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ABSTRACT OF THE DISSERTATION
AN EVOLUTIONARY OPTIMIZATION ALGORITHM FOR AUTOMATED
CLASSICAL MACHINE LEARNING
by
Leila Zahedi
Florida International University, 2022
Miami, Florida

Professor M. Hadi Amini, Major Professor

Machine learning is an evolving branch of computational algorithms that allows
computers to learn from experiences, make predictions, and solve different problems
without being explicitly programmed [ENM15]. However, building a useful machine
learning model is a challenging process, requiring human expertise to perform various
proper tasks and ensure that the machine learning’s primary objective —determining
the best and most predictive model — is achieved. These tasks include pre-processing,
feature selection, and model selection.

Many machine learning models developed by experts are designed manually and
by trial and error. In other words, even experts need the time and resources to
create good predictive machine learning models. The idea of automated machine
learning (AutoML) is to automate a machine learning pipeline in order to release
the burden of substantial development costs and manual processes. The algorithms
leveraged in these systems have different hyper-parameters. On the other hand,
different input datasets have various features. In both cases, the final performance
of the model is closely related to the final selected configuration of features and
hyper-parameters. That is why they are considered as crucial tasks in the AutoML.
The challenges regarding the computationally expensive nature of tuning hyper-

parameters and optimally selecting features create significant opportunities for filling
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the research gaps in the AutoML field. This dissertation explores how to efficiently
and automatically select the features and tune the hyper-parameters of conventional
machine learning algorithms.

To address the challenges in the AutoML area, novel algorithms for hyper-
parameter tuning and feature selection are proposed. The hyper-parameter tuning
algorithm aims to provide the optimal set of hyper-parameters in three conventional
machine learning models (Random Forest, XGBoost and Support Vector Machine)
to obtain best scores in regards to performance. On the other hand, the feature
selection algorithm looks for the optimal subset of features to achieve the highest
performance. Afterward, a hybrid framework is designed for both hyper-parameter
tuning and feature selection. The proposed framework can discover sub-optimal
configuration of features and hyper-parameters. The proposed framework includes
the following components: (1) an automatic feature selection component based on
artificial bee colony algorithms and machine learning training, and (2) an auto-
matic hyper-parameter tuning component based on artificial bee colony algorithms
and machine learning training for faster training and convergence of the learning
models. The whole framework has been evaluated using four real-world datasets in
different applications. This framework is an attempt to alleviate the challenges of
hyper-parameter tuning and feature selection by using efficient algorithms. How-
ever, distributed processing, distributed learning, parallel computing and other big

data solutions are not taken into consideration in this framework.
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CHAPTER 1
INTRODUCTION

Abstract In this chapter, we first cover the background and introduction, as well as
some of the challenges in hyper-parameter tuning and the feature selection approach.
Then we present the proposed solution and the contributions of out work. We then
explain the scope and limitations of this work. This chapter also provides the outline

of this dissertation at the end.
1.1 Background and Introduction

Machine Learning (ML) is an evolving field of computational algorithms that allow
computing devices to learn from past experiences and historical datasets [JM15].
ML can be leveraged to make predictions and decisions based on models created
from large or complex datasets [SK17a]. It is one of the fast-growing research fields
and has garnered much attention from academic and industrial researchers who ap-
ply it to discover the patterns and data representations from the raw data [WF02].
This prevalence of data representation is because ML algorithms can perform with-
out being explicitly programmed and provide high performance, and are suitable
for different types of problems [ZH19]. ML addresses the matter of manipulating?,
managing, mining, understanding, and adequately visualizing different kinds of data.
These solutions include but are not limited to data processing and management for
a variety of applications such as banking [CVSZ20, PD17], medicine and healthcare
[HSW*19, KZW*17], marketing [PC09, CWL06], education [LGNT09, LAST15],
and engineering [NMS09, PMG™17], where it is challenging to develop classic al-

gorithms to perform the expected tasks. However, building an efficient ML model

'Data manipulation is the process of organizing or altering data so that it is more
readable and easier to interpret. Data manipulation improves the quality of data and
analysis.



is a challenging process that requires consideration of efficiency and effectiveness in
terms of both time and performance.

Overall, ML’s main objective involves determining the most predictive model.
In cases where datasets are so large, the model might not work well before elimi-
nating the unrelated features. Further, various ML algorithms have different hyper-
parameters, and tuning these hyper-parameters help achieve a model with better
performance [WLU20]. Manually choosing the sub-optimal subset of features and
hyper-parameters among all the combinations can be exhaustive, costly, and imprac-
tical. Several ML models developed by experts are all designed manually and by
trial and error (such as manually testing the hyper-parameters) [HKV19]. In other
words, even experts need the time and resources to create efficient predictive ML
models [HZC21]. The idea of Automated Machine Learning (AutoML) emerged in
an effort to automate the process of applying ML techniques and find ML solutions
[HCB*14]. Hence, AutoML’s focus is on users with little or no knowledge of ML
as well as ML experts. AutoML releases the burden of immense development costs
and manual processes that improve capability of decision-making. A complete Au-
toML includes data pre-processing, feature engineering, model selection, and model
evaluation [HZC21, FEF*18, GBC'15].

Hyper-parameter tuning and feature selection are among the primary tasks in
AutoML [BMTB20] and provide fairness to research and scientific studies, as it pro-
vides reproducibility and the same level of tuning for the problem at hand [HKV19].
The computationally expensive nature of tuning tasks, the complexity of ML algo-
rithms, the increasing amount of large databases, and the need for building efficient
ML models prompt new challenges in the AutoML field. These challenges create
significant opportunities and fertile ground for rewarding future research avenues on
AutoML, specifically on Hyper-Parameter Optimization (HPO) and Feature Selec-

tion Optimization (FSO) methods.



Building on the idea of using evolutionary computing for machine learning and
data analytics proposed in [MAA20b, MAA20al, this dissertation proposes to lever-
age an evolutionary optimization algorithm, namely Artificial Bee Colony (ABC),
for enabling automated classical machine learning algorithms, i.e., Random Forest,
XGBoost, Support Vector Machine. It also develops a plug-and-play library, and
its underlying algorithms, to enable automated hyper-parameter tuning and fea-
ture selection optimization in these classical ML algorithms. The final outcome of
this dissertation is to provide a hybrid framework for feature selection and hyper-
parameter tuning using classical ML algorithms for a few application domains in
both classification and regression problems This study aims to address some of the
main challenges in this area and provide solutions to build effective models in dif-
ferent applications.

Overall, some of the main challenges in HPO and FSO include:

e Dimensionality: High dimensionality introduced new challenges to the world
of data science. One of these challenges is the Curse of Dimensionality (CoD).
CoD refers to a set of problems that arise when working with high-dimensional
data, and that have most often unfortunate consequences on the behavior and
performances of learning algorithms [VF05]. CoD brings high time complexity
to the problems and extends the time scientists must wait to obtain reasonable
results [MAA20b]. Large datasets can make both HPO and FSO slow due
to increasing the number of features and records. Therefore, the computing
time and hence the FSO/HPO process slows down since the computation cost

increases exponentially with the size of the dataset dimension.

e Large configuration space: HPO and FSO methods are time-consuming,

and this not only increases with high dimensions of datasets but also with



larger search spaces. Many of the black-box (BB) optimization models do not
fit HPO problems (with limited time and resource budgets) as they usually
ignore the function evaluation time [YS20]. Hence, efficient algorithms should
be used for these problems in order to find the optimal set of hyper-parameters

[YS20], and features [MA14].

e Expensive function evaluations: ML algorithms have different objective
functions. The complexity of objective functions depends on the complexity
of the ML models themselves. For instance, some models have more training
time as they are more dependent on the size of the dataset (e.g., support vec-
tor machines [YHB16]). The costly objective function of some ML algorithms
makes them even more challenging when used for iterative optimization pro-
cesses (such as nature-inspired algorithms), as they significantly increase the
execution time (due to time-consuming training processes for each evaluation).
Therefore, proper strategies are required for such ML algorithms to address

this challenge and enhance the running time.

The challenges mentioned above motivated us to explore HPO and FSO tech-
niques in an effort to analyze methods that can decrease the influence of dimen-
sionality or large search spaces on execution time. In this dissertation, AutoML is
considered for making predictions, in particular classification and regression tasks
using classical machine learning algorithms using Random Forest (RF), Support
Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). However, the
issue explored in this dissertation can be conveniently extended to other ML algo-
rithms. Further, the final outcome is a joint HPO+FSO tool that can be used to 1)
find the optimal ML algorithm performance for a given dataset, 2) perform HPO,
and 3) perform FSO.



1.2 Proposed Solution

Although tuning hyper-parameters and/or features lead to having models with bet-
ter performance (e.g., accuracy, mean squared error, etc), the optimization process
for finding the near optimal configuration is very time-consuming and sometimes
impractical [YS20]. AutoML is a relatively new field and there is still space for im-
provement in regards to time and performance. Being time-consuming is one of the
disadvantages of AutoML [ZWRM21]. This dissertation presents a novel framework
that partly handles HPO and FSO problems in classical ML algorithms to address

these challenges. The proposed framework includes:

¢ Development of a novel FSO algorithm: This algorithm is a novel Arti-
ficial Bee Colony (ABC) based algorithm fitted to FSO problems. Moreover,
the algorithm is modified in order to improve the ML models’ performance
and simplify the structures’ size, enhancing the execution time for finding the
optimal set of features using learning algorithms (particularly clustering and
opposition-based algorithms). This algorithm is further improved by filtering
the poor configuration from the whole search space. The proposed feature
selection method, A2BCF, inspired by Ghareh Mohammadi et al.[MA14], is
later inserted into our proposed hybrid framework. A2BCF is able to improve
the performance and/or run-time compared to the conventional hand-crafted

features and efficiently extracts robust features from the raw data.

e Development of a novel HPO algorithm: In this dissertation, we first
present the HyP-ABC' algorithm in which ABC is fitted to the HPO prob-
lems to find close to the optimal hyper-parameters of ML algorithms. The
HyP-ABC algorithm is further enhanced using learning algorithms. In partic-

ular, clustering and opposition-based algorithms are leveraged for improving



the performance and convergence rate of the algorithms. We call this algo-
rithm OPT-ABC. This algorithm is specifically leveraged to two real-world
applications such as education and energy demand. OPT-ABC, used in this

framework, is later integrated into our proposed hybrid HPO-FSO framework.

1.3 Contributions

The contributions of this dissertation are multi-fold:

e A novel automated feature selection method is proposed as a preprocessing
step for selecting the optimal set of datasets’ features. In addition to the
random-based strategy used in the original ABC algorithm, this ABC-based
method includes clustering and opposition-based learning [Tiz05] methods as
well as an early stopping strategy. The first method is used to provide diversity
to the features’ search space [CLWY18]. The second method is used to balance
the exploration and exploitation of the algorithm and improve the algorithm’s
convergence rate. The early stopping strategy is also applied to eliminate the
poor configurations early in the process and prevent training the ML algorithm

on those solutions.

e A novel optimal and automated hyper-parameter tuning method is proposed.
This is an iterative step for finding the optimal set of datasets’ hyper-parameters.
This method also includes clustering and opposition-based learning algorithms.
These algorithms are designed to enhance the convergence rate of the original
ABC-based HPO algorithms. As mentioned above, these methods are used to
provide diversity (to hyper-parameter configurations), balance the exploration
and exploitation of the algorithm, and improve the algorithm’s convergence

rate. The algorithms automatically determine how to modify the configura-



tions based on the performance during the training. In particular, it is applied

to classical ML algorithms.

e A novel HPO-FSO framework is proposed, namely FSHPO, for automati-
cally selecting the features and hyper-parameters in different regression and
classification problems. This model integrates the OPT-ABC and A2BCF al-
gorithms to create an end-to-end framework that contains two layers of FSO
to capture the optimal set of features and HPO to capture the optimal set of
hyper-parameters. FISHPO takes the cleansed dataset and returns the optimal

architecture of the ML model.

e This dissertation does not only contribute to developing novel tools for HPO
and FSO, but it also proposes to apply these tools to two major applications
for the first time. Specifically, a real-world education dataset is used to assess
the proposed HPO and FSO algorithms. Among other applications, this is
the first time HPO-FSO has been used in the field of education to predict

students’ success.

1.4 Scope and Limitations

The proposed framework has several limitations and assumptions as follows: The
proposed framework is evaluated on structured datasets in education and power de-
mand datasets. However, proposed HPO and FSO models can also be extended to
cover other data types such as images. When applying ML algorithms, only a few
hyper-parameters have major effects on the performance of the model performance,
and they are the main hyper-parameters that require tuning (such as the number
of trees in the Random Forest Algorithm). The proposed hyper-parameter tuning

method focuses on the main hyper-parameters in classical ML algorithms. However,



certain other unimportant hyper-parameters may still affect the model performance
slightly (such as shrinking in Support Vector Machine algorithm) and may be con-
sidered to optimize the ML model further. However, it increases the dimensionality
of hyper-parameters search space.

However, there are other hyper-parameters with less impact on the performance
that can be considered and automated in future work. The main focus of this dis-
sertation is on supervised ML algorithms, and unsupervised learning algorithms are
not being explored in this work. Although the proposed techniques can potentially
be extended for unsupervised learning, it is out of the scope of this dissertation.
The proposed framework alleviates the HPO and FSO challenges using efficient al-
gorithms and techniques to improve the convergence rate. However, distributed pro-
cessing, distributed learning, parallel computing and other big data solutions (such

as GPU programming) are not taken into consideration in the proposed framework.

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 covers the related
work in optimization for ML, with a major focus on hyper-parameter optimiza-
tion and feature selection optimization in ML algorithms. The proposed HPO-FSO
framework for conventional ML algorithms, its main components, and the applica-
tion and experiments of datasets are presented in chapter 3. In chapter 4, a novel
evolutionary optimization-based feature selection technique using the Artificial Bee
Colony algorithm is proposed. Chapter 5 discusses the proposed ABC-based hyper-
parameter tuning technique. In chapter 6, a final hybrid model that represents
ABC-based HPO+FSO for conventional ML algorithms is presented for the auto-

mated ML framework is presented. Finally, in chapter 8, the conclusions and future



directions are given. Table 1.1 shows the chapters, and their content is taken from
publications.
All codes generated for the experiments in this dissertation are publicly available

for reproduction of the analysis and extension (to other ML models)?.

Table 1.1: Related published research papers during my Ph.D.

Chapter/Section Re-Used Published Research

A2BCF: An Automated ABC-Based Feature Selection Algorithm for Classification Models,
Applied Sciences’22 [ZGMA22]

Search Algorithms for Automated Hyper-Parameter Tuning,

ICDATA 21 [ZMRT21]

OptABC: an Optimal Hyperparameter Tuning Approach for Machine Learning Algorithms,
ICMLA 22 [ZMA21c)

ABC-based Optimal Hyper-parameter Tuning for Electric Load Forecasting,

ICAI'22 [SZMT22]

Chapter 3

Chapter 4.1

Chapter 4.2

Chapter 6.3

’https://github.com/LeilaZa?tab=repositories
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CHAPTER 2
RELATED WORK ON HPO AND FSO IN ML ALGORITHMS

Abstract In chapter one we covered the introduction and background in the field
of AutoML, more specifically HPO and FSO. In this chapter, we aim at covering
a high-level summary of the mathematical optimization and optimization for ML.
Then, we cover a review of related works for hyper-parameter tuning and feature

selection in ML.

2.1 Mathematical Optimization

Mathematical optimization (also known as mathematical programming) is selecting
the most optimal element from a set of available options, considering some criterion
[Zi088]. These types of problems exist in various disciplines, and exploring methods
to solve such problems has been of interest for centuries [DPWO01]. The purpose
of optimization problems is to minimize or maximize a function given a set of con-
straints. ML algorithms also involve solving optimization problems. When an ML
model is being built, its weight parameters are initialized and optimized in a process
until the performance reaches a maximum level [SCZZ19].

Similarly, the goal of HPO and FSO methods is to optimize the ML model’s ar-
chitecture by finding the optimal set of hyper-parameters and features, respectively.
Optimization problems have two main components: a set of decision variables and
a function that should be minimized or maximized. Depending on the class of
the optimization problem, hyper-parameters/features may have certain acceptable
ranges for the decision variables. Hence, optimization problems are divided into two

categories [BHMT77]:
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1. Unconstrained: Decision variables in this method can take any value from

real numbers, R, and can be expressed as 2.1

min f(z) (2.1)

where f(x) is the objective function.

2. Constrained: In constrained optimization problems, decision variables have
constraints and can be subject to mathematical equalities or inequalities. Most
of the real-world optimization problems are constrained optimization problems

and can be denoted as shown in Equation 2.2.

min f(x) subject to:

glx) <=0,2=1,2,...m,
(@) (2.2)
h(z) <=0,i=1,2,..,p,

reX

where X is the domain for variable x. The domain X limits the possible values

for decision variables and creates a feasible search space.

In ML models, most of the HPO and FSO problems are constrained optimization
problems. They have constraints for decision variables, including but not limited
to, specific accepted ranges, hyper-parameter values, and types and space/time con-
straints. These constraints limit the whole search area to feasible search spaces, and
that is why the optimum solution might be the local optimum in the entire search
space. However, the local optimum is guaranteed to be the global optimum if only

the function is convex, as in these functions the global and local optimums are equal

[Bub14].
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On the other hand, non-convex optimization problems may require proper strategies

to find global or close to global optimums instead of a local optimum.

There is a wide range of methods to solve optimization problems. One of the
most common optimization methods is Gradient Descent (GD). The search strategy
in the GD method uses the negative gradient direction in order to move toward the
optimum solution. However, GD can be used to find the local minimum as it can not
guarantee the discovery of the global optimum. GD can only guarantee to find the
global optimum if the problem’s objective function is convex. The Conjugate GD
method is faster than the original GD, but its calculations are more complicated.
There are also some other methods, such as Newton’s method, which has a better
convergence speed compared with GD but requires a larger space [YS20]. These
traditional methods follow systematic steps to find the optimal solutions. On the
other hand, we have heuristic strategies based on empirical rules to discover the
optimal solutions. Although these methods do not guarantee the global optimum,

they often find the approximated global optimum [SCZZ19].

2.2 Optimization for Machine Learning Algorithms
Usually, there are a few questions that we need to address in an ML problem:

1. How do we select the candidate models, features, and hyper-
parameters?

Choosing a model from a set of representative models in the fields of ML and
statistics has always been a concern. This choice needs to be made based on
selection criteria. Every ML model has a score or value (called performance),
which demonstrates the quality of the model. Hence, the model with the

better score should be chosen for decision-making, or further analysis [NC12].
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In general, based on Occam’s razor, “a model should be simple enough for ef-
ficient computation, and complex enough to be able to capture data specifics”
[Bie03]. The problem with complex models is that there is always the possibil-
ity of overfitting, but a simple model can smooth out features’ noise [Bie03].
Feature selection is a way of removing noise and random errors in the un-
derlying data. In feature selection, we use techniques to select features from
the more relevant data and remove the redundant or irrelevant ones without
incurring much loss of information [BPWS™15].

Hyper-parameters of an ML model control the learning process [Kim19]. In
each ML model, some hyper-parameters are essential and have a more consid-
erable impact on the model’s performance. In contrast, the rest may not have
as much effect on the model performance. Therefore, a process of finding a set
of hyper-parameters that enhances the performance of the model would be of

great help [CDM15, KS96].

. What is the expected performance considering the trade-off between

optimization performance and run-time?

For hyper-parameter tuning and feature selection problems, there is a trade-
off between exploration (searching relatively unexplored regions of the space to
avoid premature convergence) and exploitation (optimizing the hyper-parameters
locally). In other words, there should be a balance between the number of con-
figurations and the budget allocated to those configurations [Y'S20, KTH"19].
Therefore, the search space and selection strategy (i.e., optimization algo-
rithm) for hyper-parameters and features should be based on the available

computational budget and resources (such as time).
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3. What is the final model we use?

The goal of model selection is to determine the ML model with optimal gen-
eralization performance, considering a set of learning algorithms and the data
[KTH™19]. As mentioned above, the best model is selected based on the key
performance indicators (PI). There are different PIs available for model com-
parison, each fit for a specific set of problems (e.g., accuracy, precision, recall,
F1) [GGO5]. Based on the problem, the corresponding maximum performance
is determined, and the final model is selected. However, the performance

depends on the chosen features and hyper-parameters.

Determining the appropriate hyper-parameter and features’ subset to ascertain
the best-fitting model is a complicated optimization problem and a decisive issue.
Manual testing is a common but ineffective way of tuning precisely because of model
complexities, time-consuming model evaluation, and vast search space for models’
hyper-parameters or features. On the other hand, the traditional automated exhaus-
tive search goes over all possible hyper-parameters or features to find the optimal
subset. However, such methods are impractical for large datasets. This issue is exac-
erbated when the number of features and/or when the number of hyper-parameters
increases (with the time complexity of O(2™) and O(n*), respectively) [YGW16].

In summary, ML’s main goal involves determining the best and most predictive
model, which can be obtained by suitable feature engineering and tuning the hyper-
parameters [EMS19]. Choosing the best subset of features and hyper-parameters
directly affects the model’s performance and users need a deep understanding of
the ML models. The optimal parameter values and features depend on the applica-
tion and, more specifically, the data itself. ML algorithms need automatic feature

selection and hyper-parameter tuning approaches to be effective in the application.
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2.2.1 Feature Selection in Classical Machine Learning Mod-

els

Feature engineering and feature selection are among the essential tasks in predictive
analytic projects [LTST17]. It is an indispensable approach that removes the noisy
data which enhance the precision and enables the model to perform faster. Therefore
the process of selecting features for large datasets is crucial to decreasing models’
run-time and generating a logical input set for ML models. However, there is a
trade-off between computational complexity and performance, and a smaller subset
of features decreases the time complexity. Although there are many feature selection
techniques that have been proposed for classification and regression tasks in the
past few decades, they sometimes fail to optimally reduce the high dimensionality
of the feature space. Emerging technologies such as heuristics optimization methods
provide a new paradigm for feature selection due to their strength in enhancing the
performance of computational demands, classification, and storage. They also help
solve complex optimization problems in less time. Several heuristics approaches
for feature selection compromise the performance to decrease the time complexity.
Therefore, an appropriate, efficient FSO method that can reduce the number of
features without decreasing the model performance is required. This section reviews
the present state of feature selection with respect to meta-heuristics and hyper-
heuristic methods.

There are many different definitions for feature selection. Nevertheless, the main
idea is to select a subset of appropriate features from an initial wide range of features.
FSO approaches try to find an optimal set of features by removing unimportant fea-
tures with the goal of improving the prediction accuracy or structure’s size without

significantly decreasing the prediction accuracy of the model [IKS96, KM14].
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The removal of irrelevant features not only provides an efficient data representation,
but also improves the learning rate, decreases the data dimensionality, and enhances
the performance.

There are different approaches for feature selection. However, they can be di-
vided into two main categories, namely, filter-based and wrapper-based. Each of

these methods has its own advantages and disadvantages.

e Filter methods: In these methods, selecting the features is performed be-
fore leveraging the learning algorithm. Therefore, the features do not depend
on the ML algorithm. In these methods, the importance of features is calcu-
lated (based on some predefined criterion), and then the best feature subset
is selected. In these methods, no learning algorithm is used for choosing the

features. The advantage of these methods is their faster speed. [ZGMA22]

e Wrapper methods: Unlike filter methods, wrapper methods generate differ-
ent subsets of features by adding and removing features to achieve reasonable
accuracy. The predictive accuracy of the classifier is used to evaluate the subset
of features. The wrapper methods use a predefined classifier to explore a sub-
set of features. Then it utilizes the classifier to measure the subset of features.
The selection process continues till the desired performance is achieved. The
advantage of these methods includes their high classification accuracy. How-
ever, their computational complexity is higher than filter methods. Therefore,
researchers have been exploring different methods to enhance the convergence
of wrapper methods. Wrapper methods have gained much attention due to
their promising performance. Prior works have used wrapper methods for se-

lecting the optimal features [ZGMA22, OSBS03, PX13, SIM11, YO11, MA14].
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The conventional-based feature selection approaches such as filter-based meth-
ods are usually unable to handle problems that require an ample solution space due
to inter-dependencies and nonlinear requirements amongst features [GT13]. Filter-
based methods have the disadvantage of complexity and not being to provide satis-
factory results. These issues and more have motivated researchers to explore other
methods of obtaining better performing options [AAAT21].

Metaheuristic-based approaches have proven their performance in different fields
as they deliver practical solutions in a reasonable time and their strength in over-
coming the curse of dimensionality (CoD) by optimizing the performance of classi-
fication, and reducing the use of computational resources. Hence, This dissertation
focuses on metaheuristic-based feature selection algorithms for classification and re-
gression tasks due to their favorable performance than conventional feature selection
methods.

When dealing with large datasets it is quite challenging to conclude which fea-
tures are related to the problem and which are not. Also, if all the features are
selected then the final outcome of the model might be affected due to the noisy
features. Additionally, selecting all features makes the analysis process very time-
consuming and should be avoided. Therefore, finding the best subset is essential to
feed the model with the most related features to the problem at hand.

Figure 2.1 shows the ideology for FSO approaches. The feature selection step

can be done manually or via some automated techniques.
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Figure 2.1: General feature selection schema

Depending on the models’ number of features, finding the best subset of features
among the 2" existing combinations could be very costly. Therefore, researchers
have provided different feature selection methods to reduce models’ computational

costs.

Metaheuristic-based algorithms

Selecting features from large datasets using traditional feature selection approaches
is complicated and can not be easily solved. Therefore, Metaheuristic-based ap-
proaches came into the picture and became more established in the literature due
to their performance when solving complex problems [BRO3].

Metaheuristics are used in different feature selection tasks in various fields due to
their excellent performance in global search and performance. The established lit-
erature divides the metaheuristic algorithms into population-based and local search
algorithms [BRO3]. The population-based algorithms examine a population of dif-

ferent solutions in the search space and enhance them iteratively to achieve the
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ideal solution. In [BR03, ABHAAD21], authors provide an extensive treatment of
different metaheuristic references.
Dash and Liu state that feature selection methods typically have four basic steps

as follows [DLI7]:

1. A procedure to generate the next configuration candidate,
2. An evaluation function,
3. Stopping criteria,

4. Validation procedure.

The state of the art: metaheuristics methods

Feature selection approaches using metaheuristics have gained a lot of attention and
are increasingly studied. This shows the importance of feature selection in differ-
ent tasks. The two main categories of Metaheuristics are swarm intelligence, and
evolutionary-based.
Swarm intelligence (SI) is a population-based stochastic optimization technique that
is considered among nature-inspired algorithms. It works based on self-organized
frameworks that can move iteratively in a planned way. This framework has a pop-
ulation of solutions that can directly or indirectly communicate locally [RBNEF21].
Some examples of SIs are ant colonies, bee colonies, birds flocking, fish schooling,
and microbial intelligence [Tal09].

There are SI-based metaheuristic methods existing in the literature for feature
selection including PSO, ABC, amongst others.

The PSO algorithm is inspired by the social behavior of birds. In [BD15] pre-
sented a Hamming distance-based binary particle swarm optimization for high di-

mensional feature selection. This technique uses hamming distance to update the
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velocity of particles in a binary problem. In another study[YDwWq16], authors pro-
posed an enhanced PSO method to improve the searchability of the PSO method
based on the introduction of two new operators. In [JJJ18] proposed an algorithm
with modifying PSO algorithm to classify cancer. There are also other works ex-
isting in the literature based on the PSO-based approach [ZDZY18, QA18, PBHIS,
GJM18, PPA19, XTPL20]

The ABC approach is inspired by the intelligent behavior of simulating the food

search of bee populations. In [SK17b], the authors presented a hybrid of ABC and
the ACO algorithms to provide a high-performing model. In another study, the
authors integrated an ABC-based multi-objective optimization algorithm with a
sample reduction technique. The results of this study proved an increase in the per-
formance and a decrease in the computational complexity [WZS"20]. Arslan et al.
presented an ABC-based algorithm for high-dimensional symbolic regression with
feature selection [AO19]. In another study, Grover and Chawla improved the ABC
algorithm for feature selection by utilizing an intelligent strategy [GC20]. There are
also other approaches using the ABC algorithm and can be found in the literature
[HXZ"18, BM19, HXKZ15]
There are also some methods that consider other aspects besides the model’s pre-
dictivity in their feature selection method. For instance, Georges et al. looked into
feature reproducibility, which means the same subset of features selected can be
found and used in similar datasets in the field (e.g., structural and functional MRI
data) [GMR20].

The domain of features in FSO problems is only binary. In other words, for each
of the features in the dataset, the only options for that specific feature would be one
or zero, for including or excluding the feature, respectively. As in FSO problems the

feature can only take two values, and it is considered as a constrained optimization
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problem. Hence, in FSO problems the goal is to achieve [LNK"17]:

" =arg glCTel(l]I{f([E) (2.3)

where f(x) is the objective function we aim to minimize (such as root mean
*

square error or the error rate) or maximize (such as accuracy or Fl-score). z* is

also the subset of features that generated the optimum value of f(z).

2.2.2 Hyperparameter Tuning in Machine Learning Models

To improve ML models by HPO, we first need to know what are the main hyper-
parameters that users need to tune to fit the model into a problem or a dataset.
Whether the ML algorithm is built to model labeled or unlabeled datasets, they are
divided into supervised and unsupervised algorithms, respectively [MISL18]. Super-
vised algorithms mainly include linear models, naive Bayes (NB), decision-tree-based
models, k-nearest neighbors (KNN), support vector machines (SVM) and deep learn-
ing algorithms [CNMO6]. Unsupervised algorithms, on the other hand, aim to find
hidden patterns from unlabeled data and based on the main goals they are classi-
fied into clustering and dimensionality reduction algorithms. They mainly include
k-means, hierarchical clustering, expectation-maximization or principal component
analysis (PCA), and linear discriminant analysis (LDA) [Kral6]. In this disserta-
tion, the important hyper-parameters of common ML models are explored including

ML algorithms scikit-learn [PVGT11], and XGBoost [CHBT15].
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2.2.3 Hyper-parameter optimization techniques
Model-free algorithms

e Babysitting: This method is nothing other than manual or trial and error and
is the most basic tuning method [Abr19]. In this method, use different pos-
sible configurations of hyper-parameters based on experience or guessing and
repeat this process until they yield the desired results. Therefore, this method
requires enough knowledge and time to be able to find the optimal hyper-
parameters. In [ZLP720], Zahedi et al., used manual tuning of the hyper-
parameters to improve the performance of the ML models in a classification
problem. However, in many problems, manual tuning the hyper-parameter
is almost impossible, especially when dealing with a large number /ranges of
hyper-parameters, and complex models [Stel8]. These issues motivated re-

searchers to explore various approaches for the automated HPO.

e Grid Search: This method is the most common tuning approach and is consid-
ered an exhaustive search strategy that goes over all the configurations in the
search space [IMNS20]. The most important disadvantage of GS is its ineffi-
ciency, especially when dealing with Curse of Dimensionality (CoD) [CSPT14].
In other words, this is due to the fact that the number of configurations grows

exponentially when the number of hyper-parameters increases.

e Random Search: This method [BB12] is proposed to partly solve the challenges
existing in the GS. Unlike GS, RS does not evaluate all the configurations in
the search space. RS randomly selects and evaluates a pre-defined number
of configurations. If the resources are limited RS is able to evaluate a larger
search space than GS [BB12]. The advantage of RS over GS is that the

probability of wasting time on a low-quality region in the search space in the
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RS method is much less than the GS. The computational complexity of the
RS method is O(n) where n is the pre-defined number of evaluations [Wit05].
Due to the random nature of the RS method, there are still a remarkable
number of configurations that are unnecessarily evaluated. This is due to the
fact that the evaluations are independent of each other and the algorithm does

not exploit the regions that perform better.

Model-based algorithms

e Gradient Descent: This method [Ben00], is a first-order iterative optimization
algorithm that discovers promising directions and moves toward the optimal
solution. This approach selects a random point and moves toward the biggest
gradient to discover the next point. Hence, in this method, the local optimal
can be found after the convergence. Although gradient descent approaches are
strong in finding the local optimum, they have some limitations as well. Firstly,
they can only be used for continuous problems as some hyper-parameter types
such as discrete parameters do not have gradients. Also, gradient descent
methods are suitable approaches for convex problems as gradient descent may

stuck in the local optimum instead of a global optimum.

e Bayesian Optimization: This method [SLA12] is a very popular method in
HPO problems. Unlike model-free approaches, BO is more efficient. BO is
a model-based technique that determines the future data points based on
the evaluated results from previous data points. Hence it is cheaper than
when all the configurations are evaluated. However, these characteristics make
the model difficult to parallelize, as BO is considered a sequential method.
There are different Bayesian HPO approaches such as Gaussian process (GP)

[SLA12], Random Forest (RF) also know as sequential model-based algorithm
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configuration (SMAC) [HHLB11], Tree-structured Parzen Estimator (TPE)
[BBBK11], and Bayesian Optimization HyperBand (BOHB) [FKH18].

e Metaheuristic algorithms: Metaheuristic algorithms [GT13], are computa-
tional intelligence paradigms used for solving sophisticated optimization prob-
lems. The strength of metaheuristics is their capability to solve no-continuous
and non-convex optimization problems. One major subcategory of metaheuris-
tics is population-based algorithms, such as evolutionary algorithms, genetic
algorithms, PSO, and so on. In all the population-based algorithms, the pro-
cess starts with generating and updating a population and evaluating the
members of the population until the optimum member is discovered. The
main difference between population methods is the way they generate the

population or choose the individual in the population [YWC™18].

As mentioned earlier, HPO is one of the most important components of Au-
toML. Hence, there are many studies including survey studies in the field of HPO.
In [KTH*19], the authors did a thorough overview of HPO approaches existing in
the literature, and covered challenges, and future work directions. Yang and Shami
in [YS20] also offered a very high-level survey study around search spaces, different
HPO approaches, and tools that are decent for first-time users. In another study
[And19], Andonie offers an overview of HPO techniques by focusing on computa-
tional complexity aspects, which is a useful source for experts in ML as well. There
are also several specialized overview studies in the field of HPO and AutoML. Some
of these surveys focus on AutoML for deep learning models [HZC21, Tal20]. In some
other studies, authors focused on HPO for smart grids forecasting models [KJ20],on
AutoML on graph models [ZWZ21]. There are also some other overviews of AutoML

[YWC*18, EMS19, YZ20].
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Model selection constitutes choosing the best-fitting model with optimal per-
formance for future prediction [Ricl5]. This can be done by finding and tuning
valid hyper-parameters. Hyper-parameter tuning is an essential process to make a
model perform at its best [ADNDS™19]. Previous research shows that tuning hyper-
parameters of ML models can significantly improve prediction performance.
Although hyper-parameters are critical in the resulting predictive models’ qual-
ity, they have no obvious agreeable defaults in different utilizations and applica-
tions. However, the tremendous increase in the scale of data in real life makes it
computationally expensive and practically impossible to manually tune the hyper-
parameters. Hence, it has become vital to automate optimizing the hyper-parameters.
In HPO methods, the goal is to find the value of hyper-parameters that significantly
contribute to improving the accuracy of a model. Therefore, the search algorithm
looks through different combinations of hyper-parameters (search space), which en-
able the model to generate a well-performed model according to the evaluation
criteria and through an iterative process [YS20, DENNS17]. Figure 2.2 shows the
general schema for hyper-parameter tuning. The hyper-parameter tuning step can

be done manually or via some automated techniques.
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[ Train Set ] Hyper-parameter tuning Selected Hyper-
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Figure 2.2: The general hyper-parameter tuning schema
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HPO methods typically have four basic components:

1. An ML classifier or regressor
2. A search space
3. A search strategy to find optimal hyper-parameters

4. An evaluation function for performance comparison of different configurations.

In contrast to FSO problems where the domain of features is binary (only ze-
ros and ones), in HPO problems, we deal with different types of hyper-parameters.
Hyper-parameters could be continuous, discrete (including binary), or categorical.
Depending on the value of a hyper-parameter used for a specific model, the value of
another hyper-parameter may need tuning as well to have a well-performed model
[Luol6b]. As mentioned in Section 2.1 optimization problems are divided into
two categories: Unconstrained and Constrained. Although in some cases hyper-
parameters can take real values, in most cases ML hyper-parameters take different
ranges of values and have various constraints, so they are often complicated con-
strained optimization problems. Hence, in HPO problems the goal is to find x by

solving the below problem [LNK*17]:

¥ =arg Irél)l(l f(zx) (2.4)

where f(x) is the objective function we aim to minimize (such as root mean square

*

error or the error rate) or maximize (such as accuracy or Fl-score). z* is also the

set of hyper-parameters that generated the optimum value of f(x).

2.2.4 Remarks

An important constraint that should not be overlooked in HPO and FSO problems is

time resources. We usually need a lot of time to build an ML model with optimized
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function with the reasonable number of hyper-parameter settings or a subset of fea-
tures. This is because each time one configuration of hyper-parameters/features is
tested, the ML model requires to be trained to generate the model’s performance.
Finding the ideal set of hyper-parameters/features needs an exhaustive search over
all the configurations and that is practically impossible. This is why most traditional
optimization approaches are not a good fit for HPO problems; many of the optimiza-
tion solutions are made for convex problems, while HPO problems are non-convex as
they may find the local optimum instead of returning the global optimum [STH™15].
The other reason is that many optimization problems are designed for continuous
variables, while in HPO we are dealing with other types of hyper-parameters (cate-
gorical and discrete) as well. Last but not least, many of the optimization techniques
ignore the function evaluation time, while they are very important in both HPO and
FSO problems.

Therefore, there is a crucial need to develop effective techniques to find optimal
solutions in a reduced search space and within a reasonable time.

In the next chapters, we cover how population-based algorithms, specifically Ar-
tificial Bee Colony (ABC) algorithms are used to improve the process of feature

selection.
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CHAPTER 3
OVERVIEW OF THE PROPOSED FRAMEWORK

Hyper-parameter tuning and feature selection are both key tasks in ML [BMTB20].
On one hand, as mentioned in previous chapters, the vast increase in the scale of
data in real life makes it computationally expensive and practically impossible to
manually adjust the hyper-parameters/features. Thus, automating the ML pipeline
is crucial to ensure real-world deployment of these algorithms [KPZS20, Luol6a]

On the other hand, although the availability of general Mathematical Optimization
models provides tools to solve various optimization problems, the characteristics of
an efficient optimization algorithm from the perspective of ML and mathematical
optimization can be quite different [BPHO06]. New challenges arise for researchers to
explore new and more efficient models for ML problems. In fact, hyper-parameter
or feature selection optimization is the process of finding optimal or near-optimal
subset of hyper-parameters/features to maximize the objective function by using
an optimization technique [ZGMA22, ZMA21c]. It is an emerging research area
and has engaged many researchers in both ML and mathematical communities in
recent years. Therefore, the goal of this work is to address some challenges in ML
optimization, providing desirable properties of an optimization algorithm from the

ML perspective, including [BPHOG6]:
e generalization,
e scalability to large data,
e recasonable performance regarding execution times,
e cfficient implementation of an algorithm,

e exploitation of problem structure,
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e reasonable convergence,
e robustness and numerical stability for class of ML models attempted,

e theoretically known convergence and complexity.

Currently, many research studies have been done in the field of AutoML to
provide more efficient frameworks. The goal of this dissertation is to develop an
algorithm to find the optimal features and hyper-parameters in conventional ML

algorithms.

3.1 Theory

In this dissertation, an integrated framework for HPO and FSO is proposed. The
sections below cover the proposed hybrid framework (which is the final outcome of

this work) and each of its two components, namely, HPO and FSO.

3.1.1 A Hybrid Model for Automated Machine Learning

The final outcome of this dissertation is an end-to-end AutoML framework. The
whole framework is shown in Figure 3.1, which consists of two major components:
FSO and HPO. These components are integrated to partly address challenges in ML
optimization and support functionalities in this area. In this framework, optimal
features in the dataset are automatically generated using a novel artificial bee colony
based algorithm to reduce the dimensionality of data and possibly improve the
performance. Then, a novel hyper-parameter learning technique is utilized to further

enhance the performance of model training.
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3.1.2 Automated Feature Selection

In many fields such as MLi and data mining, datasets have a large number of features.
In these cases, feature selection is an essential step [GE03]. Feature selection entails
selecting a subset of important and relevant features from the original dataset. This
subset should be sufficient enough to predict the decision concepts as well as the
original data. Feature selection is important in the sense that it reduces the dimen-
sions of search space for search algorithms. Also, it can improve the performance
and convergence rate of the algorithm [KS00].

Several search algorithms have been applied for feature selection [SBO1, SHA19,
RPAT13, OAE20, CS21] The most basic approach is finding the best subset of fea-
tures by exhaustively going through the 2" existing combinations, which could be
very costly, especially for large datasets. It has been shown that this is an NP-hard
combinatorial problem [SR92]. Hence, heuristic methods have to be considered.
Although there are many search algorithms such as forward and backward feature
selections, they have the disadvantage of high computational complexity and/or pre-
mature convergence [LY05]. To mitigate these problems, Evolutionary Algorithms
(EAs) that are population-based meta-heuristic optimization algorithms have been
applied. The advantage of EAs is their strength in global search. EAs are the tech-
niques usually applied for feature selection approaches, and they usually produce
reasonable results as they provide several trade-off solutions in a single run.
Artificial Bee Colony (ABC) is one of the most recently introduced EA techniques
with a lot of successful applications to solve various problems. Moreover, the imple-
mentation of ABC is easy and has the ability to search for local and global solutions.
However, ABC has some disadvantages such as low average accuracy for the explo-
ration phase or a low convergence rate. The potential of improved versions of the

ABC algorithm for wrapper feature selection, which addresses these challenges, has
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The main goal of the FSO component in this dissertation is to propose a novel
ABC-based selection that can find the optimal or near-optimal features without
decreasing the performance. To fulfill this goal, this dissertation presents a novel
feature selection method. A2BCF is proposed for a challenging real-world appli-
cation and is based on clustering, opposition-based learning, and early stopping

concepts:

e Clustering: One of the disadvantages of swarm intelligence algorithms includ-
ing ABC is that the initial population has an impact on the final performance
of the model. Hence, the better the quality of the population, the better the
final performance of the algorithm. For very large search spaces, the diversity
of the population is important, so that some search areas are not overlooked
during the search process. In this dissertation, we use a clustering learning

algorithm for decomposing the population for three main purposes:

1. Preventing the algorithm from training each member of the population
and saving time. Therefore, from each cluster, only the representative of
the cluster is trained (assuming that the rest of the cluster members are

similar to the representative)

2. Provide diversity to the population by dividing the search area and
searching all the divisions in order to prevent overlooking some quality

division, and

3. Improving the speed of the algorithm.

e Early elimination of poor solutions: As mentioned above, the quality of
the population has an impact on the performance and speed of the algorithm.

To further improve the speed of the proposed algorithm, it begins by filtering
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poor solutions from the population so that the algorithm starts the searching
process on a quality population. In this dissertation, removing the worst
solutions from the bee swarm helps the search agents spend more time around

the potential solutions.

e Opposition-Based Learning (OBL): One of the disadvantages of ABC al-
gorithms is its low average performance of the exploration phase in comparison
to the exploitation phase. Opposition-based learning can enhance the conver-
gence rate of the algorithm when the optimal point is close or in an opposite
location. This method searches the opposite direction and other directions to
improve the convergence ability [Tiz05]. It also improves the average perfor-

mance of the exploration phase.

Figure 3.2 demonstrates the proposed pipeline, starting with data pre-processing
and feature engineering, in which we clean up and normalize the data or transform
some of the features. The next step is Wrapper FSO, which is an iterative optimiza-
tion process of selecting features, where selected ML models operate as black-box.
The output of this framework is the optimal subset of features along with the opti-
mal performance.

The experimental results demonstrate the effectiveness of the proposed models com-
pared to previous research. This technique increases the performance and conver-

gence rate of the algorithm and reduces the structure’s size of search space.
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3.1.3 Automated Hyperparameter Tuning

Hyper-parameters are the set of variables that are common between different ML
algorithms, and users should set them in a way to ensure the model works at its

best [CDM15]. Manually tuning the hyper-parameters [ZLP*20] or using the grid
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search over a reduced search space is a common practice [PVGT11]. However, these
methods are impractical when the number of hyper-parameters increases [CSP*14].
Hence, automating the search process to tune the hyper-parameter has gained a lot
of attention in the field of ML. Previous research shows the superiority of automated
search strategies over manual search [BB12].

Despite the existing work on hyper-parameter optimization algorithms, there are

still concerns regarding the trade-off between efficiency and effectiveness of current
approaches [YS20]. One of the reasons is due to expensive function evaluations. The
function evaluation depends on factors such as the data scale, model’s complexity,
and availability of computational resources. Each of these factors directly impacts
the evaluation of each HP configuration, which can lead to high computational time
[CDM15].
Although exhaustive methods, such as grid search and random search, have gained
some success in finding near-optimal solutions, given the large-scale nature of the
HPO problems, these approaches are impractical and expensive. Despite the success
of other HPO methods existing in the literature, many of these methods entail a
large number of function evaluations before finding the optimal results, which makes
utilizing such methods for HPO problems challenging. Therefore, an efficient hyper-
parameter optimization method should be able to address the challenge concerning
the trade-off between efficiency and effectiveness, commonly seen in most HPO
methods.

For the HPO component of this dissertation, a novel HPO algorithm, OptABC,
is proposed to improve the performance and address the challenges mentioned in the
previous section. OptABC is an ABC-based algorithm using learning algorithms,
namely clustering, and OBL. These two learning algorithms are developed to ad-

dress some challenges in HPO problems. As mentioned in the previous section, these
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two modifications enhance the performance of the algorithm and improve the con-
vergence rate, as it provides diversity to the population and prevents the algorithm
from training every single set of hyper-parameters. Also, OptABC strengthens the
exploration phase of the algorithm by leveraging OBL. Then, the algorithm selects
the better solution between a random solution and its opposite instead of only gen-
erating a random candidate.

Figure 3.3 shows the proposed pipeline for automated hyper-parameter tuning.
The framework starts from data pre-processing and feature engineering. Subse-
quently, ML models operate as black-box, and an iterative process for selecting the
best parameters on each ML algorithm starts. The output of this framework would
be the optimal hyper-parameters of the ML algorithm and the optimal performance.

As can be seen from Figures 3.1, 3.2 and 3.2, a few steps were completed before
the actual optimization in FSO/HPO experiments start. These steps include are
considered as pre-processing steps which are required to transform the data into
an understandable state for the ML algorithms. Tasks such as data cleaning, data
normalization, data reduction, and feature engineering are included in this step.

Each of these steps is summarized below:

e Data Cleaning: In the data cleaning step, which is a step for removing the
corrupt and not applicable data, we remove the features with more than 60%

missing values.

e Data Normalization: This step is for standardizing the range of features of

data so that the data appear similar across all records and fields.

e Reduction: Data reduction, in this dissertation, refers to using a subset of the
dataset rather than the entire dataset. Filtering and sampling are among the

most common ways of data reduction.
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e Feature Engineering: In this step, we create some new features from raw
features that might be useful for the power of prediction. Moreover, one-hot
encoding (setting up dummy variables for encoding categorical data) is used

so that we can feed the data into ML algorithms.
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The pre-processing steps mentioned above, are applied to a few datasets with dif-

ferent applications. A summary of these applications is covered in the next section.

3.2 Applications

In order to evaluate the effectiveness of the proposed approach, we selected two
datasets in two different applications (including educational, engineering, housing,
and image classification) as the benchmark datasets for HPO and/or FSO evalua-
tions. MIDFIELD and MNIST datasets are to solve a classification problem and
the PJM and Boston-Housing datasets are used to solve a regression problem. MID-
FIELD dataset is used in all the chapters of this dissertation as the baseline dataset.
In Chapter 7, all four datasets are used to evaluate the framework. However, for
one of the datasets (PJM), the framework is only tested on HPO as the number of
features in the dataset is small enough. In both cases, we first shuffled the datasets.
The validation performance for the optimization process was then computed by
3-fold cross-validation on the training dataset. To use the same dataset for each
classification /regression algorithm, we used one-hot encoding which creates binary
columns for each of the categories. We also scaled numerical features linearly to the
range [0, 1] by subtracting the minimum value and dividing by the maximum.

The list of the datasets used in each of these applications is given below:
e (lassification

MIDFIELD: An educational dataset to predict computing students’ suc-

cess in computing majors [LOOT22].

MNIST: A Modified National Institute of Standards and Technology

dataset to predict the handwritten digits [LeC98].

e Regression
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PJM: An hourly electricity load data to predict the power demand [pjm].

Boston Housing: Is derived from information collected by the U.S. Cen-
sus Service concerning housing in the area of Boston MA, to predict the value

of housing prices [HJRT8].

As it is shown in 3.1, the AutoML process in this study starts with the FSO and
then based on the selected features, the hyper-parameter tuning starts. Hence, the
next chapter covers the feature selection process. In chapter 5 we will discuss the

hyper-parameter tuning approach and the details of the proposed approach.
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CHAPTER 4
A2BCF: AN AUTOMATED ABC-BASED FEATURE SELECTION
ALGORITHM FOR CLASSIFICATION MODELS IN AN
EDUCATION APPLICATION

Abstract! Feature selection is an essential step of preprocessing in Machine
Learning (ML) algorithms that can significantly impact the performance of ML
models. It is considered one of the most crucial phases of automated ML (Au-
toML). Feature selection aims to find the optimal subset of features and remove
the non-informative features from the dataset. Feature selection also reduces the
computational time and makes the data more understandable to the learning model.
There are various heuristic search strategies to address combinatorial optimization
challenges. This chapter develops an Automated Artificial Bee Colony-based algo-
rithm for Feature Selection (A2BCF) to solve a classification problem. The appli-
cation domain evaluating our proposed algorithm is education science, which solves
a binary classification problem, namely, undergraduate student success. The mod-
ifications made to the original Artificial Bee Colony algorithm make the algorithm
a well-performed approach.

Keywords: AutoML; Artificial Bee Colony; classification; education; evolu-
tionary computation; feature selection; optimization; swarm intelligence; wrapper

method; student success
4.1 Introduction

Student retention is a major concern for STEM fields. It is particularly problematic

in computing fields, where enrollment has not kept pace with industry demands.

!This chapter is an edited version of the author’s previous work published in [ZGMA22]
(©2022 MDPL.
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Therefore, finding patterns in historical educational data can help the education
community reveal the potential reasons for students’ withdrawal from the computing
field. This information provides guidelines to better understand the relative success
of computing students and enable strategic solutions to achieve higher retention
rates [ZLP720].

The application of ML in education is currently very interesting to researchers
and education communities. Building predictive models involve learning from data.
Machine Learning (ML) is a technology that enables computers to learn without
being explicitly programmed. One of the most important recent discussions in this
field is related to the enhancement of ML algorithms’ performance in different appli-
cations, such as education. In the context of ML, choosing the best model has always
been a concern. Moreover, it is crucial to transfer the most important information
to both save time and improve performance. In general, based on the principle of
Occam’s razor, “a model should be simple enough for efficient computation and
complex enough to be able to capture data specifics” [Bie03].

The extraction of useful information and the presentation of scientific, educa-
tional decision-making is necessary, providing professionals with an additional source
of knowledge. The educational datasets can be massive. The high-dimensional na-
ture of many modeling tasks has given rise to a wealth of feature selection techniques.

Feature selection is a way of removing noise and random errors in the underlying
data. In feature selection, we use techniques to select features that are more rele-
vant to the problem and withdraw redundant or irrelevant data without incurring
much loss of information [BPWST15]. Feature selection facilitates the best perfor-
mance for the ML model [KM14]. The main idea of feature selection is to select
a subset of features for the model to either improve the model’s performance or

reduce the structure’s size and computational cost [oHO03]. In [KS96], Koller and
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Sahami presented a filter feature selection method to reduce the overall computa-
tion cost. In Ahmed et al. [AYA(09], authors concluded that information entropy
can determine the importance of features and can be effective for the reduction of
attributes. Choosing K out of N features helps the training time to be distributed by
N/K [MA14]. In feature selection problems, the size of the search space for a dataset
with N features would be 2 [WBA09]. Therefore, researchers have provided differ-
ent search methods to reduce models’ computational costs. Dash and Liu believed
these methods typically have four basic steps: (1) a generation procedure to gen-
erate the next candidate, (2) an evaluation function, (3) stopping criteria, and (4)
a validation procedure [DLI7]|. Cleaning and featurization of the data are consid-
ered the most time-consuming steps of AutoML, and researchers have investigated
different methods to improve the performance of the AutoML process [GYR™18].

There are various heuristic search strategies to address combinatorial optimiza-
tion challenges. These algorithms include but are not limited to, nature-inspired
algorithms such as Genetic Algorithms (GA) and Swarm Intelligence (SI), which in-
clude Particle Swarm Optimization (PSO) [SC14] and Artificial Bee Colony (ABC)
[EA10].

This chapter proposes a new approach (A2BCF) for feature selection using an
ABC algorithm to improve the performance of the classifier in an education appli-
cation and predict students’ success. The goal of A2BCF is to choose a subset of
features from the whole feature space, reducing the total number of used features
to improve the total computation time. It is specifically helpful for ML algorithms,
such as support vector machines, as their training time is highly dependent on the
dimensions of the data.

Our main contributions are listed as follows:
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e A2BCF is a novel framework for efficiently selecting the features in a large

structured dataset.

e The application of the developed optimization method is used for the first time

in this chapter.

e We design a variant of the ABC algorithm that helps balance the exploration

and exploitation phases of the ABC algorithm.

The remainder of the chapter is organized as follows: Section 4.2 covers a sum-
mary review of feature selection. Section 4.3 presents the original ABC. Section 4.4
introduces ABC-based feature selection, our modifications, and the proposed algo-
rithm. Following that, Sections 4.6 and 4.7 discuss the experimental methodology

and results. Finally, Sections 4.8 and 4.9 concludes this work.

4.2 Related Work

Recently, there has been an increase in the number of research studies that use
dimensionality reduction as a preprocessing step to separate the noise and unimpor-
tant data from the important data. These methods include both feature selection
and feature extraction methods. Feature extraction methods are the techniques
used to extract new features from the data and are mostly used in image process-
ing techniques. However, feature selection techniques are approaches that select an
optimal subset of features from existing features with minimum error and informa-
tion loss [MBNO02]. Unlike feature extraction techniques, feature selection methods
are leveraged to structured datasets that have identified features. Therefore, this

chapter focuses on feature selection methods.
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Feature Selection

Feature selection means finding a subset of features from the feature search space.
Different techniques for feature selection include sequential forward selection (SES)
or sequential backward selection (SBS). The former begins from the minimum num-
ber of features and adds features during the selection process, while the latter starts
from the whole feature set and discards the irrelevant feature during the selection
process [KAKT05, MCQDCJA10]. At the end of the process, the remaining subset of
features in both methods is considered the optimal subset. Recently, there has been
an increase in robust approaches based on evolutionary algorithms that decrease
the number of features. In [FR07], Faraoun and Rabhi used GA for dimensionality
reduction, improving the accuracy of the classification process. In another study,
Aghdam et al. [AGABO09] proposed an Ant Colony Optimization (ACO) approach
for the feature selection process. This study shows that ACO demonstrates lower
computational complexity than stochastic algorithms and GA.

On the other hand, there are two major categories of feature selection, Filter

and Wrapper methods [LY05]:

e Filter methods: In these methods, selecting the features is performed be-
fore leveraging the learning algorithm. Therefore, the features do not depend
on the ML algorithm. These methods, the importance of features is calcu-
lated (based on some predefined criterion), and then the best feature subset
is selected. In these methods, no learning algorithm is used for choosing the

features. The advantage of these methods is their faster speed.

e Wrapper methods: Unlike filter methods, wrapper methods generate differ-
ent subsets of features by adding and removing features to achieve reasonable

accuracy. The predictive accuracy of the classifier is used to evaluate the
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subset of features. The advantage of these methods include their high classifi-
cation accuracy. However, their computational complexity is higher than filter
methods. Therefore, researchers have been exploring different methods to en-
hance the convergence of wrapper methods. Wrapper methods have gained
much attention due to their promising performance. Prior works have used
wrapper methods for selecting the optimal features [OSBS03, PX13, SIM11,
YO11, MA14].

There has also been an increase in the use of evolutionary algorithms, specif-
ically SIs, for the feature selection process in the past few years [RR15, ZEPSI6,
NGS*™14, MA14]. Another wrapper feature selection method was proposed by Za-
wbaa et al. and Ng et al. using Bat Optimization algorithms [ZEPS16, NGS™14].
ABC algorithm is also an SI algorithm that has been used for feature selection

problems [MA14].

4.3 Artificial Bee Colony (ABC) Algorithm

ABC, initially introduced by Karaboga [KB07], is one of the most recent ST methods
that simulate the foraging behavior of honey bees. In ABC, the bee colony has
three groups of bees: (1) employed, (2) onlookers, and (3) scouts. Employed bees
have the responsibility of exploiting the food sources and sharing the information
they gather with onlooker bees. Onlooker bees may or may not select a food
source based on the received information. The higher the quality of a food source,
the more it is likely to be chosen by the onlookers. Onlookers are also responsible
for exploitation. On the other hand, Scout bees control the exploration process.
If the scout bee finds a quality food source, it becomes an employed bee. In contrast,

if a food source becomes thoroughly exhausted, the involved bee becomes a scout.
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Although Scout bees have low investigation cost, the mean of the food sources they
find is low [MA14]. Algorithm 7 shows the main steps of the ABC search strategy
inspired by [MA14].

Algorithm 1 Search process by Artificial Bee Colony

1: Initialize the population (size=PS)
2: Evaluate the population
3: while Stopping criterion is not met do
4:  Assign each food source to an employed bee for exploitation in the neighbor-
hood
Onlooker bees choose food sources based on the information shared
Scout bees search the area randomly to find quality food sources
Memorize the best food source
end while
return Return best food source

As can be seen in the algorithm, the first steps include initialization and evalua-
tion of the population. Next, employed bees start exploitation in the neighborhood

using Equation (4.1).

where k is an index for one of the features and rand(—1,1) is a random number
uniformly distributed in the range [—1, 1]. Then, the better food source between V; ;
and X ; is chosen using greedy selection. Afterward, employed bees share the gath-
ered information with onlooker bees. Onlooker bees start calculating the probability
values using roulette wheel selection, as shown in Equation (4.2).

fi

P = —p5—
Zj:sl(fj)

(4.2)

where

1
7 fi =20

fit; = (4.3)
1+ CLbS(fi), fl <0
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Equation (4.3) shows how the fitness (fit;) is calculated using the objective func-
tion (f;). Since the performance of the classifier is always positive, we always have
the first function in the equation. Therefore, in this problem, we are maximizing the
objective function or, in other words, we are minimizing the fitness. If onlooker bees
select a food source, Equation (4.1) and greedy selection are used again to generate
and choose new food sources.

In the ABC algorithm, the scout bee is chosen from employed bees. This selection
is made based on a control parameter called limit. Therefore, if a specific food
source is not enhanced until a fixed number of iterations (limits), that food source
is abandoned (or exhausted) by its employed bee and the employed bee turns into
a scout. The abandoned food source is then replaced with a randomly generated
food source using Equation (4.4) that may lead to discovering rich, unknown food
sources.

Xii = Tomin + 1and(0, 1) (Tmaz — Tmin) (4.4)

),

In the end, the location of the best food source is memorized and the algorithm
starts from the beginning. This process continues until the stopping criterion is met.
The stopping criteria could be a threshold for different metrics such as desirable

performance, maximum number of evaluations/iterations, or time.

4.4 Feature Selection Using ABC

As mentioned in the previous section, in a feature selection problem using ABC,
each solution (candidate food sources) is a vector with size N, where N equals the
number of features in the dataset. This vector is a bit vector that only consists of 0

and 1. If the value of a specific position (feature) is 1, the feature is to be included
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in the evaluation. On the other hand, if the corresponding value is 0, the feature
would be excluded from the assessments.

Mohammadi et al. [MSAA19] motivated researchers to apply nature-inspired
algorithms and evolutionary algorithms to solve large-scale optimization problems,
specifically feature selection processes. In feature selection problems using ABC, the
quality of each food source equals the accuracy of the classifier over the validation
set with the corresponding subset of features.

Since the original ABC is only applicable to continuous problems, proper strate-
gies should be adopted to transform it into a binary problem. The major steps to

implement the ABC-based feature selection are as follows:

1. Create initial population: First, a population of food sources is generated.

Each food source in the population is a bit vector consisting of Os and 1s.

2. Calculate fitness: Each solution is submitted to the ML classifier and the

accuracy is calculated. The accuracy is then saved as the fitness of the solution.

3. Exploitation by employed bees: An employed bee takes each bit vec-
tor to regulate the neighbor food sources (bit vector). SFS or SBS are the
common approaches used by an employed bee in this step to find better solu-

tions [NRS21].

4. Exploitation by onlooker bees: The information about the performance
of solutions is shared with onlookers, and they select the subsets with a better
probability of exploration. Then, the chosen bit vector goes under the same

process as step 3 to become exploited.

5. Memorizing the best food source: After all the onlookers are done with

their parts, the subset with the best quality is memorized.
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6. Exploration by scout bees: In this step, a scout bee is assigned to deserted
food sources, if any, and a bit vector of size N is generated randomly. This

vector is then submitted to the ML classifier and its accuracy is stored.

The general structure and foremost steps of ABC-based feature selection are

given in Figure 4.1.

e
Dataset with Generate subsets Evaluation ABC Optimal Features
All Features (bit vectors) Subset

A

Figure 4.1: The general schematic approach to ABC-based feature selection.

To improve the efficiency of the original ABC approach, we made some further
modifications to the algorithm. The main goal of this work is to provide optimized
feature selection with a better accuracy rate. This work obtains the optimized fea-
ture subset by using Automated Artificial Bee Colony Feature Selection (A2BCF).
The A2BCF algorithm selects the optimized features, and the efficiency is calculated
using different ML classifiers.

One disadvantage of SI algorithms, including the ABC, is their premature conver-
gence. These algorithms would be more efficient if their convergence rate were faster.
The other challenge is the dependency of the algorithm on the initial population.
In other words, if the proper initial population is selected, the algorithm reaches
the optimal solution in a more reasonable time. There is an increased number of
research studies exploring these challenges in order to enhance the convergence rate
of these algorithms [KGOK14]. Balancing between the exploration and exploitation
phases of such algorithms increases the efficiency of the algorithm. Therefore, ABC
still has space for improvements. Karaboga and Akay [IKA09] compared different

variants of ABC algorithms and determined that ABC has relatively poor perfor-
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mance in the exploration phase. Hence, we consider improving the ABC algorithm’s

initial population and scout bee phase to design a more efficient ABC variant.

4.5 Proposed Feature Selection Method (A2BCF)

A2BCF algorithm is a novel ABC algorithm for feature selection, inspired by the
OPT-ABC algorithm proposed in [ZMA21¢] for hyper-parameter tuning purposes.
The proposed algorithm returns the ideal set of features that increases the classifier’s
accuracy. Figure 4.2 shows the schematic flow chart of A2BCF. In this algorithm,
the selected classifier is leveraged on every bit vector of features (features’ subset).
Since the accuracy depends on the learning algorithms, the method is wrapper-

based.
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The steps of the A2BCF are explained as follows:

e Initialization: Only some solutions are evaluated in this step instead of all
the random initial population members. Hence, an agglomerative clustering
technique using the cosine similarity function is first employed to group the
similar or repetitive members of the initial population into the same cluster.
As shown in Algorithm 2, we create a population of random food sources
(bit vectors). Subsequently, only the representatives (one random member) of
each cluster are taken as our new population to be evaluated by the objective
function. In other words, the new population is a diversified sample of bit
vectors from the original population. The clustering method (agglomerative
clustering) used in this study is the most common type of hierarchical cluster-
ing and, in our case, the cosine similarity function is used to group the similar
objects. Therefore, the most similar bit-vectors belong to the same cluster.
This approach is inspired by Chavent [Cha98] for grouping the binary data

samples.

After taking all clusters’ representatives, inferior food sources are discarded
(based on a predefined threshold) from the new population. This is performed
by filtering the low-quality representatives to avoid further evaluation of poor
food sources. An A threshold of 50% is considered in this study to filter the
low-quality food sources and focus on the food sources that have the poten-
tial to improve in a lower number of iterations. As explained in the feature
selection steps using ABC, the algorithm changes only one bit of the vector to
exploit the search space. Hence, if a bit vector has poor quality, it takes longer
to exploit the food source and reach a high-quality food source. Therefore,
early stopping of those food sources helps improve the convergence rate of the

exploitation phase.
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(Classification accuracy is computed using 3-fold cross-validation to improve
the classifier’s reliability. In k-fold cross-validation, the dataset is divided into
k equally sized folds and the ML algorithm is executed three times. Cross-
validation is a preferred method over a single train—test split that trains on
multiple trains—test splits and provides a better insight into how well a model
performs on unseen data. Equation (4.5) below shows that we aim to minimize
the classification error rate. The accuracy is used in the fitness function to

evaluate the quality of food sources.

1
L+ f;

and
TP+ TN
TP+TN+FP+ FN

fi = Accuracy = (4.6)

where TP, TN, FP, and FN stand for true positives, true negatives, false pos-
itives, and false negatives, respectively. The reason for selecting accuracy as
the performance metric is that the Multiple-Institution Database for Investi-
gating Engineering Longitudinal Development (MIDFIELD) dataset used in
this study is balanced and has an almost equal number of observations for both
classes (54:46 ratio). In binary classification problems, a balanced dataset is
one where positive values are approximately the same as negative values (in
our case, the number of students who graduated/dropped out from a comput-
ing field). However, in cases dealing with imbalanced data, other measures

such as F'1 score are more appropriate and can be used instead of accuracy.

Employed bee phase: Each bit vector is taken by an employed bee, where
it regulates the food sources (bit vector) by flipping only one of the bit values

in the vector. If the neighboring (new) vector has a better fitness, it gets
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replaced with the previous vector, and its corresponding accuracy gets stored.
In other words, the employed bee evaluates the model’s accuracy by including
(bit 1) or excluding (bit 0) only one of the features and passing the required

information to onlookers.

Onlooker bee phase: The information about the quality of the food sources
is shared with the onlookers, and they then select the food sources with a
better probability of exploration (based on Equation (4.7)). Then, selected
food sources go under the same process as step 3 to become exploited. After all
the onlookers are done with their parts, the food source with the best quality

is memorized.
Fit; — min(Fit)

i mazx(Fit) — min(Fit) (47)

Scout bee phase: This phase has an additional step in A2BCF. In original
ABC, a scout bee (assigned to the deserted food source, if any) generates a
random novel food source of size N. While onlooker/employed bees change
only one bit of the bit vector, scout bees change all the bits in the vector. As
mentioned earlier, scout bees have a low mean in the food source quality that
they find. Therefore, we added another step in which Opposition-Based Learn-
ing (OBL) is submitted to the abandoned food source to generate an opposite
food source location based on Equation (4.8). Then, the algorithm moves for-
ward with better food sources from random and OBL methods. The generated

bit vector is then submitted to the ML classifier and its accuracy is stored.

fii,j =1- Tij (48)

Termination process: The employed, onlooker, and scout bee phases will

continue until the algorithm reaches the defined maximum number of eval-
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uations/runs. In this study we set the maximum number of evaluations to

5000.

Algorithm 2 Agglomerative Clustering Algorithm for Initialization Phase

—_
=]

© 00 DU A W N

Input: Dataset, K = 100, Population size (PS)
Output: Population (Cluster centroid/representative)

: Randomly generate a population of size PS, with food sources of size

length(Features_set)

: # Clustering the random population to k clusters

: Compute the proximity matrix (cosine similarity matrix)
: Let each vector be a cluster

: while The remaining clusters are more than PS/k do

Merge the two closest clusters
Update the matrix

: end while
: Take cluster representatives (one random member of each cluster), where k is

defined as the new population

: return population

Algorithm 3 presents the pseudocode of the A2BCF algorithm explained above.
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Algorithm 3 Proposed Algorithm—A2BCF
Input: threshold = 50, limit = 3, maxe,q = 5000, trial; = 0 Output:
Optimal features subset
1: Call Algorithm 2 (PS = 2000; 5000; 10,000)
2: Discard the food sources with poor quality(< threshold = 50) from new popu-
lation
3: while Stopping criteria is not met(number of evaluations jmaze,q) do

4:  for 7 to population_size do
5: Employed bee regulates the bit vector and find a new vector N; in the
neighborhood. This is achieved by changing only one bit in the vector
6: Train the ML model with the novel vector (subset of features selected)
7 if the new vector has a better quality then
8: Replace the new vector with the original vector
0: else
10: trial; +=1
11: end if
12:  end for
13:  for j to population_size do
14: Onlooker bee calculates the exploration probability (F;) according to Equa-
tion (4.2)
15: if rand(0,1) > P, then
16: Onlooker bee regulates the current vector N; by changing only one of the
bits in the vector, which gives a new vector in the neighborhood M;
17: Train the ML model with the updated features subset
18: if the new vector has a better quality then
19: Replace the new vector with the original vector
20: else
21: tr ZCLll +=1
22: end if
23: else
24: Onlooker disregards the features subset and moves to the next bit vector
25: end if
26: end for

27:  Memorize and update the best subset so far
28: if trail; > limit (food source is exhausted) then

29: Scout bee generates a “Random” bit vector based on Equation (4.4)

30: Scout bee generates the “OBL” bit vector based on Equation (4.8)

31: Select the subset that gives better fitness between Random and OBL vectors
32:  endif

33: end while
34: return Optimal subset of features
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4.6 Experimental Setup

This section presents the study’s methodology, then the performance of our proposed
algorithm, A2BCF, and comparison of the results with a previous study [ZLP*20]
are covered in the next section. A2BCF is a wrapper feature selection approach to
improve the classification accuracy and enhance the search to keep relevant features
in a reasonable time. The database used for this experiment contains around 45,000
observations, and the number of classes is two. The overall structure of the whole
experiment is presented in Figure 4.3. The A2BCF algorithm proposed in this
study is inspired by a Hyper-parameter Optimization (HPO) method proposed in
2021 [ZMA21c].

B-fold Cross Validation — \

' ' ™\
s ™
[ Train Sets »A2BCF for Feature Selection| | Selected Featues
Data Preprocessing / L L )
. Y, ¢
[ Test Sets - ~
Data Transformation

A
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Optimal Subset of Features L Features) )
Along with Optimal
Performance Y
(. ™\
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Evaluation Machine Learning Model Transformed
Test Set
L '/

*

Figure 4.3: Structure of the proposed ABC-based Feature Selection (A2BCF)
method

As mentioned above, we leveraged several ML classifiers to select the most im-
portant features of the dataset. The detail of the classifiers and the feature selection

steps are described below.
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4.6.1 Main Steps

The overall process of feature selection is done in several steps, including data pre-
processing and Feature Selection Optimization (FSO), data transformation, training

the transformed data. The details of these steps are explained below.

e Data pre-processing : This step is required to transform the data into an
understandable state for the ML classifier. Tasks such as data cleaning, feature
engineering, and feature scaling are included in this step. Filtering could also
be considered as one of the data cleansing steps in which we included only
students from computing majors to predict their success in their programs
[ZLP*20]. In this study, one-hot encoding the variables is used for encoding

the categorical types to their binary representations.

e Feature selection optimization using A2BCF: Feature selection is a pri-
mary task in automated ML that helps the model achieve two main goals:
better performance and reduced computational time. This step is the study’s
main contribution, an iterative ABC-based process to find the optimal set of
features in a dataset. The proposed algorithm (A2BCF) is an improved version
of the Opt-ABC algorithm [ZMA21c¢] used for optimizing the hyper-parameter
tuning of the ML algorithms [ZMR*21, ZMA21a]. The output in this step is

a subset of features selected by the algorithm.

e Data transformation: This process converts the data to the required format
of our destination system. In other words, it converts the original dataset to
a new dataset with the selected feature from the feature selection process in
the previous step. The new dataset is then divided into train and test sets as

input for the next step.
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e Train the transformed data: In this step, the desired ML algorithm is
submitted, and the ML algorithm gets trained. Finally, the accuracy of the

ML algorithm and final features are returned.

4.6.2 Machine Learning Classifiers

A summary of the ML classifier used in this experiment is as follows:

1. Random Forest (RF) [Bre(01] is an ensemble method and a type of Decision
Tree (DT) learner that operates by constructing many DTs in the training
phase. That is the reason it is called forest.” The term 'random’ is also because
the trees are built differently with random samples and random features to add
diversity to the models and decrease the chance of overfitting [Bre01, LW 102,
Loul4]. Random forest initially uses the bagging method to combine the

predictions from each tree and calculate the overall predictions.

2. Extreme Gradient Boosting (XGBoost) [CHB"15] is a developed ver-
sion of Gradient Boosting that utilizes a gradient boosting framework as an
ensemble. One of the XGBoost focuses is the efficiency and speed of the model
and supports parallelization. Focusing on the computational speed and model
efficiency. XGBoost also tries to prevent overfitting using Ridge and Lasso
regularization. XGBoost trains the model iteratively, correcting or fixing the
newer models in each iteration [CHB15]. XGBoost also has internal cross-
validation. Hence, there is no need to identify the number of iterations in each

run.

3. Support Vector Machine (SVM) is a supervised learning technique that
generates input-output mapping functions. The mapping function for this

study is a classification function in which nonlinear kernel functions are used
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to transform input to a high-dimensional feature space. In this feature space,
the data become more separable when compared to the raw input. SVM works
by finding the maximum-margin hyper-planes between positive and negative
observations. Using mapping function, SVM transforms the non-separable

feature to linearly separable features [Wan05, SSBD14].

4.6.3 Setting

In order to evaluate the performance of the A2BCF algorithm, Multiple-Institution
Database for Investigating Engineering Longitudinal Development (MIDFIELD)
dataset was used [OZTAO04] and the goal was to predict students’ success in com-
puting majors (CP=11). MIDFIELD is a unit-record longitudinal database for
bachelor’s students from 20 universities across the United States. This version of
the MIDFIELD dataset is used for a binary classification problem and has 4532
samples with 91 features.

All the data are pre-processed using the techniques explained in the previous sec-
tion. The features of the dataset are taken as the input for the A2BCF algorithm.
To evaluate the fitness function, we use Random Forest (RF) classifier with ABC
parameters set to Maximum-iterations=100, Initial Population Size (PS) =2000,
5000, and 10000, k=100, with an average run of 10 times. The experiment is per-
formed using cross-validation (cv=3) to yield more robust results. Cross-validation
splits the input data into training data and test data independent of each other. Al-
though cross-validation may increase the computational time, it reduces the chances
of overfitting and provides a more reliable model. In this study, we used parallel
cross-validation, and the final accuracy would be an average of the accuracy for each

of the folds. We used Scikit-learn libraries, along with other Python packages, to
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leverage the ML models. The study experiments were conducted using Python 3.8.5

on High-Performance Computational (HPC) resources.

4.7 Results

This section covers the final results using the proposed algorithm. The validating
process of the suggested A2BCF algorithm was executed on MIDFIELD dataset [OZTA04,
LOO™22]. We compare the performance of A2BCF with a previous study using
the same number of folds as in CV (3-fold) [ZMR"21] while using the MIDFIELD
dataset to answer the same classification question.

In summary, the proposed algorithm removes irrelevant features from the dataset
in an effort to improve its accuracy. Reducing the features in this step can help the
training process, training time, and/or other iterative processes such as HPO as it
reduces the structure’s size. In addition, diversifying the population improves the
algorithm’s convergence rate.

The overall numerical results with the experimental setting of Section 4.6.3 are
given in Table 4.1. According to the Table, in all cases, the classifiers’ accuracy
after applying the A2BCF algorithm improved. As mentioned earlier, the accuracy
is tested under different populations for three different classifiers (RF, XGBoost,
and SVM). The advantage of A2BCF is notable when the PS is relatively small
(PS = 50). Figure 4.4 shows the impact of the PS on the accuracy of the three
ML algorithms. As can be seen, the accuracy of classifiers in all three cases is
at its highest when the PS equals 50, and again drops when the PS increases.
A potential reason is that the algorithm’s number of iterations is lower when the

stopping criteria (maximum number of evaluations) are met, and the algorithms do
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not have the chance to improve themselves so many times. As can be seen, setting

the PS around 50 gives the algorithm the chance to improve its performance.

Table 4.1: Comparison of Automated ABC Feature Selection (A2BCF) under dif-
ferent population sizes with a previous study.

Accuracy (%)

Classifier Reduced Feature Set by A2BCF Original
Dataset [ZMR"21]
N =20 N =50 N =100 N/A
RF 88.47 88.51 88.44 85.30
XGBoost 88.67 88.76 88.64 85.16
SVM 87.84 88.00 87.81 85.06

N is the secondary population size after clustering and 3-fold cross-validation.
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Figure 4.4: Impact of population size on classifier accuracy.

62



Among the three ML classifiers leveraged to predict student success, XGBoost
achieves the best accuracy (88.76%) and is the most well-performed model. Hence,
XGBoost is a good candidate for the final FSO framework in this application.

In summary, compared with a previous study [ZMR"21] that considered the
features without the FSO method, A2BCF outperforms in predicting student suc-
cess. A2BCF uses an ABC-based approach to optimize data features and improve
classification accuracy.

We also compared the results with another FSO method. Table 4.2 provides
the comparison of the result between the PSO [TAMS19] and the proposed A2BCF

method. The results show that A2BCF performs better than PSO.

Table 4.2: Comparison of Automated ABC-based Feature Selection (A2BCF) and
PSO feature selection approaches.

FSO Method Accuracy (%)
N =20 N =50 N = 100
A2BCF 88.51 88.76 88.64
PSO [TAMS19] 87.88 87.70 88.00

N is the number of food sources/particles in ABC and PSO approaches, respectively.

Based on the obtained results, it can be concluded that by leveraging A2BCF,

we achieve better accuracy.

4.8 Discussion

In this work, an improved version of the ABC algorithm, A2BCF, is proposed for
an automated feature selection approach in different ML algorithms. The proposed
method is explored through a binary classification problem and tested on an educa-
tional application to predict undergraduate student success in 20 universities across

the United States. The proposed method improves the exploration capability of

63



the basic ABC algorithm by incorporating OBL learning algorithms. Further, the
clustering algorithm used in the initial phase improves the population diversity and
decreases the chance of searching potential areas. The obtained results are com-
pared with those of a recent study, and the results show the robustness of A2BCF.
The behavior of A2BCF is explored in different conditions, and experimental re-
sults show that the algorithm improves the accuracy and can be employed to solve
educational problems with relatively high dimensionality.

The main advantage of the proposed algorithm is its capability to find the op-
timal features in a reasonable time compared to exhaustive methods (such as grid
search). A2BCF could be used as an ideal tool for preprocessing that optimizes the
feature selection process, as it enhances the classification accuracy, and minimizes
the computational resources. Additionally, in this study, we are targeting to solve
a specific problem in an education application. To this end, we focus on developing
a tailored FSO algorithm that improves classification accuracy to predict student
success. Based on the findings, it can be concluded that A2BCF is a promising
approach for FSO to improve classification accuracy.

This study is a part of an ongoing research study to develop a robust AutoML
framework that works well in different applications. Some future works are planned
in the following directions. First, since we are only building classification models,
investigating how our method can be extended to deal with regression problems
can be helpful. Another suggestion is to evaluate the algorithm’s efficacy on other
datasets, which opens the opportunity to explore how different applications affect
the performance of the A2BCF. Moreover, additional effort is needed to further
improve the tuning time of such methods, including the A2BCF, without decreasing
the achieved performance. Last but not least, we plan to insert the implementation

of these modifications into our hyperparameter optimization frameworks [ZMR 21,

ZMA21a, ZMA21c] to further improve ML algorithms’ performance in this study.
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As mentioned earlier, the MIDFIELD dataset used is considered for predicting
computing students’ attrition rates in the computing field. Although the MID-
FIELD dataset had been collected to denote the graduation rate of students and
not for learning and teaching styles, our proposed approach is an automated and in-
telligent approach that can partly help education communities to provide guidelines

for teaching and learning strategies.

4.9 Conclusions

Determining the optimum features is a crucial task in AutoML. In this work, the
the high-dimensional vector of 91 features from the combination of different features
is reduced to fewer configurations using A2BCF and achieving the 88% classification
accuracy. The A2BCF algorithm with different conventional ML classifiers is applied
to the feature set to obtain the optimal or close to the optimal set of features.
The results show that A2BCF yields better performance, with 88.76% classification

accuracy compared with the accuracy over the original dataset and the PSO method.
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CHAPTER 5
AUTOMATED HYPER-PARAMETER TUNING

5.1 Search Algorithms for Automated Hyper-Parameter Tun-
ing

Abstract! Machine learning is a powerful method for modeling in different fields
such as education, and its capability to provide an accurate prediction of students’
success makes it an ideal tool for decision-making tasks related to higher education.
The accuracy of machine learning models depends on selecting the proper hyper-
parameters. However, it is not an easy task because it requires time and expertise
to tune the hyper-parameters to fit the machine learning model. In this study,
we examine the effectiveness of automated hyper-parameter tuning techniques in
the realm of students’ success. Therefore, we add two automated Hyper-Parameter
Optimization (HPO) methods, namely grid search and random search, to assess
and improve a previous study’s machine learning models’ performance. The results
show that, regardless of the ML model, automated HPOs improve performance.
3-fold cross-validation and accuracy are used to evaluate the experiment results.
The experiment results show that applying random search and grid search on ma-
chine learning algorithms improves accuracy. We empirically show HPO methods’
superiority on an educational real-world dataset (MIDFIELD) for tuning hyper-
parameters of conventional machine learning classifiers. This work emphasizes the
effectiveness of automated HPO while applying machine learning in the education
field to aid faculties, directors’ or non-expert users’ decisions to improve students’

success.

!This chapter is an edited version of the author’s previous work published in [ZMR*21]
©2021 CSCE.
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5.1.1 Introduction
Overview

Machine learning (ML) is an evolving and fast-growing research field that learns
from past experience [JM15]. It has garnered much attention from academic and
industrial researchers to discover the patterns and data representations from the raw
data [WF02]. Overall, ML models’ main objective involves determining the best
and most predictive model, which can be done by finding and tuning proper hyper-
parameters. Hyper-parameter tuning is an essential process to make an ML model
perform at its best [ADNDS™19] and previous research shows that it can significantly
improve the models’ performance [SS04]. Therefore, it is required to train the ML
models with different regularization parameters to build accurate models. Manual
tuning the hyper-parameters is not only a common approach in graduate research
studies but also many ML models are developed by experts that were all designed
manually and by trial and error. This indicates that even ML developers and experts
need the time and resources to create well-performed predictive ML models [HZC21].
Since different ML algorithms have different types of hyper-parameters, the tuning
process for them is also different [DGMCEGC19]. Also, as the number of hyper-
parameters and the range of their values increase, manual testing hyper-parameters
becomes more and more impractical. This emphasizes the necessity for having
automated processes of optimizing the hyper-parameters and has inspired recent

research in approaches for automatic optimization of hyper-parameters.
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In the context of ML, the advantages of automated hyper-parameter tuning are
multi-fold, including lessening the human effort, enhancing performance according

to the application and the problem at hand, and providing fairness to research and

scientific studies [HKV19].

Motivation

The usage of information technologies in various fields has led to increasingly large-
scale data derived from various settings. One of these settings is education, concern-
ing better understanding of students’ pathways and the environments they learn in.
Educational Data Mining (EDM) is an emerging field focusing on mining datasets
to answer educational research questions [FHVT19][PA14]. One of the most im-
portant EDM applications is predicting students’ success, or performance [PA14].
There are a variety of approaches to measure the success of students, such as gradu-
ation rates, completion on time, or GPA [DSANDM™13|[BV19][ZLP*20]. However,
these metrics may overestimate or underestimate a sub-population persistence, such
as non-traditional students, part-time students, or transferred students. Therefore,
these populations are usually not considered in many studies, which leads to a lack
of understanding of the educational pathways [OOL*12].

Hyper-parameter tuning is an essential task to make a predictive model that
performs at its best [ADNDS"19]. Building such models is the main goal of ML
models [EMS19]. However, despite hyper-parameters critical role in the resulting
predictive models’ quality, they have no clear agreeable defaults in different appli-
cations. Manually tuning the hyper-parameters not only needs a deep understand-
ing of the ML models but is also impractical, time and cost-inefficient. Hence, it
has become vital to automate the process of optimizing the hyper-parameters. In
HPO, we usually aim to use the value of parameters that significantly contribute

to improving a model’s accuracy. Therefore the search algorithm looks through dif-
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ferent combinations of hyper-parameter configurations (search space), which enable
the model to generate the best model among the candidates through an iterative
process [YS20, DEFNNS17]. To be effective in the application, ML models’ hyper-
parameters need to be selected automatically and carefully. For a new dataset,
the optimal parameter values depend on the application and, more specifically, the
dataset itself. This work helps educational researchers and institutions better un-
derstand and develop ML models by identifying the appropriate set of HPs in an

effective way.

Contribution

To address the issues mentioned above regarding manual tuning, this study applies
two automated HPO methods to predict students’ stickiness accurately. Grid Search
(GS) and Random Search (RS) are among the automated parameter optimization
methods. The advantage of using GS and RS is higher learning accuracy and its
capability for parallelization, which is not an option for all the HPO methods. We
apply GS and RS to find the most appropriate hyper-parameters for different con-
ventional ML algorithms. The reason for selecting various ML algorithms is that
the performance of a given ML model not only depends on the fundamental quality
of the algorithm but also on the details of its tuning. Therefore, it is hard to decide
if a given ML model is genuinely better or better tuned. In this study, leveraging
different numbers of ML models gives us the option to choose the model with the
best performance among different ML models rather than a single model.

The exploration conducted in this work builds upon established research by applying
a larger dataset rather than datasets that are usually considered in studies of this na-
ture. The main contributions are expanding upon existing research by incorporating

automated HPO techniques leveraging conventional ML models into a single pipeline
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to improve prediction performance and enhance educational decision-making. Also,
this is the first time HPO is being applied to this dataset (MIDFIELD) [OZTA04].
Unlike other studies that study short time spans and single institutional datasets,
this study dataset considers a 30-year longitudinal dataset for undergraduate stu-
dents from 16 universities. In this work, we use a modified definition of graduation,
stickiness (the fraction that ”stick” to the program or persist), for students who
came into contact with their programs [ZER721], to include the populations that
are overestimated or underestimated in previous studies. This study aims to im-
prove ML models’ classification for the MIDFIELD dataset using GS and RS and

then compare it to the previous work.

Organization

In the following sections of this study, we first develop a clear and formal definition
of HPO, and we provide a basic understanding of the concepts and methodologies
used in this study. From there, we discuss the implementation and evaluation of
these approaches. Next, we cover experimental results, conclusions, and future work

ideas. Figure 5.1 shows the overall structure of this study.

5.1.2 Related works

5.1.3 Hyper-parameter Optimization

Every ML model has some hyper-parameters, and tuning these hyper-parameters is
essential for making a model work at its best. The notion of hyper-parameters is dif-
ferent from parameters. Hyper-parameters are the parameters that need initializa-
tion before training the ML model since they represent the ML model architecture.

In contrast, parameters can get initialized and updated during the model training
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[KJ*13]. Automatically tuning the hyper-parameters is one of the main tasks in
automated machine learning (AutoML) to release the burden of manual and human
tasks and improve the performance, reproducibility, and fairness of various studies
[FH19]. There are several optimization techniques for HPO problems. The most
common and conventional HPO methods are manual search or grad student descent
(GSD), GS, and RS. These methods treat the hyper-parameters configurations inde-
pendently and return the best model architecture. Each of these methods is defined
as below:

Manual Search: Manual search or Grad Student Descent (GSD) is the most basic
hyper-parameter tuning method. This method is also known as ”trial and error,”
or "babysitting” [Abr19]. GSD is a prevalent approach among researchers and stu-
dents. In this method, ML model users try different possible hyper-parameter values
based on guessing or domain knowledge and repeat this process until they obtain

an improved and satisfactory result or when they are out of time. Mohammadi et

/ * Why Hyper-parameter tuning? \
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Figure 5.1: Overall structure - using grid search and random search
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al. explored the effect of manual parameter tuning on performance by combining
different embedded parameters and improved the accuracy of semantic auto-encoder
in an image classification problem [MAA19]. However, this method needs a deep un-
derstanding of the ML models or sufficient time to get reasonable results. However,
the complex nature of ML models and large search spaces make it an impractical
approach [Olo18]. These factors behooved researchers into looking for automated
HPO methods.

Grid Search: Grid Search (GS) is the brute-force way of searching hyper-parameters
[CSPT14] with defined lower and higher bounds along with specific steps [SPBW16].
GS work based on the Cartesian product of the different set of values, evaluate ev-
ery configuration, and return the combination with the best performance [HCB*14].
Algorithm 4 shows the pseudo-code for the GS. GS algorithms have a simple imple-
mentation; however, they can be very inefficient for large search spaces due to their
exhaustive nature. This problem exacerbates as data dimensionality increases. The
exponential growth in the search space or data dimensionality is called the curse
of dimensionality (CoD) [CSPT14]. The time complexity of GS when we have k

parameters and n values is O(n"*) [YA98].

Algorithm 4 Implementation of the GS

Input: list of N hyper-parameter along with their possible values and lower and
upper bounds with steps

Output: best model architecture along with performance

1: for FOR every n in the list of N candidates do

2:  Train model with ¢ on the training set

3 Evaluate ML classification on validation set

4 if ModelPerformanace > MaxPerformance then
5: MaxPerformance = ModelPerformanace
6

7
8:
9:

BestHP = n
end if
end for
Return BestHP, MaxPerformance
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Random Search: RS is another common and automated method of searching
hyper-parameters [BB12]. RS chooses the hyper-parameters configurations on a
random basis (instead of evaluating every configuration) and repeats this process
until the defined resources are over. Algorithm 5 shows the pseudo-code for the
RS. RS is much faster than GS but does not follow a path to find the optimal
configuration. The time complexity of RS is O(n) where n is the resource (ex. the
number of algorithm iterations). The most important advantage of RS to GS is that
it explores more of a search space and can yield better results when given enough

resources.

Algorithm 5 Implementation of the RS
Input: list of hyper-parameters along their possible values and ranges
Output: best model architecture along with performance

while budget condition n do
Generate an independent random list L,, of possible hyper-parameter values
for FOR every 1 in the list of L. candidates do
Train model with 1 on Training Set
Evaluate ML classification on Validation Set
if ModelPerformanace > MaxPerformance then
MaxPerformance = ModelPerformanace
BestHP =1
end if
10:  end for
11: end while
12: Return BestHP, MaxPerformance

5.1.4 Experimental Setup

The baseline ML algorithms (model with default parameters), GS, and RS are im-
plemented in this work. The machines we use to perform these experiments come
from Amazon Web Services (AWS). We use t2.xlargeLinux (64-bit)-based instances

equipped with four v-CPUs up to 3.0 GHz scalable processor and 16 GB RAM. All
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Figure 5.2: Flowchart of hyper-parameter optimization using GS and RS

implementations are done using Python 3.7. The involved ML and HPO algorithms
are implemented and evaluated using different libraries, including Numpy, Pandas,

Scipy, and Scikit-Learn.

Figure 5.2 shows the research methodology’s flowchart in this work. The first
phase to conduct this research is collecting the raw dataset. We then prepare the
data for ML algorithms. Data preparation includes discrete tasks such as data
reduction, data cleaning, data normalization, and feature engineering. Data reduc-
tion, here, refers to using a subset of the dataset rather than the entire dataset.
Filtering and sampling are among the most common ways of data reduction. Since
we are only interested in computing students, we filter the data and only include the
students who enrolled in one of the following majors: computer science, computer
engineering, software engineering, computer programming, information technology,
and computing and information sciences. In the data cleaning step, which is a step
for removing the corrupt and not useful data, we remove the features with more than
60% missing values. We also normalized or standardized the range of features of
data. After the preprocessing step is the feature engineering step in which we create

some new features from raw features that we think might be useful for the power
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of prediction. Additionally, in this step, we apply one-hot encoding to convert the
categorical variables to numerical variables so that we can feed them into machine
learning algorithms.

Next, we feed the data to different ML models, including, Decision Tree (DT), Ran-
dom Forest (RF), Naive Bayes (NB), Logistic Regression (LR), XGBoost (XGB),
Support Vector Machine (SVM), and K-Nearest Neighbor(KNN). These models op-
erate as a black box, and therefore, no additional information about building them
is required. The next step is the automated HPO method which is an iterative
process of choosing hyper-parameters. The two most commonly-used performance
metrics are used in our experiments. Accuracy is used as the classifier performance
metric, which is the proportion of correctly classified data; also, we use the total
time needed to complete an HPO process (or, in other words, tuning time).

For each experiment on our selected dataset, 3-fold cross-validation is applied in
the training process (to prevent overfitting) as well as GS and RS for finding the
optimal set of hyper-parameters. Then, we test the model using testing data. In
each step, the accuracy of the model is calculated.

Algorithm 6 explains GRS pseudo-code that starts with initializing hyper-parameters
candidates and calling both RS and GS applied on various ML models and ends with
returning the final ML model, optimal hyper-parameter architecture, and its per-
formance. In this study, we use the steps defined for GS were defined as 0.5. We

also apply 3-fold cross-validation to find the optimal configuration.
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Algorithm 6 Implementation of GRS-AutoHP
Input: 1) Listy, of models (DT, RF, NB, LR, XGB, SVM, KNN)
2) Raw dataset
Output: best model along performance and optimal architecture

1: FinalPerformance = 0
2: Call PreProcessing
3: for every model in the Listy;;, do

4:  Call GS
5:  Call RS
6:  if (PerformanceGS > PerformanceRS

& PerformanceGS > FinalPerformance) then

7: FinalModel = model

8: BestHP = OptimalGS

9: FinalPerformance = PerformaceGS
10: else
11: if (PerformanceRS > PerformaceGS

& PerformanceRS > FinalPerformance) then

12: FinalModel = model

13: BestHP = OptimalRS

14: FinalPerformance = PerformaceRS
15: end if
16:  end if
17: end for

18: Return FinalModel, BestHP, FinalPerformance

Dataset

All of our experiments are conducted on MIDFIELD (Multiple-Institution Database
for Investigating Engineering Longitudinal Development) [OZTA04] to provide prac-
tical examples. MIDFIELD is a longitudinal student record level dataset from 1988-
2018 for all undergraduate, degree-seeking students at partner institutions. MID-
FIELD basically includes everything that appears on students’ transcripts, such as
demographic data (ex. sex, age, and race/ethnicity) and information about ma-
jor concentration, enrollment, graduation, and school and preschool students’ per-
formance. As previous research shows, computing majors have different patterns

from other STEM majors[ZER"21], the data examined in this section is exclu-
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sive to computing fields, with about 45k observations. MIDFIELD is used as a
binary-classification problem to predict computing students’ success, more specif-
ically stickiness. For our classification models, accuracy is used as the classifier
performance metric. After completing each experiment, the model with the optimal
ML architecture will be returned.

In this study, we compare the HPO methods (GS and RS) with the baseline ML
models with default hyper-parameters. Since for each ML model, only a few hyper-
parameters have significant impacts on the model’s performance [YS20], in this
study, we consider the main hyper-parameters of the ML classifiers for automated
tuning. Table 5.1 shows the main hyper-parameters for each of the ML classifiers
used in this study. To define the search space for HPO methods, hyper-parameters
need initialization. In general, hyper-parameters have three different types: cat-
egorical, discrete, and continuous. For categorical and discrete hyper-parameters,
initialization for both RS and GS are the same. For categorical values, we include
all the valid options. For discrete values also, we specify a valid range so that the
algorithm search through that range. For continuous types, however, we need to
treat them differently. For RS, the algorithm chooses random float numbers in the
range that we define. For GS, however, we define an incremental step as fixed points

so that algorithm can check those values.

5.1.5 Experimental Results
Classification Results

This section discusses the results of our experiments. As mentioned earlier, our
first scenario is applying different ML algorithms to the data with their default

hyper-parameter values as our baseline method. The first column in Table 5.2

7



Table 5.1: Conventional machine learning classifiers’ main hyper-parameters

ML Classifier Main Hyper-Parameters

criterion, max_depth, min_samples_split,
min_samples_leaf, max_features

Naive Bayes alpha, fit_prior

Support Vector Machine C, kernel

n_estimators, max_depth, learning_rate,

Decision Tree

XGBoost subsample, colsample_bytree
K_Nearest Neighbor n_neighbors, weights, algorithm
Logistic Regression penalty, ¢, solver
n_estimators, criterion, max_depth,
Random Forest min_samples_split, min_samples_leaf,

max_features, bootstrap

shows the accuracy of our baseline. As can be seen, results indicate that Random
Forest performs better than other ML classifiers and, as a result, the final model
in the baseline model selection step. Next, we implement the GS and RS on the
same dataset. Columns two and three in Table 5.2 are the results for these two
HPO methods, respectively. The experiment results show that, regardless of the
ML model, both HPO methods have increased the model performance. However,
some ML models perform better than the rest. For example, NB is not a well-
performed model in comparison to the other ML models. The reason is that in NB
the probability of each class given different input values requires to be calculated
and No coefficients need to be fitted by optimization procedures. However, this
characteristic makes the NB algorithms faster than other ML models. Therefore,
in cases the user wants to use NB models for their specific purpose, it can actually
be a fast model for hyper-parameter tuning (NB has also a lower number of hyper-
parameters). From Table 5.2 we can see that after applying GS, XGB is also one of

the well-performed candidates among the classifiers, while this was not the case for
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our baseline approach. Also, regarding the RS method, XGB is a well-performed
classifier and, as a result, is our final model. This indicates that relying on the
default parameter to find the best model is not always the best decision. The
accuracy comparison between the baseline approach and the RS and GS methods is

summarized in Figure 5.3.

Comparison With a Previous Study

In this section, we compare the classification results from our experiment with pre-
vious work. In the previous study [ZLP720], an experiment is conducted to pre-
dict students’ graduation using manual tuning using MIDFIELD as their dataset
(N=39k). In this study, we replicated the study and built models using the same
configurations (N=45k).

Figure 5.3: Comparison of GS and RS with baseline
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Table 5.2: Accuracy comparison of baseline, GS and RS

Classifier Baseline (%) GS (%) RS (%)
Naive Bayes 69.09 70.49 70.49
Logistic Regression 82.92 83.89 83.86
K-Neasrest Neighbor 79.66 84.89 84.89
Support Vector Machine 84.45 87.99 87.43
Decision Tree 80.59 87.72 87.45
Random Forest 85.24 88.34 88.37
XGBoost 85.16 88.33 88.80

Previous work results and our replicated experiment results using manual tuning

are described in Table 5.3. The last column of the table shows the optimal results

achieved from the previous section using automated HPO. A summary of the results

of this experiment is shown in Figure 5.4. As can be seen from the results, automated

HPO beats manual tuning even when the domain knowledge is used to tune the

hyper-parameters. Automated HPO could take longer than manual tuning, but the

results are promising and can guarantee performances close to the global maximum

performance.

Table 5.3: Accuracy comparison of manual and automated tuning

Classifier

Previous Work (%)

Manual (%)

Automated (%)

Naive Bayes
K-Neasrest Neighbor

Logistic Regression

82.25

75.38

83.18

69.09

81.43

82.92

70.49

84.89

83.89

Continued on next page
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Table 5.3 — continued from previous page

Classifier Previous work(%) | Manual (%) | Automated (%)
Support Vector Machine 85.27 85.06 87.43
Decision Tree 86.78 82.08 87.72
Random Forest 88.27 85.30 88.37
XGBoost 74.58 85.16 88.80
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Figure 5.4: Comparison of automated HPO with previous work

5.1.6 Conclusions

GS and RS tuning methods are applied on seven ML models on the MIDFIELD
dataset. We evaluate the DR, NB, SVM, XGB, KNN, LR, and RF models, the con-
ventional ML models. We use a subset of computing students from 14 institutions
across the U.S. The experiment results show that regardless of the ML model lever-
aged, GS and RS improve the classification accuracy for MIDFIELD dataset. Also,

we see that such automated methods beat the manual tuning methods even when
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domain knowledge is used. Additionally, we observe that using HPO methods, the
final selected model is XGB. However, the previous study and our experiment using
manual tuning show that RF is a well-performed method. This indicates the im-
portance of automated HP tuning. We conclude that applying HPO methods helps
find the proper final model, optimal HPs and improves ML models’ performance in

the education field.

5.1.7 Discussion and Future Work

Machine learning has become an essential approach for tackling different kinds of
problems and has been widely used in different applications. However, for a model
to work in a specific application or dataset, its hyper-parameters require tuning. We
demonstrated here that the GS and RS HPO methods exhibit improved prediction
performance. As discussed, one of the advantages of the applied methods is that
configurations in these approaches are independent, making the parallelization easy.
However, these methods have their own disadvantages. Both grid search and ran-
dom search are the techniques that search the areas that are not promising. In other
words, they waste time looking for optimal solutions among configurations that are
not optimal. This characteristic leads to high time complexity, which makes such
methods computationally very expensive. This problem is exacerbated when the
data scale (for various reasons), and search space scale, increase (also called the
curse of dimensionality). Needless to mention that the ML models and the number
of hyper-parameters also affect the time complexity. Hence, it is crucial for such
problems to be solved in a computationally efficient way in order to have real-time
and intelligent decision-making. In our case, using a large search space and one-hot

encoding of the features resulted in rather high time tuning. More specifically, ML
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models, specially tree-based models and SVM, are computationally very expensive.
This is due to various reasons including the number of hyper-parameters, their data
types, their ranges, and the complexity of models. High time complexity, especially
for these models is an issue that needs to be addressed in future research. Data
reduction techniques using nature-inspired algorithms are being used in different ap-
plications to solve dimensionality problems to achieve promising running time and
lower time complexities [MAA20b]. To achieve this goal, evolutionary algorithms
have been used widely. One of the evolutionary algorithm applications is feature
selection to reduce datasets’ dimensions without decreasing the performance. Mo-
hammadi et al. noted that such algorithms are robust enough to be used in different
applications and research that try to do the dimension reduction [MAA20a]. Going
forward, we plan to further examine the impacts of using nature-inspired algorithms
in educational fields to optimize the ML models’ hyper-parameters. Also, the role of

specific nature-inspired algorithms to optimize ML models should be investigated.
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5.2 HyP-ABC: Automated Hyper-Parameter Tuning Using
Evolutionary Optimization for Classical Machine Learn-
ing Algorithms

Machine learning techniques lend themselves as promising decision-making and an-
alytic tools in a wide range of applications. Different ML algorithms have vari-
ous hyper-parameters. In order to tailor an ML model towards a specific applica-
tion working at its best, its hyper-parameters should be tuned. Tuning the hyper-
parameters directly affects the models’ performance. However, for large-scale search
spaces, efficiently exploring the ample number of combinations of hyper-parameters
is computationally expensive. Some of the automated hyper-parameter tuning tech-
niques suffer from low convergence rates and high experimental time complexities.
In this chapter, we propose HyP-ABC, an automatic hybrid hyper-parameter opti-
mization algorithm using the Artificial Bee Colony approach to be fitted for hyper-
parameter tuning of machine learning algorithms in classification problems. This
tool is evaluated using three interpretable machine learning classifiers suggested for
exploration in previous research: random forest, extreme gradient boosting, and
support vector machine. In order to ensure the robustness of the proposed method,
the algorithm takes a wide range of feasible hyper-parameter values and is tested
using a real-world educational dataset. Experimental results show that HyP-ABC is
competitive with state-of-the-art techniques. Also, it offers fewer hyper-parameters
to be tuned than other population-based algorithms, making it worthwhile for real-
world hyper-parameter optimization problems.

Keywords: AutoML, Artificial Bee Colony, Education, Hyper-parameter Tun-

ing, Machine Learning Optimization
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5.2.1 Introduction
Motivation

Deploying Machine Learning (ML) for real-world problems causes challenges, such
as selecting the proper model among a set of candidate models, hyper-parameter
tuning, or selecting the best features to feed to the ML models. An ML model’s
performance depends on such initial design decisions, which can be confusing to new
users who desire to choose the most appropriate model [MAA19]. These decisions are
usually made based on the model’s obtained quality or in other words, Performance
Indicator (PI) [NC12]. According to the principle of Occam’s razor, a model should
not be too simple nor too complex so that it can be efficient and can also capture
data patterns without overfitting [Bie03, MAA19]. Hyper-parameter tuning chooses
the values that have a more considerable impact on the ML model’s performance.
Hyper-parameters on an ML model control the convergence of the learning process.
Hence, it is crucial to find the optimal values for their hyper-parameters [CDM15].
Independent of the expertise level of the users, obtaining desirable results using
different datasets can be conducted manually and is a tedious task [SCK22, YS20].
This is where Automated ML (AutoML) comes into the picture to alleviate such
burdens. Automated HPO is one of the decisive and primary tasks of AutoML
[SY20].

Bhattacharyya et al., in [BMDC21] proposed an automated heartbeat classifi-
cation framework. This framework takes advantage of an exhaustive HPO method,
Grid Search, to tune the hyper-parameters of random forest and support vector
machine classifiers. The results showed a significant enhancement in efficiency. In
another study [VBF21], Vu et al., proposed a quantitative and constraint preserving

score to ease the process of choosing hyper-parameters of visualization algorithms.
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Figure 5.5: General framework of the study

This method uses Bayesian optimization to search the search space and obtain
the most appropriate configuration. The experiments show promising results. In
[ZMR21], Zahedi et al. explored different classic ML algorithms using the most
common HPO methods, namely, grid search and random search. The experimental
results of their study indicate that ML algorithms such as SVM. RF and XGBoost
require other hyper-parameter tuning methods due to the computationally expensive
nature of these algorithms.

In HPO, the problem is more challenging when there are many configurations;
as hyper-parameter value ranges increase, the search space grows exponentially.
Therefore, common practices of tuning hyper-parameters for large search spaces are
not ideal. In this work, we will show how population-based algorithms (PBAs) can

tune the hyper-parameters of different ML algorithms.

5.2.2 Objective

Manual search or automated exhaustive search among n* configurations of hyper-
parameters are impractical and time inefficient [YGW16]. Manual tuning does not
provide reproducibility. Exhaustive search, on the other hand, suffers from dimen-

sionality issues in large search spaces. As such, there has been increased research in
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HPO to optimize the performance of different ML models regarding both accuracy
and time.

HPO methods may change the final model in comparison to when a model is
being trained with default hyper-parameters [ZMR"21]. Hence, they provide fair-
ness to research and scientific studies. Also, when making decisions, time is of the
essence. Hence, many black-box optimization models do not fit such optimization
problems because they do not consider the function evaluation time [YS20]. There-
fore, proper algorithms should be applied to such problems to find the optimal set
of hyper-parameters. Mohammadi et al. provided different examples of applying
PBAs, such as feature extraction, in different domains and encouraged researchers
to apply such methods to solve large-scale optimization problems [MAA20a]. Our
goal is to design and develop an HPO framework to tackle the challenges discussed
above; The framework utilizes ABC to minimize the run-time caused by large di-
mensions of search space, known as Curse of Dimensionality (CoD), and possibly
improve the accuracy of the ML classifier. This framework will assist the predictions
for intelligent and real-time decision-making and lessen the financial costs and labor
burden.

In the literature, evolutionary algorithms have been used to tune the hyper-
parameters of different ML algorithms [BBCY 18, OB20, OB19]. To fit ABC to HPO
problems in ML classifiers, this part uses HyP-ABC to build a binary classification
model to improve the performance. Figure 5.9 shows why we ended up proposing
the HyP-ABC algorithm. The figure demonstrates the challenges faced in some of
the ML classifiers [ZMR*21] while applying hyper-parameter tuning on conventional
ML classifiers including Naive Bayes(NB), Logistic Regression (LR), Random For-
est (RF), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), K-Nearest
Neighbors (KNN) and Support Vector Machine (SVM). To address the challenges
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of those specific ML classifiers (RF, XGBoost, and SVM), we developed HyP-ABC
for hyper-parameter tuning. HyP-ABC has some advantages over other automated
nature-inspired algorithms or conventional tuning methods including Grid Search

(GS) and Random Search (RS) or genetic and particle swarm algorithms.

5.2.3 Contribution

The main contributions of this study are as follows:

1. This chapter develops a novel tuning optimization method that fits HPO prob-
lems for addressing the challenges left in a recent work [ZMR'21] using a

modified evolutionary optimization algorithm, specifically ABC.

2. The HyP-ABC algorithm outperforms the HPO methods utilized in an existing

study in 2021 [ZMR"21] in terms of both tuning time and accuracy.

3. The HyP-ABC algorithm is competitive with other state-of-the-art existing
HPO methods.

4. This chapter is the first to explore the optimization of ML classifiers tailored to-
wards large-scale educational datasets like MIDFIELD [OZTAO04]. The details

regarding the MIDFIELD dataset is provided in out previous study [LOOT22].

5.2.4 Organization of chapter

The rest of the chapter is organized as follows: in section 5.2.6 we provide an
introduction to PBA and a comprehensive explanation of ABC. Then, we present
the related work regarding hyper-parameter tuning and different automated tuning
methods in section 5.2.5. We also cover ABC applications in this section. Section

5.2.6 covers hyper-parameter tuning using the ABC approach and the advantages of
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ABC over other techniques. In section 5.2.7, we propose the HyP-ABC algorithm;
an ABC-based algorithm fitted to HPO problems. The experimental methodology
is presented in Section 5.3.4, and Section 5.2.9 presents experimental results to
demonstrate the performance achievable by the proposed approach. Last, section
5.2.10 and 5.2.11 present the results, conclude the chapter and discusses future

directions.

5.2.5 Related Works

Hyper-parameter Tuning

GS is a brute-force method that searches all the hyper-parameters within a fixed
search space. The advantage of this method is that it obtains the optimal solution
in a discrete search space [ZMR"21]. However, it is computationally expensive in
large-scale spaces. RS is another approach that randomly selects the values with
limited resources (time or number of iterations). This method works well for search
spaces containing continuous values. However, luck plays a part in this method,
and giving more resources increases the chance of getting better results [ZMR"21].
There are some improved versions of RS, such as Hyperband (HB) which is more
efficient, especially in cases where resources are limited.

Unlike GS and RS, Bayesian Optimization (BO) [EFH™13] prevents evaluating
many of the unnecessary configurations based on the evaluations of the previous
steps. BO is an approach that is commonly used for HPO problems and, unlike
model-free approaches such as GS and RS, is a model-based technique. In other
words, the future evaluations are based on the previously evaluated points. However,

since BO methods work sequentially to balance exploitation and exploration, they
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are challenging to parallelize. The most popular BO techniques in HPO problems
are Gaussian Processes (GP) and Tree-structured Parzen Estimator (TPE).

GA and PSO are the popular population-based algorithms used in HPO prob-
lems. GA is a search strategy inspired by Charles Darwin’s theory of natural evolu-
tion. It is based on the process of natural selection, where the fittest individuals are
the ones being selected for the next steps of reproduction to produce next-generation
offspring. PSO is another evolutionary algorithm that traverses the search space in a
semi-random manner. This algorithm is inspired by individual and social behaviors
of biological populations [YWCT18].

For some models, such as tree-based models (RF and XGBoost), the num-
ber of main hyper-parameters or their ranges is higher than other ML models,
which leads to larger search space scales, making them the most challenging for
tuning [HKV19]. Furthermore, since different ML algorithms have different hyper-
parameter types(continuous, integer, and categorical), they should be treated differ-
ently in tuning processes [DGMCEGC19]. For the ML classifiers selected to explore
in this study, ABC is chosen since it enables parallel executions to improve tuning
time, particularly for models that often require massive training time. Some other
techniques, such as the GA method, usually take more time than ABC since it is
challenging to parallelize. Also, although techniques such as PSO have a reasonable
convergence rate, they have a higher chance of sticking into local optimums and

proved to be less efficient in comparison to ABC regarding performance[ KD16].

ABC Applications

This section covers some of the previous studies of ABC for different optimization
problems. One of the applications of ABC can be seen in [MA14] where authors

proposed an ABC-based approach called IFAB, distinguishing between clean and un-
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Table 5.4: Comparison of GA, PSO, and ABC algorithms

Method| Advantages Disadvantages Time
Complexity
GA -No proper initialization -Poor with parallelization
is needed. -Introduces more hyper- | O(n?)
parameters than PSO or | [SRS11]
ABC
-Slow Convergence
PSO | -Enables parallelization. -Needs proper initializa-
-Faster convergence than | tion. O(nlogn)
GA or ABC. -May stuck in local opti- | [YS20]
mum
ABC | -Enables Parallelization. -Need proper initialization
-Higher efficiency Bal- | -Slower convergence than | O(n x D)
ances  exploration & | PSO. [SB16]
exploitation.

clean images. The authors modified the original ABC to work for discrete problems.
Moreover, Sarac Essiz and Oturakci developed a comparative analysis to explore the
impacts of the ABC-based feature selection algorithm [SEO21] and eliminate non-
informative features in the cyberbully detection problem. They also showed that
their method has a better performance than some conventional methods like infor-
mation gain, relief, and chi-square [SEO21].

Amar and Zeraibi [AZ20], combined ABC and Support Vector Regression (SVR)
to predict minimum miscibility pressure and improve the oil recovery process. In
their study, ABC was used to find the best hyper-parameters of the SVR model.
In another study, Dokeroglu et al. developed a hybrid ABC optimization algorithm
for the quadratic assignment problem using Tabu search to simulate exploration
and exploitation phases [DSC19]. They showed that ABC performs well for most
quadratic assignment problems and can compete with other state-of-the-art meta-

heuristic algorithms existing in the literature.
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Choong et al. utilized a modified choice function for the ABC method. This
approach adjusts the neighborhood search of the employed and onlooker phases. The
results showed that the modified choice function brought advantages to the search
process [CKH™18]. Since training ML models is time-consuming, it is being argued
that the use of EAs such as ABC is of great benefit to solve problems caused by
the Curse of Dimensionality (CoD) [HXZ"18]. In [MDPS21], the authors proposed
two algorithms to modify the original ABC. The former employed neural network
initialization, and the latter utilized stochastic gradient descent in the employed
phase of ABC to improve the convergence rate and observed promising results.

In another study, Zhao et al. performed a comparative analysis that proposed
a modified version of ABC to improve the performance of SVM classification using
parameter optimization. The proposed method utilized chaotic sequences for the
initialization step, and they also defined an adaptive step size for the neighborhood
search to boost the algorithm convergence. The modified ABC algorithm was ex-
amined to perform classification on two hyperspectral images. The authors then
compared the results with three other PBAs and observed the superiority of the
ABC method over the rest of the algorithms [ZZWC20].

Pandiri and Singh [PS18] developed a hyper-heuristic-based ABC algorithm for
the k-Interconnected multi-depot multi-traveling salesman problem (k-IMDMTSP).
The authors stated that due to the parameter values, it is impossible to have a
unique algorithm that outperforms the rest of the algorithms emanating from k-
IMDMTSP. Hence, they leveraged a hyper-heuristic-based ABC algorithm for this
problem. The authors presented an encoding scheme to be used inside the algorithm.
The experimental results exhibited smaller search space and improved performance
compared to other approaches existing in the literature.

In another study, Mazini et al. took advantage of the hyper-parameters regu-
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lation method of ABC for feature selection to propose a reliable hybrid method to
detect anomaly network-based intrusion. Experimental results on a network traffic
dataset exhibited improved performance and detection rate compared to other in-
trusion detection systems in various scenarios [MSM19]. Gunel and Gor developed
an ABC-based algorithm to solve initial value problems. To define a mutation oper-
ator, the authors used a dynamically constructed hyper-sphere to generate new food
solutions to enhance the exploitation capability of the ABC. In this approach, the
solutions for the differential equations were yielded through training neural networks
[GG19].

In [SSH19], Sayed et al. used an ABC-based approach to tune the hyper-
parameter of SVM to improve the learning performance. The proposed method was
compared with popular swarm algorithms and showed promising results. Agrawal
also proposed an extended version of ABC using some features of the Gaussian ABC
scheme to tackle some of the disadvantages of the original ABC, such as a slow con-
vergence. The proposed method was used to adjust the exploration and exploitation
phases. They examined the proposed approach on some datasets and observed that

the proposed method outperformed the original ABC in most experiments [AT20].

5.2.6 Population-Based Optimization Algorithms

Population-based optimization algorithms work based on generating and updating
individuals in each generation. this continues until the optimal or close to the op-
timal solution is identified or until the stopping criterion is met [YCY*21]. These
algorithms are based on the interaction between different individuals to find accept-
able quality solutions. These algorithms garnered much attention because of their

excellent performance and are particularly useful to solve optimization problems
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[PC18]. PBAs include different heuristic algorithms such as Genetic Algorithms
(GAs)[LSCO05], Particle Swarm Optimization (PSO)[Shi04], Ant Colony Optimiza-
tion (ACO)[MGDL04], Grey Wolf Optimization (GWO)[MML14], Fish Swarm Al-
gorithms (FSA)[Li02], and Artificial Bee Colony (ABC)[Kar(05]. The main difference
between these algorithms is how a population is generated, and selected [YWC™18].
One of the main advantages of these algorithms is that, unlike many model-based
optimization methods, they have the capability of parallelization [HKV19]. Among
these algorithms, ABC is one of the most popular methods due to the excellent
exploration and exploitation capabilities to find the satisfactory solution [IKAOO7].

Therefore, ABC was chosen for further exploration in this study.

Artificial Bee Colony (ABC)

ABC, first defined by Karaboga [KBO07], is one of the most recent and popular
Swarm Intelligence (SI) algorithms that simulate honey bees’ foraging behavior.
In ABC, different groups of bees fly around in an area (search space). The bee
colony is divided into 1) employed, 2) onlookers and 3) scouts. At the initialization
stage, a random set of food sources get selected by scout bee, and their amount of
nectar is determined. Then scout bees share the nectar information with employed
bees and employed bees visit those food sources and choose a new food source
in the vicinity and compare it with the other food source and select the better
one. Next, the information is shared with onlooker bees, and they may or may
not select a food source according to the information received (nectar amount).
The higher the amount of nectar, the higher is the chance of getting selected by
onlooker bees. If selected, the onlooker bee chooses a new food source in that
neighborhood and compares the two food sources, and the preferred food source gets

selected, and if not selected, the onlooker bee moves toward the next food source for
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evaluation. Employed and onlooker bees’ responsibility is exploitation based on their
own experience, where they leave poor food sources and move toward better ones
through a greedy selection process. When a food source exploitation is exhausted or
can not be further improved (based on trial limits), the employed bee discards the
food source and becomes a scout bee and start exploration where it selects a new
random food source and replaces it with the abandoned food source.The pseudo-code

of the original ABC is described in Algorithm?7 [KA09].

Algorithm 7 Implementation of original ABC

1: Initialize population

2: while Stopping criterion is not met do

3:  Assign food sources to employed bees

4 Place the onlooker bees on the food sources based on the amount of nectar
5:  Send the scouts to different areas to find new food sources

6 Memorize and update the best food source

7: end while

8: return Best found food source

HPO using ABC

There are different optimization problems in multiple fields. To such problems,
there exist classical approaches and heuristic approaches. Classical techniques are
not efficient enough in solving optimization problems, and this is primarily due to
dimensionality. Using brute-force search, looking for the best hyper-parameter in
the search space is an NP-hard problem with a time-complexity of O(n¥) (where k is
the number of hyper-parameters, n is the number of distinct values for each hyper-
parameter). Heuristic approaches such as genetic and evolutionary algorithms do
not suffer from many drawbacks of classical methods when dealing with large search
spaces caused by CoD. Among heuristics, ABC has shown more encouraging behav-
ior. ABC is a population-based optimization technique and belongs to the family

of stochastic SI methods. ABC is inspired by social interactions in honeybees and
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has recently garnered much success in different applications. It is as simple as some
other swarm techniques such as PSO and is beneficial for NP-hard problems. Previ-
ous research shows that the ABC algorithm delivers relatively superior performance
than PSO[KD16]. Hence, it is being explored in this study to find close to the

optimal set of hyper-parameters in ML classifiers.
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Figure 5.6: One iteration of the ABC-based Hyper-parameter Tuning (HyP-ABC)
process as an example

Time Complexity

Table 5.4 summarizes GA, PSO, and ABC’s advantages and disadvantages along
with their time complexity. ABC requires a one-pass scan for each of the initializa-
tion, employed, and onlooker phases. Also, the ABC algorithm can repeat based on
a maximum number of iterations/evaluations defined for the algorithm. The time
complexity for each of the neighborhood searches is O(N * D) where N is the pop-

ulation size (number of solutions, and D is the dimensionality. Therefore, the com-

96



plexity of ABC can be presented as O(3N * D I,,4,) and I,,,4, is the fixed maximum

number of iterations. Therefore the time complexity of the ABC is (O(N x D)).

Advantages of ABC

BO [EFHT13], GA [LSC05] and PSO [GYW™08] are among the common approaches
used for HPO problems. There are various characteristics that ABC has which make
it efficient in solving optimization problems, especially for hyper-parameter tuning

are as follows [XFY13]:

1. The underlying concept is easy to understand and implementation offer high

accuracy.

2. Although almost all meta-heuristic make use of randomization to have global
research as well as local search, ABC balances the exploration and exploitation
steps (local and global search) [KA09]. This enables the algorithm to search
for various parts of the search area. Randomization also helps the model not
to get stuck in the local minimum and complete the global search. This is
despite BO or PSO methods that may stick to a local optimum and fail to get

to a global optimum [YS20].

3. Parallelization is one of the advantages of PBA because each population can
be assessed on one machine [HKV19], while sequential methods such as BOs
and GAs are challenging to parallelize since solutions are dependent on each

other [DGMCEGC19).

4. Some PBA methods such as GA have some additional hyper-parameters (num-
ber of generations, crossover, mutation, and selection operators) to tune;

therefore, GA has a lower convergence speed [LSCO05]. Having fewer hyper-
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parameters to be tuned by the user is one of the advantages of methods such

as ABC.

Fit ABC to HPO Problems

In many optimization problems, including ML hyper-parameter tuning, some of the
hyper-parameters are discrete. Therefore, the vectors of hyper-parameters could
consist of discrete (integer and categorical) or continuous (float) values. Since the
basic ABC is only applicable to continuous problems, proper strategies should be
adopted to apply them to discrete or combinatory problems. Hence, the first step
for modifying the original ABC to adapt to the HPO problems is configuring the
initial population generation. Each sample should be described as a vector, includ-
ing a set of hyper-parameters. Corresponding to each vector, there is a value for
the objective function produced after training the ML model (model performance)
and a fitness function calculated based on the objective function. After the popula-
tion is generated, each vector is taken by one employed bee where it generates a
new vector of hyper-parameters in the neighborhood, meaning that only one of the
hyper-parameter in the current vector gets replaced with the same hyper-parameter
of another vector. If the new vector has a better fitness, it gets replaced with the
previous vector.
In the mutation step, onlooker bees start calculating the quality of the new popu-
lation. Each of the vectors may or may not get selected depending on the computed
quality. If a vector is selected, the onlooker bee generates a new vector of hyper-
parameters in the vicinity and assesses it by comparing it with the previous one.
Similar to the employed bee phase, the better food source gets replaced. Finally,
an exhausted vector of hyper-parameters (the vector that had the chance to improve

the fitness but did not) is replaced with a random vector generated by the scout
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bee. Unlike the vectors generated in employed and onlooker phases, the new vector
changes all the hyper-parameters (hence, not in the vicinity). This phase helps
the algorithm not to stick to the local optimum. The above phases repeat until a
stopping criterion is met where the algorithm stops and returns the best performance
achieved so far. The stopping criteria can be based on the number of iterations,
evaluations, or time period. In this study, the stopping criteria is a constant number

of evaluations for all the experiments.

Converting continuous ABC to combinatory version

The schematic objective of HyP-ABC is shown in Figure 5.6. As mentioned in the
previous section, we face a combination of hyper-parameters types while the original
ABC works only with continuous problems. Also, the range of variables in basic
ABC is the same for all the dimensions. Therefore, proper strategies should be

adopted to make them applicable to HPO problems.

5.2.7 HyP-ABC: Modified ABC Algorithm

There are different strategies used for tackling discrete optimization in swarm op-
timization [ZLGP12, WT08, DKA17, CKH"18]. Rounding off is one of the most
common approaches to tackle discrete variables. In this approach, the integer and
continuous variables are treated similarly during the optimization process. However,
when the optimization process is done in most studies, the variables are rounded off
to the closest integer number.

Simplicity and low computational cost are among the main advantages of this
method. However, entering impossible regions, and high variation of fitness between

rounded and original values are among the disadvantages of this method. This study
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adjusts each vector’s element based on its type and range in each iteration. Hence,
the precise accuracy with the precise hyper-parameters is returned at the end of
the optimization process. The remainder of this section explains how this process
works.

As mentioned, the modified algorithm should treat various hyper-parameters
differently in each iteration of generating and re-generating food sources. In this
study, categorical variables in the initialization phase are encoded to integer numbers
and treated as discrete variables afterward. Then, they are converted again to
corresponding values after the optimization process is done and before training the
model.

From this step on, if the selected hyper-parameter type by the employed /onlooker
is discrete, the newly generated food source is modified to an accepted vector within
the defined range for that specific dimension. For continuous variables, the algorithm

performs similarly to the original ABC.
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Algorithm 8 Hybrid artificial ABC algorithm

Input: Population_size, Search_Space
Output: Best food source identified

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

Call a function to create an initial population X based on the hyper-parameters
type and range
Set the trail=0 for all food sources
while Stopping criteria is not met do
for i to Population_size do
Employed bee generates a new food source in neighborhood (1V;) and mod-
ifies the new food source to an accepted food source M; (type and range)

if M; == X1¢ then
Move to step 5
end if
Train the ML classifier with the modified food source
if f(M;) < f(Xi) then
X; = M,
Reset trial;
else
Increment trial; by 1
end if
end for
for ¢ to Population_size do
if (rand(0,1)) > (P;) then
Onlooker bee generates a new food source in neighborhood (N;) and then
modifies the new food source to an accepted food source M;
if M, == Xi then
Move to step 19
end if
Train the model with the updated food source
if f(M;) < f(X;) then
X, =M,
Reset trial;
else
Increment trial; by 1
end if
else
Onlooker disregards the food source and moves to the next food source
end if
end for
Memorize and update the best food source
if trial >limit then
Scout bee generates a new food source
end if
end while
return Best achieved food source
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Algorithm 8 shows the detailed steps for HyP-ABC. As shown, another step is
also added to check if the updated food source equals the current food source to
prevent training the same vector of hyper-parameter and save time.

This algorithm is specifically useful when the selected hyper-parameter for an
update is discrete (due to having fewer options and a higher chance of getting the
same value after the update). For binary categorical variables (such as criterion in
RF), we value flip the hyper-parameter value (flipped = 1 — binary_value). Values
outside the ranges defined for the hyper-parameters in all phases get replaced with
lower or higher bound values before training the ML model. The stopping condition

in this algorithm is when the algorithm evaluates a specific number of evaluations.

HyP-ABC Steps

Regarding the initial population, each solution is a vector of hyper-parameters,
X;, with the length of D, where D is the dimension of the vector of the number of
hyper-parameters. Unlike the original ABC that works only for continuous problems
HyP-ABC also handles the other types of variables namely, categorical and integer
(discrete) values. Moreover, unlike the original ABC, variables of the same type may
have different ranges. Therefore algorithm needs to be fitted so that each variable

has an acceptable range for the corresponding hyper-parameter.
Xi,j == xmin,j + Tand((), ]-)(:Emaa:,j — xmin,j) (51)

Where X; ; is the hyper-parameter value of food source ¢ in dimension 7, and %44, ;
and ., ; are upper-bound and lower-bound of jy, hyper-parameter.
Then, each vector is assigned to an employed bee. The employed bee generate a

new food source NN, ; in that neighborhood by changing one of the hyper-parameters
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Figure 5.7: The schematic process of the study
using below equation:
Nij =z j+rand(—1,1)(x;; — xk;) (5.2)

Where zy, ; represents the corresponding hyper-parameter value in the neighborhood.
Then the fitness of the N; and X; are compared and the better food source becomes
a new member of the population afterward. Fitness is calculated from the objective

function:

1+f;?

When employed bees are done with their part, they share the information with
onlooker bees. Based on the received information they decide whether to further
exploit a vector or not. In this phase, roulette wheel selection is utilized to calculate

the probabilities, as shown below:

=t (5.4)

PN
Zj:l(fj)
Where f; is the fitness value for the ithe food source and PN is the population size.

Next, scout bees start exploring random configurations in search space without
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using experience or memorizing the locations. They do not use greedy selection
when exploring new food sources. Exploration by scout bees is through the below
equation:

Xi,j = Tmin T rand(O, 1>(xmax - xmin) (55)

HyP-ABC algorithm also skips the repetitive food sources after modifications
(as shown in lines 6 and 20 of the Algorithm 8) to prevent repetitive training of the

ML classifier to reduce the tuning time.

5.2.8 Experimental Methodology

In this section, we describe the methodology used in this study aiming to improve
the efficiency of a recent study [ZMR721] in 2021, using conventional HPO meth-
ods. The process is performed in several consecutive phases, and it includes data
pre-processing, feature engineering, leveraging ML classifiers, and ABC-based opti-

mization steps.

Data pre-processing and feature Engineering

Data pre-processing is a required step in data analysis and data science to trans-
form the raw data into an understandable format for ML algorithms [GLH15]. It
includes data cleansing, data normalization, and data reduction. For data cleansing,
we remove the features with more than 60% percent of the values missing. Data
normalization is also a method to standardize the data when the different features’
values vary widely. StandardScaler from Scikit-learn library was used for scaling
the input data. We filter the data in the data reduction step and included only the
target population, students from computing fields. One-hot encoding (categorical

encoding variables to binary variables for each unique category) is also used in the
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feature engineering step. All the above steps are done using Python 3.7 program-

ming language.

Hyper-parameter tuning

Tuning hyper-parameters is essential to yielding the best performance of an ML
model. Due to the varied nature of the hyper-parameters in different ML models, we
implement a HyP-ABC to tune the hyper-parameters of three ML classifiers. HyP-
ABC is replaced with automated HPO methods performed in [ZMR21]. Algorithm
9 shows the general steps of HyP-ABC and Figure 5.7 shows the schematic process
of HyP-ABC framework.

Algorithm 9 HyP-ABC general steps

Input: Listy;;, of models and raw dataset
Output: Best model, performance and optimal architecture

1: Call PreProcessing

2: for every model in the List,;;, do

3:  Call HyP-ABC

4: if ABC.ACC larger than reported (GS &RS).Acc then
5: Replace Model, ABC BestHPs

6: end if

7: end for

8: return FinalModel, BestHP, Final.Acc, TuningTime

Since RF, XGBoost, and SVM are computationally expensive when using auto-
mated HPO methods [ZMR*21], they are selected to be explored in this study. The
tuning time complexity in these models is mainly due to the model’s complexity or

the ranges of hyper-parameters.

5.2.9 Experimental Results

In this section, we discuss the dataset, evaluation metrics, and experimental results

in depth.
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Figure 5.8: Effect of number of food sources on accuracy after specific number of
iterations

Table 5.5: Performance evaluation of utilizing HPO methods to the ML classifiers
on the MIDFIELD dataset (CV=3)

Accuracy (%)
HPO Method / ML Classifier RF XGBoost SVM
GS (minimized search space) 86.24 86.33 85.38
RS 87.37 86.90 86.03
HyperBand 86.74 87.75 87.54
BO-GP 88.71 88.71 87.91
BO-TPE 88.33 88.73 87.90
PSO 88.76 88.63 87.98
GA 87.51 88.56 88.08
HyP-ABC 88.77 88.84 88.00

Dataset

In this study, we use real-world educational data, Multiple-Institution Database for
Investigating Engineering Longitudinal Development (MIDFIELD)[OZTA04, LOO*22],
to predict students’ success in computing majors. This dataset is a unit-record lon-
gitudinal database for all undergraduate students from 19 universities across the
United States. MIDFIELD contains all the information shown on students’ aca-
demic records, such as demographic data and information about field, enrollment,
graduation, and their academic performance before and during school. We used

a reduced version of MIDFIELD, including only students majoring in computing
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fields (with CIP=11). This version of the MIDFIELD dataset is used for a binary

classification problem and has 45322 samples with 91 features.

Metrics for Performance Evaluation

The metric used in this experiment to assess the performance of the classification
and the proposed framework is accuracy. Accuracy is the fraction of the number
of correct predictions to the total number of predictions [BGCLO00]. This metric is
used since the dataset is balanced [GFB*11] and the number of samples belonging
to each class is almost equal(46:54).

Cross-validation (CV) is used to reduce or prevent over-fitting. CV helps finding
a stable optimum that is suitable for all the subsets of the dataset instead of only
a particular validation set [HKV19]. It is important to note that CV also increases
the tuning time by the number of folds. Therefore, we used 3-fold cross-validation
to avoid high tuning times. However, we paralleled the CV process to reduce the
impact of CV on execution time. We also separated the MIDFIELD dataset into
train and test sets and repeated the experiment. The train set contains 80% of the
dataset, and the test set includes 20% of the dataset.

In this experiment, the Scikit-learn and XGBoost libraries were used to leverage
ML classifiers. All experiments were conducted using Python 3.7 on AWS servers

with four v-CPUs up to a 3.0 GHz scalable processor and 16 GB RAM.

5.2.10 Results

HyP-ABC is developed to achieve the optimal or close to the optimal set of hyper-

parameters of SVM, RF, and XGBoost algorithms. The higher number of hyper-
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Table 5.6: ABC-based Hyper-parameter tuning (HyP-ABC) Execution time on the
classifiers (When termination point is set to desirable accuracy= 88%)

80:20 ratio Test-Train set
Tuning Time (hrs)

Population size (N) 20 50 100
SVM 23.95 53.05 62.57
RF 2.37 9.07 3.18
XGBoost 4.07 5.85 4.23
With 3-Fold Cross Validation (N = 50)
SVM 34.15
RF 10.55
XGBoost 29.22

parameters with possible wide ranges or complexity and the model’s objective func-
tion is the motivation for selecting these ML classifiers.

Figure 5.8(a) and 5.8(b) show the effect of population size on accuracy among
the three ML classifiers using CV as well as using train and test sets; As can be seen,
the larger the population size, the better the accuracy. However, it shows that the
impact of population size decreases when it gets very large (large populations also
have the disadvantage of increasing the execution time). Our experiment considers
the population size as 50 for comparison with other state-of-the-art HPO methods.

Table 5.6 shows the execution times when setting a desirable accuracy as the
termination point (88%). As can be seen from the table, SVM has the highest exe-
cution time due to the SVM model’s complexity and expensive objective functions.
Table 5.5 summarizes the results and shows the accuracy of different HPO methods
among different ML classifiers having the same resource (number of iterations). As
shown, the accuracy of the HyP-ABC is or more than the rest of the approaches for
the tree-based methods, showing the algorithm’s capability for tuning ML models
hyper-parameters in RF and XGBoost classifiers. As for SVM Classifier, GA has

better marginal accuracy. Also, GA offers more hyper-parameters to tune compared
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to HyP-ABC, which still makes the proposed approach a promising alternative to
GA.

It is important to note that for RF and XGBoost algorithms, the GS tuning
time considering all the configurations leads to a tuning time of more than years.
This estimation was calculated from the average tuning time for each configuration
from the RS experiment. Hence, the experiment for the GS method is implemented
using a reduced search space with larger steps to make the experiment feasible.

Unlike model-free methods such as GS and RS, HyP-ABC presented in this
study is a model-based method. In other words, it has a methodical way of moving
toward the optimal solution. The results of the study show that among all the
ML algorithms developed in this experiment, XGBoost had the best accuracy score.
Hence, XGBoost is the final model to be used on the MIDFIELD dataset.

5.2.11 Conclusion and Discussions

Hyper-parameter tuning is an essential step in automated ML, and it reduces the
burden of manual tasks and is economical and time-efficient. However, search-
ing through an ample space (wide ranges) of hyper-parameter is a time-consuming
task. In this chapter, a modified evolutionary optimization algorithm for hyper-
parameter tuning in ML classifiers referred to as HyP-ABC is proposed to enable
hyper-parameter tuning of ML classifiers.

One of the limitations of this study is that it is developed for classification prob-
lems. Other types of problems, such as regression are the focus of our future work.
Also, HyP-ABC is aimed to be tested on structured datasets, in this case, an educa-
tional dataset (MIDFIELD)[LOO"22] as such applications need explainable results.

Hence, three interpretable ML algorithms are being explored in this study. The
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experimental results show the competitiveness of the proposed approach compared
to other model-free methods and are ready to support users in various other applica-
tions. Another limitation of this work is that the proposed method is not compared
with all the methods existing in the literature (such as i-race, paramILS, SMAC)
as this algorithm provide an alternative approach for hyper-parameter tuning using
evolutionary algorithms. However, they will be considered in future extensions of
this work.

HyP-ABC improves the classification accuracy and can be deployed to solve HPO
problems with large search spaces. To summarize, HyP-ABC is recommended for
optimizing RF, XGBoost, and SVM. In future work, we will explore the semantic ini-
tialization of the population to improve the convergence rate further. Also, the time
complexity of algorithms such as SVM is highly dependent on the number of features
and samples of a dataset, and hence their function evaluation can be prolonged for

large-scale datasets.

5.3 OptABC: An Optimal Hyperparameter Tuning Approach
for Machine Learning Algorithms

Abstract ? Hyperparameter tuning in machine learning algorithms is a computa-
tionally challenging task due to the large-scale nature of the problem. In order to
develop an efficient strategy for hyper-parameter tuning, one promising solution is to
use swarm intelligence algorithms. Artificial Bee Colony (ABC) optimization lends

itself as a promising and efficient optimization algorithm for this purpose. However,

2This chapter is an edited version of the author’s previous work published in [ZMA21c]
(©)2021 IEEE.
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in some cases, ABC can suffer from a slow convergence rate or execution time due
to the poor initial population of solutions and expensive objective functions. To
address these concerns, a novel algorithm, OptABC, is proposed to help the ABC
algorithm in faster convergence toward a near-optimum solution. OptABC inte-
grates an artificial bee colony algorithm, K-Means clustering, greedy algorithm, and
opposition-based learning strategy for tuning the hyper-parameters of different ma-
chine learning models. OptABC employs these techniques in an attempt to diversify
the initial population, and hence enhance the convergence ability without signifi-
cantly decreasing the accuracy. In order to validate the performance of the proposed
method, we compare the results with previous state-of-the-art approaches. Exper-
imental results demonstrate the effectiveness of the OptABC compared to existing
approaches in the literature.

Keywords: Automated Machine Learning, Automated Hyper-Parameter Tun-

ing, Artificial Bee Colony Algorithm, Evolutionary Optimization

5.3.1 Introduction

Overview

Nature-Inspired Optimization (NIO) and Machine Learning (ML) are two promi-
nent and momentous sub-fields of Artificial Intelligence (AI). ML algorithms use
data through experience and improve automatically, to solve different problems and
generate knowledge. Recently, NIO has garnered much attention to solve such prob-
lems efficiently and effectively. These algorithms includes but not limited to Genetic
Algorithms (GAs) [Sch01], Particle Swarm Optimization (PSO) [KE95], Ant Colony
Optimization (ACO) [DBS06], and Artificial Bee Colony (ABC) [Kar05]. Among

these approaches, ABC has been widely used in the literature due to its strong global
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search capabilities and a low number of parameters as compared with other nature-
inspired algorithms. Therefore, it has been utilized in a wide range of applications
to solve complex optimization problems [DSC19, MSAA21, MAA20a, GSPK18].

ABC is a swarm intelligence method in which different solutions are called food
sources. The initial set of solutions is generated merely based on random distribu-
tion. In ABC, three different types of bees use their search strategy to achieve new
food sources. Employed and Onlooker bees have similar search strategies and
are responsible for exploitation, while Scout bees are responsible for exploring and
inserting new solutions into the population.

Some of the previous studies report on the slow convergence of the primary ABC
method or getting stuck to local optima [SZS17]. According to the literature, many
of the ABC algorithms ignore the role of population initialization [BA17]. Therefore
methods that can provide richer populations can be very beneficial regarding both
convergence rate and finding better solutions.

In the context of hyper-parameter tuning of ML algorithms, assuming that there
are M combinations and P hyper-parameters per combination, we can construct an
M x P matrix. In case M and P are too large, it is too expensive to run the ML
model on all the possible configurations. Additionally, ML algorithms have differ-
ent objective functions depending on the complexity of the models themselves. For
instance, long training time especially for large datasets is actually one of the SVM
disadvantages [YHB16], because of its costly objective function. Support Vector
Machines (SVMs) are supervised ML models that utilize associated learning algo-
rithms to detect patterns existing in data. SVM applies to regression, classification,
and outlier detection problems. Taking the training data marked with their belong-
ing classes, SVM creates a classifier using a hyper-linear separating plane and builds

a model that predicts the classes of new data points.
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The high time complexity of SVM models (especially when working with large
datasets) indicates expensive objective functions in the ABC algorithm as well,
which leads to high execution time in comparison to other ML models [ZMA21b].
Random Forest and eXtreme Gradient Boosting (XGBoost) models are also among
ensemble supervised machine learning models that use enhanced bagging and gra-
dient boosting, respectively. These two models have proved a powerful predicting
ability in different applications. However, they have more number of main hyper-
parameters in comparison to other ML models which makes a large search space
and hence increases the time complexity of the ABC algorithm.

In this study, we propose a modified version of the HyP-ABC algorithm in a
previous work [ZMA21b] called OptABC, to tune the main hyper-parameters of
the mentioned ML algorithms; The K-means clustering algorithm is used to offer
heterogeneity to the population of solutions. This method can enhance the conver-
gence rate by avoiding the evaluation of all solutions in the population by taking
only the cluster centroids and evaluating them. Moreover, we add an Opposition-
Based Learning (OBL) method to random food source search in the original scout
phase to discover richer and unvisited food source positions to improve the balance
in exploration and exploitation steps. The MIDFIELD dataset is used to verify the

performance of OptABC in the experiments.

Motivation

ML model predictions are proven to be effective for accurate decision makings.
However, to make a model work at its best, its hyper-parameters must be tuned.
In Hyper-Parameter Optimization (HPO) problems, the goal is to build a model

with the best set of hyper-parameters for an ML model to minimize the objective
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function or maximize the accuracy [SCZZ19]:

x = argmin f(x) (5.6)

€S

where f(x) is the objective function or error rate that should be minimized, z is
the optimal set of hyper-parameters, S is the search space, and arg min f(z) is the
optimal set for which f(x) reaches its minimum.

However, searching through a large number of configurations of hyper-parameters
can be computationally highly expensive [ZMR*21]. Many of the HPO problems are
non-convex optimization problems, meaning that they have multiple local optimums.
Therefore, traditional optimization approaches are not a good fit for them [Luol6b].
Recently, evolutionary optimization techniques have gained much success in different
applications to solve non-convex complex optimization problems [YWCT18]. These
techniques do not guarantee to find the global optimum; however, they detect near
to global optimum within a few iterations.

Existing automated hyper-parameter tuning techniques suffer from high time
complexity for some of the ML models, especially SVM [ZMA21b] and tree-based
models. This is due to the high time complexity of the SVM objective function,
especially for large size datasets [MDG10], and or the number of hyper-parameters
in the search space.

This chapter proposes OptABC, an automated novel hybrid hyper-parameter
optimization algorithm using the modified ABC approach, to measure the ML, mod-
els’ classification accuracy. The main focus of this study is on the ABC algorithm.
ABC operates based on the foraging behavior of honeybees and was first developed
by Karaboga [Kar05]. Previous studies show that the performance of the ABC
algorithm is competitively better than that of other population-based algorithms

[ST17]. Thus, it has been used to solve different problems in different applications.
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As mentioned in the previous section, slow convergence because of the stochastic
nature [KLL13] and sticking in the local optima for complex problems [CZZ09] are
among the disadvantages of the ABC algorithm. The challenge is exacerbated when
dealing with expensive objective functions or large search spaces for evaluating the
quality of the food sources.

In this chapter, an effort has been made to address the challenges mentioned
above to make the HyP-ABC algorithm [ZMA21b] more efficient for ML algorithms

to solve optimization problems.

Research Focus and Contribution

In this research study, we mainly focus on the slow convergence issue of the ABC
algorithm. This issue can be derived from the shortcomings of the ABC algorithm
and the complexity of ML models. These shortcomings are summarized as follows:
Initial position of food sources, the position of the food sources by scout bees, and
expensive evaluation function in the foraging process. To address these concerns, we
propose an improved version of a previous ABC-based algorithm. The contribution

of this section is threefold as follows:
1. Presents an automated hyper-parameter tuning method for different ML mod-
els using evolutionary optimization for large real-world datasets.
2. Presents a K-Means clustering approach to form a better initial population.

3. Determines the abandoned food source position by applying the OBL method
in addition to the random search strategy to strengthen the exploration phase

of ABC.

The proposed algorithm is evaluated on a real-world educational dataset, and the

results are compared with an algorithm in a previous study in 2021[ZMA21b]. The
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proposed method provides better performance in terms of execution time without

decreasing the accuracy in most of the cases.

Organization

The rest of this section is organized as follows. Section 5.3.2 highlights the back-
ground and related work regarding ABC algorithm and variants of ABC in different
applications. Section 5.3.3 elaborately explains our novel approach. Section 5.3.4
and 5.3.5 presents our experimental methodology and results, followed by section

5.3.6, that concludes the section.

5.3.2 BACKGROUND REVIEW AND RELATED WORK

This section discusses the background review of this work, including the basic ABC

algorithm, its different steps, and ABC-related works in different applications.

Overview of ABC Algorithm

ABC algorithm works based on the natural foraging process of honey bees swarm
and was first introduced by Karaboga in 2005 [Kar05] to solve optimization prob-
lems. As mentioned in the previous section, this algorithm consists of three different
phases. Initialization and exploration are performed by the scout bee; the Scout bee
randomly picks the food sources, then each food source is assigned to the Employed
bee for exploitation. Afterward, the Onlooker bees wait in the hive for the informa-
tion that the Employed bees share with them. Once they received the information,
they may exploit or abandon the food sources based on their quality. The aban-
doned food source is replaced with a discovered random food source by the Scout

bee. This process continues until the termination criterion is achieved. A summa-
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rized mechanism of the original ABC algorithm is given below: Initialization The
initial population containing different food sources (vectors) using a random strat-
egy is created using the below formula: Then each of the vectors is assigned to one
employed bee.

X’L’,j = xmin,j + T’CLTLd(O, 1)($max,j — xmm,j) (57)

Where rand() returns a random number within the provided range. Employed Bee
Phase Each of the Employed bees detect a neighbor food source, V;, by equation
5.8. This is done by changing only one of the dimension’s values kth in the vector.

Then, the employed bee compares V; with X; and selects the better vector.
‘/i,j = T, + mnd(—l, 1)(5(71"3' — xk,j) (58)

Where k and ¢ are different.

Onlooker Bee Phase In the next phase, Employed bees share the information
with onlooker bees. Then onlooker bees calculate the probabilities of vectors (P;),
based on roulette wheel selection in equation 5.9. Omnlooker bees select or leave
the vectors based on the calculated probability values. The vector with a higher
probability is more likely to get selected by the Onlooker bees.

Fit;
P,=09——F—+0.1 5.9
max(Fit) * (5.9)

Where F'it; is the fitness value for the ith vector and is directly calculated from

objective function, by equation 5.10.

1
fit; = (5.10)

1+abs(f;), fi<O

If an onlooker bee selects a vector, it generates a new vector solution similar to
equation 5.8 and selects the better solution between V; and X;. Next, the best

vector of solutions visited thus far is memorized.
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Scout Bee Phase In the last phase, an exhausted food source (vector), if any, is
determined by scout bee and exploration starts. In this phase, scout bee generate a
random vector by equation 5.11 and replace it with the exhausted vector. This step

is done without using any experience or greedy approach.
XZ'J' = Tmin,j -+ Tand(O, 1)($max,j — xmin,j) (511)

The above phases repeat until the resource budgets, such as time or the maximum

number of evaluations are exhausted, or when the desired results are achieved.

Different Variants and Applications of ABC

This section describes some of the related studies of ABC employed in various op-
timization problems. Researchers have used ABC to address feature selection prob-
lems and speed up the classification process [MA14] and eliminate non-informative
features [MA14, SEO21, MSM19]. ABC has also been used to design automatically
and evolve hyper-parameters of Convolutional Neural Networks (CNNs) [ZYCT19].
Choong et al. improved the neighborhood search algorithm of the original ABC in
the exploitation phases of the original ABC [CKH'18]. The experimental results of
this study showed that the proposed function has some advantages over other search
processes [CKHT18]. In [MDPS21, ZZWC20], the authors proposed to modify the
initialization and exploitation phases of ABC to improve the convergence. The au-
thors tested the performance of their proposed algorithms and observed promising
results.

Pandiri and Singh [PS18] developed a hyper-heuristic-based ABC algorithm for
the k-Interconnected multi-depot multi-traveling salesman problem. The authors
used an encoding scheme inside the algorithm. The study results showed that al-

though the search space is smaller than previous schemes, it has better performance
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than previous methods applied in the literature. Gunel and Gor used a dynamically
constructed hyper-sphere to modify the ABC algorithm to improve the exploitation
ability of ABC. In this method, the best food source was used to define the muta-
tion operator. The solutions for the differential equations were obtained by training
neural networks employing the modified ABC [GG19].

In another study, Agrawal introduced an improved version of the ABC using
some features of the Gaussian ABC to improve the slow convergence of the original
ABC. This approach was used to modify the employed, onlooker, and scout phases.
The experimental results of this study showed the superiority of the method over

the original ABC in the majority of the experiments [AT20].

Studies Employing Learning Techniques on ABC

Many previous studies use hybridization approaches combining ML algorithms and
nature-inspired algorithms to improve their performance regarding accuracy and
time. These studies aim to provide more intelligent forms of ABC algorithm in
different applications. This section covers some of the previous studies that used
learning algorithms to enhance the optimization process of the ABC algorithm. The
most common methods used in the literature are clustering, reinforcement learning,
and OBL.

Clustering has been used mostly in different ways in the initialization phase of
the ABC algorithms. K-means clustering was either used to add diversity to the
population or to detect the clusters in the optima [ST17, IDS20, ZFLS19]. Reinforce-
ment learning has also been used in several studies to improve the searching process
of the ABC [2720, FKPoS19]. This method is mostly used in the onlooker and em-
ployed phases of the ABC algorithm. OBL approach is another technique that has

been used in previous studies to enhance the performance of the ABC method. This
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method has been employed in initialization [SA20, LLL*19], employed and onlooker
phases [SG18, ZLS15] .

5.3.3 Proposed Approach

One of the disadvantages of ABC, like other population-based algorithms, is re-
quiring a suitable initial population. Also, ABC sometimes suffers from a slow
convergence rate [ZMA21b]. In some applications, such as ML problems, inserting
a solution into the problem and testing its impact on the results to compute the
fitness value may require a long time [KAK20]. In such situations, learning-based
models can be developed to guess the fitness values of the present solutions more
quickly. Having a rich and diverse initial population can significantly improve the
performance and convergence rate. Additionally, although ABC performs well at
exploration, the Scout phase can still improve to guide the search process better
and increase the likelihood of finding better food sources in the exploration process.

To address the above-mentioned inherent defects of ABC and accelerate the
convergence rate of the algorithm, we propose an improved variant of an existing
algorithm (HyP-ABC)[ZMA21b] using learning algorithms. Employing the Opt-
ABC, the main hyper-parameters of the three models are optimized. Therefore the
optimal solution would be a vector with a dimension that equals the number of
main hyper-parameters. OptABC applies three modifications. We employ K-Means
clustering and Opposition-Based Learning (OBL) strategies in the initial population
generation. The third modification is constructed in the scout bee search using the
OBL method. Figure 5.9 shows the overall flowchart process of our study.

The main structure of this novel algorithm, including two modified phases, can

be summarized below.
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The Generation of Initial Population

In HPO problems, each food source is a vector of hyper-parameters, X;, 7 by equation
5.7, where 7 = 1,2,....D,1=1,2,.., PN and D and NP are the number of hyper-
parameters and the number of population, respectively. The original ABC algorithm
starts with generating randomly distributed food source locations. To improve the

convergence rate of the ABC algorithm, we use a K-Means clustering algorithm
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Figure 5.9: Overall flowchart process of Optimal ABC-based tuning (OptABC)
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[MT67] to have a more diversified population. In this approach, we partition the
randomly initiated population into k£ clusters. Then a loop starts assigning the
food sources to the closest mean, and the cluster centroids (¢') are determined.
This process continues until no change is observed in the position of cluster centers.
Instead of calculating the objective function for all the food resources, the final
clusters’ centroids (by equation 5.12) are taken as representatives of each cluster for

a new population.

PN ; N
=gt
[ = 2y e =) j=1,2,..k (5.12)

>0 He = j)

This approach helps to avoid evaluating expensive objective functions for each single

food source in the initial population. The pseudo-code of the modified initialization

step is described in Algorithm 10.

Algorithm 10 HyP-ABC general steps

Input: Number of clusters (k)
Output: Cluster centroids/ New population
1: Randomly generate a population of PN food sources
2: Randomly select k food sources from the generated population and assign them
to each cluster
while centroid position changes do
Assign each food source to its closest cluster
Calculate new centroids (mean) of all clusters using equation 5.12
end while
Take final centroids as population,e,
return population,,,

Employed Bee Phase

In this phase, employed bee discovers a new food source, V;, in the vicinity of the
current food source. In other words, only one hyper-parameter of the current food

source changes in this phase. Then, the employed bee compares V; with X; and
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selects the better food source.

‘/i,j = .Z'i’j -+ TCZTLd(—l, 1)(5171'7]' — iL‘kJ) (513)

Onlooker Bee Phase

Next, employed bees share the information with onlooker bees through waggle
dance. Onlooker bees in the OptABC algorithm compute the probabilities of each
food source. Then the probability of the food source is then compared to a ran-
dom number between zero and one. Depending on the quality of the food source,
onlookers may leave or exploit them. In this study, the probability of the food
sources is calculated using min-max normalization in Equation 5.14 (0 < P; < 1,
min(Fit) < Fit; < max(Fit)). In other words, the range of all fitness values
is normalized so that each value contributes approximately proportionately when
it is compared to the random number. Then a comparison is made between the
probability and random numbers for further decisions.
Fit; — min(Fit)

b= maz(Fit) — min(Fit) (5.14)

If the food source gets selected for further exploitation, a new solution is gener-

ated using equation 5.13, and the algorithm goes on with the best solution.

The Search Mechanism of Scout Phase

In the Scout phase, if a food source does not get updated a defined number of times
(limit), it will be considered an abandoned food source, and its assigned employed
bee turns to a scout bee for discovering a new food source location. In original
ABC, this is done by using equation 5.11. As can be seen, the new food source is

generated randomly and may not always be the best solution for an optimization
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problem. Hence, in this study, we consider operator adaptation to generate the
new food source. In other words, in addition to detecting a new location for the
abandoned food source using a random search technique, we also apply an OBL
search technique. OBL technique is a new concept in ML which was first intro-
duced by Tizhoosh (2005) [Tiz05] which is inspired by the opposition concept in the
real world, Implying that Having a data point that is closer to an optimum point
can result in faster convergence. However, if the optimum point is in the opposite
direction (position), the search process needs more resources to find them. There-
fore, searching in the opposites locations may help the algorithm converge faster.
The opposition of each food source (a vector with D parameters) is calculated by
equation 5.15 to generate an alternative food source in the opposite location. This
technique strengthens the exploration phase and better guides the search process.
In this phase, the food source with better quality gets replaced with the abandoned

food source.

Tij = Tmaz,j T Tming — Tij (5.15)

Fitness Function of OptABC

The fitness function for all the phases above in the proposed algorithm is calculated
directly from the objective function (5.10). The main goal in ML-related problems is
to maximize the objective function, which is computed from performance indicators
such as accuracy for classification problems or mean absolute error for regression
problems. In this study, our goal is to maximize the training objective function,

which is accuracy-oriented and is calculated by the below formula:

TP+ TN
TP+TN+ FP+ FN

(5.16)

Accuracy =
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Where TP, TN, FP, and F'N are true positives, true negatives, false positives, and
false negatives, respectively. Since we are dealing with a balanced dataset we use

accuracy as the overall performance metric.

Framework and Time Complexity of OptABC

The proposed framework of OptABC is given in Figure 5.10, and Algorithm 11 shows
the previous work process[ZMA21b], along with the changes we made to improve

the ABC convergence rate.
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Figure 5.10: Proposed framework for Optimal ABC-based tuning (OptABC)

In this method, the number of initial solutions is PN, and the number of the
secondary population is %. The number of employed bees and onlooker bees is the
same (k). In the employed bees phase, k new solutions are generated. Similarly, an-
other k solutions are generated by onlooker bees. In the scout bee search phase, two
solutions (One OBL-based solution and one random-based solution) are generated
for each exhausted solution, and the best one is selected to get replaced with the
exhausted food source. The random solution helps the algorithm escape from the
local optimum, and the opposition solution can increase the probability of reaching

better candidate solutions (compared to random search) [RTS08].
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Algorithm 11 OptABC Algorithm - Modifications

Input: population_size, Search_Space
Output: Optimal or close to the optimal configuration
1: Call Algorithm 10
2: while Stopping criteria is not met do
3:  for i to population,e., _size do
4: Employed bee generates a new food N; source in neighborhood and modify
the new food source to an accepted food source M;

5: Train the ML model with the updated food source

6: end for

7. for j to population,e,_size do

8: Onlooker bee calculate the probability (Pi) of each solution based on Equa-

tion 5.14
9: if (rand(0,1)) > (P;) then
10: Onlooker bee generates a new food source in neighborhood N; and then
modify the new food source to an accepted food source M;

11: Train the ML model with the updated food source

12: else

Onlooker disregard the food source and moves to the next food source
13: end if
14:  end for
15:  Update the best food source and store it
16:  if trial >limit then

17: Scout bee generates a food source based on Equation 5.11
18: Scout bee generates a food source based on Equation 5.15
19: Select the food source with better quality

20: end if

21: end while
22: return Optimal food source

The time complexity of the proposed approach has not increased in comparison
with the traditional ABC algorithm since not all solutions in the population are
evaluated. ABC algorithm’s time complexity depends on population size (PN),
complexity of objective function (f) and maximum number of iterations (/,,,,) and
number of clusters (k). Therefore, the time complexity of the proposed method is
O(Lnaz-(BX . f+EX £ 4+2£)) = O(Lnas-(F31)), while the time complexity of original

ABC is O(Inas.(PN.f + PN.f + £)) = O(Imaw-(PN.f)).
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5.3.4 Experimental Methodology

This section covers the methodology of our experiment. We leveraged our proposed
methods to tune the main hyper-parameters of three ML models. As can be seen in
figure 5.10 the overall process is done in several phases, including data pre-processing
and feature engineering, generating a new population, training the SVM model, and
ABC-based optimization steps. The OptABC algorithm proposed in this study is

an improved version of recent work in 2021[ZMA21b].

Data Pre-Processing

Data pre-processing in the context of ML refers to the technique of transforming
the original data into an appropriate and understandable state for ML algorithms.

A summarized mechanism of the steps for data pre-processing is given below:

e Data Cleansing: In this step, the features with more than 60% percent
missing values are eliminated from the dataset. The target population in this
study are only the student majoring in computing fields. Therefore, the data

is filtered to include only students from computing majors.

e Feature Scaling: Feature scaling is a technique to standardize the range of
data, especially when there is a broad variation between values among different
features to avoid biases from big outliers. We used StandardScaler from the

Scikit-learn package was used for scaling the input values.

e Feature Engineering: In this step, one-hot encoding was utilized for encod-

ing the categorical variables to binary representations.

127



Hyper-Parameter Tuning

Tuning hyper-parameters is a primary task in automated ML that helps the model
achieve its best performance. Previous research reported on costly objective func-
tions of ML models (specifically SVMs) regarding tuning time when using automated
HPO methods [ZMA21b]. Therefore Tree-based SVM and (RF and XGBoost) al-
gorithms are selected to be explored in this study. The proposed learning-based
improvements in the OptABC, are an attempt to provide the algorithm with a

richer population and strengthen the algorithm’s exploration phase.

5.3.5 Experimental Results and Discussions

This section presents the performance metrics, and experimental results after ap-

plying the OptABC HPO algorithm.

Metric for Performance Evaluation

The experiment is performed in two different stages; training using 80:20 ratio train-
test sets and cross-validation. Regarding the experiments using cross-validation, the
dataset is partitioned into three folds to evaluate the ML algorithms. Different folds
are assigned to the training and test sets. Specifically, for each run, f =1, 2,3, fold
f is assigned to the test, and the rest of the folds are assigned to the training set.
Cross-validation is employed to reduce the chances of overfitting. Although since
it has an impact on tuning time, we leverage parallel cross-validation. In each run,
accuracy and the average overall accuracy over three runs were reported. We also
use execution time as another performance metric to measure the time regarding

running time to return the optimal set of hyper-parameters.
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In this experiment, the Scikit-learn libraries, along with other Python libraries,
were used to leverage the ML models. All experiments were conducted using Python

3.8 on High-Performance Computational (HPC) resources.

Performance Comparison of Different Population Sizes

In this section, we compare the efficiency of OptABC with a previous method un-
der different population sizes. The HyP-ABC [ZMA21b] uses the random search
strategy, while Opt ABC employs two different learning algorithms in the initial and
the Scout phase of the algorithm to enhance the convergence rate of the previous
method. The results are shown in Tables 5.7, 5.8, and 5.9. The running times in

hours stand for the time for all iterations until getting the desirable accuracy.

Table 5.7: Performance evaluation of Optimal ABC-based tuning (OptABC) and
ABC-based Hyper-parameter tuning (HyP-ABC) to the RF classifier on the MID-
FIELD dataset.

80:20 ratio Test-Train set

OptABC HyP-ABC
Population size 20 50 100 20 50 100
Accuracy (%) 88.71 | 88.75 | 88.76 | 88.71 | 88.74 | 88.78

Execution Time(hrs) | 1.6 | 3.17 | 7.8 | 2.37 | 9.07 | 3.18

With 3-fold cross validation

Accuracy (%) 88.79 | 88.77 | 88.77 | 87.57 | 83.74 | 88.77
Execution Time(hrs) | 0.46 | 1.09 | 2.16 1.55*
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Table 5.8: Performance evaluation of Optimal ABC-based tuning (OptABC) and
ABC-based Hyper-parameter tuning (HyP-ABC) to the XGBoost classifier on the
MIDFIELD.

80:20 ratio Test-Train set

OptABC HyP-ABC
Population size 20 | 50 | 100 | 20 | 50 | 100
Accuracy(%) 88.65 | 88.73 | 88.86 | 88.60 | 88.70 | 88.75

Execution Time(hrs) | 1.98 | 3.85 | 3.42 | 4.07 | 585 | 4.23

With 3-fold cross validation

Accuracy (%) 88.29 | 88.64 | 88.72 | 87.97 | 88.64 | 88.84
Execution Time(hrs) | 4.83 | 19.54 | 17.6 29.22*

Table 5.9: Performance evaluation of Optimal ABC-based tuning (OptABC) and
ABC-based Hyper-parameter tuning (HyP-ABC) to the SVM classifier on the MID-
FIELD dataset.

80:20 ratio Test-Train set

OptABC HyP-ABC
Population size 20 | 50 [ 100 | 20 | 50 | 100
Accuracy(%) 87.87 | 87.86 | 87.86 | 87.80 | 87.86 | 87.85

Execution Time(hrs) | 18.3 | 8.61 | 15.5 | 23.95 | 53.05 | 62.57

With 3-fold cross validation

Accuracy (%) 87.99 | 88.00 | 88.00 | 87.93 | 88.00 | 88.00
Execution Time(hrs) | 19.71 | 39.01 | 40.10 34.15*

As can be seen from the tables?, in the majority of the cases, the execution time
after applying the OptABC algorithm has improved without decreasing the classi-
fication accuracy. In summary, our proposed algorithm is quicker than HyP-ABC.
This difference is more tangible when the population is small showing the capability

of the algorithm in finding the optimal solution when the population is not too large.

3 Asterik (*) indicates the best tuning time achieved from applying HyP-ABC [ZMA21b]
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Diversifying the population helped to decrease the convergence rate with a chance of
increasing accuracy. The advantage of our proposed method becomes notable when
the population is small. We can defer that our approach is also applicable to other
real-time applications. In summary, compared with the baseline, manual tuning
methods, model-free and model-based HPO methods [ZLP*20, ZMR ™21, ZMA21b)]
OptABC algorithm outperforms other methods in predicting student’s success. Opt-
ABC uses an ABC-based algorithm to optimize the hyper-parameters of ML models,

improving the classification accuracy effectually.

5.3.6 Conclusion

We presented OptABC, an artificial bee colony (ABC)-based optimization algo-
rithm for hyper-parameter tuning for machine learning methods dealing with large
datasets. Our proposed OptABC integrates the ABC algorithm, K-Means cluster-
ing, greedy algorithm, and opposition-based learning strategy for tuning the hyper-
parameters of different machine learning models. We demonstrated OptABC in
three experiments on SVM, RF, and XGBoost.

This hybrid method introduces a more intelligent approach to ABC and aimed
to improve ABC’s exploitation, exploration, and acceleration. The related experi-
mental results on a real-world dataset compared with previous approaches on the
same dataset demonstrate that the proposed OptABC exhibits faster convergence
speed and running time without decreasing the accuracy in most cases and has an
advantage over previous methods. In our future work, we plan to design strategies
to further eliminate poor food sources in the initialization step to spend more of the

evaluations on better solutions.

131



CHAPTER 6
A HYBRID MODEL FOR AUTOML FRAMEWORK

Abstract ABC-based hyper-parameter optimization and feature selection op-
timization algorithm, hereafter referred to as ABC-HFO2, is an open-source auto-
mated ML platform. This platform is developed to scale for large datasets through
an automated feature selection process and tuning the hyper-parameters to guaran-
tee sub-optimal performance for classical ML (we specifically focus on Random For-
est, XGBoost, and SVM) algorithms. ABC-HFO2 is a fully automated platform for
classical supervised algorithms. The result of the ABC-HFO2 AutoML is the set of
sub-optimal features as well as a set of optimal hyper-parameters. The package can
be easily exported for use in a production environment. The ABC-HFO2 AutoML
algorithm relies on an evolutionary algorithm to train a larger number of configura-
tions in regards to the number of features and number/range of hyper-parameters
without training all the configurations. ABC-HFO2 AutoML uses a combination
of Artificial Bee Colony (ABC) algorithm, agglomerative clustering algorithm and
an opposition-based learning algorithm to yield results that are competitive with
other frameworks relying on more complex techniques such as genetic algorithm
or Bayesian optimization [HYLY19, VM21, VAQLJMM21]. ABC-HFO2 AutoML
trains Random Forest, Support Vector Machine and Extreme Gradient Boosting
algorithms.

Keywords: Hyperparameter Optimization, Feature Selection Optimization, Arti-

ficial Bee Colony Algorithm, Evolutionary Optimization
6.1 Foundations of ABC-HFO2

Python is an open-source and interpreted high-level general-purpose programming

language. It is currently the fastest-growing programming language in the world and
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is being widely used. Scikit-learn is a widely used Python module integrating a large
number of state-of-the-art ML algorithms for supervised and unsupervised problems
([PVGT11]). Although this package focuses on bringing ML to non-experts using a
general-purpose high-level language, users do not usually know how to choose among
the dozens of features or hyper-parameters to achieve good performance. There are
even many ML models developed by experts that are all designed manually and by
trial and error. In other words, even experts need the time and resources to create
good predictive ML models ([HZC21}).

ABC-HFO2 addresses this problem by providing a unified ML framework and
using the ABC algorithm to find a strong set of features and hyper-parameters for a
given dataset. This framework is inspired by the OptABC and A2BCF algorithms
proposed by ([ZMA21c, ZGMA22]). These algorithms use a modified version of the
ABC approach to improve the running time for finding optimal configurations with-
out significantly decreasing the performance. We show classification performance
is often better than using standard selection optimization methods. Our approach
will help non-expert users to be able to tune the hyper-parameters of their desired
ML models appropriate to their applications, and therefore achieve improved per-
formance.

The overall structure of the framework is presented in Figure 6.1. This frame-
work is integrated to our previous work on a Hyperparameter Optimization (HPO)
method proposed in 2021 [ZMA21¢| and Feature Selection Optimization proposed
in 2022 [ZGMA22].

The crux of ABC-HFO2 lies in its simplicity and requires no knowledge about
the ML algorithms or their hyper-parameters unless users aim to change the ranges

or add/remove hyper-parameters from the search space.
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The framework also provides a stop accuracy parameter to accommodate impa-
tient users to stop the algorithm when a predefined performance is achieved. The
lower the stop accuracy, the less thoroughly the algorithm searches the space. How-
ever, we recommend a stop accuracy that takes at least several hours for production

runs to guarantee sub-optimal results.

6.2 ABC-HFO2

The “ABCFSO” and “ABCHPO” algorithms can run as standalone algorithms for
feature selection and hyper parameter optimization, respectively. However, the out-
put of “ABCFSO” can also be used as the input of the “ABCHPO” algorithm so
the HPO only runs with the sub-optimal selected features. Table 6.1 shows the
integrated HFO2 ML algorithms along with their type of hyper-parameters and the
number of each of them.

Table 6.1: Classifiers in HFO2 algorithm

Classifier Categorical | Numerical | Discrete Numerical
Random Forest 1 0 5
XGBoost 0 3 2
Support Vector Machine 1 0 1
6.2.1 FSO

The ABCFSO algorithm in Python can be used as follows:

# Automated FSO
[1] from ABCHFS.ABCFSO import ABCFSO
[2] fso = ABCFSO(model="RF", cv=True, n_food=300, iterations=2)

[3] features = fso.fso(X,y)
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To run the FSO algorithm, first the user needs to import the ABCFSO class from the
ABCFS0 module of the ABCHFS library (line [1] in the above code). Next, the user
has to initiate the ABCFSO class with their desired parameters (line [2] in the above
code). Lastly, to run the FSO algorithm, the user has to call the fso method by
passing the features (X in the code) and the target value (y in the code) as input
parameters (line [3] in the above code).

The ABCFSO class parameters description and the default values are described

below:

e model: a string to determine the classifier, the algorithm accepts the follow-
ing models: “XGB” for the XGBoost model, “SVM” for the Support Vector
Machine, and “RF” for the Random Forest model, and the default value is set
to 'RF’. The reason for focusing on two tree-based models in this framework
is that these models have been shown to be more effective for large, struc-
tured, and partly discrete problems [EFH'13]. Also, previous research shows
that SVM, RF, and XGBoost models are more complicated than other classi-
cal ML algorithms and require other strategies for HPO problems [ZMR*21].

However, other ML algorithms can be easily integrated into the framework.

e cv: a flag to determine whether the algorithm should use cross-validation or

not, and the default value is set to True.

e n_folds: the number of folds for cross-validation where the default value is

set to 3.

e n_food: the number of foods for the ABC algorithm where the default value

is set to 500.

e limit: the threshold that determines the exhaustion of foods in the ABC

algorithm where the default value is set to three.
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e iterations: the number of iterations to run the ABC algorithm where the

default value is set to five.

e min_accuracy: the threshold for removing poor quality food sources where

the default value is set to 0.5.

e stop_accuracy: the threshold of the accuracy where the algorithm will stop,

and where the default value is set to 0.9.

e max_evaluation: the maximum number of trainings in the algorithm, where

the default value is set to 5000.

The inputs of the FSO method are:

X: pandas dataframe of features.

e y: pandas series of target variable.

The output of the FSO method is:

e Features: an array of binary values that determines the initially selected

features.

The final output of the FSO can be used as an input for the ABCHFO2

algorithm. As for the outputs, the algorithm also exhibits:

Global Optimum Accuracy: the final accuracy of the algorithm.

Optimal Features: the optimum selected features.

Duration: the time it took the algorithm to find the optimum features.

Regarding the resource budgets, the user can use one of the below:

e Number of evaluations: the number of evaluations it took for the algorithm

to find the optimum values.
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e Rounds: the number of iterations it took for the algorithm to find the opti-

mum values.

6.2.2 HPO

The ABCHPO algorithm can be used as follows:

# Automated HPO

[1] from ABCHFS.ABCHPO import ABCHPO

[2] hpo ABCHPO (search=search ,model="RF", cv=True, n_food=500)

[3] res

hpo.hpo(X,y)

To run the HPO algorithm, first the user has to import the ABCHPO class from the
ABCHPO module of the ABCHFS library (line [1] in the above code). Next, the user
needs to initiate the ABCHPO class with their desired parameters (line [2] in the
above code). Lastly, to run the HPO algorithm, the user has to call the hpo method
by passing the independent variables (X in the code) and the target values (y in the
code) as input parameters (line [3] in the above code).

The ABCHPO class parameters description and the default values are defined
below. However, not all the parameters are mandatory and some of them are cus-

tomizing the model.

e search: determines the hyper-parameters’ search space of the ML model. For

instance, for an RF model we could have:

search = {

"n_estimators": {"type":"int", "range":[5, 500]},
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"max_features": {"type":"int", "range":[1,91]},
"max_depth": {"type":"int", "range":[5,50]},
"min_samples_split":{"type":"int", "range":[2,30]},
"min_samples_leaf":{"type":"int", "range":[1,15]},
"criterion": {"type":"ctg", "range":[0,1]1}

}

where the top-level keys determine the hyper-parameters to be optimized.
The “type” defines the type of the hyper-parameter which can be “int” (i.e.
integer), “ctg” (i.e. category) or “float” types. The “range” defines the range
in which the algorithm should search for the optimized values. If the type is
defined as categorical, the algorithm will generate dummy variables for each

category using the one-hot encoding method.

model: a string to determine the classifier, the algorithm accepts the follow-
ing models: “XGB” for the XGBoost model, “SVM” for the support vector
machine, and “RF” for the random forest model, where the default value is

set to “RE”

cv: a flag to determine whether the algorithm should use cross-validation or

not where the default value is set to True.

n_folds: the number of folds for cross-validation where the default value is

set to three.

n_food: the number of foods for the ABC algorithm where the default value

1s set to 500.

limit: the threshold that determines the exhaustion of foods in the ABC

algorithm where the default value is set to three.
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e iterations: the number of iterations to run the ABC algorithm where the

default value is set to two.

e min_accuracy: the threshold for removing poor quality food sources where

the default value is set to 0.5.

e stop_accuracy: the threshold of the accuracy where the algorithm stops, and

where the default value is set to 0.9.

e max_evaluation: the maximum number of trainings in the algorithm where

the default value is set to 5000.

e features: an array of binary values that determines the sub-optimal features.
This can be set to the output array of the “FSO” method from the ABCFSO
algorithm. The default value is set to “None”, meaning the algorithm will

consider all the features while optimizing the hyper-parameters.

The inputs of the “HPO” method are:

e X: pandas dataframe of features,

e y: pandas series of target variable

The output of “HPO” method is the sub-optimal values of each hyper parameter.
As outputs, the algorithm also exhibits:
e Global Optimum Accuracy: the final accuracy of the algorithm,

e Optimal Parameters Value: sub-optimal hyper-parameters values found

by the algorithm.

e Duration: the time it took the algorithm to find the optimum values for the

hyper-parameters.
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e Number of evaluations in HPO: the number of evaluations it took for the

algorithm to find the optimum hyper-parameters values

¢ Rounds: the number of iterations it took for the algorithm to find the opti-

mum hyper-parameters values.

6.2.3 HPO-FSO Library (HFO2)

Below, a manual to describe how to use the HFO2 package is provided and gives a
high-level overview for developers; Figure 6.2 also shows the output of an example
run. The underlying algorithm for this framework is the Artificial Bee Colony algo-
rithm, which is among evolutionary optimization algorithms and has proved to be

beneficial when having different types of variables ([YS20])

# HF02 AutoML

[1] from ABCHFS.ABCFSO import ABCFSO

[2] from ABCHFS.ABCHPO import ABCHPO

[3] fso = ABCFSO(model="RF", n_food=300, iterations=10)

[4] features = fso.fso(X,y)

[6] hpo = ABCHPO(search=search ,model="RF", n_food=500, features=features)

[6] res = hpo.hpo(X,y)

To run the HPO algorithm considering only selected features from the FSO, first
user needs to import the ABCSFO and ABCHPO classes from the ABCSFO and ABCHPO
modules of the ABCHFS library, respectively (lines [1] and [2] in the above code).
Next, the user has to initiate the ABCFSO class with their desired parameters (line
[3] in the above code). Then, the user will run the FSO algorithm by calling the
fso method and passing the independent variables (X in the code) and the target

values (y in the code) as input parameters (line [4] in the above code) and store
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the results in a variable (called features in the code) Next, the user has to initiate
the ABCHPO class and pass the results of the fso method (features in the code)
as its parameter (line [5] in the above code). Finally, to run the HPO algorithm,
the user needs to call the hpo method by passing the independent variables (X in
the code) and the target values (y in the code) as input parameters (line [6] in the
above code).

A detailed algorithm for HFO2 can be found in Algorithm 12.
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Algorithm 12 HFO2 Algorithm

Output: Optimal features and hyper-parameters subset, performance

1: Do clustering on the population
2: Discard the food sources with poor quality from a new population
3: while Stopping criteria is not met(number of evaluations jmaze,,) do
4:  for 1 to population_size do
5: The employed bee regulates the bit vector and finds a new vector N; in the
neighborhood. This is achieved by changing only one bit in the vector
6: Train the ML model with the novel vector (subset of features selected)
7 if the new vector has a better quality then
8: Replace the new vector with the original vector
9: else
trial; +=1
10: end if
11:  end for
12:  for j to population_size do
13: The onlooker bee calculates the exploration probability (P;)
14: if rand(0,1) > P, then
15: The onlooker bee regulates the current vector N; by changing only one of
the bits in the vector, which gives a new vector in the neighborhood M;
16: Train the ML model with the updated features subset
17: if the new vector has a better quality then
18: Replace the new vector with the original vector
19: else
tr ’LCLll +=1
20: end if
21: else
The onlooker disregards the features subset and moves to the next bit
vector
22: end if
23:  end for

24:  Memorize and update the best subset so far
25: if trail; > limit (food source is exhausted) then

26: Scout bee generates a “Random” bit vector

27: Scout bee generates the “OBL” bit vector

28: Select the subset that gives better fitness between Random and OBL vectors
29:  end if

30: end while
31: Return Optimal subset of features and pass to the HPO algorithm
32: Generate HPO configurations and run clustering on the new population
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1: while Stopping criteria is not met do
2:  for i to population,e,_size do
3: Employed bee generates a new food NV; source in neighborhood and modifies
the new food source to an accepted food source M;
Train the ML model with the updated food source
end for
for j to population,, _size do
The Onlooker bee calculates the probability (F;) of each solution
if (rand(0,1)) > (P;) then
The Onlooker bee generates a new food source in neighborhood N; and
then modifies the new food source to an accepted food source M;
10: Train the ML model with the updated food source
11: else
The Onlooker bee disregards the food source and moves to the next food
source
12: end if
13:  end for
14:  Memorize and update the best food source
15:  if trial >limit then

16: Scout bee generates a random food source based
17: Scout bee generates an OBL food source

18: Select the food source with better quality

19:  end if

20: end while

21: Return Optimal features, hyper-parameters, and performance®

6.3 Experimental Evaluation and Simulation Results

ABC-HFO?2 is the first method to use ABC to automatically instantiate parametric
classical ML framework at the push of a button. Previously, the FSO component of
the library was implemented by the authors [ZGMA22|, and the HPO component
was also implemented by [ZMA21c]. The proposed library in this study is the

product of these two components as an AutoML product.

OPerformance refers to the performance metric selected by the user, such as accuracy
in classification or mean squared error in regression problems.
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[ X Console 1/A Bry=

#exResu Lt ssex

Global Optimum: ©.8853466502790502

Global Features: ‘sex__ x® Male', 'us_citizen__x@ No',
‘us_citizen__x@_Yes', "institution_x_ x8_Clemson University',
'institution_x__x8_Colorado State University',
"institution_x__x@_Elizabethtown College',
"institution_x__x@_Embry-Riddle Aeronautical University-Worldwide',
"institution_x__x@_Embry-Riddle Aeronautical University-Daytona Beach',

"term_enter__x8_1', 'term_enter__x8_2'
‘race__x@_Asian', 'race__x@_Black', 'race__x®_Hispanic/Latinx',
‘race___x@_International', 'race__x®_Native American',

‘race__x@_Other/Unknown', 'race_ x0 White',
‘transfer__x@_First-Time Transfer',
"transfer__x8_First-Time in College’',
‘transfer__x0_Florida Community College Transfer',
‘cip_marticulate__x8_10.8', 'cip_marticulate_ x0_11.0°',
‘cip_marticulate__x@_13.0', ‘cip_marticulate__x@_14.0',
‘cip_marticulate__x8_15.8', 'cip_marticulate__x0_16.9',
‘cip_marticulate__x8_19.8', ‘cip_marticulate__x@_22.9',
‘coop_ever__x@_Yes', 'AGE', 'sat_math'

Global Hyper-Parameters: n_estimators:30@ , max_depth: 39 , learning_rate:0.6, subsample:0.4,
colsample_bytree:8.34

Duration: 544,2166521549225 seconds

Number of evaluations:27

Found optimal after 2 rounds!

In [76]):

Figure 6.2: Example run of the framework

Using this package, it is possible to optimize hyper-parameters and features
simultaneously or independently. Although it is possible that users go with the
default parameters of the package, they can also modify the parameters with their
desirable values.

The preliminary results of our framework are shown in Table 6.2 and 5.6!. The
results show the effectiveness of the proposed algorithm on the presented datasets
and are promising. However, in order to optimize the hyper-parameters of ML
models, other HPO methods can be applied and each of these methods has its own
advantages and disadvantages. Currently, there are no unique optimization methods
that outperform all the existing methods due to the nature of the problem and the

type of hyper-parameters. Hence, this topic can be extended more comprehensively.

IThe PJM dataset is only evaluated on the HPO component of the HFO2 framework
as it has few number of features.
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Table 6.2: Performance on 3-fold cross-validation utilizing Hyper-parameter and
Feature Optimization (HFO2) to the ML models

’ Dataset \ RF \ XGBoost \ SVM/SVR ‘
Classification (Accuracy)

MIDFIELD 88.56 88.89 88.18
MNIST 97.38 97.38 99.22
Regression (RMSE)

Boston Housing 3.30 3.33 4.24
PIM 170.458 278.394 334.04

The results just shown indicate that ABC-HFO2 is effective at optimizing the
objective function. Although the use of cross-validation increases the tuning time
compared with using a single train and test set, it also substantially increases the
robustness of the algorithm against overfitting.

As can be seen from the results this is not sufficient to allow to conclude which
classifier /regressor clearly dominated the others and depending on the application
the selected model would be different.

Figure 6.3 shows a plot of accuracy over all the evaluations on the MNIST
dataset. Also, Figure 6.4 shows how the population of food sources improves over
20 iterations on the MNIST dataset. Each box shows the overall quality of the
population as well as the quartiles. In this example, the best accuracy at the end
of each iteration is the upper whisker value of each box. As can be seen, the
interquartile range (IQR), which assesses the variability where most of the values
lie, is increasing in each iteration. In another word, the central portion of the
population’s quality is improving and is a fair measure of the spread as it is not

affected by the outliers (found food sources found by scout bees).
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Figure 6.3: Accuracy over all the evaluations on the MNIST dataset.

0.974 A

0.972 A

0.970 A

Accuracy

4 5 6 7 8 91011121314 151617 1819 20
Ilteration Number

[
N H
w +

Figure 6.4: Classification accuracy on the MNIST dataset at the end of each iteration
using HFO2 algorithm
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6.4 Remarks

In this chapter, we covered the HFO2 python package developed for automated HPO
and FSO. This framework takes advantage of two modified ABC algorithms, tuning
the hyper-parameters of three classical ML algorithms and finding the datasets’ sub-
optimal subset of features. We have shown that the challenge of hyper-parameter
optimization and feature selection optimization can be solved by an automated
and practical tool. This is made possible by a modified version of the Artificial Bee
Colony algorithm (ABC) that iteratively builds models of the hyper-parameter /features
space and leverages these models to discover new points in the search space that
are potential for investigation. The modified algorithm is an effort to partly address
the disadvantage of the ABC algorithm (slow convergence) by limiting the number
of training on the configurations and training the model on only representatives of
configuration classes. Further, we leveraged an opposition-based step to the scout
phase of the ABC algorithm to balance the exploration and exploitation phases of
the ABC algorithm that the original algorithm lacks.

One of the main advantages of the proposed algorithm is that it offers fewer
hyper-parameters in comparison to other evolutionary algorithms such as genetic
algorithms, which avoids confusing the user by tuning the new algorithms’ hyper-
parameters.

In this work, we built a tool, ABC-HFO2, for three common ML algorithms,
namely RF, XGBoost, and SVM in Python and makes it easy for non-experts to
build well-performed and quality model application scenarios in hand. An empirical
comparison on 4 datasets showed that ABC-HFO2 often outperformed standard
methods. We have also written a freely downloadable Python library to make HFO2

is easy for end-users to access. We see several promising avenues for future work.
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In the next chapter, we conclude the work in this dissertation and provide insights

for future work.
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CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Conclusions

In this dissertation, an AutoML framework is proposed for classical ML algorithms.
It includes two main components as follows: (1) automatic hyper-parameter tuning
and (2) automatic feature selection. These components are integrated using evolu-
tionary optimization algorithms and as a coherent entity to provide new solutions for

existing challenges in the AutoML field. Each component is summarized as follows:

e A novel automated hyper-parameter tuning approach is proposed based on
the ABC algorithm to overcome the difficulties of tuning large-scale search
space and real-world data. Specifically, they are designed to tune the hyper-
parameters of the ML algorithms with wider ranges or more hyper-parameters
where the different configurations of hyper-parameters create a large search
space. A modified ABC, clustering and OBL algorithms are leveraged to
bridge the existing gaps and automatically tune the hyper-parameters. These
techniques are combined to solve four important applications. While such
algorithms improve the performance of classical ML algorithms for the specific
applications that we evaluated in this dissertation, there is not a theoretical
guarantee for convergence of the evolutionary optimization algorithm to the
globally-optimal solution, i.e., the results of hyper-parameter tuning are sub-

optimal.

e A novel feature selection algorithm is proposed to overcome the challenges
in filter or wrapper selection methods. This algorithm is a combination of

ABC, clustering, and OBL methods. It also takes advantage of filtering the
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poor configurations in the early stages of the algorithm to improve the conver-
gence rate of the algorithm. While such algorithms improve the performance
of classical ML algorithms for the specific applications that we evaluated in
this dissertation, there is not a theoretical guarantee for convergence of the
evolutionary optimization algorithm to the globally-optimal solution, i.e., the

results of feature selection are sub-optimal.

7.2 Future Work

Previous chapters showcased the effectiveness and efficiency of the proposed frame-
work (depicted in Figure 6.1) for classical ML. However, there are still several chal-

lenges that need to be considered in future work, as explained below.

7.2.1 Automated pre-processing step

In this dissertation, the proposed framework mainly focused on HPO and FSO,
which are two main components of the AutoML. However, a complete AutoML
pipeline can also include pre-processing step as well. This is the limitation of the
proposed HFO2 algorithm. Future work should focus on designing effective pre-
processing steps. In other words, instead of cleaning the data and then feeding it
to the framework, the user should be able to input the raw data and expect the
software to automatically clean the dataset and subsequently do the FSO and HPO
steps.

In addition to the main hyper-parameters of the ML algorithms, there exist other
hyper-parameters with less impact, which can still have an effect on the performance

of the model and can be automated. However, more advanced techniques are re-
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quired to select the best hyper-parameters that can both enhance the performance

and save training time.

7.2.2 Exploring deep learning algorithms

This dissertation mainly focuses on classical ML algorithms. Although integrating
deep learning models to this framework can be implemented, using more advanced
techniques for these algorithms that are time-consuming in nature can be explored
as future work [EMH19]. Prior works on this topic have explored using evolutionary

algorithms for convolutional neural networks [XY17].

7.2.3 Other Future Work
Other Modalities

The proposed AutoML framework utilizes different data modalities to improve clas-
sification/regression performance. The current framework is tested on structured
datasets. In the future, this framework can be extended to leverage other data
modalities such as non-structured data. It can also be utilized for not only classifi-
cation or regression tasks in supervised algorithms but also for other tasks such as

clustering or segmentation.

Unsupervised Learning

This dissertation utilizes various supervised learning techniques such as SVM, RF,
and XGBoost for building models. However, unsupervised ML algorithms are also

suggested to be explored and can be leveraged in our framework in the future.
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Big Data and Distributed Systems

This dissertation’s focus is mainly on improving algorithms for efficient HPO and
FSO. In the future, advanced big data analytic techniques, such as distributed
systems and cloud computing, will be used in this framework to further reduce
computational costs and enhance the speed of the training process. For example,
data parallelism and model parallelism techniques can be used to train ML models

in a distributed system.

Statistical Analysis

Last but not least, in future work, researchers can explore the design of experimental
techniques [EJKWT00, Antl4] to find statistical performance guarantees for the
HPO, FSO, and HPO+FSO algorithms that are developed in this dissertation for
classical and non-classical ML models. This will not only provide another practical
dimension to our proposed HPO+FSO solutions but also will provide future users

with a certain level of assurance while using the recommended techniques.
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