
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

11-3-2021 

A Deep-dive into Cryptojacking Malware: From an Empirical A Deep-dive into Cryptojacking Malware: From an Empirical 

Analysis to a Detection Method for Computationally Weak Analysis to a Detection Method for Computationally Weak 

Devices Devices 

Ege Tekiner 
Florida International University, eteki001@fiu.edu 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Data Storage Systems Commons, Digital Communications and Networking Commons, and 

the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 
Tekiner, Ege, "A Deep-dive into Cryptojacking Malware: From an Empirical Analysis to a Detection Method 
for Computationally Weak Devices" (2021). FIU Electronic Theses and Dissertations. 4889. 
https://digitalcommons.fiu.edu/etd/4889 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.fiu.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.fiu.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4889?utm_source=digitalcommons.fiu.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A DEEP-DIVE INTO CRYPTOJACKING MALWARE: FROM AN EMPIRICAL

ANALYSIS TO A DETECTION METHOD FOR COMPUTATIONALLY WEAK

DEVICES

2021

A dissertation submitted in partial fulfillment of the 

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING 

by

Ege Tekiner



To: Dean John Volakis
College of Engineering and Computing

This dissertation, written by Ege Tekiner, and entitled A Deep-dive into Cryptojack-
ing Malware: From an Empirical Analysis to a Detection Method for Computationally
Weak Devices, having been approved in respect to style and intellectual content, is
referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Alexander Perez-Pons

Alex Afanasyev

Engin Kirda

A. Selcuk Uluagac, Major Professor

——

The dissertation of Ege Tekiner is approved.

Dean John Volakis

College of Engineering and Computing

Andres G. Gil

Vice-President for Research and Economic Development
and Dean of University of Graduate School

Florida International University, 2021

ii

DocuSign Envelope ID: 7CE4D2D1-4F14-4D86-BC62-4E147BA2F66D

Date of Defense: November 3, 2021



© Copyright 2021 by Ege Tekiner

All rights reserved.

iii



DEDICATION

To my family, Serap Tekiner, Nejat Tekiner, Melis Tekiner

My Mentor, Engur Riza Pisirici

and my friends,

Dilara Hekimci-Adak, Hunter Adak, Akif Turker, Hakan Sekerci

iv



ACKNOWLEDGMENTS

First of all, I would like to thank my major professor and advisor, Prof. Dr. A.

Selcuk Uluagac, for his support, guidance and leadership during my research journey.

His support and encouraging feedbacks lead me to higher success in my professional

life.

I would also like to express my appreciation to the members of my dissertation

committee, Dr. Alexander Perez-Pons, Dr. Alex Afanasyev, and Dr. Engin Kirda,

for their valuable comments, guidance, and support.

Throughout my master’s journey, I had a chance to work with several valuable

researchers. I would like to thank Dr. Ali Aydin Selcuk, from TOBB University of

Economics and Technology, Turkey and Dr. Engin Kirda from Northeastern Univer-

sity, USA for their great contribution, guidance and support on researches. I would

like to thank my colleague and friend Dr. Abbas Acar for his support, and encour-

agement. I would also like to thank our post doctoral researcher Dr. Ahmet Aris,

and all the members of Cyber-Physical Systems Security Lab (CSL) for everything.

Finally, I like to thank my parents and my sister who always support me, encourage

me and never leave me alone even if they are in overseas during my master’s. Finally,

I would like to express my gratitude to Florida International University and U.S.

National Science Foundation for financially supporting my research as well as the FIU

community for providing a great environment for my research for this dissertation.

v



ABSTRACT OF THE DISSERTATION

A DEEP-DIVE INTO CRYPTOJACKING MALWARE: FROM AN EMPIRICAL

ANALYSIS TO A DETECTION METHOD FOR COMPUTATIONALLY WEAK

DEVICES

by

Ege Tekiner

Florida International University, 2021

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

Cryptojacking is an act of using a victim’s computation power without his/her con-

sent. Unauthorized mining costs extra electricity consumption and decreases the

victim host’s computational efficiency dramatically. In this thesis, we perform an

extensive research on cryptojacking malware from every aspects. First, we present

a systematic overview of cryptojacking malware based on the information obtained

from the combination of academic research papers, two large cryptojacking datasets

of samples, and numerous major attack instances. Second, we created a dataset of

6269 websites containing cryptomining scripts in their source codes to characterize

the in-browser cryptomining ecosystem by differentiating permissioned and permis-

sionless cryptomining samples. Third, we introduce an accurate and efficient IoT

cryptojacking detection mechanism based on network traffic features that achieves

an accuracy of 99%. Finally, we believe this thesis will greatly expand the scope of

research and facilitate other novel solutions in the cryptojacking domain.
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CHAPTER 1

INTRODUCTION

Since the day Bitcoin was released in 2009, blockchain-based cryptocurrencies

have seen an increasing interest beyond specific communities such as banking and

commercial entities. It has become so trivial and ubiquitous to conduct business with

cryptocurrencies for any end-user as most financial institutions have already started

to support them as a valid monetary system. Today, there are more than 2000 cryp-

tocurrencies in existence. Especially in 2017, the interest for cryptocurrencies peaked

with a total market value close to $1 trillion [Mar]. According to a recent Kasper-

sky report [Kasa], 19% of the world’s population have bought some cryptocurrency

before. However, buying cryptocurrency is not the only way of investing. Investors

can also build mining pools to generate new coins to make a profit. Profitability in

mining operations also attracted attackers to this swiftly-emerging ecosystem.

Cryptojacking is the act of using the victim’s computational power without con-

sent to mine cryptocurrency. This unauthorized mining operation costs extra elec-

tricity consumption and decreases the victim host’s computational efficiency dramat-

ically. As a result, the attacker transforms that unauthorized computational power

into cryptocurrency. As of this writing, 32.3 million total cryptojacking attacks have

been registered during the first half of 2020 [son20]. Such malicious cryptomining

scripts were even found on some government websites around the world [UKG18].

Although in-browser cryptomining is instrumental for legitimate business purposes,

the malicious or illegitimate usage is also gaining traction and is not unknown.

In-browser cryptomining allows websites to use their visitors’ (i.e., clients’)

computational resources to mine cryptocurrency and to make revenue on behalf of

the owner of a webpage. On the client side, in-browser mining is originally proposed

as an alternative revenue mechanism to advertisements by the website owners, which
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in return, offer premium content or add-free surfing to its users. However, with the

profitability of bitcoin and alternative cryptocurrencies, the attackers have started

hijacking some popular websites [Min18] to embed cryptomining scripts (aka cryp-

tojacking) and start mining without the knowledge and explicit consent of the users.

Unfortunately, in the ecosystem of in-browser cryptomining, even though some web-

site owners ask for explicit user consent before starting mining the clients’ resources,

none of the browser extensions, antivirus programs, and the detection studies in the

literature differentiates the ones asking for explicit user consent (i.e., permissioned)

from the ones starting mining without the knowledge and consent (i.e., permission-

less) of the user. All in-browser cryptomining scripts are blacklisted and blocked by

the prevention mechanisms. Google Chrome [New] and Opera [Dav] has recently an-

nounced that they would remove the cryptomining browser extensions from their web

store and block the websites containing cryptomining scripts to protect their users as

they are mostly being abused in practice.

Given the prevalent emerging nature of the cryptojacking malware, it is vital

to detect and prevent unauthorized mining operations from abusing any computing

platform’s computational resources without the users’ consent or permission. In this

thesis we focus on three aspects of cryptojacking malware.

• Due to the seriousness of this emerging threat and the challenges presented

above, many cryptojacking studies have been published before. However,these

studies are either proposing a detection or preventio nmechanism against cryp-

tojacking malware or analyzing the cryptojacking threat landscape. And, the

literature lacks a systemic study covering both different cryptojacking malware

types, techniques used by the cryptojacking malware, and a review of the cryp-

tojacking studies in the literature.

2



• Unfortunately, in the ecosystem of in-browser cryptomining, even though some

website owners ask for explicit user consent before starting mining the clients’

resources, none of the browser extensions, antivirus programs, and the detection

studies [AAUA21,ALB+19,CAA+19,ACA+17,NAB+21] in the literature differ-

entiates the ones asking for explicit user consent (i.e., permissioned) from the

ones starting mining without the knowledge and consent (i.e., permissionless)

of the user. All in-browser cryptomining scripts are blacklisted and blocked by

the prevention mechanisms. Google Chrome [New] and Opera [Dav] has re-

cently announced that they would remove the cryptomining browser extensions

from their web store and block the websites containing cryptomining scripts to

protect their users as they are mostly being abused in practice.

Indeed, the legitimate adoption of this emerging technology is instrumental for

several reasons: First of all, today, a substantial portion of the revenue on the

web is currently generated through online advertisements. However, the ad-

vertisement ecosystem is abused by the attackers, who redirect the users to

malicious websites to spread the malware [ALUK19] (i.e., malvertising [SE11])

or ransomware [OALU21]. In this case, permissioned in-browser cryptomining

would have been very beneficial by allowing the website owners to monetize their

content by charging their users with their processing power instead of making

without advertisements. This would reduce the risks posed by malicious adver-

tisements. Second, permissioned in-browser cryptomining would have been a

great mechanism to reach a large number of users and provide an easy payment

method for nonprofit organizations and publishers.

In this regard, there have already been a few attempts, such as the Hope project

of UNICEF [UNIa] and the media outlet Salon [Sal19]. Third, in-browser cryp-

tomining would offer convenience to end-users with its ad-free and customized

3



content offered by the websites in exchange for uninterrupted use of the users’

processing power.

Despite these potential benefits, the legitimate side of in-browser cryptomining

has never been analyzed by the community due to its bad fame.

• Cryptojacking attackers initially targeted the personal computers by embedding

the mining script inside the popular websites [TAU+21]. While the cryptojack-

ing attacks gain more popularity and target bigger attack domains [IS,CS,Sea,

CPR,Gre], IoT devices became the new favorite toy of attackers [IS,Cimc,Tre]

because of their increasing usage in various different purposes such as healthcare,

industry, and household, networks to provide different levels of connectivity to

these environments. IoT devices are generally resource-constrained. Therefore,

the attackers utilize techniques like botnet attacks to take control of them at

scale and equip them to perform cryptocurrency mining on behalf of attacker.

The famous IoT botnet malware, Mirai botnet [McM], performed massive Dis-

tributed Denial of Service(DDoS) attack in 2017, and some other [Dep,Tre,IoT]

attacks followed the footsteps of the Mirai botnet. Moreover, the attacker(s)

who performed Mirai botnet attack also used this network to mine bitcoin and

turn the botnet network into a giant cryptojacking mining pool. Just recently,

another Mirai-inspired botnet, LIQUOR IoT Botnet [IoT] started to mine Mon-

ero with its victims’ IoT devices. While the IoT industry and capabilities of

IoT devices continue broadening, it also gives attackers more space to widen

their attacking surface.

1.1 Research Problems

This thesis has the following major research components and problems investigated:

4



1. A systematic overview of cryptojacking malware based on the information obtained

from the combination of academic research papers, two large cryptojacking datasets

of samples, and 45 major attack instances.

2. An empirical analysis with recent cryptomining samples focusing on the permis-

sioned or authorized cryptomining.

3. A profit, usability, and user consent analysis on the existing cryptomining scripts

provided by the service providers found in our dataset.

4. The introduction of a novel consent evaluation framework for the service providers

and presented our benchmarking results for the 14 service providers we detected in

the dataset.

5. The introduction of an accurate and efficient cryptojacking detection algorithm

targeting IoT networks that is capable of detecting both in-browser and host-based

cryptojacking malware

1.2 Contributions

The contributions of this thesis are as follows;

SoK: Cryptojacking Malware. In this study, to fill this gap in the literature,

we present a systematic overview of cryptojacking malware based on the information

obtained from the combination of 42 cryptojacking research papers, ≈ 26K crypto-

jacking samples with two unique datasets, and 45 major attacks instances. Given the

widespread usage of cryptojacking, it is important to systematize the cryptojacking

malware knowledge for the security community to accelerate further practical defense

solutions against this ever-evolving threat.

In-Browser Cryptomining for Good: An Untold Story. In this contribution,

we present a detailed empirical analysis of permissioned and permissionless in-browser
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cryptomining operations with real data collected from the web. Specifically, we cre-

ated a dataset of 6269 unique websites containing cryptomining scripts in their source

codes. Then, we performed a detailed cross-correlation analysis between the permis-

sioned and permissionless cryptomining samples to reveal the differences (if any)

between them and explore the characteristics of the permissioned cryptomining. In

addition, we identified five different user consent methods used by the samples after

a further analysis on the permissioned cryptomining samples.

Finally, based on the samples we analyzed, our findings, and service provider

documentations, we revisit the permissioned cryptomining services with the following

questions: 1) Can they be an alternative to advertisement? 2) Do they interrupt the

users? 3) Do they satisfy consent requirements? We found that an affirmative answer

is possible for each question if implemented properly by the service provider and the

website owner, which led us to believe that the potential of permissioned in-browser

cryptomining as a legitimate and viable monetization tool.

A Lightweight IoT Cryptojacking Detection Mechanism in Heterogeneous

Smart Home Networks. In this study, our focus is cryptojacking malware targeting

IoT devices inside heterogeneous smart home networks. However, the detection of

IoT cryptojacking is challenging because most of the IoT devices do not allow to

be programmed to collect the hardware-level features while the network traffic-based

features can be collected in a unified interface on the router, i.e., the devices do not

have to be programmed or modified at all. Also, most of these devices are programmed

in the cloud. Therefore, in this study, we used in-site network-based features to detect

the IoT cryptojacking malware and propose an accurate, lightweight, and easy-to-

implement cryptojacking detection system that can detect both kinds of cryptojacking

attacks without interfering with the hardware or operating software of the devices

inside the home network.
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We performed extensive set of experiments to design and evaluate the best IoT

cryptojacking detection mechanism. We first performed experiments to find the best-

ranked features, the most accurate classifier, and the optimum training size. Then,

we evaluated the effectiveness of our IoT cryptojacking detection mechanism with 12

novel experiments designed to assess various attacker behaviors and network settings.

For this, we implemented the cryptojacking malware on IoT devices, a laptop, and a

server in a safe setup.

1.3 Organization of Thesis

The rest of this thesis is organized as follows: In Chapter 2, we present pertinent

background information that serves to support this thesis. In Chapter 3, the studies

in the literature related to the work in this thesis are presented. Chapter 4 provides a

systematic and detailed overview of cryptojacking malware. Then, in Chapter 5, we

perform an empirical analysis of permissioned cryptojacking samples. In Chapter 6,

we introduce a cryptojacking detection mechanism for computationally weak devics.

Finally, we conclude the thesis and propose future research directions in Chapter 7.
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CHAPTER 2

BACKGROUND

In this chapter, we provide background information pertinent to the context of the

thesis. This includes a brief explanation of what the blockchain is and how it operates.

Further, this section will provide necessary information regarding cryptomining and

the differences between permissioned and permissionless cryptomining.

2.0.1 Blockchain

Blockchain is a distributed digital ledger technology storing the peer-to-peer (P2P)

transactions conducted by the parties in the network in an immutable way. Blockchain

structure consists of a chain of blocks. As an example, in Bitcoin [Nak08], each block

has two parts: block header and transactions. A block header consists of the following

information: 1) Hash of the previous block, 2) Version, 3) Timestamp, 4) Difficulty

target, 5) Nonce, and 6) The root of a Merkle tree. By inclusion of the hash of

the previous block, every block is mathematically bound to the previous one. This

binding makes it impossible to change data from any block in the chain. On the

other hand, the second part of each block includes a set of individually confirmed

transactions.

2.0.2 Cryptocurrency Mining

The immutability of a blockchain is provided by a consensus mechanism, which is

commonly realized by a ”Proof of Work” (PoW) protocol. The immutability of each

block and the immutability of the entire blockchain are preserved thanks to the chain

of block structure. In PoW, some nodes in the network solve a hash puzzle to find

a unique hash value and broadcast it to all other nodes in the network. The first
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node broadcasting the valid hash value is rewarded with a block reward and collects

transaction fees. A valid hash value is verified according to a difficulty target, i.e., if

it satisfies the difficulty target, it is accepted by all other nodes, and the node that

found the valid hash value is rewarded. Different PoW implementations usually have

different methods for the difficulty target.

The miners try to find a valid hash value by trial-and-error by incrementing the

nonce value for every trial. Once a valid hash value is found, the entire block is

broadcast to the network, and the block is added to the end of the last block. This

process is known as cryptocurrency mining (i.e., cryptomining), and it is the only way

to create new cryptocurrencies. The chance of finding of valid hash value by a miner is

directly proportional to the miner’s hash power, which is related to the computational

power of the underlying hardware. However, more hardware also increases electricity

consumption. Therefore, attackers have an incentive to find new ways of increasing

computational power without increasing their own electricity consumption.

Following the invention of Bitcoin, many other alternative cryptocurrencies (i.e.,

altcoins) have emerged and are still emerging. These new cryptocurrencies either

claim to address some issues in Bitcoin (i.e., scalability [Kea20], privacy) or offer new

applications (i.e., smart contracts [BDLF+16]).

In the early days of Bitcoin, the mining was performed with the ordinary Cen-

tral Processing Unit (CPU), and the users could easily utilize their regular CPUs for

Bitcoin mining. Over time, Graphical Processing Unit (GPU)-based miners gained

significant advantages over CPU miners as GPUs were specifically designed for high

computational performance for heavy applications. Later, Field Programmable Gate

Array (FPGA) have changed the cryptocurrency mining landscape as they were cus-

tomizable hardware and provided significantly more profit than the CPU or GPU-

based mining. Finally, the use of the Application-Specific Integrated Circuit (ASIC)
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based mining has recently dominated the mining industry as they are specially man-

ufactured and configured for cryptocurrency mining.

The alternative cryptocurrencies also used different hash functions in their blockchain

structure, which led to variances in the mining process. For example, Monero [VS13]

uses the CryptoNight algorithm as the hash function. CryptoNight is specifically

designed for CPU and GPU mining. It uses L3 caches to prevent ASIC miners. With

the use of RandomX [VS13] algorithm, Monero blockchain fully eliminated the ASIC

miners and increased the advantage of the CPUs significantly. This feature makes

Monero the only major cryptocurrency platform that was designed specifically to

favor CPU mining to increase its spread. Moreover, Monero is also known as a pri-

vate cryptocurrency, and it provides untraceability and unlinkability features through

mixers and ring signatures. Monero’s both ASIC-miner preventing characteristics and

privacy features make it desirable for attackers.

Figure 2.1: Creation and injection of in-browser mining script

Signup and request
Mining script (1)

Receive Mining 
Credentials (2)

(3) Inject
mining script

Webpage 
Owner

Service providers generally manage in-browser cryptomining source codes and op-

erations, as shown in Figure 2.1. The webpage owner creates an account on the service

provider’s website and receives the needed script and credentials for the in-browser

mining. The webpage owner embeds this code into the HTML source code or adds

it as a plugin for some service providers. After this process, the in-browser mining

operation starts as shown in Figure 2.2, and all the visitors become ad-hoc miners for

these webpages and solve mining tasks for webpage owners. Mining tasks are assigned

to the users by the service providers, or they may be directly coming from the mining
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Figure 2.2: Lifecycle of in-browser mining

Receive the profit
(5)
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Receive the
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Send hash 
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Webpage Owner

pool. At the end of the pre-defined period, the webpage owners receive the mining

share after the service provider cuts the service commission. In this process, the users

do not receive any profit.

2.0.3 Permissioned vs. Permissionless Cryptomining

We categorize the cryptomining scripts into two categories: 1) permissioned 2) per-

missionless. Permissioned cryptomining samples contain a code snippet for explicit

user consent. In contrast, permissionless cryptomining samples do not ask for user

consent, i.e., automatically starts mining without the visitor’s knowledge or consent.

However, while some service providers have methods to implement these options in

their script, some of them have different ways of implementing such a user interface.

Listing 1 shows a sample in-browser cryptominer script provided by the Coinimp

service provider [Coif], which is a currently active service provider. Line 5 in the

code snippet contains a method for the user notification. The method can be used

by adjusting the parameters by the website owners. The decision to include the no-

tification or not is in the control of the website owner. If line 5 is not included, the

miner will start automatically in the background without notifying the user before-
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hand. Moreover, this method does not give the user the option to opt-out easily. We

present the notification method provided by the Coinimp service provider here as a

representative example, but there are other user consent methods provided by other

service providers as well. We will analyze the service providers in Section 5.3.1 and

different user consent types in Section 5.3.3 in further detail.

12



CHAPTER 3

LITERATURE REVIEW

The surge of cryptojacking malware, especially after 2017, also drew the attention

of academia and resulted in many publications. We found these studies focus on three

topics: 1) Cryptojacking detection studies, 2) Cryptojacking prevention studies, and

3) Cryptojacking analysis studies. Among 42 academic research papers, we found

that 15 of them focus on the experimental analysis of the cryptojacking dataset.

At the same time, 3 of them proposes a method for the detection and prevention

of cryptojacking malware together, and 24 of them proposes only a method for the

detection of the cryptojacking malware. In the next sub-sections, we give a review of

these studies.

3.1 Cryptojacking Detection Studies

In this section, we survey the cryptojacking malware detection studies. Table 3.1

shows the list of the proposed cryptojacking detection mechanisms in the literature.

The following sub-section gives a detailed overview of the dataset, platform, analysis

method, features, and classifiers used in these detection mechanisms.

3.1.1 Dataset

A dataset is generally used to evaluate the effectiveness of the proposed detection

method. Several datasets are commonly used in the cryptojacking malware detection

literature. The most common one is Alexa top webpages [RP18,KMM+19,KBRS20,

HYY+18,MWJR19,WFX+18]. Alexa sorts the most visited websites on the Internet;

however, it does not provide the source code for these websites. Therefore, these

studies also used Chrome Debugging Protocol to instrument the browser and collect

the necessary information from the websites, except the study [WFX+18], which
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Table 3.1: Cryptojacking malware detection mechanisms in the literature.

Ref Dataset Type Method Features Classifier Performance

Rüth et al. [RZWH18]
Three largest TLDs

Alexa: 1M
In-browser Static Wasm signatures SRSE N/A

Minesweeper [KVM+18] Alexa 1 Million In-browser Static
Wasm code

CPU cache events
Matching N/A

RAPID [RP18] Alexa: 330.500 In-browser Dynamic

Resource consumption
(memory, network,
and processor) and

JavaScript API Events

SVM

Benign (best):
Precision: 99.99%

Recall: 99.99%
F1: up to 99.99%

Mining (best):
Precision: 96.54%

Recall: 95.48%
F1: up to 96.0%

Muñoz et al. [iMSVBR19]
Network traffic of six

cryptocurrencies using
Stratum protocol

In-browser Dynamic
Metadata of inbound

and outbound network traffic
DT

Best:
Accuracy: 99.9%
Precision: 98.2%

Recall: 90.7%

CapJack [NWX+19]
Five user applications
and a Coinhive miner

In-browser Dynamic

CPU utilization,
Memmory,

Disk read/write rate,
Network interface)

CNN

87% Instant
99% After 11 seconds

98% Mobile Single
86% Mobile Cross
97% AWS single
89% AWS Cross

OUTGUARD [KMM+19] Alexa 1M and 600K In-browser Dynamic

Js Execution Time,
JS compilation Time,

Garbage Collector,
Iframe resource loads,

CPU usage

SVM, RF
SVM (best):
TPR: 97.9%
FPR: 1.1%

CoinSpy [KBRS20]

100k websites from
Alexa 1M and 50

manipulated cryptojacking
websites

In-browser Dynamic
CPU,

Memory,
Network behaviors

CNN Accuracy:97%

MineCap [NLFM20]
The network traffic captured

from two mining and
streaming applications

In-browser Dynamic Network packages IL

Accuracy: 98%,
Precision: 99%,

Recall: 97%
Specifity: 99.9%

CMTracker [HYY+18] Alexa 100k In-browser Dynamic
Hash and Stuck
based profilers

Thr-based 100% TPR

Musch et al. [MWJR19] Alexa 1M In-browser Dynamic CPU usage MA N/A

Tahir et al. [TDA+19]
Manually created 320 non-mining

and 100 mining websites
In-browser Dynamic HPC values RF

Accuracy: 99.35%,
Precision: 100%,

Recall: 98%,
AUC: 99%

SEISMIC [WFX+18]
500 webpages randomly selected

from Alexa top 50K
In-browser Dynamic Wasm instructions Matching F1: 98%

MineThrottle [BMZ20] Alexa 1M In-browser Dynamic
Block-level features

CPU usage
Matching FNR: 1.83%

Coinpolice [PIB20] 47k samples In-browser Dynamic
CPU usage, HPC,

JS/WASM execution time and features,
Throttling-independent timeseries

CNN TPR:97.8 % FPR: 0.74%

Carlin et al. [COSB18]
Captured Opcode trace

packets Virusshare (296 Samples)
In-browser Dynamic Opcodes RF

TPR: 99.2 % FPR: 0.9,
Precision: 99.2 Recall: 99.2

Liu et al. [LZC+18]
1159 samples collected from
browsers’ memory snapshot

In-browser Dynamic
Heap snapshots
Stack Features

RNN
Precision: 95,

Recall: 93

Rauchberger et al. [RSD+18] Alexa: 1M In-browser Dynamic Web socket traffic Matching N/A

Caprolu et al. [CRODP19] N/A In-browser Dynamic Network traffic RF,KFCV TPR=92% ,FPR=0.8%

MINOS [NAB+21]
WASM Samples collected via

PublicWWW
In-browser Dynamic

Image frames of
malicious samples

CNN Accuracy: 98.97%

Yulianto et al. [YSWAM19] PublicWWW and Blacklists In-browser Static and Dynamic CPU usage Matching TPR:100%

CMBlock [RS19] In-browser cryptojacking samples In-browser Static and Dynamic
Blacklists
Behaviour

N/A N/A

Gangwal et al. [CGLP19]
Combination daily user

tasks and miners1
Host-based and In-browser Dynamic

hardware events (e.g., branch-misses),
software events (e.g., page-faults)

hardware cache events (e.g., cache-misses)
RF, SVM

Recall: 97.84%
Precision: 99.7%
Accuracy:98.7%

Lachtar et al. [LEBM20] N/A Host-based and In-browser Dynamic CPU instructions Matching TPR:100 % FPR: ¡ 2%

Tanana et al. [Tan20]
40 In-browser and

10 executable-type cryptojacking
Host-based and In-browser Dynamic

CPU utilization share
RAM usage

N/A TPR: 81%

Ahmad et al. [ASKS19]
Mixture of Benign

and Malicious Network Packages
Host-based and In-browser Dynamic Network traffic DCA N/A

DeCrypto Pro [MPB+20] 1̃200 samples Host-based and In-browser Dynamic HPC, CPU usage k-NN, RF, LSTM
FPR: 2.5,

Precision: 96, Recall: 97

Darabian et al. [DHD+20]
1500 active cryptomining

collected from Virustotal in 2018
Host-based Static and Dynamic

System calls,
opcode sequences

RNN, CNN

System calls (best):
LSTM: Accuracy:99%
F1: 98% MCC: 98%

FPR:0.6%

Crypto-Aegis [CRODP19]
Network traffic of 3 legitimate mining
scripts and 3 daily user applications

Host-based Dynamic
Packet sizes

Interarrival times
RF TPR:80-84% FPR: 0.9 - 1.2%

1 The dataset was not available as of writing this paper (November 1, 2020). 2 Support Vector Machine: SVM, Random Forest: RF, Decision Tree: DT, Convolutional Neural Network: CNN, Recurrent Neural Network:
RNN, Incremental Learning: IL, Threshold-based: Thr-based, Manual Analysis: MA, Dendritic Cell Algorithm: DCA, k-Nearest Neighbors: k-NN, Light-weight machine learning models: LSTM, Symantec RuleSpace
Engine:SRSE, k-Fold Cross Validation:KFCV
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works with a limited number (500) of websites. Moreover, the study in [KMM+19]

also used known and frequently updated blacklists [NoC,Mina,Coia] to build a ground

truth for their training dataset, and then they performed an analysis using Alexa top

1M websites. In addition to the Alexa top websites, the study in [DHD+20] used a

cryptojacking dataset obtained from VirusTotal. They collected 1500 active Windows

Portable Executable (PE32) cryptocurrency mining malware samples registered in

2018 and used the Cuckoo Sandbox [GTBS12] to obtain detailed behavioral reports

on those samples. Furthermore, the studies in [CGLP19, iMSVBR19, NWX+19,

NLFM20] performed their analysis by installing the legitimate mining scripts, and

the studies in [KBRS20, TDA+19] manually injected miners to the websites to test

their detection mechanisms.

3.1.2 Platform

Most of the cryptojacking detection mechanisms in the literature [RP18, CGLP19,

NWX+19,KMM+19,KBRS20,NLFM20,HYY+18,MWJR18,TDA+19,WFX+18,KVM+18]

are proposed for the detection of in-browser cryptojacking malware. There are only

a few studies [DHD+20, CRODP19] proposed for host-based cryptojacking malware.

In addition, Conti et al. [CGLP19], propose a hardware-level detection mechanism,

which can be used to detect both host-based and in-browser cryptojacking malware.

3.1.3 Analysis Features

As can be seen from Table 3.1, in the cryptojacking domain, the majority of the pro-

posed detection methods are using dynamic analysis. The main reason for this is that

mining scripts use a set of known instructions, and they follow and repeat predefined

mining steps. For example, miners use cryptographic hash libraries and increment
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the value of a static variable (i.e., nonce) repeatedly or connect to some known service

providers to continue to upload some output results and receive new tasks. These

typical behaviors of the cryptojacking malware create a pattern and make them de-

tectable by dynamic analysis. In the literature, only a few studies use static features

such as opcodes [DHD+20] and WebAssembly (Wasm) instructions [KVM+18]. We-

bAssembly [HRS+17] is a low-level instruction format that allows programs to run

closer to the machine-level language and provide higher performance via stack-based

virtual machines [was]. This low-level instruction model lets the WebAssembly run

the codes more efficiently, and this feature provides more profit because the crypto-

jacking script eliminates most of the delay caused by the code execution process. All

major browsers in the market currently support WebAssembly.

Opcodes are machine language instructions that specify the operations to be per-

formed and are used by system calls. The proposed detection system in [DHD+20]

uses opcodes for static analysis, where opcodes are extracted using IDA Pro. In the

cryptojacking example, opcodes focus on requests between mining scripts and the

operating system’s kernel. With this method, they achieve 95% accuracy with the

Random Forest classifier.

On the other hand, many detection mechanisms have been proposed [RP18,

NWX+19,CGLP19,KMM+19,KBRS20,NLFM20,HYY+18,MWJR18,TDA+19] using

dynamics features. The most commonly used dynamic features in these studies are

as follows:

• CPU Events [RP18, NWX+19, KMM+19, KBRS20, MWJR18, YSWAM19, BMZ20,

PIB20, LEBM20, Tan20, MPB+20]: CPU events are the most commonly used fea-

tures among the dynamic analysis-based detection mechanisms because in-browser

cryptojacking scripts have to fetch the CPU instructions to perform the min-

ing, independent of the used hardware. If an in-browser operation uses crypto-
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graphic libraries too frequently, which is abnormal for regular websites, it can be

directly detected by CPU instructions. Even though CPU is the most crucial

feature of cryptocurrency mining, using only CPU events as features may cause

high false-positive rates (FPR) because flash gaming or online rendering websites

also use the CPU of the system heavily for their operations. To keep FPR as

low as possible, most detection methods use more than one features simultane-

ously [RP18,NWX+19,KBRS20,KVM+18,BMZ20,PIB20,Tan20,MPB+20].

• Memory activities [RP18, CGLP19, NWX+19, KBRS20]: Memory activity is an-

other commonly used feature among the dynamic detection methods listed in Ta-

ble 3.1.

Table 3.2: The list of publicly available blacklists.

Ref Link
Nocoin [NoC] https://github.com/keraf/NoCoin

CoinBlocker [Coia] https://zerodot1.gitlab.io/CoinBlockerListsWeb/index.html

Minerblock [Mina] https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt

Coinhive Blocker [Coib] https://raw.githubusercontent.com/Marfjeh/coinhive-block/master/domains

Andreas CH Blocker [and] https://raw.githubusercontent.com/andreas0607/CoinHive-blocker/master/blacklist.json

• Network package [RP18,iMSVBR19,NWX+19,KBRS20,NLFM20,CRODP19]: Net-

work packages are also a handy and useful method to detect cryptojacking activity

because of the massive network traffic generated while uploading the calculated

hash values to the service provider. The studies [RP18, iMSVBR19, NWX+19,

KBRS20] utilized network traffic rate as an additional feature along with other

features such as memory and CPU-related features. On the other hand, the studies

in [NLFM20, CRODP19] used only network packages for cryptojacking malware

Table 3.3: The list of open-source cryptojacking malware detection implementations.

Ref Implementation Link Description Last Update
CMTracker [HYY+18] https://github.com/deluser8/cmtracker code Sep 21, 2018
Minesweeper [KVM+18] https://github.com/vusec/minesweeper data and code Mar 17, 2020
OUTGUARD [KMM+19] https://github.com/teamnsrg/outguard data and code Sep 6, 2019
SEISMIC [WFX+18] https://github.com/wenhao1006/SEISMIC code Sep 10, 2019
Retro Blacklist [HPV+20] https://github.com/retrocryptomining/ data and code Jul 16, 2020
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detection. Particularly, Neto et al. [NLFM20] use the network flow as a feature,

while Caprolu et al. [CRODP19] use interarrival times and packet sizes as features

in their detection algorithm.

• JavaScript (JS) compilation and execution time [KMM+19,PIB20]: In [KMM+19,

PIB20], it has been shown that JS engine execution time and JS compilation time is

significantly affected by cryptojacking malware. However, online games and other

online rendering platforms can also cause the same behavior causing false positives

in the detection mechanism. Therefore, the study in [KMM+19] also uses CPU

usage, garbage collector, and iframe resource loads as secondary features to obtain

more accurate results and decrease false positives. The garbage collector is a fea-

ture of the JS programming language to optimize memory usage, and it deletes

unnecessary data from memory and prevents memory overloading. The memory

and CPU continuously interact with each other during the mining operation, and

the CPU sends calculated data to the memory. The garbage collector deletes all

calculated hash values one by one after being sent to the service provider; there-

fore, the mining process causes irregular usage of the garbage collector. Due to this

behavior, the garbage collector can be used as a feature for the dynamic detection

mechanism. Iframes are the HTML tags used for embedding another program/-

function to an HTML source code. Mining scripts are inserted into those tags and

work under HTML codes. Similar to previous features, cryptojacking scripts cause

irregular usage in iframe resource loads. This feature cannot be used as a primary

feature because too many modern web applications use iframe resources irregularly,

and it may cause a high false-positive rate.

• Hardware Performance Counter (HPC) [TDA+19, PIB20, MPB+20]: HPC val-

ues [DWA+19] are used on modern computers’ CPUs and keepthe record of in-

ternal CPU events (e.g., Cycles, Cache misses). The values of the registers with
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CPU clock cycles and executed instructions provide unique information about the

behaviors of a running application. Several studies check the hardware activities

and the related applications with HPC values to detect the cryptocurrency mining

operations on the system.

• System calls [DHD+20]: System calls are the API structures that enable the con-

nection between applications and the running system’s kernel. System calls run

with level 0 privileges to invoke calls and request services from the OS’s kernel.

The proposed detection system in [DHD+20] uses the system calls for dynamic

analysis, and system calls are recorded using the Cuckoo Sandbox. Then, the sys-

tem calls are used to train deep learning models, and they achieve 99% accuracy.

3.1.4 Classifier and Performance

The collected features are mostly used to train different machine learning classifiers

such as Support Vector Machine (SVM) [RP18, CGLP19, KMM+19], Random For-

est [CGLP19,TDA+19], Neural Network [KBRS20,DHD+20], Decision Tree [iMSVBR19].

Moreover, Neto et al. [NLFM20] proposed the use of incremental learning, which takes

the classification probabilities of an ensemble of classifiers as a feature for an incre-

mental learning process. Moreover, Hong et al. [HYY+18], proposed a threshold-based

detection, and the studies in [WFX+18,KVM+18] used a static matching method to

detect certain functions in the script. Musch et al. [MWJR19] only report the number

of detected websites in the Top 1M Alexa websites. As can be seen from Table 3.1,

all classifiers achieve a near-perfect (∼100%) detection results.
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3.1.5 Open Source Implementations

Finally, some of the studies [HYY+18,KVM+18,KMM+19,WFX+18,Ret] published

their code to help the research community.Table 3 presents the list of open-source

cryptojacking malware implementations.

3.2 Cryptojacking Prevention Studies

A majority of the detection mechanisms do not focus on preventing or interrupting of

cryptojacking malware; however, there are still several studies [YSWAM19, BMZ20,

RS19] focusing on both the detection and prevention of cryptojacking malware. Us-

ing dynamic features to detect ongoing cryptojacking is like other dynamic analysis

studies, but their prevention methods vary. While Yulianto et al. [YSWAM19] only

raises a notification, Bian et al. [BMZ20] sleep the mining process, and Razali et

al. [RS19] directly kill the related process.

Figure 3.1: Blacklisting method.

Detection
Method

Checking 
Webpages

Add URLs of 
Infected Webpages

BlacklistHost

If Not Listed

Requested URL

Request URL

For cryptojacking prevention, there are also several tools in the market. Against

host-based cryptojacking malware, proprietary antivirus programs [Ava, Nor]1 are

commonly preferred. Against in-browser cryptojacking malware, open-source browser

extensions such as NoCoin [NoC] and MinerBlock [Mina] are widely used. These open-

source browser extensions are based on blacklisting, where the lists are updated as

1As these programs are closed-source, their methods are not publicly available.
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Table 3.4: Cryptojacking malware analysis studies in the literature.

Ref Cryptojacking Dataset Sample Type Focus of the Study
[HDM+14] 2000 executable binary the practice of using compromised PCs to mine Bitcoin
[ELMC18] 33282 websites script prevalence analysis
[Sig18] - - how cybercriminals are exploiting cryptomining
[BBD19a] 5190 websites script campaign and domain analysis
[MJS19] XMR-stak, cpuminer-multi binary attack impact on consumer devices and user annoyance
[SKM19] 5700 websites script static, dynamics and economic analysis
[ZWM19] CoinHive cryptominer script sample characteristics and network traffic analysis
[PST19] 1.2 million miners binary currencies, actors , campaign and earning analysis, underground markets
[PIM19] 107511 websites script profitability and the imposed overheads
[BBD19b] 3.2 TB historical scan results script investigation of a new type of attack that exploits Internet infrastructure for cryptomining
[CBOS19] - - business model, threat sources, implications, mitigations, legality and ethics
[ANDB20] 53 websites script sample characteristics
[VGOB20] 2770 websites script activeness analysis
[ZWMO20] XMRig miner binary sample characteristics
[HPV+20] 156 domains, 25892 proxies script impact on the web users

new malicious domains are discovered. Table 3.2 shows the list of publicly available

blacklists that we identified during our research. Browser extensions warn the user

when the user wants to access a website on the blacklist. Figure 3.1 shows the

blacklisting process, which is repeated as a continuous loop.

Pure blacklisting-based prevention is not an efficient way for stopping cryptojack-

ing malware because attackers can easily change their domain by domain fluxing or

other methods to downshift the effects of blacklists. There are also some new meth-

ods [RMY20] proposed by researchers for better and more optimized blacklisting, but

even dynamic blacklisting methods are not fully effective nor protective [YRRR12]

against domain fluxing methods.

3.3 Cryptojacking Analysis Studies

In addition to the cryptojacking malware detection and prevention studies, some

researchers also performed empirical measurement studies to understand the cryp-

tojacking threat landscape better. Table 3.4 shows cryptojacking malware analysis

studies in the literature. In these studies, cryptominers are either in the format

of binary [MJS19,ZWMO20,PST19,HDM+14] or script [BBD19a,HPV+20,SKM19,

VGOB20,ELMC18,ZWM19,ANDB20,PIM19] except [CBOS19,Sig18] where the find-

ings in these studies are based on the other studies and publicly available documents.
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Researchers analyzed several different perspectives of cryptojacking. In the first

study [HDM+14], the authors analyze the binary samples identified as engaged in

mining operations to characterize their scope, operations, and revenue. This is the

first and only study analyzing Bitcoin miners, where the samples used in other studies

are mining Monero. The increase in the cryptojacking malware attack instances in

2017 also drew researchers’ attention. [ELMC18] is the first study analyzing the Mon-

ero cryptojacking samples, where the authors used over 30000 websites utilizing coin-

hive.min.js library for the prevalence analysis of cryptojacking samples. Many follow-

up studies are published. For example, the studies [ZWM19,ANDB20,ZWMO20] also

performed an analysis of the cryptojacking samples to identify characteristics of the

samples. In addition, the studies in [MJS19,HPV+20] performed the impact analysis.

Particularly, [MJS19] analyzed the attack impact on consumer devices and user an-

noyance, and [HPV+20] analyzed the impact of cryptojacking malware on web users,

while [PIM19] analyzed the overhead of cryptojacking samples. In an interesting

study, the authors in [BBD19b] investigated a new type of attack exploiting the In-

ternet infrastructure for cryptomining, which indeed has an impact on 1.4M infected

routers.

Moreover, there are also studies performing the economic analysis of crypto-

jacking samples such as [SKM19, PST19, PIM19]. Other than that, the authors

in [BBD19a, PST19] performed a campaign analysis of the cryptojacking samples

and [VGOB20] analyzed the activeness of cryptojacking threat after the discontinu-

ation of Coinhive. Finally, while [Sig18] gives an overview of how cybercriminals are

exploiting cryptomining, [CBOS19] presents a review of the business model, threat

sources, implications, mitigations, legality, and ethics of cryptojacking malware.
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CHAPTER 4

A SYSTEMATIC OVERVIEW OF CRYPTOJACKING MALWARE

4.1 Introduction

Emerging blockchain and cryptocurrency-based technologies are redefining the way

we conduct business in cyberspace. Today, a myriad of blockchain and cryptocur-

rency systems, applications, and technologies are widely available to companies, end-

users, and even malicious actors who want to exploit the computational resources of

regular users through cryptojacking malware. Especially with ready-to-use mining

scripts easily provided by service providers (e.g., Coinhive) and untraceable cryp-

tocurrencies (e.g., Monero), cryptojacking malware has become an indispensable tool

for attackers. Indeed, the banking industry, major commercial websites, government

and military servers (e.g., US Dept. of Defense), online video sharing platforms

(e.g., Youtube), gaming platforms (e.g., Nintendo), critical infrastructure resources

(e.g., routers), and even recently widely popular remote video conferencing/meeting

programs (e.g., Zoom during the Covid-19 pandemic) have all been the victims of

powerful cryptojacking malware campaigns. Nonetheless, existing detection methods

such as browser extensions that protect users with blacklist methods or antivirus

programs with different analysis methods can only provide a partial panacea to this

emerging cryptojacking issue as the attackers can easily bypass them by using obfus-

cation techniques or changing their domains or scripts frequently. Therefore, many

studies in the literature proposed cryptojacking malware detection methods using

various dynamic/behavioral features. However, the literature lacks a systemic study

with a deep understanding of the emerging cryptojacking malware.

To fill this gap in the literature, in this chapter, we present a systematic overview

of cryptojacking malware based on the information obtained from the combination of
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academic research papers, two large cryptojacking datasets of samples, and 45 major

attack instances.

In-browser cryptojacking examples. In a major attack, cryptojacking malware

was merged with Google’s advertisement packages on Youtube [Min18]. The infected

ads package compiled by victims’ host performed unauthorized mining as long as

victims stayed at the related page. Youtube and similar media content providers

are ideal for the attackers because of their relative trustworthiness, popularity, and

average time spent on those webpages by the users. In another incident, cryptojacking

malware was found in a plugin provided by the UK government [UKG18]. At the time,

this plugin was in use by several thousands of governmental and non-governmental

webpages.

Cryptojacking examples found on critical servers. In addition to cryptojack-

ing malware embedded into webpages, cryptojacking malware has also been found

in well-protected governmental and military servers. The USA Department of De-

fense discovered cryptojacking malware in their servers during a bug-bounty chal-

lenge [DOD]. The cryptojacking malware found in the DOD servers was created by

the famous service provider Coinhive [Coic] and mined 35.4 Monero coin during its

existence. Similarly, another governmental case came up from the Russian Nuclear

Weapon Research Center [Mil]. Several scientists working at this institution were

arrested for uploading cryptocurrency miners into the facility servers. Moreover, at-

tackers do not only use the scripts provided by the service providers but also modified

the non-malicious, legitimate, open-source cryptominers. For example, a cybersecu-

rity company detected an irregular data transmission to a well-known European-based

botnet from the corporate network of an Italian bank [Won]. Further investigation

identified that this malware was, in fact, a Bitcoin miner.
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Cryptojacking examples utilizing advanced techniques. There have also been

many incidents where the attackers used advanced techniques to spread cryptojacking

malware. For example, in an incident, a known botnet, Vollgar, attacked all MySQL

servers in the world [Cimb] to take over the admin accounts and inject cryptocur-

rency miners into those servers. Another recent incident was reported for the Zoom

video conferencing program [Ole] during the peak of the Covid-19 pandemic, in which

the attacker(s) merged the main Zoom application and cryptojacking malware and

published it via different file-sharing platforms. In other similar incidents, attackers

used gaming platforms such as Steam [Ken] and game consoles such as Nintendo

Switch [Smi] to embed and distribute cryptojacking malware. Last but not least, in a

recent study [BBD19b], researchers discovered a firmware exploit in Mikrotik routers

that were used to embed cryptomining code into every outgoing web connection,

where 1.4 million MikroTik routers were exploited.

Challenges of cryptojacking detection. Given the prevalent emerging nature of

the cryptojacking malware, it is vital to detect and prevent unauthorized mining op-

erations from abusing any computing platform’s computational resources without the

users’ consent or permission. However, though it is critical, detecting cryptojacking

is challenging because it is different from traditional malware in several ways. First,

they abuse their victims’ computational power instead of harming or controlling them

as in the case of traditional malware. Traditional malware detection and prevention

systems are optimized for detecting the harmful behaviors of the malware, but cryp-

tojacking malware only uses computing resources and sends back the calculated hash

values to the attacker; so the malware detection systems commonly consider crypto-

jacking malware as a heavy application that needs high-performance usage. Second,

they can also be used or embedded in legitimate websites, which makes them harder to

notice because those websites are often trustworthy, and users do not expect any non-
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consensual mining on their computers. Third, while in traditional malware attacks,

the attacker may ultimately target to exfiltrate sensitive information (i.e., Advanced

Persistent Threat (APT)), to make the machine unavailable (i.e., Distributed Denial

of Service (DDoS)) or to take control of the victim’s machine (i.e., Botnet), in crypto-

jacking malware attacks, the attacker’s goal is to stay stealthy on the system as long

as possible since the attack’s revenue is directly proportional to the time a crypto-

jacking malware goes undetected. Therefore, attackers use filtering and obfuscation

techniques that make their malware harder for detection systems and harder to be

noticed by the users.

4.2 Cryptojacking Malware Types

Cryptojacking malware, also known as cryptocurrency mining malware, compromises

the computational resources of the victim’s device (i.e., computers, mobile devices)

without the authorization of its user to mine cryptocurrencies and receive rewards. A

cryptojacking malware’s lifecycle consists of three main phases: 1) script preparation,

2) script injection, and 3) the attack. The script preparation and attack phases are

the same for all cryptojacking malware types. In contrast, the script injection phase is

conducted either by injecting the malicious script into the websites or locally embed-

ding the malware into other applications. Based on this, we classify the cryptojacking

malware into two categories: 1) In-browser cryptojacking and 2) Host-based crypto-

jacking. In the following sub-sections, we explain the lifecycle of both in-browser and

host-based cryptojacking malware.
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4.2.1 Type-I: In-browser Cryptojacking

The development of web technologies such as JavaScript (JS) and WebAssembly

(Wasm) enabled interactive web content, which can access the several computational

resources (e.g., CPU) of the victim’s device (e.g., computer or mobile device). In-

browser cryptojacking malware uses these web technologies to create unauthorized

access to the victim’s system for cryptocurrency mining via web page interactions on

the victim’s CPU.

Figure 4.1: Script preparation and injection phases of a in-browser cryptojacking
malware.

Script Owner Infected Web PageService Provider

(1) Register

(2) Receive 
Credentials 

(3) Inject 
Script

Figure 4.1 shows the script preparation and injection phases of in-browser cryp-

tojacking malware. The script owner1 first registers (Step 1) and receives its service

credentials and ready-to-use mining scripts from the service provider (Step 2). The

service provider separates the mining tasks among its users and collects all the rev-

enue from the mining pool later to be shared among its users. After receiving the

service credentials, the script owner injects the malicious cryptojacking script into

the website’s HTML source code (Step 3). We explain this and other cryptojacking

infection methods in Section 4.3.2 in detail.

In the attack phase, as shown in Figure 4.2, victims first reach the website source

code from their devices (Step 1,2). The web browser loads the website and auto-

matically calls the cryptojacking mining script (Step 3). Once the script is executed,

1We call it script owner rather than an attacker because the script can also be used for
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Figure 4.2: The lifecycle of a in-browser cryptojacking malware.
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it requests a mining task from the service provider (Step 4). The service provider

transfers the task request to the mining pool (Step 5). Then, the mining pool assigns

the mining task (Step 6). The service provider returns the task to the mining script

(Step 7). The mining script returns this new mining assignment to the victim’s com-

puter (Step 8), and the victim’s device starts the mining process (Step 9). As long as

the mining script and service provider remain online, the script continues the mining

process on the victim’s computer (Step 9) and then returns the mining results to the

service provider (Step 10) directly. The service provider collects all the data from dif-

ferent sources and sends the results to the mining pool (Step 11). Finally, the mining

pool sends the reward back to the service provider in the form of a mined currency

(Step 12). The script owner receives its share from the service providers using its

service credentials after the service provider cuts its service fee. In this ecosystem,

the attackers use the CPU power of their victims, and the victims do not receive any

payment nor benefit from any other entity.

4.2.2 Type-II: Host-based Cryptojacking

Host-based cryptojacking is a silent malware that attackers employ to access the

victim host’s resources and to make it a zombie computer for the malware owner.

Compared to in-browser cryptojacking malware, host-based malware does not ac-

cess the victim’s computation power through a web script; instead, they need to be

installed on the host system. Therefore, they are generally delivered to the host

system through methods such as embedded into third-party applications [Ole, San],
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using vulnerabilities [MV], or social engineering techniques [McD], or as a payload in

the drive-by-download technique [RS]. We explain these methods in more detail in

Section 4.3.2.

Figure 4.3 shows the lifecycle of a host-based cryptojacking malware. The script

preparation phase starts with the creation of unauthorized cryptocurrency mining

malware (1). Then, the attacker merges this malware with a legitimate application

to trick the victim (2). After the malware preparation, the malware injection pro-

cess starts with uploading this malicious application to online data-sharing platforms

(e.g., torrent, public clouds) (3). When the victim downloads any of the infected

applications and installs them on their host machines (e.g., Personal Computer, IoT

device, Server)(4), the malware injection phase of the lifecycle is completed.

In the attack phase, the host-based cryptojacking malware is connected to the

mining pool via web socket or API and receives the hash puzzle tasks to calculate

hash values (5). The calculated hash values are sent back to the mining pool (6).

Finally, the attacker receives all of the revenue without any energy consumption (7)

and not sharing anything with the victim.

After receiving all its revenue in the form of cryptocurrency from the service

provider, the attacker has three options to use its revenue: 1) Converting to fiat

currency via exchanges or p2p transactions, 2) Using it as a cryptocurrency for a

service [LYK+19], or 3) Using cryptocurrency mixing services [GJPS18,BNM+14] to

cover its traces. Further end-to-end analysis of the cryptojacking economy/payments

is out of this study’s scope, and similar studies can be found in the ransomware

domain [HAL+18,PCHD19,CGR18,KRB+15].
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Figure 4.3: The lifecycle of a host-based cryptojacking malware.
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4.3 Cryptojacking Malware Techniques

In this section, we explain the techniques used by cryptojacking malware. Particu-

larly, we articulate on the following:

• Source of cryptojacking malware

• Infection methods

• Victim platform types

• Target cryptocurrencies

• Evasion and obfuscation techniques

4.3.1 Source of Cryptojacking Malware

This sub-section explains whom the scripts are created by and how they are dis-

tributed to attackers.
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Service Providers

The service providers are the leading creators and distributors of cryptojacking scripts.

The service providers give every user a unique ID to distinguish them in terms of the

hash power. The service provider generates the script for the user regardless of the

user is malicious or not. All the user needs to do is copy and paste the script to create

a malicious sample for the attack.

Coinhive [Coic] was the first service provider to offer a ready-to-use in-browser

mining script in 2017 to create an alternative income for web site and content owners.

Even though the initial idea of Coinhive was to provide an alternative revenue to

webpage owners, it rapidly became popular among attackers. During the operation

of Coinhive, they were holding a significant share of the total hash rate of Monero.

After the sharp decrease in Monero’s price [Mona], Coinhive was shut down by their

owners in March 2019 due to the business’ being no longer profitable.

Some of the alternative service providers which had continued/continuing their op-

erations are Authedmine [Coid], Browsermine [Bro], Coinhave [Coie], Coinimp [Coif],

Coin nebula [Coig], Cryptoloot [crya], DeepMiner [Dee], JSECoin [JSE], Moner-

ise [Monc], Nerohut [Ner], Webmine [webd], WebminerPool [Webg], and Webminepool

[webe]. Some of these service providers also came up with several new functionali-

ties, such as offering a user notification method or a GUI for the user to adjust the

cryptomining parameters. Note that, we also verified these service providers using

the samples in the PublicWWW dataset. In order to find the corresponding service

providers of each sample, we performed a keyword search on the HTML source code

of all samples. We found that 5328 samples use one of these 14 aforementioned ser-

vice providers, while 941 samples with unknown service providers. Moreover, we also

found out that 144 samples are using scripts from multiple service providers in their

source codes. More details on the PublicWWW dataset can be found in Appendix.
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Cryptominer Software

Blockchain networks rely on several network protocols and cryptographic authentica-

tion methods. Miners must be part of these protocols and follow the rules provided

and developed by the communities. PoW-based cryptocurrencies also have specific

rules for their blockchain networks. Due to blockchain technology’s public and open

nature, the source code of these miners are published by the communities via code

sharing and communal development platforms. Attackers can easily obtain and mod-

ify these miners and adopt them to perform mining inside their victims’ host machines.

Moreover, there are also several plug-and-play style mining applications provided by

several mining pools. Attackers are also modifying these applications for crypto-

jacking. For example, XMRig [XMR] is a legitimate high-performance Monero miner

implementation, and it is open-source. Its signature is found in several highly impact-

ful attacks affecting millions of end devices around the world [Gru,Kasb], which are

also reported by Palo Alto Networks and IBM. Moreover, we also found 139 unique

samples that are labeled with the signature of ”xmrig” in our VT dataset.

4.3.2 Infection Methods

In this section, we explain the infection methods used by cryptojacking malware in

detail.

Website Owners

Website owners, who have admin access to the website’s servers, may employ in-

browser mining scripts to gain extra revenue or provide in exchange of an alternative

option to premium content they provide. Only with this method, webpage owners

may receive the revenue of the script in their webpage. While some website owners

inform their visitors about the cryptomining script they employ, some others do not
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inform their visitors, and this behavior can be considered as crime [Parb] in several

countries.

Compromised Websites

Attackers may inject their cryptojacking malware into random web pages that have

several vulnerabilities. Indeed the name cryptojacking itself is the combination of

”cryptomining” and ”hijacking.” Ruth et al. [RZWH18] state that ten different users

created 85% of all Coinhive scripts they found. The owners of these webpages do not

have any information about these scripts; additionally, they do not profit from them.

Several works claim that the attackers generally use the same ID for all the in-

fected web pages, making them more traceable. For example, the authors in [BBD19a]

reveals the cryptojacking campaigns through this method and discover that most of

these campaigns utilize the vulnerabilities such as remote code execution vulnera-

bilities. When we investigated the common instances related to this domain, one

security company found cryptojacking malware inside of the Indian government web-

pages [Chr], which affect all ap.gov.in domains and sub-domains.

Malicious Ads

Some attackers embed their cryptojacking malware into JavaScript-based ads and

distribute them via mining scripts. With this method, the attackers can reach random

users without any extra effort. To make this attack, they do not need to infect any

webpage or application. YouTube [Min18] and Google ad [Cla] services were also

infected and the users of these websites and their services became the victims of the

cryptojacking attacks. The attackers successfully mined Monero with their visitors.

The attackers successfully mined Monero with their visitors. The advantage of this
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method is that it allows attackers to reach a large number of visitors when it is

embedded into popular websites without getting access to the website’s servers.

Malicious Browser Extensions

Browser extensions can also reach the computer’s CPU sources and act like crypto-

jacking malware located into a webpage. These extensions have a major distinctive

difference; they can stay online and perform mining as long as the infected browser

remains open independent from the websites accessed by the victim. However, major

browser operators like Google announced that they would ban all the cryptomining

extensions on their platform regardless of their intention as it is mostly being abused

in practice [New].

Third-party Software

Merging malware with any market application and publishing it via several shar-

ing platforms is a well-known method among the attackers to spread the malware.

Attackers modify the cryptominer software to run cryptojacking in the background

and merge it with legitimate applications. The attackers tend to use computation-

intensive applications (e.g., animation applications, games with high hardware needs,

engineering programs) because the use of those applications means that the victims’

system has computationally powerful hardware and the application that host-based

cryptojacking malware embedded, have access permission to the needed hardware

components of the victim’s host system.

Several major instances have already happened, such as, one attacker merged

Zoom [Ole] video calling application with a regular bitcoin miner and distributed it

via several sharing platforms. In another attack, the attackers used a popular video

game Fortnite to spread the virus [Pea] to mine Bitcoin. Unlike the in-browser mining,
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which became popular in 2017, we found the attack instances using this method even

in 2013, where the Bitcoin mining script found as part of the game’s code itself [SC].

Exploited Vulnerabilities

In several cases, attackers exploit several zero-day vulnerabilities that they found in

hardware and software. Attackers inject their mining malware into several devices

and make them mine cryptocurrency. There are several important instances happened

in the last several years. The most remarkable example directly affects 1.4 Million

Mikrotik [BBD19b] routers globally, and a vulnerability in the hardware operating

system causes this instance. The researchers claim that a major percentage of Remote

Code Execution (RCE) attacks [Avi] aims to locate mining scripts inside the host

systems.

Social Engineering Techniques

Social engineering is a commonly used technique among malware attackers to by-

pass security practices. Similarly, attackers also use social engineering attacks to

manipulate human psychology and navigate the victims’ access or install malicious

software on their computers. The researchers have observed that attackers are still

using old techniques such as social engineering to install cryptojacking malware on

their victims’ computers [Sch].

Drive-by Download

A drive-by download is another technique used by malware attackers to deliver and

install malicious files to victims’ devices without their knowledge. Victims may face

this attack while visiting a web page, opening a pop-up window, or checking an

email attachment. In one case [RS], the attackers used this method to inject their
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cryptojacking malware into their victims’ devices. They exploited shell execution

vulnerability to download their cryptojacking malware to victims’ computers directly.

4.3.3 Victim Platform Types

Browser

Browsers are the most commonly used victim platforms as the attackers do not need to

deliver any malicious payload to the victim to use the computational resources of the

victim. In other words, when the victim reaches the infected webpage, the malware

automatically starts mining and do not leave any data behind. The second significant

advantage of the browser environment is, thanks to service providers, ready-to-use

mining scripts can be applied to any webpage very easily and quickly. The studies

in the literature that we also present in Section 6 mostly focus on in-browser crypto-

jacking. However, the attackers can access only the CPUs of the victims through the

browsers, which makes them infeasible for the currencies allowing ASIC miners such

as Bitcoin. Therefore, cryptojacking malware samples utilizing browsers mostly mine

Monero or other cryptocurrencies, which allow cryptomining by personal computers

on non-ASIC CPU architectures.

Personal Computers

Personal computers are generally designed to allow end-users to perform their daily

tasks. Personal computers are recently modified to overcome high-level computations

to allow their users to use heavy-computation applications (e.g., video-games, video

rendering applications). Attackers targeting personal computers aim to reach many

victims because a limited number of victims would not be profitable. In-browser

cryptojacking embedded into popular websites is ideal for this type of cryptojacking
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attack. In addition, they can also instantiate such an attack through large-scale

campaigns. For example, in [Win], Cisco researchers document their findings of a

two-year campaign delivering XMRig in their payload. They also observed that the

malware ”makes a minimal effort to hide their actions” and posting the malware ”on

online forms and social media” to increase the victim pool.

On-premise Server

On-premise (i.e., in-house) servers are the servers where the data is stored and pro-

tected on-site. It is preferred by highly critical organizations such as governmental

organizations as it offers greater security and full control over the hardware and data.

However, on-premise servers are also another victim platform type attacked by

the host-based cryptojacking malware samples. Compared to personal computers,

on-premise servers are more computationally powerful and host numerous services

accessed by many connections. This allows attackers to the broader attack surface.

Still, the attackers have to find a way to deliver and install the cryptomining script

on the on-premise server to access this platform. In several instances, the attackers

used system vulnerabilities [Won], third party infected software [UKG18], and sev-

eral social engineering methods [Sch] to install cryptojacking malware to the victims’

on-premise server.

Cloud Server

Cryptojacking malware also exploits cloud resources to mine cryptocurrencies. Cloud-

based cryptojacking attack is a fast-spreading problem in the last two years, where

it became popular, especially after the shutdown of the Coinhive when the attackers

were looking for new platforms to infect. Attackers target several vulnerabilities to

hijack victims’ cloud servers and locate cryptocurrency miners into their systems.
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Clouds servers, especially Infrastructure-as-a-service platforms such as Amazon Web

Services (AWS), are being targeted by the attackers because of their:

• Virtually infinite resources,

• Large attack surface due to server structure,

• Malware spreading capabilities,

• Reliable Internet connection,

• Longer mining/profit period due to host-based capabilities

Several instances of this type of cryptojacking malware have been found on cloud

servers [Res,Hac,ARI,Unib,MV,clo]. In these attacks, attackers used different tech-

niques to hijack the cloud server to inject cryptojacking malware. For example, in

their 2020 annual report, Check Point Research [Res] observed that attackers integrate

the cryptominer to the popular DDoS botnets such as KingMiner targeting Linux and

Windows servers for side-profits. In another attacker instance [ARI], the researchers

found an open directory containing malicious files. Further analysis revealed that the

file contains a DDoS bot targeting open Docker daemon ports of Docket servers and

ultimately installing and running the cryptojacking malware after the execution of

its infection chain. In a similar attack instance [MV], the researchers noted a cryp-

tojacking malware delivered using a CVE exploitation targeting WebLogic servers.

Tesla-owned Amazon [Hac] and the clients of Azure Kubernetes clusters [clo] were

exposed to cryptojacking attacks due to poorly configured cloud servers. Indeed,

Jayasinghe et al. [JP20] showed that the count of cryptojacking malware targeting

cloud-based infrastructure is increasing every year and affects more prominent do-

mains such as enterprises.
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IoT Botnet

IoT devices generally have small processing powers to perform basic tasks. It is

being expected that there will be more than 21.5 billion IoT devices connected to

the internet [Dep] by 2025. Attackers aim to create botnets with the collaboration

of thousands of these IoT devices and perform several attacks such as DDoS due

to their small processor, limited hardware, low-level security, and weak credentials,

which was also exploited in the example of Mirai botnet’s DDoS attack [McM]. Later,

IBM researchers also found that the modified version of the Mirai Botnet also started

to mine Bitcoin [MA]. Bartino et al. [BI17] states that there are several worms in IoT

devices that hijacked them for mining purposes, and Ahmad et al. [ASKS19] proposes

a lightweight IoT cryptojacking detection system to detect any cryptojacking attack

that focuses on IoT devices.

Mobile

Cryptojacking malware samples targeting mobile devices inject cryptojacking script

into their application and list the application in the application markets. Like every

other type of cryptojacking attack, the mobile-based cryptojacking samples also have

seen a great increase in the number of attacks. Because of this, both Google [goo] and

Apple [Osb18] removed the cryptomining applications from their platforms. However,

they still exist in alternative markets [DZG+20]. The study by Dashevskyi et al.

[DZG+20] focuses on Android-based cryptojacking malware.

Moreover, mobile devices are generally not considered powerful enough for cryp-

tocurrency mining because they generally use more restricted hardware and optimized

operating systems (e.g., iOS and Android). Besides, the cryptocurrency mining pro-

cess consumes extra battery and processing power, which may cause hardware prob-

lems such as overheating and apps to freeze or crash on mobile devices. Due to these
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reasons, cryptojacking attacks on mobile devices are not preferred by attackers, and

they generally apply a mobile filtering method to opt-out mobile devices.

Listing 2: The mobile device filtering method used in a cryptojacking sample.

Listing 2 is a recent cryptojacking sample with the mobile device filtering method

found in a sample in our dataset. In line 4, the script automatically calls a mobile

device detection function and starts the cryptocurrency mining process only if it is

not a mobile device.

4.3.4 Target Cryptocurrencies

In this section, we give brief information about the most preferred cryptocurrencies

by the attackers.

Monero

Monero has several advantages over other cryptocurrencies, making it favorable to

attackers. First of all, Monero successfully implements and modifies the RandomX

mining algorithm and CryptoNight hashing algorithm to prevent ASIC miners and

give a competitive advantage to the CPU miners over GPUs via L3 caches [TNL18].

The Monero community aims to keep their network decentralized and allows even

small miners to mine Monero. As in-browser cryptojacking malware can only access

the CPUs of the personal computers through the browsers, Monero is ideal as a target

cryptocurrency instead of other cryptocurrencies that are mined dominantly by other

computationally more powerful ASIC and GPU miners. Second, Monero provides
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anonymity features through cryptographic ring signatures [BKM06,MSH+18], which

makes the attackers untraceable. Thanks to these features of the Monero, attackers

tend to mine Monero with their in-browser cryptojacking malware.

When we analyze the samples’ cryptomining scripts in the PublicWWW dataset

and their service providers’ documentation, we found that all eleven service providers

except Browsermine, CoinNebula, JSEcoin either use Monero or have the option to

choose Monero in their scripts as a target cryptocurrency. This shows to 91% of the

samples in the PublicWWW dataset use Monero to mine.

Bitcoin

In recent years, Bitcoin mining has seen enormous attention, which led to a dramatic

increase in the difficulty target. ASIC and FPGA miners are the main reason behind

this dramatic increase because the mining structure of the Bitcoin allows to build

and use of specified mining hardware which is much more powerful and profitable

than the CPUs and GPUs. The increase in difficulty target and disadvantages of

CPU made the CPU mining infeasible and not profitable. Therefore, attackers who

perform in-browser cryptojacking attack donot prefer Bitcoin mining. We also see

that none of the service providers of the in-browser cryptojacking samples in our

PublicWWW dataset supports Bitcoin mining. However, host-based cryptojacking

malware can reach all the components of the victims’ computer system and make

Bitcoin mining on GPU and other high-performance computational resources of the

computers. We also observe this in our VT dataset. We performed a keyword search

for ”bitcoin” on the AV labels of 20200 samples of both in-browser and host-based

cryptojacking malware. We found that 7111 of 20200 samples are marked with a label

containing the keyword ”bitcoin”. Even though this does not show that those samples

are absolutely using bitcoin as a target cryptocurrency, but it is a potential indicator
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for the host-based cryptojacking samples mining Bitcoin based on the assumption of

AV vendors are labeling the correct currency for the AV labels.

Other Cryptocurrencies

Cryptojacking is attractive for attackers as cryptomining can be parallelized among

many victims. Therefore, it is possible for cryptocurrencies to allow distributed cryp-

tomining. Both Monero and Bitcoin use PoW as a consensus method. However,

instead of PoW, other cryptocurrencies utilize different consensus models such as

Proof of Stake [Vas14], and Proof of Masternode [DSG14]. Most of these new consen-

sus models do not depend on distributed power-based mining algorithms; therefore,

cryptojacking is not an option for those currencies. For the cryptocurrencies that

can be mined distributively [DHD+20], the mining pools provide collective mining

services to their participants. Other cryptocurrencies that are preferred by attackers

are Bitcoin Cash [bit], Litecoin [Lit], and Ethereum [B+14].

There are also several cryptocurrencies developed specifically for in-browser cryp-

tomining activities. JSEcoin [JSE] is an example of them and offers also trans-

parency. Other cryptocurrencies created for this purpose are BrowsermineCoin [Bro],

Uplexa [Upl], Sumocoin [Sum], and Electroneum [Ele].

4.4 Conclusion

The rapid rise of cryptocurrencies incentivized the attackers to the lucrative blockchain

and the Bitcoin ecosystem. With ready-to-use mining scripts offered easily by ser-

vice providers (e.g., Coinhive [Coic], and CryptoLoot [crya]) and untraceable cryp-

tocurrencies (e.g., Monero), cryptojacking malware has become an essential tool for

hackers. The lack of mitigation techniques in the market led to many cryptojacking

malware detection studies proposed in the literature. In this study, we first explained
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the cryptojacking malware types and how they work in a systematic fashion. Then,

we presented the techniques used by cryptojacking malware based on the previous

research papers, cryptojacking samples, and major attack instances. In particular, we

presented sources of cryptojacking malware, infection methods, victim platform types,

target cryptocurrencies, evasion, and obfuscation techniques used by cryptojacking

malware. Moreover, we gave a detailed review of the existing detection and preven-

tion studies as well as the cryptojacking analysis studies in the literature. Finally, we

presented lessons learned, and we noted several promising new research directions. In

doing so, this SoK study will facilitate not only a deep understanding of the emerging

cryptojacking malware and the pertinent detection and prevention mechanisms but

also a substantial additional research work needed to provide adequate mitigations in

the community.
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CHAPTER 5

IN BROWSER CRYPTOMINING FOR GOOD: AN UNTOLD STORY

5.1 Introduction

We summarize the main contributions of this chapter as follows:

• We, for the first time in the literature, categorized in-browser cryptomining into

two categories 1) Permissioned and 2) Permissionless (i.e., cryptojacking).

• We performed an empirical analysis with recent cryptomining samples1 focusing

on the permissioned cryptomining. For this, we collected a large number (i.e.,

6269) of unique cryptomining samples from 14 different service providers. We

identified 24 unique keywords that can be used to detect the samples with

those service providers. Moreover, we also identified 9 keywords for the consent

detection and 4 obfuscated scripts.

• We perform profit, usability, and user consent analysis on the existing crypto-

mining scripts provided by the service providers found in our dataset.

• We proposed a novel consent evaluation framework for the service providers and

presented our benchmarking results for the 14 service providers we detected in

the dataset.

5.2 Dataset Creation & Methodology

In this section, we explain the methodology and tools we used for the dataset creation.

The entire process is illustrated in Figure 5.1.

1In order to accelerate the research in this area, we also release our dataset and the list of
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Figure 5.1: Data collection process.
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Keyword Collection: In order to find the cryptojacking samples, we used static

keyword detection methods. Our primary source is the keyword blacklists released

by browser extensions NoCoin [NoC] and MinerBlock [Mina]. We obtained a total

of 1183 keywords from the merged blacklist of these two lists. Our second source

for the keywords is the keyword lists released by other important studies Bijmans et

al. [BBD19a] and Konoth et al. [KVM+18], in which we obtained 76 and 36 keywords,

respectively. Our final keyword list is the keyword lists we found manually from the

publicly known service providers. With this method, we extracted 25 keywords that

could be used to detect cryptomining samples. After this process, we obtained 1322

a list of keywords.

Source Download and Verification: The collected list of 1322 keywords also in-

cludes duplicates and multiple keywords for the same service providers. Therefore,

we removed the duplicates from the list and decided unique keywords for each known

service provider. Then, we used PublicWWW [pub] to find the corresponding web-
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Table 5.1: Service provider keywords.

Service Provider Keyword

Authedmine
authedmine.min.js

authedmine.eu/lib/1.js
simple-ui.min.js

Browsermine bmst.pw

Coinhave
cdn.minescripts.info

coin-have.com

Coinhive
coinhive.min.js

wp-monero-miner-using-coin-hive
wp-monero-miner-pro

Coinimp client.start
CoinNebula CoinNebula

Crypto-Loot
CRLT.Anonymous(

cryptoloot.pro

DeepMiner
deepMiner.Anonymous

deepMiner.Init
JSEcoin load.jsecoin.com
Monerise monerise payment address
Nerohut nerohut.com/srv
Webmine webmine.cz

Webminepool
WMP.Anonymous(

wmp-site-key
WMP.User

WebMinerPool
webmr.js
webminer
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sites containing those keywords in their HTML source code. PublicWWW is a web

search engine tool, allowing us to search the HTML source of the websites, as of

this writing, including over 500M websites. We downloaded the query result of all

of the keywords. Some of the different keywords belong to the same URL; therefore,

we again removed the duplicates. After removing the duplicates, we downloaded the

corresponding source codes of the websites using a crawler. Our crawler checks the

URL’s HTTP response and connects to the webpage to fetch the HTML source code.

After downloading the HTML source code, our crawler checks the related keywords

from the keyword list and saves the HTML document to the related file. To avoid

any discrepancies, we searched the keywords in the downloaded source code and re-

moved samples that do not contain the keywords from the dataset. At the end of

this process, we obtained a total of 6269 unique samples. We also obtained 24 unique

keywords that can be used to identify 14 different service providers and corresponding

5328 HTML files as well as 130 unique keywords and 941 HTML source codes with

unknown service providers. We labelled the samples with a known service provider

as Known Service Provider (KSP) samples, and we used these samples for the rest

of the analysis. In other words, we used 5328 unique samples with known service

providers for all of the analysis in this study.

Table 5.1 shows the keywords we used for detecting the service providers. While

deciding keywords, we tried to use the keywords that can not be changed easily.

Instead of the source path, we used variables that are uniquely identifying the service

providers.

Script Feature Extraction: In this step, our goal is to obtain more details about

the usage of the cryptomining samples. Specifically, we are interested in the following

features of the samples:

47



Table 5.2: Consent keywords.

Service Provider Consent Type Keyword

Authedmine Permission authedmine.min.js
Authedmine Dashboard simple-ui.min.js—
Coinimp Notification client.addMiningNotification
Coinimp Mandatory Mining messageDiv
Crypto-loot Dashboard minui.js
JSEcoin Permission load.jsecoin.com
Webminepool Dashboard wmp-site-key
Webmine UI authedminer.js
WP Monero Miner1 Dashboard wp-monero-miner

1 WP Monero Miner is indeed not a service provider, however, it provides
a plugin which can be used by multiple service provider and it has a dash-
board style consent type defined in this study.

Table 5.3: Obfuscation keywords.

Service Provider Keyword

Coinhive authedmine.min.js
Crypto-loot minui.js — crypta.js
Webmine Pool base.js

• User Consent Extraction: In this part, we wanted to identify if the samples

contain any user consent. For this purpose, we checked the documentation

provided by the service providers. We obtained nine different keywords that

could be used for user consent detection as well as the type of user consent.

The list of keywords are given in Table 5.2. More details about different consent

types are explained in Section 5.3.3.

• Website Categorization: In this part, our goal is to see if there is any correlation

between the user consent and websites using the cryptomining script. For the

website categorization, we used Webshrinker [weba], which provides a public

web categorization service. However, it only returned a category for the half
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of the dataset, where we manually labelled the rest of them following the same

taxonomy of Webshrinker.

• Blacklisting Extraction: In addition, we wanted to identify if a website is black-

listed. For these, we used the public keywords lists released by the browser

extensions by NoCoin [NoC] and MinerBlock [Mina], and if any keyword from

the blacklists is detected in the source code of the sample, we labelled the sample

as blacklisted.

• Obfuscation Extraction: Similar to the user consent extraction, we also observed

that some scripts were obfuscated to avoid being blacklisted. We found 4 scripts

given in Table 5.3 as obfuscated and labelled the samples utilizing these scripts

as obfuscated.

5.3 Analysing the In-browser Cryptomining Ecosystem

5.3.1 Overall Analysis

In this section, we provide the overall distribution results of our dataset. Table 5.4

shows the list of 14 service providers we identified in our dataset and their related

features while Table 5.5 shows the sample counts of those service providers.

The List of Service Providers. Using the service providers in [BBD19a,KVM+18]

and extending them with publicly known service providers, we identified 14 service

providers used by the samples in our dataset. We presented the list of service providers

in our dataset in Table 5.4. We found that some of these service providers have

discontinued their service. We used the Wayback Machine digital archive [webb] to

access their documentation for those that are not active. We found that only 6 of 14

service providers are active as of this writing.
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Table 5.4: The list of service providers we identified in our sample set and their other
related features.

Service Provider Activeness Permission Type Currency

Authedmine [Coid] No Permissioned Monero
Browsermine [Bro] Yes Permissionless BrowserMineCoin
Coinhave [Coie] No Permissionless Monero
Coinhive [Coid] No Permissionless1 Monero

Coinimp [Coif] Yes Optional
Monero
Mintme

CoinNebula [Coig] No Permissionless No info

Crypto-Loot [Cryb] Yes Optional
Monero
uPlexa

DeepMiner [Dee] No Permissionless
Monero

Electroneum
Sumokoin [Sum]

JSEcoin [JSE] No Permissioned JSEcoin
Monerise [Monc] No Permissionless Monero
Nerohut [Ner] No Permissionless Cryptonight coins
Webmine [webd] Yes Optional Monero
Webminepool [webf] Yes Optional Monero
WebMinerPool [Webg] Yes Optional Monero

1 Coinhive is not providing a method to make the sample permissioned; however,
it can be integrated to third party extensions to be made permissioned, which we
marked them as permissioned sample.
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We also marked the service providers according to their permission type. For the

permission type, we marked the ones who are enforcing the consent method in the

source script as ”permissioned” because it does not give an option to remove the user

consent to the website owners. On the other hand, we marked the ones which are not

providing a method for user consent as ”permissionless”. Finally, we marked as both

the service providers, which are providing a method for the user consent optionally.

We found that among these 14 service providers, 7 of them are permissionless, while

5 of them are classified as ”optional”. Only Authedmine and JSEcoin embed the user

consent in the script so that the website owner cannot remove it unless s/he modifies

the original script.

We also extracted the cryptocurrency that can be mined based on the service

provider documentation. As can be seen from Table 5.4, the majority of the service

providers prefer Monero due to its anonymity features while some of them utilize their

own cryptocurrencies such as BrowserMineCoin or JSEcoin.

Service Provider Distribution: Among all cryptomining service providers, the

first and most popular one was Coinhive; however, Coinhive discontinued its opera-

tions as of March 2019. Since then, many other service providers have surfaced, and

some of them still continue their operations. In our dataset, we noted that 43.5%

of the samples (2380/5472) still have Coinhive script on their websites. If the script

is not deployed locally or in a proxy, basically, these website owners are not making

any money. Among the top five service providers with most samples, the only ac-

tive service provider is Coinimp, with 1123 (20.5%) samples. Using the activeness

information of the service providers, we found that in our dataset, a total of 1677

websites (30.6% ) are using one of the active service providers. Moreover, we note

51



Table 5.5: Sample counts of 14 different service providers in our dataset.

Service Provider Total Permissioned Permissionless Blacklisted Obfuscated

Coinhive 2380 152 (6.4%) 2228 93.6%) 2373 (99.7%) 34 (1.4%)

Coinimp 1123 56 (5%) 1067 (95%) 108 (9.6%) 13 (1.15%)

DeepMiner 492 0 (0%) 492 (100%) 16 (3.2%) 8 (1.6%)

JSEcoin 448 448 (100%) 0 (0%) 444 (99.1%) 53 (11.83%)

Authedmine 378 378 (100%) 0 (0%) 78 (20.63%) 224 (59.2%)

Crypto-Loot 210 6 (2.8%) 204 (97.1%) 181 (86.2%) 136 (64.7%)

Browsermine 155 0 (0%) 155 (100%) 8 (5.2%) 0 (0%)

Webmine Pool 84 5 (5.9%) 79 (94.0%) 7 (8.3%) 77 (91.7%)

WebMinerPool 83 45 (54.2%) 38 (45.8%) 83 (100%) 1 (1.2%)

Coinhave 58 0 (0%) 58 (100%) 35 (60.3%) 0 (0%)

Monerise 31 11(3.2%) 30 (96.8%) 0 (0%) 1 (3.2%)

Webmine 23 1 (4.3%) 22 (95.6%) 9 (39.1%) 0 (0%)

Nerohut 6 0 (0%) 6 (100%) 2 (33.3%) 0 (0%)

CoinNebula 1 0 (0%) 1 (100%) 1 (100%) 0 (0%)

Total 5472 1092 (19.9%) 4380 (80%) 3345 (61.1%) 547 (10%)

1 This sample is using Coinimp and Monerise together and utilizing Coinimp’s notification method.

that 144 samples2 are using two service providers at the same time. Among these, in

139 samples, either of the service providers is Coinhive or Authedmine, while others

contain Coinimp’ scripts. This shows the popularity of these service providers as they

are either used standalone or along with others.

User consent Distribution: As we showed in Table 5.4, seven service providers

do not provide a method for the user consent while five of them provide an optional

method, and Authedmine and JSEcoin are enforcing the website owner to ask for the

user consent explicitly by embedding the user consent code snippet in the source of

the script. Using the permission extraction method we explained in the previous sec-

tion, we identified 1092 permissioned cryptomining scripts from all service providers.

2Therefore, we further want to note that we have 5328 unique websites in our dataset, 144 of
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Among all service providers, the three service providers with the most permissioned

samples are JSEcoin, Authedmine, and Coinhive, where none of them are active as

of now. We found 56 samples utilizing a permission method provided by Coinimp,

which is active as of now. From its documentation, we found that the most basic

script provided by Coinimp does not indeed utilize a permission method. Among

service providers supporting both permissioned and permissionless cryptomining, a

similar ratio is also observed for Crypto-Loot and Webmine Pool. For these, we con-

clude that most website owners are using the most basic script provided by the service

provider.

Are all samples in the dataset blacklisted? As we explained in Section 5.2,

using the keyword list publicly released by the browser extensions, we can decide if

a given website is going to be blacklisted by one of these blockers. We found that

these browser extensions blacklist 61.1% (3345/5472) of the websites in our dataset.

Moreover, we also noticed that most of the samples utilizing Coinhive (99.7%) are

blacklisted as it is the pioneer in the cryptomining business. Similarly, JSEcoin’s

blacklisting ratio is also very high as its parameters are embedded in the script,

and the script is called in one line. In this method, when the source for the script

is blacklisted, all of the samples using that same URL will be blocked. On the

other hand, there are also service providers with very low blacklisting ratios such as

Coninimp (9.6%), DeepMiner (3.2%), Browsermine (5.2%), Webmine Pool (8.3%),

Monerise (0%).

Are the samples deploying obfuscated scripts? We noticed that some of the

scripts are utilizing obfuscated scripts. We identified four such scripts, which is given

in Table 5.3. In our dataset, we observed that 547 (10%) cryptomining scripts are

utilizing one of these scripts, which may be suspicious. We also noticed that even

though these scripts are obfuscated, they can be detected by the blacklists by the
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Figure 5.2: Activeness distribution of a) permissioned (b) permissionless cryptomining
samples. Blacklisted distribution of (c) permissioned (d) permissionless cryptomining
samples.

a) b) c) d)

code snippet calling the source of the script. We basically used this method in order

to identify these samples. We also note that this method cannot detect the scripts

located on a proxy server or locally with a different filename.

5.3.2 Comparison of the Permissioned and Permissionless

Cryptomining

As shown in Section 5.3.1, we found that 1092 (19.9 %) samples in our dataset are

utilizing a way to notify the user about the cryptomining operation that will be

performed using the user’s resources. In this section, our purpose is to compare the

permissioned with permissionless samples to reveal the differences (if any) between

them and explore the characteristics of the permissioned cryptomining. For this

purpose, we perform a cross-correlation analysis among the features of the samples in

our dataset. Particularly, we analyze the correlations between the following pairwise

features: 1) activeness vs permission type, 2) blacklisting vs permission type, and 3)

web category vs permission type. We present our results in the following subsections.
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Activeness

As we noted in Section 5.3.1, not all of the service providers are active and continue

their operations. For example, the most common permissioned cryptojacking ser-

vice providers Coinhive/Authedmine, JSEcoin, WP Monero Miner do not continue

their operations. Figure 5.2a and 5.2b show the activeness ratio of permissioned and

permissionless cryptomining samples, respectively. We can see that the activeness

ratio of the permissioned samples is 11.5%, while it is 35.9% for the permissionless

cryptomining samples.

Blacklisting

Figure 5.2a and Figure 5.2b show the distribution of blacklisted websites for permis-

sioned and permissionless cryptomining samples. We found that blacklisted websites’

ratios are very close to each other (37.0% and 40.5%) for permissioned and permis-

sionless. The reason for this is that blacklists do not really differentiate between the

permissioned cryptojacking samples. Some service providers such as Authedmine or

Webmine enforce the website owners to use a permissioned version of the scripts by

embedding and sometimes making it impossible to modify by obfuscating to avoid

being blacklisted. However, as we can see from the distribution, the blacklists do not

consider if a script provides consent type to the website owner while choosing key-

words for the blacklists. While this is to avoid the malicious cryptojacking samples,

it also kills the responsible, legitimate website owners’ functionality.

Web Category

Figure 5.3 shows the corresponding web categories used by the permissioned and per-

missionless cryptomining samples for those that can be categorized by Webshrinker.

From Figure 5.3, adult content is the highest web category for permissionless sam-
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ples, while the permissioned cryptomining samples are used on technology websites.

On the other hand, overall distribution also shows the more normal distribution for

permissioned samples, while the adult content dominates the permissionless samples.

Figure 5.3: Website categorization distribution of permissioned permissionless cryp-
tomining samples. (UC: Under Construction, UGC: User-generated Content)
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5.3.3 Extracting User Consent Methods

In Section 5.3.1 and 5.3.2, we analyzed the entire dataset and showed that the permis-

sioned and permissionless samples mostly show similar behaviors, and they are mostly

treated the same by the blacklists although the cryptomining business is shifting from

the permissionless to permissioned cryptomining. In this section, we will focus on the

permissioned cryptomining samples. Using the permissioned cryptomining samples,

we identified five different types of consent types used by the samples: 1) permission,

2) dashboard, 3) notification, 4) mandatory mining, and 5) user interface (UI).
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Table 5.6: The permission types provided by the service providers and their sample
counts found in our dataset.

Permission Type Sample #

Permission 666
Dashboard 255
Notification 51
Mandatory Mining 2
UI 2

Figure 5.4: (a) In-browser notification provided by CoinImp (b) The user view of
JSECoin’s permission consent type. (c) The user view of Webmine’s UI consent type.
(d) The user view of Webminepool’s dashboard consent type. (e) The user view of
Webmine’s Mandatory mining consent type.

(a) (b)

(c) (d) (e)

Table 5.6 shows the permission types provided by the service providers and their

sample counts found in our dataset. The results show that the permission, which

we explain in the next subsection, is the most common consent type among the

permissioned cryptomining samples in our dataset. The list of keywords, permission

type, service providers offering these methods, and the keyword decision process are

given in Table 5.2.

Figure 5.4 shows an example for each of the five consent methods, and in the next

subsections, we explain these five consent methods in greater detail.
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Notification

In the notification consent type, the user is notified by showing a pop-up screen. It

only notifies the user without giving a selection to opt out. The Coinimp provides an

example of the notification consent type, and it is shown in Figure 5.4a. The visibility

of the notification can be adjusted by the website owner. For example, the text itself,

text color, background color, as well as the size and position of the notification, can

be configured. We note most of the samples in our dataset were using default settings;

however, the notification can be even hidden from the user.

Moreover, this method is not mandatory and does not have to be placed in the

code by the website owner. In this case, the mining will be starting automatically

when the website is accessed by the user, which we call permissionless cryptomining.

We found that only 51 (4.5%) of 1123 Coinimp samples are using this consent type

in our dataset.

Permission

Permission consent type is similar to the notification, but it also gives the user an

option to opt out from cryptomining. From the service providers in our dataset,

we found that Authedmine and JSEcoin’s scripts have a method to provide the per-

mission consent type. Authedmine’s script intentionally enforces this option in the

source of the cryptomining script, and it does not provide an option to remove that

part from the script to the website owner. In this way, the service provider’s purpose

is to avoid being blocked and to continue their service. However, as we have noted

in Section 5.3.2, the blacklist does not consider being permissioned. On the other

hand, as JSEcoin is originally proposed for transparency and accountability, similar

to Authedmine’s script, this part of the script is embedded into the source, and the

website owner can not remove it. JSEcoin’s permission example is shown in Figure
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5.4b. As can be seen from the figure, the user can easily click the opt-out option and

prefer not to allow the website to use his/her computational power.

Dashboard

Dashboard is another consent type where the user has the ability to start and stop

the mining as well as configure the parameters such as the number of threads or

CPU percentage. Configurable parameters may be essential for the websites who

want their user to decide the use of his/her resources depending on the convenience.

Webminepool provides an example of a dashboard consent types shown in Figure

5.4d. Some of the service providers implement dashboards so that mining starts

automatically, but the users can set the parameters or stop the mining using the

dashboard.

User Interface (UI)

UI is an improved version of the dashboard, where the user can set the parameters in

an increased scaling as well as a better experience through the use of elements such

as sliders. It requires more effort by the service provider, but it gives easy control to

the users. We show an example of Webmine’s UI consent method in Figure 5.4c. As

can be seen from the figure, the user can see its resources used by the service provider

and can also set the Processor CPU usage through the slider element.

Mandatory Mining

Mandatory mining is another consent type, in which if the user does not accept

the mining, s/he will not be allowed to access to the website. The Coinimp service

provider gives a method for this consent type. This method is also the rarest mining
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method in our dataset, and is found in only two samples. For example, Figure 5.4e

shows the user view of Webmine’s mandatory mining consent message.

5.4 Revisiting the Permissioned Cryptomining

In this section, our goal is to see if the existing service provider scripts can serve as a

monetization tool, rather than an attack tool. For this purpose, we test them to see

• whether they can be an alternative revenue mechanism,

• whether they interrupt the end-users,

• whether they satisfy the consent requirements.

In the following subsections, we present our analysis results for each of them.

5.4.1 Can they be an alternative to advertisement?

The idea of using permissioned in-browser cryptomining as a monetization tool for the

websites brings the question of how much profit they offer for the website visits. For

this purpose, we deployed the scripts provided the active service providers found in our

dataset on a sample website and calculated the total profit per user per minute. We

run each experiment five times and calculated the average. Table 5.7 shows the real-

time calculation of the monetary value for one regular user in one minute. As service

providers may use different currencies, we converted them into the corresponding

USD value as of this writing3. As can be seen from the table, Webminerpool offers

significantly more profit compared to the other service providers.

Moreover, even though an advertisement is assumed to pay a constant, the profit of

a cryptominer increases linearly as the visit duration increases. Figure 5.5 shows the

3Nov 30, 2020.
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Table 5.7: Real-time profitability analysis of active service providers.

Service
Provider

Throttle Time (min) Currency
Profit

(in currency)
Average

Price (6 Months)
Profit
(USD)

Coinimp 100 1 Mintme 0.03199108 0.0024 USD 0.000074
Browsermine 100 1 BMC 0.000000009101 0.047 USD 0.0000000004277
Webminepool 100 1 Monero 0.00001172 141.29 USD 0.001655

Webmine 100 1 Monero 0.000001312308 141.29 USD 0.000185
Crypto-Loot 100 1 Uplexa 0.17 0.00019 USD 0.0000323

Figure 5.5: Profit per user value for different visit duration.
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profit per user value for varying visit duration. An average ads revenu is calculated

per thousand impressions and on averages it varies between 0.5-2 USD [ads]. We

assume 1 USD in our calculations. As we can see from the figure, while Webminepool

can reach to the same amount of profit offered by the ads in less than a minute,

Browsermine can not make the same amount of profit even for the 60 minutes of visit

duration.
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Table 5.8: Configurations used for evaluating the usability of in-browser cryptomin-
ing.

Conf 1 Chrome 2 tab static page
Conf 2 Conf 1 + 1080P Youtube Video
Conf 3 Conf 2 + Spotify
Conf 4 Conf 3 + Whatsapp App Video Download process
Conf 5 Conf 3 + Software uptader
Conf 6 Conf 4 + 4K video
Conf 8 Conf 4 + Virtual machine

5.4.2 Do they interrupt the users?

In this section, our purpose is to perform a usability test on the end users of in-browser

cryptomining as greedy mining operations can be computationally challenging process

for daily user computers. For the experiments, we used computes with four different

CPUs: 1) Intel Core i5, 2) Intel Core i7, 3) Intel Xeon E5, and 4) Intel Xeon Gold

for the throttle values 0.2, 0.5, and 0.8. All of the computers used in our experiments

use the same RAM (16 gb, 1333MHz), similar SSDs and the same Linux distribution

(Ubuntu 18.04 LTS). We run all experiments 5 times with the exactly the same

applications to obtain more accurate results.

We present the configurations in Table 5.8. As a result of the analysis, we

observed that it is possible to efficiently use in-browser mining scripts if the web page

owner will not act greedy and keep the throttle rate under the 50%. Above 50% will

dramatically affect the user’s experience and user might tend to close the related tab

due to the interruptions and overheating.

5.4.3 Do they satisfy consent requirements?

If implemented properly and responsibly, in-browser cryptomining can be used for

good such as collecting donations as in UNICEF’s case example [UNIa]. However,

the lack of an evaluation framework for proper and responsible implementation of the
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permissioned cryptomining makes this technology’s widespread adoption impractical,

if not impossible, for the website owners. Therefore, here we first present a consent

evaluation framework and then use it to rank the current service providers in our

dataset.

A Consent Evaluation Framework

Herein, we suggest ten requirements, encompassing two categories: User Requirement

(UR) and Webpage owner Requirement (WR).

User-related Requirements:

• UR1: A method to notify the user to the website owner: The webpage own-

ers should at least inform the users about mining activity on the webpage.

Some service providers offer built-in functions to inform users. This notification

should be visible and explain in-browser mining employed by the webpage. The

webpage owner may also place an informative link at the end of the notification

for more information.

• UR2: An option or link to the user to learn more info about the mining service:

With this method, webpage owners allow their users to learn more about the

meaning of the in-browser mining and what they actually do during their visit

to the related webpage. This option is also used by fundraising projects/web-

pages. These webpages aim to provide additional income for several civil society

initiatives and humanitarian projects.

• UR3: An opt-out screen to the user: Webpages that operate in-browser mining

should give options to their users. If the user does not want to give permission,

the webpage should not force the user to allow the mining script. JSE coin,

Webmine, and Authedmine let their users make this decision. Besides, webpage
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owners may not want users to visit their webpage if they do not wish to opt

out. This is a decent option for both users and webpage owners.

• UR4: An option to stop the mining after starting during the session: Some

service providers have built-in functionality to stop and start mining operations

manually. This feature allows the user to control the mining process and give

the option to stop it if desired/needed. This method is very advantageous for

both users and the webpage owners because if the user experiences interruption,

they can stop the miner and continue surfing on the webpage.

• UR5: An option to adjust the parameters (e.g., threads, CPU): Most of the

scripts in our dataset have standard CPU usage permissions (also known as

throttle and threads variables) set by the website owners. Some websites and

service providers allow their users to set how much they want to contribute to

mining. Currently, this is the highest point of consent. If the user does not

wish to contribute via mining, they can easily set the parameter to zero and

continue surfing. Or if the website gets too greedy, which could interrupt the

user, the user can limit the parameters according to his/her convenience.

Webpage Owner Requirements:

• WR1: An option to change the notification message and its properties: While

some service providers let the website owner choose their own messages and

change the properties (e.g., text and background color, location) of the notifi-

cation, some others have mandatory features that directly come from the main

library. This feature has several pros and cons for both users and the webpage

owner. Firstly, when service providers let webpage owners arrange the parame-

ters themselves, the webpage owner makes the notification message out of sight

or very hard to notice. On the other hand, when service providers embed a
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mandatory mining script to the main library, the webpage owner must permit

some third party to add content to the webpage.

• WR2: An option to make the script mandatory: Webpage owners may want

to block users who do not exchange their computational power for webpage

content. This option is beneficial for the webpage owner, and service providers

should provide this option to the webpage owners.

• WR3: An option to enable/disable the start/stop mining buttons: Service providers

generally make this option mandatory for the webpage owners, but this decision

should be left to the webpage owner. As mentioned before, the webpage owner

should choose what is going to be displayed on their webpage.

• WR4: An option to change and modify dashboard location and design: The

dashboard and GUI-based control panels are user-friendly, but their design is

generally not changeable by the webpage owners. Webpage owners should have

the right to change the design of the dashboard under several restrictions.

• WR5: A good documentation and guideline for website owners: Service providers

offer several functionalities to the webpage owners. While several service providers

publish very poor documentation, some others provide high-quality documen-

tation.

Table 5.9 shows how much the top service providers in our list fit into this frame-

work. Some service providers fit into our framework with an impressive score (e.g.,

Webmine and Webminerpool). These service providers offer various options for both

users and service providers; however, their user options are controlled by the webpage

owners. If the webpage owner does not prefer to use any of them, service providers

do not force them to do that. Besides, service providers like JSEcoin, Cryptoloot,

and Authedmine force consent method usage, and this makes these service providers

more user friendly.
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Table 5.9: Summary of the service providers’ consensual cryptomining features.

Service
Provider

UR1 UR2 UR3 UR4 UR5 WR1 WR2 WR3 WR4 WR5
Total
(/10)

Authedmine G# G#  G# # G# G# # # G# 4
Browsermine # # G# G# G# # # # # # 1.5
Coinhave # # G# G# # # G# # # G# 2
Coinhive # # # # # # # # #  1
Coinimp G# G# G# # #   # #  4.5
CoinNebula # # # # # # # # # # 0
Crypto-Loot # #    # # # #  4
DeepMiner G# # # G#  # # G#  # 3.5
JSEcoin     # #  # #  6
Monerise # # # # # # # # # # 0
Nerohut # # # # # # # # # # 0
Webmine G# #      #   7.5
Webminepool # # G#   # #    5.5
WebMinerPool G# G#    # G# G#   7

#: Does not satisfy G#: Partially satisfies  : Fully satisfies

5.5 Conclusion

In this chapter, we analyzed the characteristics of the in-browser mining ecosystem

and the service providers’ consent methods using a large dataset, which consists of

6269 unique websites containing cryptomining script in their source codes. We cre-

ated the first consent focused in-browser cryptomining dataset in the literature and

classified it under different consent methods. After the classification process, we an-

alyzed our results and shared our findings. In light of the new classification process,

we categorized consent types under different sections. We used the samples we found

in the wild during these classifications. Another contribution of this research is a new

evaluation framework for service providers and developers who want to implement a

user consent-based in-browser cryptomining. This framework is adaptable and exten-

sible for both academic research and service provider implementations. We believe

this study will further increase the widespread adoption of legitimate cryptomining

with user consent and knowledge and will increase the awareness on in-browser cryp-

tomining.
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CHAPTER 6

A LIGHTWEIGHT IOT CRYPTOJACKING DETECTION

MECHANISM IN HETEROGENEOUS SMART HOME NETWORKS

6.1 Introduction

In this chapter, we performed extensive set of experiments to design and evaluate the

best IoT cryptojacking detection mechanism. We first performed experiments to find

the best-ranked features, the most accurate classifier, and the optimum training size.

Then, we evaluated the effectiveness of our IoT cryptojacking detection mechanism

with 12 novel experiments designed to assess various attacker behaviors and network

settings. For this, we implemented the cryptojacking malware on IoT devices, a

laptop, and a server in a safe setup. We explained several practical issues we came

across during the implementation of cryptojacking on IoT devices in Section 6.5.3.

Summary of findings. In addition to our lightweight and highly accurate IoT

detection mechanism, extensive experiments we performed to assess various attacker

behaviors and network settings led to several interesting results worth nothing:

• We found that the highest malicious packet generation rate is still 72% less than

the least packet generation rate of the benign dataset given in Table 6.3. This

shows that the cryptojacking malware does not generate as many packets as

daily web browsing and application data.

• We found that while in-browser cryptojacking malware uses evasion techniques

such as limiting CPU and minimizing the network communication, host-based

cryptojacking malware tries to take advantage of the victim’s device at maxi-

mum computational power.

• We observed that an attacker targeting the server shows higher accuracy than

other victim devices types (i.e., laptop and IoT), i.e., there is a higher chance
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that the cryptojacking attacker will be detected during an attack targeting the

server type device.

• We found that the malicious scenario with stealthy profit strategy (i.e., 10%

throttle) is less accurate than robust (i.e., 50% throttle) and aggressive (i.e.,

100% throttle) attack scenarios. This means that obfuscation methods of at-

tackers can still create differences during the detection phase.

• We also found that a fully compromised scenario is the one most likely to be

detected by our detection mechanism.

Contributions. We summarize the major contributions of this study as follows:

• We propose an accurate and efficient cryptojacking detection algorithm target-

ing IoT networks. Since we use network traffic-based features, our algorithm

is capable of detecting both in-browser and host-based cryptojacking malware

and can detect the cryptojacking malware with 99% accuracy with one-hour of

training data without any dependence on cloud or on-device features.

• To evaluate our algorithm, we designed several novel experimental scenarios.

We assessed both various attack configurations (i.e., cryptojacking types, profit

strategies, victim devices, and throttle values) and network settings (e.g., fully

or partially compromised). To the best of our knowledge, this study is the

first to analyze various attack strategies and network settings in the area of

cryptojacking detection.

• To overcome some of the practical issues during the implementation of cryp-

tojacking malware in the IoT devices, we used novel techniques, which can be

adapted by other studies in the future.

• In order to accelerate the research in this area, we released both the dataset

and code.
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Organization. The remainder of this part of thesis is organized as follows: In

Section 6.3 defines the adversarial model and attack scenarios. Section 6.4 presents

our modeling to convert the network traffic data into a binary classification problem.

Then, in Section 6.5, we explain the details of our data creation process and perform

initial data analysis on the raw dataset. Section 6.6 reports the novel design scenarios

to evaluate our detection mechanism and the results. Section 6.7 discusses some of

the challenges we came across during the implementation of the IoT cryptojacking

malware and our novel techniques to overcome them. Finally, Section 6.8 concludes

the study.

6.2 Background

6.2.1 Cryptocurrency Mining

Cryptocurrency mining is the process by which new cryptocurrencies enter circulation

and is a critical component of the maintenance and continuity of the distributed

blockchain ledger. The immutability of a blockchain network is provided by the

consensus mechanism, which is cryptocurrency mining. Cryptocurrency mining is

based on a puzzle based on the main features of cryptographic hash algorithms.

These work-based consensus models are generally known as Proof of Work (PoW)

consensus models.

Cryptocurrency mining is a laborious, costly process where one’s reward depends

on the luck factor. Work-based consensus mechanisms benefit from the diffusion

feature of the hash algorithms to prevent miners from predicting hash values in a

systematical pattern, and this feature also maintains the luck factor. However, due

to the fact that miners are rewarded with cryptocurrencies for their work, it is an

important source of income for many cryptocurrency investors. As the hardware
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investment increases, the difficulty, cost, and risk increase, while the chance of finding

the block increases.

6.2.2 Cryptojacking Types

This section explains the details of different types of cryptojacking malware and their

similarities and differences.

In-browser cryptojacking

The fast development of web technologies such as JavaScript (JS) programming lan-

guage libraries and Web Assembly (WASM) open standards allow web developers

to interact with the computer components via several instructions in the browser.

The attackers also use these technologies to implement in-browser cryptojacking

malware. For example, WASM provides the capability to run low-level instruc-

tion codes near-native speeds in browsers, and it is supported by all major internet

browsers [was,NAB+21].

In-browser mining surged after the service providers (e.g., Coinhive) started to dis-

tribute easy-to-use cryptojacking scripts. With those scripts, the attackers can easily

copy and paste an HTML script to the source of the webpage via several code injec-

tion vulnerabilities [Avi]. This piece of code creates a communication pipeline for the

mining process and starts the mining process. In-browser cryptojacking scripts also

include an identification number of the script owner. With this ID, service providers

monitor the overall traffic coming from the specific script owner and make the reward

distribution depends on this ID number. After the mining process started, the com-

munication continues to receive the tasks and return the calculated results through

the already established channel. The rewards are given to the account associated

with the ID number periodically.
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Host-based cryptojacking

Host-based cryptojacking malware aims to hide itself into the computer system of

the victim’s host and perform cryptocurrency mining. The main goal is placing the

cryptojacking malware into the computational device of the victim as long as possible

and keep it profitable.

The attackers distribute and locate their host-based cryptojacking malware with

third-party applications [Ole,San], social engineering methods [McD], or using several

vulnerabilities into victims’ host system [MV]. Attackers also use IoT botnets [MA]

to perform cryptojacking attacks. IoT devices have limited capabilities in terms of

computational power. However, the incentive of the attackers is similar to the botnets

here, in which the combined computational power of a large number of IoT devices

can be used to perform a meaningful amount of cryptocurrency mining.

6.2.3 Machine Learning Tools

In this subsection, we explain the machine learning algorithms and methods we used

during our experiments.

Feature Extraction and Selection Tools

Feature extraction is a dataset size reduction operation where an initial raw dataset

is reduced to a more manageable and usable form for processing. Feature extraction

methods aim to combine features with different property-based functions, effectively

reducing the size of data that classifiers need to process and still describing the original

dataset without any loss. There are several open-source tools that calculate thousands

of different features automatically. In this study, we used tsfresh [tsfb] automatic

feature calculation tool.
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Feature selection is the next step of the feature extraction process. After the

feature extraction tools calculate the features, the tools sort them in terms of their

significance level [Lab68] (also known as P-value) and build relevance table [tsr].

With this method, we can easily eliminate the less significant features and improve

our classification process.

Machine Learning Classifiers

Classification is the process where the algorithms categorize data into a given number

of classes for the purpose of predicting the class of a given data feed. We used several

different classification models (e.g., Logreg, KNN, SVM, RF) to train our models and

receive the accuracy results in this study.

6.3 Adversary Model and Attack Scenarios

As mentioned before, IoT devices can be targeted by both in-browser and host-based

cryptojacking malware. Attackers may also follow the path of different adversarial

models and attack cases. We evaluated 7 Attack cases and made 12 discrete experi-

ments to test the cryptojacking detection mechanism we proposed in this study. In

this section, we explain how IoT devices are targeted by cryptojacking malware and

how we track these adversaries in our experiments.

6.3.1 Cryptojacking with service providers

There are several different active service providers and thousands of web pages hosting

cryptojacking malware on the Internet [TAU+21]. Attackers generally take advantage

of code injection vulnerabilities [Tre] of the webpages and web applications to inject

their ready-to-use mining scripts provided by service providers.
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In recent years, IoT devices gain new capabilities to provide better and more

flexible frameworks to their users. These capabilities allow developers to integrate

new technologies and run their code blocks via IoT frameworks. The attackers merge

these framework capabilities with known vulnerabilities and abuse them to run their

cryptojacking malware inside of these devices. We implemented WebOS IoT crypto-

jacking malware with LG’s WebOS development framework [Webc] 1 and develop a

basic WebOS application that calls cryptojacking script when the user starts running

the application.

To be able to create a stable and controlled cryptojacking environment, we pre-

pared a website under a controlled server and hosted several different active crypto-

jacking scripts. However, while some of the service providers can not provide a stable

mining framework, we choose Webmine [webd] as our main service provider. We ran

the script with combinations of different levels of computational hardware usage to

observe the characteristic outcomes of those scripts.

6.3.2 Cryptojacking with Command and Control (C&C) servers

A C&C is a computer-controlled by the attacker to send commands to compromised

devices. Attackers generally host these servers in cloud-based platforms for security

and identity secrecy reasons. In the cryptojacking domain, C&C servers are working

as a subset of a mining pool to receive and distribute mining tasks from the mining

pool to compromised devices. Fig 6.1 represents a basic configuration of the C&C

servers connected to the mining pools. The first well-known incident related to IoT

botnets and cryptocurrency mining [Tre, MA] happened in 2017 under the famous

Mirai IoT botnet [McM].

1https://github.com/sokcryptojacking/detection
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Figure 6.1: Communication flow of C&C server-based cryptojacking from the com-
promised IoT devices to the servers.

Mining PoolsC&C Server

Send Requests 
and Results

Receive Tasks

Send Tasks to 
compromised devices

Receive Results

Compromised IoT Devices
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In this study, we focused on the communication pipeline between the compromised

device and the C&C server. To demonstrate the process and data communication in

this setup, we created a C&C server that sent mining tasks between different time

periods. This time frequency can be changed depending on the block frequency of the

blockchain network. In this work, we focused on Monero [Monb] and sent a mining

task package within every two minute frequency. We successfully implemented this

scenario with LG WebOS [Webc] Smart TV and other platforms we used for testing

purposes.
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6.4 IoT Cryptojacking Detection via Network Traffic

Network traffic classification and identification techniques have gained a lot of pop-

ularity in the last several years and it is a well-known technique to create user/de-

vice profiles on both server and local network sides [CLMS18, AFA+20]. In this

study, we consider smart home network settings, where many IoT and non-IoT de-

vices are connected to a router to be able to connect to the Internet. Each device

can be identified via its MAC address. Therefore, we define devices in the network

(MAC0,MAC1, ...,MACn) for n in the network. We assume one or more devices

in this network are compromised by the attacker to perform cryptocurrency mining

on the behalf of the attacker and our purpose is to detect the devices performing by

monitoring their network traffic for a certain time duration. For this, we use machine

learning algorithms, which are trained with malicious and benign data beforehand.

Devices generate continuous network traffic, which needs to be converted into a data

format where the machine learning algorithm can predict whether the device is per-

forming or not.

Before converting packets into proper format, we filter each packet using the

following filter:

(MACsrc == MACi) OR (MACdst == MACi) (6.1)

for a given device with MAC address of MACi. Then, we extracted following meta-

data from each packet:

Pkti = [MACi, timestamp, packet length] (6.2)

At the end of this process, we obtain a series of packet lengths arrived at a given

time for every device. Finally, we use a burst of 10 packets to calculate the features

and we use these features to train/test the machine learning algorithm.
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6.5 Dataset Collection

The data we focused on in our study is the network communication data between

the IoT devices and cryptojacking service providers. In this section, we explain

the main dataset collection and creation process by focusing on the topology, tools,

methodology, and other implementation details we used for the IoT environment

environment.

6.5.1 Topology

Figure 6.2 demonstrates our reference topology. We created a regular smart home

network with several smart home devices, IoT devices, and personal computers (1).

Data collection was performed under regular home-networking settings and all the

devices performed unauthorized mining under a controlled environment. In our setup,

all the devices in the home network are connected to the Internet via a single Internet

router (2) similar to most home settings. There is also another computer in the

network dedicated to collect all the Internet traffic with port mirroring [Por] and

ARP rerouting/poisoning [NKK10] techniques (3). Finally, compromised devices in

the network connect to the cryptojacking service providers or C&C servers of mining

malware (4) to receive the tasks and return the calculated results. In this topology,

our purpose is to be able to detect the compromised smart home devices that are

performing unauthorized cryptomining inside the network.

6.5.2 Devices

We performed our experiments on four different devices representing varying compu-

tational power. Particularly, we performed the experiments on Raspberry Pi, Laptop,

Tower Server, and LG Smart TV. Raspberry Pi and LG Smart TV represent the IoT
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devices in a real-life network while Laptop represents a regular device and Tower

Server represents a computationally powerful device. Table 6.1 shows the devices we

used during the experiments and their specifications.

Table 6.1: Device list used in the experiments.

Device Representation Hardware Operating System

Raspberry Pi IoT device
Cortex-A72 64-bit SoC

4GB RAM
Raspberry OS

LG Smart TV IoT device LG Quad Core Processor WebOS 2.0

Laptop Regular Device
Intel Core i7 9th Generation CPU

16 GB DDR4 RAM
Ubuntu 18.04 LTS

Tower Server Powerful Device
Intel® Xeon® Gold 6314U Processor

192 GB DDR4 RAM
Ubuntu 20.04

Router Internet Routing Atheros QCA9563 Processor OpenWRT V.19.07.1

Moreover, we used TP-link Archer C7 V5 as our router in the given topology in

Figure 6.2. This specific model allows us to configure port mirroring with its built-in

features. We also used Ettercap [Ett] to manipulate the ARP protocol and forward

the network traffic to the data collection computer’s IP address. With this network

configuration, we were able to collect all networking data with the Wireshark packet

collector and analyzer [wir].

6.5.3 Implementation Methodology

The implementation of in-browser and host-based cryptojacking differs in several

ways. In the next subsections, we explain the details of their implementations.

Implementing In-browser Cryptojacking

To be able to implement in-browser cryptojacking under a safe environment, we

launched a basic WordPress [Wor] webpage which contains several different crypto-

jacking malware. We placed different HTML-based cryptojacking malware samples

inside the source code of different pages of the test website for our purposes. After
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creating our experiment setup, we connected these pages with our test device and

collected network traffic data for at least 12 hours for every use case scenario as ex-

plained in Section 6.3. We used the scripts distributed by Webmine.io [webd] and

WebminePool [webf] service providers for the in-browser cryptocurrency mining.

Implementing Host-based Cryptojacking

Implementing host-based cryptojacking on Raspberry Pi and Server is straightfor-

ward. We downloaded the cryptocurrency mining binary MinerGate V1.7 [minb]

and run it on our test device with our configurations. However, the implementa-

tion of host-based cryptojacking on the LG Smart TV was more challenging because

the malware binary had to be placed on the victim’s device and the victim’s de-

vice had to allow to run the executable sample. We used the LG WebOS developer

framework [Webc] to develop a basic application that runs cryptojacking malware

as long as the application was running. In our scenario, we assumed that the ma-

licious application could be an IP TV or streaming application. As a C&C server,

we used a basic cloud server (With 1 GB RAM, 1 Core CPU, and Ubuntu Server

18.4 Operating System). After we created the malicious application that runs inside

the WebOS-supported Smart TVs and the C&C server setup, we implemented two

different models for the actual mining process as follows;

• Without Connecting Mining Pool: We made the first implementation with

basic RandomX PoW algorithm [Monb,Ran]. When the application is activated,

it sends a connection request to the C&C server, after that, the C&C server

sends the mining tasks to the malicious application. The mining task contains

three variables, the hash value, nonce value range, and the difficulty target. The

RandomX implementation inside the malicious application starts mining inside

the Smart TV until new command comes from the C&C server or finishes the
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Table 6.3: Benign dataset sample sizes.

Dataset Name Domain Device Currency
Total time
(Minutes)

Packet
Count

Packets per
second (PPS)

Average Package
Size (Bytes) (APS)

Service Provider

Raspberry Webmine.io Robust In-browser Raspberry Pi 4 Monero 52 3519 1.13 149 Webmine.io
Raspberry Webmine.io Aggressive In-browser Raspberry Pi 4 Monero 735 12871 0.29 163 Webmine.io
Raspberry WebminePool Stealthy In-browser Raspberry Pi 4 Monero 521 9880 0.32 94 Webminerpool
Raspberry WebminePool Robust In-browser Raspberry Pi 4 Monero 527 6406 0.20 108 Webminerpool

Raspberry WebminePool Aggressive In-browser Raspberry Pi 4 Monero 1080 19643 0.30 113 Webminerpool
Server WebminePool Robust In-browser Server Monero 382 16744 0.73 120 Webminerpool

Server WebminePool Aggressive In-browser Server Monero 60 2539 0.71 101.17 Webminerpool
Desktop WebminePool Aggressive In-browser Desktop Monero 720 234272 5.42 914 Webminerpool

Raspberry Binary Host-based Raspberry Pi 4 Monero 983 11745 0.20 95 MinerGate
Server Binary Host-based Server Monero 1024 1198039 19.50 140 MinerGate

WebOS Host-based LG Smart TV Monero 61 43173 11.80 117 AntMiningPool
Total 6145 1558831

Dataset Name Domain Total time (Minutes) Packet Count
Packets per

second (PPS)
Average Packet

Size (Bytes) (APS)
Bulk Data Internet Data 18 2204727 2636.50 1114.5

Web Multiple Internet Data 14.56 95388 91.78 567.25
Interactive Internet Data 20.33 26144 355.97 249

Video Internet Data 9.55 140009 243.33 956.3333333
Web Single Internet Data 12.08 51381 71.46 638

Total 74.52 2517649

nonce value range or finds the hash and nonce value that meet with the difficulty

target.

• Connecting Mining Pool via API: The only difference between this imple-

mentation and the previous one is that the C&C server does not create mining

tasks by itself, it receives them from the mining pool via its API framework and

sends them over to the malicious application.

Both of the implementations we presented are just created for proof-of-concept

purposes. For the real-world implementation, we used Ant mining pool [ant] for our

dataset because it connects the real network behind the scene. And, we cover the

data flow between the malicious application and the C&C server in our dataset. For

the attackers who run botnet platforms (Botnet Admins), anonymity is always the

priority. While running a self-mining environment requires having a fully synchronized

full node and a lot of extra labor to maintain, it may also harm the anonymity of the

attacker as well. For these reasons, we used the second option. Using the mining pool

API is a lot more convenient and allows important extra flexibility to the attackers.
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6.5.4 Labelling

While Wireshark was collecting all networking data, we ran all the attack scenarios we

covered in Section 6.3 to collect the networking data. The network traffic generated by

a device performing mining is labeled as malicious, while the dataset that is collected

by a device that is not performing cryptocurrency mining is marked as benign.

6.5.5 Initial Data Analysis

We designed several different scenarios to collect malicious data with our controlled

environment setup to assesses the different configurations that an attacker may use

and different networks settings that are possible in real-life smart home environments.

More details about the different configurations and our results are given in Section 6.6.

On the other hand, we downloaded the benign dataset from a public repository [Ben].

The full details of the dataset are presented in Table 6.2 and 6.3.

Benign vs. Malicious

The main goal of this study is to be able to differentiate the malicious and non-

malicious networking data from each other. For this purpose, we performed some

initial data analysis on the raw data and list the outcomes as follows:

• Packets per second (PPS) rate is an important statistic to differentiate

between the malicious and non-malicious data. As we can observe from Table

6.2, the highest PPS rate produced by the most powerful device we used while

it was running binary cryptojacking malware. However, the highest malicious

PPS rate is still 72% less than the least PPS rate of the Benign Dataset given

in Table 6.3. This shows that the cryptojacking malware does not generate as

many packets as daily web browsing and application data. This is an important
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challenge for both the data collection 6.2 and analysis phases. We discussed

this challenge more in Section 6.7.

• Average Packet Size (APS) rate is the average size of all inbound and

outbound network packets. It is a meaningful and relevant feature for purpose

of the data discrimination process. APS rate creates almost the same pattern

as the PPS rate. The highest malicious PPS rate is created by the Raspberry Pi

4 while performing in-browser mining with webmine.io [webd] service provider

but the highest APS rate of the malicious data is still 35% less than the least

APS rate of the benign data.

To sum up, network communication of cryptojacking malware and daily benign

user shows very different characteristic features. In the rest of this study, we use

this evaluated knowledge in the Overall Analysis ( Section 6.6.1 for future selection

process 6.6.1.

Host-based vs. In-browser Cryptojacking

The attackers mainly perform two different cryptojacking attacks to target different

domains, in-browser and binary cryptojacking attacks [TAU+21]. To be able to see

the different patterns generated by different devices under different attack scenarios,

we performed in-browser and binary cryptojacking on all devices we used in this

study and summarize the results in Table 6.2. We can summarize our observations

as follows;

• In-browser mining always tends to generate a very small amount of PPS rate

and APS rate on all devices.

• For different service providers of in-browser mining, there is no signifi-

cant difference between the two service providers we used (i.e., Wembine.io and

Webminerpool).
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• Binary mining samples do not seem to use the obfuscation features used by the

in-browser mining applications. They do not have any intonation to minimize

their communication and keep themselves as stealth as possible.

• For both In-browser and Binary mining patterns, we can observe that in-

browser mining always creates a very little amount of cryptojacking malware.

There is no significant correlation between the hardware power, PPS rate, and

APS rate. However, binary mining shows a completely different pattern where

the APS and PPS rates are directly correlated with the power of the device.

In summary, there are important feature-based differences between binary and in-

browser cryptojacking malware. We also use this evaluated knowledge in the Overall

Analysis section 6.6.1 for future selection process 6.6.1.

Raspberry vs. Laptop vs. Server

Finally, we made the device-specific analysis to be able to see if there is any relevant

feature that may allow us to differentiate the devices and understand which specific

device category is infected by cryptojacking malware. We summarize our observations

as follows,

• All devices give almost the same PPS and APS results for in-browser mining

applications. We can deduce from the dataset outcomes, the service providers

firstly receive the capabilities of the victims’ host system and send mining tasks

in terms of the power of the victims’ host device.

• For all devices performing binary mining, we observe that the binary cryp-

tojacking malware is correlated to the power of the victims’ host system and

both the PPS and APS rates are directly affected by the power of victims’ host

system as well.
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To sum up, we found that while in-browser cryptojacking malware is trying to

keep itself under a low profile and prevent high data density communication, host-

based cryptojacking malware is not behaving in this way and generating huge network

traffic. This is because of the method used by host-based cryptojacking malware,

in which they are generally merged with other computationally heavy applications

[TAU+21]. Therefore, the attackers are not worried about creating highly visible

network communication.

6.6 Evaluation

In this section, we designed three sets of experiments to design and evaluate IoT

cryptojacking detection mechanism that is accurate, efficient, and works in varying

configurations and network settings.

• First, we design a set of experiments to design the optimum IoT detection

mechanism with a highly accurate prediction rate and minimum training size

and time.

• Second, to assess the success of the mechanism, we designed in the first part for

different configurations such as different devices and throttle values.

• Third, we designed a set of experiments to assess the proposed mechanism in

various smart home network settings.

We explain the details of these experiments and our results in the following subsec-

tions.

6.6.1 Designing an IoT Cryptojacking Detection Mechanism

After the dataset collection and labeling process, we created an overall dataset that

contains the combination of all the malicious datasets and a benign dataset with
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an equivalent number of packets. Table 6.4 presents the dataset sizes and the total

feature extraction and classification time of the overall dataset.

Table 6.4: The Overall Dataset Sample Sizes and total Feature Extraction & Classi-
fication Time

Dataset Name Dataset size
Total Classification

Time
Malicious 1557230
Benign 1556899

8.5 Hours

In this sub-section, our goal is to design an IoT detection mechanism based on

network traffic features and utilizing Machine Learning (ML) classifier for the classi-

fication. For this purpose, we performed the following steps:

• We use Feature Extraction to create feature vectors from the raw dataset.

• We select the best features and remove irrelevant features via a Feature Selection

algorithm.

• We train and test several ML classifiers and decide which one performs best.

• We test the best algorithm with varying training sizes to optimize the training

data and time as well as calculate the prediction time to assess the algorithm’s

feasibility in a real-world application.

We explain the details of these experiments and their results in the following subsec-

tions.

Feature Extraction

We used tsfresh [tsfb] to extract features from our dataset. The library tsfresh is

a python package that automatically calculating statistical features from time-series

data. In our case, we used ten packets for each feature vector and it created 788

different statistical features from its wide selection of statistical features [tsfa]. The

features we used to train our overall dataset and other experiments are as follows:
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• Timestamp is an important data extracted from every packet, and we used it

to sort the given packets. While the mining process is running, data communi-

cation pattern changes depending on several variables. After we calculated the

delta mean values of malicious and non-malicious traffic datasets, we observed

an 11.4% difference between the mean values. This significant time difference

leads us to use the data stamps of the network packages as a feature. We also

noted that the devices mostly transmit stay-alive packets when no result is re-

turned while they return application data packets with payload. And, while

stay-alive packets are mostly transmitted periodically, the interarrival time be-

tween the packets decreases significantly while transferring application data

packets.

• Packet length is another extracted data from every packet. All the miners

must return some positive or negative result to the pool network. If the miner is

directly connected to the mining network, they need to use several special pro-

tocols such as the stratum mining communication protocol used by Ethereum.

With the IP addresses of the network connection endpoints, we labeled the data

as malicious and non-malicious.

Features selection

Feature selection is the process of selecting a subset of relevant features for our models.

With the feature selection process, we simplified and pruned our datasets to be able

to smooth the dataset analysis and improve our results.

The relevancy scores of all the features in our dataset are not the same. To

be able to optimize our extracted features and use only the most relevant features,

we calculated the P-value. P-value (portability value) [Sch96] is a statistical model

that calculates the probability of finding an observation under the assumption that
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a particular hypothesis is true. A smaller P-value (less than 0.05) is considered

statistically significant. We found 290 statistically significant features for our datasets

and train our models with those features. We used these 290 statistically significant

features for the rest of the experiments in this study. We also share the extracted

and relevant features in our dataset link.

Classifier selection

We implemented four Machine Learning classifiers to test the accuracy of the features

we found in the previous subsection. During the implementation of these classifiers,

we used the default parameters of scikit-learn [sci]. We used 75% of the data to train

and 25% to test the classifier. We used Accuracy, Precision, Recall, F1 Score, and

Test roc as our metrics. The results of all classifiers are presented in Table 6.5.

Table 6.5: The Overall Dataset Classification Results

Classifier Accuracy Precision Recall F1 Score Test roc
Logreg 0.97 0.97 0.97 0.97 0.986
KNN 0.98 0.98 0.98 0.98 0.99
SVM 0.99 0.99 0.99 0.99 0.99
GNB 0.96 0.96 0.96 0.96 0.98
In this table, we used weighted average values calculated by scikit learn libraries.

Although all the classifiers provided really good results, our results showed that

SVM performs the best among all the classifiers in terms of all metrics, aligning with

many other detection studies in the literature [TAU+21]. SVM is a useful and well-

designed classifier for supervised machine learning and it is very effective when there

is a clear margin of separation. In addition, the SVM classifier is very stable, and

small changes in the dataset do not cause important changes in results. Therefore, we

decided to use SVM classifiers for our further analysis and implementation of other

use case scenarios in the rest of the study.
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Table 6.6: Dataset sizes of timing experiments

Dataset Sample Sizes
Dataset 12 hours 6 Hours 3 Hours 1 Hour

Server
Malicious: 838627 419313 209656 69885

Benign: 837701 418850 209425 69808

Desktop
Malicious: 234272 117136 58568 19522

Benign: 234448 117224 58612 19537

Raspberry
Malicious: 7829 3914 1957 978

Benign: 8265 4132 2066 1033

Figure 6.3: The accuracy for every one feature vector during classification (in sec-
onds).

Training Size and Timing Results

In this section, we performed experiments with varying training sizes. With this

experiment, we analyzed the effects of the dataset collection time on classification

accuracy and overall classification time. To obtain a reference result, we firstly fit

the times of representative datasets to 12 hours by decreasing the size of the original

dataset and fit them into 12 hours, 6 hours, 3 hours, and finally 1 hour and repeat

the classification to measure accuracy and time-based values for each training size.

Figure 6.3-6.6 summarizes 4 different results we cover under this section.
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Figure 6.4: Prediction times for every one feature vector during classification (in
seconds).

Figure 6.5: Classification time used for training (in minutes).
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Figure 6.6: The time used for feature extraction (in minutes) for each training size
(i.e., 1, 3, 6, and 12 hours).

• Accuracy is the first metric we checked after we rerun the classification for

every dataset. As can be seen from the results in Figure 6.3, the accuracy

did not change dramatically, and even when we only used less than 10% of

the original dataset such that we did not receive any result below 94%. In

addition to this, our model achieved to detect in-browser cryptojacking with

99% accuracy with only one-hour long data collection. It shows that the model

we used is not extremely dependent on the dataset size, and it can give accurate

results even with a shorter data collection duration.

• Prediction time for per feature vector represents how much time we need

to predict the class per feature vector. This is a realistic metric we calculated

to see how long it would take to predict the result of the collected dataset on

a regular machine. After we evaluate our experiments, we saw that the time

needed to train per feature vector is related to the size of the dataset. For bigger

datasets, it takes more time to evaluate per data. However, after the feature
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extraction process, we receive successful optimization results as low as 100-150

ms for each vector.

• Feature extraction and classification time represents the needed time for

calculating features and classify these features for each dataset. As can be seen

from Figure 6.5 and 6.6, the total time needed for the feature extraction and

classification is directly correlated to the dataset size. In addition to this, with

the very low feature extraction and classification time results, we still managed

to get near-perfect results.

Overall, the results show that we achieved to implement a successful detection

system without causing a lot of overhead on the devices or inside the network. We

can also conclude that we can use slightly smaller datasets to train our model without

sacrificing our dataset’s accuracy level and trust factor.

6.6.2 Evaluation With Different Adversarial Behaviours

In this sub-section, our goal is to assess the IoT cryptojacking detection mecha-

nism we designed in Section 6.6.1 with various attack configurations. An attacker can

target different victim devices, pursue different profit strategies or have a choice of

cryptojacking type of either in-browser or host-based. We have extensively evaluated

our mechanism by performing a comprehensive set of experiments to test these three

configurations. All the scenarios and experiments are implemented under the same

290 features we extracted during the experiments of Section 6.6.1. This implementa-

tion methodology allows us to observe the results of how effective to use one feature
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set for different use case scenarios. In the rest of this section, we summarized the

detailed experiment results for each scenario.

Attack Case 1: Server vs. Desktop vs. IoT

In this scenario, we set up our environment with different kinds of devices. Our goal is

to see if there are any differences between the detection accuracy of the cryptojacking

malware running on each device. For this purpose, we first created a balanced dataset

for this scenario, in which we created a balanced dataset for each device. Table 6.7

lists the dataset sizes and the devices we used to implement this scenario.

Table 6.7: Dataset sizes of Scenario 1

Malicious
Dataset Device

Benign
Dataset

Malicious
Dataset

Server 1219381 1217322
Desktop 234448 234272

IoT 102506 102117

Attack Case 2: Profit Strategies

Throttle adjustment is one of the major obfuscation methods used by the attackers

[TAU+21] and almost all of the active and inactive service providers provide this

option to their clients. With the throttle adjustment feature, attackers can set the

total hardware usage on victims’ hots devices It makes this feature an important

use case for our detection mechanism. While increasing the throttle value increases

the profit, it also increases the likelihood of being detected by the system. Our goal

with this experiment is to see if changing the throttle value has any impact on the

detection accuracy.

• Aggressive cryptojacking malware focuses on making a maximum profit in

minimum time. They are generally seen on the websites visited for a short

time (less than 2 minutes) such as e-commerce, dictionary, and legal/illegal
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data downloading websites. The aggressive cryptojacking malware parallels the

mining task to use all the remaining CPU power; therefore, it deteriorates the

user experience dramatically. Thus, the malware detection algorithms or even

the user can easily notice and detect the cryptojacking malware. We set the

throttle value to 100% to observe such an attacker behavior.

• Robust cryptojacking malware employs multiple scripts to keep working even if

the primary service provider fails. Service provider failure can occur not only on

the server-side, but also on the victim side. For example, some extensions may

block the connection to a service provider. In this case, the script can continue

mining with other service providers via this strategy. We set the throttle value

to 50% to observe such an attacker behavior as it only runs one of the scripts

at a time.

• Stealthy cryptojacking malware aims not to be noticed by the user and by

threshold-based detection algorithms deployed on the user side. It utilizes CPU

limiting for long-term profit and is widely seen on illegal media/content websites

(e.g., illegal film/series streamers, reading content pages, forums), where the

users tend to spend a relatively longer time. It acts as an active content provider

by using the same amount of CPU power as online flash games and media

streamers. Therefore, it is hard to detect. We set the throttle value to 10% to

observe such an attacker behavior.

Table 6.8: Dataset sizes of Scenario 2

Dataset Scenario
Benign
Dataset

Malicious
Dataset

Throttle (Aggressive) 1293096 1293801
Throttle (Robust) 35265 36021
Throttle (Stealthy) 9877 9880
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Attack Case 3: In-Browser vs Binary

Host-based and in-browser cryptojacking are the two main application areas of the

cryptojacking malware and to be able to claim that we can detect both in-browser and

host-based cryptojacking malware, we must also have the ability to apart them from

each other. In this scenario, we tested these two main attack surfaces of cryptojacking

malware. Our goal in this experiment is to see if our detection system can successfully

classify both the in-browser and the host-based cryptojacking malware with the same

set of features. We used two balanced datasets for this experiment as can be seen

from Table 6.9.

Table 6.9: Dataset sizes of Scenario 3

Cryptojacking
Type

Benign
Dataset

Malicious
Dataset

In-Browser 290181 289130
Binary 1256659 1258894

Results

Table 6.10 presents the accuracy results of all three different attacker cases. In all

three scenarios, we observed some differences between the different configurations.

Table 6.10: Classification results of all scenarios

Attack Case Accuracy Precision Recall F1 Score Test roc

Scenario 1
Server 0.99 0.99 0.99 0.99 0.99

Desktop 0.98 0.98 0.98 0.98 0.99
IoT 0.98 0.98 0.98 0.98 0.98

Scenario 2
Aggressive 0.98 0.98 0.98 0.98 0.99

Robust 0.98 0.98 0.98 0.98 0.98
Stealthy 0.97 0.97 0.97 0.97 0.98

Scenario 3
In-Browser 0.97 0.97 0.97 0.97 0.99
Host-Based 0.98 0.98 0.98 0.98 0.99

In this table, we used weighted average values calculated by scikit-learn libraries.

In Scenario 1, we successfully received an almost perfect score from all three

experiments we made. However, the server shows a higher accuracy among all victim
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devices types, i.e., there is a higher chance that the cryptojacking attacker will be

detected during an attack targeting the server type device.

In Scenario 2, the malicious scenario with stealthy profit strategy (i.e., 10% throt-

tle) is less accurate than robust (i.e., 50% throttle) and aggressive (i.e., 100% throt-

tle) attack scenarios. As we mentioned in Section 6.3, attackers use these obfuscation

methods to keep their miners safe from the detection methods. While 97% accuracy

value can still be considered almost perfect, it also means that obfuscation methods

of attackers can still create differences during the detection phase.

Finally, in scenario 3, we can see the effect of the combination of obfuscation

methods on in-browser cryptojacking detection samples. The general results for in-

browser cryptojacking malware are just one step behind the host-based cryptojacking

samples. However, if we have a look at the overall results of SVM in Table 6.5, the

combination of in-browser and host-based cryptojacking malware leads us to 99%

accuracy rates.

While cryptojacking malware has the ability to infect different devices, the pro-

posed malware detection system needs to be able to detect the ongoing cryptojacking

process without any device dependency. We saw that our extracted features could

achieve near-perfect scores without any device dependency from the results of three

scenarios and eight discrete experiments.

6.6.3 Adversarial Models of Compromised Device Numbers

in Smart Home Network

In the previous section, Section 6.6.1, we successfully implemented discrete scenarios

for 3 different datasets. In this section, we investigate different adversarial models

implemented inside a simulated network that can be seen in smart home environments.
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We implemented four different scenarios and presented their results in the rest of this

section.

Scenario 1 - Fully compromised

In this scenario, attacker(s) exploit all devices in the home environment. This scenario

could apply to several network-based attacks. For this experiment, we used our

overall dataset (i.e., all malicious data we collected). While it is an extensive dataset

with big-size network packages, it took a long time to extract features and make the

classification process with the SVM classifier. We give the dataset sizes and total

time spent for feature extraction and classification processes in Table 6.11.

Table 6.11: Dataset sizes and classification times of adversarial model analysis sce-
narios

Test Case
Malicious

Dataset Size
Benign

Dataset Size
Feature

Extraction Time
Classification

Time

Scenario 1
Fully compromised

(All)
1556899 1557230 51 215

Scenario 2
Partially compromised

(IoT + Laptop)
246017 252647 3.7 7.5

Scenario 3
Single compromised

(IoT)
12398 11745 0.3 0.02

Scenario 4
IoT compromised

(IoT + IoT)
275951 275844 4.27 6.41

Scenario 2 - Partially compromised

Scenario 2 presents two different devices from different categories exploited by the at-

tacker(s) with different cryptojacking attacks. While the IoT device was exploited by

host-based cryptojacking and performed binary mining operation, the laptop device

was compromised with an in-browser cryptojacking attack. In this scenario, most

probably, one needs to consider two discrete attacks performed by different malicious

entities. Still, in this scenario, both devices are using the same gateway (e.g., router,

ADSL modem, Ethernet port) for internet communication.
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Scenario 3 - Single compromised

When only one device in the network is compromised by the attackers, it makes

it harder to detect malicious device. This scenario specifically holds a higher level

of importance because, inside a smart home network environment, there can be a

number of different IoT devices that may exist. In addition, while attackers use

specific vulnerabilities to inject their malware, there can be only one or very few

devices that may be exploited by that specific vulnerabilities.

Scenario 4 - IoT compromised

Our last scenarios inspired by Scenario 3. In this scenario, we discussed, what if two

IoT devices from different domains were exploited by 2 different kinds of cryptojack-

ing malware. To be able to simulate this environment we used LG WebOS device

exploited by malicious application hosts host-based cryptojacking malware and Rasp-

berry Pi 4 that exploited by the malicious webpage to perform in-browser mining.

We received a near-perfect score for our last experiment as well.

Results

In this section, we designed and implemented several scenarios to track a real home

environment. In the first scenario, all of the devices are compromised. In the second

scenario, we used two different types of compromised devices that were exploited with

different types of cryptojacking malware. In the third scenario, only one device inside

the home network performing a very limited amount of mining was compromised.

Finally, in the fourth scenario, we tried the same scenario with two different IoT

devices (Raspberry Pi and WebOS Smart TV). The results of these two scenarios

have importance because these two scenarios reflecting most of the Mirai [McM]

and other known IoT botnet [BI17] attack scenarios. Our result shows that the
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fully compromised scenario is the one most likely to be detected by our detection

mechanism, but we also see that all of the scenarios show a near-perfect accuracy.

This implies that the detection model and feature set we implemented can successfully

detect various home environment attack scenarios.

Overall, the combination of our selected classifier and feature set successfully

detect the cryptojacking malware with high accuracy without being affected by any

of the known attempts and obfuscation that may have been used by the attackers.

Table 6.12: Results of network settings analysis scenarios

Test Case Accuracy Precision Recall F1-Score Test ROC

Scenario 1
Fully compromised

(Overall)
0.99 0.99 0.99 0.99 0.99

Scenario 2
Partially compromised

(IoT + Laptop)
0.98 0.98 0.98 0.98 0.99

Scenario 3
Single compromised

(IoT)
0.98 0.98 0.98 0.98 0.99

Scenario 4
IoT compromised

(IoT + IoT)
0.98 0.98 0.98 0.98 0.99

6.7 Discussion

Challenges of creating an IoT cryptojacking dataset

We found that the traffic between the mining server and the client does not create

heavy network data. Cryptojacking service providers are specially designed not to cre-

ate as much communication as regular Internet communication and mining processes.

Table 6.2 and 6.3 shows the difference between the packet per minute of cryptojacking

malware and a regular Internet connection. In addition to this, after we evaluated

our tests on the service providers we used [webd, webf], we saw that average service

providers use different IP addresses during the mining operation to communicate with

the victims’ client device and deliver the mining task via encrypted application data.

This behavior of in-browser cryptojacking malware makes them harder to track in-

97



side busy networks. Moreover, it is also an indicator of the impracticability of IP and

hosting-based static blacklisting implementations. To be able to monitor the nature

of the in-browser cryptojacking, one neededs to create a special environment as we

explained in Section 6.2.

Another important challenge we faced during our data collecting process is the

asymmetric communication between the client and malicious IP addresses. In a nor-

mal data communication process over the Internet, the data packets create some

symmetry between the client and the server but in the cryptojacking samples, there

is no symmetry or pattern between the client and server. 88% of communication

packets were produced by the client during the mining process and only 12% of pack-

ets were created by malicious servers. Furthermore, as mentioned above, this 12%

portion was created by different IP addresses, when we summarize our findings, ev-

ery malicious server creates only 0.89% of the malicious communication. It makes it

harder to analyze the collected data and keep track of the communication pipelines

between the client and the malicious server.

6.8 Conclusion

This chapter proposes an accurate and efficient cryptojacking detection mechanism

based on the features extracted from network traffic. Our mechanism is able to

detect both in-browser and host-based cryptojacking malware. We achieved 99%

detection accuracy with one-hour network traffic data used to train the machine

learning classifier. We also analyzed 12 different novel attacker behavior to test our

mechanism in attack configurations and home network settings. In addition to, we

also simulated cryptojacking attacks to several different platforms to see the efficiency

of our detection mechanism. We show that different configurations that the attacker

may use and different network settings that the mining is performed on affects the
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detection accuracy. Moreover, we share the network traffic we collected and the code

publicly to accelerate the research in this area.
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CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

In this thesis, we performed a novel, empirical analysis of in-browser cryptomining

processes, while primarily focusing on authorized cryptomining. First, we present

a systematic overview of the current state of cryptojacking malware using the in-

formation obtained from previous research and two large datasets of samples and

over 40 attack instances. We then performed an in-depth, first of its kind analysis

on permissioned cryptomining using a dataset of 6269 unique cryptomining scripts.

Our evaluation and analysis concludes that permissioned in-browser cryptomining has

the potential for widespread adoption and could be a legitimate monetization tool if

implemented responsibly.

There are two types of Bitcoin- and blockchain-related malware seen in the wild:

those that use the Bitcoin and blockchain infrastructure to exploit the victim; or

those that use the traditional malware attacks such as key stealing, social engineering,

or fake application attacks to exploit Bitcoin and blockchain users. Cryptojacking

attacks use the Bitcoin and blockchain infrastructure to exploit the victim’s com-

putational power; however, Bitcoin and blockchain users are also exposed to many

traditional malware attacks. These attacks specifically aim to obtain Bitcoin and

blockchain users’ private keys through social engineering methods [Red, Phi, Bod],

fake wallets [Loo,Stea], and key-stealing trojan malware [Para,Cima,Steb]. Although

these attacks and their countermeasures [AAUA21, Aea19, Cea19] have been stud-

ied extensively in the literature [HL15], their impact in the Bitcoin and blockchain

domain has not been investigated yet and can lead to new research directions.

Finally, in this thesis, we analyzed the characteristics of the in-browser mining

ecosystem and the service providers’ consent methods using a large dataset, which

consists of 6269 unique websites containing cryptomining script in their source codes.
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We created the first consent focused in-browser cryptomining dataset in the literature

and classified it under different consent methods. After the classification process, we

analyzed our results and shared our findings. In light of the new classification pro-

cess, we categorized consent types under different sections. We used the samples we

found in the wild during these classifications. Another contribution of this research

is a new evaluation framework for service providers and developers who want to im-

plement a user consent-based in-browser cryptomining. This framework is adaptable

and extensible for both academic research and service provider implementations. We

believe this thesis will further increase the widespread adoption of legitimate crypto-

mining with user consent and knowledge and will increase the awareness on in-browser

cryptomining.
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[MSH+18] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan,
Shashvat Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller,
Arvind Narayanan, et al. An empirical analysis of traceability in the
monero blockchain. Proceedings on Privacy Enhancing Technologies
(PETS), 2018(3):143–163, 2018.

112

https://www.coindesk.com/russian-scientists-arrested-crypto-mining-nuclear-lab
https://www.coindesk.com/russian-scientists-arrested-crypto-mining-nuclear-lab
https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt
https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt
https://www.minergate.com
https://www.minergate.com
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://coinmarketcap.com/currencies/monero/
https://coinmarketcap.com/currencies/monero/
https://www.getmonero.org/resources/research-lab/
https://www.getmonero.org/resources/research-lab/
http://web.archive.org/web/20200813110918/http://monerise.com/
http://web.archive.org/web/20200813110918/http://monerise.com/


[MV] Byron Gelera Mark Vicente, Johnlery Triunfante. Cve-
2019-2725 exploited, used to deliver monero miner. https:

//www.trendmicro.com/en_ca/research/19/f/cve-2019-2725-

exploited-and-certificate-files-used-for-obfuscation-to-

deliver-monero-miner.html. Accessed: 2021-2-23.

[MWJR18] Marius Musch, Christian Wressnegger, Martin Johns, and Kon-
rad Rieck. Web-based cryptojacking in the wild. arXiv preprint
arXiv:1808.09474, 2018.

[MWJR19] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad
Rieck. Thieves in the browser: Web-based cryptojacking in the wild. In
Proceedings of the 14th International Conference on Availability, Reli-
ability and Security (ARES), pages 1–10, 2019.

[NAB+21] Faraz Naseem, Ahmet Aris, Leonardo Babun, Ege Tekiner, and Sel-
cuk Uluagac. MINOS: A lightweight real-time cryptojacking detection
system. In 28th Annual Network and Distributed System Security Sym-
posium, NDSS, February 21-25, 2021, 2021.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.,
2008.

[Ner] The official webpage of nerohut. https://web.archive.org/web/

20190131001253/https://nerohut.com/documentation.php. Ac-
cessed: 2020-10-19.

[New] Lily Hay Newman. Google bans all cryptomining extensions from
the chrome store. https://www.wired.com/story/google-bans-all-
cryptomining-extensions-from-the-chrome-store/. Accessed:
2020-10-16.

[NKK10] Seung Yeob Nam, Dongwon Kim, and Jeongeun Kim. Enhanced arp:
preventing arp poisoning-based man-in-the-middle attacks. IEEE com-
munications letters, 14(2):187–189, 2010.

[NLFM20] Helio N Cunha Neto, Martin Andreoni Lopez, Natalia C Fernandes, and
Diogo MF Mattos. Minecap: super incremental learning for detecting
and blocking cryptocurrency mining on software-defined networking.
Annals of Telecommunications, pages 1–11, 2020.

113

https://www.trendmicro.com/en_ca/research/19/f/cve-2019-2725-exploited-and-certificate-files-used-for-obfuscation-to-deliver-monero-miner.html
https://www.trendmicro.com/en_ca/research/19/f/cve-2019-2725-exploited-and-certificate-files-used-for-obfuscation-to-deliver-monero-miner.html
https://www.trendmicro.com/en_ca/research/19/f/cve-2019-2725-exploited-and-certificate-files-used-for-obfuscation-to-deliver-monero-miner.html
https://www.trendmicro.com/en_ca/research/19/f/cve-2019-2725-exploited-and-certificate-files-used-for-obfuscation-to-deliver-monero-miner.html
https://web.archive.org/web/20190131001253/https://nerohut.com/documentation.php
https://web.archive.org/web/20190131001253/https://nerohut.com/documentation.php
https://www.wired.com/story/google-bans-all-cryptomining-extensions-from-the-chrome-store/
https://www.wired.com/story/google-bans-all-cryptomining-extensions-from-the-chrome-store/


[NoC] Nocoin: Block lists to prevent javascript miners. https://github.com/
hoshsadiq/adblock-nocoin-list. Accessed: 2020-04-08.

[Nor] Norton. Official site — norton™ - antivirus, anti-malware software.
https://us.norton.com/. Accessed: 2020-04-09.

[NWX+19] Rui Ning, Cong Wang, ChunSheng Xin, Jiang Li, Liuwan Zhu, and
Hongyi Wu. Capjack: Capture in-browser crypto-jacking by deep cap-
sule network through behavioral analysis. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pages 1873–1881.
IEEE, 2019.

[OALU21] Harun Oz, Ahmet Aris, Albert Levi, and A Selcuk Uluagac. A survey
on ransomware: Evolution, taxonomy, and defense solutions. arXiv
preprint arXiv:2102.06249, 2021.

[Ole] Doug Olenick. Miner into third party zoom. https:

//www.trendmicro.com/en_us/research/20/d/zoomed-in-a-look-

into-a-coinminer-bundled-with-zoom-installer.html. Accessed:
2020-04-13.

[Osb18] Charlie Osborne. Apple bans developers from submitting cryptocur-
rency mining apps for ios devices. https://www.zdnet.com/article/
apple-bans-developers-from-creating-ios-cryptocurrency-

mining-apps/, 2018. Accessed: 2020-10-16.

[Para] Darren Parkin. Cryptocurrency stealer malware. https:

//www.express.co.uk/finance/city/1213514/cryptocurrency-

fraud-malware-clipper-victims-crv. Accessed: 2020-04-13.

[Parb] Helen Partz. Ukrainian man faces up to 6 years in jail for cryptojacking
on his own websites. https://cointelegraph.com/news/ukrainian-

man-faces-up-to-6-years-in-jail-for-cryptojacking-on-his-

own-websites. Accessed: 2021-2-23.

[PCHD19] Masarah Paquet-Clouston, Bernhard Haslhofer, and Benoit Dupont.
Ransomware payments in the bitcoin ecosystem. Journal of Cybersecu-
rity, 5(1):tyz003, 2019.

[Pea] Jordan Pearson. A ’fortnite’ cheat maker duped players into download-
ing a bitcoin miner. https://www.vice.com/en/article/8x598p/a-

114

https://github.com/hoshsadiq/adblock-nocoin-list
https://github.com/hoshsadiq/adblock-nocoin-list
https://us.norton.com/
https://www.trendmicro.com/en_us/research/20/d/zoomed-in-a-look-into-a-coinminer-bundled-with-zoom-installer.html
https://www.trendmicro.com/en_us/research/20/d/zoomed-in-a-look-into-a-coinminer-bundled-with-zoom-installer.html
https://www.trendmicro.com/en_us/research/20/d/zoomed-in-a-look-into-a-coinminer-bundled-with-zoom-installer.html
https://www.zdnet.com/article/apple-bans-developers-from-creating-ios-cryptocurrency-mining-apps/
https://www.zdnet.com/article/apple-bans-developers-from-creating-ios-cryptocurrency-mining-apps/
https://www.zdnet.com/article/apple-bans-developers-from-creating-ios-cryptocurrency-mining-apps/
https://www.express.co.uk/finance/city/1213514/cryptocurrency-fraud-malware-clipper-victims-crv
https://www.express.co.uk/finance/city/1213514/cryptocurrency-fraud-malware-clipper-victims-crv
https://www.express.co.uk/finance/city/1213514/cryptocurrency-fraud-malware-clipper-victims-crv
https://cointelegraph.com/news/ukrainian-man-faces-up-to-6-years-in-jail-for-cryptojacking-on-his-own-websites
https://cointelegraph.com/news/ukrainian-man-faces-up-to-6-years-in-jail-for-cryptojacking-on-his-own-websites
https://cointelegraph.com/news/ukrainian-man-faces-up-to-6-years-in-jail-for-cryptojacking-on-his-own-websites
https://www.vice.com/en/article/8x598p/a-fortnite-cheat-maker-duped-players-into-downloading-a-bitcoin-miner-epic-games-sued
https://www.vice.com/en/article/8x598p/a-fortnite-cheat-maker-duped-players-into-downloading-a-bitcoin-miner-epic-games-sued


fortnite-cheat-maker-duped-players-into-downloading-a-

bitcoin-miner-epic-games-sued. Accessed: 2021-2-23.

[Phi] Phishing attack caused 1.7 billion loss. https://cointelegraph.com/
news/israeli-citizen-accused-of-stealing-over-17-million-

in-crypto. Accessed: 2020-04-13.

[PIB20] Ivan Petrov, Luca Invernizzi, and Elie Bursztein. Coinpolice: Detecting
hidden cryptojacking attacks with neural networks. arXiv:2006.10861,
2020.

[PIM19] Panagiotis Papadopoulos, Panagiotis Ilia, and Evangelos Markatos.
Truth in web mining: Measuring the profitability and the imposed over-
heads of cryptojacking. In International Conference on Information
Security (ISC), pages 277–296. Springer, 2019.

[Por] General explanation of port mirroring. https://www.miarec.com/faq/
what-is-port-mirroring. Accessed: 2021-06-04.

[PST19] Sergio Pastrana and Guillermo Suarez-Tangil. A first look at the crypto-
mining malware ecosystem: A decade of unrestricted wealth. In Pro-
ceedings of the Internet Measurement Conference (IMC), pages 73–86,
2019.

[pub] Source code search engine. https://publicwww.com/. Accessed: 2020-
10-16.

[Ran] Implementation of randomx proof of work algorithm. https://github.
com/tevador/RandomX.

[Red] Redactie. Analysing a cryptocurrency phishing attack that earns $15k
in two hours. https://www.kpn.com/zakelijk/blog/analysing-

cryptocurrency-phishing-attack.htm. Accessed: 2020-04-13.

[Res] Check Point Research. Cloud-based cryptojacking article.
https://research.checkpoint.com/2020/the-2020-cyber-

security-report/. Accessed: 2020-10-19.

[Ret] Retro cryptomining project github page. https://github.com/

retrocryptomining/data. Accessed: 2021-2-23.

115

https://www.vice.com/en/article/8x598p/a-fortnite-cheat-maker-duped-players-into-downloading-a-bitcoin-miner-epic-games-sued
https://www.vice.com/en/article/8x598p/a-fortnite-cheat-maker-duped-players-into-downloading-a-bitcoin-miner-epic-games-sued
https://www.vice.com/en/article/8x598p/a-fortnite-cheat-maker-duped-players-into-downloading-a-bitcoin-miner-epic-games-sued
https://cointelegraph.com/news/israeli-citizen-accused-of-stealing-over-17-million-in-crypto
https://cointelegraph.com/news/israeli-citizen-accused-of-stealing-over-17-million-in-crypto
https://cointelegraph.com/news/israeli-citizen-accused-of-stealing-over-17-million-in-crypto
https://www.miarec.com/faq/what-is-port-mirroring
https://www.miarec.com/faq/what-is-port-mirroring
https://publicwww.com/
 https://github.com/tevador/RandomX
 https://github.com/tevador/RandomX
https://www.kpn.com/zakelijk/blog/analysing-cryptocurrency-phishing-attack.htm
https://www.kpn.com/zakelijk/blog/analysing-cryptocurrency-phishing-attack.htm
https://research.checkpoint.com/2020/the-2020-cyber-security-report/
https://research.checkpoint.com/2020/the-2020-cyber-security-report/
https://github.com/retrocryptomining/data
https://github.com/retrocryptomining/data


[RMY20] Sivaramakrishnan Ramanathan, Jelena Mirkovic, and Minlan Yu. Blag:
Improving the accuracy of blacklists. In Network and Distributed Sys-
tems Security (NDSS) Symposium 2020, 2020.

[RP18] Juan D Parra Rodriguez and Joachim Posegga. Rapid: Resource and
api-based detection against in-browser miners. In Proceedings of the
34th Annual Computer Security Applications Conference, pages 313–
326, 2018.

[RS] Kimberly Goody Rakesh Sharma, Akhil Reddy. A vul-
nerability used to deliver cryptojacking malware. https:

//www.fireeye.com/blog/threat-research/2018/02/cve-2017-

10271-used-to-deliver-cryptominers.html. Accessed: 2021-02-23.

[RS19] Muhammad Amirrudin Razali and Shafiza Mohd Shariff. Cmblock: In-
browser detection and prevention cryptojacking tool using blacklist and
behavior-based detection method. In International Visual Informatics
Conference (IVIC), pages 404–414. Springer, 2019.

[RSD+18] Julian Rauchberger, Sebastian Schrittwieser, Tobias Dam, Robert Luh,
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