florida 

Professor Aaron T. Mattfeld, Major Professor 

 In this dissertation, I investigate how the hippocampus, medial prefrontal 

cortex and striatum facilitate memory-guided decision making. While a great deal 

of human and animal research has been dedicated to solving this puzzle, much of 

this work has focused on “retrospective” mechanisms of this process. Although 

retrieval and deliberation are certainly fundamental elements of successful choice 

behavior, how these regions prospectively support memory-guided decision 

making is also worthy of further study. Here, I present: (1) elucidation of two distinct 

networks which support prospective and concurrent memory-guided behavior, (2) 

evidence hippocampal support to experience-based learning is a dynamic, 

evolving process, and (3) demonstration of prospective representational content 

using machine learning. In my first experiment, participants completed a 

visuospatial conditional associative task (vCAT1) in which correct conditional 

response was dependent on the preceding stimulus. Through both uni- and 

multivariate methods, I demonstrate evidence of two separate networks through 
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which memory guides decision making behavior: (1) hippocampus (HPC), 

putamen (PUT), medial prefrontal cortex (mPFC), and other cortical regions which 

showed increased activation preceding successful conditional choice, and (2) 

dorsal anterior caudate (DAC), dorsolateral prefrontal cortex (dlPFC), and other 

cortical regions, which exhibited increased activation during successful choice 

execution. In order to address how these regions and their collaborative 

contributions may evolve across learning, I employed two learning analyses to 

determine how HPC and DAC support early and late learning. I observed 

decreased activation for DAC as performance improved and selective involvement 

of the HPC for late, but not early learning. These findings demonstrate dynamic 

contributions of the HPC as learning develops. In my second experiment, 

participants completed a more complex visuospatial conditional associative task 

(vCAT2) to reduce ceiling effects and prevent alternating response set. Here, I 

collected data for purposes of conducting a multivoxel pattern analysis to 

investigate neurobiological representations of prospective memory. Classifier 

accuracy for both FFA and PPA was better than would be expected by chance, but 

no statistically significant relationship was observed between classifier and subject 

performance. These findings provide evidence for prospective representational 

content which supports memory-guided decision making processes. 
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CHAPTER 1: INTRODUCTION 

A critical element of decision making is the ability to apply personal experience 

to present circumstance. More specifically, our memory concerning relationships 

between discrete events, as well as subsequent outcomes, is necessary to inform 

behavior and selection of situationally optimal choices. To date, animal and human 

work have investigated ways in which memory informs and directs our choices 

(Bornstein et al., 2017; Gluth et al., 2015; Jadhav et al., 2012; Murty et al., 2016; 

J. P. O’Doherty et al., 2017; Pfeiffer & Foster, 2013; Shohamy & Daw, 2015; Weber 

et al., 1993; Wimmer & Shohamy, 2012; Zeithamova, Dominick, et al., 2012), but 

much of this research has focused on “retrospective” mechanisms of memory. 

Although retrieval, and integration of past associations with current circumstance, 

certainly offer important insight into neurobiological mechanisms for behavior, the 

scope of investigation into memory-guided decision making should not be limited 

to only those dynamics observed at time of choice. Prospective memory, or the 

neurobiological processes supporting realization of intended future choice, also 

contributes to successful behavior (Kvavilashvili, 1987). Prospective memory is a 

multifaceted phenomenon which includes retrieval of content regarding relevant 

behavior, deliberate maintenance of information in working memory with imminent 

intent, and concurrent execution (Monti et al., 2020). Thus, prospective memory is 

theorized to include four unique subprocesses: (1) formation of intention,                

(2) retention of intention, (3) re-instantiation of intention, and finally (4) execution 

of intended behavior (Cohen & O’Reilly, 1996; Ellis, 1996; Kliegel et al., 2002). 
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Two regions implicated in prospective memory processes across both human 

and animal work are the hippocampus (HPC; Benchenane et al., 2010; Cohen & 

O’Reilly, 1996; Euston et al., 2012; Jadhav et al., 2012, 2016; Pfeiffer & Foster, 

2013; Shin & Jadhav, 2016; Wang & Morris, 2010; Yu & Frank, 2015) and medial 

prefrontal cortex (mPFC; Benoit et al., 2012; Burgess et al., 2003; de la Vega et 

al., 2016; Gilbert et al., 2005a; Gilbert, 2011; Haynes et al., 2007; Momennejad & 

Haynes, 2013, 2012; Okuda et al., 2007; Simons et al., 2006; Soon et al., 2008; 

Volle et al., 2011). The HPC is understood to acquire and maintain relational 

representations (Eichenbaum & Cohen, 1988; Squire et al., 2004; Tse et al., 2007), 

as well as support imaginings of the future (Addis et al., 2007). Similarly, the 

mPFC, rich in connections to a host of cortical and sub-cortical regions (Preston & 

Eichenbaum, 2013), is anatomically positioned to support memory formation and 

retrieval, integrate memories across events (Zeithamova & Preston, 2010), and 

facilitate decision making (Shin & Jadhav, 2016). A third region worthy of 

consideration is the striatum. While not directly implicated using most prospective 

paradigms, the striatum is essential for decision-relevant processes such as 

response preparation, reward expectation, prediction error, and instrumental 

learning and memory (Doll et al., 2015; Schultz et al., 2003; Tremblay et al., 1998). 

The timing and degree to which contributions of the HPC, mPFC, and striatum 

prospectively support memory-guided decision making, how such contributions 

develop across learning, and what sort of representational content can be decoded 

from patterns of activation during periods of prospective behavior, have not yet 

been demonstrated. However, previous findings have shown predictive activations 
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in HPC during statistical learning studies (Bornstein & Daw, 2012; Ferbinteanu & 

Shapiro, 2003; Schapiro et al., 2012), as well as response preparation and 

prediction error in the striatum for reward learning tasks (Bornstein & Daw, 2012; 

Doll et al., 2015). 

1.1 PURPOSE  

 The purpose of my dissertation work was to investigate how the brain 

supports memory-guided decision making and how such support may evolve 

across learning. Here, I focused on four primary regions of interest: hippocampus 

(HPC), medial prefrontal cortex (mPFC), as well as the dorsal anterior caudate 

(DAC) and putamen (PUT) of the striatum. My objective was not only to elucidate 

potential mechanisms and timing of these regional contributions, but to understand 

how these contributions evolve with experience-based learning and to investigate 

possible representational content maintained prior to decision making by using a 

complex, multivariate technique known as multivoxel pattern analysis (MVPA). 

Efforts to better our understanding of these processes may help not only inform 

the treatment of patients with various types of executive dysfunction, but to guide 

educational initiatives as well. 
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1.2 RESEARCH QUESTIONS 

1.2.1 AIM 1: DETERMINE CONTRIBUTIONS OF THE HIPPOCAMPUS, MEDIAL 

PREFRONTAL CORTEX, AND STRIATUM DURING PROSPECTIVE AND CONCURRENT 

MEMORY-GUIDED DECISION MAKING. 

In pursuit of Aim 1 (see Chapter 2), participants completed a conditional 

associative learning task while in a magnetic resonance imaging (MRI) scanner. 

Here, I sought to determine mechanisms and timing of HPC, mPFC, and striatal 

contributions to prospective memory-guided decision making. I expected to 

observe increased prospective activations in HPC, mPFC (defined structurally as 

the anterior cingulate cortex; or ACC), and dorsal anterior caudate (DAC) 

preceding correct, compared to incorrect, conditional trials given their association 

with relational memory, memory integration, and goal-directed action, respectively. 

I anticipated putamen (PUT) would demonstrate no such distinction in prospective 

activations. Here, I demonstrated greater activations in HPC, mPFC, and PUT 

(prospective network) precede successful conditional decision making, while 

greater activations in DAC and dorsolateral prefrontal cortex (concurrent network) 

are associated with execution of successful decisions (Hamm & Mattfeld, 2019). 

1.2.2 AIM 2: ELUCIDATE HOW CONTRIBUTIONS OF THESE CORTICAL AND 

SUBCORTICAL REGIONS TO MEMORY-GUIDED DECISION MAKING CHANGE ACROSS 

LEARNING. 

For Aim 2 (see Chapter 3), I expanded on previous analyses to investigate how 

contributions of HPC, mPFC, and striatum develop across learning. Generally, I 

predicted (1) increased engagement of HPC, mPFC, and PUT as performance 
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improved, and (2) decreased DAC activation during this same period. To test these 

hypotheses, I employed two analytic techniques: 

       

    

        

         

    

      

      

      

    

     

    

       

       

      

    

   

     

    

      

      

    

a) Pattern Dissimilarity Analysis. First-level analyses were conducted on

 unsmoothed data, followed by fixed-effect analyses to quantify dissimilarity of

 activation patterns during periods of early and late learning. Regressors of

 interest included fixed trials preceding correct conditional trials and fixed trials

 preceding incorrect conditional trials. For each run, correlation values were

 obtained between voxel-wise activation patterns for fixed trials proceeding

 correct, versus incorrect, conditional trials in both HPC and DAC using

 anatomically defined ROI masks. Dissimilarity value was calculated as 1 – r.

 First, t-tests (or Wilcoxon ranked-sign tests) determined whether statistically

 significant differences between early or late learning were observed for either

 HPC or DAC. Second, correlation values between pattern dissimilarity and

 performance on conditional trials for both early and late learning were

 calculated. I predicted increased pattern dissimilarity during late, compared to

 early, learning. Additionally, I expected to observe a positive relationship for

 pattern dissimilarity and performance across learning for HPC, but not DAC.

 During periods preceding conditional trial performance, HPC pattern

 dissimilarity was greater for late, compared to early, learning. In addition, a

 significant relationship was observed between HPC pattern dissimilarity and

 learning performance for late, but not early, learning. Similarly, DAC pattern

 dissimilarity was greater for late, compared to early, learning; however,
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were observed for both early and late learning. 

b) Binned Learning Curve Analysis. Three learning bins were created using a 

flexible algorithm which accounted for differences in participant performance. 

Conditional trials were numerically organized by probability of correct response 

(hereafter referred as PC value) with minimum and maximum values identified 

for each participant. Based on participant-specific ranges, the first third of trials 

(beginning with lowest PC value) constituted Learning Bin 1, second third 

Learning Bin 2, and final third (ending in highest PC value) Learning Bin 3. 

Each model included separate regressors for all bins and regressors of no 

interest. Anatomical bilateral ROIs were created for HPC and DAC, comparing 

second-level mean activation for conditional trials during each learning bin. 

During conditional trial performance, HPC demonstrated greater activation 

during conditional trials for Bin 3 compared to Bin 1; however, no significant 

differences were observed when an analysis of variance (ANOVA) considered 

all three bins. Interestingly, and contrary to my initial predictions, decreased 

activation was observed for DAC across bins. Simple effect analysis revealed 

DAC exhibited decreased activation for Bin 3 compared to Bin 1. No significant 

differences were evident between Bins 3 and 2; although a slight trend of 

decreased activation for Bins 2 compared to Bin 1 was observed. 

1.2.3 AIM 3: INVESTIGATE MULTIVARIATE NEUROBIOLOGICAL REPRESENTATIONS 

WHICH UNDERLIE PROSPECTIVE MEMORY-GUIDED DECISION MAKING.  

My first two aims investigated contributions of HPC, mPFC, and striatum to 

prospective and concurrent networks underlying conditional memory-guided 

significant positive correlations between DAC pattern dissimilarity and learning
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decision-making and how those contributions develop across learning. My third 

and final aim (see Chapter 5) sought to investigate neurobiological representation 

of prospective memory using multivoxel pattern analysis (MVPA). MVPA identifies 

information through patterns in neural response, operationalized in my experiment 

as voxels (Weaverdyck et al., 2020). Here, I investigated representational content 

maintained by participants prior to conditional trials by isolating voxel activation 

patterns in the fusiform face area (FFA) and parahippocampal place area (PPA) 

during prospective memory-guided behavior. A functional localizer task was used 

to isolate individual participant activation when presented with faces and scenes, 

which was then combined with anatomical ROI masks to obtain voxels at the 

intersection of these two masks. The resulting constrained masks were then 

applied to vCAT2 first-level copes during fixed trials preceding baseline and 

conditional trials to provide features required to train a supervised learning 

algorithm (support vector machine classifier, or SVC). Classifier performance 

exceeded chance for both FFA and PPA; but no significant relationships between 

classifier and participant performance was observed. 
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CHAPTER 2: DISTINCT NEURAL CIRCUITS UNDERLIE PROSPECTIVE 

AND CONCURRENT MEMORY-GUIDED DECISION MAKING  

The past is the best predictor of the future. This simple postulate belies the 

complex neurobiological mechanisms which facilitate an individual’s use of 

memory to guide decisions. Previous research has shown that integration of 

memories bias decision making. Alternatively, memories can prospectively guide 

our choices. Here, the mechanisms and timing of the hippocampal (HPC), medial 

prefrontal (mPFC), and striatal contributions during prospective memory-guided 

decision making were elucidated. An associative learning task was developed in 

which the choice was conditional on the preceding stimulus. Two distinct networks 

emerged: (1) a prospective circuit consisting of the HPC, putamen (PUT), mPFC, 

and other cortical regions, which exhibited increased activation preceding 

successful conditional decisions; and (2) a concurrent circuit comprised of the 

dorsal anterior caudate (DAC), dorsolateral prefrontal cortex (dlPFC), and 

additional cortical structures that engaged during execution of correct conditional 

choices. These findings demonstrate distinct neurobiological circuits through 

which memory prospectively biases decisions and influence choice execution.  

This chapter has been published in Cell Reports (Hamm & Mattfeld, 2019). 

2.1 INTRODUCTION 

Successful decision making often requires drawing upon the past. The 

influence of memory on decision making has been documented across a diverse 

array of tasks (Bornstein et al., 2017; Gluth et al., 2015; Jadhav et al., 2012; Murty 

et al., 2016; J. P. O’Doherty et al., 2017; Pfeiffer & Foster, 2013; Shohamy & Daw, 
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2015; Weber et al., 1993; Wimmer & Shohamy, 2012; Zeithamova, Schlichting, et 

al., 2012).  Much of this research has examined “retrospective-integration” 

(Shohamy & Daw, 2015) or  how experiences containing overlapping content are 

recalled, combined, and ultimately bias our future choices (Gluth et al., 2015; Murty 

et al., 2016; Wimmer & Shohamy, 2012; Zeithamova, Dominick, et al., 2012; 

Zeithamova, Schlichting, et al., 2012; Zeithamova & Preston, 2010). Yet, memories 

can also prospectively guide our choices. The neural mechanisms of how memory 

prospectively biases our decisions and the timing of those contributions remain 

central questions.  

Memory of our intentions to act in the future, known as prospective memory, 

has demonstrated the influence of memory on subsequent behavior (Brandimonte 

et al., 1996; Kvavilashvili, 1987). Most research has focused on strategic 

monitoring and maintenance of prospective memory cues and have implicated the 

rostral prefrontal cortex (rPFC; BA10) as an important region for this process 

(Benoit et al., 2012, 2012; Burgess et al., 2003; Gilbert et al., 2005a; Gilbert, 2011; 

Haynes et al., 2007; Momennejad & Haynes, 2013; Okuda et al., 2007; Simons et 

al., 2006; Soon et al., 2008; Volle et al., 2011). 

Less research has been devoted to the neurobiological mechanisms which 

support encoding prospective memory (Cona et al., 2015; Gilbert, 2011; 

Momennejad & Haynes, 2013); however, some computational work suggests 

prospective memory emerges from interactions between the prefrontal cortex and 

hippocampus (HPC), with the latter responsible for encoding associations between 

action plans and the context in which they are to take place (Cohen & O’Reilly, 
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1996). Research in rodents using spatial tasks strongly supports the role of the 

HPC through prospective neural signals (Benchenane et al., 2010; Euston et al., 

2012; Jadhav et al., 2012; Pfeiffer & Foster, 2013; Shin & Jadhav, 2016; Wang & 

Morris, 2010; Yu & Frank, 2015). Based on the ability of the HPC to rapidly acquire 

relational representations (Eichenbaum & Cohen, 1988; Squire et al., 2004),  

contribute to future thinking (Addis et al., 2007; Schacter et al., 2017), and support 

prospective neural coding (Ferbinteanu & Shapiro, 2003), one would expect HPC 

activations to contribute to prospective memory-guided behavior.  

In addition to area BA10, other regions of the medial prefrontal cortex (mPFC) 

likely contribute to mechanisms of prospective memory, owing in part to 

structural/functional diversity (de la Vega et al., 2016). While prospective memory 

paradigms have shown medial rPFC activations reflect ongoing task but not 

delayed intentions (Benoit et al., 2012; Burgess et al., 2003, 2011; Gilbert et al., 

2005a; Simons et al., 2006), functional decoding analyses have identified 

additional mPFC regions related to storing of delayed intentions (Gilbert, 2011; 

Haynes et al., 2007; Momennejad & Haynes, 2013; Soon et al., 2008). Additionally, 

involvement of mPFC in maintenance of long-term memories (Bonnici et al., 2012; 

M. T. van Kesteren et al., 2010), integration of memories across episodes 

(Zeithamova & Preston, 2010), inferential decisions (Zeithamova, Schlichting, et 

al., 2012), and anatomical connections with the hippocampus and pre- and primary 

motor cortex (Barbas & Blatt, 1995; Cavada, 2000; Heidbreder & Groenewegen, 

2003; Hoover & Vertes, 2007), all suggest the mPFC is well suited to use memory 

to guide behavior. Further, research in awake behaving rodents has identified 
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interactions between the HPC and mPFC related to memory-guided behavior 

(Benchenane et al., 2010; Jadhav et al., 2016; Shin & Jadhav, 2016), which are 

prominent during learning (Tang et al., 2017). Thus, I expect both activations in the 

mPFC, and its interactions with the HPC, should contribute to prospective memory. 

The striatum, also important for decision making, supports action-selection 

(Balleine et al., 2007). Striatal activity (Tremblay et al., 1998) represents motor 

preparation, reward expectation, and prediction error (Schultz et al., 2003), all 

uniquely contributing to instrumental behavior, both response-outcome (goal-

directed) and stimulus-response (habitual) (Graybiel, 1995; Liljeholm & O’Doherty, 

2012; Yin et al., 2005). Notably, prospective memory paradigms rely on stimulus-

response associations between prospective cues and specific actions (Beck et al., 

2014; Einstein & McDaniel, 2005). Taken together, these findings suggest the 

striatum supports, not only prospective biasing of our choices, but also execution 

of those decisions.  

The extent to which the HPC, mPFC, and striatum prospectively contribute 

to memory-guided conditional behavior in humans, as well as the timing of each, 

has not been demonstrated. Evidence from statistical learning studies have shown 

predictive activations in the HPC (Bornstein & Daw, 2012; Schapiro et al., 2012), 

while the mPFC is engaged during events sharing temporal associations (Schapiro 

et al., 2013). Prospective activations have also been identified in functionally 

decodable regions of the visual pathway during a multistep reward learning task 

(Doll et al., 2015). Striatum activation, specifically in the putamen, has been 
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associated with response preparation and prediction error using similar tasks 

(Bornstein & Daw, 2012; Doll et al., 2015). 

A visuomotor associative learning paradigm (Law et al., 2005; Petrides, 

1997) was designed to investigate how the HPC, mPFC, and regions of the 

striatum (dorsal anterior caudate and putamen) contribute to memory-guided 

behavior, both before and during conditional decision-making. Participants 

learned, through trial and error, to associate three stimuli with specific responses. 

Two images were fixed trials, whose associations were consistent across all 

presentations. For the third image, or conditional trial, correct response was 

dependent on the identity of the preceding trial stimulus. In other words, the correct 

association for the third image was conditional on the previous fixed association 

(Figure 1A-C). All learning stimuli were presented 80 times across two runs (40 

trials/run). A total of three sets of stimuli were learned. Trials lasted three seconds 

and were as follows: (1) a central fixation cross [700 ms]; (2) followed by a 

kaleidoscopic image and two flanking boxes, during which participants make their 

selection [1000 ms]; and (3) participants were provided feedback (green “Yes!” if 

correct, red “No!” if incorrect, and white “?” if a response was not received in time) 

[800 ms]. All participants were given instructions of the task and received training 

outside of the scanner with a set of three unique training images. 

With this approach, I investigated the mechanisms of memory-guided 

behavior. Two distinct neurobiological circuits emerged: one through which 

prospective memories are encoded and subsequently bias conditional memory-

guided decisions, and a second which directs execution of concurrent choice. 
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Figure 1. Schematic diagram of vCAT1 experiment and behavioral results.  
(A) Each subject completed a total of 960 trials – comprised of three unique stimulus 
image sets of 320 trials each. Sets were further divided into two runs of 160 trials: 40 
presentations of each trial type per set. (B) Task and baseline trial were identical in timing 
(2.5 sec) and structure. (C) Example sequence of events highlighting correct (green 
arrows/boxes) and incorrect (red arrows/boxes) responses for both fixed and conditional 
trials. (D) Performance curves were calculated for each participant across all image sets, 
producing a total of 60 unique curves. Performance was defined as the probability of a 
correct response on the respective trial. Dark red lines represent the mean curve for each 
stimulus type, while the surrounding pink expanse indicate the upper and lower bound 
95% confidence intervals. Blue dashed line indicates chance performance of 50%.   
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2.2 METHODS 

Twenty-seven right-handed volunteers performed a conditional visuo-motor 

associative learning task in the scanner. All participants provided written informed 

consent in accordance with local Institutional Review Board requirements. 

Individuals were recruited from the Florida International University community and 

financially compensated for their time. Six individuals were excluded from the 

reported analyses. Three were removed for excessive motion (greater than 20% 

of time points were flagged as outliers following outlier detection procedures using 

1 mm normalized frame-wise displacement and three standard deviations above 

the mean signal intensity as thresholds). Three subjects were removed for poor 

task performance (lower bound of the 95% confidence interval never exceeded 

chance performance). Lastly, one participant was removed because of 

experimenter error – the first image set was erroneously presented for all six runs. 

The final sample size was 20 participants (13 females; mean age = 20.82 years, 

SD = 1.78). 

2.2.1 BEHAVIORAL PROCEDURES 

The conditional memory-guided associative learning task was modified 

from a visuomotor associative learning task (Law et al., 2005; Mattfeld & Stark, 

2011, 2015; Stark et al., 2018). The experiment was run using PsychoPy2 software 

(version 1.81.02; (Peirce, 2009) on a Dell PC computer (Windows 8). Stimuli were 

back projected and viewed using a fixed mirror mounted on the head coil. 

Participants were presented with three unique kaleidoscopic image sets. Each set 

was learned across two scanning runs, comprising a total of six scanning runs. 
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Each run lasted 6.67 minutes. Images were presented 40 times during each run, 

or 80 times total across two runs, resulting in 240 learning stimulus trials per set. 

Individuals were instructed to learn through trial-and-error the associations 

between each image and one of two concurrently presented boxes, which flanked 

the stimulus. Two of the three images were associated with either the left or right 

box exclusively, for which the correct response remained consistent across trials. 

These trials as hereafter referred to as fixed associative learning trials. The 

association for the third image, however, was conditional on the identity of the 

image from the preceding trial and thus could change across trials. I refer to these 

trials as conditional associative learning trials (Error! Reference source not f

ound.).  

Each learning trial (3000 ms duration) began with the presentation of a 

centrally located fixation cross for 300 ms, after which a computer-generated 

kaleidoscopic image (Miyashita et al., 1991) flanked by empty boxes on both the 

right and left was presented for 500 ms. The image was then replaced by a fixation 

cross for a hold period of 700 ms, followed by a white “Go!” response cue and an 

additional 700 ms response window for participants to make their selection. 

Responses were registered by pressing with either the index (Button 1 - indicating 

left box) or the middle finger (Button 2 - indicating right box) using an MR-

compatible response box. The selected box was highlighted to indicate selection. 

Deterministic feedback (green “Yes!”, red “No!”, or white “?”) was provided for 

800ms post-response.  
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To serve as a temporal jitter between trial types, distribute cognitive 

demand, and provide a reference for the fMRI signal, 40 perceptual baseline (BL) 

trials were presented randomly across each experimental run. Sequence and 

timing of perceptual BL trials was identical to learning trials (Figure 1B). During BL 

trials, participants were presented with a random static image created through 

binarization of random values for each pixel of screen resolution (1280 x 800). 

Randomly generated pixel values greater than 0.85 became white, while those 

below threshold became gray. A white fixation cross between two white outlined 

boxes was presented at the center of the screen over the static background. In 

identical fashion to the underlying static image, contents of each box were also 

random patterns (320 x 200); however, the binarization threshold to produce a 

white pixel was considerably lower and, for target, vacillated as a function of 

performance. For the first BL trial, binarization thresholds for target and foil were 

initially set at 0.55 and 0.65, respectively. Participants were asked to identify which 

of the two boxes was “whiter”. If the participant responded correctly to seven out 

of the previous 10 trials, the white threshold for target box would increase by 10% 

of last trial, producing fewer white pixels and bringing the image closer to the 

constant foil threshold of 0.65, thereby increasing difficulty. Conversely, if response 

to fewer than five of the preceding 10 BL trials were correct, threshold decreased 

by 10% of previous trial value, resulting in a “whiter” target and easier identification. 

2.2.2 PRESCAN TRAINING 

All participants received prescan training of 75 total trials (60 learning stimuli 

and 15 BL trials) using a practice set of 3 images specific to the training session. 
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Prescan training allowed participants an opportunity to become acquainted with 

the nature and timing of the task and mitigated loss of trials due to nonresponse at 

the beginning of the first experimental run. Prescan training was conducted on a 

MacBook Pro using identical finger-response mapping used during scanning 

session. 

2.2.3 MRI METHODS 

Imaging data were acquired on a General Electric Discovery MR750 3T 

scanner (Waukesha, WI, USA) with a 32-channel head coil at the University of 

Miami Neuroimaging Facility (Miami, FL). Functional images were obtained using 

a T2*-sensitive gradient echo pulse sequence (42 interleaved axial slices, 

acquisition matrix = 96 x 96 mm, TR = 2000 ms, TE = 25 ms, flip angle = 75°,         

in-plane acquisition resolution = 2.5 x 2.5 mm, FOV = 240 mm, slice                   

thickness = 3 mm). For each experimental run, 200 whole brain volumes were 

acquired. Acquisition of imaging data began after the fourth volume to permit 

stabilization of the magnetic resonance signal. A high-resolution, three-

dimensional magnetization-prepared rapid gradient echo sequence (MP-RAGE) 

was collected for the purposes of coregistration and normalization (186 axial slices, 

voxel resolution = 1 mm isotropic, acquisition matrix = 256 x 256 mm, TR = 9.184 

ms, TE = 3.68 ms, flip angle = 12°, FOV = 256 mm). 

Data were preprocessed and analyzed using the following software 

packages: Analysis of Functional Neuroimages (AFNI version 16.3.18; Cox, 1996), 

FMRIB Software Library (FSL version 5.0.8; Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012; Smith et al., 2004) Advanced Normalization Tools (ANTs 
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version 2.1.0; Avants et al., 2008), and Neuroimaging in Python (Nipype version 

1.0.0.dev0; Gorgolewski, 2016) pipeline. T1-weighted structural scans underwent 

cortical surface reconstruction and cortical/subcortical segmentation. Surface 

reconstruction was visually inspected and errors were manually edited and 

resubmitted. Functional data were first ‘despiked’ removing and replacing intensity 

outliers in the functional time series. Simultaneous slice timing and motion 

correction (Roche, 2011) were performed, aligning all functional volumes to the 

middle volume of the first run. An affine transformation was calculated to co-

register functional data to their structural scan. Motion and intensity outlier 

timepoints (>1 mm frame-wise-displacement; >3 SD mean intensity) were 

identified. Functional data were spatially filtered with a 5 mm kernel using the 

SUSAN algorithm (FSL; Smith & Brady, 1997), which preserves the underlying 

structure by only averaging local voxels with similar intensities. The last three 

volumes of each run were removed to eliminate scanner artifact observed during 

preprocessing.  

Anatomical images were skull-stripped and then registered to the MNI-152 

template (Fonov et al., 2009, 2011) via a rigid body transformation (FSL FLIRT; 

DOF = 6). This step was used to minimize large differences in position across 

participants and generate a template close to a commonly used reference. ANTs 

(Avants et al., 2008) software was used to create a study-specific template to 

minimize normalization error for any given participant. Each participant’s skull-

stripped brain was normalized using the non-linear symmetric diffeomorphic 

mapping implemented by ANTS. The resulting warps were applied to contrast 
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parameter estimates following fixed-effects modeling for subsequent group-level 

tests. 

2.2.4 ANATOMICAL REGIONS OF INTEREST 

        Six anatomical regions of interest (ROIs) were bilaterally defined using each 

participant’s structural scan. The hippocampus, putamen, and pre/primary motor 

cortex (precentral, paracentral, caudal middle frontal, and opercularis labels) were 

defined by binarizing segmentations from FreeSurfer aparc+aseg.mgz files. The 

mPFC was also defined using FreeSurfer segmentation (rostral and caudal 

anterior cingulate labels). Definition of the mPFC was limited to the anterior-most 

portion of the anterior cingulate cortex (ACC); admittedly, while ventral mPFC also 

receives input from the hippocampal formation, this region was not included due 

to substantial MRI signal drop-out. The dorsolateral prefrontal cortex (dlPFC) was 

defined using the Lausanne Atlas. The dorsal anterior caudate was manually 

segmented in accordance with anatomical landmarks outlined in the Atlas of the 

Human Brain (Mai et al., 1997): the appearance and secession of the anterior 

commissure defined the rostral boundary, while the lateral ventricle served as the 

medial edge and the internal capsule formed the lateral surface. All masks were 

back projected to functional space for analysis. 

2.2.5 TASK-BASED FMRI DATA ANALYSIS 

Collected fMRI data were analyzed using FSL, based on principles of the 

general linear model. Two separate univariate models at the first level were used 

to evaluate memory-guided conditional behavior. All models included regressors 

of no interest which included: motion parameters (x, y, z translations; pitch, roll, 
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yaw rotations), first and second derivatives of motion parameters, normalized 

motion, first, second, and third order Lagrange polynomials, as well as each outlier 

time-point exceeding artifact detection thresholds. For Model 1, the two regressors 

of interest consisted of fixed trials which immediately preceding (1) correct 

conditional trials or (2) incorrect conditional trials. All other trial types (i.e., 

conditional, fixed trials that preceded fixed trials, and fixed trials that preceded 

baseline trials, baseline trials) were modeled as a single regressor. Contrasts 

examined differences in activation between fixed trials preceding correct versus 

incorrect conditional trials. Model 2 included regressors of interest for (1) correct 

fixed trials, (2) incorrect fixed trials, (3) correct conditional trials, and (4) incorrect 

conditional trials. The contrast of interest for Model 2 was differences in activation 

for correct conditional versus correct fixed trials. Event regressors were convolved 

with FSL’s double gamma hemodynamic response function whose onset coincided 

with stimulus presentation, and 2.5 seconds duration. Following first-level 

analyses, fixed-effects analyses across experimental runs were performed for 

each participant. Contrast parameter estimates from fixed-effects analysis were 

normalized to study specific template, and group-level analyses were performed 

using FSL’s Randomise threshold-free cluster enhancement (tfce) one sample t-

test (p<0.05). 

2.2.6 BETA SERIES FUNCTIONAL CONNECTIVITY ANALYSIS 

 A beta-series correlation method (Rissman et al., 2004) was used for the 

task-based functional connectivity analysis. A least-squares single (LSS) approach 

(Mumford et al., 2012) was employed, given the fast event-related design. Briefly, 
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a separate general linear model was run for each trial of interest. All first level 

models included a regressor for the single relevant trial and all remaining task and 

nuisance regressors with relevant trial removed from its respective task regressor. 

Trials of interest were defined by whether they preceded periods of learning or 

non-learning for conditional trials. A logistic regression algorithm (Smith & Brown, 

2003; Smith et al., 2004; Wirth et al., 2003) designed to assess learning as a 

dynamic process observed across trials was implemented to create unique 

learning curves for each conditional stimulus (MathWorks, 2012). Utilizing binary 

responses (correct/incorrect), learning state process was calculated from 

observed outcome of all experimental trials and served to indicate the probability 

of a correct response for any given trial, providing a metric of learning at each 

timepoint of the experimental run. Learning state was defined by obtaining the first 

derivative of the learning curve for conditional stimuli. If derivative value of the trial 

was positive, indicating an increase in the probability of being correct relative to 

the previous trial, then it was labeled a learning trial. If the value was less than or 

equal to zero, representing a decrease or no change in performance, then the trial 

was labeled as a non-learning trial. Fixed trials preceding learning and non-

learning conditional trials were separately modeled and constructed into beta-

series. A priori regions of interest were defined and average beta-series from each 

region were correlated with one another. The functional coupling during learning 

versus non-learning periods was quantified by degree to which the respective beta-

series correlated. 
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2.3 RESULTS 

To examine how HPC, mPFC, and subregions of the striatum (DAC and PUT) 

contribute to memory-guided behavior, blood oxygen level dependent (BOLD) 

functional magnetic resonance imaging (fMRI) was collected while participants 

engaged in a memory-guided conditional associative learning task. Anatomical 

region of interest (ROI) and exploratory whole-brain analyses tested: 1) differences 

in prospective activation during fixed trials immediately preceding correct 

compared to incorrect conditional trials, to evaluate neurobiological mechanisms 

of memory’s influence on conditional decisions; 2) correlations between first trial 

regional activation and second trial performance for sequential fixed trial pairs 

when the stimulus either changed or remained the same, to further validate 

whether prospective activations bias subsequent behavior; 3) prospective 

functional coupling between anatomically connected regions of interest during 

periods of learning compared to periods of no-learning, to corroborate a recent 

study in rodents that found enhanced functional coupling during learning (Tang et 

al., 2017); and 4) activation differences between correct conditional and correct 

fixed association trials, to examine differences in brain activations for trials when 

conditional action was selected. 

2.3.1 BEHAVIORAL PERFORMANCE 

Participants were quicker and more accurate on fixed compared to 

conditional trials, and both were performed better than chance. For distributions 

that violated assumptions of parametric methods (i.e. accuracy and onset of 

learning), non-parametric Wilcoxon Signed-Rank and Friedman tests were 
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performed. All results were Bonferroni corrected for multiple comparisons where 

appropriate. To determine whether participants performed better than chance, 

median accuracy was calculated across stimulus sets for each participant. 

Participants demonstrated significantly better than chance performance for the 

fixed-right (FixR: median = 0.943, IQR: 0.926 – 0.958; FixR vs. chance: Z = -3.920, 

p < .0001), fixed-left (FixL: median = 0.928, IQR = 0.91 - 0.945; FixL vs. chance: 

Z = -3.921, p < .0001), and conditional images (Conditional: median = 0.77, IQR: 

0.715 – 0.803; Conditional vs. chance: Z = -3.920, p < .0001). When comparing 

performance across trial types (FixR vs. FixL vs. Conditional), a significant 

difference for accuracy was observed (χ2(2) = 31.013, p < .0001). To determine 

whether unexpected mnemonic differences exist between fixed-left and fixed-right 

trials, accuracies were compared. No significant difference between fixed-left and 

fixed-right trials was observed (Z = -1.248, p = .212). Given the consistent 

association between stimuli and response for fixed trials, I expected higher 

accuracy compared to conditional trials. Participants performed significantly better 

for both fixed-left (Z = -3.920, p < .001) and fixed-right (Z = -3.920, p < .001) 

compared to conditional trials. A statistically significant difference was observed 

for response time between the three trial types (F(2,38) = 29.22, p < .0001, partial 

η2 = .61). Fixed-left (0.580 s ± 0.008) and fixed-right (0.588 s ± 0.011) trials did 

not significantly differ (t(19) = -1.086, p = .291). However, participants were 

significantly slower for conditional (0.632 ± 0.009) compared to either fixed-left 

(t(19) = -9.429, p < .001) or fixed-right (t(19) = -5.006, p < .001) trials. To assess 

whether conditional performance was related to the depth of processing during 
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fixed trials, I examined if response time for fixed trials varied as a function of 

conditional performance. Response times of fixed trials preceding correct 

conditional trials were not significantly different from fixed trials preceding incorrect 

conditional trials (t(19) = .24, p = .81).  

         Next, onset of learning for conditional trials was delayed compared to fixed 

association trials. To evaluate differences in learning between the three stimuli, 

learning curves with a logistic regression algorithm designed to assess learning as 

a dynamic process across trials were calculated (Figure 1C; Smith & Brown, 2003; 

Smith et al., 2004; Wirth et al., 2003). Differences in onset of learning between 

fixed and conditional trials were examined. The onset of learning was defined as 

the trial in which the lower-bound 95% confidence interval exceeded chance 

performance. There was a statistically significant difference in onset of learning 

between the three trial types (χ2(2) = 22.354, p < .001). The onset of learning for 

fixed-left (median = 3.835, IQR = 2 - 7) and fixed-right (median = 3.833,                  

IQR = 1 - 7) trials was not significantly different (Z = -0.081, p = .936). In contrast, 

the onset of learning was delayed for conditional (median = 11.5, IQR = 6 - 26), 

compared to fixed-left (Z = -3.267, p = .001) and fixed-right (Z = -3.435, p = .001) 

trials. 

         In summary, no statistically significant differences were observed for 

accuracy, reaction time, or learning onset between fixed-left and fixed-right trials. 

Participants, however, were slower to respond, less accurate, and exhibited a 

delay in learning onset for conditional trials compared to fixed trials. All trial types 

were performed significantly better than chance.     
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2.3.2 PROSPECTIVE ACTIVATIONS OF HPC AND PUT, BUT NOT MPFC AND DAC, 

DIFFERENTIATE CONDITIONAL TRIAL PERFORMANCE 

Success on conditional trials required participants to remember which of 

two fixed stimuli had been presented on the preceding trial. I anatomically defined 

regions of interest bilaterally (HPC, ACC, anterior dorsal caudate, and putamen; 

see STAR Methods) and contrasted level of activation on fixed trials immediately 

preceding correct and incorrect conditional trials. I predicted HPC, ACC, and 

anterior dorsal caudate would exhibit greater prospective activations preceding 

correct, compared to incorrect, conditional trials given their contributions to 

relational memory, memory integration, and flexible goal-directed behavior 

respectively. In contrast, I expected the putamen to play less of a prospective role. 

The HPC and putamen, but not ACC and anterior dorsal caudate, 

prospectively differentiated successful conditional memory-guided behavior. 

Increased HPC activation was observed during fixed trials immediately preceding 

correct, compared to incorrect, conditional trials (Figure 2A; t(19) = 3.275, p = .004, 

d = .63). No significant difference in ACC (Figure 2B, t(19) = 0.815, p = .42) or 

anterior dorsal caudate (Figure 2C; t(19) = -1.509, p = .15) activation was observed 

for fixed trials before correct and incorrect conditional trials. Contrary to my 

hypothesis, greater putamen activation was observed during fixed trials before 

correct, relative to incorrect, conditional trials (Figure 2D; t(19) = 3.247, p = .004, 

d = .57). 
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To ensure these findings were not simply a performance artifact from the 

preceding fixed trial, the same analysis was conducted limiting scope to correct 

fixed trials preceding correct and incorrect conditionals. Again, both HPC (Figure 

S1A; t(19) = 4.319, p = .0004, d = .88) and putamen (Figure S1D; t(19) = 2.565,   

p = .02, d = .59) exhibited significantly greater activation during fixed trials 

preceding correct, compared to incorrect, conditional trials. No significant 

differences in the ACC (Figure S1B; t(19) = 2.059, p = .05) or dorsal anterior 

caudate (Figure S1C; t(19) = 0.339, p = .74) activations were observed. 

Figure 2. Prospective activations of the HPC and PUT, but not mPFC and DAC, 
differentiate conditional trial performance. Anatomical regions of interest 
included the: (A) hippocampus, (B) medial prefrontal cortex, (C) dorsal anterior 
caudate, and (D) putamen. Boxplots with overlaid swarm plots represent the 
activations for fixed trials preceding correct (corr cond) and incorrect (incorr cond) 
conditional trials. Significantly greater activation was observed in the (A) 
hippocampus and (D) putamen during fixed trials that preceded correct compared 
to incorrect conditional trials. See also Figure S1. 
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To provide further mechanistic insight into the nature of prospective 

signaling in the HPC and putamen, I compared activations for correct-only fixed-

left, fixed-right, and conditional trials. If HPC and putamen contribute to either an 

encoding or prospective signal, I would expect to observe greater activations in 

these regions for fixed trials compared to conditional trials. In contrast, if 

conditional trial performance is dependent on retrieval-related mechanisms, the 

opposite pattern (greater activation for conditional compared to fixed trials) should 

emerge. Activations between fixed and conditional trials were significantly different 

in HPC (Figure S2; F(2,38) = 10.575, p = .001, η2 = .358). Simple effects analysis 

revealed significantly greater activation for both fixed-left (-1.103 ± .45) and fixed-

right (-1.266 ± .46) compared to conditional (-1.882 ± .47) trials (p’s < .007), while 

no significant difference was found between fixed-left and fixed-right (t(19) = 0.935, 

p = .36). No significant differences were observed for trial type (Figure S2; F(2,38) 

= 0.211, p = .81) in the putamen. 

The results of the a priori anatomical ROI analysis support the conclusion 

that prospective HPC and putamen, but not ACC and dorsal anterior caudate, 

activations are related to successful conditional memory.  

2.3.3 PROSPECTIVE CORTICAL AND SUBCORTICAL ACTIVATIONS FOR SUCCESSFUL 

MEMORY-GUIDED DECISION MAKING 

Motivated by the complexities of the conditional memory-guided task and 

null findings for the ACC –proxy for mPFC – an exploratory whole-brain analysis 

was performed to evaluate potential contributions of additional cortical and 

subcortical regions to successful conditional memory-guided behavior. I found 
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memory-guided behavior prospectively employs a broad network of cortical and 

subcortical regions to guide our choices. I searched for voxel-wise differences in 

activation during fixed trials preceding correct and incorrect conditional trials.            

I performed a one-sample t-test using FSL Randomise with threshold-free cluster 

enhancement (tfce) correction with a threshold of p < 0.05. Consistent with a priori 

anatomical ROI analysis, clusters along the entire longitudinal axis of HPC and 

putamen survived correction for multiple comparisons when contrasting greater 

activation for fixed trials preceding correct conditional trials against fixed trials 

preceding incorrect conditional trials (Table S1).  

Figure 3.  Prospective cortical activations for successful memory-guided 
conditional behavior. Cortical regions exhibiting greater activation for fixed trials 
before correct conditional (cond) trials > fixed trials before incorrect conditional (cond) 
trials following whole-brain exploratory analysis (FWE tfce corrected p < 0.05). 
Regions of activation included medial prefrontal cortex (mPFC), posterior cingulate 
cortex, superior temporal, motor cortex, ventromedial occipital, and the paracentral 
lobule. 
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Additional clusters were observed (Figure 3) for the same contrast in mPFC 

(paracingulate cortex extending into medial BA10 and subgenual ACC), posterior 

cingulate cortex (PCC) including the retrosplenial cortex, motor cortex, paracentral 

lobule, superior temporal cortex, ventral visual cortex, and the cerebellum (Figure 

S3). No regions survived correction for multiple comparisons when contrasting 

greater activation for fixed trials preceding incorrect conditional trials relative to 

fixed trials preceding correct conditional trials. These exploratory results suggest 

a widespread cortical and subcortical network prospectively bias conditional 

memory-guided decisions, including regions in mPFC notably anterior to 

anatomically defined ROI in the ACC.  

2.3.4 PROSPECTIVE PUT ACTIVATION DURING FIXED TRIALS IS RELATED TO 

BEHAVIORAL PERFORMANCE ON SUBSEQUENT TRIALS WHEN IMAGE IS REPEATED 

In addition to influencing decisions on conditional trials, prospective 

activations should also bias behavioral performance on subsequent fixed trials, 

especially when trials repeat. To evaluate the relationship between prospective 

fMRI activation and subsequent performance for fixed trials, temporally adjacent 

fixed trial pairs were selected and sorted according to whether stimuli changed 

(e.g., fixed-left → fixed-right) or remained the same (e.g., fixed-left → fixed-left). 

Using the same four a priori anatomical ROIs, Pearson’s correlation coefficients 

were calculated between regional activation during the first trial and performance 

on the second. Betas were modeled separately for fixed trials followed by the same 

or different stimuli.  
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Figure 4. Prospective PUT activation during fixed trials is related to behavioral 
performance on subsequent trials when stimulus is repeated. Correlations 
between preceding fixed trial activation and subsequent fixed trial performance for 
same (e.g., fixed left → fixed left) and change (e.g., fixed left → fixed right) trial pairs. 
A trend was observed between activation in the hippocampus and fixed same pairs 
(A, right), while no significant relationship was observed in the same region for fixed-
change pairs (A, left). No significant correlation between prior fixed activation and 
subsequent fixed performance was found for the (B) anterior cingulate cortex, or (C) 
dorsal caudate in either change or same pairs. A statistically significant positive 
correlation was found for the putamen on fixed same pairs (D, right), but not for fixed 
change pairs (D, left). See also Figure S4.  
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Performance was defined as mean proportion of correct responses for trials 

that either remained the same (fixed-same) or changed (fixed-change). I expected 

fixed trial activations should be related to performance on upcoming fixed trials. To 

ensure these predictions were not a result of temporal adjacency, I compared 

activation for conditional trials to subsequent fixed trial performance.  

PUT activation for preceding fixed trials was associated with behavioral 

performance of the following fixed trials when stimuli remained the same (Figure 

4D, right; r = .535, p = .015, but not when changed (Figure 4D, left; r = .246,                

p = .30). No significant correlation was observed between HPC activation and 

performance for fixed-change trials (Figure 4A, left; r = .178, p = .45). However, a 

trend was observed for fixed-same trials (Figure 4A, right; r = .417, p = .07). No 

significant relationship between ACC activation and performance for fixed-change 

(Figure 4B, left; r = -.205, p = .39) nor fixed-same (Figure 4B, right; r = .343,               

p = .14) trials was found. No association between DAC activation and performance 

was observed for fixed-change (Figure 4C, left; r = -.161, p = .50) and fixed-same 

(Figure 4C, right; r = .063, p = .79) trials. Correlations were calculated between 

activations during conditional trials and following fixed trial performance. No 

significant relationship between conditional activation and subsequent behavioral 

performance was found (Figure S4A-D; all r < .22, all p > .05). 

Consistent with my hypotheses, prospective fixed trial activations were 

associated with subsequent fixed trial behavioral performance in the putamen, 

while a trend was observed for HPC. In addition, no similar relationship was 
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identified when comparing conditional activations to upcoming fixed trial 

performance. 

2.3.5 PROSPECTIVE HPC-MPFC FUNCTIONAL CORRELATIONS ARE ENHANCED 

DURING LEARNING 

Functional coupling between a priori ROIs and known anatomically 

connected regions was examined. The HPC directly projects to ACC (Barbas & 

Blatt, 1995; Cavada, 2000); likewise, DAC and PUT receive projections from 

dorsolateral prefrontal cortex (dlPFC) and pre- and primary motor cortices, 

respectively (Flaherty & Graybiel, 1994; Haber, 2016; Haber et al., 2006; Künzle, 

1975; McFarland & Haber, 2000; Selemon’ & Goldman-Rakic, 1985). 

To investigate how functional interactions between these regions support 

conditional memory-guided behavior, a task-based beta-series correlation 

analyses (Rissman et al., 2004) was performed. A recent study in rodents using 

an analogous task found increased coherence between the HPC and mPFC during 

learning relative to steady-state behavior (Tang et al., 2017). Thus, I examined 

functional coupling between three regional pairs during fixed trials preceding 

conditional trials for periods of learning and non-learning. To operationalize periods 

of learning and non-learning, the derivative of the learning curve was calculated 

across conditional trials. Trials with positive derivative values, representing an 

increase in performance relative to preceding trials, were considered periods of 

learning. Conversely, periods of non-learning were defined as trials in which the 

derivative was either zero or a negative value, constituting periods of stable or 

decreased performance. Separate beta-series were created using fixed trials 
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preceding learning and non-learning conditional trials, from which correlations 

between mean activations of anatomically defined ROIs were calculated.  

Functional coupling between the HPC and ACC was enhanced during 

periods of learning (positive derivative: 0.651 ± 0.041) relative to periods of non-

learning (negative/zero derivative: 0.581 ± 0.044), t(19) = 2.56, p = .019, d = .52. 

Conversely, no differences in functional coupling were observed between periods 

of learning (0.588 ± 0.041) and non-learning (0.570 ± 0.045) for either DAC and 

dlPFC, t(19) = 0.453, p = .66, nor PUT and pre/primary motor cortex, t(19) = 1.586, 

p = 0.13 (Figure 5).  

Figure 5. Prospective HPC-ACC functional correlations are enhanced during 
learning. Boxplots with overlaid swarm-plots represent distributions of correlations for 
periods of learning and non-learning between anatomically connected regions of 
interest. Paired-sample t-tests revealed only the hippocampus and anterior cingulate 
cortex (ACC) exhibited enhanced correlations as a function of learning. Dorsal lateral 
prefrontal cortex = dlPFC. 
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2.3.6 INTERVENING BASELINE TRIAL REPRESENTATIONAL DISSIMILARITY IN THE HPC 

AND MPFC DID NOT CORRELATE WITH BEHAVIORAL PERFORMANCE ON SUBSEQUENT 

CONDITIONAL TRIALS 

 To further elucidate mechanistic contributions of the HPC and mPFC to 

prospective memory-guided behavior, I used a multivariate approach to evaluate 

possible content of HPC and mPFC representations during baseline trials which 

fell between fixed and conditional trials. The HPC was anatomically delineated, 

while mPFC voxels were defined using a hybrid functional/anatomical mask. If 

activations in these regions reflected maintenance of relevant associations until 

conditional cue was presented, conditional performance should be enhanced 

when pattern dissimilarity between intervening baseline and preceding fixed trials 

was low. In other words, if the pattern of HPC or mPFC activation across voxels 

during intervening baseline trials was similar to the pattern during typical fixed 

preceding correct conditional trials, similarities may reflect the maintenance of 

information; thus, the degree to which such patterns shift would be predictive of 

impaired performance. I found no relationship between magnitude of pattern 

similarity for intervening baseline activations with fixed trials preceding correct 

conditional activations, and behavioral performance (Figure S5; HPC: r = 0.092,   

p = 0.70; mPFC: r = 0.188, p = 0.43).  
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2.3.7 SEPARATE NETWORK SUPPORTS SUCCESSFUL EXECUTION OF CONDITIONAL 

DECISION MAKING 

I found execution of conditional associations is supported by a wide network 

of cortical and subcortical regions distinct from observed prospective activations. I 

performed a second exploratory whole-brain analysis to determine which regions 

contribute to successful memory-guided behavior during, rather than preceding, 

correct conditional associative trials. I compared differences in activation during 

correct conditional, compared to correct fixed, trials (Table S1). I observed greater 

activation for correct conditional trials in the bilateral caudate, dlPFC, superior 

parietal lobule (SPL), anterior insular cortex, and cerebellum (Figure 6).  

Figure 6. Separate network supports successful execution of current conditional 
decision. Cortical and subcortical regions exhibiting greater activation for correct 
conditional trials compared to correct fixed trials following a whole-brain exploratory 
analysis (FWE tfce corrected p < 0.05). Regions of activation included the bilateral 
caudate, dorsolateral prefrontal cortex, presupplementary motor area, anterior insula, 
superior parietal cortex, precuneus, and cerebellum. 
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These results reveal a separate network of brain regions important for 

concurrent conditional trial performance (e.g., action-selection) which contribute to 

the execution of conditional memory-guided behavior, above and beyond those 

implicated in preceding fixed trials. 

2.4 DISCUSSION 

I investigated prospective memory-guided behavior using a conditional 

associative learning task. Success on conditional trials was dependent on the 

stimulus identity from the preceding fixed trial. Using a combination of univariate, 

multivariate, and connectivity analyses, I identified prospective activations in a 

network related to successful future decision-making. In addition, a second 

separate network associated with successful execution of conditional memory-

guided behavior was discovered. These findings demonstrate memory-guided 

behavior is supported by two distinct neurobiological circuits: one dependent on 

the hippocampus, putamen, mPFC, and other cortical regions which prospectively 

bias subsequent conditional decisions; while the second relies on the striatum, 

dlPFC, and other cortical regions to use past knowledge for choice execution. 

Prospective neural activity constitutes an important mechanism of memory-

guided behavior. As expected, HPC activations during fixed preceding conditional 

trials differentiated conditional performance. Notably, in the current task, HPC is 

recruited for behavior with very short delays (3000 ms). Such findings may arise 

from the highly associative nature of the task, as similar hippocampal outcomes 

have been identified for relational tasks with short delays (Hannula & Ranganath, 

2008), and reflect more temporally compressed contributions when prospective 
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mechanisms are engaged during deliberation (Redish, 2016). An exploratory 

whole brain analysis identified a broad network of cortical and subcortical regions 

with prospective activity, including subregions of the mPFC (paracingulate cortex 

extending into BA10 and subgenual ACC), posterior cingulate cortex extending 

into retrosplenial cortex, superior temporal cortex, paracentral lobule, and 

cerebellum. Surprisingly, the putamen exhibited a similar pattern in activation. The 

influence of activations in HPC and putamen were not limited to conditional 

decisions. I also identified a relationship between fixed trial activation and 

subsequent fixed trial performance in the putamen when stimuli were repeated. In 

the same analysis, a trend was also observed for HPC. To gain further insight into 

mechanistic contributions of HPC and mPFC, I followed my univariate analyses 

with a multivariate approach. I utilized pattern similarity analysis to determine 

whether content of fixed trials was maintained during interceding baseline trials. 

No evidence was found to support a relationship between behavioral performance 

on conditional trials following intervening baselines and representational similarity 

in either HPC or mPFC. The relationships between time, learning, and continuous 

measurement of performance constitute important limitations. While the motivating 

goal of this experiment was to elucidate neurobiological mechanisms of successful 

conditional memory guided behavior, these mechanisms may evolve with 

experience (see Chapter 3).  

These results extend previous findings in both human and animal literature. 

Recent studies have identified relationships between prospective fMRI activations 

and choice. For example, in a study which used a multistep reward learning task 
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combined with regionally decodable stimuli, prospective activation of second-stage 

categories was positively correlated with the degree to which participants used a 

model-based, relative to a model-free, strategy (Doll et al., 2015). In a sequential 

learning task where regularity of adjacent items was manipulated, hippocampal 

activation correlated with forward entropy, an estimate of uncertainty of upcoming 

stimulus conditional on the current one (Bornstein & Daw, 2012). Lastly, 

hippocampal activations during encoding have been shown to correlate with 

probability an item was remembered during a later decision phase (Gluth et al., 

2015). In the same studies, activations in putamen were associated with model-

free prediction errors (Bornstein & Daw, 2012; Doll et al., 2015) and conditional 

probability, or degree of response preparation during a sequential learning task 

(Bornstein et al., 2017). Prospective neural activity constitutes a form of 

reactivation, which has long been thought to be an important retrieval-related 

mechanism (J. D. Johnson et al., 2009). In a recent action-based learning study, 

reactivations of the medial temporal lobe for stimulus triads linked by predictive 

actions were negatively correlated with stimulus-selective visual cortex activations 

(Hindy & Turk-Browne, 2016), suggesting expectations of predictive actions lessen 

the necessity of sensory processing. The HPC has also been shown to represent 

prospective rewards during a monetary incentive encoding task (Zeithamova et al., 

2018), and prospective planning signals in the HPC were related to one-shot 

paired associate learning in a spatial task (van Kesteren et al., 2018). Spatial 

navigation studies in rodents have also provided evidence for the role of 

prospective neural activity for decision-making in the HPC. Awake sharp wave 
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ripple (SWR) events in HPC reinstate sequential patterns of ‘place-cell’ activity of 

both recent (Diba & Buzsáki, 2007; Foster & Wilson, 2006) and remote 

experiences (Gupta et al., 2010; Karlsson & Frank, 2009). Further, SWRs are 

predictive of upcoming choices (Pfeiffer & Foster, 2013), indicative of whether 

those choices will be subsequently correct or incorrect (Singer et al., 2013). 

Disruptions of these SWRs were sufficient to impair performance in a continuous 

alternation task (Jadhav et al., 2012). Here, I observed greater activation in HPC 

and putamen on trials which preceded correct versus incorrect conditional 

memory-guided trials, like both results observed in rodents during an analogous 

spatial alternation task (Frank et al., 2000; Singer et al., 2013) and statistical 

learning studies in humans (Bornstein & Daw, 2012). Altogether and framed within 

the larger literature, these results suggest HPC and other regions play an important 

role in how memory representations prospectively guide decision making. 

The observed activations in this study may reflect a retrieval process 

important for deliberation at time of choice (Carr et al., 2011). Evidence suggests 

prospective activations reflect imagined future options important for upcoming 

decisions (Addis et al., 2007; Yu & Frank, 2015); however, research in prospective 

memory provides a compelling alternative. The investigation of prospective 

memory has been carried out within a multi-process framework, which posits 

prospective remembering is supported by either resource-demanding strategic 

monitoring or a spontaneous retrieval mechanism (Braver, 2012; McDaniel & 

Einstein, 2000). Which mechanism prevails is thought to be dependent on 

contextual features, such as task structure (Einstein & McDaniel, 2005; Scullin et 
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al., 2010). Many studies provide evidence for a neurobiological mechanism 

centered on the rPFC which supports strategic monitoring (Benoit et al., 2012; 

Burgess et al., 2003, 2011; Gilbert, 2011; Gilbert et al., 2005b; Momennejad & 

Haynes, 2013; Okuda et al., 2007; Simons et al., 2006). 

For spontaneous retrieval, the hippocampal system would be expected to 

play an important role (Einstein & McDaniel, 2005). However, studies of transient 

responses to prospective memory-target stimuli have not demonstrated 

hippocampal activations (Beck et al., 2014; Reynolds et al., 2009). Rather, bilateral 

hippocampal activation was observed during encoding of prospective memory 

intentions (Gilbert, 2011). In the current study, activation in the HPC and other 

structures during fixed trials proceeding conditionals may reflect encoding of 

prospective memories. Such an interpretation would be consistent with 

computational models positing prospective memory results from interactions 

between prefrontal cortex and HPC, the latter responsible for encoding 

associations between action plans and future contexts (Cohen & O’Reilly, 1996).  

Functional interactions between HPC and ACC constitute an important 

mechanism supporting memory-guided conditional behavior modulated by 

learning. I observed prospective functional coupling between HPC and ACC was 

enhanced during learning compared to non-learning. Similar differences were not 

found between either dorsal anterior caudate and dlPFC, or putamen and 

pre/primary motor cortex. Previous human neuroimaging studies have shown 

coupling between HPC and mPFC play a central role in memory-guided decision 

making (Gluth et al., 2015; Zeithamova, Dominick, et al., 2012), memory updating 
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and integration (Preston & Eichenbaum, 2013; Schlichting & Preston, 2016; M. T. 

van Kesteren et al., 2010), statistical learning of temporal community structure 

(Schapiro et al., 2016), and retrieval (King et al., 2015; Schedlbauer et al., 2014). 

Much work in humans has rested on the theory mPFC guides HPC encoding and 

retrieval (Preston & Eichenbaum, 2013). The results from this study extend these 

observations to show such interactions are modifiable through learning. Functional 

coupling between HPC and mPFC in awake behaving rodents has shown to be an 

important mechanism in memory-guided behavior (Benchenane et al., 2010; 

Brincat & Miller, 2015; Guise & Shapiro, 2017; Jadhav et al., 2016; Jones & Wilson, 

2005a, 2005b; Remondes & Wilson, 2013; Tang et al., 2017; Yu & Frank, 2015). 

For example, coupling of spike-timing and theta coherence increases at choice 

points in mazes, with degree of coherence modulated by behavioral performance 

(Benchenane et al., 2010; Jones & Wilson, 2005a). I observed enhanced HPC-

ACC coupling during learning relative to non-learning periods, similar to a recent 

rodent study (Tang et al., 2017). In this study, functional interactions between HPC 

and ACC may reflect a mechanism by which ACC modifies HPC activations to 

facilitate goal directed behavior. Such a possibility is in line with studies in rodents 

using a goal-directed paradigm (Guise & Shapiro, 2017). 

Activations in dorsal anterior caudate and related cortical structures (e.g., 

dlPFC, superior parietal lobule, anterior insula, and precuneus) were associated 

with successful execution of conditional memory-guided behavior when compared 

to correct fixed association trials. The dorsal anterior striatum represents currently 

relevant associations of goal-directed behavior. The striatum has long been 
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believed to support instrumental behavior (Graybiel, 1995). Instrumental behavior 

is dissociable into goal-directed and stimulus-bound or habitual control (Dickinson 

& Balleine, 1994), with each having been mapped to different neurobiological 

circuits. Specifically, evidence from animal studies suggest goal-directed behavior 

is mediated by dorsomedial striatal circuits (Yin et al., 2005), while stimulus-bound 

behavior is supported by dorsolateral circuits (Yin & Knowlton, 2004). A similar 

functional subdivision is observed in primates along the anterior/posterior axis 

(Miyachi et al., 1997, 2002). Neurons in DAC modulate firing as goal-directed 

associations are learned (Blazquez et al., 2002; Brasted & Wise, 2004; Hadj-

Bouziane et al., 2006; Miyachi et al., 2002; Tremblay et al., 1998), with preceding 

responses observed in the dorsolateral prefrontal cortex (Pasupathy & Miller, 

2005). Similar activations have been observed in humans during instrumental 

tasks (O’Doherty et al., 2004; Tricomi et al., 2004). In prospective memory studies, 

associations between prospective memory cues and specific actions share many 

features with instrumental designs. Prior prospective memory studies have 

reported transient activations in response to prospective memory target cues 

across both cortical and subcortical regions, findings which largely overlap with 

regions identified in my current study (Beck et al., 2014; McDaniel et al., 2013; 

Reynolds et al., 2009; Simons et al., 2006). Thus, activation in the DAC and 

affiliated cortical structures for correct conditional greater than correct fixed 

associations reflect instrumental goal-directed associations at action selection. 

 

 



43 
 

2.5 CONCLUSIONS 

Taken together, these findings provide evidence for complementary 

memory processes underlying successful conditional memory-guided behavior. I 

posit the first of these mechanisms to represent a prospective encoding system 

which serves to procure and maintain multiple types of representations across 

experience for future conditional decisions dependent on the HPC and related 

cortical structures. In addition, I propose a second conditional memory-guided 

system, reliant on the striatum and affiliated cortex, which facilitates concurrent 

use of past knowledge during choice deliberation. My findings illustrate successful 

conditional memory-guided decisions arise from the involvement of multiple 

learning and memory systems. 

2.6 DATA AND CODE AVAILABILITY 

The raw magnetic resonance imaging (MRI) datasets generated during this 

study are available at OpenNEURO.org (accession number: 

10.18112/openneuro.ds002078.v1.0.0). The code supporting the current study 

has been deposited in a public repository on GitHub (https://github.com/madlab-

fiu/wmaze). 
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CHAPTER 3: DISTINCT CONTRIBUTIONS OF THE HPC AND DAC TO 

MEMORY-GUIDED DECISION MAKING EVOLVE ACROSS LEARNING 

3.1 INTRODUCTION 

In the field of learning and memory research, most studies have focused on 

neural correlates of memory, with far less attention paid to how such memories 

evolve over experience. While research has examined specific regions and related 

networks supporting memory-guided decision making (Hamm & Mattfeld, 2019; 

Shin et al., 2019; Shin & Jadhav, 2016), how these neurobiological contributions 

develop across experience-based learning remains a fascinating, and important, 

question. 

Two interconnected structures known to facilitate memory-guided behavior 

are the caudate nucleus (Balleine et al., 2007; Schultz et al., 2003; Tremblay et 

al., 1998; van der Meer et al., 2012) and hippocampus (Eichenbaum & Cohen, 

1988; Squire et al., 2004). The caudate nucleus contributes to learning through 

modulation of activation to contingencies between behaviors and outcomes 

(Brovelli et al., 2011; Tricomi et al., 2004), planning of self-initiated novel action 

(François-Brosseau et al., 2009; Provost et al., 2010) and complex action 

sequences (Hamm & Mattfeld, 2019; Mattfeld & Stark, 2011; Owen et al., 1996), 

instrumental learning resulting from direct experience (Cooper et al., 2012) 

acquisition of visuomotor skills (Cavaco et al., 2011), adaptation toward successful 

behavioral action in reward-based tasks (Haruno & Kawato, 2006; Koch et al., 

2008), flexibility in response behavior (Ragozzino, 2003), and prediction error 

(O’Doherty et al., 2004; O’Doherty et al., 2017). Animal and human research has 
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demonstrated the HPC plays a necessary role in spatial memory and navigation 

(Ego-Stengel & Wilson, 2010; Howard & Eichenbaum, 2015; Jadhav et al., 2012; 

Jones & Wilson, 2005b; Skinner et al., 2014), sequence memory (Allen et al., 2014, 

2015; Jayachandran et al., 2019; Reeders et al., 2021), and conditional associative 

memory (Benchenane et al., 2010; Hamm & Mattfeld, 2019; Shin & Jadhav, 2016). 

However, many memory paradigms used in these studies utilize either single-

event encoding or evaluate neurophysiology during steady-state performance 

following extensive periods of training. Few studies have focused on how HPC 

involvement changes across periods of learning on the scale of minutes. 

 The HPC and DAC has been implicated in memory-guided decision making 

via distinct networks which facilitate prospective encoding and choice 

deliberation/execution, respectively, using BOLD fMRI (Hamm & Mattfeld, 2019). 

The current study expands on the previous findings by investigating how distinct 

contributions of these regions change across learning.  

Pattern similarity, and inversely, dissimilarity, analysis of fMRI data has 

been successfully used as a neurobiological metric of learning and shown to be 

predictive of successful retrieval processes (Hsieh et al., 2014; Qu et al., 2017; 

Xue et al., 2010). Therefore, I conducted a pattern dissimilarity analysis using first 

level, unsmoothed functional data, followed by fixed effect analyses to quantify 

dissimilarity of activation patterns during periods of early and late learning. A 

correlation analysis was performed to determine the relationship between pattern 

dissimilarity for periods preceding correct vs incorrect conditional trials and 

learning performance. I discovered increased pattern dissimilarity for late, 



46 
 

compared to early, learning for both HPC and DAC. Additionally, I found a 

significant positive correlation between pattern dissimilarity and learning 

performance for DAC during both early and late learning. However, for HPC, a 

significant positive relationship was only observed during late learning, and merely 

trended toward significance during early learning. 

3.2 METHODS 

Twenty right-handed volunteers (13 female, mean age = 20.82, SD = 1.78) 

at Florida International University were recruited to perform a conditional visuo-

motor association learning task in a magnetic resonance imaging scanner. All 

participants provided written informed consent in accordance with local 

Institutional Review Board requirements. Individuals were recruited from the 

Florida International University community and financially compensated for their 

time. Six individuals were excluded from the reported analyses. Three were 

removed for excessive motion (greater than 20% of time points were flagged as 

outliers following outlier detection procedures using 1 mm normalized frame-wise 

displacement and three standard deviations above the mean signal intensity as 

thresholds). Three subjects were removed for poor task performance (lower bound 

of the 95% confidence interval never exceeded chance performance). Lastly, one 

participant was removed because of experimenter error – the first image set was 

erroneously presented for all six runs. The final sample size was 20 participants 

(13 females; mean age = 20.82 years, SD = 1.78). 
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3.2.1 BEHAVIORAL PROCEDURES 

3.2.1.1 CONDITIONAL ASSOCIATIVE TASK #1 (vCAT1) 

The task was modified from the visuomotor conditional associative learning 

task (Hamm & Mattfeld, 2019; Law et al., 2005; Mattfeld & Stark, 2011; Stark et 

al., 2018). Participants associated visual stimuli with one of two possible 

responses. Stimuli consisted of three computer-generated kaleidoscopic images, 

presented one at a time, and centered between two white boxes. Participants were 

asked to determine, through trial and error, the relationship between each 

kaleidoscopic image and one of two flanking boxes. Responses were registered 

by pressing with either an index (Button 1 - indicating left box) or middle finger 

(Button 2 - indicating right box) using an MR-compatible response box. Correct 

associations for two images were “fixed” and remained consistent across all 

presentations. Conversely, associated response for the third image was 

“conditional”, or dependent on the identity of the preceding fixed trial stimulus 

(Figure 7A). In other words, fixed trial images would always be associated with 

either the left or right box, while correct response to conditional trial images would 

change depending on which fixed association preceded. Learning trial (2500 ms 

total duration) consisted of three sequential phases: fixation, stimulus presentation 

and response, and feedback (Figure 7B). Each image was presented 80 times 

across two experimental runs (40 per run).  
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Figure 7. Schematic diagram of vCAT1 trial and experiment design. (A) Example 
of fixed and conditional trials, as well as fixed-conditional sequence. (B) Task and 
baseline trials were identical in timing (2.5 s) and structure. (C) Total number of trials 
across experiment categorized by sets, runs, and trial types. 
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 Each participant learned associations for three sets of images for a total of 

720 learning trials per participant (Figure 7C). Perceptual baseline trials (BL; 40 

per run) were presented alongside learning trials. During these trials, participants 

were asked to select the “whiter” of two boxes. Inclusion of these BL trials served 

three purposes: temporal jitter between trial types, distribution of cognitive 

demand, and reference for fMRI signal. BL trials were identical to learning trials in 

sequence and timing. 

3.2.2 PRE-SCAN TRAINING 

All participants received prescan training of 75 total trials (60 learning stimuli 

and 15 BL trials) using a practice set of 3 images specific to the training session. 

Prescan training allowed participants an opportunity to become acquainted with 

the nature and timing of the task and mitigated loss of trials due to nonresponse at 

the beginning of the first experimental run. Prescan training was conducted on a 

MacBook Pro using identical finger-response mapping used during scanning 

session. 

3.2.3 MRI METHODS 

Magnetic resonance imaging data was collected on a General Electric 

Discovery MR750 3T scanner (Waukesha, WI, USA) with 32-channel head coil at 

the University of Miami Neuroimaging Facility (Miami, FL). Functional data was 

obtain using a T2*-sensitive gradient echo pulse sequence (42 interleaved axial 

slices, acquisition matrix = 96 X 96 mm, TR = 2000 ms, TE = 25 mm, flip             

angle = 75˚, in-plane acquisition resolution = 2.5 X 2.5 mm, FOV = 240 mm, slice 

thickness = 3 mm). Two hundred (200) whole-brain images were collected per 
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experimental run. For purposes of coregistration and registration, high-resolution 

three-dimensional magnetization-prepared rapid gradient echo sequence (MP-

RAGE) was collected (186 axial slices, voxel resolution = 1 mm isotropic, 

acquisition matrix = 256 x 256 mm, TR = 9.184 ms, TE = 3.68 ms, flip angle = 12˚, 

FOV = 256 mm). Two anatomical regions of interest (ROIs) were bilaterally 

defined. The hippocampus was defined through binarization of Freesurfer 

segmentation files (aparc+aseg.mgz). The dorsal anterior caudate (DAC) was 

manually segmented in accordance with anatomical landmarks outlined in Atlas of 

the Human Brain (Mai et al., 2004): appearance and secession of anterior 

commissure defined rostral boundaries, while lateral ventricle served as medial 

edge and internal capsule formed the lateral surface.  

Data were preprocessed and analyzed using the following software 

packages: Analysis of Functional Neuroimages (AFNI version 16.3.18; (Cox, 

1996), FMRIB Software Library (FSL version 5.0.8; Jenkinson, Beckmann, 

Behrens, Woolrich, & Smith, 2012; Smith et al., 2004) Advanced Normalization 

Tools (ANTs version 2.1.0; (Avants et al., 2008), and Neuroimaging in Python 

(Nipype version 1.0.0.dev0; (Gorgolewski, 2016) pipeline. T1-weighted structural 

scans underwent cortical surface reconstruction and cortical/subcortical 

segmentation. Surface reconstruction was visually inspected and errors were 

manually edited and resubmitted. Functional data were first ‘despiked’ removing 

and replacing intensity outliers in the functional time series. Simultaneous slice 

timing and motion correction (Roche, 2011) were performed, aligning all functional 

volumes to the middle volume of the first run. An affine transformation was 
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calculated to co-register functional data to their structural scan. Motion and 

intensity outlier timepoints (>1 mm frame-wise-displacement; >3 SD mean 

intensity) were identified. Functional data were spatially filtered with a 5 mm kernel 

using the SUSAN algorithm (FSL; (S. M. Smith & Brady, 1997), which preserves 

the underlying structure by only averaging local voxels with similar intensities. The 

last three volumes of each run were removed to eliminate scanner artifact 

observed during preprocessing.  

Anatomical images were skull-stripped and then registered to the MNI-152 

template (Fonov et al., 2009, 2011) via a rigid body transformation (FSL FLIRT; 

DOF = 6). This step was used to minimize large differences in position across 

participants and generate a template close to a commonly used reference. ANTs 

(Avants et al., 2008) software was used to create a study-specific template to 

minimize normalization error for any given participant. Each participant’s skull-

stripped brain was normalized using the non-linear symmetric diffeomorphic 

mapping implemented by ANTS. The resulting warps were applied to contrast 

parameter estimates following fixed-effects modeling for subsequent group-level 

tests.  

3.2.4 ANATOMICAL REGIONS OF INTEREST 

        Six anatomical regions of interest (ROIs) were bilaterally defined using each 

participant’s structural scan. The hippocampus, putamen, and pre/primary motor 

cortex (precentral, paracentral, caudal middle frontal, and opercularis labels) were 

defined by binarizing segmentations from FreeSurfer aparc+aseg.mgz files. The 

mPFC was also defined using FreeSurfer segmentation (rostral and caudal 
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anterior cingulate labels). Definition of the mPFC was limited to the anterior-most 

portion of the anterior cingulate cortex (ACC); admittedly, while ventral mPFC also 

receives input from the hippocampal formation, this region was not included due 

to substantial MRI signal drop-out. The dorsolateral prefrontal cortex (dlPFC) was 

defined using the Lausanne Atlas. The dorsal anterior caudate was manually 

segmented in accordance with anatomical landmarks outlined in the Atlas of the 

Human Brain (Mai et al., 1997): the appearance and secession of the anterior 

commissure defined the rostral boundary, while the lateral ventricle served as the 

medial edge and the internal capsule formed the lateral surface. All masks were 

back projected to functional space for analysis. 

3.2.5 TASK-BASED FMRI DATA ANALYSIS 

Functional neuroimaging data were analyzed using FSL in accordance with 

the general linear model. One univariate model at 1st level was used to evaluate 

learning across early and late memory-guided conditional behavior. Regressors of 

interest included (1) fixed trials which proceeded correct conditional trials and (2) 

fixed trials which proceeded incorrect conditional trials. A second univariate model 

at 2nd level was used to determine how contributions of the HPC and DAC change 

across levels of performance. Regressor of interest included: conditional trials 

assigned to (1) Bin 1 or lowest 1/3 of performance, (2) Bin 2 or intermediate 1/3, 

and (3) Bin 3 or highest 1/3. For both models, regressors of no interest included 

motion parameters (x, y, z; pitch, roll, yaw), 1st and 2nd derivatives of motion 

parameters, normalized motion, 1st, 2nd, and 3rd order Lagrange polynomials, 

and outlier time-points exceeding artifact detection threshold. For the pattern 
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dissimilarity analysis, first-level analyses were performed on unsmoothed data for 

six experimental runs. Correlation values were calculated between voxel-wise 

patterns of analysis in anatomically defined ROIs (i.e., HPC and DAC) for fixed 

trials preceding correct versus incorrect conditional trials using Pearson’s 

correlation coefficient (r). Pattern dissimilarity was subsequently defined using 

obtained correlation as 1-r. Learning was quantified using a logistic regression 

algorithm designed to assess learning as a dynamic process across trials, creating 

representative curves which provide participants’ probability of a correct response 

for any given trial (Smith & Brown, 2003; Smith et al., 2004). For the binned 

learning analysis, first-level analyses were performed on smoothed data for six 

experimental runs. Following first-level analyses, fixed effects analyses across 

runs were performed for each participant for each respective contrasts of interest. 

3.3 RESULTS 

To examine how HPC and DAC contribute to memory-guided behavior 

across learning, I collected blood oxygen level dependent (BOLD) functional 

magnetic resonance imaging (fMRI) while participants engaged in a memory-

guided conditional associative learning task. Binned learning curve and pattern 

dissimilarity analyses tested: (1) regional pattern dissimilarity for periods preceding 

correct compared to incorrect conditional trials, to determine whether contributions 

to prospective learning change from early to late learning, and (2) mean regional 

activations observed during conditional trial behavior across learning bins, to 

examine how regional activations develop with improved performance. 
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3.3.1 BEHAVIORAL PERFORMANCE 

Participant performance exceeded chance for fixed-right                              

(FixR: median = 0.943, IQR: 0.926 – 0.958; FixR vs. chance: Z = -3.920, p < .0001), 

fixed-left (FixL: median = 0.928, IQR = 0.91 - 0.945; FixL vs. chance: Z = -3.921, p < 

.0001), and conditional images (Conditional: median = 0.77, IQR: 0.715 – 0.803; 

Conditional vs. chance: Z = -3.920, p < .0001). A significant difference in accuracy was 

observed across trial types (FixR vs. FixL vs. Conditional (χ2(2) = 31.013, p < 

.0001). No significant difference in accuracy between fixed-left and fixed-right trials 

was observed (Z = -1.248, p = .212). Participants performed significantly better for 

both fixed-left (Z = -3.920, p < .001) and fixed-right (Z = -3.920, p < .001) compared 

to conditional trials.  

Learning was quantified using a logistic regression algorithm designed to 

assess learning as a dynamic process across trials, creating representative curves 

which provide participants’ probability of a correct response for any given trial 

(Smith & Brown, 2003; Smith et al., 2004). Learning onset was defined as the trial 

in which the lower-bound 95% confidence interval exceeded chance performance. 

There was a statistically significant difference in learning onset between the three 

trial types (χ2(2) = 22.354, p < .001). Learning onset for fixed-left (median = 3.835, 

IQR = 2 - 7) and fixed-right (median = 3.833, IQR = 1 - 7) was not significantly 

different (Z = -0.081, p = .936). In contrast, learning onset was delayed for 

conditional (median = 11.5, IQR = 6 - 26) compared to fixed-left (Z = -3.267,               

p = .001) and fixed-right (Z = -3.435, p = .001) trials. 
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3.3.2 PROSPECTIVE PATTERN DISSIMILARITY OF HPC AND DAC INCREASES FROM 

EARLY TO LATE LEARNING 

To assess how HPC and DAC contributions develop across prospective 

experience-based learning, I conducted a pattern dissimilarity analysis on first-

level unsmoothed functional data for each of six experimental runs during periods 

preceding correct and incorrect conditional trials. I anatomically defined HPC and 

DAC bilaterally and calculated pattern dissimilarity between fixed trials 

immediately preceding correct and incorrect conditional trials (Figure 8A). I 

anticipated pattern dissimilarity preceding correct versus incorrect conditional trials 

would increase as learning progressed and greater pattern dissimilarity would be 

positively related to learning performance. Two analyses were conducted across 

image sets to test these predictions: (1) comparison of regional pattern dissimilarity 

for early and late learning, and (2) correlation analysis investigating the correlation 

between pattern dissimilarity and learning performance for early and late learning.  

 Confirming my first prediction, dissimilarity between patterns of activation 

was elevated for late, compared to early, task runs in both HPC (t(19) = 4.42,            

p = 0.0003) and DAC (Z = 15.0, p = 0.0008; Figure 8B, left). When comparing 

patterns of dissimilarity to overall performance across the sample, HPC exhibited 

a strong, positive relationship between pattern dissimilarity and performance 

during late learning (r = 0.75, p = 0.001) (Figure 8B, right) with a moderate, positive 

trend observed during early learning (r = 0.44, p = 0.05). In contrast, DAC 

demonstrated a strong, positive correlation between pattern dissimilarity and 
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performance for both late (r = 0.68, p = 0.0009) and early learning (r = 0.69,               

p = 0.0008). 

 

3.3.3 CONCURRENT DAC ACTIVATION DECREASES AS CONDITIONAL TASK 

PERFORMANCE IMPROVES 

 To assess how HPC and DAC contributions develop across concurrent 

experience-based learning, I conducted a binned learning curve analysis on 

second-level functional data for each participant. The minimum and maximum 

Figure 8.  Pattern dissimilarity preceding correct and incorrect conditional trials for 
HPC and DAC increase from early to late learning. Anatomical ROIs include 
hippocampus (HPC) and dorsal anterior caudate (DAC). Violin plots with overlaid box and 
swarm plots represent 1-r correlation between region-specific activation pattern preceding 
correct and incorrect conditional trials (left). Greater representation dissimilarity was 
observed for HPC and DAC for late, compared to early, learning. Correlations between 
representational dissimilarity and participant performance (right) demonstrate while DAC 
dissimilarity is positively related to performance for both early and late learning, HPC 
dissimilarity is positively associated with performance only for late learning. 
 



57 
 

values of each participant’s representative learning curve were used to create 

flexible boundaries for three discrete learning bins (Figure 9A): Bin 1 represented 

trials which fell into the lowest 1/3 of performance; Bin 2, the intermediate 1/3; and 

Bin 3, the highest 1/3 (Smith & Brown, 2003; Smith et al., 2004). A univariate model 

included regressors for activation during conditional trials which fell into Learning 

Bins 1, 2, and 3, as well as regressors of no interest. Anatomical bilateral ROIs 

were created for HPC and DAC, comparing second-level mean activation for 

conditional trials during each learning bin. I predicted an increased activation for 

both HPC and DAC during periods of high (Bin3), compared to those of either 

moderate (Bin 2) or low (Bin 1), performance. These predictions were informed by 

(1) my previous findings of DAC involvement in a concurrent network supporting 

choice execution, and (2) the abundance of evidence for the role of the HPC in 

retrieval processes (Gluth et al., 2015; Murty et al., 2016; Wimmer & Shohamy, 

2012; Zeithamova, Dominick, et al., 2012; Zeithamova, Schlichting, et al., 2012; 

Zeithamova & Preston, 2010).  

 Interestingly, while a significant effect for learning bin was observed for DAC 

(Figure 9B; F(2,38) = 4.09, p = 0.02), the direction of this change was contrary to 

my predictions. Simple effects analysis revealed DAC activation for Bin 3 was 

significantly lower than Bin 1 (t(19) = -3.39, p = 0.002, d = -0.64), but was not 

significantly lower than Bin 2 (t(19) = -0.70, p = 0.491). A similar trend was 

observed for Bin 2 and Bin 1 (t(19) = -1.91, p = 0.071), through it did not reach 

significance. A trend for HPC in the predicted direction was observed (Figure 9B; 

F(2,38) = 2.30, p = 0.11), though it failed to reach significance.  
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Figure 9.  Decreased DAC activation during periods of high performance (A) 
Example learning curve demonstrating flexible binning of ROI activation for 
conditional trials based on probability of correct response. (B) Anatomical ROIs 
include hippocampus (HPC) and dorsal anterior caudate (DAC). Violin plots with 
overlaid box and swarm plots represent region-specific activation for each 
participant during performance tiers. A significant effect of learning bin was observed 
for DAC, with simple effects analysis revealing reduced activation of the DAC for 
high, compared to low, learning performance.  
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3.4 DISCUSSION 

Most paradigms developed to investigate contributions of HPC to learning 

and memory focus on observations made during one of two temporal/process 

categories: (1) single instance of encoding novel information, or (2) retrieval during 

consistent performance, following extensive periods of learning. The current 

findings expand our understanding of how HPC and DAC support learning and the 

development of these mechanisms across time. In my pattern dissimilarity 

analysis, I demonstrate as learning develops from early to late stages in these 

regions, observed patterns of activation preceding correct and incorrect conditional 

behavior become increasingly dissimilar. Further, I provide evidence HPC and 

DAC pattern dissimilarity is positively related to learning performance. In other 

words, as these regional activation patterns preceding correct and incorrect 

performance become more distinct, conditional performance improves. For the 

DAC, this relationship is consistent across early and late learning; however, HPC 

exhibited a notable distinction between learning stage, demonstrating a significant 

dissimilarity-performance correlation only for late learning.  In my binned learning 

analysis, I provide evidence the DAC exhibits decreased activation during periods 

of high, compared to low, performance. 

My findings align with literature illustrating the indispensability of HPC to 

learning and memory processes. HPC engagement as a predictor to successful 

performance on memory-guided decision making tasks is well documented across 

human and animal studies (Hamm & Mattfeld, 2019; Jadhav et al., 2012; Palombo 

et al., 2015; Pfeiffer & Foster, 2013; Preston & Eichenbaum, 2013; Squire, 1992; 
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Squire et al., 2004; Stark et al., 2018). Beyond providing evidence for the 

involvement of HPC to learning and memory, my current design and subsequent 

results address a period and timescale of learning development often overlooked 

in the methodological midland between animal and human paradigms. In animal 

work, many experimental protocols necessitate extensive periods of task training 

to bring performance to criterion, investigating neurobiological processes during or 

immediately preceding decision behavior (Allen et al., 2014, 2016; Hadj-Bouziane 

et al., 2006; Histed et al., 2003; Jadhav et al., 2012; Jayachandran et al., 2019; 

Jones & Wilson, 2005b; Vertes, 2006; Yu & Frank, 2015). While yet other designs 

use high temporal resolution techniques to observe neural activity (e.g., single-cell 

recordings, local field potentials) as it occurs during encoding novel experience 

(Hadj-Bouziane & Boussaoud, 2003; Jadhav et al., 2016; Miyachi et al., 2002). On 

the other hand, human learning and memory paradigms often measure learning 

through performance following a single session encoding experience (Hamm & 

Mattfeld, 2019; Han et al., 2010; Jiang et al., 2015; Koch et al., 2008; Law et al., 

2005; Mattfeld & Stark, 2011; Norman et al., 2019; Reeders et al., 2021; 

Zeithamova, Dominick, et al., 2012), or through comparison of task performance 

across repeated sessions over the course of days or weeks; in both cases, studies 

investigating human HPC correlates of learning have predominately focused on 

periods of retrieval.  

Representational similarity analysis, or more specifically, pattern 

similarity/dissimilarity, offers a valid and reliable means to quantify unique patterns 

of neural activation in regions of interest during behaviorally-relevant epochs 
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across time (Xue et al., 2010). In three separate studies, Xue and associates 

(2010) demonstrated improved performance on tests of recognition and recall were 

associated with increased similarity of neural activation patterns across 

presentations during encoding. Here, I used pattern dissimilarity to explore how 

differences between neural activation patterns preceding successful and 

unsuccessful conditional performance changed across learning and how that 

change relates to conditional performance.  

These findings provide evidence for dynamic contribution of the HPC across 

experience-based learning and demonstrate that unlike the DAC, for which 

differences in neural pattern activation was important to acquisition of conditional 

associations across both early and late learning, pattern dissimilarity was 

significantly related to performance only during late learning. These observations 

may reflect an improved stability of neural representations across learning as 

observed in Xue et al. (2010). Another possibility is development of improved late-

learning retrieval resulting from increased practice. While the current 

methodological design is limited by an inability to determine with confidence which 

of these mechanistic changes is captured by my observations, these findings 

provide direction to future investigations exploring how neural representations 

influence learning development.  
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CHAPTER 4: PROSPECTIVE REPRESENTATIONAL CONTENT INFORMS 

SVM CLASSIFIER AS TO CORRECT CONDITIONAL TRIAL RESPONSE  

4.1 INTRODUCTION 

 Aims 1 and 2 of my dissertation work investigated contributions of the HPC, 

mPFC, and striatum to prospective and concurrent memory-guided decision-

making and how those contributions may evolve across learning. I observed the 

emergence of two distinct networks supporting memory-guided decision making: 

one whose contributions prospectively guided upcoming choice, and the second 

concurrent system which supported execution of correct decision-making behavior 

(Hamm & Mattfeld, 2019). Then in my learning analyses, I identified how 

contributions of the HPC and DAC change as performance improves and from 

early to late learning. For my final experiment, I sought to investigate possible 

neurobiological representations of prospective memory using multivoxel pattern 

analysis (MVPA).  

 MVPA is an analytic method which endeavors to identify highly reproducible 

patterns of voxel activation to differentiate between two or more experimental 

conditions (Chadwick et al., 2012; Mahmoudi et al., 2012; Weaverdyck et al., 

2020). More specifically, decoding analyses are used to determine which condition 

gives rise to a specific pattern of activation. MVPA uses a supervised machine 

learning method known as a support vector machine (SVM) to perform either 

binary or multi-condition classification. While many univariate fMRI techniques are 

limited to magnitude of response from a particular region of interest, MVPA 

examines information contained within patterns of activation using “features”, 
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which are defined as select voxels (Weaverdyck et al., 2020). In this way, MPVA 

decoding (classification) analyses allow reversal of the direction of inference 

common to univariate fMRI techniques, allowing one to instead make 

determinations about experimental conditions given an observed pattern of voxel 

activation.   

 Machine learning classification has been successfully implemented with 

fMRI data to make inferences as to the nature and context of particular stimuli 

(Chadwick et al., 2012; Mahmoudi et al., 2012; van den Hurk et al., 2011; 

Weaverdyck et al., 2020). MVPA presumes if patterns of voxel activation can be 

used to predict stimulus membership within a particular class, then unique and 

identifiable information about that stimulus must be represented in the targeted 

region of interest. Such an ability makes MVPA a particularly useful tool to 

investigate the representational content of prospective memory-guided decision 

making.   

 To investigate the representational content of prospective memory-guided 

behavior, I designed a second visuomotor associative learning task similar to that 

used in Chapter 2 (Hamm & Mattfeld, 2019). However, this design doubled the 

number of possible conditional associations by including four fixed trials and one 

conditional trial. In this design, rather than associating a current conditional 

response (left or right) with the identity of a previous fixed-trial stimulus, 

participants learned through trial and error to associate previous stimulus-object 

fixed-trials with the current choice of either a face or a scene (Figure 10A). Previous 

findings had demonstrated not only were prospective mechanisms supporting 
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decision making (Chapter 2) but increases in prospective patterns of activation for 

the HPC and DAC were associated with improved performance (Chapter 3). Here, 

I investigated whether prospective voxel-based representational content could be 

identified in regions well-known for their representational clarity: fusiform face area 

(FFA) and parahippocampal place area (PPA). If a SVM classifier could be trained 

to categorize whether samples of prospective activation preceded either a face or 

scene conditional trial, such results would provide evidence of specific prospective 

representational content. Further, if such representational information can be 

demonstrated, the accuracy of the classifier when trained on these prospective 

sampled should be positively related to the performance of the participant.  

 With this complex multivariate approach, I investigated the possible 

informative nature of voxel-based representational content for prospective 

memory-guided decision making. While the SVM classifier accuracy was 

statistically better than would be expected by chance, no statistically significant 

relationships were observed between classifier and participant conditional 

performance.     

4.2    METHODS 

Thirty-three right-handed volunteers (13 female, mean age = 25.53,            

SD = 5.78) at Florida International University were recruited to perform a 

conditional visuo-motor association learning task in a magnetic resonance imaging 

scanner. All participants provided written informed consent in accordance with 

local Institutional Review Board requirements. Individuals were recruited from the 

Florida International University community and financially compensated for their 
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time. Eight individuals were excluded from the reported analyses. Six were 

removed because of technical difficulties resulting from programming error in the 

task software. One participant was removed after reporting use of antidepressants 

following data collection. Lastly, one participant was removed due to significant 

incidental findings. The final sample size was 25 participants (13 females; mean 

age = 25.21 years, SD = 5.00). 

4.2.1 BEHAVIORAL PROCEDURES 

4.2.1.1 FUNCTIONAL LOCALIZATION TASK (LOC) 

 Participants completed two runs of a block-design “functional localization” 

task requiring “yes/no” judgments on three categories of visual stimuli. Images 

were presented, one per trial, in separate blocks consisting of faces, scenes, and 

numbers. Face and scene blocks each contained 20 trials in which participants 

indicated whether the current (1) face was female or (2) scene contained water. 

Number blocks contained 10 trials each in which participants indicated whether the 

current number was less or greater than five. Responses were recorded using a 

MR-compatible response box. For face and scene trials, a left response on the 

response box indicated “Yes” and right indicated “No”. For number trials, a left 

response indicated “less than”, while right indicated “greater than”. Each trial lasted 

for 1250 ms. Blocks sequence was face-number-scene-number, repeated seven 

times, for a total of 140 presentations of each stimulus-type per run. Participants 

completed two functional localization runs (280 per type, 840 trials in total). 
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Figure 10.  Schematic diagram of vCAT2 associations and object groups. (A) Five 
kaleidoscopic association trials, four fixed object-associations, and one conditional 
face/scene-association. Fixed trials are split into two object groups (OG). Yellow boxes 
indicate the correct association for each trial. One fixed stimulus-object association from 
each OG is associated with a correct conditional response of “face”, while the other 
stimulus-object association from each OG is associated with “scene”. (B) Task and BL trials 
were similar in structure but not timing. Total BL trial duration was 5500 ms, with variable 
fixation+hold and post-response periods.   
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4.2.1.2 CONDITIONAL ASSOCIATIVE TASK #2 (VCAT2) 

The task was modified from the visuo-motor conditional associative learning 

task used in Chapter 2 (Hamm & Mattfeld, 2019; Law et al., 2005; Mattfeld & Stark, 

2011; Stark et al., 2018). For each task trial, participants associated a visual 

stimulus with one of two possible choices (Figure 9). Stimuli consisted of five 

computer-generated kaleidoscopic images, presented one at a time, and centered 

between two gray squares containing images of either objects (fixed trials), or face 

and scene (conditional trials). Participants were asked to determine, through trial 

and error, the relationship between each kaleidoscopic image and one of the two 

flanking images. Responses were registered by pressing with either an index 

(Button 1 - indicating left box) or middle finger (Button 2 - indicating right box) using 

an MR-compatible response box. Three types of trials were presented:  

(1) Stimulus-object association (fixed) trials. For these trials, participants were 

asked to learn the association between common, everyday objects and four 

kaleidoscopic images. There were four possible choice objects, grouped into 

two object groups – meaning two objects were always presented together as 

choice options for two of the kaleidoscopic stimulus trials (Object Groups or 

OG; Figure 9A). Within each of these object groups, one fixed stimulus-object 

association trial would come to be associated with a face (Fixed 1, Figure 9B), 

while the other would be associated with a scene, on subsequent conditional 

association trials (Fixed 2, Figure 9C). Correct associations for these four 

stimulus-object trials were “fixed” and remained consistent across all 

presentations; however, object position (left or right) relative to stimulus and its 
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respective response were not static across presentations. Correct screen-

location response changed per trial depending on which side the associated 

object was presented. 

(2) Preceding stimulus-object to current face/scene association (conditional) trials. 

For the fifth kaleidoscopic image, participants were tasked with determining a 

more temporally complex association between the correct preceding stimulus-

object response and either face or scene (Conditional, Figure 9A-C). One 

stimulus-object association from each of the two object groups would be 

correctly associated with face (Figure 9B) while the other from each group 

would be associated with scene (Figure 9C). Similar to fixed trials, correct 

response was dependent on which side of the screen face and scene were 

presented. 

(3) Baseline trials (BL). During these trials, participants were asked to select the 

“whiter” of two boxes. BL trials were similar to learning trials in sequence but 

not timing, lasting 5500 ms per BL trial. Duration of fixation+hold and post-

response phases varied across presentations. Due to decreased cognitive load 

in responding to these trials, BL followed fixed trials to provide both an 

extended duration of prospective activation, as well as a longer temporal 

window to accommodate the hemodynamic response for use in multivoxel 

pattern analysis.  

Learning trials (fixed and conditional; 3000 ms total duration each) 

consisted of three sequential phases: (1) fixation, (2) stimulus presentation and 

response, and (3) feedback. Each of the four fixed stimulus-object association trial 
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was presented 100 times across four experimental runs (25 per run). Conditional 

association trials were presented 200 times across four experimental runs (50 per 

run) and could only follow a fixed association in trial sequence. Finally, BL trials 

were presented 120 times across four experimental runs (30 per run) and like 

conditional trials, could only follow a fixed association in trial sequence.  

As previously defined in the vCAT1 experiment in Chapter 2, perceptual 

baseline trials were comprised of a random static image created through 

binarization of random values for each pixel of screen resolution (1280 x 800). 

Randomly generated pixel values greater than 0.85 became white, while those 

below threshold became gray. A white fixation cross between two white outlined 

boxes was presented at the center of the screen over the static background. In 

identical fashion to the underlying static image, contents of each box were also 

random patterns (320 x 200); however, the binarization threshold to produce a 

white pixel was considerably lower and, for target, vacillated as a function of 

performance. For the first BL trial, binarization thresholds for target and foil were 

initially set at 0.55 and 0.65, respectively. Participants were asked to identify which 

of the two boxes was “whiter”. If the participant responded correctly to seven out 

of the previous 10 trials, the white threshold for target box would increase by 10% 

of last trial, producing fewer white pixels and bringing the image closer to the 

constant foil threshold of 0.65, thereby increasing difficulty. Conversely, if response 

to fewer than five of the preceding 10 BL trials were correct, threshold decreased 

by 10% of previous trial value, resulting in a “whiter” target and easier identification. 
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Each BL trial lasted for a duration of 5500 ms and could only follow fixed trials in 

presentation sequence. 

4.2.2 PRESCAN TRAINING  

All participants received training of 180 total trials (150 learning stimuli and 

30 BL trials) using a practice set of five images (four fixed, one conditional) specific 

to the training session. Training allowed participants to become acquainted with 

task nature and timing to mitigate loss of trials due to nonresponse at the beginning 

of the first experimental run. Training was conducted on a MacBook Pro using 

identical finger-response mapping as scanning session. 

4.2.3 MRI METHODS 

Imaging data were acquired on a Siemens Magnetom Prisma 3T scanner 

with a 32-channel head coil at the Center for Imaging Science at Florida 

International University (Miami, FL). Functional images were obtained using a T2*-

sensitive gradient echo pulse sequence (66 interleaved axial slices, a slice 

thickness = 2.0 mm, TR = 1760 ms, TE = 35 ms, flip angle = 52˚, FOV = 200 mm, 

voxel size = 2.0 x 2.0 x 2.0 mm3). Three hundred and four whole-brain images 

were collected for each run of the functional localization task (LOC). Three hundred 

and fifty-six whole-brain images were collected per run for advanced visuomotor 

conditional association task (vCAT2). For purposes of coregistration and 

registration, high-resolution three-dimensional magnetization-prepared rapid 

gradient echo sequence collected (MP-RAGE: 176 axial slices, slice            

thickness = 1.0 mm, TR = 2500 ms, TE = 2.9 ms, flip angle = 8˚, voxel                    

FOV = 256 mm, size = 1.0 x 1.0 x 1.0 mm3). Data were preprocessed and analyzed 
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using the following software packages: Analysis of Functional Neuroimages (AFNI 

version 16.3.18; Cox, 1996), FMRIB Software Library (FSL version 5.0.8; 

Jenkinson et al., 2012), FreeSurfer (FS version 6.0.0; Fischl, 2012), Advanced 

Normalization Tools (ANTs version 2.1.0; Avants et al., 2008), and Neuroimaging 

in Python (Nipype version 1.0.0.dev0; Gorgolewski, 2016) pipeline. T1-weighted 

structural scans underwent cortical surface reconstruction and cortical/subcortical 

segmentation. Surface reconstruction was visually inspected and errors were 

manually edited and resubmitted. Functional data were first ‘despiked’, removing 

and replacing intensity outliers in the functional time series. Simultaneous slice 

timing and motion correction (Roche, 2011) was performed, aligning all functional 

volumes to the middle volume of the first run. An affine transformation was 

calculated to co-register functional data to their structural scan. Motion and 

intensity outlier timepoints (>1 mm frame-wise-displacement; >3 SD mean 

intensity) were identified. Functional data were spatially filtered with a 5 mm kernel 

using SUSAN algorithm (FSL;  Smith & Brady, 1997), which preserves the 

underlying structure by only averaging local voxels with similar intensities.  

Anatomical images were skull-stripped and then registered to MNI-152 

template via a rigid body transformation (FSL FLIRT; DOF = 6). This step was used 

to minimize large differences in position across participants and generate a 

template close to a commonly used reference. ANTs (Avants et al., 2008) software 

was used to create a study-specific template to minimize normalization error for 

any given participant. Each participant’s skull-stripped brain was normalized using 

non-linear symmetric diffeomorphic mapping implemented by ANTS. The resulting 
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warps were applied to contrast parameter estimates following fixed-effects 

modeling for subsequent group-level tests.  

4.2.4 ANATOMICAL REGIONS OF INTEREST 

        Two anatomical regions of interest (ROIs) were bilaterally defined using 

each participant’s structural scan. The fusiform face area (FFA) and 

parahippocampal place area (PPA) were defined by binarizing segmentations from 

FreeSurfer aparc+aseg.mgz files. All masks were back-projected to functional 

space for analysis. 

4.2.5 MULTIVOXEL PATTERN ANALYSIS – FUNCTIONAL LOCALIZER 

 fMRI data collected during the functional localization task were analyzed 

using FSL based on principles of the general linear model. A single univariate, 

block-design model was used to create unsmoothed, functional masks isolating 

voxel-wise activation for faces and scenes. All models included regressors of no 

interest which consisted of motion parameters (x, y, z translations; pitch, roll, yaw 

rotations), first and second derivatives of the motion parameters, normalized 

motion, first, second, and third order Lagrange polynomials, as well as each outlier 

time-point that exceeded artifact detection thresholds. The regressors of interest 

consisted of face, scene, and number trial blocks. Contrasts examined differences 

in activation between face and scene blocks, as well as face and number blocks 

and scene and number blocks. Event regressors were convolved with FSL’s 

double gamma hemodynamic response function with an onset coinciding with 

stimulus presentation and a duration of 3 seconds. Following first-level analyses, 

fixed-effects analyses across experimental runs were performed for each 
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participant for each respective contrasts of interest. The product of anatomical ROI 

masks and standardized, unsmoothed second-level copes for faces > scenes and 

scenes > faces contrasts from the LOC task with a minimum intensity threshold of 

3.2775 were obtained, producing a template constrained by both region and 

activation for isolating features. 

4.2.6 MULTIVOXEL PATTERN ANALYSIS – VCAT2  

 A least-squares separate (LS-S) approach (Mumford et al., 2012) was used 

for analysis of functional data from the visuomotor conditional association task. 

The LS-S method runs a separate GLM for each trial of interest, collapsing all other 

similar trials into a single nuisance regressor. The LS-S approach has been 

demonstrated as the most accurate approach for estimating trial-by-trial signals in 

event-related designs, and thus providing optimal trial samples for training and 

testing with the SVM classifier. Trials of interest were defined as sequential fixed-

BL trial pairs (fixed 3000 ms, BL 5500ms, total 8500 ms). A separate general linear 

model was run for each trial pair of interest. All first-level models included a 

regressor for single relevant trial pair and all remaining task and nuisance 

regressors with relevant trials were removed from its respective task regressor. A 

priori anatomical regions of interest were defined as in previous chapters and 

binarized ROI masks were created.  

4.2.7 CLASSIFIER TRAINING 

 The MVPA decoding analysis utilized a SVM to perform classification after 

training to identify potential relationships between patterns of voxel activation in 

the fusiform face area (FFA) and parahippocampal place area (PPA), and whether 
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the anticipated correct response for subsequent conditional trials would be either 

a face or scene. To achieve this, I provided a support vector classifier (SVC) with 

“features” consisting of voxels in the FFA and PPA which demonstrated selective 

activation when presented with either faces or scenes during the functional 

localizer task (LOC). This effort to isolate functionally selective voxels within larger 

anatomical regions was performed to reduce the overall number of features, 

thereby increasing samples-to-features ratio, minimizing possible noise, and 

improving classifier performance. The “samples” given to the classifier were 

individual fixed trials preceding either conditional or baseline trials, along with 

labels indicating whether the fixed stimulus-object trials would be associated with 

a face or scene on subsequent conditional trials.   

 Due to the simplicity of only two possible conditions (face or scene), I 

selected a simple linear support vector classifier by Scikit-learn (LinearSVC; 

Pedregosa et al., 2011). For classifier training, I used a leave-one-sample-out 

method in which there were approximately 320 individual SVC models per 

participant. In other words, the classifier iterated through each provided sample, 

trained on the remaining 319, and tested on the single, current sample. The 

outputs of these individual models provided 320 binary scores representing 

classifier performance for each test sample (0 incorrect, 1 correct). These binary 

performance values were then averaged to produce an overall metric of classifier 

accuracy. In addition to raw accuracy, individual binary outputs of each model were 

used to first calculate the precision and recall of the classifier, and ultimately the 

harmonic mean (F1-score): 



75 
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 (𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑚𝑒𝑎𝑛) = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

4.3 RESULTS 

4.3.1 BEHAVIORAL PERFORMANCE 

Participants were more accurate on fixed compared to conditional trials, 

with no differences in reaction time, and both were performed better than chance. 

For distributions that violated assumptions of parametric methods (i.e., accuracy 

and onset of learning), non-parametric Wilcoxon Signed-Rank and Spearman’s 

correlation coefficient tests were performed. All results were Bonferroni corrected 

for multiple comparisons where appropriate. To determine whether participants 

performed better than chance, median accuracy was calculated across stimulus 

sets for each participant. Participants demonstrated significantly better than 

chance performance for fixed (Fixed: mean = 0.92, SD = 0.05; Fixed vs chance: 

t(24) = 41.14, p < 0.0001) and conditional images (Conditional: median = 0.84,  

IQR = 0.07; Conditional vs. chance: Z = 4.0, p < 0.0001) trials. When comparing 

performance between trial types (Fixed vs. Conditional), a significant difference for 
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accuracy was observed (Z = 1.0, p < 0.0001). No statistically significant difference 

was observed for response time between fixed (mean = 0.268, SD = 0.047) and 

conditional (mean = 0.27, SD = 0.04) trials (t(24) = -0.31, p = 0.75) trials.  

4.3.2 MULTIVOXEL PATTERN ANALYSIS 

 An LSS modeling approach was implemented in which each trial of interest 

was modeled separately. This technique was used in conjunction with features 

selected via the intersection of anatomical masks (FFA and PPA) and voxel 

activation responsiveness to specific stimuli (face and scene). When looking at 

accuracy (mean = 0.54, SD = 0.05), the SVC performed statistically better than 

chance (t(24) = 3.96, p = 0.002). Additionally, when the F1 score is calculated 

(mean = 0.53, SD = 0.05), the SVC performance is better than chance 

performance as well (t(24) = 2.29, p = 0.007). No statistically significant difference 

was observed between SVC performance in predicting faces (mean = 0.53,          

SD = 0.07) and scenes (mean = 0.52, SD = 0.09). With regard to a possible 

relationship between classifier and participant performance, no statistical evidence 

was found (rs = 0.12, p = 0.55).   

4.4 DISCUSSION 

 In this experiment, I investigated representational content of prospective 

memory-guided behavior using a machine learning algorithm known as a support 

vector classifier (SVC). While classifier and participant performance did not 

demonstrate a significant correlation, when observing accuracy, the classifier was 

able to perform significantly better than would be expected by chance. However, 

calculation of the F1 score considers both precision (positive predictive value) and 
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recall (sensitivity), making it a more robust metric for use with datasets containing 

possible imbalances (uneven number of samples per condition) and use of random 

cross-validation techniques (such as leave-one-sample-out) for training-testing 

(Mahmoudi et al., 2012; Weaverdyck et al., 2020). Even when using this more 

conservative metric, the classifier’s performance, compared to chance, was still 

significant, t(24) = 2.29, p = 0.007. 

 These results are harmonious with a previous study using a similar 

methodological design (Doll et al., 2015) in which prospective activations were 

identified in functionally-localized regions of interest during a complex reward-

learning task. While Doll et al. (2015) selected regions of the visual pathway, in the 

current design I have investigated possible prospective activations preceding 

conditional associative decision making in FFA (Contreras et al., 2013; van den 

Hurk et al., 2011; Zhang et al., 2015) and PPA (Diana et al., 2008; M. Johnson & 

Johnson, 2014, 2014; Park & Park, 2015; Sun et al., 2021), two regions well-known 

for their responsiveness to faces and scenes, respectively. Using functionally-

select features from these regions, each region-specific SVC was able to perform 

better than chance in determining whether observed patterns of activations would 

precede a correct face or scene response on subsequent conditional trials. The 

ability of the classifiers to perform better than chance suggests identifiable patterns 

of activation in these regions may indeed carry information about representational 

content which can be used to inform prospective memory-guided behavior.     

 A limitation to consider with the use of MVPA classifier sensitivity to the 

balance between features and samples. Generally speaking, the number of 
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samples should be maximized and features minimized to improve samples-to-

features ratio, in order to reduce noise in smaller-sample studies (Weaverdyck et 

al., 2020). The current design, as with most fMRI task designs, could benefit from 

a greater number of target trials to improve power and the sample-to-features ratio.  

 Future directions should include investigations into possible 

representational content contained within regions known for their contributions to 

both prospective and concurrent memory-guided behavior. The HPC, striatum, 

and mPFC may contain unique and identifiable patterns of prospective voxel 

activations related to faces, scenes, or other decodable stimulus features. The 

prospective FFA/PPA activations observed here may well be linked to similar 

engagement of the HPC for scene-related stimuli, as these regions have 

demonstrated unique increased coactivation when presented with novel scene 

images during episodic memory tasks. (Köhler et al., 2002). Similarly, HPC and 

FFA coactivation occurs when participants are presented with novel, but not 

repeated, faces (Liu et al., 2017) or face-object associations (Schlichting & 

Preston, 2016).  
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CONCLUSION 

 In order to make successful decisions, it is often necessary to call upon past 

events to inform our behavior. The commonsense notion that one’s past predicts 

his or her future does little justice to the intricacy of neurobiological mechanisms 

supporting memory-guided decision making. In Chapter 2, I provided evidence of 

prospective and concurrent memory-guided networks of cortical and subcortical 

regions which included the HPC and DAC, respectively. In the prospective 

network, the HPC, mPFC, PUT, and other cortical structures exhibited enhanced 

activation preceding successful conditional decisions. The second network 

consisted of the DAC, dlPFC, and other cortical regions which demonstrated 

increased activation during execution of successful decision making. However, an 

important limitation of those analytic designs was the unanswered question of how 

contributions of these networks might evolve with experience. 

 In Chapter 3, my approach to assessing learning-induced changes to these 

prospective and concurrent circuits used two analytic methods: (1) patten 

dissimilarity analysis and (2) a binned learning curve technique. I observed 

increased pattern dissimilarity of the HPC and DAC for periods proceeding correct, 

compared to incorrect, conditional trial performance from early to late learning. 

Simply put, prospective patterns of voxel activation in these two regions for correct 

and incorrect performance became more dissimilar from early to late learning. 

Further, while DAC pattern dissimilarity facilitated learning during both early and 

late learning, HPC pattern dissimilarity only demonstrated such a relationship with 

performance for late learning. This finding provides fascinating new evidence for 
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the dynamic and evolving nature of HPC engagement across experience-based 

learning. Additionally, the binned learning analysis of mean regional activation 

during conditional trials provided evidence that as learning performance improves, 

DAC involvement wanes. Conversely, a slight trend was observed for HPC of 

increased activation from periods of low to high performance.    

 The significant results of the pattern dissimilarity learning analysis hinted 

toward the possibility of potential prospective representational content being 

contained within these patterns of region-specific, voxel activation. In order to 

address this possibility, a second task was created for the express purpose of 

conducting MVPA. I trained an SVC to perform binary categorization of target trial 

samples using features selected via the intersection of anatomical and functionally 

localized masks. The SVC performed better than would be expected by chance, 

indicating voxel activation within the features contained some degree of 

representational information which supported classifier performance.  

 Taken together, these findings within my dissertation work provide new 

evidence for distinct temporal and mechanistic contributions of the HPC, striatum, 

and mPFC which facilitate memory-guided decision making through both 

prospective and concurrent neurobiological processes.  
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APPENDICES 

Appendix 1: Supplemental Material for Chapter 2 

 

Table S1. Voxel mask sizes and peak coordinates for whole-brain contrasts. 
Related to Figures 2, 3, and 6. 

 Voxels  

ROI Mask  Mean STD  

Hippocampus (HPC)  483.40 50.39  

Anterior Cingulate Cortex (ACC)  502.65 64.23  

Dorsal Anterior Caudate  279.70 30.57  

Putamen  650.35 82.93  

Dorsolateral Prefrontal Cortex (dlPFC)  459.94 50.53  

Motor Cortex  1911.56 203.54  

 Fixed Before Correct Conditional > Fixed Before Incorrect Conditional 

 Peak Voxel (MNI152)  

Cluster Index X Y Z Cluster Size 

1 -62 -10 2 544981 

2 -55 27 1 588 

3 56 27 -4 280 

4 -6 -51 -56 176 

5 41 35 2 116 

Conditional Correct > Fixed Correct 

 Peak Voxel (MNI152)  

Cluster Index X Y Z Cluster Size 

1 43 -38 46 76219 

2 33 19 3 29185 

3 -34 17 0 23599 

4 -11 5 -3 11888 

5 4 25 45 8475 

6 10 6 -1 3577 

7 4 -75 -19 1817 

8 -27 -80 -49 574 

9 14 8 71 225 

10 35 -70 -49 166 
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Figure S1. Fixed trial activations preceding correct and incorrect conditional 
trials for only correct fixed trials. Related to Figure 2. Anatomical regions of 
interest included the: (A) hippocampus, (B) anterior cingulate cortex (ACC), (C) 
dorsal caudate, and (D) putamen. Boxplots with overlaid swarm plots represent 
the activations for only correct fixed trials preceding correct (corr cond) and 
incorrect (incorr cond) conditional trials. Similar to the original analysis, significantly 
greater activation was observed in the (A) hippocampus and (D) putamen during 
correct fixed trials that preceded correct compared to incorrect conditional trials. 
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Figure S2. Activations for correct-only fixed-left, conditional, and fixed-right 
trials in HPC and PUT. Related to Figure 2. Boxplots with overlaid swarm plots 
represent the activations for the correct learning trial types. In the hippocampus 
(blue, left) learning trials were significantly different from each other. Fixed-left 
(.517 ± .21) and fixed-right (.299 ± .15) were significantly greater than conditional 
(-.201 ± .20) trials (p’s < .019). No significant difference was found between fixed-
left and fixed-right trials (t(19) = 1.27, p = .221). No significant differences were 
observed for trial type in the putamen (purple, right). *p < .05; **p < .001. 
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Figure S3. Prospective cerebellar 
activations for successful memory-
guided conditional behavior. Related to 
Figure 3. Regions of the cerebellum 
exhibiting greater activation for fixed trials 
before correct conditional trials > fixed trials 
before incorrect conditional trials following 
whole-brain exploratory analysis (FWE tfce 
corrected p < 0.05). 
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Figure S4. Prospective conditional 
trial activation correlations with 
subsequent fixed trial performance. 
Related to Figure 4. Correlations 
between preceding conditional trial 
activation and subsequent fixed trial 
performance trial pairs. No significant 
correlation between prior conditional 
activation and subsequent fixed 
performance was found for the (A) 
hippocampus, (B) anterior cingulate 
cortex, (C) dorsal caudate, or (D) 
putamen. 
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Figure S5. Representational similarity analysis comparing fixed trials that 
proceed correct conditionals to single baseline trials that intercede between 
fixed and conditional trials. Related to Figure 2. (A) I compared patterns of 
activation across voxels in the bilateral hippocampus (B) and voxels in the medial 
prefrontal cortex that were responsive to the task for fixed trials that proceeded 
correct conditionals and baseline trials that fell between fixed and conditional trials. 
(C) A dissimilarity score of 1-r was calculated and correlated with performance on 
the conditional trials that followed baseline trials. No significant relationship 
between representational dissimilarity and conditional performance was identified. 
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Appendix 2: Supplemental Material for Chapter 4 

 

Figure S6. Examples of stimulus categories for functional localizer task. 
During the functional localizer task, participants were presented with three distinct 
trial blocks. (Face) A male or female face is presented and the participant is asked 
to indicate whether the face is female. (Scene) Participants must indicate if 
presented scene images contain a body of water. (Number) Participants determine 
if presented numbers are less than or greater than five. Blocks were ordered in 
face-number-scene-number format, repeated seven times, for a total of 140 
presentations of each stimulus per run. For face and scene trials, a left response 
indicated “Yes” and right indicated “No”. For number trials, left indicated “less 
than”, while right indicated “greater than”. 
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