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ABSTRACT OF THE THESIS 

HYDROLOGY AND FIRE HISTORY DRIVE PATTERNS IN POST-FIRE 

RECOVERY IN EVERGLADES WETLAND ECOSYSTEM 

by 

Jenisha Oli 

Florida International University, 2021 

Miami, Florida 

Professor Sparkle L. Malone, Major Professor 

Although fire-adapted ecosystems in Everglades require regular burning to maintain 

wetland ecosystems, land management and climate-change have altered natural fire-

regime. Due to changes in climate and hydrology, historical fire-regimes may become 

irrelevant. To understand changing fire return intervals, I look at patterns in ecosystem 

recovery, where fast recovery is indicative of resilience and adaption with an objective of 

understanding post-fire recovery time in Everglades. I evaluated how post-fire recovery 

rates were influenced by hydrology and fire-history (1948-2019) by measuring changes 

in normalized difference vegetation index following fires that burned between 2005-2019 

within Everglades. Hydrology had stronger effect on post-fire recovery compared to fire 

history. Increasing water-levels by 10% across Everglades either shortened (sawgrass 

marl prairie) or prolonged (cattail marsh, graminoid marsh, graminoid prairie, halophytic 

herbaceous prairie and sawgrass marsh) post-fire recovery estimates. Fire return intervals 

for Everglades were dynamic and fire-management must develop novel approaches to 

manage fire-regimes. 
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Introduction 

Although fire is often thought of as an agent of destruction (Rowell & Moore, 2000), it is 

an important component of fire-adapted ecosystems. Fires are essential to decrease excess 

accumulation of surface fuels, control invasive species, expose soil for seed germination 

(Doren et al., 1993), remove standing dead trees (Chang, 1996; La Puma et al., 2007) and 

prevent woody encroachment (Loveless, 1959; Platt & Gottschalk, 2001; Sah, Ross, 

Snyder, et al., 2010; Wade et al., 1980). The absence of fire will lead to changes in 

species composition and movement towards the climax community through the process 

of succession (J. K. Brown, 1975; Graham & Jain, 2005).  

 

Fire regimes are complex and include the general pattern of fire in a specific area. It is a 

combination of fire frequency, fire return interval, the total area affected by fire, fire 

intensity, and fire severity (Franklin et al., 2016; Gill, 1975). Fire adapted ecosystems 

require specific fire regimes (Cissel et al., 1999; Drewa et al., 2002; Moritz et al., 2005) 

and deviance from the regime that species are adapted to can cause significant changes in 

the ecosystem structure and function (Glitzenstein et al., 1995; Platt et al., 1988, 2002).  

 

Due to the risk of damage to people and property, natural fires across the world have 

been historically suppressed (Heines et al., 2019; Jazebi et al., 2020; Lentile et al., 2006). 

Long-term fire suppression has disrupted natural fire regimes and has led to the decline in 

the resilience of fire-adapted ecosystems (Bucher et al., 2014; Pyne, 2016; Williams, 

1995). Over time, the increasing recognition of the role of fire in the fire-adapted 

ecosystems has shifted fire management’s focus from suppression to using prescribed fire 

https://paperpile.com/c/ewAYP7/P8n4G
https://paperpile.com/c/ewAYP7/iIgvo
https://paperpile.com/c/ewAYP7/aIdQK+Jx4Cs
https://paperpile.com/c/ewAYP7/Gxg0U+kjPoh+xBBZP+WlwZN
https://paperpile.com/c/ewAYP7/Gxg0U+kjPoh+xBBZP+WlwZN
https://paperpile.com/c/ewAYP7/zsAOy+OKSbv
https://paperpile.com/c/ewAYP7/f4z6Q+SBfzG
https://paperpile.com/c/ewAYP7/CHkEa+gFn8E+y5CnK
https://paperpile.com/c/ewAYP7/W9XYA+lxsgq+ji3mt
https://paperpile.com/c/ewAYP7/w0TX6+Q2nn9+BAyc3
https://paperpile.com/c/ewAYP7/b1vTd+hWjSg+aBkib
https://paperpile.com/c/ewAYP7/b1vTd+hWjSg+aBkib
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to simulate natural fire patterns (Bassett et al., 2020; Eloy et al., 2019; Marks-Block & 

Tripp, 2021; Slocum et al., 2003). Prescribed fire is now used in addition to lightning-

ignited fires to maintain fire-adapted ecosystems (Williams, 1995) and to mitigate 

extreme fire behavior (Laris, 2002; Mistry et al., 2005). The use of fire as a management 

tool by managers in the southeastern United States of America (USA) has been a 

common practice since 1958 (Abrahamson, 1984a; T. J. Smith III et al., 2015).  

 

The Everglades, one of the largest subtropical wetland complex in the USA, has fire-

adapted ecosystems. Everglades fire-adapted ecosystems include both pinelands and 

wetlands (Brian Beckage et al., 2005; Loveless, 1959; Pyne, 2016). Within Everglades 

National Park, prescribed fire is used as an essential management tool to maintain the 

fire-adapted ecosystems (Brian Beckage et al., 2005; Davis & Ogden, 1994; Loveless, 

1959). The wetland marshes and marl prairies are a large component of the landscape, 

occupying ~65% of the Everglades landscape (Loveless, 1959). In these wetlands, fast 

moving surface fires consume aboveground grasses and herbaceous species 

(Abrahamson, 1984b), and reduce the presence of woody species (Platt & Gottschalk, 

2001; Sah, Ross, Snyder, et al., 2010). The meristems of a dominant species, sawgrass, is 

protected by overlapping leaf bases allowing sawgrass to resprout from these meristems 

after fire (Wade et al., 1980). The marshes and marl prairies are thought to recover from 

fire within 2-3 years (L. N. Brown et al., 2020; Cook & Hayes, n.d.; Salvatico, 2019). If 

left unburned for more than 3 years woody vegetation encroachment increases (Loveless, 

1959; Wade et al., 1980).  

 

https://paperpile.com/c/ewAYP7/aRGQj+EVoBY+AyGLI+9g4JW
https://paperpile.com/c/ewAYP7/aRGQj+EVoBY+AyGLI+9g4JW
https://paperpile.com/c/ewAYP7/aBkib
https://paperpile.com/c/ewAYP7/VGQOc+cr4Ym
https://paperpile.com/c/ewAYP7/k02Yo+pGahw
https://paperpile.com/c/ewAYP7/0z39o+Gxg0U+hWjSg
https://paperpile.com/c/ewAYP7/0z39o+Gxg0U+8MxyD
https://paperpile.com/c/ewAYP7/0z39o+Gxg0U+8MxyD
https://paperpile.com/c/ewAYP7/Gxg0U
https://paperpile.com/c/ewAYP7/izBPF
https://paperpile.com/c/ewAYP7/xBBZP+WlwZN
https://paperpile.com/c/ewAYP7/xBBZP+WlwZN
https://paperpile.com/c/ewAYP7/kjPoh
https://paperpile.com/c/ewAYP7/QMxyh+YoN3V+lSJbO
https://paperpile.com/c/ewAYP7/Gxg0U+kjPoh
https://paperpile.com/c/ewAYP7/Gxg0U+kjPoh
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Fire return intervals are a major defining feature of fire regimes (Ford et al., 2010; Gill, 

1975; Safford & Van de Water, 2014) and are influenced by the frequency of ignition, 

fuel structure and species composition (Safford & Van de Water, 2014). Fire return 

intervals are also determined by ecosystem's capacity to recover from a fire. Ecosystems 

cannot burn at shorter intervals than they can recover from without marked changes in the 

structure and function of those ecosystems (Ford et al., 2010). A study on the effects of 

fire return intervals in long-leaf pine ecosystems showed that these ecosystems were 

strongly regulated by fire and fire-return intervals played a key role in species 

composition (Ford et al., 2010). In Everglades fire adapted ecosystems, fire return 

intervals range from 2-177 years (Snyder, 1991). While wetland marsh and marl prairies 

have a fire return interval of 2-3 years (L. N. Brown et al., 2020; Cook & Hayes, n.d.; 

Salvatico, 2019), the fire return interval for pinelands is 6-10 years (Snyder, 1991; Wade 

et al., 1980), 10-24 years for cypress (Wade et al., 1980), and hammocks have a fire 

return interval of 177 years (Snyder, 1991). 

 

Similar to fire, hydrology can also have a significant effect on ecosystem structure and 

function, especially in Everglades wetland ecosystems. The difference in hydrology 

across Everglades landscape accounts for the varying pattern in species composition 

(John et al., 2021). Marshes often exhibit higher water levels and remain inundated 

throughout most years in the Everglades (Lockwood et al., 2003) whereas the marl 

prairies exhibit seasonal dry downs that can last anywhere from 3-6 months annually 

(Sah, Ross, & Stofella, 2010; M. S. Ross et al., 2006). Aside from influencing species 

composition, hydrology also interacts with fire to affect the amount of fuels consumed 

https://paperpile.com/c/ewAYP7/f4z6Q+fAbhj+oz1M7
https://paperpile.com/c/ewAYP7/f4z6Q+fAbhj+oz1M7
https://paperpile.com/c/ewAYP7/oz1M7
https://paperpile.com/c/ewAYP7/fAbhj
https://paperpile.com/c/ewAYP7/fAbhj
https://paperpile.com/c/ewAYP7/KXJnF
https://paperpile.com/c/ewAYP7/QMxyh+YoN3V+lSJbO
https://paperpile.com/c/ewAYP7/QMxyh+YoN3V+lSJbO
https://paperpile.com/c/ewAYP7/KXJnF+kjPoh
https://paperpile.com/c/ewAYP7/KXJnF+kjPoh
https://paperpile.com/c/ewAYP7/kjPoh
https://paperpile.com/c/ewAYP7/KXJnF
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and the capacity to recover from fire. In general, drier conditions increase pre-fire fuel 

availability (Slocum et al., 2007), while wetter conditions limit the exposure of 

vegetation to fire and can protect against high severity fire effects (Wade et al., 1980). In 

wetlands, flooding after fire can increase post-fire recovery rates by suppressing 

vegetation growth, leading to a more sparsely vegetated landscape (Herndon et al., 1991; 

Ruiz et al., 2013). While hydrology and fire history have had a significant influence on 

vegetation and fire behavior in the Everglades (Lockwood et al., 2003; Loveless, 1959), 

the specific influence of the interaction between hydrology and fire on post-fire recovery 

rates is unknown (Herndon et al., 1991; Ponzio et al., 2004; Ruiz et al., 2013) 

The primary objective of this study is to evaluate how hydrology and fire history 

influence post-fire recovery rates in Everglades wetlands to understand how patterns in 

post-fire recovery vary. Ecosystem recovery is the system's ability to return to its pre-

disturbance state (Holling, 1973) and recovery time is the total time taken to reach the 

pre-disturbance state (D. L. DeAngelis & Waterhouse, 1987). Recovery is dependent on 

individual species response to fire (Shuman et al., 2017), pre-fire ecosystem condition (B. 

Beckage et al., 2003), fire severity, and post-fire climate (J. F. Johnstone & Chapin, 

2006). Recovery rates can therefore vary based on the combination of the fire regime and 

post-fire conditions (Enright et al., 2014; Tepley et al., 2018). A major assumption of this 

approach is that ecosystems are adapted to regimes they recover quickly from (Maher & 

Baum, 2013; Ramón Vallejo et al., 2012; Spalding et al., 2014). I hypothesized that (H1) 

wet conditions after fire will increase post-fire recovery times. Herndon et al., (1991) 

found that recovery times for sawgrass (Cladium jamaicense Krantz) marshes were 

https://paperpile.com/c/ewAYP7/0wvIh
https://paperpile.com/c/ewAYP7/kjPoh
https://paperpile.com/c/ewAYP7/VtQiP+N66fh
https://paperpile.com/c/ewAYP7/VtQiP+N66fh
https://paperpile.com/c/ewAYP7/cd2tI+Gxg0U
https://paperpile.com/c/ewAYP7/VtQiP+gSuIo+N66fh
https://paperpile.com/c/ewAYP7/v7ez1
https://paperpile.com/c/ewAYP7/T5lZ7
https://paperpile.com/c/ewAYP7/R8q6f
https://paperpile.com/c/ewAYP7/rm2hR
https://paperpile.com/c/ewAYP7/rm2hR
https://paperpile.com/c/ewAYP7/vtkCY
https://paperpile.com/c/ewAYP7/vtkCY
https://paperpile.com/c/ewAYP7/sr5V3+IZ9Zs
https://paperpile.com/c/ewAYP7/VEbAP+fT6oM+6bSSF
https://paperpile.com/c/ewAYP7/VEbAP+fT6oM+6bSSF
https://paperpile.com/c/ewAYP7/VtQiP
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longer when hydroperiods were higher after fire. When water levels were higher than the 

canopy, recovery rates were approximately double the time required for clumps that were 

exposed. I also hypothesize that (H2) areas that burn more frequently should be more fire 

adapted and should recover faster from fire (Wilson et al., 2015). Areas that burn more 

frequently are more likely to maintain fire adapted species and may recover faster 

(Chmura et al., 2011; Halofsky et al., 2020).  

 

Quantitative geospatial information on changes in ecosystem structure might be a useful 

approach on understanding the effects of fire and ecosystem recovery after fire. Satellite 

imagery and remote sensing techniques allow us to continuously measure changes in land 

cover and ecosystem structure over time (Kennedy et al., 2014) by detecting changes in 

surface reflectance. Remote sensing has been used to evaluate recovery after fire all over 

the world (Arévalo et al., 2014; Chu & Guo, 2013; Clemente et al., 2009; Puerta-Piñero 

et al., 2012). One of the most widely used methods in the disturbance recovery 

assessment is to compare burned areas to neighboring unburned areas (Foster & Tilman, 

2000; Frolking et al., 2009). Changes in surface reflectance as vegetation recovers and 

regains coverage lost in a fire is used to assess recovery (Dı́az-Delgado & Pons, 2001; 

Goetz et al., 2006; A. M. S. Smith et al., 2007; Wilson et al., 2015). The Normalized 

Difference Vegetation Index (NDVI) is commonly used for monitoring changes in 

vegetation cover and productivity. NDVI captures variation in vegetation density 

(Carlson & Ripley, 1997; Hernández-Clemente et al., 2009; Malak & Pausas, 2006) and 

has been shown to reflect spatio-temporal patterns in ecosystem productivity and biomass 

(Boelman et al., 2003; Box et al., 1989; Butterfield & Malmström, 2009; Freeman et al., 

https://paperpile.com/c/ewAYP7/Em3ew
https://paperpile.com/c/ewAYP7/HCuLI+v6Y21
https://paperpile.com/c/ewAYP7/PjDxC
https://paperpile.com/c/ewAYP7/2rg1G+gQP9a+PH1Bt+LIVBD
https://paperpile.com/c/ewAYP7/2rg1G+gQP9a+PH1Bt+LIVBD
https://paperpile.com/c/ewAYP7/ZXDmn+0qxJA
https://paperpile.com/c/ewAYP7/ZXDmn+0qxJA
https://paperpile.com/c/ewAYP7/Z0EXe+TijNP+Em3ew+CnCMl
https://paperpile.com/c/ewAYP7/Z0EXe+TijNP+Em3ew+CnCMl
https://paperpile.com/c/ewAYP7/SBrHT+AbuaL+njnvc
https://paperpile.com/c/ewAYP7/EBAfD+LM3Zn+aga16+Zor5T+vQF9k+s7z75+MbXHz+c7HO5
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2007; Goswami et al., 2015; Jones, 2001; Walker et al., 1995; Wessels et al., 2006). 

Capturing variation in ecosystem structure and function, NDVI is a useful indicator of 

recovery patterns (Hope et al., 2007; Malone et al., 2016; Röder et al., 2008; Schroeder et 

al., 2007; Viedma et al., 1997; Wilson et al., 2015). Because of its sensitivity to changes 

in vegetation cover (Carlson & Ripley, 1997; Hernández-Clemente et al., 2009; Malak & 

Pausas, 2006; Viedma et al., 1997), NDVI has been used to detect post-fire recovery 

patterns (Carlson & Ripley, 1997; Meng et al., 2015; Ryu et al., 2018), and will be used 

here to understand patterns in post-fire recover in Everglades wetland ecosystems. 

 

 

 

 

 

 

 

 

 

 

  

https://paperpile.com/c/ewAYP7/EBAfD+LM3Zn+aga16+Zor5T+vQF9k+s7z75+MbXHz+c7HO5
https://paperpile.com/c/ewAYP7/cOSZD+h8wQ1+P457R+iI9Fz+zDhpv+Em3ew
https://paperpile.com/c/ewAYP7/cOSZD+h8wQ1+P457R+iI9Fz+zDhpv+Em3ew
https://paperpile.com/c/ewAYP7/SBrHT+AbuaL+njnvc+zDhpv
https://paperpile.com/c/ewAYP7/SBrHT+AbuaL+njnvc+zDhpv
https://paperpile.com/c/ewAYP7/SBrHT+sXrhf+u1v5l
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Methods 

Study Site  

The Florida Everglades (25°18′45″N, 80°41′15″W) is listed as a United Nations 

Educational, Scientific and Cultural Organization (UNESCO) World Heritage Site and 

also as a Wetland of International Importance. The Everglades have a sub-tropical 

climate with hot and humid summers and mild winters, which produces a year-long 

growing season (L. H. Gunderson & Loftus, 1993). With distinct summer-wet and 

winter-dry seasons (Egler, 1952), the temperatures can reach a maximum of 40°C in the 

summer and drop to 17°C in the winter (L. H. Gunderson & Loftus, 1993). Precipitation 

(1380 mm yr-1) is an important factor in regulating hydrology (L. Gunderson & Light, 

2006). Mean annual rainfall ranges from 1300-1600 mm (Donald L. DeAngelis et al., 

1998; L. H. Gunderson & Loftus, 1993; Lockwood et al., 2003) and the majority of the 

rainfall (~80%) occurs in the wet season which starts in May and ends in October (L. H. 

Gunderson & Loftus, 1993). Water levels increase throughout the wet season and peaks 

in October (B. Beckage et al., 2003).  

 

The Everglades is a diverse landscape comprised of freshwater and saline wetlands, 

mangroves scrub, tall riverine mangrove forests, pinelands, tree islands, and hardwood 

hammocks (Donald L. DeAngelis et al., 1998; Milon & Scrogin, 2006; Pyne, 2016). 

Marshes and marl prairie wetland ecosystems occupy ~65% of the Everglades and 

Sawgrass (Cladium jamaicense Krantz) is a dominant species in both marshes and marl 

prairie wetlands (Loveless, 1959; Wade et al., 1980) (Figure 1). These ecosystems have a 

diverse hydrological regime. Water flow into the Everglades depends on local rainfall 

https://paperpile.com/c/ewAYP7/nKYh6
https://paperpile.com/c/ewAYP7/nhFPs
https://paperpile.com/c/ewAYP7/nKYh6
https://paperpile.com/c/ewAYP7/EuqoU
https://paperpile.com/c/ewAYP7/EuqoU
https://paperpile.com/c/ewAYP7/nKYh6+K0hSC+cd2tI
https://paperpile.com/c/ewAYP7/nKYh6+K0hSC+cd2tI
https://paperpile.com/c/ewAYP7/nKYh6
https://paperpile.com/c/ewAYP7/nKYh6
https://paperpile.com/c/ewAYP7/rm2hR
https://paperpile.com/c/ewAYP7/K0hSC+EZXut+hWjSg
https://paperpile.com/c/ewAYP7/Gxg0U+kjPoh
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and regional runoff from adjacent lakes (Davis & Ogden, 1994). The surface water 

increases in the wet season (May to October) and decreases in the dry season (November 

to April) (Brian Beckage & Platt, 2003; Loveless, 1959). Canals and levees are 

constructed by South Florida Water Management District to control the water dynamics 

in Everglades (Davis & Ogden, 1994). These management implications have caused 

disruption in water flow and altered the hydroperiod of the Everglades (Jones et al., 

2013). Variation in hydrology and the short fire return interval make these wetlands an 

excellent candidate to evaluate the effects of hydrology and a dynamic fire history on 

post-fire recovery.  

 

The Everglades vegetation map produced by the Center for Remote Sensing and Mapping 

Science at The University of Georgia was used to develop a wetland layer for Everglades 

National Park (https://fce-lter.fiu.edu/data/GIS/). The original vegetation map was 

developed in 1995 and it classified Everglades vegetation into 91 classes. I simplified the 

vegetation classes in this detailed product to delineate marsh and marl prairie wetland 

types into six categories (Figure 1): cattail (Typha spp.) marsh, graminoid marsh, 

graminoid prairie, sawgrass marsh, sawgrass marl prairie and halophytic herbaceous 

prairie. The final wetland vegetation file consisted of just the six classes at 30-meter 

resolution. All processing was done in R (R Core Team, 2014). 

https://paperpile.com/c/ewAYP7/8MxyD
https://paperpile.com/c/ewAYP7/93qDc+Gxg0U
https://paperpile.com/c/ewAYP7/8MxyD
https://paperpile.com/c/ewAYP7/wjf1H
https://paperpile.com/c/ewAYP7/wjf1H
https://fce-lter.fiu.edu/data/GIS/
https://paperpile.com/c/ewAYP7/cne54
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Figure 1. Map of Everglades marshes and marl prairie wetland ecosystems. Marshes and 

marl prairies of Florida Everglades were classified into six different types: cattail (Typha 

spp.) marsh, graminoid marsh, graminoid prairie, sawgrass (Cladium jamaicense Krantz) 

marsh, sawgrass marl prairie and halophytic herbaceous prairie. 
 

Cattail marshes are found scattered across the Everglades in disturbed sites and at long-

hydroperiod sites that remain inundated throughout most years (Sah, Ross, & Stofella, 

2010; Wade et al., 1980). Cattail marshes are comprised of non-graminoid emergent 

marshes such as Pontederia lanceolata, Sagittaria spp., Nymphaea odorata, Typha spp., 

with Ludwigia repens and Utricularia spp. Graminoid marshes are semi-permanently 

flooded  and present in the southern part of Shark River Slough, the stair step region, and 

the C-111 basin (Sah, Ross, & Stofella, 2010). Species such as maidencane (Panicum 

hemitomon), spike rush (Eleocharis cellulosa), black rush (Juncus roemerianus) and 

common reed (Phragmites spp.) make up the graminoid marsh. The graminoid prairies 

are inundated 3 to 7 months a year (Sah, Ross, & Stofella, 2010) and  muhly grass 

(Muhlenbergia filipes), cordgrass (Spartina spp.), and a mix of maidencane-spike rush in 

https://paperpile.com/c/ewAYP7/nRvOg+kjPoh
https://paperpile.com/c/ewAYP7/nRvOg+kjPoh
https://paperpile.com/c/ewAYP7/nRvOg
https://paperpile.com/c/ewAYP7/nRvOg
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shallow open water are definitive species in this wetland type. The marl prairies have an 

annual hydroperiod of 2 to 6 months (M. S. Ross et al., 2006) and muhly grass and 

sawgrass dominate this wetland type. Sawgrass marshes are present throughout the 

Everglades with an annual hydroperiod of 7-11 months (Lockwood et al., 2003) and 

dominated by sawgrass on the ridges. The halophytic herbaceous prairie is found 

scattered along the coastal areas in tidal zones in Cape Sable and south of West lake (Sah, 

Ross, & Stofella, 2010) and consists of saltgrass (Distichlis spicata), smutgrass 

(Sporobolus spp.) and keys grass (Monanthochloe littoralis); they also contain very salt 

tolerant species such as saltwort (Batis maritima), glasswort (Salicornia spp.) and sea 

purslane (Sesuvium spp.). These wetland types are often incorporated into two overall 

classes: marshes, and marl prairies in the Everglades, and are indicative of hydrological 

patterns.  

 

Overview 

To evaluate how hydrology and fire history influence post-fire recovery rates in 

Everglades wetlands, I used the NDVI to measure post-fire recovery for fires that 

occurred from 2005-2019 in Everglades wetlands. First, I developed a model to estimate 

the expected unburned NDVI (Baseline) for Everglades wetlands, controlling for 

vegetation type (cattail marsh, graminoid marsh, graminoid prairie, sawgrass marsh, 

sawgrass marl prairie and halophytic herbaceous prairie) and water level. For burned 

areas, I measured recovery time as the time it takes for a burned area to fall within the 

95% CI of expected NDVI (Baseline). I then explored hydrology and fire frequency 

(1948-2000) as drivers of post-fire recovery and evaluated the impact of a 10% increase 

https://paperpile.com/c/ewAYP7/b6eK3
https://paperpile.com/c/ewAYP7/cd2tI
https://paperpile.com/c/ewAYP7/nRvOg
https://paperpile.com/c/ewAYP7/nRvOg
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in water level on post-fire recovery. This approach required the development of 

Everglades fire history layers, designing a baseline model to understand expected 

unburned NDVI, measuring recovery rates for burned areas, and exploring drivers of 

recovery.   

 

Defining the Baseline NDVI 

I used the Normalized Difference Vegetation Index (NDVI; Eq 1), which captures 

changes in green vegetation based on chlorophyll absorption (Liu et al., 2018; Mahajan & 

Bundel, 2016).  

 

NDVI = (Red - NIR) / (NIR + Red)      Eq. 1 

 

The NDVI was calculated from Landsat 7 (ETM+; Table 1). Landsat data are available at 

16-day intervals and at a 30-meter resolution. All the measurement dates with fill values, 

saturated values and the values that were out of range for all the bands were not used in 

addition to measurements with low cloud confidence.  

 

Table 1. Landsat 7 (ETM+) spectral bands and different vegetation indices calculated 

from these band values. 

Landsat Spectral Bands Band range Trait  

Blue band (Band 1) 0.45 - 0.52 µm Distinguishing soil from vegetation, and 

deciduous from coniferous vegetation 

Green band (Band 2) 0.52 - 0.60 µm Chlorophyll absorption, emphasizes peak 

vegetation for assessing plant vigor 

Red band (Band 3) 0.63 - 0.69 µm Discriminates vegetation slopes 

Near Infrared band (Band 4) 0.77 - 0.90 µm Emphasizes biomass content and shorelines 

https://paperpile.com/c/ewAYP7/cjCNw+gmsUO
https://paperpile.com/c/ewAYP7/cjCNw+gmsUO
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Shortwave Infrared band 1 

(Band 5) 
1.55 - 1.75 µm Discriminates moisture content of soil and 

vegetation 

Shortwave Infrared band 2 

(Band 7) 
2.08 - 2.35 µm Hydrothermally altered rocks with mineral 

deposits 

 

To understand what the expected NDVI should be for wetland ecosystems under variable 

hydrological regimes, I generated sample points (n=2,302) across wetland types that did 

not burn from 1948-2019. I used a stratified random sampling approach to distribute 

sample points by wetland type and observed water levels values for each wetland type 

using the sampleRandom function in the “Raster” package (Hijmans et al., 2013) in R (R 

Core Team, 2014) (Table 2). Sample points were at least 30-m apart. 

 

Table 2. Sample design for the baseline model. Total unburned (1948-2019) wetland area 

within Everglades National Park, the total number of sample points (SP) and the fraction 

of sample points for each wetland type.  

Wetland Type Unburned 

Area (km²) 

Unburned 

Area (%) 

Baseline SP 

(Total points) 

Baseline SP 

(%) 

Cattail marsh 0.36 0.14 102 4.44 

Graminoid prairie 44.49 18.17 443 19.24 

Graminoid marsh 37.95 15.51 340 14.77 

Sawgrass marsh 118.99 48.62 1,011 43.91 

Halophytic 

herbaceous prairie 

23.95 9.79 236 10.26 

Sawgrass marl 

prairie 

19.04 7.77 170 7.38 

Total  244.78 100 2,302 100 

 

I obtained the daily median water level information from the Everglades Depth 

Estimation Network (EDEN; https://sofia.usgs.gov/eden/) from 1st Jan 2005 to 31st Dec 

2019. I used the daily water level for the date of the NDVI measurement. At locations 

https://paperpile.com/c/ewAYP7/BlTvl
https://paperpile.com/c/ewAYP7/cne54
https://paperpile.com/c/ewAYP7/cne54
https://sofia.usgs.gov/eden/
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where water level stations were not available, the nearest station was used to calculate the 

water level for that location. The nearest neighboring water level station for each location 

was found using the get.knnx function in the package “FFN” (Li & Li, 2012) in R (R 

Core Team, 2014). Thus, 65 water level stations for unburned sample locations were 

selected. While this approach does not capture high resolution variability in water level 

for a particular location, it does capture relative change in conditions for a location and 

landscape level differences for different parts of the landscape. 

 

I downloaded NDVI for all sample points from the Application for Extracting and 

Exploring Analysis Ready Samples (AppEEARS). While studies often use pre-fire 

conditions or neighboring unburned pixels to define the baseline (Foster & Tilman, 2000; 

Frolking et al., 2009), in the Everglades changes in water level and the ecosystem type 

were thought to have a strong impact on NDVI. The development of a baseline NDVI 

model would better capture expected NDVI for an unburned location under the existing 

conditions.  

 

The baseline dataset (Table 2) was split into a training (80%) and a testing (20%) dataset. 

Data in both datasets were distributed across the following variables: wetland type, 

elevation, latitude, longitude, and water level. I fit a Generalized Additive Model (GAM) 

using the gam function in the “mgcv” package (S. Wood & Wood, 2015) in R (R Core 

Team, 2014). The GAM approach is an extension of GLM making an assumption of 

additive functions and smoothing components; where the coefficients can be expanded as 

smooth functions of covariates (Hastie & Tibshirani, 1987). GAM models are semi-

https://paperpile.com/c/ewAYP7/VBAdl
https://paperpile.com/c/ewAYP7/cne54
https://paperpile.com/c/ewAYP7/cne54
https://paperpile.com/c/ewAYP7/ZXDmn+0qxJA
https://paperpile.com/c/ewAYP7/ZXDmn+0qxJA
https://paperpile.com/c/ewAYP7/k8G6b
https://paperpile.com/c/ewAYP7/cne54
https://paperpile.com/c/ewAYP7/cne54
https://paperpile.com/c/ewAYP7/uGiMr
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parametric models in which the relationships among the variables are not restricted to any 

shapes. With the use of a smoothing spline function to model non-linear relationships 

between the predictor and response variables. GAMs do not require prior knowledge of 

the response curves or relationships between the variables, which makes it easier to use 

when assumptions cannot be made on a specific link function for error distribution. 

GAMs are data driven rather than model driven (Lehmann, 1998). The over-fitting of the 

splines is avoided in GAM by determining an appropriate degree of smoothness (Levine 

et al., 2021; S. N. Wood, 2004). A backward selection method was used to select the best 

fit variables and to determine the effect of each variable on the final model (Poggio et al., 

2013). Akaike’s Information Criterion (AIC) (Akaike, 1974) and deviance explained 

were used to compare each of the models created. The AIC is used to rank models based 

on the closeness of fitted values and true values (Johnston et al., 2019; Littell et al., 1996; 

Tepley et al., 2017). The discrepancy between the observed and fitted values was 

measured by the deviance instead of R² (S. N. Wood, 2006).  

 

From the initial pool of 23 variables (Band 1, Band 2, Band 3, Band 4, Band 5, Band 7, 

Normalized Burn Ratio (NBR), NDVI, Simple ratio (SR), maximum Band 1, maximum 

Band 2, maximum Band 3, maximum Band 4, maximum Band 5, mean Band 5, 

maximum Band 7, month, location, elevation, wetland types, maximum NDVI, maximum 

NBR and maximum SR), I used 9 variables. Month, location (latitude and longitude), 

elevation, wetland types, water level, maximum Band 5 (2005-2019), maximum NDVI 

(2005-2019), maximum NBR (2005-2019), and maximum SR (2005-2019; Table 3) were 

used to model NDVI. The final model had the lowest AIC and the highest deviance 

https://paperpile.com/c/ewAYP7/ToE3J
https://paperpile.com/c/ewAYP7/Tksan+N9IDw
https://paperpile.com/c/ewAYP7/Tksan+N9IDw
https://paperpile.com/c/ewAYP7/1YXCt
https://paperpile.com/c/ewAYP7/1YXCt
https://paperpile.com/c/ewAYP7/mlskq
https://paperpile.com/c/ewAYP7/XqpxM+33EYt+0tB6D
https://paperpile.com/c/ewAYP7/XqpxM+33EYt+0tB6D
https://paperpile.com/c/ewAYP7/VuqjD
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explained. Cross-validation was used to measure the validity of the baseline model with  

the test dataset to compare observed NDVI to predicted values.  

 

Table 3. Explanatory variables used in the development of the baseline GAM model for 

Everglades wetlands (2005-2019). 

Variables  Interpretation References  

Month  Accounts for seasonal variation, where vegetation 

growth (biomass) directly depends on the growing 

season. 

Hagenbo et al., 

2019; Mateo-

Sanchis et al., 2019  

Latitude  Accounts for the spatial distribution of the points and 

landscape gradients in resources. 

Drobyshev et al., 

2017; Hanzelka et 

al., 2019  

Longitude  

Point 

elevation 

Influences exposure/ Low elevation locations 

experience higher water levels 

Westerling & 

Bryant, 2008; 

Wilson et al., 2015 

Wetland 

Type 

Captures the variation in vegetation communities. 

Includes: cattail marsh, graminoid prairie, graminoid 

marsh, sawgrass marsh, halophytic herbaceous prairie 

and sawgrass marl prairie.     
 

Mateo-Sanchis et 

al., 2019; Tian et al., 

2018 

Maximum 

Band 5 

Differentiates between differences in moisture content 

of soil and vegetation in space and time. 

Asner & Lobell, 

2000; Oyama et al., 

2015 

Maximum 

NDVI 

Indicative of primary productivity and live green 

vegetation. 

NDVI= (Band 4 - Band 3) / (Band 4 + Band 3) 

Röder et al., 2008; 

Wessels et al., 2006  

Maximum 

NBR 

Has been used to detect burn areas and fire intensity 

and severity. 

NBR= (Band 4 - Band 7) / (Band 4 + Band 7) 

Escuin et al., 2008; 

Miller & Yool, 2002  

Maximum 

SR 

Differentiate between vegetation and water. Larger 

SRI indicates healthy vegetation while lower values 

denote soil, water, or ice.  SR= Band 4 / Band 3 

Melillos & 

Hadjimitsis, 2020 

 

https://paperpile.com/c/ewAYP7/20W7Y+Q5VUn
https://paperpile.com/c/ewAYP7/20W7Y+Q5VUn
https://paperpile.com/c/ewAYP7/20W7Y+Q5VUn
https://paperpile.com/c/ewAYP7/3WQPh+g1JY9
https://paperpile.com/c/ewAYP7/3WQPh+g1JY9
https://paperpile.com/c/ewAYP7/3WQPh+g1JY9
https://paperpile.com/c/ewAYP7/WLQPZ+Em3ew
https://paperpile.com/c/ewAYP7/WLQPZ+Em3ew
https://paperpile.com/c/ewAYP7/WLQPZ+Em3ew
https://paperpile.com/c/ewAYP7/Q5VUn+NBoXT
https://paperpile.com/c/ewAYP7/Q5VUn+NBoXT
https://paperpile.com/c/ewAYP7/Q5VUn+NBoXT
https://paperpile.com/c/ewAYP7/BWfvs+VZdoM
https://paperpile.com/c/ewAYP7/BWfvs+VZdoM
https://paperpile.com/c/ewAYP7/BWfvs+VZdoM
https://paperpile.com/c/ewAYP7/P457R+vQF9k
https://paperpile.com/c/ewAYP7/P457R+vQF9k
https://paperpile.com/c/ewAYP7/yjJD2+DCC1w
https://paperpile.com/c/ewAYP7/yjJD2+DCC1w
https://paperpile.com/c/ewAYP7/thMgB
https://paperpile.com/c/ewAYP7/thMgB
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Estimating Post-Fire Recovery Time 

Everglades National Park records the date of fires, the source of ignition (natural versus 

anthropogenic), and the type of fire (prescribed and wild) in fire perimeter shapefiles. 

These vector files extend from 1948-2019. Using this information from the Everglades 

National Park, I developed fire history layers. I determined which parts of the landscape 

burned from 1948 -2019 and calculated the total number of fires in the Everglades 

marshes and marl prairies matching the resolution of Landsat products.  

 

To evaluate the patterns in post-fire recovery across Everglades wetlands, I randomly 

sampled 7,000 locations (Table 4) that burned from 2005-2019, that were distributed 

across all 6 marsh and marl prairie wetlands ecosystem types, the range of water levels 

observed within each ecosystem types, and the total number of fires in each marsh and 

marl prairie wetland ecosystem type using the sampleRandom function in the “Raster” 

package (Hijmans et al., 2013) in R (R Core Team, 2014). The sample points were at 

least 30 meters apart. I downloaded Landsat 7 data from AppEEARS for the sample point 

locations and calculated NDVI. For each sample point, I also estimated the baseline 

NDVI using the baseline model. Recovery time is the number of days it took to return to 

an NDVI value that fell within the 95% prediction interval for the baseline NDVI. To 

ensure that each sample point had enough NDVI measurements to get within 6 months of 

the actual recovery time, I made sure that all the fires had at least two NDVI 

measurements per year. A total of 5,667 points were used to evaluate drivers of recovery 

time.   

 

https://paperpile.com/c/ewAYP7/BlTvl
https://paperpile.com/c/ewAYP7/cne54
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Table 4. Sampling frequency for the burned wetlands within Everglades National Park 

(2005-2019). Sample points (SP) for data analysis were distributed across wetland types. 

Wetland Type Burned Area 

(km²) 

Burned Area 

(%)  

Recovery SP 

(total points) 

Recovery SP  

(%) 

Cattail marsh 16.46 1.78 630 9 

Graminoid prairie 176.72 19.03 1,750 25 

Graminoid marsh 58.01 6.24 1,050 15 

Sawgrass marsh 674.17 72.60 3,012 43.02 

Halophytic 

herbaceous prairie 

2.16 0.24 350 5 

Sawgrass marl 

prairie 

1.06 0.11 208 2.98 

Total  928.58 100 7,000 100 

 

Drivers of Post-Fire Recovery 

Similar to the approach used to model baseline NDVI, GAMs were used to measure the 

effect of hydrology on post-fire recovery time. Explanatory variables included the water 

level on the day of the fire, mean, minimum and maximum water level six months after 

fire, one year after fire, and two years after fire. Hydrological information was obtained 

from the nearest water level station from 2005-2019 using 91 water level stations for 

burned sample points. I used a backwards selection process and only included variables 

in the final model that were significant and that led to the highest deviance explained and 

the smallest AIC. 

 

To measure the effect of fire history on post-fire recovery, GAMs were developed using 

the total number of fires for each sample location (Halofsky et al., 2020; C. E. 

McMichael et al., 2004). The total number of fires represents the number of times each 

location burned since 1948. Using fire records from Everglades National Park, I 

https://paperpile.com/c/ewAYP7/v6Y21+YQJkt
https://paperpile.com/c/ewAYP7/v6Y21+YQJkt
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developed fire history layers. I determined which parts of the landscape burned from 

1948-2019 and calculated the total number of fire incidents in the Everglades marshes 

and marl prairies.  

 

Following an evaluation of the individual effect of fire, I measured the interacting effects 

for hydrology and fire history using the same approach. I then increased observed daily 

water levels by 10%. An increase of 10% falls within projections for the Everglades 

marsh and marl prairie wetlands (Flower et al., 2019; Koch et al., 2015) and could 

potentially represent conditions that result from restoration activities. First, I increased 

the daily water level by 10%, other water level variables such as maximum water level 

six months after fire, maximum water level one year after fire, and maximum water level 

two years after fire were then calculated. Next, I estimated recovery time using the 

recovery model to evaluate how recovery time may change with a 10% increase in water 

levels. 

 

  

https://paperpile.com/c/ewAYP7/nPif4+gMPjI
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Results  

Marsh and marl prairie wetland ecosystems within the Everglades exhibit different water 

level conditions. Three distinct hydrologic groups were evident among the wetland 

ecosystems: dry (average water level < 0 m), moderate (average water level 0.1 m - 1 m) 

and high (average water level > 1 m) water level wetlands. Dry wetlands include 

halophytic herbaceous prairies that occur along the coast. Graminoid marsh, graminoid 

prairie, and sawgrass marl prairie have moderate water levels and cattail marsh and 

sawgrass marsh are considered high water level wetlands (Figure 2a). The average 

number of fires from 1948 to 2019 also differed by wetland ecosystem type (Figure 2b). 

The highest fire frequencies were observed in the sawgrass marl prairie (5.74 ± 0.12), 

followed by the graminoid prairie (4.74 ± 0.05), cattail marsh (4.45 ± 0.04), sawgrass 

marsh (3.89 ± 0.04), graminoid marsh (2.08 ± 0.04), and the halophytic herbaceous 

prairie (1.89 ± 0.14). Post-fire recovery time was generally less than 2 years but can take 

more than 5 years for some wetland types (Figure 2c). The mean recovery time (± 

standard error) was 2.35 ± 0.08 years for cattail marsh, 1.74 ± 0.06 years for the 

graminoid marsh, 2.11 ± 0.05 years for the graminoid prairie, 1.33 ± 0.09 years for the 

halophytic herbaceous prairie, 4.74 ± 0.15 years sawgrass marl prairie and 2.89 ± 0.05 

years for the sawgrass marsh. Although I estimated recovery for 5,667 points, there were 

140 points that did not recover within the study period (2005- 2019). These points burned 

from 2005-2019 and limit my ability to consider locations that require long recovery 

times (> 14 years; Table 5). 

 



20 

 

 

Figure 2. Average annual water levels (m) for wetland types from 2005-2019 in 

Everglades National Park. b) Total number of fires for wetland types from 1948-2019. c) 

Recovery time in years for wetland ecosystems.  

 

Table 5: The frequency of sample points from 2005-2019 in Everglades National Park 

that did not recover during the sample period. 

Year of 

fire 

Sample 

points that 

did not 

recover 

Wetland types 
Cattail 

marsh 

Graminoid 

marsh 

Graminoid 

prairie 

Halophytic 

herbaceous 

prairie 

Sawgrass 

marl 

prairie 

Sawgrass 

marsh 

2005 14 0 9 4 1 0 0 

2006 2 0 0 0 0 0 2 

2008 6 0 3 0 0 0 3 

2009 1 0 0 1 0 0 0 

2011 18 0 0 0 0 0 18 

2012 10 2 4 1 0 0 3 

2013 1 0 0 1 0 0 0 

2014 5 0 4 1 0 0 0 

2017 18 0 3 13 0 0 2 

2018 17 0 12 1 0 0 4 

2019 48 0 14 22 0 0 12 

Total  140 2 49 44 1 0 44 
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Baseline NDVI 

Daily water level (p < 0.001), latitude (p < 0.001), longitude (p < 0.001), month (p < 

0.001), point elevation (p < 0.001), elevation difference between point location and water 

level station (p < 0.001), maximum band 5 value (p < 0.001), maximum NBR (p < 

0.001), maximum NDVI (p < 0.001) and maximum SR (p < 0.001) had a significant 

effect on baseline NDVI (p < 0.001; Table A1). Smoothing functions were significant by 

wetland type for daily water level, month, maximum band 5 value, maximum NBR, 

maximum NDVI and maximum SR. The baseline model explained 70.5% of deviance in 

NDVI for unburned wetlands. The mean baseline NDVI values (± standard deviation) for 

each wetland ecosystems were greatest for the halophytic herbaceous prairie (0.55 ± 

0.16), followed by the cattail marsh (0.43 ± 0.12), graminoid marsh (0.39 ± 0.15), 

graminoid prairie (0.39 ± 0.14), sawgrass marl prairie (0.39 ± 0.14), and sawgrass marsh 

(0.37 ± 0.13). As water levels increased, NDVI decreased for all wetland ecosystems 

(Figure 3). The larger variation in prediction intervals for graminoid marsh, halophytic 

herbaceous prairie and sawgrass marl prairie shows that these ecosystems were not found 

in higher water levels (Figure 3).  

 



22 

 

 

Figure 3: Variation of baseline NDVI with water level in Everglades marsh and marl 

prairie wetland ecosystem types (solid black line). The dotted lines show the 95% 

prediction interval. The X-axis differs between plots due to the observed differences in 

water level across wetland types and the variation in Y-axis is done to better represent the 

variation in NDVI. D, M, and H refers to dry, medium and high-water level conditions 

respectively exhibited by the ecosystems.   

 

Drivers of Post-Fire Recovery 

Water level had a significant effect on recovery time for Everglades wetlands (deviance 

explained =16.7%). Maximum water level six months after fire (p < 0.001; 13.5% 

deviance explained) and maximum water level two years after fire (p <0.001; 11.2% 

deviance explained) both had significant effects on recovery time (Figure 4). Maximum 

water level six months after fire (Figure 4a) showed a negative relationship with the 

recovery time whereas maximum water level two years after fire (Figure 4b) showed a 

positive relationship with the recovery time. Higher water level during the early stages of 

recovery favored faster vegetation regrowth which then slowed over time (Figure 4).  
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Figure 4: Generalized additive model results for post-fire recovery time (years) for (a) 

maximum water level six months after fire, and (b) maximum water level two years after 

fire for Everglades wetlands. 

 

The total number of fires (p < 0.001) explained 1.14% of the deviance in recovery time 

(Figure 5). Time to recovery increased with the number of fires up to seven fires, after 

which it decreased with an increased number of fires (Figure 5). Results suggest that a 

threshold must be reached (i.e., seven fires) before fire history starts having a reducing 

effect on recovery time.  
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Figure 5: Generalized additive models result for post-fire recovery time in response to 

changes in the total number of fires in Everglades wetlands.  

 

Including maximum water level six months after fire (p <0.001), maximum water level 

two years after fire (p <0.001), and total fires (p <0.001) in a recovery model explained 

25.2% deviance in post-fire recovery (p <0.001). This combined hydrology and fire 

history model was used to predict the recovery time for each wetland type. With a 

projected increase in water level by 10%, the recovery time for all Everglades marsh and 

marl prairie wetlands increased except for sawgrass marl prairie (Figure 6). There was 

greater variability in wetland recovery time as well as a larger range of outlier values in 

recovery time for observed water levels compared to +10% water levels (Figure 6).  
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Figure 6: Box plot of recovery time in years for different Everglades wetlands under 

current water level (blue) and +10% water levels (pink). 
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Discussion 

This study assessed the recovery rates of the Everglades wetland ecosystems under the 

influence of current and future hydrologic regimes and current fire regimes. The 

hydrology of the Everglades landscape had a greater influence on recovery than fire 

history and post-fire recovery rates varied by wetland type. The variation in post-fire 

recovery time among wetland types in this study is similar to the species-specific 

recovery rates reported by (P. M. Ross et al., 2019; Slapcinsky et al., 2010). Native rush 

(Juncus effusus) recovered within 1 year of fire whereas spiny rush (Juncus acutus), 

chenopod (Chenopodioideae) and salt couch (Paspalum vaginatum) did not recover 

within 1-year in salt marsh at Ash Island, New South Wales (P. M. Ross et al., 2019). 

Likewise, Slapcinsky et al., (2010) saw recovery of Conradina glabra in the 2nd and 3rd 

year after fire while the recovery of Warea carteri occurred within 1-year in Florida. 

Even though these studies were conducted in the same location, the recovery of different 

species varied possibly due to species specific responses to fire. 

  

 In this study, recovery time for wetlands ranged on average from about 1 to 5 years, 

which is within the range reported for other wetland species and ecosystems (Braswell et 

al., 2019; Clarkson, 1997; McAtee et al., 1979; P. M. Ross et al., 2019). Clarkson, (1997) 

reported 2-3 year recovery rates for Baumea teretifolia and Schoenus brevifolius at 

Whangamarino wetland and Schoenus brevifolius at the Moanatuatua wetland of New 

Zealand. Similarly, gulf cordgrass (Spartina spartinae) in Texas recovered in less than 2 

years after fire (McAtee et al., 1979). Earlier studies have found rapid and prompt 
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regrowth (more than 50% in less than a year) for sawgrass after fire (Loveless, 1959) if 

its meristems remain undamaged (Wade et al., 1980). Another study in Florida Lake 

Wales grasses and palmettos showed 90% recovery within 1 year in well drained sites 

whereas recovery was seen to be slower in drier sites (Abrahamson, 1984a, 1984b). 

  

I hypothesized that high water levels would lead to increased post-fire recovery time. My 

results suggest that recovery time is lower when water levels are higher during the first 

six months after fire, indicating that there is either rapid regrowth immediately after fire 

or wetland types with higher water levels recover faster than with lower water levels. 

Since the Everglades wetland type is confounded with water level it is not possible to 

fully separate the overall water level effects from the effects of wetland type. All wetland 

types decreased in recovery time with an increase in water level within the first 6 months, 

except for the graminoid prairie and halophytic herbaceous prairie. This finding was 

similar to (Abrahamson, 1984b) where species recovered at different rates after fire due 

to factors like interactions with fire severity, nutrient content, and/or species moisture 

content (Ruiz et al., 2013). I also saw that the halophytic herbaceous prairie was adapted 

to low water level sites and the graminoid prairie to moderate water level sites (average 

below 0.25m), which suggest that species in these sits will have slower growth rates and 

therefore longer recovery times when water levels are high.  

  

Recovery time increased with increase in water level two years post-fire. Because NDVI 

is positively correlated with vegetation cover (De Keersmaecker et al., 2014), 

https://paperpile.com/c/89Ir4f/5RIg4
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productivity (Jobbágy et al., 2002) and leaf area index (Carlson & Ripley, 1997; Wang et 

al., 2005); the NDVI-based recovery indices might show a general pattern of fast 

recovery immediately after the fire and a gradual decrease in response speed (typically 

after 6–12 months), as observed by (Ireland & Petropoulos, 2015). João et al., (2018) 

found vegetation type and structure, and climate had significant effects on the early post-

fire recovery whereas the resilience to maintain pre-fire structure and function determines 

more of the longer-term recovery process (Jill F. Johnstone et al., 2016). Besides 

hydrological conditions, fire and nutrient availability are known to be major influences 

on wetland ecosystems in the Everglades wetlands (Childers et al., 2003; Doren et al., 

1997; Lockwood et al., 2003). 

  

I hypothesized that recovery time would be shorter for areas experiencing frequent fires 

(Kinoshita & Hogue, 2011). However, Everglades wetlands exhibited this effect only 

after the total number of fires in an area exceeded 7. Only graminoid prairie and sawgrass 

marsh experienced more than 7 fires whereas other ecosystems experienced less than 7 

fires from 1948 to 2019. The interval between fires is determined by the fuel 

accumulations where long intervals result in intense fires (Hobbs & Gimingham, 1984; 

Rothermel & Philpot, 1973; Van Wilgen, 1982) and short fire intervals reduce fuel 

biomass leading to less severe fires (Dodge, 1972; Van Wilgen & Kruger, 1981). The 

intervals observed in Everglades wetlands (+10 years) over the study period was not 

sufficient to maintain the effects of fire on recovery. Fire in these wetlands is essential to 

prevent hardwood dominance (Wade et al., 1980) and woody encroachment has been 

identified as a major issue across this landscape (Loveless, 1959; Platt & Gottschalk, 
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2001; Sah, Ross, Snyder, et al., 2010; Wade et al., 1980). Woody encroachment is an 

indication that the +10 years fire return interval currently observed in many areas is not 

sufficient to maintain short stature fire adapted wetlands.  

  

A major assumption of this work is that ecosystems are adapted to regimes they recover 

quickly from (Maher & Baum, 2013; Ramón Vallejo et al., 2012; Spalding et al., 2014). 

Everglades wetlands show variation in recovery time, suggesting that the level of 

adaptation to fire differs and that fire return intervals between these wetlands also differ. 

Recovery occurs within 3 years in graminoid and marl prairies (L. H. Gunderson & 

Loftus, 1993; Wade et al., 1980). Unlike sawgrass, graminoid, and marl prairies, 

halophytes are more tolerant of altered hydrology, salinity stress and extreme 

temperatures than of fires (Bose et al., 2014; Kumari et al., 2015). Ground fires have been 

shown to increase cattail abundance (Ponzio et al., 2004; Wade et al., 1980) in areas 

dominated by sawgrass marsh as well as the graminoid marsh (Knickerbocker et al., 

2009; Wade et al., 1980).   

  

Though not taken into consideration in this study, fire severity also plays an important 

role in ecosystem recovery. In the presence of maximum fuel loads and dry conditions, 

fires can burn severely and consume a substantial portion of the above ground vegetation, 

affect soils and may even consume below ground vegetation (Rein et al., 2008; Wade et 

al., 1980). Such fires lead to changes in the vegetative community structure (Hayes & 

Robeson, 2011; João et al., 2018). The probability of experiencing high severity fire 
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decreases as the total number of fires in an area increases because of the reduced fuel 

loads (Halofsky et al., 2020). A 10% increase in water level for Everglades wetlands 

showed an increase in the post-fire recovery time for the majority of wetland ecosystems, 

with the exception of the sawgrass marl prairie, which exhibited a slight decrease. 

Although climate change projections indicate that precipitation/water levels may increase 

or decrease (Flower et al., 2017, 2019; Maliva et al., 2021; Obeysekera et al., 2015), the 

Comprehensive Everglades Restoration Plan is expected to increase water levels 

throughout the park, in addition to recovery times. Therefore, fire regimes are going to 

change as well. Developing tools to estimate how and where recovery rates are changing 

will be essential for adaptive management programs. 

  

Globally, fire management has been identified as a critical area of research for the 

preservation of ecosystems (Brian Beckage et al., 2005; Cole & Landres, 1996). The 

understanding of effective fire management and an effective fire regime under changing 

conditions is required to aid the successful restoration of the Everglades ecosystems 

(Brian Beckage et al., 2005; Lockwood et al., 2003). Although the proper management of 

fire adapted ecosystems must include a fire program that supports the management of 

wildfire and prescribed fire (Cissel et al., 1999; Williams, 1995), the management should 

consider recovery rates of vegetation. In the Everglades where both hydrology and fire 

are important drivers of ecosystem structure and function (Lockwood et al., 2003; 

Loveless, 1959), it is essential to understand the interaction between hydrology and fire 

to manage for an uncertain future. 
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Patterns in post-fire recovery can be used to evaluate resilience, which is the system’s 

ability to adapt and return to pre-disturbance regime (L. Gunderson & Light, 2006) and 

the system’s ability to maintain its fundamental functions after disturbance without 

differential changes in its internal properties (ecological resilience) (Holling, 1973; 

Virah-Sawmy et al., 2009). Patterns in post-fire recovery are a useful determinant of the 

effectiveness of managed fire regimes (Brewer & Platt, 1994; Platt et al., 1988; Safford & 

Van de Water, 2014).  

 

Study Limitations 

This study used NDVI as a proxy for post-fire vegetation recovery by assessing green 

biomass (Díaz-Delgado et al., 1998; Christine E. McMichael et al., 2006; Riaño et al., 

2002; Röder et al., 2008). NDVI normalizes the difference between red and near-infrared 

bands of the satellite making it sensitive to the vegetation photosynthetic radiation 

(Gitelson et al., 1996). However, problems like atmospheric and soil reflectance are 

associated with NDVI (C. E. McMichael et al., 2004; Wittenberg et al., 2007) as NDVI 

simply is the measurement of the reflectance. Relating ground and satellite observations 

can increase the interpretability of satellite observations (Hudak et al., 2007), as well as 

provide a means for applying spatially limited ground observations across landscapes. 

This study would be further improved from an updated vegetation map, inclusion of fire 

severity, and higher resolution information on water level at the time of fire. 
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Conclusion 

Changes in climate have made it more important for us to understand the post-fire 

recovery of wetland ecosystems.  This study provides important insights on key controls 

on post-fire recovery in wetland Ecosystems. Water level appears to be more important in 

post-fire recovery than fire history. This result may indicate that the fire regimes for these 

systems have been severely disrupted. Regardless, changes in hydrology in the future in 

response to climate change or CERP is likely to further alter fire regimes and an adaptive 

management strategy is key for maintaining these fire adapted ecosystems. 
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