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ABSTRACT OF THE DISSERTATION 

GROUND MOVING TARGET DETECTION FOR AIRBORNE RADAR USING 

MACHINE LEARNING APPROACHES 

by 

Rafi Ahmed 

Florida International University, 2022 

Miami, Florida 

Professor Hai Deng, Major Professor 

Airborne radar faces many challenges to suppress unknown interferences from 

ground reflections to detect slow-moving targets. In this dissertation work, a feature-

based machine learning approach is proposed to effectively classify target and 

interference such as ground clutter without actually removing them using traditional 

methods.  Multiple features are considered for developing the target/clutter classification 

algorithms of airborne radars with digital arrays. The features we use for classification 

include the clutter proximity measures and target geometric feature.   

The proximity feature is extracted to distinguish target, and clutter in location in 

the Doppler-angle domain for airborne radar.   The Euclidean distance between a signal 

and the locus of the expected clutter ridge is known as clutter proximity feature. The 

distance feature value is generated for each non-zero signal pixel in the angle-Doppler 

domain of the radar data. Ground moving target and clutter signals are classified and 

recognized based on the feature for target detection without removing clutters in 

traditional filtering methods. The proposed feature method is especially effective for 

target detection in inhomogeneous clutter environment.  
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In some radar operational scenarios, a single feature might not be enough, and we 

further introduce the geometric features as well as proximity feature to the machine-

learning target detection method to improve the target detection performance.  Several 

geometric features such as block size, roundness ratio, and bending energy are used to 

extract the relevant geometric information indicating target and clutter geometric 

differences. The extracted features are then utilized to classify target and clutters reliably 

and robustly.  

The effectiveness of the proposed feature-based methods is validated by the 

simulation results based on typical airborne radar systems.  This study also demonstrates 

substantial performance improvement over traditional target detection methods such as 

space-time adaptive processing (STAP) and Beam-Doppler Image Feature Recognition 

(BDIFR) methods. 
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I. INTRODUCTION 

Typically, airborne radar systems confront interference and noise to detect small 

targets with low velocity. The interference can be categorized as ground clutter that is 

mostly generated from the natural environment of earth’s surface. On the other hand, 

thermal noise is a random and unwanted disturbance that is always present in the radar 

receiver. However, the most challenging task for a radar is to remove or recognize 

clutters in an unknown environment. This dissertation mainly focuses on classifying 

clutter signals non-adaptively to detect the target in the presence of thermal noise.  

 

I.1. General Overview of Airborne Radar 

 

I.1.1. Radar system 

 

In this work, pulsed Doppler (PD) radar is used for ground moving target 

detection (GMTI). PD radar is suitable for detection and tracking of moving targets with 

three advantages of digital processing, flexibility and coherence [1]. It has an advantage 

of better performance than continuous wave (CW) radar in terms of transmitted power 

and receiver sensitivity as well as reflections of interference [2]. PD radar consists of 

exciter, transmitter, receiver, array antenna and signal processor. Transmitter contains a 

microwave power amplifier whereas, receiver comprises in-phase and quadrature 

detectors. Array antenna consists of several isotropic elements that radiate power to 

minimize sidelobes [1]. After receiving and digitizing the echo data in the radar system, 

the further processing could be performed either with conventional or artificially 

intelligent approach. 
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I.1.2. Artificially intelligent (AI) and conventional radar 

 

With the technology evolution, radar systems have changed dramatically with the 

availability of machine learning (ML) approaches. The performance of AI radar improves 

with the data training. Since the ground clutters are very challenging task to suppress 

from the radar scene, learning the clutter environment with training data could ensure 

much more robust and powerful detection than conventional radar. Whereas conventional 

radars depend greatly on analytical solution and provide unequivocally good 

performance. However, they have some limitations such as: 

• Interference needs to be suppressed or totally eliminated using a filter 

before the target detection 

• To facilitate the filtering process, one needs to estimate the interference 

such as, clutters in the radar scenario using their statistical information. 

• The detection performance is extremely sensitive to the interference 

estimation accuracy. 

Majority of these limitations can be overcome by AI radar classifier. Because- 

• Interferences are not actually suppressed rather they are recognized 

• AI radar classifies radar data as either interference (H0) or target along 

with interference (H1) 
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The steps for AI radar can be visualized with the Fig. I.1. It represents the salient 

processes to build the AI classifier such as,  

✓ Preprocessing (Transformation) 

✓ Feature extraction 

✓ AI classification 

Assume the feature vector extracted from the radar data are: 1 2[ , ]T

Lf f f=f  

One way to solve the problem is to find the posterior probabilities (equivalent to a 

classifier): 

 
1 0 1

1 0 0

( ) ( )   in H  subspace

( ) ( )   in H  subspace

P H P H

P H P H

 

 

f f f

f f f
 (I.1) 

It is further assumed that the radar feature data components are statistically independent. 

Likelihood functions for each feature component need to be estimated: 

 0 1( ), ( ),  1,2,j jp f H p f H j L=  (I.2) 

To estimate the feature vectors, one can use approximation function utilizing the training 

data. Alternatively, they can be approximated with histogram functions generated from 

the training data. However, the training data must be sufficient to cover all possible radar 

operation scenarios. Simulated radar data are also acceptable for training the AI radar if 

the mechanism for generating data is clear. AI training data are the labeled datasets 

 

 

Figure I. 1 AI radar classifier 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure I. 2 AI radar classifier 
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generated by the same or similar radars and simulated under all possible environments 

and targets. 

As for the training data, AI radar does not need to use secondary samples from the 

adjacent range cells together with cell under test (CUT). In contrast, conventional radar 

uses multiple different independent and identically distributed (IID) from the adjacent 

range bins. Fig. I.2 delineates the major difference between them. 

The classifier of AI radar could be implemented with perceptron networks 

(unknown feature distributions) or even deep-learning networks (useful for target 

recognition). This type of smart radar system is capable of detecting moving targets in 

heterogenous clutters. 

 

I.1.3. Clutter 

Clutter is the most challenging interference encountered by airborne radar. It can 

be defined as unwanted radar signal echoes that deter the detection of targets. The clutters 

could be the reflections originated from sea waves, chaff, rain, birds, etc. When clutter 

echoes come from land or sea, they are categorized as surface clutter. Ground or land 

 

Figure I. 2 AI radar vs. conventional radar 
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clutter is the most difficult interference in the domain of target detection. The ground 

terrain’s irregularity and dielectric characteristics make it more unpredictable with 

respect to airborne platform. Clutter environment varies with frequency as well. Usually, 

rugged surface of hill, vegetation areas have linear relation with frequency [1]. Clutter 

power is considered to be higher than the receiver noise power. In fact, the clutter power 

increases with the increase of transmitter power. Besides, clutter distributions vary 

randomly and make the nature of estimation difficult due to the amplitude variation. 

There are various types of clutter model used by the radar researchers. Gamma 

distribution model, K-distributed model and Gaussian distributed model are widely used 

approaches to simulate clutter spectrum 

 

I.1.4. Thermal noise 

 

Thermal noise is originated from random fluctuation of charge carriers. The noise 

is also known as white noise which is always present in the radar receiver. Moreover, 

there are some other noises that have same type probability distribution like thermal 

noise. They also contribute to generate thermal noise in the radar receiver. In addition, 

thermal noise greatly depends on the bandwidth of each receiver channel.  

I.1.5. Target 

Target is the desired signal component of a moving object detected by radar. 

Usually, the target is described by the azimuth and elevation angles, radar cross section 

and relative velocity according to the radar platform. Moreover, the target signal shows a 

point shape feature in the transformed domain with a spread in both angular and Doppler 

frequency. 
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I.2. Literature review 

 

I.2.1. Traditional approaches 

 

From the advent of radar technology, various forms of ground clutter suppression 

technique have been introduced to mitigate the interference. PD radar is the first of kind 

that can reject clutter in the presence of low-speed targets [2,3]. However, the automatic 

rejection of interference fails when it confronts the inhomogeneous (the amplitude of 

clutter patch varies randomly from one range bin to another) clutter [3]. In contrast, 

moving target indication (MTI) shows better performance than PD radar in the airborne 

surveillance system. Moreover, MTI Doppler filters can utilize multiple pulse repetition 

frequencies (PRFs) to reduce the overlapping of target and clutter signal. Some form of 

MTI uses efficient memory technique to avoid blind velocity phenomenon [2]. Yet, 

platform motion makes the MTI filtering process difficult to achieve and can cause 

undesired compensation error on clutter spectrum [4]. Displaced phase center antenna 

(DPCA) is one of the non-adaptive solutions to the problem of motion compensation. The 

DPCA also improves the performance when the clutter spectrum width is small. 

However, the method needs rigorous condition regarding the platform velocity and the 

pulse interval [5]. Also, non-adaptive DPCA suffers from antenna sensor errors due to 

phase and amplitude variation [6]. These errors could be resolved by an adaptive MTI 

system that compensates the differences in phase and amplitude [7]. However, internal 

clutter motion and non-linear clutter ridge due to the aircraft crab limit the performance 

of both non-adaptive and adaptive DPCA [6]. 

Moving platform effects can also be overcome by a compensation technique 

applied to the Doppler shift in clutter spectrum. Time average clutter coherent airborne 
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radar (TACCAR) is a well-known method that compensates platform speed by 

approximating the center Doppler frequency of the clutter [7]. However, TACCAR needs 

specific order for the range interval and coherent signal generator for the expected 

compensation [8]. Moreover, clutter coherent method incurs signal to interference plus 

noise ratio (SINR) loss and may require additional sample data [9]. In contrast, [10] 

proposed a clutter mitigation technique that uses a matrix that compensates Doppler shift 

of clutter without using secondary training samples. However, the approach often fails to 

remove all of the clutter signal and the subspace contains some residues since the 

compensation operator is not totally perfect. 

Space-time adaptive processing (STAP) is a ubiquitous solution to the DPCA and 

non-adaptive compensation problem that is extensively used to suppress the clutter in 

phased array radar [5,11−15]. STAP has the ability to detect slow-moving target that are 

relatively small and suppress inhomogeneous clutter [5]. However, a significant amount 

of independent and identically distributed (IID) secondary data is required to estimate the 

clutter covariance matrix (CCM). The RMB rule (coined by Reed, Mallett, and Brennan) 

suggests that the number of secondary samples must be at least twice the product of 

antenna element of linear array and number of transmitted pulses in one pulse repetition 

interval (PRI) to estimate the CCM appropriately [11]. Besides, the STAP has a problem 

of convergence in CCM estimation and lacks optimum performance for inhomogeneous 

clutters. These convergence rate can be improved by sample covariance matrix in [12] 

and asymptotic solution is given in [13] to reduce performance loss. Wu et al. proposed 

an algorithm to get the training data selectively for clutter estimation and thereby reduces 

secondary sample requirement [14]. Still, the stipulation of [11] makes the 
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inhomogeneous clutter suppression difficult for operational radars since, the secondary 

data is hardly available in terms of practical implementation [5,11,15]. Some researchers 

developed adaptable virtual redundancy sensor elements to estimate the CCM of STAP 

[16]. Also, subspace method of STAP improves the performance and reduces the number 

of range bins for inhomogeneous clutter estimation [17].  

To reduce the number of secondary training data, reduced dimension (RD) STAP 

can be adopted to convert it to a partially adapted process [18]. Reduced dimension can 

be obtained using auxiliary channel method [19], factored technique on space-time data 

[20] and joint domain algorithm [21]. Nevertheless, implementation of RD techniques 

becomes difficult due to the lack of sufficient IID secondary data in inhomogeneous 

clutter environment [22,23]. Whereas sparse recovery (SR) algorithms attain optimum 

performance with a very few amounts of secondary data samples [24,25]. SR-STAP 

approach also improves computational complexity of SR dimension problem [26]. 

However, SR technique show a performance degradation with limited secondary samples 

of inhomogeneous clutter scenario [27]. Furthermore, clutter inhomogeneity incurs high 

computational resources to estimate the CCM accurately [18,26,27].  

Reduced rank (RR) approach is another solution of adaptive filter processing to 

achieve dimensionality reduction of STAP. Eigen value analysis is one of the first 

methods to reduce clutter rank [28]. Cross-spectral metric is also a fine method to the 

adaptive filter techniques adopted clutter rank reduction [29]. Besides, multistage Wiener 

filter (MSWF) [30], auxiliary-vector filters (AVF) [31] also provide optimal convergence 

in achieving reduced-rank adaptive filter. However, these filters are very involved and 

incur numerical errors in the real-time application [32]. 
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A more viable approach compared to RR technique is the deterministic STAP 

(also termed as direct data domain or D3) since it only needs the echo data from the cell 

under test (CUT). Previously, conjugate gradient approach [33], least squares method 

[34,35] introduce D3 concepts to process spatial-temporal snapshot with improved 

resolution of two-dimensional filter. The purpose of these methods is to eliminate 

unwanted information in the range gate with the aid of target azimuth and Doppler 

profile. In fact, some of the developed D3 methods are suitable for clutter suppression 

even when the knowledge about the radar operation scenario is not totally accurate [36]. 

However, the algorithm costs some of the degrees of freedom (DoFs) to suppress the 

interference effectively [37]. 

Knowledge-aided (KA) approaches were also popular to address the data required 

for STAP and DoFs. CCM estimation based on prior information with Kronecker product 

operation provides significant performance improvement by reducing parameter 

estimation [38]. Besides, STAP based on Bayesian approach uses prior information about 

the estimation of covariance matrix. Moreover, terrain data, platform speed, radiation 

direction of radar sensor array can also be used to detect target-like signals [39]. prior 

knowledge or information can be achieved via training data or the filter processing [40]. 

Alternatively, regularized scheme for STAP develops the concept of knowledge aided 

adaptive matched filter (AMF) ensuring accurate estimate of CCM [41−43]. However, 

computational burden and large amount of training data are the main obstacles to obtain 

desirable performance of this method. Thus, [44] introduces a knowledge based 

parametric approach for matched filter with limited training data. The method has an 

advantage of having better performance in case of uncertain prior knowledge. On the 
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contrary, shrinkage model is another KA-STAP technique that reduces the dependency of 

large training data. Moreover, the model does not need an accurate estimation of CCM 

[45]. Meanwhile, [46] develops a prior knowledge-based suppression technique to 

optimize the STAP performance via modification of radar system. However, there are 

several factors that can adversely affect the KA approaches. Prior knowledge could often 

contain imprecise information owing to estimation, or obsolete information [46]. 

Moreover, statistical and structural information about the CCM is quite difficult to obtain 

for inhomogeneous clutters [48,49].  

Compressive sensing (CS) is the process of extracting information from 

compressed radar data samples without signal reconstruction [50−52,56]. CS technique is 

very effective in the application of radar target detection. There are various types of CS 

method used in modern radar systems. Full Nyquist rate-based target detection schemes 

have been used since the advent of CS application [53,54]. However, these methods do 

not consider lower the sampling rate under Nyquist rate. Hence, sub-Nyquist sampling 

system is an alternative approach to detect the Doppler frequency of the target and clutter 

spectrum [55]. PRF based compression technique is one of them and it can be utilized 

even when the signal is sampled under Nyquist rate [56]. CS sampling with quadrature 

has recently gained popularity to reconstruct radar signal in the receiver end. This method 

is also used to detect the target by using a small amount of training data and thereby 

improve the detection performance as well as clutter suppression [57,58]. On the 

contrary, some researchers developed velocity-based clutter suppression approach before 

applying CS algorithm. With a chosen range corresponding to the clutter velocity, the 

moving targets can be detected with minimal error [59]. Knowledge aided compressing 
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sensing is also applied to radar echo as an alternative to STAP. Global matched filter 

(GMF) with prior information about signal has the capability to detect the target and 

clutter by one snapshot of spatial-temporal vector [60]. However, CS algorithms have 

major disadvantages in interference and noise suppression. They often stipulate rigorous 

condition on radar transmitter that affects the suppression procedure [55, 61,62]. Besides, 

some approaches lack in detection and elimination performance of real clutter 

environments [53,63]. Most importantly, CS methods often fails to detect target that are 

close to the clutter Doppler frequency and might erroneously reject the target signal as a 

clutter [55,58].   

I.2.2. Feature-based approaches 

 

To minimize the requirement of secondary training data with the help of recent 

machine learning and artificially intelligent (AI) radar technology evolution, GMTI 

community puts significant effort on the feature-based approaches in the airborne radar 

signal processing. Depending on different attributes of radar target and interference, 

researchers have put a lots of successful classification algorithms from late 20th century. 

In 1982, Doppler frequency features are used to classify radar clutter [64] . Later, 

parametric statistical classifier demonstrated improved accuracy on target and clutter 

classification [65].  Afterward, Haykin et al. introduced neural network classifier to 

detect target from different types of clutter. The classifier obtained 89% of accuracy with 

single snapshot of radar environment. Skewness and kurtosis of magnitude change of 

samples, relative power and variance of radar signal, signal-to-noise-ratio (SNR) are used 

as features for the classifier. The features are then fed to a four-layer feed forward 

network. The classifier also applied back-propagation algorithm to learn the optimal 
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weights [66]. Another classifier in [67] can identify the clutter amplitude distribution. 

However, it requires large set of training data to get a proper classification accuracy. 

Moreover, non-Gaussian distributed clutter classifier were designed in [68] utilizing the 

shape parameter of the distribution. Alternatively, time-frequency features are also 

successful in classifying radar clutter [69]. However, clutter features in time-frequency 

domain are difficult to extract for surveillance radar. Hence, classification method based 

on statistics such as, Gaussian mixture model (GMM) showed improved target-clutter 

classification. The algorithm worked with maximum likelihood (MaxL) estimation rule to 

classify target from real radar data [70]. Recently, artificial neural network (ANN) is used 

as a radar classifier for target detection in a simulated environment. Polarimetric features 

generated by the Prony algorithm are then provided to the classifier [71]. Although the 

method provided good accuracy in simulated data, the classifier often fails to detect target 

in inhomogeneous clutter environment since the polarimetric features change largely with 

target Doppler frequency. On the contrary, some researchers consider a large set of 

simulated training data with different clutter distribution and their statistical features. 

Subsequently, a neural network with two hidden layers is designed to classify the clutters 

[72]. Nevertheless, training data about different clutter scenario is expensive and difficult 

to achieve.  

Instance-based learning is also popular in radar community since it does not 

require any complex network structure and expensive training dataset. [73] proposed 

support vector machine (SVM) to track the target utilizing the radar cross section, radial 

velocity and target azimuth or range information. In [74], both SVM and k-Nearest-

Neighbor (kNN) machine learning (ML) techniques were presented to detect target in the 
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midst of sea clutter. Two algorithms were compared and kNN demonstrated lower false 

alarm rate than the SVM technique. The authors in [74] also suggested that the 

performance of ML based clutter suppression could be improved with the more training 

data. Whereas Shui et al. explored kNN model to segment ground and sea clutters using 

phase, amplitude, and Doppler information. The similarity parameter is used to 

differentiate ground and sea clutter using Doppler frequency range. The approach also 

showed optimal performance in real data collected by airborne radar [75].  

While the NN and instance-based approaches are widely accepted in the detection 

of ground moving targets, some other feature-based techniques such as linear or 

polynomial feature space put notable contribution with limited training samples.  In [76], 

linear regression model is applied to find the target Doppler and azimuth information. It 

implies that, each grid of azimuth-Doppler plane is considered as a separate class. The 

method worked better than STAP since it can detect target with few numbers of training 

bins. Although the linear feature model is better than STAP, the performance might 

degrade due to the variation of SINR. Thus, [77] offered a polynomial classifier that 

provide more performance and accuracy compared to linear model. To reduce the 

performance deterioration in the presence of weak target signal, the classifier is arranged 

with a STAP system in series combination. However, the classification system in [77] 

brings additional computational resources that makes the system vulnerable for low 

SINR.  

Recent development in deep learning models also shows a way to improved 

feature based leaning systems in radar target detection. The advancement not only 

reduces the hard thresholding of hypothesis assessment but also enables the radar to 
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classify target and interference instead of applying filtering processes to retrieve the 

target. Recently, deep neural networks have been studied and utilized extensively in 

various of radar signal processing [78].  Especially, [79] investigated the target detection 

using recurrent neural network (RNN) to solve signal detection and estimation problem. 

As for the waveform design, authors in [80] proposed convolutional neural network 

(CNN) based time-frequency technique that recognized radar waveform and decrease the 

noise level. For recognition purpose, [81] devised a new Boltzmann machine-based 

network model to extract different uncorrelated features of radar echo signal. The 

recognition model works well with low SNR requirement. However, the computational 

burden of this model is very high without using deep layers inside it. To reduce the 

complexity of deep learning hardware, some researchers developed methods with 

reduced arithmetic operations for radar application. There are several algorithms that 

have made efforts to simplify the backpropagation algorithm of neural networks [82,83]. 

Using the simplified algorithm of [83], authors in [84] proposed deep belief network 

(DBN) based radar system that can detect small and slow-moving targets. The DBN used 

in this system ensured the low complexity by modifying the multiplication operations of 

the network model. On the other hand, automatic target recognition (ATR) has used 

alternative DNN model with sparse dictionary learning that is suitable for measured radar 

data [85]. 

Since the radar echo data for the target detection of airborne radar in the presence 

of ground or sea clutter can be transformed into a two-dimensional image (range-angle-

Doppler, range-Doppler, angle-Doppler space), CNN has been applied extensively to 

detect targets regardless of low or high SINR and interference variability. The usage of 
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CNN is also very successful in detecting radar target under extreme heterogeneous 

clutter. For example, [86] applied CNN with deep layers to detect moving target in 

inhomogeneous clutter environment. The proposed approach generated augmented 

dataset from secondary training data and synthetic moving target to validate the 

effectiveness. The method was also verified with the radar mountaintop data [87]. On the 

contrary, authors in [88] employed region-based CNN providing high accuracy for 

maritime radars to detect point targets. Since radar clutter has the tendency of 

overlapping with target due to slow moving nature, authors in [89] proposed double 

channel CNN for the target detection. The model utilized the attributes of both time-

frequency and amplitude data form radar echo signal to effectively detect the target. The 

proposed approach also developed two classifiers to control the false alarm and thereby 

results in improved detection performance in the real data application. To suppress 

clutter, another CNN based approach was introduced in [90] comprising a method to 

detect point target. It also developed an approach to pinpoint the target using 

convolutional autoencoder. Even though the CNN models are very successful in 

developing radar systems that can classify and reject clutter successfully, their 

applications in real time radar signal processing are still impeded with the computational 

complexity [86,88] and large data requirement [86−90]. In real world scenario, it is quite 

difficult to achieve such highly efficient computing devices in a limited space of airborne 

or maritime radar. Moreover, generation of secondary clutter data is very expensive and 

most of the data are classified in the field of airborne radar systems. Thus, a radar with 

these high-level requirements is quite impractical in real-time implementation.  
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To reduce the data requirement and computational burden, some of the radar 

researchers introduced unsupervised feature-based ML techniques. The feature based 

unsupervised approach was first proposed by [91] where radar echo data is transformed 

from the space-time domain to angle-Doppler domain. Subsequently, the transformed 

data is denoised and region growing algorithm is applied to segment target and 

interference. Block size is the feature that is used to distinguish between target and 

interference.  Later, [92] extended the work of [91] and coined it as a beam-Doppler 

image feature recognition (BDIFR). BDIFR method verified the approach in 

inhomogeneous clutter with intrinsic clutter motion (ICM). The method was also 

compared to conventional STAP and proved to be effective in providing better 

performance. The biggest advantage of these algorithms is that they do not require any 

filtering process and clutter estimation. These algorithms work well even when there is 

limited training data. In fact, they are applicable with the echo data collected from 

primary detection range bin. However, algorithms based on these seed based clustering 

technique could not detect targets overlapped with clutters. Since, the region growing 

algorithm totally depends on the connected components in an image, target and clutter 

pixels must have to be disconnected. Otherwise, the target is falsely detected as clutter 

with the block size. Thus, necessary adjustments in the radar systems must be kept to 

prevent overlapping scenario in the angle-Doppler radar image.  

I.3. Problem Description 

 

Radar target detection with various system approach have been developed in the 

last few decades. Traditional methods are quite successful since their inception but as 

technology evolves new robust techniques replace them for the expectation of better 



17 

performance. As can be seen from the literature, most of the early methods suffer from 

accuracy in estimating the inhomogeneous clutter power distribution. In contrast, 

expected accuracy comes with the expense of large data requirement. Although these 

methods were proved statistically well enough to filter expected clutter components, 

artificially intelligent techniques made them obsolete due to their fast decision making 

and reduction of manual hard thresholding.  

The era of machine learning techniques brought significant changes in the radar 

detection technology. Even before the beginning of this era, few early literature used 

some of the simple neural network architecture to classify clutter in airborne and 

maritime settings. Afterward state-of the art ML methods has substituted  the adaptive 

filters and made better automatic radar system. Deep learning models such as, CNN, R-

CNN are being effectively utilized to improve the performance of the airborne radar and 

they greatly reduce the false alarm rate. However, these models require a large set of 

dataset and powerful computational resources to operate on the real time radar 

application. These two prerequisites of deep learning methods have prevented lots of 

potential and effective methods to undergo successful implementation. 

In this dissertation, a novel feature-based machine learning techniques are 

introduced to classify clutter and target from transformed radar echo data. The methods 

require no clutter estimation and can detect target in inhomogeneous clutters from 

primary detection bin. Besides, these methods do not use any adaptive filter and 

secondary training data. An innovative multi-feature based deep learning approach is also 

proposed to detect target overlapping with inhomogeneous clutter. 

 



18 

I.4.  Dissertation Contribution 

 

A new feature-based technique coined as clutter-proximity feature based machine 

learning approach is proposed to suppress clutters without any filtering process and 

thereby detect target. The proximity feature extracts the information about the target and 

clutter signals using Euclidean distance metric with respect to the expected clutter ridge. 

The technique has also designed a new classifier based on the statistics of training data 

and determine the detection threshold automatically on test samples. One of the salient 

features of this method is that it can work well with the few amounts of training data. 

Then the classifier is designed with the bootstrapped samples of the training data. The 

performance of this approach is evaluated and compared with conventional STAP 

method.  

Another proximity feature based technique is introduced in this dissertation to 

suppress non-linear inhomogeneous clutter due to aircraft crab. For this method, 

proximity distance feature is collected with respect to the major axis of the expected non-

linear clutter ridge. The method also has proved to be effective to detect target inside or 

outside of the clutter boundary. 

To detect the target overlapped with inhomogeneous clutters under both Doppler 

unambiguous and ambiguous case, an effective multi-feature-based target detection 

technique is developed with the aid of feed forward neural network. The clutter training 

data is generated using minority sampling technique for the training purpose of the 

network. The method also automatically detects the boundary of the overlapped target 

and segments it from the clutter. The performance of this method is verified and 
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compared with another feature-based technique to detect slow-moving targets in 

inhomogeneous clutter scenario.    

 

I.5. Dissertation Structure 

 

The organization of the dissertation is as follows: 

Chapter II elaborates the overall theoretical radar signal processing aspects of 

airborne radar. The theory basically comprises of the concepts regarding signal detection 

and estimation with a detailed statistical derivation and mathematical expression. Null 

(H0) and alternate (H1) hypothesis are defined in the section II.1 to better represent the 

target absent and target-present scenario, respectively. The airborne radar considers 

clutter, jammer as the interference, thermal noise as receiver noise and target as the signal 

of interest. Jammer is not included in this work. The clutter, noise and target model has 

been developed in the section II.2, II.3, and II.4 to elaborate the context of this 

dissertation. Lastly, the transformation of the radar echo data is presented in the section 

II.5 with the estimation criteria known as the minimum variance or Capon estimation 

operator.  

Chapter III delves into the depth of a novel feature-based detection approach 

termed as clutter-proximity feature. Section III.1 starts with theoretical aspect of 

proximity feature of clutter ridge. The clutter ridge is defined, and the weights of the 

expected clutter ridge are mathematically described. The mathematical and theoretical 

part for clutter ridge is divided into two parts. One is for Doppler unambiguous (DU) case 

and another one is Doppler ambiguous (DA) case. Section III.2 introduces some 

terminologies to explain the algorithm properly. Since, the transformed domain is a radar 

image, some definition and terms related to connected component and image features are 
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described. Section III.3 discusses the algorithm steps to classify the target and clutter 

using the denoising threshold and proximity detection threshold.  Since the training data 

is not much available, a statistical approach known as bootstrapping is utilized in this 

work that has been detailed in the section III.4. In section III.5, a new machine learning 

classifier is designed to approximate the detection threshold from the statistical 

parameters of the bootstrapped training data. Confidence interval is needed to be 

determined to obtain the upper and lower bound of the training data. The procedure is 

explained in the section III.6. The simulation results is demonstrated in the section III.7. 

Section III.8 compares the proximity feature based detection with the conventional STAP 

method. In the end, the summary of chapter III puts some concluding remarks for this 

chapter. 

In chapter IV, ground moving target detection using clutter-proximity feature in 

the presence of antenna alignment error angle is introduced. Section IV.1 begins with the 

challenge of non-linear clutter and briefly discusses the signal model corresponding to the 

theory of direction mismatch. Section IV.2 elaborates the innovative proximity feature 

for the elliptical clutter. Due to the non-linear relationship between spatial and Doppler 

frequencies, this section concentrates on the major axis of the clutter and describes about 

it. Next, simulation results are analyzed and demonstrated for this approach. Section IV.4 

puts a summary for this chapter. 

Chapter V discusses an innovative multi-feature-based machine learning approach 

for ground moving target detection. Several features such as, proximity to the clutter 

ridge, block size, roundness ratio, and bending energy etc. are extracted from the angle-

Doppler radar scene and fed to the feed forward neural network. In section V.1, a theory 
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of the of airborne signal model is again revised for multi feature approach. Section V.2 

explores the connected components in the radar image through an algorithm known as 

Hoshen-Kopelman (HK) algorithm to label the individual connected regions. It also 

describes the procedure to detect the boundary pixel to process the further target pixel 

identification. Section V.3 describes different image and geometric features to detect both 

the non-overlapped and overlapped targets. Geometric features are also mathematically 

explained in this section. In section V.4, the deep FFNN model is developed to classify 

the target and clutter. It also discusses the number of layers, regularization parameters, 

optimizer and losses. In section V.5, generation of synthetic data is described both for 

target and clutter samples corresponding to each feature. Simulation results for linearly 

extended clutter ridge is given in the section V.6 for ideal and non-ideal platform 

velocity. The simulation evaluates the scenario of both overlapping and non-overlapping 

targets in inhomogeneous clutter environment. Section V.7. demonstrates the simulation 

results for ground low velocity moving target detection due to velocity misalignment. 

The method is evaluated when the target overlaps with non-linear clutter ridge segment. 

In section V.8., The performance of the proposed approach is compared with the previous 

feature based approach known as beam-Doppler image feature recognition (BDIFR) in 

Doppler unambiguous scenario. The scenario also considers a target merged with the 

clutter. Finally, the summary of chapter V is given in the section V.9.  

Chapter VI draws some salient points of this research and future work based on 

this machine learning approach. The chapter also points out some limitation of these 

proposed methods. 
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II. AIRBORNE RADAR SIGNAL MODEL 

 

This chapter has been adapted from a previous work by the authors titled “Robust ground 

moving target detection for airborne radar using a novel feature-based machine learning 

approach”,©2022 Elsevier. In theoretical perspective, there are four types of signals 

confronted by airborne radar such as, interference, noise and target. Clutter, and jammer 

are considered as interference. Whereas thermal or white noise is regarded as a receiver 

noise. The desired signal or signal of interest is known as target. The objective of an 

airborne radar is to detect the target from the surrounding noise and interference through 

the echo data achieved from space-time (ST) domain or a transformed frequency domain 

from ST domain. Angle-Doppler, range-time or range-angle-Doppler space could be 

categorized as transformed domain. In this dissertation, radar echo data is transformed 

from ST domain to angle-Doppler domain. Also, the focus of this dissertation is to detect 

the target in an environment inflicted with clutter and noise. Hence, jammer is not 

considered as the one of the models. 

This chapter deals with widely used theoretical clutter, noise and target model to 

obtain the angle-Doppler plane scene. Segment II.1 introduces the radar configuration 

and hypothesis assumed for the radar signal detection and estimation. Section II.2 

elaborates the theoretical model complex clutter model. Section II.3 explains the thermal 

noise model of target scene. Lastly, target is modeled with a theoretical aspect in section 

II.4. 

II.1 Radar Specifications and Hypothesis 

 

An airborne radar with a linear uniform antenna array of N elements is considered to 

generate radar echo data in space-time domain for signal processing. The radar’s height 
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to the ground is h, and the azimuth and depression angles of the radar’s antenna regarding 

target are and , respectively. The radar operating wavelength is λ. We further assume 

that the radar platform moves in a direction parallel to the x-axis with a speed of Vx. The 

antenna element spacing is assumed to be d.  The radar transmits M coherent pulses in 

one pulse repetition interval (PRI) during each radar beam dwelling. The data are then 

converted into the angle-Doppler domain using the minimum variance (MV) method 

[19,92].  shows the geometry of the radar operation. 

The space-time samples of the radar data for the target scene can be expressed as, 
 

 [ (0,0), (1,1),..., ( 1, 1)]Ts s s N M= − −S   (II.1) 

where ( , )s i j is the received echo sample of the j-th transmitted pulse at element i and each 

sample contains target, clutters and thermal noise under H1 hypothesis or clutters and 

noise only under H0 hypothesis.  

H0 (null) hypothesis: When the desired signal or signal of interest is not present, then the 

received echo signal forms null (H0) hypothesis. 

H1 (alternate) hypothesis: The alternate (H1) hypothesis is valid if the radar echo signal 

contains the desired target signal as well as noise and interference. 

 

Figure II. 1 The geometry of the airborne radar platform with a ground moving target 

 

 

 

 
 

 

 

 

 

 

 
Figure II. 2 The geometry of the airborne radar platform with a ground moving target 
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Thus, the space-time samples can be written as: 
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Where Sn, Sc, and St  are the spatial-temporal vectors of the thermal noise, clutter and 

target, respectively. 

The covariance matrix of the radar data can be expressed as, 

 [ ]HE=R SS  (II.3) 

with the assumption that target, clutter, and thermal noise are uncorrelated, the 

covariance matrix in (I.3) can be further represented as the sum of the covariance 

matrices of Sn, Sc, and St of the thermal noise, clutter, and target, respectively. Hence, the 

radar data covariance matrix under the H1 hypothesis is given by, 

 c n tR = R + R + R  (II.4) 

 

II.2 Radar Clutter 

 

Ground clutter has random amplitude and is dependent on the range. The clutter shape 

and its orientation significantly depend on the radar platform speed. Whereas range  

greatly depends on pulse repetition frequency. Thus, radar range has an inherent 

characteristic of ambiguity. If the two echoes do not have sufficient delay between their 

round-trip time, the phenomenon could cause range ambiguity. For that, radar must have 

sufficient wait time to avoid the ambiguous echo. If c is the speed of light and the w is the 

pulse repetition interval (PRI) then the maximum unambiguous range can be given by: 
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Considering the radar ambiguity, the clutter is modeled as individual clutter patches in 

the azimuth angle location of the radar. This individual clutter patch has an effective area 

known as clutter patch cross section (ccs). Fig. II.2 Shows the geometric formation of 

clutter patch from the radar antenna elements.  Then the cross section is expressed as: 

 sec( )
2

t
r x

cw
ccs c R 

 
=  

 
 (II.6) 

Where,  

cr = clutter reflectivity coefficient.  

Α = the angle difference between two consecutive clutter patches;  

x  =  the clutter azimuth angle position.  

Wt = duration of ON period in one PRI. 

Hence, the clutter-to-noise ratio (CNR) for each clutter patch can be expressed as: 

 
2 4

( )

(4 )

tr eff

r

P GA ccsC

N R LN
=  (II.7) 

Where,  

 

Figure II. 2The clutter patch with respect to the antenna array of airborne radar 
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Ptr = Transmitted power of the antenna array 

G = Antenna gain
2

4 effA


=  

L = Receiver noise figure 

Nr = Receiver noise spectral density 

 

The clutter covariance matrix is given by, 

 
1

2 [ ( ) ( )] [ ( ) ( )]
c

H

x

H

c c x c x c x x

N

x

c

C

N
    

=

 
 
 

= R b b a a  (II.8) 

Where 

  denotes the Kronecker product 

2 = noise power 

cN  =the number of clutter patches 

ca is the spatial steering vector and can be written as: 

 [exp(0) exp( 2 ) exp( 2 2 )]T

c x x xj j N j    = −a  (II.9) 

with spatial frequency as, 

 
cos( )sin( )c x

x

d  


 =  (II.10) 

x is the spatial frequency, cb is the temporal steering vector and can be given by 

 [exp(0) exp( 2 ) exp( 2 2 )]T

c x x xj j M j    = −b  (II.11) 

x is the normalized Doppler frequency and defined as: 
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 dx
x

r

f

f
 =  (II.12) 

where dxf is the Doppler frequency at each clutter patch x and rf is the radar PRF. 

The clutter covariance matrix (CCM) can also be expressed in a more simplified manner: 

 
H

cc c= Ω ΩR  (II.13) 

Where 

 1 1( ) ( ) ( ) ( ) ( ) ( )][
c cNc c c cc x cx c N       =Ω b a b a b a  (II.14) 

with ( ) ( )xc c x b a has the size of MN. 

And P is diagonal matrix that can given by, 

 

( )

( )

2

1
0 0

  

0 0
cx N

C

C



=

 
 

 =  
 
 

 (II.15) 

Where C is clutter power at each clutter patch x 

 

II.3 Noise Model 

 

 

The thermal noise is always present in a receiver. Antenna elements in their 

corresponding receiver inherit this white noise without any correlation to other sensors. 

The noise could increase from the temperature rise of each element or from the outside 

environment source that affects the receiver system. The spectral power density of 

thermal noise is almost uniform in the frequency domain. The noise covariance matrix 

can be represented as, 

 
2[ ]H

n n n M NE = = R S S I I  (II.16) 
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MI and NI are identity matrices with dimension M M and N N , respectively. 

 

 

II.4 Target Signal Model 

 

Target signal is the key point of radar detection approaches. It is the desired signal that 

can be described by elevation, azimuth angle, Doppler frequency, and cross section area 

in ST domain [5]. However, in the angle-Doppler domain the target spreads and forms a 

pointed shape. The target radial velocity and position does not change very much due to 

the limited data availability and antenna dimension [92].  

With the same concept and formula applied on deriving clutter model, the spatial vector 

for point targets can be obtained as: 

 [exp(0) exp( 2 ) exp( 2 2 )]T

tg tg tt g gg tj j M j( )    = −a  (II.17) 

Where,  

 
cos( )sin( )tg tg

tg

d  


 =  (II.18) 

and the temporal vector is written as: 

 ( ) [exp(0) exp( 2 ) exp( 2 2 )]T

tg tg tg tg tgj j M j    = −b  (II.19) 

Where normalized Doppler frequency of target is: 

 dtg

tg

r

f

f
 =  (II.20) 

Here from the target Doppler frequency 
dtgf , its radial velocity can be determined as: 

 0.5
dtg tgv f =  (II.21) 

Hence, the covariance matrix for point targets can be obtained as: 
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2 [ ]H

t t t t =R v v  (II.22) 

where,  

 ( ) tt tg tg tgg ( ) = av b  (II.23) 

and t is the SNR. 

 

 

II.5 Echo Transformation via Minimum Variance Method 

 

The received space-time radar echo data needs to be transformed into angle-Doppler 

domain for target and clutter recognition using minimum variance (MV) method. For the 

MV method, the transfer function of the filter at specific spatial and Doppler frequency 

can be expressed as [92], 

 
1 1

0 0

( , ) ( , )exp( 2 ( ))
M N

p q

F f p q j p q    
− −

= =

= − +  (II.24) 

where ( , )f p q is the bandpass filter and assume f is the vector of the narrow bandpass 

filter coefficients in the space and time domain: 

 [ (0,0),... (0, 1),... ( , ),... ( 1, 1)]Tf f N f p q f M N= − − −f  (II.25) 

The band-pass filter is optimized with the following constraint: 

 ( , ) ( , ) 1H H   = =f ν ν f  (II.26) 

where ( , ) [1... exp( 2 [( 1) ( 1) ])... exp( 2 [( 1) ( 1) ])]
T

j p q j M N       = − + − − + −v  

Now, the output power can be given by: 

  2
H

capE y = f Rf  (II.27) 

Using Lagrange multiplier, the coefficients of the filter f can be obtained. As a result, the 

solution of the filter under the constraint of (II.26) is given by: 
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Then the minimum variance of the output power capy  is given by [93],[94], 

   ( ) ( )

2

1

1
min

, ,
cap H

E y
   −

=
f ν R ν

 (II.29) 

The Capon estimator in (II.29) yields a radar image of target scene in the angle-Doppler 

domain with noise, clutter, and possibly targets. Prior to radar target detection, a 

denoising processing is performed to mitigate the thermal noise from the radar image. 

The image pixel intensities smaller than a certain denoising threshold are assigned to 

zeros. The denoising threshold NT  is chosen to be, 

 N wT =  (II.30) 

where  is a constant that normally varies between 2 and 3 and w  is the standard deviation 

of the thermal noise after the MV transform [91]. The standard deviation w  can be 

estimated using some radar image pixels with the amplitudes in the bottom 10% of all 

image pixels that are likely the white noises. After the denoising processing, the radar 

image contains target and clutter components only. 

 

III. CLUTTER-PROXIMITY FEATURE-BASED GROUND MOVING TARGET 

DETECTION 

 

This chapter has been adapted from a previous work by the authors titled “Robust 

ground moving target detection for airborne radar using a novel feature-based machine 

learning approach”,©2022 Elsevier. Devising new clutter feature is very important in the 

field of radar target detection. Especially, conventional methods need to apply complex 
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filtering procedure to estimate the clutter. Since, the clutter is mostly inhomogeneous by 

nature, adaptive filters could not suppress them efficiently. Moreover, if filters works 

properly to remove clutters, some of their residues still be present in the target detection 

system. For these aforementioned disadvantages, an innovative feature is described in 

this section to detect the clutter and target pixel with respect to the clutter ridge. The 

attribute is termed as clutter proximity feature.  

The first section of this chapter discusses the theory of the proposed proximity 

feature. The next section defines some terms to elaborate the algorithm. Section III.3 

develops the algorithm of the proposed approach. The subsequent section describes 

statistical method used to obtain the confidence with the training data. III.5 proves the 

classifier to determine the detection threshold. III.7 and 8 demonstrate the simulation 

results and performance comparison. The last section summarizes the entire method. 

 

III.1 Theory of Proximity Feature 

 

The new target detection approach is to classify the angle-Doppler space into the 

target, clutter subspace based on a pixel’s proximity to the center of the expected clutter 

ridges. The clutter proximity of a pixel can be measured by the pixel’s distance to the 

ridge line of clutter mass in the angle-Doppler plane. Without loss of generality, we 

consider a case of radar moving at a fixed velocity. The clutter ridge is a line segment and 

can be redefined as, 

 
2dx a

x x x

r r

f v

f df
  

 
= = = 

 
 (III.1) 
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where av is the velocity of the radar platform, dxf is the Doppler frequency at clutter patch

x , rf is the radar pulse repetition frequency (PRF), d is the interelement distance of the 

antenna array, and   is the clutter ridge slope. Depending on the radar platform’s velocity 

and radar PRF, we will consider the cases of both unambiguous and ambiguous Doppler 

clutters in formulating the new target detection approach simulations. 

Case 1: Let us consider the clutter ridge center equation in the angle-Doppler plane for 

unambiguous Doppler clutter case. It can be represented as, 

 0y x− =  (III.2) 

where, x and y denote the normalized spatial (horizontal coordinate) and Doppler 

frequencies (vertical coordinate), respectively, as shown in Fig. III.1.  The general 

equation of the central clutter ridge line is given by, 

 ( , ) 0Tg x y = w z =  (III.3) 

 

Figure III. 1 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 

 
 

 
Figure. III 1 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 

 
 

 
Figure III. 2 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 

 
 

 
Figure. III 2 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 

 
 

 
Figure III. 3 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 

 
 

 
Figure. III 3 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 

 
 

 
Figure III. 4 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 

 
 

 
Figure. III 4 Target detection in angle-Doppler domain based on the proximity of a pixel to the clutter ridge 

center 
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where, 2 1 0[ , , ]Tw w ww = is the weight vector with the weights corresponding to Doppler, 

spatial and intercept of clutter ridge respectively and z  is the vector containing the 

normalized Doppler and spatial frequencies of a clutter patch and given by, 

  1
T

y x=z  (III.4) 

In Fig. III.1, if a pixel appears inside the lightly blue-colored region or located in the 

central clutter ridge line, i.e., its distance to the clutter ridge is less than the pre-defined 

detection threshold distance 0r , it is considered to be clutter; otherwise, the pixel is 

considered to be a target signal. 0r is decided by the maximum clutter extension for a 

particular application or estimated from training data. The distance of any pixel ( , )x y  in 

Fig. III.1 to the clutter ridge can be calculated from the following equation: 

 
( , )g x y

r


=  (III.5) 

where 2 2

1 2w w = +  

 

 

Figure III. 2 Target-clutter scenario in angle-Doppler domain based on the nearest distance of a pixel to any 

of the clutter ridge center (M = 3) 

 

 
 

 

Table III. 1. Radar parameters used in the simulation  
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The r from (III.5) for each non-zero pixel is compared with the proximity threshold 0r  to 

classify target and clutter. 

Case 2: This is the scenario of Doppler ambiguous clutter. Usually, clutter spectrum 

changes or aliases in the normal clutter subspace depending on the platform velocity or 

pulse repetition frequency. Since the Doppler frequency of clutter depends on the radar 

pulse repetition interval, interelement spacing, and platform speed, the aliasing often 

occurs when x in (III.1) surpasses certain value. It implies that, if   is greater than 1, 

then clutter becomes Doppler ambiguous i.e. the clutter Doppler spectrum will alias with 

the visible Doppler subspace. Hence, the probability of getting same Doppler echo both 

for clutter and target becomes higher than the previous case. The more the platform speed 

or the low PRI, the ambiguity becomes higher. Besides, it is also possible for target to be 

totally overlapped with clutter without even showing a shape change in the clutter 

subspace. Now, with a high radar platform velocity and/or relatively low radar PRF, 

assume that the clutter ridge consists of M segments in the angle-Doppler plane due to the 

Doppler ambiguity as shown in Fig. III.2. The multiple clutter ridge equations are 

rewritten as, 

 
( ) 1 2 0, 0

1,2,...

m m m mg x y w x w y w

m M

= + + =

=
 (III.6) 

where 1 2, ,m mw w and 0mw  are the ridge equation weights of the m-th segment of the clutter. 

 

Consequently, the distances between a pixel at (x, y) and the m-th clutter ridge segment 

center is given by: 
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
=
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 (III.7) 

where 

 2 2

1 2 , 1, 2,...,m m mw w m M = + =  (III.8) 

The minimum distance from a non-zero pixel at (x, y) to all possible clutter ridge 

segments is determined as: 

 min 1 2min( , ..., )Mr r r r=  (III.9) 

To determine if the pixel at (x, y) belongs to the clutter or the target space, we simply 

compare it with predefined threshold 0r with the following rule: 

 
min 0 1

min 0 0

 : pixel at ( , ) as a target

 : pixel at ( , ) as clutter

r r H x y

r r H x y

 

 
 (III.10) 

If a pixel appears inside the region satisfying 0minr r , it is considered as a clutter pixel; 

otherwise, the pixel is considered to be in the target region. Naturally, these target and 

clutter segments are separated in the Doppler-angle domain due to their different Doppler 

frequencies. However, low-speed targets could overlap with clutters under some 

scenarios. But the targets still can be detectable if more than one feature are used for 

classification or some radar parameters such as radar PRF are slightly adjusted during 

radar operation. 

 

III.2 Terminologies for the Algorithm 

To further describe the procedure of implementing the new target detection 

method, we need to define the following concepts and terminologies related to the non-

zero pixels on the angle-Doppler plane. 
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Definition 1: The Connected pixels is defined as a set of non-zero pixels in which for any 

two pixels p and q there exists a minimum distance connected path connecting p and q. A 

minimum distance connected path is defined as an ordered sequence of non-zero pixels 

such that the distances of any two adjacent pixels in the sequence are equal to or less than 

a predefined value C (normally C≤2). 

With Definition 1, we propose the following Lemma for forming a pixel block that is 

connected. 

Lemma 1: If there is a pixel block A consisting of non-zero pixels that are connected 

based on the minimum distance property with a pixel qA and a non-zero pixel xA and 

their distance satisfying x-q≤C, then x can be merged into Block A to form a new block 

A ={ Ax} that is connected. 

Proof: Since A is connected and q is a pixel inside A, any other pixel p inside A is 

connected to q through a minimum distance path {p, p1, p2,…, q}. Because the distance 

between q and x is less than the minimum distance C, the pixel x is connected to any 

pixel p in A through the path of {p, p1, p2,…, q, x}. Therefore, x can be merged into A to 

form a connected block A. 

Based on Lemma 1, we can start with a connected block with a single non-zero pixel and 

expand it by merging it with nearby non-zero pixels until no more nonzero pixels available 

for merge. Then, another non-zero pixel that does not belong to any connected blocks is 

selected to form a new connected block until all non-zero pixels belong to a unique 

connected block. Finally, the denoised radar angle-Doppler image consists of connected 

blocks only. To further characterize the connected pixel blocks, we introduce the following 

three definitions. 



37 

Definition 2: Clutter Block is a set of non-zero connected pixels that are all classified as 

clutters. 

Definition 3: Target Block is a set of non-zero connected pixels in which at least one of 

them is classified as target. 

Definition 4: Block Size is the maximum distance between any two pixels inside a block. 

III.3 Algorithm Steps 

With the aforementioned definitions, the step-by-step procedure of target 

detection using this new approach is listed the steps as follows: 

Step 1: Perform radar data transformation from the space-time domain to the angle-

Doppler domain using the minimum variance (MV) method. The transformed data is 

considered as a 2-D image as the pixel indices. 

Step 2: Apply a hard threshold to the amplitudes of all the transformed radar image pixels 

to significantly mitigate thermal noise level. As a result, if any pixel with its amplitude less 

than the threshold NT in (II.30) its value is set to be zero; otherwise, the pixel value remains 

the same. 

Step 3: Calculate the distance ,m nr from a non-zero pixel ( , )m nx y with the image indices of

m and n  to the clutter ridge center or the nearest clutter ridge center if there are multiple 

clutter ridge segments based on (III.5),  or (III.9), respectively. If the distance is less than 

pre-defined clutter proximity threshold distance 0r , the pixel is classified as a clutter pixel; 

otherwise, it is considered as a target signal. 

Step 4: Repeat Step 3 until all the non-zero pixels in the image are examined and labeled.  

Step 5: Declare that a target is detected if there is at least one target pixel. Otherwise, no 

target is detected. 
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The critical parameter in the procedure is the clutter proximity distance threshold

0r used to detect the target pixels. It is directly related to maximum clutter spread across 

the clutter ridge center and thus it can be determined from the estimation of clutter 

distribution in the angle-Doppler plane or can be trained based on actual radar data. 

Typically, the detection threshold is estimated from the training data, which are 

normally obtained from the operational radar.  However, generating real radar data is 

very expensive and most of real radar data are classified, and synthesized data (or 

simulated data) are widely used for verifying the effectiveness of the machine-learning 

algorithms [95−97]. In this work, we choose the detection threshold based on the typical 

radar parameters and simulated radar data.  However, the new detection approach is 

applicable for actual radar with real radar data. 

III.4 Bootstrapping Procedure 

Our goal is to estimate the proximity threshold by approximating the average 

value of measured distances from clutter ridge using bootstrapping. Bootstrapping is an 

excellent method to deal with threshold estimation and prediction with small to large 

samples sizes of data [98−100]. Other method such as, Bayesian technique involves 

complex manipulation of matrices and incurs expensive computational costs. Whereas 

bootstrapping considers the estimation with a simple approach that does not require to 

handle singularity problems [99]. To estimate the clutter proximity distance threshold, we 

applied bootstrapping on the training data. Assume, each bootstrap sample contains n 

data points that are resampled from the actual training data with replacement. Then the 

concept of bootstrap can be described as follows: 

1. Let 1 2, , nx x x  be the training data samples from an unknown distribution F. 
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2. x  is the mean of the training data  

3. 
* * *

1 2, , nx x x  are the resampled data generated from F*, where F* is the empirical 

distribution function of 1 2, , nx x x , which gives equal weight to each data point. 

4. Compute bootstrap mean using 
* * *

1 2, , nx x x  

5. Repeat B times the step 4 to get 
* * *

1 2, , Bx x x  

Here, we calculated the maximum and minimum distances from any pixel inside 

the clutter block, and target block to the nearest clutter ridge for the samples. For 

simplicity, we will consider the approach on the training data of a single block. The 

training data based on proximity distance can be given by: 

 1 2[ , , ]nx x x=x  (III.11) 

and 
1

1 n

j

j

x x
n =

=   

Now, the generated resampled data can be expressed as, 

 
* * *

1 2[ , , ]nx x x=*
x  (III.12) 

Let us assume that there are B bootstrapped samples repeatedly computed from this 

resampled data. The sample vector can then be written as: 

 
* * *

1 2[ , , ]Bx x x=*
x  (III.13) 

Afterwards, the lower and upper bound of the confidence interval (CI) are calculated from 

the bootstrapped samples. 

To find the confidence interval, one has to sort them (sorted in ascending order): 

 ( )sorted sort=* *
x x  (III.14) 

where 1 2 3( ) { }Bsort t t t t=     
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Following [100], the 95% percentile bootstrap confidence interval (CI) for mean is 

obtained below: 

 
( 0.025 ) :

( 0.975 ) :

sorted

sorted

B  Lower Bound
CI

B  Upper Bound

    
= 

   

*

*

x

x
 (III.15) 

where     denotes the ceiling function, ( 0.025 )sorted B  
*

x and ( 0.975 )sorted B  
*

x are the 2.5th and 

97.5th percentile points of F* distribution, respectively. 

 

III.5 Classifier for the Proximity Distance Threshold 

The 0r can be selected based on the upper bound of clutter block CI and lower 

bound of target block CI. To further describe the procedure, we propose the following 

Lemma for a unique classifier. 

Lemma 2: the optimum predefined threshold distance 0r in the angle-Doppler domain can 

be approximated as the value found from a:b ratio of the upper bound (UB) and lower 

bound (LB) CI of clutter block (CB) and target block (TB) data, respectively. 

 

Proof: Since the data for both clutter and target do not overlap, 0r  can be chosen in the 

range between the UB of clutter block confidence interval (CICB) and LB of target block 

confidence interval (CITB) ( 0. . ( ) ( )CB TBi e  CI UB r CI LB  ), respectively. However, if it is 

chosen at the edge values of the range, the detection performance might degrade and 

cause undesired false alarms. Hence, a suitable value needs to be chosen to evade the 

edge values. Now, based on the mean and standard deviation ( )CB  of the clutter training 

data, one can choose the value given by: 

 0

( ) ( )CB TBbCI UB aCI LB
r

a b

+


+
 (III.16) 
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where, ( ) 4 , ( )CBa mean CB  and b mean TB= + = ; here the 4 CB  is chosen as the guard 

distance to separate target and clutter pixels robustly. 

The guard distance parameter needs to be chosen very carefully. According to the 

central limit theorem, the large bootstrapping samples for target and clutter block can be 

approximated by the normal distribution. Thus, about 99.99% of the data will fall within 

4CB from clutter block’s mean. Since it is highly unlikely to get a clutter block data 

beyond that value, we chose the guard distance 4CB. It should be noted that, a value 

greater than 4CB tends to misinterpret the target signal as clutter. 

Basically, learning of the proximity threshold distance is a machine learning 

approach i.e., the radar learns the threshold from the upper and lower bound of 

confidence interval (CI) of bootstrapped sample data in (III.16) with the aid of mean and 

standard deviation of the training data. The more training data considering different 

scenarios of ground clutter environment, the r0 in (III.16) gets more precise to detect the 

target. As for the training data for estimating feature distribution, the data do not need to 

be very accurate. In addition, the transfer-learning (the data generated by other radar 

systems or the same radar at different times or environments) could be utilized to 

determine r0 if the sufficient amount of training data is not available. 

 

III.6 Confidence Interval Steps and Complexity of the Algorithm 

The procedure to estimate the upper and lower bounds of the confidence interval is as 

follows: 

Step 1: Generate N sets of independent bootstrapping samples with replacement for 

maximum and minimum distances for any pixel inside each block. The size of each set is 



42 

equal to the number of samples collected from the training data. The randomness of 

replacement in each set is done based on resampling distribution. 

Step 2: Determine the mean of each bootstrapping set corresponding to each block. 

Step 3: Determine the mean of the aggregated samples from training data of the same block. 

Step 4: Perform sort operation for the bootstrapping sample vector for each block and 

compute the upper and lower bound of the confidence interval. 

Since the confidence interval (CI) obtained using the training data provides the 

information about the maximum clutter spectrum spread with respect to the clutter ridge, 

the detection threshold r0 can be generated by means of target and clutter block’s average 

proximity distances and a suitable guard distance parameter (4CB). Once the 0r  is 

determined using Lemma 2 and training data, the detection method is applicable to the 

unknown inhomogeneous clutters in which their statistical distributions change from range 

bins to range bins. It should also be noted that, the simulated data cannot be used to train 

the classifier/detector to remove the real radar clutter. However, one can fly the radar 

platform under both H1 (with moving targets) and H0 (clutters and noise only) hypotheses 

to get the detection feature distributions. 

The complexity of the algorithm is proportional to the cost of signal domain 

transformation and distance evaluation for each non-zero pixel in the radar image. 

Therefore, the time complexity for this detection method is about O(PQ) with (PQ) 

being the radar image size. 
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III.7 Simulation Results 

To validate the proposed target detection method, we applied it to the radar data 

simulated from a typical airborne radar system. The radar operates at a frequency of 450 

MHz with a uniform linear array with 16 half-wavelength placed elements. Each element 

radiates in isotropic pattern. There are 16 pulses in one coherent processing interval and 

SNR and CNR are 0, 40 dB, respectively.  The pulse repetition frequency (PRF) of the 

radar waveform is 300 Hz. Slightly different PRF is also applied to find overlapped target 

with clutter. Other relevant radar parameters for the simulation are listed in Table III.1. 

To simulate the radar data for target detection, we first consider the radar operation 

scenario where the radar platform velocity is 50 m/s. The moving target is located at 3 in 

azimuth at a ground range of 10km from the origin. The target Doppler frequency is set 

to be −32 Hz. We applied the MV method to the space-time data and generated the radar 

image data in the angle Doppler domain, displayed in Fig. III.3(a). Fig. III.3(b) shows the 

  

 

Radar Parameter Value 

Platform height 9000m 

Platform velocity (minimum) 50m/s 

Platform Velocity (maximum) 100m/s 

Pulse Repetition Frequency (PRF) 300Hz 

No. of pulses in CPI 16 

No. of clutter patches 360 

SNR per pulse 0dB 

CNR per pulse 40dB 
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Table III.1. Radar parameters used in the simulation 
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3-D plot of the radar scene. We further subject it to the denoising processing by applying 

hard thresholding to all image pixels. Some noise residues could still exist after denoising 

processing, but they are easily recognizable and would not be considered as targets due to 

their isolated nature because their block sizes are equal to one. Fig. III.3(c) shows the 

denoised image after applying thresholding processing to the image in Fig. III.3(a). Fig. 

III.3(d) shows the denoised 3-D scene of Doppler unambiguous clutter. 

 

 
(a)                                                                           (b) 

 

 

  

(c)                                                                           (d) 

Figure III. 3 Target and clutter detection in angle-Doppler plane with a point target with −32 Hz in Doppler 

frequency and 3 in azimuth: (a) The transformed 2D-plot; (b) 3D-plot; (c) the denoised 2-D radar image; 

(d) the denoised 3-D radar image 
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The next step in the target detection is to evaluate the distance from all non-zero 

pixels of the denoised image to the central ridge line. If a pixel’s distance to clutter ridge 

is greater than the pre-defined clutter proximity distance 0r ,the pixel is considered to be 

 

 
(a)                                                                           (b) 

 

 

   

(c)                                                                           (d) 
 

Figure III. 4 Detected target and clutter detection in angle-Doppler plane (a) identified clutter block 2D 

format; (b) 3D-plot clutter block; (c) detected target block in 2D format; (d) 3-D image of target block 
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outside the clutter and thus classified as the target signal; otherwise, the pixel is 

considered to be in clutter and classified as clutter. From the (III.1), the weights of the 

linear equation can be found based on a fitting of linear regression technique. Since, the 

relation of  spatial frequency and Doppler is defined in  (III.1), the coefficients of this 

equation can be approximated by either a polynomial fitting algorithm or linear 

regression. The 2 1 0, ,w w w values for unambiguous case 1 is found to be as 1,1.00 and 0, 

respectively. As for the detection in this case, the predefined clutter proximity threshold 

distance 0r  for target pixel classification should be about 16 based on Table III.4 and 

Lemma 2, which is equivalent to about 8.8 Hz in Doppler frequency or 5.9 m/s in radial 

speed. Figs. III.4(a) and (c) show the generated clutter, and target from the denoised 

image in Fig. III.3(c), respectively. Fig. III.3(b) and (d) displayed the 3-D plot of detected 

clutter and target block, respectively. Table III.2 lists the maximum distance calculated 

from all clutter pixels to the clutter ridge and the minimum distance from all target pixels 

to the clutter ridge, which shows reliable detection of slowly moving targets with the new 

method. The clutter datum in Table III.2 indicates about 6Hz clutter Doppler extensions 

due to internal clutter motion (ICM) and limited data length in time domain. However, if 

the clutters are generated from vegetations as well as terrains, the clutter Doppler spread 

could be much larger and make the detection of slowly moving target more challenging. 

We also examined the scenarios where two moving targets exist in the same range bin. 

Table III.2 Clutter proximity feature-based target detection results for doppler unambiguous case 

 To the clutter 

ridge 

  Block Size Target 

Detected? 

Maximum distance 

from any pixel in 

the clutter block 

8.35 Clutter 

Block 

 507.70 No 

Minimum distance 

from any pixel in 

the Target Block 

24.31 Target 

Block 

 17.49 Yes 
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Detected? 
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One target is set at 17 Hz with −7 in azimuth and the other one is at −26 Hz with 10 in 

azimuth. The same procedure is repeated in the denoised radar image of Fig. III.5(c), and 

both targets have been extracted using the proximity feature approach. Fig. III.6 show the 

detected clutter and target blocks in 2D and 3D formats, respectively. The maximum 

distance from any pixel in the clutter block to the clutter ridge is found to be 9.06. 

Whereas the minimum distance from any pixel in the target block 1 and target block 2 to 

 

  
(a)                                                                           (b) 

 

 

  

(c)                                                                           (d) 

 

Figure III. 5 Target and clutter scenario in angle-Doppler domain with two moving point targets at 17 Hz in 

Doppler frequency and −7 in azimuth and −26Hz in 10  in azimuth, respectively: (a) The transformed 2D-

plot; (b) transformed 3D-plot; (c) the denoised 2D radar image; (d) the denoised 2D radar image (a) the 

identified clutter block; (d) the detected target block 1 and (e) the detected target block 2 

 

 
 

  
(a)                                                                           (b) 
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the clutter ridge are 20.21 and 34.94, respectively. Hence, the proposed method performs 

 

  
(a)                                                                           (b) 

 

  
(c)                                                                           (d) 

 

 

(e)                                                                           (f) 
 

Figure III. 6 Detected target and clutter blocks in angle-Doppler domain with two moving point targets: (a) 

the identified clutter block (2D) (b) the identified clutter block (3D)  (c) the detected target block 1 (2D) (d) 

the detected target block 1 (3D); (e) the detected target block 2 (2D); and (f) the detected target block 2 

(3D) 
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well in detecting more than one moving target in the same range bin. 

 

For the Doppler ambiguous case, the platform velocity is increased to 100 m/s. A 

single target is located at −5 in azimuth and the target Doppler frequency is set at 50 Hz. 

Fig. III.7 highlights the target and clutter blocks with their corresponding clutter ridges.  

Fig. III.8(a) and (b) show the MV transformed radar image with a target, clutter (with the 

slope of the ridge equal to 2), and random white noise. Fig. III.8(c) and (d) show the 

denoised radar images for 2D and 3D formats, respectively, in the angle-Doppler domain. 

The same procedure is applied to all non-zero pixels in the image in Fig. III.8 (c) until all 

pixels are classified. Fig. III.9(a) to (d) show the detected clutter blocks 1 and 2 in 2D and 

3D formats, respectively. Fig. III.10 shows the identified clutter block 3 and detected 

target in 2D and 3D formats. The maximum distances for pixels in a clutter block to the 

nearest clutter ridge are listed in Table III.3. Since the maximum distance is less than the 

 

 

Figure III. 7 Typical multiple clutter ridges for a Doppler ambiguous scenario 

 

 

 

Figure III. 44 Typical multiple clutter ridges for a Doppler ambiguous scenario 
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threshold distance (which is set to be about 13) for Doppler ambiguous case, the 

distances of all clutter pixels to the nearest clutter ridge are less than 0r . Likewise, the 

distances of all target pixels to the nearest clutter ridge are larger than the threshold 

distance 0r . 

  

 

 
(a)                                                                           (b) 

 

 

  

(c)                                                                           (d) 
 

Figure III. 8 The transformed and denoised radar image in angle-Doppler plane with a point target located 

at 50 Hz in Doppler frequency with -5 in azimuth: (a) The transformed 2D-plot; (b) transformed 3D-plot; 

(c) the denoised 2D-plot and (d) denoised 3D-plot 
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(a)                                                                           (b) 

 

 

 

  

(c)                                                                           (d) 
 

Figure III. 9 The pixels of the image in Fig. III.7 that are classified as clutter block 1 and 2 due to their 

proximity to clutter ridge: (a) 2D-plots and (b) 3D-plots 
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(a)                                                                           (b) 

 

 

  

(c)                                                                           (d) 

 

Figure III. 10 The pixels of the image in Fig. III.8 that are classified as clutter block 3 and target due to 

their proximity to clutter ridge: (a) 2D-plots and (b) 3D-plots 
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Table III. 3 Clutter proximity feature-based target detection results for doppler ambiguous case 

 To the nearest 

clutter ridge 

 Block 

Size 

Target 

Detected? 

Maximum distance from any pixel in the 

Clutter Block 1  

6.49  Clutter Block 

1 

266.18 No 

Maximum distance from any pixel in the 

Clutter Block 2 

7.08 Clutter Block 

2 

138.59 No 

Maximum distance from any pixel in the 

Clutter Block 3 

7.24 Clutter Block 

3 

138.59 No 

Minimum distance from any pixel in the 

Target Block 

23.99 Target Block 16.12 Yes 
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 To the nearest 

clutter ridge 

 Block 

Size 

Target 

Detected? 

Maximum distance from any pixel in the 

Clutter Block 1  

6.49  Clutter Block 1 266.18 No 

Maximum distance from any pixel in the 

Clutter Block 2 

7.08 Clutter Block 2 138.59 No 

Maximum distance from any pixel in the 

Clutter Block 3 

7.24 Clutter Block 3 138.59 No 

Minimum distance from any pixel in the 23.99 Target Block 16.12 Yes 
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The aforementioned distance thresholds are estimated from the samples of the 

training dataset of the simulated radar images. The dataset contains samples collected 

from 2000 simulated radar images, where half of them consist of a target and clutter, and 

the other half consists of clutter only. It should also be noted that the dataset sample size 

should be large enough to cover all possible target and clutter parameter variations in 

estimating detection feature distribution. Since we currently use only one feature for 

target detection, a sample size of 2000 is a reasonable choice in estimating the feature 

distribution. These images are generated from the data obtained in the same detection 

range bin unlike the traditional adaptive methods such as STAP in which a large number 

of the secondary clutter data are needed for clutter estimation. Subsequently, the dataset 

is sampled with replacement, and the confidence interval (CI) is achieved via 

bootstrapping. The distance threshold 0r is then determined based on the upper and lower 

bound of 95% confidence interval (CI) of the bootstrapped samples and Lemma 2. In this 

work, the data in Table III.4 of CI are utilized to set the proximity threshold for 

separating the clutter and target block. Finally, Table III.5 shows the confusion matrix for 

Table III.4 Confidence interval results for threshold estimation 

 β = 1 β = 2 

 Lower Bound 

(LB) 

Upper Bound 

(UB) 

Lower Bound 

(LB) 

Upper Bound 

(UB) 

Clutter Block (with respect to 

clutter ridge) 

9.43  9.54  7.73 7.78 

Target Block (with respect to 

clutter ridge) 

33.87 38.65 23.77 25.66 
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Table III.5 Confusion matrix chart for clutter/target detection 

 Detected Signal 

Clutter Target 

Actual 

Signal 

Clutter 100% 0% 

Target 0.4% 99.6% 
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the target and clutter block detection. The number of test samples is 500 for the results 

shown in Table III.5.  Because the detection method is based on radar signal Doppler 

frequencies and angles, its performance is not affected by the clutter and target variations 

in amplitude. Furthermore, the detection results presented in Table III.5 are merely the 

outcomes of simulated test data and not the actual false alarm rate or detection 

probability. The proposed approach also checks the block size shown in Tables III.2 and 

III.3 to increase the robustness. Depending on trading off between detection probability 

and false alarm rate, it is possible that the detection could fail if 0r  is selected too large or 

too small. However, the proposed method would provide much more robust detection 

results by utilizing more features such as, block size that can distinguish target and 

clutters based on the shape feature. Therefore, the target and clutter pixels are classified 

correctly. 

 

Calculation of distance threshold for DU case (=1): From Table III.4 and (III.16), we 

can calculate the approximate threshold r0 which is given by, 
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Calculation of distance threshold for DA case (=2): 

 

From Table III.4 and (III.16), we can find the approximate threshold r0 when platform 

velocity is increased to 100 m/s. The equations are as follows: 
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 (III.22) 

Results for other platform velocities: 

The results are also checked for different platform velocity for Doppler ambiguous case. 

Since, the clutter ridge changes with the change of the platform velocity, the orientation 

of clutter is also changed. The analysis is given below: 

a) Platform speed is at 150 m/s:  

Since the platform velocity is increased, the clutter subspace in Fig. III.11 looks 

more occupied than the previous =2. The target Doppler frequency is set at −55 Hz with 

-5 in azimuth. Fig. III.12(a) and (b) show the 2D and 3D plot of the denoised radar scene 

of the Fig. III.11(a). As can be seen from the figure, the mainlobe of the clutter is located 

to the 0 azimuth angle. Moreover, the clutter width and Doppler extension are increased 

for the increased platform velocity. The proximity detection threshold is also set at 13. 

Fig. III.13 provides the detected blocks of the clutter and target signals.  
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• The maximum distance from any pixel in the Clutter Block 1 to the 

nearest clutter ridge is 7.86 

• The maximum distance from any pixel in the Clutter Block 2 to the 

nearest clutter ridge is 7.64 

• The maximum distance from any pixel in the Clutter Block 2 to the 

nearest clutter ridge is 7.73 

 

 

(a) (b) 

 

Figure III. 11 The clutter scenario when the platform velocity is 150 m/s. (a) 2D-plot; (b) 3D-plot  

 

 
 

 

(a)                                                                           (b) 

Figure. III 73 The clutter scenario when the platform velocity is 150 m/s. (a) 2D-plot; (b) 3D-plot  

 

 
 

 

(b) (b) 

 

Figure III. 72 The clutter scenario when the platform velocity is 150 m/s. (a) 2D-plot; (b) 3D-plot  

 

 

 

 

                                       (a)                                                                           (b) 

Figure III. 12 The reduced thermal noise after denoising when the platform velocity is at 150 m/s. (a) 2D-

plot; (b) 3D-plot 

 

 

 
 

 

(a)                                                                           (b) 

Figure. III 81 The reduced thermal noise after denoising when the platform velocity is at 150 m/s. (a) 2D-

plot; (b) 3D-plot 
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• Minimum distance from any pixel in the Target Block to the nearest 

clutter ridge is 23.42. 

Since the target is closer to the clutter block 1, the minimum distance is found from the 

clutter ridge of that particular block. The other clutter ridge distances to the target block 

is as follows: 

• The distance from any pixel in the Target Block to the clutter ridge of the 

clutter block 3 is 47.07. 

 

 
(a)                                                                           (b) 

 

 

  

(c)                                                                           (d) 
 

Figure III. 13 The detected clutter blocks and target using proximity feature when the platform velocity is 

150 m/s 

 

 
 

 
(a)                                                                           (b) 
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• The distance from any pixel in the Target Block to the clutter ridge of the 

clutter block 2 is 123. 

Besides the block size is another useful feature to recognize the target. Typically, the 

block size of the target is smaller than the clutter block size. The results are as follows: 

• The block size of the clutter block 1 is 267.66. 

• The block size of the clutter block 2 is 224.86. 

• The block size of the clutter block 3 is 224.86. 

• The block size of the target block is 18.25. 

The detected clutter blocks and the target are shown in Fig. III.13.  

Minimum detectable velocity (MDV): The MDV is an important parameter to detect slow 

moving target. It is defined as the minimum velocity at which the target is recognizable 

without going completely overlapped with clutter.  The MDV in this case is found as 5 

m/s due to the decreased width of the spectrum. The velocity less than MDV will overlap 

with clutter since SINR loss is high.  

b) Platform speed is at 200 m/s: When platform speed is at 200 m/s, the Doppler 

spectrum significantly aliases in the visible subspace of angle-Doppler domain. The 

extended clutters will occupy the target subspace and the probability of false alarm 

will be much higher than the previous Doppler ambiguity. Thus as platform speed 

increases, the low radar PRF will cause this kind of clutter ambiguity that are very 

difficult to remove. However, with the knowledge of the locus of the clutter ridges, it 

is possible to classify the clutters as well as the target. The target Doppler frequency 
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is set at 80 Hz. Fig. III.14 shows the 2D and 3D plots of the radar scenario in the 

angle-Doppler domain. Since, the subspace comprises thermal noise, denoising 

processing is applied again to greatly reduce it. Fig. III.15 shows the denoised radar 

image for the platform speed at 200 m/s. As can be seen from the figure the denoised 

image contain the clutters and target component in the angle-Doppler domain. The 

proximity distance threshold is set at 12.24. The distance specifications are given as 

follows: 

 

 

(a)                                                                           (b) 
 

Figure III. 14 The clutter subspace increased when the platform speed is 200 m/s. (a) 2D-plot; (b) 3D-plot 

 

 
 

 

(a)                                                                           (b) 

Figure. III 97 The clutter subspace increased when the platform speed is 200 m/s. (a) 2D-plot; (b) 3D-plot 

 

 
 

 

 

 

(a)                                                                           (b) 
 

Figure III. 15 The denoised target and clutter at platform speed 200 m/s. (a) 2D-plot; (b) 3D-plot 
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• The maximum distance from any pixel in the Clutter Block 1 to the 

nearest clutter ridge is 6.74 

• The maximum distance from any pixel in the Clutter Block 2 to the 

nearest clutter ridge is 6.09. 

• The maximum distance from any pixel in the Clutter Block 3 to the 

nearest clutter ridge is 6.42. 

• The maximum distance from any pixel in the Clutter Block 4 to the 

nearest clutter ridge is 6.09 

 

 
(a)                                                                           (b) 

 

 

  

(c)                                                                           (d) 
 

Figure III. 16 The detected four clutter blocks using proximity feature when the platform velocity is 200 

m/s 
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• The maximum distance from any pixel in the Clutter Block 5 to the 

nearest clutter ridge is 7.02. 

• Minimum distance from any pixel in the Target Block to the nearest 

clutter ridge is 20.22. 

Since the target is again closer to the clutter block 1, the minimum distance is found from 

the clutter ridge of that particular block. The other clutter ridge distances to the target 

block is as follows: 

• The distance from any pixel in the Target Block to the clutter ridge of the 

clutter block 2 is 25.37 . 

• The distance from any pixel in the Target Block to the clutter ridge of the 

clutter block 3 is 87.88. 

• The distance from any pixel in the Target Block to the clutter ridge of the 

clutter block 4 is 52.25. 

• The distance from any pixel in the Target Block to the clutter ridge of the 

clutter block 5 is 148.81. 

 

 

(a)                                                                           (b) 
 

Figure III. 17 The denoised fifth clutter block and the target at platform speed 200 m/s 
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Fig. III.16 shows the first four clutter blocks of the denoised image shown in Fig. III.15. 

Fig. III.17 shows the remaining clutter block and detected target block for this specific 

platform motion. 

Whereas block size for the same radar setting can be found as: 

• The block size of the clutter block 1 is 143.53. 

• The block size of the clutter block 2 is 142.76. 

• The block size of the clutter block 3 is 143.53. 

• The block size of the clutter block 4 is 77.78. 

• The block size of the clutter block 5 is 77.78. 

• The block size of the target block is 19.03 

 

III.8 Performance Comparison 

The conventional adaptive method such as, STAP is usually applied to this type of 

radar system for many years. However, this method does not work well in 

inhomogeneous clutters. When clutter distribution changes from one range bin to another, 

adaptive filtering algorithms often fail to remove clutter signals totally. In contrast, the 

introduced feature-based approach is not affected by such inhomogeneity. Although it is 

not fair to compare such method with a conventional adaptive algorithm, we simulated 

same radar data both for the proximity feature method and STAP. The accuracy of target 

detection using this proximity feature method depends on correct removal of white noise 

and perfect classification of target and clutter signals in the angle-Doppler domain. 

Theoretical derivation of the detection probability based on the false alarm rate appears to 
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be mathematically difficult. However, we can consider a simplified case in which clutter 

and target are well separated in the angle-Doppler domain by limiting minimum target 

speed; hence the target and clutter classification using the clutter proximity feature is 

perfect. The detection probability can be estimated based on the data transform and 

denoising processing. Given the false alarm rate Pfa, the detection threshold for 

identifying the target from the white noise is obtained as follows, 

 2 1( )t w faT Q P −=  (III.23) 

where 
2

w  is the variance of the white noise after the MV transform and, 1Q−  is the 

inverse Q function [101]. 

With the detection threshold in (III.23), we can estimate the probability of detection using 

the new method as, 

 
2

1

2
( ) s

d fa

w

A
P Q Q P



−
 

= − 
 
 

 (III.24) 

where sA  is the average target signal amplitude in the angle-Doppler domain. 

 

 

Figure III. 18 Detection performance comparison between the new method and STAP (Pfa = 10-3) 
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The detection performance of the new method with 310faP −= is shown in Fig. III.18. For 

comparison, the performance of STAP is also plotted in the same figure (in blue line). In 

this figure, 3NM secondary clutter data from zero-mean Gaussian variables are generated 

with their variances randomly changing from 0.52 to 32, where 2 is the variance of the 

clutter in the detection unit. If we set the false alarm rate Pfa at 10-3, the targets in both 

cases are undetectable with the STAP approach. We simulated the STAP approach’s 

performance in the inhomogeneous clutters. Similarly, the new method’s clutter data is 

modeled to be independent identical complex Gaussian distributed where the amplitude 

of each clutter patch has randomly changed with the same range of amplitude variance. 

Since, the proposed method does not require clutter estimation, the comparison simply 

indicates that the feature-based detection performance is not affected by inhomogeneous 

clutters. 

III.9 Summary of chapter III 

An innovative clutter-proximity feature-based approach was proposed to 

effectively detect ground moving targets from clutter by recognizing target and clutter 

features rather than canceling clutter directly through signal filtering [11−15]. The 

traditional methods [11−49] rely on the adaptive signal processing that proves to be 

ineffective in the presence of complex and inhomogeneous clutter environment. The new 

approach can perform more robustly for ground target detection in the unknown clutter 

environment. The simulation results validated that the new approach can effectively 

classify target and clutter for ground moving target detection in inhomogeneous clutter. 

Furthermore, this proposed method is basically a form of the machine learning approach 

since the radar learns the distributions of the data features under both hypotheses from 
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either real radar data or synthesized data for target and clutter classification. Other 

possible interferences such as jammers were not considered in this work, but the new 

method is equally applicable for identifying jammers as well as target and clutter by 

including more than one feature in classification. Compared with other feature-based 

target detection methods, such as those based on the shapes and sizes of target and clutter 

blocks[91], [92], the clutter-proximity feature is more robust and effective in detecting 

and identifying slowly moving targets. In fact, this new proximity feature-based approach 

provided a clear roadmap for future artificially intelligent (AI) radar detection research. 

 

IV. GROUND MOVING TARGET DETECTION USING PROXIMITY FEATURE IN 

THE PRESENCE OF NON-LINEAR CLUTTER 

 

This chapter has been adapted from a previous work by the authors titled 

“Proximity Feature Based Target Detection for Airborne Radar with Misaligned Antenna 

Array”, ©2021,IEEE. Aircraft crab is very common problem encountered by airborne 

radar. It occurs when antenna array elements introduce a phase shift. As a result, the 

clutter distribution no longer follows linear locus in its extended shape that is observed in 

the angle-Doppler domain. For this non-linear shape, it is very difficult to remove such 

clutter with traditional adaptive filtering algorithm and may require additional signal 

processing. The phenomenon is also known as velocity misalignment [5]. Since 

proximity feature technique is a non-adaptive approach and does not require secondary 

data, it can be applied to the non-linear expected clutter ridge such as, elliptical, or 

circular shape.  
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The first section of this chapter provides the theoretical aspect of non-linear 

clutters due to the aircraft crab. The second section elaborates the proposed method in 

depth. The third section demonstrates the simulation results for elliptical shaped clutters. 

The fourth section draws some salient remarks of this chapter. 

IV.1 Concept of misaligned antenna array 

Typically, aircraft moving velocity is assumed to be completely aligned with the 

spatial axis of sensor array elements. In a forward-looking antenna setting, the aircraft’s 

the sensor array is possibly at the right angle to the platform velocity direction. However, 

the scenario might not be always true for the side-looking sensors. Array elements axis 

on this setting might be oblique to the direction of velocity and results a phase distortion. 

This phase error is always evident to the radar that uses revolving antenna. Consequently, 

mainlobe and backlobe of the array antenna do not blend together and establish a non-

linear shaped clutter. This velocity misalignment causes an angle mismatch known as 

misalignment angle [5].  

To represent the signal model of the airborne radar, a uniform linear antenna array 

with N elements is considered with M pulses in one coherent processing interval. It is 

further assumed that the radar antenna array is misaligned with respect to the direction of 

platform speed. The radar spatial-temporal samples for target, clutter and white noise are 

expressed as Ft, Fc and Fn respectively.  The covariance matrices of these vectors can be 

represented as Gt, Gc and Gn, respectively under H1 hypothesis. The H0 hypothesis 

consists of clutter and noise components only. The echo data is then transformed into 

angle-Doppler domain using minimum variance (MV) method[92]. The domain data 
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yields a clutter scenario with a possible target in it. Subsequently, the denoising step is 

performed to obtain the non-zero pixels of clutter and possible target. 

IV.2 Proximity feature based nonlinear clutter detection 

The denoised image is further processed with the proximity feature of clutter 

ridge. To extract the necessary feature of the clutter caused by aircraft crab, one needs to 

examine the normalized Doppler frequency of the ground clutter and that can be given 

by, 
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 (IV.1) 

Where,  

gcf = clutter Doppler frequency 

pf = the radar pulse repetition frequency (PRF) 

 = the radar operating wavelength 

 rv = the radar platform velocity 

  = depression angle 

  = azimuth angle 

 m = alignment error angle 

Now, assume  

 = clutter ridge slope; 

d = the interelement distance of the antenna array 

then (IV.1) can be rewritten as, 

 cos( ) cos( )sin( )gc c m ms     = +  (IV.2) 
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where, 

 
cos( )d 




=  (IV.3) 

and 
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 =  (IV.4) 

Also, spatial frequency 

 sin( )cs  =  (IV.5) 

As the normalized spatial and Doppler frequency are having non-linear relationship, 

(IV.2) can be represented as, 

 
2 2

3 2 1 0( , ) 0c gc c gc c gcg s w s w w s w  = + + + =  (IV.6) 

where 3 2 1 0, , ,w w w w are the weights for the normalized spatial-Doppler equation.  

(IV.6) represents a rotated ellipse with angle   for the sc and gc . The angle  is given 

by: 
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 −  
=  

− 
 (IV.7) 

The problem of (IV.7) can be solved by a couple of standard equations: 

 
' 'cos sinc c gcs s   = −  (IV.8) 

 
' 'sin cosgc c gcs   = +  (IV.9) 

(IV.8) and (IV.9) yields the standard form of the rotated ellipse ridge.  

Therefore, the equation of the ellipse shaped clutter ridge with respect to the rotated axes 

can be written as: 

 
' ' ' ' ' 2 ' ' 2 '

2 1 0( , ) 0c gc c gcg s w s w w = + + =  (IV.10) 
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where, 
' ' '

2 1 0, ,w w w  are the new weights for the equation according to the rotated axes. 

Since the equation forms a elliptical pattern of the clutter, the locus of the clutter 

i.e. clutter ridge cannot simplified as the linear relation given in chapter II and III. Hence, 

the parameters of an elliptical shape such as, major or minor axis, aspect ratio, area etc. 

could be used as different feature. However, for the proximity feature, major axis of this 

elliptical shape is a smart choice since it resembles with the clutter ridge segment in a 

linear setting. Likewise, minor axis can also be used to detect target and clutters. In this 

chapter, major axis is used for the rotated ellipse to detect the clutter and targe pixels.  

 

 

 

Figure IV. 1 The elliptical clutter ridge and its classifier boundary due to misaligned antenna array axis 

with velocity vector 

 

 
Figure IV. 2 The elliptical clutter ridge and its classifier boundary due to misaligned antenna array axis 

with velocity vector 

 

 
Figure IV. 3 The elliptical clutter ridge and its classifier boundary due to misaligned antenna array axis 

with velocity vector 

 

 
Figure IV. 4 The elliptical clutter ridge and its classifier boundary due to misaligned antenna array axis 

with velocity vector 

 

 
Figure IV. 5 The elliptical clutter ridge and its classifier boundary due to misaligned antenna array axis 

with velocity vector 

 

 
Figure IV. 6 The elliptical clutter ridge and its classifier boundary due to misaligned antenna array axis 

with velocity vector 

 

 
Figure IV. 7 The elliptical clutter ridge and its classifier boundary due to misaligned antenna array axis 

with velocity vector 
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If β=1, then the major axis can be found by using vertices of the ellipse: 

 
' ' ' ' '( , ) 0c gc c gcm s s = − =  (IV.11) 

 
' ' ' ' ' ' '

2 1 0( , ) 0c gc c gcm s k s k k = + + =  (IV.12) 

where ' ' '
2 1 0, ,k k k are the weights for major axis. In this work, we will consider Doppler 

unambiguous case only. Hence, the distance formula from a pixel to the major axis can 

be given by: 

 

' ' '

' 2 '2

2 1

( , )c gc

major

m s

k k


 =

+
 (IV.13) 

Note that, if 
' ' '( , ) 0c gcg s  = , then the pixel will be classified as clutter. Now, the target 

could be outside the clutter or inside of it. Depending on the target location, the 

recognition can be further divided into two states: 

a) Outside 
' ' '( ( , ) 0)c gcg s    

If a pixel’s evaluated distance is greater than the predefined proximity 

threshold 0 0( )major  and satisfies the condition 

 
' ' '( , ) 0c gcg s    (IV.14) 

then a target pixel will be detected; otherwise, it is a clutter signal. 

b) Inside 
' ' '( ( , ) 0)c gcg s    

In this case, distances are calculated based on a new proximity threshold 

1 . Furthermore, each non-zero pixel is examined if it is at the corner side of the 

clutter ridge. If 1major  and the pixel is not in the corner side, then it will be a 

target signal; otherwise, it is a clutter pixel. 
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IV.3 Simulation results 

To simulate the proposed detection method, an airborne radar system is 

considered with operating frequency of 450MHz. There are 18 isotropic antenna elements 

and their interelement spacing is λ/2. The radar transmits 18 pulses in one coherent 

processing interval and the pulse repetition frequency is 300 Hz.  The signal-to-noise 

ratio and clutter-to-noise ratio of this radar are considered as 0 and 45 dB, respectively. 

For Doppler unambiguous case, the airborne platform is moving at 50 m/s. The 

antenna alignment error angle ( )m  is 10°. The target is located at the Doppler frequency 

of −51 Hz. Then the space-time echo data is transformed to angle-Doppler image via MV 

method. Fig. (IV.2) and IV.3 show the 2D and 3D version of possible target and ellipse 

shaped clutter due to antenna misalignment in the angle-Doppler domain. The echo data 

 

 

 
 

Figure IV. 2 The 10 misaligned elliptical clutter ridge and its classifier boundary due to misaligned 

antenna array axis with velocity vector 
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has been transformed to angle-Doppler plane through the process of minimum variance 

 

 

 
 

Figure IV. 4 The target located outside the elliptical clutter ridge affected with white noise 

 

 
 

 

 

 

 
 

Figure IV. 3 The denoised radar image with non-linear clutter in elliptical form obtained after curtailing 

bottom 10% of the non-zero pixels 

 

 
 

 
 

Figure IV. 32 The denoised radar image obtained after curtailing bottom 10% of the non-zero pixels 
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or Capon estimator operation. Subsequently, a denoising process is applied to reduce the 

white noise. The white noise can be determined from the standard deviation of that noise. 

It can be determined from the lowest 10% pixel of the radar image. The mean of that 

lowest values is found as 0.0040. Next, the threshold is determined by multiplying the 

mean with a suitable value ranging from 2 to 3. Fig. IV.3 and IV.4 show the 2D and 3D 

plots of denoised images of elliptical clutter. 

Now the next step is performed based on the proposed method. Each non-zero 

pixel of the denoised image is examined whether it is inside or outside of the clutter. 

Then, the distances are calculated using (IV.12) and compared with 0 or 1 . From the 

mathematical equation of elliptical clutter ridge, the major axis equation is determined: 

 
' ' ' ' '( , ) 0c gc c gcm s s = − =  (IV.15) 

 

 
 

Figure IV. 5 The 3D plot of denoised radar image where target is well separated from the randomly 

changed elliptical clutter 

 

 
 

 
 

Figure IV. 62 The 3D plot of denoised radar image 
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Where, k2, k1 and k0 are 0.83, -1 and 0 respectively. From the major axis of the clutter 

 

 

 

Figure IV. 6 The detected elliptical clutter block in 3D format using the proximity to the major axis of the 

non-linear clutter 

 

 
 

 

 

 

Figure IV. 92 The detected elliptical clutter block in 3D format 

 

 
 

 

 

 

 

 

Figure IV. 7  The detected target at −51 Hz of Doppler frequency in 3D format  
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ridge, the maximum distance from any pixel to the elliptical clutter block is 27.21. 

Likewise, the minimum distance from any pixel of the target block to the major axis is 

found as 40.26. the detected target and clutter block is shown in Fig. IV.6 and IV.7, 

respectively. The elliptical clutter block has similar characteristics like a normal ellipse 

such as: 

• The major axis length is 544.67 

• The minor axis length 64.12 

 

Now if we consider target inside the clutter block (i.e. H1 subspace inside the elliptical 

clutter), then 
' ' '( , ) 0c gcg s   . Since the target and clutter block do not have overlap with 

each other, the alignment error angle is fixed at 15. The target Doppler frequency is set 

at 12 Hz. Fig. IV.8 and IV.9 show the 2D and 3D formats of transformed radar image for 

 

 
 

Figure IV. 8 The clutter scenario due to misalignment error angle of 15 with a target set at 12 Hz. 
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this velocity misalignment. After denoising processing, the white noise is greatly reduced 

 

 
 

Figure IV. 9 The point target spread at 12 Hz in the middle of the clutter ridge. 

 

 
 

 
 

Figure IV. 122 The point target spread at 12 Hz in the middle of the clutter ridge. 

 

 
 

 

 

 
 

Figure IV. 10 The denoised radar scene with target inside the clutter forming non-linear shape. 
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in the radar image as shown in Fig. IV.10. Here some of the distance calculation for this 

radar scenario: 

• the maximum distance from any pixel to the elliptical clutter block is 28.21. 

• the minimum distance from any pixel of the target block to the major axis is 

found as 0. Since the some of the target pixels fall in exactly at major axis, the 

minimum distance becomes 0. Alternatively, it can be proved with the (IV.12) as 

some of those target pixels will satisfy the equation.  

• The detection proximity thresholds for this case are set as 40 0( )  and 10 1( )

,respectively. It should be noted that, the edge pixels are classified as interference 

signals inside the clutter ridge regardless of the value of proximity thresholds. 

The major and minor axis length are the same as before since the clutter length has not 

increased rather clutter spread has increased for the alignment error angle. As can be seen 

 

 
 

Figure IV. 11 The detected clutter block in the angle-Doppler 3D plane where the clutter is non-linear 
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from the Fig. IV.11 and IV.12, the detected clutter block and the target inside it, 

respectively. It should also be noted that, there are some  

The major difference between this case and the previous case is the target 

location. According to the H1 hypothesis, target could be located inside or outside the 

non-linear clutter. The target detection outside the clutter subspace is comparatively easy 

if the target is not overlapped with the clutter region. However, if it is inside the clutter 

block’s H1 subspace, then it will be sometimes difficult to detect the target. The difficulty 

usually occurs when the target is very close to the edge of the elliptic clutter. There is a 

high probability that the target pixels could blend into the clutter pixels and falsely 

identify as clutter or interference.  

For Doppler ambiguous case, the clutter becomes more complex and the 

proximity feature alone would not work well since the shape of expected clutter ridge 

 

 
 

Figure IV. 12 The detected target block in the angle-Doppler 3D plane. 
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does not maintain appropriate relation that can be utilized. However, the clutter could still 

be detectable if several other features including geometric attributes could be employed.  

 

IV.4 Summary of chapter IV 

A new technique for target detection is proposed using proximity feature of the 

non-linear clutter ridge. The method does not need any filtering process to cancel clutter 

and thus very effective to detect targets with slow speed.  Furthermore, most of the 

detection scenes for H1 hypothesis under Doppler unambiguous case can be successfully 

recognized irrespective of alignment error angle. The intrinsic clutter motion is also 

considered for this simulation result and provides satisfactory result in detecting the 

clutter spectrum. This method is robust and applicable for Doppler ambiguous scenario of 

non-linear clutters as well. Existing research on clutter mitigation highly depends on 

adaptive filtering process [5,11−37]. The proximity of the clutter signal using major axis 

of elliptical clutter does not require such complicated process. Moreover, the proposed 

approach is a non-adaptive method that has better performance than the other feature 

based techniques. Size feature-based technique [91,92] could falsely detect the target 

when it is close to clutter ridge. However, the proximity feature of  the elliptical clutter 

considers the overlapped target and interference block as target. 

 

V. MULTI-FEATURE BASED MACHINE LEARNING APPROACH FOR GROUND-

MOVING RADAR TARGET DETECTION 

 

Low-velocity target detection is often very difficult for an airborne radar due to 

inhomogeneous ground clutters. In the previous chapters, it is assumed that the slow 
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moving target and interference do not overlap with each other in the angle-Doppler space. 

However, when they overlap, feature based approaches such as, proximity to clutter 

ridge, block size features could not detect the target due to their connected pixels in the 

radar image scene. To resolve the overlapping problem, two remedies can be adopted: 

• Slightly changing the radar parameters such as, PRF. The change of the 

PRF can eliminate the overlapping problem 

• Using multiple features to detect the overlapped target with clutters. 

 

The first solution can normally prevent the target to overlap with clutter. 

However, the radar needs to either manually or electronically change the PRF. This might 

make the radar system complex and sometimes ineffective in real-time application.  

Focusing on the reduction of the system complexity, this chapter proposes a 

multi-feature based machine learning approach to increase the robustness of the target 

detection approach. Several features such as proximity to the clutter ridge, block size, 

roundness ratio, and bending energy are utilized in order to detect the target in both 

overlapped and non-overlapped with clutter scenarios.  It should be noted that, these 

features are independent and mutually uncorrelated from each other. The estimation of 

these features can be approximated by different classifiers such as, Bayes classifier. 

However, it is quite difficult to derive such an approximation mathematically with simple 

classification technique since the distribution of the feature is unknown. Moreover, there 

are several features and obtaining the estimation for them tends to be very cumbersome 

yet achievable. To avoid such intricacy, the introduced method utilizes a simple deep 

neural network (DNN). DNNs are very suitable where the feature data distribution is 
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unknown. This work utilizes deep feed forward neural network (FFNN) to learn the 

hypothesis of the radar data in angle-Doppler domain. After pre-possessing the feature 

data, these attributes are fed to a feed forward neural network (FFNN) that consists of 

four layers. Since there are two classes (target or clutter) considered in this dissertation, 

FFNN can effectively classifies the target. It also recognizes the overlapped targets and 

detects them via boundary information using image processing. The work also provides a 

detailed data generation technique for the synthetic samples of the target-clutter 

classification. 

The opening section of this chapter contains a brief overview of the signal model 

of the target and interference scene. The second section details the connected signal 

components and boundary detection. The third section discusses about the purpose of the 

feature extraction and a brief explanation of two attributes such as the proximity feature 

and block size for both overlapped and non-overlapped target. This section also provides 

comprehensive description of different geometric features in the angle-Doppler domain. 

The fourth section elaborates the FFNN model that has been employed to classify the 

target and clutter. The next section describes a weighted sampling method and synthetic 

minority over sampling technique (SMOTE) to generate synthetic target and clutter data 

for all of the features. Section V.6 and V.7 demonstrate the simulation result based on the 

multi-feature approach. Section V.8 provides a performance comparison with a previous 

feature based technique known as BDIFR. Lastly, the summary section puts some ending 

remarks about this work. 
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V.1. A brief theory of the multi-feature based airborne signal model 

 

The signal model described in chapter 2 will be applied to this work as well. To 

facilitate the signal theory for the multi-feature approach, some of the symbols and 

equations are used in different notations. The radar configuration has been kept as same 

as before with N element of uniform linear antenna array and M coherent pulses for one 

CPI. The antenna element spacing is d. The azimuth and elevation angles with respect to 

the radar antenna are  and θ, respectively. The platform is moving with a velocity ν in 

the x-direction. When the platform starts receiving the echoes, the coherent pulses are 

then sampled G times to obtain NMG data. For single range, this is expressed as NM1 

vector or better known as space time snapshot (  ). It is further assumed that the radar 

echo data is received in a range unambiguous situation. 

Usually, the echo data contains clutter, and thermal noise under null (H0) 

hypothesis. Whereas alternate (H1) hypothesis includes target as well as interference and 

noise.  The covariance matrix under H1 hypothesis can then be expressed as: 

 = + +
c n t

K K K K  (V.1) 

Where Kc, Kn, and Kt are the covariance matrices of clutter, thermal noise and target 

respectively. Kn is related to white noise with variance 2. Kc depends on space time 

steering vector, and clutter-to-noise ratio (CNR) at each clutter patch.  

The steering vector can be further represented as the Kronecker product of clutter 

normalized spatial and Doppler frequency which are given by: 
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where, λ is the radar operating wavelength, fdv is the Doppler frequency at each clutter patch 

v, and fr is the PRF. For Nc independent clutter patches each with random complex 

amplitude  , the clutter space time snapshot can be given by: 
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where,  expresses the Kronecker product, 

( ) [1,exp( 2 ), ,exp( 2 ( 1) )]T

t v v vj j M   = −ρ and

( ) [1,exp( 2 ), ,exp( 2 ( 1) )]T

s v v vj j N   = −ρ  

Hence, the clutter covariance matrix can be represented by, 
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Since,  2 2 ( )v vE CNR = ,The matrix can be further represented as: 
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=
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Since thermal noise is always present in the radar receiver and is uncorrelated both in 

spatial and temporal domain, this leads to a uniform noise distribution in the angle-

Doppler domain. The noise can be given in terms of identity matrix IM and IN, 

 
2{ }H

n nE = = M Nn χ χ I IK  (V.7) 

whereas, Kt is based on target space-time steering vector and signal-to-noise ratio (SNR). 

Target spatial and Doppler frequency have similar expressions as in (V.2) and (V.3).  

Thus, following the same method, the target covariance matrix can be given by: 
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Where, ( )t trρ and ( )t trρ represent target temporal and spatial vector, respectively. Here, 

the target radial velocity νtr is related to its Doppler frequency (ft), i.e. 2tr tv f = . 

In this work, the aforementioned received radar data is transformed into angle-

Doppler domain via Capon spectral estimator. This transformation scheme has an 

advantage of better resolution over the 2-D Fourier transform. The method uses 

narrowband FIR bandpass filters in spatial-temporal domain to minimize the spectral 

contribution of undesired angle of arrivals except the mainbeam direction. If ( )ρ  and 

( )ρ  represent the desired space and time vector then the space-time steering vector can 

be written as: 

 ( ) ( ) = Q ρ ρ  (V.9) 

Therefore, the sensor array output power optimized by Capon estimator can be given as 

[92,93]: 

 
1

1
C H

P
−

=
Q K Q

 (V.10) 

Actually, the power spectral density in angle-Doppler image presents the scenario of 

clutter, thermal noise and possibly target. A subsequent denoising process is applied to 

greatly reduce the thermal noise. The process assigns zero intensity to pixels which are 

less than certain denoising threshold. The denoising threshold can be represented as, 

 d thT =  (V.11) 
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where τ is a constant chosen between 2 and 3, and th is the standard deviation of the 

white noise in the transformed domain. After denoising, the remaining non-zero pixels 

are either for target or clutter signal. 

V.2. Connected Component Cluster Partition and Boundary Pixels Identification 

 

After the application of denoising process, there will be target and clutter signal 

components in the observable angle-Doppler domain. Typically, the signal and 

interference inherit connected component properties in their pixels. The connected target 

and interference can then be processed through a connected component extraction 

algorithm. The algorithm will facilitate all the non-zero pixels to label them to different 

sets of clusters. After recognizing the clusters, boundary or edge pixels need to be 

identified for further information of overlapped target. 

V.2.1. Connected Component Algorithm 

 

Numerous algorithms can be applied to extract the connected signal blocks. 

Region growing (RG) algorithm is widely used to segment non-zero pixels in the field of 

image processing. However, the process of RG algorithm requires to initiate an arbitrary 

non-zero pixel and thus increases the computational complexity and may not converge to 

label all the pixels as clustered to a specific group or block.  Hence, another algorithm 

known as Hoshen-Kopelman (HK) algorithm [102,103].  

HK algorithm is a popular method for connected component analysis due to its 

simplicity. It also does not require any seed pixel to begin its procedure. The algorithm 

considers two passes on the given image. Since, the work deals with a radar image after 

the transformation, the first pass sets the unlabeled non-zero pixels to temporary labels and 

keeps equivalence labels in a structure. The final pass substitutes temporary labels by the 
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smallest labels of its equivalence structure. To illustrate the algorithm, we need to define 

the following terms. 

Definition 1: a non-zero pixel will be defined as a neighbor of another pixel if the 

Euclidean distance between them is less than 2. 

 

Definition 2: linked_list is a structure containing cells or fields that group the list 

of connected pixels’ labels with a particular label except the background pixel. For 

instance, if the label of a certain non-zero pixel is 1, the linked_list{1} contains a list of 

the labels of all non-zero neighboring pixels’ labels including the label of that particular 

pixel (1). 

Definition 3: label_matrix is a matrix where each connected cluster or group 

pixels are labeled with a unique positive integer number. Usually, the matrix is the same 

size of the original image, and all the pixels are assigned as zeros initially. 

Definition 4: Signal block is the cluster of non-zero pixel which can be 

categorized as interference or target block. 

Now, the procedure can be described as follows: 

 

Step 1: Define an empty data structure linked_list where each cell contains the list of 

connected pixel labels. 

 

Step 2: Define a label_matrix with same size of the radar image (I); initialized with zero 

pixels. 
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Step 3: Set a counter named next_label initialized with 1. 

 

Step 4 (First Pass): Check non-zero pixels from the radar image indices by row and then 

column i.e. I(row,column) 

a. Check for the neighboring pixels with 8-connectivity (i.e. distance between two 

neighboring pixel<2) 

b. If no neighbor is found, set the element of label_matrix with next_label; Also, 

update the cell of linked_list with that next label and increment the counter. 

c. Else find the smallest label from adjacent 8-connected neighbors and assign it to 

the current element of the label_matrix; update the corresponding cell of the 

linked_list with all non-repeating equivalent neighboring pixel labels. 

 

Step 5 (Second Pass): Check the non-zero pixels from the radar image again. 

a. Check for the values in the label_matrix using linked_list and replace the temporary 

labels in the label_matrix with minimum value from the elements of that link_list’s 

cell. 

 

Step 6: After finishing the second pass, the label_matrix yields the expected connected 

signal blocks. The connected blocks can also be extracted using the indices of non-zero 

values of label_matrix. 

The above procedure extracts the connected signal blocks from the transformed 

radar image. Now, the target and interference blocks should be labeled as a separate 
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group of clusters if these two types of signal pixels do not overlap. However, if they 

overlap, target block merges with clutter block and the connected component algorithms 

such as HK method can not be able to distinguish target and clutter due to the connection 

between these two signal blocks. Hence, boundary pixels are needed to be identified to 

know about the location of a target. 

 

V.2.2. Boundary Pixels Identification 

 

Typically, contour points of a region in a 2D image reveal very important 

information about the discontinuity regarding its surrounding neighboring pixels. It 

becomes especially significant when the boundary curvature information is needed for a 

recognition purpose. In the computer vision community, active contour tracing is very 

important part for image segmentation method. This tracing can be performed either on 

edge-based or region-based method. Most of the methods of boundary curvature largely 

depend on convolution of derivative kernels with original image to extract the edge 

information[104]. However, edge-based method suffers weak edge detection in the 

presence of noise. In contrast, region-based methods comparatively perform well with the 

local statistical and curvature knowledge from neighborhood pixels [105]. In this work, 

we applied Moore-Neighbor tracing algorithm to detect the outward boundary points. The 

method utilizes backtracking approach to identify and locate the boundary of the region 

of interest (ROI). However, the algorithm tends to return to its already visited pixel and 

stops the search for new non-zero neighboring pixel. Hence, Jacob’s stopping criteria is 

utilized to prevent the unexpected termination [106,107]. The algorithm starts with an 

image that contains a connected regular polygon (i.e. object) G where X is a connected 
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component. The outcome of this algorithm is a vector or sequence E (e1, e2,…,ek) of 

contour pixels. For simplicity, the zero pixel will be denoted as background pixel. The 

steps for Moore-neighborhood are as follows [107]: 

• Consider R(x) is the set of pixels defined as Moore neighborhood of pixel x 

• x represents the current boundary element or pixel 

• u represents the pixel under the process of examination. Hence, c is in R(x) 

Step 1: Initialize E as an empty vector list. 

Step 2: Examine each pixel of G until a non-zero pixel z of X is discovered 

Step 3: Insert the pixel z in the E 

Step 4: Change the current boundary pixel from x to z 

Step 5: move back to the position where z was encountered (backtracking 

approach) 

Step 6: Set u as the next pixel from R(x) (next pixel should be in clockwise 

direction) 

Step 7: While u is not equal to z 

If u is non-zero (=1 for binary image) 

▪ Append u in E 

▪ Set x as u 

▪ Perform backtracking approach (move back to point where u was 

encountered from the current position of the pixel u ) 

Else 

▪ Move forward from the current pixel u to the next pixel in R(x) 

End While 
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The algorithm has a disadvantage of convergence problem. In fact, it might not 

include all the contour point and loops back to its original starting pixel. Hence, a suitable 

stopping criterion needs to be utilized to improve the boundary detection with Moore-

neighborhood tracing.  

The solution to the convergence problem is to use a Jacob’s stopping criterion. 

This criteria ensures the algorithm not to disregard the remaining edge pixels without a 

process.  

Jacob’s Criterion: It is defined as a criterion by which the algorithm stops 

traversing the edge pixels if the initial non-zero edge pixel is visited second time in 

exactly the same way it was visited at the first time.  

If Jacob’s criterion is met, then it can be said that the algorithm has examined all 

the edge contour pixels of the polygon or the object in the region of interest.    

 

V.3. Multiple Feature Extraction 

 

When target and clutters do not overlap, a single feature would suffice for the 

detection method to be successful. However, when target and clutter overlap, a robust 

combination of multiple-feature is needed for the target detection in inhomogeneous 

clutter environment. In non-overlapping scenario, target and clutter can be easily detected 

either by clutter proximity feature or roundness ratio. However, for overlapping state, 

proximity feature could falsely detect target pixel as clutter one. As for the roundness 

ratio, the block considered as target (overlapped with clutter) might have a decreased 

roundness value that is most likely different from the typical non-overlapped target block. 
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Therefore, multiple features are the prime necessity to detect the target and clutter 

properly. The features are detailed into several parts that are described below: 

 

V.3.1. Proximity to the Clutter Ridge in the Angle-Doppler Radar Scene 

 

As described in chapter III, the Euclidean distance from expected clutter ridge to 

the target signal can be considered an important feature in ground moving target 

detection. A certain proximity distance threshold needs to be introduced to separate the 

target pixel from the clutter. This threshold parameter can be determined based on the 

training data obtained from the same radar or from a different radar. It can also be 

obtained from radar considering different clutter distribution scenario. One of the 

advantages of this algorithm is that the proximity feature can consider a block as target if 

it contains both target and clutter signal. 

 

V.3.2. Block Size Feature in the Angle-Doppler domain 

 

Block size feature is another useful attribute in non-adaptive ground moving 

target detection. It is defined as the maximum Euclidean distance between two pixels 

inside a block. The distance is calculated after the connected component cluster 

extraction. Usually, the target block size is smaller than the interference block for non-

overlapped scenarios. However, block size gets bigger for the target block when target 

and interference such as, clutter blends in and merge into a same block. In such case, 

there is a tendency to falsely detect target as clutter block.  
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V.3.3. Geometric Features Observed in the Angle-Doppler Space 

 

The geometric features are very well-known attributes for pattern analysis and 

recognition. Especially, they are widely used in the field of biological cell shape 

recognition and detection. Generalizing the idea from biological point of view, we utilize 

the geometric characteristics of target and interference of echo data in the transformed 

angle-Doppler domain. There are several features which can improve the detection of 

target and clutters: 

V.4.1. Roundness Ratio (RR) 

Since, the target or interference block has distinguishing feature of shape and size, 

roundness ratio could separate the blocks very well. The roundness ratio basically 

depends on the perimeter and the area of the block. To further describe the property of 

this feature, we need to define the following terminologies. 

Definition 5: Perimeter is defined as the sum of the Euclidean distances of consecutive 

two samples of boundary points. If , 1, 2,3sb s N= are the samples of the boundary, then 

the perimeter (P) is given by: 

 ( )
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1 1
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s s s
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P b b b b
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= − + −  (V.12) 

Definition 6: Area is defined as the sum of the number of non-zero pixels inside a block. 

If n is the number of non-zero pixels and pi is the amplitude of the pixels inside a block. 

Then the area (A) for a block can be represented as: 

 
1

n

i

i

A a
=

=  (V.13) 
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With the above definitions, the roundness ratio (RR) can be given as following: 
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=  (V.14) 

The value of RR ranges from 0 to 1. This feature works well even when the axis of 

antenna array is misaligned with platform velocity direction. 

V.4.2. Bending Energy (BE) 

Target and clutters in the angle-Doppler domain can be detected based on the boundary 

curvature of their arbitrary contour dimension. Since target or clutters in the transformed 

domain show distinguishing curvature in their boundaries, one can choose several 

methods in order to demonstrate substantial difference between them. Bending energy 

(BE) is one of the widely used parameters to evaluate such curvature relating to outward 

contour shape of an image object [108,109]. This feature can identify subtle difference in 

the curvature of target and clutter shapes. Most importantly, it can identify the presence 

of overlapped target with clutter. This energy determines the average curvature strength 

of a certain block in the angle-Doppler domain. At first, boundary contours are needed to 

be calculated, which is discussed in section V.2.2. Afterwards, BE is determined based on 

the change of boundary shape along the curve. From elasticity theory, the bending energy 

of a curve at a given point, s can be written as in integral form [109]: 

 2

0

1
( )

2

l

c cJ I C s ds=   (V.15) 

where αc is Young’s modulus, Ic is the moment of inertia and C(s) is curvature at point s. 

Since αc and Ic are constants, the bending energy can be represented in normalized form: 
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Now the average bending energy related to perimeter (P) of a simple connected contour 

(SCC) can be given by: 
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If there are N samples for boundary contour for a signal block, The equation can be 

further generalized in summation form: 
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To find the curvature C, change from one connected point to the next is needed to be 

found. The term relating to this change can be expressed as: 
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a n
C n n N

w n
= =  (V.19) 

Where a(n) is the change of curvature in angle and w(n) is the path length of the curve 

segment. Change of curvature for connected components can be found by various 

methods. Chain coding is widely used to describe such connected boundary points. In this 

work, we applied Freeman’s chain code with 8 directions to encode the line segments 

Table V.1 Angles corresponding to numerical values of chain code 
No. Angle () 

0 0 

1 45 

2 90 

3 135 

4 180 

5 225 

6 270 

7 315 
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between two adjacent boundary points. This encoding scheme finds the gradient of 

direction and encode each boundary point index into one of the eight numerical codes, 

shown in Table V.1. Fig. V.1 delineates the direction paths for these numerical values at 

the boundary. It should be noted that the boundary contour path is following clockwise 

direction in this work. 

Now, if the two consecutive boundary sample indices are (pi-1,qj-1) and (pi,qj) and their 

corresponding difference are dp and dq, respectively, then the chain-code mapping 

scheme for n samples can be given by: 

 ( ) 3 ( ) ( ) 4cM n dq n dp n= + +  (V.20) 

Here, it should be noted that, the very first difference is calculated between first and last 

element of these samples. Moreover, the consecutive two samples are considered as the 

two end points of a particular curve segment of the boundary. 

Using the above concept, steps of chain coding can be described as follows: 

Step 1: Find the difference between the indices of each boundary sample to the next one. 

This will provide sample difference pair (dp,dq), for two end points.  

 

 
Figure V. 1  Chain Code Direction of Paths 

 

 
Figure V. 2  Chain Code Direction of Paths 
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Step 2: Calculate the chain code based on the mapping in (V.20) and list the numbers 

corresponding to every curve segment of the boundary contour. 

After obtaining the chain code, one can find the curvature change Δθ by converting the 

number into an angle using the Table V.1. The curvature change for N points is then 

expressed as: 

 
(1) ( );   1

( )
( ) ( 1);   2,3

N if n
a n

n n if n N

 

 

 − =
= 

 − − =
 (V.21) 

Similarly, the path length can be represented as the half of the curve segment [109]: 

 
1 1

( ) [2 ( ) ( 1)] [ ( ) ( 1)]
2 2

w n h n h n h n h n= − − − + + −  (V.22) 

where ( ) ( ) mod  2ch z M z=  

 

Therefore, the average BE in (V.18) can be rewritten as: 
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The steps for finding bending energy are as follows: 

Step 1: Find the numerical value for each boundary curvature segment using Freeman’s 

chain code 

Step 2: Calculate the curvature angle change and path length for each segment using (V.21) 

and (V.22), respectively.  

Step 3: Find the average of the overall curvature change using (V.23). 

 

The main advantage of this feature is that it can detect the target even if there is 

an overlapping of target and clutter signal. In fact, the bending energy increases because 
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of the overlapping between target and clutter sub-space. If this occurs, the usage of chain 

code identifies the curvature change. Since, the chain code represents the consecutive 

boundary points’ angle direction, the difference from one sample point to another can be 

simply obtained in order to check the change of the curve. The change can be written as: 
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Most of the times, the maximum change will occur at the points where the target 

overlaps with the clutter signal. To further describe the phenomenon, we propose the 

following lemma. 

Lemma 1: When clutter and target signal block overlaps with each other, a curvature 

change will take place at that location, that consequently yields maximum change of 

curve around the boundary contour of clutter signal block. 

The abovementioned lemma is true since the clutter spectrum and target signal have 

distinguishing shape features. The expected clutter ridges are linearly or elliptically (due 

to misalignment angle) extended in Doppler-angle plane. In contrast, target signals form a 

pointed shape with a sufficient number of the transmitted pulse and array elements. This 

distinctive feature allows them to acquire maximum change at the overlapped region of the 

curvature all around the clutter signal block. However, the maximum change might not 

always be valid for the overlapping area in the case of extreme clutter environments such 

as vegetation and terrains. In such case, a modified PRF (~15%) could resolve the 

problem. 

To find the largest change over curve, one can use histogram of the boundary 

pixel angles (or integer number given in Table V.1) to indicate the largest change of 

curvature. It shows the frequency of values where most of the contour change is located. 
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Usually, the histogram bin range provides the information corresponding to pixel indices 

where the maximum curvature change is occurred. Therefore, the boundary of the target 

can be detected robustly. 

Since, the boundary information of target is available from histogram, we can find 

the non-zero pixels inside the boundary contour using scan-line polygon filling (SLPF) 

algorithm.  SLPF considers scanning the contour from left to right and finds the pixels 

that lie inside the boundary points. It stores all the edge information in a structured form. 

Slope of the current edge point index and the previous one is calculated to find the 

intersections between edge line and current scan line [110]. The method of finding 

intersection points is known as odd parity test.  These points’ indices are then sorted in 

increasing order to provide the pixels inside that boundary contour. 

 

V.4. Deep Learning for Target Detection Using Feed Forward Neural Network 

(FFNN) 

Since there are four features, there are tendencies to use less sophisticated 

machine learning algorithms such as, logistic regression, support vector machine (SVM). 

However, these algorithms have major problems dealing with non-linear boundary or 

unknown feature distribution. Logistic regression assumes linear relationship with the 

input and output variable of the model and thereby generalize the model without any 

flexibility. Thus, the model performance will not be satisfactory for the radar data 

associated with these features. In contrast, SVM has the ability to handle complex 

boundaries, but it comes at an expense of additional support vectors resulting in more 

time in training the model.  
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Considering these drawbacks, FFNN is a better choice for the radar data. A model 

with several hidden layers is sufficient to provide a satisfactory performance. 

Furthermore, the FFNN is far less complex than deep CNNs used extensively in the 

computer vision field.  The FFNN also requires much less computational resources than 

CNN. Therefore, FFNN model is developed for an efficient classification of target and 

interference in this work. 

The data collected from the aforementioned features are fed into simple feed 

forward neural network (FFNN) with three hidden layers. The samples of the data are 

normalized before feeding it to the network with a view to avoiding unexpected 

performance degradation. We build a model using to train, validate and test our proposed 

method. The details of the model can be further described in the following subsections. 

 

V.4.1. Network Layers 

The input layer starts with samples and their corresponding features. After that, 

there are three intermediate fully connected hidden layers. There is no rigorous set of 

rules to the number of hidden layers or number of processing elements inside each of the 

hidden layers. Since the features are not linearly separable, three hidden layers has 

likelihood of better performance than one or two hidden layers. In addition, more than 

three hidden layers could also work but the computational load will get higher than the 

three hidden layers setting. It is always recommended to check for the addition layers’ 

complexity for a network since we need to ensure an efficient model. Likewise, the 

hidden units do not have specific protocols to follow. Although not unanimously 

maintained, the number of hidden units should be at least more than the input features 
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[111,112]. It should also be noted that, a model with fewer hidden units or processing 

elements (i.e., less than the input features) fail to predict the output labels and thus the 

probability of detection will decrease momentarily. On the contrary, large amount of 

processing elements increases the time to train the network. As a result, the model will be 

more likely prone to the memorization effect.  The choice of the hidden units is arbitrary, 

and considering such circumstances, we experimented with different number of values. 

With the several trials, we chose 20, 25 and 30 units or processing elements for the first, 

second and third hidden layers, respectively. These layers use ‘relu’ activation function to 

introduce non-linearity in the output of each of them. The fourth or last layer predicts the 

probability to which the sample belongs to. The softmax activation function is popular in 

predicting such probabilities. Since, we have two categories (i.e., clutter, and target signal 

block) in our approach, the last layer has 2 hidden units to classify the expected signal 

blocks (target or clutter). 

 

V.4.2. Regularization 

Regularization is an important step to prevent the model from different 

performance loss. The procedure is used to regularize or curtail certain network 

coefficients to avoid memorization. Overfitting or memorization is very common 

problem in deep neural network (DNN). There is always a tendency from a model to 

memorize the pattern when it encounters a complex and variable relation between input 

and output layers. The memorization occurs due to the large values of the coefficients, 

and they need to be controlled. Thus, additional hyperparameter is introduced to reduce 

the variance of these coefficients. Furthermore, there are several methods such as ridge 
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(L2) and lasso (L1) regression to tune or control the hyperparameter that results a flexible 

model. The hyperparameters for the regularization are tuned empirically from the 

validation data. Modern DNNs utilized the combination of both regressions to avoid 

overfitting.  The elastic net regularization (ENR) is known as the combination of ridge 

(L2) and lasso (L1) regression. To prevent overfitting, ENR is utilized in the second and 

third layer of model.  

V.4.3. Optimizer and Loss 

The optimizer metric is often very difficult to choose that ensures the success of 

the network model. The loss function needs to be differentiable to optimize receiver 

operating characteristics (ROC) metric.  However, ROC cannot be optimized for the 

classification task. Thus, the loss function is used to measure the quantity to minimize the 

error in the weight vectors of the network.  Mean squared error or crossentropy are 

widely used loss function in such case. However, crossentropy is more suitable with 

probabilities. It gauges the difference found in the probability distributions of real and 

predicted data. As for the optimization, there are several optimizers that can be used to 

adjust the weights of the networks. Mostly use standard or advanced gradient descent 

algorithm to reach the global minima. In this work, we utilize the RMSprop to calculate 

the point where the cost/loss function is minimum. This optimizer can automatically 

control the steps for gradient change towards the minima. Lastly, since our proposed 

approach deals with binary classification problem that yields probabilities, binary 

crossentropy is the most suitable loss function to estimate the loss. 
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V.5. Synthetic Data Generation 

The most challenging part of airborne radar target detection is to deal with 

training data for clutter estimation. The collection of substantial amounts of primary data 

is very expensive and difficult to achieve. On the contrary, target could be located 

anywhere in the range of [−PRF/2, +PRF/2] and makes it the majority class. Thus, target 

data can be generated using a uniform or weighted sampling distribution [113] in that 

interval. Hence, we propose to generate synthetic data for minority class i.e., clutter 

subspace using synthetic minority over sampling technique (SMOTE) [114]. The method 

oversamples the clutter data and increase the data population synthetically without 

affecting the distribution of the samples. The technique uses k-nearest neighbor algorithm 

to create synthetic clutter data. The steps are as follows: 

1. Select the number of generated sample percentage (G) as a multiple of 100. 

Divide it by 100 and convert it to the nearest integer i.e., 

 100G G=     (V.25) 

Here, •   denotes the rounding function to obtain the nearest integer. 

 

2. Compute the k-nearest neighbors for the given minority sample matrix M with 

feature attributes and store the indices of them. (k could be any integer 

number except 1) 

3. Iterate through all the minority sample of M and calculate the difference 

between each minority sample and randomly selected sample from its k-

neighbors. The neighboring sample is chosen randomly such that the index is 

not equal to the index of current minority sample. 
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4. Multiply the diff with another random value r (half-open interval [0.0,1.0) 

range) and then generate new sample by adding it to the previous minority 

sample. 

 ( ,:) ( ,:)S h M i r diff= +   (V.27) 

where h is the index of the generated synthetic samples. 

In this way, one can generate the SMOTE samples for the clutter data synthetically. It 

should be noted the number of nearest neighbors should be greater than 1 and less than 

the size of the original clutter samples.  

 

V.6. Simulation Results for Linear Clutter Ridge 

In this section, an airborne radar system is considered to simulate a ground 

moving target scenario in the presence of clutter. The sensor array of the system has 16 

isotropic elements with 0.33m spacing between them. The wavelength of the radar is 

0.67m. There are 16 pulses in one coherent processing interval (CPI). The pulse 

repetition frequency (PRF) is set at 300 Hz. The platform height is 9000m. It should be 

noted that, the simulation considers complex Gaussian distributed clutter with amplitude 

variation randomly changed with the aid of standard deviation in the primary detection 

bin. The amplitude distribution is randomly changed from 0.52 to 32 where 2 is the 

variance of the clutter distribution in the detection bin. The variation is random, and they 
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are evident in the Fig. V.2(a) and (b) under H0 and H1 hypothesis, respectively. To build 

 

 

                         

(a)                                                                               (b) 
 

Figure V. 2 Random variation of Gaussian distributed clutter amplitude without Doppler ambiguity under: (a) 

H0 hypothesis; (b) H1 hypothesis 

 

 
 

 

  

(a)                                                                               (b) 
 

Figure V. 5 Random variation of Gaussian distributed clutter amplitude without Doppler ambiguity under: (a) 

H0 hypothesis; (b) H1 hypothesis 
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Figure V. 3 Clutter scenario with point target located at −28 Hz in Doppler frequency and angle of arrival 

at 5 in azimuth: (a) transformed 2D-plot; (b) transformed 3D-plot; (c) denoised radar image in 2D format; 

(d) denoised image in 3D format. 

 

 
Table V.2 

 

 



105 

the FFNN model, we generate a dataset of 6144 samples using over-sampling technique 

proposed by Chawla et.al [114] and weighted sampling method [113] for clutter and 

target data, respectively. The FFNN model categorizes the samples into two labels such 

as, target and clutter. Both L1 and L2 hyperparameters for the ENR are fixed at 0.01. The 

model is then trained with 3456 samples and validated on 1152 samples for 60 epochs. 

Training and validation data are shuffled to improve the performance of the model in 

each epoch. With this radar configuration and platform velocity at 50 m/s, a single target 

is set at -28 Hz. The azimuth of the target is at 5 with 10km ground range from the 

Table V.2 Different features for target and clutter in doppler unambiguous case 

 To the 

clutter ridge 

 Block Size Roundness 

Ratio 

Bending 

Energy 

(avg.) 

Target 

Detected? 

Maximum 

distance from 

any pixel in the 

clutter block 

9.06 Clutter 

Block 

507.70 0.1049 0.0255 No 

Minimum 

distance from 

any pixel in the 

Target Block 

25.73 Target 

Block 

19.24 0.9613 1.5897 Yes 
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(a)                                                                               (b) 
 

Figure V. 4 Classified clutter and target signal when they are clearly separated: (a) detected clutter block; (b) 

detected target block 
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origin. The signal to noise ratio (SNR) and clutter to noise ratio (CNR) are 0dB and 

40dB, respectively. Next, the radar echo data collected from primary range bin are 

transformed into the angle-Doppler domain via Capon estimator (CE). The 

transformation provides a radar image that contains the clutter, thermal noise and 

possibly a target. Fig.V.3(a) and (b) shows a typical radar scenario with target Doppler 

frequency at −28 Hz. The denoised plot of V.2(c) and (d) prove that the noise is 

significantly reduced. Table V.2 shows different features for target and clutter pixels. The 

roundness ratio and bending energy clearly distinguishes the target and clutter subspace. 

These multiple features are fed into the neural network model that predicts whether the 

detected block is target or clutter. Fig. V.4 shows the detected clutter and target from the 

prediction of the FFNN. It is also evident that one can detect the target and clutter by 

using a single feature from the aforementioned features. However, the clutter and target 

are not always distinctly separated in most of the scenarios. There could be non-ideal 

 

 

 

 

Figure V. 5 Overlapping scenario of the targe-interference classification due to low velocity target at -45 

Hz in Doppler frequency with −10 angle of arrival  
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situation due to low velocity of the target or low radar PRF. As a result, target and clutter 

block could overlap with each other. When target and clutter are merged together, multi-

feature based neural network can classify the target and clutter robustly. Consequently, 

boundary curvature is calculated, and target is detected via maximum change discussed in 

 

 

 

Figure V. 6 The 3D plot of observable low velocity of the overlapping target and single clutter segment 

under unambiguous Doppler space 

 

 
 

 

 

Figure V. 8 The 3D plot of observable low velocity of the overlapping target and single clutter segment 

under unambiguous Doppler space 

 

 

 

 

 

(a)                                                                               (b) 

Figure V. 7 The overlapped scenario of target-interference classification due to low velocity of the target at 

−45 Hz with azimuth angle of −10 in the angle-Doppler plane (2D plot) 

 

 
Table V.3 Overlapping Target and Clutter Features for Doppler Unambiguous Case 
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section V.3. To evaluate the curvature deviation due to overlap, we set the target at the 

Doppler frequency of −45 Hz. Fig. V.4 and V.5 shows the overlapping target in 2D and 

3D format, respectively. Further denoising process yields the Fig. V.7 where the thermal 

noise is reduced, and the radar scene contains target and clutter signal only. Also, Table 

V.3 provides the data for feature attributes. It can be seen from the table that, although 

the other features are failed to show distinguishing attribute, bending energy indicates an 

increase in its value. Now, the bending energy of clutter block is 0.1505 which is a 

significant increase over the previous value of bending energy of the clutter block found 

in Table V.2. However, the situation is not always the same and the other feature could 

Table V.3 Overlapping Target and Clutter Features for Doppler Unambiguous Case 

 To the 

clutter 

ridge 

 Block Size Roundness 

Ratio 

Bending 

Energy 

(avg.) 

Target 

Detected? 

Maximum 

distance from 

any pixel in the 

clutter block 

27.09 Overlapped 

Target and 

Clutter 

Block 

507.70 0.1228 0.1505 Yes 
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Figure V. 8  Histogram of the curvature change with the maximum change is evident owing to overlapping 
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show the distinctive characteristics for the classification depending on the constraints in 

the clutter environment.  

Now, if we apply (V.24) to find the difference between the pixel angles, the change 

in curvature becomes evident. Figure V.8 shows the histogram of the curvature change 

corresponding to pixel indices. There are 773 boundary pixels detected by Moore-Neighbor 

 

 

 

(a)                                                                               (b) 
 

Figure V. 10 The target block detected from the target-clutter overlapped scenario in the angle-Doppler 

domain; (a) 2D-plot; (b) 3D-plot; 

 

 
 

 

 

 

 

 

(a) (b) 

 

Figure V. 9 The detected clutter from the overlapping inhomogeneous clutter signal in the angle-Doppler 

domain; (a) 2D-plot; (b) 3D-plot; 

 

 
 

 

 

(b) (b) 

 

Figure V. 11 The detected clutter from the overlapping inhomogeneous clutter signal in the angle-Doppler 

domain; (a) 2D-plot; (b) 3D-plot; 
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tracing algorithm. 51 pixels out of them provide information about small to large change 

in curvature of target block. If we investigate the Fig. V.8, the maximum change of 

curvature is evident. The corresponding bin edges are considered to search for the indices 

where the maximum change has occurred. 

Afterwards, SLPF algorithm is applied to find the pixels that are inside the boundary 

contour. Fig. V.9 and 10 show the detected clutter and target, respectively. 

Likewise, for the Doppler ambiguous (DA) case, the target signal overlaps with one 

of the clutter segments. Since, there will be multiple clutter ridges, target subspace becomes 

narrower than the previous DU case. To simulate the DA case, the platform speed is 

increased to 100 m/s. The velocity of the platform makes the clutter subspace aliasing int 

the visible Doppler spectrum. As for the 100 m/s, there will be three multiple clutter 

segments in the angle-Doppler domain. The shape of the clutters is linearly extended. Other 

relevant parameters are as same as DU case. In this part of simulation, a single target is set 

 

 
 

Figure V. 11 Low speed target at the Doppler frequency of 35 Hz overlaps with one of the clutters of the 

multiple clutter ridge (=3) in a Doppler ambiguous case. 
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to be located at 35 Hz. Fig. V.11 shows that a target is closely overlapped with one of the 

clutter segments in the transformed domain. The scene can be clearly observable from the 

3D point of view given in the Fig. V.12. The denoising process is applied to V.11 and 

thermal noise is mitigated as shown in the 2D and 3D-plot of V.13 and V.14, respectively. 

 

 
 

Figure V. 12 3D view of low-speed target that has merged with one of the linearly extended clutters for 

Doppler ambiguous case. 

 

 
 

 
 

Figure V. 14 3D view of low-speed target that has merged with one of the linearly extended clutters for 

Doppler ambiguous case. 

 

 

 
 

Figure V. 13 Denoising processing significantly reduced the thermal noise in the radar scene with 

overlapped target and clutter (2D-plot). 
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The FFNN predicts that the features related to this angle-Doppler image in Fig. V.14, 

indicates the presence of target which is merged with one of the clutter signal blocks. It 

implies that, the corresponding block is considered or classified as target block. Table V.4 

 

 
 

Figure V. 14 Denoised 3D-plot of radar scene with clear evidence of overlapped target and clutter segment. 

 

 
 

 
 

Figure V. 16 Denoised 3D-plot of radar scene with clear evidence of overlapped target and clutter segment. 

 

Table V.4 Overlapping Target and Clutter Features for Doppler Ambiguous Case 

 To the 

nearest 

clutter 

ridge 

 Block 

Size 

Roundness 

Ratio 

Bending 

Energy (BE) 

Target 

Detected? 

Maximum 

distance from 

any pixel in 

the Clutter 

Block 1  

24.71 Overlapped 

target and 

Clutter 

Block 1 

267.66 0.1528 0.1115 Yes 

Maximum 

distance from 

any pixel in 

the Clutter 

Block 2 

8.50 Clutter 

Block 2 

141.42 0.2872 0.0756 No 

Maximum 

distance from 

any pixel in 

the Clutter 

Block 3 

8.66 Clutter 

Block 3 

141.42 0.2872 0.1047 No 
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shows the values of different feature attributes of the in multiple clutter ridge scenario.  

Subsequently, boundary information is extracted via chain code and maximum changes 

among the boundary pixels are identified using histogram like the same procedure applied 

in the Doppler unambiguous case.  

Fig. V.15 shows the histogram plot of the corresponding non-zero pixels in the angle-

Doppler radar image. There are 435 boundary pixels recognized by Moore-Neighbor 

 
 

 

Figure V. 15 The maximum contour change observable in the histogram of the curvature changes for 

Doppler ambiguous case 

 

 
 

 

 

Figure V. 17 The maximum contour change observable in the histogram of the curvature changes for 

Doppler ambiguous case 

 

 

 

 

 

(a)                                                                               (b) 

Figure V. 16 The detected clutter block 1 from the target-clutter overlapped block (i.e. target block) in the 

angle-Doppler plane; (a) 2D-format; (b) 3D-view of the detected clutter; 
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tracing algorithm. 50 pixels out of them give information about the small to large change 

in curvature of target block.  The maximum change of curvature is again observed around 

the contour of the target location. Now, the SLPF algorithm is applied to these boundary 

points. The algorithm then detects all the non-zero pixels of the target. Fig. V.16 shows the 

detected clutter signal block that was merged with the target pixels. The clutter signal are 

segmented based on the SLPF algorithm which is displayed in V.16(a).  Whereas the block 

 

 

 

(a)                                                                               (b) 
 

Figure V. 17 The detected clutter block 2 for multiple clutter scene in the angle-Doppler plane; (a) identified 

clutter block 1 in 2D-format; (b) 3D-plot of the detected clutter; 

 

 
 

 

 

(a)                                                                               (b) 
 

Figure V. 19 The detected clutter block 2 for multiple clutter scene in the angle-Doppler plane; (a) identified 

clutter block 1 in 2D-format; (b) 3D-plot of the detected clutter; 

 

 

 

 

(a)                                                                               (b) 
 

Figure V. 18 The detected clutter block 3 for multiple clutter scene in the angle-Doppler plane; (a) identified 

clutter block 1 in 2D-format; (b) 3D-plot of the detected clutter; 
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shown in Fig. V.16(a) is predicted as a clutter block by the FFNN model. Fig. V.16(b) 

displays the 3D-plot of the detected clutter block. The remaining block is also identified as 

a clutter block via the neural network model as shown in Figure V.18. Now, the merged 

target signal is segmented based on the SLPF algorithm using the boundary curvature 

information. Fig. V.19 shows the detected target that has merged with the clutter signal. In 

Fig. V.18(b), it can be seen some of the clutter pixels which are merged with the target are 

also present in the detection scene. 

The deep learning model also has successfully classified target and clutter with few 

misdetections. The training and validation data helps the model tune to the appropriate 

values for the hyperparameters to increase the accuracy. 1536 test samples are considered 

to evaluate the network for the classification. Table V.5 shows the confusion matrix of 

 

 

 

                                      (a)                                                                               (b) 

Figure V. 19 The detected target from the target-clutter overlapped block (i.e. target block) in the angle-

Doppler plane; (a) 2D-format; (b) 3D-position of the detected target; 

 

 
 

 

 

                                      (a)                                                                               (b) 

Figure V. 21 The detected target from the target-clutter overlapped block (i.e. target block) in the angle-

Doppler plane; (a) 2D-format; (b) 3D-position of the detected target; 

 

Table V.5 Confusion matrix of multi-feature approach 

 Predicted Signal  

Clutter Target 

Actual 

Signal 

Clutter 100% 0% 

Target 5.1% 94.9% 
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classified target and clutter. The misdetections are due to some targets which are totally 

merged with the clutter without showing much boundary curve variation. 

V.7. Simulation Results for Elliptical Clutter Ridge 

The proposed method is also applicable to the non-linear clutter ridge. From 

chapter IV, we know that an alignment error angle will be introduced if the direction of 

platform velocity is not aligned with antenna array axis. The phenomenon mainly occurs 

in side-looking antenna or a scanning antenna that rotates continuously. The scanning 

antenna frequently suffers from this alignment error. The misalignment introduces more 

occupied clutter subspace in the angle-Doppler space. The proximity feature alone could 

detect the targets when they are not merged with the non-linear clutter ridge. However, 

when they overlap, multiple features along with proximity feature are needed to boost up 

the non-adaptive approach. The multi feature based FFNN method has the capability to 

detect the target with overlapped clutter even when the clutter ridge is non-linear such as, 

elliptical clutter. 

In this section, simulation results for elliptical shaped clutters are considered. The 

airborne radar system has the same type of radar parameters. There are 16 isotropic 

antenna elements and 16 coherent pulses for one CPI. The CNR and SNR are 40 and 

0dB, respectively. The alignment error angle is considered to be 12. The target is set 33 

Hz in Doppler frequency. The selected location for the target is overlapping with the non-

linear clutter ridge. Now the radar echo data is again transformed into Doppler domain 

via Capon estimator with fine resolution. Fig. V.20 shows the 2D image scene of merged 

target and clutter. The overlapped target is more comprehensible in the 3D image in the 

Fig. V.21. 
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The next step is to denoise the target and clutter subspace to advance for the 

classification step. The denoising process removes the thermal noise and there will be 

 

 
 

Figure V. 20 Non-linear clutter occupying the observable Doppler spectrum with a point target at 33 Hz 

and −8 azimuth 

 

 
 

 
 

Figure V. 22 Non-linear clutter occupying the observable Doppler spectrum with a point target at 33 Hz 

and −8 azimuth 

 

 

 

 

Figure V. 21 3D radar image of the randomly changed Gaussian distributed elliptical clutter ridge and an 

overlapped target 
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only and clutter and target. Fig. V.22 and V.23 show the denoised radar image that 

clearly indicate the overlapping situation.  

 

 

 

Figure V. 22 Denoised radar image of the elliptical clutter with misalignment error of 12 due to aircraft 

velocity and antenna array for Doppler unambiguous case 

 

 
 

 

 

Figure V. 24 Denoised radar image of the elliptical clutter with misalignment error of 12 due to aircraft 

velocity and antenna array for Doppler unambiguous case 

 

 

 

 

Figure V. 23 Denoised 3D radar image of the elliptical clutter for Doppler unambiguous case where target 

and clutter are connected and overlapped with each other 
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After denoising, the target, and clutter are visible in Doppler space. There are also 

some non-zero edge pixels due to grating lobes. They can be easily removed as those 

pixels are located at the edges of the angle-Doppler space. Next, the multi feature 

approach is performed to distinguish the signal blocks. HK algorithm is applied and the 

there will only one signal block. The feed forward neural network recognizes the block as 

a target block. The features are calculated and found as: 

❖ The proximity distance is calculated from the major axis of the non-linear clutter 

ridge.  

➢ The maximum distance from the non-zero pixel to the major axis is found to 

be 43.71 

➢ The minimum distance from the overlapped pixels to the major axis is 

calculated as 30.70. 

➢ The maximum distance from the non-linear clutter ridge pixel to the major 

axis is 25.43 

➢ The minimum distance from the non-linear clutter ridge pixel to the major 

axis is 21.46 

❖ The block size for the detected block is measured as 507.70 

❖ The roundness ratio is found to be 0.2154. 

❖ The bending energy is calculated as 0.1141. 

Then FFNN model is built based on the features calculated from 1500 radar image 

scenes. 500 images are used for validation to build the model. The model has same 

hyperparameters tuned empirically from the training and validation data. The 

aforementioned test sample has been run through the model and classified as a target 
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block since the target is merged with the clutter signal. Next, the boundary information is 

processed with the aid of histogram plot. The histogram clearly indicates maximum 

 

 
 

Figure V. 24 Maximum boundary variation observed from the pixel indices 600 to 660 in the histogram 

plot 

 

 
 

 
 

Figure V. 26 Maximum boundary variation observed from the pixel indices 600 to 660 in the histogram 

plot 

 

 

 
 

Figure V. 25 Detected non-linear clutter ridge after the segmentation process performe with boundary 

information from the merged target block predict by FFNN 
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frequency where target overlaps with clutter.  There are 849 boundary pixels found by the 

tracing algorithm. The chain code maps the pixels coordinate into corresponding angles 

that ultimately represent the direction change. Fig. V.24 displays the frequency vs. pixel 

indices for the boundary curve variation using the Moore-neighbor tracing algorithm. 184 

pixels out of them show small to large variation of contour curvature.  

The pixels are converted to linear indices to obtain the group of pixel which 

shows maximum frequency or maximum number of change in the boundary. The 

maximum boundary change is found in the indices of 600 to 660. With the boundary 

pixels, polygon filling algorithm is applied to find the non-zero pixels inside the 

boundary. If the pixel inside the boundary is also the member of the radar scene, then it is 

included in the detected group of target pixels. Some morphological operation is also 

used to remove some outer pixels from the boundary. These outer pixels could exist due 

to some criterion error.  

 

 

 

Figure V. 26 Detected non-linear inhomogeneous clutter with 12 alignment error angle (i.e., elliptical 

shaped clutter) with Gaussian distributed randomly varied amplitude from the merged target block predict 

by FFNN (3D-plot) 
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SLPF algorithm is then applied to segment the target pixels from the clutter. Fig. 

V.25 shows the detected clutter signal that has been separated from the boundary contour 

information. The 3D plot of figure V.26 displays the detected clutter.  

Likewise, the target pixels are also identified the proposed method using the same 

approach. Since the target overlaps with the clutter, some of the clutter pixel could be 

included with target signal. As we know, the target forms a pointed shape with effective 

spread in both angle and Doppler space. The point could include some additional pixels 

of clutter. However, the target is still be detected from the overlapped scenario of the 

inhomogeneous clutter. Fig. V.27 shows the 2D image of detected target from the ground 

clutter environment. The 3D plot of the image also shows the detected target under this 

Doppler unambiguous scenario.  

 

 

 
 

Figure V. 27 Detected target signals at 33 Hz Doppler frequency from the merged target-clutter scenario 

using boundary curvature information and single line polygon algorithm 

 

 
 

 

 
 

Figure V. 29 Detected target signals at 33 Hz Doppler frequency from the merged target-clutter scenario 
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The simulation result effectively verifies the detectability of target even under the 

overlapped case of the target. The target could locate inside or outside of the clutter ridge. 

In such case, the designed algorithm will perform well. That being said, the combination 

of four features will robustly detect the target and separate it from the clutter if it is 

merged with the clutter from the inside. The alignment error angle could range from 

small to large angle. As the error angle increases, it could eventually be a circle. The 

more the space inside the non-linear clutter, there are more likely to be a chance that 

target is inside. The small error angle makes the detection more challenging. However, as 

the angle increases, the chance of the target location inside the clutter will get very high. 

Thus, the detection probability decreases as the alignment error angle decreases to a small 

value (0< m <4).   

 

 

 
 

Figure V. 28 The 3D view of detected target pixels (some of the pixels are totally merged with clutter) at 33 

Hz of Doppler frequency for non-linear clutter ridge merged with the target 

 

 
 

 

 
 

Figure V. 30 The 3D view of detected target pixels (some of the pixels are totally merged with clutter) at 33 

Hz of Doppler frequency for non-linear clutter ridge merged with the target 
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V.8. Performance Comparison 

Since the method introduced in this chapter is basically a non-adaptive approach, it 

is completely unfair to compare with any adaptive approach. Furthermore, the method is 

feature based technique that does not require any clutter distribution estimation and 

filtering process. While the adaptive approaches need to estimate the clutter with sufficient 

clutter samples and then filter out the clutter components. Obviously, conventional 

adaptive approach fails to recognize and detect inhomogeneous clutter in both cases. In 

contrast, this feature-based approach will outperform the adaptive method even in the 

simple circumstances.  Therefore, the proposed method is compared with another image 

feature-based technique known as beam-Doppler image feature recognition (BDIFR) [92]. 

The comparison is performed with a Doppler ambiguous scenario with same radar 

parameters. The SNR and CNR are fixed at 0 and 40dB, respectively. The BDIFR method 

applied RG algorithm to identify the connected region and then detects the target based on 

the block size feature. The simulation begins with a transformed radar image scene where 

 

 

 

(a)                                                                               (b) 
 

Figure V. 29 The MV transformed radar image for the performance comparison between the introduced 

feature-based approach and BDIFR method 

 

 
 

 

 



125 

the target Doppler frequency is set at 24 Hz with −1 in azimuth. Fig. V.29 shows the MV 

transformed radar data with a single clutter ridge. Both methods remove most of the white 

noise successfully. Fig. V.30 displays the denoised scenes for both methods. The proposed 

method then applied HK algorithm to obtain the connected region. On the contrary, the 

BDIFR method used RG algorithm to get the connected block.  

 

 

 

(a)                                                                               (b) 

Figure V. 30 Denoised 3D-plots for both of the methods: (a) the proposed approach; (b) the BDIFR method 

 

 
 

 

 

(a)                                                                               (b) 

Figure V. 32 Denoised 3D-plots for both of the methods: (a) the proposed approach; (b) the BDIFR method 

 

 

 

 

(a)                                                                               (b) 
 

Figure V. 31 Classification of clutter for comparison: (a) Detected clutter block of the proposed method; (b) 

target signal merged with clutter in BDIFR method 
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Next, the proposed approach extracts the four features such as, proximity to clutter 

ridge, block size, roundness ratio and bending energy and then test the FFNN model to 

detect the radar image in V.32(a) as target block. Subsequently, information about 

boundary contour variation is processed to detect all of the target pixels and detect the 

target. In contrast, BDIFR approach uses the block size feature to detect the block. The 

feature falsely classifies the block as clutter instead of target. Fig. V.31 and 32 demonstrate 

the stark difference between two approaches for target detection. The comparison clearly 

shows that the proposed method outperforms the BDIFR method in the case of overlapping 

state. Table V.6 shows the feature comparison between the proposed and BDIFR method. 

As can be seen from the table, BDIFR method cannot detect the overlapped with the block 

 

 

 

(a)                                                                               (b) 
 

Figure V. 32 Target block detection under H1 in the angle-Doppler scene : (a) Detected target block of the 

proposed method; (b) target not detected by BDIFR method 

 
Table V.6 Performance comparison  

 Target Detected? 

BDIFR Block Size 507.70 No 

 Block Size 507.70  

Proposed Method Maximum distance to the Clutter Ridge 30.80 Yes 

 Roundness Ratio (RR) 0.1028  

 Bending Energy (BE) 0.1009  
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size of 507.07. Thus, it falsely recognizes the target as clutter. In contrast, the multi-feature 

method utilized the geometric feature values of target and interferences along with 

proximity feature and block size. Hence, the proposed method detects the overlapped target 

and recognizes it with the target boundary and pixels inside that boundary. 

V.9. Summary of Chapter V 

An innovative multi-feature based deep learning approach is introduced in this 

chapter. The method does not depend on the availability of secondary clutter samples. In 

fact, the data collected from the primary detection bin is sufficient for this approach. 

Furthermore, the neural network model is appropriate choice for these features since the 

feature distribution is non-linear and unknown prior to the processing of the algorithm. The 

method also requires no statistical data about clutter amplitude variance and detects the 

target both in overlapping and non-overlapping scenarios of clutter spectrum. The detection 

approach is equally applicable to the non-linear clutter and therefore ensures its viability 

in real inhomogeneous clutter environment. Jammer is not considered in this machine 

learning approach. Since the jammer and clutter will show connected property to each other 

in the radar image, this deep learning feature-based method can also classify the target and 

interference from such situation. The method also outperforms the previous non-adaptive 

feature-based methods since it makes decision about target from multiple independent and 

uncorrelated features. Also, most adaptive [5,11-27] and knowledge-aided approaches [33-

49] fail to detect the overlapping target since the filters erroneously remove the target pixels 

as the clutter echo. In contrast, the multi-feature method detects the overlapping target from 

the proximity and geometric features. The deep learning model also increases the 

robustness of the method to recognize the target in the angle-Doppler domain. Furthermore, 
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traditional methods such as STAP and Reduced dimension techniques suffer performance 

deterioration for random clutter amplitude and misalignment owing to the velocity 

direction of the airborne platform and its antenna array. In comparison, this detection 

method is independent of clutter amplitude and misalignment error and thus detects targets 

successfully in such inhomogeneous environments. 

 

VI. CONCLUSION AND FUTURE WORK 

 

VI.1. Conclusion 

In this dissertation, innovative approaches have been devised to detect the target 

effectively from the ground clutter environment. Radar interference such as clutter and the 

receiver noise known as white noise are considered to be the obstacles in this work. The 

work mainly demonstrates the effectiveness of the proposed detection technique under 

various real world clutter scenarios such as, Doppler ambiguity, velocity misalignment etc. 

The mathematical and theoretical aspects of these methods are also shown that proves to 

be better interference suppression technique over the other conventional and feature based 

approaches. The target-interference classification techniques proposed in this dissertation 

are encapsulated as follows: 

Chapter III is established on the concept of innovative clutter-proximity feature that 

describes a machine learning approach to learn about the detection threshold. Once the 

detection threshold is well approximated, the clutter and target could be classified based 

on this feature. The radar echo data is transformed via MV method with the few amount of 

samples from primary detection bin. The denoised image is then processes for proximity 
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feature. The clutter distribution does not need to be homogeneous for the detection 

approach. It implies that, the clutter feature will work well in inhomogeneous clutter 

environment. Moreover, the simulation results validate the effectiveness of the proposed 

approach. The method also outperforms from typical or conventional adaptive approach. 

In chapter IV, a slightly modified proximity feature approach is introduced to 

suppress the non-linear clutter and thereby detect the target. Since the clutter is non-linear, 

the major axis parameter is utilized to classify the target and clutter pixel in the angle-

Doppler plane. The two proximity detection thresholds are employed to recognize the 

target. The first threshold works when the target pixels are located outside the clutter and 

later one works when the target is inside the H1 subspace of the clutter. The simulation 

result validates the method with an inhomogeneous DU clutter to detect the target 

successfully.  

In chapter V, an effective multi-feature based deep learning approach is developed 

to detect the target and suppress the clutter without any adaptive filters. The MV 

transformed radar data are then utilized and some image as well as geometric features are 

extracted from the transformed angle-Doppler domain. These feature data are processed 

with FFNN model that can predict target even when it is low speed. The low-speed targets 

generally overlap with clutter. The proposed approach can successfully detect the 

overlapping target and suppress the clutter. The method is not affected by the 

inhomogeneity of the clutter environment. Since this is a multi-feature approach, it works 

equally well when the clutter is no longer linearly extended. Furthermore, the proposed 

method works very well compared to the previous image feature-based techniques.  
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Nevertheless, there are some pitfalls of these proposed detection techniques that 

need to be considered. The first problem of these machine learning techniques is the lack 

of training data. Airborne radar’s measured data is very expensive and difficult to achieve. 

The proposed methods explore the detection performance on simulated data. However, the 

simulated data does not always consider all plausible scenarios and hence the detection 

probability deteriorates relating to real world environments. Secondly, some other 

environments such as, Doppler ambiguous case for velocity misalignment phenomenon, 

extreme intrinsic clutter motion are not considered in this work. These real world effects 

could have some adverse effects on the proposed methods. 

  

VI.2. Future Work 

Having those constraints in my mind, I would like to extend the research for the 

multi-feature-based machine learning approach. There are several future approaches that 

could be employed for better suppression in the real-world clutter environment. They can 

be explained briefly as follows: 

• Transfer Learning: Since the real radar data is not readily available, transfer 

learning with few amounts of training data can be effectively utilized to further 

improve the performance of the multi-feature based machine learning approach. 

The transfer of knowledge could be obtained from the same type of radar system or 

different radar operating in different weather or other turbulence of the 

environment. The transfer learning will be very effective in the field of ground 

moving target detection. 
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•   Adding More Features: The performance of the multi feature based approach 

improves greatly due to the different feature attributes. The more feature is utilized, 

the detection probability of target increases. More image and geometric features 

such as, number of the corner, Euler characteristic, axial ratio, aspect ratio, image 

entropy etc. could be utilized along with the aforementioned features to classify 

target and clutter robustly in real clutter scenario. 
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