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The purpose of this thesis is to suggest a geometric relation between the Laplace- 

Beltrami spectra and eigenfunctions on compact Riemannian symmetric spaces and 

the Borel-Weil theory using ideas from symplectic geometry and geometric quanti- 

zation. This is done by associating to each compact Riemannian symmetric space, 

via Marsden-Weinstein reduction, a generalized flag manifold which covers the space 

parametrizing all of its maximal totally geodesic tori. In the process we notice a 

direct relation between the Satake diagram of the symmetric space and the painted 

Dynkin diagram of its associated flag manifold. We consider in detail the examples 

of the classical simply-connected spaces of rank one and the space SU(3)/SO(3).

 We briefly present the necessary background material and also provide detailed 

study of examples of rank 2 symmetric spaces and possible decomposition of their 

eigenspaces into irreducible subspaces. In the last part of the thesis, with the aid of 

harmonic polynomials, we induce Laplace-Beltrami eigenfunctions on the symmetric 

space from holomorphic sections of the associated line bundle on the generalized flag 

manifold. We consider a generalization of a method of constructing explicit repre-



sentations of the Laplace-Beltrami eigenfunction using homogeneous harmonic poly-

nomials (under some mild conditions) as the (proper) restrictions in some ambient

space, as opposed to the known implicit integral representations of these eigenfunc-

tions [33, 20]. We apply this method to the examples of the simply connected rank one

space HP n and maximal rank 2 space SU(3)/SO(3), moreover applying the connec-

tion to the Borel-Weil theorem we show that our construction produces the explicit

representation of all of the eigenfunctions.
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CHAPTER 1

INTRODUCTION

In mathematics the spherical harmonics are generalizations of the sine and cosine

functions and are defined as eigenfunctions of the Laplace-Beltrami operator. They

have applications to variety of fields such as signal processing, cosmic microwave back-

ground radiation and 3D computer graphics. The easiest mathematical representation

of the spherical harmonics is through homogeneous polynomials in the ambient Eu-

clidean space. The spheres are the simplest of the mathematical shapes with many

symmetries called Riemannian symmetric spaces. They admit generalizations of the

spherical harmonics called spherical functions which are special eigenfunctions of the

Laplace-Beltrami operator and have various applications. In mathematics the Rie-

mannian symmetric spaces and their spherical functions are studied from analytical

algebraic and geometric viewpoints. In this thesis we focus on the algebraic and

geometric approaches through representation theory and symplectic geometry.

1

 There are two classical geometric interpretations of the representation theory of 

the compact Lie groups. On the one side is the Borel-Weil Theorem and its sub- 

sequent generalization to the Borel-Weil-Bott theory. In particular, every complex 

representation of a compact Lie group is realized on the space of holomorphic sections 

of some line bundle over a flag manifold. On the other side, the harmonic analysis 

on a Riemannian symmetric space provides irreducible representations of a compact 

simple Lie group: the natural action of a transitive simple Lie group of isometries G 

on the common eigenspaces of the (commutative) algebra of the invariant differential 

operators on the respective compact symmetric space M = G/K is irreducible, and 



operator and is generated by k generators, where k = rk(M) is the rank of M .

One of the goals of this thesis is to propose a direct geometric relation between

the two theories. Some of the main results were reported in [25].

The most explicit illustration of the relation is through geometric quantization

of the geodesic flow in the rank one case and we briefly explain it first. We assume

for simplicity that such compact Riemannian symmetric space of rank one (CROSS

for short) is simply-connected and irreducible, this leaves us with the well-known

examples of the spheres, classical projective spaces (complex and quaternionic) and

the Cayley plane. These are also the known simply-connected examples in dimension

higher than two of Riemannian manifolds all of whose geodesics are closed. On a Rie-

mannian manifold (M, g) all of whose geodesics are closed, there is a natural S1-action

on its tangent bundle TM and the geodesic flow on the cotangent bundle T ∗M can be

realized as solution to an S1-invariant Hamiltonian system. For such systems, under

mild conditions, there is a moment map and a symplectic reduction process, called

also Marsden-Weinstein reduction, defined in more detail in Chaper 6. This reduction

produces a reduced space T ∗M//S1 that can be identified with the space parametriz-

ing all oriented geodesics and that is equipped with an induced symplectic form. The

induced symplectic form depends on a level set of the corresponding moment map

µ : M → g∗ which we call the energy level of the geodesic flow. In many examples

the cotangent bundle has a “complex polarization” - a complex structure compatible

with the symplectic form which becomes Kähler form. A natural question which has

its origin in the relation between Kepler’s laws and the hydrogen atom is when such

manifold could be “quantized”. The geometric quantization is not a uniquely defined

notion and there are various schemes which implement it. We use the Kähler form

and the complex polarization to apply a twisted version of Kostant-Souriau geometric

2

K is a maximal compact subgroup in G. This algebra contains the Laplace-Beltrami



quantization scheme (originally due to [15, 35]) and assign a holomorphic line bundle

with first Chern class given by the induced Kähler form with an added extra term.

This new term is half of the first Chern class of the canonical bundle of the manifold

T ∗M//S1. Sometimes this is called prequantum bundle and we use this terminology.

The quantum condition is the integrality of that corrected form, while the analog

of the Hilbert space of quantum observables is the space of holomorphic sections of

the prequantum bundle. Our first general result is Theorem 6.1.3 in Chapter 6 in

which we show that the quantized energy levels of the geodesic flow on a simply con-

nected rank one symmetric space are, up to a constant, equal to the eigenvalues of

the Laplace-Beltrami operator on M , and the corresponding complexified eigenspaces

are isomorphic to the spaces of the holomorphic sections of the prequantum bundle

over the reduced space which is a generalized flag manifold. Although we provide the

representation theory background for a unified proof, we proceed with a case by case

proof since it illustrates the explicit nature of the calculations that provides a basis

for the next parts of the thesis.

As a preparation for the next Chapters we consider in detail particular examples

of higher rank symmetric spaces in Chapter 5. Here we look at the eigenspectra of

the Laplace Beltrami operator on SU(3)/SO(3) and explicitly compute the eigen-

spectra for all compact rank two symmetric spaces and demonstrate the method for

such calculations based on results referenced from [8] which provides the necessary

machinery of number theory and integral Diophantine equations. The motivation is

to continue the compilation of the tables of Laplace-Beltrami operator eigenspectra

of rank one compact Riemannian symmetric spaces to higher ranks.

The tabulating the Laplace-Beltrami eigenspectra is well-known and seems to only

exist within the literature in rank one case, and can be found in many places within

3



the relevant literature. Their calculation is substantially easier because the spectrums

are one dimensional, as a consequence of the root eigenspaces being one dimensional.

The table of the eigenspectra of the Laplacian operator ∆M on the compact rank one

symmetric spaces (CROSSes) M is compiled below, as found in [4, 21]. The results

in this Chapter allow for the tabulation of the eigenspectra for rank two compact

symmetric spaces, similar to Table 1 shown below which classifies the Laplace spectra

for the CROSSes. A certain avenue of further research after the case rk(M) = 2 is

complete, is with the continuation of the tabulations for the higher rank symmetric

spaces rk(M) ≥ 3.

Table 1: The Laplace eigenspectrum of compact rank one Riemannian symmetric spaces

CROSS M = G/K Eigenspectrum Spec(∆M)

Sn = SO(n+ 1)�SO(n) Spec(∆Sn) = {λk = k(k + n− 1)
∣∣ k ≥ 0}

RPn = SO(n+ 1)�SO(n)× SO(1) Spec(∆RPn) = {λk = 2k(2k + n− 1)
∣∣ k ≥ 0}

CP n = SU(n+ 1)�S(U(n)× U(1)) Spec(∆CPn) = {λk = 4k(k + n)
∣∣ k ≥ 0}

HP n = Sp(n+ 1)�Sp(n)× Sp(1) Spec(∆HPn) = {λk = 4k(k + 2n+ 1)
∣∣ k ≥ 0}

CaP 2 = F4�Spin(9) Spec(∆CaP 2) = {λk = 4k(k + 11)
∣∣ k ≥ 0}

In the next Chapters we consider the case of general rank. We observe that we

can substitute the space parametrizing all geodesics with the space of all maximal

totally geodesic flat submanifolds, which are tori in this case. Just as in the rank

one case we needed the oriented geodesics, in the higher rank case we need the uni-

versal cover of the space parametrizing the maximal flat tori. This space is again a

generalized flag manifold and carries a natural “polarization”, which could be used

for the quantization - a Kähler complex structure. Since our aim is to underline the

4



geometric approach through the Marsden-Weinstein reduction, we also need a Kähler

space with a (multi-dimensional) Hamiltonian that, after the symplectic reduction,

will become the generalized flag manifold with an appropriate reduced symplectic

form, a form which is also integral and Kähler.

This is done in [25] via construction of a Kähler structure on some open subset of

the manifold of all tangent spaces of the maximal totally geodesic flat submanifold.

Then we prove the main result in Chapter 6 - Theorem 7.2.1, which was announced

in [25]. If the symmetric space has a maximal rank rk(M) = rk(G), then the cor-

responding generalized flag manifold is actually the full flag manifold G/T , where T

is a maximal torus in G. From the Borel-Weil theorem follows that every irreducible

representation of G appears as a space of holomorphic sections of some line bundle

over G/T . This corresponds to the fact that the symmetric spaces of maximal rank

provide the largest variety of the irreducible representations of G appearing as sub-

spaces of the eigenspaces of the Laplace-Beltrami operator by the results in [33]. As

an example we consider the space SU(3)/SO(3), which is of rank two, and also the

simplest example of Riemannian symmetric space of maximal rank. We note that a

general correspondence similar to the one in Theorem 7.2.1 has appeared in [20] and

[34] Chapter 6, but with a focus on various integral transforms.

In the remaining part of the thesis we indicate a construction, which relates the

holomorphic sections of the prequantum bundle to the eigenfunctions of the corre-

sponding eigenvalue on the symmetric space. We use the standard description of the

holomorphic sections as holomorphic functions on the total space of the associated

principal C∗−bundle with appropriate equivariant condition. Using the basic prop-

erties of the Laplace-Beltrami operator under Riemannian submersions, the relation

between holomorphic and harmonic functions on a special non-Kähler manifolds, and

5



an extension of the standard relation between harmonic polynomials and eigenfunc-

tions on the spheres, in Theorem 8.0.5, we propose a method of description of the

Laplace-Beltrami eigenfunctions out of the holomorphic sections on the associated

quantization space. We apply the method, with some modifications, to complex and

quaternionic projective spaces as well as the space SU(3)/SO(3). In these examples

we describe a spanning set of all eigenfunctions, which consists of algebraic functions.

The cases of quaternionic spaces and SU(3)/SO(3) are new and extend the known

representations for the spheres and complex projective spaces [43]. We expect that

many other symmetric spaces will have similar complete description. Note that the

known descriptions of the eigenfunctions so far are based on the integral geometry

and various types of Radon transform, which are implicit, as opposed to our method

of constructing them from homogeneous harmonic polynomials.

The structure of the thesis is as follows: in the preliminary chapters we collect the

necessary background facts about Lie algebras, symmetric spaces, and flag manifolds.

Meanwhile we notice a simple connection between the Satake diagram of the sym-

metric space and the painted Dynkin diagram of the generalized flag manifold. We

use it do describe the second cohomology group of the quantization space in terms of

the Satake diagram of the initial symmetric space. Then in Chapter 6 we treat the

rank one case and in Chapters 5 and 6 we consider the spaces of arbitrary rank. The

last two Chapters — 7 and 8 provide the explicit construction of harmonic polynomi-

als from holomorphic sections of the prequantum line bundle over the corresponding

generalized flag manifold.

6



CHAPTER 2

LIE ALGEBRA STRUCTURE THEORY AND DECOMPOSITIONS

2.1 Basic facts about Lie algebras

Definition 2.1.1. A Lie algebra g is a vector space equipped with a skew-symmetric

bilinear operation called the Lie bracket of g, denoted by [∗, ∗] : g × g → g, that

satisfies the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ g.

The bracket induces a linear transformation for X, Y ∈ g, (ad X)Y := [X, Y ].

This adjoint transformation is also used to define a canonical symmetric biliniear

form B (also known as the Killing form) given by B(X, Y ) := Tr ((ad X) ◦ (ad Y )) .

The general theory of root systems for the classification of (semisimple) Lie

algebras is well-known [32], A Lie algebra g is said to be simple if is is nonabelian

and has no proper nonzero ideals. A Lie algebra g is said to be semisimple (ss)

if it is a direct sum of simple Lie algebras. The stuy of symmetric spaces and their

geodesics / maximal tori forces the study of (semisimple) Lie algebras. Here we recall

some basic facts about the structure theory of semisimple Lie algebras.

2.2 Cartan decomposition

Definition 2.2.1. An involutive Lie algebra automorphsim θ : g→ g is called a Car-

tan involution if there exists a bilinear form Bθ defined by Bθ(X, Y ) := −B(X, θY )

which is symmetric and positive definite.

7



Theorem 2.2.2. The Cartan involution can be used to decompose g into its ±1-

eigenspaces producing what’s known as the Cartan decomposition given by

g = k⊕ p

where k = {X ∈ g
∣∣ θX = X} and p = {X ∈ g

∣∣ θX = −X}.

The importance of the Cartan decomposition is that it has the property that if

g is a real Lie algebra and σ a complex conjugation defined on gC, then the vector

space decomposition g = k ⊕ p is a Cartan decomposition if there exists a compact

real form u ⊂ gC such that σ(u) = u, k = g∩ u, and p = g∩ (iu). This fact will prove

to be important for classifying the compact Riemannian symmetric spaces.

The Cartan decomposition of a compact Lie algebra g = k⊕ p is trivial because

the negative eigenspace p is always zero (since k = g is already compact). But by

duality of compact/noncompact real forms of a Lie algebra ([32], Ch. V), we can

construct a method to recover the compact symmetric space via the Lie algebras of

the corresponding dual noncompact real forms.

The method is as follows. For a compact Riemannian symmetric space G/K

with (compact) Lie algebra g we consider its complexification gC. We then use the

classification of its noncompact real forms gn using Satake diagrams (section 3.3) and

identify its unique maximal compact subalgebra k from the Cartan decomposition of

gn = k⊕p. Then k ⊂ g will also be maximal in g, defining a symmetric pair (g, k), and

all distinct gn’s will correspond to different k’s and the pair (g, k) indentify a unique

compact Riemannnian symmetric space G/K with that symmetric pair (g, k).

More specifically, if gn = k⊕p, then its compact dual form will be g = k⊕ ip ⊂ gC,

since the compact real forms of gC are unique because the complex simple Cartan

8



subalgebra (h)C in the root space decomposition from the next section contain unique

compact real forms, up to conjugation.

2.3 Root space decomposition

Definition 2.3.1. A Cartan subalgebra of g is a subalgebra h ⊂ g that is a

maximal abelian subalgebra of g for which all H ∈ h, the endomorphism ad H of g

is semisimple (and therefore is diagonalizable).

All Cartan subalgebras are conjugate to each other, and though their existence is

not a trivial matter, they were proved to always exist in a seminal result known as

Lie’s theorem on solvable Lie algebras, proved in [32].

Definition 2.3.2. Let α be a linear functional on the vector space h, α ∈ ∆ ⊂ (h)∗

called a root, and denote by gα the root space consisting of nonzero X’s in

gα =
{
X ∈ g

∣∣ ad(H)X = α(H)X for all H ∈ h
}
.

Then the root space decomposition of g with respect to his

g = h⊕
⊕
α∈∆

gα.

Since h is abelian, we can consider the Cartan subalgebra has g0.

9



CHAPTER 3

ROOT SYSTEM CLASSIFICATION VIA DYNKIN AND SATAKE

DIAGRAMS

Dynkin and Satake diagrams are graphs whose main interest is that they are

a means of classifying ss Lie algebras over algebraically closed fields (like C). One

classifies such Lie algebras via their root system, which can be encoded in special

graphs mentioned above.

Definition 3.0.1. Let V be a finite dimensional Euclidean vector space, equipped

with the standard Euclidean inner product (∗, ∗). A (reduced) root system ∆ in V

is a finite set of nonzero vectors (called roots) that satisfy the following conditions:

(i) The set of roots ∆ span V .

(ii) For each root α ∈ ∆ there exists a reflection sα along α leaving ∆ invariant.

(iii) For any two roots α, β ∈ ∆, the number 〈β, α〉 := 2 (α,β)
(α,α)

= 2 (α,β)
|α|2 is an integer.

Definition 3.0.2. The root system is said to be reduced if α ∈ ∆ implies that

2α /∈ ∆. We say that two (abstract) root systems ∆ in V and ∆ in V ′ are isomorphic

if there is a vector space isomorphism of V onto V ′ carrying ∆ onto ∆′ and preserving

the integers in the definition above of root systems.

Definition 3.0.3. Given a root system ∆ we can always choose (in several different

ways) a subset of positive roots denoted ∆+ ⊂ ∆, for which every root α ∈ ∆

either contains α ∈ ∆+ or −α ∈ ∆+, and if two distinct roots α, β ∈ ∆+ such that

α + β ∈ ∆, then α + β ∈ ∆+.

An element of ∆+ is called a “simple root” if it cannot be written as the sum

of two elements of ∆+. (The set of simple roots Σ is also referred to as a “base” for

∆).

10



If a set of positive roots ∆+ ⊂ ∆ is chosen, elements of ∆- := -∆+ =
{
α ∈

∆
∣∣ -α ∈ ∆+

}
are called “negative roots”, and clearly we have

∆ = ∆+ ∪∆-.

“Such a set of positive roots may be constructed by choosing a hyperplane P not

containing any roots and setting ∆+ to be all the roots lying on a fixed side of P .

Furthermore, every set of positive roots arises in this way” [38].

Remark 3.0.4. The importance here in reviewing root systems, is that the simple

roots of a semisimple Lie algebra form a root system.

3.1 Lie algebra root systems

We can classify (irreducible) root systems (and therefore simple Lie algebras)

using graphs known as Dynkin diagrams. Given a root system and a set of simple

roots Σ ⊂ ∆+, we can construct a graph to represent the root system, encoding the

lengths and relations of and between all the roots including the simple roots of the

system (which form a basis of the underlying vector space of the representation).

Hence, Dynkin diagrams classify them in these terms, and in fact, two (simple and

hence semisimple) Lie algebras are isomorphic if their corresponding root systems are

(the Dynkin diagram of semisimple Lie algebras g1 ⊕ g2 is just the direct sum of the

Dynkin diagrams D(g1)⊕D(g2), interpreted as the reducible (disconnected) Dynkin

diagram of the two simple Dynkin diagrams). This is clearly the principal objective,

as well as the classification of (ss) Lie algebras.

Definition 3.1.1. Let ∆ be a root system, ∆+ ⊂ ∆ be the set of positive roots, and

Σ ⊂ ∆+ the set of simple roots. Note that the number of simple roots |Σ| is equal
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to the rank (cf. definition 4.3.1) of the Lie algebra with that particular root system.

Given a root system, select a set of positive roots ∆+ and a set Σ ⊂ ∆+ of simple

roots as in the preceding section. The vertices of the associated (painted) Dynkin

diagram D(g) = D(g,Σ) of g to correspond to the roots in Σ. Edges are drawn

between vectors as follows, according to the angles. (Note that the angle between

simple roots is always at least 90 degrees.)

(i) No edge if the vectors are orthogonal

(ii) An undirected single edge if they make an angle of 120 degrees

(iii) A undirected double edge if they make an angle of 135 degrees

(iv) A directed triple edge if they make an angle of 150 degrees

The term “directed edge” means that double and triple edges are marked with an

arrow pointing toward the shorter vector. (Thinking of the arrow as a ”greater than”

sign makes it clear which way the arrow is supposed to point.) Thus, these diagrams

reduce the problem of classifying root systems to the problem of classifying possible

Dynkin diagrams.

3.2 Dynkin diagrams

The classification of Dynkin diagrams corresponding to the classical noncompact com-

plex Lie algebras are listed in the Table 2 below. It is a significant improvement on

Cartan’s original classification of simple Lie algebras, which consists of the four in-

finite families An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3) and Dn (n ≥ 4), as well as the

exceptional algebras, e6, e7 and e8. Here, “n” denotes the rank of the Lie algebra,

as well as the dimension of the vector space, where the Lie algebra root system is
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represented. The vertices are the simple roots Σ = {α1, α2, . . . , αn−1, αn}, and the

edges are drawn according to the instructions above. Reference for this can be found

in just about any book on Lie theory, including Helgason [32] and Knapp [38] among

many. We recall the table of the classification of the classical and exceptional Lie

algebras by the Dynkin diagrams of the corresponding root systems.

Table 2

Root system Lie Algebra g Dynkin diagram D(g) Rank

An sl(n+ 1,C)
α1 α2

. . .
αn−1 αn

n

Bn so(2n+ 1,C)
α1 α2

. . .
αn−1 αn
⇒ n

Cn sp(2n,C)
α1 α2

. . .
αn−1 αn
⇐ n

Dn so(2n,C)
α1 α2

. . .
αn−2 αn−1

αn

n

E6 e6 α1 α2 α3 α4 α5

α6

6

E7 e7 α1 α2 α3 α4 α5 α6

α7

7

E8 e8 α1 α2 α3 α4 α5 α6 α7

α8

8

F4 f4 α1 α2 α3 α4

⇒ 4

G2 g2 α1 α2

V 2
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Definition 3.2.1. Associated to each (irreducible) root system, its Dynkin diagram

is also encoded in matrices known as Cartan matrices , defined as the square n×n

matrix C = Cg = C(Σg) of inner products of simple roots, and n = rk(g) = |Σ| is the

rank of g and the number of simple roots of ∆

C := C(Σg) :=
(
Cij
)
i,j=1,...,n

:=

(
〈αi, α∨j 〉

)
i,j=1,...,n

,

where α∨ is called the coroot corresponding to α given by α∨ := 2
〈α,α〉α.

These matrices will play a role in the next section regarding the connection to the

eigenspectra of the Laplace-Beltrami oprator on the compact RSS’s in question. The

following table shows the Dynkin diagrams of the classical and exceptional (complex)

Lie algebras and their corresponding rank. But to get to our RSS’s we will need to

enhance our Dynkin diagrams that will shed light on the real forms of our complexified

Lie algebras: The Satake diagrams. The Cartan matrices will also make a surprise

(but not unexpected) appearance in the quadratic forms used to find the eigenvalues

of ∆M .

As mentioned a moment ago, where Dynkin diagrams may be used to classify

the classical complex Lie algebra root systems, a more intricate diagram can be con-

structed in a manner similar to that of Dynkin diagrams, along with two additional

changes to the simple roots Σ by coloring some vertices black and adding some arrows

to between a pairs of vertices if needed. These modified diagrams are know as Satake

diagrams, and the Satake diagrams associated to a Dynkin diagram classify real forms

of the complex Lie algebra corresponding to the Dynkin diagram.

Definition 3.2.2. An (Riemannian) symmetric (Lie algebra) pair (or just

symmetric pair for short) is a pair of lie algebras (g, k) or (g, k, θ) with a Cartan
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involution θ on g with the understanding that k is the set of fixed points of θ (the +1

eigenspace).

The symmetric pair (g, k) is associated to Riemmanian symmetric space G/K (or

(G,K)) has been alluded to, but will properly defined in Chapter 4.

3.3 Satake diagrams

Before introducing Satake diagrams, we must first go back to the maximal abelian

subspaces a ⊂ p, and their complexifications for which we can define a so-called

“restricted root system” correspoding to a, which will also be some finite subset of

(p)∗. We have that the restriction map α 7→ ᾱ from hR to a , and orthogonal projection

map α 7→ 1
2
(α−θ(α)) from the dual (hR)∗ to (a)∗, where h ⊂ g is a Cartan subalgebra

of g containing a, coincide (are dual to one another).

Definition 3.3.1. Let (g, k) be a symmetric pair, and ∆ a root system with a choice

of simple roots Σ = {α1, α2, . . . , αn}, and a ⊂ p some maximal abelian subspace of p.

The Satake diagram S(g, a) of (g,k) with respect to a, that is, to the triple (g, k, a)

is comprised of three datum:

(i) First is the Dynkin diagram D(g, k).

(ii) For elements α in the set Σ we set Σ0 := {α ∈ Σ
∣∣ ᾱ ≡ 0}, and color the

corresponding nodes in the Dynkin diagram black.

(iii) For distinct elements α 6= β ∈ Σ − Σ0 that restrict to the same root, that is,

that ᾱ = β̄, they are joined by a curved arrow.
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An illuminating example is shown in Table 3 below, with the specific RSSs and

symmetric pairs (specifically defined in Chapter 4), and showing the method of clas-

sification in essence by comparing their Dynkin and Satake diagrams.

Example 3.3.2. Let Mk = Grk(R10) be the real Grassmannian manifold of k-planes

in R10 (for k = 1, 2, ..., , 5). We can draw a table including all the nonisomorphic

Grassmanian manifolds Mk as the symmetric space with corresponding symmetric

pair, their Dynkin and Satake diagrams.

Table 3

k Mk corresp. symmetric pair D(g, k) S(gn, k, a)

1 Gr1(R10) (so(10), s(o(1)× o(9)))
α1 α2 α3 α4

α5

α1 α2 α3 α4

α5

2 Gr2(R10) (so(10), s(o(2)× o(8)))
α1 α2 α3 α4

α5

α1 α2 α3 α4

α5

3 Gr3(R10) (so(10), s(o(3)× so(7)))
α1 α3 α4

α5

α1 α2 α3 α4

α5

4 Gr4(R10) (so(10), s(o(4)× so(6)))
α1 α3 α4

α5

α1 α2 α3 α4

α5

5 Gr5(R10) (so(10), s(o(5)× so(5))),
α1 α3 α4

α5

α1 α2 α3 α4

α5

Satake diagrams will allow us to find (and classify) arbitrary rank compact sym-

metric spaces. A well-known fact (also a theorem in [32]) is that the multiplicity of

all the root spaces in the real root space decomposition of gn is 1. An important rank
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formula (that can be found in [40]) for Satake diagrams which leads directly to the

considerations and theorems in Chapter 4.6 is:

rk(gC) = rkR(gn) + |Σ0|+ a

where a is is the number of arrows in the Satake diagram and |Σ0| is the number of

black vertices.

Let (g, k) be a symmetric pair, g = k ⊕ p the Cartan decomposition, and let a

be a maximal abelian subspace of p. Of course the existence of a is guaranteed by

dimenionality arguments. For α ∈ a∗, we define the restricted root space as

gα = {X ∈ g
∣∣ (ad H)X = α(H)X for all X ∈ a}.

If gα 6= 0 and α 6= 0, we call α a restricted root of g, or more precisely, of (g, k),

and gα the (real) root space.

The subalgebra g0 of g satisfies h0 ⊂ g0, and it is clear that g = g0 ⊕ ig0 as a

real vector space, g0 is a real form of g. A real form of g that contains h is called a

split-real form of g, where hR =: h0 = {H ∈ h
∣∣ α(H) ∈ R for all α ∈ ∆}.

The two main real forms of g being considered are normal/split (rank) real forms,

and the (essentially unique, up to conjugation) compact real form. For our investi-

gation into maximal rank compact symmetric spaces, we turn our attention to real

forms of the split type. Corollary 6.10 in [38] guarantees that any complex semisim-

ple Lie algebra contains a split-real form, but we will go ahead and give a more

formal exposition of this statement. Consider the Lie algebra Iwasawa decomposi-

tion of g = k⊕ a⊕ n. The Cartan subalgebra h of g that contain a maximal abelian

subspace a are of the form

h = h+ ⊕ a,
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where h+ is any Cartan subalgebra of m = Ck(a) = ker(X 7→ [X, a])|k = {X ∈

k
∣∣ [X, a] = 0]. Then take the complexification gC of g and denote its Cartan subal-

gebra hC = (h+)C ⊕ aC. Thus, we have that

mC = (h+)C ⊕

(⊕
α∈∆0

(gC)α

)
= (h+)C ⊕


⊕
α ∈ ∆

ᾱ = α|a = 0

(gC)α

 .

Hence, the restricted roots are the nonzero restrictions to a of the roots, and m

arises from the roots that restrict to zero on a.

A corollary to the lemma above is that g is split, then m = 0, ∆ = Σ, and

(gC)α = (gα)C, so dim gα = 1 for all α ∈ Σ. Σ0 = 0 so the corresponding Satake

diagram has no black vertices, and since the restricted roots are all the roots, no two

distinct roots restrict to the same root (they restrict to themselves), hence the Satake

diagram has no arrows either. This observation classifies maximal rank symmetric

spaces.

The Satake diagrams are used to classify Riemannian symmetric spaces and the

precise relation to painted Dynkin diagrams characterizing their corresponding gen-

eral flag manifolds will be elucidated more thoroughly in the next chapter.

18



CHAPTER 4

RIEMANNIAN SYMMETRIC SPACES & GENERALIZED FLAG

MANIFOLDS

4.1 Preliminary definitions

Definition 4.1.1. In mathematics, a smooth manifold (also known as a differential

manifold) is a type of manifold that is locally similar enough to a linear space to

allow one to do calculus. More specifically, it is a Hausdorff and second countable

topological space M , together with a maximal differentiable atlas on M .

From the classical point of view, the nicest and most well-known smooth manifolds

are the Riemannian manifolds, defined below:

Definition 4.1.2. A Riemannian manifold M (or (M, g)) is a smooth manifold

equipped with a Riemannian metric g such that for every p ∈ M , there symmet-

ric positive definite 2-tensor

gp : TpM × TpM → R≥0.

Note that this metric also induces a metric space structure on the manifold M .

Next we recall the concept of Lie groups:

Definition 4.1.3. A Lie group M is a smooth manifold M equipped with an ad-

ditional group structure that is compatible with the differentiable structure on the

smooth manifold, i.e. M also has a smooth group multiplication as well as inverses.

The most common examples of Lie groups are the matrix Lie groups, such as the

special linear group SL(n, k), the special orthogonal group SO(n, k), the orthogonal
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group O(n, k), and the special unitary group SU(n), and the general linear group

GL(n, k), for a field k = R or C. Also, any closed subgroup of a Lie group is also

automatically a Lie group (or Lie (sub)group) as well.

Finally we have the homogeneous spaces, which serve as a precursor to the fol-

lowing section of Riemmanian symmetric spaces, and can be thought of as a coset

spaces G/K on which a Lie group G acts transitively preserving the group structure:

Definition 4.1.4. The space M = G/K where G is a Lie group and K some closed

subgroup of G is called a homogeneous space, which is the coset space with the

standard quotient topology, and is a homogeneous space for G with a distinguished

point, namely the coset of the identity o = eK. Thus a homogeneous space can be

thought of as a coset space without a choice of origin, because of transitivity.

4.2 Riemannian symmetric spaces

With the prerequisites from the section above, in this and the following Chapters we

consider smooth manifolds M equipped with a Riemannian metric g. Associated to g

there is a natural second order differential operator ∆M on the functions of M , called

Laplace-Beltrami operator. It is a generalization of the usual Laplace operator in Rn.

In a local coordinate chart (x1, x2, ..., xn) of M, where the metric components are gij,

the definition of ∆M is

∆M(f) =
1√
|g|

∂

∂xi

(√
|g|gij ∂f

∂xj

)
.

A function f on M is called harmonic if ∆M(f) = 0 and by the maximum principle, on

a compact M the only harmonic functions are the constants. An eigenfunction f with

an eigenvalue λ is a function, for which ∆M(f) = λf . The set of eigenvalues of ∆M is
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known to be an increasing sequence of positive numbers with limit infinity. Moreover

the set of eigenfunctions is known to be dense in the set of all smooth functions on M .

We focus on a special type of Riemannian manifolds called Riemannian symmetric

spaces with the metric coming from canonical Killing form defined.

Definition 4.2.1. A Riemannian symmetric space (RSS) is a connected real-

analytic Riemannian manifold (M, g), such that for every p ∈M , there is an involutive

isometry sp ∈ Isom0(M) with sp(p) = p, s2
p = idM , and (dsp)p = −idTpM .

There is a well-know connection to the Lie groups, c.f. A. Borel [6]. Letting the

connected component of the isometry group be Isom0(M) = G and K := stabG(p)

for p ∈ M, it is known that G is a Lie group acting transitively on M and K is a

compact subgroup, so that (M, g) is the coset space G/K with a particular metric g

defined in terms of the Killing form B of the Lie algebra of G. A simply connected

Riemannian symmetric space of noncompact type is M = Rn as G = Rn o SO(n)

and K = SO(n) producing

G�K = R
n o SO(n)�SO(n)

∼= Rn = M.

This is an example of an RSS of noncompact type, since G and therefore M are

noncompact. The Riemannian symmetric spaces, which are our primary focus are

those of compact type, which include:

1. The spheres: Sn = SO(n+ 1)�SO(n) and S2n+1 = SU(n+ 1)�SU(n)

2. Complex projective spaces: CP n = SU(n+ 1)�(S(U(1)× ...× U(1)))

3. Quaternionic projective spaces: HP n = Sp(n+ 1)�(Sp(n)× Sp(1))

4. Cayley plane / Octonion projective plane: CaP 2 = OP 2 = F4�Spin(9)
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Definition 4.2.2. (Definition of a CROSS) A CROSS is a compact rank one sym-

metric space. The examples of the simply connected CROSSes are enumerated above.

There are also CROSSes which are not simply connected, such as the real projective

space RP n.

When the Lie group G is semisimple, we say that (M, g) is of semisimple type.

A Riemannian symmetric space of semisimple type can be represented as a product

of irreducible RSSs, for which G is simple. These spaces will be our main object of

study.

The process of classifying RSSs could be described briefly and precisely in terms

of Lie algebras, and how we can get all of them from the corresponding (painted)

Dynkin diagrams and all noncompact real forms from their Satake diagrams and their

maximal compact subalgebras. Then by duality we can identify all of the compact

Riemannian symmetric spaces. This will be more explicitly revisited in section 4.5.

But first we must recall the basics of another Lie group and Lie algebra decomposition,

known as the Iwasawa decomposition if a Lie group or Lie algebras.

Definition 4.2.3. (Definition of rank) Let a be the maximal abelian subalgebra in

p, and m be the Lie algebra of the stabilizer of a in k:

m = ker
(
X 7→ [X, a]

)∣∣
k

=
{
X ∈ k = Lie(K)

∣∣ [X, a] = 0
}
.

The rank k of a is called the rank of the symmetric space M = G/K, which is the

maximum dimension of a subspace of the tangent space (to any point) on which

the curvature is identically zero. the existence of is guaranteed by dimenionality

arguments.
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4.3 Iwasawa decomposition

For a noncompact group G, the final decomposition that we need is called the Iwasawa

composition, which combines the Cartan decomposition and the root space decom-

position of its complexification gC. Here we just recall the basic facts, the details can

be found in Helgason or Knapp [32, 38].

Here, we combine the root space decomposition of a real Lie algebra with its com-

plexification (∗)C to produce this decomposition which will end up being indispensible

for studying noncompact Lie groups and algebras.

Theorem 4.3.1. We let G (:= Isom0(M)) be a real ss Lie group, g its Lie algebra

with dual gn corresponding to the noncompact group Gn, θ a Cartan involution on gn

and gn = k⊕ p the corresponding Cartan decomposition. Then we let a be a maximal

abelian subalgebra of p, and ∆ ⊂ (a)∗ ⊂ (p)∗ the set of restricted roots with respect

to a, corresponding to eigenvalues of a acting on gn. We can choose an ordering on

the positive roots denoted ∆+ ⊂ ∆. Then the Iwasawa decomposition of Gn (gn

resp.) is

Gn = KAN (gn = k⊕ a⊕ n resp.),

where k = Lie(K), a = Lie(A), and n = Lie(N). There is also a complexified version

of the Iwasawa decomposition, which we will use shortly.

Example 4.3.2. As a basic example of the Iwasawa decomposition of a noncompact

real Lie group is that of the standard decomposition of SLn(R) and sln(R) as

SLn(R) = KAN
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where K is a maximal flat compact subgroup of G, A is (essentially) the maximal

abelian subgroup of G which in this case we can take

K = SO(n) =
{
k ∈ O(n)

∣∣ kTk = kkT = Id, det(k) = 1
}

to be the special orthogonal matrices, A to be (essentially the maximal abelian)

subgroup of diagonal matrices

A =
{
a = diag(aii)i=1,2,...,n

∣∣ det (a) = Πn
i=1aii = 1

}
of determinant 1, and N to be the unipotent subgroup of upper triangular matrices

of determinant 1:

N =


n =



1 ∗ ∗ . . . ∗

0 1 ∗ . . . ∗

. . .

0 0 . . . 1 ∗

0 0 0 . . . 1


∣∣∣∣∣ ∗ ∈ R


.

Thus, we have that every g ∈ G = SLn(R) = KAN can be expressed as a product in

terms of matrix multiplication, g = kan.

In the complexified version we also denote KC, AC and NC, respectively, and

we have that Lie(A) = ia. Also of importance is that the complexification GCn =

KCACNC is some Zariski open and dense subset of GC.

4.4 Generalized flag manifolds, adjoint actions, and exam-

ples

Now for full generality, we must properly introduce generalized flag manifolds, since

they provide our parametrization spaces in the quantization procedure.
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Definition 4.4.1. A generalized flag manifold is a homogeneous space of the

form G/K = G/C(S), where S is a torus in a compact Lie group G and C(S) is its

centralizer. If T is a maximal torus in G, then C(T ) = T and G/K is called a flag

manifold .

Definition 4.4.2. Let G be a compact Lie group with Lie algebra g, and X ∈ g.

The adjoint orbit of X is the set MX := Ad(G)X = {Ad(g)X
∣∣ g ∈ G} ⊂ g.

Let K = KX := {g ∈ G
∣∣ Ad(g)X = X} be the isotropy subgroup of X. Then

MX is diffeomorphic to the homogeneous space G/K. The point X corresponds to

the identity coset o = eK. These are some of the main examples of generalized flag

maniffolds.

Example 4.4.3. Examples of generalized flag manifolds:

i) A full flag in Cn is a collection of increasing nested complex subspaces

F = ({0} = V0 ⊂ V1 ⊂ .... ⊂ Vn = Cn) ,

where each Vi has dimCVi = i. Let Fn be the set of all flags in Cn. The

group SU(n) 3 g acts on Fn by gF = (gV0 ⊂ ... ⊂ gVn) transitively, so if

F 0 is the standard flag given by V 0
i = spanC{e1, ..., ei}, then there exists a g

such that gF 0 = F . Furthermore, the isotropy group of F 0 is consists of all

diagonal matrices in SU(n), which is a maximal torus in SU(n). Thus letting

G = SU(n), g = su(n), and X = diag(eiλ1 , ..., eiλn), where λi are distinct

real numbers with
∑

i λi = 0, then K = KX = T n (n-torus), so giving a

homogeneous presentation of the flag manifold

Fn = Ad(SU(n))X = SU(n)�T n = SU(n)�S(U(1)× ...× U(1)) (n− times).

25



ii) In particular, when (λ1 = · · · = λk = λ) and (λk+1 = · · · = λn = µ) (with

(λ 6= µ)), then KX = S(U(k)× U(n− k)) and

Ad(SU(n))X = SU(n)�S(U(k)× U(n− k)) = Grk(Cn),

the Grassmann manifold of k-planes in Cn. Thus, we see that projective spaces

CP n and Grassmannians Grk(Cn) are special cases of generalized flag manifolds.

iii) We then immediately consider the case of partial flags, where F(n1, ..., ns) is the

manifold of all partial flags with n =
∑

i ni = n1 + ...+ns and Nj = n1 + ...+nj

dimCVi = n1 + ... + ni. As in the example above, SU(n) acts transitively, and

the isotropy subgroup of a fixed point is S(U(n1) × · · · × U(ns)), the group

of matrices of the form diag(A1, . . . , As) with Ai ∈ U(ni) and
∏

i det(Ai) = 1.

Thus, we get the homogeneous presentation of the space of partial flags as

F = F(n1, . . . , ns) = SU(n)�S(U(n1)× · · · × U(ns))
.

The generalized flag maniflds have important geometric properties. To describe

some of them, recal that a complex structure on a manifold M is an endomorphism

of its tangent bundle I such that I2 = −id and I is integrable in the sense that the

tensor N(X, Y ) = [X, Y ] + I[IX, Y ] + I[X, IY ]− [IX, IY ] = 0 for every vector fields

X, Y on M . A complex structure leads to existence of an atlas of charts on M with

values in Cn and holomorphic transition functions. Main examples of such manifolds

are the algebraic submanifolds of CP n. Every compact algebraic manifold - with

algebraic transition functions in appropriate charts, appears as such submanifold by

the theorem of Chow. That is why it such manifolds are called projective algebraic.

The main property of the generalized flag manifolds is that they admit complex

structures which make them projective algebraic manifolds. The theory of projective
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algebraic manifolds is classical and one of its initial subjects is the relation between

holmorphic line bundles on them and their divisors, or codimension 1 subspaces with

multiplicities. For information about this theory we refer to Griffths-Harris [27]. We

will use the fact that the holomorphic line bundles can be described in terms of their

sheaves of holomorphic sections, which have a well defined cohomology. The topology

of the line bundles L over a complex manifold M are determined by the first Chern

class c1(L) ∈ H2(M,Z).

4.5 Riemannian symmetric spaces and associated general-

ized flag manifolds

Let M = G/K be a RSS with G-semisimple and compact, so that the Killing form

is negative definite on g, and thus we have a reductive eigenspace decomposition

g = k⊕ p with respect to the (Cartan) involution θ on g. Recall that we can identify

the tangent space ToM with p, where o = eK is the identity coset in G/K, and we

have the bracket relations [k, p] = p, and [p, p] = k.

We denote by h the Cartan subalgebra of g, and hC its complexification. ∆ =

∆(gC, hC) ⊂ (hC)∗ is the root system of gC with respect to hC, and the root decom-

position

gC = hC ⊕
⊕
α∈∆

(gα)C,

where gα =
{
X ∈ g

∣∣ ad(H)X = α(H)X for all H ∈ h
}

are the root spaces.

Definition 4.5.1. (Definition of rank) Let a be the maximal abelian subalgebra in

p, and m be the Lie algebra of the stabilizer of a in k:

m = ker
(
X 7→ [X, a]

)∣∣
k

=
{
X ∈ k = Lie(K)

∣∣ [X, a] = 0
}
.

27



The rank k of a is called the rank of the symmetric space M = G/K, which is the

maximum dimension of a subspace of the tangent space (to any point) on which

the curvature is identically zero. the existence of is guaranteed by dimenionality

arguments.

As previoiusly mentioned, it is well known that K acts transitively on the set of

all maximal abelian subalgebras in p, and since a is maximal, the centralizer Cg(a) of

a in g is l =
{
X ∈ g

∣∣ [X, a] = 0
}

= m⊕ a.

Remark 4.5.2. If L is the corresponding Lie group with Lie algebra l, then L contains

a maximal torus of G (as a centralizer of an abelian subgroup). Hence, the space G/L

is a generalized flag manifold which carries a natural complex structure and a Kähler

metric. A key observation in [25] Section 3, “From geometric viewpoint a maximal

abelian subalgebra of p is tangent to maximal totally geodesic flat torus and every

such torus is at a point gK tangent to a left translate of some a from o = eK to

gK. In particular, the space parametrizing all maximal totally geodesic flat tori can

be identified with G/Na, where Na is the normalizer of a fixed a in g. As shown in

[33], the centralizer L is a normal subgroup of Na and the quotient Na/L is a finite

group, which is a subgroup of the Weyl group of g. In these terms the generalized

flag manifold G/L is the universal cover of the space parametrizing the set of all such

tori. We call the space G/L a quantization space of G/K. It is closely related to

the horospherical manifold in [34] and [20].”

An important invariant related to the quantization space is the dimension of its

second cohomology. We demonstrate here how this dimension could be identified in

terms of the data provided by the Satake diagram associated to the noncompact dual

Riemannian symmetric space of G/K.
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Denote by m0 = [m,m]. Since m is compact, m0 is the semisimple part of m. We

can consider a maximal torus of g which is θ invariant and contains a. Such torus

is known to exists and since a is maximal abelian in p, then this torus is a Cartan

subalgebra and has the form h = t⊕a with t ⊂ k. Its complexification hC = tC⊕aC is a

Cartan subalgebra of gC. Let ∆ = ∆+∪∆− be a root system with an ordering defining

the positive and negative roots of gC. There is a set Σ of the so called restricted roots

Σ = Σ(gC, aC) ⊂ (aC)∗ and we can choose a basis h1, ..., hk, hk+1, ..., hn of (hC)∗, of

basic roots, such that h1, ..., hk (after restricting them via the projection hC → aC)

are basis for (aC)∗.

We continue to use the same notation h1, ..., hk for the restricted roots. After

we choose an ordering of the basic roots, or equivalently, a positive Weyl chamber,

every element of ∆ (respectively, Σ) is an integer linear combinations with all non-

negative or all non-positive coefficients of h1, ..., hn (respectively, h1, ..., hk). Similarly

we can choose a positive Weyl chamber in the restricted roots. Then mC0 has a root

decomposition with root spaces which are among the root spaces gα of gC with respect

to hC.

4.6 Relation between Satake and painted Dynkin diagrams

The non-compact real form gn of gC, which is dual of g have k as a maximal compact

subalgebra. We want to describe the relation between the Satake diagram of gn and

the painted Dynkin diagram associated to the generalized flag manifold G/L (recall L

comes from a⊕m = l = Lie(L)). We first describe the Satake diagram of gn. For this

we paint the simple roots defining the root spaces of mC0 in black. The Satake diagram

of gn is then the Dynkin diagram of g with the black and white dots as described,
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but with an additional arrows between the white roots, when there is an involutive

automorphism of g such that the difference between the initial and the endpoint of

an arrow is a root in t (see [40] Sect. 4.4 or [12] Sect. 2.3, for the facts about Satake

diagrams).

If we consider a parabolic subalgebra q of gC, which contains lC = mC⊕ aC and is

minimal (i.e., does not contain another proper parabolic subalgebra), then it defines

the complex structure of the generalized flag manifold G/L. Such algebra is not

unique, but the different ones are related via elements of the Weyl group and they

define different invariant complex structures onG/L. As described in [10], q contains a

Borel subalgebra and is described by a subset of simple roots of ∆+ and the complex

structure is defined via the ordering. The painted Dynkin diagram of G/L in an

analog of the Satake diagram and is defined - see [2, 5] as a diagram with vertices

corresponding to the semisimple part of l painted in black. Since l = a ⊕ m, the

semisimple (ss) part of l is precisely lss = m0. The description leads to the following

observation:

Theorem 4.6.1. Let M = G/K is an irreducible Riemannian symmetric space and

G/L is its quantization space. If gn is the non-compact dual form of g with respect

to K, then the Satake diagram of gn with the arrows deleted corresponds precisely to

the painted Dynkin diagram defining the complex structure of G/L.

As a consequence of the above theorem, we obtain:

Corollary 4.6.2. The group H2(G/L,Z) has no torsion and is generated by the

elements corresponding to the white vertices of the Satake diagram of gn.

Proof. The fact that H2 has no torsion is well known. According to [7], there is an

isomorphism Z(lC)∗ ≡ H2(G/L,R), often called transgression, given by α 7→ i
2π
dα.
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It has the property, that the fundamental weights in Z(lC)∗ correspond to elements of

H2(G/L,Z) ∈ H2(G/L,R). Then the first k elements w1, ..., wk of the basis w1, ..., wn

of the fundamental weights dual with respect to the Killing form on g to h1, ...hn,

define an integral basis of H2(G/L,Z). It is known [2, 5], that this basis is generated

via transgression by simple roots corresponding to the white vertices in the painted

Dynkin diagram describing the complex structure of G/L, which are in bijection with

the basis of the center of l. As explained above these are precisely the white vertices

in the corresponding Satake diagram.

4.7 Borel-Weil-Bott Theory

The Borel-Weil-Bott theorem characterizes representations of suitable Lie groups G

as space of holomorphic sections of complex line bundles over flag varieties G/B, for

B a Borel subgroup. With minor modifications added, this is Kirillov’s orbit method,

and the construction may be interpreted as sending a symplectic manifold equipped

with G-Hamiltonian action to its geometric quantization. It is the generalization of

the theorem of Borel–Weil, which we recall here. See [3, 38] for further references.

Theorem 4.7.1. (Borel-Weil Theorem) If B is the Borel subgroup of the complex

semisimple group GC (which can be considered as the complexification of a compact Lie

group G with the maximal torus T = G ∩B ⊂ G), then all unitary irreducible repre-

sentations can be obtained as the spaces of (anti)-holomorphic line bundles associated

to the principal fibration G → G/B over the generalized flag variety GC/B ∼= G/T

with the fiber Cλ, which is the 1-dimensional representation corresponding to a dom-

inant integral character λ; and vice-versa, all such spaces of sections are irreducible.

The inner product is inherited from the Hermitian structure on the line bundle.
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An integral weight λ determines a G-equivariant holomorphic line bundle Lλ on

G/T and the group G acts on its space of global sections, Γ(G/B,Lλ).

The Borel–Weil theorem states that if λ is a dominant integral weight then this

representation is a holomorphic irreducible highest weight representation of G with

highest weight λ. Its restriction to K is an irreducible unitary representation of K

with highest weight λ, and each irreducible unitary representations of K is obtained

in this way for a unique value of λ.

The extension to higher cohomologies instead of spaces of sections, called the

Borel–Weil–Bott theorem, which we also recall here and clarify how the classical

Borel-Weil theorem above follows as a special case.

Set-up: Let G be a semisimple Lie group over C, and T a fixed maximal torus

along with a Borel subgroup B which contains T . Let λ be an integral weight of T ;

λ defines in a natural way a one-dimensional representation Cλ of B, by pulling back

the representation on T = B/U , where U is the unipotent radical of B. Since we

can think of the projection map G → G/B as a principal B-bundle, for each Cλ we

get an associated fiber bundle L−λ on G/B (note the sign). Identifying Lλ with its

sheaf of holomorphic sections, we consider the sheaf cohomology groups H i(G/B, Lλ).

Since G acts on the total space of the bundle Lλ by bundle automorphisms, this

action naturally gives a G-module structure on these groups; and the Borel–Weil–Bott

theorem gives an explicit description of these groups as G-modules.

First we begin by describing the Weyl group W action centered at −ρ. For any

integral weight λ and w ∈ W , we set w ∗ λ := w(λ + ρ) − ρ, where ρ denotes the

half-sum of positive roots of G. It is straightforward to check that this defines a group

action, although this action is not linear, unlike the usual Weyl group action. Let `

denote the length function on the Weyl group W .
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Theorem 4.7.2. (Borel-Weil-Bott theorem)

With the set-up from above, given an integral weight λ, one of two cases occur:

i) There is no w ∈ W such that w ∗ λ is dominant, or equivalently, there exists a

nonidentity w ∈ W such that w ∗ λ = λ, or

ii) There is a unique w ∈ W such that w ∗ λ is dominant.

The Borel-Weil-Bott theorem states that in the first case, we have H i(G/B, Lλ) =

0 for all i; and in the second case, we have H i(G/B, Lλ) = 0 for all i 6= `(w), while

H`(w)(G/B, Lλ) is the dual of the irreducible highest-weight representation of G with

highest weight w ∗ λ.

It is worth noting that case (i) above occurs if and only if (λ + ρ)(β∨) = 0 for

some positive root β. Also, we obtain the classical Borel–Weil theorem as a special

case of this theorem by taking λ to be dominant and w to be the identity element

e ∈ W .

4.8 Spherical representations and Cartan-Helgason Theorem

In the previous section we described the relation between a (unitary) representation

of a compact Iie group G and the spaces of holomorphic section of line bundles

over a generalized flag manifolds. Here we consider the similar question related to

the eigenspaces of the Laplace-Beltrami operator on a Rieamnnian symmetric space.

First we remind the reader the definition of a finite-dimensional representation of a

Lie Group G.
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Definition 4.8.1. A representation of a Lie group G is a group action on a finite-

dimensional vector space V over the field C, which is a smooth group homomorphism

ρ : G→ GL(V ).

We recall the set up of Lie algebra root systems in section 3.2 and root space

decompositions, and the further refinement of restricted root systems in 3.3 and the

restricted root space decomposition.

Let G be a connected noncompact semisimple Lie group, G = KAN an Iwasawa

decomposition, and M the centralizer of A in K, with the usual g, k, a, n and m

the corresponding Lie algebras. Just as before, we extend a to a maximal abelian

subalgebra h of g. Then h = (h∩ k)⊕ a is a Cartan subalgebra of g, and the notation

for complexifications is (∗)C as before.

Since adg(a) is diagonalizable on GC, the root system Σ(g, h) defines a restricted

root system

Σ(gC, aC) :=
{
α|aC

∣∣ α ∈ Σ(g, h), α|aC 6= 0
}
,

and the corresponding positive root system ∆+(gC, aC) and simple roots Σ+(gC, aC).

The essential difference between root systems and restricted root systems is that

one can have several roots with the same restriction to aC, so the restricted root

spaces gCα can have dimension greater than 1. The weights (like the roots of gC with

respect to hC) are real valued on the space hR = i(h ∩ k)⊕ a, where hk := h ∩ k.

The choice of n corresponds to an ordering of the dual space a∗, and denote by Σ+

the corresponding set of positive restricted roots. Choosing a compatible ordering on

the dual of hR produces an ordering on the set of all weights. The Killing form B(·, ·)

on gC induces an inner product on the algebras a, hR, and their duals.
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Next we define Ĝ - the set of inequivalent unitary representations, that contains

as subset the spherical representation of a symmetric pair (G,K) coming from

the symmetric space G/K. These spherical representations are representation of G

which have a fixed vector by K. We can now state the Cartan-Helgason theorem

which characterizes (G,K)-spherical representations by the highest weight:

Theorem 4.8.2. (Cartan-Helgason Theorem, Thm 11.4B [45]) Fix a positive re-

stricted root system Σ+(gC, aC) and a compatible positive system Σ+(gC, hC). Let

[ρ] ∈ Ĝ and λ ∈ (hC)∗

(i) The representation ρ has a nonzero K-fixed vector (i.e. is (G,K)-spherical) if

and only if ρ(M) fixes the highest weight vector of ρ.

(ii) The linear functional λ on hR is the highest weight of an irreducible (G,K)-

spherical representation of G if and only if λ(hR) = 0, and 〈λ,α〉
〈α,α〉 ∈ Z

+ for all

α ∈ Σ+(g, h).

In other words, extending linear functionals from aC to hC by zero on hCk , the

(G,K)-spherical representations of G are parameterized, up to equivalence, in terms

of their highest weights, by
{

(α|aC)∗
∣∣ 〈λ,γ〉
〈γ,γ ∈ Z

+, for all γ ∈ ∆+(gC, aC)
}
.

It is known that the algebra of invariant differential operators on a Rieman-

nian symmetric space is commutative, and in particular every eigenspace of the

Laplace-Beltrami operator is a direct sum of of common eigenspaces. Such com-

mon eigenspaces are known to be precisely irreducible spherical representaion for the

pair (G,K) when G is simple simply-connected and compact.
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CHAPTER 5

EIGENSPECTRA OF THE LAPLACE-BELTRAMI OPERATOR

Recall the formula for the eigenvalues of the Laplacian operator ∆M from D.

Gurarie’s “Symmetries and Laplacians” [30]. We restate Theorem 2 in section 7.7:

Theorem 5.0.1. (Eigenspectra of ∆M)

Let M = G/K and ∆M be Laplacian operator of M , g = Lie(G) = k⊕ p and Σ a

(usually canonical) choice of simple roots Σ = {α1, ...αr} where the rank of M = G/K

is k = dima⊂maxp(a) = rk(M). Then

(i) The eigenvalues {λβ} of ∆M on M are labeled by the restricted weight lattice

[given by the subset] {β =
∑
kjαj

∣∣ kj ≥ 0} of the fundamental Weyl chamber

C, the βth eigenvalue is equal to

λβ = ||β − ρ||2 − ||ρ||2,

where ρ = 1
2

∑
α∈∆+ α = 1

2

∑
αj∈Σmjαj is the half sum of all positive roots (taken

with their multiplicities in the second equality).

(ii) The multiplicity of λβ is equal to the degree of an irreducible representation πβ

of the group G.

In the case of An, the dominant weights are given by β =
∑n−1

i=1 ciαi for ci integers,

defined more precisely in the next definition.

Definition 5.0.2. A weight β is called dominant if 〈β, αi〉 ≥ 0 for all simple roots

αi, meaning β is in the closure of the fundamental Weyl chamber C.

Example 5.0.3. Eigenvalues of the Laplace operator on M = SU(n)/SO(n) for

n ≥ 3.
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We note that M has root system An−1 = sl(n,C). Making use of the definition,

we proceed to calculate in defining inequalities of the fundamental Weyl chamber for

this particular root system, primarily using the definition 5.0.2 above.

For this we compute 〈β, αi〉 ≥ 0 for all i. Useful to note that

〈αi, αj〉 =


2 if i = j

−1 if i = j ± 1

0 otherwise

which are precisely the entries in the Cartan matrix of the algebra An−1.

For i = 1, we have

〈β, α1〉 = 〈
n−1∑
k=1

ckαk, α1〉 =
n−1∑
k=1

ck〈αk, α1〉 = 2c1 − c2 ≥ 0,

for 1 < i < n− 2, we deduce

〈β, αi〉 = 〈
n−1∑
k=1

ckαk, αi〉 =
n−1∑
k=1

ck〈αk, αi〉 = −ci−1 + 2ci − ci+1 ≥ 0,

and finally for i = n− 2, we get

〈β, αn−1〉 = 〈
n−1∑
k=1

ckαk, αn−1〉 =
n−1∑
k=1

ck〈αk, αn−1〉 = −cn−2 + 2cn−1 ≥ 0

We begin by finding the defining inequalities of its fundamental Weyl chamber,

which is as easy as

n−1∑
k=1

ck〈αk, α1〉 = 2c1 − c2 ≥ 0

in the case i = 1. For 1 < i < n− 2, we deduce

〈β, αi〉 = 〈
n−1∑
k=1

ckαk, αi〉 =
n−1∑
k=1

ck〈αk, αi〉 = −ci=−1 + 2ci − ci+1 ≥ 0,
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And finally, for i = n− 2, we get

〈β, αn−1〉 = 〈
n−1∑
k=1

ckαk, αn−1〉 =
n−1∑
k=1

ck〈αk, αn−1〉 = −cn−2 + 2cn−1 ≥ 0.

Combining these inequalities gives us the defining inequalities in our chosen basis

of the simple roots for the fundamental Weyl chamber

C :


2c1 ≥ c2

2ci ≥ ci−1 + ci+1 for i = 2, 3..., n− 2

2cn−1 ≥ cn−2

So computing it for

β =
n−1∑
i=1

ciαi = c1



1

−1

0

...

0


+ ...+ ci



0

...

1

−1

...

0


+ cn−1



0

...

0

1

−1


=



c1

c2 − c1

...

ci − ci−1

...

−cn−1


.

To considerably simplify matters a bit further, we make the substitution xi = ci−1

for i = 1, 2, ..., n− 1, so ci − ci−1 = ci − 1− (ci−1 − 1) = xi − xi−1 and we can rewrite

β − ρ =



x1

x2 − x1

...

xi − xi−1

...

−xn−1


,

38



and applying the theorem at the beginning of this section, we have

‖β − ρ‖2 := x2
1 + (x2 − x1)2 + ...+ (xn−2 − xn−1)2 + (−xn−1)2

= x2
1 + x2

2 − 2x1x2 + ...+ x2
n−1 − 2xn−2xn−1 + x2

n−2 + x2
n−1

= 2

(
n−1∑
i=1

x2
i −

n−2∑
i=1

xixi+1

)

=
(
x1, x2, ..., xn−1

)



2 −1 0 ... 0 0

−1 2 −1 0 ... 0

...

0 −1 2 −1 0

0 ... 0 −1 2 −1

0 ... ... 0 −1 2





x1

x2

...

xn−1



= xT ∗ C ∗ x

This calculation gives us a convenient and useful expression for the norm. In

particular, we see that the eigenspaces the Laplace-Beltrami ∆M corresponding to

eigenvalue λβ = ‖β − ρ‖2 − ‖ρ‖2 split into irreducible representation subspaces when

the Diophantine equation
∑n−1

i=1 x
2
i −

∑n−2
i=1 xixi+1 = Q where Q = λβ + ‖ρ‖2 does

not depend on xi > 1, has more than one integer solution in the fundamental Weyl

chamber.

We can carry out the same procedure for the remaining classical and exceptional

noncompact (ss) Lie algebras. The resulting Diophantine equation in standard coor-

dinates for the other Lie algebras, but under a linear change of coordinates it can be

put into a similarly elegant form like the one above for An−1 = sl(n,C).

Using the well-known and well documented data for simple Lie algebras, found

in a plethora of resources including ([38], Appendix C), we can carry out the same
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calculations to find the Diophantine equation and Weyl chamber for all the algebras,

to later apply them to corresponding RSS’s, and carry out a similar procedure using

the corresponding the root system and (fundamental) Weyl chamber (equivalently,

the ordering we choose for simple roots), and can use it to find the eigenspectrum

for higher rank compact RSS’s, which consequently is related with the geometric

quantization of its geodesic flow. The Laplace eigenspectra of CROSSes are well

known, see Gurarie [30] for example, yet the same is not true for the compact RSS

of higher rank than 1. So we will dedicate a section here to use number theoretic

techniques to describe the spectrum of rank two systems, and then beyond.

5.1 Laplace eigenspectra of rank 2 Riemannian symmetric

spaces

The rank 2 root systems are A1 × A1, A2, B2, C2, D2, and the the root system of the

exceptional Lie group G2, but only 4 irreducible systems upto isomorphism since

A1 × A1
∼= D2 and B2

∼= C2. For example, the rank 2 compact symmetric space

M = SU(3)/SO(3) corresponds a the split real form of su(3)C = sl(3,C) which has

root system A2.

5.2 Lie algebras with root system A2

Proposition 5.2.1. Eigenspectrum of M = SU(3)/SO(3) using the A2 root system.

Setting n = 3 in example 5.0.3, and for simplicity calling x1 = x and x2 = y,

Theorem 5.0.1 and example 5.0.3. enables to find the eigenvalues of ∆M by finding

dominant weights β in the fundamental Weyl chamber C as the integer (or lattice
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points) that satisfy the eigenvalue formula

λβ = ||β − ρ||2 − ||ρ||2,

which we can reformulate as the solutions to the integral Diophantine equation (since

||ρ||2 is always constant), natural numbers n ∈ N>0 such that

C(A2, n) :=
{
n = λβ + ||ρ||2 := ||β − ρ||2

∣∣ x2 − xy + y2 = n
}
.

Proof. For M = SU(3)/SO(3) we look at the few small individual cases separately,

like the case Q = 1. But what will turn out to be a reccuring theme, perfect squares

such as 1, 4, 9, ..., n2, ... always have Q = n2 itself as the trivial solution (n, n) meaning

if x = n and y = n, since clearly

(x2 − xy + y2)|(x,y)=(n,n) = n2 − n2 + n2 = n2

is always satisfied, so is essentially a trivial solution.

The nontrivial solutions require the number theory concerning integer solutions

to integral quadratic forms of a finite number of variables.

For primes p = 2 and p = 3, these can be worked out by hand. So suppose p is

an (odd) prime greater than 3. We are interested in the solutions to the equation

1

2
||β − ρ||2 = x2 − xy + y2 = p.

The first step is to see which primes this Diophantine quadratic form corresponding

to A2 has (nontrivial) solutions in C. To this end, we begin by multiplying by 4 and

performing an affine transformation:

4(x2 − xy + y2) = 4x2 − 4xy + 4y2 = (2x)2 − 2(2x)(y) + y2 + 3y2

= (2x− y)2 + 3y2,
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hence, we have

4(x2 − xy+y2) = (2x− y)2 + 3y2 = 4p

⇒ X2 + 3Y 2 = 4p,

after changing variables to X = 2x− y and Y = y.

We now let Z = X
Y

and solve the corresponding modular congruence after modding

out by p and use quadratic residues to determine if some solutions can be lifted from

the modular equations to the Diophantine ones.

Z2 + 3 ≡ 0 (mod p) or Z2 ≡ −3 (mod p).

Lemma 5.2.2. Z2 ≡ −3 (mod p) has (nontrivial) solutions if and only if p ≡

1 (mod 6).

Proof. The proof is straightforward and relatively simple using formulas for Legendre

symbols (and its properties) and the law of quadratic reciprocity (QR). For the reader’s

convenience we will recall the facts and formulas used in the following proof:

(i) Z2 ≡ −3 (mod p) has (non-trivial) solutions ⇐⇒ the Legendre symbol
(
−3
p

)
=

1.

(ii) Legendre symbol’s multiplicative properties: for a, b ∈ Z we have
(
ab
p

)
=(

a
p

)(
b
p

)
.

(iii) Particular formulas for a = −1 and b = 3:

(
−1

p

)
= (−1)

p−1
2 =


1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)
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(
3

p

)
= (−1)b

p+1
6
c =


1 if p ≡ 1 or 11 (mod 12)

−1 if p ≡ 5 or 7 (mod 12)

(iv) The Law of Quadratic Reciprocity (QR):
(
q
p

)(
p
q

)
= (−1)

p−1
2

q−1
2

So it follows, beginning from (i) above, that

Z2 ≡ −3 (mod p) has (non-trivial) solutions ⇐⇒ the Legendre symbol

(
−3

p

)
= 1

⇐⇒
(
−1

p

)(
3

p

)
= 1

⇐⇒ (−1)
p−1

2

(
3

p

)
= 1

⇐⇒ (−1)
p−1

2 (−1)
p−1

2
3−1

2

(p
3

)
= 1

⇐⇒
(p

3

)
= 1.

Hence p must have remainder 1 modulo 3, i.e. p = 3k + 1. However, since we are

only considering odd primes, k ∈ 2Z must be even because for odd k, k = 2k1 + 1,

then 3k + 1 = 3(2k1 + 1) + 1 = 6k1 + 3 + 1 = 6k1 + 4 = 2(3k1 + 2) ∈ 2Z, and

hence cannot be a prime number. Thus p = 3(2k1) + 1 = 6k1 + 1. This completes the

proof.

Recalling the well known theorems found in [8] to carry out the remaining char-

acterization of the Laplace eigenspectra of SU(3)/SO(3) corresponding to A2 and all

other rank two compact RSSs, via the same approach.

Theorem 5.2.3 (Chevalley’s Theorem). If F (x1, ..., xn) is a form of degree less than

n, then the congruence

F (x1, ..., xn) ≡ 0 (mod p)

has nonzero solutions.
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Theorem 5.2.4 (Warning’s Theorem). The number of solutions to the congruence

F (x1, ..., xn) ≡ 0 (mod p)

is divisible by p, provided that the provided that the degree of F is less than n.

We apply immediate consequences of the theorems above to the case of (binary)

quadratic forms, that is, forms of the type f(x, y) = ax2 + 2bxy + cy2. In this case

the discriminant of f is d(f) = ac− b2.

Corollary 5.2.5. The congruence

f(x, y) ≡ 0 (mod p)

has a nonzero solution if and only if p divides −d(f) or −d(f) is a quadratic residue

modulo p.

Furthermore, the number of nonzero solutions of the congruence f(x, y) ≡

0 (mod p) where f(x, y) is a quadratic form with discriminant d(f) not divisible by

p, provided p 6= 2, is

N(p) := number of nonzero solutions to f(x, y) := C(A2) ≡ 0 (mod p).

To continue the case of the system A2, we take a = 2, b = −1, c = 2 to get the

solutions of the binary quadratic Diophantine equation (set equal to some number

n = p) C(A2) = f(x, y) = 1
2
||β − ρ||2 = x2 − xy + y2 ≡ n, (n ∈ N>0) coming

from what we call from here the corresponding Cartan quadratic form of the root

system (A2 in this case) obtained from Gurarie’s formula for the eigenvalues, and

solve f(x, y) = x2 − xy + y2 ≡ 0 (mod p). Note that d(f) = (2)(2)− (−1)2 = 3 is not

divisible by p > 5, which includes all 6k+1 = 3(2k1)+1 primes (for k, k1 ≥ 1), and in

Lemma 6.2 we obtain the primes p for which this has nonzero solutions, namely all p’s
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of the form p = 6k + 1 > 5. The only other case, where we have at least one nonzero

solution (except as pointed out n = k2 for k ≥ 1), is for the numbers n = 3kp’s that

are divisible by 3 (and hence all powers of 3, 3k, k ≥ 1), which are also of the same

form: p2 = (6k+1)2 = 36k2+12k+1 = 6k(6k+2)+1 and n2 = (3(2k1)+1)2 = 6k2+1,

and the same for n = 3kp.

We require a few more straightforward observations. The first is the simple ob-

servation of noticing the symmetry: if (x, y) is a solution, then so is (−x,−y), (y, x),

and (−y,−x), for obvious reasons. Hence solutions come in symmetric pairs except

in the exceptional case in the next observation. We will see that we can disregard

negative solutions because we are interested only in solutions in the fundamental Weyl

chamber, which we will elaborate more very soon.

As foreshadowed earlier, since we always have the trivial solution 12−(1)(1)+12 =

1, that is, (x, y) = (1, 1) and x2 − xy + y2 = n2 is equivalent to
(
x
n

)2 −
(
x
n

) (
y
n

)
+(

y
n

)2
= 1, we always have a trivial solution which is the solution (1, 1) scaled by n:

n ∗ (1, 1) = (n, n).

The following observation has to do with powers of the 1 modulo 6 primes and

n = 3p, is powers of them, pk. The case of n-perfect squares is determined above,

and powers of them here. Because of the trivial solution when n = N2n1 has a

factor of a perfect square, the pairity of k changes the situation because if k is even,

then we get an extra trivial solution because of the previous observation. The final

observation is that we must take the solutions that lie in the fundamental Weyl

chamber C = C(A2), in this particular case defined by the open cone in the first

quadrant defined by 0 < x < 2y < 4x. So we define our counting function for the
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number of nonzero solutions, and it follows that

N(p) =
∣∣∣{(x.y) ∈ N× N

∣∣ x2 − xy + y2 ≡ 0 (mod p)
} ∣∣∣ = (p− 1)

1 +
(
�
�
�
��

1

−d(f)

p

)
= 2(p− 1)

if p is 1 modulo 6. Next we restrict our solutions to the Weyl chamber C, which

is equivalent to modding out by the Weyl group W = W(A2) ∼= S3, the symmetric

group on 3 letters, of cardinality |S3| = 3! = 6, which not coincidentally the number

if distinct Weyl chambers, because the Weyl group simply permutes the fundamental

chamber a |W| number of times.

So we can summarize this by attaching an index of the root system to the counting

function to remind us that we are only counting solutions in the fundamental Weyl

chamber.

NA2(p) :=
∣∣∣{(x.y) ∈ N× N

∣∣ x2 − xy + y2 = p, 0 < x < 2y < 4x
}∣∣∣ .

Proposition 5.2.6. The number of nontrivial solutions of inside the fundamental

Weyl chamber C of the root system A2 (related to the eigenspectrum of the Laplace

operator on the corresponding symmetric space), via the Diophantine equation induced

by the Cartan quadratic form C(A2) set equal to a prime p > 5 of the form p = 6k+1

is

NA2(p) = 2k2.

Proof. We noted above that for such 1 mod 6 primes greater than 5, N(p) = 2(p−1).

Moreover, the Weyl group of An is isomorphic to the symmetric group Sn+1 on n+ 1

letters (of order (n + 1)!), and remembering we will get the symmetric solution to
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(x, y) ∼ (y, x) :

W(A2) ∼= S3 =⇒ |S3| = 3! = 6 = |W(A2)|.

Hence, for p = 6k + 1 > 5 we have now elementary calculation

NA2(p) = k
N(p = 6k + 1)

|W(A2)|
= k

2(p− 1)

|6|
= k

2(6k + 1− 1)

6
= k

(6k)

3
= 2k2.

That concludes the proof of the proposition.

The multiplicative nature of the solutions NA2(p1p2) = NA2(p1)NA2(p2), shown by

induction on powers of a prime factor n = pl, p = 6k + 1 > 5, l > 1 is NA2(pl) = l+ 1

from which it generalizes for products n =
∏r

i=1 p
li
i :

Corollary 5.2.7. (i) For all li ≥ 0, the number of solutions for n =
∏r

i=1 p
li
i is

NA2(n) =
r∏
i=1

NA2(plii ) =
r∏
i=1

(li + 1) = (l1 + 1)(l2 + 1)...(lr + 1)

where again when pi = 6k + 1 > 5 is prime.

(ii) The final case is when some n from case 2. is multiplied by a factor of a power

of 3, i.e. n′ = 3ln > 3, (l ≥ 1) has the same number of solutions as n, that is,

NA2(n′) = NA2(n).

(iii) Finally, if any such n discussed so far contains (or more precisely is multiplied

by another prime number that is not p 6= 6k + 1 like 5, 11, 17, 23, 29, not

31 = 6 ∗ 5 + 1, etc.., then there is NO (nontrivial) solutions.

This corollary completes the necaessary number theory required to completely

describe and characterize the spectrum of A2, corresponding to the Laplacian operator

∆M eigenspectrum on the corresponding symmetric space M = SU(3)/SO(3). In this
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case, the half sum of the positive roots ρ = 1
2

∑
α∈∆+ α is ρ = 1

2
(2α1 + 2α2) =


1

0

−1


has norm ||ρ||2 = 2, so the eigenvaues are given by dominant weights λβ such that

n = λβ + ||ρ||2 = λβ + 2 = ||β − ρ||2 = C(A2, n) (and λβ = ||β − ρ||2 − ||ρ||2)

has nonzero integral solutions and the eigenspectrum of 1
2
∆M for the compact RSS

M = SU(3)/SO(3).

Putting together all the considerations above in Corollary 5.2.7, the eigenspec-

trum of the (semi) Laplacian operator on the compact Riemannian symmetric space

M = SU(3)/SO(3) of rank 2, corresponding to the root system A2, is characterized

explicitly below:

Theorem 5.2.8. The eigenspectrum of the (semi) Laplacian operator 1
2
∆M of M =

SU(3)/SO(3) as above, the compact dual RSS corresponding to the split real form of

A2 is:

Spec

(
1

2
∆SU(3)/SO(3)

)
=
{
λβ = n− 2

∣∣ n is any number of the type in Corollary 5.27 above
}

=

{
λβ = n− 2

λβ = n′ − 2

∣∣∣∣∣

n =

∏r
i=1 p

li
i , li ≥ 0,

n′ = 3ln > 3, l ≥ 1,

5 < pi = 6k + 1-prime

}
.

A few more elaborate but similarly computed examples are the remaining rank 2 sys-

tems, the algebra B2 = so(2(2) + 1,C) ∼= C2, D2 = so(2(2),C) ∼= A1 × A1, and the

exceptional rank 2 Lie algebra with root system G2.
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5.3 Lie algebras with root system B2

To continue the computations of Laplace eigenspectra of compact RSSs of rank 2 using

the rank 2 root systems, we cite the root system data found in many locations including

[38] Appendix C, pg. 510. For D2. using the space with standard basis e1 and e2, R2 =

spanR(e1, e2) = Re1 ⊕ Re2, the root system B2 has the set of of simple roots Σ = {α1, α2}

with α1 = e1 − e2 =

 1

−1

, and α2 = e2 =

0

1

 . Then as before the eigenvalues λβ of

1
2∆M are given by dominant weights in the fundamental Weyl chamber C = C(D2) 3 β =

xα1 + yα2 =

 x

y − x

 such that λβ = ||β − ρ||2 − ||ρ||2, where the half sum of positive

roots is ρ = 3
2e1 + 1

2e2 =

3
2

1
2

 . Hence, by the similar analysis and changing variables


2u = 2x− 3

2v = 2y − 4

to write

||β − ρ)||2 = ||1
2

(2β − 2ρ)||2 =
1

4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 2x− 3

2y − 2x− 1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=
1

4

(
[2x− 3]2 + [2y − 2x− 1]2

)
=

1

4

(
[2x− 3]2 + ([2y − 4]− [2x− 3])2

)
=

1

4

(
[2u]2 + [2v − 2u]2

)
= u2 + (v − u)2.

Setting equal to some prime number p > 3 and diving out by a variable, say u, letting

z = v/u− 1, and modding out by p,

z2 + 1 ≡ 0 (mod p),

which has solutions for p ≡ 1 (mod 4).

The final eigenspectra for RSSs of Lie algebras with root system G2 are computed in

the same way, which completes the necessary work to compile the table for rank two spaces.
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CHAPTER 6

SYMPLECTIC REDUCTION AND GEOMETRIC QUANTIZATIONS

First let us recall some basics of Marsden-Weinstein (or symplectic) reduction. Let

(M,ω) be a symplectic manifold and suppose G acts on M leaving ω invariant. This action

is called a Hamiltonian if there is a smooth equivariant map µ : M → g∗, s.t. for all X ∈ g,

dµ(X) = iXω,

and the function µX is defined by

µX(p) = 〈µ(p), X〉, X ∈ g, p ∈M.

The moment map is assumed to be equivariant with respect to the co-adjoint action

Ad∗ of g∗, that is, 〈Ad∗(g)ξ, Y 〉 = 〈ξ,Ad(g−1)X〉, for all g ∈ G, ξ ∈ g∗, X ∈ g; and the

corresponding infinitesimal action ad∗, 〈ad∗(X)ξ, Y 〉 = 〈ξ,−[X,Y ]〉.

An alternative definition of the moment map can be given in terms of Hamiltonian

vector fields and Poisson brackets. Refer to [31] for such a formulation.

Definition 6.0.1. A point p ∈ M is called a regular point if the tangent map dµp :

TpM → g∗ is surjective. The set of regular points of µ is denoted by Mreg. We will write

µreg for the restriction of µ to Mreg.

An element ξ ∈ g∗ is called a regular value of µ if all points in the inverse image

µ1(ξ) are regular. By the implicit function theorem, the subset µ−1
reg(ξ) ⊂ M is a smooth

submanifold, for all ξ ∈ g∗. Because the map µ is equivariant, the submanifold µ−1
reg(ξ) is

invariant under the action of the stabilizer group Gξ.

Definition 6.0.2. Let (M,ω) be a connected symplectic manifold, equipped with a Hamil-

tonian action ofG. Let ξ ∈ g∗ be a regular value of the moment map µ.When such a moment

map µ exists, the action is called Hamiltonian and the space N = Nξ := µ−1(ξ)/Gξ is called

the Marsden-Weinstein (symplectic) reduction , and ξ is a fixed element of the adjoint

action of G on g∗. N will be denoted by M//G, and inherits a natural symplectic form ωred
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such that i∗ω = π∗ωred, where i : µ−1(ξ) ↪→ M and π : µ−1(ξ) → Nξ = µ−1(ξ)/Gξ are the

natural inclusions and projections.

Suppose that the stabilizer Gξ of ξ acts properly and freely on the submanifold µ−1(ξ) of

M , i.e. assume the G-action is transitive and the moment map µ is proper, so that the orbit

space (or reduced space) Mξ = µ−1(ξ)/Gξ is a smooth manifold, and Mξ = µ−1(ξ)/Gξ =

µ−1(G·ξ)/G, where G·ξ is the co-adjoint orbit through ξ. Then there is a unique symplectic

form ωξ on Mξ such that π∗ωξ = i∗ω.

Remark 6.0.3. If a Lie group G of isometries acts on a manifold M , this action induces

the Hamiltonian action on T ∗M and the reduced space T ∗M//G is a reduced Hamiltonian

system. Whenever T ∗M//G = N for some Riemannian manifold N , then the solutions of

the new system comprise of the geodesic flow on N .

6.1 The geodesic flow of symmetric spaces of rank one

We first recall Marsden-Weinstein (or symplectic) reduction and then the modified Konstant

- Souriau geometric quantization scheme (twisted half of the canonical bundle - see Czyz [15]

and Hess [35]). In [39] the authors related the energy spectrum of the quantized geodesic

flow on a sphere with the eigenvalues of the Laplace-Beltrami operator.

In what follows we first notice a generalization of this result from a representation theory

viewpoint to all compact rank-one Riemannian symmetric spaces (CROSSes). Then we

provide a similar detailed computations for two examples - CPn and HPn. The exposition

follows [25] and is used later to determine a generating set of eigenfunctions defined by

harmonic polynomials in an ambient space.

For more details on the Marsden-Weinstein (or symplectic) reduction we refer the reader,

for example, to [1], here we provide a partial review of the results we need later. If (M,ω) is a

symplectic manifold and H is a function on M , then the vector field XH defined as dH(Y ) =

ω(XH , Y ) is called Hamiltonian vector field. We will call H a Hamiltonian function and
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the triple (M,ω,H) - a Hamiltonian system. If G is a group of symplectomorphisms then

under mild conditions there is a map µ : M → g∗, defined by

dµ(X) = iXω,

where g is the Lie algebra of G and X ∈ g is identified with the induced vector field on M .

When such µ exists, the action is called Hamiltonian and the space N = µ−1(c)/G is called

the Marsden-Weinstein reduction or the symplectic reduction, where c is a fixed element of

the adjoint action of G on g∗. We denote N by M//G. The space M//G inherits a natural

symplectic form ωred such that i∗(ω) = π∗(ωred), where i : µ−1(c)→M is the inclusion and

π : µ−1(c) → N = µ−1(c)/G is the natural projection. The following results will be used

repeatedly in the paper (c.f. [1] for the proof).

Proposition 6.1.1. If (N,ωred) is the symplectic reduction of (M,ω) under the action of a

Lie group G and H is a G-invariant function on M , then there is a unique function Hred on

N such that π∗(Hred) = i∗(H). Moreover, the flow of the vector field XH preserves µ−1(c)

and projects on N to the flow of the vector fields XHred. Moreover, if we have a second

Hamiltonian action of a Lie group G1 on M which commutes with the action of G, then

the level sets of its moment map µ1 are G−invariant and µ1|µ−1(c) = π∗(µ1) where µ1 is

the moment map associated to the action of G1 on N .

Proposition 6.1.2. If G is a compact group of isometries acting freely on the Riemannian

manifold (M, g) and N = M/G is the orbit space, then for the canonical symplectic forms

ΩM ,ΩN on T ∗M,T ∗N , respectively, we have T ∗N = T ∗M//G with ΩN being the reduced

form from ΩM .

The geodesic flow on a Riemannian manifold is represented as a Hamiltonian flow on

its cotangent bundle. The cotangent bundle of each Riemannian manifold (M, g) has a

canonical symplectic form given in local coordinates as Ω =
∑
dxi∧dyi where (x1, ..., xn) are

local coordinates of M and (x1, ..., xn, y1, ..., yn) are the associated local coordinates of T ∗M .
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Then the function H(x, v) = 1
2g(v, v) for x ∈ M and v ∈ T ∗xM has a Hamiltonian vector

field XH and its flow lines project on M to give the geodesics. In particular, iXHΩ = dH.

If all the geodesics of M are closed, then they define an S1-action on T ∗M with orbits

(c(t), g(c′(t)) for a geodesic c(t) and the dual 1-form g(c′(t)) of its tangent vector c′(t).

This means that the moment map µ(x, v) at (x, v) ∈ T ∗M,v ∈ T ∗xM for this S1-action is

precisely µ = H. When we fix the level c of the moment map, the points in the reduced

space H−1(c)/S1 represent (oriented) geodesics on M with tangent vectors of length c. This

shows that Geod(M) = T ∗M//S1 as sets where Geod(M) is the set of oriented geodesics

on M . We note that the reduced form Ωc from the canonical form on T ∗M depends on

the choice of the level set µ−1(c) for the moment map of the action µ (which is called the

energy of the geodesic flow).

Now recall some facts about the quantization scheme of Konstant and Souriau with the

amends of Czyz and Hess [15, 35]. Let X be a compact Kähler manifold with Kähler form

λ. We say that the holomorphic line bundle L is a quantum line bundle if its first Chern

class satisfies

c1(L) =
1

2π
[λ]− 1

2
c1(X).

Thus, X will be quantizable if and only if 1
2π [λ]− 1

2c1(X) ∈ H2(X,Z) . The corresponding

quantum Hilbert space is the (finite dimensional) linear space H0(X,O(L)). We want to

apply the scheme to the space of geodesics of a Riemannian manifold all of whose geodesics

are closed.

Main examples of such manifolds are the CROSSes. Recall that for a compact irreducible

Riemannian symmetric space G/K with simple Lie group G we associated a quantization

space G/L, which covers the space parametrizing all maximal totally geodesic flat tori in

G/K. The space G/L is a generalized flag manifold, so smooth projective variety and from

the description of its second cohomology we know that its Picard group contains the center

of l = a⊕m. In particular it contains the fundamental weights w1, ..., wk which correspond

to the restricted roots for a. Now denote by L = Li1,...,ik the holomorphic line bundle on
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G/L determined by w = i1w1 + ... + ikwk, where ij ≥ 0. By Bott vanishing the higher

cohomology of L are zero. The space H0(G/L,O(L)) is a (unitary) representation of G

with highest weight w. The Borel-Weil theorem shows that the representation is irreducible

if w is dominant, and corresponds to the (unique) irreducible representation with highest

weight w [42].

On the other side, the general theory for the Laplace spectrum on symmetric spaces

([11, 43]) tells us that the eigenvalues are given by λ = ||ρ((aC)∗)+w||2−||ρ((aC)∗)||2 where

w is as before and ρ((aC)∗) is the half sum of positive restricted roots of aC. When the

center of l is a, ρ represents one half of the first Chern class of G/L, so ρ((aC)∗) +w is the

first Chern class of L ⊗K
1
2 .

In this Section we focus on the case of Riemannian symmetric spaces of rank one, since

the correspondence in this case is most studied and related to the classical quantization

of the geodesic flow. In the next sections we’ll generalize the scheme to the symmetric

spaces of higher rank. When the rank of M is one, the space of the restricted roots Σ is

1-dimensional as is the Weyl chamber in it. The set of fundamental weights in it is (see

[32]):

Λ+ =

{
λ ∈ aC

∣∣ 〈λ, ψ〉
〈ψ,ψ〉

∈ Z+, forallψ ∈ Σ

}
and in the rank one case is generated by a single element θ. The considerations above give

the following result, which we will generalize in the next section.

Theorem 6.1.3. let M = G/K be an irreducible simply-connected compact Riemannian

symmetric space of rank one (CROSS). Then up to re-scaling of the metric on M the

following are true:

i) Under the transgression the reduced symplectic form Ωc on Geod(M) = G/L = T ∗M//S1

corresponds to π
√

2cθ and with the choice of the positive Weyl chamber and complex

structure as above, c1(G/L) corresponds to NMθ for a positive integer NM .
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ii) The quantum condition on (Geod(M),Ωc) (i.e. [Ωc] ∈ H2(G/L, )) provides the follow-

ing energy spectrum: ck = 1/2(NM + 2k)2.

iii) The spectrum of the (semi)-Laplacian 1
2∆M on M is given by λk = ||kθ + ρ(aC)||2 −

||ρ(aC)||2 and ck = ||kθ+ρ(aC)||2 where ρ(aC) is the half-sum of the positive restricted

roots of aC.

iv) The multiplicities of ck and λk coincide with the dimension of the (finite - dimensional)

representation L(kθ) of g with highest weight kθ relative to (h,∆). Moreover the

representation L(kθ) is isomorphic to both the (complex) eigenspace L2(M)λk of ∆M

corresponding to λk and the quantization space H0(Geod(M),O(Lk)).

Proof. The spaces in the Theorem are classified and are Sn,CPn,HPn, CaP 2. In the two

examples below we give a proof in case of n and n. The case of Sn is considered in [39].

In [39] the space of oriented geodesics of M = Sn is explicitly identified with the complex

quadric in n via the Marsden-Weinstein reduction. It was noted that the energy levels of the

moment map that satisfy a quantization condition coincide, up to an additive constant, with

the eigenvalues of the Laplace-Beltrami operator and the their multiplicity are the same as

the (complex) dimension of the holomorphic sections of the corresponding quantum bundle

L(kθ) ( see also [41] for related results).

Finally, consider the case CaP 2 = F4/Spin(9). Since M has rank one, then the reduc-

tion identifies the level set of the moment map with a spheric bundle over M . From [18]

Proposition 3.3 follows that it is diffeomorphic to F4/Spin(7). This gives an identification

of the quantization space with F4/Spin(7)×S1. Its painted Dynkin diagram from [5], Table

4 and Corollary 4.6.2 follows that H2(F4/Spin(7)× S1,Z) = Z, so the reduced form Ωc is

proportional to the generator. Since the generator corresponds to θ under the transgression,

and the proportionality constant depends on c, and (i) follows. Then (ii) follows by the

quantization condition, (iii) and (iv) by combining the results from [11] and Borel-Weil

Theorem.
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We note that the simply-connected requirement could be lifted and similar statement

could be stated for RPn.

For the remainder of the paper, we use the notation (·, ·) for the standard SO(n)-

invariant bilinear form on Cn, i.e., (a, b) =
∑n

i=1 aibi for a, b ∈ Cn.

6.2 The sphere Sn

We will quickly outline the scheme for the n-sphere, with reference to [39, 41]

Sn =
{
x ∈ Rn+1

∣∣ (x, x) =
∑

x2
k = 1

}
.

Using the round metric we identify the tangent and cotangent bundles with the set

T ∗Sn =
{

(x, y) ∈ R2n+2
∣∣ (x, x) = 1, (x, y) = 0

}
.

The canonical symplectic form on T ∗Sn is given by the restriction of
∑
dxi ∧ dyi.

Moreover we can define a compatible (also called an adapted) complex structure via

zi = yi +
√
−1|y|xi

so that the canonical symplectic form becomes Kähler. The set T ∗Sn − 0 which is the set

of all non-zero cotangent vectors is the complex quadric{
z ∈ Cn

∣∣ (z, z) = 0, z 6= 0
}
.

The geodesic flow is defined as the flow of the Hamiltonian vector field XH for the

function H(x, y) = 1
2 ||y||

2. Since all geodesics in Sn are closed, they define a S1-action on

T ∗Sn with orbits - the orbits of XH . In particular H is also a moment map for this action

and the energy level sets H−1(c) are S1-invariant. The quotient H−1(c)/S1, which is called

symplectic reduction, can be identified with the projective quadric

Q =
{

[z] ∈ CPn
∣∣ (z, z) = 0

}
.
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Eigenvalues of the Laplace-Beltrami operator are known to be λk = k(n+k−1). Also the

corresponding (complex valued) eigenfunctions are restrictions of harmonic homogeneous

polynomials of degree k in Rn+1. A simple way to describe them is as the span of the set

pa(x) = (a, x)k where a ∈ Cn with (a, a) = 0.

The reduction construction provides a Kähler form Ωc. Then the following is true:

i) The form Ωc defines a first Chern class of a holomorphic line bundle Lk with c1(Lk) =

c[Ω]− 1
2c1(Q) over Q when

c = ck =
1

2

(
k +

n− 1

2

)2

= λk +
1

2

(
n− 1

2

)2

.

ii) The space of holomorphic sections of Lk is identified as the span of functions Pa(z) =

(a, z)k on Cn+1.

Our goal is to generalize this picture to other manifolds - the remaining compact Rie-

mannian symmetric spaces (CROSSes).

Remark 6.2.1. The re-scaling factor mentioned in the Theorem could be different for the

different spaces. It is known that the eigenvalues of the Laplace-Beltrami operator for Sn

and n are k(n+k−1) and 4k(n+k) in the round metric on Sn and the Fubini-Studi metric

on n respectively. So the two metrics are rescaled differently, one by a factor 4 times the

other.

We continue with the explicit calculations of the two classical simply-connected projec-

tive spaces.

6.3 Complex projective space

We’ll use and extend here the results of [16]. Throughout this subsection for complex vectors

z, w ∈ Cn we denote by 〈z, w〉 = Re
∑
ziwi their hermitian scalar product and by (z, w) =∑

zkwk the complex scalar product so ||z|| =
√
〈z, z〉. For a point [z] = [z0, z1, ..., zn] in
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the complex projective space CPn, we identify the holomorphic cotangent space

T ∗[u]CP
n ∼=

{
([u], v) ∈ {[u]} × Cn+1

∣∣ (u, v) = 0
}

where we used the Fubini-Study metric to identify the tangent and cotangent bundles. To

achieve a global description of the cotangent bundle, we use the Hopf map π : S2n+1 → CPn

which is induced by the standard action of S1 on S2n+1. This map is defined by u 7→ [u],

where u ∈ R2n+2 = Cn+1 with ||u|| = 1. After identifying the tangent and cotangent

bundles of the sphere via the canonical metric, we can identify the cotangent bundle as

T ∗S2n+1 =
{

(u, v) ∈ Cn+1 × Cn+1
∣∣ ||u|| = 1, 〈u, v〉 = 0

}
Then the S1-action ρ for the Hopf projection π extends to T ∗S2n+1 as

ρ(eiθ)(u, v) = (eiθu, eiθv)

. This action preserves the canonical symplectic form on T ∗S2n+1, which is given by

i∗Re (du ∧ dv). The moment map for the action ρ can be used to show the following

theorem. This theorem is first proven in [16], but for reader’s convenience a short proof

is presented. We consider the cotangent bundle with its zero section deleted T ∗0CPn (and

T ∗0 S
2n+1) in order to avoid the singularity issues since they are irrelevant in the paper.

Lemma 6.3.1. The space T ∗0CPn is diffeomorphic to both XC and X̃C where

XC
∼=
{

[u, v]
∣∣ ||u|| = 1, (u, v) = 0, v 6= 0

}
with [u, v] representing the class of (u, v) under (u, v) ∼ (eiθu, eiθv) and

X̃C
∼=
{

[[u, v]]
∣∣ 〈u, u〉 = 〈v, v〉 6= 0, (u, v) = 0

}
with [[u, v]] defined by the relation (u, v) ∼ (eiθu, e−iθv). Moreover T ∗0CPn is biholomorphic

to X̃C when it is identified with T ∗0 S
2n+1//S1 and the reduced complex structure.
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Proof. It is well-known that under the action ρ, T ∗CPn = T ∗S2n+1//S1. The moment

map Φ associated to the action ρ is simply Φ(u, v) = Im〈u, v〉. Hence, T ∗0 S
2n+1//S1 =

Φ−1(µ)/S1, for a generic µ ∈ R = iu(1), is identified with XC which gives the diffeomor-

phism T ∗0CPn ∼= XC . The diffeomorphism between XC and X̃C is given by the formulas:

ũk =
1√
2

(||v||uk + ivk),

ṽk =
1√
2

(vk − i||v||uk).

The biholomorphism follows from the fact that the reduction is Kähler, when we consider

the canonical form on T ∗S2n+1 as a Kähler form for the complex structure induced from

the embedding in C2n+2 as in [41] for example.

In the particular case of T ∗S2n+1 we obtain the following.

Proposition 6.3.2. The canonical symplectic form ΩC on T ∗CPn ∼= XC is

ΩC =
1

2
(du ∧ dv + du ∧ dv)

and the Hamiltonian system HCPn = (Xc,ΩC , HC = ||v||2
2 ) induces the geodesic flow on

CPn. The system is equivalent to (X̃C , Ω̃C , H̃C) in view of the diffeomorphism in Lemma

6.3.1.

Since the orbits of HCPn correspond precisely to the geodesics of CPn, we first identify

the space parametrizing the geodesics. For this we first consider the geodesic flow on the

sphere S2n+1. Since all of the geodesics on the sphere are closed, the flow of XH in the

cotangent space has also only closed trajectories. They define an S1-action which is given by

(u, v) 7→ (eiθu, e−iθv). This action commutes with the action inducing the Hopf projection

and is Hamiltonian. So it defines an action on T ∗CPn which has orbits - the flow lines

of the Hamiltonian vector field defining the geodesics on CPn. We can identify a geodesic

c(t) in CPn with the line (c(t), c′(t)) in TCPn ∼= T ∗CPn when t is a parameter such that
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c′ has constant norm. From here we see that the space parametrizing the geodesics can

be identified with the Marsden-Weisntein quotient. Let Nc = H̃−1
C (c)/S1 be the reduced

space. To identify Nc with a flag manifold, we use the Hamiltonian system (X̃C , Ω̃C , H̃C).

Let

F =
{

([z], [w]) ∈ CPn × CPn
∣∣ (z, w) = 0

}
=

{
([z], [w]) ∈ CPn × CPn

∣∣ 〈z, z〉 = 〈w,w〉, (z, w) = 0
}
.

One can see that F is biholomorphic to the (1,2)-flag in Cn+1 with homogeneous repre-

sentation F = U(n+1)/U(1)×U(1)×U(n−1). Denote by p1 and p2 the two projections on

the corresponding factors of CPn×CPn. Let α be the generator (the Fubini-Study form) of

H2(CPn,Z). Then ω1 = p∗1α and ω2 = p∗2α are generators of H2(F,Z). With this notation

we have the following.

Proposition 6.3.3. If c 6= 0 then the reduced manifold Nc is biholomorphic to the flag F

and the reduced Kähler form is ω̃c = π
√

2c(ω1 + ω2).

Proof. The S1-action of the geodesic flow on T ∗CPn is induced from the one on T ∗S2n+1.

Hence, this action

λ(z, w) = (λz, λw),

for (z, w) ∈ H̃−1
C (c). For the sphere S2n+1

R of radius R the Hopf projection fits in the

diagram Cn+1 S2n+1
R

ioo h // CPn with h∗α = 1
πR2 i

∗Ω (see [39]). If π̃c is the projection

H̃−1
C (c)→ Nc = F then we have the following commutative diagram:

H̃−1
C (c)

��

π̃c // Nc

ĩc
��

S2n+1 × S2n+1 h×h // CPn × CPn

where the vertical arrows correspond to the natural embeddings. Therefore,

π̃∗c (
√

2cπ(ω1 + ω2)) = π
√

2c
√
−1

2π (dz∧dz||z||2 + dw∧dw
||w||2 )

= 1√
2c

√
−1
2 (dz ∧ dz + dw ∧ dw)

= 1
2(du ∧ dv + du ∧ dv)

= ĩ∗c(Ω̃c).
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In the above calculation we used that H̃C(z, w) = c, so ||z||2 = ||w||2 = 2c. We want to

use the modified Kostant - Souriau scheme to “quantize” the geodesic flow of CPn.

Proposition 6.3.4. We have c1(F) = n(ω1 + ω2).

Proof. We apply the adjunction formula for a hypersurface of degree (1,1) in CPn × CPn

to obtain

c1(F) = −(c1(KCPn×CPn |F) + c1([F]|F))

= c1(CPn × CPn)|F − c1([F]|F)

= (n+ 1)(ω1 + ω2)− (ω1 + ω2)

= n(ω1 + ω2).

Theorem 6.3.5. The energy spectrum of the geodesic flow on CPn is

Ek =
1

2
(n+ 2k)2, k ∈ N,

with corresponding multiplicities mk =
(
n+k
k

)2 − (n+k−1
k−1

)2
.

Proof. For the exact cohomology sequence:

H1(F,O)→ H1(F,O∗)→ H2(F,Z)→ H2(F,O)

and the identities H(F,O) = H2(F,O) = 0 follows that:

c1 : H1(F,O∗)
∼=−→ H2(F,Z) ∼= Z⊕ Z.

Therefore, every holomorphic line bundle L on F is equivalent to Lk1,k2 = k1π
∗
1(H) +

k2π
∗
2(H), where H is the hyperplane section on CPn.

The quantum condition on c is

1

2π
[ωc]−

1

2
c1(F) = c1(Lk1,k2),
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which implies √
2c

2
− n

2
= k,

where k = k1 = k2 is a positive integer. In particular

c =
1

2
(2k + n)2.

To count the multiplicities (i.e. dimH0(F,O(L)) we consider the exact sequence of

sheaves:

0→ OCPn×CPn(Lk−1,k−1 ⊗ L1,1)
α−→ OCPn×CPn(Lk,k)

r−→ O|F(Lk,k)→ 0, (6.3.1)

where α is the multiplication of sections of Lk,k by the polynomial
∑n

0 ziwi which defines

F in CPn × CPn and r is the restriction. The corresponding exact cohomology sequence

gives:

0→ H0(CPn × CPn,O(Lk−1,k−1))→ H0(CPn × CPn,O(Lk,k))

→ H0(F,O(Lk,k))→ H1(CPn × CPn,O(Lk−1,k−1)) = 0

where the last term is zero by the Kodaira vanishing theorem. Thus, we have

mk = dim(H0(F,O(Lk,k))

= dim(H0(CPn × CPn,O(Lk,k))− dim(H0(CPn × CPn,O(Lk−1,k−1)))

=
(
n+k
k

)2 − (n+k−1
k−1

)2
.

6.4 Quaternionic projective space

We first note that the results in this subsection were independently obtained in [36] and

some of them appear in [16]. For readers convenience, in this section we use a slightly

different notations to distinguish between real complex and quaternionic scalar products.

62



In particular, we use 〈x, y〉R, 〈x, y〉C, and 〈x, y〉H for x.y =
∑
xiyi, when xi, yi are in R,C,

and H respectively. The corresponding norms arising from their real parts are denoted by

||.||R, ||.||C, ||.||H respectively. The geodesic flow on HPn can be described in a similar way

as the one for CPn but with the aid of the quaternionic Hopf map. For that we use three

equivalent representations of T ∗S4n+3:

T ∗S4n+3 =
{

(x, y) ∈ R4n+3 × R4n+3
∣∣ ||x||R = 1, 〈x, y〉R = 0

}
=

{
(u, v) ∈ C2n+2 × C2n+2

∣∣ ||u||C = 1, Re〈u, v〉C = 0
}

=
{

(p, q) ∈ Hn+1 ×Hn+1
∣∣ ||p||H = 1, 〈p, q〉R = 0

}
where pk := u2k + u2k+1j, qk := v2k + v2k+1j and 〈p, q〉R = Re〈p, q〉H = Re

∑
pkqk. The

quaternionic Hopf map in this case is χ : S4n+3 → HPn, p 7→ [p] where [p] = [p0, p1, ..., pn]

is the class of p for the relation p ∼ σp, σ ∈ Sp(1). The next lemma is again from [16].

Lemma 6.4.1. The cotangent space T ∗HPn is diffeomorphic to both XH and X̃H defined

as follows:

XH :=
{
bp, qc ∈ Hn+1 ×Hn+1

∣∣ ||p||H = 1, 〈p, q〉H = 0
}
,

X̃H :=
{
bz, wc ∈ C2n+2 × C2n+2

∣∣ ||z||C = ||w||C, 〈z, w〉C = 0, I(z, w) = 0
}

where I(z, w) = z0w1 − z1w0 + ... + z2nw2n+1 − z2n+1w2n and bp, qc and bz, wc denote the

equivalence classes of (p, q) and (z, w) under (p, q) ∼ (σp, σq) and (z, w) ∼ (z, w)g for

σ ∈ Sp(1) and g ∈ SU(2) ∼= Sp(1).

Proof. Consider the action of SU(2) on S4n+3 defined by

Ψg(p, q) := (p, q)g, g ∈ SU(2). (6.4.1)

This action has a moment map G : T ∗S4n+3 → su(2)∗, given by the formulas

G(p, q) = (A(p, q), B(p, q), C(p, q)),

where

〈p, q〉=Re(〈p, q〉H) +A(p, q)i+B(p, q)j + C(p, q)k,
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and the imaginary quaternions are identified with su(2)∗. Hence, T ∗S4n+3//SU(2) = XH
∼=

T ∗HPn.

To prove that XH and X̃H are diffeomorphic, consider the map tH : XH → X̃H , (z, w) =

tH(p, q), where

z2k :=
1√
2

(||v||Cu2k +
√
−1v2k),

z2k+1 :=
1√
2

(−||v||Cu2k+1 −
√
−1v2k+1),

w2k :=
1√
2

(v2k+1 −
√
−1||v||Cu2k+1),

w2k+1 :=
1√
2

(v2k+1 −
√
−1||v||Cu2k+1).

The action Ψ defined in (6.4.1) commutes with the geodesic flow of S4n+3. Recall the

diffeomorphism tH : XH → X̃H defined at the end of the last proof. Like in the previous

subsection, we have the following.

Proposition 6.4.2. Let ΩH = ΩT ∗HPn be the canonical symplectic form on T ∗HPn. Then

ΩH =
1

2
(du ∧ dv + du ∧ dv).

Moreover, the geodesic flow of HPn is the flow of the equivalent Hamiltonian systems

(XH ,ΩH , GH) ∼= (X̃H , Ω̃H , G̃H),

where GH =
||q||2H

2
=
||v||2C

2
, Ω̃H = t∗HΩH and G̃H = t∗H(GH).

Next we compute the energy spectrum of the geodesic flow on HPn in a similar way as in

the case of CPn. We consider again the reduced space Oc = T ∗HPn//S1 = G̃−1(c)/S1 with

the induced symplectic form ωc obtained from ĩ∗cΩH = π̃∗cωc, where ĩc : G̃−1(c) → T ∗HPn

and π̃c : G̃−1(c)→ Oc. Denote by Fis the isotropic Grassmann manifold

Fis =
{

Λ ∈ Gr2(C2n+2)
∣∣ I|Λ = 0

}
=

{
[[z, w]] ∈ Cn+1 × Cn+1

∣∣ ||z||C = ||w||C = 1, 〈z, w〉C = I(z, w) = 0
}
,
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where [[z, w]] is representative of (z, w) for (z, w) ∼= (λz, λw)g, λ ∈ S1, g ∈ SU(2) or

equivalently (z, w) ∼= (z, w)g, g ∈ U(2). Alternatively, Fis is a hyperplane in Gr2(C2n+2):

Fis ∼=
{

(λij) ∈ Gr2(C2n+2)
∣∣ λ01 + λ23 + ...+ λ2n+1,2n+2 = 0

}
,

where (λij) are the Plücker coordinates on Gr2(C2n+2), as well as a homogeneous space:

Fis ∼= Sp(n+ 1)/U(2)Sp(n− 1).

Proposition 6.4.3. If c 6= 0 then the reduced space Oc is isomorphic to Fis equipped with

the Kähler form ω̃c = π
√

2cω, where ω is the restriction of the canonical Kähler form on

Gr2(C2n+2) which generates H2(Gr2(C2n+2),Z).

Proof. The S1 action of the geodesic flow on G̃−1
H (c) ⊂ T ∗n ∼= X̃H is:

λbz, wc = bλz, λwc.

which commutes with the action of Sp(1) ∼= SU(2) defining the quaternionic Hopf fibration.

Now from G̃H(z, w) = c we have ||z||2C = ||w||2C = 2c. If λij = ziwj − zjwi are the Plücker

coordinates on Gr2(C2n+2), then

π̃∗c (π
√

2cω) = π
√

2c
√
−1

2π
dλij∧dλij∑
i,j ||λij ||2

= 1√
2c

√
−1
2 (dz ∧ dz + dw ∧ dw)

= ĩ∗c(Ω̃H).

Proposition 6.4.4. We have c1(Fis) = (2n+ 1)ω.

Proof. We note that c1(Gr2(C2n+2)|Fis = (2n+ 2)ω and then proceed with the adjunction

formula as in Proposition 2.4 using the fact that Fis is a hypersurface in Gr2(C2n+2).

Theorem 6.4.5. The energy spectrum of the geodesic flow on HPn is

Ek =
1

2
(2n+ 1 + 2k)2, k ∈ N
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with corresponding multiplicities:

mk =
2n+ 2k + 1

(k + 1)(2n+ 1)

(
2n+ k

k

)(
2n+ k − 1

k

)
.

Proof. We only sketch the proof since it is similar to the n case. We have c1 : H1(Fis,O∗)→

H2(Fis,Z) = Z. Therefore all holomorphic line bundles on Fis which arise from the quan-

tization are Lk := S⊗k, where S = ι∗([H]) and ι is the inclusion ι : Fis → Gr2(C2N+2)).

Hence, √
2c

2
− 2n+ 1

2
= k.

The dimension can be calculated via the Weyl dimension formula (see for example [11]).

This Theorem finishes the case by case proof of Theorem 6.1.3.

Remark 6.4.6. Existence of a symplectic form on the cotangent bundle doesn’t have a

direct analog to use in the case of higher-rank symmetric spaces. However not all simple

and simply connected Lie group acts transitively on a CROSS. And the representation

theory suggests that the correspondence could be extended to the higher dimensional case.

In the next Sections we present one possible extension of the correspondence to the higher

rank spaces based on geometry of toric bundles over flag manifolds.
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CHAPTER 7

GENERALIZATION TO HIGHER RANK

7.1 Symplectic geometry of complex torus bundles

Let Tn = S1 × S1 × ... × S1 be the (real) n-dimensional torus. Then its tangent bundle

is trivial and there is a well-known identification T (Tn) ≡ T (S1) × T (S1) × ... × T (S1) ≡

(C∗)n ≡ (Tn)C which is the complex n-dimensional torus. In particular it is an open and

dense subset of Cn and has an induced complex structure and Kähler metric. If zk = rke
iθk

are the coordinates in (C∗)n then the Kähler form can be written as ω =
∑
d(r2

k) ∧ dθk =

d(
∑
r2
kdθk). One can see that the Tn action on (C∗)n (z1, ..., zn) → (eiα1z1, ..., e

iαnzn) is

Hamiltonian with moment map µ(z1, ..., zn) = (r2
1, ..., r

2
n) = (|z1|2, ..., |zn|2). Now we want

to extend it to torus bundles:

Theorem 7.1.1. Let π : P →M be a principal Tn-bundle over a Kähler manifold M with

characteristic classes of type (1, 1). Let PC = P ×Tn (C∗)n be the associated complex torus

bundle with the standard right action of Tn on (C∗)n. then PC is open and dense subset of

the vertical tangent bundle V of P and carries a natural complex structure and compatible

symplectic (pseudo-Kähler) form ω. Moreover the Tn action on PC is Hamiltonian and the

Marsden-Weinstein reduction PC//Tn is diffeomoerphic to M for a generic level set of the

corresponding moment map.

Proof. A principal torus bundle is determined, up to an isomorphism, by its characteristic

classes on the base. Then we have a closed and integral (1, 1)-forms on M , ω1, ..., ωn

and a connection 1-forms θ1, .., θn on P , such that dθk = π∗(ωk). The projection map

z : P × (C∗)n → (C∗)n defines functions r2
k = |zk|2, which are Tn-invariant and descend

to PC. Now the forms θk also descend to connection 1-forms on PC and we can define an

almost complex structure on PC as I(dr2
k) = θk and on the horizontal co-vectors is just a

pull-back of the complex structure on the base. It defines the standard complex structure
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on the fibres (C∗)n. Its integrability follows from the fact that ωk are of type (1, 1) (see

[23]). The symplectic form is ω =
∑
d(r2

kθk) + π∗(ωM ), where ωM is a Kähler form which

is positive enough to ensure that ω is non-degenerate in the horizontal directions for almost

all xi. Now it is clear that for a basis of vertical vector fields Xk which are defined by

the Tn action and satisfy θi(Xj) = δji , the moment map is µ = (r2
1, ..., r

2
n) as a Rn-valued

function on PC. So it is clear that for c ∈ Rn where all coordinates are positive, µ−1(c) ≡ P

where we identify P with the set of points in PC with rk = 1 for all k. Then it is clear that

PC//Tn ≡M .

We can see that the reduced symplectic form depends on the level c and is integral

whenever c satisfies some integrality condition - which will provide the quantum condition

for the correspondence in the higher rank symmetric spaces.

We identify the reduced symplectic form on PC//Tn in the following way:

Corollary 7.1.2. In the notations of the Theorem 7.1.1 and its proof, the symplectic form

on P is given by ω = d(
∑
x2
i θi) + π∗ωM , and the reduced symplectic form on PC//Tn =

µ−1(c1, ..., cn) ≡M for a generic choice of (c1, ..., cn) is ω̃M =
∑
c2
i dθi + ωM .

7.2 Symmetric spaces of general rank

Now we apply the Corollary and the Theorem of the previous Section to the space parametriz-

ing the maximal totally geodesic tori of a Riemannian symmetric space. Let as before

M = G/K be a symmetric space with G compact and semisimple. Every maximal totally

geodesic tori is tangent to a translated maximal commutative subspace of m. Denote again

by a one such fixed subspace. Also L is the connected subgroup of G with Lie algebra

l = m⊕ a, where m is the centralizer of a in k. We can also write L = MA where M and A

are the corresponding Lie groups (in the Iwasawa decomposition, see [20], [22]).

Then G/L is a generalized flag manifold parametrizing the maximal totally geodesic

tori in M . As such it caries a natural complex structure, which depends on the choice of a
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Cartan subalgebra of gC and a partial order in it which determines a positive Weyl chamber

and it defines a positive Weyl chamber in (aC)∗. The later is dual to the cone of restricted

dominant weights. Then as a complex manifold G/L is equivalent to GC/MCACNC and

has a principle AC-bundle GC/MCNC → GC/MCACNC with total space - the horospherical

manifold Θ. Since AC is the complexification of the real torus T r = A and can be identified

with the cotangent bundle T ∗T r, then Θ can be identified with the total space of the vertical

(co)tangent bundle of the principal bundle G/M → G/L with fiber A. In case the rank of

M is r = 1, this is just T ∗M . Since the characteristic classes of the bundle G/M → G/L

are determined via transgression by the simple roots in a∗, we can apply the constructions

of the previous section.

Theorem 7.2.1. Let M = G/K be a compact Riemannian symmetric space of rank k

with G semisimple and let θ1, ..., θk be the basis of fundamental weights that is dual to the

simple restricted roots of aC. Let Θ be the associated horospherical manifold and Θ→ G/L

be the corresponding principal (C∗)k-bundle, where G/L is the quantization space of G/K.

Let ωM = ı
2πdρ be the 2-form on G/L representing 1

2c1(G/L), so ρ is the half sum of the

positive roots in gC vanishing on lC (as in [2, 5]). Then there exists a symplectic form ω

on Θ with the following properties:

i) There are positive numbers ni such that the reduced form ω̃ on Θ//T k corresponding

to ω via the Marsden-Weinstein reduction is ω̃ =
∑k

i=1 nidθi + ωM , on G/L.

ii) When the 2-form dα for α = n1θ1 +n2θ2 + ...+nkθk is integral (up to a factor of 2π)

and determines a dominant weight, then the corresponding quantum bundle L defined

by ω̃ ∈ c1(L) has the property that its space of holomorphic sections H0(G/L,O(L))

is an irreducible unitary representation of G with highest weight α.

iii) The complexified eigenspaces of the Laplace-Beltrami operator ∆M corresponding to

the eigenvalue λα = ||α + ρa||2 − ||ρa||2 on M have dimension equal to the sum over
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all α with ||α+ ρa||2 = λα + ||ρ||2 of the dimensions of H0(G/L,O(L)) defined in ii).

All eigenvalues of ∆M are equal to λα for some α.

Proof. Since the first Chern class c1(G/L) > 0 is positive for generalized flag manifolds,

ΩM is positive definite and Kähler.The form ω is closed and since θi correspond to a basis

of the positive Weyl chamber in aC, we see that the ω is also Kähler as a sum of a positive

and non-negative form.

The reduced form coincides with of ω̃M by Corollary 7.1.2, which proves i).

The quantum line bundle is well defined since for generalized flag manifolds the Picard

group is isomorphic to H2(G/L,Z). Then ii) follows from Borel-Weil Theorem. Finally iii)

is valid in view of the fact that the eigenspaces of the Laplace-Beltrami operator are sums

of irreducible G-modules.
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CHAPTER 8

LAPLACE EIGENFUNCTIONS AND HOLOMORPHIC SECTIONS

In this Chapter we describe a procedure to obtain an explicit algebraic expression of

the eigenfunctions of the Laplace-Beltrami operator on compact symmetric spaces through

harmonic polynomials.

We shortly describe the idea of the construction first. Consider the space of holomorphic

sections of a line bundle in the Borel-Weil Theorem. It is identified with holomorphic

functions f on a principal C∗-bundle P over the (generalized) flag manifold F = G/L such

that f(xa) = χ(a)f(x), where χ is the character of the representation in H0(F, Lχ) for the

associated with P line bundle Lχ from the Borel-Weil Theorem. The structure group of P

could be reduced to S1 so P has a structure of a cone P ∼= R+ × S, for S - the total space

of an S1-bundle over F. Note that P is different from Θ and sometimes can be represented

as its quotient. The S1 action on S is induced from the C∗-action on P such that for

a = reiθ ∈ C∗ we have the action Ra(x, t) = (eiθx, rt). We note that S has a Sasakian

metric gS (see [9]) and there is a cone metric gP on P such that gP = dr2 + r2gS . Then

gP is the Kähler cone metric - as in Boyer-Galicki approach to Sasakian geometry [9]. In

particular, every holomorphic function on P is also harmonic.

Now the relation between the Laplace-Beltrami operators on the cone P and the base

S is

∆P (u) =
∂2u

∂r2
+ n

1

r

∂u

∂r
+ r−2∆S(u)

where u = u(r, x) and ∆S(u) is calculated when S is embedded in P as r = constant. If

the function u is corresponding to a holomorphic section, then the equivariance condition

above gives for x = eiθy

u(x, r) = u(eiθy, r.1) = rkeikθu(e−iθx, 1),
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where k = χ(reiθ). Then from the formulas we obtain ∂u
∂r = k

ru and

∆Su = λu (8.0.1)

when u(x) = u(x, 1) and λ depends on k. In particular u determines an eigenfunction of the

Laplace-Beltrami operator on S. Now, in many cases, we can pull-back the function to Θ

and if this pull-back is K-invariant, then it will define a function on G/K. This function is

an eigenfunction if the projection is a Riemannian submersion with totally geodesic fibers.

To make this strategy work we have to resolve two problems. First we need to see when

a pull-back to Θ is possible. Second, the metrics on F which will lead to such projection

are not Kähler - they arise from the bi-invariant metric on G. So we need a modification of

this idea for non-Kähler metrics. We start with the second problem.

Recall that a Hermitian metric g on a complex manifold M with a fundamental form ω

is called balanced, if dωn−1 = 0 where n is the complex dimension of M . A result in [28]

shows that a holomorphic function on a balanced manifold is again harmonic. To use this

property we need a few lemmas.

Lemma 8.0.1. Suppose that M is a compact complex manifold of dimension n with a bal-

anced metric gM which has fundamental form ωM , i.e. dωn−1
M = 0 Let π : P ∼= R+×S →M

be a principal C∗-bundle with U(1)-connection 1-form θ on S and a cone metric of the form

g = dr2 +r2(θ2 +π∗(gM )). Let dθ = π∗(ω), where ω is a form of type (1,1), be the curvature

of S (and P ). With respect to a natural complex structure I on P compatible with gP , such

gP is balanced iff

(ω − ωM ) ∧ ωn−1
M = 0.

Proof. The complex structure on P is given by I(dr) = rθ, I(θ) = d log r and the pull-back

of the complex structure on M on the horizontal spaces ker(θ) ∩ ker(dr). The fact that it

is integrable follows from the condition that ω is (1,1) (see [23]). Suppose that the complex

dimension of M is n, so dimCP = n+ 1. Then the fundamental Kähler form of gP is given

by ωP = rdr ∧ θ + r2π∗(ωM ). For convenience we write ωM for π∗(ωM ) where it is not
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confusing. Now ωnP = nr2n+1dr ∧ θ ∧ ωn−1
M + ωnM and

dωnP = nr2n+1dr ∧ (ωM − ω) ∧ ωn−1
M

since dωn−1
M = 0.

Therefore, we deduce

Lemma 8.0.2. Let P ∼= R+ × S be a principal C∗-bundle over a generalized flag manifold

M = G/L where G is a compact simply-connected and semisimple Lie group and L is

a centralizer of a torus. Assume that S has a connection 1-form θ which is G-invariant

and its curvature ω has a cohomology class [ω] such that [ω]/2π ∈ H2(M,Z) and is not

an integer multiple of another class. Then there is a projection π1 : G → S which is a

factor-bundle. With respect to the natural complex structure, P admits a balanced cone

metric gP = dr2 + r2gS with an induced gS metric on S, such that the projection π is a

Riemannian submersion with totally geodesic fibers when G is equipped with its biinvariant

metric, after possible rescaling.

Proof. The fact that there is such a projection follows from [24]. For every invariant gM ,

the Hodge-dual ∗d(ωM )n−1 of dωn−1
M is an invariant 1-form and the Euler characteristic of

M is positive, so gM is balanced. From Lemma 8.0.1 we see that both ωnM and (ω ∧ ωn−1
M )

are proportional to the invariant volume form on M , which means that up to a rescaling of

the metric on M we could make them equal, so gP is balanced.

Lemma 8.0.3. Every holomorphic function on P is harmonic with respect to the metric

gP from Lemma 8.0.2.

Proof. The result follows for example, from [28].

Note that most of the results in the Lemmas above are valid for non-integrable almost

complex structures. However, we are focusing on the integrable case, since we need the

conditions for the Borel-Weil Theorem to be satisfied in order to provide the relation to the

Laplace-Beltrami eigenfunctions on G/K.
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Lemma 8.0.4. A harmonic function F on P which satisfies f(x, r) = rkf(x, 1) induces an

eigenfunction of the Laplace-Beltrami operator on S.

Proof. It follows from (8.0.1) and the calculations there.

Now we consider the problem of existence of a pull-back of a function to Θ. Denote by

Lss the subgroup of G with Lie algebra lss = [l, l] = [m.m] which is the semisimple part of l.

Consider G/Lss as a T k-principal bundle over the flag manifold G/L. It has characteristic

classes given by γi = 1
2πdωi where ωi, i = 1, 2, ..., k, are the fundamental weights. Any

principal S1-bundle can be characterized topologically by its first Chern class, which is

a positive integer combination of these. Let S be determined by c1(S) =
∑
niγi, where

ni are positive integers. According to Lemma 3 in [24], if gcd(n1, ..., nk) = 1, then we

can find a basis of generators β1 = c1(S), β2, ..., βk of H2(F, Z) and they will define an

equivalent principal bundle to G → F = G/T k. In particular, there is a principal T k−1-

bundle G/Lss → S and we can use the construction above. If this condition does not

hold, then c1(S) = mβ, for some β and m positive integer, which satisfies it. Now we can

replace S with another bundle S with characteristic class β. By a standard argument (for

example comparing the Euler classes - see e.g. [14] Ex 3.26.) S = S/Zm as a finite cover,

so we have the projections G/Lss → S → S. Now G/Lss have two fibrations - over S

and over the symmetric space G/K. When we induce the metrics on G/K, G/Lss, and S

from the biinvariant metric on G, both fibrations are Riemannian submersions with totally

geodesic fibers. For a such a Riemannian submersion π : M → N the relation between the

Laplace-Beltrami operators on M and N is:

∆M (f ◦ π) = (∆Nf) ◦ π (8.0.2)

for any smooth function f on N - see [44]

The above considerations lead to:
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Theorem 8.0.5. Suppose that G/K is a compact Riemannian symmetric space and F =

G/L is the associated generalized flag manifold - the quantization space. Let f ∈ H0(F, Lχ)

be a holomorphic section of a positive line bundle Lχ over a flag manifold F which is consid-

ered as function on the corresponding principle bundle P = S × R+ with f(za) = χ(a)f(z)

for a ∈ C∗. Let π : G/Lss → S and π1 : G/Lss → G/K be the natural projections.

If the pull-back of f to G/Lss × R+ via π is K-invariant, then f satisfies the conditions

of Lemma 8.0.4 and the function u(x) = f(x, 1) on S defines an eigenfunction u of the

Laplace-Beltrami operator on the Riemannian symmetric space G/K with π∗1(u) = π∗(u).

Proof. From the Lemmas above, u is an egienfunction on S. By the property (8.0.2) π∗(u)

is an eigenfunction on G, and by the K-invariance it is a pull-back of a function on G/K.

Then again by (8.0.2) u is an eigenfunction on G/K.

Remark 8.0.6. Using the Cartan embedding i : G/K → G, we see that we need functions

onG/K depending on the parameters defining the image ofG/K. We are going to use this in

the examples below. Moreover, the generalized flag manifold F has more than one invariant

complex structures - see [7] for example. Each of them defines a set of eigenfunctions

described in the Theorem. In the examples below this process in fact generates all of the

eigenfunctions. It is likely that this happens for most of the irreducible compact symmetric

spaces.

We mention briefly the relation of the construction to the so-called spherical representa-

tions. A representation π of group G in a vector space V (with respect to the Riemannian

symmetric space G/K) is called spherical, if V contains a vector, fixed by all operators in

π(K). Any unitary spherical representation of G with a unit vector e fixed by π(K), the

function G 3 dx→ 〈e, π(x)e〉 is positive-definite and spherical ([33], Therorem 3.4). A func-

tion on a Lie group G is called positive definite, if for every x1, .., xn ∈ G and α1, ..., αn ∈ C

we have ∑
i,j

φ(x−1
i xj)αiαj ≥ 0.
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Also φ is called spherical if it is K-bi-invariant (left and right) and also a common eigen-

function of all left-invariant operators on G, which are also right K−invariant. The Cartan-

Helgason Theorem [33] characterizes the irreducible spherical representations as the ones

for which the highest weight λ : h→ C satisfies

λ(i(h ∩ k) = 0

and

〈λ, α〉
〈α, α〉

∈ Z+,∀α ∈ Σ+.

Note that the irreducible representations for compact G are characterized by the second

condition, with 2〈λ,α〉
〈α,α〉 ∈ Z

+ instead of 〈λ,α〉〈α,α〉 ∈ Z
+. In particular, when G/K is a Rie-

mannian symmetric space of maximal rank, the first condition is trivial, so the spherical

representations form“half” of all irreducible representations - we call them even.

In fact, the relation between the Borel-Weil theorem and the Laplace-Beltrami eigen-

functions can potentially reveal more information. The spaces of holomorphic sections in the

Borel-Weil theorem are irreducible representations and the eigenspaces on the symmetric

space G/K are not unless it is a CROSS. The irreducible spherical representations are char-

acterized as the common eigenspaces of the invariant differential operators on G/K. So the

eigenspaces are sums of spherical representations and we expect that the correspondence

in the Theorem could be extended to the irreducible spherical representations. Another

approach to that (see [34, 20]) is through the integral geometry and variations of Radon

transform. But such approach provides only expressions of the spherical functions in terms

of integral formulas, which are not explicit in general.

8.1 Harmonic polynomials and eigenfunctions

The linear action of a (Lie) group on a vector spaces V naturally extends to an action

on the symmetric algebra and is naturally accompanied with “invariant polynomials and
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corresponding harmonic polynomials”. The crucial connection between these invariants of

joint differential operators and their eigenfunctions will only be briefly outlined here; a more

thorough exposition can be found in Helgason, [33], Chapter III.

Let V be a finite-dimensional vector space over R or C, and G := GL(V ) of linear

transformations of the vector space V . The action of G on V also induces an action of G

on the polynomial ring of V , where the G−invariants (fixed points) form a subring.

As usual, let V ∗ denote the dual space of V , S(V ) and S(V ∗) the standard real symmet-

ric algebras. S(V ∗) then consists of the polynomials on V ∗. The respective complexifications

will be denoted at SC(V ) := C⊗ S(V ) and SC(V ∗) := C⊗ S(V ∗).

Definition 8.1.1. For X ∈ V , the (“directional derivative type”) differential operator is

the map ∂(X) : S(V )→ R is defined as

(∂(X)f)(Y ) :=

(
d

dt
f(Y + tX)

) ∣∣∣∣
t=0

for Y ∈ V, f ∈ C∞(V ).

Thus the mapping X 7→ ∂(X) extends to an isomorphism of the symmetric algebra

S(V ) (and the complex symmetric alegbra SC(V ) respectively). GL(V ) acts on both V

and V ∗ by the remarkably beautiful equation: letting v ∈ V and v∗ ∈ V ∗, for g ∈ G the

equation is

(g · v∗)(v) = v∗(g−1 · v).

This extends to a map L from S(V ) to the algebra of differential operators on V which

is an isomorphism. Take a positive bilinear form B on V and define with it the isomorphism

B : V → V ∗. The space S(V ∗) has a bilinear form 〈〈, 〉〉 defined as

〈〈p, q〉〉 = (∂(P )q)(0)

where P is the image of p under the isomorphism L ◦ B. This coincides with he usual

extension of B to S(V ), so is a positive scalar product. We have the following property for

polynomials p, q, r and their corresponding differential operators P,Q,R:

〈〈p, qr〉〉 = 〈〈∂(Q)p, r〉〉 (8.1.1)
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Proposition 8.1.2. ([33] pg. 347) For p, q, r ∈ S(V ∗) then we have

〈〈p, qr〉〉 = (∂(QR)p)(0) = (∂(R)∂(Q)p)(0) = 〈〈∂(Q)p, r〉〉.

Definition 8.1.3. Let I(V ∗) is the ideal in S(V ∗) generated by the invariant polynomials,

and I+(V ∗) ⊂ I(V ∗) are the subset of polynomials without constant term. For the action

of G denote by H(V ∗) the set of G − harmonic polynomials h, i.e. ∂(J)(h) = 0 for every

invariant differential operator J = L ◦ B(j), j ∈ I+(V ∗). Assuming that G is compact by

[33] Ch. 3, Theorem 1.1:

S(V ∗) = I(V ∗)H(V ∗),

and from the proof we see that

Sk(V ∗) = (I+(V ∗)S(V ∗))k ⊕Hk(V ∗)

is an orthogonal decomposition with respect to 〈〈, 〉〉. We are going to use a particular

case, when I+(V ) is generated by one homogeneous polynomial p of degree l. Then the

multiplication by p gives an embedding P : Sk(V ∗) → Sk+l(V ∗) such that we have an

identification of the quotient space

Sk+l(V ∗)/P (Sk(V ∗)) = Hk+l(V ∗)

with the harmonic polynomials, which in this case are coicide with ker(∂(P )).

The classical example we want to generalize is that of the sphere Sn. It is known that

the spherical harmonics (Laplace-Beltrami eigenfunctions), are restrictions of the harmonic

polynomials on Rn+1. A similar description is known for CPn. Before we present it we

recall briefly the facts we need from the theory of invariant harmonic polynomials.

Let V be a real or complex vector space and G a group of linear transformations of

V . Then G acts on the ring of polynomials identified as the symmetric algebra S(V ∗). If

f ∈ S(V ∗) is a polynomial and X ∈ V , then the directional derivative ∂(X) acts on f

and extends to a map L from S to the algebra of differential operators on V which is an
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isomorphism. Take a positive bilinear form B on V and define with it the isomorphism

B : V → V ∗. The space S(V ∗) has a bilinear form 〈〈, 〉〉 defined as

〈〈p, q〉〉 = (∂(P )q)(0)

where P is the image of p under the isomorphism L ◦ B. This coincides with he usual

extension of B to S(V ), hence, is a positive scalar product. We have the following property

for polynomials p, q, r and their corresponding differential operators P,Q,R:

〈〈p, qr〉〉 = 〈〈∂(Q)p, r〉〉 (8.1.2)

so the multiplication by q is adjoint to the operator ∂(Q).

Definition 8.1.4. For nonnegative integers p, q ≥ 0 and any a, b ∈ Cn+1 satisfying (a, b) =

0, define the (polynomial) function

h(z) := h(z, z̄) := hp,qa,b(z, z̄) := (a, z)p(b, z̄)q (8.1.3)

These so-called harmonic polynomials, have a clear SU(n + 1) action, which can be

verified without much effort that for s ∈ SU(n+ 1) we have

shp,qa,b = hp,q
(st)−1a,sb

.

This allows us to decompose the space H(V ) (for V = Cn) of harmonic polynomials as a

sum of SU(n + 1)-modules spanned by the h’s in definition (8.1.4). More precisely, with

emphasis on the second claim

Theorem 8.1.5. (Th. 14.4 in [43]) As an SU(n+ 1)-module the space

H(Cn+1) =
⊕
p,q≥0

Hp,q(Cn+1)

i.e., every harmonic polynomial of type (p, q) is a linear combination of the h’s:

Hp,q(Cn+1) = spanC

{
hp,qa,b

∣∣ a, b ∈ C, (a, b) = 0
}
.
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Next we prove that the h’s are indeed harmonic, i.e. are in the kernel of the Laplace-

Beltrami operator.

Proposition 8.1.6. If a, b ∈ Cn+1 satisfy (a, b) = 0, p and q are nonnegative integers, and

h is defined as above, then ∆h(z, z̄) = pq(a, z)p−1(b, z̄)q−1. Moreover, h is harmonic, i.e.,

h(z, z̄) = 0.

Proof. For h(z, z̄) as defined again as,

h := hp,qa,b := hp,qa,b(z, z̄) = (a, z)p(b, z̄)q.

Computing the first partial of zk of h we obtain

∂

∂zk
h(z, z̄) :=

∂

∂zk
(a, z)p(b, z̄)q = (b, z̄)q

∂

∂zk

[
(a, z)p

]
= p(b, z̄)q(a, z)p−1 ∂

∂zk
(a, z) = p(b, z̄)q(a, z)p−1(ak)

and same for z̄k:

∂

∂z̄k
(a, z)p(b, z̄k)

q = (a, z)p
∂

∂z̄k

[
(b, z̄)q

]
= q(a, z)p(b, z̄)q−1(bk)

and of course we will employ the well-known of equality 4∆ = ∂∂̄ the theory of functions

of one and several complex variables All that remains is summing over k taken in the order

to compute the Laplacian operator to immediately get, if (a, b) = 0 then

4∆h(z, z̄) =
n+1∑
k=1

∂2

∂zk∂z̄k
h(z, z̄) = pq(a, z)p−1(b, z̄)q−1

��
�*0

(a, b) = 0. (8.1.4)

8.2 Complex projective space CP n

In this section we drescribe the generaliztion of the quantization procedure to produce the

the geodesic flow of the CROSSes M = G/K:

M = CPn = SU(n+ 1)�S(U(n)× U(1)),
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and higher ranks as well, analogous to the symplectic reduction of the Hamiltonian flow.

In this case, they compute and show the biholomorphism to

Geod(CPn) = G�L = SU(n+ 1)�S(U(1)× U(1)× U(n− 1))

∼=
{

([z], [w])) ∈ CPn × CPn
∣∣ (z, w) = 0

}
We denote the last set by X. In the rank one case, G/L can be interpreted as the

(oriented) parametrization space of the geodesic flow of the symmetric space. In higher

rank spaces, they no longer parametrize geodesics but totally geodesic maximal abelian

subgroups, at the group level, and then at the algebra level all Cartan subalgebras, that

again are all conjugate to each other. We show that the space spanned by the functions

h(z) is the orthogonal complement to this quadric in CPn.

Letting p = h(z, w) = hp,qa,b(z, w), q(z, w) = (z, w) =
∑

k zkwk, and r remaining arbitrary

in the ideal generated by q(z, w), we calculate immediately employing equation 8.2.1 below:

〈〈h, qr〉〉 = 〈〈∂(Q)h, r〉〉 := ((∂(∂(Q)h)r)(0). (8.2.1)

The quantization space is the generalized flag manifold F = SU(n+1)/S(U(1)×U(1)×

U(n − 1)) and the horospherical manifold corresponding to CPn is a bundle over the flag

SU(n+1)/S(U(1)×U(1)×U(n−1)), which is embedded as a quadric (1,1)-hypersurface in

CPn×CPn (cf. Section 3.1). This bundle should correspond to Lp,q for some non-negative

integers p, q.

Alternatively, or by the duality property of formula (8.1.2), the space of sections of

Lk,k, k > 1 can be identified with the polynomials p(z, w) for which
∑ ∂2

∂zi∂wi
(p) = 0.

Then considering

H0(F,O(Lp,q)) = Sp,q/
(
(z, w)Sp−1,q−1

)
,

where Sp,q denotes the space of polynomials in z, w ∈ Cn+1 of homogeneous degree (p, q)

(in particular, (z, w) ∈ S1,1). Alternatively,

Sp,q =
{
F (z, w) ∈ S∗(C2n+2)

∣∣ F (αz, βw) = αpβqF (z, w), for all a, b ∈ C
}
.
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Since, the space Sp,q is spanned by the polynomials F = f(z)g(w), deg(f) = p, deg(g) = q,,

then H0(F,O(Lk,k)) is spanned by (the restriction to F of) the polynomials p(z, w) =

(a, z)k(b, w)k for all a, b with (a, b) = 0.

On the other side, by Corollary after Theorem 14.4 in [43], the functions (a, z)k(b, z)k

span the harmonic polynomials on Cn+1 which induce the eigenfunctions for the kth eigen-

value λk = 4k(n+ k) of the Laplace-Beltrami operator on CPn relative to the Fubini-Study

metric (cf. Theorem 6.1.3). Therefore, the λk-eigenspace equals the span of the restriction

given by w = z of all p(z, w) = (a, z)k(b, w)k with (a, b) = 0.

To finish the proof, we need to show that this inner product defined on this particular

space vanishes (i.e., is orthogonal with respect to the 〈〈, 〉〉 inner product) equation (8.1.1)

in section 8.1, or equivalently, equation (8.1.2) is equal to zero, which is calculated to be so

in equation (8.1.4) so after combining it with ∂(Q)h ≡ 0 and we obtain equation (8.2.3).

But now we have everything we need to calculate the orthogonal complement of X ⊂ CPn

with respect to the double bracketed inner product 〈〈, 〉〉 on the space of homogeneous

polynomials, via the identifications to differential operators. Indeed, we have:

〈〈h, qr〉〉 = 〈〈∂(Q)h, r〉〉 := ((∂(∂(Q)h)r)(0). (8.2.2)

Since ∂(Q)h ≡ 0 then

〈〈h, qr〉〉 = 〈〈∂(Q)h, r〉〉 := ((∂(∂(Q)h)r)(0) = ((∂(0)r)(0) =
d

dt

∣∣∣∣
t=0

r(0 + 0t) = 0. (8.2.3)

This proves we have indeed found our orthogonal space with respect to the double

bracket metric 〈〈, 〉〉, defined at the beginning of the this chapter.

H(Cn+1) =
⊕
p,q≥1

Hp,q(Cn+1)

can be written as a direct sum with subsets Hp,q(Cn+1) = span
{
hp,qa,b

∣∣ (a, b) = 0
}

are

the orthogonal complements to the ideal I (〈q〉) generated by q(z, w) = (z, w), which is the
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polynomial whose vanishing set defines the geodesic flow of M biholomorphically to the

quadric X ⊂ CPn.

Endowing the set S(V ) of polynomial functions on Cn+1 with the inner product 〈〈, 〉〉,

and using the results from this section, we can explicitly describe the space of holomorphic

line bundles along the quadric X = {([a], [b]) ∈ V × V
∣∣ (a, b) = 0}.

8.3 Quaternionic projective space HP n

Now we consider the functions of z = (z0, ..., zn) and w = (w0, ..., wn) such that qi = zi+wij

are the quaternionic coordinates of Hn+1. The harmonic polynomials on Cn+1 which induce

the eigenfunctions on CPn are precisely the ones on R2n+2, which are invariant under S1.

And the invariant functions which generate these polynomials are exactly zizj , which also fits

the Cartan embedding interpretation. Similarly, for Hn+1 = R4n+4 = C2n+2, the harmonic

polynomials which determine the eigenfunctions on HPn are the ones right-invariant under

Sp(1) = SU(2), and they are functions of the variables qlqk = zlzk +wlwk + (zkwl− zlwk)j.

In particular, we see that the following functions, together with their conjugates, span the

Sp(1) invariant quadratic harmonic polynomials:

(a, z)(b, z) + (a,w)(b, w)

(a, z)(b, w)− (a,w)(b, z)

with (a, b) = 0.

Now we relate the functions to the quantization space which is the symplectic isotropic

Grassmannian Fis = Fis(2, 2n+ 2). Using the construction in Section 3.2, Fis is embedded

in the regular Grassmannian by a hyperplane section given by the holomorphic symplec-

tic form denoted by I(z, w). Then the Grassmannian is embedded in P (Λ2(C2n+2)) by

Plucker relations. Since the Picard group of Fis(2, 2n + 2) is Z, every line bundle is of

type O(k) for some power of the hyperplane section bundle OFis(1), which is the restriction
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of OP (Λ2C2n+2)(1). In particular we can consider the section as a homogeneous polynomi-

als of degree k on the variables UiVj − UjVi for U, V ∈ C2n+2, which are orthogonal to∑
UiVn+i+1 − Un+i+1Vi = I(U, V ) relative to 〈〈·, ·〉〉. Alternatively, these polynomials are

the ones in the kernel of � =
∑

( ∂2

∂Ui∂Vn+i+1
− ∂2

∂Vi∂Un+i+1
). Using similar reasoning as the

one in the case of the generalized flag manifold F related to CPn, we observe that all such

polynomials are linear combinations of p(U, V ) = lAB(U, V )k, where

lAB(U, V ) = (A,U)(B, V )− (B,U)(A, V )

for A,B satisfying certain conditions that will be determined later.

To describe the conditions, we first introduce some notation and conventions. With a

slight abuse of notation, consider the elements in C2n+2 as pairs {a, b} of elements a, b ∈

Cn+1. Then if A = {a, b} and B = {c, d} are in C2n+1, I(A,B) = I({a, b}, {c, d}) =

(a, d)− (b, c) and (A,B) = ({a, b}, {c, d})) = (a, c) + (b, d). If U = {z, w}, V = {u, v}, then

�(lAB(U, V )) = (a, d)− (b, c) = I(A,B).

To calculate �(lAB(U, V )k), we use U, V,A,B as above and

∂2

∂Ui∂Vn+i+1
(l(U, V )k) =

∂2

∂zi∂vi
(lAB(U, V )k) =

∂2

∂zi∂vi
([(a, z) + (b, w)][(c, u) + (d, v)]− [(a, u) + (b, v)][(c, z) + (d,w)])k =

∂

∂zi
k(lAB(U, V )k−1)(di[(a, z) + (b, w)]− bi[(c, z) + (d,w)] =

k(k−1)(lAB(U, V )k−2)(ai[(c, u)+(d, v)]−ci[(a, u)+(b, v)])(di[(a, z)+(b, w)]−bi[(c, z)+(d.w)])+

k(lAB(U, V )k−1)(aidi − bici).

Similarly,

∂2

∂Vi∂Un+i+1
lAB(U, V )k =

∂2

∂wi∂ui
lAB(U, V )k =

k(k − 1)(lAB(U, V )k−2)(bi[(c, u)− d[(a, u) + (b, v)])(ci[(a, z) + (b, w)]− ai[(c, z) + (d,w)])+
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k(lAB(U, V )k−1)(cibi − aidi).

Now subtracting the two identities leads to:

�(lAB(U, V )k) = (k2+k)(lAB(U, V )k−1)
∑
i

(aidi−bici) = (k2+k)(lAB(U, V )k−1)((a, d)−(b, c)).

Hence, we have the following result.

Lemma 8.3.1. The holomorphic sections of the quantization bundle OFis(k) are the linear

combinations of the polynomials p(U, V ) = lAB(U, V )k satisfying

(a, d)− (b, c) = 0.

Now for the functions which restrict to harmonic polynomials on Hn we take

V = jU = {w,−z}.

This transforms � into the Laplacian of Hn, so that p(U, jU) are pull-backs of the eigen-

functions for the k-th eigenvalue λk. More precisely we have:

Theorem 8.3.2. The eigenspace of the Laplace-Beltrami operator on HPn corresponding

to the kth eigenvalue is the span of the functions whose pull-back to Hn+1 equals

p(U, jU) = ([(a, z) + (b, w)][(c, w)− (d, z)]− [(c, z) + (d,w)][(a,w)− (b, z)])k,

where (a, d)− (b, c) = 0.

Proof. Using the same reasoning as in [43] for the CPn, it remains to prove that the span

H of all p(U, jU) equals all of the space of harmonic polynomials on Hn. For this, we adopt

the proofs of Theorem 14.2 and 14.4 in [43], to the case of Hn and the quantization bundle

OFis(k). Lemma 8.3.1 provides a description of the space of holomorphic sections of OFis(k)

as a span of a set of functions. This space is a simple Sp(n + 1)-module of highest weight

kΛ2, where Λ2 is the second fundamental weight of Sp(n + 1). On the other hand, the

λk-eignespace is also a simple Sp(n + 1)-module of highest weight kΛ2. Therefore the two

spaces are isomorphic and set defined in the statement in the theorem corresponds to the

spanning set defined in Lemma 8.3.1.
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We note that a similar set of harmonic polynomials for Hn+1 defining eigenfunctions on

HPn was found in [17], Proposition 3.4, but its span was not explicitly discussed there.

8.4 The space SU(3)/SO(3)

In this example we extend the results from [29] and find a generating set for all eigenfunctions

of the Laplace-Beltrami operator on SU(3)/SO(3). Following the notations there we denote

by z, w etc. matrices in the Lie groups SU(n) or SO(n) (so z ∈ SU(n)). If zzT = I with I

being the identity matrix) and by Z,W matrices in the corresponding Lie algebras. Denote

by zij the entries of z. The standard metric on SU(n) is given by g(Z,W ) = Re
(

(ZW
T

)
)

.

Then the Laplace-Beltrami operator ∆ on SU(n) (denoted by τ in [29]) satisfies ∆(fg) =

∆(f)g + k(f, g) + ∆(g)f where k(f, g) = g(∇f,∇g).

For a ∈ Cn we set

φa =
∑
j,α

ajaαΦjα = (zTaaT z) = (zTa, zTa).

By Proposition 4.1 in [29], φa is an SO(n)-invariant ∆-eigenfunction on SU(n). Using

the reasoning of [29], we may show that

φ̃a(z) =
∑
j,α

ajaαΦjα = (z̄TaaT z̄) = (z̄Ta, z̄Ta)

is also an SO(n)-invariant ∆-eigenfunction on SU(n) with the same eigenvalue as φa.

More generally, for a, b ∈ Cn with (a, b) = 0 and p, q ≥ 0, we have that φpaφ̃
q
b is also an

SO(n)-invariant ∆-eigenfunction on SU(n) of the same eigenvalue. Indeed, we can show

that

k(Φjα,Φkβ) = −2δrαδjβ − 2δαβδkj +
4

n
ΦjαΦkβ

which implies that k(φa, φ̃b) = −4(a, b)2+ 4
nφaφ̃b. Then using that (a, b) = 0 and the general

formula k(fp, hq) = pqfp−1hq−1k(f, h) and the fact that k(φa, φ̃b) = 0, we prove that φpaφ̃
q
b
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are eigenfunctions. Denote by λp,q the eigenvalue of φpaφ̃
q
b , (a, b) = 0. Formulas for λp,q in

the case n = 3 are listed in Example 5.0.3.

Consider the space Hp,q =
{
φpaφ̃

q
b | a, b ∈ C

n, (a, b) = 0
}

. Then Hp,q has an SU(n)-

module structure via the formula

A · (φpaφ̃
q
b) = φp

Āa
φ̃qAb (8.4.1)

(recall that Ā =
(
AT
)−1

). We retain the notation from the CPn case above, and example

5.0.3. In particular, we consider the flag F = SU(n)/S(U(1) × U(1) × U(n − 2)) to be

embedded as a quadratic hypersurface in n− 1×n− 1. Also, the holomorphic line bundles

over F are denoted by Lk1,k2 (see the proof of Theorem 6.3.5). Denote by Λi the ith

fundamental weight of SU(n).

Theorem 8.4.1. The spaces Hp,q and H0(F,O(L2p,2q)) are both isomorphic to the simple

highest weight SU(n)-module of highest weight 2qΛ1 + 2pΛn−1. In the case n = 3, we have

that the ∆-eigenspace of SU(3)/SO(3) of eigenvalue λk is spanned by the functions φpaφ̃
q
b

for which (a, b) = 0 and λp,q = λk.

Proof. Recall from Section 8.2 that

H0(F,O(L2p,2q)) ' S2p,2q/((z, w)S2p−1,2q−1).

where S2p,2q is space of polynomials in z, w ∈ Cn of homogeneous degree (2p, 2q).The space

on the right hand side is a simple SU(n)-module of highest weight 2qΛ1 + 2pΛn−1, which

is isomorphic to the space spanned by the functions hp,qa,b, a, b ∈ C
n with (a, b) = 0, where

hp,qa,b(z, w) = (a, z)p(b, w)q.

This follows from Theorem 14.4 in [43]. Note that the discussion in [43] concerns polynomials

in z and z̄, but since they are treated as independent variables, the same results apply for

polynomials in z, w. The action of A ∈ SU(n) on hp,qa,b is similar to the one in (8.4.1):

A · hp,qa,b = hp,q
Āa,Ab
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. After verifying that the weights of φpaφ̃
q
b and h2p,2q

a,b coincide, we see that the map φpaφ̃
q
b 7→

h2p,2q
a,b leads to the desired isomorphism Hp,q ' H0(F,O(L2p,2q)).

Since by the Borel-Weil Theorem hm,na,b generate all irreducible SU(3)-modules, from

which we get that the eigenspaces of the Laplace-Beltrami operators on Riemannian sym-

metric spaces are finite sums of such modules, we obtain the result concerning n = 3.
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CHAPTER 9

CONCLUSIONS, OPEN QUESTIONS, AND FUTURE DIRECTIONS

The results about the explicit form of harmonic polynomials leading to eigenfunctions

on symmetric spaces HPn and SU(3)/SO(3) are new, but this is only the beginning of the

program. The natural question is how to extend them to the other irreducible symmetric

spaces. The first step is to extend the description to the space SU(n)/SO(n) and the other

symmetric spaces of maximal rank. In the near future, the first basic examples to consider

are the Grasmannians - real complex and quaternionic, which are in fundamental in many

questions. They are not all of maximal rank or rank one. Some indications on how to

construct explicitly the eigenfunctions are coming from the papers by S. Gudmundsson and

his collaborators. After comparing with the holomorphic side, we expect to also provide

many more of the eigenfunctions which they have constructed and have the property that

product of two of them is again an eigenfunction. In general, it is likely that all of the

compact Riemannian symmetric spaces will have this type of descriptions.

9.1 Harmonic analysis on compact symmetric spaces

Following S. Helgason [33] and more recently S. Gindikin [20], using exactly the same spaces

of our considerations and taking advantage of the natural connections of the dual fibrations

and a Cauchy-type integral operator defined on these spaces called the Radon transform,

and their applications to harmonic analysis on compact symmetric spaces. First we have

double fibration of the (complex) Lie group G and its (closed Lie-) subgroups K and H,

the the dual fibration in the form of the natural double fibration for the same homogeneous

flag space G/L which appears as our quantization space, over the symmetric space,

mathbbF = G/L
π1−→ Z = G/K, with M = ZR = GR/KR, and simultaneously a natural

fibration over the corresponding horospherical manifold F π2−→ Θ = G/H. In this set-up,

L can be interpreted as L = K ∩H, and can be summarized by the dual double fibration

diagrams below:
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G

Z = G/K Θ = G/H

p2p1

F = G/L

Z = G/K Θ = G/H

π2π1

This natural connection along with Gindikin’s horospherical Cauchy transform, an inte-

gral transform of Radon type, R : O(Z)→ O(Θ), with a corresponding inversion formula to

prove the following theorem and suggest the development of a theory of harmonic analysis

on the complex symmetric Stein manifolds Z = G/K (which admits holomorphic func-

tions ans contains horospheres, unlike its dual the compact Riemannian symmetric space

M := ZR = GR/KR) which clearly does not. However, being canonical dual objects, the

holomorphic functions on Z can be associated to M , the real form of Z, and allow for the

analysis of harmonic functions on Z and therefore M , or in plain English, the study of

harmonic analysis on compact Riemannian symmetric spaces, which with all the tools de-

veloped in the last few decades, is yelling to be studied rigorously, and everything I learned

in the process of completing this dissertation may allow me to contribute whatever I can to

this area of geometry and analysis gaining momentum and at its peak of current interest.

Theorem 9.1.1. (S. Gindikin 2006, Theorem 1 [20])

The spaces of holomorphic functions O(Z) and O(Θ) are isomorphic as G-modules.

This approach uses the holomorphic language of analytic cohomology, with a very simple

way to transfer to Dolbeault cohomology, as well as natural parallels with the Penrose

transform which associates analytical cohomology by integration along complex cycles with

some holomorphic functions. In fact, O(Z) can be considered as the intersection of Hn−l(Z\

X(v),O) with v ∈ V , where the set V of cycles X(v) is taken to be the set of all compact

forms of the Stein symmetric manifold Z. The study of harmonic analysis on compact

Riemannian symmetric spaces is a very promising area for further research.
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9.2 Tabulation of Laplace-Beltrami eigenspectra of higher

rank Riemannian symmetric spaces

The classification of the Laplacian eigenspectra of compact Riemannian symmetric spaces

is summed up below, and can be found in many places within the relevant literature. The

Laplace eigenspectra of CROSSes is well known (rank one), and can be found in many places

within the relevant literature. Their calculation is substantially easier because the spectrums

are one dimensional (generated by one element). The (same) table of the eigenspectra of

the Laplacian operator ∆M on the compact rank one symmetric spaces (CROSSes) M also

mentioned in the introduction, and can be found in A. Besse [4] is again compiled below,

for comparison of very clear research that remains to be done, and is within the scope of

the author, for further future research.

What Tsanov, D. Grantcharov, and G. Grantcharov noticed was a relation between the

Laplace eigenspectra 1
2∆M on M = G/K and the geometric quantization of Geod(M) =

G/L. The authors completed the CROSS case (i.e. rank 1), but the higher rank cases

present a clear path forward for further research. The first higher rank example found

is that of M = SU(3)/SO(3) of rank two, and in this dissertation the table of rank two

compact Riemannian symmetric spaces been completed, but still leaves plenty of work for

the future on the tabulation of higher rank symmetric spaces M = G/K with rk(M) ≥ 3.

Table 4: The Laplace eigenspectrum of compact rank one Riemannian symmetric spaces

CROSS M = G/K Eigenspectrum Spec(∆M )

Sn = SO(n+ 1)�SO(n) Spec(∆Sn) = {λk = k(k + n− 1)
∣∣ k ≥ 0}

RPn = SO(n+ 1)�SO(n)× SO(1) Spec(∆RPn) = {λk = 2k(2k + n− 1)
∣∣ k ≥ 0}

CPn = SU(n+ 1)�S(U(n)× U(1)) Spec(∆CPn) = {λk = 4k(k + n)
∣∣ k ≥ 0}

HPn = Sp(n+ 1)�Sp(n)× Sp(1) Spec(∆HPn) = {λk = 4k(k + 2n+ 1)
∣∣ k ≥ 0}

CaP 2 = F4�Spin(9) Spec(∆CaP 2) = {λk = 4k(k + 11)
∣∣ k ≥ 0}
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A similar table can be created for the quantization space G/L of higher rank spaces from

the results of [26] and this dissertation. Table 5 below summarizes the rank one case.

Compiling a similar table of the flag manifolds representing the quantization spaces of

higher rank Riemannian symmetric spaces would also be fruitful avenue of further research.

This dissertation contains the results to construct the table of Laplace eigenspectra

of compact rank two Riemannian symmetric spaces. Also the method for computing the

eigenspectra for rank two spaces is presented, allowing for the tabulation of rank two spaces

and their eigenspectra, a direct analogy of Table 3 for spaces one rank higher. The second

column would no longer signify the geodesic flow but the higher dimensional generalization of

the quantization space, which mentioned much earlier, is the space (which has the structure

of a genealized manifold) parametrizing all maximal flat totally geodesic tori, roughly sitting

inside the Lie algebra. This is another clear avenue of further future research would be the

tabulation of the quantization space for the higher rank compact Riemannian symmetric

space.

Table 5: The geodesic flow of compact rank one Riemannian symmetric space

CROSS M = G/K Quantization space of geodesic flow G/L = Geod(M)

Sn = SO(n+1)
SO(n) Geod(Sn) = SO(n+1)

SO(n)×U(1)

RPn = SO(n+1)
S(O(n)×O(1)) Geod(RPn) = SO(n+1)

S(O(1)×O(n−1)×U(1))

CPn = SU(n+1)
S(U(n)×U(1)) Geod(CPn) = SU(n+1)

S(U(1)×U(n−1)×U(1))

HPn = Sp(n+1)
Sp(n)×Sp(1) Geod(HPn) = Sp(n+1)

Sp(n−1)×Sp(1)×U(1)

CaP 2 = F4
Spin(9) Geod(CaP 2) = F4

SO(7)×U(1)

9.3 Conclusion

We end this statement by noting that the amount of work remaining is quite large,

but well within the scope of our investigations. Ideally, one would like to continue the
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current project until completion, including higher rank versions of Tables 2 and 3, as well as

explicit expressions for the Laplace-Beltrami eigenfunctions for higher rank spaces, in terms

of harmonic polynomials and Borel-Weil-Bott theory as we did for the first few examples.

Then there is also the other related work like developing a theory of harmonic analysis

on compact Riemannian symmetric spaces in the way mentioned briefly in the previous

section. It will definitely be challenging work, but ultimately I am confident the program

will work and is within the purview of myself and my advisor and collaborators, and beside

the current paper in progress, there is at the very least a few more papers that can spring

out of the investigations outlined in this chapter.

93



94

            
           
      

         
         

           
       

              
           
   

            
           

            
    

            
      

            
     

        

           
        

             
         

            
         

           
   

            
           
 

BIBLIOGRAPHY

[1] R. Abraham, J. Marsden, Foundations of mechanics, Second edition, (with the assis-
 tance of Tudor Ratiu and Richard Cushman), Benjamin/Cummings Publishing Co., Inc.,
 Advanced Book Program, Reading, Mass. (1978).

[2] D. Alekseevsky, A.Perelomov, Invariant K ähler-Einstein metrics on compact homoge-
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