
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-14-2022

Honeypot-based Security Enhancements for Information Systems Honeypot-based Security Enhancements for Information Systems

Javier R. Franco
jfran243@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Franco, Javier R., "Honeypot-based Security Enhancements for Information Systems" (2022). FIU
Electronic Theses and Dissertations. 5113.
https://digitalcommons.fiu.edu/etd/5113

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F5113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.fiu.edu%2Fetd%2F5113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/5113?utm_source=digitalcommons.fiu.edu%2Fetd%2F5113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

HONEYPOT-BASED SECURITY ENHANCEMENTS FOR INFORMATION

SYSTEMS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Javier R. Franco

2022

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Javier R. Franco, and entitled Honeypot-based Security
Enhancements for Information Systems, having been approved in respect to style
and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kemal Akkaya

Alexander Perez-Pons

A. Selcuk Uluagac, Major Professor

Date of Defense: June 14, 2022

The dissertation of Javier R. Franco is approved.

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2022

ii

DEDICATION

To my family. Thank you for your love, sacrifices, and unwavering support.

iii

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Selcuk Uluagac, Director of the

Cyber-Physical Systems Security (CSL) lab, for all of his support, mentorship, and

guidance during my graduate studies. I would also like to express my gratitude to

my committee members, Dr. Kemal Akkaya and Dr. Alexander Perez-Pons for

their contributions. A very special thanks to Dr. Ahmet Aris, Dr. Abbas Acar,

and Dr. Leonardo Babun for their insights and guidance.

iv

ABSTRACT OF THE DISSERTATION

HONEYPOT-BASED SECURITY ENHANCEMENTS FOR INFORMATION

SYSTEMS

by

Javier R. Franco

Florida International University, 2022

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

The purpose of this thesis is to explore honeypot-based security enhancements

for information systems. First, we provide a comprehensive survey of the research

that has been carried out on honeypots and honeynets for Internet of Things (IoT),

Industrial Internet of Things (IIoT), and Cyber-physical Systems (CPS). We provide

a taxonomy and extensive analysis of the existing honeypots and honeynets, state

key design factors for the state-of-the-art honeypot/honeynet research and outline

open issues. Second, we propose S-Pot, a smart honeypot framework based on open-

source resources. S-Pot uses enterprise and IoT honeypots to attract attackers,

learns from attacks via ML classifiers, and dynamically configures the rules of SDN.

Our performance evaluation of S-Pot in detecting attacks using various ML classifiers

shows that it can detect attacks with 97% accuracy using J48 algorithm. Third,

for securing host-based Docker containers from cryptojacking, using honeypots, we

perform a forensic analysis to identify indicators for the detection of unauthorized

cryptomining, present measures for securing them, and propose an approach for

monitoring host-based Docker containers for cryptojacking detection. Our results

reveal that host temperature, combined with container resource usage, Stratum

protocol, keywords in DNS requests, and the use of the container’s ephemeral ports

are notable indicators of possible unauthorized cryptomining.

v

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Objectives . 2
1.2 Organization of the Thesis . 3

2. A SURVEY OF HONEYPOTS AND HONEYNETS FOR INTERNET OF
THINGS, INDUSTRIAL INTERNET OF THINGS, AND CYBER-PHYSICAL
SYSTEMS . 4

2.1 Introduction . 4
2.2 Related Work . 7
2.3 Background Information . 13
2.3.1 Honeypots and Honeynets . 13
2.3.2 Other Related Terms . 14
2.4 Classification Methodology . 16
2.5 Honeypots and Honeynets for Internet of Things 21
2.5.1 General Application Honeypots . 21
2.5.2 Research with IoT Honeypots and Honeynets with Full Device Emulation 25
2.5.3 Research with IoT Honeypots and Honeynets Focused on Type of Attack 28
2.6 Taxonomy of Honeypots and Honeynets for Internet of Things 35
2.6.1 Development of Research Over Time 36
2.6.2 Common Characteristics . 36
2.6.3 Level of Interaction . 37
2.6.4 Resource Level . 37
2.6.5 Scalability . 37
2.6.6 Application . 39
2.6.7 Simulated Services . 39
2.6.8 Availability of Open-Source Honeypot and Honeynet Solutions 39
2.6.9 Most Commonly Used Tools . 49
2.6.10 Most Common Attacks . 50
2.7 Honeypots and Honeynets for IIoT and CPS 50
2.7.1 Honeypots and Honeynets for Industrial Control Systems 50
2.7.2 Honeypots and Honeynets for Water Systems 55
2.7.3 Honeypots and Honeynets for Gas Pipelines 57
2.7.4 Honeypots and Honeynets for Building Automation Systems 57
2.7.5 Honeypots and Honeynets for IIoT . 58
2.8 Taxonomy of Honeypots and Honeynets for IIoT and CPS 58
2.8.1 Development of Research Over Time 59
2.8.2 Common Characteristics . 61
2.8.3 Level of Interaction . 62
2.8.4 Resource Level . 63

vi

2.8.5 Scalability . 63
2.8.6 Target IIoT and CPS Application . 64
2.8.7 Industrial Process Simulations . 64
2.8.8 Simulated Services . 79
2.8.9 Availability of Open-source Honeypot and Honeynet Solutions 79
2.8.10 Most Commonly Used Tools . 80
2.8.11 Most Common Attacks . 80
2.9 Lessons Learned and Open Issues . 81
2.9.1 Lessons Learned . 81
2.9.2 Open Issues . 89
2.10 Conclusion . 96

3. S-POT: A SMART HONEYPOT FRAMEWORK WITH DYNAMIC RULE
CONFIGURATION FOR SDN . 97

3.1 Introduction . 97
3.2 Related Work . 100
3.3 Background . 101
3.3.1 Software-Defined Networking . 101
3.3.2 Honeypots and Honeynets . 102
3.3.3 Intrusion Detection and Protection Systems 102
3.4 Problem Scope and Threat Model . 103
3.4.1 Problem Scope . 103
3.4.2 Threat Model . 104
3.5 S-Pot Framework . 105
3.5.1 Overview . 105
3.5.2 S-Pot Modules . 106
3.6 Performance Evaluation . 108
3.6.1 Implementation of S-Pot . 108
3.6.2 Data Collection and Processing . 111
3.6.3 S-Pot Classification Accuracy . 113
3.6.4 Performance Evaluation of the SDN Enterprise Network with S-Pot vs.

without S-Pot . 114
3.7 Conclusion . 116

4. FORENSIC ANALYSIS OF CRYPTOJACKING IN HOST-BASED
DOCKER CONTAINERS USING HONEYPOTS 118

4.1 Introduction . 118
4.2 Related Work . 121
4.3 Background . 122
4.3.1 Host-based Cryptojacking . 122
4.3.2 Stratum Protocol . 122
4.3.3 Docker Containers . 122
4.3.4 Honeypots and Honeynets . 123

vii

4.4 Problem Scope and Threat Model . 123
4.4.1 Problem Scope . 124
4.4.2 Threat Model . 124
4.5 Methodology . 125
4.5.1 Honeypot System Deployment . 125
4.5.2 Host Resource Data Collection . 127
4.5.3 Network Data Collection . 128
4.6 Data Analysis . 128
4.6.1 Host Resource Data Analysis . 128
4.6.2 Network Data Analysis . 130
4.7 Docker Container Security . 133
4.7.1 Stay Up to Date . 133
4.7.2 Resource Isolation and Management 133
4.7.3 Whitelisting/Blacklisting Rules in iptables 133
4.7.4 Principles of Least Privilege for Kernel Capabilities 134
4.7.5 Image Authentication . 134
4.8 Monitoring Host-based Docker Containers 134
4.9 Conclusion . 135

5. CONCLUDING REMARKS AND FUTURE WORK 137

BIBLIOGRAPHY . 139

VITA . 165

viii

LIST OF TABLES

TABLE PAGE

2.1 List of General IoT Honeypots . 22

2.2 List of IoT Honeypots for Full Device Emulation 25

2.3 List of IoT Honeypots that Focus on Specific Attacks 28

2.4 Classification of IoT Honeypots and Honeynets 40

2.4 Classification of IoT Honeypots and Honeynets 41

2.4 Classification of IoT Honeypots and Honeynets 42

2.5 Tools, Implementation and Attack Types of Honeypots and Honeynets
for IoT . 43

2.5 Tools, Implementation and Attack Types of Honeypots and Honeynets
for IoT . 44

2.5 Tools, Implementation and Attack Types of Honeypots and Honeynets
for IoT . 45

2.5 Tools, Implementation and Attack Types of Honeypots and Honeynets
for IoT . 46

2.5 Tools, Implementation and Attack Types of Honeypots and Honeynets
for IoT . 47

2.5 Tools, Implementation and Attack Types of Honeypots and Honeynets
for IoT . 48

2.6 List of Smart Grid Honeypots and Honeynets 52

2.7 List of ICS Honeypots for Water Systems 55

2.8 Classification of Honeypots and Honeynets for IIoT and CPS 65

2.8 Classification of Honeypots and Honeynets for IIoT and CPS 66

2.8 Classification of Honeypots and Honeynets for IIoT and CPS 67

2.8 Classification of Honeypots and Honeynets for IIoT and CPS 68

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 69

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 70

ix

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 71

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 72

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 73

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 74

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 75

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 76

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 77

2.9 Summary of Tools, Implementation, and Attack Types of Honeypots
and Honeynets for IIoT and CPS . 78

3.1 Performance Evaluation Results of S-Pot. 112

3.2 Components of the SDN Testbed Network. 115

4.1 Host Resource Data Collection . 129

x

LIST OF FIGURES

FIGURE PAGE

2.1 Basic honeynet architecture. 15

2.2 Classification categories of honeypots and honeynets for IoT, IIoT, and
CPS in which some of the items in the categorization build upon
[FDFV18,CPM15,ZKF19,RRM+18]. Details of works corresponding
to each category are tabulated in Tables I, II, and III. 16

2.3 Characteristics by level of interaction. 19

2.4 Evolution of inheritance for the IoT honeypot and honeynet models and
research. 38

2.5 Evolution of inheritance for the honeypots and honeynets of IIoT and
CPS. 59

3.1 Architecture of S-Pot. 104

3.2 An example Snort rule to block packets of SYN flood. 109

3.3 Confusion Matrix generated from the result of the classification of dif-
ferent types of attacks using J48 algorithm. 114

4.1 Honeypot system overview. 126

4.2 Suricata detection alert. 131

4.3 Minexmr packet information in Wireshark 132

4.4 Detection of the Stratum protocol in Wireshark 132

xi

CHAPTER 1

INTRODUCTION

The digital transformation has been converting all aspects of life in recent years.

The ever-growing number of Internet of Things (IoT) devices has exacerbated de-

mand on traditional networks, making it increasingly complex to manage and scale.

Furthermore, enterprise networks are becoming increasingly heterogeneous where

enterprise devices and IoT devices coexist, requiring tools for effective management

and security. Software-Defined Networking (SDN) has emerged in response to such

needs of modern networks. SDN emerged in response to these needs, transforming

networking infrastructure, moving the brain from network devices to a centralized

software controller [LSFF16]. More and more enterprise networks and global net-

work infrastructures are moving to SDN [The20b], and the market size of SDN is

expected to reach $59 billion by 2023 [Mar]. Alongside these fast-paced changes,

constantly evolving cyber threats are increasing in quantity and impact. The cost

of cybercrime is expected to reach $6 trillion in 2021, and reach $10.5 trillion in

2025 [Mor]. At the same time, blockchain-based cryptocurrencies have transformed

financial transactions and created opportunities to profit from generating new coins

through cryptomining. This has led to cybercriminals stealthily using their victim’s

computational power and resources for their own profit. Recent trends point to

an increase in targeting devices with greater processing power, such as host-based

Docker engines, through cryptojacking for faster and greater profit. Docker [Sas21]

has become one of the top three most popular development platforms [Sta20], and

thus a target for cyber criminals to maximize profit using host-based cryptojacking.

These realities demand further research to seek dynamic solutions. In order to

protect IoT, Industrial Internet of Things (IIoT), Cyber-Physical System (CPS),

and enterprise environments from malicious entities, honeypots and honeynets can

1

be used in conjunction with traditional security mechanisms to allow security re-

searchers to observe, analyze, and continuously learn from attacks to develop ef-

fective defense mechanisms [FDFV18]. In essence, a honeypot is a decoy that is

used to lure and deceive attackers into thinking they have accessed a real system

to gather information about their interaction with the honeypot [FACU21]. Re-

search honeypots have been a very active field of research during the last decade.

However, there have been few research studies on the use of honeypot data for de-

veloping security solutions for production purposes [FACU21]. Despite the wealth

of research in SDN security, none of the studies have benefited from honeypots for

production purposes for the security of SDN-based enterprise networks. Moreover,

the current literature has not explored cryptojacking targeting Docker containers

and its detection methods considering honeypots.

1.1 Objectives

The objectives of this thesis are summarized as follows:

• To provide a detailed analysis of honeypots and honeynets proposed for IoT,

IIoT, and CPS environments and a comprehensive analysis of IoT, IIoT, and

CPS honeypots and honeynets, including intriguing characteristics that are

shared by studies.

• To identify key design factors for future IoT, IIoT, and CPS honeypots and

honeynets, and present open research problems that still need to be addressed

in honeypot and honeynet research for IoT, IIoT, and CPS.

• To design, implement, and evaluate a novel, smart honeypot framework based

on open-source resources, that benefits from enterprise and IoT honeypots,

2

IDPS, and ML classifiers for securing SDN-based hybrid enterprise networks

through dynamic rules configuration.

• To identify key indicators for the detection of cryptomining in host-based

Docker containers through forensic analysis using honeypots, propose an ap-

proach for monitoring host-based Docker containers, and present countermea-

sures to protect them from cryptojacking attacks.

1.2 Organization of the Thesis

As part of this thesis, Chapter 2 provides a comprehensive survey on honeypot and

honeynet models that were proposed for IoT, IIoT, and CPS environments. Next,

Chapter 3 introduces a smart honeypot framework based on open-source resources,

that benefits from enterprise and IoT honeypots and integrates the use of IDPS

and ML for securing SDN-based hybrid enterprise networks through dynamic rules

configuration. Chapter 4 presents a forensic analysis for detecting unauthorized

cryptomining using honeypots, measures for securing host-based Docker containers,

and an approach for monitoring host-based Docker containers for cryptojacking

detection. Finally, in Chapter 5, we present concluding remarks and areas of

interest for future research.

3

CHAPTER 2

A SURVEY OF HONEYPOTS AND HONEYNETS FOR INTERNET

OF THINGS, INDUSTRIAL INTERNET OF THINGS, AND

CYBER-PHYSICAL SYSTEMS

2.1 Introduction

The Internet of Things (IoT) is a network of Internet-connected devices, such as

sensors, actuators, and other embedded devices that are able to collect data and

communicate. Industrial IoT (IIoT) is the application of IoT to automation ap-

plications using industrial communication technologies [SSH+18]. Cyber-Physical

Systems (CPS) on the other hand, are networks of devices such as sensors, actu-

ators, Programmable Logic Controllers (PLCs), Remote Terminal Units (RTUs),

Intelligent Electronic Devices (IEDs), and other embedded devices that monitor

and control physical processes in critical and non-critical application areas. CPS

includes, but is not limited to Industrial Control Systems (ICS), Smart Grid and

other smart infrastructures (e.g., water, gas, building automation), medical devices,

and smart cars [BARM17, HLLL17]. As it can be seen from the descriptions of

IoT, IIoT, and CPS, these concepts do not have explicit separation points. Border

et al. [BARM17] and the National Institute of Standards and Technology’s (NIST)

special report by Greer et al. [GBWG19] analyzed the definitions of IoT and CPS

in the literature and indicated that these concepts are viewed either as the same, or

different but they have overlapping parts, or they are subsets of each other. Greer

et al. [GBWG19] pointed out that IoT and CPS are similar as they both connect the

physical world of engineered systems and the logical world of communications and

information technology. These two worlds are connected by sensors that collect data

about the physical elements of a system and transmit it to the logical elements, and

4

to the actuators that respond to the logical elements and apply changes to the phys-

ical elements. At the same time, however, Greer et al. [GBWG19] stated that IoT

and CPS are different in that IoT places more emphasis on information technology

and networking things in the physical world, while CPS is more of a closed system

and is focused more on the exchange of information for sensing and controlling the

physical world. IIoT further connects the definitions of IoT and CPS, as it possesses

characteristics from both.

IoT, IIoT, and CPS are converting almost every aspect of life to smart in the 21st

century. Sensors, actuators, wearables, embedded devices, and many other devices

are becoming ubiquitous around the world with uses in diverse contexts such as

homes, buildings, cities, health, transportation, automotive, manufacturing, critical

(e.g., nuclear reactors, power plants, oil refineries) and non-critical infrastructures,

and agriculture. While this promises connectivity and efficiency, the various de-

vices in IoT, IIoT, and CPS environments have their unique properties in terms

of resource limitations, network lifetimes, and application Quality-of-Service (QoS)

requirements which affect the security of such applications crucially [MAL+19].

IoT devices typically have constrained power, storage, computing, and com-

munications resources which limit the accommodation of good security mecha-

nisms [MCZ+19, NBHC+19]. On the other hand, devices used in IIoT and CPS

were not initially designed with security in mind and they had been considered se-

cure, as they were isolated. This security by obscurity assumption was broken by the

uncovering of the Stuxnet (2010), DuQu (2011), and Flame (2012) attacks [Sco14].

As an increasing number of industrial environments are being connected to the In-

ternet, security updates and patches are becoming serious problems in decades-old

industrial devices [SCGM13,Sco14,YKYZ21,LBAU17].

5

In order to protect IoT, IIoT, and CPS environments from malicious entities,

traditional security mechanisms such as cryptography, firewalls, Intrusion Detection

and Prevention Systems (IDS, IPS), antivirus, and anti-malware solutions can be

utilized. However, they do not transparently allow security researchers to observe

and analyze how attackers perform attacks and find out their behaviors [FDFV18].

Honeypots and honeynets come to the scene as viable solutions at this point, as they

can provide actionable intelligence on the attackers. A honeypot is a tool that is

used with the purpose of being attacked and possibly compromised [Spi01]. Two or

more honeypots implemented on a system form a honeynet [KV17]. Honeypots are

used to attract attackers and deceive them into thinking that they gained access to

real systems. Honeypots can be integrated with firewalls and IDSs to form an IPS

in order to capture all the information about attackers, study all of their actions,

develop ways to improve system security and prevent attacks in the future [FDFV18].

Although there exist a number of honeypot and honeynet works on IoT, IIoT,

or CPS, no study exists in the literature which considers all of the honeypot and

honeynet models, analyzes their similarities and differences, and extracts key points

in the design and implementation of honeypots and honeynets for IoT, IIoT, and

CPS. In order to fill this important research gap, we propose our comprehensive

survey on honeypot and honeynet models that have been proposed for IoT, IIoT,

and CPS environments over the period 2002-2020. To the best of our knowledge,

our work is the first study in the literature that surveys the current state-of-the-art

honeypot and honeynet models not only for IoT, but also for IIoT and CPS.

Contributions: The contributions of our survey are as follows:

• Taxonomy of honeypots and honeynets proposed for IoT, IIoT, and CPS en-

vironments,

6

• Comprehensive analysis of IoT, IIoT, and CPS honeypots and honeynets, and

intriguing characteristics that are shared by studies,

• Statement of the key design factors for future IoT, IIoT, and CPS honeypots

and honeynets,

• Presentation of open research problems that still need to be addressed in

honeypot and honeynet research for IoT, IIoT, and CPS.

Organization: The chapter is organized as follows: Section 2.2 gives the related

work. Section 2.3 provides background information on honeypots, honeynets, and

related terms. Section 2.4 provides a methodology for the classification of honeypot

and honeynet characteristics. Section 2.5 classifies and presents diverse IoT hon-

eypot and honeynet models and research. Section 2.6 presents a taxonomy of the

proposed IoT honeypot and honeynet models. Section 2.7 classifies and presents

diverse CPS and IIoT honeypot and honeynet models and research. Section 2.8

presents a taxonomy of the proposed CPS and IIoT honeypot and honeynet mod-

els. Section 2.9 provides lessons learned and design considerations for honeypot

and honeynet implementations. In Section 2.10, conclusions and future work are

presented.

2.2 Related Work

The security of IoT, IIoT, and CPS environments is a very broad field of research,

and it is possible to find a myriad of studies. Without going into much detail, we refer

the readers to the works of Butun et al. [BÖS20] and Makhdoom et al. [MAL+19]

for extensive overviews of vulnerabilities, threats, and attacks, the security surveys

of Lee et al. [LSOK21] on IoT standards and Granjal et al. [GMSS15] on the existing

IoT protocols, the study of Neshenko et al. [NBHC+19] for a recent comprehensive

7

IoT security survey, the study of Sikder et al. [SPA+21] for a survey of threats

to IoT sensors, the study of Humayed et al. [HLLL17] for an extensive survey on

the threats, vulnerabilities, attacks, and defense solutions to CPS, the survey of

Al-Garadi et al. [AGMAA+20] for machine and deep learning techniques for IoT

security, the comprehensive survey of Yu et al. [YKYZ21] for CPS security and

Cintuglu et al. [CMAU17] for CPS testbeds. There are also studies like that of

Babun et al. [BAR+20] which develop innovative ways to protect networks with

vulnerable IoT devices.

The honeypot and honeynet research has been a very active field. In terms of

general honeypots and honeynets that are not specific to IoT, IIoT, or CPS, Fan et.

al. [FDF15] proposed criteria and a methodology for the classification of honeynet

solutions and analyzed the advantages and disadvantages of each criterion used in

their taxonomy. In 2018, Fan et al. [FDFV18] expanded on their earlier research

and proposed a taxonomy of decoy systems with respect to decoys and captors.

There also exist other survey studies on general honeypot and honeynet solutions,

which include but are not limited to [MBVJ11,CPM15], and [ZKF19]. In addition,

privacy and liability issues when honeypots are deployed were analyzed by Sokol et

al. [SA15,SHL15]. In terms of honeypots and honeynets for IoT, IIoT, and CPS, only

a few surveys exist in the literature. Razali et al. [RRM+18] analyzed types, prop-

erties, and interaction levels of IoT honeypots and classified honeynet models based

on interaction, resources, purpose, and role. Dalamagkas et al. [DSI+19] surveyed

the honeypot and honeynet frameworks for smart-grid environments. Dowling et

al. [DSM17a] proposed a framework for developing data-centric, adaptive smart city

honeynets that focus on the key values of data complexity, security, and criticality.

Furthermore, Neshenko et al. [NBHC+19] discussed the IoT and CPS honeypots in

8

their survey on IoT security. However, they did not provide a comprehensive survey

on such honeypots since the focus of their study was on the security of IoT.

In addition to proposing novel honeypot/honeynet models or surveying the ex-

isting studies, there has been research on the development of honeynet description

languages and also on the detectability of honeypots. Fan et al. [FFV15] presented

a technology-independent, flexible honeynet description language and a tool called

HoneyGen for the deployment and modification of virtual honeynets based on the

VNX and Honeyd platforms. Acien et al. [ANFL18] analyzed the steps and require-

ments to deploy honeypots in IoT environments effectively in a way that they can

look like real devices to attackers. Surnin et al. [SHH+19] focused on techniques for

honeypot detection with SSH and Telnet, identifying issues of software architecture

and implementation that make honeypots easily detected [Sur]. Zamiri-Gourabi et

al. [ZGQA19] proposed a methodology to detect the ICS honeypots deployed on the

Internet by means of fingerprinting methodologies.

Differences from the existing work: While the recent years have seen an increase

in honeypot and honeynet research, our study is different because it is the first

comprehensive study that analyzes the existing honeypot and honeynet models and

research for IoT, IIoT, and CPS environments holistically, provides a taxonomy of

honeypots and honeynets and identifies key design considerations and open issues

for honeypots and honeynets in IoT, IIoT, and CPS.

The Internet of Things (IoT) is a network of Internet-connected devices, such

as sensors, actuators, and other embedded devices that are able to collect data and

communicate. Industrial IoT (IIoT) is the application of IoT to automation ap-

plications using industrial communication technologies [SSH+18]. Cyber-Physical

Systems (CPS) on the other hand, are networks of devices such as sensors, actu-

ators, Programmable Logic Controllers (PLCs), Remote Terminal Units (RTUs),

9

Intelligent Electronic Devices (IEDs), and other embedded devices that monitor

and control physical processes in critical and non-critical application areas. CPS

includes, but is not limited to Industrial Control Systems (ICS), Smart Grid and

other smart infrastructures (e.g., water, gas, building automation), medical devices,

and smart cars [BARM17, HLLL17]. As it can be seen from the descriptions of

IoT, IIoT, and CPS, these concepts do not have explicit separation points. Border

et al. [BARM17] and the National Institute of Standards and Technology’s (NIST)

special report by Greer et al. [GBWG19] analyzed the definitions of IoT and CPS

in the literature and indicated that these concepts are viewed either as the same, or

different but they have overlapping parts, or they are subsets of each other. Greer

et al. [GBWG19] pointed out that IoT and CPS are similar as they both connect the

physical world of engineered systems and the logical world of communications and

information technology. These two worlds are connected by sensors that collect data

about the physical elements of a system and transmit it to the logical elements, and

to the actuators that respond to the logical elements and apply changes to the phys-

ical elements. At the same time, however, Greer et al. [GBWG19] stated that IoT

and CPS are different in that IoT places more emphasis on information technology

and networking things in the physical world, while CPS is more of a closed system

and is focused more on the exchange of information for sensing and controlling the

physical world. IIoT further connects the definitions of IoT and CPS, as it possesses

characteristics from both.

IoT, IIoT, and CPS are converting almost every aspect of life to smart in the 21st

century. Sensors, actuators, wearables, embedded devices, and many other devices

are becoming ubiquitous around the world with uses in diverse contexts such as

homes, buildings, cities, health, transportation, automotive, manufacturing, critical

(e.g., nuclear reactors, power plants, oil refineries) and non-critical infrastructures,

10

and agriculture. While this promises connectivity and efficiency, the various de-

vices in IoT, IIoT, and CPS environments have their unique properties in terms

of resource limitations, network lifetimes, and application Quality-of-Service (QoS)

requirements which affect the security of such applications crucially [MAL+19].

IoT devices typically have constrained power, storage, computing, and com-

munications resources which limit the accommodation of good security mecha-

nisms [MCZ+19, NBHC+19]. On the other hand, devices used in IIoT and CPS

were not initially designed with security in mind and they had been considered se-

cure, as they were isolated. This security by obscurity assumption was broken by the

uncovering of the Stuxnet (2010), DuQu (2011), and Flame (2012) attacks [Sco14].

As an increasing number of industrial environments are being connected to the In-

ternet, security updates and patches are becoming serious problems in decades-old

industrial devices [SCGM13,Sco14,YKYZ21,LBAU17].

In order to protect IoT, IIoT, and CPS environments from malicious entities,

traditional security mechanisms such as cryptography, firewalls, Intrusion Detection

and Prevention Systems (IDS, IPS), antivirus, and anti-malware solutions can be

utilized. However, they do not transparently allow security researchers to observe

and analyze how attackers perform attacks and find out their behaviors [FDFV18].

Honeypots and honeynets come to the scene as viable solutions at this point, as they

can provide actionable intelligence on the attackers. A honeypot is a tool that is

used with the purpose of being attacked and possibly compromised [Spi01]. Two or

more honeypots implemented on a system form a honeynet [KV17]. Honeypots are

used to attract attackers and deceive them into thinking that they gained access to

real systems. Honeypots can be integrated with firewalls and IDSs to form an IPS

in order to capture all the information about attackers, study all of their actions,

develop ways to improve system security and prevent attacks in the future [FDFV18].

11

Although there exist a number of honeypot and honeynet works on IoT, IIoT,

or CPS, no study exists in the literature which considers all of the honeypot and

honeynet models, analyzes their similarities and differences, and extracts key points

in the design and implementation of honeypots and honeynets for IoT, IIoT, and

CPS. In order to fill this important research gap, we propose our comprehensive

survey on honeypot and honeynet models that have been proposed for IoT, IIoT,

and CPS environments over the period 2002-2020. To the best of our knowledge,

our work is the first study in the literature that surveys the current state-of-the-art

honeypot and honeynet models not only for IoT, but also for IIoT and CPS.

Contributions: The contributions of our survey are as follows:

• Taxonomy of honeypots and honeynets proposed for IoT, IIoT, and CPS en-

vironments,

• Comprehensive analysis of IoT, IIoT, and CPS honeypots and honeynets, and

intriguing characteristics that are shared by studies,

• Statement of the key design factors for future IoT, IIoT, and CPS honeypots

and honeynets,

• Presentation of open research problems that still need to be addressed in

honeypot and honeynet research for IoT, IIoT, and CPS.

Organization: The chapter is organized as follows: Section 2.2 gives the related

work. Section 2.3 provides background information on honeypots, honeynets, and

related terms. Section 2.4 provides a methodology for the classification of honeypot

and honeynet characteristics. Section 2.5 classifies and presents diverse IoT hon-

eypot and honeynet models and research. Section 2.6 presents a taxonomy of the

proposed IoT honeypot and honeynet models. Section 2.7 classifies and presents

diverse CPS and IIoT honeypot and honeynet models and research. Section 2.8

12

presents a taxonomy of the proposed CPS and IIoT honeypot and honeynet mod-

els. Section 2.9 provides lessons learned and design considerations for honeypot

and honeynet implementations. In Section 2.10, conclusions and future work are

presented.

2.3 Background Information

In this section, we give some brief information on honeypots, honeynets, and other

related terms.

2.3.1 Honeypots and Honeynets

A honeypot is a tool that serves as a decoy to attract attackers and deceive them

into thinking that they have gained access to a real system. There exist various

views of a honeynet: A honeynet can be defined simply as two or more honeypots

implemented on a system [KV17], or in a more narrow definition, a honeynet is

a high interaction honeypot system of Generation I, II, or III [Hon01]. Although

honeypots and honeynets are defined in the mentioned ways, it is interesting to note

that very few authors refer to their honeypot system as a honeynet, despite their

research implementing multiple honeypots. For instance, as it will be reviewed in the

following sections, only a few honeypots ([A.G17,Evr16,PB16,HMP+20,LFR+16])

in the literature were implemented with a single honeypot. For this reason, we

adhered to the statements of authors about their view of their systems as honeypots

or honeynets while we are reviewing the studies in this survey.

Three main architectures/generations that are used in honeynets are described

in [OKK18]. Generation I was developed in 1999 and is composed of a firewall and

an IDS, with honeypots behind these. Generation I can capture in-depth information

13

and unknown attacks. However, Generation I honeynets can be easily detected

by attackers. Generation II was developed in 2002 and had a honeynet sensor

that serves the purpose of the IDS sensor and of the firewall used in Generation I.

This sensor works like a bridge, so it is much more difficult for attackers to detect

that they are in a honeynet. Generation III was developed in 2004 and had the

same architecture as Generation II but has improved deployment and management

capabilities.

Figure 2.1 depicts a basic honeynet architecture. There are three essential ele-

ments to any honeynet: data control, data capture, and data collection. Data control

involves controlling the flow of data so that the attackers do not realize they are in a

honeynet and making sure that if the honeynet is compromised, it will not be used

to attack other systems. The data capture involves capturing all the data regarding

movements and actions within the honeynet [Hon01]. The data collection involves

the ability to securely transfer all the captured data to a centralized place [FDF15].

Honeypots and honeynets can be deployed at various locations. They can be de-

ployed at cloud computing environments (e.g., Amazon EC2), Demilitarized Zones

(DMZ) of enterprise networks, actual application/production environments (e.g., at

an IoT, IIoT, or CPS network), and private deployment environments with public

IP addresses. Each of these deployment options has its own advantages and dis-

advantages. In addition, the decision of the deployment environment may have an

effect on the choice of the most appropriate type of honeypot or honeynet.

2.3.2 Other Related Terms

Other concepts and terms exist related to honeypots and honeynets for IoT, IIoT,

and CPS applications. These are testbeds, network emulators, and simulation frame-

14

Router

Internet

Honeynet sensor /
Fir ewall + IDS

 External
User

HoneypotVir tual-PC IoT Device

Terminal

Honeypot

Honeypot

Anom alous t r af f i c

Attacker

Ser ver
 Log Ser ver

(Data Capture)

(Data Collection)

(Data Control)

Figure 2.1: Basic honeynet architecture.

works. Similar to honeypots and honeynets, such systems simulate or emulate de-

vices, protocols, or even provide a physical environment where CPS devices operate

and communicate using industrial protocols. However, unlike honeypots and hon-

eynets, they do not act as decoy systems that aim to grab the attention of attackers

and analyze their attacks. As we explain in the following sections, honeypot and

honeynet researchers used such tools to create their decoy systems. The MiniCPS

framework [AT15], the IMUNES emulator/simulator [Zec03], the GridLab-D power

15

distribution simulator [Gri20], the SoftGrid smart grid security toolkit [GMC16], the

PowerWorld simulator [Pow20], and the Mininet emulator [LHM10] were all used in

a number of studies to simulate protocols, emulate devices and scale decoy systems.

Front-end and back-end are also related terms that are used in various studies. The

front-end of a honeypot/honeynet system is the part attackers interact with and

gathers data, while the back-end receives data from the front-end for analysis, de-

cryption, and storage. Self-adapting refers to the ability of a honeypot to analyze

information and adapt its responses or behavior accordingly in order to accomplish

its purpose better.

2.4 Classification Methodology

Classification of IoT,
IIoT, and CPS

Honeypots/Honeynets

Purpose

Research

Production

Server

Client

Role

Low

Medium

Level of
Interaction

High

Hybrid

Scalable

Not Scalable

Scalability

Physical

Virtual

Resource Level

Hybrid

Open-Source

Not Open-
Source

Availability of
Source Code

IoT

IIoT

Application

CPS

Figure 2.2: Classification categories of honeypots and honeynets for IoT, IIoT, and
CPS in which some of the items in the categorization build upon [FDFV18,CPM15,
ZKF19, RRM+18]. Details of works corresponding to each category are tabulated
in Tables I, II, and III.

Honeypots and honeynets can be classified in various ways. In order to clas-

sify the honeypots and honeynets for IoT, IIoT, and CPS in this survey, we build

upon prior surveys [FDFV18, CPM15, ZKF19, RRM+18]. However, our classifica-

tion in this work improves the existing works by identifying some of the recurring

16

key characteristics of the surveyed works. Specifically, we classify the honeypots

and honeynets for IoT, IIoT, and CPS with respect to their purpose, role, level of

interaction, scalability, resource level, availability of the source code, and their appli-

cation as shown in Fig. 2.2. We also consider the simulated services, the inheritance

relationships between the honeypots and honeynets, the platforms they were built

on, and the programming languages they used.

Classification by Purpose: Honeypots can be categorized into two classes based

on the purpose for which they were created: research and production honeypots.

Research honeypots are used to gather and analyze information about attacks in

order to develop better protection against those attacks. Production honeypots

are more defense-focused. They are usually implemented to keep an attacker from

accessing the actual system of the organization that implements it [Spi01].

Classification by Role: Role refers to whether a honeypot actively detects or

passively captures traffic. A client honeypot can actively initiate a request to a

server to investigate a malicious program while a server honeypot waits for attacks.

The great majority of honeypots are server honeypots [FDFV18].

Classification by Level of Interaction: Honeypots can be classified by the level of

interaction that they allow to the attacker: low interaction, medium interaction, high

interaction, and hybrid. Low interaction honeypots emulate one or more services

with simple functions and do not give access to an operating system. The benefits of

low interaction honeypots are ease of setup, low risk, low cost, and low maintenance.

However, low interaction honeypots are identified much more easily by attackers

because of their limitations, and the information they gather is limited and has low

fidelity [RRM+18].

High interaction honeypots provide much more interaction, not only emulating

services but also allowing access to an operating system [RRM+18]. While some of

17

the research refers to high interaction when a honeypot is created using real devices,

other works also include virtual environments that emulate complete devices and

services as high interaction. High interaction honeypots collect information about all

of the attacker’s movements and actions, which is an advantage of high interaction

honeypots because the information gathered has high fidelity. However, they come

with high risk because everything they allow attackers to access is on real resources

to gather more information. Moreover, they are more complex to set up, they

collect much more data, and they are more difficult to maintain and run [RRM+18].

Once they are compromised, rebuilding them becomes necessary. Also, attackers

can compromise them to attack other targets, which creates liability issues.

As the name indicates, medium interaction honeypots provide a level of interac-

tion in-between a low and a high interaction honeypot. Although there are different

perspectives on whether they have a real operating system or an emulated operating

system, they do emulate more services than a low-interaction honeypot, providing

for more interaction which increases risk, and makes them more difficult to detect

compared to low interaction honeypots.

Figure 2.3 shows how the level of interaction varies in relation to the different

characteristics. This should be seen as more of a fluid continuum rather than set

characteristics.

A mix of honeypots with different levels of interaction implemented in the same

system is called a hybrid honeynet. Hybrid honeynets are able to provide a better

balance by providing the benefits of each type of honeypot [DSI+19].

Classification by Scalability: Scalability refers to the ability of a honeypot to

grow and provide more decoys. An unscalable honeypot has only a certain number

of decoys and cannot be changed. A scalable honeypot can expand the number of

decoys it deploys and monitors [FDFV18]. Scalability is important because various

18

honeypots implemented together in a honeynet provide greater protection, services,

data collection, and variety of data compared to a single honeypot. Physical honey-

pots are usually harder to scale because of the resources needed. High-interaction

honeypots also tend to have lower scalability because of their complexity.

Classification by Resource Level: The type of resources used to create the hon-

eypot system can be physical or virtual. A physical honeypot system is composed

IoT CPSIndustrial
Application

IIoT

Low		
Interaction

Medium
Interaction

High	
Interaction

-																																Interaction	permitted	to	attackers																													+

Cost

Difficulty	of	Implementation

Risk

Maintenance

+																																											Scalability																																																									-

Difficulty	of	Detection

Information	gathering	/	Fidelity

Emulated	Applications
Emulated	Operating

System

Real	Applications	
Real	Operating	System

More	Emulated
Applications	and	Real
or	Emulated	Operating

System

Risk

Cost

-																																Interaction	permitted	to	attackers																													+

Figure 2.3: Characteristics by level of interaction.

19

of several honeypots running on physical machines, while a virtual honeypot system

is made up of virtual honeypots that are hosted on one or more physical machines.

Physical honeypots have high interaction and have more data capture fidelity than

virtual honeypots. However, they are more costly and require more resources to im-

plement. Virtual honeypots require fewer resources to implement and are therefore

less costly. A hybrid honeynet that uses both physical and virtual honeypots is able

to better balance cost and data capture fidelity [FDF15].

Classification by Availability of Source Code: Open-source refers to a software’s

source code being released in a way that anyone can have access to it, modify

it, and/or distribute it. Open-source software allows for collaborative development.

Not all of the honeypot and honeynet authors provide the source code of their decoy

systems. Making the source code available allows other researchers and developers

to understand and improve the existing honeypots and honeynets.

Classification by Application: Application refers to the intended application for

which the honeypot system is created. In this survey, we classify the IoT honeypot

systems as general use, IoT, or Smart Home IoT. General use honeypots are those

that were not originally created for IoT. However, these are relevant because they

have subsequently been used in research with IoT honeypots. IoT honeypots target

general IoT applications. IoT Smart Home honeypots are honeypots with a specific

focus on applications for Smart Home uses. We classify the CPS and IIoT honeypot

systems as ICS, Smart Grid, Water System, Gas System, Building Automation

System, and IIoT applications. Although the boundary between ICS and other

smart infrastructures are not very obvious, we adhere to the authors’ statements

about their honeypots in this study for the classification by application purposes.

20

2.5 Honeypots and Honeynets for Internet of Things

In this section, we give a brief overview of honeypot and honeynet studies for IoT.

First, we identify some general application honeypots available. Next, we present

the research with IoT honeypots and honeynets with full device emulation. Finally,

we present the IoT honeypot and honeynet research focused on the type of attack.

We would like to note that, unless otherwise stated, honeypots reviewed in this

section are in the role of server honeypots.

2.5.1 General Application Honeypots

There are various general application honeypots that have an inheritance relation-

ship with later research and honeypots for IoT applications. In other words, while

these honeypots and honeynets were not specifically created for IoT, they are being

used in research for IoT honeypots and honeynets. It is important to note that all

of these are open-source, except for the Adaptive Honeypot Alternative (AHA) with

Rootkit Detection [Pau12]. Table 2.1 provides a list of the considered general IoT

honeypots.

Honeyd : HoneyD [Pro07a] is an open-source software for the creation of low

interaction, scalable honeypots. Honeyd creates virtual honeypots, but it also allows

physical machine integration. It can simulate UDP, TCP, FTP, SMTP, Telnet, IIS,

and POP services. Stafira [Sta19] examined if HoneyD is able to create effective

honeypots to attract attackers. They compared honeypots simulating IoT devices

with real devices. The results showed that, although the content served by both

honeypots and real devices were similar, there are significant differences between

average times for query responses and Nmap scans.

21

Table 2.1: List of General IoT Honeypots

Honeypot Interaction Level Simulated Services
HoneyD [Pro07a] Low FTP, SMTP, Telnet, IIS, POP
Dionaea [Din] Medium Black hole, EPMAP, FTP, HTTP,

Memcache, MongoDB, MQTT,
MySQL, Nfq, PPTP, SIP, SMB,
TFTP, UPnP

Kippo [Kip16] Medium SSH
Cowrie [Cow19] Medium/High SSH, Telnet, SFTP, SCP
HoneyPy [foo13] Low/Medium Created as required
AHA [Wag11] Low/High SSH
AHA with Rootkit
Detection [Pau12]

Medium SSH

RASSH [PB14] Medium SSH
QRASSH [PIB18] Medium SSH

Dionaea: Dionaea [Din] is an open-source software for the creation of medium in-

teraction honeypots that can simulate several services (e.g., FTP, HTTP, MongoDB,

MQTT, MySQL, SIP, SMB, TFTP, UPnP, etc.) [Dio15]. It targets adversaries that

attack hosts on the Internet with vulnerable services. Since adversaries try to install

malware on the infected hosts, Dionaea aims to obtain a copy of malware and help

researchers to analyze it. Dionaea has a static configuration, which makes it difficult

to adapt the configuration as needed to respond to events [FDFV18]. Metognon et

al. [MS18] used Dionaea in their IoT honeypot research. Kaur and Pateriya [KP18]

proposed the setup of a cost-effective honeypot for IoT using Dionaea on Raspberry

Pi and analyzed captured data using VirusTotal tool and Shodan search engine to

identify the characteristics and vulnerabilities of devices in order to improve their

security.

Kippo: Kippo [Kip16] is an open-source, medium interaction, scalable honeypot.

It focuses on SSH, and it logs brute force attacks, as well as interactions from au-

tomated or individual attacks [DSM17b]. Dowling et al. [DSM17b] modified Kippo

22

in order to implement a ZigBee IoT honeypot. Kippo is chosen because of the high

number of attacks that SSH receives. Pauna [PB14] used Kippo for the creation of

Reinforced Adaptive SSH (RASSH) honeypot.

Adaptive Honeypot Alternative (AHA): Wagener [Wag11] used both a low- and a

high-interaction honeypot to gather data from attackers. With this data, he applied

game-theory and Machine Learning (ML) techniques to develop a self-adaptive SSH

honeypot called Adaptive Honeypot Alternative (AHA) [G.W18]. While Wagener

does not implement his honeypot in an IoT environment, his honeypot serves as

the basis for Pauna’s works [Pau12,PB14,PIB18,PBPC19]. Wagener reported that

attackers carried out three times more interactions when they were responding to

the customized tools of an adaptive honeypot, which shows the important role that

adaptive honeypots can play in honeypot research.

AHA with Rootkit Detection: In 2012, Pauna [Pau12] improved on Wagener’s

adaptive honeypot, creating a medium interaction, scalable, virtual honeypot with

the ability to detect rootkit malware installed by attackers. Pauna’s honeypot re-

sides on the Argos emulator as a guest OS, and utilizes Argos to detect rootkit

malware. This research was followed by [PB14,PIB18,PBPC19].

RASSH : In 2014, Pauna et al. presented an adaptive honeypot, RASSH [PB14],

which uses a medium-interaction Kippo honeypot integrated with two modules: Ac-

tions module and Reinforcement Learning module. RASSH interacts with attackers

and takes dynamic actions (e.g., allowing, blocking, delaying, etc.) using the Re-

inforcement Learning module. This research was followed by [PIB18] [PBPC19],

which led to the creation of IRASSH-T [Pau18a] self-adaptive IoT honeypot.

Cowrie: Cowrie [Cow19] is a software for the creation of medium to high in-

teraction, scalable, virtual honeypots. As a medium interaction honeypot, it logs

an attacker’s shell interaction on a simulated UNIX system via emulating several

23

commands. As a high interaction honeypot, it is a proxy for SSH and Telnet to

observe an attacker’s interaction on another system. To be more specific, it can

act as a proxy between an attacker and a pool of virtual machines configured in a

backend site which allows flexibility. Cowrie was forked from Kippo honeypot and

simulates SSH, Telnet, SFTP, SCP, and TCP/IP services. It supports integration

to ElasticSearch, LogStash, and Kibana for logging, storage, and visualization. It

has been used in the IoT honeypot research for Metognon et al. [MS18], IRASSH-

T [PBPC19], ML-Enhanced Cowrie [SBH19], and Lingenfelter et al. [LVS20].

HoneyPy : HoneyPy [foo13] is a software for the creation of low to medium inter-

action honeypots, depending on services that are simulated. HoneyPy comes with

a large range of plugins that can be used for simulating services such as DNS, NTP,

SIP, SMTP, web, etc. It can also be configured to run with custom configurations

as needed. HoneyPy provides researchers several options for logging, which include

but are not limited to ElasticSearch, Logstash, RabbitMQ, Slack, Splunk, Twitter.

In this way, external services can be used to analyze HoneyPy logs. Metognon et

al. [MS18] used HoneyPy in their IoT honeypot research.

QRASSH : In 2018, Pauna et al. [PIB18] proposed another SSH honeypot, namely

Q Reinforced Adaptive SSH (QRASSH) [Pau18b] honeypot, which uses Cowrie and

Deep Q-learning. However, Pauna et al. identified that the reward functions in

the algorithms used in QRASSH were subjective. For this reason, they proposed

further research for being able to generate optimal reward functions for the desired

behavior. This study was further advanced in [PBPC19] and led to the creation of

IoT Reinforced Adaptive SSH (IRASSH-T) [Pau18a] honeypot.

Metongnon and Sadre: Metongnon and Sadre [MS18] carried out a measurement

study to observe attacks against protocols that are commonly used by IoT devices.

They used a large /15 network telescope to observe large-scale events/traffic on the

24

dark address-space of the Internet. They deployed three honeypots: Cowrie [Cow19],

HoneyPy [foo13], and Dionaea [Dio15] to get more details about specific attacks.

The top three most attacked protocols observed via telescope were Telnet (Ports

23 and 2323), SSH (Port 22), and HTTP(S) (Ports 80, 81, 8080, 443). The most

attacked protocols observed on the honeypots were Telnet, SMB, and SSH.

2.5.2 Research with IoT Honeypots and Honeynets with

Full Device Emulation

IoT honeypots and honeynets that provide full device emulation provide the most

versatility. Full device emulation allows for greater realism and increases the diffi-

culty for attackers to detect it as a honeypot. In this section, only those honeypot-

s/honeynets which have the ability to fully emulate all kinds of devices are included.

It is important to note that five of the six IoT honeypot/honeynet studies which are

identified as providing full device emulation are also self-adaptive. Table 2.2 pro-

vides a list of the considered IoT honeypots that perform full IoT device emulation.

Table 2.2: List of IoT Honeypots for Full Device Emulation

Honeypot Interaction Level Emulated Devices
FIRMADYNE
[CEWB16b]

High COTS network-enabled IoT devices

ThingPot [WSK18] Medium Philips Hue, Belkin, Wemo, Tplink
ML-Enhanced
ThingPot [VJ19]

Medium General IoT devices

IoTCandyJar
[LXJ+17]

Intelligent General IoT devices

Chameleon [Zho19] Hybrid Any real IoT device
Honware [VC19] High CPE devices

25

FIRMADYNE : Chen et al. [CEWB16b] presented FIRMADYNE [CEWB16a],

an open-source, extensible, self-adaptive automated framework for discovering vul-

nerabilities in commercial-off-the-shelf network-enabled devices. FIRMADYNE works

by emulating the full system with an instrumented kernel. It has a web crawler com-

ponent to download firmware images and their metadata, an extract firmware filesys-

tem, an initial emulation component, and a dynamic analysis component. FIRMA-

DYNE was evaluated using a real-world dataset of more than 23,000 firmware images

from 42 device vendors and 74 exploits. Out of 9,486 firmware images that were suc-

cessfully extracted, 887 prove vulnerable to at least one exploit, and 14 previously

unknown vulnerabilities were discovered.

ThingPot and ML-Enhanced ThingPot : Wang et al. [WSK18] proposed Thing-

Pot [Wan17], a medium-interaction, scalable, virtual open-source honeypot that

simulates the complete IoT platform and all supported application layer protocols.

ThingPot was tested for 45 days with Extensible Messaging and Presence Protocol

(XMPP) and REST API, and most of the captured requests were HTTP REST

requests. The authors noted that the attackers were looking for certain devices like

Philips Hue, Belkin, Wemo, and TPlink, scanning to get information about the de-

vices, and then using more targeted attacks such as brute force or fuzzing to control

them. They also noted that the attackers were using The Onion Router (TOR)

network [TP] to stay anonymous. Vishwakarma and Jain [VJ19] used ThingPot to

propose ML-Enhanced ThingPot, a self-adaptive honeypot solution for the detection

of DDoS attacks through the Telnet port that uses unsupervised machine learning

(ML) techniques in real-time.

IoTCandyJar : Luo et al. [LXJ+17] proposed a new type of honeypot which

they define as intelligent interaction, and has the benefits of both low and high

interaction honeypots, simulating the behaviors of IoT devices without the risk of the

26

honeypot being compromised. The honeypot uses ML with Markov Decision Process

to automatically learn the behaviors of IoT devices that are publicly available on the

Internet and learn which has the best response to extend the session with attackers.

IoTCandyjar captured 18 million raw requests during the time of the study, including

about 1 million IoT related requests. Ports 80, 7547, 8443, 81, 8080, and 88 were

the most scanned, with the majority of requests being HTTP.

Chameleon: Zhou [Zho19] proposed a self-adaptive IoT honeypot that can em-

ulate all kinds of IoT devices. Chameleon has front-end responder, evaluator, and

back-end interactor modules. The front-end responder processes requests and re-

sponds accordingly. If the request is new, the responder sends the request to the

evaluator. The evaluator evaluates the security of the request with the IP whitelist.

If the source is untrusted, Chameleon responds with a default response and the re-

quest is stored for manual study. The back-end interactor establishes a connection

with the target IoT device and detects the open ports and services to open/start

them on Chameleon. As the honeypot receives more requests, Chameleon’s char-

acteristics become more like those of the target device. Chameleon is evaluated

by simulating a variety of 100 IoT devices on the Internet, and comparing this to

100 traditional honeypots using Shodan Honeyscore [Sho] fingerprinting tool. The

honeypots simulated by Chameleon were not fingerprinted while all the traditional

honeypots were.

Honware: Vetterl and Clayton [VC19] presented a high interaction virtual self-

adaptive honeypot that emulates diverse IoT and Customer Premise Equipment

(CPE) devices by processing a standard firmware image and extracting and adapting

the filesystem. Honware uses Quick Emulator (QEMU) to be able to fully emulate

devices, and runs this with a customized pre-built kernel and the filesystem on a

host OS.

27

Table 2.3: List of IoT Honeypots that Focus on Specific Attacks

Target Attack(s) Honeypots Interaction Level

Telnet
IoTPOT [PSY+16] Hybrid
MTPot [Cym],
Semic and Mrdovic [SM17]

Low

Phype [Phy19] Medium
SSH and Telnet Shrivastava et al. [SBH19], IRASSH-

T [Pau18a], Lingenfelter et al. [LVS20]
Medium

Telnet, SSH,
HTTP, and CPE
WAN Management

Krishnaprasad [Kri17] Hybrid

Man-in-the-Middle Oza et al. [OKKT19] High

D/DoS
Anirudh et al. [ATN17],
Vishwakarma and Jain [VJ19]

Medium

Tambe et al. [TAS+19], Molina et
al. [MBSC20]

High

Fileless attacks HoneyCloud [DLL+19] High
SSH on Zigbee net-
works

Dowling et al. [DSM17b] Medium

UPnP U-Pot [Hak] Medium
Attacks on
Authentication

HioTPot [GKK+18] Not identified

Reconnaissance HoneyIo4 [A.G17] Low
Attacks on home
networks

Pot2DPI [MCB17] Medium

Attacks on
device
characteristics

Siphon [GTB+17] High
Metongnon and Sadre [MS18] Low/Medium
Zhang et al. [ZZZ+19] Hybrid

2.5.3 Research with IoT Honeypots and Honeynets Focused

on Type of Attack

This section contains all of the remaining research with IoT honeypots and hon-

eynets, organized by their focus on attack type. Table 2.3 provides a list of the

considered IoT honeypots by their target attack types.

28

Only Telnet Attacks: IoTPOT [PSY+16] is a hybrid honeypot proposed by Pa

et al. [PSY+15] that simulates Telnet services for different IoT devices and focuses

on Telnet intrusions. IoTPOT uses a front-end low-interaction responder that sim-

ulates IoT devices by responding to TCP requests, banner interactions, authenti-

cation, and command interactions. It is proposed to work on the back-end with a

high-interaction virtual environment called IoTBOX running a Linux OS to ana-

lyze the attacks and the captured malware, and run the malware on multiple CPU

architectures.

MTPot [Cym] is a low-interaction, unscalable, virtual IoT honeypot that was

designed specifically for Mirai attacks. According to Evron [Evr16], it detects con-

nections on ports using Telnet, identifies Mirai based on the commands requested,

alters parameters to identify Mirai attacks, and reports to a syslog server. Evron

notes that while the tool can be easily fingerprinted, it is simple and can also prove

useful.

Semic and Mrdovic [SM17] presented a multi-component low-interaction honey-

pot with a focus on Telnet Mirai attacks. The front-end of their honeypot is designed

to attract and interact with attackers by using a weak, generic password. Instead of

using an emulation file, the front-end is programmed to generate responses based on

the input from the attacker, with the logic defined in the code. The back-end is pro-

tected by a firewall and receives the information from the front-end for decryption,

reporting, and storage.

Phype Telnet IoT Honeypot [Phy19] is an open-source software for the creation

of medium interaction, scalable, virtual honeypots with a focus on IoT malware.

According to the Phype GitHub repository [Phy19], Phype simulates a UNIX system

shell environment. It tracks and analyses botnet connections, mapping together

connections and networks. The application includes a client honeypot that accepts

29

Telnet connections and a server to receive and analyze the information gathered

about these connections.

Telnet and SSH Attacks: Shrivastava et al. [SBH19] focused on the use of Cowrie

Honeypot to detect attacks on IoT devices and created a Machine Learning (ML)-

Enhanced Cowrie. They opened the Telnet and SSH ports, and classified requests

as malicious payload, SSH attack, XOR DDoS, suspicious, spying, or clean (non-

malicious). They evaluated various ML algorithms to analyze and classify data,

and concluded that Support Vector Machine (SVM) gives the best results with an

accuracy of 97.39 %.

Based on the their prior QRASSH honeypot, Pauna et al. [PBPC19] proposed a

self-adaptive IoT honeypot named IRASSH-T that focuses on SSH/Telnet. IRASSH-

T uses reinforcement learning algorithms to identify optimal reward functions for

self-adaptive honeypots to communicate with attackers and capture more informa-

tion about target malware. Their evaluation shows that IRASSH-T improves on

previously identified reward functions for self-adaptive honeypots and will be able

to attract more attacks and enable collection of more malware from attackers.

Lingenfelter et al. [LVS20] focused on capturing data on IoT botnets using three

Cowrie SSH/Telnet honeypots to emulate an IoT system. Their system sets the

prefab command outputs to match those of actual IoT devices and uses sequence

matching connections on ports to facilitate as much traffic as possible. They an-

alyzed remote login sessions that created or downloaded files. They also used a

clustering method with edit distance between command sequences to find identical

attack patterns. During their study, two Mirai attack patterns accounted for 97.7

% of the attacks received on the honeypot. They concluded that botnet attacks on

Telnet ports are the most common attack to download or create files, and many

attacks on IoT devices are carried out with Mirai.

30

Telnet, SSH, HTTP, and CWMP Attacks: Krishnaprasad [Kri17] used IoT-

POT [PSY+15] as a model in creating a honeypot with a low interaction front-

end. The front-end has a proxy for Telnet, SSH, HTTP, and CPE WAN Manage-

ment (CWMP) protocols and gathers attack data. The high interaction backend

on Krishnaprasad’s model can be physical or virtual, a single machine or a net-

work of machines, and has a module for each of the protocols. The honeypot uses

Twisted [Lab14] event-driven networking engine, and employs Logstash [Ela20a] to

collect log data. The log data is pushed to Elasticsearch [Ela17] for storage and

Kibana [Ela20b] is used for visualization. For evaluation, Docker containers were

setup to simulate IoT devices, and the honeypot was deployed in seven locations

around the world. In seven days, the honeypot was reported to have received attacks

from 6774 distinct IPs. More than half of these were Telnet attacks, followed by

CWMP and SSH, with HTTP receiving significantly less attacks than the others.

Man-in-the-middle Attacks: Oza et al. [OKKT19] addressed the issue of Man-in-

the-Middle (MitM) attacks and presented a deception and authorization mechanism

called OAuth to mitigate these attacks. When a user sends a request to an IoT

device in the system, if the user information is not stored in the database, it is sent

to an Authenticator that sends a message to the valid user. If the request is not

authenticated by the user, it is sent to the honeynet instead of sending to the IoT

device.

DoS Attacks: Anirudh et al. [ATN17] investigated how a DoS attack in an

IoT network can be blocked by a medium-high interaction honeypot. Their system

employs an IDS which passes malicious requests to the honeypot for further analy-

sis. In order to evaluate their system, they simulated IoT data, and compared the

performance of their system in blocking DoS attacks with and without the honeypot.

31

DDoS and Other Large Scale Attacks: Using ThingPot [WSK18], Vishwakarma

and Jain [VJ19] proposed a self-adaptive honeypot to detect malware and identify

unknown malware like those used in zero-day DDoS attacks. The proposed solution

collects logs of attacks received by ThingPot honeypots and uses the logs to train

ML classifiers. The authors considered deploying virtual box images of ThingPot

on the IoT devices in a network, and placing the ML classifier on the router.

Tambe et al. [TAS+19] proposed a scalable high interaction honeypot to attract

and detect large scale botnet attacks. In order to solve the scalability problem

of high interaction honeypots using real devices, Tambe et al. used VPN tunnels

which allowed a small number of real IoT devices to appear as multiple IoT devices

with different IP addresses around the world. Their evaluations using commercial-

off-the-shelf IoT devices showed that the devices were being detected as honeypots

by Shodan Honeyscore [Sho]. The authors also proposed two live traffic analysis

methods for the detection of large scale attacks.

Molina et al. [MBSC20] presented a self-adaptive high interaction IoT honeynet

as part of a full cyber-security framework. Their framework uses Network Function

Virtualization (NFV) and Software Defined Networks (SDN) to emulate a network

of physical devices and allow IoT systems to self-protect and self-heal from DDoS

botnet attacks. The honeynet uses NFV to allow for the autonomic deployment of

virtual high interaction honeypots with dynamic configuration and reconfiguration.

They used SDN for connectivity, data control, traffic filtering, forwarding, and redi-

recting between the honeynet and the real IoT environment. This allowed them to

deploy honeynets both pro-actively and reactively.

Fileless Malware Attacks: Dang et al. [DLL+19] presented HoneyCloud for

fileless attacks on Linux-based IoT devices. HoneyCloud was implemented using

both physical and virtual honeypots. The virtual honeypots provided full device

32

emulation for the six IoT device types. They used four physical IoT honeypots

(a Raspberry Pi, a Beaglebone, a Netgear R6100, and a Linksys WRT54GS) and

108 virtual IoT honeypots to attract and closely analyze the fileless attacks and

to propose defense strategies. Their research revealed that approximately 9.7% of

malware-based attacks on IoT devices are fileless and these attacks can be powerful.

They also identified the top ten most used shell commands in fileless attacks, 65.7%

of which are launched through rm, kill, ps, and psswd commands, enabled by default

on Linux-based IoT devices.

Only SSH Protocol Attacks: Dowling et al. [DSM17b] focused on SSH protocol

attacks on Zigbee networks. A Wireless Sensor Network (WSN) was created with

Arduino and XBee modules to transmit medical information in pcap files that serve

as honeytokens to catch the attention of attackers. A Kippo medium interaction

SSH honeypot was modified to simulate a Zigbee Gateway available through SSH

to attract the maximum amount of traffic. The attacks were analyzed to see which

ones were directed at Zigbee. Of all the attacks documented, only individual attacks

demonstrated interest in the honeytokens, or the files, leading to the conclusion that

the attacks were not geared toward Zigbee in particular. On the other hand, 94%

of honeypot activity was dictionary attacks that continuously tried to access the

network by sequentially trying different username and password combinations.

Attacks on UPnP Devices: U-Pot [Hak] is an open-source medium-interaction,

virtual honeypot platform for Universal Plug and Play-based (UPnP) IoT devices.

U-Pot can be used to emulate real IoT devices, and can be scaled to mimic multiple

instances at once. A honeypot can even be automatically created using UPnP device

description documents for a UPnP IoT device. The main benefits of U-Pot are its

flexibility, scalability, and low cost.

33

Authentication Attacks: HIoTPot [GKK+18] is a virtual IoT honeypot created

on a Raspberry Pi for both research and production. Using Raspberry Pi 3 as

a server, HIoTPoT maintains a database of authenticated users. When any user

attempts to gain access to the IoT network, it compares the user with the MySQL

database. Unidentified users are sent to the honeypot, where their attack patterns,

logs, and chat details are tracked, while the system sends an alert to notify all

devices in the network of the attempted intrusion.

Reconaissance Attacks: HoneyIo4 [A.G17] is a low-interaction virtual produc-

tion honeypot that simulates four IoT devices (a camera, a printer, a video game

console, and a cash register). HoneyIo4 fools network scanners conducting recon-

naissance attacks by simulating IoT OS fingerprints. With this fake OS information,

the attack is redirected and becomes unsuccessful.

Attacks on Home Networks: Martin et al. [MCB17] presented a comprehensive

system for home network defense with four major components: a local honeypot to

interact with attackers and collect data, a module to capture packet patterns and

recognize malicious traffic, a deep packet inspection (DPI) for signature-based fil-

tering, and a port manager for port re-mapping between the router and IoT devices.

HoneyD [Pro07b] low interaction honeypot is used to monitor the ports that are sup-

posed to be inactive and Pot2DPI serves as a connection between the port manager

and honeypot to inform the honeypot when packet forwarding port mapping has

happened. Evaluation of the proposed system was carried out using Alman-trojan,

Cerber, Fereit, and Torrentlocker pcap traces and the system was able to detect the

first three with 99.84 % accuracy, while it was only 48.84 % accurate in detecting

Torrentlocker.

Attacks Focused on Device Characteristics: Guarnizo et. al [GTB+17] proposed

Siphon, a high-interaction, scalable, physical honeypot. Siphon was implemented

34

on seven IoT devices (IP cameras, a network video recorder (NVR), and an IP

printer). The devices were made visible as 85 geographically distributed unique

services on the Internet by connecting them to Amazon, LiNode, and Digital Ocean

cloud servers in different cities via creating wormholes. Zhang et al. [ZZZ+19]

focused on attacks aimed at the Huawei CVE-2017-17215 vulnerability that can be

exploited for remote code execution. They implemented a medium-high interaction

honeypot to simulate UPnP services, a high interaction honeypot using IoT device

firmware, and a hybrid multi-port honeypot using Simple Object Access Protocol

(SOAP) service ports to increase the honeynet capacity and simulate honeypots.

They used a Docker image to package and rapidly deploy the honeynet to capture

IoT attacks.

2.6 Taxonomy of Honeypots and Honeynets for Internet of

Things

Honeypots and honeynets proposed for IoT are listed in Table 2.4 and the tools, im-

plementation and attack type details of the corresponding honeypots and honeynets

are also outlined in Table 2.5. In this section, we consider all of the proposals for IoT

and provide an overview of these studies based on the development of research over

time, common characteristics, level of interaction, application, scalability, resource

level, simulated services, most commonly used tools, availability of the source codes,

and the most common attacks.

35

2.6.1 Development of Research Over Time

Research of honeypots specifically created for IoT begins in 2015 with the cre-

ation of IoTPOT [PSY+15]. Previous research included in this survey was origi-

nally created for general application and later built upon for IoT applications. As

shown in Figure 2.4, about half of IoT honeypot models have a form of inheritance

with each other, where a honeypot is built based on another. Cowrie [Cow19]

is the open-source honeypot with the greatest number of IoT honeypots which

have been built directly from it. This could be in part because Cowrie contin-

ues to be actively maintained. In 2016, Firmadyne honeypot was the second IoT

specific honeypot, and the first self-adaptive IoT honeypot. After the worldwide

effects of Mirai malware in 2016, including attacks on IoT devices, it is interest-

ing to note there was a large increase in IoT honeypot and honeynet research in

2017. Of the nine studies published in 2017, seven studies explicitly refer to Mi-

rai [LXJ+17] [A.G17] [GTB+17] [MCB17] [Kri17] [Evr16] [SM17]. Also, as the num-

ber of IoT devices has increased rapidly in recent years, so has the research. 2019

saw a noticeable increase in the development of self-adaptive IoT honeypots. We

can also see that more than half of the studies proposed independent honeypots,

which may be due to shortcomings of existing honeypots to meet their needs.

2.6.2 Common Characteristics

All of the honeypot/honeynet models surveyed were created for research purposes,

except for HoneyIo4 [A.G17] and the IoT honeynet presented by Molina [MBSC20],

which are production, and HIoTPot [GKK+18] which is identified as both research

and production. All of the decoys use Linux, and all can be classified as having a

server role, except for Phype Telnet IoT Honeypot [Phy19], which has both a client

36

and a server role. In addition, all of the open-source models were written in Python

programming language.

2.6.3 Level of Interaction

In this study, classification based on level of interaction proved to be the most fluid

of all the classifications regarding honeypots. Although most research can agree

when a honeypot is low-interaction, definitions for the other levels can vary. For the

purposes of this study, level of interaction identified by the authors was used. Most

research seeks to leverage the benefits of both low-interaction and high-interaction

honeypots, many times calling this medium interaction. In other cases, this is done

using hybrid honeynet systems.

2.6.4 Resource Level

The great majority of available research on IoT honeynets has been carried out

with virtual resources rather than physical resources. Only Siphon [GTB+17],

Stafira [Sta19], and Scalable VPN forwarded Honeypots [RRM+18] were carried

out with physical resources.

2.6.5 Scalability

Most of the honeypot and honeynet research was carried out using scalable honeypot

systems, except for Dionaea [Dio15] and HoneyIo4 [A.G17], which can only deploy

one simulation at a time. It is interesting to note that despite using virtual resources

rather than physical resources, these two systems cannot be expanded to provide

more decoys.

37

2002 2009 2011

HoneyD

2015 2016 2017

Kippo

2014 2015 2018 2019 2020

Staf i r a

RASSH

2014

Cowr ie

QRASSH

201720122011

AHA
AHA w /
Rootk i t

Detect i on

IoTPOT

IoT
CandyJar

HoneyPy

Kr i shnapr asad

Ani r udh
et al .

Siphon

MTPot

Sem ic &
Mr dovic

Pot2DPI

Dionaea

Dowl ing
et al .

Fi r m adyne

HIoTPOT

ThingPot

HoneyCloud

Phype

Scalable
VPN-FWD

ML-
Enhanced
ThingPot

ML-
Enhanced

Cowr ie

IRASSH-T

Honey
Io4

Zhang

Metongnon
et al .

U-Pot

Honwar e

Sel f -Adapt ive

Open-Sour ce

Closed Sour ce

Cham eleon

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Cr eated for IoT

Lingenfel ter
et al .

A

Oza et al .

A

A

Mol ina et
al .

Figure 2.4: Evolution of inheritance for the IoT honeypot and honeynet models and
research.

38

2.6.6 Application

Considering the application areas of honeypots and honeynets for IoT, nine of the

models and research studies considered were for general use, 22 were for IoT appli-

cation, and four were created for Smart Home applications.

2.6.7 Simulated Services

The most commonly simulated services in the research coincide with the top three

most attacked protocols identified by Metongnon and Sadre [MS18]: Telnet, SSH,

and HTTP(S). These are standard TCP/IP protocols, none of which are IoT specific.

Two reasons for this may be that these common application protocols are targeted

because they are in the most exposed and vulnerable layer and 75% of attacks on

IoT devices were carried out through a router [Sym19]. Each of the models and stud-

ies considered in this survey have their focus and specific purpose. However, there

are five research models that stand out as the most versatile as they emulate full

devices and are self-adaptive: IoTCandyJar [LXJ+17], Chameleon [Zho19], Firma-

dyne [CEWB16b], Honware [VC19], and ML-enhanced ThingPot [VJ19]. However,

of these, only IoTCandyJar and Firmadyne are open-source.

2.6.8 Availability of Open-Source Honeypot and Honeynet

Solutions

Approximately half of the IoT honeypot and honeynet models considered in this

survey are open-source. This highlights the importance of open-source software in

contributing to the development of improved models.

39

Table 2.4: Classification of IoT Honeypots and Honeynets

Work Year Interaction

level

Scalability Resource

level

Simulated services Role Application

HoneyD [Pro07b] 2002 Low D Virtual FTP, SMTP,

Telnet,IIS, POP

Server General

Dionaea [Dio15] 2009 Medium X Virtual Black hole, EPMAP,

FTP, HTTP,

Memache, Mirror,

MongoDB, MQTT,

MSSQL, MySQL, nfq,

PPTP, SIP, SMB,

TFTP, UPnP

Server General

Kippo [Kip16] 2009 Medium D Virtual SSH Server General

Adaptive Hon-

eypot Alterna-

tive [Wag11]

2011 Low and

High

D Virtual SSH Server General

AHA with Rootkit

Detection [Pau12]

2012 Medium D Virtual SSH Server General

RASSH [PB14] 2014 Medium D Virtual SSH Server General

Cowrie [Cow19] 2015 Medium/High D Virtual SSH, Telnet, SFTP,

SCP

Server General

HoneyPy [foo13] 2015 Low/Medium D Virtual Created as required Server General

IoTPOT [PSY+15] 2015 Hybrid D Virtual Telnet Server IoT

Firmadyne

[CEWB16b]

2016 High D Virtual Full device emulation Server IoT

Dowling et

al. [DSM17b]

2017 Medium D Virtual Zigbee, SSH, HTTP Server IoT

IoT Candy-

Jar [LXJ+17]

2017 Intelligent D Virtual Full device emulation Server IoT

Krishnaprasad

[Kri17]

2017 Hybrid D Virtual Telnet, SSH, HTTP,

CWMP

Server IoT

40

Table 2.4: Classification of IoT Honeypots and Honeynets

Work Year Interaction

level

Scalability Resource

level

Simulated services Role Application

Anirudh et

al. [ATN17]

2017 Medium/High D Virtual Not identified Server IoT

HoneyIo4

Production

Honeypot [A.G17]

2017 Low X Virtual SNMP, SSH, SMTP,

DNS, HTTP

Server IoT

Siphon [GTB+17] 2017 High D Physical HTTP, Telnet, SSH,

RTSP

Server IoT

MTPot [Evr16] 2017 Low X Virtual Telnet Server IoT

Semic and

Mrdovic [SM17]

2017 Low D Virtual Telnet Server IoT

Pot2DPI [MCB17] 2017 Medium D Virtual Telnet, UPnP Server Smart Home

Metongnon et al.

[MS18]

2018 Low/Medium D Virtual SSH, Telnet, EPMAP,

FTP, HTTP, Mem-

cache, MQTT,

MSSQL, MySQL,

PPTP, SIP, SMB,

UPnP, TFTP,

TR-069.1,TR-069.2,

CoAP

Server IoT

QRASSH [PIB18] 2018 Medium D Virtual SSH Server General

ThingPot et

al. [WSK18]

2018 Medium D Virtual Full device emulation Server Smart Home

HIoTPOT

[GKK+18]

2018 Not identi-

fied

D Virtual Not identified Server IoT

Stafira [Sta19] 2019 Low D Physical TCP/IP, HTTP Server Smart Home

IRASSH-

T [PBPC19]

2019 Medium D Virtual SSH Server IoT

ML enhanced

Cowrie [SBH19]

2019 Medium D Virtual SSH, Telnet Server IoT

41

Table 2.4: Classification of IoT Honeypots and Honeynets

Work Year Interaction

level

Scalability Resource

level

Simulated services Role Application

ML enhanced

ThingPot [VJ19]

2019 Medium D Virtual Full device emulation Server IoT

Scalable

VPN-forwarded

Honey-

pots [TAS+19]

2019 High D Physical HTTP, TFTP, Telnet,

others not specified

Server IoT

Zhang [ZZZ+19] 2019 Hybrid D Physical/Virtual UPnP, SOAP Server IoT

U-Pot [Hak] 2019 Medium D Virtual UPnP Server IoT

HoneyCloud

[DLL+19]

2019 High D Physical/Virtual SSH, Telnet, SMB,

HTTP, HTTPS, RDP,

MySQL, SQL Server

Server Smart Home

Phype [Phy19] 2019 Medium D Virtual Telnet Server IoT

Oza et

al. [OKKT19]

2019 High D Virtual Not identified Server IoT

Honware [VC19] 2019 High D Virtual Full device emulation Server IoT

Chameleon [Zho19] 2019 Hybrid D Virtual Full device emulation Server IoT

Lingenfelter

et al. [LVS20]

2020 Medium D Virtual SSH, Telnet, SMTP,

HTTP

Server IoT

Molina et

al. [MBSC20]

2020 High D Virtual Not identified Server IoT

42

Table 2.5: Tools, Implementation and Attack Types of Honeypots and Honeynets

for IoT

Work Tools Simulated services Attack Types Data Analyzed Study

Length

HoneyD

[Pro07b]

N/A FTP, SMTP, Telnet, IIS,

POP

N/A N/A N/A

Dionaea

[Dio15]

N/A Black TTP, Memache,

Mirror, MongoDB, MQTT,

MSSQL, MySQL, Nfq,

PPTP, SIP, SMB, TFTP,

UPnP

N/A N/A N/A

Kippo

[Kip16]

N/A SSH N/A N/A N/A

Adaptive

Honeypot

Alternative [Wag11]

AHA Daemon SSH SSH-brute force User/passwords,

TTY buffer,

TCP/UDP packets

8 hours

AHA with

Rootkit

Detection

[Pau12]

AHA Daemon,

Kernel rootkit

Kbeast, Argos

SSH Rootkit malware Keystroke logging,

Rootkit malware

7 days

RASSH

[PB14]

Pybrain RL,

SARSA, Markov

SSH SSH attack Logs, commands of-

fering downloading

N/A

Cowrie

[Cow19]

N/A SSH, Telnet, SFTP, SCP N/A N/A N/A

HoneyPy

[foo13]

N/A Created as required N/A N/A N/A

43

Table 2.5: Tools, Implementation and Attack Types of Honeypots and Honeynets

for IoT

Work Tools Simulated services Attack Types Data Analyzed Study

Length

IoTPOT

[PSY+15]

Masscan, pcap Telnet DNS Water

Torture, SSL

attack, DoS,

DDoS, UDP

Flood, SYN

Flood, ACK

Flood, SynAck

Flood, Null

Flood, Telnet

Scan, DNS

attacks, Fake

Web Hosting

PCAP analysis

includes total # of

packets, start/end

time of packet

captures, data

byte/bit rate,

average packet size

and rate, number of

victim IP address

for each attack

39 days

Firmadyne

[CEWB16b]

Nmap, Metasploit

framework,

Binwalk,

Scrapy, QEMU,

Sasquatch,

Firmware-mod-kit

HTTP, Telnet, DNS,

dec-notes, HTTPS, UPnP,

RIPD, Freeciv

Reconnaissance

attacks, buffer

overflow

Firmwares, results

from web analysis,

MIB files

N/A

IoT Can-

dyJar

[LXJ+17]

pyLDAvis, Digital

Ocean VM, Ama-

zon AWS, MDP,

Censys, Zoom-

Eye, Shodan,

MASSCAN

HTTP, RTSP,

SOAP Envelope

HTTP,

HTTP HEAD,

UDP,

HTTP OPTIONS,

TCP,

SOAP Envelope,

RTSP,

HTTP CONNECT

Attack types and

characteristics

1

month

Krishnaprasad

[Kri17]

Twisted, ELK

Stack, Docker,

Telnet, SSH, HTTP, CWMP Brute-force

attack, Hajime,

ZmEu attacks

Attack types and

characteristics

7 days

44

Table 2.5: Tools, Implementation and Attack Types of Honeypots and Honeynets

for IoT

Work Tools Simulated services Attack Types Data Analyzed Study

Length

Anirudh et

al. [ATN17]

IDS, logs N/A DoS attacks IP Address, MAC

Address

N/A

HoneyIo4

Production

Honeypot

[A.G17]

Shodan, Nmap,

Wireshark, Scapy,

VM.

SNMP, SSH, SMTP, DNS,

HTTP

Reconnaissance

attacks

TCP, UDP and

ICMP packets

N/A

Siphon

[GTB+17]

Shodan, Tcp-

dump, Nmap

HTTP, Telnet, SSH, RTSP Brute-force login

attempts

TCP connections

per wormhole,

services con-

sulted, access

gained, movements

statistics

60 days

MTPot

[Evr16]

N/A Telnet N/A Incoming connec-

tions on any port

using telnet

N/A

Semic and

Mrdovic

[SM17]

N/A Telnet Telnet attack Protocols, IP ad-

dresses, logs

N/A

Pot2DPI

[MCB17]

N/A Telnet, UPnP Mirai and

Persirai attacks

protocols, ports

scans

Packet traces, at-

tack signatures, pro-

tocols, ports

N/A

45

Table 2.5: Tools, Implementation and Attack Types of Honeypots and Honeynets

for IoT

Work Tools Simulated services Attack Types Data Analyzed Study

Length

Metongnon

et

al. [MS18]

Eemo, Shodan SSH, Telnet, EPMAP, FTP,

HTTP, Memcache, MQTT,

MSSQL, MySQL, PPTP,

SIP, SMB, UPnP, TFTP,

TR-069.1, TR-069.2, CoAP

Attack URL,

SYN packet, Mi-

rai and Mirai-like

attacks, Harvest

cryptocurrencies,

Login attempts,

Reconaissance

Protocols, packets

per port, packets

characteristics

5

months

QRASSH

[PIB18]

Deep Q-learning,

Keras with

Theano backend,

Nmap

SSH SSH attack Commands(downloading,

hacking, linux)

N/A

ThingPot

et al.

[WSK18]

Skipfish, Nikto,

Masscan

HTTP, XMPP, ZigBee HTTP POST

request, HTTP

GET with URLs,

scanning tools,

SQL malware

HTTP request, SQL

access request, scan-

ning network

1.5

months

Stafira

[Sta19]

Nmap, Wireshark,

VMWare Worksta-

tion

TCP/IP, HTTP Only user testing Access time, HTML

code, network head-

ers and Nmap scan

N/A

IRASSH-T

[PBPC19]

Apprenticeship

Learning

SSH SSH attack N/A N/A

46

Table 2.5: Tools, Implementation and Attack Types of Honeypots and Honeynets

for IoT

Work Tools Simulated services Attack Types Data Analyzed Study

Length

ML en-

hanced

Cowrie

[SBH19]

Support Vector

Machine (SVM),

Random Forest,

Naive Bayes,

J48 decision

tree, VirusTotal

website, Weka,

machine learning

algorithms

SSH, Telnet Malicious

payload, SSH

attack, XOR

DDoS, Spying,

Suspicious, Clean

System logs, IP,

attack types and

characteristics,

commands exe-

cuted, behavior

analysis

40 days

ML en-

hanced

Thing-

Pot [VJ19]

Linux bash

scripts, Microsoft

Azure, MATLAB

Telnet, MQTT, XMPP,

AMQP, CoAP, UPnP,

HTTP, REST

DDoS, malware,

TCP SYN flood,

UDP flood,

HTTP GET flood

Network traffic,

payload, malware

samples, the toolkit

by attacker

N/A

Scalable

VPN-

forwarded

Honeypots

[TAS+19]

VPN, TShark,

HONAN, pcap,

VM, MySQL, own

script

HTTP, TFTP, Telnet, oth-

ers not specified

DDoS style at-

tacks

Protocols, packets

per port, packets

characteristics

16

months

Zhang

[ZZZ+19]

Tc, own script UPnP, SOAP UPnP Protocols, pack-

ets per port,

timestamp, inject

behaviors

7 days

U-

Pot [Hak]

Shodan, Zmap, U-

Pot

UPnP N/A N/A N/A

47

Table 2.5: Tools, Implementation and Attack Types of Honeypots and Honeynets

for IoT

Work Tools Simulated services Attack Types Data Analyzed Study

Length

HoneyCloud

[DLL+19]

VM, Cloud

storage, antivirus

communities,

Honeycomb,

VirusTotal

website

SSH, Telnet, SMB, HTTP,

HTTPS, RDP, MySQL,

SQL Server

Fileless attacks,

malware-based

attacks

Symmetry/asymmetry

of data flows, pack-

ets analysis,

attack types and

characteristics,

keystrokes, trace of

network activities,

CPU usage, Process

list.

1 year

Phype

[Phy19]

Phype Telnet Telnet N/A N/A N/A

Chameleon

[Zho19]

Nmap, Shodan N/A Reconnaissance

attacks

IP whitelist,

received requests

N/A

Honware

[VC19]

QEMU, Binwalk,

Wireshark,

Ping, Nmap,

Firmadyne,

Shodan

SSH, Telnet, HTTP, UPnP,

DHCP, DNS, dec-notes,

freciv, netbios, HTTPS,

MDNS, TFTP

Reconnaissance

attacks, Zero

days, capture

attacks traffic

Kernel logs,

firmwares,

< 2

months

Oza et al.

[OKKT19]

OAuth2, MySQL,

QEMU

N/A Man in the Mid-

dle attacks

MAC address,

Unauthorized access

N/A

Lingenfelter

[LVS20]

Filebeat, ELK

stack, Logstash,

VirusTotal

SSH, Telnet IoT botnet mal-

ware

Packets per port,

System logs, IPs,

Brute-force scan, file

hash

40 days

48

2.6.9 Most Commonly Used Tools

The three tools that were most commonly used in the honeypot research studies in-

cluded in this survey are Shodan [Sho20], Nmap [Nma20], and MASSCAN [Gra19].

Shodan [Sho20] is a search engine for Internet-connected devices, which includes

everything from web cams, to medical devices, appliances, and water treatment fa-

cilities. Shodan indexes everything that is somehow connected to the Internet, their

location, and their users, providing valuable information about the vulnerabilities of

today’s interconnected world. Shodan is used around the world, especially by corpo-

rations, researchers, security professionals, and law enforcement. Nmap [Nma20] is

an open-source, free tool for exploring networks and security auditing. It works by

sending packets and then analyzing the responses. It is especially used by network

administrators, auditors, and hackers to scan and determine what hosts are avail-

able on a network, the services they are offering, their operating systems, and other

valuable information. The Nmap suite also has an advanced GUI, a data transfer

and debugging tool called Ncat, a tool to compare scan results called Ndiff, and a

packet generation and response analysis tool. Nmap is a flexible, easy, and powerful

tool. Nmap is used by honeypot and honeynet developers as a tool to gain valuable

information including checking for network connectivity, scanning for open ports

on real or simulated devices, comparing scan results of real vs. simulated devices,

and testing the fingerprintability of honeypots. MASSCAN [Gra19] is another open-

source, free tool, which is very similar to Nmap and has many similar functionalities.

It is a TCP port scanner and its speed sets it apart from similar tools because it

transmits 10 million packets per second, which allows it to scan the entire Internet in

less than six minutes. Although there are many other diverse tools (e.g. Wireshark,

VirusTotal, Pcap, Zmap, Censys, Scapy, etc.) that have been used in IoT honeynet

research, these three are by far the most commonly used. This can be attributed to

49

their availability, their low cost, their ease of use, and their effectiveness. Nmap is

the most widely recognized and used network and security auditing tool and Shodan

is the first and largest search engine for Internet connected devices.

2.6.10 Most Common Attacks

The most commonly detected/tested attacks in IoT honeypots/honeynets are Tel-

net, SSH, DoS/DDoS, and HTTP(S) attacks. In addition, reconnaissance attacks,

brute-force attacks, malware, and Mirai attacks were also detected/tested in the

proposed honeypots and honeynets. Although less common than the mentioned

attacks, botnet, Man-in-the-Middle, malicious cryptocurrency mining, and buffer

overflow attacks were also detected/tested in the proposed systems.

2.7 Honeypots and Honeynets for IIoT and CPS

In this section, we give brief overview of honeypots and honeynets proposed for IIoT

and CPS applications. We group the IIoT and CPS honeypots and honeynets based

on the application types as follows: ICS, Smart Grid, Water Systems, Gas Pipeline,

Building Automation Systems, and IIoT.

2.7.1 Honeypots and Honeynets for Industrial Control Sys-

tems

In this subsection, we give brief overview of honeypots and honeynets ICS. Table ??

provides a list of the considered general ICS honeypots.

CISCO SCADA HoneyNet Project: The first honeynet for SCADA ICS was pro-

posed by Pothamsetty and Franz in Cisco Systems’ SCADA HoneyNet Project [PF04]

50

in 2004. SCADA HoneyNet is based on the Honeyd [Pro07a] open-source honey-

pot framework and is a low-interaction honeynet that supports the simulation of

Modbus/TCP, FTP, Telnet, and HTTP services running on a programmable logic

controller (PLC).

Digital Bond SCADA Honeynet: The second honeynet for SCADA ICS was

introduced by Digital Bond in 2006 under the name of SCADA Honeynet [Pet06,

Bon11]. It consists of two virtual machines: one of them simulates a PLC with

Modbus/TCP, FTP, Telnet, HTTP, and SNMP services while the other one is a

Generation III Honeywall. The Honeywall is a modified version of SCADA Hon-

eyNet [PF04] that aims to monitor and control the honeypot’s traffic and attacker

interactions.

Wade [Wad11] used Digital Bond’s SCADA honeynet in her thesis to analyze the

attractiveness of honeypots in ICS systems. Her honeypot simulated a Schneider

Modicon PLC with Modbus TCP, FTP, Telnet, and SNMP services.

Conpot and Conpot-based ICS Honeypots: One of the most popular ICS hon-

eypots that has been used by researchers is Conpot [RVH+20]. It is an open-source

low-interaction honeypot that was developed under the Honeynet Project [Hon20]

and is still being maintained. Conpot supports various industrial protocols includ-

ing IEC 60870-5-104, Building Automation and Control Network (BACnet), Ether-

Net/IP, Guardian AST, Kamstrup, Modbus, S7comm, and other protocols such as

HTTP, FTP, SNMP, Intelligent Platform Management Interface (IPMI), and TFTP.

It provides templates for Siemens S7 class PLCs, Guardian AST tank monitoring

systems, and Kamstrup 382 smart meters.

CryPLH: Buza et al. [BJM+14] proposed CryPLH, a low interaction and a

virtual Smart-Grid ICS honeypot simulating Siemens Simatic 300 PLC devices.

CryPLH uses NGINX and miniweb web servers to simulate HTTP(S), a Python

51

Table 2.6: List of Smart Grid Honeypots and Honeynets

Honeypots Interaction
Level

Simulated Services

CryPLH [BJM+14] Low HTTP(S), SNMP, Step7 ISO-TSAP

SHaPe [KG15] Low IEC 61850 MMS, HTTP, FTP, SMB

GridPot [RLB15] Hybrid IEC 61850 GOOSE/MMS, Modbus,
HTTP

Scott [Sco14] Low Modbus/TCP, HTTP, SNMP

Mashima et
al. [MCGT17]

Low IEC 60870-5-104, IEC 61850, SSH

Pliatsios et
al. [PSL+19]

Low Modbus/TCP

Mashima et
al. [MLC19]

Low TCP port listener on IEC 61850 MMS,
S7comm, Modbus/TCP, Niagara Fox,
EtherNet/IP, IEC 60870-5-104, DNP3,
BACnet

script to simulate Step 7 ISO-TSAP protocol and a custom SNMP implementation.

The authors deployed the honeypot within the university’s IP range and observed

scanning, pinging, and SSH login attempts.

SHaPe: Ko ltyś and Gajewski proposed a low-interaction honeypot, namely

SHaPe [KG15], for electric power substations. SHaPe is capable of emulating any

IEDs in an electric power substation that is compliant with IEC 61850 standard. The

proposed honeypot extended the general purpose open-source Dionaea honeypot by

means of libiec61850 library.

GridPot: Redwood et al. [RLB15] proposed a symbolic honeynet framework,

namely SCyPH, for SCADA systems. The proposed framework aims to incorporate

emulated SCADA system components with physics simulations and employ anomaly

detection systems based on the changes on the data obtained from the physics sim-

52

ulation. In their demonstration, namely GridPot, the authors utilized GridLab-D

simulator [Gri20] for electric substation simulations and IEC 61850-based commu-

nication, and implemented Newton-Raphson power flow solver algorithm for the

voltage and current flow between the actors. They utilized Conpot to emulate IEDs

and also implemented GOOSE/MMS and Modbus protocols for the interactions

between the devices.

Kendrick and Rucker [KR19] deployed GridPot in their thesis to analyze the

threats to smart energy grids. Their honeypot deployment emulated Modbus TCP,

S7comm, HTTP, and SNMP services. Although Shodan Honeyscore detected their

deployment as a honeypot, a 19-day period of data collection showed that, Grid-

Pot received heavy HTTP scanning activities, over 600 Modbus, and 102 S7comm

connections.

Scott [Sco14] implemented a SCADA honeypot that uses the open-source Conpot

honeypot to simulate a Scheider Electric PowerLogic ION6200 smart meter. They

deployed the honeypot in a facilities network beside other SCADA components.

They configured the honeypot to send its logs to a logging server, which alerts the

network administrators based on the severity of the interactions that attackers are

performing. Their honeypot supports Modbus, HTTP (for HMI), and SNMP.

Mashima et al. [MCGT17] proposed a scalable high-fidelity honeynet system for

electrical substations in smart-grid environments. The proposed honeynet consists

of a virtual substation gateway that supports the standardised smart-grid communi-

cation protocols (i.e., IEC 60870-5-104 and IEC 61850) and opens the entry point to

the external attackers; virtual IEDs that are represented by Mininet [LHM10] virtual

hosts and SoftGrid [GMC16] IED simulations; and simulation of smart grid compo-

nents (e.g., circuit breakers, transformers, etc.) via POWERWORLD [Pow20] power

53

simulator. The proposed honeynet is highly scalable and resistant to fingerprinting

against Shodan and attacker tools such as Nmap.

Hyun [Hyu18] used Conpot honeypot to discover the compromise attempt indica-

tors for ICS environments. She configured Conpot to simulate a Siemens S7-200 PLC

in an electric power plant. The simulated instance supported HTTP, Modbus/TCP,

S7comm, SNMP, BACnet, IMPI, and EtherNet/IP services. The deployment of the

honeypot outside of the university’s network for four months revealed that popular

choices for compromise attempts were HTTP, Modbus, and S7comm services.

Pliatsios et al. [PSL+19] proposed a honeypot system for Smart-Grid which is

based on the Conpot honeypot framework. The proposed honeypot consists of

real Human-Machine Interface HMI and real Remote Terminal Unit RTU devices,

and two virtual machines, one for virtual HMI and the other for a Conpot-based

honeypot emulating an RTU device. The Conpot honeypot uses the real traffic

generated by the real RTU device in order to make the attackers believe that they

are interacting with a real ICS device.

Mashima et al. [MLC19] deployed low interaction smart-grid honeypots in five

geographic regions via Amazon cloud platform and analyzed the traffic coming to

the honeypots for six months. They did not use open-source honeypot frameworks

in order to avoid fingerprinting by attackers. Instead, they set up TCP listeners

on several ports for ICS protocols. They realized that their honeypot instances

received SYN-flooding DoS attack on IEC 61850 and S7comm protocols’ port and

also scanning activity for DNP3 and Modbus/TCP protocols. Their analysis showed

that the same group of attackers, using the same IP addresses, was targeting smart

grid devices on their honeypot instances around the world and sometimes an attack

targeting a specific honeypot instance was applied to another instance the following

week.

54

2.7.2 Honeypots and Honeynets for Water Systems

In this category, we give brief overview of the honeypots and honeynets for water

systems. Table 2.7 provides a list of the water system honeypots.

Wilhoit [Wil13b, Wil13a] deployed high and low interaction honeypots to un-

derstand the sources and motivations of attacks targeting ICS environments. His

honeypot system mimicked a water pressure station. For high interaction honeypots,

he used Nano-10 PLC and Siemens Simatic PLC. As low interaction honeypots, he

created virtual HMI instances which look like controlling PLCs of an ICS. The low-

interaction honeypots were deployed on Amazon EC2 cloud environments around

the world.

Antonioli et al. [AAT16] proposed a virtual high interaction honeypot for ICS

that is based on the MiniCPS ICS simulation framework [AT15]. The proposed

design separates the honeypot system from the real ICS, and places virtual VPN,

Telnet and SSH servers as the entry points for attackers to the honeypot. Network,

ICS devices and physical process simulations/emulations are performed utilizing

MiniCPS framework. In addition, the authors considered to manage the bandwidth,

delay, and packet loss of the emulated links in the honeypot via Tc program, and

Table 2.7: List of ICS Honeypots for Water Systems

Honeypots Interaction
Level

Simulated Services

Wilhoit [Wil13b] Hybrid Modbus/TCP, HTTP, FTP

Antonioli et al. [AAT16] High EtherNet/IP, SSH, Telnet, VPN

Murillo et al. [MCG+18] Low EtherNet/IP

Petre and Korodi [PK19] Medium Modbus

MimePot [BCP19] High Modbus/TCP

55

enabled EtherNet/IP communication via cpppo Python library. As a PoC, the

authors implemented a water treatment ICS.

A virtual testbed environment for ICS which can be used to deploy ICS hon-

eypots was proposed by Murillo et al. [MCG+18]. The presented virtual testbed

environment which uses MiniCPS [AT15] pays attention to realistic mathematical

modeling of the ICS plants and the response time of the simulated ICS devices. The

authors added a nonlinear plant model to MiniCPS to create a realistic ICS plant.

An emulated network of a nonlinear control system which represents three water

tanks, sensors, actuators and PLC devices was developed. In addition, the authors

simulated a bias injection attack on the control system and proposed a mitigation

mechanism.

Petre and Korodi [PK19] proposed a solution for protecting water pumping sta-

tions from threats using a honeypot inside an Object Linking and Embedding Pro-

cess Control (OPC) Unified Architecture (UA) wrapping structure. OPC UA [OPC20]

is a middleware that can be used to interface standard ICS protocols (e.g., Modbus)

to Service Oriented Architecture (SOA) systems and web services. The proposed

honeypot uses Node-RED library to simulate a system consisting of two water pumps

and two water tanks and runs in an OPC UA Wrapper.

Bernieri et al. [BCP19] presented a model-based ICS honeypot, namely Mime-

Pot, that utilizes Software Defined Network SDN for traffic redirection and network

address camouflage for the real devices. The proposed honeypot simulates the ICS

components and control routines based on the Linear Time Invariant model. The

authors provided a water distribution PoC implementation which used a simulated

attacker that injects and modifies the communication between honeypot elements.

56

2.7.3 Honeypots and Honeynets for Gas Pipelines

Wilhoit and Hilt developed a low-interaction virtual honeypot, namely GasPot [WH15],

for gas-tank-monitoring systems. Their honeypot represented a virtual Guardian

AST gas-tank-monitoring system. Based on their deployments with physical IP ad-

dresses in seven countries around the world, they realized reconnaissance attempts

and DDoS attacks were performed by attackers.

Zamiri-Gourabi et al. [ZGQA19] proposed an enhanced version of GasPot honey-

pot for ICS. Their upgrade applied patches to GasPot so that it will not be detected

as a honeypot on the Internet. They fixed the incomplete command support for

ATG protocol, made response times more realistic, and patched the problem of re-

sponding with static inventory values and the output formatting issue which can

help an attacker to understand that it is a honeypot.

2.7.4 Honeypots and Honeynets for Building Automation

Systems

Litchfield et al. [LFR+16] stated that high interaction honeypots are unsuitable for

CPS due to safety risks, costs, and limitations with the usefulness of the honeypot

without the physical part of the CPS. Therefore, they suggested the use of hy-

brid interaction honeypots in which real CPS devices interact with the simulation

of the physical part of the CPS, and proposed HoneyPhy. HoneyPhy consists of

three modules: Internet interface(s), process model(s), and device model(s). A PoC

implementation of HoneyPhy was given where a Heating, Ventilation and Air Con-

ditioning (HVAC) honeypot is constructed by means of a physical SEL-751A relay,

a black-box simulation model of a physical relay and a heating and cooling process

simulation model. The extendability of the proposed honeypot framework for other

57

CPS applications is limited since device and process models for the corresponding

CPS application are needed.

2.7.5 Honeypots and Honeynets for IIoT

Ammar and AlSharif [AA18] proposed a model called HoneyIo3, composed of three

honeynets carried out with three Raspberry Pi devices with Linux OS and Honeeepi

sensor, that mimic IIoT/ICS services. Services/Protocols used in HoneyIo3 model

are IPMI, S7comm, HTTP, Kamstrup, SNMP and SSH.

Du and Wang [DW20a] focused on DDoS attacks on SDNs in IIoT environ-

ments. They identified a new kind of attack that could identify a honeypot being

used in an SDN and disable it. Analyzing attacker strategies, they presented a

pseudo-honeypot game strategy to dynamically protect SDNs. The evaluation was

performed on a testbed using servers and hybrid honeypots, and showed that the

proposed strategy can protect against DDoS attacks.

2.8 Taxonomy of Honeypots and Honeynets for IIoT and

CPS

Honeypots and honeynets proposed for IIoT and CPS are listed in Table 2.8 and

the tools, implementation, and attack type details of the corresponding honeypots

and honeynets are also outlined in Table 2.9. In this section, we consider all of the

proposals for IIoT and CPS and provide an overview of these studies based on the

development of research over time, common characteristics, scalability, simulated

services, most commonly used tools, availability of the source codes, and the most

common attacks.

58

Figure 2.5: Evolution of inheritance for the honeypots and honeynets of IIoT and
CPS.

2.8.1 Development of Research Over Time

We analyzed the studies and depicted the development of research over time and

also the inheritance relationship between the honeypots and honeynets for IIoT and

CPS in Figure 2.5. As shown in the figure, honeypots and honeynets for IIoT and

59

CPS started with the SCADA HoneyNet [PF04] project of Pothamsetty and Franz

from Cisco Systems in 2004. This project was followed by Digital Bond’s SCADA

Honeynet [Pet06] in 2006. In terms of the honeypot and honeynet research for

IIoT and CPS systems in the literature, we can see that Berman’s thesis [Ber12] in

2012 was the first study. His thesis was followed by another thesis conducted by

Jaromin [Jar13] the following year. It is interesting to note that both studies were

performed in the US Air Force Institute of Technology. This also corresponds to a

time in which notorious malware (i.e., Stuxnet (2010), DuQu (2011), Night Dragon

(2011) and Flame (2012)) appeared in the wild against nations’ critical infrastructure

environments, and quickly grabbed the attention of military/defense organisations.

In the same year, 2013, the most popular ICS honeypot - Conpot [RVH+20] started

and Wilhoit from Trend Micro Research published the white paper of their low

interaction ICS honeypots [Wil13b]. After these works, honeypot and honeynet

research and practice in IIoT and CPS gained a momentum.

As shown in Figure 2.5, more than one-third of works have a form of inheritance

relationship with each other, where a honeypot is built based on another. In this

respect, Conpot [RVH+20] is the leading honeypot, as six honeypots were developed

based on Conpot (this number does not include the studies that do not extend

Conpot but only use it). The underlying reasons can be manifold. Conpot is open-

source and is still being actively maintained. It supports several industrial and

non-industrial protocols. In addition, it is being developed under the umbrella of

Honeynet Project [Hon20], which has a significant background with honeypots such

as Honeyd, Honeywall CDROM, Dionaea and Kippo.

In addition to extending the existing honeypots, researchers also considered to

employ simulators, emulators, or frameworks as the main building block for their

studies. As Figure 2.5 shows, Mininet and IMUNES emulators, GridLab-D, Soft-

60

Grid and POWERWORLD simulators, and MiniCPS framework were utilized in a

number of honeypot/honeynet studies.

Apart from extending honeypots or using simulators, emulators and frameworks,

we can see that half of the studies proposed independent honeypots. This may be due

to the shortcomings of existing honeypots to support CPS and IIoT environments

or fingerprintability of them from attackers’ point of view.

2.8.2 Common Characteristics

Honeypots and honeynets proposed for IIoT and CPS have several characteristics

in common.

In terms of purpose of the honeypots, we can see that the majority of the hon-

eypots and honeynets outlined in Table 2.8 and Table 2.9 have research purposes.

The only studies which have production purposes are Antonioli et al. [AAT16], Pig-

gin et al. [PB16], and Scott [Sco14]. This is understandable since IIoT and CPS

environments have unique features that make it hard for security tools including

honeypots to be actively deployed in such areas. Equipments in SCADA envi-

ronments work continuously, and interruptions and downtimes are highly refrained

from [SCGM13, Sco14]. In addition to this, industrial devices typically have real-

time constraints with guaranteed response times [HFB15]. For these reasons, it is

very difficult to insert a honeypot in an ICS production environment which may

affect the ICS communication and has the danger of being compromised (if it is a

high-interaction honeypot).

Considering the roles of honeypots, we see that the overwhelming majority of

the proposals have server roles. The honeypots and honeynets that have compo-

61

nents which act like clients are Haney et al. [Han19], Pliatsos et al. [PSL+19], and

MimePot [BCP19].

Linux is by far the most popular operating system environment choice of hon-

eypot and honeynet developers. Apart from Linux, we see that only Haney et

al. [HP14] used FreeBSD.

In terms of the programming languages used for the development of honeypots

and honeynets for IIoT and CPS, we note that Python is the most favored one.

Aside from Python, C/C++ and Java are also used by the studies. We believe that

this has a relation with the library support that these languages have for industrial

protocols. In this regard, Modbus-tk, pymodbus and cpppo EtherNet/IP libraries

of Python; libiec61850 and OpenDNP3 libraries of C/C++ and JAMOD Modbus

library of Java are utilized by the developers in the studies. In addition, Conpot -

the most popular open-source honeypot for IIoT and CPS is also written in Python.

2.8.3 Level of Interaction

Honeypots and honeynets proposed for IIoT and CPS environments exhibit all pos-

sible interaction levels. In this respect, as Table 2.8 shows, half of the works allow

low interaction capabilities to an attacker. On the other hand, numbers of medium,

high and hybrid interaction honeypots are almost equal to each other. We had to

make a decision on setting the interaction level for some of the studies since not

every author explicitly stated that information in their proposals. Low interaction

honeypots in IIoT and CPS systems can provide valuable information in terms of

scanning, target protocol, attack origin and brute-force attempts. On the other

hand, it is possible to see other more advanced attacks and industrial protocol and

process specific attacks only with medium and high interaction honeypots. How-

62

ever, one has to be extremely careful when deploying a high interaction honeypot

especially in IIoT and CPS environments since they allow attackers to compromise

the system and then apply other operations using the honeypot (e.g., downloading

malware, trying to exploit other devices on the same network, performing attacks

on behalf of the attacker).

2.8.4 Resource Level

In terms of resource levels of honeypots and honeynets for IIoT and CPS, we can

see that most of the decoy systems use virtual resources. However, honeypots and

honeynets utilizing real industrial devices and a combination of real and virtual

devices also exist. One of the biggest driving factor for researchers to propose

virtual honeypots may be the high cost of actual industrial devices. As several

researchers ([WRD+15, Gal17, MCGT17] and [GLA+17]) highlighted, components

of an industrial system such as PLCs have high costs in the order of tens of thousands

of dollars.

2.8.5 Scalability

The majority of the honeypots and honeynets for IIoT and CPS have scalable de-

signs. This is also related to these honeypots having virtual resources. As we

explained in Section 2.4, physical honeypots are difficult to scale as they need more

physical resources, and real industrial environments can have several industrial de-

vices. For instance, Mashima et al. [MCGT17] noted the number of substations in

a power grid in Hong Kong as 200. In order to propose a realistic decoy system,

scalable honeypot design gains importance.

63

2.8.6 Target IIoT and CPS Application

As target application areas of the existing honeypots, we can state that more than

half of the works targeted ICS environments. However, considerably fewer decoys

exist for specific CPS and IIoT applications such as smart grid, water, gas, and

building automation systems. Although the majority of the studies are for ICS, we

would like to note the fact that the similar industrial devices (e.g., PLCs) can be

used both by ICS and smart infrastructures (e.g., grid, water, gas).

2.8.7 Industrial Process Simulations

In terms of industrial process simulations, we see that only five studies considered

to employ some form of simulations. For water management CPS environments,

Antonioli et al. [AAT16] used equation of continuity from hydraulics and Bernoulli’s

principle for the trajectories (for drain orefice), Murillo et al. [MCG+18] utilized a

nonlinear model with Luenberger observer, and Bernieri et al. [BCP19] employed

linear time invariant model for plant simulation. GridPot [RLB15] made use of

Newton-Raphson power flow solver for electrical grid process. Lastly, for building

automation systems, Litchfield et al. [LFR+16] considered Newton’s Law of Cooling

for the building process model.

64

Table 2.8: Classification of Honeypots and Honeynets for IIoT and CPS

Work Year Interaction

Level

Scalability Resource

level

Simulated services Role Application

CISCO

[PF04]

2004 Low D Virtual Modbus/TCP, Telnet, HTTP,

FTP

Server ICS

Digital

Bond

[Pet06]

2006 Low D Virtual Modbus/TCP, Telnet, HTTP,

FTP, SNMP

Server ICS

Conpot [RVH+20]2013 Low D Virtual IEC 60870-5-104, BACnet, Eth-

erNet/IP, Guardian AST, Kam-

strup, Modbus, S7comm, HTTP,

FTP, SNMP, IPMI, TFTP

Server ICS

Zhao and

Qin [ZQ17]

2017 Medium D Virtual S7comm, Modbus, SNMP,

HTTP

Server ICS

DiPot [CLLL18]2018 Low D Virtual HTTP, Modbus, Kamstrup,

SNMP, IMPI, BACnet,

Guardian AST, S7comm

Server ICS

CamouflageNet [NMM+15]2015 Low D Virtual N/A Server ICS

XPOT [LKAR16]2016 Medium D Virtual S7comm, SNMP Server ICS

HosTaGe [VSCM16]2016 Low D Virtual Modbus, S7comm, HTTPS,

FTP, MySQL, SIP, SSH, SNMP,

HTTP, Telnet, SMB and SMT

Server ICS

S7CommTrace [XCX18]2018 Medium D Virtual S7comm Server ICS

Disso et

al. [DJB13]

2013 Hybrid Limited Hybrid N/A Server ICS

Honeyd+ [WRD+15]2015 High Limited Hybrid EtherNet/IP, HTTP Server ICS

Gallenstein

[Gal17]

2017 Low D Virtual EtherNet/IP. ISO-TSAP, HTTP Server ICS

Abe et al.

[ATUH18]

2018 Low D Virtual Modbus, S7comm, BACNet,

IPMI, Guardian AST, HTTP,

SNMP

Server ICS

65

Table 2.8: Classification of Honeypots and Honeynets for IIoT and CPS

Work Year Interaction

Level

Scalability Resource

level

Simulated services Role Application

Haney et

al. [HP14]

2014 Low D Virtual Modbus/TCP, Telnet, SSH,

HTTP(S)

Server ICS

Kuman

et al.

[KGM17]

2017 Low D Virtual Modbus/TCP Server ICS

Ding et al.

[DZD18]

2018 Medium D Virtual S7comm, SNMP Server ICS

Bodenheim

[Bod14]

2014 High Limited Physical HTTP, EtherNet/IP, SNMP Server ICS

Piggin et

al. [PB16]

2016 High X Physical SSH, HTTP, RDP Server ICS

Haney

[Han19]

2019 High D Hybrid Modbus/TCP, SSH, Telnet,

SNMP, HTTP

Client,

Server

ICS

Hilt et al.

[HMP+20]

2020 High X Hybrid S7comm, Omron FINS, Ether-

Net/IP, VNC

Server ICS

Berman

[Ber12]

2012 Low Limited Virtual Modbus/TCP Server ICS

Jaromin

[Jar13]

2013 Low Limited Virtual Modbus/TCP, HAP, HTTP Server ICS

Holczer et

al. [HFB15]

2015 High D Virtual S7comm, SNMP, HTTP(S) Server ICS

Serbanescu

et al.

[SOY15b]

2015 Low D Virtual DNP3, IEC-104, Modbus, ICCP,

SNMP, TFTP, XMPP

Server ICS

Simões

[SCPM15]

2015 Low D Virtual Modbus, SNMP, FTP Server ICS

Ahn et al.

[ALK19]

2019 Low D Virtual Modbus Server ICS

66

Table 2.8: Classification of Honeypots and Honeynets for IIoT and CPS

Work Year Interaction

Level

Scalability Resource

level

Simulated services Role Application

Belqruch

et

al. [BM19]

2019 Medium D Virtual SSH Server ICS

SHaPe

[KG15]

2015 Low D Virtual IEC 61850 MMS, HTTP, FTP,

SMB

Server Smart Grid

GridPot

[RLB15]

2015 Hybrid D Virtual IEC 61850 GOOSE/MMS, Mod-

bus, HTTP

Server Smart Grid

Scott

[Sco14]

2014 Low D Virtual Modbus/TCP, HTTP, SNMP Server Smart Grid

Mashima

et al.

[MCGT17]

2017 Medium /

High

D Virtual IEC 60870-5-104, IEC 61850,

SSH

Server Smart Grid

CryPLH [BJM+14]2018 Low D Virtual HTTP(S), SNMP, Step7 ISO-

TSAP

Server Smart Grid

Pliatsios et

al. [PSL+19]

2019 Low Limited Hybrid Modbus/TCP Client,

Server

Smart Grid

Mashima

et al.

[MLC19]

2019 Low D Virtual TCP port listener on IEC 61850

MMS, S7comm, Modbus/TCP,

Niagara Fox, EtherNet/IP, IEC

60870-5-104, DNP3 and BACnet

ports

Server Smart Grid

Murillo

et al.

[MCG+18]

2018 Low D Virtual EtherNet/IP Server Water

System

Petre et al.

[PK19]

2019 Medium D Virtual Modbus Server Water

System

Wilhoit [Wil13b]2013 Hybrid Limited Hybrid Modbus/TCP, HTTP, FTP Server Water

System

67

Table 2.8: Classification of Honeypots and Honeynets for IIoT and CPS

Work Year Interaction

Level

Scalability Resource

level

Simulated services Role Application

Antonioli

et

al. [AAT16]

2016 High D Virtual EtherNet/IP, SSH, Telnet, VPN Server Water

System

MimePot [BCP19]2019 High D Virtual Modbus/TCP Client,

Server

Water

System

GasPot

[WH15]

2015 Low D Virtual N/A Server Gas System

Zamiri

et al.

[ZGQA19]

2019 Medium D Virtual Veeder-Root ATG Server Gas System

HoneyPhy

[LFR+16]

2016 Hybrid X Hybrid DNP3 Server Building

Auto.

HoneyIo3 [AA18]2018 Hybrid D Hybrid IPMI, S7comm, Kamstrup,

SNMP, HTTP(S), Ntopng, SSH

Server IIoT

Du and

Wang [DW20a]

2020 Hybrid D Virtual Not identified Server IIoT

68

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

CISCO

[PF04]

N/A Modbus/TCP (502), Telnet

(23), HTTP (80), FTP (21)

N/A N/A N/A

Digital

Bond

[Pet06]

Sebek, Argus,

Walleye, Snort

IDS

Modbus/TCP (502), SNMP

(161), Telnet (23), HTTP

(80), FTP (21)

N/A N/A N/A

Conpot

[RVH+20]

N/A IEC 60870-5-104 (2404),

BACnet (47808), Ether-

Net/IP (44818), Guardian

AST (10001), Kamstrup

(1025, 50100), Modbus (502),

S7comm (102), HTTP (80),

FTP (21), SNMP (161), IPMI

(623), TFTP (69)

N/A N/A N/A

Zhao

and Qin

[ZQ17]

Flask framework,

Wireshark

N/A Traffic from 244 IP

addresses from 34

countries

Types, sources, re-

quests from IPs

43

days

DiPot

[CLLL18]

N/A N/A Modbus and Kam-

strup scan, Modbus

over-length packets

Access sequences to

protocols and their

IPs

6

months

CamouflageNet

[NMM+15]

Nmap, Kali Linux N/A Scanning N/A N/A

XPOT

[LKAR16]

Nmap, nfqueue N/A N/A S7comm hand-

shakes and

queries

1

month

69

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

HosTaGe

[VSCM16]

Wireshark, Bro

IDS, snp4j

Modbus (502) Multi-stage attacks

consisting of differ-

ent scanning and at-

tack attempts

Attacks to Modbus,

S7comm, HTTP,

Telnet and IP

addresses targeting

HosTaGe and

Conpot

12

weeks

S7CommTrace

[XCX18]

N/A S7comm (102) N/A Indexing in

Shodan, valid and

invalid requests,

function coverage

of S7comm,

received IP address

diversity

60

days

Disso

et al.

[DJB13]

N/A N/A N/A Link latency,

network traffic

counting and

connection limit-

ing, background

network traffic

N/A

Honeyd+

[WRD+15]

Nmap, Zenmap,

Wget

EtherNet/IP (44818, 2222),

HTTP (80)

Scanning Fingerprints of

Honeyd+ hosts,

error rates and

protocol data rates

N/A

70

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

Gallenstein

[Gal17]

Nmap, Shodan

Honeyscore,

RSLinx, STEP7,

Wget, Wireshark

EtherNet/IP (44818), ISO-

TSAP (102), HTTP (80)

Scanning Nmap finger-

print similarity,

Honeyscore per-

formance, RSLinx

and STEP7 PLC

module discovery

performance,

comparison of

responses to Wget

requests

N/A

Abe

et al.

[ATUH18]

Nmap Modbus (502), S7comm

(102), BACNet (47808), IPMI

(623), Guardian AST (10001),

HTTP (80), SNMP (161)

Havex RAT,

Modbus Stager,

PLC blaster

Behavior against

Havex RAT,

Modbus Stager

and PLC blaster

attacks

N/A

Haney

et al.

[HP14]

IMUNES,

JAMOD Library,

Snort IDS, Snort

daemon logger,

Sebek, Honeywall

Modbus/TCP (502), HTTP

(80), HTTPS (443), Telnet

(23), SSH (22)

Network and port

scan, Modbus

packet capture,

injection and out of

band packets

N/A N/A

Kuman

et al.

[KGM17]

OSSEC host-based

IDS, PLCScan,

Shodan, iptables

Modbus/TCP (502) Port scans on Mod-

bus and HTTP pro-

tocols

Conpot logs 2

weeks

Ding

et al.

[DZD18]

Nmap, snmpwalk,

STEP7 software,

PLCscan

S7comm (102) Scanning Scanning result N/A

71

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

Bodenheim

[Bod14]

Nmap, TCPdump,

SSH, Tshark,

Wireshark,

Shodan API,

Security Onion

Linux, Snort,

netcat

EtherNet/IP (44818), HTTP

(80) SNMP (161)

Scanning Shodan’s function-

ality and indexing,

effect of being in-

dexed on the re-

ceived traffic, effect

of modifying device

service banners

55

days

Piggin

et al.

[PB16]

Google Dorks N/A Scanning, password

attack, execute

malicious program,

SSH brute-force, an

attack originated

from TOR network,

DoS on the PLC

Origin and target

protocols of the at-

tacks

N/A

Haney

[Han19]

SecurityOnion,

iptables, Snort-

Sam, Sebekd,

Argus, JAMOD,

IMUNES, Lab-

VIEW, Matlab

Simulink

Modbus/TCP (502), HTTP

(80), SSH (22), SNMP (161)

Modbus scanning

via Shodan,

brute-force login

The most common

usernames and

passwords used

for attacks, attack

origins

2

weeks

72

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

Hilt et al.

[HMP+20]

Tshark, Moloch,

Chaosreader,

VNCLogger,

Suricata, Syslog

S7comm (102), Omron FINS

(9600), EtherNet/IP (44818),

VNC (5900, 5901)

Scanning, ran-

somware, malicious

cryptomining,

robotic workstation

beaconing attempt

Unique IP ad-

dresses, amount of

traffic, protocol-

specific traffic

and commands to

PLCs, communica-

tion with scanners,

VNC screen record-

ing, attacker’s

downloads

7

months

Berman

[Ber12]

Nmap, Wireshark,

SSH, TCPDump,

Syslog, Triangle

MicroWorks

Protocol Test

Harness

Modbus/TCP (502) Scanning, invalid

ICS traffic

Modbus/TCP

traffic tests,

response statistics,

fingerprint anal-

ysis, response to

invalid ICS traffic,

logging capabilities

N/A

Jaromin

[Jar13]

Nmap, Metasploit,

NetEdit3, Direct-

SOFT5, iptables

and netfilter

modules, libpcap

library, HAP API,

Syslog

Modbus/TCP (502), HAP

(28784), HTTP (80)

Brute-force pass-

word guessing,

fingerprinting

Packet level accu-

racy and logging

capability, OS fin-

gerpring accuracy,

Metasploit attack

performance,

response timing

N/A

Holczer

et al.

[HFB15]

Step7, Szilu SSL,

MiniWeb, iptables

S7comm (102), HTTP (80),

HTTPS (443), SNMP (161)

Pings, port scans,

SSH scans

Attack origins, logs 50

days

73

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

Serbanescu

et al.

[SOY15b]

Snort, Matlab,

Amazon EC2

environment

N/A Scanning Modbus traffic

(connections, re-

quests, port scans,

activity types,

country of origin),

impact of Shodan

listing the devices,

attractiveness of

ICS protocols

28

days

Simões

[SCPM15]

Modbus-tk,

Pymodbus and

Libpcap libraries,

NET-SNMP,

VSFTPd

N/A N/A Resource usage of

honeypot, response

time, reliability

N/A

Ahn

et al.

[ALK19]

N/A Modbus (502) ARP poisoning N/A N/A

Belqruch

et al.

[BM19]

Kali Linux SSH (22) SSH brute force Username-

password

combinations,

password attempts

N/A

SHaPe

[KG15]

libiec61850 N/A N/A TCP connection

information (con-

nection ID, source

and destination

IPs and ports),

Dionaea logs

N/A

74

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

GridPot

[RLB15]

ETSY Skyline

project anomaly

detection mod-

ules, GridLab-D,

hpfeeds logging

N/A IED switching at-

tack

Physics impact of

the attack

N/A

Scott

[Sco14]

Tenable Nessus,

Splunk Enterprise,

Rsyslog

Modbus/TCP (502), HTTP

(80), SNMP (161), Syslog

(514), Splunk (8000), SMTP

(25)

Scanning attack Alerts generated by

Splunk

N/A

Mashima

et al.

[MCGT17]

VirtualBox,

Mininet, SoftGrid

and POW-

ERWORLD

simulators,

SOCAT port

forwarding,

OpenMUC

IEC 60870-5-104 (2404), IEC

61850 (102), SSH (22)

Nmap scan, Shodan Fingerprinting,

latency, scalability

and cost analysis

N/A

CryPLH

[BJM+14]

Nessus, Nmap,

Backtrack Linux,

Miniweb, NGINX,

SNMPWalk

ISO-TSAP (102), HTTP (80),

HTTPS (443), SNMP (161)

Attack tests with

Backtrack Linux

(Kali Linux), Nmap,

nessus

Honeypot logs 38

days

Pliatsios

et

al. [PSL+19]

Wireshark, Tshark N/A N/A N/A N/A

75

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

Mashima

et al.

[MLC19]

Wireshark, ELK

stack, Amazon

Cloud

IEC 61850 MMS and S7comm

(102), Modbus/TCP (502),

Niagara Fox (1911, 4911),

EtherNet/IP (ENIP) (2222,

44818), IEC 60870-5-104

(2404), DNP3 (19999, 20000),

BACnet (47808)

SYN-flooding DoS,

scanning

Access trends, pro-

tocol specific at-

tempts, correlation

of honeypots’ data,

attack origin dy-

namics

6

months

Murillo

et al.

[MCG+18]

Mininet,

MiniCPS, Odeint

solver

N/A Bias injection attack Tank levels and

plant behavior

without attack,

with attack and

defense

N/A

Petre

et al.

[PK19]

Node-RED,

Softing OPC UA

Client, SQLite

N/A Unauthorized access Database entries N/A

Wilhoit [Wil13b,

Wil13a]

Snort, tcpdump,

Pastebin, Amazon

EC2

Modbus/TCP (502), HTTP

(80), FTP (21)

Scanning,

spearphishing,

unauthorized access

and modification,

Modbus traffic

modification, CPU

fan speed modifica-

tion on the water

pump, malware

exploitation

Attack types and

origins

28

days

76

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

Antonioli

et al.

[AAT16]

Mininet,

MiniCPS, ocserv

VPN, sshd,

telnetd, tc link

shaping, cpppo

EtherNet/IP

emulation

Ethernet/IP (44818), HTTP

(80), SSH (22), Telnet (23)

DoS, Man in the

Middle, port scan,

service enumeration,

physical process

attacks (i.e., tank

overflow)

Network metrics

(address, packet

loss, delay, band-

width, topology,

protocols, etc.)

and physical

metrics (realistic

mathematical

model, sensor

and actuator

operations, etc.)

Capture

the

Flag

Com-

peti-

tion

MimePot [BCP19]Mininet, Scapy N/A Man in the Middle

and integrity attack

Tank water lev-

els, Mime Estima-

tion and Control

status by time, wa-

ter pump status,

flows between tanks

N/A

GasPot

[WH15]

N/A N/A Reconnaissance,

DDoS

Connection at-

tempts, commands,

attack origins

N/A

Zamiri

et al.

[ZGQA19]

Nmap Veeder-Root ATG (10001) N/A N/A N/A

HoneyPhy

[LFR+16]

OpenDNP3

library, LabVIEW

N/A N/A Heating and

cooling curve from

both physical

system and the

process model

N/A

77

Table 2.9: Summary of Tools, Implementation, and Attack Types of Honeypots and

Honeynets for IIoT and CPS

Work Tools Ports Attack Types Data Analyzed Study

Length

Du and

Wang

[DW20a]

SDN testbed N/A DDoS attacks, SYN

Flood attack, FTP

flow

Protocols, packets

per port, packet

characteristics

N/A

HoneyIo3

[AA18]

Shodan, Nmap IPMI (623), S7comm (102),

Kamstrup (1025), SNMP

(161), HTTP (80), HTTPS

(443), ntopng (3000), SSH

(9002)

Reconnaissance at-

tacks

Protocols, packets

per port, packets

characteristics

N/A

78

2.8.8 Simulated Services

Honeypots and honeynets for IIoT and CPS support a wide variety of protocols

and services that are both specific and not specific to industrial environments. The

protocols and services supported by the honeypots and honeynets are shown in Ta-

ble 2.8 while ports that are exposed for such protocols in the honeypots are outlined

in Table 2.9. When we consider the protocols, we can see that Modbus, HTTP,

SNMP, and S7comm are the most popular protocols among the studies. Our find-

ings are also validated by a number of researchers [HP14,SOY15b,ADM16,HLLL17,

ABF18,PK19,PSL+19] who cite Modbus as the most widely used industrial protocol.

Popularity of industrial protocols along with number of honeypots supporting them

can be expressed as follows: Modbus (22), S7comm (12), EtherNet/IP (8), IEC

60870-5-104 (4), BACnet (4), Kamstrup (4), DNP3 (3), Guardian AST (3), IEC

51850 (3), and ISOTSAP (2). The popularity of non-industrial protocols, HTTP

and SNMP are very reasonable. HTTP is used as the interface of HMIs of industrial

systems [AAT16, Sco14] and also it enables the remote configuration of industrial

components such as PLCs [HFB15, VSCM16]. For these reasons, it is stated as

the target of scanning activities performed by malicious entities [KR19]. SNMP

on the other hand is used for monitoring and management purposes in industrial

environments [HFB15,WRD+15].

2.8.9 Availability of Open-source Honeypot and Honeynet

Solutions

There exist eight honeypot and honeynet studies that provide their implementation

openly. In this respect, CISCO SCADA HoneyNet [PF04] source code is still avail-

able. However, the last shared version was in 2015. Unfortunately, Digital Bond’s

79

SCADA Honeynet [Pet06] is not reachable right now. Conpot on the other hand,

is open-source and is still being actively maintained. Considering the rest of the

honeypot and honeynet studies, only the honeypot of Zamiri et al. [ZGQA19] is ac-

tively maintained. However, their study was performed in 2019 and it is not known if

they will continue to actively maintain it. The implementations of GridPot [RLB15]

and SHaPe [KG15] are still available, but their last update was in 2015. The last

update for GasPot [WH15] was in 2016, and honeypot-like testbed of Murillo et

al. [MCG+18] was maintained in 2018.

2.8.10 Most Commonly Used Tools

The most commonly used tool for IIoT and CPS honeypot and honeynet studies is

Nmap, which is followed by Wireshark, Snort IDS, Shodan tools, Mininet, iptables,

tshark, TCPDUMP, and syslog. Researchers used Nmap to obtain fingerprints of

their honeypots and to indetify the exposed ports. Wireshark was used for traffic

capture and analysis. Snort IDS is used for attacker control attempts especially in

honeywall configurations. Shodan tools were used to find out indexing information,

honeypot’s fingerprint from Shodan’s point of view, and also to find out if Shodan

detects the decoy system as a honeypot or not.

2.8.11 Most Common Attacks

The most commonly detected/tested attacks in IIoT and CPS honeypots/honeynets

are scanning attacks. Majority of the studies detected/tested scanning attacks to

the IIoT and CPS environments. In addition to DoS/DDoS, SSH, brute-force, and

Man-in-the-Middle attacks were also detected/tested in the proposed honeypots and

honeynets. Although less common than the mentioned attacks, ransomware, ma-

80

licious cryptocurrency mining, malware and ICS specific attacks such as HAVEX

RAT, PLC Blaster, and tank overflow attacks were also detected/tested in the pro-

posed systems.

2.9 Lessons Learned and Open Issues

Considering the honeypot and honeynets for IoT, IIoT, and CPS environments, we

believe that it is crucial to stress the importance of key points. This is valuable to

interpret the state-of-the-art and to motivate for further research and practice.

2.9.1 Lessons Learned

Any honeypot/honeynet developer and researcher for IoT, IIoT, and CPS needs to

consider a few key factors at the very beginning of his/her work. The key factors

that should be taken into account are target application area, purpose of the hon-

eypot/honeynet, cost, deployment location, intended level of interaction with the

attacker, resource level, services that will be provided, simulated, or emulated, and

their realistic service to the attackers, tools that will be used, fingerprintability and

indexing, and liability issues that may come up.

Target Application Area Selection: IIoT and CPS environments have their

own characteristics which may affect the entire honeypot/honeynet design. Devices,

communication channel characteristics, protocols, traffic rates, application QoS re-

quirements, and many other factors can be different for each unique application.

CPS and IIoT devices have quite different characteristics from regular IoT devices.

In addition, they work with industrial protocols which are not used in traditional

ICT or IoT environments. Such industrial devices have life-times in the order of

decades and work with real-time constraints which strictly require them to work

81

without interruptions [SCGM13, HFB15]. Critical infrastructures of nations are

controlled by such industrial devices. While typical IoT applications do not have

any physical processes to be continuously monitored and controlled, it is very com-

mon for IIoT and CPS applications. For these reasons, it is extremely important to

determine the target application and its characteristics.

Purpose of the Honeypot/Honeynet: The purpose of a honeypot or honeynet

significantly affects the measures that need to be taken to ensure that attacks on

the honeynet do not compromise the infrastructure on which it is implemented. In

a research environment, this can be done by isolating the honeynet system. For

example, by implementing it in a DMZ. However, if production honeypots are to

be deployed in IIoT and CPS environments where industrial devices monitor and

control critical plant processes, then extra care has to be given to the decoy sys-

tem design. Such production honeypots in industrial environments need to ensure

that they cannot be compromised by attackers, as well as ensure that they do not

interfere with the communication and control processes (i.e., operational resources)

of the existing industrial devices. In addition, one has to note that honeypots and

honeynets do not stop attacks [Sco14]. For this reason, the alerts or logs created by

them have to be considered by administrators.

Deployment Location: While deployment location can have an important effect

on honeypot activity, only twelve of the reviewed studies stated their deployment

locations. Two CPS studies [Bod14,HFB15] deployed their honeypots within the IP

range of universities, which may call the attention of attackers who check the IP ad-

dress spaces of their targets. Another two CPS studies [SOY15a,MLC19] and three

IoT studies [ZZZ+19, DLL+19, VC19] chose cloud environments as deployment tar-

gets. Such an approach would provide a global view of attacks to honeypot/honeynet

owners and also may be more attractive to attackers than the university option.

82

However, attackers can still find out that the target system operates within the IP

range of a cloud provider. Additionally, two CPS studies [HMP+20, WH15] and

three IoT studies [G.W18, GTB+17, TAS+19] use public IP addresses which is the

better option. In addition to this, Guarnizo [GTB+17] identified that geographical

location selection, in terms of country or city of deployment, or at least the location

shown to attackers, is an important consideration. This is because attackers might

seek to attack devices in certain cities if they are looking for a point to start targeted

attacks or if they have an interest in reselling IPs after they are infected.

Cost: Cost is a crucial consideration in developing honeypots and honeynets. Set-

ting up a honeypot or honeynet can be very expensive if physical resources and

closed source tools are used instead of virtual resources and open source tools. Also,

it is important to note that the PLCs, IEDs, RTUs, and RIOs used in industrial

applications are considerably more expensive than Commercial of-the-shelf (COTS)

IoT devices. In addition, complexity of a honeypot, especially a honeynet, can be

another contributing factor for the cost of the system. Complexity is directly propor-

tional to the level of interaction provided and also the number of services/protocols

supported. As the interaction level and number of supported services increase for

honeypots and honeynets, higher fidelity data in high volume is collected, which

requires more resources to store and process. Moreover, deployment locations can

have an effect on the cost of the system. To be more specific, although deployment

of a honeypot or a honeynet in a university IP address space can be cost efficient

for research, it can easily call the attention of adversaries. Honeypot/honeynet de-

ployments in cloud environments would be significantly more costly compared to

university environments. However, attackers can still determine that the IP ad-

dresses are in the cloud provider space. The third option would be renting private

IP addresses to avoid suspicion by attackers, but such an option can be more costly

83

than the cloud option. For these reasons, honeypot/honeynet developers and re-

searchers need to consider how resource and interaction levels as well as deployment

environment and complexity affect the cost.

Level of Interaction Considerations: The level of interaction of a honey-

pot/honeynet affects many different aspects, as explained in Section 2.4. Consid-

ering the existing honeypots and honeynets for IoT, IIoT, and CPS, almost every

possible level of interaction choice can be seen as reviewed in Section 2.6 and Sec-

tion 2.8. However, high interaction is needed in order to identify complex attacks

that may target IoT, IIoT, and CPS devices and understand possible effects on in-

dustrial processes and critical infrastructures. Although COTS IoT devices are more

affordable, industrial devices in the order of thousands of dollars can be a significant

issue to consider. Therefore, resource level choice and realistic simulation/emula-

tion become important considerations. These are further discussed in the following

categories.

Resource Level Selection: The question of whether real, simulated, or both types

of devices are to be used in honeypots/honeynets for IoT, IIoT, and CPS is quite a vi-

tal one. Real devices can act as high-interaction honeypots and provide high fidelity

information. In addition, they would be almost impossible to be detected as a hon-

eypot by outsiders. However, as explained earlier, costs of real devices can change

based on the target application area and constructing a realistic honeynet with a

realistic number of industrial devices may cost a fortune. These important factors

motivated researchers and developers to design honeypots/honeynets with virtual

components. Virtualization enables scalability, heterogeneity, easy maintenance and

cost-effective deployment of IoT, IIoT, and CPS honeypots. In this respect, Dang

et al. [DLL+19] found that approximately 92.1% of malware-based attacks target

multiple IoT device architectures and emphasized the need for a virtual IoT hon-

84

eypot solution. At the same time, they identified that virtual honeypots attracted

37% fewer suspicious connections and 39% fewer attacks than physical honeypots.

Also, the variety of attacks virtual honeypots captured were more than with physi-

cal honeypots. Dang et al. [DLL+19] also pointed out that a virtual honeypot costs

12.5x less to maintain than a physical honeypot. These factors should be weighed

in considering honeypot/honeynet design. Balancing the benefits of both physical

and virtual resources in a hybrid solution is an important consideration. In addition

to this, the choice of which model of devices to select, either real or simulated, can

play a factor in attracting attackers. Guarnizo [GTB+17] identified that models

with known vulnerabilities tend to be attacked more frequently.

Choice of Services to Provide/Simulate and Realism: Choice of services to

provide or simulate, and ensuring realism in such services are very critical factors

in honeypot/honeynet design. These considerations get even more important for

IIoT and CPS systems. Which services will be provided? Is it logical to support all

of the protocols and services in the target application area? If not, how to choose

among the set of protocols/services? Scott [Sco14] pointed out that honeypots

and honeynets should simulate only the services that the mimicked device would

usually accommodate. If the mimicked device does not have a certain service or

does not support it, but the honeypot does, then attackers may realise that they

are interacting with a decoy system. After determining the services/protocols to be

supported, then comes another important aspect: realism.

One of the principal considerations when deploying a honeypot or honeynet sys-

tem for IoT, IIoT, or CPS is how to simulate a real system effectively in order to

avoid hackers and search engines from identifying that they are interacting with a

decoy system. This is vital for the honeypot system to be able to attract attackers

and to gather as much information as possible from their interactions. In order to

85

avoid detection more effectively for a honeynet deployed in an IoT environment,

Surnin et al. [SHH+19] recommended the following: a limited number of services

should be run to simulate a more realistic environment, ping command host requests

should yield an existing host, files created by attackers should not be deleted, com-

mands for utilities should return a list of running processes, no hardcoded values

should be used, simulated Linux utilities should have full functionality from the

origin, and attacker file requests should be sent to a sandbox with a specified de-

lay before checking them on external services such as VirusTotal. Zamiri-Gourabi

et al. [ZGQA19] pointed out the fact that default hardcoded configurations, miss-

ing features of the simulated services or protocols, unusual or unrealistic behaviors,

fingerprintability of the hosting platform and response times can be the possible fin-

gerprints of honeypots and honeynets. Simulations of plant processes in a realistic

way comes to the scene for IIoT and CPS honeypots/honeynets. Unfortunately, only

a small portion of honeypots/honeynets considered this vital issue with IIoT and

CPS honeypots.With IoT honeypots, this factor was considered by various studies.

In fact, the most commonly used tools for IoT honeypot and honeynet research

were all tools which were used to check the available services, realism in responses,

including response times, and other factors that affect fingerprintability, which will

be discussed in the following sections.

Choice of Tools: A honeypot or honeynet designer should consider the deploy-

ment area or target application area characteristics when he/she is choosing the

tools such as scanners. Not every tool may support all of the IoT, IIoT, and CPS

applications, their corresponding protocols and services. In addition, tools that also

support vulnerability checks should be considered to be employed [Sco14]. A de-

signer should also consider how to pair their honeypot or honeynet with tools that

will best complement the honeynet for effective attack mitigation. While medium

86

and high interaction honeypots enable more interactivity for attackers, attackers

may have tools to check whether they are interacting with a virtual environment

and whether their activities are being recorded/logged. Tools such as Sebek are

used by researchers in order to seamlessly log the activities of the attackers.

Appearance on the Search Engines and Fingerprintability: One of the

most important factors in honeypot/honeynet design is ensuring appearance on the

search engines while not being fingerprinted as a decoy system. For this reason,

honeypot/honeynet owners have to monitor IoT search engines which identify and

detect devices and honeypots on the Internet, such as Shodan. Different views exist

in the literature whether being indexed by such search engines has an effect on the

attacks to be received. For example, Guarnizo [GTB+17] identified that the number

of attacks on a device increase significantly in the first few weeks after they are listed

on Shodan. Nevertheless, such indexing services can make the jobs of attackers easier

by pointing out Internet-connected ready-to-attack targets. Being indexed by such

search engines verifies the accessibility of the honeypot/honeynet system. Being

listed as a real system rather than a honeypot/honeynet is an achievement that

helps honeypot owners to reach their ultimate goal.

Comparison of IoT, IIoT, and CPS Honeypots/Honeynets: Honeypot and

honeynet research for IoT, IIoT, and CPS environments is an important research

area. Although we summarized the studies and provided taxonomies in the previous

sections, comparison of the decoy systems for IoT, IIoT, and CPS, and highlighting

their similarities and differences can be very crucial. The first significant difference

arises from the supported services. While the IoT decoys considered mostly support

Telnet, SSH, and HTTP which are not IoT-specific, the CPS decoys considered

mostly support industrial protocols such as Modbus, S7comm, EtherNet/IP, and non

industry-specific protocols such HTTP and SNMP. Since there are only two decoys

87

for IIoT and only one of them is disclosing its services, we can see that IIoT decoys

stay in the intermediary position in this regard, supporting both industrial and

non-industrial protocols. The second difference arises from the process simulations.

While some CPS decoys employ simulations of industrial processes for ICS plants,

water management, electrical grid, and building HVAC systems, we do not see such

process simulations in the proposed IoT decoys. The third difference arises from the

interaction level of proposed honeypots and honeynets. While the majority of the

decoys proposed for IoT are medium interaction decoys (10 studies), the majority of

the decoys for CPS are low interaction (16 studies). The cost of physical ICS devices

and difficulty of realistic process simulations play an important role in the interaction

level choice of CPS honeypots and honeynets. Considering the similarities, we see

that decoys with virtual resources and server roles are common between IoT, IIoT,

and CPS environments.

Control and Liability: When deploying a honeypot or honeynet for IoT, IIoT,

and CPS environments, control and liability issues are the aspects that are greatly

overlooked, but designers should always consider. The greater the level of interaction

a honeypot allows, the greater the risk that it could be compromised and used by

attackers for harming other systems in the network or even launching attacks on

other networks. Scott [Sco14] advised to be familiar with laws before deployment of

honeypots since honeypots are interpreted as entrapment by jurisdictions in some

places. Haney [Han19] emphasized the importance of taking liability and legal issues

into account and putting data control as a first priority, even if this means data

capture may be affected. Haney proposed setting up both automated as well as

manual data control mechanisms, with at least two protection mechanisms to always

have a second option if one data control method fails. Sokol [SA15] highlighted

that a honeynet should contain the following parts in order to address security, data

88

control, and liability issues: a firewall with only the necessary network ports opened,

a dynamic (re)connection mechanism to determine if a connection is trusted and can

be allowed, a testbed for analysis, an emulated private virtual network to restrict

attackers, and a control center to monitor connections and respond to issues quickly.

Improving Security of IoT, IIoT, and CPS Devices: The information gath-

ered from research with honeypots and honeynets can lead to innovative ways to

improve the security of IoT devices despite their constraints. One example of this

is the proposal by Dang et al. [DLL+19] of a series of measures called IoTCheck to

increase the security of IoT devices, which include asking whether the IoT device has

a unique strong password, whether the default system user is a non-root user, and

whether there are unnecessary components on the devices which can be eliminated.

The same authors also suggest for manufacturers to disable shell commands that

are enabled by default on Linux-based IoT devices but are not necessary, as these

are used for attacks.

2.9.2 Open Issues

Honeypots and honeynets for IoT, IIoT, and CPS have been a very active field of

research during the last decade. We studied 79 honeypots/honeynets in greater

detail in this study. However, there are still open issues which need to be addressed

by researchers.

Emerging Technologies/Domains: In terms of decoy systems for IoT, we see

that there are honeypots/honeynets for Smart Home, but not for emerging domains

or technologies such as wearable devices, medical devices, and smart city. In terms

of decoy systems for IIoT and CPS, we see that there are honeypots/honeynets

for general ICS, smart grid, water, gas and building automation systems. How-

89

ever, we do not see such decoys for other IIoT and CPS applications such as smart

city, transportation, nuclear plants, medical devices. As smart medical devices

in modern healthcare applications are becoming more prevalent and are threat-

ened by various attacks [NSRU20, NSBU20, NSRU19], decoy systems for modern

healthcare applications are needed. In addition, to the best of our knowledge,

there is only one honeypot system for building automation systems. Considering

the rapid increase of notorious ransomware attacks [OALS21], cryptocurrency min-

ing attacks [NAB+21, TAS+21], and attacks to enterprise IoT systems [RBAU19,

PBAU20,RBA+20,PBA+21], we believe that further research is needed which may

enable us to protect smart buildings from ransomware attacks. We would like to

note that building honeypots and honeynets for the unexplored IoT, IIoT and CPS

applications may require realistic process models (e.g., patient vitals models, vehi-

cle operation models, nuclear process models, etc.) in case virtual or hybrid decoy

systems are targeted.

Unexplored Protocols: Existing IoT, IIoT, and CPS honeypots/honeynets sup-

port a wide range of ICT, IoT, and industrial protocols. Various IoT honeypots

emulate full devices. However, one cannot claim that the state-of-the-art honey-

pot/honeynet research considered every protocol or service. In addition to this,

very few current studies focus on IoT specific protocols. There are also protocols

and services that still need to be addressed by honeypot research. For instance,

we did not find any study that supports Highway Addressable Remote Transducer

(HART) and WirelessHART [Fie20] industrial protocols. In addition, Enterprise

IoT environments can employ various proprietary communication protocols that

rely on security through obscurity [PBA+21]. For this reason, decoy designs for

such type of proprietary solutions are needed. Researching unexplored protocols

and services may provide valuable information for honeypot/honeynet research and

90

practice. A potential solution to unexplored protocols for IoT, IIoT, and CPS hon-

eypots/honeynets could be extending open source honeypots and honeynets such as

Conpot, Honeyd, Dionaea, Kippo, etc. for the unexplored protocols. Although open

source libraries for the unexplored well-known protocols can be found, researchers

would have to perform reverse engineering for the proprietary communication pro-

tocols.

Emerging Platforms: In the recent years, several platforms were proposed/devel-

oped by both researchers and vendors for the management of the IoT devices [BDC+21].

In this regard, platforms such as openHAB, Samsung SmartThings, thingworx,

Amazon AWS IoT, IBM Watson IoT, Apple HomeKit, etc. emerged for IoT ap-

plications. Such platforms have different characteristics in terms of supported IoT

devices, communication protocols and network topologies, data processing and event

handling approaches, and security. Although there exist decoy systems for generic

IoT applications, one does not see any studies focusing on honeypot and honeynet

design for the mentioned emerging IoT platforms. Since popularity of such plat-

forms is increasing in recent years, IoT applications that are built on top of such

platforms can be sweet spots for the adversaries. Therefore, there is a need for hon-

eypot/honeynet research for the emerging IoT platforms. In order to propose novel

decoy systems for the emerging platforms, researchers can benefit from the existing

IoT honeypot/honeynet research and extend the open source IoT decoys.

Optimized Deployment Location: Honeypots and honeynets proposed for IoT,

IIoT, and CPS employed various deployment locations (i.e., university, cloud, private

locations) as explained in the previous sections. Each deployment location option

has its own benefits and pitfalls in terms of fingerprintability [BAR+20, AUB18],

suitability for IoT, IIoT, or CPS application, complexity, and cost. Although a few

studies investigated how a limited set of deploy locations attract attackers, one does

91

not see any study in the literature that aims to optimize the deployment location

for the decoy system with respect to a set of constraints. We believe that, this is an

important gap in the honeypot/honeynet research and there is a need for extensive

analysis and novel frameworks in order to optimize deployment location decisions.

Although this problem is hard to tackle, researchers can employ relaxation strategies

in order to approximate the optimal deployment location solution for the IoT, IIoT,

and CPS decoys.

Remote Management: Several tools can be utilized to manage honeypots/honeynets

locally or remotely. While the decoys with virtual resources can be managed locally

or remotely without much efforts, the decoys with physical resources may require

researchers to be physically present in such locations for maintenance purposes.

However, the Covid-19 pandemic caused lockdowns all around the world which

forced researchers to perform their tasks remotely. Extraordinary times like the

current pandemic, natural hazards, etc. can cause similar situations that can force

people to remotely manage their decoy systems. We believe that researchers have

to consider such conditions while designing and deploying their decoy systems for

IoT, IIoT, and CPS. Remote management of decoy systems require employment of

secure tools and secure configurations. However, vulnerabilities of such tools that

are considered to be secure can be found, as in the case of SolarWinds [Cen21],

which require continuous efforts to check for vulnerabilities and patch.

Anti-Detection Mechanisms: Honeypots and honeynets that are using virtual

resources have been widely used in IoT, IIoT, and CPS environments. Such an

approach has several advantages as discussed in the previous section. However,

from the malware research domain we know that virtual environment detection

techniques are frequently used by malicious software developers. When we checked

the honeypot/honeynet studies for IoT, IIoT, and CPS that use virtual resources,

92

we did not see any study which considers this important issue. In addition, the

analysis parts of the studies did not mention detecting an attacker which uses such

techniques. Although research did not observe the existence of a sample case, we

think that attackers will be using such methods in the near future. For this reason,

future honeypots and honeynets for IoT, IIoT, and CPS should consider to employ

anti-detection mechanisms in their medium/high interaction virtual decoy systems.

Researchers in this regard can benefit from existing anti-detection research from

the malware analysis domain such as hiding the artifacts regarding the analysis

environment, moving analysis logic to lower levels such as hypervisors or bare-metal,

etc. [ANSB19].

Vulnerabilities of Industrial Devices: IoT, IIoT, and CPS environments con-

sist of several devices produced by different vendors. Vulnerabilities with device

firmware, OS and other software are often found and listed in vulnerability databases

such as Common Vulnerabilities and Exposures (CVE) [The20a]. As explained ear-

lier, devices with such vulnerabilities attract the attackers and stand as vulnerable

targets to compromise. Considering the honeypots and honeynets, we see that there

exist studies which take such vulnerabilities into account when designing honeypots.

However, we did not encounter any proposal for IIoT and CPS that considers vulner-

abilities of industrial devices. We believe that a research gap exists in the literature

in regards to whether attackers really pay attention to industrial device vulnerabil-

ities or not when choosing targets. A potential way to address this open problem

could be deploying honeypots for IIoT and CPS environments that advertise both

vulnerable and patched versions of ICS device firmware or management software. In

this way, it would be possible to understand if adversaries pay attention to disclosed

vulnerabilities when choosing their targets.

93

Insider Attacks: The target users for IoT, IIoT, and CPS are very diverse and

have very different skill levels for deploying honeypot/honeynet systems. However,

none of the IoT research studies consider how the systems being proposed could

be implemented on a wider scale in the future, taking into account the need for

simple deployment. In addition to this, none of the current research places focus on

attacks initiated and carried out from inside the network. These types of attacks

could be carried out by disgruntled employees or for corporate espionage. How-

ever, researchers may not deploy physical or virtual honeypots on a network in a

straightforward way since insiders may have a chance to reach the decoys physically

or virtually. We believe that virtualization technologies such as Network Function

Virtualization (NFV) and containers, and SDN technologies can be utilized to de-

velop moving target defense-like honeypot solutions for insider attackers.

Machine Learning: Another open issue is the employment of ML and AI tech-

niques for honeypot design. Considering the studies, we see that ML techniques have

been employed by a limited number of honeypot/honeynet works for configuration

and data analysis purposes. Although eight studies ([Wag11,PB14,PIB18,LXJ+17,

SBH19, PBPC19, LVS20, WSK18]) employed ML for IoT honeypots/honeynets, we

see that only one study [CLLL18] used ML techniques for IIoT and CPS honeypots.

We believe that future IoT, IIoT, and CPS honeypots and honeynets can benefit

from ML techniques to propose smarter decoy systems that can i) adapt themselves

based on the actions of attackers, ii) discriminate known attacks from new attacks

thus enable researchers to focus more on novel threats, and iii) increase the efficiency

and prevalence of honeypots and honeynets.

Discrimination of Benign Decoy Traffic: Honeypots and honeynets are tra-

ditionally assumed to receive only malicious traffic which are in fact helpful for

the existing IDS and IPS elements in the network to increase their true positive

94

rates. However, IoT honeypots and honeynets employing physical IoT devices can

receive benign traffic from vendors. For instance smart home devices provided by

Google, Apple, Samsung, and Amazon can receive benign traffic from their ven-

dors with application-specific motivations (e.g., cloud connectivity, health check,

updates, etc.). Such benign traffic originating from device vendors targeting the

decoy system, as well as the traffic generated by benign bots such as Shodan and

Censys to index the Internet-connected devices, break the aforementioned assump-

tion of incoming traffic to decoy systems. For this reason, researchers have to take

such benign traffic into account while analyzing the decoy traffic. We believe that IP

address lookup for the traffic sources can provide information on the benign origins

of the decoy traffic. In addition, analysis of Ferretti et al. [FPZ19] on the scan-

ning patterns of legitimate scanners such as Shodan can give clues to researchers on

discriminating legitimate traffic.

Production Decoys: Considering the reviewed honeypots and honeynets for IoT,

IIoT, and CPS environments, we see that the majority of the reviewed works are

research honeypots. Although research honeypots are important to understand the

attacks and new tactics of attackers, they do not actively participate in securing

an IoT, IIoT, or CPS environment. For this reason, more production honeypots

are needed that can actively participate in securing IoT, IIoT, and CPS networks.

Efforts in combining honeypots/honeynets with IDS solutions are noteworthy in

this regard. Researchers can employ open source IDS solutions such as Snort, Zeek,

Suricata etc., malware analysis platforms such as Cuckoo, and next generation net-

working technologies such as SDN to propose novel decoy solutions for IoT, IIoT,

and CPS environments.

95

2.10 Conclusion

In this chapter, we provided a comprehensive survey of honeypots and honeynets

for IoT, IIoT, and CPS environments. We provided a taxonomy of honeypots and

honeynets based on purpose, role, level of interaction, scalability, resource level,

availability of source code and target IoT, IIoT, or CPS application. In addition,

we analyzed the existing honeypots and honeynets extensively and extracted the

common characteristics of state-of-the-art honeypots and honeynets for IoT, IIoT,

and CPS. Moreover, we outlined and discussed the key design factors for honeypots

and honeynets for IoT, IIoT, and CPS applications. We also summarized the open

research problems that can be addressed by future honeypot and honeynet studies.

As future work, we are planning to propose novel honeypot/honeynet systems for

IoT and CPS environments that build upon this survey.

96

CHAPTER 3

S-POT: A SMART HONEYPOT FRAMEWORK WITH DYNAMIC

RULE CONFIGURATION FOR SDN

3.1 Introduction

The digital transformation has been converting all aspects of life in recent years.

The ever-growing number of Internet of Things (IoT) devices has exacerbated de-

mand on traditional networks, making it increasingly complex to manage and scale.

Enterprise networks in this regard are becoming increasingly heterogeneous where

enterprise devices/services and IoT devices coexist. SDN emerged in response to

these needs, transforming networking infrastructure, moving the brain from net-

work devices to a centralized software controller [LSFF16]. SDN has been playing

a crucial role in providing high performance networking around the globe during

the Covid-19 pandemic [The20b]. More and more enterprise networks are moving

to SDN [The20b], and the market size of SDN is expected to reach $59 billion by

2023 [Mar]. Simultaneously, cyber threats are evolving and increasing in quantity

and impact. The cost of cybercrime is expected to reach $10.5 trillion in 2025 [Mor].

Although SDN has its benefits to ease security operations (e.g., isolation, seg-

mentation, attack mitigation, etc.) in enterprise networks, it can also pose new

threat vectors [The20b]. Intrusion Detection and Protection Systems (IDPS) have

been widely used to protect SDN from attacks. However, IDPS solutions have funda-

mentally limited signature rules, which can leave SDN-powered enterprise networks

vulnerable to new threats (zero day attacks). While some IDPSs offer anomaly-

based detection, they can have false positives (FP) and false negatives (FN). Ma-

chine Learning (ML) has become a valuable tool to overcome these limitations.

However, ML-based solutions can also struggle to discriminate benign traffic from

97

malicious traffic, and suffer from FN. In addition, although ML models can be re-

trained to cope with zero-day attacks, it may not be possible for every enterprise to

have the necessary human resources that have the technical know-how to perform

retraining. In parallel with IDPS and ML-based solutions, honeypots have been

widely used to understand evolving cyber threats and develop effective defenses.

Honeypots are mostly used for research purposes and they aim to lure attackers. In

addition, they generally receive only malicious traffic [Wat07, FACU21]. Although

there exist various studies on the use of IDPS, ML, and honeypots with research

purposes, including various combinations of these tools implemented together in

SDN [WW19, DW20b, KHT+17, AHM18, KA20, NZD+16, ELDJ19, SCPA19], to the

best of our knowledge, no study considered to benefit from honeypots for production

purposes in improving the security of an SDN-based network.

In this study, we propose S-Pot, an open-source smart honeypot framework that

integrates the use of IDPS and ML for securing SDN-based enterprise networks

through dynamic rules configuration. S-Pot benefits from honeypots that can sim-

ulate both enterprise services and IoT devices in gathering attack information. It

employs an IDPS and ML classifiers to detect and learn from the attacks in honey-

pots. Unlike research honeypots, it utilizes the obtained attack information from the

honeypots for production purposes for the security of SDN networks, dynamically

creates new rules for the attacks, and shares them with the SDN-based enterprise

network. Since honeypots (hence S-Pot) generally only receive malicious traffic,

S-Pot can benefit from the identified malicious traffic of honeypots and greatly re-

duce FPs on the real network [Wat07]. Moreover, it can also detect new attacks

that target the enterprise network by means of ML classifiers, and thus improve FP

performance of the defense solutions in the enterprise network.

98

We implemented S-Pot and evaluated its performance in detecting attacks using

various ML classifiers. Our evaluations show that S-Pot can detect attacks with

97% accuracy with J48 algorithm. In addition, we did another analysis in evaluat-

ing the performance of S-Pot in generating new attack signatures and dynamically

configuring the rules of a realistic enterprise SDN testbed network. Our analysis

demonstrates that, S-Pot can efficiently generate new rules and dynamically con-

figure rules of the realistic testbed network to block attacks. Our evaluations show

that S-Pot can improve the security of an enterprise SDN network compared to the

case without S-Pot.

Contributions: The contributions of S-Pot are as follows:

• We propose a fully open-source smart honeypot framework that benefits from

enterprise and IoT honeypots to dynamically generate new IDPS and SDN

flow table rules for securing SDN-based hybrid enterprise networks.

• With S-Pot, we demonstrate how enterprises can benefit from honeypots for

production purposes to secure their networks against both known and zero-day

attacks.

Organization: This chapter is organized as follows. Section 3.2 identifies the

related work. Section 3.3 provides background information on honeypots, SDN,

and IDPS. Section 3.4 defines the problem scope and the threat model. Section 3.5

describes S-Pot. Section 3.6 details the implementation of S-Pot, data collection

and processing, and evaluates the performance of it. Finally, Section 3.7 concludes

the chapter.

99

3.2 Related Work

Several studies exist in the literature on securing SDN networks with the use of hon-

eypots, IDPS, or ML tools. The use of SDN is presented by Wang and Wu [WW19]

as a necessity for improving honeynet topology. Sultana et al. [SCPA19] surveyed

ML methods using SDN and IDS. Valdovinos et al. [VPDCB21] and Swami et

al. [SDR19] focused on SDN vulnerabilities and DDoS attack detection and mit-

igation for SDN, yet in this case, both ML and honeypot tools are not included.

[MMS19], [XYH+19], and [ZLZ+19] focused on research with ML and SDN. Du and

Wang [DW20b] aimed to be the first study to focus on DDoS attacks on honeypots-

based SDN, particularly in Industrial IoT. Molina et al. [MBSC20] presented a high

interaction IoT honeynet using SDN to protect the devices from DDoS botnet at-

tacks. Kyung et al. [KHT+17] presented an SDN-based honeynet architecture to

improve detection of fingerprinting attacks and avoid malware propagation with the

application of SDN controller. Azab et al. [AHM18] introduced a smart gateway

that isolates the northbound and southbound interfaces, and works as an IDS to

protect the SDN controller from being compromised. In addition to the mentioned

studies, various studies exist that use IDPSs in SDN. Sarica and Angin [KA20] in-

troduced an SDN-dataset for intrusion detection in IoT. Other studies focused on

attack detection in SDN using ML, such as Nanda et al. [NZD+16] and Elsayed et

al. [ELDJ19], but do not use IDPS or provide dynamic rules configuration.

Differences from the existing work: Despite the wealth of research in SDN

security, to the best of our knowledge, none of the aforementioned studies have

benefited from honeypots for production purposes for the security of SDN-based en-

terprise networks. Also, unlike prior work, S-Pot integrates the use of honeypots,

IDPS, and ML for securing an SDN network. In addition, S-Pot can detect new

100

attacks targeting SDN-based networks, create new rules for the detected attacks,

and dynamically configure the SDN-based network.

3.3 Background

3.3.1 Software-Defined Networking

SDN allows for creating a more reliable, secure, and flexible network by adding

the capacity of a centralized network controller to program and manage the net-

work [PP17]. SDN reduces the traditional network’s limitations by separating the

network into three layers: application, control, and infrastructure layers. These

are also referred to as application, control, and data planes. The application layer

contains the network applications, such as IDPS and firewalls. The SDN controller

software is the control layer, which handles the flow of all traffic in the network

and enforces policies that can be established by the network administrators. The

physical switches in the network compose the infrastructure layer. Communication

between the layers is carried out through northbound and southbound Application

Programming Interfaces (APIs). Northbound APIs enable communication between

the application layer and control layer, whereas Southbound APIs enable commu-

nication between the control layer and the infrastructure layer. Although various

protocols can be used with SDN to communicate between the controller and the

network devices in the infrastructure layer, Open Flow Protocol (OFP) is the most

widely used [AHM18]. SDN provides capabilities such as traffic analysis, dynamic

rules updating, a global view of the network, and logically centralized network con-

trol [XYH+19]. While SDN provides control over the network that can be com-

bined with other tools to implement strong security mechanisms, on its own, SDN

101

lacks adequate security features making it vulnerable [TQF+17]. Varadharajan et

al. [VKTH19] categorize the threats in SDN, pointing to how the controller and

networking devices such as switches, can be affected by multiple attacks, including

denial-of-service (DoS) and distributed DoS (DDoS) attacks.

3.3.2 Honeypots and Honeynets

A honeypot is a decoy that is used to lure attackers and deceive them into thinking

they have accessed a real system and to observe and learn from their actions by

gathering data about their interaction with the honeypot [FACU21]. The gathered

data can be used to develop countermeasures against attacks [FDFV18]. Honeypots

can vary greatly in the level of interaction that they allow the attacker, ranging

from low interaction honeypots that emulate particular services, to high interaction

honeypots that emulate entire operating systems (OS). They can be used in a wide

variety of applications, for research or production purposes, and can be implemented

with physical or virtual resources. Two or more honeypots implemented on a system

form a honeynet [FACU21]. Since there are generally no licit causes for which to

interact with a honeypot, any traffic is usually malicious, which allows honeypots to

greatly reduce the amount of FP in comparison with anomaly-based IDSs [Wat07].

3.3.3 Intrusion Detection and Protection Systems

Intrusion Detection and Intrusion Protection Systems identify potential threats in

a network using signature-based and/or anomaly-based methods. For signature-

based detection, the systems capture traffic in a network and compare the packets

to a database of known threats. For anomaly-based detection, the systems identify

deviations from normal traffic in the network. An IDS detects and alerts of malicious

102

traffic in a network but does not take any action. On the other hand, an IPS not

only detects but also executes an action such as restricting access to attackers based

on a set of rules. Snort IDPS [Cisb], maintained by Cisco Systems, is one of the

most widely used open-source IDPS that can be used with diverse OSs.

3.4 Problem Scope and Threat Model

3.4.1 Problem Scope

We consider an SDN enterprise network containing both enterprise systems and

IoT devices for smart buildings. The network has a signature-based IDPS that can

detect the known attacks but fails to detect new attacks. To detect new attacks, the

network can employ an ML-based anomaly detection system. However, although it

may improve the security, it can struggle to discriminate benign traffic from the

malicious, thus suffer from FP. In addition, although retraining the ML model is

possible, not every enterprise may have the necessary human resources that have

the technical know-how to perform this task. For these reasons, despite the security

measures, the network can be vulnerable to zero-day attacks that can go undetected,

and also suffer from the blocked benign traffic. To improve security of the SDN

enterprise network, in this work, we propose S-Pot that benefits from enterprise

and IoT honeypots, IDPS, and ML classifiers in detecting attacks targeting the

network, and improves security of the network by generating new attack rules and

dynamically configuring the rules. S-Pot is deployed in a demilitarized zone (DMZ)

under the same domain as the real network. It publicly exposes honeypots to the

Internet and aims to protect the real SDN network. S-Pot identifies key features

from the gathered attack data and creates a new rule in the IDPS in the S-Pot

103

Figure 3.1: Architecture of S-Pot.

framework that instructs the controller of S-Pot to drop a packet if it exhibits the

same features. This rule is passed over to the IDPS on the real enterprise network,

which dynamically instructs the controller on the real network to do the same.

This improves the security of the real SDN enterprise network by updating the

controller rules to defend against zero-day attacks. When an attacker attempts to

send a similar attack to a device in the real network, the controller drops the packet,

protecting the real SDN network from the attack.

3.4.2 Threat Model

This work considers DoS, DDoS, scanning, trojan malware, and zero-day attacks

targeting SDN-based enterprise networks. DoS, DDoS, and malware attacks have

been identified amongst the most common types of cyber attacks [Cisc], while scan-

ning is used in the reconnaissance phase of the attacks. In addition, the protocols

104

targeted by these attacks are commonly used in enterprise and IoT environments

and have been identified among the most targeted protocols for attacks in the dark

web [MS18].

3.5 S-Pot Framework

3.5.1 Overview

Figure 3.1 presents a general overview of the proposed S-Pot framework. S-Pot con-

sists of the following components: 1 The SDN Network Management module that

includes of a virtual switch for connecting devices to the network and a controller for

centralized network monitoring, managing the flow of all traffic in the network. 2

The Honeypot module is comprised of virtual honeypots to lure attackers. 3 The

IDPS module captures and logs data, detects potential threats, and distributed new

rules. 4 The ML Classifier module is where data preprocessing, feature extraction,

and classification are carried out. It also feeds the output to the Dynamic Rules

Configuration module. 5 Finally, in the Dynamic Rules Configuration module the

new rules are created, distributed, and integrated into the S-Pot network and the

real SDN network. This is where the IDPS and controller rules are dynamically

changed with the acquired knowledge from S-Pot. S-Pot utilizes SDN to better

manage its components. While S-Pot could be implemented without an SDN plat-

form, SDN provides greater features than the use of an IDPS on its own, to be able

to dynamically implement new rules in a network based on the learned information.

The modules of S-Pot are explained in detail in the following subsection.

105

3.5.2 S-Pot Modules

SDN Network Management Module

The controller is the brain of the network. The Open Daylight (ODL) controller

Oxygen version [Thea] was chosen for the proposed framework. The ODL controller

offers open-source flexibility, as well as open protocols, centralized network moni-

toring, and programmable control actions for S-Pot. At the application layer, ODL

allows REST API calls to the controller to push down rules to the infrastructure

layer. The Open vSwitch (OVS) [Theb] connects all the devices to the network.

S-Pot is able to mirror all honeypot traffic to the IDPS using the OVS.

Honeypots Module

The production honeypots are the tools used to attract attackers to our network. S-

Pot is composed of virtual machines (VM) running on Virtual Box. This framework

allows for building high interaction virtual honeypots that can simulate both enter-

prise services and IoT devices with open-source and closed-source OSs and provides

easy scalability.

IDPS Module

All traffic goes through the IDPS module. The IDPS captures the data packets,

normalizes them, and checks the packets against its ruleset database. The processed

information and results are sent to output plugins of the IDPS, where options for

output can be selected.

106

ML Classifier Module

The ML Classifier module obtains the network traffic log of the IDPS module. The

first step is Data Cleaning. Here, the data is cleaned before proceeding with feature

selection. The next step is Feature Selection, where selected features are combined to

identify the type of attacks. Finally, pre-trained multi-class ML classifiers examine

the unknown traffic and detect the attacks. For S-Pot, the following classification

algorithms were selected: Random Forest, SMO, BayesNet, and J48. These algo-

rithms were selected to include a variety of approaches: BayesNet is probability

based, J48 is decision tree based, Random-Forest combines multiple decision trees,

and SMO is used in support vector machine (SVM) implementation. We would like

to highlight that although we employ classical ML algorithms in this study, S-Pot

does not have any limitation to employ more advanced ML algorithms such as deep

learning. The ML Classifier outputs results to the Dynamic Rules Configuration

Module.

Dynamic Rules Configuration Module

This module gathers the alert log data from the ML classifications from the S-Pot

framework, parses out the data such as source IP, destination IP, Ethernet type,

protocol, source and destination ports, type of service, etc., and generates IDPS and

SDN rules using these features, which are passed to the SDN flow tables of both

S-Pot and the real SDN network. The new rules are also passed to the IDPS on both

the S-Pot network and the real SDN network. In the case of new attacks classified

as unknown by the classifier, in addition to generating new rules accordingly, the

module sends a notification with the log data to security administrators, so that

they may review the logs. The security administrators can use this information to

107

develop new rules and manually change the IDPS and SDN rules, which can be

imperative for defense against zero day attacks.

3.6 Performance Evaluation

In this section, we explain the implementation and performance evaluation of the

S-Pot framework.

3.6.1 Implementation of S-Pot

SDN Network Management Module Implementation: Open Daylight con-

troller and Open vSwitch are selected for the SDN Network Management module.

The ODL controller manages the flow tables in the OVS, if a packet matches a rule

in the OVS flow table, then the rule is applied (e.g. drop packets). Otherwise, the

OVS checks with the controller for new rules before forwarding the packets. The

OVS interconnects all the modules of our framework. All traffic associated with the

honeypots is compared against the OVS rules tables to check if they comply with

previously recorded rules and is also forwarded to the IDPS module to be processed

and logged. If attack traffic is detected in the IDPS module, a request for a new

rule is sent to the Dynamic Rules Configuration module to generate a new rule for

the ODL controller via the RESTCONF API, and the OVS flow table is updated

to apply the new rule (e.g. drop packets from source).

Honeypots Module Implementation: We employ two enterprise honeypots

where each is implemented in a VM with different OSs and services to attract a

greater variety of attack types. Debian 10 was selected due to its common use in

enterprise servers, and Windows 10 was selected due to their wide use as clients in

enterprise environments. Two IoT honeypots are also implemented. IoT Candy-

108

Figure 3.2: An example Snort rule to block packets of SYN flood.

jar [LXJ+17] and Thingpot [Wan17] open-source honeypots were selected because

they were both created for IoT, provide full-device emulation, and are scalable. Fur-

thermore, ThingPot was created specifically for DDoS attacks for IoT, and IoT Can-

dyjar applies machine learning to automatically learn the behaviors of IoT devices

from the Internet. Telnet, Domain Name System (DNS), Dynamic Host Configu-

ration Protocol (DHCP), SSH, HTTP(S), FTP, and SMB protocols were selected

because they are commonly used in enterprise and IoT environments and have been

identified among the most targeted protocols for attacks in the darkweb [MS18].

IDPS Module Implementation: For the IDPS module, we selected Snort [Cisb]

because it is one of the most widely used open-source IDPSs. We used ODL con-

troller and the OVS to connect the honeypots and forward all the traffic to the Snort

IDPS. Figure 3.2 demonstrates an example of a Snort IDPS rule. This rule blocks

packets from any IP address using any port that is targeting the same destination

(e.g., 192.168.100.4) with more than 18 SYN packets within a second. This rule

could vary based on the ML outputs.

ML Classifier Module Implementation: We utilized Weka [Gro] for use in

our ML-Classifier module. Weka is an open-source tool for ML applications that

provides various algorithms. Details with the data collection and training are given

in Section 3.6.2.

Dynamic Rules Configuration Module Implementation: For this module, we

used a script to generate the IDPS and SDN rules and to pass newly created rules

from it. The script gathers the alert log data from the ML Classifier module, parses

109

out data from the alert (source and destination IPs, Ethernet type, protocol, source

and destination ports, type of service, etc.), and generates rules using these features,

which are added to Snort and the SDN flow tables of both the S-Pot framework and

the emulated SDN network. The controller is queried by the OVS every 30 seconds

for new registered rules on both networks as well. One advantage when generating

new dynamic rules for the SDN controller is that the filter values are similar to the

ones used for Snort. This facilitates creating filters for the rule. It is also possible

to combine multiple conditions. Rules are pushed to the SDN controller in XML or

JSON format. Listing 3.1 demonstrates an example SDN rule generated by S-Pot

to be passed to the SDN controller to drop packets that match the source IP address

of x.x.x.x/30 and port 22222, destination IP address of y.y.y.y/24 and port 8080,

Ethernet source and destination addresses.

Listing 3.1: A sample SDN rule generated by S-Pot for the enterprise SDN controller
to drop packets from x.x.x.x/30 to y.y.y.y/24

{
"flow2": [

{
"id": "2",
"table_id": 2,
"flow-name":"flow2",
"strict": 2,
"match": {

"ipv4-source": "x.x.x.x/30",
"ipv4-destination": "y.y.y.y/24",
"ip-match": {

"ip-dscp": 2,
"ip-protocol": 6,
"ip-ecn": 2},

"in-port": "0",
"tcp-source-port": 22222,
"tcp-destination-port": 8080,
"ethernet-match": {

"ethernet-type": {
"type": 2048},

"ethernet-source": {
"address": "00:02:b2:f2:c3:05"},

"ethernet-destination": {
"address": "00:02:c4:a6:b1:03"}}},

"cookie": 3,
"instructions": {

"instruction": [
{

"order": 0,
"apply-actions": {

"action": [
{

"order": 0,
"drop-action": {}

}]}}]}}]}

110

3.6.2 Data Collection and Processing

To test the performance of S-Pot in classifying attacks, we prepared a dataset with

TCP SYN Flood DoS, PUSH and ACK Flood DoS, UDP Flood DDoS, scanning,

trojan malware, and unknown attacks. In this study, unknown attacks represent

zero day attacks and are all the logged packages which did not fit into the other

attack classifications that the classifier came across during the training. These were

generated using pcaps. Next, we used libpcap [lib] to capture network traffic for

eight consecutive hours and performed variations of the selected attacks. For this,

we used hping3, LOIC, Nmap, and pcaps, respectively. We stored the captured

network traffic into JSON files and converted them into CSV format for use in

Weka. We chose the following features based on the values of each feature, the

statistical relationship, and the redundancy of the features to produce a more ac-

curate model [NG20]: inter-arrival time (IAT), packet direction (dir), destination

address and port (dst ap), destination MAC address of Ethernet (eth dst), source

MAC address of Ethernet (eth src), packet length (pkt len), protocol type (proto),

source address and port (src ap), capture time (timestamp), transmission control

protocol flags (tcp flags), transmission control protocol window (tcp win), and time

to live (ttl).

In the Data Cleaning step, the collected data was cleaned by extracting only the

selected features and forming the feature vectors. We eliminated the features that

are not relevant to the classification of the attacks (e.g., rule revision, generator id,

eth type, or where columns have missing information (e.g., class, service). In the

Feature Selection step, we combined the selected features such as seconds, the source

IP address, and the packet length or seconds and packet number to identify the type

of attack. Seconds, which represent the inter-arrival time between each continuous

packet, have been determined to be helpful to identify different types of attacks in

111

Table 3.1: Performance Evaluation Results of S-Pot.

Model TPR FPR Prec. Recall F1
ROC

Area
Class

0.971 0.02 0.965 0.971 0.968 0.995 Scanning

0.945 0.016 0.925 0.945 0.935 0.975 DoS2

0.947 0.001 0.973 0.947 0.96 0.976 Trojan

RF 0.95 0.011 0.963 0.95 0.957 0.996 DDoS

0.996 0.004 0.979 0.996 0.987 0.998 DoS

0.881 0.003 0.95 0.881 0.914 0.986 Unknown

0.958 0.013 0.959 0.958 0.958 0.991 Avg.

0.988 0.014 0.975 0.988 0.981 0.986 Scanning

0.931 0.007 0.968 0.931 0.949 0.965 DoS2

0.951 0 1 0.951 0.975 0.965 Trojan

J48 0.969 0.012 0.961 0.969 0.965 0.987 DDoS

0.991 0.005 0.97 0.991 0.981 0.994 DoS

0.936 0.003 0.962 0.936 0.949 0.987 Unknown

0.97 0.01 0.97 0.97 0.969 0.983 Avg.

0.942 0.011 0.979 0.942 0.96 0.994 Scanning

0.927 0.017 0.921 0.927 0.924 0.986 DoS2

0.976 0.004 0.87 0.976 0.92 0.976 Trojan

BayesNet 0.935 0.018 0.94 0.935 0.937 0.99 DDoS

0.996 0.004 0.974 0.996 0.985 0.997 DoS

0.927 0.013 0.835 0.927 0.878 0.992 Unknown

0.945 0.013 0.947 0.945 0.945 0.991 Avg.

0.968 0.022 0.961 0.968 0.964 0.985 Scanning

0.934 0.017 0.922 0.934 0.928 0.96 DoS2

0.953 0 1 0.953 0.976 0.979 Trojan

SMO 0.943 0.013 0.958 0.943 0.95 0.978 DDoS

0.996 0.004 0.974 0.996 0.985 0.996 DoS

0.899 0.004 0.942 0.899 0.92 0.995 Unknown

0.955 0.015 0.955 0.955 0.955 0.981 Avg.

112

networks [OCD16]. We began by labeling the known network traffic generated each

as a different class. Class categories are presented as DoS, DoS2, DDoS, scanning,

trojan malware, and unknown, where DoS represents TCP SYN Flood DoS attacks,

DoS2 represents PUSH and ACK Flood DoS attacks, and DDoS represents UDP

Flood DDoS attacks. DoS attacks were from a real static IP address flooding the

target, while DoS2 was a spoofed IP address to simulate a trusted source. To

identify these attacks, the selected features were used in Classifiers component of the

ML Classifier module to build ML models using Random Forest, SMO, BayesNet,

and J48 algorithms. Feature combinations were selected for the identification of

each attack type. DoS, DoS2, and DDoS attacks were identified through feature

combinations of identical IAT, src ap, dir, and packet length, consecutive values

of timestamp, pktnum, and src ap, and identical values of pktlen, and tcp win.

When the traffic is benign, it was observed that these features change uniformly.

Also, while maintaining the same dest ap, the src ap port number increases by one

when it is under DoS attacks. For the scanning class, dst ap, TTL, eth src, and

tcp flags were considered to detect active scanning. For the Trojan malware, Snort

detected the packets as malicious based on direction flowing to the server, dest ap,

pkt len repeated in groups of three, and proto targeting HTTP. Finally, Classifier

was trained using a multi-class classification of labeled signatures from known attack

types by applying a supervised approach.

3.6.3 S-Pot Classification Accuracy

In this section, we evaluate the accuracy of S-Pot in detecting the attacks. Table 3.1

presents the results considering several accuracy metrics such as True Positive Rate

(TPR), False Positive Rate (FPR), Precision, Recall, F1, and ROC Area. The

113

BayesNet model showed the best performance for identifying scanning, achieving

97.9% precision. For identifying trojan malware attacks J48 and SMO showed the

best performance with 100% precision. The metrics proved the most accurate in

regards to DoS attacks, with RF achieving 97.9% precision. In regards to DDoS

attacks, RF demonstrated the best performance with 96.3% precision, whereas J48

proved to have the highest precision in regards to DoS2 attacks with 96.8% as well

as unknown attacks with 96.2%. J48 provided the best performance overall, with

the highest average true-positive rate of 97%, lowest average false-positive rate of

1%, and highest average precision of 97%. The obtained results show that the J48

model is the most suitable classifier to be used in the ML Classifier module of S-Pot.

Figure 3.3 displays the confusion matrix obtained as a result of the classification of

different attack types and the J48 algorithm.

Figure 3.3: Confusion Matrix generated from the result of the classification of dif-
ferent types of attacks using J48 algorithm.

3.6.4 Performance Evaluation of the SDN Enterprise Net-

work with S-Pot vs. without S-Pot

To compare the security of an enterprise network with and without S-Pot, we built

an enterprise SDN testbed network that includes the components tabulated in Ta-

ble 3.2. In this evaluation, we simulated TCP SYN Flood DoS, PUSH and ACK

114

Flood DoS, UDP Flood DDoS, scanning, and trojan malware attacks using the

aforementioned tools and applied each type of attack 10 times.

Table 3.2: Components of the SDN Testbed Network.

Component OS Services

Enterprise Honeypot 1 Debian 10 SSH, HTTP/HTTPS, DNS

Enterprise Honeypot 2 Windows 10 SMB, FTP, SSH, DHCP

IoT Honeypot 1 Full device emulation SSH, Telnet

IoT Honeypot 2 Full device emulation SSH, Telnet

Snort IDPS Ubuntu 20 IDPS

ODL Ubuntu 18 Controller

OVS Ubuntu 18 Virtual Switch

We began by identifying the number of attacks that were effectively blocked by

the use of Snort IDPS alone in the SDN network, without S-Pot. Our analysis

showed that the Snort IDPS detected and blocked the trojan malware, and flagged

the TCP SYN Flood DoS, PUSH and ACK Flood DoS attacks. However, it did not

block the TCP SYN Flood, and PUSH and ACK Flood attacks. A rule is required

to be added to Snort to block these attacks. On the other hand, Snort did not

detect the UDP Flood DDoS or the scanning attacks.

As the second step of our evaluation, we applied the same attacks (i.e., UDP

Flood DDoS, TCP SYN Flood DoS, PUSH and ACK Flood DoS, and scanning)

which were not detected by the IDPS of the testbed network on different honeypots

of S-Pot, which in turn were analyzed by the IDPS module of S-Pot. Once again, the

IDPS module of S-Pot was able to detect and block only the trojan malware. The

TCP SYN Flood DoS and PUSH and ACK Flood DoS attacks were only detected

115

but not blocked, and the UDP Flood DDoS and scanning attacks were not detected.

For the attacks that were not detected by the IDPS module, the ML Classifier

module of S-Pot obtained the traffic logs from the IDPS, and detected the attacks

with 100% accuracy. Following the detection process, new signatures for the detected

attacks were generated by the Dynamic Rules Configuration module and fed to the

IDPS of S-Pot successfully. In addition, the new rules were sent to the IDPS of

the SDN testbed network. Once this process was completed, as the last step of the

evaluation, we applied the same attacks against the hosts on the testbed network

again. At this point, the IDPS of the network was able to detect all of the attacks,

and the packets were dropped. Our evaluation with simulated attack instances

shows that S-Pot can detect new attacks and generate new rules to block attacks

with 40% improvement over legacy systems without S-Pot, based on the applied

attacks, thus effectively improving the security of an SDN network. It is important

to note that while our analysis only focused on S-Pot effectiveness against these five

types of attacks, this is expandable to all kinds of attacks as new attack data is

captured by the honeypot module and the ML Classifier module is also extendable.

3.7 Conclusion

In this chapter, we proposed S-Pot, a novel smart honeypot framework that aims

to improve security of SDN networks. S-Pot benefits from honeypots that can

simulate both enterprise services and IoT devices in gathering attack information

and employs an IDPS and ML classifiers to detect and learn from the attacks in

honeypots. Unlike research honeypots, it utilizes the obtained attack information

from the honeypots for production purposes for the security of SDN-based networks,

dynamically creates new rules in real-time for the attacks, and shares them with the

116

SDN-based network. We implemented S-Pot and evaluated the attack detection

performance of it with respect to various ML algorithms. Our results showed that

J48 algorithm provides the best accuracy for S-Pot, with 97% precision. We also

created a realistic enterprise SDN testbed network and tested the security of it

with and without S-Pot. Our evaluations demonstrated that S-Pot can improve the

security of the SDN network and can effectively add a newly created rule to the

flow tables on both the S-Pot and the realistic enterprise testbed network. These

new rules can effectively block attacks based on the acquired knowledge from our

S-Pot framework, improving network security.

117

CHAPTER 4

FORENSIC ANALYSIS OF CRYPTOJACKING IN HOST-BASED

DOCKER CONTAINERS USING HONEYPOTS

4.1 Introduction

Blockchain-based cryptocurrencies have transformed financial transactions. There

are currently over 18,000 types of cryptocurrencies, and the cryptocurrency market

value was more than 2 trillion as of April 2022 [Coi], having reached an all-time high

of 3 trillion in November 2021 [Lau21]. Cryptocurrency is particular in that investors

can either purchase cryptocurrency, or carry out mining operations to generate new

coins. The lucrative potential of cryptomining has led to the exploitation of this

methodology through cryptojacking, by which a cybercriminal performs unautho-

rized cryptocurrency mining using the victim’s computational power and resources

for their own financial gain. This is also something which insiders can seek to make

a profit from, with employees that have legitimate access to computational resources

abusing their privileges [Mil21].

While cybercriminals perform cryptojacking exploiting a wide range of devices

(e.g., personal computers, IoT devices [TAU22]), the researchers spotted an increas-

ing trend towards targeting devices with greater processing power through host-

based cryptojacking [TAU+21, IBM, C.P]. For host-based cryptojacking, since the

client does not go to the attacker as they do in the case of in-browser cryptojack-

ing, the attackers need to find the way to deploy and install the malicious mining

script on the victim’s device. The greater the computational power, the greater

and faster the possible profit yield from mining. This usually also means a greater

number of connections and processes, which expands the attack surface [TAU+21].

Some examples of targeted powerful devices are servers [Fox21], enterprise cloud in-

118

frastructures [Hac20, Dom20], and Docker engines [Sas21] to maximize profit using

host-based cryptojacking.

Docker engines are widely deployed in today’s enterprise environment, from uni-

versities to big companies worldwide providing services to their employees, making

host-based Docker containers a prime target for cryptojacking. In fact, Docker has

become one of the top three most popular development platforms [Sta20]. Despite

the trend toward host-based cryptojacking and the wide use of Docker, the current

literature has not explored the cryptojacking malware targeting Docker containers

and its detection methods.

At the same time, honeypots and honeynets have become very important tools

for security researchers in the past years to observe and analyze how attackers per-

form attacks and find out their behaviors [FDFV18]. Honeypots and honeynets

can provide actionable intelligence on the attackers to continuously learn from at-

tacks and develop effective defense mechanisms [FDFV18]. A honeypot is a decoy

that is used to lure attackers and deceive them into thinking they have accessed a

real system and to observe and learn from their actions by gathering data about

their interaction with the honeypot [FACU21]. Research honeypots have been a

very active field of research during the last decade. However, there have been few

research studies on the use of honeypot data for developing security solutions for

production purposes [FACU21], and to the best of our knowledge, no research stud-

ies have considered the use of production honeypots for detection and mitigation of

cryptojacking. Given the current global impact and scope of cryptocurrency and

cryptojacking, this is an important research area to consider.

In this study, we conduct a forensic analysis of cryptojacking in host-based

Docker containers using honeypots to collect host resource and network data. We

identify that monitoring the resource usage of a Docker host can reveal potentially

119

unauthorized cryptomining. For example, increased temperature of a Docker host,

when combined with increased CPU and RAM loads which can be attributed to

a particular container and it can be a strong indicator of an intrusion or possi-

ble cryptomining. When further combined with network data that includes the

identification of Stratum protocol, keywords in DNS requests, and the use of the

container’s ephemeral ports, these are notable indicators to alert of cryptojacking.

We identify countermeasures to secure Docker containers to avoid the such attacks

and vulnerabilities that can lead to cryptojacking. We also propose an approach for

monitoring host-based Docker containers and alerting system administrators when

the indicators point to a cryptojacking attack.

Contributions: The contributions are as follows:

• We identify key indicators for the detection of cryptomining in a host-based

Docker engine through forensic analysis using honeypots. Our analysis shows

that both host resource usage and network traffic-based features can be used

to detect unauthorized cryptomining.

• We also propose an approach for monitoring host-based Docker containers for

the detection of cryptojacking.

• We present countermeasures for securing Docker containers to to prevent cryp-

tojacking attacks.

Organization: This chapter is organized as follows: Section 4.2 provides related

work. Section 4.3 provides background information. Section 4.4 describes the

problem scope and threat model. Section 4.5 describes our methodology. Section

4.6 provides a forensic analysis of the collected data. Section 4.7 provides measures

for securing host-based Docker containers. Section 4.8 presents an approach to

120

monitor host-based Docker containers. Section 4.9 proposes conclusions and future

work.

4.2 Related Work

There are currently very limited studies on detection mechanisms for host-based

cryptojacking [ASKS19, MPB+20, Tan20, GPLC19, LEBM20]. A few recent stud-

ies present detection mechanisms which can be used for both browser and host-

based cryptojacking. The studies in [MPB+20, Tan20] focus on CPU as a key fac-

tor for detection while study in [MPB+20] uses Hardware Performance Counters

(HPC). [ASKS19] focuses on providing a lightweight model for detecting crypto-

jacking malware in low power devices such as Internet of Things (IoT) and Cy-

ber Physical System (CPS) devices. [GPLC19] focuses on a combination of hard-

ware events, software events, and hardware cache events. However, only two stud-

ies [DHD+20,CROD21] focus solely on host-based cryptojacking. These two studies

focus on the use of opcode sequences, system call invocations, and network traffic.

However, none of the aforementioned studies focused on the container implementa-

tions. There is only one study [KKH+21] in the current literature that specifically

targets detecting cryptomining in containers. This study concentrates on monitor-

ing Linux-kernel system calls with a machine learning based system of anomalous

pods in a Kubernetes cluster. Finally, [SK18] and [BG21] focus on docker-based

honeypot systems; however, they do not focus on cryptojacking threats.

Differences from the existing work: To the best of our knowledge, this is

the first study investigating host-based cryptojacking targeting Docker containers

focusing on both device resource usage and network traffic features. Moreover, it is

also the first study utilizing a honeypot system for the cryptojacking detection.

121

4.3 Background

4.3.1 Host-based Cryptojacking

Cryptojacking refers to the act of performing unauthorized cryptocurrency mining

using a victim’s computational power and resources for financial gain. While in-

browser cryptojacking is carried out through a web script, host-based crytojacking

is carried out on the host system. To accomplish this, cybercriminals fraudulently

embed malware in legitimate third-party applications [CV20], target identified Com-

mon Vulnerabilities and Exposures (CVEs) as in the case of Mikrotik routers [Tre18]

or CVE-2019-2725 for the delivery of Monero cryptominer [VTG19], exploit poor

security [Qui21], install the malicious files through a web page, pop-up window, or

email attachment [SRG18], or use social engineering techniques [McD21]. Insiders

can also seek to make a profit mining using the resources of the company abusing

their privileges [Mil21].

4.3.2 Stratum Protocol

Stratum is an application layer protocol that was created for pooled mining, in which

miners pool their computing resources together, each fulfilling different tasks and

reporting it to the mining pool server. When the server sends a valid output to the

cryptocurrency network, it receives the reward, takes a commission and distributes

the remaining portion according to the tasks each carried out [RL21].

4.3.3 Docker Containers

Docker is an open source platform for running, developing and distributing appli-

cations [BRBA17]. It is lightweight, fast, highly portable, and allows for dynamic

122

management of workloads [Inca]. The Docker platform is container-based, with con-

tainers holding everything that is needed to run an application. This is particularly

useful for workflow, as this allows for sharing containers while reliably ensuring that

everyone receives the same container without alteration, in a way that can be easily

worked on [Inca].

4.3.4 Honeypots and Honeynets

A honeypot is a decoy that can be used as a first line of defense to lure attackers and

deceive them into thinking they have accessed a real system. This allows the owner

of the attacked system to observe and learn from attacker actions by gathering data

about their interaction with the honeypot [FACU21]. The gathered data can be

used to develop countermeasures against attacks [FDFV18]. Honeypots can vary

greatly in the level of interaction that they allow the attacker, ranging from low

interaction honeypots that emulate particular services, to high interaction honeypots

that emulate entire operating systems (OS). They can be used in a wide variety of

applications, for research or production purposes, and can be implemented with

physical or virtual resources. Two or more honeypots implemented on a system

form a honeynet or a honeypot system [FACU21]. Since there are generally no licit

causes for which to interact with a honeypot, any traffic is usually malicious, which

allows honeypots to greatly reduce the amount of false positives in comparison with

anomaly-based Intrusion Detection Systems [Wat07].

4.4 Problem Scope and Threat Model

In this section, we present the problem scope as well as the threat model considered

for our study.

123

4.4.1 Problem Scope

Cryptojacking is a stealth attack which can go unnoticed for a long time. However,

it can produce significant losses for victims, reducing computational efficiency of the

host’s system and generating operational costs. We consider a host-based Docker

engine with diverse Docker containers used for enterprise purposes. Resources can

be vulnerable to cryptojacking, whether it is an external cybercriminal which finds

its way into the system, or an employee who abuses their access privileges to the

computational power of their employer’s system and uses it for their personal fi-

nancial gain at their employer’s expense. It is worth noting that developers tend to

be targets of attack, as they have high access and even administrative privileges to

carry out their work. However, while they are very knowledgeable technically, that

does not always translate into high security awareness, as their focus is on getting

their job done. Also, sometimes as part of their work, they need to carry out opera-

tions that require turning off security controls to avoid false positives. These factors

can increase the vulnerability of containers [Che].

4.4.2 Threat Model

In this work, we consider cryptojacking attacks targeting host-based docker con-

tainers, which are commonly used in enterprise environments. Docker has become

one of the top three most popular development platforms [Sta20] and cryptojack-

ing attacks have been identified among the most common types of cyberattacks on

Docker containers [Sas21]. Furthermore, there is an increasing trend of cybercrimi-

nals targeting devices with greater processing power through host-based cryptojack-

ing [TAU+21,IBM,C.P], in order to produce greater financial gain in a shorter time

124

frame. We consider both outsider and insider threats, as insiders can also seek to

make a profit mining using the resources of the company [Mil21].

4.5 Methodology

In this section, we describe the honeypot system deployment, and host resources

and network data collection processes.

4.5.1 Honeypot System Deployment

The host is an Intel Core i7-10700K Processor with 16 Cores and 32 GB RAM. We

set up a high-interaction honeypot system isolated in a demilitarized zone (DMZ)

with ten Docker containers: four of these used Redis container images, four used

Nginx container images, and two used Ubuntu container images. Of those using

Ubuntu images, one was used to run Prometheus and one was used to run Cadvisor.

One of each of the Redis and Nginx containers was used to understand the baseline

behavior, and the other three of each were tested with three scripts mining Monero

on Cudominer, Minexmr, and Xmrpool.eu mining pools. Redis and Nginx were

selected because they have been identified as the two most widely used container

images [Dat21]. We selected to use Monero, as it is the most popular coin used

for cryptojacking due to its strong anonymity and its efficient mining properties on

CPUs [RL21]. The containers were allowed access to the 16 cores with unlimited

swap and memory usage. On the baseline containers, a script that simulates 11,500

requests per second was run on the Nginx container and a Redis-benchmark util-

ity that simulates 1000 user requests per second was run on the Redis container.

Figure 4.1 presents a general overview of the honeypot system.

125

Figure 4.1: Honeypot system overview.

We used version 3.2 of the docker-compose tool [Incb] to define and execute the

containers in our honeypots. The containers are run with a simple command docker-

compose up, and if needed they all can be down with a single command docker-

compose down. Compose is configured in a predefined YAML file, where we input

the services that will be running in the docker host, and the configuration they will

be using such as image, container name, ports, network, volumes, commands, etc.

126

In the docker-compose command, other files such as Dockerfile and prometheus.yml

are invoked to participate in the set up process.

Mining activity was collected for a total of eight hours. The averages of the

collected data for each container is presented in Table 4.1. We stopped the mining

activities and the data collection process from time to time to cool the host device

since the CPU temperature passed the safe threshold of 82◦Celsius.

4.5.2 Host Resource Data Collection

We run the open-source tool cAdvisor (Container Advisor) [Goo] in a separate con-

tainer using docker-compose to collect metrics on the usage and performance of the

running containers and the Docker host. We then allow the Prometheus container to

dig into the cAdvisor metrics and filter them using the Prometheus [Pro] expression

browser. For each container and for the host, the cAdvisor metrics provide the iso-

lation parameters, CPU usage including usage per Core and top container demand,

Memory consumption, network metrics such as throughput and errors, filesystem

usage, and the host /system.slice. cAdvisor can be accessed from the docker host

through their web UI at http://localhost:8080. Although cAdvisor provides this in-

terface, the Prometheus expression increases the metrics analysis. Prometheus [Pro]

is an open-source tool that scrapes metrics collected by the cAdvisor container.

It’s part of the docker-compose deployment. Prometheus allows filtering of the

metrics by providing expressions such as container cpu usage seconds total, con-

tainer tasks state, container memory usage bytes, container fs writes total, etc, that

will scrape cAdvisor metrics approximately every three seconds for a duration of

122ms approximately using the labels instance=”cadvisor:8080” and job=”cadvisor”.

Prometheus can be accessed from the docker host through their web interface at

127

http://localhost:9090. Netdata [Incd] is a web application that provides key metrics,

useful charts, and alarms to monitor the system and its components and graphically

visualize the metrics in real time. Lm-sensors [lms] was used to monitor the CPU

temperature of the Docker host, and nvme-cli [Exp] was used to monitor Nvme ssd

temperature.

4.5.3 Network Data Collection

Wireshark version 3.2.3 [Wir] open source network protocol analyzer was used to

log the network data. Wireshark allows to filter by protocol, and identify the cryp-

tomining protocols such as Stratum. It also collects the exchanges between the

cryptojacked container and the pools, timestamp, and network information such as

IP address, packet length, protocol, and ports. However, it does not allow data pars-

ing. For this purpose, Suricata version 6.0.5 [Fou] open source intrusion detection

and intrusion prevention system (IDPS) was also used to log all network traffic, in-

cluding timestamp, event type, IP addresses, packet length, source and destination

port, DNS information, etc.

4.6 Data Analysis

In this section, we analyze the collected data and provide notable findings for the

detection of unauthorized cryptomining.

4.6.1 Host Resource Data Analysis

The data collected from the baseline container running Redis for 1000 user requests

demonstrated an average of 16% CPU consumption, 5% RAM, 7Mb disk I/O, and

128

Table 4.1: Host Resource Data Collection

Tests Crypto CPU CPU Peaks RAM Disk I/O iowait Hash rate Cryptojacking CPU Temp. Nvme Temp

Redis N/A 16.00% N/A 5.00% 7Mb 10.00% N/A Baseline 42.25◦C 36.9◦C

Redis – Test 1 Monero 65.00% 75.00% 28.50% 7Mb 13.00% 5.70Kb/s Script1 69◦C 42◦C

Redis – Test 2 Monero 74.00% 90.00% 26.30% 7Mb 14.00% 4.1 kh/s Script2 71◦C 42◦C

Redis – Test 3 Monero 75.00% 92.00% 27.40% 7Mb 17.00% 5.2 kh/s Script3 70◦C 42◦C

Nginx N/A 15.00% N/A 1.00% 6Mb 10.00% N/A Baseline 42◦C 37◦C

Nginx – Test 1 Monero 70.00% 85.00% 30.50% 6Mb 12.00% 4.6 kh/s Script1 69.5◦C 41◦C

Nginx – Test 2 Monero 82.00% 97.00% 32.00% 6Mb 16.00% 4.8 kh/s Script2 69◦C 40◦C

Nginx – Test 3 Monero 75.00% 97.7% 27.50% 6Mb 15.00% 5.2 kh/s Script3 72◦C 41◦C

10% iowait. We also observed that the temperature on average of the CPU cores

and the nvme were 42.25◦Celsius and 36.9◦Celsius respectively. In our comparison

tests running mining scripts, there was a dramatic increase of more than 4 times the

average container CPU compared to the baseline, with a peak approximately every

2 minutes where the container CPU consumption increases to more than 5 times the

baseline average for a period of approximately one minute. During our observations,

CPU never goes lower than 55% in the cryptojacked containers, which is more than

3 times the average CPU consumption of the baseline. The RAM consumption of

the containers also goes up, positioning it at an average of 27.4% which is more

than 5 times the baseline average. We did not observe distinctive rate changes in

the Disk I/O metrics while mining, keeping an average of 7Mbs. However, there was

an increase in the average overall iowait to 14.66%. The temperature on average of

the CPU cores was 70◦Celsius, which is a significant increase of 65.68%, and that of

the nvme was 42◦Celsius.

Next, we observe the data for the baseline container running Nginx. Here, the

simulated 11,500 requests per second demonstrated an average of 15% CPU con-

sumption, 1% RAM, 6Mb disk I/O, and 10% iowait. The temperature on average of

the CPU cores and the nvme were 42◦Celsius and 37◦Celsius, respectively. During

mining activity, there was a dramatic increase of more than 5 times the average

CPU in comparison to the baseline, and peaks can be observed approximately every

129

2 minutes where the CPU increases to more than 6 times the baseline average for

approximately one minute. 60% was the lowest CPU consumption measured during

mining, which is more than three times the average CPU consumption of the base-

line. RAM consumption increased to 30%. This is 30 times the baseline average. As

with the Redis containers, Disk I/O metrics did not see a significant change. The

average overall iowait increased to 14.33%. The temperature on average of the CPU

cores saw a significant increase of 66.67% to 70◦Celsius, and that of the nvme rose

to 41.66◦Celsius.

While increased CPU and RAM loads, as well as increased temperature only

provide hints of a possible problem such as hardware failure in a regular system,

when this is identified in combination and on a Docker host where increased CPU

and RAM load can be identified as coming from a particular container, this is a

much clearer indication that the issue is likely an intrusion or insider mining.

4.6.2 Network Data Analysis

In all our tests, we first identify the TCP 3-way handshake between the container

and the cryptomining pool server. Once communication between the cryptojacked

container and the server is established and validated, the data flow begins. The

server assigns the container the task to work, and once this task is solved, the client

will send the results to the pool server.

We analyzed the captured network traffic from Wireshark and Suricata to find

indicators or patterns that could be identified as possible cryptojacking activity. Cu-

dominer and Minexmr communications use TCP, while Xmrpool.eu was encrypted

using TLS.

130

The use of Stratum protocol, which uses plain TCP socket and JSON-RPC mes-

sages, and presence of certain keywords such as monero, pool, coin, xmr, mine, hash,

and cudo identified in DNS requests under domain name are the two most direct

ways to detect cryptojacking with network data. These can be seen in Figure 4.4.

However, the hackers could apply obfuscation techniques such as use of a proxy to

go unnoticed. When encrypted with Transport Layer Security (TLS), the packets by

which the container receives jobs, sends the solutions, and the pool acknowledges the

solution as “Application Data”. Notably, Suricata flagged the Stratum protocol as a

potential corporate privacy violation, specifically an ”ET POLICY cryptocurrency

miner checkin”. This can be seen in Figure 4.2.

While use of the container’s ephemeral ports by the mining pools is not guar-

anteed, this could be used as a notable indicator to alert that further review of the

network traffic is needed.

Figure 4.2: Suricata detection alert.

We also identified the following patterns:

• The cryptojacked containers began receiving jobs without having requested

them.

• When they are not encrypted, all the packets have the ACK flag that confirms

receipt of packets.

131

• When they are not encrypted, all the packets have the PSH flag which tells

the container to process packets even if the buffer is not full.

• Mining sessions are lengthy processes. During these mining sessions, ACK and

PSH are the only flags that are used. FIN, RST, and SYN flags were only

identified near the start or end of communications.

• All container ports used by the pools were ephemeral ports greater than 30,000.

• Between the communications for assigning jobs, sending solutions, and ac-

knowledging receipt, there are frequent 68- byte ACK flags to maintain com-

munication.

• For all three scripts used, similar package lengths were noted for new jobs sent

from the pool to the container, solutions sent to the pool, and acknowledging

receipt of the solution. For Cudominer, these lengths were consistently 403,

240 or 241, and 132 or 133, respectively. For Minexmr they were 439, 154-262,

and 153-162. A screenshot of a portion of the Minxmr packet information can

be seen in Figure 4.3. For Xmrpool.eu they were 439, 261, and 153.

Figure 4.3: Minexmr packet information in Wireshark

Figure 4.4: Detection of the Stratum protocol in Wireshark

132

4.7 Docker Container Security

While the focus of our analysis is on detecting unauthorized cryptomining in a

Docker host once it is in action, the first line of defense against cryptojacking threats

to docker containers is to take appropriate measures to follow best practices for

Docker security. This is particularly important for host-based cryptojacking, since

cybercriminals need to find vulnerabilities so they can bring the malicious script to

their victim.

4.7.1 Stay Up to Date

Keeping software up to date is a key factor to mitigate the possibility of vulnerabili-

ties in software which can be exploited by cryptojackers. It is also useful to run new

software through the CVE (Common Vulnerabilities & Exposures) database [CVE].

4.7.2 Resource Isolation and Management

Namespaces isolate the processes in a container so they cannot see or affect the

host system or another container. Control groups provide for resource management,

making sure that each container has a fair amount of disk I/O resources, memory,

and CPU. This helps to protect the containers as well as the host from denial of

service attacks [Inca].

4.7.3 Whitelisting/Blacklisting Rules in iptables

When appropriate, whitelisting rules should be added to the DOCKER-USER ipt-

ables to allow only specific IP addresses or networks to access the containers and

only expose certain ports [Inca]. Alternatively, blacklisting should be used to block

133

connections to known cryptomining pools, remote access, or certain ports. For ex-

ample, pool.*, *pool.com, *pool.org, and *xmr.* block Monero pools that are used

for cryptomining.

4.7.4 Principles of Least Privilege for Kernel Capabilities

Instead of deploying containers on the system having root privileges, assigning con-

tainers the minimum privileges required for their processes using an allowlist is

recommended [Inca]. This helps prevent privilege-escalation attacks and will make

it much more difficult for a cybercriminal to reach the host even if they are able to

gain access to a container.

4.7.5 Image Authentication

The Docker Engine should be configured to only run images with Docker Content

Trust signature verification in order to ensure the integrity and publisher of images,

as these can be sources through which cryptojackers gain access to a system [Inca].

In addition to this, another method to mitigate the risk of falling victim to crypto-

jacking malware through an malicious file is to scan new images on VirusTotal [Vir]

and ClamAV [Cisa]. Docker also provides a tool for scanning images for vulnerabil-

ities [Incc].

4.8 Monitoring Host-based Docker Containers

Cryptojacking can be challenging to detect than other malware attacks that take

control of the victim’s device or make it unavailable because its’ goal is precisely

to take advantage of the victim’s computational resources for as long as possible in

134

order to generate income. Constantly evolving threats and insider cryptojacking,

where employees abuse employer resources for their own gain, create additional

challenges. However, there are steps that can be taken to monitor host-based docker

containers to identify attacks.

Open source tools can be used to monitor host-based docker containers and

trigger alerts for system administrators when certain indicators are present. From

the Docker host, a script can run periodically to collect and log the temperature of

the host. At the same time, the Docker stats can collect and log the overall CPU

and RAM consumption for each container and from the docker inspection we can

get the network information of each container. If the temperature field goes more

than 10◦Celsius over the average temperature on the CPU core and CPU and RAM

in a particular container are more than three times its average consumption, we

correlate the IP address using the inspection command. An alert can be sent to the

system administrator with the identified parameters for a deeper inspection in the

Suricata [Fou] and Wireshark [Wir] logs for the container where they could observe

the data to search for further indicators to confirm cryptojacking activity. A DNS

record and the IP of the container can also be correlated. Netdata [Incd] can trigger

automatic notifications by email and to the monitor channels such as Discord and

Slack, providing metrics of high consumption in specific containers.

4.9 Conclusion

In this chapter, we conducted a forensic analysis using honeypots in order to identify

key indicators for the detection of cryptomining in host-based Docker containers. We

present key measures for securing host-based Docker containers and an approach for

monitoring them for the detection of cryptojacking, based on the indicators identified

135

in our forensic analysis. As future work, we are planning to develop a cryptojacking

detection framework for host-based Docker containers using honeypots and machine

learning.

136

CHAPTER 5

CONCLUDING REMARKS AND FUTURE WORK

In this thesis, we explored honeypot-based security enhancements for infor-

mation systems. First, we provided a comprehensive survey on honeypot and

honeynet models that were proposed for IoT, IIoT, and CPS environments over

the period 2002-2020. Our classification in this work improves the existing works

[FDFV18,CPM15,ZKF19,RRM+18] by identifying some of the recurring key char-

acteristics of the surveyed works. Specifically, we provided a taxonomy of honeypots

and honeynets for IoT, IIoT, and CPS with respect to their purpose, role, level of

interaction, scalability, resource level, availability of the source code, and their ap-

plication. We also considered the simulated services, the inheritance relationships

between the honeypots and honeynets, the platforms they were built on, and the

programming languages they used. In addition, we analyzed the existing honeypots

and honeynets extensively and extracted the common characteristics of state-of-the-

art honeypots and honeynets for IoT, IIoT, and CPS. Moreover, we outlined and

discuss the key design factors for honeypots and honeynets for IoT, IIoT, and CPS

applications.

Next, we proposed a smart honeypot framework based on open-source resources,

that integrates the use of IDPS and ML for securing SDN-based networks through

dynamic rules configuration. Unlike research honeypots, it is proposed to obtain

attack information from the honeypots for production purposes for the security of

SDN-based networks, dynamically creating new rules in real-time for the attacks,

and sharing them with the SDN-based network. The framework is implemented on

an enterprise SDN testbed network, and its’ performance was tested in detecting

attacks using various ML classifiers, as well as its’ ability to effectively generate

new rules and dynamically configure the rules of the SDN-based network. Our

137

performance evaluation of S-Pot in detecting attacks using various ML classifiers

shows that it can detect attacks with 97% accuracy using J48 algorithm. In addition,

we evaluated the effectiveness of S-Pot in improving the security of an enterprise

SDN testbed network. Our results demonstrate that S-Pot can improve the security

of the SDN networks by blocking attacks with 40% improvement over legacy systems

without S-Pot, effectively generating rules, and dynamically configuring the network.

Finally, we carried out a forensic analysis to identify indicators for the detec-

tion of unauthorized cryptomining using honeypots, presented measures for securing

host-based Docker containers, and proposed an approach for monitoring host-based

Docker containers for cryptojacking detection. Our results revealed that host tem-

perature, combined with container resource usage, Stratum protocol, keywords in

DNS requests, and the use of the container’s ephemeral ports are notable indicators

of possible unauthorized cryptomining.

We also identified areas or interest for future research. Open issues in the research

regarding the use of honeypots for IoT, IIoT, and CPS include emerging domains or

technologies such as wearable devices, medical devices, and smart city, unexplored

protocols, emerging platforms, optimized deployment locations, insider attacks, ma-

chine learning, discrimination of benign decoy traffic, and honeypots for production

purposes. Further development of S-Pot should consider the use of an ML-based

IDPS or deep learning methods to enhance its effectiveness in intelligently detecting

zero-day attacks. Future work regarding the detection of unauthorized cryptomining

should expand on the proposed approach, including the development of a crypto-

jacking detection framework for host-based Docker containers using honeypots and

machine learning.

138

BIBLIOGRAPHY

[AA18] Z. Ammar and A. AlSharif. Deployment of iot-based honeynet model.
In ICIT 2018: Proceedings of the 6th Int. Conference on Information
Technology: IoT and Smart City, pages 134–139, Dec 2018.

[AAT16] Daniele Antonioli, Anand Agrawal, and Nils Ole Tippenhauer. To-
wards high-interaction virtual ics honeypots-in-a-box. In Proceedings
of the 2nd ACM Workshop on Cyber-Physical Systems Security and
Privacy, page 13–22, 2016.

[ABF18] S. Almulla, E. Bou-Harb, and C. Fachkha. Cyber security threats
targeting CPS systems: A novel approach using honeypot. In SE-
CURWARE 2018: The Twelfth International Conference on Emerg-
ing Security Information, Systems and Technologies, pages 85–91,
Dec 2018.

[ADM16] Thiago Alves, Rishabh Das, and Thomas Morris. Virtualization of
industrial control system testbeds for cybersecurity. In Proceedings of
the 2nd Annual Industrial Control System Security Workshop, page
10–14, New York, NY, USA, 2016. ACM.

[A.G17] A.Guerra Manzanares. HoneyIo4: The construction of a virtual,
low-interaction IoT Honeypot. PhD thesis, Universitat Politècnica
de Catalunya, 2017.

[AGMAA+20] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali,
Xiaojiang Du, Ihsan Ali, and Mohsen Guizani. A survey of machine
and deep learning methods for internet of things (iot) security. IEEE
Communications Surveys Tutorials, 22(3):1646–1685, 2020.

[AHM18] M. Azab, A. Hamdy, and A. Mansour. Repoxy: Replication proxy
for trustworthy sdn controller operation. In 17th IEEE Int. Confer-
ence On Trust, Security And Privacy In Computing And Communi-
cations, 2018.

[ALK19] S. Ahn, T. Lee, and K. Kim. A study on improving security of ics
through honeypot and arp spoofing. In Int. Conference on Informa-
tion and Communication Technology Convergence, pages 964–967,
Oct 2019.

139

[ANFL18] A. Acien, A. Nieto, G. Fernandez, and J. Lopez. A comprehensive
methodology for deploying iot honeypots. In TrustBus 2018, volume
11033, pages 229–243, Sept 2018.

[ANSB19] Amir Afianian, Salman Niksefat, Babak Sadeghiyan, and David Bap-
tiste. Malware dynamic analysis evasion techniques: A survey. ACM
Comput. Surv., 52(6), November 2019.

[ASKS19] Azuan Ahmad, Wan Shafiuddin, Mohd Nazri Kama, and Madi-
hah Mohd Saudi. A New Cryptojacking Malware Classifier Model
Based on Dendritic Cell Algorithm. Association for Computing Ma-
chinery, New York, NY, USA, 2019.

[AT15] Daniele Antonioli and Nils Ole Tippenhauer. Minicps: A toolkit for
security research on cps networks. In Proc. First ACM Workshop on
Cyber-Physical Systems-Secur. and/or Privacy, page 91–100, 2015.

[ATN17] M. Anirudh, S. A. Thileeban, and D. J. Nallathambi. Use of hon-
eypots for mitigating dos attacks targeted on iot networks. In 2017
International Conference on Computer, Communication and Signal
Processing (ICCCSP), pages 1–4, Jan 2017.

[ATUH18] Shingo Abe, Yohei Tanaka, Yukako Uchida, and Shinichi Horata.
Developing deception network system with traceback honeypot in
ics network. SICE Journal of Control, Measurement, and System
Integration, 11(4):372–379, 2018.

[AUB18] H. Aksu, A. S. Uluagac, and E. Bentley. Identification of wearable
devices with bluetooth. IEEE Transactions on Sustainable Comput-
ing, pages 1–1, 2018.

[BAR+20] L. Babun, H. Aksu, L. Ryan, K. Akkaya, E.S. Bentley, and
A.S.Uluagac. Z-iot: Passive device-class fingerprinting of zigbee and
z-wave iot devices. In 2020 IEEE Int. Conf. Commun. (ICC), pages
1–7. IEEE, 2020.

[BARM17] Borja Bordel, Ramón Alcarria, Tomás Robles, and Diego Mart́ın.
Cyber–physical systems: Extending pervasive sensing from control
theory to the internet of things. Pervasive Mobile Comput., 40:156
– 184, 2017.

140

[BCP19] G. Bernieri, M. Conti, and F. Pascucci. Mimepot: a model-based
honeypot for industrial control networks. In 2019 IEEE Int. Confer-
ence on Systems, Man and Cybernetics (SMC), pages 433–438, Oct
2019.

[BDC+21] Leonardo Babun, Kyle Denney, Z. Berkay Celik, Patrick McDaniel,
and A. Selcuk Uluagac. A survey on iot platforms: Communication,
security, and privacy perspectives. Computer Networks, 2021.

[Ber12] Dustin J. Berman. Emulating Industrial Control System Devices
using Gumstix Technology. Master’s thesis, Air Force Institute of
Technology Air University, June 2012.

[BG21] Jorge Buzzio-Garcia. Creation of a high-interaction honeypot sys-
tem based-on docker containers. In 2021 Fifth World Conference
on Smart Trends in Systems Security and Sustainability (WorldS4),
pages 146–151, 2021.

[BJM+14] Dániel István Buza, Ferenc Juhász, György Miru, Márk Félegyházi,
and Tamás Holczer. Cryplh: Protecting smart energy systems from
targeted attacks with a plc honeypot. In Smart Grid Security, pages
181–192, Cham, 2014. Springer International Publishing.

[BM19] A. Belqruch and A. Maach. Scada security using ssh honeypot. In
2019 Proceedings of the 2nd International Conference on Networking,
Information Systems & Security, pages 1–5, Mar 2019.

[Bod14] Roland C. Bodenheim. Impact of the Shodan Computer Search En-
gine on Internet-facing Industrial Control System Devices. Master’s
thesis, Air Force Institute of Technology Air University, March 2014.

[Bon11] Digital Bond. Digital Bond SCADA Honeynet.
https://web.archive.org/web/20111215085656/http://www.digitalbond.
com/tools/scada-honeynet/, 2011. [Online; accessed 2-May-2020].

[BÖS20] Ismail Butun, Patrik Österberg, and Houbing Song. Security of
the internet of things: Vulnerabilities, attacks, and countermeasures.
IEEE Communications Surveys Tutorials, 22(1):616–644, 2020.

[BRBA17] Babak Bashari Rad, Harrison Bhatti, and Mohammad
Ahmadi. An introduction to docker and analysis of its

141

performance. IJCSNS International Journal of Com-
puter Science and Network Security, 17(3):228–234, url =
”http://paper.ijcsns.org/07 book/201703/20170327.pdf”, 2017.

[Cen21] Center for Internet Security. The SolarWinds Cyber-Attack: What
You Need to Know. https://www.cisecurity.org/solarwinds/, 2021.
[Online; accessed 26-March-2021].

[CEWB16a] D. Chen, M. Egeley, M. Woo, and D. Brumley. Firmadyne.
https://github.com/firmadyne/firmadyne, 2016. [Online; accessed
30-Apr-2020].

[CEWB16b] D. Chen, M. Egeley, M. Woo, and D. Brumley. Towards automated
dynamic analysis for linux-based embedded firmware. In 2016 NDSS,
pages 21–24. Internet Society, Feb. 2016.

[Che] Cherny, M. and Dulce, S. Docker Overview. [Online; accessed 12-
April-2022].

[Cisa] Cisco. ClamAV. https://www.clamav.net/. [Online; accessed 10-
April-2022].

[Cisb] Cisco. Snort - network intrusion detection and prevention system.
https://www.snort.org. [Online; accessed 17-May-2021].

[Cisc] Cisco. What are the most common cyber attacks?
https://www.cisco.com/c/en/us/products/security/common-
cyberattacks.html. [Online; accessed 2-Jun-2021].

[CLLL18] Jianhong Cao, Wei Li, Jianjun Li, and Bo Li. Dipot: A distributed
industrial honeypot system. In Meikang Qiu, editor, Smart Com-
puting and Communication, pages 300–309, Cham, 2018. Springer
International Publishing.

[CMAU17] Mehmet Hazar Cintuglu, Osama A. Mohammed, Kemal Akkaya, and
A. Selcuk Uluagac. A survey on smart grid cyber-physical system
testbeds. IEEE Communications Surveys Tutorials, 19(1):446–464,
2017.

[Coi] CoinGecko. Cryptocurrency Prices by Market Cap.
https://www.coingecko.com/. [Online; accessed 10-April-2022].

142

[Cow19] Cowrie. Cowrie ssh and telnet honeypot. https://www.cowrie.org/,
2019. [Online; accessed 2-Apr-2020].

[C.P] C.P. Research. Cloud-based cryptojacking article . https://rese
arch.checkpoint.com/2020/the- 2020-cyber- security- report/. [On-
line; accessed 10-April-2022].

[CPM15] R. M. Campbell, K. Padayachee, and T. Masombuka. A survey of
honeypot research: Trends and opportunities. In 2015 10th Interna-
tional Conference for Internet Technology and Secured Transactions
(ICITST), pages 208–212, 2015.

[CROD21] M. Caprolu, S. Raponi, G. Oligeri, and R. DiPietro. Cryptomining
makes noise: Detecting cryptojacking via machine learning. Com-
puter Communications, 171:126–139, 2021.

[CV20] R. Centeno and L. Victoria. Zoomed In: A Look into a Coinminer
Bundled with Zoom Installer. TrendMicro, Apr. 3, 2020.

[CVE] CVE Authors. Security Vulnerability Datasource. [Online; accessed
6-Mayo-2022].

[Cym] Cymmetria. Mtpot. https://github.com/Cymmetria/MTPot. [On-
line; accessed 1-Apr-2020].

[Dat21] Datadog. 10 Trends in Real-World Container Use. Datadog, Oct.
2021.

[DHD+20] Hamid Darabian, Sajad Homayounoot, Ali Dehghantanha, Sat-
tar Hashemi, Hadis Karimipour, Reza Meimandi Parizi, and Kim-
Kwang Raymond Choo. Detecting cryptomining malware: a deep
learning approach for static and dynamic analysis. Journal of Grid
Computing, 18:293–303, 2020.

[Din] DinoTools. Dionaea. https://github.com/DinoTools/dionaea. [On-
line; accessed 2-Apr-2020].

[Dio15] Dionaea. Service. https://dionaea.readthedocs.io/en/latest/introduction
.html, 2015. [Online; accessed 2-Apr-2020].

143

[DJB13] J. P. Disso, K. Jones, and S. Bailey. A plausible solution to scada
security honeypot systems. In 8th Int. Conf. on Broadband and Wire-
less Comput., Comm. and Applications, pages 443–448, 2013.

[DLL+19] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. I. Chen, T. Xu, Y. Chen, and
J. Yang. Understanding fileless attacks on linux-based iot devices
with honeycloud. In 17th Annual International Conference on Mobile
Systems, Applications, and Services, pages 482–493, Nov 2019.

[Dom20] C. Doman. Team TNT: The First Crypto-Mining Worm to Steal
AWS Credentials. Cado Security, Aug. 16, 2020.

[DSI+19] C. Dalamagkas, P. Sarigiannidis, D. Ioannidis, E. Iturbe, O. Nikolis,
F. Ramos, E. Rios, A. Sarigiannidis, and D. Tzovaras. A survey
on honeypots, honeynets and their applications on smart grid. In
2019 IEEE Conference on Network Softwarization (NetSoft), pages
93–100, June 2019.

[DSM17a] S. Dowling, M. Schukat, and H. Melvin. Data-centric framework
for adaptive smart city honeynets. In 2017 Smart City Symposium
Prague (SCSP), pages 1–7, 2017.

[DSM17b] S. Dowling, M. Schukat, and H. Melvin. A zigbee honeypot to assess
iot cyberattack behaviour. In 2017 28th Irish Signals and Systems
Conference (ISSC), pages 1–6, June 2017.

[DW20a] M. Du and K. Wang. An sdn-enabled pseudo-honeypot strategy for
distributed denial of service attacks in industrial internet of things.
IEEE Transactions on Industrial Informatics, 16(1):648–657, Jan
2020.

[DW20b] M. Du and K. Wang. An sdn-enabled pseudo-honeypot strategy for
distributed denial of service attacks in industrial internet of things.
IEEE Tran. on Industrial Informatics, 16(1):648–657, 2020.

[DZD18] Chenpeng Ding, Jiangtao Zhai, and Yuewei Dai. An improved ics
honeypot based on snap7 and imunes. In Cloud Computing and Secu-
rity, pages 303–313, Cham, 2018. Springer International Publishing.

[Ela17] Elastic. Elasticsearch 5.2.2. https://www.elastic.co/downloads/past-
releases/elasticsearch-5-2-2/, 2017. [Online; accessed 9-Apr-2020].

144

[Ela20a] Elastic. Getting started with logstash.
https://www.elastic.co/guide/en/logstash/current/getting-started-
with-logstash.html, 2020. [Online; accessed 9-Apr-2020].

[Ela20b] Elastic. Kibana: Your window into the elastic stack.
https://www.elastic.co/kibana, 2020. [Online; accessed 9-Apr-2020].

[ELDJ19] M. S. Elsayed, N. A. Le-Khac, S. Dev, and A. D. Jurcut. Machine-
learning techniques for detecting attacks in sdn. In IEEE 7th Int.
Conf. on Computer Science and Network Technology, pages 277–281,
2019.

[Evr16] G. Evron. Mirai open-source iot honeypot: New cymmetria re-
search release. https://cymmetria.com/blog/mirai-open-source-iot-
honeypot-new-cymmetria-research-release/, Nov. 2016. [Online; ac-
cessed 16-Apr-2020].

[Exp] NVM Express. NVMe-CLI. https://nvmexpress.org/open-source-
nvme-management-utility-nvme-command-line-interface-nvme-cli/.
[Online; accessed 10-April-2022].

[FACU21] Javier Franco, Ahmet Aris, Berk Canberk, and A. Selcuk Uluagac. A
survey of honeypots and honeynets for internet of things, industrial
internet of things, and cyber-physical systems. IEEE Communica-
tions Surveys Tutorials, 23(4):2351–2383, 2021.

[FDF15] W. Fan, Z. Du, and D. Fernández. Taxonomy of honeynet solutions.
In 2015 SAI Intelligent Systems Conference (IntelliSys), pages 1002–
1009, Nov 2015.

[FDFV18] W. Fan, Z. Du, D. Fernández, and V. A. Villagrá. Enabling an
anatomic view to investigate honeypot systems: A survey. IEEE
Syst. J., 12(4):3906–3919, Dec 2018.

[FFV15] W. Fan, D. Fernández, and V. A. Villagrá. Technology independent
honeynet description language. In 2015 3rd International Conference
on Model-Driven Engineering and Software Development (MODEL-
SWARD), pages 303–311, Feb 2015.

[Fie20] FieldComm Group. HART Communication Protocol.
https://fieldcommgroup.org/technologies/hart, 2020. [Online;
accessed 14-May-2020].

145

[foo13] foospidy. Honeypy. https://github.com/foospidy/HoneyPy, 2013.
[Online; accessed 30-Apr-2020].

[Fou] Open Information Security Foundation. Suricata.
https://suricata.io/. [Online; accessed 10-April-2022].

[Fox21] W. Foxley. Crypto-Jacking Virus Infects 850,000 Servers, Hackers
Run off With Millions. CoinDesk, Feb. 23, 2021.

[FPZ19] Pietro Ferretti, Marcello Pogliani, and Stefano Zanero. Character-
izing background noise in ics traffic through a set of low interaction
honeypots. In Proceedings of the ACM Workshop on Cyber-Physical
Systems Security & Privacy, page 51–61, 2019.

[Gal17] Justin K. Gallenstein. Integration of the Network and Application
Layers of Automatically-Configured Programmable Logic Controller
Honeypots. Master’s thesis, Air Force Institute of Technology Air
University, March 2017.

[GBWG19] Christopher Greer, Martin Burns, David Wollman, and Edward Grif-
for. Cyber-physical systems and internet of things. Technical report,
NIST, March 2019.

[GKK+18] U.D. Gandhi, P.M. Kumar, S. Kadu, R. Varatharajan, G. Manog-
aran, and R. Sundarasekar. Hiotpot: Surveillance on iot de-
vices against recent threats. Wireless Personal Communications,
103(2):1179–1194, 2018.

[GLA+17] Benjamin Green, Anhtuan Lee, Rob Antrobus, Utz Roedig, David
Hutchison, and Awais Rashid. Pains, gains and plcs: Ten lessons
from building an industrial control systems testbed for security re-
search. In 10th USENIX Workshop on Cyber Security Experimenta-
tion and Test, Vancouver, BC, August 2017.

[GMC16] Prageeth Gunathilaka, Daisuke Mashima, and Binbin Chen. Softgrid:
A software-based smart grid testbed for evaluating substation cyber-
security solutions. In Proc. 2nd ACM Workshop on Cyber-Physical
Syst. Secur. and Privacy, page 113–124, 2016.

[GMSS15] Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. Security for
the internet of things: A survey of existing protocols and open re-

146

search issues. IEEE Communications Surveys Tutorials, 17(3):1294–
1312, 2015.

[Goo] Google. CAdvisor. [Online; accessed 12-April-2022].

[GPLC19] Ankit Gangwal, Samuele Giuliano Piazzetta, Gianluca Lain, and
Mauro Conti. Detecting covert cryptomining using hpc. CoRR,
abs/1909.00268, 2019.

[Gra19] R.D. Graham. Masscan. https://github.com/robertdavidgraham/masscan/,
2019. [Online; accessed 14-May-2020].

[Gri20] GridLab-D Simulation Software. https://www.gridlabd.org/, 2020.
[Online; accessed 7-April-2020].

[Gro] Machine Learning Group. Weka.
https://www.cs.waikato.ac.nz/ml/weka/. [Online; accessed 10-
May-2021].

[GTB+17] J. Guarnizo, A. Tambe, S.S. Bhunia, M. Ochoa, N.O. Tippen-
hauer, A. Shabtail, and Y. Elovici. Siphon: Towards scalable high-
interaction physical honeypots. In 2017 Cyber Physical Systems Se-
curity Workshops (CPSS), pages 57–68, April 2017.

[G.W18] G.Wagener. Adaptive honeypot alternative (aha).
http://git.quuxlabs.com/, 2018. [Online; accessed 23-Apr-2020].

[Hac20] R. Hackett. Tesla Hackers Hacked AWS Cloud Services to Mine
Monero. Fortune, Oct. 19, 2020.

[Hak] M. A. Hakim. u-pot. https://github.com/azizulhakim/u-pot/. [On-
line; accessed 1-Apr-2020].

[Han19] Michael Haney. Leveraging cyber-physical system honeypots to en-
hance threat intelligence. In Critical Infrastructure Protection XIII,
pages 209–233. Springer International Publishing, 2019.

[HFB15] Tamas Holczer, Mark Felegyhazi, and Levente Buttyan. The design
and implementation of a plc honeypot for detecting cyber attacks
against industrial control systems. In Proc. Int. Conf. on Com-

147

puter Security in a Nuclear World: Expert Discussion and Exchange.
IAEA, 2015.

[HLLL17] A. Humayed, J. Lin, F. Li, and B. Luo. Cyber-physical systems
security—a survey. IEEE Internet of Things J., 4(6):1802–1831, Dec
2017.

[HMP+20] Stephen Hilt, Federico Maggi, Charles Perine, Lord Remorin, Martin
Rösler, and Rainer Vosseler. Caught in the Act: Running a Realistic
Factory Honeypot to Capture Real Threats. 2020.

[Hon01] Honeynet Project. Know your enemy: Honeynets.
http://www.symantec.com/connect/articles/knowyour-enemy-
honeynets, April 2001. [Online; accessed 2-Apr-2020].

[Hon20] Honeynet Project. https://www.honeynet.org/, 2020. [Online; ac-
cessed 2-May-2020].

[HP14] Michael Haney and Mauricio Papa. A framework for the design and
deployment of a scada honeynet. In Proceedings of the 9th Annual
Cyber and Information Security Research Conference, page 121–124,
New York, NY, USA, 2014. ACM.

[Hyu18] Dahae Hyun. Collecting cyberattack data for industrial control sys-
tems using honeypots. Master’s thesis, Naval Postgraduate School,
March 2018.

[IBM] IBM Cloud Education. Machine learning.
https://www.ibm.com/cloud/learn/machine-learning. [Online;
accessed 10-May-2021].

[Inca] Docker Inc. Docker Security. https://docs.docker.com/engine/security/.
[Online; accessed 10-April-2022].

[Incb] Docker Inc. Overview of Docker Compose.
https://docs.docker.com/compose/. [Online; accessed 10-April-
2022].

[Incc] Docker Inc. Vulnerability Scanning for Docker Local Images.
https://docs.docker.com/engine/scan/. [Online; accessed 10-April-
2022].

148

[Incd] Netdata Inc. Netdata. https://www.netdata.cloud/. [Online; ac-
cessed 10-April-2022].

[Jar13] Robert M. Jaromin. Emulation of Industrial Control Field Device
Protocols. Master’s thesis, Air Force Institute of Technology Air
University, March 2013.

[KA20] A. Kaan Sarica and P. Angin. A novel sdn dataset for intrusion
detection in iot networks. In 2020 16th International Conference on
Network and Service Management (CNSM), pages 1–5, 2020.

[KG15] K. Ko ltyś and R. Gajewski. Shape: A honeypot for electric power
substation. Journal of Telecommunications and Information Tech-
nology, nr 4:37–43, 2015.

[KGM17] S. Kuman, S. Groš, and M. Mikuc. An experiment in using imunes
and conpot to emulate honeypot control networks. In 2017 40th
International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), pages 1262–1268,
2017.

[KHT+17] S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas, Z. Zhao,
A. Doupé, and G. Ahn. Honeyproxy: Design and implementation
of next-generation honeynet via sdn. In 2017 IEEE Conference on
Communications and Network Security (CNS), pages 1–9, 2017.

[Kip16] Kippo. Kippo- ssh honeypot. https://github.com/desaster/kippo,
2016. [Online; accessed 2-Apr-2020].

[KKH+21] Rupesh Raj Karn, Prabhakar Kudva, Hai Huang, Sahil Suneja, and
Ibrahim M. Elfadel. Cryptomining detection in container clouds us-
ing system calls and explainable machine learning. IEEE Transac-
tions on Parallel and Distributed Systems, 32(3):674–691, 2021.

[KP18] B. Kaur and P. K. Pateriya. A survey on security concerns in internet
of things. In 2018 Second International Conference on Intelligent
Computing and Control Systems (ICICCS), pages 27–34, June 2018.

[KR19] Marian M. Kendrick and Zaki A. Rucker. Energy Grid Threat Anal-
ysis Using Honeypots. Master’s thesis, Naval Postgraduate School,
June 2019.

149

[Kri17] P. Krishnaprasad. Capturing attacks on IoT deviceswith a multi-
purpose IoThoneypot. PhD thesis, Indian Institute of Technology
Kanpur, 2017.

[KV17] P. Kumar and R.S. Verma. A review on recent advances & future
trends of security in honeypot. Int. J. of Adv. Res. Computer Science,
8(3):1108–1113, Mar-Apr 2017.

[Lab14] Twisted Matrix Labs. Welcome to the twisted documentation.
https://twistedmatrix.com/documents/current/, Sept. 2014. [On-
line; accessed 9-Apr-2020].

[Lau21] Y. Lau. Cryptocurrencies hit market cap of 3 trillion for the first
time as Bitcoin and Ether reach record highs. Fortune, Nov. 9, 2021.

[LBAU17] Juan Lopez, Leonardo Babun, Hidayet Aksu, and Selcuk Uluagac.
A survey on function and system call hooking approaches. Journal
of Hardware and Systems Security, 1, 06 2017.

[LEBM20] Nada Lachtar, Abdulrahman Abu Elkhail, Anys Bacha, and Hafiz
Malik. A cross-stack approach towards defending against crypto-
jacking. IEEE Computer Architecture Letters, 19(2):126–129, 2020.

[LFR+16] S. Litchfield, D. Formby, J. Rogers, S. Meliopoulos, and R. Beyah.
Rethinking the honeypot for cyber-physical systems. IEEE Internet
Computing, 20(5):9–17, Sep. 2016.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a lap-
top: Rapid prototyping for software-defined networks. In Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
2010.

[lib] Tcpdump & libpcap. Tcpdump & libpcap.
hhttps://www.tcpdump.org/. [Online; accessed 17-May-2021].

[LKAR16] Stephan Lau, Johannes Klick, Stephan Arndt, and Volker Roth.
Poster: Towards highly interactive honeypots for industrial control
systems. In Proc. 2016 ACM SIGSAC Conf. on Computer and Com-
mun. Sec., CCS ’16, page 1823–1825, 2016.

[lms] lm-sensors. https://github.com/lm-sensors/lm-sensors. [Online; ac-
cessed 10-April-2022].

150

[LSFF16] Felipe A. Lopes, Marcelo Santos, Robson Fidalgo, and Stenio Fer-
nandes. A software engineering perspective on sdn programmability.
IEEE Communications Surveys Tutorials, 18(2):1255–1272, 2016.

[LSOK21] Euijong Lee, Young-Duk Seo, Se-Ra Oh, and Young-Gab Kim. A
survey on standards for interoperability and security in the internet of
things. IEEE Communications Surveys Tutorials, 23(2):1020–1047,
2021.

[LVS20] B. Lingenfelter, I. Vakilinia, and S. Sengupta. Analyzing variation
among iot botnets using medium interaction honeypots. In 2020 10th
Annual Computing and Communication Workshop and Conference
(CCWC), pages 0761–0767, 2020.

[LXJ+17] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang. Iotcandyjar: Towards
an intelligent-interaction honeypot for iot devices. In Black Hat 2017,
2017.

[MAL+19] Imran Makhdoom, Mehran Abolhasan, Justin Lipman, Ren Ping
Liu, and Wei Ni. Anatomy of threats to the internet of things. IEEE
Communications Surveys Tutorials, 21(2):1636–1675, 2019.

[Mar] Market Research Future. Software defined networking
(sdn) market size usd 59 billion by 2023 growing at mas-
sive cagr of 42.41%. https://www.globenewswire.com/news-
release/2019/04/04/1797303/0/en/Software-Defined-Networking-
SDN-Market-Size-USD-59-Billion-by-2023-Growing-at-Massive-
CAGR-of-42-41.html. [Online; accessed 12-June-2021].

[MBSC20] A. Molina Zarca, J. B. Bernabe, A. Skarmeta, and J. M. A. Calero.
Virtual iot honeynets to mitigate cyberattacks in sdn/nfv-enabled
iot networks. IEEE Journal on Selected Areas in Communications,
2020.

[MBVJ11] Abhishek Mairh, Debabrat Barik, Kanchan Verma, and Debasish
Jena. Honeypot in network security: A survey. In Proceedings of
the 2011 International Conference on Communication, Computing
& Security, ICCCS ’11, page 600–605, New York, NY, USA, 2011.
Association for Computing Machinery.

151

[MCB17] V. Martin, Q. Cao, and T. Benson. Fending off iot-hunting attacks
at home networks. In Proceedings of the 2nd Workshop on Cloud-
Assisted Networking, pages 67–72. ACM, Dec. 2017.

[McD21] C. McDonald. Cryptojacking Malware Hid into Emails. Mailguard,
Feb. 23, 2021.

[MCG+18] Andrés Felipe Murillo, Luis Francisco Cómbita, Andrea Calderón
Gonzalez, Sandra Rueda, Alvaro A. Cardenas, and Nicanor Quijano.
A virtual environment for industrial control systems: A nonlinear
use-case in attack detection, identification, and response. In Proceed-
ings of the 4th Annual Industrial Control System Security Workshop,
page 25–32, New York, NY, USA, 2018. ACM.

[MCGT17] D. Mashima, B. Chen, P. Gunathilaka, and E. L. Tjiong. Towards a
grid-wide, high-fidelity electrical substation honeynet. In 2017 IEEE
International Conference on Smart Grid Communications (Smart-
GridComm), pages 89–95, Oct 2017.

[MCZ+19] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella.
Iot: Internet of threats? a survey of practical security vulnerabilities
in real iot devices. IEEE Internet of Things J., 6(5):8182–8201, Oct
2019.

[Mil21] A. Milano. Russian Scientists Arrested Crypto Mining Nuclear Lab.
Coindesk, Feb. 23, 2021.

[MLC19] D. Mashima, Y. Li, and B. Chen. Who’s scanning our smart grid?
empirical study on honeypot data. In 2019 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–6, Dec 2019.

[MMS19] AysŞe Rumeysa Mohammed, Shady A. Mohammed, and Shervin
Shirmohammadi. Machine learning and deep learning based traffic
classification and prediction in software defined networking. In 2019
IEEE International Symposium on Measurements Networking (M N),
pages 1–6, 2019.

[Mor] Steve Morgan. Cybercrime to cost the world $10.5 trillion annually
by 2025. https://cybersecurityventures.com/cybercrime-damages-6-
trillion-by-2021/. [Online; accessed 12-June-2021].

152

[MPB+20] Ganapathy Mani, Vikram Pasumarti, Bharat Bhargava, Faisal Tariq
Vora, James MacDonald, Justin King, and Jason Kobes. Decrypto
pro: Deep learning based cryptomining malware detection using per-
formance counters. In 2020 IEEE International Conference on Au-
tonomic Computing and Self-Organizing Systems (ACSOS), pages
109–118, 2020.

[MS18] L. Metongnon and R. Sadre. Beyond telnet: Prevalence of iot pro-
tocols in telescope and honeypot measurements. In 2018 WTMC,
pages 21–26, Aug. 2018.

[NAB+21] Faraz Naseem, Ahmet Aris, Leonardo Babun, Ege Tekiner, and Sel-
cuk Uluagac. MINOS: A lightweight real-time cryptojacking detec-
tion system. In 28th Annual Network and Distributed System Secu-
rity Symposium, NDSS, February 21-24, 2021. The Internet Society,
2021.

[NBHC+19] Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno, Georges Kad-
doum, and Nasir Ghani. Demystifying iot security: An exhaustive
survey on iot vulnerabilities and a first empirical look on internet-
scale iot exploitations. IEEE Communications Surveys Tutorials,
21(3):2702–2733, 2019.

[NG20] Thomas Rincy N and Roopam Gupta. Feature selection techniques
and its importance in machine learning: A survey. In 2020 IEEE In-
ternational Students’ Conference on Electrical, Electronics and Com-
puter Science, 2020.

[Nma20] Nmap. https://nmap.org/, 2020. [Online; accessed 14-May-2020].

[NMM+15] Hidemasa Naruoka, Masafumi Matsuta, Wataru Machii, To-
momi Aoyama, Masahito Koike, Ichiro Koshijima, and Yoshihiro
Hashimoto. Ics honeypot system (camouflagenet) based on attacker’s
human factors. Procedia Manufacturing, 3:1074 – 1081, 2015. 6th
Int. Conf. Applied Human Factors and Ergonomics.

[NSBU20] A. I. Newaz, A. K. Sikder, L. Babun, and A. S. Uluagac. Heka:
A novel intrusion detection system for attacks to personal medical
devices. In 2020 IEEE Conference on Communications and Network
Security (CNS), pages 1–9, 2020.

153

[NSRU19] A. I. Newaz, A. K. Sikder, M. A. Rahman, and A. S. Uluagac. Health-
guard: A machine learning-based security framework for smart
healthcare systems. In 2019 Sixth International Conference on So-
cial Networks Analysis, Management and Security (SNAMS), pages
389–396, 2019.

[NSRU20] AKM Iqridar Newaz, Amit Kumar Sikder, Mohammad Ashiqur Rah-
man, and A. Selcuk Uluagac. A survey on security and privacy issues
in modern healthcare systems: Attacks and defenses, 2020.

[NZD+16] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang. Predict-
ing network attack patterns in sdn using machine learning approach.
In 2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pages 167–172, 2016.

[OALS21] Harun Oz, Ahmet Aris, Albert Levi, and A. Selcuk Uluagac. A Sur-
vey on Ransomware: Evolution, Taxonomy, and Defense Solutions.
arXiv e-prints, page arXiv:2102.06249, February 2021.

[OCD16] Opeyemi Osanaiye, Kim-Kwang Raymond Choo, and Mqhele Dlodlo.
Change-point cloud ddos detection using packet inter-arrival time.
In 2016 8th Computer Science and Electronic Engineering (CEEC),
pages 204–209, 2016.

[OKK18] A. D. Oza, G. N. Kumar, and M. Khorajiya. Survey of snaring
cyber attacks on iot devices with honeypots and honeynets. In 2018
3rd International Conference for Convergence in Technology (I2CT),
pages 1–6, April 2018.

[OKKT19] A.D. Oza, G.N. Kumar, M. Khorajiya, and V. Tiwari. Snaring Cyber
Attacks on IoT Devices with Honeynet. Springer Nature Singapore
Pte Ltd., 2019.

[OPC20] OPC Unified Architecture. https://opcfoundation.org/about/opc-
technologies/opc-ua/, 2020. [Online; accessed 2-May-2020].

[Pau12] A. Pauna. Improved self adaptive honeypots capable of detecting
rootkit malware. In 2012 9th International Conference on Commu-
nications (COMM), pages 281–284, June 2012.

[Pau18a] A. Pauna. Irassh. https://github.com/adpauna/irassh/, 2018. [On-
line; accessed 23-Apr-2020].

154

[Pau18b] A. Pauna. Qrassh. https://github.com/adpauna/qrassh/, 2018. [On-
line; accessed 16-Apr-2020].

[PB14] A. Pauna and I. Bica. Rassh - reinforced adaptive ssh honeypot. In
2014 10th International Conference on Communications (COMM),
pages 1–6, May 2014.

[PB16] R. Piggin and I. Buffey. Active defence using an operational tech-
nology honeypot. In 11th International Conference on System Safety
and Cyber-Security (SSCS 2016), pages 1–6, 2016.

[PBA+21] Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya,
and A. Selcuk Uluagac. Survey on Enterprise Internet-of-Things
Systems (E-IoT): A Security Perspective. arXiv e-prints, page
arXiv:2102.10695, February 2021.

[PBAU20] L. C. PucheRondon, L. Babun, K. Akkaya, and A. S. Uluagac. Hdmi-
watch: Smart intrusion detection system against hdmi attacks. IEEE
Transactions on Network Science and Engineering, pages 1–1, 2020.

[PBPC19] A. Pauna, I. Bica, F. Pop, and A. Castiglione. On the rewards of self-
adaptive iot honeypots. Annals of Telecommunications, 74:501–515,
Jul 2019.

[Pet06] Dale Peterson. SCADA Honeywall: Use Your Own PLC As The Tar-
get. https://dale-peterson.com/2008/07/08/scada-honeywall-use-
your-own-plc-as-the-target/, 2006. [Online; accessed 2-May-2020].

[PF04] Venkat Pothamsetty and Matthew Franz. SCADA Hon-
eyNet Project: Building Honeypots for Industrial Networks.
http://scadahoneynet.sourceforge.net/, 2004. [Online; accessed 2-
May-2020].

[Phy19] Phype. Telnet iot honeypot. https://github.com/Phype/telnet-iot-
honeypot, 2019. [Online; accessed 2-Apr-2020].

[PIB18] A. Pauna, A. Iacob, and I. Bica. Qrassh - a self-adaptive ssh hon-
eypot driven by q-learning. In 2018 International Conference on
Communications (COMM), pages 441–446, June 2018.

155

[PK19] C. Petre and A. Korodi. Honeypot inside an opc ua wrapper for
water pumping stations. In 2019 22nd International Conference on
Control Systems and Computer Science (CSCS), pages 72–77, 2019.

[Pow20] Powerworld. PowerWorld Simulator.
https://www.powerworld.com/, 2020. [Online; accessed 15-
May-2020].

[PP17] H. Polat and O. Polat. The effects of dos attacks on odl and pox
sdn controllers. In 2017 8th International Conference on Information
Technology (ICIT), pages 554–558, 2017.

[Pro] Prometheus Authors. Prometheus. [Online; accessed 12-April-2022].

[Pro07a] N. Provos. Honeyd. https://github.com/DataSoft/Honeyd, 2007.
[Online; accessed 2-Apr-2020].

[Pro07b] N. Provos. Honeyd frequently asked questions.
http://www.honeyd.org/faq.php, May 2007. [Online; accessed
1-Apr-2020].

[PSL+19] D. Pliatsios, P. Sarigiannidis, T. Liatifis, K. Rompolos, and I. Sin-
iosoglou. A novel and interactive industrial control system honeypot
for critical smart grid infrastructure. In 2019 IEEE 24th Interna-
tional Workshop on Computer Aided Modeling and Design of Com-
munication Links and Networks (CAMAD), pages 1–6, Sep. 2019.

[PSY+15] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow. Iotpot: Analysing the rise of iot compromises. In 9th
USENIX Workshop on Offensive Technologies (WOOT 15), Wash-
ington, D.C., Aug 2015.

[PSY+16] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama,
and C. Rossow. Iotpot – analysing the rise of iot compromises.
https://ipsr.ynu.ac.jp/iot/, June 2016. [Online; accessed 2-Apr-
2020].

[Qui21] N. Quist. Watchdog: Exposing a cryptojacking campaign that’s op-
erated for two years. Palo Alto-Unit 42, Feb. 17, 2021.

[RBA+20] Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya,
and A. Selcuk Uluagac. Poisonivy: (in)secure practices of enterprise

156

iot systems in smart buildings. In Proceedings of the 7th ACM In-
ternational Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, BuildSys ’20, page 130–139. ACM, 2020.

[RBAU19] Luis Puche Rondon, Leonardo Babun, Kemal Akkaya, and A. Sel-
cuk Uluagac. Hdmi-walk: Attacking hdmi distribution networks via
consumer electronic control protocol. In Proceedings of the 35th An-
nual Computer Security Applications Conference, ACSAC ’19, page
650–659. ACM, 2019.

[RL21] N. Russo and P. Laskov. Detection of illicit cryptomining using net-
work metadata. Info. Security 2021, 11, 2021.

[RLB15] Owen Redwood, Joshua Lawrence, and Mike Burmester. A symbolic
honeynet framework for scada system threat intelligence. In Critical
Infrastructure Protection IX, pages 103–118. Springer International
Publishing, 2015.

[RRM+18] M. F. Razali, M. N. Razali, F. Z. Mansor, G. Muruti, and N. Jamil.
Iot honeypot: A review from researcher’s perspective. In 2018
IEEE Conference on Application, Information and Network Security
(AINS), pages 93–98, Nov 2018.

[RVH+20] Lukas Rist, Johnny Vestergaard, Daniel Haslinger, Andrea
De Pasquale, and John Smith. Conpot ICS/SCADA Honeypot.
http://conpot.org/, 2020. [Online; accessed 2-May-2020].

[SA15] Pavol Sokol and Maroš Andrejko. Deploying honeypots and hon-
eynets: Issues of liability. In Computer Networks, pages 92–101,
Cham, 2015. Springer International Publishing.

[Sas21] A. Sasson. Docker Honeypot Reveals Cryptojacking as Most Com-
mon Cloud Threat. Palo Alto-Unit 42, May 27, 2021.

[SBH19] R.K. Shrivastava, B. Bashi, and C. Hota. Attack detection and foren-
sics using honeypot in iot environment. In International Conference
on Distributed Computing and Internet Technology, pages 402–409,
Bhubaneswar, India, Jan 2019.

[SCGM13] P. Simões, T. Cruz, J. Gomes, and E. Monteiro. On the use of
honeypots for detecting cyber attacks on industrial control networks.

157

In Proc. 12th Eur. Conf. on Inf. Warfare and Secur. (ECIW 2013),
pages 263–270, 2013.

[Sco14] Charles Scott. Designing and Implementing a Honeypot for a
SCADA Network. June 2014.

[SCPA19] Nasrin Sultana, Naveen Chilamkurti, Wei Peng, and Rabei Alhadad.
Survey on sdn based network intrusion detection system using ma-
chine learning approaches. P2P Networking and Applications, 12,
2019.

[SCPM15] Paulo Simões, Tiago Cruz, Jorge Proença, and Edmundo Monteiro.
Specialized Honeypots for SCADA Systems, pages 251–269. Springer
International Publishing, 2015.

[SDR19] Rochak Swami, Mayank Dave, and Virender Ranga. Software-defined
networking-based ddos defense mechanisms. ACM Comput. Surv.,
52, April 2019.

[SHH+19] O. Surnin, F. Hussain, R. Hussain, S. Ostrovskaya, A. Polovinkin,
J. Lee, and X. Fernando. Probabilistic estimation of honeypot detec-
tion in internet of things environment. In 2019 International Confer-
ence on Computing, Networking and Communications (ICNC), pages
191–196, Feb 2019.

[SHL15] P. Sokol, M. Husak, and F. Lipták. Deploying honeypots and hon-
eynets: Issue of privacy. In 2015 10th International Conference on
Availability, Reliability and Security, pages 397–403, 2015.

[Sho] Shodan. Honeyscore. https://honeyscore.shodan.io/. [Online; ac-
cessed 26-Jul-2020].

[Sho20] Shodan. https://www.shodan.io/, 2020. [Online; accessed 14-May-
2020].

[SK18] D. Sever and T. Kisasondi. Efficiency and security of docker based
honeypot systems. In 2018 41st International Convention on Infor-
mation and Communication Technology, Electronics and Microelec-
tronics (MIPRO), pages 1167–1173, 2018.

158

[SM17] H. Semic and S. Mrdovic. Iot honeypot: A multicomponent solution
for handling manual and mirai-based attacks. In 2017 Telecommu-
nication Forum (TELFOR), pages 1–4, 2017.

[SOY15a] A. V. Serbanescu, S. Obermeier, and D. Yu. A flexible architecture
for industrial control system honeypots. In 12th Int. Joint Confer-
ence on e-Business and Telecommunications, volume 04, pages 16–26,
2015.

[SOY15b] Alexandru Vlad Serbanescu, Sebastian Obermeier, and Der-Yeuan
Yu. Ics threat analysis using a large-scale honeynet. In Proceedings of
the 3rd Int. Symposium for ICS & SCADA Cyber Security Research,
page 20–30, Swindon, GBR, 2015. BCS Learning & Development
Ltd.

[SPA+21] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu, Trent Jaeger,
and A. Selcuk Uluagac. A survey on sensor-based threats and attacks
to smart devices and applications. IEEE Communications Surveys
Tutorials, 23(2):1125–1159, 2021.

[Spi01] L. Spitzner. The value of honeypots, part one:definitions and values
of honeypots. http://www.symantec.com/connect/articles/value-
honeypots-part-onedefinitions-and-values-honeypots/, Oct 2001.
[Online; accessed 14-Apr-2020].

[SRG18] K.G.R. Sharma, A. Reddy, and K. Goody. CVE-2017-10271 Used
to Deliver CryptoMiners: An Overview of Techniques Used Post-
Exploitation and Pre-Mining . Fireeye, Feb. 15, 2018.

[SSH+18] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. In-
dustrial internet of things: Challenges, opportunities, and directions.
IEEE Trans. on Ind. Inf., 14(11):4724–4734, 2018.

[Sta19] L. Stafira. Examining Effectiveness of Web-Based Internet of Things
Honeypots. PhD thesis, Air Force Institute of Technology, 2019.

[Sta20] Stack Overflow. Stack Overflow Developer Survey, 2020. [Online;
accessed 10-April-2022].

[Sur] O. Surnin. honeypot. https://gitlab.com/legik/honeypot. [Online;
accessed 1-Apr-2020].

159

[Sym19] Symantec. Internet security threat report (istr) 2019. Technical
report, Symantec, Feb 2019.

[Tan20] Dmitry Tanana. Behavior-based detection of cryptojacking mal-
ware. In 2020 Ural Symposium on Biomedical Engineering, Radio-
electronics and Information Technology (USBEREIT), pages 0543–
0545, 2020.

[TAS+19] A. Tambe, Y.L. Aung, R. Sridaran, M. Ochoa an A. K. Jain, N.O.
Tippenhauer, A. Shabtai, and Y. Elovici. Detection of threats to iot
devices using scalable vpn-forwarded honeypots. In Proceedings of
the Ninth ACM Conference on Data and Application Security and
Privacy (CODASPY), pages 85–96, Mar 2019.

[TAS+21] Ege Tekiner, Abbas Acar, A. Selcuk Uluagac, Engin Kirda, and Ali
Aydin Selcuk. SoK: Cryptojacking Malware. arXiv e-prints, page
arXiv:2103.03851, March 2021.

[TAU+21] Ege Tekiner, Abbas Acar, A. Selcuk Uluagac, Engin Kirda, and
Ali Aydin Selcuk. Sok: Cryptojacking malware. In 2021 IEEE Euro-
pean Symposium on Security and Privacy (EuroS P), pages 120–139,
2021.

[TAU22] Ege Tekiner, Abbas Acar, and A. Selcuk Uluagac. A lightweight
iot cryptojacking detection mechanism in heterogeneous smart home
networks. In 29th Annual Network and Distributed System Security
Symposium, NDSS, 2022.

[Thea] The Linux Foundation. Open Daylight.
https://www.opendaylight.org. [Online; accessed 13-May-2021].

[Theb] The Linux Foundation. Open vSwitch.
https://www.openvswitch.org. [Online; accessed 13-May-2021].

[The20a] The MITRE Corporation. Common Vulnerabilities and Exposures.
https://cve.mitre.org/, 2020. [Online; accessed 17-May-2020].

[The20b] The President’s National Security Telecommunications Advisory
Committee. Nstac report to the president on software-defined net-
working, 2020.

160

[TP] Inc. Tor Project. Tor project. https://www.torproject.org/. [Online;
accessed 26-Jul-2020].

[TQF+17] Dennis Tatang, Florian Quinkert, Joel Frank, Christian Röpke, and
Thorsten Holz. Sdn-guard: Protecting sdn controllers against sdn
rootkits. In 2017 IEEE Conference on Network Function Virtual-
ization and Software Defined Networks (NFV-SDN), pages 297–302,
2017.

[Tre18] TrendMicro. Over 200,000 MikroTik Routers Compromised in Cryp-
tojacking Campaign. TrendMicro, Aug. 3, 2018.

[VC19] A. Vetterl and R. Clayton. Honware: A virtual honeypot framework
for capturing cpe and iot zero days. In 2019 APWG Symposium on
Electronic Crime Research (eCrime), pages 1–13, 2019.

[Vir] VirusTotal. VirusTotal. https://www.virustotal.com/gui/home/upload.
[Online; accessed 10-April-2022].

[VJ19] R. Vishwakarma and A. K. Jain. A honeypot with machine learning
based detection framework for defending iot based botnet ddos at-
tacks. In 2019 3rd International Conference on Trends in Electronics
and Informatics (ICOEI), pages 1019–1024, April 2019.

[VKTH19] Vijay Varadharajan, Kallol Karmakar, Uday Tupakula, and Michael
Hitchens. A policy-based security architecture for software-defined
networks. IEEE Tran. on Information Forensics and Security, 14(4),
2019.

[VPDCB21] Ismael Amezcua Valdovinos, Jesús Arturo Pérez-Dı́az, Kim-
Kwang Raymond Choo, and Juan Felipe Botero. Emerging ddos
attack detection and mitigation strategies in software-defined net-
works: Taxonomy, challenges and future directions. Journal of Net-
work and Computer Applications, 187:103093, 2021.

[VSCM16] E. Vasilomanolakis, S. Srinivasa, C. G. Cordero, and M. Mühlhäuser.
Multi-stage attack detection and signature generation with ics hon-
eypots. In IEEE/IFIP Network Operations and Management Sym-
posium, pages 1227–1232, 2016.

[VTG19] B.G.M. Vicente, J. Triunfante, and B. Gelera. Cve-2019 Exploited,
Used to Deliver Monero Miner. TrendMicro, June 20, 2019.

161

[Wad11] Susan Marie Wade. SCADA Honeynets: The attractiveness of hon-
eypots as critical infrastructure security tools for the detection and
analysis of advanced threats. Master’s thesis, Iowa State University,
2011.

[Wag11] G. Wagener. Self-Adaptive Honeypots Coercing and Assessing At-
tacker Behaviour. PhD thesis, Institut National Polytechnique de
Lorraine - INPL, 2011.

[Wan17] M. Wang. Thingpot. https://github.com/Mengmengada/ThingPot,
2017. [Online; accessed 14-May-2020].

[Wat07] David Watson. Honeynets: a tool for counterintelligence in online
security. Network Security, 2007(1):4–8, 2007.

[WH15] Kyle Wilhoit and Stephen Hilt. The GasPot experiment : Unexam-
ined perils in using gas-tank-monitoring systems. In Black Hat USA,
2015.

[Wil13a] Kyle Wilhoit. The SCADA That Didn’t Cry Wolf Who’s Really
Attacking Your ICS Equipment? (Part 2). 2013.

[Wil13b] Kyle Wilhoit. Who’s Really Attacking Your ICS Equipment? 2013.

[Wir] Wireshark. Wireshark. https://www.wireshark.org/. [Online; ac-
cessed 10-April-2022].

[WRD+15] Michael Winn, Mason Rice, Stephen Dunlap, Juan Lopez, and Barry
Mullins. Constructing cost-effective and targetable industrial control
system honeypots for production networks. International J. of Crit-
ical Infrastructure Protection, 10:47 – 58, 2015.

[WSK18] M. Wang, J. Santillan, and F. Kuipers. Thingpot: an interac-
tive internet-of-things honeypot. Computing Research Repository,
abs/1807.04114, Jul 2018.

[WW19] H. Wang and B. Wu. Sdn-based hybrid honeypot for attack cap-
ture. In 2019 IEEE 3rd Information Technology, Networking, Elec-
tronic and Automation Control Conference (ITNEC), pages 1602–
1606, 2019.

162

[XCX18] Feng Xiao, Enhong Chen, and Qiang Xu. S7commtrace: A high
interactive honeypot for industrial control system based on s7 pro-
tocol. In Information and Communications Security, pages 412–423,
Cham, 2018. Springer International Publishing.

[XYH+19] Junfeng Xie, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu,
Chenmeng Wang, and Yunjie Liu. A survey of machine learning tech-
niques applied to software defined networking (sdn): Research issues
and challenges. IEEE Communications Surveys Tutorials, 21(1):393–
430, 2019.

[YKYZ21] Zhiyuan Yu, Zack Kaplan, Qiben Yan, and Ning Zhang. Security
and privacy in the emerging cyber-physical world: A survey. IEEE
Communications Surveys Tutorials, pages 1–1, 2021.

[Zec03] Marko Zec. Implementing a clonable network stack in the freebsd
kernel. In Proceedings of the FREENIX Track: USENIX Annual
Technical Conference, June 9-14, San Antonio, Texas, USA, pages
137–150, 2003.

[ZGQA19] Mohammad-Reza Zamiri-Gourabi, Ali Razmjoo Qalaei, and
Babak Amin Azad. Gas what? i can see your gaspots. studying the
fingerprintability of ics honeypots in the wild. In Proceedings of the
Fifth Annual Industrial Control System Security (ICSS) Workshop,
page 30–37. ACM, 2019.

[Zho19] Y. Zhou. Chameleon: Towards adaptive honeypot for internet of
things. In Proceedings of the ACM Turing Celebration Conference -
China, May 2019.

[ZKF19] L. Zobal, D. Kolář, and R. Fujdiak. Current state of honeypots
and deception strategies in cybersecurity. In 2019 11th International
Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT), pages 1–9, 2019.

[ZLZ+19] Yanling Zhao, Ye Li, Xinchang Zhang, Guanggang Geng, Wei Zhang,
and Yanjie Sun. A survey of networking applications applying the
software defined networking concept based on machine learning.
IEEE Access, 7, 2019.

163

[ZQ17] C. Zhao and S. Qin. A research for high interactive honepot based
on industrial service. In 2017 3rd IEEE International Conference on
Computer and Communications (ICCC), pages 2935–2939, 2017.

[ZZZ+19] W. Zhang, B. Zhang, Y. Zhou, H. He, and Z. Ding. An iot honeynet
based on multi-port honeypots for capturing iot attacks. IEEE In-
ternet of Things Journal, pages 1–1, 2019.

164

VITA

JAVIER R. FRANCO

2020 B.S., Internet of Things

Florida International University

Miami, Florida

2022 M.S., Computer Engineering

Florida International University

Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Javier Franco, Ahmet Aris, Berk Canberk, A. Selcuk Uluagac, “A Survey of Hon-
eypots and Honeynets for Internet of Things, Industrial Internet of Things, and
Cyber-Physical Systems”, IEEE Communications Surveys & Tutorials, 23(4):2351-
2383, 2021

Alvi Ataur Khalil, Javier Franco, Imtiaz Parvez, A. Selcuk Uluagac, Mohammad
Ashiqur Rahman, “A Literature Review on Blockchain-enabled Security and Op-
eration of Cyber-Physical Systems”, IEEE Computer Software and Applications
Conference (COMPSAC), June 2022

(Under Review) Javier Franco, Ahmet Aris, Leonardo Babun, A. Selcuk Uluagac,
“S-Pot: A Smart Honeypot Framework with Dynamic Rule Configuration for SDN”,
IEEE Global Communications Conference (GLOBECOM), December 2022

(Under Review) Javier Franco, Abbas Acar, Ahmet Aris, A. Selcuk Uluagac, “Foren-
sic Analysis of Cryptojacking in Host-based Docker Containers Using Honeypots”,
IEEE Global Communications Conference (GLOBECOM), December 2022

165

	Honeypot-based Security Enhancements for Information Systems
	Recommended Citation

	INTRODUCTION
	Objectives
	Organization of the Thesis

	A SURVEY OF HONEYPOTS AND HONEYNETS FOR INTERNET OF THINGS, INDUSTRIAL INTERNET OF THINGS, AND CYBER-PHYSICAL SYSTEMS
	Introduction
	Related Work
	Background Information
	Honeypots and Honeynets
	Other Related Terms

	Classification Methodology
	Honeypots and Honeynets for Internet of Things
	General Application Honeypots
	Research with IoT Honeypots and Honeynets with Full Device Emulation
	Research with IoT Honeypots and Honeynets Focused on Type of Attack

	Taxonomy of Honeypots and Honeynets for Internet of Things
	Development of Research Over Time
	Common Characteristics
	Level of Interaction
	Resource Level
	Scalability
	Application
	Simulated Services
	Availability of Open-Source Honeypot and Honeynet Solutions
	Most Commonly Used Tools
	Most Common Attacks

	Honeypots and Honeynets for IIoT and CPS
	Honeypots and Honeynets for Industrial Control Systems
	Honeypots and Honeynets for Water Systems
	Honeypots and Honeynets for Gas Pipelines
	Honeypots and Honeynets for Building Automation Systems
	Honeypots and Honeynets for IIoT

	Taxonomy of Honeypots and Honeynets for IIoT and CPS
	Development of Research Over Time
	Common Characteristics
	Level of Interaction
	Resource Level
	Scalability
	Target IIoT and CPS Application
	Industrial Process Simulations
	Simulated Services
	Availability of Open-source Honeypot and Honeynet Solutions
	Most Commonly Used Tools
	Most Common Attacks

	Lessons Learned and Open Issues
	Lessons Learned
	Open Issues

	Conclusion

	S-POT: A SMART HONEYPOT FRAMEWORK WITH DYNAMIC RULE CONFIGURATION FOR SDN
	Introduction
	Related Work
	Background
	Software-Defined Networking
	Honeypots and Honeynets
	Intrusion Detection and Protection Systems

	Problem Scope and Threat Model
	Problem Scope
	Threat Model

	S-Pot Framework
	Overview
	S-Pot Modules

	Performance Evaluation
	Implementation of S-Pot
	Data Collection and Processing
	S-Pot Classification Accuracy
	Performance Evaluation of the SDN Enterprise Network with S-Pot vs. without S-Pot

	Conclusion

	FORENSIC ANALYSIS OF CRYPTOJACKING IN HOST-BASED DOCKER CONTAINERS USING HONEYPOTS
	Introduction
	Related Work
	Background
	Host-based Cryptojacking
	Stratum Protocol
	Docker Containers
	Honeypots and Honeynets

	Problem Scope and Threat Model
	Problem Scope
	Threat Model

	Methodology
	Honeypot System Deployment
	Host Resource Data Collection
	Network Data Collection

	Data Analysis
	Host Resource Data Analysis
	Network Data Analysis

	Docker Container Security
	Stay Up to Date
	Resource Isolation and Management
	Whitelisting/Blacklisting Rules in iptables
	Principles of Least Privilege for Kernel Capabilities
	Image Authentication

	Monitoring Host-based Docker Containers
	Conclusion

	CONCLUDING REMARKS AND FUTURE WORK
	BIBLIOGRAPHY
	VITA

