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ABSTRACT OF THE THESIS
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Franklin Abodo

Florida International University, 2022
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Professor Leonardo Bobadilla, Major Professor

Traffic simulation software is used by transportation researchers and engineers to

design and evaluate changes to roadway networks. Underlying these simulators are

mathematical models of microscopic driver behavior from which macroscopic mea-

sures of flow and congestion can be recovered. Many models are intended to apply

to only a subset of possible traffic scenarios and roadway configurations, while others

do not have any explicit constraint on their applicability. Work zones on highways

are one scenario for which no model invented to date has been shown to accurately

reproduce realistic driving behavior. This makes it difficult to optimize for safety and

other metrics when designing a work zone.

The Federal Highway Administration (FHWA) has commissioned the Volpe Na-

tional Transportation Systems Center (Volpe) to develop a new car-following model,

the Work Zone Driver Model (WZDM), for use in microscopic simulators that cap-

tures and reproduces driver behavior equally well within and outside of work zones.

Volpe also performed a naturalistic driving study (NDS) to collect telematics data

from vehicles driven on highways and urban roads that included work zones for use

in model calibration. The data variables are relevant to the car-following model’s

prediction task.
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During model development, Volpe researchers observed difficulties in calibrating

their model, leaving them to question whether there existed flaws in their model, in

the data, or in the procedure used to calibrate the model using the data. In this

thesis, I use Bayesian methods for data analysis and parameter estimation to explore

and, where possible, address these questions.

First, I use Bayesian inference to measure the sufficiency of the size of the NDS

data set. Second, I compare the procedure and results of the genetic algorithm-based

calibration performed by the Volpe researchers with those of Bayesian calibration.

Third, I explore the benefits of modeling car-following hierarchically. Finally, I apply

what was learned in the first three phases using an established car-following model

to the probabilistic modeling of WZDM. Validation is performed using information

criteria as an estimate of predictive accuracy. A third model used for comparison

with WZDM in the simulator, Wiedemann ’99, is also modeled probabilistically.
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CHAPTER 1

INTRODUCTION

1.1 Project Background and Motivation

Traffic simulation software packages are widely used in transportation engineering to

estimate the impacts of potential changes to a roadway network and forecast sys-

tem performance under future scenarios. These packages are underpinned by math-

and physics-based models, which are designed to describe behavior at an aggregate

(macroscopic) level or the level of individual drivers (microscopic). Macroscopic

models are used to evaluate aggregate measures, such as capacity, in large road-

way networks, and model an entire traffic stream as a whole. Microscopic models

are used to simulate the effects of local roadway elements on individual vehicles,

and these individual effects can be aggregated to recover macroscopic effects if nec-

essary, [Ber15]. Within the microscopic realm, driver behavior is decomposed into

sub-models that individually handle lane-changing (lateral movement), car-following

(longitudinal movement), route choice, and so on. This work focuses specifically on

car-following models (CFMs), which estimate the acceleration and deceleration be-

havior of individual vehicles with respect to their driving environment. Critical to the

accurate performance of simulation models is the calibration process, during which

unobserved model parameters have their values estimated using field measurements.

Due to known variations in driver behavior that exist across regions of the roadway

network (such as highway versus urban), across different roadway segment classes (e.g.

signalized intersections versus roundabouts), and between different driving conditions

(such as varying weather or construction), every CFM must be calibrated using data

sampled locally from the area being studied to establish an accurate baseline before

predicting the effects of changes to the local roadway configuration.
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One region of roadways where current CFMs have historically failed to accurately

predict vehicle movements is work zones. The recognition of this fact has motivated

the U.S. Department of Transportation’s (USDOT’s) Federal Highway Administration

(FHWA) to fund research into the development of a new CFM that is effectively

applicable to work zone regions as well as other regions of roadway networks. Part of

that development involved the collection of field data for use in calibrating the model

and demonstrating its efficacy.

Effective planning of work zone configurations that influence driver decision-

making and behavior as transportation planners intend is crucial to the prevention

of crashes, injuries, and fatalities in work zones, and to the mitigation of travel de-

lays caused by work zones. FHWA partnered with researchers at USDOT’s Volpe

National Transportation Systems Center (Volpe) to address this problem.

After constructing their proposed Work Zone Driver Model (WZDM) and con-

ducting a naturalistic driving study (NDS) to collect time-series observations of the

predictor and response variables relevant to that model, the Volpe researchers encoun-

tered challenges fitting the model to the observed data using the industry-standard

automatic calibration method based on genetic algorithm (GA) search. Simulations

drawn from the fit model produced unexpected vehicle behaviors, including crashes

and rigid movements of platooned vehicles. These misbehaviors could have resulted

from flaws in the model, flaws in the data or data collection process, flaws in the

calibration procedure used to fit the model to the data, or some combination of the

three. After discussing the problems with the researchers and reading the literature

review that they performed to determine how and why they chose the exact procedure

that they followed, I recognized that Bayesian methods for model parameter estima-

tion, model validation, and model comparison were not considered at all. After the

failure of the GA, the researchers resolved to hand-tuning parameter values based

2



on their expert intuition and heuristics. Knowing that the researchers were work-

ing with a set of only approximately 200 car-following time-series instances and that

Bayesian methods often outperform other machine learning methods when data set

sizes are small, I recommended an investigation into the potential utility of following

a Bayesian approach to CFM calibration and validation.

This project aims to determine whether approaches to calibration and validation

based on Bayesian methods can resolve the aforementioned problems. The research

agenda is divided into three phases: Phase 1: Formulation and Bayesian calibration of

a probabilistic variant of a popular existing car-following model: the Intelligent Driver

Model (IDM), [THH00], with subjective comparisons of procedures and results to GA-

based calibration; Phase 2: Validation of calibration results and rigorous comparison

of different probabilistic IDM formulations (pooled, hierarchical, and unpooled) with

one another and with a GA-learned model; and Phase 3: Probabilistic formulation,

calibration, and validation of the WZDM.

1.2 Research Questions

The key question that this research is intended to address is whether the difficulties

in calibration experienced by Volpe stem from problems with the data, the model,

the calibration procedure, or perhaps all three. I hypothesize that the existing data

set is sufficient for use in car-following model development given the use of a more

appropriate calibration framework based on Bayesian methods. I have already shown

in previous work that the challenges met when combining the NDS data with a

GA-based method are not unique to the WZDM, but also present themselves when

using the simpler and well-established IDM, [ABZCB19]. In that same work, I also

qualitatively measured the size of the data set to be insufficiently large to dominate

3



the influence of prior specification on Bayesian inference of model parameter values.

Outstanding questions to be answered by this research effort include:

1. In general, can a calibration procedure based on Bayesian inference produce

measurably better results than one based on a genetic algorithm when available

field data is low in quantity?

2. Given the use of Bayesian calibration, how do partially-pooled models that are

structured hierarchically improve calibration results over fully pooled models

when simulating the full population of car-following instances, if at all?

3. How do the partially-pooled models improve on unpooled models when simu-

lating per-framework or per-driver car-following instances, if at all?

4. Can a Bayesian calibration procedure provide a rigorous way to measure the

sufficiency of the size of a data set?

5. Can the Bayesian approach to model validation give a more convincing measure

of a model’s goodness of fit than the hypothesis tests traditionally used in car-

following model calibration?

4



CHAPTER 2

RELATED WORK

2.1 Bayesian Methods Applied to Traffic Simulator Calibra-

tion

Bayesian methods for traffic simulation model calibration, while dramatically less

popular than methods based on optimization techniques, have received some atten-

tion in the last fifteen years. In earlier work on calibration for traffic simulators,

Bayesian methods have been advocated because of their ability to capture uncer-

tainty in estimated parameter values stemming from 1) inconsistency between the

model and the natural phenomena it is meant to capture, 2) errors introduced by

the calibration process itself (including the choices of measure of performance and

measure of error), and 3) noise or errors in the data collection process, [JBOBM+04],

[MBB05]. Bayesian methods for model comparison have also been applied, [Mol14].

In [JBOBM+04] and [MBB05], MCMC methods are used to analyze the error in

human measurement of turn counts and roadway entry counts, and to estimate other

parameters of the CORSIM simulator. In [MBB05], the influence of sampling from pa-

rameter distributions when generating simulation traces rather than fixing parameter

values to distribution means or point estimates is additionally evaluated. [ZFS+16]

modeled the Intelligent Driver Model using Gaussian random variables as the pa-

rameters to perform a probabilistic sensitivity analysis based on the Kullback-Liebler

dissimilarity measure to limit the number of parameters requiring value estimation

to those yielding the greatest performance improvement relative to default parame-

ter values. [RCKB15] advocated for the use of a Bayesian approach to car-following

model calibration by directly comparing an MCMC-based calibration method with

a deterministic optimization method, using one synthetic data set to show that the
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Bayesian method could recover known parameter values and one real-world data set

as a case study. This work differs from that of [RCKB15] in that we leverage a hi-

erarchical formulation of the models under study, in that our use of a probabilistic

programming language allows us to formulate our models using distributions that are

substantially more complex than the multivariate Gaussian used in [RCKB15] can

allow, including a Double Gamma output variable distribution. In [Mol14], the au-

thor augmented a physical traffic simulator so that background vehicles could adapt

their simulated motions in near real-time to complement the driving behavior of the

human operator using periodic updates to car-following model parameter estimates

derived from observations of the operator. The objective was to remove bias from the

operator’s driving that might be induced by unrealistic surrounding vehicle motions.

The simulator used was supported by the General Motors model and the Intelligent

Driver Model, for each of which a multivariate Gaussian distribution was used to

represent the joint distribution over the parameters, all of which are inherently con-

tinuous. The author further exploits the utility of model comparison in the Bayesian

framework to measure the relative goodness of fit between the GM and IDM models

given the data used to fit the models.

2.2 Bayesian Analysis in Transportation Safety Assessment

Much more common than Bayesian estimation of parameters for physical models in

simulators is the estimation of statistical model parameters in traffic safety assess-

ment, the ultimate purpose of the development of the Work Zone Driver Model.

[RSZ11] used MCMC to fit a logistic Generalized Linear Model to observations

of driver gap acceptance when making left turns. The authors judged the shape of

the distributions over parameters estimated using the Bayesian method to represent

6



a better model fit than those estimated using bootstrapping, an alternative statistical

approach.

With a purpose rather similar to ours, [AJM11] used MCMC to estimate the

parameters of a hierarchical Bayesian formulation of a pavement deterioration model

using data collected from a specific region of interest. The authors further address the

problem of missing data points in their time-series observations by applying Bayesian

data imputation; using the available data to estimate posterior distributions for the

missing data points. [ISC+20] created a Bayesian version of a survival analysis model

using the Weibull distribution to predict the time-to-failure of roadway pavement.

[BSJ17] used a 3-level hierarchical change-point model to determine if accident

rates fell following the implementation of a change in how Los Angeles county ports

manage freight truck traffic congestion. [Sha14] developed a Bayesian hierarchical

logit model to predict car crashes during winter based on season-specific weather

attributes.

2.3 Car-following Model Calibration Using Genetic Algorithms

In their extensive report comparing the performance of different combinations of

mathematical optimization techniques and goodness-of-fit measures, [CB12] specu-

lated that genetic algorithms may be the most commonly used class of optimization

technique for calibrating traffic simulators.

[RNA04] used a genetic algorithm to evaluate the performance of six car-following

models under different traffic conditions based on lead vehicle driving behavior. They

observed that performance varied more as a function of driver behavior than of the

choice of car-following model.

[HJA18] develop a genetic algorithm as the basis for a general, transparent, and

reproducible calibration procedure, using four car-following models from different

7



classes to demonstrate generalizability: 1) collision avoidance, 2) psychophysical, 3)

continuous response, and 4) low-order, piece-wise linear. Their results showed im-

proved performance of the parameters that were calibrated to field data over default

parameters. Two of those models, the Wiedemann ’99 model, and Intelligent Driver

Model, are used in this work as well.

Genetic algorithms are the foundation of GENOSIM, [MA02], a software tool for

automatically calibrating the car-following, lane-changing, and gap-acceptance mod-

els that underlie microscopic traffic simulators. GENOSIM attempts to maximally

generalize its applicability to a broad range of simulators and models by allowing its

users to choose from four types of genetic algorithms that implement different pa-

rameter evolution strategies, acknowledging that genetic algorithms are ”a problem-

specific optimization technique” that require custom tuning. This work is intended

to demonstrate Bayesian inference as a simpler approach that can produce better

calibration results while requiring less configuration of the procedure.
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CHAPTER 3

TECHNICAL BACKGROUND

3.1 Bayesian Programming

A Bayesian program (BP) is a generic formalism that can be used to describe many

classes of probabilistic models, including Hidden Markov Models, Bayesian Networks,

and Markov Decision Processes, [DBM03]. This formalism organizes a graphical

model, which encodes prior knowledge about the inference problem, together with

model variables and observed data into a structure like the following:

Program



Description



Specification


Variables

Decomposition

Forms (parametric or program)

Identification (using data)

Questions.

The program must define 1) a means of computing the joint probability over its

model, variables, and data, and 2) a means of answering a specific inference question

given that joint probability. For example, a Hidden Markov Model would have a

sequence of states and observations as its variables, emission and transition matri-

ces as its model, and various message-passing algorithms as its means of answering

inference questions. The Baum-Welch algorithm, [BPSW70], would be its means of

identification.
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3.2 Probabilistic Programming

Probabilistic programming languages (PPLs) allow BPs to be implemented and have

inference performed over their parameters using software. PPLs are like ordinary

programming languages but they additionally allow variables’ values to be randomly

sampled from distributions, allowing the output of programs written in them to vary

non-deterministically given the same input. They also allow variables’ values to be

conditioned on data (observations). In the BP formalism, the description of a prob-

abilistic program is as follows:

Program

Description



Specification


Variables: θ (latent) and x (obs)

Decomposition: P (x, θ) ∝ P (θ)P (x|θ)

Form: Probabilistic Program

Identification: MCMC or VI

Question: P (θ|x).

The decomposition states that the posterior joint probability of the model param-

eters and the observations is proportional to the product of the prior probability of

the model parameters, P (θ), and the likelihood of the observations given the model

parameters, P (x|θ). Because we treat each time step in each CF instance as inde-

pendent, the likelihood can be further decomposed into products of the probabilities

of each individual xi ∈ x:

P (x|θ) =

|x|∏
i=0

P (xi|θ).

The inference algorithms included with PPLs, such as Markov Chain Monte Carlo

(MCMC) and variational inference (VI), can be run on arbitrary graphical models,
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as opposed to algorithms that run on a limited set of model classes for which they

have been specially invented (e.g. Bayesian and Markov Networks). To construct a

probabilistic variation of a deterministic mathematical model, such as a car-following

model, one merely needs to implement the model as the likelihood function using

the primitives of the PPL, with random variables (and their corresponding probabil-

ity distributions) used to represent model parameters and the response variable, and

ordinary mathematical operations used everywhere else. If the model can be imple-

mented, then probabilistic parameter estimation can be performed in a plug-and-play

fashion. The incredible flexibility of PPLs like Edward2 and PyMC3, [SVWF16], al-

low models of varying compositions to be implemented, from the piece-wise linear

Newell ’02 model, [New02], to the highly non-linear Wiedemann ’99 (W99) model,

which includes conditional function evaluation. We chose the IDM model to demon-

strate our calibration approach due to its moderate simplicity and interpretability,

plus its widespread use in practice, [HJA18].

3.3 Bayesian Hierarchical Models

When modeling a phenomenon for which observations naturally form a hierarchy or

for which related sub-components are required, structuring the model hierarchically

can improve estimation outcomes by introducing a form of regularization called partial

pooling.

Consider the context of this research, wherein the goal is to model car-following.

Some car-following models are designed under an assumption that their parameters

would be fit using data from a single driver, [THH00]. Others are only theoretically

valid when fit using a single instance, [New02]. In some cases, when available data

are not plentiful, these assumptions are violated and a single global model is fit using

the entire data set in order to best approximate the true distribution of behavior
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over all drivers or instances given a sample of drivers or instances, [YM12]. Rather

than having to forego the desired per-driver/instance models in exchange for a more

informed estimate (using a fully pooled model), or forego the benefit of using all data

points to inform estimation in exchange for individual models (using fully unpooled

models), one can achieve both by using a hierarchical model that implements partial

pooling.

In the Bayesian framework, where latent model parameters are random variables

with distributions, partial pooling is implemented by having the priors of the individ-

ual sub-components at a base level (level-1) be drawn from a shared set of distributions

(at level-2). This introduces a conditional dependency between the subgroups that

leads each sub-model’s estimation to be informed by all data points while remain-

ing distinct from other models’ estimations. The regularizing effect applies in two

directions.

For level-1 parameters, the means are pulled toward the mean of the corresponding

level-2 parameters in an effect known as shrinkage, or Bayesian smoothing, [Gel06].

This is especially useful when it is known that the level-1 distributions should not be

too dissimilar. For example, drivers have their personal driving preferences but are all

still human drivers. Further, the degree to which shrinkage occurs for each component

tends to vary proportionally to the amount of data supporting that component.

For level-2 parameters, the means are also adjusted by comparison with a fully

pooled model. The use of hierarchy decouples the variance that can be attributed

to each sub-population in level-1 from that of the full population in a fully pooled

scenario. The effect is an estimate that is closer to the true population than the

sample implies. As with other methods of regularization, the predictive accuracy of

higher-level hierarchical parameters is expected to be worse than fully pooled param-

eters, which is a desirable outcome when assuming that a data set is not properly
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representative of the phenomenon being modeled.

Hierarchical models can have an arbitrarily high number of levels, and can even

support partial pooling across multiple dimensions at the same level for data that are

compositional (i.e. data points that belong to more than one category at the same

level of the hierarchy), [McE20].

3.4 Markov chain Monte Carlo and Metropolis Hastings

Markov chain Monte Carlo (MCMC), [Bar06], is a family of simulation algorithms

that allow the integrals common to the probability density functions of complex and

high-dimensional distributions, which do not have closed-form analytical solutions, to

be approximated. This ability enables Bayesian inference to be performed for models

of natural phenomena like car-following, and for models implemented as probabilistic

programs to be composed of arbitrary combinations of prior and likelihood distribu-

tions without having to consider conjugacy of the prior with respect to the likelihood.

Metropolis Hastings, [Bar06], a popular MCMC algorithm that samples a sequence

of states in a state space, called a Markov chain, from a candidate probability density

function. Transitions from one state to the next are determined using an acceptance

test applied to proposals for the next state such that, after a number of iterations,

the region of the state space where the chain ends corresponds to the desired density

function. In this work, the random walk variant of Metropolis Hastings is used,

wherein proposals are generated by sampling from a Gaussian distribution with the

current state as the mean. The algorithm can be considered to have converged when

a sufficiently long sequence of states stabilizes within a fixed region.
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3.5 Evolutionary Algorithms and Differential Evolution

Evolutionary algorithms are a class of global optimization algorithms that derive their

search strategies from concepts in evolutionary biology, such as mutation, crossover,

and selection within a population, and include Genetic Algorithms, [Mit98]. They

apply to problems where the search space is non-convex or non-differentiable, and are

thus an attractive option for calibration of car-following models, which often compose

discrete sub-models.

Evolutionary algorithms are typically initialized with a random selection of pop-

ulation members, where each member is a parameter vector. Over the course of the

search, the values of the vectors are perturbed according to mutation and crossover

rules, and new members of the population are selected to replace existing ones based

on some fitness function to create the next in a sequence of generations. This use of

populations and random perturbations enable evolutionary algorithms to avoid being

trapped in local minima of the search space, [RNA04].

Differential Evolution (DE), [KO04], is one instance of this class of algorithms

that is used in this work. With DE, to generate the next generation of the popula-

tion, candidate vectors are constructed by mutating two existing population vectors,

performing crossover between the result and a third target vector, then conditionally

selecting the candidate for inclusion if its fitness is higher than the original vector.

The algorithm terminates when all members of the population converge to the same

value within some error.

3.6 Bayesian Model Validation using Information Criterion

The standard best practice for validating statistical and machine learning models is

to perform either K -fold or leave-one-out (LOO) cross-validation (CV), especially
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when a data set is too small to expect a held-out test set to be equally representa-

tive of the data distribution as the training set. Cross-validation estimates a model’s

predictive accuracy on out-of-sample data by partitioning the total data set into K

subsets (with K = 1 corresponding to LOO-CV), performing K distinct model fits

with a disjoint subset held out each time, using that held-out data subset to measure

the K th model’s performance, and finally averaging over the K models’ performance

metrics. The Bayesian framework offers validation metrics called information crite-

rion that asymptotically approximate LOO-CV using the entire data set, which is

valuable when the data set size is small. Two criterion of particular interest are 1)

the Watanabe-Akaike information criterion (WAIC), [Wat], which operates on sam-

ples from the posterior log-likelihood distribution one observation at a time, and then

sums over all observations in the data set to yield a single measure, and 2) Pareto

Smoothed Importance Sampling-based LOO (PSIS-LOO) CV, which improves on

WAIC ”in the finite case with weak priors or influential observations”, [VGG17],

which is precisely our scenario.
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CHAPTER 4

CAR-FOLLOWING MODELS

In this chapter, the three car-following models used in this research are introduced.

The primary objective of the project was to demonstrate the utility of modeling

and fitting the Work Zone Driver Model using probabilistic programming. That

effort involved comparing the performance of the WZDM with that of the model it

is intended to improve upon in work zone environments, the Wiedemann ’99 model.

To gauge the potential of the research direction, experiments were first performed

using the Intelligent Driver Model because its relative simplicity made it easy to

understand, implement and analyze.

4.1 The Intelligent Driver Model

The Intelligent Driver Model, [THH00], predicts a following vehicle’s next acceler-

ation, at+1, given that vehicle’s absolute velocity, v, and its velocity and distance

relative to a leading vehicle, ∆v and s, at the current time:

at+1 = a

[
1−

(
v

v0

)δ
−
(
s∗(v,∆v)

s

)2]
, (4.1)

with:

s∗(v,∆v) = s0 + s1

√
v

v0

+ Tv +
v∆v

2
√
ab
. (4.2)

The estimable parameters are v, the desired velocity; T , the ”safe” time headway,

which is the time it would take the following vehicle to close the gap between itself

and the leading vehicle; a, the maximum acceleration; b, the desired or ”comfortable”

deceleration, with higher values corresponding to more aggressive and late braking;
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s0 and s1, jam distance terms that correspond to stop-and-go traffic when values are

low; and δ, which represents the rate at which a driver will decrease acceleration as

the desired velocity is approached. This decrease in acceleration can range anywhere

from exponential to linear or sub-linear.

IDM is a member of the class of collision-free car-following models. In ordinary

situations, the vehicle will decelerate according to b, but in emergencies, deceleration

can occur at an exponential rate, [FBLC15]. Other widely used car-following models

include the Gipps model, [Gip81], which is used in the AIMSUN simulator and is also

a collision-free model, and Wiedemann ’99, a psychophysical model that is the basis

of VISSIM, [Bar10]. IDM is itself included as an option in the deep reinforcement

learning framework for traffic simulation, Flow, [KPW+18].

4.2 The Wiedemann 99’ Model

The Wiedemann 99’ Model, [Wie74], is a psychophysical model that predicts a follow-

ing vehicle’s next acceleration, at+1, given that vehicle’s velocity and distance relative

to a leading vehicle, and several other parameters that characterize the following

driver’s preferences. The theory asserts that drivers alternate between states of con-

scious reaction, unconscious reaction, and no reaction to lead vehicles. The model

parameters and equations utilized depend on which one of four reaction regimes the

driver is operating in. In the freeflow regime, the lead vehicle is sufficiently far away

for the following driver to accelerate to and maintain their preferred speed. This is

a no-reaction scenario. In the approaching regime, the follower consciously reacts by

decelerating at a moderate rate until a preferred following distance is achieved. The

danger regime corresponds to an emergency braking situation in which the driver

consciously decelerates at a high rate to avoid a collision. The following regime is the

hallmark of this model. In this regime, the subject driver subconsciously alternates
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between mild acceleration and deceleration to maintain a preferred distance. W99

model equations are listed below.

W99 model equations:

at+1 =



af = afollowing if R(t) = Rf = Rfollowing

aa = aapproaching if R(t) = Ra = Rapproaching

ad = adanger if R(t) = Rd = Rdanger

aff = afreeflow if R(t) = Rff = Rfreeflow

(4.3)

R(t) =



Rf if SDVo ≥ ∆v ∧ SDVc ≤ ∆v ∧ SDXo ≥ ∆x ∧ SDXc < ∆x

Ra if SDVc > ∆v ∧DSXV > ∆x ∧ SDXc < ∆x

Rd if SDXc ≥ ∆x ∧ SDVo ≥ ∆v

Rff otherwise

(4.4)

W99 framework equations:

SDVo =


CC5 + CC6∆x2 if vF > CC5

CC6∆x2 otherwise

(4.5)

SDVc =


CC4 − CC6∆x2 if vL > 0

0 otherwise

(4.6)

SDXV = SDXo + CC3(∆v − CC4) (4.7)

SDXo = CC2 + SDXc (4.8)
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SDXc =


CC0 + CC1vF if vL ≥ 0 ∧ (∆v ≥ 0 ∨ aL < −1)

CC0 + CC1(vL − 0.5∆v) if vL ≥ 0 ∧∆v < 0 ∧ aL ≥ −1

CC0 otherwise

(4.9)

W99 regime equations:

af =


min(max(aF , CC7), v0−vF

T
) if aF > 0

min(aF ,−CC7) otherwise

(4.10)

aa = max(
0.5∆v2

SDXc −∆x− 0.1
,−10) (4.11)

ad =


0 if ad∗ = 0

−CC7 if ad∗ > −CC7

max(ad∗, 0.5
√
vF − 10) if ad∗ ≤ −CC7

(4.12)

ad∗ =


0 if vF ≤ 0

min(aL + ∆v2

CC0−∆x
, aF ) if vF > 0 ∧∆v < 0 ∧∆x > CC0

min(aL + 0.5(∆v − SDVo), aF ) if vF > 0 ∧∆v < 0 ∧∆x ≤ CC0

(4.13)

aff =


0 if aff∗ = 0

min(aff∗, v0−vF
T

) otherwise

(4.14)
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Table 4.1: W99 Observed Variables
Name Units Description
vF m/s Velocity of the subject vehicle
aF m/s2 Acceleration of the subject vehicle
vL m/s Velocity of the vehicle in front of the subject
aL m/s2 Acceleration of the vehicle in front of the subject
∆v m/s Difference between lead and following vehicle velocities
∆x m Distance between the lead and following vehicles

aff∗ =



0 if SDXc ≥ ∆x

CC7 if R(t− 1) = Rff ∧ SDXc < ∆x

min( ∆v2

SDXo−∆x
, au) if R(t− 1) 6= Rff ∧ SDXc < ∆x ∧ SDXo > ∆x

au if R(t− 1) 6= Rff ∧ SDXc < ∆x ∧ SDXo ≤ ∆x

(4.15)

au = CC8 +min(vF , vu)CC9 (4.16)

vu = 22.22 (4.17)

4.3 The FHWA Work Zone Driver Model

The FHWA Work Zone Driver Model (WZDM), [BS18], is a psychophysical model

that predicts a following vehicle’s next acceleration, at+1, given that vehicle’s ve-

locity and distance relative to a leading vehicle, and several other parameters that

characterize the following driver’s preferences, similarly to the W99 model. The rela-

tions between these variables are modeled using force equations inspired by Modified

Field Theory from the field of psychology, [Ber15]. WZDM has seven driver response
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Table 4.2: W99 Estimable Parameters
Name Units Description
CC0 m Standstill distance
CC1 s Spacing time
CC2 m Following variation
CC3 s Following entrance threshold
CC4 m/s Negative following threshold
CC5 m/s Positive following threshold
CC6 rad/s Oscillation speed dependency
CC7 m/s2 Oscillation acceleration
CC8 m/s2 Standstill acceleration
CC9 m/s2 Acceleration at 80km/h
v0 m/s Desired velocity

Table 4.3: W99 Model Variables and Constants
Name Units Description
au m/s2 Acceleration upper bound
vu m/s Velocity upper bound
T s Timestep duration

regimes, each of which combines different force equations linearly. The regime at time

t, R(t), is determined by the location of the point (∆v, ∆x) on the psychophysical

plane depicted in Figure 4.1.

Table 4.4: WZDM Framework IDs
Congested Uncongested

Highway 1 2
Freeway 3 4
Advanced Warning 5 6
Taper Zone 7 8
Work Zone with Lane Closure 9 10
Work Zone without Lane Closure 11 12

The strategy that the WZDM employs to improve model performance in work

zones is to allow parameter values to vary depending on which one of 12 scenarios

called frameworks the driver is in. The frameworks are composed of two dimensions
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of variation: facility type and congestion level, and each has its own set of dedicated

framework parameters and driving regime parameters. Table 4.4 enumerates each

framework. Freeways are a sub-type of highways that have controlled entrances and

exits (e.g. on- and off-ramps), typically higher speed limits, no intersections, and

barriers between traffic lanes of opposing direction. Advanced warning facilities con-

tain construction signs that indicate the distance to an approaching work zone. Taper

zones provide gradual transitions into and out of work zone regions with lane closures.

A third dimension of variation exists in the original model named lead vehicle type

that includes the values passenger and heavy vehicle. Since only passenger types are

represented in the data set used for calibration, this third dimension is not considered

in this work. Framework and regime parameters are listed in Table 4.6 and Table 4.7.

Observed variables are presented in Table 4.5.

WZDM model equations:

at+1 =



acase1 if R(t) = R1 ∨R2

acase2 if R(t) = R3 ∨R4 ∨R5

acase3 if R(t) = R6

acase4 if R(t) = R7

at otherwise

(4.18)

Regime equations:

acase1 = Flead−vel + Fdes−vel + Fdes−prox + F∆x
∆v

+ FBL + Fgap (4.19)

acase2 = 2(Flead−vel + Fdes−prox) +
Fdes−vel

1.5
+ F∆x

∆v
+ FBL + Fgap (4.20)

acase3 =


Ades−max−decel if VL ≥ 5

2(Flead−vel + Fprox) otherwise

(4.21)
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Figure 4.1: The forces and relations between them that govern the value of accel-
eration at the next time step are determined by the (∆v, ∆x) location on the psy-
chophysical plane at the current time step.

acase4 = Ades−emergency−decel (4.22)

Force equations:

Flead−vel(t) = Cv
VL,t−PRT∆v − VF,t−PRT∆v

|∆xt−PRT∆x −Gc|
(4.23)

Fdes−vel(t) = Cdes(Vdes − VF,t−PRT∆v) (4.24)

Fdes−prox(t) =
−CproxN

|∆xt−PRT∆x −Gs|
(4.25)
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Table 4.5: WZDM Observed Variables
Name Units Description
vF m/s Velocity of the subject vehicle
aF m/s2 Acceleration of the subject vehicle
vL m/s Velocity of the vehicle in front of the subject
aL m/s2 Acceleration of the vehicle in front of the subject
∆v m/s Difference between lead and following vehicle velocities
∆x m Distance between the lead and following vehicles

Fgap(t) =


−Cgap∆v

∆x
if ∆x

VF
< ∆x

0 otherwise

(4.26)

FBL(t) =


−CBL AL√

∆x
if AL < 0

0 otherwise

(4.27)

F∆x
∆v

(t) =


−2 if 0 < ∆x

∆v
< TTCextreme

0 otherwise

(4.28)

Constants:

leader velocity threshold = 2.2352 (4.29)

extreme time to collision = 6. (4.30)

extreme approach acceleration = −2. (4.31)
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Table 4.6: WZDM Estimable Framework Parameters
Name Units Description
N m Force field shaping variable for proximity to passenger car
Cv m/s Adjusts the influence of relative speed to the lead vehicle
Cdes

1
s

Adjusts the influence of desired speed
Cprox m/s2 Adjusts the influence of proximity to passenger car
PRT∆v s Perception-reaction time for relative velocity
PRT∆x s Perception-reaction time for relative distance
PRTv s Perception-reaction time for following vehicle’s velocity
Cgap m/s Calibration parameter to adjust the influence of desired gap
Tsafe s Desired safe following time gap
CBL

√
m Adjusts the influence of the brake lights of the lead vehicle

Vdes m/s Desired velocity
Amax m/s2 Desired maximum acceleration
Dmax m/s2 Desired maximum deceleration
Demr m/s2 Desired emergency deceleration

Table 4.7: WZDM Estimable Regime Parameters
Name Units Description
Gmin m The minimum relative distance during car-following
Gmax m The maximum relative distance during car-following
Gc m The absolute minimum distance gap
Gs m Distance gap at stopped position
Vs,Gmax m/s Separating velocity at Gmax

Vs,Gmin
m/s Separating velocity at Gmin

Va,Gmax m/s Approaching velocity at Gmax

Va,Gmin
m/s Approaching velocity at Gmin
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CHAPTER 5

DATA DESCRIPTION AND ANALYSIS

In this chapter, the data supporting this research are described and analyzed to

develop a general understanding and to inform modeling decisions. Based on the

analysis of the sole dependent variable, follower acceleration, it was determined that

the best distribution to model follower acceleration is the Double Gamma (also known

as Reflected Gamma or Two-sided Gamma). The Double Gamma generalizes the

Laplace distribution by introducing a shape parameter. The Gaussian distribution

was chosen to model all latent variables. The descriptive statistics also motivate the

exploration of hierarchical Bayesian models performed in this research by showing

that fragmentation of the data into subsets per framework leads to a highly non-

uniform distribution of data across frameworks.

5.1 Data Description

Those latent variables in a car-following model that are meant to capture driver pref-

erences, and to make the model robust to a variety of preferences, must be estimated

using real-world data collected in the geographic region and along the roadway seg-

ment types where analysis is to be performed. The road segments of interest for the

WZDM are highway, freeway, advanced warning zone, taper zone, work zone with

lane closure, and work zone without lane closure. To collect field measurements that

correspond to the model’s observed variables, which are presented in Table 4.5 in

the previous chapter, a research vehicle was outfitted with radar, GPS, video cam-

era, and other sensors, and driven around the Greater Boston metropolitan area in

Massachusetts, USA. The data were collected at a rate of 10 hertz by 53 participant

drivers using one vehicle.
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Figure 5.1: Data frequency distributions over the set of car-following frameworks.

The WZDM data are naturally organized into a hierarchical structure. Individual

data points measured at each time step constitute car-following instance time series.

By construction, each instance belongs in its entirety to one framework. Each instance

also belongs to one driver. Each set of framework instances intersects with one or

more sets of driver instances, and both are sub-groups of the total population of all

instances.

5.2 Data Analysis

The data analysis presented in this section motivated the decision to treat the data

points at each time step as being independent and identically distributed (i.i.d.), to

model the dependent variable using a Double Gamma random variable, and to model

continuous parameters using Gaussian random variables. Discrete parameters are

discussed in Chapter 6.
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5.2.1 Analysis of Car-following Instance Frequency

The frequency distributions of driver count, CF instance count, and total timestep

count per WZDM framework are illustrated in Figure 5.1. Each distribution is highly

non-uniform, revealing that most frameworks have observations contributed to them

by a small subset of drivers. In an extreme case, data belonging to Framework

8 is contributed by only three of the 53 drivers, and each of those three drivers

contributes just one CF instance having an average length of only 116 timesteps.

The longest CF instances in the data set have 20-to-30 times the number of data

points. By comparison, Framework 4 has representation from 52 of 53 drivers, and

564 CF instances each having an average of 391 timesteps. No frameworks have

data contributed by all drivers. This imbalance in the distribution of data across

frameworks strongly motivates the use of hierarchical structure in the probabilistic

CF models, which is expected to discourage over-fitting that might be detrimental to

the models’ predictive performance by allowing the data from different subgroups to

inform one another’s parameter estimations.

Figure 5.2 shows the distributions of framework count, CF instance count, and

total timestep count per driver. Again, the data are not balanced. There are 244

unique combinations of driver and framework in the data set. Figure 5.3 displays the

instance and timestep histograms for the combinations.

5.2.2 Analysis of Observed Variable Distribution Shapes

Input Variable Distributions

Relative distance and relative velocity are the most fundamental input variables of

psychophysical car-following models like the WZDM. Follower velocity is a variable

that encodes more information about a driver’s style and preferences while in motion
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Figure 5.2: Data frequency distributions over the set of drivers.
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Figure 5.3: Data frequency distributions over the number of instances and the number
of timesteps for each intersection of framework and driver.
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(a)

(b)

(c)

Figure 5.4: Histograms of the input variables relative distance (a), relative velocity
(c), and follower velocity (c) for the global population, sub-populations per frame-
work, and sub-populations per driver.
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compared with acceleration, which is almost always zero or close to zero. By analyzing

the shapes of the distributions of these three variables, the selection of an appropriate

distribution for modeling the latent variables can be informed.

The histograms in Figure 5.4 (a) of relative distance over the total population, over

each framework, and over each driver show single modes (with one exception) that

have sharp or rounded peaks and concave-in sides. They are also mostly left-skewed.

Under ordinary conditions, the relative distance is expected to always be positive,

meaning the support of the distribution should not include negative numbers. These

properties could correspond to a Gamma distribution or, less exactly, a Gaussian

modified by a bijection that constrains all values to be positive.

The relative velocity distributions in Figure 5.4 (b) have sharp peaks and, concave-

in sides. Their values are centered near zero and span positive and negative regions

of the number line. They also have short tails. These properties make the Gaussian

distribution appropriate.

Follower velocity’s histograms depart quite dramatically from those of the first

two variables. In Figure 5.4 (c), one can see some Gaussian distributions and many

more mixtures of Gaussians with two, three, or four modes. The global distribution

corresponding to the full data set shows a clear pattern of velocities that vary around

a mode at 25 meters per second, and velocities that vary around a mode at 5 me-

ters per second. This indicates that drivers were exposed to a ratio of congested to

uncongested traffic of roughly 1:3.

With such a broad variety of data distribution shapes, it is reasonable to take a

generic approach to modeling latent model parameters and to use Gaussian random

variables. Parameters that are supported by only positive or only negative values can

be transformed using bijections offered by the probabilistic programming language.
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Figure 5.5: Histograms of the output variable follower acceleration for the global
population, sub-populations per framework, and sub-populations per driver.

Output Variable Distributions

The follower acceleration distributions in Figure 5.5 have sharp peaks, short tails

and concave-out sides. Their values are centered near zero and span positive and

negative regions of the number line. The outward concavity indicates that most

values are concentrated very close to zero, which is consistent with the majority of

driving taking place at a cruising highway speed. These properties make the Double

Gamma distribution appropriate most suitable. The Double Gamma (also known as

the Reflected or Two-sided Gamma) is a flexible three-parameter distribution that

ranges in shapes from a continuous spike-and-slab shape to a dumbbell shape with

symmetry about a location. See Appendix A.

5.2.3 Analysis of Follower Acceleration Time-series

The calibration procedure proposed in this work depends on the ability of the likeli-

hood of the data as a whole given the latent random variables to be decomposed into
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probabilities of each individual data point. In turn, each data point is expected to be

independent and identically distributed. Because the data are in a time-series form,

one can expect the data points in a CF instance to be strongly autocorrelated and

not i.i.d.. Yet, the FHWA Work Zone Driver Model enables the data to be treated as

i.i.d. in part because it directly incorporates observations from past timesteps into

predictions about the next timestep via its perception reaction time parameters.

To determine the best range over the number of past timesteps to consider us-

ing, the partial autocorrelation of the data can be studied. Partial autocorrelation

measures the correlation between a variable at time t and itself at some earlier time

t − k, and for which the measure is determined by only the relationship between t

and t − k and not any timesteps in between. This is a key differentiator between

partial autocorrelation and autocorrelation, which does not exclude influences from

intermediate points. Figure 5.6 (a) shows the partial autocorrelation plot for one

example CF instance. Starting at t vs itself at index zero, the plot shows that the

first three past timesteps should be included in a model of this series to maximize pre-

dictive accuracy. Sub-figures (b) and (c) present measures of partial autocorrelation

aggregated across the entire data set. In (b) is a plot of the average of partial auto-

correlation over all instances for each of the first seven sequential timesteps starting

at t − 1. In (c), on the x-axis, the number of consecutive significant past timesteps

for a given CF instance, and on the y-axis is the number of instances that many

significant timesteps. Sub-figures (b) and (c) reveal that the first four past timesteps

are the most important to include in the model.
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(a) (b)

(c)

Figure 5.6: (a) The partial autocorrelation plot for one CF instance. In this example,
the number of significant past timesteps is four. (b) Plot of average autocorrelation
per lag over all CF instances.(c) Histogram of CF instance frequency over the number
of consecutive statistically influential past timesteps for each instance.
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CHAPTER 6

METHODS

To explore the full power of hierarchical modeling, we additionally organize car-

following instances into groups per driver. Thus, every instance belongs to one frame-

work and one driver, which has implications for how the probabilistic version of the

WZDM is designed as is detailed in Chapter 5.

6.1 Data Structure and Organization

Data points within instances that belong to the same subgroup, whether that be

per-framework, per-driver, or per intersection of framework and driver, are grouped

into one batch per subgroup. Under the assumption that all data points in a batch

are i.i.d., the log-probability of the latent parameter values conditioned on the ob-

served data batch is equal to the sum of the log-probabilities of the individual data

points. Although the data were determined to be strongly autocorrelated in Sec-

tion 5.2.3, it is acceptable to treat them as i.i.d. This is because the dynamics of

longitudinal car-following are completely governed by the deterministic CF model,

including the influence on past timesteps, in addition to the current timestep, on

the prediction of the next time step. Thus, a single set of parameters can be ap-

plied across all timesteps, as is intended in the original deterministic formulation of

the WZDM, making the ordering of timesteps completely irrelevant and eliminating

temporal dependencies. A probabilistic model not derived from a physics- or process-

based model would typically require a unique set of distributions for each time step

(e.g. a Bayesian Structural Time-series model, [SV14], or a Bayesian Recurrent Neu-

ral Network, [FBV19]).

The batching approach can be applied to the IDM and WZDM models, but the

W99 model requires a different data organization. Because the initial previous driving
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Figure 6.1: Graph representation of the probabilistic Intelligent Driver Model. The
deterministic operations of the likelihood function are abstracted into labeled rectan-
gles, and random variables are represented by circles.

regime latent variable is specific to each car-following instance, the data points are

batched per-instance rather than per sub-group.

6.2 Random Variable Specification

For all three car-following models explored in this project, a general framework for

selecting the random variables that correspond to the model parameters was followed

based on the data analysis in the preceding chapter.

The distributions of random variables in each probabilistic CF model can be cat-

egorized as either prior distributions or likelihood distributions, [Gel06]. Prior distri-

butions correspond to unobserved latent parameters of which posterior means are to

be estimated. Likelihood distributions correspond to observed dependent variables.

Observed independent variables are treated as inputs to the likelihood function no

differently than when calibrating deterministic CF models. Since acceleration is the

only response variable in each deterministic CF model, each probabilistic CF model

has one scalar-variate likelihood distribution.
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The Output Random Variable

The Double Gamma distribution, [HF97], was chosen to model response acceleration

based on the shape of the variable’s histogram, which showed a substantial majority

of its mass near zero with short and minimally populated tails to the left and right

of zero. This overall shape was formed by the full population of data points, as well

a nearly all per-framework and per-driver acceleration distributions.

Continuous Latent Random Variables

Scalar latent parameters are modeled using Gaussian random variables with Gaussian

hyperpriors in hierarchical models. For parameters supported by the non-negative

reals only, transformed random variables, [DLT+17], are created wherein the soft-

plus function is applied to samples from the Gaussian and the evaluation of the

log-probability is modified to account for the change in density of the search space

entailed by the transformation. Parameters supported by non-positive reals only have

Softplus applied followed by multiplication by -1.

For each parameter, θk, if the support is (−inf, inf), then:

θk = θstd, where θstd ∼ Normalk(µk, σk), (6.1)

and if the support is [0, inf), then:

θk = θpos = Softplus(θstd, β), where θstd ∼ Normalk(µk, σk) and β = 10−12, (6.2)

and if the support is (−inf, 0], then:
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θk = θneg = −Softplus(θstd, β), where θstd ∼ Normalk(µk, σk) and β = 10−12,

(6.3)

with:

Softplus(x, β) =
log(1 + exβ)

β
. (6.4)

The transformed random distributions that yield θneg and θneg are henceforth referred

to as Normalpos (or Npos) and Normalneg (or Nneg), respectively.

Categorical Latent Random Variables

Categorical parameters are modeled using Multinomial random variables with Dirich-

let priors in the hierarchical models. In the W99 model, one of the inputs at each

time step is the driving regime at the previous time step. Categorical random vari-

ables support the choice of initial previous driving regime at the first step in the

time-series. Since this value is unknown, a distribution over the set of possibilities is

learned for each instance during calibration. There are four regimes, and thus four

categories. In the WZDM, Multinomial random variables support the choice of the

number of timesteps into the past that correspond to the different perception reaction

time parameters. Based on the analysis in Section 5.2.3 in the previous chapter, the

categories are 1, 2, 3 and 4 timesteps (e.g. tenths of a second).
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(a)

(b)

(c)

Figure 6.2: Histograms of the input variables relative distance (a), relative velocity
(c), and follower velocity (c) for the global population, sub-populations per frame-
work, and sub-populations per driver.
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6.3 Model Pooling Formulations

Given a set of random variable assignments to model parameters, each model may

be constructed with the intention of 1) estimating one set of parameters using all

data, or 2) estimating one set of parameters for each subset of data per-driver or

per-framework. These two cases correspond to fully pooled and unpooled proba-

bilistic model formulations, respectively. A third formulation that is partially-pooled

estimates parameters for both the full data set and each subset using a hierarchical

arrangement of the parameters. Each formulation is illustrated in Figure 6.2 using

the Intelligent Driver Model as an example, and also described below:

• For a single set of parameters calibrated using data from all subsets d ∈ D,

where |D| equals the number of data subsets, a group of univariate-normals of

dimension k, which is equal to the number of parameters, is used to implement

a fully pooled model:

θd ∼ Normalk(µ,Σ).

• For |D| sets of parameters, each calibrated using data from one subset d ∈ D, a

set of k groups of univariate normals is used to implement |D| unpooled models:

θd ∼ Normalk(µd,Σd).

• For an alternative to either of the first two cases, a two-level hierarchy of uni-

variate normals, for which each data subset has an separate set of k random

variables with their mean and standard deviation drawn from shared superset
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parent distributions, is used to implement a partially-pooled model:

θd = µd + σd × θd,norm;

θd,norm ∼ NormalL1
k (0, 1);

µd ∼ NormalL2
k (µµ, σµ);

σd ∼ HalfNormalL2
k (σσ),

where the Half Normal distribution has non-negative support.

6.4 Probabilistic Car-following Model Construction

6.4.1 Probabilistic Intelligent Driver Model

For the probabilistic IDM, the latent variables are θ = {v0, T, a, b, δ, s0, s1}, the

observed input variables are x = {s, v,∆v}, and the observed output variable is {aF}.

The random variable-to-parameter assignments are as follows:

Params. v0 T a b δ s0 s1

Dists. Npos Npos Npos Npos Npos Npos Npos

Priors 6.5 1.6 .73 1.67 4. 2. 0.

6.4.2 Probabilistic Wiedemann ’99 Model

For the probabilistic W99, the continuous latent variables are θ = {CC0, CC1 CC2,

CC3, CC4, CC5, CC6, CC7, CC8, CC9, v0}, the observed input variables are x

= {vF , aF , vL, aL,∆v,∆x}, and the observed output variable is {aF}. The random

variable-to-parameter assignments are as follows:

Params. CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 v0

Dists. Npos Npos Npos Nneg Nneg Npos Npos Npos Npos Npos Npos

Priors 1.5 1.3 4. -12. -.25 .35 .0006 .25 2. 1.5 33.3
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The categorical variable, initial previous regime, which is not part of the standard

definition of the model, is drawn from a Multinomial with the probs argument ini-

tialized to [.25, .25, .25, .25], indicating no prior knowledge of the distribution. Each

car-following instance is assigned its own variable.

6.4.3 Probabilistic FHWA Work Zone Driver Model

For the probabilistic WZDM, the latent variables are organized into two groups; one

for framework parameters and another for driving regime parameters. The observed

input variables are x = {vF , aF , vL, aL,∆v,∆x}, and the observed output variable is

{aF}.

The continuous regime parameters are θregime = {Gmax, Gmin, Gc, Gs, Vs,Gmax ,

Vs,Gmin
, Va,Gmax , Va,Gmin

}. To make the search space easier to navigate, prior knowl-

edge about how some of the regime parameters relate to others is encoded by defin-

ing new parameters. Specifically, since Gs < Gc < Gmin < Gmax, as is visible in

Figure 4.1, we replace the latter three parameters with Gc ∆Gs, Gmin ∆Gc, and

Gmax ∆Gmin, and then when constructing regional polygons on the psychophysical

plane, the original parameter values are reconstructed by adding delta values to the Gs

baseline value. Similarly, Vs,Gmin
< Vs,Gmax , and because the Vs and Va parameters are

symmetric (by design) about the y-axis, Va,Gmin
= −Vs,Gmin

and Va,Gmax = −Vs,Gmax .

Thus the actual parameter vector in the implementation is θregime = {Gmin ∆Gc,

Gmax ∆Gmin, Gc ∆Gs, Gs, Vs,Gmax ∆Vs,Gmin
, Vs,Gmin

}.

The random variable-to-parameter assignments are as follows:
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Params. Gmax ∆Gmin Gmin ∆Gc Gc ∆Gs Gs Vs,Gmax ∆Vs,Gmin
Vs,Gmin

Prior θ Npos Npos Npos Npos Npos Npos

FW1 Priors 28. 4. 5. 3. 0. 2.

FW2 Priors 55. 5. 7. 3. 0. 2.

FW3 Priors 30. 4. 5. 3. 0. 2.

FW4 Priors 25. 5. 4. 6. 3. 2.

FW5 Priors 30. 4. 5. 3. 0. 2.

FW6 Priors 25. 5. 4. 6. 3. 2.

FW7 Priors 30. 4. 5. 3. 0. 2.

FW8 Priors 25. 5. 4. 6. 3. 2.

FW9 Priors 30. 4. 5. 3. 0. 2.

FW10 Priors 25. 5. 4. 6. 3. 2.

FW11 Priors 30. 4. 5. 3. 0. 2.

FW12 Priors 25. 5. 4. 6. 3. 2.

Hyperprior θ Npos Npos Npos Npos Npos Npos

Hyperpriors 29.83 4.5 4.75 4.25 1.25 2.

The continuous framework parameters are θfwcont = {Cv, Cdes, Cprox, Cgap, Tsafe,

CBL, Vdes, Amax, Dmax, Demr}. Again, prior knowledge about the relationship be-

tween Dmax and Demr, specifically that Dmax < Demr, is encoded by creating a new

parameter Demr ∆Dmax. Thus the actual parameter vector in the implementation is

θfwcont = {Cv, Cdes, Cprox, Cgap, Tsafe, CBL, Vdes, Amax, Dmax, Demr ∆Dmax}. For

the purpose of compactness, the table below uses Demr to refer to Demr ∆Dmax.

The random variable-to-parameter assignments are as follows:
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Params. Cv Cdes Cprox Cgap Tsafe CBL Vdes Amax Dmax Demr

Prior θ Npos Npos Npos Npos Npos Npos Npos Npos Nneg Nneg

FW1 Priors 8. .25 8. 5. .85 5. 20. 4. -2. -1

FW2 Priors 10. .25 8. 5. 2. 10. 30. 4. -2. -1

FW3 Priors 8. .25 8. 5. .85 5. 20. 4. -2. -1

FW4 Priors 15. .5 8. 5. 2. 10. 30. 4. -2. -1

FW5 Priors 8. .25 8. 5. .85 5. 20. 4. -2. -1

FW6 Priors 15. .5 8. 5. 2. 10. 30. 4. -2. -1

FW7 Priors 8. .25 8. 5. .85 5. 20. 4. -2. -1

FW8 Priors 15. .5 8. 5. 2. 10. 30. 4. -2. -1

FW9 Priors 8. .25 8. 5. .85 5. 20. 4. -2. -1

FW10 Priors 15. .5 8. 5. 2. 10. 30. 4. -2. -1

FW11 Priors 8. .25 8. 5. .85 5. 20. 4. -2. -1

FW12 Priors 15. .5 8. 5. 2. 10. 30. 4. -2. -1

Hyperprior θ Npos Npos Npos Npos Npos Npos Npos Npos Nneg Nneg

Hyperpriors 11.08 .3542 8. 5. 1.425 7.5 25. 4. -2. -1

The categorical framework parameters are θfwcat = {PRT∆v, PRT∆x, PRTv}, in

units of timesteps rather than seconds.

The random variable-to-parameter assignments are as follows:
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Params. PRT∆v PRT∆x PRTv

Prior θ Multinomial Multinomial Multinomial

FW1 Priors [0, 0, 1, 0] [1, 0, 0, 0] [0, 1, 0, 0]

FW2 Priors [0, 0, 0, 1] [1, 0, 0, 0] [0, 1, 0, 0]

FW3 Priors [0, 0, 1, 0] [1, 0, 0, 0] [1, 0, 0, 0]

FW4 Priors [0, 0, 0, 1] [1, 0, 0, 0] [0, 1, 0, 0]

FW5 Priors [0, 0, 1, 0] [1, 0, 0, 0] [1, 0, 0, 0]

FW6 Priors [0, 0, 0, 1] [1, 0, 0, 0] [0, 1, 0, 0]

FW7 Priors [0, 0, 1, 0] [1, 0, 0, 0] [1, 0, 0, 0]

FW8 Priors [0, 0, 0, 1] [1, 0, 0, 0] [0, 1, 0, 0]

FW9 Priors [0, 0, 1, 0] [1, 0, 0, 0] [1, 0, 0, 0]

FW10 Priors [0, 0, 0, 1] [1, 0, 0, 0] [0, 1, 0, 0]

FW11 Priors [0, 0, 1, 0] [1, 0, 0, 0] [1, 0, 0, 0]

FW12 Priors [0, 0, 0, 1] [1, 0, 0, 0] [0, 1, 0, 0]

Hyperprior θ Dirichlet Dirichlet Dirichlet

Hyperpriors [.917, .917, 4., 4.] [11., .917, .917, .917] [5.17., 6.83, .917, .917]

6.5 Calibration Methods

6.5.1 Calibration using Bayesian Inference

Choosing an MCMC Algorithm

Two MCMC algorithms are used in this work, Random Walk Metropolis-Hastings

(RWMH) and Hamiltonian Monte Carlo (HMC). RWMH is introduced in Chapter

3. HMC is an advanced algorithm that uses gradients to inform its proposals for

the next state to be explored during inference, [Bet18]. HMC can require many

fewer iterations to converge than alternative algorithms like RWMH. To calibrate the

probabilistic IDM, HMC is used because the model equations are differentiable. For

W99 and WZDM models, RWMH is used because it does not require models to be
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differentiable, and these models have discrete sub-components that are conditionally

selected for use at each timestep.

Testing for MCMC Convergence

To determine at what number of burn-in steps that the search for the target joint

distribution converges, the searches are run multiple times with each successive run

including an additional 2500 steps, starting with 2500 at the base run. The search

is considered to have converged on a solution when the difference in joint probability

between two consecutive runs falls below an arbitrary threshold.

6.5.2 Calibration using Evolutionary Optimization

To discover the best solution achievable using the differential evolution algorithm, an

appropriate fitness function must be used, and the best possible set of hyperparameter

values must be identified given the model and data. Two search methods are used in

this work, grid search and Bayesian Optimization.

Choosing a Fitness Function

The fitness function used is the average of the root mean squared errors per car-

following instance or sub-group batch, plus an additional regularization term of the

Euclidean distance between the candidate parameter values and the prior values given

in the literature. The magnitude of the regularization term’s contribution to the

model equations is scaled by an additional hyperparameter, lambda.

Hyperparameter Tuning via Grid Search

Grid search exhaustively tests a fixed set of combinations of hyperparameter values,

performing calibration once for each combination. Crossover probabilities between
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0.1 and 0.9 with a step size of 0.2, differential weights between 0.1 and 1.9 with a

step size of 0.2, and lambda between 0 and 0.0001 with step sizes of 0.0000025 were

considered.

Hyperparameter Tuning via Bayesian Optimization

Bayesian Optimization (BO), [Fra18], is one variant of sequential model-based opti-

mization (SBMO), a class of algorithms that search a function space for functions

with optimal outputs given some particular inputs. In each iteration of a search,

SBMOs measure the utility of points in the parameter space and choose the point

thought to yield the best output of a function in the function space evaluated on

those parameters. Bayesian optimization can be considered to improve on grid search

because it can require fewer function evaluations and because it can discover param-

eter values that fall inside the gaps in continuous space that would go unevaluated in

a grid search.
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CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Baseline Experiment using the Intelligent Driver Model

In this experiment, the Intelligent Driver Model was used to establish the ability of

the Bayesian framework to address the research questions outlined in Chapter 1 before

proceeding with the development of the much more complex Wiedemann ’99 model

and FHWA Work Zone Driver Model. The IDM has only three observed variables

and seven parameters, compared to six and 11 for W99, and to six and 18 for WZDM.

Further, its formulas are simpler and easier to interpret. To develop the calibration

framework quickly, this experiment used a subset of the data set used in the other

experiments that only contained 209 instances, but still included all 53 drivers. The

results of calibration and their consequences for the five research questions listed

below are discussed.

1. In general, can a calibration procedure based on Bayesian inference produce

measurably better results than one based on a genetic algorithm when available

field data is low in quantity?

2. Given the use of Bayesian calibration, how do partially-pooled models that are

structured hierarchically improve calibration results over fully pooled models

when simulating the full population of car-following instances, if at all?

3. How do the partially-pooled models improve on unpooled models when simu-

lating per-framework or per-driver car-following instances, if at all?

4. Can a Bayesian calibration procedure provide a rigorous way to measure the

sufficiency of the size of a data set?
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Table 7.1: Fully Pooled IDM Calibration Results

Prior σ: – .5 1. 10. 100.

Param. Prior µ Posterior µ
v0 33.33 33.358 1.1768 11.176 81.642
T 1.6 0. .2491 1.1198 9.7124
a .73 .0014 0. 0. 0.
b 1.67 207.27 292.55 921.98 2891.3
δ 4. 3.7497 1.0231 6.5504 66.213
s0 2. .0008 .9094 5.1712 28.397
s1 0. .001 .5916 4.3731 41.215

RMSE 13.068 .1971 .1834 .1593 .1529

5. Can the Bayesian approach to model validation give a more convincing measure

of a model’s goodness of fit than the hypothesis tests traditionally used in car-

following model calibration?

7.1.1 Addressing Research Question 2

A discussion about Question 2 will set the stage for a discussion about Question 1,

and so that is done here first. Question 2 can be addressed by comparing the entries in

Table 7.1 and Table 7.2, and observing the effect that the two forms of regularization

have on the parameter estimates. Recall that the strength of the influence of the

prior, which is governed by the value of σ, has a regularizing effect on the search, with

regularization increasing as σ decreases, and that use of a hierarchical arrangement

of parameters also induces regularization, both for the super-population parameters

and the sub-population parameters. The results show that combining a strongly

informative prior with a hierarchical model structure yields the only results that are

physically realistic while still improving on the evaluation metric, Root Mean Squared

Error (RMSE) relative to the default values.
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Table 7.2: partially-pooled (L2) IDM Calibration Results

Prior σ: – .5 1. 10. 100.

Param. Prior µ Posterior µ
v0 33.33 30.413 27.013 2.7433 .2553
T 1.6 .2983 .0012 .0024 .0016
a .73 .0727 .049 .0083 .0010
b 1.67 3.5683 4.9244 20.819 38.673
δ 4. .0134 .0004 .0002 .0004
s0 2. 2.1689 3.5817 .0626 .0233
s1 0. .6790 .0849 3.0907 2.5064

RMSE: 13.068 3.3696 2.3701 .6797 .4361

Table 7.1 shows results for the fully pooled formulation of IDM, with one cali-

bration performed for each of four choices of prior strength. Generally, the posterior

mean estimates deviate from the prior mean values the least when σ is at its lowest

value, and the most when σ is at its highest value. The root mean squared errors

are negatively correlated with regularization, increasing monotonically as the initial

value of σ decreases. The means and their RMSE are compared rather than the full

posterior distributions because the probabilistic models are also later compared with

a model calibrated using Differential Evolution, which produces point estimates.

Table 7.2 shows results for the super-population (level-2) parameters of the partially-

pooled IDM, using the same options for prior σ. The regularization trend continues

as evidenced by the RMSE values. Estimates start to fall within the ranges given in

[IDM paper] when σ equals 1, but it is only when σ equals .5 that that all values

are consistent with this particular data set. Specifically, the value of b, which is the

”comfortable deceleration” value falls for the first time below the value that is known

to be the maximum acceleration of the instrumented research vehicle used to collect

the data, which is just over 4m/s2. As the true maximum acceleration, this is a

generous upper bound for the maximum deceleration, which is certainly lower.
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7.1.2 Addressing Research Question 3

With the benefit of the two forms of regularization clearly demonstrated in the case

where a single set of parameters is desired to be shared across all sub-groups, which

is all drivers in the case of IDM, the benefit to estimating sub-group parameters

can be discussed. In this case, the results are inconclusive and Question 3 remains

unanswered by this experiment. The results can be described as random, with some

sub-group posterior means being pulled moderately toward the population mean rel-

ative to the corresponding unpooled estimates, and others pushed in the opposite

direction substantially. While some partially-pooled parameters, like desired velocity,

yielded reasonable values for all drivers under the hierarchical model, other parame-

ters, like comfortable deceleration, had values ranging between a plausible one order

of magnitude and an absurd four orders of magnitude. The RMSEs averaged across

all drivers differed by only .0337 between the best-performing partially-pooled and

unpooled models, a marginal difference. In fact, the partially-pooled RMSE was the

higher of the two, which is inconsistent with expected regularization behavior.

7.1.3 Addressing Research Question 1

Finally, we can return to Question 1 and compare the results of the calibration using

Differential Evolution in Table 7.3 with the partially-pooled level-2 Bayesian cali-

bration results in 7.2. The method of regularization, a penalty term added to the

evolutionary optimization objective function that penalizes estimates that are distant

from the initial values, produces a similar trend to the Bayesian regularization, with

RMSE increasing monotonically as the strength of regularization, given by the value

of α, increases. In terms of consistency with physics, the left-most two solutions in

Table 7.3 are plausible, while having RMSE values that are competitive with the

hierarchical Bayesian model, but the value of comfortable deceleration, b, remains
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Table 7.3: Differential Evolution IDM Calibration Results

Regularization Scale (α): .95 .65 .35 .05

Param. Initial State Terminal State
v0 33.33 33.306 33.303 33.302 33.323
T 1.6 .3147 .2554 .1783 .049
a .73 .1384 .0972 .056 .0126
b 1.67 6.3596 7.4918 9.8503 24.382
δ 4. 3.9479 3.9351 3.9215 3.94494
s0 2. 1.8445 1.7638 1.5884 .7034
s1 0. .6186 .5987 0.5566 0.3293

RMSE: 13.068 4.1866 3.4474 2.5214 .9962

outside of the bounds defined by the known maximum value of the instrumented

research vehicle.

So, for this particular model, and this particular data, and the two competing

calibration procedures used, it can be said that the Bayesian procedure gives a better,

more useful result than the evolutionary algorithm-based procedure.

7.1.4 Addressing Research Question 4

Regarding the measurement of data size sufficiency, the influence of the regularizing

prior specification on the calibration results absolutely indicates that a substantially

larger data set could benefit the project. Recall that the influence of the prior in

Bayesian models diminishes as the amount and completeness [REF 23] of the data

increase and more closely approximate the true, real-world data distribution. In this

experiment, when regularization is weak, posterior estimates deviate dramatically

from plausible values. This is especially evident for the desired velocity, v0, and

comfortable deceleration, b, estimates.
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7.1.5 Addressing Research Question 5

Application of PSIS-LOO cross-validation, introduced in Chapter 3, proved to be in-

effective for the three probabilistic models. The technique has a built-in diagnostic

indication of when it cannot be relied upon as a validation measure for a given model.

The Pareto distribution used in PSIS-LOO has a parameter, tail index, which is esti-

mated. Theoretically, this parameter must be greater than zero, but in the PSIS-LOO

paper, estimated below 0.7 are considered invalid. For all three models to which PSIS-

LOO was applied in this experiment, the tail index was estimated to be a negative

value. This means that direct cross-validation, which is highly time-consuming, would

be required to validate these models, given their data and calibration procedure.
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CHAPTER 8

CONCLUSION

The Bayesian inference paradigm enables effective parameter estimation for physics-

based models to be performed in circumstances when data supporting that estimation

are limited, yielding estimates that are useful when other methods based on optimiza-

tion do not, as was demonstrated in this thesis using car-following models for traffic

simulators particularly. The experiments presented in Chapter 7 showed that the

joint application of two regularization techniques specific to the Bayesian framework,

partial pooling and strongly-regularizing priors, could produce estimates for all pa-

rameters of the Intelligent Driver Model that were both within the theoretical bounds

defined in the paper that introduced the model, and also consistent with the physical

constraints of the instrumented research vehicle used to collect the car-following data

used to fit the model. An alternative estimation approach based on the evolutionary

optimization algorithm Differential Evolution, paired with a standard penalty term

regularization method, did not manage to produce competitive results to the Bayesian

method, even when advanced hyper-parameter tuning techniques were employed.

8.1 Challenges and Future Work

The success of the Bayesian model calibration procedure was demonstrated for the use

case wherein a single set of parameters is desired to represent the behavior of many

drivers under many different driving regimes and roadway types. When applied to

the use case wherein different sets of parameters are desired for each driver or driving

condition, the experiments did not yield conclusive results.

The original objective of this project was to ultimately design, calibrate and val-

idate a probabilistic version of the Federal Highway Administration’s Work Zone

Driver Model using a procedure developed using the IDM model. The WZDM has
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built into it a natural hierarchical structure, with twelve instances of the same set of

model equations having twelve instances of the same set of free parameters to esti-

mate. This mirrors the second use case for which the experiments using IDM yielded

inconclusive results. Thus, while the data analysis presented in Chapter 5 and the

probabilistic formulations of the WZDM in Chapter 6 set the stage for a Bayesian cal-

ibration procedure to be performed on that model, more work is required to identify

and understand the reason why the experiment outcomes were not consistent with

expectations based on the literature review performed on Bayesian methods, which

is summarized across Chapters 2 and 3.

Another task for future work is the addressing of the fifth research question out-

lined in the introduction of this thesis. The Pareto Smoothed Importance Sampling-

based Leave-one-out (PSIS-LOO) cross-validation, [VGG17], proposed at the outset

of this project turned out to yield reliable estimates of LOO-CV, meaning the tra-

ditional cross-validation must be performed to validate the models explored in the

experiments.

8.2 Source Code Availability

The methods and results of this are intended to be reproducible, and to that end

source code will be available on GitHub at the URL: https://github.com/foabodo/pwie

when the repository is made public at a future date.
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APPENDIX A

THE DOUBLE GAMMA DISTRIBUTION

The Double Gamma (a.k.a. Reflected Gamma or Two-sided Gamma) distribution

has three parameters, µ, β, and γ, which correspond to the location, scale, and

concentration (a.k.a. shape). In an alternative parameterization that utilizes a rate

parameter, typically also named β, that is equal to the inverse of the scale. In this

appendix, the formulas required to compute the PDF, Shannon entropy, and other

statistics are provided.

The Double Gamma distribution was newly implemented in TensorFlow Proba-

bility in support of this project using the equations.

A.1 The Probability Density

The probability density function is given in [HF97] to be:

f(x) =
zγ−1e−z

2βΓ(γ)
, (A.1)

with:

z =
|x− µ|
β

, (A.2)

and where Γ is the Gamma function.

A.2 About the Mean, Median, and Mode

As a location-scale distribution, the mean of the Double Gamma is equal to the value

of its location parameter. The median and mode are also equal to the location.
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A.3 The Standard Deviation

The standard deviation as a function of distribution parameters is derived from the

coefficients of variation given in [SCK05] to be:

σ =
√

Γ(γ)Γ(γ + 2)− Γ(γ + 1)2, (A.3)

where Γ is the Gamma function.

A.4 The Shannon Entropy

The Shannon entropy is given in [NZ03] to be:

HSh = log(2)− (γ − 1)Ψ(γ) + log(Γ(γ)) + γ, (A.4)

with:

Ψ(x) =
d

dx
lnΓ(x) =

Γ′(x)

Γ(x)
(A.5)

being the Digamma function, and where Γ is the Gamma function.

A.5 About the Kullback-Leibler Divergence

While there exists a closed-form solution to the KL-divergence, [KL51], between two

Laplace distributions, Laplace being a special case of the Double Gamma where the

shape parameter γ equals 1, no KL-divergence between two Double Gamma distribu-

tions could be identified in the literature, and none was derived in this project. For

the purposes of this project, a generic KL-divergence formula applied to samples was

sufficient.
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