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ABSTRACT OF THE DISSERTATION

THERMAL AWARE DESIGN AUTOMATION OF THE ELECTRONIC

CONTROL SYSTEM FOR AUTONOMOUS VEHICLES

by

Ajinkya Bankar

Florida International University, 2022

Miami, Florida

Professor Gang Quan, Major Professor

The autonomous vehicle (AV) technology, due to its tremendous social and eco-

nomical benefits, is transforming the entire world in the coming decades. However,

significant technical challenges still need to be overcome until AVs can be safely,

reliably, and massively deployed. Temperature plays a key role in the safety and

reliability of an AV, not only because a vehicle is subjected to extreme operating

temperatures but also because the increasing computations demand more powerful

IC chips, which can lead to higher operating temperature and large thermal gradient.

In particular, as the underpinning technology for AV, artificial intelligence (AI) re-

quires substantially increased computation and memory resources, which have been

growing exponentially through recent years and further exacerbated the thermal

problems. High operating temperature and large thermal gradient can reduce the

performance, degrade the reliability, and even cause an IC to fail catastrophically.

We believe that dealing with thermal issues must be coupled closely in the de-

sign phase of the AVs’ electronic control system (ECS). To this end, first, we study

how to map vehicle applications to ECS with heterogeneous architecture to satisfy

peak temperature constraints and optimize latency and system-level reliability. We

present a mathematical programming model to bound the peak temperature for the

ECS. We also develop an approach based on the genetic algorithm to bound the

vii



peak temperature under varying execution time scenarios and optimize the system-

level reliability of the ECS. We present several computationally efficient techniques

for system-level mean-time-to-failure (MTTF) computation, which show several-

order-of-magnitude speed-up over the state-of-the-art method. Second, we focus on

studying the thermal impacts of AI techniques. Specifically, we study how the ther-

mal impacts for the memory bit flipping can affect the prediction accuracy of a deep

neural network (DNN). We develop a neuron-level analytical sensitivity estimation

framework to quantify this impact and study its effectiveness with popular DNN

architectures. Third, we study the problem of incorporating thermal impacts into

mapping the parameters for DNN neurons to memory banks to improve prediction

accuracy. Based on our developed sensitivity metric, we develop a bin-packing-

based approach to map DNN neuron parameters to memory banks with different

temperature profiles. We also study the problem of identifying the optimal temper-

ature profiles for memory systems that can minimize the thermal impacts. We show

that the thermal aware mapping of DNN neuron parameters on memory banks can

significantly improve the prediction accuracy at a high-temperature range than the

thermal ignorant for state-of-the-art DNNs.
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CHAPTER 1

INTRODUCTION

Self-driving cars, also known as autonomous vehicles (AVs), have the potential to

transform transportation mobility and safety if they are mass-produced. The ad-

vancements in the automotive transportation area have been substantial over the

years, with the most notable being the one related to autonomous vehicles, which

considers numerous factors such as performance, comfort, low emissions, and, most

important, safety. With the emergence of AVs, the electronic control system (ECS)

design has become very complex, which plays a crucial role in reliable vehicle oper-

ation.

As a critical enabling technology, Artificial Intelligence (AI) provides human

brain-like functionality to drive the AVs on the road, simultaneously presenting

safety and reliability challenges. The accuracy of AI methods, such as artificial

deep neural networks (DNNs), mainly depends on the data from various sensors

installed in the AV, and the size of DNNs used for processing sensor data is grow-

ing exponentially [1], demanding massive compute and storage resources. Besides

the significant heat generated from the computing devices, which can lead to high

temperature and large thermal gradients across IC chips and thus deteriorate the

lifetime and safety conditions of ECS, AVs must be operated reliably under extreme

environmental conditions, which make a thermal impact a critical issue in the design

of ECS for AVs. Therefore, the substantially increased computation and memory

capability demanded by AV technology have presented tremendous challenges in the

ECS design optimization to satisfy rapidly elevated latency, throughput, reliability,

and other safety-critical requirements [2].

In this chapter, we first discuss the current status and future of AVs and their

potentially great social and technological impact. Further, we discuss the current
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artificial intelligence technique and its role in AV design. Later, we discuss the

thermal challenges posed by the evolving data-centric AI-based vehicle technology.

At last, we present our research problem with contributions.

1.1 About the Autonomous Vehicle Technology

Autonomous Vehicle Technology is a promising technology that will fundamentally

transform transportation and mobility with a range of great social and economic

benefits. Specifically, lowering the cost associated with traffic accidents, reducing

fuel consumption and carbon emissions, and enabling far greater access to mobility

for numerous elderly, disabled adults, and children will bring substantial poten-

tial market opportunities and has thus attracted enormous interest from numerous

industrial sectors and companies.

Autonomous vehicle technology can significantly minimize road accidents caused

due to human mistakes, which can bring substantial social benefits. According to

international data, roadway accidents are among the top ten causes of worldwide

mortality [3], and human errors are the most common cause of accidents [4]. Accord-

ing to the U.S. Department of Transportation, human error and negligence account

for 94% of all road accidents, which cause approximately 35,000 deaths in the United

States per year [5]. While at the global level, 1.35 million deaths are reported annu-

ally, and it is estimated that every year 20 to 50 million people suffer injuries [6]. As

shown in Figure 1.1, over the period of recent industrialization, it is believed that

machines can outperform the capabilities of human beings if trained with enough

data. Therefore, AVs have the promising ability to eliminate the majority of traffic

accidents by perceiving the road conditions better than human beings. Besides min-

imizing road accidents, AVs can help cut down the expenses caused due to crashes.
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Figure 1.1: Progress rates in the capability of humans and machines [7]. The learning
capability of the machines increase exponentially, but the capability of human beings
saturate with time.

For example, in 2010, motor vehicle accidents cost the economy $242 billion, which

includes $57.6 billion in lost workplace efficiency and $594 billion in impaired life

quality because of severe injuries [5]. Moreover, worldwide, costing at least 90% of

global GDP (gross domestic product) [6].

AV technology can be a boon for an eco-friendly revolution. AVs can help to

improve the stream of traffic and minimize traffic congestion. In 2014, Americans

wasted approximately 6.9 billion hours in traffic, limiting work time while increasing

fuel costs and pollution [5]. AVs might free up to 50 minutes of drive every day [8],

significantly reducing emissions. Moreover, people can work during the commute

in the AVs, which can save $1.3 trillion in the US and $5.6 trillion in the global

economy [9]. AVs would help to solve the parking problem as the shared autonomous

taxis can minimize the parking space requirement by 80% in dense cities and reduce

the emission by 5-11% in search of the parking space. Similarly, shared autonomous

vehicles are anticipated to be more energy efficient with a 35% emission reduction
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Figure 1.2: Missed health care appointments (in million) due to lack of transportation for
disabled persons [12].

[10]. AVs can minimize traffic congestion by choosing to cruise on the streets where

they can travel the slowest [11].

Millions of elderly adults, disabled, and children may have new mobility alter-

natives because of AVs. In the United States, there are 49 million people over the

age of 65 and 53 million people with a disability [5]. In many parts of the world,

the ability to drive is required for employment or independent life. Hence, a large

portion of the demographics could benefit from independence due to AV technology.

More important, as shown in Figure 1.2, due to a lack of transportation for disabled

citizens, approx. 11 million medical appointments are missed annually. AV tech-

nology is beneficial for such elderly and disabled people, and it has the potential to

save billions due to medical care at the right time, as shown in Figure 1.3.

Due to its potentially high social and market impacts, the automotive industry

is keenly focusing on AV development. Google’s Waymo has already begun test-

ing a completely driverless taxicab service in the Phoenix suburbs of Arizona [13].

Tesla has offered an Autopilot driving system, which is mainly suitable for highway
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Figure 1.3: Health care savings due to adequate transportation for elderly and disabled
persons [12].

driving. Other top auto giants, like, General Motors (GM) and Ford, have a similar

capability in their newly launched vehicles with additional fully-automated lane-

changing systems only in the GM models. While, Mercedes and Honda are cruising

ahead in the technology innovation by introducing semi-autonomy, in which the

drivers have to control the vehicle only in aberrant situations [14]. In the mean-

time, Argo AI is focusing on developing a fully autonomous driving system that

can be integrated with Ford and Volkswagen models [15]. Oxbotica is collaborating

with ZF, a German vehicle systems company, over the next five years to make the

self-driving shuttle a true mainstay for European cities [16]. Recently, a tech giant,

Apple, announced that it would launch fully autonomous cars within the next four

years, making this race of innovation more competitive.

It is estimated that by 2025, automated mobility could be a $120 billion industry

in the US [17]. Similarly, it is predicted that from 2018 through 2030, the market

for autonomous vehicles will expand dramatically. By 2030, fully automated cars

are estimated to generate $13.7 billion in revenue, and one out of every ten automo-
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Figure 1.4: Economical opportunity in Autonomous Cars [19]. The software has the
largest portion.

biles will be self-driving [18]. It is believed that the software in AVs would yield a

significant opportunity among all the design variables, as shown in Figure 1.4. By

2035, it is predicted that the number of autonomous vehicles will increase by 75%,

resulting in a $71 billion economic impact on the automotive sector by 2030, with

a global market of 44 million vehicles [6].

Along with the development in AV technology, global demand for Advanced

Driver Assistance Systems (ADAS) is expected to propel the automotive semicon-

ductors and sensors industry forward. When robots take over control, these systems

will be critical in assisting AI-powered driverless vehicles in navigating and detect-

ing impediments on the road. As the AV technology heavily depends on the sensors

deployed in the vehicle, eventually, the sensor market is projected to expand from

$3 billion to $35 billion by 2030 [20].

Altogether, the AV technology can significantly mitigate human errors while

driving, resulting in fewer fatalities and corresponding reduced expenses; assist in

6



navigating the traffic flow smoothly, saving emissions; provide alternative mobility

for children, elderly and disabled people. Such transforming capabilities have drawn

tremendous investment into AV development by the automotive industry.

1.2 Artificial Intelligence Technology for Autonomous Ve-

hicle Design

While AVs represent an enormous market opportunity, critical challenges must be

overcome to fulfill their great social and economic benefits. As an underpinning

technology, the autonomous vehicle industry has invested significant resources in

researching advanced AI technology. As of today, there is no automotive company

with complete autonomy in its matured commercial vehicle products to offer to

the customers; instead, they need human vigilance in the loop. The most diffi-

cult challenge for those working in the self-driving technology industry is ensuring

that vehicles can operate safely, reliably, and efficiently in complex and unexpected

human-animal contexts.

The roots of artificial intelligence can be found in the late 1940s. As shown in

Figure 1.5, the mathematical and logical theories of AI were evolved up to 1960, and

the research was propelled after the Defense Advanced Research Projects Agency

(DARPA) funded several institutions [21]. In 1986, the Navlab from Carnegie Mellon

University developed the first autonomous van, and a large community of researchers

was intrigued after the Deep Blue chess machine of IBM defeated the world champion

in 1997. In recent times, AI research gained momentum due to the emergence of

high-performance computing platforms and extensive storage, which were major

bottlenecks in the previous century [22].
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Figure 1.5: Artificial Intelligence technology development history [22]. The first AV was
built in 1986.

The artificial intelligence paradigm deals with making machines smart. Artificial

intelligence can be defined as an intelligent behavior in which a computer achieves

tasks using a set of principles to tackle a given problem. Machine learning is a type of

artificial intelligence that enables computers to learn and build intelligence based on

their prior experiences. In contrast, deep learning is a category of machine learning

that is inspired by the information processing mechanism of the human brain. It

uses complex deep neural networks to extricate comprehensive attributes as they

learn and assess their training data. However, machine learning differs significantly

from deep learning because it requires input data attributes to be labeled manually

using more rigid rulesets [23]. In contrast, deep learning can automatically identify

the features to be utilized for classification in unsupervised exercises [24].

Deep learning has favored automotive companies to accelerate AV development

as they rely on deep neural networks (DNNs) for more efficient sensor data process-

ing. The LiDAR (Light Detection And Ranging), Imaging, and RADAR (Radio

Detection And Ranging) sensors provide the surrounding environment’s snapshot

while traveling on the road, as shown in Figure 1.6. DNNs utilize all these sensors’

data for object detection, object recognition, image classification, scene segmenta-

tion, driving lane detection, etc., vision-related tasks, which are based on the human
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Figure 1.6: Role of DNN to control the AV [26]. As a representative, only one LiDAR,
RADAR, imaging sensor, and DNN are shown. Practically, an array of sensors and DNNs
are required on the AV to accomplish all vision-related tasks.

brain analogy [25]. It is required to build multiple DNNs for safe autonomous driv-

ing, each dedicated to a unique task. The signals generated by each DNN must be

processed in real-time to drive the car, which is accomplished by a high-performance

computing platform involving an array of CPUs and neural network accelerators.

This network of processing units (PUs) commands the actuators, as shown in Figure

1.6, to control the steering angle, brake pedal, and speed-accelerator to drive the

car on the road without human assistance.

The AV technology in the current state is not a safe and reliable mobility option

as there have been several crashes and fatality incidents reported [27]. For exam-

ple, in 2016, Google’s autonomous Waymo car crashed with another transit vehicle,

and several faults were detected in the safety-critical components like steering and

brakes [28]. Similarly, Tesla’s autonomous cars have been found in several accidents.

In 2018, Uber’s self-driving car accident killed a pedestrian, and the company has

previously been engaged in 37 accidents. In another incident, Google’s self-driving
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Waymo taxi muddled on the street and went off on its own [29]. There are several

malicious security attacks on the AV communication [19, 30, 31] and deliberate at-

tacks on the perception systems [32, 33], raising the safety and reliability concerns

for end-users [34,35], which is beyond the scope of this dissertation.

The human brain-like functionality imitated by one of AI techniques, i.e., deep

learning, assist in driving the car autonomously on the road. However, currently,

AVs are not entirely reliable, and thermal impact is one of the major factors that

threaten its safety and reliability, especially with the significant computing and

memory requirement of the DNN execution.

1.3 Thermal Challenges for Autonomous Vehicles

Extreme environmental conditions and growing demand for computing and memory

resources for highly accurate control decisions of the DNNs in the AVs bring severe

thermal impact to the performance and lifetime reliability of the PUs as well as

memory.

Thermal issues are one of the major sources of faults for automotive ECS. The

electronics in modern automotives are more complicated than ever due to a com-

bination of safety, luxury, and entertainment features. With the addition of more

electronics for AI computation and memory, vehicles will inevitably emit more heat,

resulting in unexpected thermal issues. According to one study, the temperature is

the leading cause of failures in automotive electronics, as shown in Figure 1.7. For

example, high temperatures impact the LiDAR sensors by causing deviation in the

measured distance [36], imaging sensors’ quality, and smart headlights’ performance

deteriorate [37]. While, the ambient temperature of the automotive PUs may vary
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Figure 1.7: Fault distribution in Automotive electronics [40]. 55% of failures in automotive
electronics are due to the temperature, significantly higher than counterparts.

significantly, as high as 90 − 155◦C [38], increasing electronics failure probabilities

and deteriorating the lifetime reliability of the ECS rapidly [39].

The complexity in AI computation and limited memory capacity introduces ther-

mal challenges in AV design. The AVs are a highly complex system as they interact

with unpredictable dynamic situations on the road, like other motor vehicles, mo-

torbikes, cyclists, pedestrians, and wildlife. As a result, the software for vehicles

is much larger, even 15× greater than that necessary for the aircraft, as shown in

Figure 1.8. Besides, AVs process roughly 3 GB/s and 40 GB/s data at lower and

higher levels of autonomy, respectively, generated by various sensors [41]. More-

over, in an effort to improve the prediction accuracy of the DNNs, there has been

exponential growth in the Giga floating-point operations per second (GFLOPs), in-

dicating a dramatic change in the computational complexity, as shown in Figure

1.9. Similarly, the number of parameters in different DNNs has increased exponen-

tially, as shown in Figure 1.10. Contrarily, the memory space of the AI accelerators

has scaled linearly, as observed in the figure. Altogether, soaring computational
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Figure 1.8: Modern vehicle and Aircraft software size comparison [43]. Modern vehicle
software is huge in size than aircraft.

Figure 1.9: Compute complexity (GFLOPs) over the years [44]. Y-axis is a logarithmic
scale; hence we can see an exponential rise in the complexity for models with the best
accuracy.

complexity, storage requirements, and harsh environmental conditions increase the

operating temperature along with thermal gradients across the PUs, which can be

severe across 3D ICs [42].

High temperatures impact the performance of the PUs and memory of the ECS

platform. When the temperature exceeds a certain threshold, it may cause PUs

to reduce the operating speed or shut off automatically for self-protection purposes

during the run-time [45], which can affect the performance of mission-critical tasks

causing catastrophic events for AVs. Similarly, the performance of the conventional

memory, i.e., Dynamic random-access memory (DRAM), degrades with the temper-

ature due to an increase in memory refresh rate [46]. Whereas emerging non-volatile
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Figure 1.10: Growth pattern of AI accelerator memory size and number of parameters in
neural network models [1]. The parameter count increased by 240× / 2 years, whereas
the accelerator memory size is linearly increased as 2× / 2 years.

memories, such as Resistive RAM (ReRAM) and Spin-Transfer Torque Magneto-

resistive RAM (STT-MRAM), eliminate the need for refreshing along with high

density to alleviate the memory bottleneck problem, low power, and improved read

latency [47]. In particular, for STT-MRAM, read access latency and read power

consumption are reduced by 8.4% and 66.2%, respectively, compared to typical

DRAM [48]. However, emerging non-volatile memories suffer from temperature-

induced random errors. For example, the classification accuracy of the AI applica-

tions executing on ReRAM-based accelerators drops at high temperatures due to

deviation in the cell conductances, as shown in Figure 1.11. Similarly, the switch-

ing probability of the STT-MRAM cells increases with the temperature, adversely

impacting the classification accuracy of the AI applications, as later observed in the

motivation example in Chapter 4. Therefore, it is critical that the run-time temper-

ature of the underlying computing infrastructure for ECS should be well controlled.

The reliability challenges in the PUs and memory exacerbate more due to thermal

impact. The 10−15◦C rise in the temperature accelerates aging rapidly and reduces
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Figure 1.11: The temperature effect on the classification accuracy of ReRAM-based ac-
celerator [49]. The accuracy drops with the temperature.

Figure 1.12: Trade-off between endurance and temperature of ReRAM [51]. The en-
durance of ReRAM cell drops by 0.026× as temperature increases from 300− 380◦K.

the processing unit’s lifetime by half [50]. On the other hand, for emerging memory,

i.e., ReRAM, the latency improves with increasing temperatures, but it degrades

the endurance of the cells, as shown in Figure 1.12. As the automotive ECS is

subjected to high thermal conditions, the operating temperature of the PUs and

memory should be optimized to enhance lifetime reliability.

Providing only mechanical cooling for ECS design in AVs can not solve the

thermal problems. The emerging 3D ICs are a promising alternative for improving

the performance of AI applications [52–54], but they suffer from high thermal gra-

dients [42]. The existing active and passive cooling techniques [55, 56] utilized in
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modern automotives are ineffective in managing the thermal problems of 3D ICs.

Liquid cooling is suggested in the literature to control the thermal problems for 3D

ICs [42,57,58], but it does not guarantee reliability and adequate functionality [59].

Moreover, the mechanical design of the cooling system requires thermal characteris-

tics and impacts of the ECS for better design trade-offs. Furthermore, a pessimistic

design of the cooling system can be extremely costly and infeasible with its large

operating temperature range. Hence, thermal-aware resource management and/or

protection of delicate neural network parameters across ECS platform can help to

minimize the temperature impact along with mechanical cooling solutions.

The elevated thermal profile of the PUs and memory due to the harsh environ-

ment of AVs and the complexity of computations degrades their performance and

lifetime reliability. Simultaneously deteriorating the AI applications’ accuracy can

lead to catastrophic events in the AVs.

1.4 Research Problem and Our Contributions

ECS design for AVs is a very complex problem. It requires consideration of het-

erogeneity of the PUs and vehicle control applications, along with strict real-time

latency requirements, throughput, power, safety, and reliability constraints. The re-

source management and workload distribution play a crucial role in achieving high

performance, power efficiency, thermal conditions, and hardware utilization for the

applications running on the PUs, which will lead to higher system-wide lifetime

reliability. As such, for a given automotive application, we seek to design and de-

velop efficient and effective resource management strategies on the heterogeneous

distributed ECS architecture such that design constraints like timing, power con-
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sumption, peak temperature can be satisfied, and other criteria such as system-level

lifetime reliability, Quality of Service (QoS), etc., can be optimized.

The major contributions of this dissertation are summarized as follows:

1. We study the problem of mapping periodic distributed automotive applications

on a heterogeneous architecture to meet the temperature constraint, minimize

the latency and temperature-induced system-level reliability degradation. The

key challenges are effective and compute efficient temperature bounding as

well as lifetime reliability estimation frameworks. In our approach, first, we

propose a mathematical programming model to bound the peak temperature

for the periodic automotive applications using an existing method [60], which

is found to be a very pessimistic bound. Second, we prove a series of lem-

mas and theorems to find the effective and time-efficient framework to bound

the peak temperature by considering the variance of vehicle applications’ ex-

ecution time. Next, we propose two compute-efficient system-level lifetime

reliability analytical methods. In the first method, all the PUs of ECS are

assumed to have the same degradation rate, while, in another method, we

consider different degradation rates. We use a genetic algorithm to minimize

the application latency, peak temperature estimated by the proposed frame-

work, and maximize the system-level reliability using proposed models. The

developed peak temperature algorithm is more accurate by 17−40◦C than the

existing method [60,61] for practical benchmarks. Based on both synthesized

test cases and practical benchmarks, the experimental results show that the

proposed system-level reliability estimation approach can achieve 54× to 110×

speed-up over the state-of-the-art approach [62] for design space exploration.

2. The temperature impacts to ECS can be substantial due to environmental

conditions and the growing complexity of the PUs along with memory re-
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quirements, which threatens to degrade the DNN classification accuracy sig-

nificantly and even cause an AV to fail catastrophically. The challenge is how

to quantify the thermal impact in a quantitative way for DNNs, which may

demonstrate drastically different architectures and meta parameters. First,

using the emerging memory, i.e., STT-MRAM, as a case study, we find that

when DNNs are stored in it, their baseline accuracy can drop to as low as

below 10% when the temperature rises above 110◦C, as a result of data bit

flipping error in memory due to temperature variation. Then, we develop an

analytical method to quantify the sensitivity of neurons under thermal impact.

We validate the sensitivity analysis with standard datasets and DNNs. Our

experiment results for LeNet, ResNet20, DenseNet40, and ResNet56 improve

the accuracy by 0.5-4.2% than the state-of-the-art sensitivity method [63].

Further, we present the limitation of the proposed sensitivity framework when

the error is large for other DNNs, such as the MobileNet.

3. We study the problem of mapping neuron parameters to memory systems

when incorporating thermal impacts in designing DNN applications for ECS.

We first study the thermal aware mapping problem of DNN parameters to

memory banks with different temperature profiles. Based on the quantitative

sensitivity metric for DNN neurons we developed before, we develop a bin-

packing-based approach to map neuron parameters to memory banks with

different temperatures with the goal to maximize the DNN prediction accu-

racy. The experiment results demonstrate that the thermal aware mapping

improves the accuracy by 0.18-47.91% than the thermal ignorant approach for

a range of common DNNs, such as LeNet, Conv6, ResNet20, DenseNet40, and

ResNet56 networks. We also study the problem of how to identify the optimal

temperature profiles in terms of maximizing the prediction accuracy when im-
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plementing DNN applications with the same energy consumption. Here, a key

challenge is the computational complexity of the mapping problem due to its

NP-hard nature. In our approach, we develop the method by combining the

traditional bin packing algorithm with convex optimization. From experiment

results, we find that the developed method performs well at low temperatures,

while it shows inconsistencies at high temperatures due to large discrepan-

cies resulting from the sensitivity analysis. Furthermore, we also find that

the traditional approach to having temperature distributed uniformly across

the memory system does not seem to be an optimal solution when mapping

neuron parameters to memory.

1.5 Structure of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce

several pertinent preliminary models used in this dissertation. We present a math-

ematical programming method and another framework to bound the peak temper-

ature for periodic automotive applications in Chapter 3. This chapter also presents

two system-level lifetime reliability methods for ECS. In Chapter 4, we present the

neuron-level sensitivity analysis method along with its limitation. We present the

importance of thermal awareness while mapping DNN on memory banks and present

a convex optimization-based heuristic to find the optimal temperature profile of the

memory banks to maximize the AI application classification accuracies in Chapter

5. Finally, in Chapter 6, we discuss the conclusions of this dissertation and present

possible future works.
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CHAPTER 2

PRELIMINARIES

This chapter covers the background and pertinent preliminaries of our research. We

first introduce the heterogeneous architecture of the ECS and behavioral model of

automotive applications. Then, we introduce power and thermal models in detail.

Afterward, we present the lifetime reliability model used in this research. At last,

we introduce the deep neural network architecture.

2.1 Heterogeneous Architecture and Behavioral Model

In this dissertation, we assume integrating multiple processing units (PUs) as an

ECS, which can be Central Processing Units (CPUs), Graphical Processing Units

(GPUs), Field Programmable Gate Arrays, and Processing-In-Memory (PIM) ac-

celerators. The safety-critical automotive applications will be executed on the het-

erogeneous distributed architecture of the ECS.

We assume an ECS consists nc heterogeneous PUs interconnected by a network of

C buses through a central gateway [64,65] as PU = {PU1, PU2, ..., PUnc}, as shown

in Figure 2.1. Each PU can be interfaced with various sensors and actuators required

for vehicle control operations. For example, the imaging sensor interfaced with PU1

scans the vehicle surrounding periodically. The captured images are sent to PU2

through a communication bus to classify the objects from captured images, and the

brake control signal can be sent to PU3 if required in real-time [66]. The ambient

temperature of the PU is a cumulative effect of the environmental temperature and

the surrounding electronics/mechanical devices heat transfer. We assume different

ambient temperatures for each PU, Tamb = {Tamb1 , Tamb2 , ..., Tambnc
}, as the PUs
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Gateway

PU1 PU2 PU3 PUnc

Bus #1

Bus #2
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Bus #C

Figure 2.1: Heterogeneous ECS Architecture. Different processing units communicate
through a network of buses interconnected by the central Gateway.

have different ambient temperatures according to their mounting location in the

vehicle [38].

The automotive tasks follow sequential behavior, where the current task execu-

tion depends on the data from the completion of the predecessor task. Hence, we

use Directed Acyclic Graph (DAG), G = {V , E} to model the automotive applica-

tions, which will be mapped on the heterogeneous ECS architecture. We assume

that the node-set V consists of total nv nodes for sensing/control tasks in an ECS

as V = {V1,V2, ...,Vnv}. Each task may require different computation times due to

the heterogeneity of the PUs. Therefore, we construct a 2-D matrix for worst-case

execution time (WCET) of the task set on different PUs as,

Wnv×nc = {wik, i = 1, ..., nv; k = 1, ..., nc}, (2.1)

where wik represents the worst-case execution time of the i-th task (Vi) executed on

the k-th PU (PUk). We assume that the overhead for administering task executions

can be reckoned by calibrating each task’s execution times, and the WCET of the

tasks is not affected by the thermal profile. The edge set E = {eij, with Vi,Vj ∈ V}

represents the worst-case communication cost between different task nodes in a

system.
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2.2 Power and Thermal Models

The power consumption of a CMOS IC chip is an aggregate of dynamic power (Pd)

and leakage power (Ps)

Ptotal = Pd + Ps. (2.2)

The dynamic power depends on switching activities of the underlying transistors in

a CMOS IC, which depends on the supply voltage (Vdd) and operating frequency

(fr) as

Pd = Cs · V 2
dd · fr, (2.3)

where Cs is the switching capacitance. The leakage power is observed in the absence

of switching activity and represented as [67]

Ps = Ng · Il · Vdd, (2.4)

where Ng is the number of gates in an IC, and Il is the leakage current responsible

for leakage power given as [67]

Il = Ir(Al · T 2 · e((αlVdd+βl)/T ) +Bl · e(γlVdd+δl)), (2.5)

where Ir is the reference leakage current, T is the temperature, andAl, Bl, αl, βl, γl, δl

are technology-dependent constants. As the leakage current depends on T and Vdd,

the correlation between leakage power and temperature can be imprecisely consid-

ered as a linear behavior [68]

Ps = ϕ1 · T + ϕ0, (2.6)

where ϕ0 and ϕ1 are technology-dependent constants. Therefore, the total power is

Ptotal = Cs · V 2
dd · fr + ϕ1 · T + ϕ0. (2.7)

Equation (2.7) models the power consumption of the processing unit.
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We consider a thermal model similar to [61,68–73], in which thermal phenomenon

is represented as an R-C lumped circuit. The thermal model for a PU with 4

processing cores is shown in Figure 2.2. Let Pm, Rmm, and Cm represent the power

(Watt), thermal-resistance (Joule/◦C), and thermal-capacitance (W/◦C) for the

processing core m. Whereas Rmn is the thermal-resistance between mth and nth

processing cores, respectively, to consider the heat transfer effect among neighboring

processing cores. Let Tam denote the ambient temperature for processing core m,

then the thermal behavior of the core at time instant t be

Cm · dTm(t)
dt

+
Tm(t)− Tn(t)

Rmm

+
∑
n̸=m

Tm(t)− Tn(t)

Rmn

= Pm(t). (2.8)

Let δm = Tam

Rmm
and

gmn =


∑M

n=1
1

Rmn
, if n=m

−1
Rmn

, otherwise.

(2.9)

Then we have

Cm · dTm(t)
dt

+
M∑
n=1

gmn · Tn(t) = Pm(t) + δm. (2.10)

Similarly, the thermal model for the entire system is

Cp
dT(t)

dt
+ gpT(t) = Ptotal(t) + δp, (2.11)

where

Cp =


C1 · · · 0

...
. . .

...

0 · · · CM

 gp =

g11 · · · g1M
...

. . .
...

gM1 · · · gMM

 δp =

δ1
...

δM

 .
The parameters Cp, gp, and δp depend on the architecture of the processing units.

We can find transient and stable state temperatures using equation (2.7) in equation

(2.11), which are required for the thermal-aware reliability design of the ECS.
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Figure 2.2: Thermal model for 4-core processing unit [74]. Each processing core is repre-
sented by the equivalent power source, thermal resistance, and thermal capacitance.

2.3 Lifetime Reliability Model

The reliability of a component is the probability of the component performing its

intended operation for a specific time duration. Usually, reliability is characterized

as a mean-time-to-failure (MTTF) [75]. If X be the lifetime of the component and

fp(t) be the probability density function (PDF), then its reliability is

R(t) = P (X > t) =

∫ ∞

t

fp(t)dt. (2.12)

Hence, R′(t) = −fp(t). Then, MTTF of the component is specified as

MTTF =

∫ ∞

0

t · fp(t)dt = −
∫ ∞

0

t · R′(t)dt. (2.13)

After solving the integration, we have

MTTF = −t · R(t)|∞0 +

∫ ∞

0

R(t)dt. (2.14)

Finally, we get

MTTF =

∫ ∞

0

R(t)dt. (2.15)
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According to equation (2.15), we can estimate the MTTF if the reliability of the

component is available.

Failures in the processing units are classified as hard and soft faults. The per-

manent and unrepairable damage to the IC chips is caused by hard faults, whereas

latter faults can be recovered from temporary failures. The temperature-dependent

hard failures in ICs are time-dependent dielectric breakdown, thermal cycling, hot

carrier injection, negative bias temperature instability, and electromigration (EM).

In this dissertation, we focus on the electromigration phenomenon to characterize

the thermal-aware system-level MTTF of the automotive ECS. However, our frame-

work can be readily used for other hard failures.

At the higher temperature and current density, the electromigration causes dis-

placement of the mass in the conductors of inadequate cross-section, leading to the

vacancies in the chip geometry, which can not be recovered. This can be correlated

with the mean-time-to-failure as [76],

MTTF (T ) ∝ Ac · J−n · e
Ea
K·T , (2.16)

where Ac is a cross-section area of the conductor-related constant; J is the current

density (Amp/cm2); Ea is the activation energy (electron-volts); K is the Boltz-

mann’s constant; T is the temperature (Kelvin), and n = 2 unless otherwise speci-

fied. From equation (2.16), the lifetime reliability of the device is inversely depen-

dent on the peak temperature, and it would be improved if the peak temperature is

reduced.

2.4 Deep Neural Network Architecture

The deep neural networks are used in AVs as they mimic the human brain’s func-

tionality of taking complex decisions on the road. A neuron is the fundamental
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Figure 2.3: Feed Forward Neural Network containing input layer, multiple hidden layers,
and an output layer.
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Figure 2.4: Structure of the Neuron. All inputs of the neuron are associated with trainable
network parameters.

block of the deep neural network, arranged in different layers as shown in Figure

2.3. Each layer in the figure has multiple neurons, and the layers are categorized as

the input layer, hidden layers (1, ..., H), and an output layer [77]. External input

is pre-processed and applied to the input layer. The outputs of the input layer are

fed to the number of hidden layers to extract features from the input data. The

number of neurons in a layer and the number of hidden layers in a network are

application-dependent, required to extricate attributes from the input. The neu-

rons are interconnected through the links known as weights or parameters, and the

structure of the neuron is shown in Figure 2.4.

Let the DNN parameters beW ∈ RN , whereN is the size of the parameter space.

Let the neuron set be N = {N1,N2, ...Nne}, where the DNN has ne neurons with
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sizes s1, s2, ..., sne respectively, such that, s1+ s2+ ...+ sne = N . The neuron shown

in Figure 2.4 has connection weightsWNa = {w1, w2, ...wsa} from the previous layer

neuron outputs (x1, x2, ..., xsa) and the bias (bNa). It performs weighted summation

of the input feature maps:

y′Na
=

sa∑
i=1

xi wi + bNa . (2.17)

In this dissertation, we refer to weights and bias as parameters if not explicitly

specified. The weighted sum (y′za), also known as the activation, is passed through

a nonlinear activation function. Finally, we get the output of the neuron as

yNa = α(y′Na
). (2.18)

The nonlinear activation functions such as Sigmoid, Tanh, and ReLU are commonly

employed in neural networks [78]. The activations pass layer-by-layer through the

network sequentially and reach the output layer.

2.5 Summary

In this chapter, we present several pertinent preliminary models and architectures

for our research. We first introduce the distributed heterogeneous architecture of the

processing units in the ECS of the AVs. Later, discuss the automotive application

behavior as a directed acyclic graph. Then, we present the thermal and power models

required for considering the thermal-aware behavior of the PUs. Since temperature

affects the reliability, we present electromigration-based lifetime reliability of the PU

in terms of the MTTF metric. Afterward, we discuss the basic deep neural network

architecture and associated neuron terminology.

In this dissertation, our research aims to optimize the automotive mission-critical

latency and system-level lifetime reliability of the ECS design by satisfying thermal
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constraints, simultaneously maximizing the accuracy of the AI applications under

thermal variations. In the following chapter, i.e., Chapter 3, we present our contri-

butions on latency, system-level lifetime reliability, and thermal constraint design.
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CHAPTER 3

THERMAL AWARE LIFETIME RELIABILITY OPTIMIZATION

FOR AUTOMOTIVE DISTRIBUTED COMPUTING

APPLICATIONS

As the automotive industry is shifting the paradigm towards autonomous driving,

safety guarantee has become a paramount consideration in design. Temperature

plays a crucial role in the system-wide reliability of the ECS used in the auto-

motive. A vehicle is usually subjected to harsh temperature conditions from its

operating environment. The increasing power density of ICs in the ECS further

exacerbates the operating temperature and thermal gradient condition on the chip,

thereby significantly impacting the vehicle’s reliability. In this chapter, we study how

to map a periodic distributed automotive application on a heterogeneous multiple-

core processing architecture with temperature and system-level reliability issues in

check. We first present a mathematical programming model to bound the peak

operating temperature for the ECS. Then we propose a sophisticated method us-

ing genetic algorithm to effectively bound the peak temperature and optimize the

system-wide reliability of the ECS by maximizing its MTTF. We present an al-

gorithm to guarantee the peak temperature for periodic applications with variable

execution times to ensure our approach’s effectiveness. We present several com-

putationally efficient techniques for system-wide MTTF computation, which show

several-order-of-magnitude speed-up over the state-of-the-art method when tested

using synthetic cases and practical benchmarks.
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3.1 Introduction

The mainstream innovation in the automotive industry is driven by electronic sys-

tems that have transformed automobiles from a mechanical-only system to a so-

phisticated network of embedded systems. Today, roughly 1/3 of a car’s cost is for

automobile electronics, and the Electronic Control Units’ costs can reach 50% to 60%

in self-driving cars. To this end, the global Electronic Control Unit (ECU) market is

continuing to grow by approx. 24% from 2020 to 2024 [79]. Utilizing innovative elec-

tronics technologies provides safer integration systems, which reduce human failure

in driving, e.g., from traditional GPS positioning to inter-vehicle communication,

from the traditional CAN bus to Automotive Ethernet and Media Oriented Serial

Transport [80]. Meanwhile, consolidating auto-electronics and enhancing ECS re-

liability becomes more important as endorsed by ISO-26262 standard [81] because

more and more life-critical control decisions are made electronically on the roads.

The automotive callbacks had tripled in the previous decade due to critical safety

failures and faulty components [82]. Notably, in 2018, electronic defects have led

to the highest percentage of vehicle recalls [83], and temperature plays a key role

in terms of reliability for automotive systems. Among various failure mechanisms

in an automotive ECS, the temperature-induced fault can reach as high as 55%

[40]. It is because the aggressive scaling of transistor sizes soars the chip power

density and runtime temperature, and the ever-increasing computing complexity

dramatically exaggerates the chip thermal gradient, which could harm the system

reliability [84]. Moreover, the vehicles undergo stringent environmental conditions

with the temperature of ECUs ranging from 90◦C to 155◦C [38]. As a result, it

is subjected to rapid aging due to temperature-induced failure phenomena such

as electromigration (EM), time-dependent dielectric breakdown, thermal cycling,
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negative bias temperature instability, and hot carrier injection [85]. Also, exceeding

the temperature threshold can automatically shut off the ECU [45] during runtime

and may cause catastrophic consequences due to latency violations of the control

decisions. Therefore, the runtime temperature should be carefully managed for

reliability concerns to meet the safety requirements for the automotive [81].

In addition, to runtime thermal solutions, automotives use various active and

passive cooling methods to restrict the ECU temperature, such as convection heat

sinks and spreaders in low-end ECUs [55] or passive cooling for high-end ECUs,

e.g., Tesla Model 3 [56]. However, for such systems, it requires non-trivial efforts to

tightly bound the peak temperature for effective cooling system design. As shown

later in the chapter, our proposed algorithm (in Section 3.5.2) can tighten the peak

temperature bound by 15◦C − 20◦C compared with the thermal ignorant approach,

resulting in cost, area, and energy savings of the cooling system design.

In this chapter, we study the problem of mapping periodic distributed automo-

tive applications on a heterogeneous ECU architecture to mitigate thermal-induced

system-level reliability degradations. In particular, we aim at electromigration-

aware MTTF maximization and latency minimization without violating the tem-

perature threshold on distributed heterogeneous ECUs. Our proposed optimiza-

tion framework can also be readily utilized to improve other failure types. In our

approach, we first present a mathematical programming model to bound the peak

operating temperature by assuming the automotive ECUs reach their thermal stable-

status immediately [60,61]. Then, we propose a method using the genetic algorithm

to effectively bound the peak temperature and optimize the system-level reliability of

the ECS by maximizing its MTTF. We present a computationally efficient approach

to guarantee the peak temperature for periodic applications with variable execution

times to ensure our approach’s effectiveness. We also present novel computation-
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ally efficient system-level MTTF formulas, which show several-order-of-magnitude

speed-ups over the state-of-the-art method. Overall, we have made the following

contributions:

1. A simple thermal-aware mathematical programming-based method is proposed

to bound the peak temperature when mapping periodic vehicle applications

on a heterogeneous ECS architecture.

2. We find that existing approaches cannot safely bound the peak temperature

when tasks’ actual execution times vary from their Worst-Case Execution

Times (WCETs). To this end, we develop a computation-efficient temper-

ature bounding approach that can be safely adopted in practical cases with

execution time variance. Further, we formally prove a series of supportive

lemmas and theorems in this work to ensure its effectiveness.

3. We improve the system-level MTTF computing efficiency. Our proposed for-

mula can be used for problems with higher design complexity and more opti-

mization dimensions than [62, 86]. Further, we extend our MTTF calculation

approach to the more general case (when different ECUs may have different

aging rates).

4. We incorporate our thermal bounding method and system-level MTTF esti-

mation into a genetic algorithm-based approach to map the periodic vehicle

applications on ECS. Based on both synthesized test cases and real-life bench-

marks, the experimental results show that the proposed approach can achieve

54× to 110× speed-up over the state-of-the-art approach [62].
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3.2 Related Work

An automotive ECS carries safety-critical applications, which demands both strin-

gent real-time responsiveness and high-reliability requirements. To this end, first

of all, an ECS runtime management policy must guarantee its thermal safeness

and tolerate harsh thermal environments. Meanwhile, thermal safeness reduces the

risk of real-time violation and reliability degradation. In this chapter, we improve

the optimization framework that can simultaneously deal with ECS temperature

limitations, real-time constraints, and reliability requirements.

The thermal safeness ensured in this work is essential for achieving a sustainable

running ECS, which prevents automatically triggered power gating, clock throt-

tling, or shutting down PUs for thermal protection. Some reliability optimization

approaches have been proposed, but they did not consider the thermal threshold

of the hardware, e.g. [64, 65, 87–90]. So, their policies are not always feasible in

thermal-constrained platforms. For example, Huang et al. [91] optimized the energy,

reliability, and makespan jointly on directed acyclic graphs (DAGs); however, they

did not consider the thermal effects on frequency-dependent transient faults in the

reliability framework. Other existing approaches employ simplified power/thermal

models, which can either cause thermal threshold violation during runtime or pes-

simistically predict the system performance. For example, Lee et al. [71] utilized

constant maximum powers for peak temperature identification on consecutive ex-

ecution phases, so its predicted peak temperature can overly constrain its actual

resource utilization. Besides, the solution in [71] does not optimize the reliability.

To facilitate more rigorous analytical thermal analyses, some more sophisticated

algorithms have been developed to identify the peak temperature [92, 93]. How-

ever, their computational cost can be prohibitively high when scaling the applica-
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tion complexity and processing platforms [92–94]. To reduce the peak temperature

identification complexity, thermal bounding approaches [61, 95] were developed to

estimate the highest possible peak temperature for given task sets with different

mappings. However, as shown in a later section of this chapter, these approaches

[61, 95] cannot effectively bound the peak temperature when the task execution

time varies from their worst-case execution time. Other works, e.g. [96, 97], use

the regression-based model and practical set-up, respectively, to estimate the peak

chip temperature. These solutions cannot guarantee that the actual peak temper-

ature stays below the estimated results and are also difficult to be incorporated

into an optimization framework. There is a need to develop more effective and ef-

ficient temperature-constrained methodologies that can be safely applied on ECS

with additional optimization factors, such as reliability enhancement and makespan

minimization.

The aforementioned temperature estimation methodologies are of utmost impor-

tance to avoid thermal-induced failure and system reliability degradation. Also, the

maximally allowed temperature limits transient throughput, which increases the de-

sign complexity in the reliability-makespan trade-off. To this end, many works con-

sider temperature when establishing reliability optimization frameworks [98]. When

incorporating the temperature dynamics into reliability optimization work, Zhou et

al. [98] presented mixed-integer linear programming (MILP) method that can expo-

nentially increase the computational cost. Ergun et al. [99] maximized the system

reliability on IoT systems without considering the timing constraints; thus, their

solutions can be infeasible on the latency-critical automotive applications. These

methodologies fall short of effectively dealing with the thermal challenges and their

impacts on system reliability (such as the system lifetime reliability, e.g., Mean-

Time-To-Failure) and fulfill critical PU requirements in automobile system design.
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To incorporate system reliability optimization into our work, we adopt the widely

used Mean-Time-To-Failure (MTTF) to determine a system’s lifetime reliability

and develop a fault-tolerant mechanism based on processor/system state [100]. A

recent study extended the validation scope of MTTF from Electromigration to

Thermomigration and stress-migration induced failure [101]. However, one primary

concern is that the computational cost of MTTF calculation can be prohibitively

high [62, 86, 102, 103] to obtain high accuracy. We presented a fast MTTF estima-

tion technique in one of our earlier works [39] based on uniform wear-out rates to

reduce the computational cost. As indicated in [38], due to the heterogeneity of

ECS and different operating conditions, there is a need to consider that different

ECS components have different failure rates caused by different PU temperatures,

different processing elements, and different mounting locations.

The rest of the chapter is organized as follows. We introduce the system models

and formally define the problem in Section 3.3. In Section 3.4, a linear mathematical

programming model for a simple thermal approach is presented. In Section 3.5, a

more accurate peak temperature bounding method is proposed. Section 3.6 presents

computationally efficient system-level MTTF schemes for the PUs with (1) the same

wear-out rate and (2) different wear-out rates. In Section 3.7, our genetic algorithm

details, experiment set-up, and results are described. At last, we conclude in Sec-

tion 3.8.

3.3 Preliminary

In this section, we first discuss the architecture and system models used in this

chapter. Later, we define the thermal and system-level reliability models.
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3.3.1 Architecture and Application Models

In a cost-sensitive industry, the face value of the PU hardware is reduced by optimiz-

ing the memory and computational power, and automobile manufacturers import

such PUs for various functionalities from different vendors integrating them into a

system [104]. The PUs can be broadly categorized as (1) Commodity PUs for sim-

ple functions; (2) Integrated PUs realizing safety and latency-critical applications;

(3) Computing platform PUs act as a little computing cluster in a car [105]. In

this study, we consider integrating multiple PUs as an ECS targeting safety-critical

applications. The heterogeneous architecture and application model is described in

Section 2.1.

3.3.2 Power and Thermal Models

The total power consumption of a PU is a combination of dynamic power (Pd)

and leakage power (Ps). The dynamic power does not depend on the transient

temperature [68], but each task in an automotive system has different dynamic

power based on the switching activity [71]. Therefore, to exploit this phenomenon,

we consider the dynamic power of task Vi as Pd(i) = αi.V
3
dd. Where αi is the activity

factor with αi = 0 for the idle task, and Vdd is the supply voltage of the PU.

We assume that the leakage power of a PU is linearly dependent on the thermal

state [68], i.e., Ps = (ϕ1.T + ϕ0), where T is the temperature of the PU, ϕ0, and ϕ1

are PU-dependent constants. Therefore, the all-inclusive total power consumption

(Ptotal) of a PU while running the task Vi can be expressed as

Ptotal = Pd(i) + Ps = V 3
dd · αi + (ϕ1 · T + ϕ0). (3.1)

We adopt the widely used RC-thermal model [61, 68, 71–73] to capture the PU

temperature dynamics. T (t) and P (t) are the transient temperature (◦C) and its
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corresponding power consumption (Watt) at time instant t, respectively. Then, the

transient temperature T (t) follows

Rth · Cth ·
dT (t)

dt
+ T (t)−Rth · Ptotal(t) = Tambk , (3.2)

whereRth, Cth represent thermal-resistance (◦C/W ) and thermal-capacitance (J/◦C).

Given the equation (3.2), for task Vi, we can easily identify its ending tempera-

ture T (t2) of the interval [t1, t2] with T (t1) being the initial temperature as

T (t2) =
A(i)

B
+

(
T (t1)− Tambk −

A(i)

B

)
e−B(t2−t1) + Tambk , (3.3)

where A(i) = (ϕ0+V
3
dd ·αi)/Cth and B = 1/(Rth ·Cth)−ϕ1/Cth. If the PU executes

the periodic task profile, then the stable status temperature of the PU can be given

by the following theorem (Similar proof is described in Quan et al. [68] and hence

omitted.)

Theorem 3.3.1. Let a processing unit, i.e., PUk runs a periodic schedule with the

period of tp, starting from the ambient temperature (Tambk). Let TL be the ending

temperature of the first period and let Tss be the temperature when it reaches a stable

status. Then,

Tss = Tambk +
TL − Tambk

1−K
, (3.4)

where K = exp(−B · tp).

3.3.3 Lifetime Reliability Model

In this chapter, we consider electromigration-based permanent faults in the ICs.

At higher temperatures and current densities, electromigration produces mass dis-

placement in conductors with insufficient cross-sections, resulting in voids in the

chip design that cannot be filled. The detailed model is described in Section 2.3.
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3.3.4 Problem Formulation

For the given automotive DAG application set G = {V , E}, we seek mapping strate-

gies on the heterogeneous architecture PU such that the latency is reduced (by

satisfying the deadline) and system-level lifetime reliability is maximized. Simulta-

neously, we intend to optimize the peak temperature as (1) the temperature higher

than the threshold limit could automatically trigger the thermal protection mech-

anism of a PU [61, 106], which may cause applications’ deadline violations or even

catastrophic consequences in an automotive control. (2) 10−15◦C rise in the temper-

ature accelerates wear-out rapidly and reduces the processor’s lifetime by half [50].

Problem 3.3.2. Given PU and DAG G = {V , E}, allocate all task nodes in G

to PU such that (1) the peak temperature of the design (Tpeak) is lower than the

given temperature threshold (Tmax); (2) the makespan (Cmax), peak temperature,

and system-level lifetime reliability (MTTF ) of the design are optimized.

3.4 Mathematical Programming Approach

Clearly, Problem 3.3.2 in Section 3.3.4 is NP-hard, and different approaches can

be applied to solve it, such as mathematical programming [107], simulated an-

nealing [62], genetic algorithm [108], convex optimization [85, 109], and analytical

approach [68, 71]. In what follows, we incorporate the thermal impacts into the

mathematical program as it guarantees the optimal solution.

To satisfy the peak temperature constraint of the PU after partitioning of the

task set V , we define the decision variables xik as,

xik =


1, if Vi is assigned to PUk;

0, otherwise.

(3.5)
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Each task Vi must be allocated to only one processor as constrained by,

nc∑
k=1

xik = 1, ∀Vi ∈ V , ∀PUk ∈ PU. (3.6)

Let us define another decision variable σi as the starting time of task Vi, then the

makespan of the system is defined to be,

σi +
nc∑
k=1

wik · xik ≤ Cmax, ∀Vi ∈ V ,∀PUk ∈ PU. (3.7)

In the meantime, if the predecessor-successor task pairs are allocated to different

PUs, then the communication costs among them are managed by the following

equation,

σi + wik · xik + eij · (xjl + xik − 1) ≤ σj, (3.8)

where PUk and PUl ∈ PU,Vi and Vj ∈ V ,∀eij ∈ E . On the other hand, the following

constraints ensure the executions of two tasks allocated on the same PU will never

overlap,

σi + wik − σj ≤ M · (2− xik − xjk)

OR

σj + wjk − σi ≤ M · (2− xik − xjk),

(3.9)

where ∀Vi ̸= Vj ∈ V , ∀PUk ∈ PU, and M is a large positive constant.

Note that the constraints imposed by the equations (3.6 - 3.9) ensure the minimal

makespan and task precedence, but they do not contemplate the thermal behavior

in the mathematical model. From equations (3.2) and (3.3), we can observe that the

temperature is a non-linear function of time (t), which is unsolvable by linear solvers.

Therefore, we use a simple thermal approach in which each task has a constant stable

status temperature irrespective of the starting temperature and thermal capacitance

of the PU [60,61]. In particular, for any task Vj ∈ V , we can set dT (t)
dt

= 0 in equation

(3.2) and obtain the constant stable status temperature as T = Tambk +Rth · Ptotal.
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With this knowledge, we can find the stable status temperature for any Vi ∈ V on

PUk as

T ∗
k (i) =

A(i)

B
+ Tambk , ∀Tambk ∈ Tamb. (3.10)

Therefore, the highest system-wide temperature (denoted as T ∗) can be formulated

as

T ∗ = max
i,k

(T ∗
k (i)), ∀Vi allocated on PUk. (3.11)

Further, we have the following theorem to ensure that T ∗ bounds the peak temper-

ature for any resultant task allocation.

Theorem 3.4.1. For any mapping of V to PU, with periodic execution, the resul-

tant highest system temperature never exceeds T ∗.

V1 V2
Vθ VnP

ow
er
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W

)

Time (ms)
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VθP
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 (

W
)
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Figure 3.1: (a) The WCET schedule with period tp. (b) A hypothetical schedule with
only task Vθ for the entire period tp.

Proof: Suppose PUk periodically executes n tasks {V1, ...,Vn} at a period tp,

whose dynamic powers are {Pd(1), ..., Pd(n)} as shown in Figure 3.1a. Let task Vθ

consume the highest dynamic power among all tasks allocated on PUk, i.e., Pd(θ) =

max{Pd(1), ..., Pd(n)}. Then, for all Vi allocated on PUk, since Pd(θ) ≥ Pd(i), we

have

T ∗
k (θ) ≥ T ∗

k (i). (3.12)

Using a hypothetical schedule that keeps at a constant power consumption Pd(θ) in

one period as Figure 3.1b can bound the peak temperature of the schedule shown
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in Figure 3.1a because both the execution time and power consumption for all Vi

are not larger than Vθ on PUk in Figure 3.1b. When applying equation (3.12) on all

PUs, T ∗ = maxi,k(T
∗
k (i)) can effectively bound the system-wide peak temperature.

□

With Theorem 3.4.1, we can readily add a peak temperature-related constraint as

follows,

T ∗ ≤ Tmax. (3.13)

Also, we need to incorporate the minimization of peak temperature into the design

objective. Note that to reduce the makespan and to reduce the peak temperature

are two conflicting design objectives. How to deal with multi-criteria optimization

in a more sophisticated manner is not the focus of this chapter. Instead, we use a

weighted sum as our optimization objective as follows,

Max : W1 ·
Cs − Cmax

Cs

+W2 ·
Tmax − T ∗

Tmax

, (3.14)

where W1,W2 are the weights and W1 + W2 = 1. Cs is the minimal makespan

that a task set can complete on a given ECS without considering its temperature

constraint, reliability optimization, etc.

The mathematical programming approach presented in this section has three

challenges. First, the proposed method is well known to be NP-hard in nature,

and its computational complexity increases exponentially with the size of the task

sets, number of PUs, and the complexity of the real-time schedules, etc. For a larger

problem size, it could be infeasible to obtain a solution. Second, to identify the peak

temperature, this approach adopts a strategy that assumes a PU can immediately

reach its stable status [60]. This can lead to overly pessimistic results, especially

when the task execution time is very short (from tens of microseconds to several

milliseconds [61]). Third, we can’t incorporate another optimization parameter, i.e.,
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system-level lifetime reliability, in the mathematical programming framework due to

the non-linearity between the task execution latency and its resulting temperature

dynamics. Therefore, we resort to the meta-heuristic genetic algorithm [108] to

solve Problem 3.3.2. In the following sections, we first study how to capture the

peak temperature under a task mapping configuration, and then we develop efficient

MTTF calculations accordingly.

3.5 Bound the Worst-case Peak Temperature

A key to solve Problem 3.3.2 in Section 3.3.4 is to estimate an accurate peak temper-

ature for a given task/PU mapping configuration. Several methods for estimating

a processor’s peak temperature have been studied. For example, the numerical

method breaks each execution time in tiny fragments and attempts to find the peak

temperature by exploring each small stretch (e.g. [110–112]). Also, an epoch-based

peak temperature detection methodology has been proposed using a mix of mathe-

matical and numerical methods in [72] or by solving the first-order derivative on each

processing core via the Newton-Raphson method in [73]. Another approach greedily

searches the worst-case task arrival cases to bound the runtime peak temperature

has been proposed in [93]. However, these approaches have very high computa-

tion complexity(e.g. [93,110–112]), so they are challenging to be utilized during the

exploration of design space.

For more computationally efficient approaches, besides the simple thermal ap-

proach stated in Section 3.4, Chaturvedi et al. [95] proposed a so-called “hypo-

thetical step-up schedule” to bound the peak temperature for a periodic schedule.

This approach takes advantage of the periodicity of tasks and can bound the peak

temperature at a linear time complexity. However, as shown in what follows, this
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approach works under the assumptions of each task instance always takes its worst-

case execution times. It may fail when the task’s execution time varies in runtime,

which is quite normal in practical automotive scenarios [113].

3.5.1 Motivation Examples

In real-time computing, it is a standard exercise to use the worst-case execution

times to bound the longest completion time of a task set under a scheduling policy

on a hardware platform. However, we find that using the worst-case execution

time-based real-time schedules (e.g. [110–112]) can not always identify the highest

possible peak temperature during runtime.
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Figure 3.2: An example of the step-up schedule. (a) Original schedule. (b) All tasks in
the given schedule are arranged in the increasing order of their power.

To put our discussions into perspective, assume a task set contains three periodic

tasks with an identical period. One period of its schedule (based on the worst-case

execution times) is depicted in Figure 3.2a. Figure 3.2b shows its corresponding

step-up schedule, with the same interval lengths but organized so that the dynamic

power consumptions are monotonically increasing from the first interval to the last.

It is formally demonstrated that the peak temperature of a schedule is bounded

by its corresponding “step-up” schedule [61, 95]. For example, if w1k = 12 ms,

w2k = 11 ms, w3k = 7 ms and Pd(1) = 2.204W , Pd(2) = 0.962W , Pd(3) = 2.924W

with a period 77 ms, using the experimental set-up in Section 3.7.1, the step-up
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schedule’s peak temperature (Figure 3.2b) is 51.97◦C, which bounds the actual peak

temperature of 51.69◦C for the schedule in Figure 3.2a. It is much smaller than

the peak temperature of 125.45◦C using the simple peak temperature prediction

approach of Section 3.4.

The example shown in Figure 3.2 demonstrates that the step-up schedule can

guarantee peak temperature only when all the tasks run with their worst-case execu-

tion times (WCETs). However, the temperature bound given by a step-up schedule

may be violated when the tasks run with execution times lower than their WCETs,

as shown in the following motivational example.
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Figure 3.3: A motivational example. (a) Two periods of the step-up schedule of two tasks.
(b) The modified schedule after the execution time of the task V1 is zero in the second
period.

Figure 3.3a shows a step-up schedule with two tasks, V1 and V2. Assume the dy-

namic power consumptions and the WCETs for V1 (V2 resp.) are 100 mW (3.86 W

resp.) and 10 ms (10 ms resp.), with a period of 20 ms. When tasks V1 and V2

take their WCETs as Figure 3.3a to reach their thermal steady state, the peak tem-

perature is 93.61◦C. However, the actual task execution time may vary with the

concurrent workload on one chip [114]. Without losing the generality, assume in a

period of the stable status, task V1 changes its execution time between 0 and 10 ms,

as shown in Figure 3.3b. Then, the highest peak temperature can reach 94.02◦C

in Figure 3.3b and violate the peak temperature predicted by Figure 3.3a. This

motivation example demonstrates that the step-up schedule is unable to bound the
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peak temperature for periodic schedules under execution time variance. Although

it is possible to greedily search all possibilities of execution time combinations (e.g.,

in [93]) for the highest possible temperature, the computational cost could be pro-

hibitively high when applying to multiple-PU cases with tens to hundreds of applica-

tions. Therefore how to efficiently bound the worst-case peak temperature remains

a problem.

Since the temperature dynamic in equation (3.2) is a function of the transient

power consumption, execution time length, and other architecture-dependent vari-

ables, we further conduct a more thorough empirical study to see how different

ranges of the dynamic power, execution time variance, and different numbers of

tasks may lead to the inaccurate peak temperature prediction by its corresponding

WCET-based step-up schedule. We consider a system of 3-PUs and increase the

number of tasks from 10 to 60. The PU and task parameters are explained in Sec-

tion 3.7.1, and we set the Tmax = 80◦C [39]. We use the genetic algorithm described

in Section 3.7.1 for task partitioning on the PU system with equation (3.39) as a

fitness function, where the peak temperature bound for each PU configuration is set

using the step-up schedule.

As shown by the number of infeasible cases in Table 3.1, the variable execution

time can indeed cause the violation of the temperature threshold (Tmax). For ex-

ample, we observe that the larger the execution time variations are, the more likely

the infeasible cases may occur. Moreover, we observe that the infeasible cases occur

more frequently at the high-power range (e.g., Pd(i) < 1.5W ) than at the low-power

range (e.g., Pd(i) < 0.5W ). The reason is that peak temperature is proportional to

the highest transient power density. So, larger execution time variations and higher

power ranges could change the temporal power density more significantly compared
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Table 3.1: A case study for temperature bound’s effectiveness using the step-up theory

Num. Num. of infeasible cases Total
of Pd(i) < 0.5 Pd(i) < 1 Pd(i) < 1.5 infeasible

Tasks ♣ ♣ ♠ ¶ ♣ ♠ ¶ cases
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
40 0 3 3 0 3 2 0 11
50 1 6 4 1 6 4 2 24
60 0 4 2 0 4 2 0 12

Note: The case study is conducted on a 3-PU system.

♣ a varied execution time ≈ 0 ms, ¶ a varied execution time = 2 ms,

♠ a varied execution time = 1 ms, Pd(i) is measured in W for each task.

to the baseline WCET-based step-up schedule, which, in some cases, causes a higher

peak temperature that exceeds the temperature limitations.

Note that the execution time variation is a statistical runtime phenomenon, so

the execution time variance-induced thermal violation may not always happen in all

cases. Its occurrence also depends on the concurrent tasks, resource contention, and

power ranges, among other factors. Our work considers the life-critical real-time

applications on automotive PUs, which require all applications to be completed by

their deadlines while maintaining high reliability. To this end, our work ensures

thermal safety and does not automatically trigger thermal protection in any cases

during runtime, which hurts the throughput performance and causes real-time tim-

ing violations. In what follows, we propose a time-efficient algorithm to bound the

peak temperature for variable execution time scenarios.

45



V1 V2
Vn V1 Vn

P
o

w
er

 (W
)

Time (ms)

W1k

W2k

Wnk W1k
W2k

Wnk

(a)

V1 V2
Vn V1 V2

Vn
P

o
w

er
 (

W
)

Time (ms)

W2k-Δ 

Wnk W1k
Wnk

(b)

W1k
W2k-Δ 

q.tp

tp

tr-Δ tr
V2

Figure 3.4: (a) The WCET schedule with an ending temperature of Tm(q · tp) in the stable
status. (b) The schedule with a varied execution time with an ending temperature of
T (q · tp) in the stable status.

3.5.2 Accurate peak temperature identification algorithm

We begin with several lemmas to support the algorithm that tightly bounds the

peak temperature for variable execution time scenarios and later prove a theorem

to validate the proposed algorithm’s effectiveness.

Lemma 3.5.1. Let PUk run n tasks V1,V2, ...,Vn consecutively with a tp period.

Let Tm(q · tp) be the temperature at t = q · tp when all tasks are executed with their

WCETs. Then, we can infer Tm(q · tp) ≥ T (q · tp), if T (q · tp) is the temperature at

t = q · tp when at least one task instance from t ∈ [0, q · tp] runs with execution time

less than its WCET.

Proof : Let’s consider an arbitrary schedule with n tasks and period tp as shown

in Fig. 3.4. Let Tm(q · tp) and T (q · tp) be the temperature at t = q · tp in Fig. 3.4a

and Fig. 3.4b, respectively. In Fig. 3.4a, all the tasks take their respective WCETs.

In Fig. 3.4b, the execution time of task V2 is reduced by ∆ compared to its WCET.

Therefore, the starting time of the remaining tasks in the scheduling sequence re-

mains the same or is shifted to the left by ∆ amount of time. From these two figures,

we indeed find that both schedules are identical up-to-time instant (tr −∆), so as

their temperature, T (tr − ∆) = T ′(tr − ∆). Let T (tr) and T ′(tr) be the starting
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temperatures for the remaining part of the schedules, respectively. The schedule in

Fig. 3.4a has a higher accumulated computing time at (q · tp) than the schedule in

Fig. 3.4b, and the workload in Fig. 3.4b is moved away from t = q · tp. Based on

Lemma 3 of Schor et al. [115], we conclude that Tm(q · tp) ≥ T (q · tp). □

Lemma 3.5.2. Let PUk run Vi during an interval t ∈ [t1, t2] and let PUk’s temper-

ature at t1 be T1. Then PUk’s temperature monotonically increases (decreases resp.)

within interval t, if T ∗
k (i) ≥ T1 (T ∗

k (i) ≤ T1 resp.).

Proof : From equation (3.2), we can infer that when ECk reaches its stable state

temperature, equation T ∗
k (i) = Rth · Ptotal(i) + Tambk holds, since dT (t)

dt
= 0. From

equation (3.2), we can also infer that

dT1
dt

=
−T1 +Rth · Ptotal(i) + Tambk

Rth · Cth

=
−T1 + T ∗

k (i)

Rth · Cth

.

(3.15)

Since T ∗
k (i) ≥ T1, we have dT1

dt
≥ 0. Then, ECk’s temperature monotonically in-

creases and vice-versa. □

As per Lemma 3.5.1, if at least one of the tasks on PU executes shorter than

its WCET, then the temperature at the epilogue of q-th period is no larger than its

WCET counterpart. From Lemma 3.5.2, we deduce that if the individual task stable

status temperature is higher (lower resp.) than the starting point temperature in

an interval, the PU temperature monotonically increases (decreases resp.) when

running in a constant execution mode during the interval.

With Lemma 3.5.1 and 3.5.2, an algorithm is developed to identify the peak

temperature when a PU runs a set of tasks that considers task completion time

variation during the runtime.

Algorithm 1 first calculates the stable status temperature at the end of the ap-

plication period, assuming that each task takes its WCET (line 1). Then, lines 2-8
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Algorithm 1 Bounding the peak temperature with execution time variance.

Inputs: Task mapping based on WCET schedule of PUk; Power/thermal pa-
rameters; Timing parameter matrix Wnv×nc ;

Output: Temperature bound Tm of PUk.

Let Tm = Tss in Theorem 3.3.1 for the WCET schedule;
for each task Vi allocated on PUk do

Calculate T ∗
k (i) based on equation (3.10);

if T ∗
k (i) > Tm then
T ′
m = the ending temperature of running Vi with initial temperature Tm;
Tm = T ′

m;
end if

end for
return Tm

iteratively identify the highest temperature of each interval in the schedule. Specifi-

cally, if a task’s stable state temperature is more than the latest temperature bound

(Tm), the task is taken into account to bound the possible higher peak temperature.

Otherwise, the current interval is not considered in determining the peak temper-

ature bound (Tm). Finally, the ending temperature for the last interval is output

as the peak temperature (line 9). The complexity of Algorithm 1 is O(n), where

n is the number of tasks allocated to a PU. Also, we formulate Theorem 3.5.3 as

follows to ensure the guarantee of the peak temperature identified through Algo-

rithm 1. Note that Algorithm 1 is only used for bounding the runtime temperature.

All tasks need to be executed according to their real-time schedules to satisfy their

timing requirements.

Theorem 3.5.3. Let tasks {V1, ...,Vn} be executed on PU PUk periodically with

variable execution times. Then, the highest possible temperature during the execution

is no more than Tm output from Algorithm 1.

Proof : Let a baseline schedule contain n tasks {V1, ...,Vn} with period tp and

each task takes its WCET, as shown in Fig. 3.5a. Without losing generality, we
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Figure 3.5: (a) The WCET schedule. (b) The schedule with a varied execution time of
tasks Vθ in a stable state.

assume Fig. 3.5b contains all the same intervals as Fig. 3.5a, except task Vθ whose

execution time is reduced by ∆ in the q-th period.

Let TW (t) and TA(t) be the temperatures at the instance of t for Fig. 3.5a and

Fig. 3.5b, respectively. Based on Lemma 3.5.1, at t = (q · tp), we can infer that the

temperature of Fig. 3.5b is no larger than Fig. 3.5a, so we have

TW (q · tp) ≥ TA(q · tp). (3.16)

Now, consider a period from t = (q · tp) to t = ((q+1) · tp). Starting from t = (q · tp)

let the temperature output based on Algorithm 1 be T̃W (i) after going through task

Vi in the loop (line 2-7) in Algorithm 1. Then, based on Lemma 3.5.2, T̃W (i) must

be equal or higher than the temperature when completing Vi with the schedule

in Fig. 3.5b. Meanwhile, the starting temperature at each interval considered in

Algorithm 1 is no lower than that of TA(q · tp). Therefore, T̃W (i) monotonically

increases to Tm in each valid interval as per Algorithm 1.

On the other hand, for the schedule in Fig. 3.5b, if task Vi has a stable state

temperature lower than TA(q · tp), the temperature will be lowered. Therefore, we

certainly find that at any time instant, the temperature predicted by Algorithm 1

(i.e., Tm) is higher than its periodic counterpart with varied execution times of the

tasks. □
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This theorem substantiates the effectiveness of the peak temperature output

from the proposed Algorithm 1. With Algorithm 1 and Theorem 3.5.3 described,

we next discuss our new methods to compute the system-level MTTF.

3.6 Computationally efficient system-level MTTF formula-

tion

In this section, we first briefly introduce the relevant background for the state-of-the-

art method that accurately calculates the system-level MTTF [62]. We then discuss

the limitations of the method in [62] and propose our computationally efficient

approaches to estimate the system-level MTTF.

Without losing the generality, we adopt the Weibull distribution to model the

wear-out effects at the system level [62]. The reliability of a single PU at time

instant t with temperature T is

R(t, T ) = e−(
t

η(T ))
β

, (3.17)

where η(T ) and β represent scale and slope parameters of the Weibull distribution,

respectively. Then, we have

η(T ) =
MTTF (T )

Γ
(
1 + 1

β

) . (3.18)

When executing periodic tasks, the reliability of a PU in one period (tp) is a function

of the temperature and duration for each sub-interval (a = 0, · · · , s− 1) [62], which

can be formulated as

R(tp) = e
−
(

s−1∑
a=0

∆ti
η(Ti)

)β

. (3.19)

Let the aging factor of the PU [62] be

A =
s−1∑
a=0

∆ti
η(Ti)

. (3.20)
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Then, the reliability of the PU for q consecutive periods is

R(q · tp) = e
−
(

q·(s−1)∑
a=0

∆ta
η(Ta)

)β

= e
−
(
q·

s−1∑
a=0

∆ta
η(Ta)

)β

= e−(q·A)β .

Therefore, the reliability of the system with nc PUs can be expressed as

Rsystem(q · tp) = e
−

nc∑
b=1

(q·Ab)
βb

. (3.21)

As MTTF ≫ tp, the system-level MTTF approximation can be calculated at the

end of each period as

MTTFsystem =
∞∑
a=0

e
−

nc∑
b=1

(a·Ab)
βb

· tp. (3.22)

To reduce the computational cost of (3.22), a more efficient method, Speedup

Technique-I is proposed in [62] by assuming the reliability of a PU keeps the same

for every v periods. The estimated system-level MTTF is

MTTF speed up−I
system =

∞∑
a=0

e
−

nc∑
b=1

(a.Ab.v)
βb

.tp.v. (3.23)

The accuracy of the state-of-the-art system-level MTTF in (3.23) depends on

three parameters, i.e., the highest value of a, period tp, and the number of periods v

used to expedite the approximation. It is advisable to reach a high value of a until

the MTTF is saturated, which drains a significant amount of computation time,

as later observed in Section 3.7.2. To achieve higher computational efficiency, it is

necessary to find an alternative strategy to estimate the system-level MTTF effi-

ciently, reducing the computation time without compromising the MTTF estimation

accuracy significantly.
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3.6.1 A Computing Efficient Approach for MTTF Calcula-

tion

When optimizing the system design goal such as MTTF using meta-heuristics like a

genetic algorithm or simulated annealing, the computation efficiency could be one of

the primary concerns since a computation efficient algorithm enables a more effective

design space exploration. As mentioned before, the approach based on (3.23) is very

time-consuming, which severely limits its searching scope and efficiency. Therefore,

to acquire better design results, it is highly desirable that a more computing-efficient

approach for the MTTF calculation can be utilized in the search engine during the

design space exploration process.

As the automotive applications have task interval lengths in ms to µs [65, 116],

a PU’s temperature dynamics can be safely treated as a constant value in a period.

This fact helps to simplify the system-level formulation of MTTF. Let η1, η2,...,ηnc

be the scale parameters of the PU given by (3.18). We assume that they depend on

a constant temperature over the period, which can be calculated using the average

temperature of the period in the stable status

Tavg,b =

s−1∑
a=0

la+1∫
la

A(a)
B

+
(
T (ta)− Tambk −

A(a)
B

)
e−B·∆a + Tambk

tp
, (3.24)

where s represents the number of intervals in a period, ∆a = (la+1− la) is the length

of each interval, tp is the period, and b is the PU index from 1 to nc.

To further improve the computational efficiency and safely bound the MTTF in

an ECS, we take advantage of using the Weibull distribution’s slope parameter as a

uniform value for all PUs to expedite MTTF computations by adopting the worst-

case wear-out rate on each unit. The ECS system reliability can then be formulated
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as

Rsystem = e
−

nc∑
b=1

(
t
ηb

)β
. (3.25)

Based on equation (3.25), we can formulate the system-level MTTF as

MTTF Fast−same
system =

∞∫
0

e
−

nc∑
b=1

(
t
ηb

)β
dt. (3.26)

By substituting x =
nc∑
b=1

(
t
ηb

)β
in (3.26), we have

x = tβ ·
nc∑
b=1

(
1

ηβb

)
. (3.27)

x
1
β = t ·

(
nc∑
b=1

(
1

ηβb

)) 1
β

. (3.28)

Further, we have

t =
x

1
β(

nc∑
b=1

(
1

ηβb

)) 1
β

, (3.29)

dt =
x

1
β
−1 · dx

β ·
(

nc∑
b=1

(
1

ηβb

)) 1
β

. (3.30)

Note that t → 0 leads to x → 0 and t → ∞ leads to x → ∞. Now, we can factor

out (3.26) and obtain our fast MTTF formula as

MTTF Fast−same
system =

1

β ·
(

nc∑
b=1

(
1

ηβb

)) 1
β

∞∫
0

e−x · x
1
β
−1 · dx, (3.31)

which converges to the following simple form [117],

MTTF Fast−same
system =

Γ( 1
β
)

β ·
(

nc∑
b=1

(
1

ηβb

)) 1
β

. (3.32)

Equation (3.32) is independent of compute-expensive integration operations, and

Γ( 1
β
) can be readily calculated. So, our proposed MTTF estimation method in (3.32)
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is highly computation efficient and can tightly bound the MTTF for a heterogeneous

ECS. As shown in our experimental Section 3.7.1(B), the proposed MTTF formula

in (3.32) can speed up the computing efficiency of (3.23) by 12× for synthetic test

cases and 164× for the Real-Life benchmark. Moreover, the proposed approximation

approach can achieve an average error below 0.1% for the estimation of system-level

MTTF.

3.6.2 Fast System-Level MTTF Calculation for PUs with

different degradation rates

The MTTF formula proposed in Section 3.6.1 can accurately estimate a system-

level MTTF, when (i) the temperature fluctuation in one period is small enough to

be considered as a constant value, e.g., when applications’ periods on an ECS are

as short as several µs or ms; (ii) the PU’s wear-out rate has a negligible variance

compared to the worst-case wear-out rate in an ECS, e.g., when all PUs in an

ECS have similar operational status and ambient temperatures. However, according

to [38], the ambient temperature of different PUs in one vehicle could vary as much

as 90◦C−150◦C due to different mounting locations, which may potentially cause a

large wear-out rate variance within an ECS. Therefore, equation (3.32) could result

in an inaccurate system-level MTTF estimation without an adequately justified

wear-out rate.

When adopting the uniform wear-out rate MTTF formula in equation (3.32),

results in the same slope parameter (β) of the Weibull distribution, could save

several magnitudes of the computational cost, but it deviates from the practical

heterogeneous PUs settings. Although the state-of-the-art method for system-wide

MTTF calculation in equation (3.23) can be used to address the heterogeneity of

54



the PU wear-out rates, its computational cost could be prohibitively high, since

its MTTF formula needs an iterative accumulation of each scheduling interval on

all PUs. In the meantime, the system-level MTTF in (3.32) is no longer a closed-

form if taking different wear-out rates directly, which harms the computational

efficiency. To this end, we use heterogeneous thermal wear-out rates of all the

PUs to construct system-wide statistical wear-out rate value, which can be safely

implanted into equation (3.32) for maintaining high accuracy and computational

efficiency at the same time.

To address these challenges, we propose an approximation approach, which as-

sumes the wear-out rates of the entire system to be an identical statistical value.

Specifically, let B = {β1, ..., βnc} be the slope parameters for Weibull distributions

for PUs. Then, we implant four different statistical parameters in (3.32), including

maximal, minimal, average, and geometric mean values, as follows:

1. Let β = βmax, where

βmax = max{β1, ..., βnc}. (3.33)

2. Let β = βmin, where

βmin = min{β1, ..., βnc}. (3.34)

3. Let β = βavg, where

βavg = average{β1, ..., βnc} =
β1 + β2 + ...+ βnc

nc
. (3.35)

4. Let β = βgeo, where

βgeo = geo mean{β1, ..., βnc} = nc
√
β1 · β2 · ... · βnc . (3.36)

With different statistical wear-out rate approximations given by (3.33)-(3.36), we

can obtain an effective slope parameter for each PU as,

ηb =
MTTF (Tavg,b)

Γ
(
1 + 1

B

) , (3.37)
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where b = 1, ..., nc and B ∈ {βmax, βmin, βavg, βgeo}. With the help of (3.32) we

estimate the computationally efficient system-level MTTF for different wear-out

rates of the PU as,

MTTF Fast−diff
system =

Γ( 1
B
)

B ·
(

nc∑
b=1

(
1
ηBb

)) 1
B

. (3.38)

Using the same parameter settings in Section 3.7.1(A), we compare the MTTF accu-

racy of (3.38) with state-of-the-art equation (3.23). We observe that the geometric

mean (β = βgeo) generates the lowest error in average (≈ 2%) among all the can-

didates for both synthetic test cases and practical benchmarks. Therefore, the rest

of the chapter uses β = βgeo for fast system-level MTTF calculation for PUs with

different degradation rates with minimal accuracy degradation.

With a safer peak temperature bound and a more accurate and efficient MTTF

formulation, we are ready to employ a genetic algorithm for Problem 3.3.2. Our

genetic algorithm implementation is similar to that presented in [108], and its set-

up is briefly described in the following section.

3.7 Experimental Results

In this section, we present our experiments and results to validate the performance

of our proposed approaches with different parameter settings.

3.7.1 Experimental Set-up

Our genetic algorithm is set up as follows:

� Chromosome design: Each chromosome represents a feasible solution to the

task scheduling problem. Chromosome comprises the first part as task map-
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ping and later as the task schedules. We randomly initialized the task map-

pings on the given PUs and initial task schedules were generated with respect

to the precedence constraints of the DAG G = {V , E}. The pool of the initial

population was randomly generated with the chromosomes for the given size.

� Fitness function: The formulation of the fitness function is crucial to refining

the PU design alternatives, and it also impacts the solution’s superiority using

a metaheuristic approach. To solve Problem 3.3.2, we need to co-optimize the

makespan, peak temperature, and MTTF. First, we calculated the makespan

similar to that in [108]. Then, we adopted our proposed peak temperature

bound in Algorithm 1 and fast system-level MTTF with the same wear-out rate

together. In another experiment, we endorsed the proposed fast system-level

MTTF formulation’s effectiveness with different wear-out rates. Accordingly,

our fitness functions are:

1. The peak temperature for both Genetic Algorithms (GAs) is calculated

using our proposed Algorithm 1. The system-level MTTF values are

estimated by (3.23) and (3.32) for both GAs to compare their perfor-

mance. We normalized the makespan, temperature, system-level MTTF

and defined the weighted fitness function as,

f1 = P1
Cl − Cmax

Cl

+ P2
Tmax − Tm
Tmax

+ P3
MTTFsystem

MTTFmax

, (3.39)

where P1,P2,P3 are the weights having P1 + P2 + P3 = 1, and Cl is

the smallest possible makespan derived from the solutions of the first

generation. MTTFmax is a system-level maximum MTTF estimated by

assuming the ambient temperature for each PU.
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2. Our experimental study also examines the efficacy of the proposed system-

wide MTTF calculation for PUs with different wear-out rates by imple-

menting two separate GAs with the system-level MTTF calculation by

(3.23) and (3.38), respectively. We used a normalized weighted sum of

the makespan and system-level MTTF in the objective function as

f2 = R1
Cl − Cmax

Cl

+ R2
MTTFsystem

MTTFmax

, (3.40)

where R1,R2 are the weights with R1 + R2 = 1, and other parameters

have the same significance as in the above case-(1).

� Parent/survivor selection: Due to multi-objective fitness functions, we main-

tained the Pareto optimal front during the evolution process from generations-

to-generations and used the tournament selection policy to choose the sur-

vivors for the next generation [108]. In the tournament selection, we randomly

chose 10 chromosomes, sorted them based on their fitness, and picked the top

5 for crossover and mutation. The remaining 5 elements act as the non-evolved

chromosomes for the next generation.

� Crossover/mutation operators : We used an adaptive crossover operator on

the task mapping part of the survivor chromosomes. For randomly chosen

two chromosomes, a crossover point is randomly selected between 1 to nv,

and the parts of the two chromosomes after it are exchanged to produce two

descendants. Afterward, the crossover descendants are mutated, where any of

the pre-mapped tasks in a chromosome is randomly selected, and its mapping

is randomly altered to another PU. (see [108] for more details)

We utilize both synthetic test cases and practical benchmarks for verification

of the performance of the proposed approaches regarding temperature bound and
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Table 3.2: PU parameters for the experiment [71,118]

ϕ0(A) ϕ1(A/
◦C) Cth(J/

◦C) Rth(
◦C/W) max. Power(W)

0.035 0.016 0.0454 22 3.86

Table 3.3: Benchmark parameters

Benchmark nc nv Pd(task) Wnv×nc , E Tamb

Real-Life‡ 16 31 [0.1W, 3.86W]¶
[100µs,
400µs]‡

[35◦C, 45◦C]

ACC§ 4 20 [0.1W, 3.86W]¶
Specified
for each
task/edge§

[35◦C, 45◦C]

‡described in [65], §described in [116], ¶described in [71]

system-level MTTF formulations. The parameters for the PUs used in our exper-

iments are described in Table 3.2. For synthetic test cases, the task graphs were ran-

domly generated using a Task Graph Generator [65] with average computation cost =

15 ms, communication to computation ratio = 1, and the shape parameter varied

in the range of [0.3, 0.9] to cover a wide gamut of the test cases. The dynamic

power for all task nodes was chosen to be uniformly distributed in the range of

[0.1 W, 3.86 W ] adhering to practical automotive systems [71]. Apart from syn-

thetic tests, we verified our proposed formulations on two practical benchmarks,

Real-Life [65] and Automotive Cruise Controller (ACC) [116], with their parame-

ters listed in Table 3.3.

To achieve about 10 years of a lifetime by assuming a drive time of 2.5 hours

per day for a PU at the temperature of 80◦C [39], we used Ac = 10−7 cm2, J =

5.7 ∗ 105 Amp/cm2, and Ea = 0.48 eV to estimate the electromigration-induced

MTTF [76]. For the existing model of system-level reliability, we used v = 100

in equation (3.23) [62]. The ambient temperatures were randomly chosen in the
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interval [35◦C, 45◦C] to account for the variation of the PU mounting locations if

not otherwise specified.

Our experiments were lined-up in the following two major categories:

A) Verification of different approaches to our target research problem:

For these experiments, we compare the effectiveness and efficiency of different

approaches to our research problem, i.e., Problem 3.3.2 in Section 3.3.4. Our

experiments were conducted based both on synthetic test cases as well as prac-

tical real-life benchmarks. Specifically, for synthetic test cases, we adopted an

ECS containing 3 PUs with 10, 15, 20, and 25 tasks to simplify tracing param-

eter trade-offs. A sufficiently high-temperature threshold Tmax of 150◦C was

set because the simple thermal approach can lead to a very high peak tem-

perature and the mathematical solver is unable to produce a feasible solution

under a tightly constrained Tmax otherwise.

In our genetic algorithm implementation, the initial solution pool was chosen

to be 500 random samples, and the genetic algorithm was progressed for 400

generations, thereby terminating with Pareto optimal front solution in the

end. The uniform worst-case slope parameter of the Weibull distribution was

chosen to be β = 2 [62]. For both synthetic test cases and benchmarks,

without losing generality, we set the weight combinations as W1 = W2 = 1/2

and P1 = P2 = P3 = 1/3, which commits an equal influence to each parameter.

The four approaches tested in this category are stated below:

� Temperature Oblivious Approach (M-TO): The mathematical pro-

gramming model that minimizes the application makespan but does not

consider thermal behavior as the state-of-the-art integer linear program-

ming method in [107].
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� Simple Thermal Aware Approach (M-STA): The mathematical

programming approach explained in Section-3.4 that assumes a PU reaches

its stable status temperature immediately [60, 61].

� Accurate Peak Temperature Identification with Fast MTTF Cal-

culation (G-APTI-FMC): The genetic algorithm-based approach bounds

the peak temperature accurately with the proposed Algorithm 1 and pro-

posed fast system-level MTTF formulation using a uniform system-wide

wear-out rate as described in Section-3.6.1.

� Accurate Peak Temperature Identification with Traditional MTTF

Calculation (G-APTI-TMC): The genetic algorithm-based approach

that identifies the peak temperature accurately using the proposed Al-

gorithm 1 and the state-of-the-art system-level MTTF formulation in

equation (3.23) [62].

B) Verification of the proposed approaches for fast system-level MTTF calcula-

tion:

For these experiments, we focus our study on the efficacy of the proposed

approaches for fast MTTF calculation. To study the performance of our fast

MTTF calculation based on the same degradation rate, i.e., based on equation

(3.32), we assumed that all tasks were assigned to a single PU in our generated

synthesized test cases and real-life benchmarks. We compared this approach

with the traditional approach (i.e., [62]), and the results for the average CPU

times and error percentages by these two approaches were collected and listed

in Table 3.4 and Table 3.5, respectively.

We then extended our experiments to more sophisticated scenarios when

different PUs may have different degradation rates. To this end, we assumed
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Table 3.4: Average CPU time

Num. of tasks 10 20 30 40 50 Real-Life ACC
Avg. CPU time
(ms) for MTTF
method in [62]

44.21 48.59 50.46 52.96 56.40 685.156 49.84

Avg. CPU time
(ms) for proposed
MTTF method

3.609 3.812 3.906 4.063 4.188 4.17 3.859

Table 3.5: Average MTTF error percentage

Num. of tasks 10 20 30 40 50 Real-Life ACC
Avg. error (%) 0.023 0.032 0.050 0.067 0.084 0.00033 0.077

the system contains 100 tasks and the number of PUs to be 5, 10, 15, and

20. We randomly chose the slope parameter β for each PU in the range [2, 3],

which signifies the early lifetime wear-out [119]. We used the equal weights

as, R1 = R2 = 0.5 in this set-up. The following approaches were implemented

and tested:

� Traditional MTTF Calculation with different degradation rates

(G-TMC-DDR): It is a genetic programming-based approach with the

objective of makespan minimization and system-level MTTF maximiza-

tion, which is estimated by the existing method in equation (3.23) [62].

Here we used the GA with the initial solution space of 100 samples and

evolution over 200 generations.

� Fast MTTF Calculation with different degradation rates for

small size of GA (G-FMC-DDR-S): It is based on a genetic algo-

rithm to minimize the makespan and maximize the system-level MTTF
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estimated by the proposed formulation in Section-3.6.2 with an initial

population pool of 100 samples, and we evolve it for 200 generations.

� Fast MTTF Calculation with different degradation rates for

large size of GA (G-FMC-DDR-L): It is based on a genetic algo-

rithm to minimize the makespan and maximize the system-level MTTF

estimated by the proposed formulation in Section-3.6.2 with an initial

population pool of 500 samples and evolved for 1000 generations.

The industrial-grade linear solver CPLEX 12.10.0 was used to solve the for-

mulated mathematical programming problems of M-TO and M-STA. Whereas G-

APTI-FMC, G-APTI-TMC, G-FMC-DDR, G-TMC-DDR-S, and G-TMC-DDR-L

were implemented using Matlab R2020a, running on an HP Z800 server with 24

cores and 32GB memory.

3.7.2 Experimental Results and Discussions

This section presents the experimental results for the set-up described in the previous

section and discusses our findings in detail.

A) Verification of different approaches to our target research problem:

Figure 3.6 shows the results (average peak temperature, average system-level

MTTF, average makespan, and average CPU time) by four different approaches,

i.e., M-TO, M-STA, G-APTI-FMC, and G-APTI-TMC, as introduced above.

From Figure 3.6c, we can see that M-TO [107] has the smallest makespan

among all the approaches, but Figure 3.6a and Figure 3.6b show that M-TO

has the highest peak temperature and the lowest system-level MTTF. This re-

sult clearly indicates that constraining the peak temperature in an automotive
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(a) Avg. system peak-temperature. The temperature bound estimated
by the M-STA [60, 61] is 15-18◦C pessimistic than the developed G-
APTI-FMC method.
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(b) Estimated avg. system-level MTTF. The MTTF values estimated
by the developed G-APTI-FMC, and the existing G-APTI-TMC [62]
method are similar.

Figure 3.6: Experimental results for 3-Processing Unit system

64



10 15 20 25
100

135

170

205

240

Num. of Tasks

M
il
li
se
co
n
d
s

M-TO
M-STA
G-APTI-FMC
G-APTI-TMC

(c) Avg. makespan. The makespan of the thermal ignorant method,
i.e., M-TO is always lower than the others. Makespans by the developed
G-APTI-FMC, and the existing G-APTI-TMC [62] method are similar.
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(d) Avg. CPU time. The CPU time of the developed G-APTI-FMC
method is 23 to 31 times lower than the existing G-APTI-TMC [62]
method.

Figure 3.6: Experimental results for 3-Processing Unit system (cntd.)
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ECS is necessary for hardware protection and system-wide lifetime reliability

enhancement. When thermal behavior is considered, the makespans for other

approaches become longer since the temperature constraint limits the compu-

tational throughput on a PU. Also, with increased thermal prediction accu-

racy, G-APTI-FMC and G-APTI-TMC [62] allow to have a longer makespan

but a much lower peak temperature and higher system-level MTTF, as clearly

shown in Figures 3.6a and 3.6b.

Meanwhile, from Figure 3.6a, we observe that the average peak tempera-

tures for G-APTI-FMC and G-APTI-TMC [62] differ approximately in the

range of 0.1◦C to 0.3◦C. Also, in Figure 3.6c, their makespans differ by 0 ms

to 1 ms. Similarly, the estimated average system-level MTTF differ by 0.1%,

0.26%, 0.77%, and 0.44% respectively from 10 to 25 tasks as depicted in Fig-

ure 3.6b. But, as observed in Figure 3.6d, there is a substantial difference in

CPU times between the G-APTI-TMC and G-APTI-FMC. Thanks to our fast

MTTF calculation methods, our approach (G-APTI-FMC ) can achieve sim-

ilar performance results (average peak temperature, average makespan, and

overall average system-level MTTF) with the CPU times about 23 to 31 times

lower than G-APTI-TMC [62].

In terms of peak temperature identification accuracy, if we compare the

results by G-APTI-TMC with M-STA in Figure 3.6a, we can see that M-STA

[60,61] is quite pessimistic, i.e., by 15.3◦C, 11.9◦C, 13.2◦C, and 18.5◦C as task

numbers increase from 10 to 25. These results demonstrate that our proposed

temperature identification methods, as shown in Algorithm 1, can greatly

help G-APTI-TMC to obtain the solution with significantly reduced peak

temperature and much improved system-level MTTF over M-STA [60, 61], as

much as 44.38%, 31.49%, 40.78%, and 64.61%, as observed in Figure 3.6b.
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Table 3.6: Results of Real-Life Benchmark

M-TO M-STA G-APTI-FMC G-APTI-TMC

Avg. Makespan (µs) 518 532 1167 1169
Avg. Sys. Tpeak (◦C) 116.1 114.6 74.5 74.4
Avg. Sys. MTTF (Hr) 1336 1389 5005 5006
Avg. CPU time (s) 237.8 683.3 135.5 26001.2

Table 3.7: Results of ACC Benchmark

M-TO M-STA G-APTI-FMC G-APTI-TMC

Avg. Makespan (ms) 147 150 184 188
Avg. Sys. Tpeak (◦C) 107.4 102.7 85.3 84.9
Avg. Sys. MTTF (Hr) 2219 2209 4020 4095
CPU time (s) 259.51 123.93 79.34 1370.5

From Figure 3.6d, we can also see that the computational cost for M-TO

[107] and M-STA [60, 61] increases rapidly due to the NP-hardness of the

mathematical programming technique. Even so, their CPU times are still lower

than that by G-APTI-TMC [62]. Besides their ineffectiveness in dealing with

temperature issues, the results clearly show that M-TO and M-STA cannot

be used for large-scale systems when the task and PU numbers continue to

grow. In the meantime, the results also highlight the need to speed up the

system-wide MTTF calculation in design space exploration.

Similar findings are observed for the two automotive benchmarks. For a

practical Real-Life benchmark, as shown in Table 3.6, there is an average

makespan difference of 2 µs, an average peak temperature difference of 0.1◦C,

and an MTTF difference of 1 Hr between G-APTI-FMC and G-APTI-TMC,

but G-APTI-FMC can speed up the system-level MTTF calculations by 191

times than G-APTI-TMC [62]. On the other hand, M-STA [60, 61] is 40.1◦C

higher in peak temperature and 3616 Hr lower in system-level MTTF than
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G-APTI-FMC, which underlines the important contribution of the proposed

G-APTI-FMC for the practical systems.

In the meantime, for the ACC benchmark, in Table 3.7, we can see that our

proposed approach, G-APTI-FMC, can improve the computation efficiency of

G-APTI-TMC [62] by over 17 times with degradation in the peak temperature

and system-level MTTF no more than 0.4◦C and 75 Hr, respectively. Com-

pared with M-TO [107] (M-STA [60, 61], resp.), G-APTI-FMC can improve

the peak temperature and system-level MTTF with 22.1◦C (17.4◦C, resp. )

and 1801 Hr (1811 Hr, resp.), respectively.

B) Verification of the proposed approaches for fast system-level MTTF calcula-

tion:

For single PU or PUs with similar degradation rates, as shown in Tables 3.4

and 3.5, our proposed fast MTTF calculation can be extremely efficient and

effective. As shown in Table 3.4, the proposed MTTF method can speed up

the computations about 12× for synthetic test cases and 164× for the Real-

Life benchmark compared with the state-of-the-art method (3.23) [62]. In the

meantime, from Table 3.5, we can see that the average error is less than 0.1%

for both synthetic task cases and practical automotive benchmarks.

To consider the case when different PUs may have different degradation

rates, we propose four candidate approaches, i.e., (3.33)-(3.36), to be used in

(3.38). We tested these four approaches by mapping 100 tasks on 5, 10, 15,

20 PUs in the synthesized test cases and our two practical benchmarks. We

compare their performance in MTTF calculations by collecting the estima-

tion errors normalized by the traditional one [62] (equation (3.23)). These
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results are denoted as βmax, βmin, βavg, and βgeo, respectively, and shown in

Figure 3.7.

As shown in Figures 3.7a and 3.7b, we can see that the approach with

βgeo has less than a 2% average error compared to the existing system-level

MTTF equation (3.23) for both synthetic test cases and practical benchmarks.

Further, we analyze the proposed methodology to compute the system-level

MTTF with different degradation rates. We randomly generated the synthetic

test cases for the configurations of 100-Tasks and 5, 10, 15, 20 PUs and col-

lected the 100 feasible test results, together with their peak temperatures,

system-level MTTFs, makespans, and CPU times of the solutions, shown in

Figure 3.8.

In design space exploration, e.g., in a genetic algorithm or simulated anneal-

ing, evaluating the design objective function accurately and quickly is vital

for the algorithm’s effectiveness. To accurately evaluate the fitness of a design

alternative helps to direct the search in the right direction, while the compu-

tation efficiency in fitness evaluation enables an extensive exploration of the

design space. With the similar size of design space by G-TMC-DDR [62] and

G-FMC-DDR-S, as shown in Figure 3.8a, we observe that the average peak

temperatures differ by 0.1◦C, 0.2◦C, 0.9◦C, 0.3◦C when PU numbers increase

from 5 to 20. Accordingly, their average system-level MTTFs differ by 0.8%,

0.6%, 1.9%, and 2.1%, as shown in Figure 3.8b and their average makespans

differ by 0 ms, 5 ms, 1 ms, 2 ms in Figure 3.8c. However, as observed in

Figure 3.8d (left Y-axis for the G-TMC-DDR, right Y-axis for the G-FMC-

DDR-S and G-FMC-DDR-L), the CPU time of the G-TMC-DDR [62] is 54,

95, 110, 108 times higher than that of G-FMC-DDR-S, respectively, as the

PU number increase from 5 to 20. Hence, with our fast MTTF calculation as
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Figure 3.7: Average error percentage
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(a) Avg. system peak-temperature. The existing G-TMC-DDR
[62] and the developed G-FMC-DDR-S methods have compara-
ble peak temperature estimation values. The developed G-FMC-
DDR-L method with a large size of the genetic algorithm improves
the peak temperature estimation than the others.
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(b) Estimated avg. system-level MTTF. The existing G-TMC-
DDR [62] and the developed G-FMC-DDR-S methods have com-
parable system-level MTTF estimation. The developed G-FMC-
DDR-L method with a large size of the genetic algorithm signifi-
cantly improves the MTTF estimation than the others.

Figure 3.8: Experimental results for 100-Tasks system
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(c) Avg. makespan. The existing G-TMC-DDR [62] and the de-
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(d) Avg. CPU time. The CPU time of the existing G-TMC-DDR
[62] method is 54 to 110 times higher than the developed G-FMC-
DDR-S. (Note: Left hand side Y-axis is for G-TMC-DDR, and
right hand side Y-axis is for G-FMC-DDR-S and G-FMC-DDR-L)

Figure 3.8: Experimental results for 100-Tasks system (cntd.)
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Table 3.8: Results of ACC Benchmark for diff degradation rate

G-TMC-DDR G-FMC-DDR-S G-FMC-DDR-L

Avg. Makespan (ms) 188 188 180
Avg. Sys. Tpeak (◦C) 89.69 90.02 88.34
Avg. Sys. MTTF (Hr) 4149 4164 4264
Avg. CPU time (s) 1567.9 15.58 178.92

formulated in (3.38), we can achieve a similar (a little inferior) performance

in terms of the peak temperature, system-level MTTF, and makespan, but

significant CPU time improvement.

The highly efficient MTTF calculation enables us to search a much larger

solution space. In G-FMC-DDR-L, we increase both the population size and

the reproduction generations in the genetic algorithm, with the total size of

design space increased by 25 times. As observed in Figure 3.8d, with increased

search space, the G-FMC-DDR-L approach requires more CPU time than G-

FMC-DDR-S, but it helps to yield better results. For G-FMC-DDR-L, in

Figure 3.8a, we see that the average peak temperature is reduced by 0.5◦C,

1.8◦C, 2.7◦C, 2.6◦C when PU numbers increase from 5 to 20. Accordingly,

their average system-level MTTFs improve by 113 Hr, 622 Hr, 434 Hr, 764

Hr as shown in Figure 3.8b, and Figure 3.8c, the average makespans reduced

by 25 ms, 23 ms, 16 ms, 18 ms compared with G-TMC-DDR [62]. In the

meantime, it is worth pointing out that, by increasing the size of the ini-

tial population and number of generations for evolution in G-FMC-DDR-L,

we can obtain solutions with better performance metrics (i.e., average peak

temperature, average system-level MTTF, and average makespans). Simulta-

neously consuming much fewer CPU times, i.e., 3, 6, 7, 8 times less than the

G-TMC-DDR [62] according to Figure 3.8d.
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Table 3.9: Results of Real-Life Benchmark for diff degradation rate

G-TMC-DDR G-FMC-DDR-S G-FMC-DDR-L

Avg. Makespan (µs) 1489 1490 1463
Avg. Sys. Tpeak (◦C) 69.70 68.94 66.06
Avg. Sys. MTTF (Hr) 8173 8195 8867
Avg. CPU time (s) 32245.2 12.42 260.1

We can see similar results from the two practical automotive benchmarks.

As shown in Table 3.8, comparing G-TMC-DDR and G-FMC-DDR-S, there

is not much change in the average makespan. Their peak temperatures differ

slightly by 0.33◦C, and average MTTF also differ slightly by 15 Hr. However,

G-FMC-DDR-S is faster than G-TMC-DDR [62] by 100 times. In the mean-

time, as shown in Table 3.9, the makespan, peak temperature, and MTTF es-

timation for G-FMC-DDR-L outperform G-TMC-DDR [62] significantly, i.e.,

by 26 µs, 3.64◦C, and 694 Hr, respectively, with CPU time 124 times lower.

The prominence of our fast system-level MTTF calculation helps to achieve

better design space exploration due to low timing complexity in the practical

systems and offers better results.

3.8 Conclusion

In this chapter, we study how to map a periodic automotive application on PU with

temperature issues taken into consideration. We first propose a mathematical pro-

gramming approach to meet the peak temperature constraint while reducing the ap-

plication latency. We further propose a more sophisticated genetic algorithm-based

approach to deal with the peak temperature constraint and system-wide reliability

optimization. To this end, we develop two key algorithms, i.e., guaranteeing the

peak temperature for periodic tasks with variable execution times and the analyt-
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ical approach for system-wide MTTF calculation, which can speed up the process

by several orders of magnitudes. Experimental results for two practical automo-

tive benchmarks show that the proposed peak temperature algorithm is accurate by

17◦C and 40◦C, which results in 81% and 260% more accurate MTTF estimation.

At the same time, the proposed MTTF formulation is faster by 17× and 191× with

an accuracy loss of less than 0.1%, which validates the efficiency of our proposed

approach.
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CHAPTER 4

THERMAL AWARE NEURON SENSITIVITY ANALYSIS FOR

DEEP NEURAL NETWORKS

In the age of miniaturization and Artificial Intelligence/Machine Learning, various

DNN accelerators are proposed for mission-critical systems, such as AVs. With the

rapidly increasing complexity of the deep learning applications, there is the substan-

tial growth of the size of the DNNs, which demands large memory space. Such large

DNNs are continuously retrieved from the memory during real-time inference oper-

ations. The shrinking of the memory IC chip’s size increases the thermal gradients.

On the other hand, as the AVs undergo harsh thermal conditions, the accelerators’

memory system is exposed to a high-temperature state. Overall, the temperature

affects the performance of DNNs in terms of reduced classification accuracy. Hence,

thermal impacts should be considered in the ECS design to better address the ac-

curacy degradation.

As a case study, this chapter considers emerging non-volatile memory technology,

e.g., STT-MRAM for DNN storage, and quantifies the thermal impact on accuracy

as a sensitivity metric. Despite being a viable solution, data cells of the STT-MRAM

suffer from temperature-induced random bit flipping, leading to classification inac-

curacy. Not all the DNN parameters’ random bit flipping affect the accuracy; there-

fore, it is required to search and protect the delicate parameters to prevent accuracy

loss. As all the parameters associated with the neuron are structured together in

memory, we develop a neuron-level analytical sensitivity estimation framework to

detect their saliency. We validate the sensitivity framework using popular DNNs

and datasets.
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4.1 Introduction

Artificial intelligence (AI) technology allows computer applications to learn from

their experiences through iterative processing and algorithmic training. With each

successful cycle of data processing, AI systems become smarter since each interaction

allows the system to test and measure solutions while also developing experience in

the task at hand. AI systems can become experts significantly faster than humans

because this can be done quickly, far faster than a human can do a similar task,

making them very effective solutions for any process requiring intelligent decision

making [120].

Machine learning is one of the ways to inculcate artificial intelligence. Traditional

Machine Learning techniques require most of the pertinent features to be defined by

a domain expert in order to reduce data complexity and make patterns more suitable

for learning algorithms to work [23]. On the other hand, Deep Learning algorithms

have the advantage that they seek to learn high-level features from data. It does

away with domain knowledge and laborious extrication of hardcore features [24].

Therefore, deep neural networks are considered a core component in the upcoming

autonomous vehicles.

The modern automotives employ distributed processing architecture to meet the

latency requirements of mission-critical functionalities, which involves CPUs, GPUs,

and FPGAs [39, 121]. The temperature plays a crucial role in reliable computing

system performance. The high thermal gradients across a semiconductor chip de-

grade the lifetime; for example, every 10◦C rise in the temperature reduces the

lifetime by half [50]. Similarly, exceeding the temperature threshold of the proces-

sor throttles the power and may be catastrophic for mission-critical systems, such as
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automobiles [45]. Therefore, managing thermal issues of the computing platform for

safety-critical applications by guaranteeing performance is a prime design objective.

Although deep neural networks are assumed to be fault-tolerant [122], prior

studies have shown that the random errors in the underlying computing hardware

can misclassify the input objects [123]. For example, Hanif et al. presented a case

study in which the memory faults can affect the reliability of the neural networks

[124]. For the case study, faults in the main memory and on-chip accelerator memory

misclassified the Hammerhead Shark as Great White Shark. Moreover, a single bit

flip in the entire VGG-f network dramatically drops the average accuracy from 80%

to about 5%. Likewise, for the VGG11 network on the Cifar10 dataset consisting of

132 million parameters, only 3-bit flips are enough to bring down the classification

accuracy from 89.40% to 10.27% [125]. While, authors in [126] have demonstrated

that high energy particle strike induced soft errors in the accelerator hardware can

wrongly classify the truck as a bird, which may lead to catastrophic events for

autonomous vehicles.

Similarly, the temperature impact on Resistive RAM (ReRAM) based accelerator

is studied in [49]. ReRAM stores the parameters as a unique conductance value,

and as the temperature increases from 27◦C to 127◦C, the difference between ON

state-OFF state conductance reduces by almost 50% [49]. Due to such a drastic

change in the conductance, the encoded parameter values in the ReRAM array get

perturbed at high temperatures. Finally, it results in an accuracy drop below 10%

at 127◦C for the state-of-the-art networks such as LeNet, VGG16, ResNet50, and

Inceptionv3 [127]. Such a variety of faults in the hardware can manifold as the size

of the DNNs increase.

In recent times, the convolution neural networks have scaled from 57.7 mil-

lion [128] to 829 million parameter space [129]. Similarly, as shown in Figure 1.10 in
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Chapter 1, the number of parameters in Transformer models, widely used in com-

mercial natural language processing and computer vision applications, has increased

exponentially [1]. Also, the parameter count in the Recommendation System (Rec-

Sys) models has reached up to 10000 billion. In particular, the parameter space

for such networks has increased by 240× for every 2 years. But, the accelerator

memory has not scaled up in the same proportion, which is just 2× improvement

per 2 years. The DNN parameters are stored and later retrieved from the memory

during inference. The overwhelming growth of neural networks can present power

and latency problems for safety-critical applications, such as autonomous cars [130].

The emerging memory technology, i.e., STT-MRAM, can alleviate these challenges,

as found in Graphical Processing Unit (GPU) and Processing-In-Memory (PIM)

accelerators [131–133]. It has a non-volatility feature along with low access latency,

low power, high density, and DRAM-like endurance [47]. In particular, the read

access latency and read power requirements are improved by 8.4% and 66.2%, re-

spectively, than the traditional DRAM [48] and integration density (6-20 F2) as high

as DRAM (6-10 F2) [134].

As a case study, in this chapter, we consider STT-MRAM for DNN parameter

storage. Despite several significant advantages over the existing memory system,

the STT-MRAM’s stability degrades with the temperature. As later found in the

motivational example in Section-4.4.1, the STT-MRAM suffers from thermal pertur-

bations, and the DNN accuracy drops abruptly at high temperatures. It indicates a

need to protect the accelerators from temperature-induced detrimental effects. The

sensitivity analysis of the DNN parameters plays a key role for such scenarios to

identify their saliency.

Dash et al. have demonstrated that protecting the most sensitive DNN parame-

ters can maintain the classification accuracy without protecting the entire parameter
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set [63]. Such parameters selected for protection to maintain the classification ac-

curacy mainly depend on how accurately their sensitivity is estimated. The most

straightforward sensitivity estimation is the magnitude of the parameter itself [135].

However, it suffers from the classification accuracy problem at high temperatures,

as observed later in the experiment results Section-4.5.2, indicating inaccurate pa-

rameter saliency. Khalid et al. have evaluated the sensitivity by calculating the

error indices, which involves perturbing individual DNN parameters and tracking

the change in the cost function due to each parameter [136]. This method is compu-

tationally intense, and moreover, it ignores the cumulative effect of other parameter

perturbations.

The first-order derivative, i.e., gradients of the DNN parameters over the cost

function is another most commonly used approach for sensitivity estimation [137,

138]. While, authors in [63] have evaluated the sensitivity of DNN parameters based

on the second-order derivative, i.e., hessian matrix, which is approximated using

dominant eigenvalue and eigenvector pairs [139, 140]. The gradient-based method

in [137] assumes the higher-order terms are zero, whereas the hessian-based method

in [63] assumes that the gradient and higher-order terms are zero. Therefore, the

gradient and hessian methods ignore the correspondence of each other, resulting

in classification inaccuracies. Hence, in this chapter, we propose to estimate the

sensitivity based on gradient and hessian information.

The chosen parameters for protection based on their sensitivity are not neces-

sary to be in a contiguous memory location while they are accessed by the DNN

accelerators, which may lead to more cache misses, thereby affecting the latency

for mission-critical applications. On the other hand, parameter index-tracking can

be cumbersome for large networks [141]. Therefore, due to the structural ease of

parameter access, we opt to find the sensitivity at neuron-level whose associated
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parameters guarantee to be in the adjacent memory locations. Our contributions

are as follows:

� First, we analyze the temperature impact on DNN prediction accuracy when

the parameters are stored in the STT-MRAM. It highlights the need to protect

the delicate parameters from random thermal perturbations as the accuracy

drops sharply at high temperatures.

� Then, we propose the analytical method for neuron-level sensitivity estimation,

which employs the first-order and second-order derivative information of the

cost function.

� Later, we validate the proposed sensitivity analysis framework for state-of-

the-art neural networks and datasets. Our experimental results demonstrate

that the proposed neuron-level sensitivity estimation methodology achieves

better classification accuracy than the existing methods by 0.5-4.2% for LeNet,

ResNet20, ResNet56, and DenseNet40 architectures at a high-temperature

range.

� At last, we analyze the limitation of the proposed sensitivity estimation method

when the network parameters have a high variance in MobileNet architecture.

We train the MobileNet by applying regularization to minimize the parameter

variance and evaluate its impact on the accuracy of the developed sensitivity

metric.

The rest of the chapter is organized as follows. We present the existing work

on sensitivity analysis in Section-4.2. Then we define deep neural network, STT-

MARM, and error models in Section-4.3. We describe the motivation for accurate

sensitivity estimation in Section-4.4 and later mathematically define the proposed
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methodology. We present our experiment set-up details and the results in Section-

4.5 followed by conclusion in Section-4.6.

4.2 Related Work

The sensitivity analysis of the neural network provides saliency information of the

parameters, which can be readily used to detect the vulnerable parameters. A small

unnoticeable perturbation in those vulnerable parameters can lead to a significant

accuracy loss, which is undesirable for mission-critical systems like AVs. Sensitivity

analysis is primarily important in network pruning to reduce its size and maintain

security under malicious attacks. In this section, we discuss different sensitivity

estimation frameworks available in the literature.

The existing work for sensitivity analysis can be broadly classified as the in-

put sensitivity and the network element sensitivity. The input sensitivity methods

identify the saliency of the input data perturbations on the prediction accuracy,

whereas later define the saliency of the network elements when they are perturbed.

The network elements can be termed as bits, parameters, neurons, and layers.

Input Sensitivity: Several approaches have been proposed in the literature to

estimate the input sensitivity. For example, authors in [142] identify the sensitivity

of both input and parameter perturbations on DNN’s output. It is challenging to

identify which element is more sensitive to the output change, as both the input

and parameter sensitivities are amalgamated. Sensitivity estimation plays a crucial

role in the security aspect of the DNNs. Li et al. have analyzed the robustness of

the network under the input variations using a threat model [143].

Meanwhile, Kowalski et al. defined the sensitivity of the inputs for Probabilistic

Neural Networks [144]. The authors have utilized Sobol’s approach to derive the
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sensitivity metric [145], which requires first-order, second-order, higher-order, and

total sensitivity indices calculation leading computationally intractable for large

neural networks. In another method, the sensitivity of the neuron is estimated by

calculating the derivative of the output w.r.t. the inputs of the DNN [138].

All these methods quantify the sensitivity over the input set. However, in our

approach, we study the temperature impact on the system itself; therefore, we

assume that the inputs are undisturbed and focus only on the sensitivity due to

thermal parameter/neuron perturbations.

Network Element Sensitivity: This category can be again categorized as

a bit-level, parameter-level, neuron-level, and layer-level sensitivity based on the

network elements.

Bit-level Sensitivity : It is the lowest abstraction of the network, where DNN pa-

rameters are represented as binary bits stored in the memory. There are few recent

works exploiting bit-level sensitivity information. Authors in [124] have simulated

the sensitivity of bit flips for parameters stored in a single-precision format. Ac-

cording to their analysis, the bit flips from 1 to 0 do not affect the accuracy much,

but, contrarily, 0 to 1 bit flips significantly drop the accuracy. The MSB bits of

the exponent part are highly sensitive to the perturbations, and sensitivity subsides

gradually as the flipping location changes from MSB to LSB.

Long et al. heuristically defined the layer-wise sensitivity by quantizing the pa-

rameter representation bits from floating-point to fixed-point notation [146]. They

simulate the number of bits required for a layer’s parameter representation by as-

suming other layers still have the floating-point parameters and decide the number

of bits as a sensitivity metric for the layer under given accuracy loss. However, the

methods in [124,146] fail to provide the analytical model for sensitivity estimation.
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In another work, Yao et al. analyzed the bit-level sensitivity using a gradient-

based approach combined with a flip-aware search heuristic [125]. In this method,

first, the bit-wise gradients are computed to determine the vulnerable bits, followed

by the flip-aware search to detect a group of bits responsible for accuracy drop.

As the gradients are computed at the bit level, and memory page configurations

are required to be maintained for the search algorithm, this method demands high

computation cost.

Parameter-level Sensitivity : Parameters of the neural network consists of learn-

able weights and bias terms. They are initialized to a random guess and later

optimized to reduce the network’s cost function. Many of the existing applications

using sensitivity estimation focus on the parameter level. Han et al. prune the

network connections using the parameter sensitivity information [147]. In another

approach, the parameter-level sensitivity metric is used to preserve a certain num-

ber of the parameters to approximate the entire network’s gradients, which helps to

speed up the back-propagation phase [148].

For DNN security applications, the sensitive-sample signatures are generated for

each parameter, which can be later used to check the outsourced model’s integrity

in the cloud-edge architecture. A similar application can be found in [149]. While

Choi et al. have used the parameter sensitivity due to random bit flipping [137].

Similarly, Dash et al. developed the network parameter sensitivity under the noisy

stochastic environment for the processing-in-memory accelerator [63]. They apply

the sensitivity information to protect the most sensitive network parameters to min-

imize the accuracy loss.

Neuron-level Sensitivity : A neuron represents a group of trainable network pa-

rameters and the bias term. It acts as an interface between layers of the DNN. Neu-

ron level sensitivity information is vital as there is an ease of access for associated

84



parameters. Li et al. defined the neuron sensitivity for pruning the network [135].

Similarly, authors in [150] use the neuron-level sensitivity to prune the insensitive

neurons by maintaining similar accuracy. Instead of the incoming parameter values

only, authors in [151] defined the neuron’s sensitivity by considering the incoming

and outgoing parameter values. In another work, Luo et al. estimated the sensitiv-

ity of the neurons based on their ability to approximate the output of the following

layer [152]. This approach does not consider the impact of the neuron’s output on

the final output of the network unless it is the neuron in the last layer. There-

fore, it does not satisfy the ideal explication of sensitivity estimation. Based on the

parameter-level sensitivity model, the neuron-level sensitivity is estimated in [153].

Later, neurons within the higher sensitivity range are assigned maximum precision

bits, and neurons in the lower sensitivity range are assigned minimum precision bits.

Layer-level Sensitivity : The layer of DNN is a collection of neurons, which oper-

ate simultaneously over the input features. There are few works utilizing the highest

abstraction level sensitivity information. Wu et al. used layer-wise unique thresh-

old value as a sensitivity metric, calculated by solving the optimization problem as

a differential evolutionary algorithm [154]. The calculated threshold is applied to

facilitate the pruning to reduce the memory space. The computational cost of the

genetic algorithm-based evolution process used in the paper increases quadratically

with the size of the network. In another work, layer-wise sensitivity is applied to

detect the adversarial noise saliency [155].

Further, the existing work on sensitivity estimation can be classified based on

the metrics used in the computation.

Metric-based Sensitivity: The sensitivity metrics can be divided into three

types, such as magnitude-based or L1/L2 norm, gradient-based, and hessian-based.

85



Magnitude-based Sensitivity : The simplest metric among all the techniques is

the absolute parameter value or L1-norm as a sensitivity metric given by [147]:

Si
L1 = |wi|, i ∈ N, (4.1)

where W ∈ RN is the parameter space of the DNN. Similarly, Li et al. defined the

L1-norm at neuron-level as a sum of the associated parameter magnitudes [135]. If

sa is the size of the neuron (Na), then L1-norm is defined as

SNa
L1 =

sa∑
i=1

|wi|. (4.2)

Also, the authors define the neuron-level L2-norm as

SNa
L2 =

sa∑
i=1

||wi||2, (4.3)

where wi represents the parameters associated with the corresponding neurons. In

the previous method, only the incoming parameters of the neuron are considered.

But, Jiang et al. quantified the neuron’s sensitivity by combining the quadratic sum

of the incoming and outgoing parameter values. For example, the sensitivity of the

ath neuron in lth layer can be

SNa,l
Q =

∑
h

(wl
ah)

2 ·
∑
j

(wl+1
ja )2. (4.4)

While L2-norm of the layer activations is used to quantify the layer-level sensitivity

in [154]. Let aladv and al are lth layer’s activations when the input is compromised

by the adversary and original input, respectively. The sensitivity of the lth layer be

Sl
L2 =

||aladv − al||2
||al||2

. (4.5)

Gradient-based : Another most common approach is back propagation-based, i.e.,

first-order derivatives or gradients. The absolute value of the gradients is used as a
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sensitivity metric of the parameters in [148]. If C is the network cost function, the

ith parameter sensitivity be

Si
g,L1

= | ∂C
∂wi

|. (4.6)

In another variant, the square of the L2-norm of the parameter gradients is used as

the sensitivity metric in [149,156], which can be defined as

Si
g,L2

= || ∂C
∂wi

||22. (4.7)

Authors in [137] quantify the sensitivity of the random bit flips using a gradient-

based approach. If ϵi is the perturbation, and E(wi) is the average value due to

random bit flips of the ith parameter, then the sensitivity is estimated as

Si
g,ϵi

= | ∂C
∂wi

ϵi|, ϵi = wi − E(wi). (4.8)

While Hassan et al. used the parameter sensitivity information in equation (4.8) to

model the neuron-level sensitivity as [153]

SNa
g,ϵ =

1

sa

sa∑
i=1

| ∂C
∂wi

ϵi|. (4.9)

In another method, the sensitivity of the neuron is estimated by calculating the

derivative of the output w.r.t. the inputs of the DNN [138]. In this approach, the

sensitivity of the ath neuron in the current layer w.r.t. the output of the ith neuron

in the previous layer for nth sample of the input dataset (xn) is

SNa
i |xn =

∂ya
∂xi

(xn). (4.10)

The average sensitivity of the neuron over the entire dataset of length N be

SNa,avg
i =

∑N
j=1 S

Na
i |xj

N
. (4.11)

Hessian-based : Recently, the second-order sensitivity analysis has been gaining

popularity due to the development of a time-efficient hessian approximation frame-

works [139, 140]. Dash et al. developed the network parameter sensitivity using
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approximated hessian information [63], and the described method achieves better

accuracy by protecting a small fraction of the network parameters. If λ and q are

the n dominant eigenvalues and eigenvectors, then the ith parameter sensitivity be

Si
h = (

n∑
j=1

|λj|q2j )
⊙

w2
i , (4.12)

where
⊙

is the Hadamard product operator. Yu et al. used the second-order

information to quantify the sensitivity of the group of neurons [150]. In particular,

if Hp,p is a hessian block of the parameters wp associated with p neurons, their

sensitivity is

Sp
h =

Trace(Hp,p)

2p
||wp||22, (4.13)

where Trace(Hp,p) is a trace of the hessian block, which can be approximated using

the utility in [140].

Overall, the gradient-based sensitivity methods described in [137, 138, 148, 149,

156] ignore the higher-order derivatives. Whereas the sensitivity frameworks in

[63, 150] assume gradients to be zero; therefore, they use only the second-order

derivative for sensitivity estimation, ignoring higher order derivative terms. The

second-order method achieves better accuracy than the gradient, highlighting its

importance. These two methods ignore the preeminence of each other. Also, there

is structural ease to access the neuron’s parameters. Therefore, we propose to utilize

the first-order and second-order derivative information of the cost function landscape

to better address the sensitivity estimation at the neuron-level. In the following

section, we present our system models in detail.

4.3 Preliminary

In this section, first, we discuss the architecture of the STT-MRAM cell, which

is used for DNN parameter storage, followed by thermal impact on its switching
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probability. Then, we present the floating-point and fixed-point representations

used while storing the data in memory. At last, we describe the DNN parameter

error model due to thermal effects and random error model to correlate the thermal

impact with switching probability.

4.3.1 DNN Architecture

We consider the DNN architecture described in Section 2.4 in Chapter 2.

4.3.2 Temperature Impact on STT-MRAM Cell

In this chapter, we assume that neural network parameters are stored in STT-

MRAM and retrieved during the inference phase. In the future, STT-MRAM is

seen as one of the favorable non-volatile memory technology for both standalone

and embedded applications to serve as a universal memory option. It is a leading

candidate to mitigate the problems between DRAM and secondary memory system

[47] and last-level cache alternative to SRAM [157]. Compared with SRAM and

DRAM, STT-MRAM is non-volatile, has negligible leakage power consumption,

high endurance [158], and CMOS compatibility.

The structure of the STT-MRAM cell is as shown in Figure 4.1a. It is a three-

terminal cell consisting of one N-channel MOSFET (NMOS) transistor and a mag-

netic tunnel junction (MTJ) device. The word line (WL) is used to access the cell.

One of the remaining terminals is interfaced to the bit line (BL) and the remaining

terminal to the source line (SL). The MTJ device is the fundamental element in

the STT-MRAM cell to function as resistive storage. It has a free layer (FL) and

pinned layer (PL) on two ends, and a tunnel barrier is sandwiched between them.
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Figure 4.1: STT-MRAM cell with read-write current directions [134].

The magnetic alignment of the FL can be reversed; in contrast, that of PL can not

be altered.

The STT-MRAM cell has two modes of operation: parallel (P) and anti-parallel

(AP). The magnetic alignments of FL and PL are in the same direction in P-state,

whereas they are in the reverse direction in the AP-state [47]. The word line and

bit line are set to the supply voltage, and the source line is grounded to make the

cell in P-state, facilitating the write ‘0’ operation. Contrarily, the word line and

source line are set to the supply voltage, and the bit line is at the ground to force

the cell in AP-state, writing ‘1’. To read the state of the cell, a voltage Vread is

applied across it. The current directions through the cell during write ‘0’, write ‘1’,

and read operations are shown in Figure 4.1b-d, respectively, and the width of the

arrows indicates proportionate current magnitudes during the operations. We have

Iw0 > Iw1 > Ird, (4.14)

where Iw0, Iw1, and Ird are the currents during write ‘0’, write ‘1’, and read op-

erations, respectively. For vehicle control operations, once the application design

is finalized, the PUs are required during inference state, hence requiring only read

90



operation of the memory, which has a very low magnitude of the current for STT-

MRAM, resulting in less power consumption.

As a case study, we consider the emerging non-volatile memory technology, i.e.,

STT-MRAM, to store the DNN parameters. After the network is trained on the

high-performance computing platform, it can be deployed in the low power accelera-

tors or edge devices for inferencing [156]. For such accelerators, we assume that the

parameters are stored in the STT-MRAM. Despite having low power, low latency,

and no refreshing requirement, it suffers from thermal problems [159]. The thermal

stability of STT-MRAM cell at the temperature (T ) be

∆ =
Eb

kB ∗ T
, (4.15)

where Eb is the energy of the barrier and kB is the Boltzmann constant. The data

bits stored in the STT-MRAM cells flip with the probability

Psw = 1− e

(
− τpw

τ0
∗e(−∆(1− Ird

Ic0
))
)
, (4.16)

where τpw is a pulse width of the read operation, τ0 is the period, Ir is the read

current, and Ic0 is the switching current at 0 K. By using the parameters described

in [160], we plot the equations (4.15) and (4.16) for increasing values of the temper-

ature.

From Figure 4.2, we observe that the thermal stability of the STT-MRAM cell

reduces with the temperature, which results in an exponential increase in the flip-

ping probability. As the temperature increases from 30◦C to 100◦C, the flipping

probability increases by 7328794.80%. This temperature range coincides with the

typical vehicle operating temperature conditions [38]. It clearly indicates that the

data stored in the STT-MRAM cell is subject to significant random variations at

high temperatures. In the next section, we present the models for finding the average

error of the parameters stored in STT-MRAM cells.
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Figure 4.2: Temperature impact on STT-MRAM’s Thermal Stability and Flipping Prob-
ability. As the temperature rises, there is a gradual decrease in the thermal stability, and
flipping probability exponentially increases.

4.3.3 Floating-point and Fixed-point Number Representa-

tion

The DNN parameters are stored in STT-MRAM in binary format, but internally

they follow a suitable representation technique for data processing. Floating-point

and fixed-point number systems are widely used in computing platforms. The choice

of a particular representation style depends on many factors such as precision and

dynamic range of the numbers, performance, power, and cost.

The floating-point number representation is shown in Figure 4.3a. It has one sign

bit (s = 0 for +ve and s = 1 for -ve), q exponent bits (e0, ..., eq−1) and p mantissa

bits (d0, ..., dp−1). Generally, computing systems use IEEE 754 32-bit single-precision

format for storing numbers, where q = 8 and p = 23. In general, for a 32-bit binary

number, we can find its value as [161]

value = (−1)s · 2(E−127) ·

(
1 +

22∑
i=0

222−i · di

)
, (4.17)
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Figure 4.3: Fixed-point and floating-point number representation.

where E =
∑7

i=0 2
7−i · ei. The floating-point numbers represent a wide range of

numbers than the fixed-point counterpart. The maximum and minimum numbers

in single-precision format are ±3.4028235× 1038.

In a fixed-point number representation, signed numbers are stored in 2’s comple-

ment format. The fixed-point number representation format is as shown in Figure

4.3b, where s is the sign bit (1-negative, 0-positive), m bits for the integer part, and

n bits for the decimal part, such that b = 1+m+n. Once the values of m and n are

chosen, the position of the decimal point is fixed. The minimum and maximum val-

ues represented by fixed-point format are −2b−1/2n and (2b−1 − 1)/2n, respectively.

If x is the binary number of length b, then we can find the value as [162]

value = 2−n

[
−2b−1 · xb−1 +

b−2∑
i=0

2i · xi

]
. (4.18)

Different combinations of b and n are used to represent the fixed-point numbers while

adopting them in the AI frameworks to balance the neural network’s classification

accuracy, power, and computing resources [163–165].
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Since floating-point numbers render a large scale of numbers than the fixed-point,

eventually, floating-point numbers introduce large errors when there are random bit

flips in the data.

4.3.4 Errors for Parameter Representation

The deep neural network parameters are stored in the accelerator memory and

retrieved during inference operation. The fixed-point numbers are preferred in the

DNN accelerators due to energy saving capability [166]. Also, as shown in Figures 4.4

and 4.5 later in Section-4.4.1, there is a severe temperature impact on the accuracy

of the DNN parameters stored as 32-bit floating-point numbers than 16-bit fixed-

point. Therefore, in this work, we assume that the DNN parameters and activations

use fixed-point numbers stored in STT-MRAM cells. The expectation of such ith

DNN parameter due to a bit flipping be

E(ϵi) =

nword∑
l=1

(w∗
il − wi) Psw (1− Psw)

l−1, (4.19)

where w∗
il is obtained by flipping the lth bit of the parameter wi, and nword are the

total number of bits in a fixed-point representation. Also, wi ∈ WNa and WNa is

a weight set associated with neuron Na. Here, we assume that only a single bit is

flipped at a time for any DNN parameter, and as Psw ≪ 0, the (1− Psw) term can

be safely ignored from the above equation. Therefore, we get

E(ϵi) =

nword∑
l=1

(w∗
il − wi) Psw. (4.20)

Similarly, the expectation of the square of the ith DNN parameter perturbation be

E(ϵ2i ) =

nword∑
l=1

(w∗
il − wi)

2 Psw. (4.21)
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The E(ϵi) and E(ϵ2i ) are required in the sensitivity estimation framework. In the

next section, we present a model to relate the bit flipping location with flipping

probability.

4.3.5 Random Error Model

The temperature-dependent flipping probability of the STT-MRAM cell is described

in equation (4.16). For a given DNN of N parameters with nword bits per parameter,

we generate random uniform distribution U(0, 1)N,nword [167]. The lth bit of the ith

parameter is flipped, if

U [i, l] ≤ Psw. (4.22)

According to the model, as the flipping probability increases with the temperature,

more bit flips occur.

With all the system models discussed in this section, we present a motivation

for sensitivity analysis and propose our sensitivity estimation framework in the next

section.

4.4 Sensitivity Estimation

In this section, first, we study the impact of temperature-induced random bit flips

in the STT-MRAM array on classification accuracy, followed by the proposed sen-

sitivity estimation methodology.

4.4.1 Motivation

From Figure 4.2 in Section-4.3.2, we observe that the flipping probability increases

exponentially with the temperature and results in the random variations in the
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DNN parameters stored in the STT-MRAM. We use the model in Section-4.3.5 to

study the effect of random parameter perturbations on classification accuracy for

various deep neural network architectures and datasets. The experiment setup is in

Section-4.5.1. We compare the temperature effect on the single-precision floating-

point representation and 16-bit fixed-point representation.
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Figure 4.4: Effect of temperature on classification accuracy for parameters stored as a
single-precision floating-point representation. The classification accuracy of all the DNNs
under consideration drops sharply with increasing temperature.

As observed in Figure 4.4 and Figure 4.5, the DNNs sustain their baseline ac-

curacy at lower temperatures. However, there is a sharp decrease in the accu-

racy as the temperature increases. Also, the inflection point of accuracy drop is

unique for different networks, which may depend upon numerous factors, such as

the type and number of layers, type of activation function, number of parameters,

parameter number representation format, and input dataset. In comparison with

the fixed-point format (Figure 4.5), the accuracy drops at lower temperatures for

the single-precision floating-point format (Figure 4.4). This motivational example
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Figure 4.5: Effect of temperature on classification accuracy for parameters stored as a
16-bit fixed-point representation. The classification accuracy of all the DNNs under con-
sideration drops sharply with increasing temperature.

clearly highlights: (i) single-precision floating-point numbers introduce large data

errors resulting in sharp accuracy drop at the lower temperatures; (ii) the impor-

tance of DNN parameters’ protection from thermal perturbations to maintain the

classification accuracy, especially in automotives as their peak ambient temperature

reaches 90◦C − 150◦C [38].

The accurate sensitivity estimation plays a crucial role in maintaining the base-

line accuracy. As found in the existing works, we can find sensitivity at the bit,

parameter, neuron, or layer level. The sensitivity estimation at bit level is too com-

plex as it may have very large dimensions if the network size is huge, as shown

in Figure 1.10 in Section- 4.1. Therefore, the next obvious choice is the sensitiv-

ity at the parameter level. However, ranking parameters based on parameter-level

sensitivity may not guarantee the structural order when parameters are stored in

the memory. Hence, the obvious choice is the sensitivity at the neuron level. In
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the following section, we present a more accurate sensitivity estimation framework

based on the first-order and second-order components.

4.4.2 Neuron-level Sensitivity Estimation

The neuron is a basic computational element in the DNN. The errors in neuron

outputs can propagate through subsequent network layers and may misclassify the

input data. However, it is not necessary that all the neuron outputs can impact

the classification accuracy. The sensitivity analysis reveals the potential of neuron

perturbations on the classification accuracy. Hence, the precise sensitivity model is

desirable. We formally define the neuron sensitivity as a definition 4.4.1.

Definition 4.4.1. Let C(N ) is an original cost function of the deep neural network

neuron set N over the entire dataset. Let the parameter perturbations in a neuron

Na be ϵNa ∈ Rsa, and the cost function of the network due to a distorted neuron is

C(Na + ϵNa). By assuming other neurons remain unchanged, the sensitivity of the

neuron be

|E[∆C(N )]| = |E[C(N )− C(Na + ϵNa)]|. (4.23)

We use bold letters to represent vector/matrix if unless specified otherwise. In

what follows, we analytically derive the sensitivity of the neuron in equation (4.23).

By considering first-order and second-order terms of the Taylor expansion and ne-

glecting higher-order terms [168], the modified cost function be

|E[∆C(N )]| ≈ |E[ϵTNa
· GNa +

1

2
ϵTNa

· HNa · ϵNa ]|, (4.24)

where GNa and HNa represent the first-order and second-order derivatives of the

C(Na), respectively, commonly known as the gradient vector and hessian matrix. As

HNa is a real symmetric matrix, it can be described as QTΛQ, where Λ is a diagonal
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matrix with eigenvalues (λ1, λ2, ..., λsa) as the diagonal elements in the descending

order and the rows of Q are the corresponding eigenvectors (q1, q2, ..., qsa).

|E[∆C(N )]| ≈ |E[ϵTNa
· GNa +

1

2
ϵTNa

·QTΛQ · ϵNa ]| (4.25)

|E[∆C(N )]| ≈ |E[ϵTNa
· GNa +

1

2
(Q · ϵNa)

TΛ(Q · ϵNa)]| (4.26)

With ψNa = Q · ϵNa , we have

|E[∆C(N )]| ≈ |E[ϵTNa
· GNa +

1

2
ψT

Na
ΛψNa ]| (4.27)

Since Λ is a diagonal matrix with eigenvalues in the declining order, we have λ1 ≥

λ2 ≥ ...λsa . We can rewrite equation (4.27) as

|E[∆C(N )]| ≈ |E[ϵTNa
· GNa +

1

2

sa∑
i=1

ψ2
i λi]| (4.28)

|E[∆C(N )]| ≈ |E(ϵTNa
) · GNa +

1

2

sa∑
i=1

E(ψ2
i )λi| (4.29)

As the rows of the Q are eigenvectors and ψNa = Q · ϵNa , we have

|E[∆C(N )]| ≈ |E(ϵTNa
) · GNa +

1

2

sa∑
i=1

λi E[(qi · ϵNa)
2]| (4.30)

After expanding the inner product of eigenvectors and parameter perturbations,

|E[∆C(N )]| ≈ |E(ϵTNa
) · GNa +

1

2

sa∑
i=1

λi

(
sa∑
j=1

q2ij E(ϵ2j)

+
sa∑
j=1

sa∑
k=j+1

2 qij qik E(ϵj) E(ϵk)

)
|

For a fixed-point number, E(ϵj), E(ϵk) < 1 and most of the elements of the eigen-

vectors, i.e., qij, qik < 1. Therefore, we get

|E[∆C(N )]| ≈ |E(ϵTNa
) · GNa +

1

2

sa∑
i=1

λi

sa∑
j=1

q2ij E(ϵ2j)| (4.31)
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We choose top-n eigenvalues as most of them are close to zero [169], where n≪ sa.

|E[∆C(N )]| ≈ |E(ϵTNa
) · GNa +

1

2

n∑
i=1

λi

sa∑
j=1

q2ij E(ϵ2j)| (4.32)

As the neurons in a network have different sizes, we normalize, and finally, the

sensitivity of the neuron is

SNa ≡ | 1
sa
E(ϵTNa

) · GNa +
1

2sa

n∑
i=1

λi

sa∑
j=1

q2ij E(ϵ2j)| (4.33)

The sensitivity estimation by equation (4.33) incorporates first and second-order

terms of the Taylor expansion resulting in more accurate sensitivity of the DNN

neurons than the state-of-the-art methods. The proposed method of neuron sensi-

tivity requires finding the eigenpairs for each neuron. Obviously, higher the neuron’s

sensitivity, perturbations in its parameters will bring significant classification accu-

racy loss.

As later shown in Section-4.5.2, the proposed sensitivity metric performs better

than the state-of-the-art methods for LeNet, ResNet20, ResNet56, and DenseNet40

networks; but it is inferior to MobileNet. For such cases, we present the effect of

regularization on the proposed sensitivity metric in the following section.

4.4.3 Regularization Impact on Sensitivity

The sensitivity metric presented in the previous section considers Taylor approxi-

mation of the change in a cost function. The error terms in equation (4.24), i.e.,

ϵNa should have low variance due to bit flipping for accurate approximation of the

cost function. Otherwise, an inaccurate approximation may result in the developed

sensitivity metric inconsistencies. In our case, regularization can play a critical role

in lowering the error variance.
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While model training, the model shows significant accuracy on the training

dataset but performs poorly on the test dataset due to an overfitting problem.

The regularization is widely applied to avoid overfitting problems, which helps to

generalize the models [170, 171]. The L1 regularization and L2 regularization are

commonly used to minimize the generalization error and overfitting [172]. The reg-

ularization modifies the cost function with a penalty term. In particular, for L1

regularization, the original cost function is modified as

cost function′ = cost function+ α
∑
i∈N

||wi||, (4.34)

where α is a regularization parameter. Similarly, a cost function for L2 regularization

is

cost function′ = cost function+ α
∑
i∈N

||wi||2. (4.35)

Since the objective of the training is to minimize the cost function, the α, which is

a hyper-parameter, has a significant impact on the resulting trained DNN param-

eters. Therefore, the L1 regularization results in a sparse DNN, whereas the L2

regularization produces the DNN with parameter values close to zero.

Regularization penalizes the parameters with large values. Hence, the DNN

parameter distribution narrows down. As a result, the parameter variance due

to bit flipping given by equations (4.20) and (4.21) is minimized. Such narrowed

parameter variance helps to achieve accurate Taylor approximation in the proposed

sensitivity metric. Since the pre-trained MobileNet shows inferior performance for

the proposed sensitivity metric, we train the MobileNet using L2 regularization and

evaluate its impact on the sensitivity.

In the next section, we present our experiment setup and discuss the results in

detail.
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4.5 Experimental Results

In this section, first, we present the experimental set up followed by the results and

observations.

4.5.1 Experimental Set-up

We use standard pre-trained deep neural networks, such as LeNet [173], ResNet20,

ResNet56 [174], DenseNet40 [175], MobileNet [176] and standard datasets like,

MNIST [177], Cifar10, Cifar100 [178], and ImageNet [179] to validate the proposed

sensitivity estimation framework. The eigenpair computation of the entire net-

work is computationally intractable. However, the approximation methods proposed

in [139,140] efficiently calculate the top-eigenpairs using randomized numerical lin-

ear algebra methods. These methods apply the oracle to calculate hessian without

forming the hessian matrix using random vectors, which have time complexity the

same as the back-propagation. We use the utility provided in [180] to calculate the

neuron-level top eigenvalue and eigenvector pairs, which uses the hessian approxi-

mation algorithm in [139]. For each neuron, n = 5 top eigenpairs are considered,

as they guarantee accurate approximation of the hessian matrix [63]. As there are

few bias terms in the DNN architecture, we do not include them in the eigenvalue

computation, and we assume that they are always protected from random pertur-

bations. We consider the protection of 5% parameters associated with the most

sensitive neurons to compare the accuracy of different sensitivity methods [63]. The

four neuron-level sensitivity methods used for comparison are listed below:

� Magnitude-based Sensitivity Estimation (Mag): This is an L1 norm-

based sensitivity method [135]. The sensitivity is estimated as the absolute
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value of the mean of the DNN parameters in a neuron as:

SNa
mag =

1

sa
|

sa∑
i=1

wi|, wi ∈WNa (4.36)

� Gradient-based Sensitivity Estimation (Grad): In this approach, we

consider only the first-order derivative term of the Taylor expansion [137] as:

SNa
grad =

1

sa
|E(ϵTNa

) · GNa | (4.37)

� Hessian-based Sensitivity Estimation (Hess): The second-order deriva-

tive term of the Taylor expansion [63] is considered in this approach as:

SNa
hess =

1

2sa
|

n∑
i=1

λi

sa∑
j=1

q2ij E(ϵ2j)| (4.38)

� Combined Sensitivity Estimation (Comb): It is the proposed sensitivity

estimation framework consisting of the first-order and second-order derivative

terms of the Taylor expansion, given by the equation (4.33).

We consider a signed 16-bit fixed-point number representation for the DNN pa-

rameters. Table 4.1 describes the number of integer and decimal bits used for

various DNN architectures-datasets along with their baseline accuracy. To evaluate

regularization impact on the developed sensitivity metric, we train the MobileNet

on ImageNet dataset using L2 regularization with α = 1e−3. This trained net-

work (MobileNet-ImageNet Reg) has lower baseline accuracy than the pre-trained

MobileNet-ImageNet counterpart, as shown in Table 4.1.

In the following section, we present and discuss our experiment results in detail

to validate the effectiveness of the proposed sensitivity method.
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Table 4.1: Integer and decimal bits in the signed 16-bit fixed-point representation

Architecture-
Dataset

Max.
parameter

Min.
parameter

Num.
Int bits

Num.
Dec bits

Baseline
accuracy

LeNet-
MNIST

1.143516 -1.528422 1 14 98.78%

ResNet20-
Cifar10

1.666870 -1.472656 1 14 96.47%

DenseNet40-
Cifar10

1.920898 -1.757446 1 14 94.39%

ResNet56-
Cifar100

2.431884 -1.184448 2 13 75.12%

MobileNet-
ImageNet

3.999877 -2.617187 2 13 77.51%(Top5)

MobileNet-
ImageNet
Reg

2.650756 -0.664550 2 13 69.80%(Top5)

4.5.2 Experimental Results and Discussion

From Figure 4.5 in Section-4.4.1, we observe that each DNN sustains the perturba-

tions at a lower temperature range, and the region in which accuracy drops signif-

icantly is different for each of them. Accordingly, we choose different temperature

ranges to study the effect of random bit flipping for each DNN. We collect classifi-

cation accuracy results of 50 randomized trials for each temperature value for the

sensitivity methods mentioned in Section-4.5.1.

For the temperature range of 120-150◦C, as shown in Figure 4.6, the accuracy

of the Mag [135] method is significantly lower than the remaining three methods

for the LeNet-MNIST configuration. Whereas the accuracy due to the Grad [137]

method is improved by 2-17% in comparison with the Mag for a temperature range

of 120-140◦C. For the same temperature range, the accuracy with the Hess method

is improved by 2-18.3% compared with the Grad method. At last, the proposed
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Figure 4.6: Accuracy with the protection of top-5% sensitive parameters for LeNet-
MNIST.
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Figure 4.7: Accuracy with protecting top-5% sensitive parameters for ResNet20-Cifar10.
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Figure 4.8: Accuracy with protecting top-5% sensitive parameters for ResNet56-Cifar100.
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Figure 4.9: Accuracy with protecting top-5% sensitive parameters for DenseNet40-Cifar10.
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Figure 4.10: Accuracy with protecting top-5% sensitive parameters for MobileNet-
ImageNet.

Comb method improves the classification accuracy by 0.5-2% for the temperature

range of 130-150◦C than the Hess [63] method.

Meanwhile, for ResNet20-Cifar10 configuration in Figure 4.7, all four methods

perform roughly the same for the temperature below 80◦C. On the other hand,

at 90◦C, all methods perform equally except Grad [137], which shows an accuracy

reduction of 2%. For the temperature range higher than 90◦C, the proposed Comb

method outperforms all other state-of-the-art methods by a maximum of 4.2% at

100◦C. We observe a similar performance improvement by the proposed Comb

method for ResNet56-Cifar100 configuration in Figure 4.8 for the temperature range

of 60-90◦C. Here, we get the accuracy improvement by 0.5-3.1% than the Hess

[63] method. These results highlight the significance of the proposed sensitivity

estimation framework at a high-temperature range.

For the configurations in Figure 4.6-4.8, overall, among the existing sensitivity es-

timation frameworks, Hess [63] performs better than the Mag [135] and Grad [137]
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Table 4.2: Parameter Distribution

Architecture-
Dataset

Total
Weights

≤ −2 [−2,−1] [−1, 0] [0, 1] [1, 2] [2, 3] 3 >

LeNet-
MNIST

61706 0 44 34009 27651 2 0 0

ResNet20-
Cifar10

272474 0 10 149437 122969 58 0 0

DenseNet40-
Cifar10

599050 0 19 314830 284161 40 0 0

ResNet56-
Cifar100

861620 0 3 453344 408148 123 2 0

MobileNet-
ImageNet

470072 6 118 253593 215776 312 88 179

MobileNet-
ImageNet
Reg

470072 0 0 324525 145384 103 60 0

methods. Unlike the previous three configurations, Hess performs poorly among

the existing sensitivity estimation methods for DenseNet40-Cifar100 configuration

in Figure 4.9, as low as 2.5% than the Grad at 90◦C. Whereas for DenseNet40-

Cifar100, we observe 0.2-1% accuracy improvement by the proposed Comb method

than the Grad [137] for a temperature range higher than 70◦C. This result veri-

fies the fact that neither a first-order nor second-order derivative is always a good

estimate for the sensitivity, and Comb methodology exploits the advantage of the

first-order and second-order derivatives to achieve higher accuracy.

The MobileNet-ImageNet configuration in Figure 4.10 is an exception, where

Mag [135] performs consistently better than the existing Grad [137], Hess [63], and

the proposed Comb methods. The Mag method achieves an accuracy improvement

with counterparts by 0.3-4.1% for the temperature range higher than 50◦C. There-

fore, we analyze all neural networks’ parameter and their variance distribution.
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Table 4.3: Parameter Disturbance Distribution

Variance
range

LeNet-
MNIST

ResNet20-
Cifar10

DenseNet40-
Cifar10

ResNet56-
Cifar100

MobileNet-
ImageNet

MobileNet-
ImageNet

Reg

[−8,−7] 0 0 0 0 10 0
[−7,−6] 0 0 0 0 169 0
[−6,−5] 0 0 0 0 78 2
[−5,−4] 0 0 0 2 10 58
[−4,−3] 0 6 24 15 41 86
[−3,−2] 2 52 16 108 271 17
[−2,−1] 649 243 97 903 3124 190
[−1, 0] 27009 123202 284949 407960 219330 258898
[0, 1] 31881 148792 313856 452354 245825 210820
[1, 2] 2121 169 89 275 1090 1
[2, 3] 43 10 13 3 99 0
[3, 4] 1 0 6 0 19 0
[4, 5] 0 0 0 0 5 0
[5, 6] 0 0 0 0 1 0

As shown in Table 4.1, the MobileNet-ImageNet has maximum and minimum

parameter values 3.999877 and -2.617187, respectively, which is considerably higher

than the other networks. This results in a wide parameter distribution, as shown

in Table 4.2, where the MobileNet-ImageNet configuration has a significant number

of parameters higher than 1. Whereas all other networks have all the parameters

roughly in a narrow range of [-1,1]. Consequently, this again broadens the parameter

disturbance distribution, as shown in Table 4.3. Notably, the MobileNet-ImageNet

configuration has a wide variance space compared with its counterparts. Such high

values of the variances violate the condition of Taylor expansion and cause inconsis-

tencies in the equations (4.33), (4.37), and (4.38), resulting in inaccurate sensitivity

estimation. Hence, we observe that the Mag outperforms other methods in Figure

4.10.
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To study the contradictory result of the MobileNet-ImageNet configuration,

we perform sensitivity estimation on other neural network configurations by using

single-precision floating-point numbers instead of 16-bit fixed-point representation

under the same settings described in Section-4.5.1.
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Figure 4.11: Accuracy with protecting top-5% sensitive parameters for LeNet-MNIST
using single-precision floating-point representation.

As shown in Figures 4.11 and 4.13, for LeNet-MNIST and DenseNet-Cifar10

configurations, respectively, the Mag [135] performs better than all other sensitivity

methods roughly for the entire temperature range of 40-90◦C. Whereas we observe

an inconsistent accuracy trend for all the methods in Figure 4.12 for ResNet20-

Cifar10 configuration. Also, the accuracy by Hess [63] and Comb methods is exactly

the same for all temperature values. The reason is pessimistically large values of

the average errors in equations (4.20) and (4.21), approximately in the range of 1037

and 1075, respectively. These experimental results confirm the reason for Mag out-

performing other sensitivity methods in MobileNet-ImageNet configuration (Figure

4.10).
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Figure 4.12: Accuracy with protecting top-5% sensitive parameters for ResNet20-Cifar10
using single-precision floating-point representation.
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Figure 4.13: Accuracy with protecting top-5% sensitive parameters for DenseNet40-
Cifar10 using single-precision floating-point representation.
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Verification of Regularization Impact on Sensitivity

The MobileNet-ImageNet Reg has significantly narrower parameter distribution

than the pre-trained MobileNet-ImageNet, as shown in Table 4.2. Such a narrowed

parameter distribution for MobileNet-ImageNet Reg results in a narrower distur-

bance distribution than the pre-trained MobileNet-ImageNet, as shown in Table 4.3.

We perform sensitivity estimation on MobileNet-ImageNet Reg configuration using

16-bit fixed-point representation under the same settings described in Section-4.5.1.
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Figure 4.14: Accuracy with protecting top-5% sensitive parameters for MobileNet-
ImageNet Reg.

As shown in Figure 4.14, for the temperature range of 50-80◦C, the Hess [63]

method performs better than the Mag [135] by 1-3.8%. Whereas the Grad [137]

method performs better than the Mag for the temperatures lower than 60◦C, but is

inferior at higher temperatures. Moreover, the developed Comb performs better than

the others for the entire temperature range of 50-80◦C. This result indicates that

the developed sensitivity metric performs better than the state-of-the-art methods

for low parameter disturbance distribution.
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4.6 Conclusion

In this chapter, we first study the impact of temperature-induced random bit flipping

in STT-MRAM cells on deep neural networks’ classification accuracy. For DNNs un-

der consideration, the accuracy gradually decreases with the rise in the temperature.

In order to prevent accuracy loss, we require to protect the most sensitive neurons

from thermal perturbations. Therefore, we propose a novel neuron-level sensitiv-

ity estimation methodology employing the first-order and second-order derivative

information of the cost function. Our experimental results demonstrate that over-

all, the proposed method of sensitivity estimation improves the classification accu-

racy by 0.5-4.2% at a high-temperature range for LeNet, ResNet20, ResNet56 and

DenseNet40 networks. Later, we present the limitation of the proposed sensitiv-

ity metric for MobileNet, where the wide parameter disturbance results in inferior

performance.
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CHAPTER 5

THERMAL AWARE MAPPING OF DEEP NEURAL NETWORK

NEURONS ON 3D MEMORY OF ECS

The growing complexity and memory requirement of the deep neural networks intro-

duce performance and reliability challenges for the processing units, which need to

be addressed during AV design to ensure safety. Emerging 3D IC technologies, such

as the hybrid memory cube (HMC), can assist in mitigating the memory constric-

tion problem [181], but 3D ICs present significant thermal issues [182]. On the other

hand, compared to DRAM, the emerging memory, such as STT-MRAM, has non-

volatility features and low access latency, low power, and high density [47], desirable

for alleviating memory problems due to the growing size of the DNNs. However,

the classification accuracy of AI applications degrades at high temperatures when

DNN parameters are stored in STT-MRAM, as observed in Chapter 4. Therefore,

the thermal impacts need to be addressed during DNN application design for ECS

to ensure safe and reliable AV operation.

In this chapter, we incorporate the thermal-aware sensitivity framework devel-

oped in Chapter 4 into the judicious mapping of DNN neuron parameters on memory

banks for the ECS platform. First, we study the thermal impact problem on map-

ping DNN neuron parameters onto the memory banks. We employ the sensitivity

metric developed in Chapter 4 and present a bin-packing-based strategy to map neu-

ron parameters to memory banks with different temperature profiles to maximize

the AI classification accuracy. From our experimental results, for state-of-the-art

DNN architectures and datasets, we show significant improvement in the accuracy

due to thermal aware mapping than thermal ignorant mapping. Second, given the

constant energy budget for DNN execution, we develop a bin-packing and convex

optimization-based approach to find the optimal temperature profile of the mem-
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ory system, which maximizes the accuracy of AI applications. We compare the

developed method with uniform temperature profiles generated by state-of-the-art

workload distribution techniques [109, 183, 184] and a local search-based strategy

to explore different temperature profiles based on uniform temperatures. From

our experiment results, the developed method performs better than others at the

low-temperature range. Besides, we observe inconsistent behavior of the developed

method at high temperatures due to discrepancies in the sensitivity method. Also,

we find that the uniform temperature profile of the memory system, which has been

shown to be highly effective in reducing the peak temperature and power/energy

consumption, is not necessarily an optimal way to maximize the AI application

accuracy.

5.1 Introduction

Deep neural networks are the brain of autonomous vehicles. Their intelligence is de-

veloped during the training phase, where DNNs extract features automatically from

the underlying data, which is distinct from other machine learning algorithms [23].

The artificial intelligence-enabled autonomous driving relies on DNNs for process-

ing data from various sensors, like, RADAR, LiDAR, Imaging, etc., to control the

vehicle maneuvers. DNNs are deployed in AVs to perform prime tasks, such as

perception, localization, planning, control, etc., due to their ability to take complex

decisions like the human brain [25]. Therefore, the performance of DNNs in terms

of execution latency on the processing unit and classification accuracy is critical for

safe and reliable vehicle operation.

High temperatures impact the DNN performance, especially with growing com-

putational and memory capacity demand. The AVs substitute human beings with
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DNNs for taking complex decisions on the road, and there is a stringent perfor-

mance requirement for mission-critical tasks to ensure safety. Figure 1.9 of Chapter

1 shows that the DNN models are enormously complicated to achieve high accuracy.

Similarly, as shown in Figure 1.10 of Chapter 1, the number of DNN parameters

has scaled exponentially, but it is difficult for the traditional 2D memory system to

accommodate them. Moreover, due to an increase in memory refresh rate, the per-

formance of traditional memory, i.e., DRAM, suffers as the temperature rises [46].

And, the temperature of the ECS can vary as high as 90 − 155◦C [38]. Therefore,

exponentially growing memory capacity demand and high temperatures together

can severely impact the performance of DNN execution.

The emerging non-volatile memory devices can be utilized to address the grow-

ing memory demand for DNN storage, but they are affected significantly by the

temperature. The emerging memory devices, such as ReRAM and STT-MRAM,

eliminate the requirement for refreshing while also providing high density and de-

creased read latency to alleviate the memory bottleneck problem [47]. In particular,

for STT-MRAM, read access latency is reduced by 8.4% than the conventional

DRAM [48]. However, temperature-induced random errors affect the emerging non-

volatile memories. For example, the classification accuracy of AI applications run-

ning on ReRAM-based accelerators drops at high temperatures due to variations in

cell conductances [49]. Similarly, as the temperature rises, the switching probability

of STT-MRAM cells rises, lowering the classification accuracy of AI applications, as

seen in the motivation example in Chapter 4. Therefore, it is crucial to incorporate

thermal aspects of the memory system in ECS design to address the safety and

reliability of AVs.

The 3D IC technology, such as the HMC, can help address the memory per-

formance problem, but the thermal issues in 3D IC are well-known problems. The
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emerging 3D IC technology can assist in mitigating the performance problems caused

due to memory bottleneck by bringing computation close to the memory, resulting

in reduced data access time [52, 185]. For example, 3D IC based on emerging non-

volatile STT-MRAM improves the performance by 34.74% than its equivalent 2D

IC [186]. However, 3D IC limits the heat dissipation capability due to stacking of the

layers [187]. Moreover, 3D ICs have high power density, resulting in high tempera-

ture and thermal gradients [42], which can degrade the reliability and even damage

the chip. On the other hand, the memory bandwidth can be throttled to manage

the operating temperature of the memory, resulting in performance reduction during

run-time [182], which can be catastrophic for AVs.

In this chapter, we study two problems for mapping DNN neuron parameters on

memory banks. First, we study the importance of thermal awareness for mapping

DNN neuron parameters on memory banks to maximize the accuracy under a given

temperature profile. To address this problem, we use the thermal-aware neuron-

level Comb sensitivity method developed in Chapter 4 and bin-packing. Then, we

compare the performance of the developed thermal-aware mapping method with

the temperature oblivious mapping scheme. Second, given the constant energy

utilization, we find the optimal temperature profile of the memory banks while

judiciously mapping the DNN neuron parameters to maximize the accuracy. In

particular, our contributions are listed as follows:

� We present a bin-packing-based algorithm to map the neuron parameters on

memory banks utilizing a sensitivity method developed in Chapter 4 and the

thermal profile of the memory banks. Our experiment results for the thermal-

aware mapping algorithm improve the classification accuracy by 0.18-47.91%

than the thermal oblivious method for popular networks, such as LeNet,
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Conv6, ResNet20, ResNet56, and DenseNet40, which highlights the signifi-

cance of thermal awareness.

� For a given energy specification, the total temperature across the IC remains

the same [188]. Hence, we develop a bin-packing and convex optimization-

based method to find the optimal temperature profile of the memory banks

while mapping DNN neuron parameters to maximize the accuracy under a

constant energy consumption. We use a local search and uniform temperature-

based methods to compare the performance of the developed method. Experi-

ment results with state-of-the-art DNNs and datasets show that the developed

method performs well at low temperatures. But, the developed method is in-

ferior to exploring thermal profiles at high temperatures due to discrepancies

in the sensitivity framework. Besides, we show that the uniform temperature

profile of the memory banks is not an effective way to maximize AI application

accuracy.

The rest of the chapter is organized as follows. In Section-5.2, we present related

work. In Section-5.3, we present our preliminaries, i.e., DNN and 3D IC architec-

tures, along with formulated problems. Then, we describe a method to study the

importance of thermal awareness in mapping neuron parameters on memory banks

in Section-5.4. Next, we present a convex optimization-based heuristic to find an

optimal temperature map of memory banks to maximize the accuracy under con-

stant energy budget in Section-5.5. We present our experiment set-up details and

the results with discussion in Section-5.6, followed by a conclusion in Section-5.7.
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5.2 Related Work

There are several works on neural network mapping for ReRAM based neuromorphic

computing platforms, such as [49, 189–191]. Nevertheless, there is no work related

to neural network neuron parameter mapping on the 3D memory banks to the best

of our knowledge. However, the most closely related work in [49] considers the

magnitude of the DNN parameters as a sensitivity metric to facilitate the thermal-

aware mapping on the ReRAM crossbar. In this approach, the index tracking is

cumbersome for large networks, as the parameter level sensitivity is considered.

Moreover, magnitude is not the best choice of sensitivity metric, as later seen in the

experiment results, which occasionally performs worse than the random estimate.

As a common practice, various algorithms for managing thermal problems in

the PUs attempt to construct uniform temperatures across its processing cores

[109, 183, 184]. For example, Sha et al. presented the M-oscillating method to

maximize the performance by guaranteeing the peak temperature, which uniformly

spreads the workload/power temporally [184]. The best way to reduce the peak

temperature and enhance the reliability, which depends on temperature, is to keep

the power density uniform across the processing unit, resulting in a uniform temper-

ature profile. Moreover, the uniform temperature of the processing cores assists in

minimizing the spatial and temporal thermal gradients, which improves the lifetime

reliability of the PUs [109]. Therefore, in this chapter, we employ this analogy and

study if the uniform temperature profile of the memory banks helps to maximize

the AI application accuracy.
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5.3 Preliminary

In this section, first, we present the deep neural network architecture and emerging

3D IC architecture in detail. Later, we formally define our problem statement.

5.3.1 DNN Architecture

We consider a deep neural network architecture presented in Section-2.4 of Chapter

2. Specifically, we use a class of convolutional neural networks, as the developed

sensitivity metric in Chapter 4 can be applied to it. Moreover, training of the neural

networks is computationally intense, requiring significant memory and energy [192].

Hence, due to limited resources for training inside AVs, we consider pre-trained

neural networks are deployed in AVs [193] with their baseline accuracies readily

available.

Tracking the DNN neurons simplifies the access complexity, enabling the ease of

development of an accuracy maximization framework under thermal impact. The

DNN is stored in the memory and later repeatedly retrieved during the inference

phase. The sensitivity analysis is an instrumental tool to rank the DNN parame-

ters/neurons based on their saliency, which can be used to protect the DNNs from

accuracy degradation [63]. For such protection, when sensitivity is established at

the parameter level, the index tracking becomes complex for large DNNs. On the

other hand, index-tracking at the neuron level is simple [141], which facilitates struc-

tural ease of access, as all the parameters associated with a neuron are guaranteed

to be in adjacent memory locations. Therefore, in this chapter, we consider the

thermal-aware mapping of the DNNs on memory banks at the neuron level.

The structure of the neuron is described in Section-2.4 of Chapter 2, where the

neuron set is N = {N1,N2, ...Nne} consisting ne neurons of sizes s1, s2, ..., sne , re-

120



spectively. In particular, the size of the neuron depends on its associated number of

parameters. Moreover, we consider a 16-bit fixed-point representation for parame-

ters stored in the memory, as explained in Section-4.3.3 of Chapter 4. Accordingly,

we define the memory footprint of the neuron as a number of bytes required for

storage, as 2 ∗ neuron size.

5.3.2 3D IC Architecture

We consider the 3D IC architecture similar to that in [52, 194], which consists of

a logic layer at the bottom and multiple memory banks on the upper layers. The

logic layer is in contact with a heat sink. Furthermore, the inter-layer communica-

tion between processing cores in the logic layer and memory banks facilitates using

through-silicon vias (TSVs). Without losing generality, we define the kth 3D IC

platform as

PUk = {P ;Y|B}, (5.1)

where P be the processing cores at the logic layer, and Y be the number of memory

layers, each containing B symmetric banks of size z bytes. Hence, the total number

of memory banks be Y ∗B. We assume that the set of banks on consecutive vertical

aligned memory layers form a vault. Thus, the 3D IC has B vaults, each containing

Y memory banks. Also, we assume that the DNN neuron parameters are mapped

on Y|B, and data movement between processing cores (P) and memory system

(Y|B) is not the focus of this research. However, we deal with finding temperature

profiles maximizing the classification accuracy through thermal-aware mapping. The

illustrative 3D IC architecture is shown in Figure 5.1, which has 16 processing cores

at the logic layer, and there are 4 memory layers, each containing 16 memory banks.

Therefore, it has 16 vaults, each having 4 memory banks.
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Figure 5.1: 3D IC Architecture [194]. The logic layer with processing cores is at the
bottom, and memory banks are on the upper layers.

We consider the thermal behavior of 3D IC the same as in the existing work

[194,195]. For a 3D platform, the thermal correlation is low in memory banks of the

same layer. Their intra-layer thermal resistance is substantially higher than their

inter-layer thermal resistance. Moreover, heat dissipation in the vertical direction is

more significant than in the lateral direction [196]. Hence, we assume that memory

banks in a particular vault have a similar temperature, and memory vaults have

different temperatures. We consider the temperature of the memory banks in stable

status as a temperature profile of the memory system.

After presenting our preliminaries, next, we formally formulate our problems.

5.3.3 Problems Formulation

To study the importance of thermal awareness while mapping DNN neuron param-

eters on memory banks, we assume that all neurons are accessed with the same
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frequency, which would make all memory bank accesses at the same frequency.

Hence, different memory allocation strategies do not affect the temperature profiles.

Also, we assume that the memory banks of Y|B have a unique temperature pro-

file (TY∗B) irrespective of the corresponding memory vault temperatures, and the

mapping problem is formulated as:

Problem 5.3.1. Given a deep neural network of neuron set N , memory system

Y|B, and a temperature profile TY∗B, judiciously map all neuron parameters in N

to Y|B to maximize the classification accuracy of the AI application.

For the next problem, we explore different temperature profiles, and to perform

a fair comparison; we assume overall energy consumption is the same. Moreover,

for a 3D IC platform with emerging non-volatile memory technologies, most of the

energy is utilized in the computations in the logic layer [186,197]. Hence, we assume

that memory access consumes negligible energy. Moreover, for 3D IC with fewer

memory layers, the temperature of memory banks in a particular memory vault

is approximately similar, and there is a significant temperature difference among

the memory vaults [196, 198]. Therefore, we assume that the temperature of the

memory vault is similar to the corresponding processing core, and we can distribute

the workload among processing cores to change the thermal profile of the memory

vaults. With these assumptions, we define the next problem as:

Problem 5.3.2. Given a deep neural network of neuron set N and memory system

Y|B, map all neuron parameters in N to Y|B, and find the optimal temperature pro-

file of Y|B under a constant energy utilization, such that the classification accuracy

of the AI application is maximized.

In the next section, we present our approaches to deal with the thermal-aware

mapping problems formulated above.
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5.4 Thermal Aware Mapping of Neuron Parameters on Mem-

ory Banks

In this section, we consider the problem of mapping DNN neuron parameters on

memory banks under different thermal profiles to maximize the accuracy of AI

applications.

It is evident that the computations lead to thermal hotspots across the processing

units [184, 199], including processing cores and memory systems, and their impact

must be incorporated in the design of safety-critical applications. Additionally, 3D

ICs elevate the thermal gradients in multitude due to high transistor density and

chip geometry. In this chapter, we consider that the DNN is stored in the Y|B of PUk,

which has STT-MRAM cells for holding the data. As observed in the motivational

example in Chapter 4, there is a significant degradation in the accuracy of the AI

applications when temperatures rise. But, instead of a single temperature as in

the motivational example, the temperatures are spatially different inside the PUk,

which can lead to a severe impact on the accuracy. Therefore, the thermal profile

of the PUs needs to be considered while mapping DNN parameters on the memory

banks.

Traditionally, mapping objects on available resources is an NP-hard problem,

e.g., mapping the tasks on processing units for minimizing the latency [39, 107].

Problem 5.3.1 can be solved using various methods, including mathematical pro-

gramming [107], simulated annealing [62], genetic algorithm [108], and convex opti-

mization [85]. However, the computational cost of applying these methods to solve

Problem 5.3.1 is prohibitively significant due to the massive size of DNNs required to

achieve high accuracy [1]. Hence, we resort to a bin-packing-based heuristic to solve
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Algorithm 2 Mapping of the DNN neuron parameters on memory banks.

Inputs: Neuron set N with their sizes; memory system Y|B; the size of the
memory bank z; temperature profile of the memory banks TY∗B.
Output: Mapping of N on Y|B; accuracy.

1: S: calculate the sensitivity of neurons in N ;
2: Rank the neurons based on S in descending order and store them in queue Q;
3: Rank the memory banks in ascending order of their temperatures in Q;
4: for n in Q do
5: for m in each memory bank of Q do
6: if s1 + ...+ sn ≤ z then
7: Map the nth neuron parameters in Q to m;
8: else
9: Choose the next memory bank;
10: end if
11: end for
12: end for
13: Evaluate the accuracy of the DNN.

Problem 5.3.1. We use Algorithm 2, employing the sensitivity method developed in

Chapter 4, to map the neuron parameters on memory banks judiciously.

The errors of the parameters stored in STT-MRAM increase exponentially with

the temperature, and temperature-induced errors in the sensitive neuron parameters

significantly reduce the accuracy. Hence, we map the sensitive neuron parameters to

the low-temperature memory banks to minimize the thermal impact in Algorithm

2. As shown in Algorithm 2, first, we calculate the sensitivity of neurons (line 1).

In particular, we incorporate the sensitivity method (equation (4.33)) developed in

Chapter 4 to estimate the sensitivity of the neurons using a maximum temperature

of the memory system. Afterward, we rank the neurons in descending order based

on sensitivity information (line 2). Similarly, in line 3, we rank the memory banks in

ascending order of their temperatures. Then, we map the ranked neuron parameters

on the ranked memory banks until the bank is filled up to its capacity using the first-

fit bin-packing heuristic, otherwise select the next memory bank (line 4 - line 12). In
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this way, we map neurons to all the memory banks iteratively. At last, we evaluate

the accuracy of the DNN with mapped neuron parameters on memory banks and

corresponding temperature profiles (line 13). Line 2 and line 3 of the algorithm

use a linear-complexity sorting algorithm. Hence, the complexity of Algorithm 2 is

O(n ∗m), where n and m are the number of neurons and number of memory banks,

respectively. Algorithm 2 finds the mapping of neuron parameters under a given

temperature profile, which may not be optimal to maximize the accuracy. Hence,

in the next section, we present a convex optimization-based mathematical program

and a heuristic to map the neuron parameters on memory banks, finding the optimal

temperature profile of the memory system to maximize accuracy.

5.5 Optimal Temperature Profile of the Memory Banks

It is a common practice to distribute the workload among the processing cores of

the PU and adjust their temperature profile to reduce the peak temperature, power

consumption, and enhance the lifetime reliability [39,109,183,184]. In the case of 3D

ICs with non-volatile memory, the processing cores consume most of the energy [186,

197]. Moreover, due to significant vertical heat dissipation [196], the temperature

of the memory vault is similar to the corresponding core when the number of layers

is less, and there is a significant temperature difference among the memory vaults

[198]. Therefore, the temperature profile of the memory banks can be controlled by

distributing the workload among the processing cores of the 3D platform. On the

other hand, performing the exact computation does not always result in the same

energy utilization. However, we are exploring different temperature profiles; hence,

we assume that the total energy utilization is the same to perform a fair comparison.

We use these notions to study Problem 5.3.2, i.e., finding the optimal temperature
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profile of the memory banks to maximize the accuracy of AI application execution

under a constant energy budget. First, we present a convex-optimization-based

mathematical program, and following, bin-packing and convex-optimization-based

heuristic.

5.5.1 Convex Optimization-Based Approach

The formulated mapping Problem 5.3.2 is NP-hard in nature, and different ap-

proaches can be applied to solve it, such as mathematical programming [200], simu-

lated annealing [62], genetic algorithm [108], and analytical approach [71]. In what

follows, we incorporate the accuracy maximization of AI applications into the convex

optimization-based mathematical program as it guarantees the optimal solution.

We use the thermal-aware sensitivity metric developed in Chapter 4 for this

approach. For ath neuron of size sa, let the gradient vector of associated parameters

be GNa , and the vector of the expected values of the parameter errors be E(ϵTNa
).

Similarly, we assume top-n eigenvalue (λ) and eigenvector (q) pairs for the neuron.

If we have the expectation square of the neuron parameters as E(ϵ2), then the

sensitivity of ath neuron is

SNa ≡ | 1
sa
E(ϵTNa

) · GNa +
1

2sa

n∑
i=1

λi

sa∑
j=1

q2ij E(ϵ2j)|. (5.2)

Note that only E(ϵTNa
) and E(ϵ2j) in equation (5.2) depends on the temperature,

described as equations (4.20) and (4.21), respectively, in Chapter 4. We separate

the temperature-independent terms of the equations (4.20) and (4.21), respectively,

as

E(ϵi) =

(
nword∑
l=1

(w∗
il − wi)

)
Psw = ∆wi Psw, (5.3)
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and

E(ϵ2i ) =

(
nword∑
l=1

(w∗
il − wi)

2

)
Psw = ∆w2

i Psw. (5.4)

We rewrite equation (5.2) as

SNa ≡ | 1
sa
∆wT

Na
· GNa +

1

2sa

n∑
i=1

λi

sa∑
j=1

q2ij ∆w
2
i | Psw. (5.5)

As the spatial temperature of a memory bank is the same, we have the same flipping

probability, i.e., Psw, for all neurons mapped on the corresponding memory bank.

Moreover, the temperature of all memory banks in a vault is the same; hence, Psw is

the same for all neurons of a specific memory vault. If r neurons are mapped to the

bth memory bank, we define the overall change in the cost function of the memory

bank as

|E[∆C(N b)]| =
r∑

a=1

SNa = Φb Psw(Tb), (5.6)

where Φb is the temperature-independent term obtained by adding sensitivities of

all neurons mapped to the memory bank, and Psw(Tb) is the switching probability

of bth memory bank having temperature Tb.

Next, for neuron mapping on memory banks, we define the decision variables xab as

xab =


1, if Na is assigned to Bb;

0, otherwise.

(5.7)

Each neuron Na must be mapped to only one memory bank as constrained by

B∑
b=1

xab = 1, ∀Na ∈ N . (5.8)

The size of neurons and memory banks can be considered as

N∑
a=1

sa ∗ xab ≤ z, ∀b ∈ Bb. (5.9)
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According to equation (5.6), the overall sensitivity of the memory banks with

temperature-independent terms only is given as

N∑
a=1

SNa ∗ xab = Φb, ∀b ∈ Bb. (5.10)

The total energy consumption of the processing unit in the interval [tq, tq+1] can be

given as [188]

Energyq = ∆tq Ψ+φ

tq+1∑
i=tq

Ti,

where Ψ and φ are processor-dependent constants, and ∆tq is the interval length.

Therefore, the energy consumption of the PU depends on the total temperature.

Contrarily, if the energy consumption is fixed, then we can infer that the total tem-

perature of the PU must remain the same. Hence, under given energy consumption,

we use the following constraint for the temperature profile of the memory banks

B∑
b=1

Tb = Ttot, (5.11)

where Ttot is the overall temperature corresponding with constant energy consump-

tion. To evaluate the accuracy of the AI applications under a certain temperature

range, we restrict the memory bank temperatures using the following constraint

Tmin ≤ Tb ≤ Tmax, ∀b ∈ Bb, (5.12)

where Tmin and Tmax are the minimum and maximum temperature values across

the memory system. The goal of Problem 5.3.2 is to maximize the accuracy of AI

applications, which can be accomplished by minimizing the change in a cost function

under thermal impact. Therefore, we define the objective function as

minimize |E[∆C(N )]| =
B∑

b=1

Φb ∗ Psw(Tb). (5.13)

The convex optimization problem containing the constraints given by equations

(5.8) to (5.12) provides a temperature profile of the memory banks, which is used
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to evaluate AI applications’ accuracy under temperature-induced random bit flips.

The computational cost of this approach is prohibitively high, as later found in

Section-5.6.2. Hence, next, we develop a bin-packing and convex-optimization-based

heuristic.

5.5.2 Bin-Packing and Convex Optimization-Based Heuris-

tic

The application of convex optimization formulation to solve Problem 5.3.2 can pro-

vide an optimal solution, but it would be computationally intractable for large

DNNs. Hence, we use a combination of the bin-packing heuristic and convex opti-

mization to tackle Problem 5.3.2.

In particular, to reduce the computational complexity of the mapping problem,

we employ the first-fit bin-packing strategy to map the neurons on different mem-

ory banks, described as Algorithm 2. For this algorithm, we arbitrarily assume the

initial temperature profile of the memory banks and use the sensitivity metric devel-

oped in Chapter 4 by considering the maximum temperature. Then, we use convex

optimization to find the optimal temperature profile of memory banks to maximize

the AI application accuracy under a constant energy utilization described as the

objective

minimize |E[∆C(N )]| =
B∑

b=1

Φb ∗ Psw(Tb). (5.14)

Since, Algorithm 2 provides mapping of N on Y|B, we can find Φb in equation

(5.14) for each memory bank using equation (5.6). We use the following constraint to

consider the effect of constant energy consumption on overall temperature dynamics
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of the memory banks as
B∑

b=1

Tb = Ttot. (5.15)

Finally, we limit the minimum and maximum memory bank temperatures as

Tmin ≤ Tb ≤ Tmax, ∀b ∈ Bb. (5.16)

The computational complexity of this amalgamated approach depends on Algorithm

2, as explained in Section-5.4, and the convex optimization model, which depends

on the number of memory banks in a system as decision variables. The formulated

convex optimization problem can find only the optimal temperature profile of the

memory banks under the given mapping of the neurons. Therefore, the performance

of this approach mainly depends on the bin-packing heuristic, i.e., Algorithm 2,

which depends on the developed sensitivity metric.

After presenting our approaches to address the formulated problems, next, we

discuss our experimental set-up and results in detail.

5.6 Experimental Results

In this section, first, we present the experimental set-up followed by the results and

observations.

5.6.1 Experimental Set-up

We use state-of-the-art pre-trained deep neural networks, such as LeNet [173], Conv6

[201,202], ResNet20, ResNet56 [174], DenseNet40 [175], and standard datasets like,

MNIST [177], Cifar10, Cifar100 [178] to evaluate the approaches for thermal aware

mapping problems. We consider that numbers are stored in the memory in a 16-bit

fixed-point format as described in Chapter 4. To better understand the thermal
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Table 5.1: Memory Bank Size (z) for DNNs

Architecture-Dataset Total Parameters Bank Size (Bytes) Tmax(
◦C)

LeNet-MNIST 61706 31300 145
Conv6-Cifar10 2262602 1140000 120
ResNet20-Cifar10 272474 136400 110
DenseNet40-Cifar10 599050 300000 100
ResNet56-Cifar100 861620 431000 90
DenseNet40-Cifar100 622360 311500 100

behavior, we consider that the memory system has one layer, i.e., Y = 1, and it has

B = 4 memory banks, hence, 4 memory vaults. Accordingly, we use the symmetric

size of the memory banks (z), which is different for each DNN architecture, as shown

in Table 5.1. We choose minimum temperature as Tmin = 25, but different maximum

temperature (Tmax) for each DNN architecture, as shown in Table 5.1, to cover its

entire range according to Figure 4.5 of Chapter 4. We use additional settings of the

sensitivity method from Section 4.5.1 of Chapter 4.

We use the following approaches for comparing the thermal impact on mapping

of DNN neuron parameters to memory banks while maximizing the AI application

accuracy:

� Thermal Aware Mapping using Combined Sensitivity (TA-Comb):

This approach utilizes Algorithm 2 to map the neuron parameters on memory

banks, which employs the sensitivity method developed in Chapter 4.

� Thermal Aware Mapping using Magnitude Sensitivity (TA-Mag): It

uses a state-of-the-art magnitude-based sensitivity method [49] in Algorithm

2 (line 1) for mapping neuron parameters on memory banks.

� Thermal Oblivious Random Mapping (TO-Rand): In this approach,

the neuron parameters are mapped randomly to the memory banks without

considering the thermal impact. In particular, we randomly generate the num-
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bers between the interval [0, 1] as a sensitivity of the neurons in line 1 of Al-

gorithm 2, which are further mapped on the memory banks using Algorithm

2.

On the other hand, we use the following approaches for analyzing the performance

of bin-packing-based convex optimization, which finds the temperature profile of the

memory banks while mapping DNN neuron parameters to maximize the accuracy

under constant energy consumption:

� Bin-packing-based Convex Optimization Method (CVX): It uses the

framework in Section 5.5, which maps the neuron parameters using a bin-

packing algorithm and finds optimal temperature profile using convex opti-

mization.

� Uniform Temperature Method (UNI): We utilize a general phenomenon

of workload distribution across processing cores to generate uniform temper-

atures [109, 183, 184]. We apply a bin-packing algorithm to map the neuron

parameters on memory banks by assuming a uniform temperature profile un-

der a constant energy consumption constraint (Ttot), such that equation (5.11)

is satisfied.

� Local Search Method (LOC): We develop a heuristic based on a local

search strategy [203]. First, we use a bin-packing algorithm to map the neu-

ron parameters on memory banks by assuming a uniform temperature profile

under a constant energy consumption constraint (Ttot). Next, we randomly ex-

plore the temperature profiles in the neighborhood of the uniform temperature

profile to maximize the accuracy of the AI applications, satisfying constant en-

ergy consumption.
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We use PyTorch 1.8.1 framework [204] to set up the experiments and Pyomo [205,

206] to evaluate the convex optimization-based model. We collect classification

accuracy results of 50 randomized trials for AI applications, and average accuracy

values are reported if not specified explicitly. In the following section, we present

and discuss our experiment results in detail to validate the developed methods to

tackle the formulated problems.

5.6.2 Experimental Results and Discussion

In this section, first, we verify the effectiveness of thermal-aware mapping of neuron

parameters on memory banks to maximize classification accuracy. Then, we evalu-

ate the method of finding the optimal temperature profile for mapping DNN neuron

parameters on memory banks to maximize the accuracy under constant energy uti-

lization.

Verification of Thermal Aware Mapping of Neuron Parameters on Mem-

ory Banks

The ECS temperature can vary as high as 90 − 150◦C, and emerging 3D ICs have

large thermal gradients, which together can trigger random bit flipping of the data in

the memory cells of the STT-MRAM. To apply this thermal impact on the mapping

problem, first, we randomly generate temperatures of the memory banks in the

interval [Tmin, Tmax]. Then, under these random temperatures, we evaluate the

accuracies of the methods for solving Problem 5.3.1, i.e., TA-Comb, TA-Mag, and

TO-Rand.

As shown in Table 5.2, for LeNet-MNIST configuration, the TA-Comb method

outperforms TA-Mag [49], and TO-Rand, respectively, in the range 0.25-47.91%
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and 0.21-39.64%. Similarly, for Conv6-Cifar10 configuration in Table 5.3, TA-Comb

performs better than TA-Mag [49] and TO-Rand by 0.11-44.52% and 0.1-43.9%.

We observe a similar trend for ResNet20-Cifar10 in Table 5.4, where TA-Comb

consistently performs better than TA-Mag [49] and TO-Rand by 4.3-32.08% and

5.61-30.78%. Whereas, for DenseNet40-Cifar10 configuration in Table 5.5, TA-Comb

achieves superior accuracy than TA-Mag [49] and TO-Rand in the range 0-1.99%

and 0.01-10.87%, respectively. Also, TA-Comb achieves superior accuracy than

TA-Mag [49] and TO-Rand by 3.87-12.94% and 1.22-10.9% for ResNet56-Cifar100

in Table 5.6. Moreover, the DenseNet40-Cifar100 configuration reflects the same

phenomenon in Table 5.7, where TA-Comb performs better than TA-Mag [49] and

TO-Rand by 0.72-14.45% and 0.18-17.95%, respectively. As TA-Comb consistently

outperforms the TO-Rand for considered DNNs, it highlights the importance of

thermal awareness while mapping neurons on memory banks for 3D ICs.

The performance of three testing candidates, i.e., TA-Comb, TA-Mag, and TO-

Rand, depends on the sensitivity method and temperature of the memory banks. As

TA-Comb significantly performs better than TA-Mag [49] in Table 5.2-5.7, it vali-

dates the superior accuracy of the sensitivity method developed in Chapter 4 than

the state-of-the-art magnitude sensitivity. Algorithm 2 maps the sensitive neuron

parameters of the DNN to the coolest memory banks, which helps to minimize the

thermal impact for sensitive neurons, resulting in accuracy maximization. As ob-

served in Tables 5.2-5.7, when temperatures of the memory banks are high, we can

observe significant improvement in the accuracy by the TA-Comb method, as high

as 47.91% for LeNet-MNIST. But, when the temperature of the memory banks are

low, there are very few random perturbations of the data, which may not be enough

to pinnacle the importance of thermal awareness as observed in highlighted cells
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Table 5.2: LeNet-MNIST accuracy with the random temperature profile of the 4 memory
banks

Temperatures(◦C)
TA-Comb

Accuracy(%)
TA-Mag

Accuracy(%)
TO-Rand

Accuracy(%)

[30, 35, 79, 145] 85.56 37.65 45.92
[28, 33, 59, 134] 96.99 83.42 85.99
[50, 65, 96, 104] 98.72 98.47 98.51
[27, 96, 122, 125] 97.70 95.14 92.70
[88, 94, 111, 117] 98.47 97.35 96.92
[55, 94, 135, 142] 79.80 44.80 39.87
[63, 72, 101, 141] 92.13 56.09 63.26
[65, 110, 110, 141] 91.62 54.95 60.13
[69, 107, 126, 140] 89.99 56.99 60.58
[63, 107, 134, 138] 86.69 59.02 56.12

of Tables 5.5 and 5.6, where TA-Mag [49] and/or TO-Rand performs better than

TA-Comb method.

Table 5.3: Conv6-Cifar10 accuracy with the random temperature profile of the 4 memory
banks

Temperatures(◦C)
TA-Comb

Accuracy(%)
TA-Mag

Accuracy(%)
TO-Rand

Accuracy(%)

[28, 33, 59, 96] 85.77 84.73 84.19
[30, 35, 72, 79] 86.10 85.99 86.00
[42, 55, 64, 97] 85.69 84.49 83.49
[55, 65, 94, 104] 84.68 78.15 76.79
[50, 69, 96, 107] 84.06 73.24 71.27
[27, 88, 94, 117] 76.34 41.67 27.10
[26, 27, 99, 118] 75.18 35.63 21.69
[80, 90, 92, 101] 83.98 79.11 77.95
[63, 63, 101, 107] 83.71 68.59 65.37
[65, 110, 110, 111] 62.48 17.96 18.58
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Table 5.4: ResNet20-Cifar10 accuracy with the random temperature profile of the 4 mem-
ory banks

Temperatures(◦C)
TA-Comb

Accuracy(%)
TA-Mag

Accuracy(%)
TO-Rand

Accuracy(%)

[42, 55, 90, 97] 88.86 76.43 75.52
[41, 44, 64, 93] 92.67 88.37 87.06
[28, 33, 59, 96] 92.19 84.43 83.16
[55, 65, 94, 104] 75.89 54.97 51.44
[50, 69, 96, 107] 66.07 35.50 37.11
[27, 88, 94, 110] 48.09 23.87 24.45
[35, 65, 79, 110] 60.81 28.73 30.03
[30, 63, 72, 101] 88.33 73.09 72.25
[26, 63, 99, 107] 62.56 33.02 33.32
[27, 80, 92, 101] 82.51 65.89 63.16

Table 5.5: DenseNet40-Cifar10 accuracy with the random temperature profile of the 4
memory banks

Temperatures(◦C)
TA-Comb

Accuracy(%)
TA-Mag

Accuracy(%)
TO-Rand

Accuracy(%)

[50, 55, 65, 94] 90.34 88.35 86.34
[28, 33, 69, 96] 88.46 86.56 82.04
[27, 59, 88, 96] 83.23 82.10 77.89
[35, 65, 79, 94] 89.20 87.57 85.18
[30, 63, 63, 72] 94.11 94.07 94.18
[26, 27, 92, 99] 73.39 72.81 62.52
[42, 55, 80, 90] 90.79 91.02 89.84
[44, 64, 93, 97] 75.33 74.89 68.92
[38, 41, 53, 59] 94.39 94.39 94.38
[34, 53, 73, 76] 93.91 93.89 93.60
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Table 5.6: ResNet56-Cifar100 accuracy with the random temperature profile of the 4
memory banks

Temperatures(◦C)
TA-Comb

Accuracy(%)
TA-Mag

Accuracy(%)
TO-Rand

Accuracy(%)

[50, 55, 65, 83] 58.86 45.92 51.26
[27, 28, 33, 59] 74.55 75.03 74.86
[35, 65, 79, 88] 32.09 22.12 25.10
[30, 63, 63, 72] 70.06 64.86 68.82
[26, 27, 80, 90] 25.62 13.57 18.97
[27, 28, 33, 84] 57.81 46.72 49.64
[42, 44, 59, 76] 69.28 62.75 67.65
[34, 53, 73, 76] 66.21 56.18 61.58
[38, 41, 63, 85] 52.80 40.28 41.90
[25, 27, 43, 72] 71.96 68.09 70.74

Table 5.7: DenseNet40-Cifar100 accuracy with the random temperature profile of the 4
memory banks

Temperatures(◦C)
TA-Comb

Accuracy(%)
TA-Mag

Accuracy(%)
TO-Rand

Accuracy(%)

[50, 55, 65, 94] 37.80 23.35 19.85
[28, 33, 69, 96] 28.07 16.14 13.37
[27, 59, 88, 96] 17.58 9.66 7.46
[35, 65, 79, 94] 33.60 20.22 16.54
[30, 63, 63, 72] 73.06 72.34 72.50
[26, 27, 92, 99] 8.18 4.58 3.42
[42, 55, 80, 90] 45.47 34.86 30.46
[44, 64, 93, 97] 8.56 5.15 3.73
[38, 41, 53, 59] 74.94 74.79 74.76
[34, 53, 73, 76] 69.15 67.41 67.66

138



Verification of Methods for Finding Optimal Temperature Profile to Max-

imize the Accuracy

First, we check the computational cost of the convex optimization-based mathe-

matical program. Figure 5.2 shows the CPU time required to solve the convex op-

timization mathematical program described in Section-5.5.1 for ResNet20-Cifar10

configuration. As shown in the figure, the computational cost increases exponen-

tially with increasing the number of memory banks; hence, difficult to solve large-size

problems.
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Figure 5.2: Computational cost of the Convex Optimization Approach for ResNet20-
Cifar10. The computational cost increases exponentially with the number of memory
banks.

Next, we evaluate the performance of the bin-packing and convex optimization-

based heuristic for solving Problem 5.3.2 by increasing the Ttot. However, from

Figure 4.5 of Chapter 4, different neural network architectures have different inflec-

tion points, where accuracy drops suddenly from their baselines; accordingly, they
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have different temperature ranges to evaluate the performance. Hence, we choose

different Ttot for different DNNs and evaluate their accuracies. For example, in

Figure 5.3 for LeNet-MNIST configuration, Ttot is indicated on the x-axis, in the

interval [300◦C, 500◦C] with increments of 40◦C. Similar reasoning applies to other

architectures in Figures 5.4-5.8.

As shown in Figure 5.3 for LeNet-MNIST configuration, at lower Ttot, the CVX

, UNI [109, 184], and LOC [203] perform marginally the same. At Ttot = 500◦C,

the LOC outperforms the uniform temperature method, i.e., UNI, by 9.74%. For

Conv6-Cifar10 in Figure 5.4, CVX performs well for Ttot ≤ 260◦C. For Ttot ≥ 300◦C,

UNI [109, 184] performs better than CVX except for Ttot = 420◦C, where CVX

outperforms UNI [109,184] by 4.5%. This result shows that the uniform temperature

profile does not always guarantee better accuracy than the developed heuristic, i.e.,

CVX.

We obtain a similar trend for ResNet20-Cifar10 in Figure 5.5 as other configura-

tions, where CVX performs well for Ttot ≤ 300◦C. But, for Ttot ≥ 340◦C, the UNI

[109, 184] performs better than CVX by 2.94-13.45%. As shown in Figure 5.6, the

CVX performs well for Ttot ≤ 240◦C. But, a local search, i.e., LOC [203], performs

better than CVX and UNI by 0.7-15.12% and 0.7-2.56% for Ttot = [280◦C, 360◦C].

On the other hand, LOC performs inferior to CVX and UNI [109,184] by 1.16% at

Ttot = 400◦C. This result highlights the randomness of the LOC [203] method.

Similarly, for the DenseNet40-Cifar100 configuration in Figure 5.7, CVX per-

forms better than others by 0.6% for Ttot ≤ 230◦C. As the temperature increases,

the CVX is inferior to others due to inconsistencies in the developed sensitivity

metric. Whereas CVX performs marginally the same as others for a lower temper-

ature range, i.e., Ttot ≤ 240◦C, and LOC [203] performs better than UNI [203] by

0.5-1.8% at Ttot ≥ 280◦C for ResNet56-Cifar100 in Figure 5.8.
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Overall, the uniform temperature-based method, i.e., UNI, does not guarantee

high accuracy, which is a contradictory result to the existing thermal-aware methods,

where it assists in minimizing the peak temperature, power, and improving the

reliability [109,183,184]. On the other hand, the developed bin-packing-based convex

optimization method, i.e., CVX, performs comparable at the low-temperature range

but is inferior at high temperatures due to discrepancies in the sensitivity method

developed in Chapter 4.
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Figure 5.3: Accuracy of LeNet-MNIST for increasing values of the total temperature of
the memory system.
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Figure 5.4: Accuracy of Conv6-Cifar10 for increasing values of the total temperature of
the memory system.
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Figure 5.5: Accuracy of ResNet20-Cifar10 for increasing values of the total temperature
of the memory system.
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Figure 5.6: Accuracy of DenseNet40-Cifar10 for increasing values of the total temperature
of the memory system.
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Figure 5.7: Accuracy of DenseNet40-Cifar100 for increasing values of the total temperature
of the memory system.
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Figure 5.8: Accuracy of ResNet56-Cifar100 for increasing values of the total temperature
of the memory system.

5.7 Conclusion

The emerging 3D ICs have a great potential to alleviate the memory bottleneck

problem of growing DNN sizes. However, 3D ICs introduce large amplitudes of

thermal gradients than their conventional counterparts. The growing thermal map

of the processing units degrades their performance in terms of accuracy for executing

AI applications, which should be closely characterized in the ECS design.

Therefore, in this chapter, first, we study the importance of thermal awareness by

incorporating the sensitivity metric developed in Chapter 4 to map DNN neuron pa-

rameters on memory banks. Our experimental results show that the thermal-aware

mapping can achieve 0.18-47.91% accuracy improvement than the thermal igno-

rant for state-of-the-art architectures, like LeNet, Conv6, ResNet20, ResNet56, and

DenseNet40. Then, we develop a bin-packing-based convex optimization method

to find the optimal temperature profile of the memory system to maximize the ac-
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curacy under constant energy utilization. We compare the developed method with

uniform temperature profiles generated by workload distribution among processing

cores and temperature profiles explored through local search in the neighborhood

of uniform temperatures. From experiment results, we show that the developed

method has comparable performance at the low temperatures but is inferior at high

temperatures due to discrepancies in the sensitivity metric. It highlights the future

work of this dissertation to design a more accurate sensitivity metric for quantify-

ing thermal impact. Besides, we show that the uniform temperature profile of the

memory system does not guarantee the high accuracy of AI applications for DNN

execution.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We begin this chapter by summarizing our contributions to the dissertation. Then

we discuss probable research directions for the future.

6.1 Summary

The AV technology development has drawn significant attention from the automo-

tive manufacturers due to its social and economic revolutionary capabilities. AVs

have the ability to minimize road accidents caused by human errors and save pre-

cious lives. It can offer new mobility options for the elderly, the disabled, and

children. AVs can reduce traffic congestion and parking problems in large cities,

which can help cut down the emissions, thereby helping the environment. The au-

tomotive industry has invested significant resources in AV development to achieve

mass production by considering these impacts. However, in the current status, there

are numerous safety and reliability challenges for the successful deployment of AV

technology.

Thermal issues in the ECS are one of the main barriers to the reliability of the

AVs. Due to the miniaturization of the ICs, there is a soaring power density in the

processing units. Additionally, the ECS of vehicles undergoes harsh thermal con-

ditions due to the surrounding environment and heat produced by the neighboring

mechanical components. Altogether, the operating temperature of the ECS elevates

rapidly. First, such high temperatures can degrade the performance of the PUs

either by throttling the clock speed or shutting down, which can impact the latency

of mission-critical tasks causing catastrophic events. Second, high temperatures de-

teriorate the lifetime of the PUs. Third, high temperatures can perturb the data
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stored in the memory of the PUs, which can misclassify the objects in vision-related

AI applications leading to hazardous consequences. Therefore, the thermal-aware

design of the ECS can optimize its performance, reliability, and accuracy.

In this dissertation, step-by-step, we develop techniques to minimize the thermal

challenges of the ECS. First, we address the challenge of satisfying the peak temper-

ature, bounding the peak operating temperature, and maximizing the system-wide

reliability. We develop a mathematical program to minimize the latency of the ap-

plications by satisfying the thermal constraints. Then, we present an algorithm to

effectively bound the peak temperature of the periodic applications under variable

execution time scenarios. Also, we present two analytical methods for compute-

efficient MTTF formulation. Afterward, we use a sophisticated genetic algorithm-

based approach to explore the design space using a developed temperature bounding

algorithm and compute-efficient MTTF formulation to minimize the latency, reduce

the peak temperature and enhance the MTTF by satisfying the thermal constraint.

Our experiment results for two automotive benchmarks demonstrate that the pro-

posed peak temperature bounding method is accurate by 17◦C and 40◦C, which

results in 81% and 260% more accurate MTTF estimation. Moreover, the compute-

efficient MTTF formulation is faster by 17× and 191×.

Second, we address the challenge of quantifying the thermal impact on the AI

applications’ accuracy by developing a more accurate sensitivity framework. We

consider emerging non-volatile memory technology, e.g., STT-MRAM for storing

DNNs, which can mitigate the memory bottleneck presented due to the ever-growing

complexity and size of the DNNs to achieve high accuracies. However, data stored in

the STT-MRAM flips with increasing temperature. Hence, we present a sensitivity

estimation framework to accurately identify delicate neurons of the DNNs, which

significantly affect the accuracy under thermal impact. Our experimental results

147



for LeNet, ResNet20, ResNet56, and DenseNet40 by protecting sensitive neurons

achieve 0.5-4.2% better accuracy than state-of-the-art methods. Later, we present

the limitation of the developed sensitivity framework when errors are large.

Third, we study the challenge of mapping DNN neuron parameters on mem-

ory banks under the thermal impact for ECS design. The emerging 3D ICs have

large thermal gradients than their traditional counterparts due to increased device

density and chip geometry. We incorporate a developed sensitivity method in the

bin-packing-based heuristic to map the neuron parameters on memory banks and

evaluate the thermal awareness by comparing it with the temperature oblivious

method. We achieve 0.18-47.91% better performance for thermal-aware mapping

than the thermal oblivious approach at high temperatures for standard DNN ar-

chitectures, like LeNet, Conv6, ResNet20, ResNet56, and DenseNet40. Afterward,

we develop a heuristic based on bin-packing and convex optimization to find the

optimal temperature profile of the memory banks to maximize the accuracy under

constant energy utilization while mapping DNN neuron parameters. We compare

the developed method with a general phenomenon of uniform temperature profile

and local search-based methods. Overall, experiment results demonstrate that the

developed method performs well at low temperatures and show inconsistencies at

high temperature due to discrepancies in the sensitivity method for state-of-the-art

DNNs. Besides, we show that uniform temperatures are not the optimal way of

maximizing the accuracy of DNNs.

Altogether, in this dissertation, we address the performance, lifetime reliabil-

ity, and accuracy impacts due to high-temperature dynamics of the ECS design to

enhance the safety of AVs.
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6.2 Future Work

The resource investment in the AV industry will undoubtedly keep growing in the

coming years due to its socio-economic transforming potential. Growing attention

to AV development will shift the computing paradigm to more complex and strict

real-time systems. The emerging 3D IC technology has tremendous scope for future

computing systems. The rapidly growing complexity in the underlying hardware

[1, 44] and size of the software [19, 43] will definitely emit more heat, introducing a

new set of thermal challenges for the AV design.

The resource management at the processing cores and memory system together

should be considered to manage the thermal problems of the future complex com-

puting systems. In our current research, we target the thermal problems of the

processing cores and memory systems separately. In particular, first, we map the

vehicle applications on the heterogeneous architecture of the PUs to satisfy the de-

sign constraints, such as latency, peak temperature, reliability. Then, we focus on

thermal aware mapping of the DNN on the memory system to improve the accuracy.

We believe that the integrated approach of the processing cores and memory system

design will be inevitable to manage the thermal problems of the complex ECS.

The sensitivity analysis plays a crucial role in detecting delicate parameters of

the neural network, which drastically degrades the accuracy of AI applications under

unnoticeable perturbations [63]. The sensitivity analysis developed in Chapter 4 uti-

lizes the first-order and second-order derivatives of the cost function, which improves

the accuracy significantly for specific DNN architectures at a high-temperature

range. Our experiment results from Chapter 5 highlight the limitation of the de-

veloped sensitivity method, which motivates a more accurate metric development

to quantify the thermal impact. Therefore, it is expected that the integration of
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the third-order derivative term in the sensitivity framework would yield even bet-

ter accuracy, which will need a compute-efficient mechanism to approximate the

third-order component of the cost function.

It is mandatory for the automotive industry to apply the ISO-26262 standard

into the vehicle design to ensure different automotive safety integrity levels (ASILs)

[81, 207–209]. Our research framework can be used to integrate the system-level

reliability into ASILs. The different hardware units in the ECS have different ASIL

requirements. Accordingly, we can achieve ASILs for processing units of the ECS

through application mapping/scheduling. We can implement safety mechanisms

and satisfy ASILs through effective resource management of the PUs and memory

systems.
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