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ABSTRACT OF THE DISSERTATION

AN EVOLUTIONARY OPTIMIZATION ALGORITHM FOR AUTOMATED

CLASSICAL MACHINE LEARNING

by

Leila Zahedi

Florida International University, 2022

Miami, Florida

Professor M. Hadi Amini, Major Professor

Machine learning is an evolving branch of computational algorithms that allows

computers to learn from experiences, make predictions, and solve different problems

without being explicitly programmed [ENM15]. However, building a useful machine

learning model is a challenging process, requiring human expertise to perform various

proper tasks and ensure that the machine learning’s primary objective –determining

the best and most predictive model – is achieved. These tasks include pre-processing,

feature selection, and model selection.

Many machine learning models developed by experts are designed manually and

by trial and error. In other words, even experts need the time and resources to

create good predictive machine learning models. The idea of automated machine

learning (AutoML) is to automate a machine learning pipeline in order to release

the burden of substantial development costs and manual processes. The algorithms

leveraged in these systems have different hyper-parameters. On the other hand,

different input datasets have various features. In both cases, the final performance

of the model is closely related to the final selected configuration of features and

hyper-parameters. That is why they are considered as crucial tasks in the AutoML.

The challenges regarding the computationally expensive nature of tuning hyper-

parameters and optimally selecting features create significant opportunities for filling

vi



the research gaps in the AutoML field. This dissertation explores how to efficiently

and automatically select the features and tune the hyper-parameters of conventional

machine learning algorithms.

To address the challenges in the AutoML area, novel algorithms for hyper-

parameter tuning and feature selection are proposed. The hyper-parameter tuning

algorithm aims to provide the optimal set of hyper-parameters in three conventional

machine learning models (Random Forest, XGBoost and Support Vector Machine)

to obtain best scores in regards to performance. On the other hand, the feature

selection algorithm looks for the optimal subset of features to achieve the highest

performance. Afterward, a hybrid framework is designed for both hyper-parameter

tuning and feature selection. The proposed framework can discover sub-optimal

configuration of features and hyper-parameters. The proposed framework includes

the following components: (1) an automatic feature selection component based on

artificial bee colony algorithms and machine learning training, and (2) an auto-

matic hyper-parameter tuning component based on artificial bee colony algorithms

and machine learning training for faster training and convergence of the learning

models. The whole framework has been evaluated using four real-world datasets in

different applications. This framework is an attempt to alleviate the challenges of

hyper-parameter tuning and feature selection by using efficient algorithms. How-

ever, distributed processing, distributed learning, parallel computing and other big

data solutions are not taken into consideration in this framework.
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CHAPTER 1

INTRODUCTION

Abstract In this chapter, we first cover the background and introduction, as well as

some of the challenges in hyper-parameter tuning and the feature selection approach.

Then we present the proposed solution and the contributions of out work. We then

explain the scope and limitations of this work. This chapter also provides the outline

of this dissertation at the end.

1.1 Background and Introduction

Machine Learning (ML) is an evolving field of computational algorithms that allow

computing devices to learn from past experiences and historical datasets [JM15].

ML can be leveraged to make predictions and decisions based on models created

from large or complex datasets [SK17a]. It is one of the fast-growing research fields

and has garnered much attention from academic and industrial researchers who ap-

ply it to discover the patterns and data representations from the raw data [WF02].

This prevalence of data representation is because ML algorithms can perform with-

out being explicitly programmed and provide high performance, and are suitable

for different types of problems [ZH19]. ML addresses the matter of manipulating1,

managing, mining, understanding, and adequately visualizing different kinds of data.

These solutions include but are not limited to data processing and management for

a variety of applications such as banking [CVSZ20, PD17], medicine and healthcare

[HSW+19, KZW+17], marketing [PC09, CWL06], education [LGN+09, LAS+15],

and engineering [NMS09, PMG+17], where it is challenging to develop classic al-

gorithms to perform the expected tasks. However, building an efficient ML model

1Data manipulation is the process of organizing or altering data so that it is more
readable and easier to interpret. Data manipulation improves the quality of data and
analysis.
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is a challenging process that requires consideration of efficiency and effectiveness in

terms of both time and performance.

Overall, ML’s main objective involves determining the most predictive model.

In cases where datasets are so large, the model might not work well before elimi-

nating the unrelated features. Further, various ML algorithms have different hyper-

parameters, and tuning these hyper-parameters help achieve a model with better

performance [WLU20]. Manually choosing the sub-optimal subset of features and

hyper-parameters among all the combinations can be exhaustive, costly, and imprac-

tical. Several ML models developed by experts are all designed manually and by

trial and error (such as manually testing the hyper-parameters) [HKV19]. In other

words, even experts need the time and resources to create efficient predictive ML

models [HZC21]. The idea of Automated Machine Learning (AutoML) emerged in

an effort to automate the process of applying ML techniques and find ML solutions

[HCB+14]. Hence, AutoML’s focus is on users with little or no knowledge of ML

as well as ML experts. AutoML releases the burden of immense development costs

and manual processes that improve capability of decision-making. A complete Au-

toML includes data pre-processing, feature engineering, model selection, and model

evaluation [HZC21, FEF+18, GBC+15].

Hyper-parameter tuning and feature selection are among the primary tasks in

AutoML [BMTB20] and provide fairness to research and scientific studies, as it pro-

vides reproducibility and the same level of tuning for the problem at hand [HKV19].

The computationally expensive nature of tuning tasks, the complexity of ML algo-

rithms, the increasing amount of large databases, and the need for building efficient

ML models prompt new challenges in the AutoML field. These challenges create

significant opportunities and fertile ground for rewarding future research avenues on

AutoML, specifically on Hyper-Parameter Optimization (HPO) and Feature Selec-

2
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Building on the idea of using evolutionary computing for machine learning and

data analytics proposed in [MAA20b, MAA20a], this dissertation proposes to lever-

age an evolutionary optimization algorithm, namely Artificial Bee Colony (ABC),

for enabling automated classical machine learning algorithms, i.e., Random Forest,

XGBoost, Support Vector Machine. It also develops a plug-and-play library, and

its underlying algorithms, to enable automated hyper-parameter tuning and fea-

ture selection optimization in these classical ML algorithms. The final outcome of

this dissertation is to provide a hybrid framework for feature selection and hyper-

parameter tuning using classical ML algorithms for a few application domains in

both classification and regression problems This study aims to address some of the

main challenges in this area and provide solutions to build effective models in dif-

ferent applications.

Overall, some of the main challenges in HPO and FSO include:

• Dimensionality: High dimensionality introduced new challenges to the world

of data science. One of these challenges is the Curse of Dimensionality (CoD).

CoD refers to a set of problems that arise when working with high-dimensional

data, and that have most often unfortunate consequences on the behavior and

performances of learning algorithms [VF05]. CoD brings high time complexity

to the problems and extends the time scientists must wait to obtain reasonable

results [MAA20b]. Large datasets can make both HPO and FSO slow due

to increasing the number of features and records. Therefore, the computing

time and hence the FSO/HPO process slows down since the computation cost

increases exponentially with the size of the dataset dimension.

• Large configuration space: HPO and FSO methods are time-consuming,

and this not only increases with high dimensions of datasets but also with

3



larger search spaces. Many of the black-box (BB) optimization models do not

fit HPO problems (with limited time and resource budgets) as they usually

ignore the function evaluation time [YS20]. Hence, efficient algorithms should

be used for these problems in order to find the optimal set of hyper-parameters

[YS20], and features [MA14].

• Expensive function evaluations: ML algorithms have different objective

functions. The complexity of objective functions depends on the complexity

of the ML models themselves. For instance, some models have more training

time as they are more dependent on the size of the dataset (e.g., support vec-

tor machines [YHB16]). The costly objective function of some ML algorithms

makes them even more challenging when used for iterative optimization pro-

cesses (such as nature-inspired algorithms), as they significantly increase the

execution time (due to time-consuming training processes for each evaluation).

Therefore, proper strategies are required for such ML algorithms to address

this challenge and enhance the running time.

The challenges mentioned above motivated us to explore HPO and FSO tech-

niques in an effort to analyze methods that can decrease the influence of dimen-

sionality or large search spaces on execution time. In this dissertation, AutoML is

considered for making predictions, in particular classification and regression tasks

using classical machine learning algorithms using Random Forest (RF), Support

Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). However, the

issue explored in this dissertation can be conveniently extended to other ML algo-

rithms. Further, the final outcome is a joint HPO+FSO tool that can be used to 1)

find the optimal ML algorithm performance for a given dataset, 2) perform HPO,

and 3) perform FSO.

4



1.2 Proposed Solution

Although tuning hyper-parameters and/or features lead to having models with bet-

ter performance (e.g., accuracy, mean squared error, etc), the optimization process

for finding the near optimal configuration is very time-consuming and sometimes

impractical [YS20]. AutoML is a relatively new field and there is still space for im-

provement in regards to time and performance. Being time-consuming is one of the

disadvantages of AutoML [ZWRM21]. This dissertation presents a novel framework

that partly handles HPO and FSO problems in classical ML algorithms to address

these challenges. The proposed framework includes:

• Development of a novel FSO algorithm: This algorithm is a novel Arti-

ficial Bee Colony (ABC) based algorithm fitted to FSO problems. Moreover,

the algorithm is modified in order to improve the ML models’ performance

and simplify the structures’ size, enhancing the execution time for finding the

optimal set of features using learning algorithms (particularly clustering and

opposition-based algorithms). This algorithm is further improved by filtering

the poor configuration from the whole search space. The proposed feature

selection method, A2BCF, inspired by Ghareh Mohammadi et al.[MA14], is

later inserted into our proposed hybrid framework. A2BCF is able to improve

the performance and/or run-time compared to the conventional hand-crafted

features and efficiently extracts robust features from the raw data.

• Development of a novel HPO algorithm: In this dissertation, we first

present the HyP-ABC algorithm in which ABC is fitted to the HPO prob-

lems to find close to the optimal hyper-parameters of ML algorithms. The

HyP-ABC algorithm is further enhanced using learning algorithms. In partic-

ular, clustering and opposition-based algorithms are leveraged for improving
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the performance and convergence rate of the algorithms. We call this algo-

rithm OPT-ABC. This algorithm is specifically leveraged to two real-world

applications such as education and energy demand. OPT-ABC, used in this

framework, is later integrated into our proposed hybrid HPO-FSO framework.

1.3 Contributions

The contributions of this dissertation are multi-fold:

• A novel automated feature selection method is proposed as a preprocessing

step for selecting the optimal set of datasets’ features. In addition to the

random-based strategy used in the original ABC algorithm, this ABC-based

method includes clustering and opposition-based learning [Tiz05] methods as

well as an early stopping strategy. The first method is used to provide diversity

to the features’ search space [CLWY18]. The second method is used to balance

the exploration and exploitation of the algorithm and improve the algorithm’s

convergence rate. The early stopping strategy is also applied to eliminate the

poor configurations early in the process and prevent training the ML algorithm

on those solutions.

• A novel optimal and automated hyper-parameter tuning method is proposed.

This is an iterative step for finding the optimal set of datasets’ hyper-parameters.

This method also includes clustering and opposition-based learning algorithms.

These algorithms are designed to enhance the convergence rate of the original

ABC-based HPO algorithms. As mentioned above, these methods are used to

provide diversity (to hyper-parameter configurations), balance the exploration

and exploitation of the algorithm, and improve the algorithm’s convergence

rate. The algorithms automatically determine how to modify the configura-
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tions based on the performance during the training. In particular, it is applied

to classical ML algorithms.

• A novel HPO-FSO framework is proposed, namely FSHPO, for automati-

cally selecting the features and hyper-parameters in different regression and

classification problems. This model integrates the OPT-ABC and A2BCF al-

gorithms to create an end-to-end framework that contains two layers of FSO

to capture the optimal set of features and HPO to capture the optimal set of

hyper-parameters. FSHPO takes the cleansed dataset and returns the optimal

architecture of the ML model.

• This dissertation does not only contribute to developing novel tools for HPO

and FSO, but it also proposes to apply these tools to two major applications

for the first time. Specifically, a real-world education dataset is used to assess

the proposed HPO and FSO algorithms. Among other applications, this is

the first time HPO-FSO has been used in the field of education to predict

students’ success.

1.4 Scope and Limitations

The proposed framework has several limitations and assumptions as follows: The

proposed framework is evaluated on structured datasets in education and power de-

mand datasets. However, proposed HPO and FSO models can also be extended to

cover other data types such as images. When applying ML algorithms, only a few

hyper-parameters have major effects on the performance of the model performance,

and they are the main hyper-parameters that require tuning (such as the number

of trees in the Random Forest Algorithm). The proposed hyper-parameter tuning

method focuses on the main hyper-parameters in classical ML algorithms. However,
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certain other unimportant hyper-parameters may still affect the model performance

slightly (such as shrinking in Support Vector Machine algorithm) and may be con-

sidered to optimize the ML model further. However, it increases the dimensionality

of hyper-parameters search space.

However, there are other hyper-parameters with less impact on the performance

that can be considered and automated in future work. The main focus of this dis-

sertation is on supervised ML algorithms, and unsupervised learning algorithms are

not being explored in this work. Although the proposed techniques can potentially

be extended for unsupervised learning, it is out of the scope of this dissertation.

The proposed framework alleviates the HPO and FSO challenges using efficient al-

gorithms and techniques to improve the convergence rate. However, distributed pro-

cessing, distributed learning, parallel computing and other big data solutions (such

as GPU programming) are not taken into consideration in the proposed framework.

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 covers the related

work in optimization for ML, with a major focus on hyper-parameter optimiza-

tion and feature selection optimization in ML algorithms. The proposed HPO-FSO

framework for conventional ML algorithms, its main components, and the applica-

tion and experiments of datasets are presented in chapter 3. In chapter 4, a novel

evolutionary optimization-based feature selection technique using the Artificial Bee

Colony algorithm is proposed. Chapter 5 discusses the proposed ABC-based hyper-

parameter tuning technique. In chapter 6, a final hybrid model that represents

ABC-based HPO+FSO for conventional ML algorithms is presented for the auto-

mated ML framework is presented. Finally, in chapter 8, the conclusions and future
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directions are given. Table 1.1 shows the chapters, and their content is taken from

publications.

All codes generated for the experiments in this dissertation are publicly available

for reproduction of the analysis and extension (to other ML models)2.

Table 1.1: Related published research papers during my Ph.D.

Chapter/Section Re-Used Published Research

Chapter 3
A2BCF: An Automated ABC-Based Feature Selection Algorithm for Classification Models,

Applied Sciences’22 [ZGMA22]

Chapter 4.1
Search Algorithms for Automated Hyper-Parameter Tuning,

ICDATA’21 [ZMR+21]

Chapter 4.2
OptABC: an Optimal Hyperparameter Tuning Approach for Machine Learning Algorithms,

ICMLA’22 [ZMA21c]

Chapter 6.3
ABC-based Optimal Hyper-parameter Tuning for Electric Load Forecasting,

ICAI’22 [SZM+22]

2https://github.com/LeilaZa?tab=repositories
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CHAPTER 2

RELATED WORK ON HPO AND FSO IN ML ALGORITHMS

Abstract In chapter one we covered the introduction and background in the field

of AutoML, more specifically HPO and FSO. In this chapter, we aim at covering

a high-level summary of the mathematical optimization and optimization for ML.

Then, we cover a review of related works for hyper-parameter tuning and feature

selection in ML.

2.1 Mathematical Optimization

Mathematical optimization (also known as mathematical programming) is selecting

the most optimal element from a set of available options, considering some criterion

[Zio88]. These types of problems exist in various disciplines, and exploring methods

to solve such problems has been of interest for centuries [DPW01]. The purpose

of optimization problems is to minimize or maximize a function given a set of con-

straints. ML algorithms also involve solving optimization problems. When an ML

model is being built, its weight parameters are initialized and optimized in a process

until the performance reaches a maximum level [SCZZ19].

Similarly, the goal of HPO and FSO methods is to optimize the ML model’s ar-

chitecture by finding the optimal set of hyper-parameters and features, respectively.

Optimization problems have two main components: a set of decision variables and

a function that should be minimized or maximized. Depending on the class of

the optimization problem, hyper-parameters/features may have certain acceptable

ranges for the decision variables. Hence, optimization problems are divided into two

categories [BHM77]:

10



1. Unconstrained: Decision variables in this method can take any value from

real numbers, R, and can be expressed as 2.1

min
x∈R

f(x) (2.1)

where f(x) is the objective function.

2. Constrained: In constrained optimization problems, decision variables have

constraints and can be subject to mathematical equalities or inequalities. Most

of the real-world optimization problems are constrained optimization problems

and can be denoted as shown in Equation 2.2.

min
x

f(x) subject to:

g(x) <= 0, i = 1, 2, ..,m,

h(x) <= 0, i = 1, 2, .., p,

x ∈ X

(2.2)

where X is the domain for variable x. The domain X limits the possible values

for decision variables and creates a feasible search space.

In ML models, most of the HPO and FSO problems are constrained optimization

problems. They have constraints for decision variables, including but not limited

to, specific accepted ranges, hyper-parameter values, and types and space/time con-

straints. These constraints limit the whole search area to feasible search spaces, and

that is why the optimum solution might be the local optimum in the entire search

space. However, the local optimum is guaranteed to be the global optimum if only

the function is convex, as in these functions the global and local optimums are equal

[Bub14].
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to find global or close to global optimums instead of a local optimum.

There is a wide range of methods to solve optimization problems. One of the

most common optimization methods is Gradient Descent (GD). The search strategy

in the GD method uses the negative gradient direction in order to move toward the

optimum solution. However, GD can be used to find the local minimum as it can not

guarantee the discovery of the global optimum. GD can only guarantee to find the

global optimum if the problem’s objective function is convex. The Conjugate GD

method is faster than the original GD, but its calculations are more complicated.

There are also some other methods, such as Newton’s method, which has a better

convergence speed compared with GD but requires a larger space [YS20]. These

traditional methods follow systematic steps to find the optimal solutions. On the

other hand, we have heuristic strategies based on empirical rules to discover the

optimal solutions. Although these methods do not guarantee the global optimum,

they often find the approximated global optimum [SCZZ19].

2.2 Optimization for Machine Learning Algorithms

Usually, there are a few questions that we need to address in an ML problem:

Choosing a model from a set of representative models in the fields of ML and

statistics has always been a concern. This choice needs to be made based on

selection criteria. Every ML model has a score or value (called performance),

which demonstrates the quality of the model. Hence, the model with the

better score should be chosen for decision-making, or further analysis [NC12].
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1. How do we select the candidate models, features, and hyper-
parameters?



In general, based on Occam’s razor, “a model should be simple enough for ef-

ficient computation, and complex enough to be able to capture data specifics”

[Bie03]. The problem with complex models is that there is always the possibil-

ity of overfitting, but a simple model can smooth out features’ noise [Bie03].

Feature selection is a way of removing noise and random errors in the un-

derlying data. In feature selection, we use techniques to select features from

the more relevant data and remove the redundant or irrelevant ones without

incurring much loss of information [BPWS+15].

Hyper-parameters of an ML model control the learning process [Kim19]. In

each ML model, some hyper-parameters are essential and have a more consid-

erable impact on the model’s performance. In contrast, the rest may not have

as much effect on the model performance. Therefore, a process of finding a set

of hyper-parameters that enhances the performance of the model would be of

great help [CDM15, KS96].

2. What is the expected performance considering the trade-off between

optimization performance and run-time?

For hyper-parameter tuning and feature selection problems, there is a trade-

off between exploration (searching relatively unexplored regions of the space to

avoid premature convergence) and exploitation (optimizing the hyper-parameters

locally). In other words, there should be a balance between the number of con-

figurations and the budget allocated to those configurations [YS20, KTH+19].

Therefore, the search space and selection strategy (i.e., optimization algo-

rithm) for hyper-parameters and features should be based on the available

computational budget and resources (such as time).
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The goal of model selection is to determine the ML model with optimal gen-

eralization performance, considering a set of learning algorithms and the data

[KTH+19]. As mentioned above, the best model is selected based on the key

performance indicators (PI). There are different PIs available for model com-

parison, each fit for a specific set of problems (e.g., accuracy, precision, recall,

F1) [GG05]. Based on the problem, the corresponding maximum performance

is determined, and the final model is selected. However, the performance

depends on the chosen features and hyper-parameters.

Determining the appropriate hyper-parameter and features’ subset to ascertain

the best-fitting model is a complicated optimization problem and a decisive issue.

Manual testing is a common but ineffective way of tuning precisely because of model

complexities, time-consuming model evaluation, and vast search space for models’

hyper-parameters or features. On the other hand, the traditional automated exhaus-

tive search goes over all possible hyper-parameters or features to find the optimal

subset. However, such methods are impractical for large datasets. This issue is exac-

erbated when the number of features and/or when the number of hyper-parameters

increases (with the time complexity of O(2m) and O(nk), respectively) [YGW16].

In summary, ML’s main goal involves determining the best and most predictive

model, which can be obtained by suitable feature engineering and tuning the hyper-

parameters [EMS19]. Choosing the best subset of features and hyper-parameters

directly affects the model’s performance and users need a deep understanding of

the ML models. The optimal parameter values and features depend on the applica-

tion and, more specifically, the data itself. ML algorithms need automatic feature

selection and hyper-parameter tuning approaches to be effective in the application.
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2.2.1 Feature Selection in Classical Machine Learning Mod-

els

Feature engineering and feature selection are among the essential tasks in predictive

analytic projects [LTS+17]. It is an indispensable approach that removes the noisy

data which enhance the precision and enables the model to perform faster. Therefore

the process of selecting features for large datasets is crucial to decreasing models’

run-time and generating a logical input set for ML models. However, there is a

trade-off between computational complexity and performance, and a smaller subset

of features decreases the time complexity. Although there are many feature selection

techniques that have been proposed for classification and regression tasks in the

past few decades, they sometimes fail to optimally reduce the high dimensionality

of the feature space. Emerging technologies such as heuristics optimization methods

provide a new paradigm for feature selection due to their strength in enhancing the

performance of computational demands, classification, and storage. They also help

solve complex optimization problems in less time. Several heuristics approaches

for feature selection compromise the performance to decrease the time complexity.

Therefore, an appropriate, efficient FSO method that can reduce the number of

features without decreasing the model performance is required. This section reviews

the present state of feature selection with respect to meta-heuristics and hyper-

heuristic methods.

There are many different definitions for feature selection. Nevertheless, the main

idea is to select a subset of appropriate features from an initial wide range of features.

FSO approaches try to find an optimal set of features by removing unimportant fea-

tures with the goal of improving the prediction accuracy or structure’s size without

significantly decreasing the prediction accuracy of the model [KS96, KM14].
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The removal of irrelevant features not only provides an efficient data representation,

but also improves the learning rate, decreases the data dimensionality, and enhances

the performance.

There are different approaches for feature selection. However, they can be di-

vided into two main categories, namely, filter-based and wrapper-based. Each of

these methods has its own advantages and disadvantages.

• Filter methods: In these methods, selecting the features is performed be-

fore leveraging the learning algorithm. Therefore, the features do not depend

on the ML algorithm. In these methods, the importance of features is calcu-

lated (based on some predefined criterion), and then the best feature subset

is selected. In these methods, no learning algorithm is used for choosing the

features. The advantage of these methods is their faster speed. [ZGMA22]

• Wrapper methods: Unlike filter methods, wrapper methods generate differ-

ent subsets of features by adding and removing features to achieve reasonable

accuracy. The predictive accuracy of the classifier is used to evaluate the subset

of features. The wrapper methods use a predefined classifier to explore a sub-

set of features. Then it utilizes the classifier to measure the subset of features.

The selection process continues till the desired performance is achieved. The

advantage of these methods includes their high classification accuracy. How-

ever, their computational complexity is higher than filter methods. Therefore,

researchers have been exploring different methods to enhance the convergence

of wrapper methods. Wrapper methods have gained much attention due to

their promising performance. Prior works have used wrapper methods for se-

lecting the optimal features [ZGMA22, OSBS03, PX13, SIM11, YO11, MA14].
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The conventional-based feature selection approaches such as filter-based meth-

ods are usually unable to handle problems that require an ample solution space due

to inter-dependencies and nonlinear requirements amongst features [GT13]. Filter-

based methods have the disadvantage of complexity and not being to provide satis-

factory results. These issues and more have motivated researchers to explore other

methods of obtaining better performing options [AAA+21].

Metaheuristic-based approaches have proven their performance in different fields

as they deliver practical solutions in a reasonable time and their strength in over-

coming the curse of dimensionality (CoD) by optimizing the performance of classi-

fication, and reducing the use of computational resources. Hence, This dissertation

focuses on metaheuristic-based feature selection algorithms for classification and re-

gression tasks due to their favorable performance than conventional feature selection

methods.

When dealing with large datasets it is quite challenging to conclude which fea-

tures are related to the problem and which are not. Also, if all the features are

selected then the final outcome of the model might be affected due to the noisy

features. Additionally, selecting all features makes the analysis process very time-

consuming and should be avoided. Therefore, finding the best subset is essential to

feed the model with the most related features to the problem at hand.

Figure 2.1 shows the ideology for FSO approaches. The feature selection step

can be done manually or via some automated techniques.
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Figure 2.1: General feature selection schema

Depending on the models’ number of features, finding the best subset of features

among the 2n existing combinations could be very costly. Therefore, researchers

have provided different feature selection methods to reduce models’ computational

costs.

Metaheuristic-based algorithms

Selecting features from large datasets using traditional feature selection approaches

is complicated and can not be easily solved. Therefore, Metaheuristic-based ap-

proaches came into the picture and became more established in the literature due

to their performance when solving complex problems [BR03].

Metaheuristics are used in different feature selection tasks in various fields due to

their excellent performance in global search and performance. The established lit-

erature divides the metaheuristic algorithms into population-based and local search

algorithms [BR03]. The population-based algorithms examine a population of dif-

ferent solutions in the search space and enhance them iteratively to achieve the
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ideal solution. In [BR03, ABHAAD21], authors provide an extensive treatment of

different metaheuristic references.

Dash and Liu state that feature selection methods typically have four basic steps

as follows [DL97]:

1. A procedure to generate the next configuration candidate,

2. An evaluation function,

3. Stopping criteria,

4. Validation procedure.

The state of the art: metaheuristics methods

Feature selection approaches using metaheuristics have gained a lot of attention and

are increasingly studied. This shows the importance of feature selection in differ-

ent tasks. The two main categories of Metaheuristics are swarm intelligence, and

evolutionary-based.

Swarm intelligence (SI) is a population-based stochastic optimization technique that

is considered among nature-inspired algorithms. It works based on self-organized

frameworks that can move iteratively in a planned way. This framework has a pop-

ulation of solutions that can directly or indirectly communicate locally [RBNF21].

Some examples of SIs are ant colonies, bee colonies, birds flocking, fish schooling,

and microbial intelligence [Tal09].

There are SI-based metaheuristic methods existing in the literature for feature

selection including PSO, ABC, amongst others.

The PSO algorithm is inspired by the social behavior of birds. In [BD15] pre-

sented a Hamming distance-based binary particle swarm optimization for high di-

mensional feature selection. This technique uses hamming distance to update the
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velocity of particles in a binary problem. In another study[YDwWq16], authors pro-

posed an enhanced PSO method to improve the searchability of the PSO method

based on the introduction of two new operators. In [JJJ18] proposed an algorithm

with modifying PSO algorithm to classify cancer. There are also other works ex-

isting in the literature based on the PSO-based approach [ZDZY18, QA18, PBH18,

GJM18, PPA19, XTPL20]

The ABC approach is inspired by the intelligent behavior of simulating the food

search of bee populations. In [SK17b], the authors presented a hybrid of ABC and

the ACO algorithms to provide a high-performing model. In another study, the

authors integrated an ABC-based multi-objective optimization algorithm with a

sample reduction technique. The results of this study proved an increase in the per-

formance and a decrease in the computational complexity [WZS+20]. Arslan et al.

presented an ABC-based algorithm for high-dimensional symbolic regression with

feature selection [AO19]. In another study, Grover and Chawla improved the ABC

algorithm for feature selection by utilizing an intelligent strategy [GC20]. There are

also other approaches using the ABC algorithm and can be found in the literature

[HXZ+18, BM19, HXKZ15]

There are also some methods that consider other aspects besides the model’s pre-

dictivity in their feature selection method. For instance, Georges et al. looked into

feature reproducibility, which means the same subset of features selected can be

found and used in similar datasets in the field (e.g., structural and functional MRI

data) [GMR+20].

The domain of features in FSO problems is only binary. In other words, for each

of the features in the dataset, the only options for that specific feature would be one

or zero, for including or excluding the feature, respectively. As in FSO problems the

feature can only take two values, and it is considered as a constrained optimization
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problem. Hence, in FSO problems the goal is to achieve [LNK+17]:

x∗ = arg min
x∈0,1

f(x) (2.3)

where f(x) is the objective function we aim to minimize (such as root mean

square error or the error rate) or maximize (such as accuracy or F1-score). x∗ is

also the subset of features that generated the optimum value of f(x).

2.2.2 Hyperparameter Tuning in Machine Learning Models

To improve ML models by HPO, we first need to know what are the main hyper-

parameters that users need to tune to fit the model into a problem or a dataset.

Whether the ML algorithm is built to model labeled or unlabeled datasets, they are

divided into supervised and unsupervised algorithms, respectively [MISL18]. Super-

vised algorithms mainly include linear models, náıve Bayes (NB), decision-tree-based

models, k-nearest neighbors (KNN), support vector machines (SVM) and deep learn-

ing algorithms [CNM06]. Unsupervised algorithms, on the other hand, aim to find

hidden patterns from unlabeled data and based on the main goals they are classi-

fied into clustering and dimensionality reduction algorithms. They mainly include

k-means, hierarchical clustering, expectation-maximization or principal component

analysis (PCA), and linear discriminant analysis (LDA) [Kra16]. In this disserta-

tion, the important hyper-parameters of common ML models are explored including

ML algorithms scikit-learn [PVG+11], and XGBoost [CHB+15].
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2.2.3 Hyper-parameter optimization techniques

Model-free algorithms

• Babysitting: This method is nothing other than manual or trial and error and

is the most basic tuning method [Abr19]. In this method, use different pos-

sible configurations of hyper-parameters based on experience or guessing and

repeat this process until they yield the desired results. Therefore, this method

requires enough knowledge and time to be able to find the optimal hyper-

parameters. In [ZLP+20], Zahedi et al., used manual tuning of the hyper-

parameters to improve the performance of the ML models in a classification

problem. However, in many problems, manual tuning the hyper-parameter

is almost impossible, especially when dealing with a large number/ranges of

hyper-parameters, and complex models [Ste18]. These issues motivated re-

searchers to explore various approaches for the automated HPO.

• Grid Search: This method is the most common tuning approach and is consid-

ered an exhaustive search strategy that goes over all the configurations in the

search space [IMNS20]. The most important disadvantage of GS is its ineffi-

ciency, especially when dealing with Curse of Dimensionality (CoD) [CSP+14].

In other words, this is due to the fact that the number of configurations grows

exponentially when the number of hyper-parameters increases.

• Random Search: This method [BB12] is proposed to partly solve the challenges

existing in the GS. Unlike GS, RS does not evaluate all the configurations in

the search space. RS randomly selects and evaluates a pre-defined number

of configurations. If the resources are limited RS is able to evaluate a larger

search space than GS [BB12]. The advantage of RS over GS is that the

probability of wasting time on a low-quality region in the search space in the
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RS method is much less than the GS. The computational complexity of the

RS method is O(n) where n is the pre-defined number of evaluations [Wit05].

Due to the random nature of the RS method, there are still a remarkable

number of configurations that are unnecessarily evaluated. This is due to the

fact that the evaluations are independent of each other and the algorithm does

not exploit the regions that perform better.

Model-based algorithms

• Gradient Descent: This method [Ben00], is a first-order iterative optimization

algorithm that discovers promising directions and moves toward the optimal

solution. This approach selects a random point and moves toward the biggest

gradient to discover the next point. Hence, in this method, the local optimal

can be found after the convergence. Although gradient descent approaches are

strong in finding the local optimum, they have some limitations as well. Firstly,

they can only be used for continuous problems as some hyper-parameter types

such as discrete parameters do not have gradients. Also, gradient descent

methods are suitable approaches for convex problems as gradient descent may

stuck in the local optimum instead of a global optimum.

• Bayesian Optimization: This method [SLA12] is a very popular method in

HPO problems. Unlike model-free approaches, BO is more efficient. BO is

a model-based technique that determines the future data points based on

the evaluated results from previous data points. Hence it is cheaper than

when all the configurations are evaluated. However, these characteristics make

the model difficult to parallelize, as BO is considered a sequential method.

There are different Bayesian HPO approaches such as Gaussian process (GP)

[SLA12], Random Forest (RF) also know as sequential model-based algorithm
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configuration (SMAC) [HHLB11], Tree-structured Parzen Estimator (TPE)

[BBBK11], and Bayesian Optimization HyperBand (BOHB) [FKH18].

• Metaheuristic algorithms: Metaheuristic algorithms [GT13], are computa-

tional intelligence paradigms used for solving sophisticated optimization prob-

lems. The strength of metaheuristics is their capability to solve no-continuous

and non-convex optimization problems. One major subcategory of metaheuris-

tics is population-based algorithms, such as evolutionary algorithms, genetic

algorithms, PSO, and so on. In all the population-based algorithms, the pro-

cess starts with generating and updating a population and evaluating the

members of the population until the optimum member is discovered. The

main difference between population methods is the way they generate the

population or choose the individual in the population [YWC+18].

As mentioned earlier, HPO is one of the most important components of Au-

toML. Hence, there are many studies including survey studies in the field of HPO.

In [KTH+19], the authors did a thorough overview of HPO approaches existing in

the literature, and covered challenges, and future work directions. Yang and Shami

in [YS20] also offered a very high-level survey study around search spaces, different

HPO approaches, and tools that are decent for first-time users. In another study

[And19], Andonie offers an overview of HPO techniques by focusing on computa-

tional complexity aspects, which is a useful source for experts in ML as well. There

are also several specialized overview studies in the field of HPO and AutoML. Some

of these surveys focus on AutoML for deep learning models [HZC21, Tal20]. In some

other studies, authors focused on HPO for smart grids forecasting models [KJ20],on

AutoML on graph models [ZWZ21]. There are also some other overviews of AutoML

[YWC+18, EMS19, YZ20].
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Model selection constitutes choosing the best-fitting model with optimal per-

formance for future prediction [Ric15]. This can be done by finding and tuning

valid hyper-parameters. Hyper-parameter tuning is an essential process to make a

model perform at its best [ADNDS+19]. Previous research shows that tuning hyper-

parameters of ML models can significantly improve prediction performance.

Although hyper-parameters are critical in the resulting predictive models’ qual-

ity, they have no obvious agreeable defaults in different utilizations and applica-

tions. However, the tremendous increase in the scale of data in real life makes it

computationally expensive and practically impossible to manually tune the hyper-

parameters. Hence, it has become vital to automate optimizing the hyper-parameters.

In HPO methods, the goal is to find the value of hyper-parameters that significantly

contribute to improving the accuracy of a model. Therefore, the search algorithm

looks through different combinations of hyper-parameters (search space), which en-

able the model to generate a well-performed model according to the evaluation

criteria and through an iterative process [YS20, DFNNS17]. Figure 2.2 shows the

general schema for hyper-parameter tuning. The hyper-parameter tuning step can

be done manually or via some automated techniques.

Figure 2.2: The general hyper-parameter tuning schema
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HPO methods typically have four basic components:

1. An ML classifier or regressor

2. A search space

3. A search strategy to find optimal hyper-parameters

4. An evaluation function for performance comparison of different configurations.

In contrast to FSO problems where the domain of features is binary (only ze-

ros and ones), in HPO problems, we deal with different types of hyper-parameters.

Hyper-parameters could be continuous, discrete (including binary), or categorical.

Depending on the value of a hyper-parameter used for a specific model, the value of

another hyper-parameter may need tuning as well to have a well-performed model

[Luo16b]. As mentioned in Section 2.1 optimization problems are divided into

two categories: Unconstrained and Constrained. Although in some cases hyper-

parameters can take real values, in most cases ML hyper-parameters take different

ranges of values and have various constraints, so they are often complicated con-

strained optimization problems. Hence, in HPO problems the goal is to find x by

solving the below problem [LNK+17]:

x∗ = argmin
x∈X

f(x) (2.4)

where f(x) is the objective function we aim to minimize (such as root mean square

error or the error rate) or maximize (such as accuracy or F1-score). x∗ is also the

set of hyper-parameters that generated the optimum value of f(x).

2.2.4 Remarks

An important constraint that should not be overlooked in HPO and FSO problems is

time resources. We usually need a lot of time to build an ML model with optimized
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function with the reasonable number of hyper-parameter settings or a subset of fea-

tures. This is because each time one configuration of hyper-parameters/features is

tested, the ML model requires to be trained to generate the model’s performance.

Finding the ideal set of hyper-parameters/features needs an exhaustive search over

all the configurations and that is practically impossible. This is why most traditional

optimization approaches are not a good fit for HPO problems; many of the optimiza-

tion solutions are made for convex problems, while HPO problems are non-convex as

they may find the local optimum instead of returning the global optimum [STH+15].

The other reason is that many optimization problems are designed for continuous

variables, while in HPO we are dealing with other types of hyper-parameters (cate-

gorical and discrete) as well. Last but not least, many of the optimization techniques

ignore the function evaluation time, while they are very important in both HPO and

FSO problems.

Therefore, there is a crucial need to develop effective techniques to find optimal

solutions in a reduced search space and within a reasonable time.

In the next chapters, we cover how population-based algorithms, specifically Ar-

tificial Bee Colony (ABC) algorithms are used to improve the process of feature

selection.
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CHAPTER 3

OVERVIEW OF THE PROPOSED FRAMEWORK

Hyper-parameter tuning and feature selection are both key tasks in ML [BMTB20].

On one hand, as mentioned in previous chapters, the vast increase in the scale of

data in real life makes it computationally expensive and practically impossible to

manually adjust the hyper-parameters/features. Thus, automating the ML pipeline

is crucial to ensure real-world deployment of these algorithms [KPZS20, Luo16a]

On the other hand, although the availability of general Mathematical Optimization

models provides tools to solve various optimization problems, the characteristics of

an efficient optimization algorithm from the perspective of ML and mathematical

optimization can be quite different [BPH06]. New challenges arise for researchers to

explore new and more efficient models for ML problems. In fact, hyper-parameter

or feature selection optimization is the process of finding optimal or near-optimal

subset of hyper-parameters/features to maximize the objective function by using

an optimization technique [ZGMA22, ZMA21c]. It is an emerging research area

and has engaged many researchers in both ML and mathematical communities in

recent years. Therefore, the goal of this work is to address some challenges in ML

optimization, providing desirable properties of an optimization algorithm from the

ML perspective, including [BPH06]:

• generalization,

• scalability to large data,

• reasonable performance regarding execution times,

• efficient implementation of an algorithm,

• exploitation of problem structure,

28



• reasonable convergence,

• robustness and numerical stability for class of ML models attempted,

• theoretically known convergence and complexity.

Currently, many research studies have been done in the field of AutoML to

provide more efficient frameworks. The goal of this dissertation is to develop an

algorithm to find the optimal features and hyper-parameters in conventional ML

algorithms.

3.1 Theory

In this dissertation, an integrated framework for HPO and FSO is proposed. The

sections below cover the proposed hybrid framework (which is the final outcome of

this work) and each of its two components, namely, HPO and FSO.

3.1.1 A Hybrid Model for Automated Machine Learning

The final outcome of this dissertation is an end-to-end AutoML framework. The

whole framework is shown in Figure 3.1, which consists of two major components:

FSO and HPO. These components are integrated to partly address challenges in ML

optimization and support functionalities in this area. In this framework, optimal

features in the dataset are automatically generated using a novel artificial bee colony

based algorithm to reduce the dimensionality of data and possibly improve the

performance. Then, a novel hyper-parameter learning technique is utilized to further

enhance the performance of model training.
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Figure 3.1: The proposed framework for HPO+FSO

30



3.1.2 Automated Feature Selection

In many fields such as ML and data mining, datasets have a large number of features.

In these cases, feature selection is an essential step [GE03]. Feature selection entails

selecting a subset of important and relevant features from the original dataset. This

subset should be sufficient enough to predict the decision concepts as well as the

original data. Feature selection is important in the sense that it reduces the dimen-

sions of search space for search algorithms. Also, it can improve the performance

and convergence rate of the algorithm [KS00].

Several search algorithms have been applied for feature selection [SB01, SHA19,

RPA+13, OAE20, CS21] The most basic approach is finding the best subset of fea-

tures by exhaustively going through the 2n existing combinations, which could be

very costly, especially for large datasets. It has been shown that this is an NP-hard

combinatorial problem [SR92]. Hence, heuristic methods have to be considered.

Although there are many search algorithms such as forward and backward feature

selections, they have the disadvantage of high computational complexity and/or pre-

mature convergence [LY05]. To mitigate these problems, Evolutionary Algorithms

(EAs) that are population-based meta-heuristic optimization algorithms have been

applied. The advantage of EAs is their strength in global search. EAs are the tech-

niques usually applied for feature selection approaches, and they usually produce

reasonable results as they provide several trade-off solutions in a single run.

Artificial Bee Colony (ABC) is one of the most recently introduced EA techniques

with a lot of successful applications to solve various problems. Moreover, the imple-

mentation of ABC is easy and has the ability to search for local and global solutions.

However, ABC has some disadvantages such as low average accuracy for the explo-

ration phase or a low convergence rate. The potential of improved versions of the

ABC algorithm for wrapper feature selection, which addresses these challenges, has
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Figure 6.3: Accuracy over all the evaluations on the MNIST dataset.

Figure 6.4: Classification accuracy on the MNIST dataset at the end of each iteration
using HFO2 algorithm
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6.4 Remarks

In this chapter, we covered the HFO2 python package developed for automated HPO

and FSO. This framework takes advantage of two modified ABC algorithms, tuning

the hyper-parameters of three classical ML algorithms and finding the datasets’ sub-

optimal subset of features. We have shown that the challenge of hyper-parameter

optimization and feature selection optimization can be solved by an automated

and practical tool. This is made possible by a modified version of the Artificial Bee

Colony algorithm (ABC) that iteratively builds models of the hyper-parameter/features

space and leverages these models to discover new points in the search space that

are potential for investigation. The modified algorithm is an effort to partly address

the disadvantage of the ABC algorithm (slow convergence) by limiting the number

of training on the configurations and training the model on only representatives of

configuration classes. Further, we leveraged an opposition-based step to the scout

phase of the ABC algorithm to balance the exploration and exploitation phases of

the ABC algorithm that the original algorithm lacks.

One of the main advantages of the proposed algorithm is that it offers fewer

hyper-parameters in comparison to other evolutionary algorithms such as genetic

algorithms, which avoids confusing the user by tuning the new algorithms’ hyper-

parameters.

In this work, we built a tool, ABC-HFO2, for three common ML algorithms,

namely RF, XGBoost, and SVM in Python and makes it easy for non-experts to

build well-performed and quality model application scenarios in hand. An empirical

comparison on 4 datasets showed that ABC-HFO2 often outperformed standard

methods. We have also written a freely downloadable Python library to make HFO2

is easy for end-users to access. We see several promising avenues for future work.
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In the next chapter, we conclude the work in this dissertation and provide insights

for future work.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

In this dissertation, an AutoML framework is proposed for classical ML algorithms.

It includes two main components as follows: (1) automatic hyper-parameter tuning

and (2) automatic feature selection. These components are integrated using evolu-

tionary optimization algorithms and as a coherent entity to provide new solutions for

existing challenges in the AutoML field. Each component is summarized as follows:

• A novel automated hyper-parameter tuning approach is proposed based on

the ABC algorithm to overcome the difficulties of tuning large-scale search

space and real-world data. Specifically, they are designed to tune the hyper-

parameters of the ML algorithms with wider ranges or more hyper-parameters

where the different configurations of hyper-parameters create a large search

space. A modified ABC, clustering and OBL algorithms are leveraged to

bridge the existing gaps and automatically tune the hyper-parameters. These

techniques are combined to solve four important applications. While such

algorithms improve the performance of classical ML algorithms for the specific

applications that we evaluated in this dissertation, there is not a theoretical

guarantee for convergence of the evolutionary optimization algorithm to the

globally-optimal solution, i.e., the results of hyper-parameter tuning are sub-

optimal.

• A novel feature selection algorithm is proposed to overcome the challenges

in filter or wrapper selection methods. This algorithm is a combination of

ABC, clustering, and OBL methods. It also takes advantage of filtering the
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poor configurations in the early stages of the algorithm to improve the conver-

gence rate of the algorithm. While such algorithms improve the performance

of classical ML algorithms for the specific applications that we evaluated in

this dissertation, there is not a theoretical guarantee for convergence of the

evolutionary optimization algorithm to the globally-optimal solution, i.e., the

results of feature selection are sub-optimal.

7.2 Future Work

Previous chapters showcased the effectiveness and efficiency of the proposed frame-

work (depicted in Figure 6.1) for classical ML. However, there are still several chal-

lenges that need to be considered in future work, as explained below.

7.2.1 Automated pre-processing step

In this dissertation, the proposed framework mainly focused on HPO and FSO,

which are two main components of the AutoML. However, a complete AutoML

pipeline can also include pre-processing step as well. This is the limitation of the

proposed HFO2 algorithm. Future work should focus on designing effective pre-

processing steps. In other words, instead of cleaning the data and then feeding it

to the framework, the user should be able to input the raw data and expect the

software to automatically clean the dataset and subsequently do the FSO and HPO

steps.

In addition to the main hyper-parameters of the ML algorithms, there exist other

hyper-parameters with less impact, which can still have an effect on the performance

of the model and can be automated. However, more advanced techniques are re-
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quired to select the best hyper-parameters that can both enhance the performance

and save training time.

7.2.2 Exploring deep learning algorithms

This dissertation mainly focuses on classical ML algorithms. Although integrating

deep learning models to this framework can be implemented, using more advanced

techniques for these algorithms that are time-consuming in nature can be explored

as future work [EMH19]. Prior works on this topic have explored using evolutionary

algorithms for convolutional neural networks [XY17].

7.2.3 Other Future Work

Other Modalities

The proposed AutoML framework utilizes different data modalities to improve clas-

sification/regression performance. The current framework is tested on structured

datasets. In the future, this framework can be extended to leverage other data

modalities such as non-structured data. It can also be utilized for not only classifi-

cation or regression tasks in supervised algorithms but also for other tasks such as

clustering or segmentation.

Unsupervised Learning

This dissertation utilizes various supervised learning techniques such as SVM, RF,

and XGBoost for building models. However, unsupervised ML algorithms are also

suggested to be explored and can be leveraged in our framework in the future.
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Big Data and Distributed Systems

This dissertation’s focus is mainly on improving algorithms for efficient HPO and

FSO. In the future, advanced big data analytic techniques, such as distributed

systems and cloud computing, will be used in this framework to further reduce

computational costs and enhance the speed of the training process. For example,

data parallelism and model parallelism techniques can be used to train ML models

in a distributed system.

Statistical Analysis

Last but not least, in future work, researchers can explore the design of experimental

techniques [EJKW+00, Ant14] to find statistical performance guarantees for the

HPO, FSO, and HPO+FSO algorithms that are developed in this dissertation for

classical and non-classical ML models. This will not only provide another practical

dimension to our proposed HPO+FSO solutions but also will provide future users

with a certain level of assurance while using the recommended techniques.
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Mehreen Saeed, Alexander Statnikov, et al. Design of the 2015
chalearn automl challenge. In 2015 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2015.

[GC20] Pallavi Grover and Sonal Chawla. Text feature space optimization
using artificial bee colony. In Soft computing for problem solving,
pages 691–703. Springer, 2020.
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