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  ABSTRACT OF THE DISSERTATION 

AN INVESTIGATION TO CORROBORATE VOLATILE AND BIOLOGICAL 

PROFILES OF HUMAN ODOR FOR FORENSIC SUBJECT IDENTIFICATION 

by 

Chantrell Janae Gladys Frazier 

Florida International University, 2022 

Miami, Florida 

Professor Kenneth G. Furton, Co-Major Professor 

Professor DeEtta K. Mills, Co-Major Professor 

Hands are an integral part in transferring complex microbial communities to and 

from our surroundings. As a result, hands are significant in provenance investigations as 

specific microbiota can be deposited on everyday objects through touch interactions. Skin 

microbiome, including bacteria, fungi, and viruses, are unique to each person, and this 

‘uniqueness’ can be exploited and applied to forensic identification. Skin microbiota and 

volatile organic compounds (VOCs) are closely related due to specific bacteria breaking 

down non-volatile organic compounds to volatile organic compounds that are 

characteristically present in human scent. However, analyses of microbiota from touch 

interactions have proven to be difficult due to the low levels of genomic DNA (gDNA) that 

can be collected and analyzed with downstream techniques.  

Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry 

(HS-SPME-GCMS) is commonly used to conduct VOC analyses of air and water samples. 

However, previous studies have utilized HS-SPME-GCMS as a forensic approach to 

examine VOCs exuded from various regions of the body as a form of identification. 



viii 
 

Furthermore, the human microbiome has been closely studied in relation to health and 

disease, but more recently been examined as new potential forensic tool. The objective of 

this research is to analyze samples collected from subject’s palms to determine the 

relationship between the bacterial microbiota profile and the VOC profile as it relates to 

the classification and discrimination of individuals. Palmar sweat samples and epithelial 

swabs were simultaneously collected for VOC and microbiome analysis, respectively. 

Supervised linear regression models (PLS-DA, OPLS-DA, and LDA) were evaluated as a 

tool for the prediction and discrimination of subject gender. The amplified DNA targeting 

the V1-V2 16S rDNA region was initially screened via Length Heterogeneity Polymerase 

Chain Reaction (LH-PCR) to obtain an initial assessment of the bacterial community’s 

diversity. Amplicons were sequenced with Next Generation Sequencing (NGS) technology 

and further analyzed with bioinformatics, which identified well known skin bacterium on 

the genus level Staphylococcus, Cutibacterium, Enhydrobacter, Streptococcus, 

Lawsonella, Fusobacterium, and Micrococcus known to contribute to human odor 

volatiles. The combination of human odor and bacterial microbiome analysis could lead to 

the utilization of odor as a novel biometric for forensic identification where other physical 

and trace evidence may be lacking.  
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1 INTRODUCTION 

During violent and property crimes, there is often an exchange of biological and 

chemical material by the perpetrator or victim to the crime scene. This very exchange of 

materials between an object and/or a person or two persons is in accordance with Locard’s 

Exchange Principal (Saferstein, 2011). Various biological material that is often collected 

and analyzed to connect the suspect to the crime includes fingernails, blood, hair, saliva, 

and other bodily fluids. Downstream DNA and chemical analyses are performed to curate 

various forms of evidence. However, evidence (human DNA, fingerprints, etc.) collected 

at the crime scene is often degraded or found only in trace amounts (Leary, 2018). Invisible 

or limited biological samples and/or DNA that amounts to less than 100pg is referred to as 

Trace DNA (Gill, 2001). This presents legal issues because a partial or non-interpretable 

human profile from trace samples is not always probative (Leary, 2018).  Therefore, many 

law enforcement agencies have shifted to include another form of trace evidence that is 

often overlooked yet always present: human scent.  

However, the presentation of collected human scent as a form of forensic evidence 

has been difficult in the view of admissibility within the court of law. The admissibility 

criteria for expert evidence have been established by the Frye (1923) and Daubert (1993) 

standards (DeMatteo et. al, 2019). Human scent, comprised of Volatile Organic 

Compounds (VOCs), can be recognized by the human and animal olfactory systems. The 

investigation of VOCs has mainly been contributed by Canis familiaris, also known as the 

common dog or canines (K-9), most commonly used for the detection of a wide variety of 

hidden substances that include but are not limited to: explosives, narcotics, mass storage 

devices, firearms, search & rescue, medical detection, pests, ignitable liquid residues, 
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conservation, invasive species, agriculture, currency, and tracking/trailing. (Jenkins et. al, 

2018). In comparison to its animal counterpart, instrumental analysis of the chemical 

signatures presented by human scent has been limited because of sensitivity limitations. 

The correlation of the specific human odor signatures a canine may alert to when indicating 

a positive match to a subject has been limited within scientific literature (Prada et. al, 

2015-Human scent evidence book). As a result, there has been a forensic community 

effort to increase the scientific knowledge that supports what the K-9 has detected via 

standardized procedures and guidelines provided by the Scientific Working Group on Dog 

and Orthogonal Detection Guidelines (SWGDOG). This study seeks to contribute to the 

scientific literature to increase the probative value of human scent as a corroborating 

biometric for forensic evidence when other physical evidence is lacking.  

The deposition of human odor is not only dispersed into the air or exchanged with 

the surrounding environment by our individual encompassing VOC cloud but can also be 

transferred to secondary objects through touch interactions (Filetti et. al, 2019). Our hands 

are an integral part in transferring complex microbial communities to and from our 

surroundings. We eat, open doors, and touch multiple surfaces with our hands daily, 

leaving behind traces of our individual microbiomes and VOCs. The skin microbiome, 

including but not limited to bacteria, fungi, and viruses, is characteristic to each individual 

and can be utilized and applied for forensic identification. Skin microbiota and VOCs are 

intrinsically linked due to microbial metabolic transformation of non-volatile organic 

compounds to volatile organic compounds. Therefore, this study investigated the biological 

(microbiota) and chemical (VOCs) signatures of collected human scent samples. 
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Previous research has assessed demographical (ethnicities/race, age, and gender) 

information assessed from volatile and biological profiles to aid in the forensic 

identification of individuals. The limitations from instrumentation sensitivity, sample 

collection (SPME), and sample quality (trace DNA) have posed a challenge to the 

advancement of human scent knowledge. Many methodologies have been developed to 

increase the opportunity to generate a profile by increasing the number of cycles during 

amplification or selection of proper extraction kits to aid in maximizing the quantity of 

DNA that is input prior to downstream analysis (Oorschot et al.). Specifically, from very 

minute samples such as the low copy number (LCN) or low template DNA (LTDNA). The 

developed methodologies aimed to increase information obtained from human scent 

volatile profiles data, has demonstrated the significance on a pictorial (stacked bar graphs) 

and unsupervised dimensional analysis (PCA) level. However, there is the need to 

transition the evaluation of volatile profiles for statistical significance with supervised 

methodologies and algorithms. This study engages and explores said biological 

methodologies such as PCR, capillary electrophoresis (fragment analysis), next generation 

sequencing, and chemical methodologies (HS-SPME-GCMS).  

The concatenation of this combined data with supervised dimensional reduction 

techniques and machine learning algorithm via software such as Primer-E, JMP, and 

MetaboAnalyst should advance the scientific literature forensic identification. Previous 

research on trace DNA analysis, microbiome analysis, and VOC analysis, individually, 

have proven to be challenging and limited on the demographical information they can 

provide. Thus, the goal of this dissertation research was to analyze samples collected from 
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the subject’s palms to determine the relationship between the individual’s bacterial DNA 

profile and VOC profile for potential use as forensic identification. 
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2 LITERATURE REVIEW 

 
2.1 Forensic Human Identification 
 

According to Sollberger, the philosophical perspective of “identity” is that it’s a 

predicate, which functions as an identifier to distinguish and differentiate one object from 

another object (Sollberger et al., 2013). “Human “identification” and, more specifically, 

the biological aspects of human identity, are grounded in the well-defined and statistically 

verifiable sciences of biology, chemistry, and physics” (Thompson et al., 2006). The 

application of well-established scientific research, tools, and methodologies to aid in the 

resolution of criminal and civil disputes is known as forensic science (Kabir et al., 2021). 

Its influence on the criminal justice system has increased due to cross-disciplinary nature 

of fields and the capability to provide insight on what may have occurred at a crime scene. 

Over the last 30 years various forms of evidence (DNA, fingerprints, etc.) have been 

collected and analyzed to convict, acquit, or identify individuals.  

2.2 Phenotypic Traits for Identification 

Phenotypic traits: gender, race/ethnicity, and age have been the leading 

characteristics to identifying an individual. Within the past decade these observable traits 

have undergone societal influences outside of the inherited biological traits they were 

originally termed after. These influences have led for the terms’ “sex” and “gender” to be 

clarified because both are in place of each other in research (Short et al., 2013). The term 

“sex” differentiates males and females biologically because of their reproductive organs 

and functions (Ryan, B., 2007). Moreover, sex, contains sex-specific variation in 

chromosomes, as women contain two X chromosomes, while males have and X and Y 
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chromosome (Short et al., 2013). The social interaction and discussion of gender from a 

cultural and institutional lens allows for the terminology to be created and redefined in a 

continuously evolving cycle (West et al., 1987). Therefore, individuals throughout this 

study self-identified their gender as no genetic information was collected to verify their 

sex. From this moment forward, the word gender will represent the participants’ self-

identification as either male or female.  

Race and ethnicity are also phenotypic traits whose terms originated with a 

biological foundation. Specifically, within health-related research, race is notated as a 

combination of not only biological indicators, but personal and group identity influences 

as well (Ford et al, 2005). This term is commonly implemented when specific racial 

groups are disproportionately or beneficially impacted by health, political, and social 

situations. Ethnicity, in contrast, is commonly referenced to a specific group of individuals 

who have a shared cultural identification that includes origin, language, tradition, and 

religion (Ford et al, 2005). Within this study participants were classified into three racial 

(African American, Caucasian, and Hispanic) groups but were allowed to indicate their 

ethnic background or association. Overall, gender and race/ethnicity are not as simplistic 

as their terminology origination but are a major portion of human forensic identification. 

They have been the focal point of methodologies presented in court to assess their 

admissibility of evidence presented in that context. 
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2.3 Forensic Admissibility 
 

The current tools utilized within forensics for the identification of humans, 

biological fluids, and other various forms of evidence have undergone a scrutinized process 

to become admissible in the court of law. There are two major court decisions that have 

established the admissibility criteria for expert evidence and witnesses. In Frye v. United 

States (1923), the United States Court of Appeals for the District of Columbia Circuit held 

that proffered expert evidence must be based on generally accepted scientific methods 

(DeMatteo, 2019). This became known as the “general acceptance” rule and remained 

unchallenged for seventy years.  

In accordance with the establishment of Federal Rules of Evidence (FRE) -

specifically, FRE 702- in 1975, the Frye standard was replaced following the decision of 

Daubert v. Merrell Dow Pharmaceuticals, Inc (1993). In the Daubert ruling, four criteria 

were established to decide whether the proffered evidence (a) was derived from 

methodology that has or can be tested empirically, (b) has been subjected to peer review 

and publication, (c) has a known or documented potential rate of error, and (d) has achieved 

general acceptance in its relevant scientific community (DeMatteo, 2019).  

With most states adopting the Daubert standard and other modified versions, some 

psychologists feel as if the promising nature of Daubert has been unfulfilled. However, a 

study conducted by Gatowski et al. in 2001 contradicted that theory reporting percentages 

of 88%, 91%, 92%, and 93% from judges that believed in the utility of the Daubert criteria: 

recognizing the value of testing, considering the error rate of testing procedures, peer 

review and publication, and considering general acceptance, respectively (Gatowski et al., 
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2001). Understanding the criteria required for newer evidence to be accepted in the court 

of law lays the foundation for exploring newer biometrics for forensic identification. 

 
2.4 Current Biometrics for Forensic Identification 
 
2.4.1 DNA 
 

DNA is commonly known for its storage of genetic information. A single 

nucleotide of DNA is comprised of three components: sugar (deoxyribose), nitrogenous 

base (Adenine, Guanine, Thymine, or Cytosine), and a phosphate group (Figure 2-1). The 

sequence of DNA naturally follows a 5’ to 3’directionality, as nucleotides bind through a 

phosphodiester bond between the 5’ phosphate group and the 3’ deoxyribose sugar with 

natural pairings of purines to pyrimidines (Adenine to Thymine and Guanine to Cytosine) 

(Figure 2-2). The basic unit of measurement for sizing DNA is a base pair (bp). The 

emergence of DNA has led to its use as a powerful tool to identify perpetrators of 

unspeakable crimes and to exonerate innocent individuals accused of similarly heinous 

actions (Leary, 2017). The value of DNA as a form of forensic evidence has grown 

exponentially since its initial application.  
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Figure 2-1: Molecular structure of DNA components (A) Deoxynucleotide 5’ Phosphate (B) Deoxyribose (Sugar) (C) 
Nitrogenous bases. (Thompson et al., 2006). 

 

 

Figure 2-2:Molecular structure of (A) single-stranded DNA and (B) double-stranded DNA (Thompson et al., 2006). 
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The utilization of DNA for identification purposes dates to 1985 in the U.K. with 

paternity testing for an immigration case. It was later applied to criminal cases in 1988 for 

successful prosecution of a rapist after a 17-year-old kid was wrongly implicated. The idea 

of DNA profiling was established by Alex Jeffreys who discovered that certain regions of 

DNA were highly variable between individuals (Thompson et al., 2006). Jeffrey’s 

methods to analyze the polymorphic regions of DNA required large amounts of good 

quality DNA. Within forensics good quality DNA is often rare at a crime scene due to 

environmental factors or perpetrators attempt to obscure evidence. Therefore, to combat 

the requirement of high-quality DNA, short tandem repeats (STRs) within various loci 

within the human genome have become the focal point in DNA analysis. STRs allow for 

degraded or poor-quality DNA to be analyzed in small quantities.  

2.4.2 Fingerprints 
 

In addition to the growth of DNA as evidence, came blood spatter, ballistics, and 

fingerprint analysis. Fingerprinting became a more idealistic approach for forensics 

because of its uniqueness. Uniqueness is a characteristic often sought after in the scientific 

community to bring novel or clarifying information to a well-known topic. Through this 

ideology of individualism, we can exploit the uniqueness of multiple acceptable forensic 

tools, such as, fingerprinting.  

A fingerprint is an impression or mark made by an individual’s fingertips or 

thumbs; it is often used in forensics as an identification tool to assess who may have been 

present during the act of a crime. Despite DNA profiling being the most developed entity 

in identifying an individual, fingerprints have become the frontrunner as the most 
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established form of forensic evidence in its use to certainly identify an individual (Kapoor 

et al. 2015). The papillary ridge patterns that are often examined by an expert analyst is 

known to not only remain topologically unchanged from birth for an individual but differ 

between individuals as well as from one finger to another (Wang et al., 2017). These 

papillary ridge patterns are denoted as arches, loops, whorls, and composites (Figure 2-3). 

 

Figure 2-3:Common Papillary ridge patterns in Fingerprints (Thompson et al., 2006). 

 
Generally, three types of fingerprint evidence are common at crime scenes, including 

impression (or indented) fingerprints, visible (or patent) fingerprints, and latent fingerprints 

(Lee & Gaensslen, 2001). Many methods have been optimized for the various forms of 

fingerprints. Although, the two-dimensional reproduction of fingerprints specifically those 

invisible to the naked eye (latent), has posed the biggest complications within this area of 

forensic because of the perspiration, oils, or other contaminants that coat the surface of the 

ridges when a finger touches an item (Kaushal & Kaushal, 2011). Developing methods 

for latent prints such as small particle reagent (SPR), black powder, and Cyanoacrylate 

fuming (super glue) have been proven to increase the visibility of latent prints in various 
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environments (Madkour et al., 2017). Although, advanced technology has increased the 

visibility of a latent print, the print may be fragile to the point collection could further 

damage the print. The fragility of current biometrics discussed have led to their 

classifications as trace samples. 

2.4.3 Trace samples 
 

Trace evidence can include traces of DNA, various biological fluids (e.g., semen, 

saliva, blood), clothes, textiles, hair, or other fibers that can inform investigators about who 

was present at a crime scene and provide further information on what occurred  

(Bouslimani et al., 2016) Within trace DNA samples often the ability to obtain meaningful 

profiles is plagued with low copy number (LCN) or low template DNA (LTDNA) 

following extraction. Many methodologies have been developed to increase the 

opportunity to generate a profile by increasing the number of cycles during amplification 

or selection of proper extraction kits to aid in maximizing the quantity of DNA that’s input 

prior to downstream analysis (Oorschot et al., 2010). However, even with well-established 

protocols for evaluation of trace samples, the identification of the perpetrator or victim is 

often hindered. The impact trace samples has had on the forensic community has pushed 

the narrative to include newer biometrics for evidence. A form of evidence that has gained 

traction over the years that can address the scarcity of physical evidence is human odor. 

Examining human odor from a combined biological and chemical aspect could increase its 

probative value within the forensic science field. 
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2.5 Chemical Analysis of Human Odor 
 

2.5.1 Volatile Organic Compounds 
 

Volatiles are organic compounds (VOCs), often with high vapor pressures, are 

emitted into the environment as gases. VOCs can be exuded from many organic entities: 

explosives, drugs, agriculture, and the human body (Colon-Crespo et al., 2017). Within 

the Furton lab VOCs have been examined for identification, disease detection, biomarkers, 

its emanation from various specimens, fabrics that trap and release VOCs the best, and 

their stability and reproducibility over time (Furton & Myers, 2001; Curran et al., 2005, 

2007, 2010; Colon-Crespo et al., 2017; Brown et al., 2013; Prada et al., 2014; 

Caraballo et al., 2016). One of the major advantages of VOCs from a sampling perspective 

is that they are readily available and can be obtained noninvasively from an individual as 

often as the researcher likes with little or no discomfort (Filipiak et al., 2016). To date, 

there are 1,849 volatile organic compounds identified in correlation to humans. Of these 

1,849 compounds, only 504 are found in bodily secretions (Filipiak et al., 2016). Many 

compound classes: acids, alcohols, aldehydes, hydrocarbons, esters, and ketones are 

present in human emanations (Curran et al., 2007). However, there is minimal research 

on how these VOCs are dependent upon the microbial metabolic contribution, altered by 

stress, age, time of day, gender, activity, disease status, or the transport to the site of their 

detection. Moreover, the information in relation to the metabolic pathway that leads to the 

production or degradation of VOCs is largely missing (Filipiak et al., 2016). Overall, the 

established chemical profile curated from the abundance and presence of VOCs that are 
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particular to an individual can envision human odor as a biometric measurement (Brown 

et al., 2013). 

2.5.2 Human Odor 
 

The qualitative and quantitative evaluations of human odor are distinctly different; 

as chemical signatures are qualitatively similar amongst individuals but quantitatively the 

abundance of said signatures make them characteristic of the individual they are extracted 

(Brown et al., 2013). Host genetics, surrounding environments, and physiological 

secretions have a major impact on the volatile organic compounds (VOCs) that are released 

from the body; human odor is described as this gaseous surrounding cloud of VOCs 

fluctuated by our body temperatures and current state of health (Prada et al., 2014). Curran 

et al. (2005) established three categorical distinctions of odor: (1) The primary odor of a 

person contains constituents that are stable over time regardless of diet or environmental 

factors, (2) Secondary odor contains constituents that are present due to diet and 

environmental factors, and (3) Tertiary odor contains constituents that are present because 

of the influence of outside sources (i.e., lotions, soaps, perfumes) (Curran et al., 2005a). 

Secretions from the feet and axillary (armpit) area of the body have been the major 

contributors to the scientific investigation conducted on human odor (Curran et al., 2007). 

However, the instrumental evaluations have shifted focus to other various body regions, 

such as the forearms and hands, as the skin volatiles released from those areas may 

contribute to the definition of general whole-body scent (Prada et al.,2014).  
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2.5.3 Hand Odor 
 

Human scent transfers into the environment at different rates and volumes 

dependent upon the exposure in which the body region is releasing them. One region that 

constantly interacts with humans, objects, and varying environments because they are the 

most exposed is the hand. Previous studies have examined and optimized hand odor as a 

valuable form of forensic evidence amongst various factors such as collection and 

instrumental analysis. From the collection perspective hand odor has been evaluated with 

contact vs non-contact methodologies. The contact collection category includes the 

following: the touching of a sorbent material by an individual, the direct swiping of an 

individual’s body regions, as well as placing a sorbent material in contact with an item that 

has been in contact with an individual (Prada et al., 2011).  

In a 2011 study conducted by DeGreff et al., various porous materials: Rayon, 

Polyester, Dukal gauze, Johnson & Johnson gauze, and cotton and non-porous materials: 

glass beads and steel bars often used in VOC contact studies were analyzed to understand 

which material was best for collection purposes to suggest the need for standardization in 

VOC collection with said materials (DeGreff et al., 2011; Caraballo et al., 2016). The 

noncontact collection category includes the collection of scent by placing a sorbent 

material near an individual for a specified time, as well as utilizing the Scent Transfer Unit 

(STU-100) as a collection device (Prada et al., 2011).  From an instrumental perspective 

hand odor has been examined primarily through the analytical method Gas 

Chromatography-Mass Spectrometry (GCMS) combined with sorbent-based sampling 

technique known as Solid Phase Microextraction (SPME). 
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2.6 Analytical Analysis of Human Hand Odor 
 
2.6.1 Headspace Solid Phase Microextraction (HS-SPME) 
 

The general analytical process of evaluating any kind of sample starts with the 

methodology chosen to collect the sample of interest, followed by the preparation, 

separation, and instrumental analysis. As previously discussed, the forensic community has 

been plagued by the fragility and insensitivity to analyze trace samples. Therefore, sample 

preparation has become one of the most important steps prior to instrumental analysis. 

Sample preparation is a combination of many processes that are not limited to but include 

purification, separation, pre-concentration, and derivatization. Commonly, this requires 

that the sample undergo large amounts of solvents and transfers, leading to potential error 

in analysis, loss of analyte when working with trace samples, and ultimately can be very 

time consuming. Many microextraction techniques have been developed to address these 

sample preparation issues by decreasing the required amount of volume needed, simplicity 

of the extraction matrix, and the possibility to automate their extraction procedures (Sajid, 

2017).  

In 1990, J. Pawliszyn developed solid phase microextraction (SPME) as one of the 

techniques to address these issues (Arthur et al., 1990; Zhang et al., 1993). Since then, 

SPME has garnered popularity amongst many fields of analytical chemistry because of its 

ability to pre-concentrate, extract analyte at a reduced volume, and improve the stability of 

sample during transport and storage (Eckert et al., 2018). Even with SPME having a 

fraction of sorbent capacity in comparison to other sorbent collection techniques, its solid 

phase composition holds practical and analytical advantages. Harper et al. (2000) listed 

sensitivity on small samples, reduced sampling time, and minimal equipment required as 
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some of SPME’s advantages (Harper et al., 2000). On the other hand, SPME has also 

faced criticism for its fragility during sample extraction; while the diminished capacity of 

the SPME fiber is a gift for certain samples, it can be a curse for others. The schematic of 

a SPME fiber is comprised of a silica-fused fiber, septum piercing needle, adjustable needle 

depth gauge, and plunger (Figure 2-4).  

 

 

 

Figure 2-4:Schematic of SPME fiber device inside of a sampling vial. (Moein et al) 
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Scientific literature has notated that SPME can be utilized in one of three different 

modes: (1) direct immersion (DI-SPME), (2) headspace (HS-SPME), and (3) membrane 

protected SPME (Figure 2-5) (Jalili et al., 2021; Moein et al., 2014; Sajid et al., 2017; 

Pawliszyn et al., 2012).  

 

Figure 2-5:Sampling modes of SPME (A) DI-SPME (B)HS-SPME (C)Membrane-protected SPME (Jalili et al., 2021) 

 
Within the DI-SPME mode the silica-fused fiber is directly immersed into the 

analyte being sampled and there is a direct exchange with the fiber matrix (Jalili et al., 

2021). DI-SPME is best implemented for pure aqueous samples in which the target analyte 

is either low emitting volatiles or non-volatiles (proteins and fatty acids). The downfalls of 

DI-SPME are that the longevity of the fiber is diminished because of direct exposure to the 

sample matrix and contamination is more likely to occur during transfer between samples 

if not properly cleaned.  
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When the analyte of interest cannot be interacted with due to its complex 

origination, solid nature, or emission of trace amounts of volatiles, HS-SPME mode is often 

utilized. HS-SPME has the capability to pre-concentrate volatiles and semi-volatiles 

without agitation to the sample matrix and extract the equilibrated headspace above the 

sample. Although, HS-SPME mode allows quick turnover for repeated sampling, increased 

analyte concentrations, and extended life span of the fiber, it eliminates the ability to extract 

non- and low-volatiles. Therefore, other methodologies (e.g., solvent extraction) must be 

implemented if the non-volatile information is required. With the pros and cons of both 

DI-SPME and HS-SPME, there was a gap for microextraction of complicated samples 

(e.g., ecological, biological, etc.) that non- or low-emitting volatiles were of interest. Six 

years later after the initial development of the SPME fiber, J. Pawliszyn and his co-workers 

took the first approach in closing this gap by developing a SPME that was protected with 

a hollow cellulose membrane, allowing for direct immersion into complex samples, 

avoiding fiber damage (Sajid, 2017). The mode that best adapts to the samples of interest 

within this study, HS-SPME was chosen as the appropriate mode to engage. 

The process of exposing a fiber requires for the plunger to be engaged in a 

downward motion from a pre-set adjusted depth of the gauge and locking the plunger by 

rotating the stopper into place. The same process can be done in the reverse to retract the 

fiber from the analyte being sampled. The stepwise process of transferring a HS-SPME 

fiber from extraction to analytical instrumental analysis via GCMS is illustrated in figure 

2-6. 
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Figure 2-6: Process of SPME fiber from headspace sampling to GCMS injection. (Ahmed et al., 2015) 

 

HS-SPME extraction process begins with an equilibration period of the analyte 

headspace. The equilibrated headspace is now within the extraction phase in which the 

fiber is exposed for a pre-determined time. After sufficient analyte has transferred onto the 

SPME matrix it can be directly injected for qualitative and quantitative analysis. There is 

a direct proportional sample calculation between the amount extracted and the original 

concentration of the analyte. Sample concentration calculations have been explained with 

two equations in the Handbook of SPME written by Pawliszyn. SPME extraction and 

collection from small volumes of sample, the amount of an analyte extracted from a sample 

is given by Equation (1), where n represents the extracted analyte amount, C0 represents 

the analyte initial concentration, Vs and Vf are volumes of the sample and fiber, 

respectively, and Kfs represents the distribution coefficient of the sample and fiber: 
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𝑛 = 	
𝐶!𝐾"#𝑉#𝑉"
𝐾"#𝑉" +	𝑉#

 

Equation 1:Total amount of analyte extracted from small volume sample (Pawliszyn et al., 2012) 

 (Pawliszyn et al., 2012). Equation (1) simplifies to equation (2) when the sample size is 

larger than the capacity of the fiber and the sample concentration can be calculated as 

denoted in equation (2) independent of sample volume: 

𝑛 = 	𝐶!𝐾"#𝑉" 

Equation 2: Total amount of analyte extracted from large volume sample (Pawliszyn et al., 2012) 

Proper selection of the fiber matrix is extremely important because various matrices 

target specific analytes: volatiles, semi-volatiles, non-volatiles (proteins and fatty acids), 

and flavor, amine, and nitro-aromatic compounds based on their polarity and molecular 

weight (Table 1) (Selection guide for Supelco, n.d.).  
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Table 1: Supleco SPME fiber selection guide for analyte type, polarity, and molecular weight (Selection guide for 
Supelco, n.d.) 

 
 

The 50/30 µm Divinylbenzene/Carboxen on Polydimethylsiloxane fiber 

(DVB/CAR/PDMS) has been established and optimized for hand odor collection because 

of its selectivity to detect volatiles and semi-volatiles of trace samples, which is similar to 

the hand odor samples within this study (Curran et al., 2005a; Brown et al., 2013). The 

ability to qualitatively and quantitatively identify compounds correlated to individuals 

through direct sampling of the hand and/or secondary transfer of objects they have handled 

via headspace analysis has been made possible with the advancement of analytical 

technologies, contributing to the scientific basis for the use of odor as a forensic biometric 

(Schoon et al., 2009)  

Analyte Type Molecular Weight (MW) Recommended Fiber

Gases and low molecular
weight compounds 

30-225 75/85 µm CAR/PDMS

Volatiles 60-275 100 µm PDMS

Volatiles, amines and nitro-aromatic
compounds 

50-300
65 µm PDMS/DVB

Polar semi-volatiles 80-300 85 µm polyacrylate

Non-polar high molecular weight
compounds 

125-600 7 µm PDMS

Non-polar semi-volatiles 
80-500

30 µm PDMS

Alcohols and polar compounds 40-275 Carbowax (PEG)

Flavor compounds: volatiles and
semi-volatiles

40-275
50/30 µm DVB/CAR on PDMS on a 
StableFlex fiber

Trace compound analysis 
40-275

50/30 µm DVB/CAR on PDMS on a 2 cm 
StableFlex fiber

Amines and polar compounds HPLC use only 60 µm PDMS/DVB

Supleco Fiber Selection Guide

CAR: Carboxen PDMS: Polydimethylsiloxane DVB: divinylbenzene
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2.6.2 Gas Chromatography Mass Spectrometry 
 

Credited as “The father of chromatography” Mikhail Semenovich Tswett (or 

Tsvett) was led in the early 1900’s to discover the fundamentals of chromatography 

because of his research in the field of botany (Gal et al., 2019). Chromatography is the 

analytical process that engages two phases (solid and mobile) to separate chemical or 

complex mixtures into their own individual components that can be identified against a 

known standard. For the chromatography process to initiate, the mixture has to be carried 

by the first phase (mobile phase) on to a second phase (stationary phase). The mobile phase 

can be either liquid or gas, while the solid phase is comprised of a porous solid. Often the 

decision regarding which mobile phase is best to use is dependent upon the type of mixture 

that will be analyzed. There are various types of chromatography: liquid (paper, thin layer), 

gas, ion-exchange, size exclusion, and affinity that can provide information on the simplest 

mixtures to the most complex. Although the analytical techniques follow the same basic 

principles of chromatography, the basis in which they separate the components of the 

mixture are different. Liquid, size exclusion, ion-exchange, affinity, and gas 

chromatography separate based on the molecule’s polarity, size, ionic charge, binding 

affinity, and boiling point, respectively.  

Gas chromatography (GC) is seen as the golden standard of the forensic community 

for analysis of trace, drugs, fire, lubricants, paint, ignitable liquids, and explosive samples. 

(Bridge et al., 2019; Lu et al., 2007; Kabir et al., 2021). The mixed volatility of human 

odor compounds makes gas chromatography the best analytical technique to implement 

within this study. It simplifies the analytical process following sample preparation with 

SPME and can be transferred directly from the sample into the GC without any additional 
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modifications (Moein et al., 2014). The GC is comprised of four components (injector 

port, carrier gas, column, and detector) responsible for the separation of a volatile mixtures. 

The injector port is simple in its assembly (Figure 2-7) but is the focal starting point of 

sample introduction into the GC.  

 

 

 

 

Figure 2-7:Schematic of GC injector port (Deepak, 2014) 
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Typically, the ending chromatographic results are often only as good as the 

prepared sample that is injected. Upon injection the sample is instantly vaporized and 

directed to the column. Therefore, sample concentration is very important to understand 

prior to injection because the analytical method the GC operates from can be programmed 

to operate in either a split or splitless mode.  

Split mode is often utilized when the concentration of the analyte is high. An 

established split ratio instructs the GC of opening the split valve, partitioning the initial gas 

flow rate into two parts: the rate of column flow (1mL/min) and the combined flow rate of 

the septum purge and the split vent. The split valve is perpendicular to the route of the 

vaporized sample to the column and because the portioned flow rate is the highest in the 

split vent, the majority of the sample goes into the split vent and not onto the column 

(Figure 2-8).  

 

Figure 2-8:Schematic of gas flow when injector is set to split mode (SHIMADZU, n.d.) 
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The alternative splitless mode is engaged when the analyte concentration is low 

(trace samples). Retaining as much of the sample as possible is of the utmost importance. 

Within this mode the split ratio is still comprised of the two flow rates—column flow 

(1mL/min) and combined septum purge and split vent—but the split vent is completely 

shut off, forcing the vaporized sample on to the column (Figure 2-9). 

 

 

Figure 2-9:Schematic of gas flow when injector is set to splitless mode (SHIMADZU, n.d.) 

  

Following the injection of the sample brings us back to the second component of 

the GC that will push the vaporized analyte down and through the column. It is referred to 

as the mobile phase in all chromatography techniques, but for GC it is known as the carrier 

gas. The type of carrier gas used has multiple factors to be considered: inertness, affinity 

to the column, and affinity to the analyte. Two gases are often employed for those reasons: 

Hydrogen and Helium. The diffusivity and viscosity properties of the gas chosen play a 
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major role in the GC’s speed and efficiency, by creating better separations and linear 

velocities to carry the individual components through the stationary phase (Heseltine et 

al., 2010). Although the diffusivity of helium and hydrogen are similar and the viscosity 

of hydrogen is half of helium, making hydrogen the most ideal carrier gas it has safety 

concerns of explosion (Heseltine et al., 2010). Therefore, Helium has been the go-to carrier 

gas in all GC methods, and the gas utilized in this study. 

 Once the analyte has been injected through the injector port and vaporized by the 

carrier gas, the separation of the sample begins with the stationary phase–column. There 

are two types of columns (packed and capillary) that exist that impact the quality of the 

chromatogram observed at the end of analysis. Packed columns are stainless steel, or glass 

tubes filled with a diatomaceous earth surrounded by a solid phase that can be 2-4mm in 

diameter and 0.5-5m in length (SHIMADZU, n.d.). Capillary columns can be represented 

in two forms: a porous solid referred to as Porous Layer Open Tubular Column (PLOT) 

and a liquid phase referred to as Wall Coated Open Tubular Column (WCOT) with 

increments of diameter from 0.1-0.53mm and lengths ranging from 5-100m (SHIMADZU, 

n.d.). The capillary column is the most widely used in GC because of its efficiency and 

sensitivity dictated by the chemical composition of the stationary phase (polarity), column 

internal diameter (I.D.), film thickness, and column length. The commercially available 

stationary phases outside of the fused silica and their corresponding polarities are listed in 

table 2 (SHIMADZU, n.d.). The remaining factors of a capillary column are 

interdependent of each other as the column I.D. impacts the film thickness and length. All 

together they contribute to how efficiently the GC column can separate the components of 
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the mixture, increase the resolution of the compound peaks, and maximize the ng amount 

of each analyte loaded.  

 

Table 2: Stationary phases characteristics (SHIMADZU). 

 

The recent technological advancements in stationary phase development have 

increased the thermal stability and improved inertness of various columns to cast a wider 

net of GC applications (Jennings et al., 1997). The chemistry of developing the SolGel-

WAXTM column is a reaction of polycondensation on hydrolyzed monomers of a metal 

alkoxide (Figure 2-10) establishing the columns good retentive characteristics, inertness to 

the analyte being carried by the mobile phase, and stability at extreme temperatures (SGE 

Analytical). 

Stationary Phase Polarity Separation 
Characteristics Application Temperature 

Range (ºC) 

Methyl Silicone Non-polar Boiling point 

Petroleum, 
solvents, high 
boiling point 
compounds 

-60 to 360 

Phenylmethyl 
Slightly/ 

moderately 
polar 

Retention of 
aromatic 

compounds 

Perfumes, 
environmental and 

aromatic 
compounds 

-60 to 340 

Cyanopropylphenol Moderately/ 
Strongly polar 

Oxygen-
containing 

compounds, 
isomers, etc. 

Agriculture 
chemicals, 

oxygen-containing 
compounds 

-20 to 280 

Trifluoropropyl Moderately/ 
Strongly polar 

Retention of 
halogens 

Solvents, polar 
and halogen-
containing 
compounds 

-20 to 340 

Polyethyleneglycol Strongly polar Retention of 
polar compounds 

Perfumes, 
solvents, fatty acid 
methyl esters, and 
polar compounds 

40 to 250 
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Figure 2-10:Chemistry for SolGel column development (SGE Analytical) 

 

Once the analyte is vaporized onto the GC column, the mixture interacts and 

interchanges between the mobile and stationary phase to separate into its individual 

components. Dependent upon the affinity of the individual components to the stationary 

phase, components will release either quickly or slowly as they transfer to the detector 

(Colon-crespo., 2017). The detector detects, identifies, and translates the ionized 

fragments of compounds separated by their mass to charge ratios (m/z) into a 

chromatogram (Urban 2016). The most common detector combined with the GC is the 

mass spectrometer because of its ability to simultaneously identify and quantify unknowns 

of a mixture (Kabir et al.,).  

The gas chromatography-mass spectrometry (GC-MS) combination can provide a 

dual set of information (retention time and mass spectra) for each individual compound 
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(Smith et al., 2013). Although the GC can be interchanged with many detectors, including 

but not limited to the following: flame ionization detector (FID), atomic emission detector 

(AED), electron-capture detector (ECD), ion mobility spectrometry (IMS), and time-of-

flight mass spectrometry (TOFMS) (Kabir et al., and Poole, 2015). Individual 

components separated via the GC are transferred through the transfer line through the ion 

source to be ionized by various techniques. More commonly within GC-MS ionization 

methods; electron and chemical are executed to ionize molecules in the gas-phase through 

high-energy electrons and reagent gas, respectively (smith et al., 2013). After the ion 

source, fragmented ions are accelerated and streamlined to the mass analyzer according to 

m/z. Like ionization techniques, there are multiple mass analyzers that utilize different 

techniques such as magnetic fields (sector), kinetic energy (time-of-flight), radiofrequency 

with direct current generators (quadrupole), and oscillations (ion trap) (smith et al., 2013). 

In figure 2-11, the two most common mass analyzers within GCMS, the quadrupole mass 

analyzer and quadrupole ion trap, arrangements are illustrated from ion source to ion 

detector.  
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Figure 2-11:Schematic of Quadrupole and Ion Trap Mass Spectrometers (Gas Chromatography) 

As a result of efficient design, compartmentalized nature, and the signal amplification 

ability of the electron multiplier, it makes the quadrupole mass spectrometer the most 

common ion detector used in GCMS instruments (Smith et al., 2013). The overall 

schematic of the GCMS system from sample injection to chromatogram development is 

what makes the analytical technique ideal for this study (Figure 2-12).  

 

Figure 2-12:Full schematic diagram of a GC-MS instrument (Gas Chromatography) 
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2.7 Biological Analysis of Human Hand Odor 
 
2.7.1 Volatilome 
 
The “volatilome” is known as the overall collective of VOCs released by an organism. The 

human skin releases a variety of volatile metabolites with different biological origins that 

are subject to bacterial action (Curran et al, 2010). The exploration of the bacterial 

contribution to VOCs must be further investigated. Shelley et al. (1953) stated that human 

sweat has no odor until the skin microbiota begin to break down non-volatile compounds 

into volatile compounds (Shelley et al, 1953). This has continued to be supported in recent 

research as freshly secreted sweat is sterile, but due to biotransformation by 

microorganisms (aerobic coryneforms, propionibacteria and Micrococcaceae), odoriferous 

VOCs are produced (Lemfack et al., 2013). In the most basic unit of life, the cell, specific 

microorganisms such as bacteria are metabolizing specific metabolites to manifest odor. 

For example, common genus level microbiota and their species (spp) such as 

Staphylococcus spp, Corynebacterium spp, Bacillus spp, and others are responsible for 

transforming long-chain fatty acids into short and medium-chained products that can be 

further metabolized and volatilized. These volatiles are often associated with malodor. Skin 

microbiota, including fungi and viruses, occupy dynamic but unique niches within and on 

the human body (Schommer and Gallo, 2013).  This ‘uniqueness’ can be exploited and 

applied as a novel approach to human scent and microbiome forensic studies. The 

knowledge gap of the presence or absence of certain organisms, and how they correspond 

to the production of odors for forensic identification of an individual, must be explored.  
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2.7.2 The Human Microbiome Project 
 
Microbes are an invisible world of bacteria, viruses, and fungi that live within our water, 

soil, and air. In reference to the human body, the millions of microbes that live inside and 

outside are referred to as microorganisms. The human microbiome is described as an 

aggregation of microorganisms that form complex communities at various sites of the 

human body (Shreiner et al. 2015). The National Institutes of Health (NIH) spearheaded 

the Human Microbiome Project (MHP) from 2008-2016 to understand the microbial genes 

and genomes of healthy individuals as related to human health and disease prevention 

(Dekaboruah et al., 2020). The MHP targeted the microbiome on five areas of the human 

body: Skin, oral cavity, gastrointestinal (gut), vaginal, and respiratory (Peterson et al.,).  

It has been established that the bacterial genome contributes to the overall human genome 

by ten-fold, providing a high copy number genetic marker that can be targeted for forensic 

human identification investigations (Woerner et al., 2019).   
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2.7.3 Human Skin 
 

Complex microbial communities are exchanged to and from our surroundings with 

the use of our hands, as we open doors, shake hands, and hold objects. Considered the 

largest organ of the human body and the natural barrier that keeps all skeletal and muscular 

structures together, the skin provides primary protection against pathogens, radiation, and 

injury (Yousef et al., 2021). In a review conducted by Dekaboruah et al., (2020) the human 

skin harbors four principle phyla: Actinobacteria, Firmicutes, Bacteroidetes and 

Proteobacteria (Dekaboruah et al., 2020).  

Table 3: Microorganisms that inhabit the human body and respective regions (Dekaboruah et al., 2020) 
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The human skin is comprised of three layers: epidermis, dermis, and hypodermis, 

in which large amounts of bacteria inhabit, which can be easily dislodge from the skin’s 

surface and transferred onto objects via shed human epithelial cells (Fierer et al., 2010). 

Epithelial cells are constantly shed into the environment through the glands of outer 

(epidermis) layer of the skin via secretions, oil, and sweat (Figure 2-13) (Syrotuck, 2000). 

The chemical breakdown of body odor is heavily attributed to VOCs, but the influence on 

those compounds is correlated to the microorganisms that inhabit the skin (table 3) (Ross 

et al., 2013 and Dekaboruah et al., 2020). The ease of sample collection and the integral 

role the microbiome plays in odor production makes the human skin a common site within 

microbiome investigations (Castelino et al, 2017).  

 

 

Figure 2-13:Cross-section diagram of the human skin contributed by Chelsea Rowe (Yousef et al.) 
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2.7.4 16S rRNA Gene 
 

One of the primary focuses of microbiome investigations is the 16S rRNA gene 

located within the ribosome. Ribosomes are known primarily for their translation function 

by converting messenger RNA (mRNA) into amino acids. The prokaryotic ribosome is 

comprised of a Large Subunit (LSU), Small Subunit (SSU), and the space in between the 

two subunits’ genes is called the Internal Transcribed Spacer (ITS). All three areas play a 

significant role in the function of the ribosome and are conserved across all three kingdoms. 

Additionally, the genes can be used as DNA markers. The LSU is the 50S subunit of the 

prokaryotic and archaea ribosome (60S in eukaryotes) which encodes ribosomal genes 5S 

and 23S (5S, 5.8S, and 25S/28S in eukaryotes) (Lafontaine et al., 2001). These genes are 

responsible for peptidyl-transferase activity, which catalyzes the formation of peptide 

bonds (Figure 2-14) (Lafontaine et al., 2001).  

 
Figure 2-14: Ribosome complex of subunits and bacterial  genome 16S rRNA gene and the nine hypervariable regions 

(V1-V9) denoted with grey boxes (Fukuda et. al 2016) 
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The SSU is the 30S subunit of the prokaryotic and archaea ribosome (40S in 

eukaryotes) which encodes the 16S rRNA gene (18S rRNA in eukaryotes) (Lafontaine et 

al., 2001). Through translation of mRNA, the gene is responsible for converting genetic 

messages to functional cell components (Figure 14) (Byrne et al, 2018). The 16S rRNA 

gene is specifically used for sequencing because it is ubiquitously present within all 

prokaryotes, easy to amplify through PCR because of its highly conserved primer sites, and 

the retrievability of phylogenetic information because of its short 1,500bp length (Figure 

14). However, the 16S rRNA gene is also present within mitochondria and chloroplast of 

eukaryotes, and during sequencing techniques unspecified amplification can be avoided 

with proper selection of primers (Table 4).  

Table 4: Primer sequences for 16S rRNA gene 

  

  

Primer 
Name 

Target 
Region 

Primer Sequence (5’-3’) Source 

27F V1-V2 AGAGTTTGATCMTGGCTCAG Suzuki et 
al., 1998 

355R V1-V2 GCTGCCTCCCGTAGGAGT Suzuki et 
al., 1998 

PCR1F V3-V4 TCGTCGGCAGCGTCAGATGTGTATAAGAGAC
AGCCTACGGGNGGCWGCAG 

Illumina 

PCR1R V3-V4 GTCTCGTGGGCTCGGAGATGTGTATAAGAGA
CAGGACTACHVGGGTATCTAATCC 

Illumina 

1507F ITS  GTCGTAACAAGGTAGCCGTA Ruegger et 
al., 2014 

23SR ITS  GCCAAGGCATCCACC Ruegger et 
al., 2014 
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 The majority of microbiome studies sequence the 16S rRNA gene because of its 

structural make up, which allows for the use of universal primers on the conserved regions, 

thereby commencing the research of phylogenetic relationships of bacterial taxa, and 

utilization for identification purposes (Woese, 1987 and García-López et al., 2014). The 

only downfall for 16S rRNA gene hypervariable regions is that different hypervariable 

regions sequence diversity at different levels, limiting the information that can be retrieved 

from one region (Chakravorty et al., 2007). Often, multiple regions are chosen (i.e., V1-

V2 or V3-V4) to obtain as much information as possible about the microorganisms that 

may exist in the community of an extracted sample. Many techniques such as capillary 

electrophoresis has made the collection of this information possible.  

 

2.8 Analysis of Biological Signatures of Human Hand Odor 
 
 
2.8.1 Length Heterogeneity-Polymerase Chain Reaction (LH-PCR) 
 
The evolution of electrophoresis techniques began with Alex Jeffreys utilization of 

restriction enzymes to cut DNA at specific polymorphic sites to observe their 

fragmentation and his ability to observe that the combination of those cuts was unique to 

an individual (Thompson et al.,2007). The basis of examining sequence and fragment 

length differences has been well established through capillary electrophoresis (CE). CE 

basic principles uses DNA’s negative charge to migrate DNA from the anode through a 

capillary towards the cathode while the fluorescently tagged DNA fragments are excited 

via a laser and recognized by a detector. 
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From the discovery of Restriction Fragment Length Polymorphism and the 

advancements of modern technology, other methodologies evolved to observe the 

separation of DNA fragments. In a review by Jordan et al. (2020), the advantages and 

disadvantages of the past and present CE techniques and the basis of their differentiation 

was explained (Table 5) (jordan et al., 2021). The principles of CE remain the same for 

all techniques, but the workflow and data generated vary by technique. Figure 2-15 

illustrates the workflow of sanger sequencing and fragment analysis and their respective 

data analysis. Within this study LHPCR was designated as a quick and efficient screening 

of bacterial diversity and amplicons were further sequenced by Next Generation 

Sequencing (NGS) on the Illumina MiSeq® platform.  

 

 

Figure 2-15:Capillary electrophoresis schematic of DNA migration vis Sanger sequencing (Gauthier, 2007) 
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Table 5:Advantages and disadvantages of capillary electrophoresis techniques (Jordan et al., 2021) 
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2.8.2 Next Generation Sequencing (NexGen) 
 

Early studies used amplification, sub-cloning, and Sanger sequencing of the highly 

conserved 16S rRNA gene, which can provide sequence information over the entire length 

of the 16S rRNA gene in a single reaction (Cho et al., 2021). Although, these methods are 

still the most comprehensive of bacterial identification, they are expensive and time 

consuming. Next Generation Sequencing (NGS) is a process of developing a personalized 

pooled library, which allows for simultaneous sequencing of multiple samples and taxa 

and/or genes of choice all at the same time. The NGS library is prepared by fragmenting 

16S rDNA amplicons and ligating specialized adapters to both fragmented ends utilizing 

the forward primer 27F (5’- AGAGTTTGATCMTGGCTCAG-3’), labeled with 6-FAM 

and reverse primer 355R (5’-CTGCTGCCTCCCGTAGGAGT-3’) (Suzuki et al., 1998, 

Castillo et al., 2006, Wu et al., 2007, Doud et al., 2009, Doud et al., 2010). The library 

is loaded into the flow cell, allowing fragments to hybridize to the flow cell through bridge 

amplification. Each fragment attached to the flow cell is amplified to create what is known 

as clonal clusters. These clusters are sequenced with a multitude of reagents that include 

fluorescently labeled nucleotides. The flow cell is imaged and the emission from each 

cluster is recorded (Figure 2-16). The emission wavelength and intensity are used to 

identify the base and this process repeats until the specified read length is achieved. The 

results generated are translated into operational taxonomic units (OTUs) to analyze the 

gene sequence data (He et al., 2015). Microbial community identification may now be 

done at a higher throughput and at a cheaper cost thanks to NGS technology and 

bioinformatics. (Castelino et al, 2017).  
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Figure 2-16:Workflow of Next Generation sequencing (Lu et al., 2016) 
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2.9 Statistical Analysis 
 

Statistics is a quantitative science that deals with data gathering, analysis, 

presentation, and interpretation. Statistical analysis is the process of assessing data from a 

sample in order to evaluate a hypothesis. Within this study various open-format sources 

were utilized to examine the individual data sets of both the chemical and biological data. 

VOC peak areas were transformed and normalized in MetaboAnalyst software and 

statistically analyzed with supervised linear regression techniques: PLS-DA, OPLS-DA, 

and LDA. Fragment analysis relative abundance ratios were analyzed via Thermo Fisher 

Connect™ Microsatellite Analysis Software (MSA). Operational Taxonomic Units 

(OTUs) and Taxonomic information generated from NGS was processed via Mothur and 

statistically evaluated with MicrobiomeAnalyst and PRIMER v7 software examining 

alpha-diversity and beta-diversity metrics. In addition, statistical analyses similarity of 

percentages (SIMPER) and analysis of similarities (ANOSIM) was performed. Supervised 

machine learning technique Random Forest (RF) was also executed on OTU and 

taxonomic information.  
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3 RESEARCH OBJECTIVES 

This dissertation aims to acquire information on the chemical and biological signatures 

of human odor profiles released from the palms of the hands of individuals from various 

genders and ethnicities. The evaluation of these profiles was meant to determine the 

applicability of human hand odor for forensic identification. 

The objective of this research was to explore various bioinformatic modeling 

techniques that could indicate features of individual hand odor profiles that classify and 

discriminate for specific traits: gender and/or race/ethnicity. A thorough evaluation and 

development of analytical and biological methods was executed.  

The tasks performed to satisfy the dissertation’s goals are listed below. 

a. Optimization of research methods, materials, and statistical analysis for the 

collection and analysis of volatile organic compounds released from the palms.  

b. Multi-linear regression analysis with supervised techniques: PLS-DA, OPLS-

DA, and LDA of HS-SPME-GCMS hand odor profiles for gender prediction 

c. Optimization of research methods, materials, and statistical analysis for the 

collection and extraction of microbiota existing on the palms.  

d. Screening and statistical analysis of community diversity with Length 

Heterogeneity-Polymerase Chain Reaction of 16S rDNA V1-V2 region 

bacterial microbiome profiles. 

e. Next Generation Sequencing and statistical analysis of 16S rDNA V1-V2 

region sequences for identification and classification of bacterial microbiome 

profiles. 
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4 MULTI-LINEAR REGRESSION MODELLING FOR GENDER PREDICTION 
USING VOLATILE ORGANIC COMPOUNDS FROM HAND ODOR 

4.1 Introduction 
 

Criminal activities involving robberies, assaults (sexual, simple, or aggravated), and 

rape are often executed with the use of the perpetrator’s hands. As a result, hands are a 

focal point of investigations as trace amounts of evidence can be deposited on everyday 

objects through touch interactions. There is an exchange of biological and inorganic 

material between the perpetrator and the crime scene during these interactions. In 

accordance with Locard’s Exchange Principal, the perpetrator will leave behind trace 

evidence in these moments (Saferstein et al., 2011; Caraballo et al., 2016; Curran et al., 

2007). Fingerprints and DNA are biometrics commonly utilized to identify a suspect or 

victim of a crime. However, these forms of evidence can be degraded or found in quantities 

that are too small to be used. Even in these cases human scent evidence may be recovered 

and used as an individualizing feature in an investigation. 

Well-trained canines (canis familiaris) operate as specialized sentient detectors able 

to distinguish and identify personal human odor and other chemicals of interest (Filetti et 

al., 2019; Curran et al., 2010; Furton et al., 2001). Human odor is a complex of volatile 

organic compounds (VOCs) secreted from the body that are impacted by host genetics, 

environmental factors, and physiological secretions (Prada et al., 2014). VOCs are organic 

compounds, often with high vapor pressures, that are emitted into the environment as gases. 

The persistence of an individual’s odor in the environment is attributed to the constant 

shedding of the epidermis (outer layer) of the skin; this process leaves epithelial cells in 

the environment, along with sweat, oils, and other glandular secretions (Baker, 2019; 
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Syrotuck et al., 2000). Many compound classes are present in human emanations, 

including acids, alcohols, aldehydes, hydrocarbons, esters, and ketones (Curran et al., 

2007).  

An individual’s odor is comprised of primary, secondary, and tertiary odors (Curran 

et al., 2007; Syrotuck et al., 2000; Cuzuel et al., 2017). Primary odor has been determined 

to be stable over time and distinct to an individual. One contributing factor to this 

distinctiveness is attributed to a polymorphic gene family known as the Major 

Histocompatibility Complex (MHC). The MHC contribution to human odor has been 

explained in three hypotheses. (1) The first hypothesis focuses on the presence of MHC-

produced molecules found in sweat. (2) The second hypothesis states that MHC molecules 

may bind to specific peptides and present them to the surface of the cell/tissue and that 

these volatile metabolites may be the origin of skin odor VOCs. MHC molecules would 

therefore act as "odor carriers," with peptides functioning as precursors of VOCs (Cuzuel 

et al., 2017).  (3) A final hypothesis suggests that MHC proteins/ peptides/metabolites may 

have a direct influence on the microbial flora. It is likely a combination of these hypotheses 

that truly explains how the MHC contributes to various roles in human odor production.  

The genetic influence on microbial diversity leads to microbiota being another 

contributory factor of primary odor. As stated in a study by Shelley et. al, human 

perspiration has no odor until the microbiota in the skin begin to break down non-volatile 

chemicals into volatile molecules that are distinctive of human 'scent.' (Shelley et al., 

1953). Although genetics and microbial diversity aid in the stability of odor, there is a 

secondary odor composition that has been determined to be variable and endogenous via 

the skin’s multi-layer composition. Physiological secretions produced from the dermis to 
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epidermis are excreted through three types of glands: eccrine, apocrine, and sebaceous. 

Eccrine glands are distributed all over the human body but more densely in the palms, 

forehead, and soles of the feet, which is the focus of this study (Coutinho-Abreu et al., 

2021). Tertiary odor has the highest variability due to exogenous compounds such as non-

resident bacteria, cosmetic products, soaps, and perfumes. 

Though canines have been proven to reliably identify persons based on their odor 

profile, laboratory based subject identification using analytical instruments has been 

difficult due to the lack of robust datasets and sufficiently developed analytical techniques. 

This work demonstrates the ability to predict donor gender based upon the VOCs present 

in a collected hand odor sample via Headspace-Solid Phase Microextraction-Gas 

Chromatography-Mass Spectrometry (HS-SPME-GC-MS). SPME is a solvent free method 

that integrates sampling, extraction, and concentration of analytes (Gherghel et al., 2018). 

Existing human odor research has identified VOCs of interest that are characteristic of 

gender (Zeng et al., 1996; Penn et al., 2006), age (Mitro et al., 2012), and racial/ethnic 

groupings (Bates et al., 2007; Prokop-Prigge et al., 2014; Colón-Crespo et al., 2017). 

These works indicated a capacity for predictive classification of individuals using odor 

samples. The specific presence and abundance of VOCs in human hand odor creates a 

chemical profile that can characteristically be applied to classify individuals based on class 

characteristics, increasing the utility of human hand odor when other biological evidence 

is lacking. Our analyses utilized three linear regression modelling approaches for the 

classification of donor gender, creating a potential route to identifying donor characteristic 

based upon collected human odor samples.  
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4.2 Materials and Methods 
 
4.2.1 Cohort  
 

Sixty subjects of African American, Hispanic, and Caucasian race/ethnicity, 

between the ages of 18-46 years old volunteered to participate in this study (Table 6). 

Before participation in the study, all subjects signed a consent form and filled out a 

questionnaire providing information about race/ethnicity, country of origin, gender, age, 

diet restrictions, and current state of health at time of sampling. The sampling procedures 

and protocols involving human subjects were authorized by Florida International 

University’s Institutional Review Board (IRB-19-0277) prior to commencement of the 

study. This study was conducted on a strict volunteer basis, therefore no participants 

received compensation. 

Table 6: Demographics of participants in study 

 

  

Table  
Demographics of subjects under study 

Race/ethnicity Female Male 

African American 10 10 

Hispanic 10 10 

Caucasian 10 10 
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4.2.2 Chemical and Materials 
 

Methanol (Fisher Scientific, Pittsburgh, PA) was used for the pretreatment of the 

collection material, 2 in. x 2 inch, 12ply, 100% cotton, sterile gauze pads (DUKAL 

Corporation, Syosset, NY). The glass vials for collection of hand scent samples were 10-

mL, clear, screw top with PTFE/Silicone septa, respectively (SUPLECO, Bellefonte, PA). 

10-mL vials were placed in FisherbrandTM IsotempTM Digital Dry Bath Incubators for HS-

SPME equilibration and extraction. The Solid Phase Microextraction (SPME) fibers used 

were 50/30µm Divinylbenzene/Carboxen/Polydimethylsiloxane and 24ga needle size 

(50/30µm DVB/CAR/PDMS; SUPELCO, Bellefonte, PA). 

 
4.2.3  Collection material pretreatment 
 

Although human collection materials were biologically sterile, the absorbent 

material contained compounds such as Decanal and Nonanal, also found in human hand 

odor (Curran et al., 2005). A pretreatment process of the storage vials and cotton gauze 

was used to remove any background interferents. The 10-mL vials and caps were cleaned 

with a mildly basic soap solution (Contrex AL®, Decon Labs, Inc.), rinsed with warm tap 

water, followed by deionized (DI) water, and a final acetone rinse, before baking in an oven 

at 105°C for 1 hour. The cotton gauze was pre-treated by laying the gauze flat on a sterilized 

watch glass, spiking the gauze pad with 1mL of methanol, placing the gauze in a cleaned 

10-mL vial, and baking in an oven at 105°C for one hour (Prada et al., 2011). The 

background levels of VOCs on the pretreated cotton gauze and vial were monitored by HS-

SPME-GC-MS prior to use in sample collection.  
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4.2.4 Hand Odor Sample Collection and Analysis  
 

The hand odor collection protocol was modified from the original protocol 

published by Curran et al. in efforts to resemble a more realistic collection of hand volatiles 

(Curran et al., 2007). Each subject was instructed to not wash their hands for a minimum 

of one hour prior to sampling. Hand odor was collected from each subject while sitting 

indoors. A pretreated 2 in. x 2 in., 12ply, 100% cotton DUKAL gauze was swiped on each 

palm of the hands and then squeezed between the palms for 10 min. Upon completion of 

the 10 min hold, the sampled gauze was placed back into its respective 10 mL vial and 

capped. The 10 mL vial containing sampled gauze was placed into a digital bath (set to 

50°C) for 24 hours. After 24 hours, a clean 50/30µm DVB/CAR/PDMS SPME (Grey) fiber 

was placed into the sample vial and exposed for 15 hours. After exposure, the SPME fiber 

was subsequently desorbed into the inlet of an Agilent 6890 GC coupled with an Agilent 

5973 MSD. Fibers were desorbed at 250°C for (5) minutes in the GC inlet. A SolGel-

WAXTM 30M x 0.25mm ID x 0.25μm phase thickness (SGE Analytical Science) column 

was used with ultra-high purity helium (Airgas) as the carrier gas. The parameters 

displayed in table 7, were applied when analyzing each sample. 
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Table 7: HS-SPME-GC-MS analytical parameters for desorption, separation, and detection of VOCs 

 
  

 
HS-SPME-GC-MS analytical parameters for desorption, separation, and detection of VOCs 

HS-SPME 

Fiber Divinylbenzene/Carboxen/Polydimethylsiloxane (50/30µm) 

Exposure time 15 hours 

Exposure temperature 50°C 

 
 
Gas Chromatography 

 

Column 
SGE Analytical Science SOL-GEL-WaxTM (30m x 0.25mM, 
0.25 µm) 

 

Carrier gas Helium (He)  

Constant flow 1.0 mL/min  

Inlet temperature 250°C  

Ramp 

40°C for 1.25 min  

10°C/min until 135°C for 4 min  

10°C/min until 185°C for 4 min  

10°C/min until 205°C for 4 min  

30°C/min until 280°C  

Oven run-time 32 min  

 
Mass detector 

 

Source temperature 230°C  

Ionization mode Electron Ionization  

Scan range 40-400 m/z  
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4.3 Data Analysis 
 
4.3.1 Data Pre-Processing 
 

The collected GC-MS data files for the 30 male and 30 female subjects were 

submitted to a proprietary software program currently under development by the authors 

for pre-processing. Data files were aligned by retention time and evaluated for reoccurring 

peaks present in the total ion chromatogram (TIC). All compounds were assigned numbers 

instead of names and corresponding peak areas were organized into tables for supervised 

dimensional reduction analysis.  

 

4.3.2 Partial Least Squares- Discriminant Analysis (PLS-DA) 
  

Partial Least Squares-Discriminant Analysis (PLS-DA) is a latent variable 

regression method based on covariance between the predictors and the response (Thévenot 

et al., 2015). PLS-DA represents a quantitative relationship between a matrix, X, usually 

comprising spectral or chromatographic data of a set of calibration samples, and another 

matrix, Y, containing quantitative values (Trygg et al., 2006). This supervised method uses 

multivariate regression techniques to extract via a linear combination of the original 

variables and information that can predict class membership (Mendel et al., 2021). The 

raw peak area data from the pre-processing was transformed with log10 transformation and 

auto-scaled (mean-centered and divided by the standard deviation of each variable) to be 

submitted to MetaboAnalyst software version 5.0 (https://www.metaboanalyst.ca) an 

analyzed with the PLS-DA algorithm (Appendix 2). The implementation of this method as 

described by Wehrens et al. produced a PLS-DA 2D and 3D model (Figure 4-1) (Mevik et 

al., 2007).  
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4.3.3 Orthogonal-Projections Latent Structures Discriminant Analysis (OPLS-DA) 
 

Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA) is 

a supervised dimensional reduction tool with the predictive capacity of PLS but the 

combined orthogonal methodology is superior for predicting variables contributing to class 

separation (Pinto et al., 2012). The main idea of OPLS is to separate the systematic 

variation in X into two parts, one that is linearly related to Y and one that is unrelated 

(orthogonal) to Y (Trygg et al., 2006). The algorithm is modified to model separately, the 

variations of the predictors correlated and orthogonal to the response, minimizing a two or 

more predictive components analysis to a single predictive component (Trygg et al., 2002). 

The log10 transformed data set was further analyzed in MetaboAnalyst software version 5.0 

(https://www.metaboanalyst.ca) with the OPLS-DA algorithm as described by Thévenot et 

al. (Thévenot et al., 2015). Leave one out cross validation was ran concurrently with the 

OPLS-DA algorithm to ensure data was not overfitted within the model. The model 

produced a resulting graph that demonstrated a significant difference amongst the 

predictive component and its orthogonal response to separate male and female subjects 

(Figure 4-2).  

4.3.4 Linear Discriminant Analysis (LDA) 
 

Linear Discriminant Analysis (LDA) is a supervised learning technique that searches 

for those vectors in the underlying space that best discriminate among classes (rather than 

those that best describe the data) (Martinez et al., 2001). In its application to the present 

dataset, LDA was used for dimensional reduction and supervised modelling of gender 

classification (Female or Male). Prior to the pre-processed data submission to JMP®, 

Version 16.1.0. SAS Institute Inc., Cary, NC, 1989–2021, the processed files were filtered 
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to contain all peaks present in more than 20% of submitted samples (12/60), as determined 

through retention time-based peak matching. The peak areas of the aligned samples were 

log10 transformed; the LDA model was validated using LOOCV (leave-one-out cross-

validation). The resulting graph demonstrated separation of male and female subjects and 

the predictive ability of the model via cross-validation (Figure 4-3). 

 

4.4 Results and Discussion 
 
4.4.1 Partial Least Squares- Discriminant Analysis (PLS-DA) 
 

Various studies have examined and detected (in the headspace profiles) the 

presence of several compounds that have been articulated as human scent compounds 

(Curran et al., 2005). The produced 2D PLS-DA (two component) and 3D PLS-DA (three 

component) score plots were created using log-transformed TIC peak areas. The 2D scores 

plot (Figure 4-1A) was comprised of the two principal components that illustrated 

clustering of the male and female subjects but no separation of the two classes. The green 

and red ellipses surrounding the male and female clusters represented 95% confidence 

region. The same principal was applied to the 3D scores plot, the incorporation of a third 

component revealed clustering of the male and female subjects with separation of the two 

classes (Figure 4-1B). While the PLS-DA model illustrates variations that may exist in the 

measurements for group prediction, these variations may be uncorrelated. Therefore, 

OPLS-DA is often implemented in order to disentangle group-predictive and group-

unrelated variation in measured data (Mevik et al., 2007). 
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Figure 4-1:Gender(A) 2D PLS-DA plot (B) 3D PLS-DA plot 

 
4.4.2 Orthogonal-Projections Latent Structures Discriminant Analysis (OPLS-DA) 
 

The transformed peak data table was further analyzed in the researchers’ attempt to 

determine whether HS-SPME-GCMS could reveal class separation of odor profiles into 

male and female clusters. Components are contributed by variable importance projections 

(VIPs), comprised of both the loading weights and the variability of the response explained 

(Trygg et al., 2006). The T-score reflects the predictive component of the data set and 

orthogonal T-score represents the component unrelated to predictive component 

(Thévenot et al., 2015). The calculated covariance is explained within the respective 

parentheses (16.3% and 2.5%). The ellipses correspond to 95% of the multivariate normal 

distributions with the covariances for each class being shown. The supervised classification 

method OPLS-DA was employed utilizing all peak areas detected and the resulting graph 

A B
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demonstrated sufficient variations in the chemometric data, such that, clustering and 

separation of female and male subject data was observed without the requirement of 

compound identification (Figure 4-2).  

 

 

Figure 4-2:Gender OPLS-DA plot 
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4.4.3 Linear Discriminant Analysis (LDA) 
 

Linear discriminant analysis was used as a dimensional reduction and modelling 

technique for the predictive classification of donor samples into “Male” or “Female” 

classes.  Due to the composition of the DVB/Car/PDMS SPME fibers utilized and the 

makeup of the polar SolGel-WAXTM capillary column, highly abundant siloxane peaks 

were observed in the obtained chromatograms and spectra. Peaks appearing in less than 

20% and more than 95% of samples were removed to minimize the effect of background 

interferents. This procedure was chosen to remove both consistently present background 

signals and sporadically present interferents. The filtered peak table was log-transformed 

and used to create an LDA model, the model was validated using LOOCV (leave-one-out 

cross-validation).  

 
Figure 4-3:Gender LDA plot 
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The classification and separation of male and female subjects illustrated by the LDA 

model (Figure 4-3) was cross-validated using leave-one-out cross-validation. The LDA 

model’s performance was determined to have a 29/30 (96.67%) rate for predicting samples 

from male donors as male. The LDA model also predicted the source of female donated 

samples as female at a 29/30 (96.67%) rate. One male sample and one female sourced 

sample were misclassified using the produced model.  

4.5 Conclusion 
 

The exploration of human odor to discriminate individuals through various class 

characteristics (gender, race/ethnicity, etc.) for forensic application has been conducted 

analytically via GC-MS. However, the previous analysis of hand odor profiles has been 

constricted to a visual (Appendix 1), unsupervised multivariate analysis (i.e., PCA), and a 

minute exploration of linear discriminant analysis. In this study, hand VOC odor profiles 

from 60 self-identifying participants were evaluated with supervised multivariate 

regression models for gender classification. Higher discrimination and classification of 

subject gender were observed with orthogonal projections latent structures- discriminant 

analysis (OPLS-DA) and linear discriminant analysis (LDA) as confidence level ellipses 

of both models were not seen to intercept. The cross validation of the LDA model 

demonstrated its efficacy with a 96.67% correct prediction of male and female subjects. 

The partial least squares-discriminant analysis (PLS-DA) 2D model displayed lesser 

discrimination of gender but exhibited the ability to cluster female and male subjects. With 

the addition of a third component greater classification and discrimination of gender could 

be observed in the 3D model.  
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This work displays a small component of statistical analysis necessary for human scent 

research to be applied for forensic identification. Further work is needed in the exploration 

of the feature selection provided by the VIP scores and loading plots of the PLS-DA and 

OPLS-DA model that are indicative of compounds that aid in discrimination and gender 

prediction of hand odor profiles. The overall statistical workflow could be applied to other 

identification factors such as ethnicity/race and age when other discriminatory evidence 

(e.g., DNA) may be lacking. Overall, the application of the discussed models throughout 

this paper can be applied to various forensic data sets regardless of the brand of 

instrumentation used for data collection and paves way for a tool that can perform 

standardized VOC comparisons. 
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5 A MOTHUR’S PERSPECTIVE ON 16S RDNA BACTERIAL MICROBIOME 
DIVERSITY ANALYSIS OF HANDS FOR FORENSIC IDENTIFICATION 

 
5.1 Introduction 
 

The various structures that make up the human hand—bones, phalanges, 

metacarpals, palmar fascia, and muscles—allow us to have stability and movement to feel, 

touch, and handle various objects within our everyday environments. These structures are 

all connected by the largest organ of the human body—skin. The skin provides a 

microenvironment for microorganisms to inhabit, the majority of which are bacteria. The 

influence of microbiota on the skin is contributed by a variety of factors: pH, temperature, 

moisture, and sebum content (Grice et al., 2008). The research of skin-associated 

microbiota through the Human Microbiome Project has been focused on understanding the 

microorganisms that contribute to a healthy individual’s microbiome. The limitations on 

identification of the collective microbial community have been contingent upon the ability 

to culture organisms in the laboratory (Cox et al., 2013). Evolving sequencing techniques 

have allowed for the identification of difficult and/or unculturable microbiota. Massively 

parallel sequencing (MPS) methods such as next generation sequencing (NGS) are the 

premier tools to use in microbial studies because they can simultaneously detect length 

variations and identify sequences (Jordan et al., 2020). However, the speed and 

inexpensive cost of amplification-based methods, such as length heterogeneity polymerase 

chain reaction (LHPCR), have become the standard of 16S rRNA gene microbiota studies 

(Eisenhofer et al., 2019).  
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These technological advancements have sparked interest in fields outside of health and 

disease research, underscoring the potential of examining the microbiome for future 

applications (Knight et al., 2018; Budowle et al., 2019; Clarke et al., 2017; Carter et 

al., 2020). Specifically in forensics, the microbiome has been evaluated as a form of trace 

evidence (Knight et al., 2018). Dependent upon skin location, bacterial communities can 

have a high degree of interindividual variability, specifically notating that only 13% of 

bacteria present on the palm surface is shared between two individuals (Fierer et al., 2010; 

Fierer et al., 2008). Thus, skin microbiota can be viewed as a form of evidence that can 

aid in forensic identification. Moreover, we examined the 16S rRNA gene V1-V2 

hypervariable regions from skin microbiota of the palms surface. We used cotton swabs 

for collection of resident bacteria; then genomic DNA (gDNA) was extracted and amplified 

with 27F/355R 16S rRNA primers, followed by capillary electrophoresis with fragment 

analysis (LHPCR). Further analysis of the 16S rRNA V1-V2 amplicons was sequenced 

with next generation sequencing technologies and examined statistically via alpha-

diversity (Shannon diversity), beta-diversity (Bray-Curtis), and Random Forest (RF) of the 

operational taxonomic units (OTUs) information processed in mothur (Schloss et al., 

2009; Kozich et al., 2013).  
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5.2 Materials and Methods 
 
 
5.2.1 Sample preparation and collection 
 

The skin of 60 healthy individuals (30 female and 30 male) was sampled by 

swabbing the palms surface for thirty (30) seconds with a HydraFlock 6” Sterile Standard 

Flock Swab (Puritan®, USA), which was dipped into an aliquot of 1X Phosphate buffer 

solution (PBS). The swab was rubbed back and forth in a crosswise, rotating manner in the 

defined area in the same fashion for each subject to maintain consistency. After 30 seconds, 

the head of each swab was placed into a sterile microcentrifuge tube and aseptically cut 

from the breakpoint of the handle before closing the tube lid. Additionally, a blank swab 

was dipped in PBS without collection of any epithelial cells from the skin was saved in a 

sterile microcentrifuge tube. Individuals were required to fill out a consent form and 

questionnaire following the Florida International University’s Institutional Review Board 

(IRB-19-0277) approved protocol. Participants of the study self-identified their gender and 

ethnicity that was denoted with identifiers (F = Female, M = Male) and (AA = African 

American, C = Caucasian, H = Hispanic), respectively. Collected epithelial swabs from the 

palms surface were immediately frozen at -20°C until DNA extraction. 
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5.2.2 DNA isolation, quantification, and amplification 
 

The genomic DNA (gDNA) was extracted with Maxwell® 16 Cell LEV DNA 

Purification Kit (Promega, Madison, WI, USA) as per manufacturer’s instructions. The 

eluted DNA was quantified with the Qubit® 2.0 Fluorometer and Qubit® dsDNA HS 

Assay fluorometric quantitation kit (Invitrogen, Life Sciences, Carlsbad, CA). The 16S 

rRNA gene 1500bp contains nine hypervariable regions that are flanked by conserved 

primer sites that can be amplified with universal primers (Chakravorty et al., 2007). PCR 

amplification was performed with the 27F (5′- AGAGTTTGATCMTGGCTCAG-3′), 

modified with 6-FAM, and 355R (5′-GCTGCCTCCCGTAGGAGT-3′) primer set which 

is known for its bacterial taxa identification targeting the 16S rRNA gene V1-V2 region 

(Suzuki et al., 1998; Wu et al., 2007; Doud et al., 2009; Doud et al., 2010). For the 

distinction of the different 16S rDNA amplicon lengths, the 5′ end of 27F was labeled with 

6-FAM™ (Integrated DNA Technologies, Coralville, IA, USA). (Wu et al., 2008). A 

standard PCR protocol was conducted on a AppliedBiosystems ProFlex Thermocycler 

(Thermo Fisher Scientific, Waltham, MA, USA), in a 20µL volume consisting of Thermo 

ScientificTM Phire Hot Start II PCR Master Mix (Thermo Fisher Scientific, Waltham, MA, 

USA), 0.5µM of each forward and reverse primer, ~1ng of DNA, and water added to 

volume if necessary. The PCR conditions were carried out as follows: initial denaturation 

at 98°C for 5 min, 34 cycles of denaturation at 98°C for 5 secs, annealing at 55°C for 5secs, 

extension at 72°C for 5secs, and a final extension step at 72°C for 1min and 4°C for 1min. 

Confirmation of amplified PCR product was visualized on a 1% agarose gel prior to length 

heterogeneity (fragment analysis) with capillary electrophoresis (CE). 
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5.2.3 Fragment Analysis 
 

Amplified V1-V2 region 16S rRNA bacterial DNA underwent fragment analysis 

according to protocol established by Mills et al. (2003) (Mills et al., 2003). The labeled 

PCR products were loaded onto the AppliedBiosystems SeqStudioTM Genetic Analyzer 

(Thermo Fisher Scientific, Waltham, MA, USA) as a mixture of 1µL amplified PCR 

product with a 12µL master mix solution of 11.5µL Hi-DiTM Formamide and 0.5µL 

GeneScan™ 600 LIZ™ size standard (Thermo Fisher Scientific, Waltham, MA, USA). 

The SeqStudioTM Genetic Analyzer allows for simultaneous separation of four samples in 

45 min. via capillary electrophoresis with universal polymer POP-1™ (Thermo Fisher 

Scientific, Waltham, MA, USA). Laser-induced fluorescence of amplicons was detected 

with module DS-33 (6-FAM™, VIC®, NED™, PET™) and G5 filter.  

To screen diversity of fragment sizes of V1-V2 amplicons, a marker range from 

300-500bp was curated to scan all the peaks present within the sample. Historically, the 

minimum threshold has been maintained at 50 RFUs (Moreno et al., 2011). However, 

because of the increased sensitivity of the SeqStudioTM Genetic Analyzer, the minimum 

default threshold was elevated to 175 RFUs. Peaks below this threshold could be present 

within the electropherogram but would not be recognized as a true peak. The increased 

RFU threshold is important as abundance of certain fragment peaks could max out on the 

fluorescence scale causing pull-up of peaks that represent noise. The resulting 

electropherogram profiles were analyzed using Thermo Fisher Connect™ Microsatellite 

Analysis Software (MSA).  
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5.2.4 Bacterial 16S rRNA Gene Sequencing 
 

Amplification, library preparation, and sequencing were conducted at the Forensic 

DNA core facility (Florida International University, Miami, FL, USA). The genomic DNA 

was amplified following the amplification protocol mentioned in section 2.2. Next 

Generation Sequencing (NGS) was performed on the Illumina MiSeq® instrument 

(Illumina, San Diego, CA, USA) with Quick-16S™ NGS library Prep Kit (Zymo Research 

Corp. Irvine, CA, USA) of amplicons. The size of amplicons of the 16S V1-V2 region with 

the inclusion of primers is ~350bp and the addition of barcoded primers the final amplicon 

size is ~486bp. Purification of prepared library was conducted with Select-a-Size 

MagBeads provided in library prep kit and loaded into the MiSeq® cartridge per 

manufacturer’s instructions. According to the integrated index primer set, each paired-end 

sequence was assigned to its respective sample.  

 
5.3 Statistical Analysis 
 

Generated amplicon data and respective peak areas from electropherogram profiles 

analyzed with Thermo Fisher Connect™ Microsatellite Analysis Software (MSA) were 

exported to excel for calculation of relative (abundance) ratios. The ratio between the peak 

area at a specific amplicon length and the overall peak area of all DNA amplicon lengths 

in the sample was used to calculate the relative abundance of each DNA amplicon. Only 

the amplicons with a relative abundance larger than 0.01 were included in subsequent 

analyses to eliminate the mistake introduced by the collection and analysis tools. Peaks 

separated by 1 base pair (bp) or less were grouped together and used in all statistical 

analyses as one amplicon length. The square root transformation and graphical depiction 
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of relative abundance values for each length of DNA amplicon was followed as written by 

Wu et al. (2007) (Wu et al., 2008).  

The transformed relative ratios were analyzed with alpha and beta diversity metrics 

in PRIMER v7 (PRIMER-E Ltd, Lutton, Ivybridge, UK). Within PRIMER v7 software, all 

nonparametric multivariate studies, including the creation of cluster analysis, non-metric 

MDS, and ANOSIM on relative ratios of DNA amplicons from LHPCR was performed. 

Within cluster analysis, clusters are merged depending on their distance from one another, 

and different sorts of links are used to compute that distance. Ward, Average, Single, and 

Complete linkage are common distance measures that can be implemented to specify the 

distance between clusters based on various criteria. Ward examines cluster distances as a 

variance issue, disregarding distance metrics or association measures. Average linkage 

measures the distance between two clusters is the average of the distances between all the 

points in those clusters. Also known as the nearest neighbor technique, single linkage 

measures the smallest distance between two members of the two clusters. Complete linkage 

is the opposite of Single linkage by measuring the maximum distance between two 

members of the two clusters. Single linkage was chosen as the distance measure for cluster 

analysis within this study.  

Non-metric MDS plots are developed from the cluster analysis Bray-Curtis 

dissimilarity matrix which is statistically evaluated with ANOSIM. Simultaneously, 

SIMPER (Similarity of Percentages) analysis was used to determine the differences (or 

distances) between ethnicity or gender factors and their contributions from each of the 

amplicon fragments. (Clarke et al., 2015). Leading to indication of specific amplicon 

lengths that drive distances among samples that can later be identified.  
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All amplicon reads (FASTQ files) generated from NGS were processed in the 

platform Mothur (Schloss et al., 2009) according to the MiSeq standard operation 

procedures as described by Kozich et al., (2013) (Kozich et al., 2013). Graphical curation 

and statistical analyses (alpha and beta diversity) were performed in MicrobiomeAnalyst 

(https://www.microbiomeanalyst.ca/) (Dhariwal et al., 2017; Chong et al., 2020). 

5.3.1 Alpha-diversity 
 

Microbiome studies frequently use alpha diversity evaluation to measure diversity 

within a sample or ecosystem. Analyzation of alpha-diversity is a normalized first approach 

to assessing the differences between sample groups when using amplicon sequencing data 

(Willis, 2019). Through alpha diversity, the structure of an ecological community can be 

summarized in terms of its richness (number of taxonomic groupings), evenness 

(distribution of group abundances), or both (Willis, 2019). Observed, ACE and Chao1, 

Shannon, Simpson, and Fisher are common metrics utilized to calculate diversity within 

the sample groups (Fisher et al., 1943; Shannon, 1948; Simpson, 1949; Chao et. al., 

2003). Observed diversity examines the richness of the sample’s unique amount of OTUs. 

ACE and Chao1 also evaluate richness of the sample through a combined perspective of 

Observed OTUs and unobserved species correlated to low abundance OTUs. The Shannon, 

Simpson, and Fisher metrics take in consideration of both richness and evenness to evaluate 

the diversity within the sample (Morris et al., 2014). Despite the close links between these 

diversity indicators, they are not interchangeable, and there has been much discussion over 

which is more appropriate in certain situations.  
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For this study Shannon diversity (H’) was employed, which can be computed by 

(equation 3): 

𝐻! =	−Σ𝑃"𝑙𝑛(𝑃") 

Equation 3: Shannon Diversity Index 

Where “Pi” represents the proportion of individuals belonging to species “i” 

(Shannon, 1948). An unknown individual in a highly diversified (and evenly distributed) 

system could belong to any species, resulting in a high level of uncertainty in predicting its 

identity. It is easier to anticipate the identification of unknown individuals in a less 

diversified system dominated by one or a few species, and there is less ambiguity in the 

system (Shannon, 1948). Moreover, the evaluation of alpha-diversity alone does not paint 

the entire picture of microbial diversity and implores the necessity of additional analyses 

such as beta-diversity. Graphical descriptions of ethnic and gender-based groups were 

visualized with Primer v7. 

5.3.2 Beta-diversity  
 

To assess bacterial community structure between samples, beta-diversity indices 

such as Bray-Curtis, Jaccard index, and UniFrac distances can be employed. Within this 

study Bray-Curtis was chosen as the distance based method. Bray-Curtis works in 

conjunction with statistical methods such as Analysis of Similarities (ANOSIM) as a non-

parametric test of significant differences between two or more groups (Clarke et al., 1993). 

The dissimilarity or distance statistic (R) can be computed as (Equation 4):  

𝑅 = 	1 − (
2𝑤
𝑎 + 𝑏)		 

Equation 4: Bray-Curtis Dissimilarity 
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Where “w” represents the sum of the lesser counts exclusively for species present 

within all communities, “a” is the sum of the counts for taxa present in one community, 

and b is the sum of the counts absent within the “a” community (Bray et al., 1957). The 

statistic compares the mean of ranked dissimilarities between groups with the mean of 

ranked dissimilarities within groups demonstrated with R values that can range from -1 to 

1 (Buttigieg et al., 2014).  

Random Forest, a machine learning technique for categorizing data and discovering 

predictive features (biomarkers), was used to investigate the prediction and classification 

of microbial communities after alpha and beta diversity evaluation of OTUs was 

completed. It works by training a large number of decision trees (or "forests") and 

predicting the class based on the individual trees' majority vote. 

5.4 Results and Discussion 
 
 
5.4.1 Fragment Analysis 
 
Length heterogeneity fragment length plots (Appendices 3-8)  were transformed into their 

relative ratios. Hierarchical clustering findings of various factors (gender and ethnicity) 

from transformed relative ratios are represented using dendrograms with single linkage 

distance measure (Figure 5-1). Non-metric MDS (NMDS) plots were visualized from 

calculated Bray-Curtis dissimilarity matrix established from single linkage cluster analysis. 

NMDS plots indicate that samples that are ordinated closer together are more likely to be 

similar than those that are ordinated further apart. The ellipses within each NMDS plot 

denoted 60% and 80% similarity amongst subjects. At minimum a 60% similarity was 

observed amongst each ethnic group regardless of gender with few outliers at an observed 
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stress of 0.01 or (Figure 5-2 B-D). The stress values of 0.1 or less are regarded fair, while 

values of 0.05 or less imply a good fit (Buttigieg et al., 2014). However, within figure 5-

2A, the samples clustered tightly together making interpretation of the NMDS difficult. 

This is in agreeance with the clusters of the dendrogram observed for all subjects being 

denoted with predominantly red lines. Red lines signify sub-structures that lack statistical 

support, which should avoid interpretation, whereas black lines denote divisions that have 

statistical support (Clarke et al., 2015). The single linkage approach sometimes can 

present a disadvantage of causing early merging of groups with close pairs, even if those 

groups are otherwise highly dissimilar.  

 

Figure 5-1:Dendrograms of single linkage hierarchical clustering for (A): All subjects (B) African American subjects 
(C) Hispanic subjects (D) Caucasian Subjects 

A B

C
D
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Figure 5-2:NMDS plots for (A): All subjects [stress: 0.01] (B) African American subjects [stress: 0] (C) Hispanic 

subjects [stress:0] (D) Caucasian Subjects [stress:0] 

 

Therefore, further statistical analysis of Bray-Curtis dissimilarity matrices curated 

prior to hierarchical clustering underwent ANOSIM analysis to distinguish if cluster 

differences were distinct. The ANOSIM analysis of gender and ethnicity of subjects within 

their perspective groupings was conducted to see if any significant differences in mean 

dissimilarities could be observed across subjects described by the R statistic produced. A 

positive R value up to “1.0” indicates that groupings are distinct, whereas a R value near 

“0” indicates that high and low ranks are distributed evenly within and between groups. R 

values less than “0” indicate that differences within groups are bigger than differences 

A B

C D
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between groups (Buttigieg et al., 2014). The significance of dissimilarities amongst groups 

is established with ANOSIM analysis. Each gender ANOSIM plot produced R values lesser 

then “0” indicating the genders differences within each ethnicity are greater in comparison 

to females and males within another ethnicity (Figure 5-3). Ethnicity ANOSIM average R 

statistic of male and female subjects was near 0, which demonstrates there is an even 

distribution of high and low dissimilarities of ethnicities within and between groups (Figure 

5-4).  

 
                 

      

Figure 5-3: Gender ANOSIM of (A): All subjects [R:0.014] (B) African American subjects [R: -0.034] (C) Hispanic 
subjects [R: -0.012] (D) Caucasian Subjects [R: -0.008]

B

C D

A
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Figure 5-4: Ethnicity ANOSIM of (A) All subjects [R: -0.003] (B) Male subjects [R:0.001]   
 (C) Female subjects [R: -0.004] 

To understand the contributing species driving the distinction can be examined with 

SIMPER. According to SIMPER a core 24 amplicon lengths (species) were influential to 

the distinct differences amongst group differences as mentioned in the previous ANOSIM 

results (Table 8). In ethnic group comparison between AA and C subjects, species 358 held 

above a cumulative 60% contribution to between group differences and was not prevalent 

in other comparisons. This was also observed with species 365 and 374 in the AA and H 

subject comparison, species 339 in the H and C subject comparison, and species 367 in the 

F and M group comparison. The identity of these species could be discovered with the 

analysis of generated taxonomic data from sequencing of these amplicons with NGS.  

A

B C
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Table 8:SIMPER analysis of cumulative contributions of most influential species in ethnicity and gender comparison 

  

  

Species Cumulative Contribution (%) 

 AA_C AA_H H_C F_M 

313 65.7 57.3 55.4 56.6 
314 63.4 62.3 60.5 59.1 
315 19.8 18.4 12.7 12.7 
316 61.1 67.2 65.1 61.5 
324 58.7  58.0 65.8 
331  64.8 67.4 63.7 
336  59.8 69.6  
339   62.8  
340 24.7 44.6 22.8 27.6 
341 38.0 48.2 36.2 36.2 
342 45.8 51.5 52.7 50.9 
343 29.5 23.8 27.6 23.0 
344 49.5 40.9 46.4 47.5 
345 42.2 28.4 49.7 40.2 
346 13.4 7.3 7.0 6.9 
347 56.2 54.5 43.1 54.1 
348 53.1 37.0 39.7 43.9 
350 33.7 33.0 32.4 32.1 
352 6.8 13.1 17.9 18.3 
353 70.1  71.8 70.1 
358 67.9   

 
365  69.5  

 
367    68.0 
374  71.6  
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5.4.2  16S rRNA Sequencing Abundance Profiling 

With the palms surface being the source of microbial community collection for 

resemblance of forensic trace samples, the community abundance was expected to be low. 

Although, underclustering was observed in the quality control evaluation of NGS 

sequencing run, which often results in lesser data output; good data quality is often 

maintained because the camera can focus on each cluster. Operational Taxonomic Units 

(OTUs) and Taxonomic information generated from mothur was input into 

MicrobiomeAnalyst software to further summarize and compare OTUs. The OTU matrix 

data table (Appendix 9) was comprised of 56 samples in the columns and the corresponding 

1263 OTUs in the rows. OTUs that contain zero counts within all samples or present a 

count in only one sample were automatically removed from further analysis in 

MicrobiomeAnalyst.  

Prior to abundance profiling, the OTUs matrix underwent additional data filtering. 

This is because during the NGS process sequencing errors can occur, leading to OTUs with 

small counts (Schloss et al., 2011). The MicrobiomeAnalyst software defaults to a 

minimum count of 4 OTUs; if a minimum 10% of the individual OTU does not contain the 

minimum 4 counts across all samples (prevalence) it was filtered out of the remainder of 

downstream analysis. Furthermore, a low variance filter was applied to OTUs that reflect 

minimal variation remaining constant throughout the matrix. After removal of 307 low 

abundant OTUs and 2 low variance OTUs, the remaining 9 OTUs was navigated to 

normalization. Although, normalization tries to address sample depth variability and data 

sparsity so that biologically meaningful comparisons can be made (Weiss et al., 2017). No 

normalization was applied after filtering, due to the minute amount of OTUs remaining.  
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Visual exploration of the actual OTU abundance within each sample can be seen in 

figure 5-5. The abundance profiles showed that bacterium Staphylococcus, Cutibacterium, 

Enhydrobacter, Streptococcus, Lawsonella, Fusobacterium, and Micrococcus at the genus 

taxonomic level are represented, with the lowest total abundance at 3 counts for subject 

MC1 and the highest total abundance at 71 counts for subject MA6 and varying amounts 

in between for other subjects (Figure 5-5). Without statistical evaluation individuality 

amongst subjects can be observed.  

 
Figure 5-5:Actual abundance profiling of the genus taxonomic level of all samples 
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Additional observations of abundance profiles from an individual and group level 

with graphs oriented to compare factors gender to ethnicity (Figure 5-6) and ethnicity to 

gender (Figure 5-7). This revealed that male subjects of African American (AA) and 

Hispanic (H) ethnic groups were double that of their female counterparts (Figure 5-6B and 

Figure 5-7B). Whereas within Caucasian (male and female) subjects on the individual and 

group level their total abundances were almost even of each other.  

 

 
Figure 5-6: Abundance profiles of genus level comparison of gender to ethnicity of (A) Individual samples and 

 (B) Grouped samples 
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Figure 5-7: Abundance profiles of genus level comparison of ethnicity to gender of (A) Individual samples and 

 (B) Grouped samples 

 

 
The final visual exploration of abundance profiles was observed as percentages that 

represented each variation for grouping subjects. The bacterium Staphylococcus and 

Cutibacterium accounted for 59% of abundance in all subjects, with a remaining 41% being 

contributed by Enhydrobacter, Streptococcus, Lawsonella, Fusobacterium, and 

Micrococcus (Figure 5-8 A). A 63% abundance for Female subjects only (Figure 5-8 B) 

and 59% abundance for Male subjects only (Figure 5-8 C) was solely contributed by 

bacterium Staphylococcus and Cutibacterium. Observing abundance percentages with 

African American (Figure 5-8 D) and Hispanic subjects (Figure 5-8 E) Staphylococcus and 

Cutibacterium were still the leading contributors at 64% and 53%, respectively, with 

Staphylococcus having the largest proportion of the two. This was reversed within 
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Caucasian subjects as Cutibacterium contributed 34% of the combined 61% abundance 

(Figure 5-8 F). The heavy abundance of gram-positive Staphylococcus and Cutibacterium 

is expected because of their highly researched presence in the skin microbiome (Barka et 

al., 2016; Reichmann et al., 2011). Understanding most of the abundance being dictated 

by the two organisms begs for continued analysis of taxonomic information from a 

statistical perspective to determine if the pair or the lesser abundant bacterium discussed 

Enhydrobacter, Streptococcus, Lawsonella, Fusobacterium, and Micrococcus could have 

potential use as biomarkers for identification purposes.  
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Figure 5-8: Abundance percentage profiles of (A) All subjects (B) Female subjects only (C) Male subjects (D) African 
American subjects (E) Hispanic subjects and (F) Caucasian subjects. Each color represents a bacterium at the genus 

taxonomic level. 
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5.4.3 Alpha diversity profiling and significance testing  

Concluding abundance profiling, filtered OTUs were further evaluated with 

Shannon Index for community richness and diversity combined with statistical methods 

ANOVA for ethnicity and t-test for gender. For ANOVA the f-value statistic is inversely 

proportional to the p-value of the graph. Therefore, a high f-value correlates to a significant 

difference amongst the data set. In figures 5-9 and 5-10, samples are represented on the X-

axis and their estimated diversity on the Y-axis. As well as each boxplot represents the 

diversity (high, median, and low) distribution of samples within the group.  

 

 
Figure 5-9: Alpha-diversity measure using Shannon (H’) diversity index across (A) all subjects (B) Ethnicity groups. 

Each boxplot represents the diversity distribution of the group [Statistical significance: p-value: 0.61204;  
 [ANOVA] f-value: 0.49554] 
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Figure 5-10: Alpha-diversity measure using Shannon (H’) diversity index across (A) All subjects (B) Gender groups. 

Each boxplot represents the diversity distribution of the group [Statistical significance: p-value: 0.26761;   
[T-test] statistic: -1.1214] 
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role in Atopic dermatitis (eczema) (Boxberger et al., 2021). Lastly, Fusobacterium and 

other bacteria release Propionic acid, valeric and isovaleric acid, butyric and isobutyric 

acid, and acetic acid (Kurita-Ochiai et al., 1995). 

 
Figure 5-11: Core microbiome of (A) all samples (B) Female samples only (C) male samples (D) African American 
samples (E) Hispanic samples and (F) Caucasian samples on the genus taxonomic level 
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5.4.4 Beta diversity profiling and Random Forest  

The difference in community makeup between samples is measured by beta 

diversity. The beta-diversity estimations obtained can be put into a distance matrix and 

utilized for pattern ordination. The ordination methods PCoA and NMDS calculated with 

Bray–Curtis dissimilarity index were used to visualize beta-diversity analysis, which was 

then assessed using ANOSIM. PCoA maximizes sample-to-sample linear correlation, 

whereas NMDS maximizes sample-to-sample rank-order correlation (Ramette, 2007). The 

R and p-values of each plot suggests that there are no significant differences between 

sample diversity from each factor observed. In addition, the PCoA and NMDS ordination 

of the data was not clearly defined into two clusters or three clusters for gender and 

ethnicity analysis, respectively (Figure 5-12 B-C and Figure 5-13 B-C). Although, the 

gender PCoA and NMDS plots showcased a p-value < 0.041 and R-value 0.053207; along 

with a stress value greater then 0.2, determined the plots were poorly fit. Deeper analysis 

is required to understand where the true between sample differences may lie. Often when 

classification and identification of specific taxa may contribute to this understanding, 

machine learning techniques such as Random Forest are implemented. 
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Figure 5-12: Beta diversity gender (A) Dendrogram (B) PCoA [R:0.053207, p-value<0.041] and (C) NMDS plot 

[R:0.010358, p-value<0.299, stress = 0.21358] 
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Figure 5-13: Beta diversity ethnicity (A) Dendrogram (B) PCoA [R:0.053207, p-value<0.042] and (C) NMDS plot 

[R:0.010358, p-value<0.304, stress = 0.21358] 
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Random Forest was executed to further assess if the microbial data could be 

observed for classification prediction and potential identification of contributing taxa. 

Because it can discover non-linear correlations, deal with unpredictable interactions, and 

can be resistant to overfitting, Random Forest is well suited for huge and noisy data like 

those from the microbiome (Touw et al., 2013). To test the accuracy of classification, 1/3 

of the samples are excluded during tree construction and then categorized using the models 

to calculate the out-of-bag (OOB) error rates (Chong et al., 2020). When a variable is 

shuffled, the mean decrease in accuracy across all trees is used to determine its relevance. 

Out of the two random forest algorithms conducted, the gender factor analysis retained the 

lowest OOB error rate (42.9%) compared to the ethnicity random forest analysis OOB error 

rate (58.9%) (Figure 5-14 and Figure 5-15). However, the removal of outliers or increase 

to the amount of decision trees could potentially decrease this error and provide a better 

classification of individuals.  
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Figure 5-14: Random Forest classification with 500 prediction trees of gender groups. The overall error was 42.9%. 

 

 
Figure 5-15: Random Forest classification with 500 prediction trees of ethnic groups. The overall error was 58.9%. 
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5.5 Conclusion 

In conclusion, the evaluation of the palms surface microbiome for identification 

purposes was observed with capillary electrophoresis (LHPCR) technologies and 

massively parallel sequencing (NGS) technologies. The advantages and disadvantages of 

both LHPCR and NGS were showcased throughout this study. LHPCR while has the 

advantage of a quick efficient screening of community diversity, it does not have the 

resolution to provide the taxonomic information required for identifying the driving forces 

behind differences amongst subjects. Utilizing the DNA amplicon lengths to screen for 

diversity of the microbiome led to ANOSIM results that specified there was an even 

distribution of high and low dissimilarities within a group and between groups. Additional 

SIMPER analysis provided us with an idea of species that were influential in the 

deciphering of groups when compared against each other via ethnicity or gender. NGS on 

the other hand has the great advantage of providing resolution down to the species level, 

the redundancy of certain OTUs can hinder meaningful downstream analysis.  The 

amplified DNA of the V1V2 16S rRNA was sequenced. A total of 5055 paired end 

sequences were processed via Mothur to generate specific OTUs and taxonomic 

information from the Kingdom to genus level. The initial visualization of abundance 

profiles for samples individually and grouped led to understanding the core microbiome 

present. The recognized core bacterium Staphylococcus, Cutibacterium, Enhydrobacter, 

Streptococcus, Lawsonella, Fusobacterium, and Micrococcus are known for their 

commensal and beneficial influence on the skin. Although alpha and beta-diversity could 

not implicate distinct difference among various analysis factors, the ANOSIM values 

continued the message provided during fragment analysis that there was an even 
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distribution of high and low dissimilarities within a group and between groups. The 

classification and identification of Taxa were explored with machine learning algorithm 

Random Forest, which indicated that it could correctly predict gender with a 42.9% error 

rate in comparison to ethnicity at 58.9%. The identification of LHPCR amplicon lengths 

specified in SIMPER and deeper evaluation of the core bacterium provide from NGS could 

lead to potential biomarkers in the use of forensic human identification.  
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6 OVERALL CONCLUSIONS 

Our biological indicators, such as chromosomes (sex), DNA, and fingerprints, are all 

characteristic of an individual and distinctively differ from other individuals. These factors 

can be observed through various scientific methodologies. More importantly, the use and 

identification of current biometrics have laid the foundation upon which forensic human 

identification is built. Although these biometrics have become well-established and 

optimized for forensic analysis, their trace or degraded presence at a crime scene has 

become a bane of the forensic community. 

Over the last 20 years, there has been an overwhelming accumulation of scientific 

literature on the application of human odor, both chemically and biologically. Within the 

health field, it has been evaluated as a biomarker for deciphering between a healthy 

individual’s odor profile and the odor profile of an unhealthy (cancer, seizures, COVID-

19, etc.) individual. In the field of pathology, research has been garnered to understand the 

various volatile organic compounds (VOCs) that contribute to the attraction or repelling of 

mosquitoes. Our mammalian counterparts, canines, are forensically trained on VOCs for 

the tracking/trailing of missing/fleeing individuals or the identification (alert) of explosives 

and drugs. Our lab has been a part of the forefront in establishing human odor as an 

additional biometric for forensic application in human identification. The works of Dr. 

Furton, Brown, Curran, Prada, Colón-Crespo, Caraballo and DeGreff have made this a 

reality by optimizing the protocols and methodologies that evaluate the stability, 

reproducibility, and individuality of human odor. However, these methods reveal the gap 

of developing practical models for input of an unknown sample to describe the potential 

class characteristics the odor profile may display. The capabilities to develop supervised 
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models as a tool for the characterization and discrimination of gender and ethnicity have 

been underrepresented through visual representation of VOCs with stacked bar graphs and 

unsupervised statistical applications such as principal component analysis (PCA). 

This study approached the evaluation of hand odor profiles for forensic identification 

through a cross-disciplinary scope. The chemical and biological examination of hand odor 

VOCs has subsequently been analyzed individually with the understanding that microbiota 

is a precursor to odor production, but the compilation of the two has been limited. The 

VOCs collected and extracted from the palm’s surface were detected via HS-SPME-

GCMS. The chemometric data was processed with statistical software, MetaboAnalyst and 

JMP, to showcase a practical tool for discrimination and prediction of gender.  

The collected and extracted bacterial DNA was processed through fragment analysis 

(LHPCR) and NGS. The microbiome data was evaluated with multiple open-format coding 

software. The fragment analysis of DNA amplicons’ relative abundance ratios was 

visualized and analyzed in Thermo Fisher Connect™ Microsatellite Analysis and Primer-

E v7. NGS sequencing reads were processed in Mothur to generate OTU matrix and 

Taxonomic information table, which was processed for alpha and beta diversity in 

MicrobiomeAnalyst. The fragment analysis data was interpreted with Bray-Curtis 

dissimilarity, providing nMDS plots that illustrated clustering amongst all ethnic groups 

regardless of gender with minor outliers. The ANOSIM statistics determined that 

differences among ethnicities were evenly distributed within and between groups. The 

SIMPER analysis indicated the amplicon lengths that drove the differences amongst these 

two factors.  
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The initial foundation of utilizing scientific methodologies to resolve civil and 

criminal disputes in forensics has exploded with advancing technologies being developed 

for the analysis of trace, biological, organic, and inorganic samples. The techniques, 

protocols, and instrumentation optimized for those purposes have begun to integrate other 

areas of science (microbiology, ecology, pathology, etc.). The discriminatory power of 

human odor and its efficacy for forensic identification purposes was explored throughout 

this study. From a bioinformatic evaluation of volatiles and microbiota, VOCs have the 

ability to not only cluster male and female subjects but discriminate from a trained 

algorithm. Microbiota community screening and alpha and beta-diversity evaluation of 

OTU taxonomic information revealed core bacterium among all individuals—

Staphylococcus, Cutibacterium, Enhydrobacter, Streptococcus, Lawsonella, 

Fusobacterium, and Micrococcus. These bacterium are notated in literature to be 

precursors to the production of human odor recognized on the palms of the hand. The core 

microbiome community could have potential use in identification of race or ethnicity.  
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APPENDICES 

Appendix 1: A visual representation of quanti individual differences amongst a subset of 
sampled subjects (9 female and 9 male subjects from each ethnicity) when the abundance 
of compounds present in standard mixture are quantified.  
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Appendix 2: Row-Wise Normalization and Log10 Transformation of Compound Peak 
Areas
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Appendix 3: Fragment Analysis (LHPCR) Plots of African American Female Subjects 
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Appendix 4: Fragment Analysis (LHPCR) Plots of Hispanic Female Subjects 
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Appendix 5: Fragment Analysis (LHPCR) Plots of Caucasian Female Subjects 
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Appendix 6: Fragment Analysis (LHPCR) Plots of African American Male Subjects 
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Appendix 7: Fragment Analysis (LHPCR) Plots of Hispanic Male Subjects 
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Appendix 8: Fragment Analysis (LHPCR) Plots of Caucasian Male Subjects 
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Appendix 9: OTU Count Abundance Table of All Subjects 
 

 
 

  

Sample Cutibacterium(100) Enhydrobacter(100) Fusobacterium(100) Lawsonella(100) Micrococcus(100) Staphylococcus(100) Streptococcus(100)
FA1 9 0 0 0 0 4 0
FA10 3 0 2 3 0 6 2
FA2 15 1 0 0 2 4 1
FA3 2 0 0 0 0 6 1
FA4 3 0 0 0 0 1 2
FA5 9 2 4 2 8 10 5
FA6 3 13 0 9 3 28 1
FA7 1 1 6 0 0 0 3
FA8 4 0 1 1 1 18 1
FA9 8 0 2 0 2 4 1
FC1 7 2 2 1 0 7 1
FC10 9 4 0 2 0 2 1
FC2 5 2 0 3 1 1 6
FC3 3 0 1 0 0 2 10
FC4 11 3 2 5 2 7 10
FC5 12 1 0 2 0 2 0
FC6 24 0 0 6 3 5 0
FC7 7 1 4 0 6 3 11
FC8 9 1 1 3 0 5 6
FC9 24 4 1 7 1 14 4
FH1 10 0 1 3 0 9 2
FH2 7 0 3 0 0 13 3
FH3 8 1 1 5 1 0 2
FH7 6 7 0 1 3 15 2
FH8 8 0 0 1 0 27 0
FH9 10 6 0 3 3 3 2
MA1 8 0 5 3 0 13 1
MA10 6 2 0 6 4 21 0
MA2 6 3 0 1 13 18 0
MA3 8 6 3 1 2 7 3
MA4 6 2 4 0 0 18 0
MA5 17 10 2 10 0 19 9
MA6 14 5 2 6 0 33 11
MA7 6 0 3 0 0 16 2
MA8 13 10 1 3 3 9 3
MA9 2 2 0 0 3 20 4
MC1 0 1 1 0 0 0 1
MC10 7 2 1 0 1 10 4
MC2 12 3 0 0 1 8 2
MC3 2 2 0 1 1 9 1
MC4 7 3 2 0 0 3 1
MC5 21 2 1 6 0 14 4
MC6 5 0 0 8 0 9 0
MC7 0 0 2 0 0 8 1
MC8 3 2 3 8 2 6 3
MC9 7 5 1 2 7 24 0
MH1 8 34 0 8 6 4 0
MH10 17 1 11 2 0 10 7
MH2 1 10 3 1 2 25 7
MH3 5 1 2 6 2 9 4
MH4 8 33 0 0 2 3 1
MH5 30 1 0 12 0 13 1
MH6 11 1 13 1 0 5 16
MH7 14 1 2 3 0 21 1
MH8 4 0 5 2 2 2 5
MH9 8 8 2 5 4 14 4
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