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ABSTRACT OF THE DISSERTATION 
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Professor Priyanka Alluri, Major Professor 

 

Transportation agencies are implementing traffic management strategies to 

improve mobility and safety on freeways. Ramp metering is a traffic management strategy 

deployed to mitigate congestion on freeways using traffic signals installed at entrance 

ramps to control and regulate vehicle entry onto the freeway mainline. Estimating the 

mobility benefits of ramp metering is critical to determine the strategy's effectiveness and 

inform the decision-making process regarding its deployment.  

However, the extent of the impact of ramp metering on recurrent congestion varies 

across studies. Among the reasons for the inconsistencies are the limitations of 

conventional methods for evaluating benefits, including the before-and-after approach, 

shutdown experiment, and traffic simulation. In addition to alleviating recurrent 

congestion, ramp metering has the potential of improving traffic conditions during non-

recurrent congestion. Few agencies have used ramp metering to reduce non-recurrent 

congestion resulting from traffic incidents and adverse weather. Nonetheless, the ramp 

benefits during non-recurrent congestion are not well researched.  

This research aimed to estimate the mobility benefits of ramp metering during 

recurrent and non-recurrent congestion. To achieve the research goal, the study evaluated 
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the effects of ramp metering on travel time reliability, the impact of ramp metering on 

traffic conditions upstream of a crash location, and the effects of ramp metering on traffic 

conditions during rainy weather. The research used data collected when ramp metering 

signals (RMSs) are activated and during unintentional RMSs’ downtime to account for the 

limitations of the conventional methods for estimating benefits.  

Results of the analysis focusing on recurrent congestion showed that ramp metering 

significantly improves travel time reliability. It was estimated that ramp metering increased 

travel time reliability by 23% during moderate recurrent congestion and by 28% during 

severe recurrent congestion.  

The analysis during non-recurrent congestion showed that ramp metering has 

varying impacts on traffic conditions upstream of a crash location. Ramp metering 

significantly affected traffic conditions upstream of a crash location during peak periods 

and daytime off-peak periods. Activating RMSs during rain in daytime off-peak periods 

and peak periods positively affected traffic conditions downstream of the entrance ramps. 

Based on the estimated benefits, agencies could establish criteria for selecting when and 

which RMSs to be activated to alleviate non-recurrent congestion. The estimated benefits 

could also be used when assessing the cost-effectiveness of future deployment of RMSs.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

 

Traffic congestion continues to increase each year on the urban roadway networks 

in the United States (U.S.). In 2017, Americans lost nearly nine billion hours due to 

congestion (Schrank et al., 2019). Regrettably, traditional solutions, such as adding lanes, 

are no longer considered feasible because the urban road capacity is already built out, and 

there is limited funding for road widening projects (Grant et al., 2017). Agencies are, 

therefore, implementing Transportation Systems Management and Operations (TSM&O) 

strategies to reduce traffic congestion. TSM&O strategies focus on optimizing the capacity 

of the existing and planned transportation infrastructure for all modes of transportation to 

improve safety and reduce congestion (Clark et al., 2017). Freeways are an integral part of 

the urban roadway network where traffic conditions could be improved using TSM&O 

strategies, including ramp metering, dynamic message signs, and variable speed limits. 

Ramp metering is a TSM&O strategy that utilizes signals installed at freeway entry 

ramps to dynamically manage traffic entering the freeway. Ramp metering operates by 

stopping and releasing vehicles traveling from the adjacent arterials to the freeway 

mainline through the entrance ramp at a metered rate (Jacobson et al., 2006). As illustrated 

in Figure 1-1, a typical ramp metering configuration shows an entrance ramp stop line 

where vehicles are stopped and released onto the mainline at a rate that depends on the 

prevailing mainline traffic conditions. The three main objectives of ramp metering include: 

(1) controlling the number of vehicles entering the freeway to ensure traffic volume on the 
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freeway section is below capacity (Balke, 2009; Piotrowicz and Robinson, 1995), (2) 

reducing the freeway demand, and (3) breaking up platoons of vehicles released from 

upstream signals from entering the freeway mainline (Balke, 2009; Gan et al., 2011; 

Piotrowicz and Robinson, 1995).  

 

Figure 1-1: Schematic Diagram of Ramp Metering Configuration 

 

Ramp metering is intended to improve mobility, reliability, safety, and the 

environment while preserving freeway capacity at a lower cost than traditional capacity 

improvement projects (Mizuta et al., 2014). Most agencies use ramp metering during 

recurrent congestion resulting from variations in traffic demand (Hallenbeck et al., 2003). 

In other cases, ramp metering is used to manage traffic during non-recurrent congestion 

due to unplanned temporary events, including traffic incidents and adverse weather 

conditions (Hallenbeck et al., 2003). Ramp metering helps relieve traffic congestion by 

keeping the freeway density close to, but below, the critical density value (Hadi et al., 2017, 

Mizuta et al., 2014). In addition to mobility benefits, ramp metering improves traffic safety 
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by reducing the turbulence and speed variability associated with the risk of rear-end and 

sideswipe crashes in merging zones (Lee et al., 2006). By eliminating stop-and-go 

conditions, ramp metering reduces vehicle emissions and fuel consumption on the freeway 

mainline (Mizuta et al., 2014).  

Several state and local agencies deploy ramp metering with the expectation of 

reducing congestion on urban freeways (Drakopoulos et al., 2004; Mizuta et al., 2014). 

Other agencies use the experience from the already deployed ramp metering systems to 

assess its effectiveness and viability for future implementation. However, there are 

conflicting opinions among stakeholders regarding the deployment of ramp metering 

signals (RMSs), despite their potential benefits (Cambridge Systematics Inc., 2001; Mizuta 

et al., 2014). Ramp metering improves freeway operations, but affects short trips involving 

motorists living in areas near the ramps by favoring through traffic and suburban traffic 

(Bertini et al., 2004). As a result, oftentimes the public opposes ramp metering due to long 

waiting times at the entrance ramps and the perceived lack of consistency between waiting 

times and level of freeway congestion (Cambridge Systematics Inc., 2001). Therefore, 

evaluating the benefits of ramp metering is critical to determine the effectiveness and 

support decision-making regarding ramp metering programs (Bertini et al., 2004). The 

estimated benefits can help agencies gain greater public acceptance, attract funding for 

ramp metering facility investments, and make changes to ramp metering operations (Jacobs 

Engineering Group Inc., 2013). 
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1.2 Problem Statement 

 

Ramp metering is traditionally used to improve traffic conditions during recurrent 

congestion. Researchers have evaluated the benefits of ramp metering during recurrent 

congestion using several measures, including travel time, travel time reliability, traffic 

speed, and level of service (LOS). However, the extent of the impact of ramp metering on 

recurrent congestion varies across studies. Among reasons for the inconsistencies are the 

limitations of conventional methods for evaluating benefits, including the before-and-after 

approach, shutdown experiments, and traffic simulation (Ahn et al., 2007; Bertini et al., 

2004; Cambridge Systematics Inc., 2001; Kansas Department of Transportation [KDOT] 

and Missouri Department of Transportation [MoDOT], 2011). The before-and-after 

approach involves measuring the performance of the freeway in the period prior to and 

following deployment of RMSs. One of the drawbacks of this approach is the failure to 

separate the effect of other changes implemented along the study corridors within the study 

period (Hauer, 2015). These changes may include, but not limited to, the deployment of 

different traffic management strategies (e.g., express lanes, dynamic message signs), 

construction works, and changes in the geometric characteristics.  

Shutdown experiments involve the deliberate turning off of the RMSs for a certain 

period for data collection purposes (Bertini et al., 2004). However, shutdown experiments 

are prone to either underestimation or overestimation of benefits. The main reason being 

the behavioral changes in drivers following the deactivation of ramp signals increase the 

likelihood of traffic pattern change (Cambridge Systematics Inc., 2001). Moreover, only a 

few days of data are typically collected from the shutdown experiments because of the 

costs associated with turning off the RMSs (Ahn et al., 2007; Bertini et al., 2004). A few 
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days of data, potentially affected by other factors, such as seasonal changes, are less likely 

to provide a complete and comprehensive understanding of the impact of ramp metering.  

Traffic simulations, to an extent, can help avoid some of the challenges associated 

with the before-and-after approach and shutdown experiments. Traffic simulation allows 

controlling other factors that might influence traffic conditions, apart from ramp metering 

(Scariza, 2003). The simulation can include or exclude these factors (e.g., construction 

works, incidents) depending on the objective. The flexibility provided by traffic simulation 

allows placing detectors at any location of the study corridor (Scariza, 2003). However, the 

downside of traffic simulation is that it is difficult to mimic all of the actual field conditions 

and characteristics, which can lead to questionable accuracy (Hourdakis and 

Michalopoulos, 2007). The extent of the network also limits traffic simulation, and 

depending on the complexity of the simulation software, it can be time-consuming when 

trying to match the field conditions with the simulated network (Horowitz et al., 2004). 

Therefore, a different approach that addresses the aforementioned limitations could be used 

to estimate the benefits of ramp metering when there are constraints using the conventional 

methods. 

In addition to relieving recurrent congestion, ramp metering has the potential of 

improving traffic conditions during non-recurrent congestion. Agencies have used or 

considered using ramp metering to reduce non-recurrent congestion due to traffic incidents 

and adverse weather (Fartash, 2017; Jacobs Engineering Group Inc., 2013; Zhu et al., 

2010). However, depending on the agency’s needs, varying criteria must be considered 

before activating ramp metering during non-recurrent congestion. Most agencies activate 

RMSs during unplanned events based on the operators’ judgment (Fartash, 2017; Jacobs 
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Engineering Group Inc., 2013; Zhu et al., 2010). Other agencies consider the reduced 

freeway capacity as a result of the event (Hadi et al., 2017; Zhu et al., 2010).  Even though 

few agencies use ramp metering during non-recurrent congestion, the associated benefits 

are not well recognized. As such, some agencies activate RMSs following a traffic incident, 

while other agencies require the signals to be deactivated right after a traffic incident occurs 

(Athey Creek Consultants, 2019; Zhu et al., 2010). Inconsistencies in the criteria for ramp 

metering activation during unplanned events make it challenging to evaluate the benefits 

of ramp metering during non-recurrent congestion. Moreover, the time-variant attributes 

of the unplanned events, such as traffic incident duration, also make it difficult to estimate 

the benefits of ramp metering during the non-recurrent congestion (Wang, 1994). 

Considering the potential of ramp metering in reducing non-recurrent congestion, it is 

essential to estimate the ramp metering benefits. Understanding the benefits of ramp 

metering during non-recurrent congestion may also help agencies establish criteria for 

activating the signals during non-recurrent congestion. 

 

1.3 Research Goal and Objectives 

 

The goal of this research is to estimate the mobility benefits of ramp metering on 

freeways. The traditional methods for evaluating the benefits include the before-and-after 

approach, shutdown experiment, and traffic simulation. As discussed in Section 1.2, the 

existing conventional methods used to estimate the mobility benefits of ramp metering are 

fraught with limitations and biases. This study therefore focuses on using the unintentional 

RMSs downtime to quantify the mobility benefits. Considering that each approach offers 

some advantages depending on the situation, the approach developed and adopted in this 
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research complements the existing methods to quantify the benefits of ramp metering 

during recurrent congestion. Also, the study focuses on using high-resolution data to 

evaluate the effect of ramp metering in alleviating non-recurrent congestion. The impact 

of ramp metering during traffic conditions affected by crashes and adverse weather 

condition (e.g., rain) can help agencies justify activating RMSs to alleviate non-recurrent 

congestion. Therefore, the specific objectives of this research are: 

 Estimate the effect of ramp metering during recurrent congestion.  

 Evaluate the impact of ramp metering on non-recurrent congestion caused by 

crashes. 

 Evaluate the impact of ramp metering on non-recurrent congestion due to rain. 

 

1.4 Dissertation Organization 

 

This dissertation is comprised of six chapters, organized as follows:  

 Chapter 2 presents a comprehensive review of existing literature regarding the 

measures of the mobility benefits of ramp metering on freeways during recurrent 

and non-recurrent congestion. The chapter discusses the methods used to quantify 

the impact of ramp metering on traffic operations. It also describes the effects of 

traffic incidents and rain on traffic conditions.  

 Chapter 3 explains the data used to achieve the study objectives. It describes the 

study area, data types, data sources, data collection, and data preparation. 

 Chapter 4 discusses the methodologies adopted to achieve the study objectives. It 

describes in detail the study design and the statistical approaches applied in the 

study. 
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 Chapter 5 presents the analyses and discusses the results of the study. The benefits 

of ramp metering during recurrent and non-recurrent congestion are provided in 

this chapter.  

 Chapter 6 concludes the dissertation by summarizing the contributions of this 

research and providing recommendations for future research. 
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CHAPTER 2  

LITERATURE REVIEW 

The goal of this research is to quantify the mobility benefits of ramp metering 

during recurrent and non-recurrent congestion. This chapter presents a synthesis of 

previous studies on the operations and benefits of ramp metering. The effects of incidents 

and rain on the traffic conditions are also discussed. The chapter further discusses the 

methods used to estimate the benefits of ramp metering.  

 

2.1 Ramp Metering Strategies 

 

Ramp metering strategies differ depending on the infrastructure, constraints, and 

objectives of the deployment (Mizuta et al., 2014). The ramp metering strategies are 

classified by considering the extent, mode, activation strategy, and the algorithm of ramp 

metering control (Hadi, 2017).  

 

2.1.1 Extent of Ramp Metering Control 
 

The extent of ramp metering control is categorized into two broad groups 

depending on the number of ramps being monitored: local and system-wide (Hadi et al., 

2017; Scariza, 2003). The local ramp metering is deployed on a single or an isolated ramp 

to improve the traffic conditions in the vicinity of that ramp (Mizuta et al., 2014; Scariza, 

2003). The metering rate at the single ramp does account for the conditions at other 

upstream or downstream ramps (Scariza, 2003). The local ramp metering control utilizes 

detectors that are only located around the subject ramp and the corresponding freeway 

section (Kristelet, 2014). 
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The system-wide ramp metering involves deployment on multiple ramps along a 

segment or an area to improve the traffic conditions of an area (Scariza, 2003). The system-

wide ramp metering considers other RMSs as a system in the estimation of the metering 

rates on each ramp (Scariza, 2003). The objective of the system-wide ramp metering is to 

optimize the rate of each ramp so as to improve the traffic conditions along the entire 

corridor (Mizuta et al., 2014). The system-wide ramp metering control uses traffic detectors 

located on the ramps and along the metered section. It is thus considered effective than the 

local ramp metering control (Fartash, 2017). 

 

2.1.2 Mode of Ramp Metering Rate Selection 

 

The ramp metering strategies are categorized into three groups based on the method 

of selecting the metering rate. These groups include static, adaptive, and proactive selection 

modes (Hadi et al., 2017). The static mode is based on the historical data assuming that 

traffic patterns along the freeway and the ramps do not change over time (Kristelet, 2014). 

Conversely, the adaptive mode selects the metering rate based on the prevailing traffic 

conditions on the ramp and the freeway mainline (Kristelet, 2014). The proactive model 

estimates the metering rate based on real-time data to prevent oversaturated conditions and 

traffic breakdown (Hadi et al., 2017).  

 

2.1.3 Activation Strategies of Ramp Metering 

 

The activation strategies of ramp metering include schedule, manual, and traffic 

responsive (Fartash, 2017). The schedule activation is based on a pre-determined fixed time 

(Simpson et al., 2013). The manual method involves an operator observing the traffic 

conditions on a closed-circuit television (CCTV) and activating based on their judgment 
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(Fartash, 2017). The traffic responsive strategy automatically activates ramp metering 

control based on the measurements of the existing or predicted traffic conditions (Fartash, 

2017). The predicted traffic conditions are considered such that to prevent breakdown, 

congestion, or non-recurrent conditions caused by incidents or weather impacts (Fartash, 

2017). 

    

2.1.4 Algorithms of Ramp Metering Control 

 

Ramp metering algorithms depend on the extent of ramp control. The algorithms 

for local ramp metering control include but are not limited to the demand-capacity 

algorithm, percent-occupancy algorithm, and the Asservissement Linéaire d’Entrée 

Autoroutière (ALINEA) algorithm (Fartash, 2017; Karim, 2015; Mizuta et al., 2014). The 

algorithms for the system-wide control include but are not limited to the Denver,Colorado 

Helper algorithm, Linked Ramp algorithm, FLOW algorithm, System-wide Adaptive 

Ramp Metering (SWARM) algorithm, Seattle Bottleneck algorithm, Model Predictive 

Control algorithm, and the Fuzzy Logic algorithm (Fartash, 2017; Karim, 2015; Mizuta et 

al., 2014). Table 2-1 summarizes ramp metering algorithms and the metering rate 

calculation methods. 

 

2.2 Ramp Metering Benefits during Recurrent Congestion  

 

Several studies estimated the mobility benefits of ramp metering on freeways. The 

mobility performance measures used in these studies include: travel time, travel time 

reliability, traffic speeds, traffic delays, LOS, traffic volume, and traffic throughput. The 

following sections discuss these measures in detail. 
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Table 2-1: Summary of Algorithms for Estimating Ramp Metering Rates 

Algorithm Control Type Metering Rate Calculation Method 

Demand-Capacity Local Based on: 

 Difference between upstream mainline flow 

and downstream capacity, or 

 Difference between upstream mainline 

occupancy and desired occupancy 

Percent-Occupancy Local Based on the difference between upstream occupancy 

and occupancy at capacity 

ALINEA Local Based on the difference between downstream freeway 

occupancy and desired occupancy 

Denver, Colorado Helper System-wide Based on upstream occupancy of the critical ramp 

Linked Ramp System-wide Based on the difference between upstream mainline 

flow and target flow 

FLOW System-wide Calculates local and bottleneck metering rates and 

select the more restrictive 

 Local metering rate is based on occupancy 

 Bottleneck metering rate is based on ramp 

distance from the bottleneck and historical 

ramp volume 

SWARM System-wide Calculates both local and system-wide metering rates 

and selects the more restrictive rate: 

 Local metering rate is based on upstream 

density 

 System-wide metering rate is based on the 

difference between real-time density and 

predefined threshold 

Seattle Bottleneck System-wide Calculates both local and system-wide metering rates 

and selects the more restrictive rate: 

 Local metering rate is based on upstream 

occupancy 

 System-wide metering rate is based on the 

difference between the downstream volume 

and bottleneck capacity 

Model Predictive Control System-wide Based on the optimization process of the objective 

function and predicted traffic parameters of predefined 

time  

Fuzzy Logic System-wide Based on local speed, occupancy, flow, queue 

occupancy, downstream speed and predefined linguistic 

rules 

 

2.2.1 Travel Time 

 

Several studies have used travel time to quantify the mobility benefits of ramp 

metering (Cohen et al., 2017; Karim, 2015; KDOT and MoDOT, 2011). The travel time 

data along the study corridors were usually collected using the floating car technique or 

traffic detectors (Cambridge Systematics Inc., 2001; Cohen et al., 2017; KDOT and 
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MoDOT, 2011). The floating car technique (FCT) involves driving a vehicle within a 

traffic stream, passing as many vehicles as passed it and recording its travel time as the 

average condition of the segment (KDOT and MoDOT, 2011). On the other hand, traffic 

detectors include loop detectors and other sensors that utilize technologies such as 

Bluetooth or microwaves to collect traffic data.  

KDOT and MoDOT (2011) collected travel time data using the FCT during the 

morning and afternoon peak periods on fourteen segments of I-435 in Kansas and Missouri. 

The travel times were collected in a one-year period before ramp meters were installed and 

in a two-year period after the ramp meters were operational. The traffic along the corridor 

experienced an increase in travel time for some segments and a decrease for others. Overall 

the segments experienced significant improvements in travel time during the morning peak 

periods. The improvements were considered as a net effect of segments that experienced 

shorter travel times and those experienced longer travel times (KDOT and MoDOT, 2011). 

Karim (2015) used Verkehr In Städten – SIMulations (VISSIM) model, a 

microscopic simulation software, to explore the effectiveness of ramp metering on the 

average travel time of a 3000-ft freeway segment adjacent to the ramp as the measure of 

freeway efficiency. Karim (2015) found that ramp meters improved the efficiency of the 

freeway if the percentage decrease in the average travel time was at least 5%. Results 

suggested that ramp metering efficiency depended on the traffic volume on both the 

entrance ramp and freeway, RMS timing scenarios, and the geometric configuration of the 

entrance ramp. Overall, ramp metering was observed to be beneficial for a single lane 

entrance ramp during the peak periods or when the ramp traffic volume is ≥ 800 vehicles 

per hour per lane (vphpl), and the freeway traffic volume is ≥ 1,250 vphpl (Karim, 2015). 



14 
 

Travel times that were derived from loop detector measurements (i.e., flow, 

occupancy, and speed) on a 40-mile section of the A25 roadway linking Socx and Lille in 

France were used to quantify the impact of ramp metering (Cohen et al., 2017). The 

estimated travel times were validated based on the data collected using the FCT. Travel 

times were collected on weekdays during May, June, October, and November of 2015 

when ramp meters were not operational, and for 11 days in February and March of 2016 

when ramp meters were operational. Although data were collected for the entire day on 

each specified day, the analysis focused on the morning peak periods (6:30 AM to 10:30 

AM). Descriptive statistics were used to compare the travel times, and results indicated 

that the average travel time when ramp meters were activated was 95 seconds less than the 

average travel time when deactivated.  

 

2.2.2 Travel Time Reliability 

 

Travel time reliability has recently been used by numerous agencies to assess 

transportation improvement deployments. Travel time reliability shows the consistency of 

travel time and reflect the user’s experience in commuting (Kidando et al., 2019). Travel 

time reliability is preferred to average travel time due to the accuracy of predictable travel 

times although it requires extensive data collection (Cambridge Systematics Inc., 2001; 

Kidando et al., 2019). There is no single metric to measure the travel time reliability of a 

segment, and can be grouped into three major groups: variation metrics, probabilistic 

measures, and percentile index (Kidando et al., 2019). The variation metrics are mainly 

based on the measures of the central tendency in statistics, which include standard 

deviation, variance, mean, median, coefficient of variation, and kurtosis (Lomax et al., 
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2003). The probabilistic measures include misery index, congestion frequency, and 

percentage of on-time arrivals. The percentile index uses percentiles (e.g., 10th, 50th, 90th, 

and 95th percentile) of travel time distributions to estimate metrics such as buffer index, 

planning time index, travel time index, and the skew statistic (Lomax et al., 2003).  

Cohen et al. (2017) used the variance of travel times as a reliability metric to show 

the impact of ramp metering on the A25 roadway connecting Socx to Lille in France during 

morning peak period (6:30 a.m. to 10:30 a.m.). The F-test was used to test the hypothesis 

of equal variances of travel time when ramp metering was activated and deactivated. 

Results indicated that travel time on segment varied more when ramp meters were 

deactivated. Levinson and Zhang (2006) analyzed the operations of freeways based on the 

standard deviation of travel time when ramp meters were activated and deactivated during 

the afternoon peak period. In the study, the standard deviation of travel time was estimated 

for two scenarios, inter-day and intra-day. The inter-day travel time variation was estimated 

from trips that were made across different days, while intra-day travel time variation was 

estimated from trips that occurred only on a specific day (Levinson and Zhang, 2006). 

Results indicated that inter-day travel time variability was reduced because of the 

operations of the ramp metering system. It was also observed that ramp metering 

significantly reduced the intra-day travel time reliability for long trips.  

Xie et al. (2012) used conventional travel time reliability measures, including travel 

time index (TTI) and buffer index (BI). TTI is the ratio of actual travel time to the travel 

time under free-flow speed (FFS) or posted speed limit (PSL) conditions (Xie et al., 2012). 

The TTI shows the amount of extra time required to travel during the peak period relative 

to during free-flow conditions. Xie et al. (2012) calculated TTI as: 
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                           𝑇𝑇𝐼 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑢𝑛𝑑𝑒𝑟 𝐹𝐹𝑆 𝑜𝑟 𝑃𝑆𝐿 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
                             (2-1) 

Conversely, the BI represents the extra time needed to ensure on-time arrival in 

95% of trips. The BI was calculated using: 

                 𝐵𝐼 =
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 −  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
                      (2-2) 

The comparison between TTIs and BIs before and after activation of ramp metering 

indicated significant travel time reliability improvements in the study section. KDOT and 

MoDOT (2011) assessed the effectiveness of the ramp metering system using TTI as a 

reliability measure. The TTI for the freeway section was calculated using the weighted 

average of travel times using vehicle-miles-traveled (VMT).  Results indicated that the 

TTIs before were greater than the TTIs after deployment of the RMSs, indicating more 

reliable travel times along the study corridor as a result of ramp metering. 

 

2.2.3 Traffic Speed 

 

Studies have used traffic speeds to show the impact of ramp metering on the 

operational performance of freeways. KDOT and MoDOT (2011) compared the traffic 

speeds on fourteen segments of I-435 in Kansas and Missouri before and after the ramp 

metering system became operational. Results indicated that traffic speeds increased for 

some sections of the study corridor. This improvement was observed during both morning 

and evening peak periods. Similarly, the evaluation of ramp metering benefits in the Twin 

Cities (Minneapolis – St. Paul), MN compared traffic speeds when ramp signals were 

activated and deactivated (Cambridge Systematics Inc., 2001). Results indicated an 
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average 14% increase in the traffic speeds when RMSs were activated along all segments 

in the analysis. The most significant improvement in traffic speed (26%) was observed 

when going southbound on I-35E in St. Paul, MN. Hourdakis and Michalopoulos (2007) 

used traffic simulation to analyze ramp metering impact in the Twin Cities (Minneapolis – 

St. Paul), MN. Two sites were selected to represent the Twin Cities freeway network. 

Results indicated a 17% to 26% mainline speed improvement on the 12-mile section of the 

Trunk Highway 169. Also, an increase of 13% to 20% in the mainline speed on an 11-mile 

section along I-94. 

Traffic speeds were used to show the benefits of the Fuzzy Logic algorithm before 

its large-scale implementation in Washington State (Trinh, 2000). Results indicated that 

ramp metering increased the traffic speed by 7 to 20 mph. Xie et al. (2012) used average 

speed, standard deviation of speed, and interquartile range of speed to show the impact of 

ramp metering along the study corridor that has high occupancy vehicle (HOV) lanes. 

Results indicated an increase in the average speeds, a decrease in the standard deviation of 

speeds, and a decrease in the interquartile speed range along the general-purpose lanes. The 

average speed of HOV lanes did not show significant improvements, but the standard 

deviation and the interquartile range were reduced. 

  

2.2.4 Traffic Delays  

 

The reduction in traffic delays show the benefits of the ramp metering operations 

on the freeway mainline. Traffic delay is defined as the excess travel time on a trip, facility, 

or freeway segment beyond what would occur in ideal conditions (Cambridge Systematics 

Inc., 2001; Sun et al., 2013). Sun et al. (2013) evaluated the effectiveness of ramp metering 
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at work zones in Columbia, Missouri using traffic delays. This study used traffic simulation 

because the traffic demand observed on the mainline and ramps at the study locations was 

not consistently high enough for the ramp meters to have a sustained effect on mobility. 

The analyzed scenario involved a two-to-one lane work zone with an entrance ramp located 

upstream of the work zone. Three different traffic volumes (900 vph, 1,240 vph, and 1,754 

vph) and two truck percentage levels (10% and 40%) were evaluated, and VISSIM models 

were developed for the five work zone scenarios for metered and unmetered ramp 

conditions. The models were calibrated using field data collected at the congested work 

zone sites. The total vehicular delay which considered the delay caused by both the 

mainline and ramp traffic, was used to measure the impact of ramp metering. Results 

suggested that ramp metering decreased traffic delays in work zones when traffic volume 

exceeded capacity. On average, a 24% decrease in delay with low truck percentage and a 

19% decrease in delay with significant truck percentage conditions resulted from metering 

ramps near work zones operating above capacity. Ramp metering was not recommended 

for flows below capacity in work zones because it increased total delays. 

 

2.2.5 Traffic Volume and Throughput 

 

Cambridge Systematics Inc. (2001) estimated the impact of ramp metering 

operations on traffic volume. The study collected traffic volume data on selected freeways 

(I-494, I-94, I-35E, I-35W) in Twin Cities (Minneapolis – St. Paul), MN. The traffic 

volume data was collected during morning and afternoon peak periods when RMSs were 

activated and deactivated for five weeks each.  An average of 9% reduction in the traffic 

volume along freeways was observed when ramp meters were turned off. It was presumed 
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that the reduced traffic diverted to earlier or later times and to local streets that were not 

within the study area. Also, the freeway throughput during peak traffic conditions that were 

measured by VMT declined by 14% when ramp meters were turned off. The reduction was 

associated with the decrease in average speed, increase in speed variability, and poor 

merging conditions of ramp traffic when ramp signals were turned off.  Mainline 

throughput calculated in terms of vehicle-hours-travelled (VHT) and VMT were used to 

assess the effectiveness of ramp metering on weekends (Bertini et al., 2004). The study 

estimated VHT and VMT on weekends when RMSs are deactivated and weekends when 

RMSs are activated. Results indicated a 5.8% increase in the VHT and a 0.7% increase in 

the VMT on Saturday due to ramp metering operations. Slight improvements on both VHT 

(1.8%) and VMT (1.0%) were observed as a result of ramp metering operations on Sunday. 

 

2.2.6 Level of Service 

 

The LOS for the freeway mainline is based on density and speed. In their study, 

Cohen et al. (2017) collected and used traffic flow, occupancy, and speed to estimate LOS. 

Additional data were also collected to give further insights into conditions with and without 

ramp metering. The data included incidents, planned construction work, and adverse 

weather conditions. LOS was estimated using fundamental traffic flow diagrams to assess 

the mobility improvements due to ramp metering operations and the combination of ramp 

metering and variable speed limit (VSL) (Cohen et al., 2017). The study reported 

insignificant changes but indicated that LOS gains are limited to the regulated section and 

have no impact on downstream sections.   
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2.3 Ramp Metering Benefits during Non-recurrent Congestion due to Incidents  

 

Traffic incidents are a major cause of non-recurrent congestion (Waller et al., 

2007). It is estimated that about 25% of non-recurrent congestion on the U.S. roadways 

could be attributed to traffic incidents (FHWA, 2017). Activation of ramp metering or 

adjustment of ramp metering rate could mitigate traffic congestion caused by incidents 

(Zhu et al., 2010). The goal of ramp treatment strategies is to improve traffic conditions on 

freeways rather than affecting the actual incident (Waller et al., 2007). It is therefore 

important to understand the effect of incidents on traffic conditions. Several studies have 

shown the impact of traffic incidents on traffic conditions using traffic delays and freeway 

capacity. 

The extent of delays caused by incidents depend on the clearance duration and the 

prevailing traffic volume (Waller et al., 2007). Incidents with longer clearance duration or 

that occur during heavier traffic flow are expected to cause more delays. However, 

estimation of traffic delays is challenging because of the stochastic and dynamic nature of 

incidents and traffic conditions. Also, the spatial extent of incident delay is not static. Some 

incidents may form longer queues than others because of several incident-related factors, 

e.g., incident occurrence time, incident severity, and roadway facility type. However, 

studies have applied the deterministic and shock-wave methods, which assume static 

demand to estimate delays caused by incidents (Khattak et al., 2012; Morales, 1987; 

Sullivan, 1997).  

As established in previous studies, incidents cause reduced freeway capacity 

(Addison et al., 2020; Fartash, 2017; Transportation Research Board, 2016). The Highway 

Capacity Manual (HCM) associated the capacity reduction with the incident severity 
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(measured using number of lanes blocked) and the directional number of lanes in a facility. 

The capacity reduction ranged from 50% to 7%. Studies improved the capacity reduction 

estimates due to incidents by considering the time-variant characteristics of incidents such 

as arrival of incident responding agencies at the incident scene (Addison et al., 2020; Hadi 

et al., 2011).  

Research on the impact of ramp metering on traffic conditions during traffic 

incidents is scarce despite its potential in reducing the effects of incidents. Relatively few 

agencies have used ramp metering to manage traffic during traffic incidents (Hadi et al., 

2017; Zhu et al., 2010). Moreover, inconstancies in considerations for activating the RMSs 

during traffic incidents limit the estimation of the ramp metering benefits.  

 

2.4 Ramp Metering Benefits during Non-recurrent Congestion due to Adverse 

Weather 
 

 Ramp metering could influence the traffic conditions affected by the adverse weather. 

The Florida’s ramp metering standard operating guidelines suggest activating RMSs during 

rain if the average speed of at the adjacent detector on the freeway is lower than 45 mph 

(FDOT, 2020). Hadi (2017) explored the need to activate system-wide ramp metering 

during adverse weather using traffic simulation. It was observed that all RMSs in the study 

corridor needed to be activated during medium and heavy rain. Considering that ramp 

metering directly affect the traffic stream, it is important to understand the impact of 

adverse weather on traffic conditions. 

Adverse weather conditions are known to affect traffic flow characteristics 

including speed, capacity, and travel time (Agarwal et al., 2005; Hranac et al., 2006).  In 

order to take account for the effect of inclement weather on roadway facilities, the HCM 
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provides speed adjustment factors for estimating LOS (Transportation Research Board, 

2016). The provided factors are given in different categories of weather type such as rain, 

snow, and low visibility. Moreover, adjustment factors are differentiated in terms of the 

free flow speed of the given facility. For example, the speed adjustment factor for heavy 

rain ranges from 0.91 to 0.94 for facilities that have free flow speed of 75 mph and 55 mph, 

respectively. The heavy rain had the intensity greater than 0.25 in/h and medium rain as 

had the intensity between 0.10 and 0.25 in/h. 

Rainy conditions were found to result in a 1.5 mph to 2.5 mph reduction in average 

speeds, and 2.5% to 10.7% reduction in average traffic demand (Angel et al., 2014). 

However, the effect of rain on traffic speeds on freeways differs with rain intensity and the 

level of congestion. A study in Florida observed a 6% and 12% decrease in speed during 

light rain and heavy rain conditions, respectively (Li et al., 2014). The light rain which was 

estimated to have the intensity of 0.0039 in/hr resulted in the decrease in free-flow speed 

ranging from 2% to 3% (Hranac et al., 2006). The speed at capacity was estimated to 

decrease by 8% to 10% in light rain (Hranac et al., 2006). Unrau and Andrey (2006) 

evaluated the effect of light rain volume-occupancy and speed-volume relationships. 

Results indicated that, during daytime rainfall, speeds were substantially reduced when 

traffic volume is high. Also, light rain during congested conditions was associated with 

reduced speeds but did not influence any changes in traffic volume. In addition to the 

intensity, the effect of rain on traffic speeds varies with vehicle classification. Rain resulted 

in a 3% reduction in the speed of heavy-duty vehicles and 5% decrease in the speed of 

light-duty vehicles (Rakha et al., 2012). Higher rain intensity up to 0.5 in/hr resulted to a 
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4.5% and 8.5% decrease in the speeds of the heavy-duty and light-duty vehicles, 

respectively (Rakha et al., 2012).  

The HCM also provides capacity adjustment factors according to weather type and 

FFS for estimating the LOS (Transportation Research Board, 2016). The capacity 

adjustment factor for heavy rain ranges from 0.82 to 0.89 for facilities that have free flow 

speed of 75 mph and 55 mph respectively. Moreover, light rain (0.0039 in/hr) was 

estimated to reduce the capacity of a freeway by 10% to 11% but the capacity was not 

affected by the increasing rainfall intensity at the intensity range of 0 to 1.7 in/hr (Hranac 

et al., 2006). In their study, Agarwal et al. (2005) observed a statistically significant 

reduction in capacity of 5% - 10% and 10% - 17% for light and heavy rain condition, 

respectively.  

 

2.5 Methods for Estimating Ramp Metering Benefits 

 

Three major approaches have been applied to quantify the mobility benefits of ramp 

metering: before-and-after approach, shutdown experiment, and traffic simulation. The 

before-and-after approach involves analyzing the conditions of the facility in the period 

pre- and post-installation of the intervention, in this case, ramp metering. Shutdown 

experiment involves deliberate turning off the RMS over a certain period for data collection 

purposes. Traffic simulation involves the use of computer software to model the behavior 

of traffic systems and enable the analysis and evaluation of different scenarios in the 

system. The existing literature on these three methods for estimating the ramp metering 

benefits is discussed in the following sections. 
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2.5.1 Before-and-After Approach  

 

The before-and-after approach is a frequently used approach to analyze the 

effectiveness of operational improvement strategies including ramp metering (Xie et al., 

2012). Data collected prior to the RMSs becoming operational are compared to the data 

collected once the RMSs become operational. The difference between the data in the two 

periods is used to indicate the benefits or detriments of ramp metering. Trinh (2000) 

compared travel time and speed data collected manually by drivers before and after the 

start of nine ramp meters along I-405 in Bellevue, WA.  The KDOT and MoDOT compared 

the travel time, speeds, and travel time reliability on a section of I-435 before and after 

operations of ramp metering (KDOT and MoDOT, 2011). The study collected data for a 

12-month period after the ramp metering system became operational and for 24 months 

before the ramp metering system became operational. Horowitz et al. (2004) used data 

collected before and after deployment of seven ramp meters on the southbound of US 45 

in Milwaukee County, WI. Data related to traffic flow were collected on six weekdays 

before deployment and six weekdays after deployment (Horowitz et al., 2004). Xie et al. 

(2012) evaluated the benefits of ramp meters by collecting data for two months before and 

after ramp meters were activated on US 95 in Las Vegas, NV (Xie et al., 2012). The 

analysis used metrics derived from the collected speed and travel time data along the 

corridor before and after the start of the ramp metering operations.  

Despite its wide application, the before-and-after approach has some limitations. 

The before-and-after approach depends on the availability of data in both the before- and 

the after- periods. It is not feasible to adopt the before-and-after approach when the data 

before the ramp metering system became operational is not available. This is specific for 
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cases where the ramp metering started operating when the corridor did not have the 

capability for real-time traffic data collection. Also, a before-and-after approach may not 

produce reliable results when the evaluation of ramp metering has to take place right after 

the ramp metering system became operational. The traffic conditions just after the ramp 

metering system became operational might not reflect the true impact because road users 

need time for acclimation to newly installed systems. The before-and-after approach is also 

associated with difficulties in separating the impact of other factors (e.g., construction 

works) that might influence the traffic conditions during the study period from the impact 

of ramp metering. In spite of these limitations, the before-and-after approach allows for a 

long study period as compared to the shutdown experiment. The study period in the before-

and-after approach can range from weeks to years, thus providing a better representation 

of the impacts of ramp metering along a corridor over a long period.   

 

2.5.2 Ramp Metering Shutdown Experiment  

 

Several studies have used the shutdown experiment to estimate the mobility 

benefits of ramp metering. Data collected when ramp meters were deliberately turned off 

were compared with the data when ramp meters were turned on (Ahn et al., 2007; Bertini 

and Horowitz, 2008; Cambridge Systematics Inc., 2001; Levinson and Zhang, 2006). 

Cambridge Systematics Inc. (2001) collected data for five weeks when RMSs were turned 

off and when ramp meters were operational. Collecting data when RMSs were shutdown 

involved system-wide deactivation of the RMSs in Twin Cities (Minneapolis – St. Paul), 

MN for the 5-weeks period. Although all RMSs were deactivated, the study collected data 

from a few specific corridors in the area, which include I-494, I-94, I-35W, and I-35E. 
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Traffic data was also collected from specific adjacent arterials when ramp meters were 

deactivated and activated (Cambridge Systematics Inc., 2001). 

 Bertini et al. (2004) conducted a shutdown experiment to evaluate the effectiveness 

of weekend metering operations in Portland, OR. System-wide RMSs were turned off 

during one weekend for data collection. Data used for comparison was then collected on 

another weekend when RMSs were turned back on. The collected data include vehicle 

count, occupancy, and speed at each lane on the freeway mainline and ramp aggregated at 

20-second intervals (Bertini et al., 2004). Similarly, Ahn et al. (2007) evaluated the 

effectiveness of SWARM as compared to a pre-timed system in Portland, OR. Data 

including vehicle counts, occupancy, and speed were collected for five days when the 

SWARM system was turned off and RMSs were operated using pre-timed rates. The 

comparison data was then collected in other five days when the SWARM system was 

operational (Ahn et al., 2007).  

One advantage of the shutdown experiment is its flexibility when selecting the 

analysis period. Contrary to the before-and-after approach, the shutdown experiment is not 

constrained by the collection and availability of data in the period before the RMSs became 

operational. The shutdown experiment could be conducted at any time since the RMS 

became operational. Also, the shutdown experiment allows controlling of other factors that 

might influence the impact of ramp metering on traffic conditions by selecting a study 

period that is not affected by those factors. For example, the shutdown experiment could 

take place in a period without construction work along the study corridor. Despite its 

usefulness, the shutdown experiment is practical for a short study period (e.g., days, weeks, 

and months) and not feasible for a long study period (e.g., years). Other major drawbacks 
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of shutdown experiments include high cost and time-consumed in getting consent from 

various stakeholders including traffic management agencies and road users to deliberately 

turn off the RMSs.  

 

2.5.3 Traffic Simulation 

 

Several studies have used traffic simulations to evaluate the benefits of ramp 

metering. Scariza (2003) used traffic simulation to compare the effectiveness of 

coordinated and local ramp metering algorithms. The algorithms were compared by testing 

different scenarios on the M27 Motorway network in Southampton, UK and on a generic 

network. The scenarios analyzed were based on variables including total demand, ramp 

spacing, the proportion of traffic using ramps, and traffic distribution among ramps. The 

study observed that ramp metering was only effective during high demand levels and the 

coordinated algorithms were more effective than local algorithms when the volume was 

extremely high (Scariza, 2003).  

Horowitz et al. (2004) evaluated the impact of ramp metering using microscopic 

simulation software, Paramics. The analysis involved two simulations, one for the period 

before ramp metering operations and one for the period after the ramp metering system 

became operational. The comparison of the two simulations indicated better traffic 

conditions when ramp metering was operational (Horowitz et al., 2004). Although the 

simulations considered the delays at the meters and along the mainline, the analysis did not 

involve platoons originating from the upstream signalized intersections. Hourdakis and 

Michalopoulos (2007) used a simulation software AIMSUN to evaluate the ramp and 

freeway system benefits of ramp metering. The simulation models were developed for two 
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testing sites selected from the freeway network in Twin Cities (Minneapolis – St. Paul), 

MN. 

 Karim (2015) used VISSIM to explore the effectiveness of ramp metering on the 

operational efficiency of the freeway. The study analyzed the impact of different geometric 

configurations of ramp-freeway junctions on the ramp metering operations. The study used 

the average speed in the ramp influence area and the average travel time on a 3000-ft 

freeway segment adjacent to the ramp as the measure of freeway efficiency. Karim (2015) 

considered that ramp meters improved the efficiency of the freeway if the percentage 

decrease in the average travel time was equal to or greater than 5%. Results suggested that 

ramp metering efficiency depended on the traffic volume on both the entrance ramp and 

freeway, signal timing scenarios, and the geometric configuration of the entrance ramp. 

For example, ramp metering was observed to be beneficial for a single lane entrance ramp 

during the peak periods or when the ramp traffic volume is ≥ 800 vphpl, and the freeway 

traffic volume is ≥ 1,250 vphpl. 

Traffic simulation allows for the control of other factors that might influence the 

traffic conditions apart from ramp metering (Scariza, 2003). Traffic simulation can include 

or exclude these factors (e.g., construction works or incidents) depending on the objective 

of the study. The flexibility provided by traffic simulation allows placing detectors at any 

location of the study corridor (Scariza, 2003). The downside of traffic simulation, however, 

is it is difficult to mimic all of the actual field conditions and characteristics, which can 

lead to questionable accuracy (Hourdakis and Michalopoulos, 2007). Traffic simulation is 

also limited by the extent of the network and depending on the complexity of the simulation 
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software, it can be time-consuming when trying to match the field conditions with the 

simulated network (Horowitz et al., 2004).   

 

2.6 Summary 

 

Estimation of the ramp metering benefits is crucial for agencies with the system in 

place and for those potentially looking to implement it to mitigate traffic congestion. 

Quantifying the benefits of ramp metering requires an understanding of the strategy, the 

state-of-practice evaluation of methodologies and measures of the benefits. Ramp metering 

can be implemented at a local or system-wide level. The local ramp metering is deployed 

on a single or an isolated ramp to improve the traffic conditions near the ramp while 

system-wide ramp metering involves deployment on multiple ramps along a segment or in 

an area. Apart from the extent, ramp metering is categorized into three groups based on the 

mode of selecting the metering rate including static, adaptive, and proactive. The static 

mode is based on the historical data, the adaptive mode selects the metering rate based on 

the prevailing traffic conditions, and the proactive model is based on real-time data to 

prevent oversaturated conditions and traffic breakdown. Moreover, activation of the ramp 

metering system is done using a schedule, manually, or automatically as a response to 

traffic conditions. The schedule activation is based on a pre-determined fixed time. The 

manual method involves an operator observing the traffic conditions and making changes 

accordingly, while the traffic responsive automatically activates ramp metering control 

based on existing or predicted traffic conditions.  

The evaluation of ramp metering benefits during recurrent congestion has 

previously involved numerous measures. Table 2-2 summarizes the reviewed measures of 
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the mobility benefits of ramp metering on the freeway mainline. Few studies explored the 

impact of ramp metering during non-recurrent congestion. Results indicated that ramp 

metering can improve traffic conditions during traffic incidents and rain. 

Table 2-2: Measures of Mobility Benefits of Ramp Metering in Previous Studies 

Measure Reference Findings 

Travel Time 

KDOT and MoDOT (2011) Overall travel time improvements 

Cohen et al. (2017) 
Average travel time 95 seconds less 

when RMSs were activated 

Travel Time 

Reliability 

Levinson and Zhang (2006) 
Reduced travel time variability due to 

RMSs operations 

KDOT and MoDOT (2011) Improved after RMSs operations 

Xie et al. (2012) Improved after RMSs operations 

Cohen et al. (2017) Varied more when RMSs deactivated 

Traffic Speed 

Trinh (2000) 7 to 20 mph increase in traffic speeds 

Cambridge Systematics Inc. (2001) 
Average 14% traffic speeds increase 

in the study segments  

KDOT and MoDOT (2011) 
Increased average traffic speeds on 

few segments 

Xie et al. (2012) 
Increased traffic speeds on general 

purpose lanes (GPL) 

Traffic Delays Sun et al. (2013) 
Decreased delays when traffic volume 

exceeded capacity 

Traffic 

Volume/Throughput 

Cambridge Systematics, Inc. (2001) 

Average 9% reduction in traffic 

volume on freeways when RMSs were 

deactivated 

14% decrease in VMT when RMSs 

were deactivated 

Bertini et al. (2004) 

5.8% increase in VHT when RMSs 

were activated on a Saturday 

0.7% increase in VMT when RMSs 

were activated on a Saturday 

LOS Cohen et al. (2017) 
Combination of ramp metering and 

variable speed improves LOS 

 

Past research used the following three conventional approaches for quantifying the 

mobility benefits of ramp metering: before-and-after approach, the shutdown experiments, 

and traffic simulation. The before-and-after approach involves analyzing the conditions of 

the facility in the period prior to and following ramp meters becoming operational. Turn-

off experiments involve deliberate shutting down of the ramp metering systems over a 

certain period for data collection purposes. Data collected when ramp meters are off are 



31 
 

then compared with the traffic data when ramp meters are on. The traffic simulation 

involves the use of software to mimic the field conditions and change the status of ramp 

meters while collecting the simulation data. The collected data are then used to estimate 

the benefits of ramp metering. Table 2-3 summarizes the methods and their corresponding 

study period used to evaluate the mobility benefits of ramp metering in previous studies. 

Table 2-3: Study Designs for Estimating the Mobility Benefits of Ramp Metering 

Study design Reference Study period 

Before-and-After 

Approach  

  

Trinh (2000) 14 days before & 3 days after 

Neel and Gibbens (2001) 4-weeks before & 4-weeks after 

Horowitz et al.(2004) 6 weekdays before & 6 weekdays after 

KDOT and MoDOT (2011) 1-year period before & 2-year period after 

Xie et al. (2012) 2 months before & 2 months after 

Shutdown 

Experiment 

Cambridge Systematics, Inc. (2001) 5 weeks when off & 5 weeks when on 

Drakopoulos at al. (2004) 6 days when off & 6 days when off  

Bertini et al. (2004) 1 weekend when off and when on 

Levinson and Zhang (2006) 8 weeks when off & 8 weeks when on 

Zhang (2007) 3 months when off & 3 months when on 

Ahn et al. (2007) 5 days when off & 5 days when on 

Traffic Simulation 

Scariza (2003) 

Not Applicable 

Horowitz et al.(2004) 

Hourdakis and Michalopoulos (2007) 

Sun et al. (2013) 

Karim (2015) 

The conventional approaches have some limitations even though are widely applied when 

estimating ramp metering benefits. The before-and-after approach hinge on the availability 

of data in the before- and the after- periods and changes that may affect traffic during the 

study period. The shutdown experiment is associated with relatively shorter study periods 

and changes in the traffic pattern. Traffic simulation, is to some extent, difficult to mimic 

the field conditions depending on the complexity of the network. In spite of these 

limitations, the conventional approaches provided means to estimate the benefits of ramp 

metering on various situations based on resources available to the agencies.  
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CHAPTER 3  

DATA 

This research has three main objectives: (1) estimate the effect of ramp metering 

during recurrent congestion; (2) evaluate the impact of ramp metering on non-recurrent 

congestion caused by crashes; and (3) evaluate the impact of ramp metering on non-

recurrent congestion due to rain. This chapter discusses the study area and the data required 

to achieve the research objectives. The chapter is divided into three sections: study area, 

data requirements, and summary. The study corridor and ramp metering operations along 

the corridor are described in the Study Area section. The Data Requirements section 

discusses the types and sources of the data used in this research. The final section 

summarizes the data needs.  

 

3.1 Study Area 

 

A section along I-95 in Miami-Dade County, Florida was selected to estimate the 

mobility benefits of the ramp metering during recurrent and non-recurrent congestion. This 

approximately 10-mile section of I-95 has 22 RMSs stretching between Ives Dairy Road 

and NW 62nd Street in both travel directions. The RMSs along the corridor started 

operating in 2009 and are located at each of the 10 entrance ramps along I-95 northbound 

(NB) and 12 entrance ramps along I-95 southbound (SB) (Zhu et al., 2010). The ramp 

metering system along the corridor is operated and managed by the Florida Department of 

Transportation (FDOT) District Six office. The RMSs are activated during the morning 

peak period for the SB direction and the afternoon peak period for the NB direction. The 

morning peak period for this corridor is usually between 6:00 AM and 10:30 AM while the 
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afternoon peak period is between 3:00 PM and 7:00 PM. However, the RMSs are not 

necessarily activated or deactivated at the same time. The RMSs in the study corridor are 

also used for traffic management during non-recurrent congestion due to crashes, adverse 

weather, and special events (e.g., Superbowl). Figure 3-1 shows the locations of the 

existing RMSs along the corridor.  

 

Figure 3-1: Location of Ramp Metering Signals along the Study Corridor  

The number of ramp vehicles joining the freeway per given time for each ramp (i.e., 

ramp metering rates) on the corridor is estimated using the Washington Fuzzy Logic 

algorithm. This algorithm was developed by the Washington State and adopted by Florida 

for the ramp metering system in the study corridor (Fartash, 2017). The Fuzzy Logic 

algorithm is a system-wide control that is responsive to both local and corridor-wide real-

time traffic conditions (Mizuta et al., 2014). The algorithm utilizes the traffic conditions 

upstream and downstream, and ramp queues in managing and controlling traffic on the 
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freeway network. The Fuzzy Logic algorithm establishes the metering rates through a 

three-step procedure: fuzzification, activation of rules, defuzzification (i.e., generation of 

numerical rates). Fuzzification involves translating the numerical inputs of the segment 

traffic conditions, such as occupancy, into the fuzzy classes. The developed fuzzy classes 

are then associated with weighted rules to develop the metering rate and the degree of 

activation of each rule outcome. Finally, at the defuzzification stage, the developed 

metering rates that are represented by a set of linguistic fuzzy classes are converted to a 

single metering rate. 

 

3.2 Data Requirements 

 

The data required to achieve the research objectives include traffic data, incident 

data, ramp metering operations data, and contextual data. These data were collected for 

three years, from 2016 to 2018. The following subsections discuss in detail the data and 

their corresponding sources. 

 

3.2.1 Traffic Data 

 

The traffic data used in the analysis include speed, volume, occupancy, and travel 

time. Given the location of the study corridor, the main traffic data source was the Regional 

Integrated Transportation Information System (RITIS). RITIS is an automated data 

sharing, dissemination, and archiving system that includes real-time data feeds and 

archived data analysis tools such as probe, detector, and transit data analytics. RITIS stores 

and disseminates data from several sources, including data vendors (e.g., HERE 

Technologies, INRIX, and TomTom) and detectors maintained by state’s transportation 

authorities (e.g., FDOT).  
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Traffic speed, volume, and occupancy data along the freeway mainline and ramps 

in the study corridor are available on RITIS. These data originate from detectors that are 

maintained by the FDOT District Six office. The data extracted from RITIS were 

aggregated in 5-minute intervals. The traffic detectors collect data from each lane of the 

freeway mainline. However, the traffic data from each lane in one location (called zone) is 

also aggregated to represent the overall condition at the location. This research extracted 

the zone traffic data on mainline detectors near the entrance ramps. The traffic data on the 

ramps was collected from detectors located downstream of the ramp signal’s stop bar. The 

detectors located at this point are called passage detectors. The passage detectors collect 

data from vehicles entering the freeway mainline. The travel time data along the freeway 

were also obtained from RITIS. However, the collected travel time data originated from 

HERE Technologies. The travel time data were collected according to segments defined 

by the location of the entrance and exit ramps.  Similar to other traffic data collected from 

RITIS, the travel time data were aggregated in 5-minute intervals.  

 

3.2.2 Ramp Metering Operations Data 

 

The ramp metering operations data were required to identify days and times when 

RMSs are activated and deactivated.  The ramp metering operations data were collected 

from the FDOT District Six Regional Transportation Management Center (RTMC).  The 

ramp metering operations data contained information, including operation date, RMS 

identification (ID), RMS activation time, RMS deactivation time, the reason for activating 

the RMS, and event identification (ID) in case the RMS was activated because of a traffic 

incident.  The operation date indicates the day that an RMS was activated. Weekends and 



36 
 

holidays are not included in the database because the RMSs in the study corridor operate 

only on typical weekdays. The data contains six reasons for activating RMSs, including 

recurrent congestion, non-recurrent congestion, incident, weather, central time of the day 

(CTOD), and local time of the day (LTOD). CTOD is when activation is by a fixed time 

that is set in the central controller of the ramp metering system at the RTMC. LTOD is 

when the controller in the field near the ramp meter activates the ramp metering system 

due to lack of communication or malfunction in the central controller.  

 

3.2.3 Incident Data 

 

The traffic incident data were required in the estimation of the ramp metering 

benefits during non-recurrent congestion. The traffic incident data were collected from 

SunGuide®, an Advanced Traffic Management System (ATMS) software used to process 

and archive incident data on Florida’s transportation system. The SunGuide® incident 

database contains information related to incidents, including incident identification (ID), 

latitude and longitude of the incident, incident notification time, roadway clearance time, 

incident type, number and type of responding agencies, incident severity, and incident 

detection method.  

The incident types included in the SunGuide® are crash, disabled vehicles, debris 

on roadway, emergency vehicles, police activity, etc. For this research, only crashes that 

were associated with lane blockage were included in the analysis. The lane blockage 

information was also obtained from the SunGuide® database. The lane blockage 

information specified the blockage type, including right-lane blocked, two right-lanes 

blocked, center-lane blocked, etc. Crashes that occurred on the ramps and those caused all 
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lanes to be blocked were not included in the analysis. Details on the variables used in the 

analysis collected from the SunGuide® are provided in the next chapter (Section 4.2.3). 

 

3.2.4 Weather Data 

 

Weather data were extracted from the National Oceanic and Atmospheric 

Administration (NOAA) database. Specifically, the data were retrieved from the NOAA’s 

Next Generation Weather Radar (NEXRAD), which detects precipitation and atmospheric 

movement using a network of 160 high-resolution Doppler radar sites at approximately 5-

minute intervals from each site (Barr, 2015). The precipitation data are recorded as 

reflectivity, which is a measure of fractions of radiations reflected by a given surface 

expressed as a ratio of the radiant energy reflected and the total amount of energy incident 

on the surface (Andrew, 2019). The reflectivity data were extracted from a radar located in 

Miami, FL. The radar covers a 248.5-mile radius which includes the study corridor. The 

reflectivity data were retrieved at 5-minute intervals corresponding to the ramp metering 

operation hours of each RMS in the study corridor. The reflectivity values were converted 

to rainfall intensity using (Teegavarapu, 2012): 

                                                                          𝑅 = [
10

𝑑𝐵𝑍
10

250
]

1
1.2

                                                                (3-1) 

where 𝑅 is the rainfall intensity expressed in millimeters per hour (mm/hr), and 𝑑𝐵𝑍 is an 

abbreviation for decibel relative to reflectivity. The dBZ measures the strength of the 

energy reflected to the radar by the target surface, in this case, the roadway segment.  
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3.2.5 Contextual Data 

 

The following contextual data were collected from Google Maps: the location of 

exit ramps, number of exit ramps, the location of entrance ramps, the distance between the 

entrance and exit ramps. This information was used to support the analysis. Some of the 

information from the contextual data were also used as variables in the analysis. 

  

3.3 Summary 

 

The objectives of this study are to: (1) estimate the effect of ramp metering during 

recurrent congestion; (2) evaluate the impact of ramp metering on non-recurrent congestion 

caused by crashes; and (3) evaluate the impact of ramp metering on non-recurrent 

congestion due to rain. The study was based on the 10-mile corridor with RMSs along I-

95 in Miami, FL. Various data were collected to achieve the study objectives, including 

traffic data, ramp metering operations data, incident data, weather data, and contextual 

data. The data was collected for a three-year period from 2016 to 2018. Table 3-1 

summarizes the data sources used to achieve the research objectives and sample of the 

available variables. The traffic data (i.e., speed, volume, occupancy, and travel time) were 

collected from RITIS, which is a repository of data from various sources including FDOT 

and data vendors, such as HERE Technologies. The traffic data aggregated in 5-minute 

intervals were collected from detectors on the freeway mainline and the entrance ramps.  

The ramp metering operations data were obtained from the FDOT District 6 RTMC. 

The ramp metering operations data contained information about RMSs such as operations 

date, activation and deactivation time, and reason for activation. The data contained six 

reasons for activating RMSs, including recurrent congestion, non-recurrent congestion, 
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incident, weather, CTOD, and LTOD. The traffic incident data were collected from 

SunGuide® database. Data extracted from SunGuide® database included incident type, 

location, extent of lane blockage, incident clearance time, incident type, number and type 

of responding agencies. Weather data aggregated at 5-minute intervals were retrieved from 

the NOAA’s Next Generation Weather Radar (NEXRAD). The contextual data including 

the location of exit ramps, number of exit ramps, the location of entrance ramps, the 

distance between the entrance and exit ramps were collected from Google Maps to support 

data from other databases.  

Table 3-1: Data Sources for Estimating the Mobility Benefits of Ramp Metering 

Data  Source Sample of available variables 

Traffic data RITIS Volume 

Occupancy 

Speed 

Travel time 

Ramp metering operations 

data 

FDOT District Six  

RTMC 

Days of operation 

Activation time 

Deactivation time 

Reason for activation 

Incident data SunGuide® Incident notification time 

Incident clearance time 

Extent of lane blockage 

Incident location (longitude and latitude) 

Incident type 

Weather data NOAA Rainfall intensity 

Contextual data Google Maps 

Number of exit ramps 

Distance between entrance ramps 

Distance between exit ramps 

Location of entrance ramps 

Location of exit ramps 
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CHAPTER 4  

METHODOLOGY 

This research estimated the mobility benefits of ramp metering. Three specific 

objectives were identified to achieve the research goal: (1) estimating the effect of ramp 

metering during recurrent congestion; (2) evaluating the impact of ramp metering on non-

recurrent congestion caused by crashes; and (3) evaluating the impact of ramp metering on 

non-recurrent congestion due to rain. This chapter presents the methodology and data 

preparation efforts used to achieve the research goal and objectives.  

 

4.1 Estimation of Benefits of Ramp Metering during Recurrent Congestion 

 

This section describes the methodology to quantify the mobility benefits of ramp 

metering during recurrent congestion using travel time reliability. The methodology is 

divided into the following four sections: the study design, estimating the travel time 

reliability, identifying factors influencing travel time reliability, and quantifying the effects 

of ramp metering on travel time reliability.  

 

4.1.1 Study Design 

 

The RMSs along the corridor are not activated or deactivated at the same time. 

Using the RMS operations data, consecutive RMSs with common activation times were 

grouped to segment the study corridor. As a result, the entire 10-mile study corridor was 

divided into six study segments. Figure 4-1 shows the segments along the study corridor 

defined using the common activation and deactivation times. 
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Figure 4-1: Segments along the Study Corridor (Adapted from Zhu et al. (2010)) 

Table 4-1 shows the most common times for activating and deactivating RMSs 

along each study segment, length of the segment, and number of entrance and exit ramps 

in the segment. Table 4-1 also shows the number of days that all RMSs on each segment 

were activated, and at least one of the RMS was deactivated during the common ramp 

metering hours. 

Table 4-1: Characteristics of the Study Segments  

Segment Direction 

Length 

(miles) 

# of 

entrance 

ramps 

# of 

exit 

ramps 

Activation 

time 

Deactivation 

time 

# of days at 

least one RMS 

was deactivated 

in 3 years 

# of days all 

RMSs were 

activated in 

3 years 

1 NB 2.6 4 3 2:45 PM 8:00 PM 296 74 

2 NB 2.5 3 3 3:30 PM 8:00 PM 20 130 

3 NB 5.3 3 3 * * * * 

4 SB 4.0 4 3 7:45 AM 8:00 AM 135 136 

5 SB 3.0 4 2 6:30 AM 9:00 AM 52 108 

6 SB 3.6 4 5 6:30 AM 10:00 AM 36 126 

Note: # means number, * means there is no pattern for most common activation/deactivation times 
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There were very few days when all the RMSs along a segment were deactivated. 

Therefore, this research compared the BIs when all RMSs were activated with the BIs 

when at least one of the RMS was deactivated. Using Segment #1 as an example, the study 

used data collected on all days that RMSs on all four entrance ramps were activated 

between 2:45 PM and 8:00 PM and on days when at least one of the RMS was deactivated 

during the same 2:45 PM to 8:00 PM period. The analysis results hence provided the most 

conservative estimates of the mobility benefits of ramp metering. Note that the RMSs were 

deactivated for numerous reasons, including knock-down signal head events, controller 

failures, communication/fiber failures, power failures, and detector failures.  

Holidays and days affected by Hurricane Irma in 2017 and Hurricane Michael in 

2018 were excluded from the analysis, as well as days when RMSs were activated due to 

incidents or adverse weather. Segment #3 was excluded from the analysis due to an 

inconsistent operations time, while segment #4 was excluded because of a relatively short 

operational time. Segment #2 was also excluded from the analysis due to few RMS non-

operational days (< 30 days). The remaining segments, i.e., segments #1, #5, and #6, as 

shown in Figure 4-2, were included in the analysis. 

 

4.1.2 Estimate Travel Time Reliability 

 

Several measures were previously used to measure the travel time reliability, 

including the buffer index (BI), travel time index (TTI), and planning time index. This 

research selected BI to measure the travel time reliability on the study segments. The BI 

was selected since it is one of the four travel time reliability measures recommended by 

the U.S. Department of Transportation (USDOT), and it can capture the variation of travel 
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time at any time of the day (Texas Transportation Institute and Cambridge Systems Inc., 

2017). The BI represents the percentage of extra time that travelers must add to their 

average time when planning trips to ensure on-time arrival at a given confidence interval 

(van Lint et al., 2008).  

 

Figure 4-2: Selected Segments for Estimating the Benefits (Adapted from Zhu et al., 

2010) 
 

The BI was calculated as the ratio of the difference between the 95th percentile 

travel time and the average travel time to the average travel time using Equation 2-2 in 

Section 2.2.2. Travel time data, collected from HERE-Technologies, were used to estimate 

the BIs for each 5-minute interval typical RMSs’ operational timeframe. For example, the 
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average and 95th percentile of the travel times along segment #1 at 3:00 pm on each day 

from 2016 to 2018 were calculated. The average and 95th percentile of the travel times 

were then used as inputs in Equation 2-2 to estimate the BI along segment #1 at 3:00 pm. 

Therefore, each segment's number of observations was equal to the number of 5-minute 

intervals within the RMSs’ operational timeframe.  

 

4.1.3 Identify Relevant Variables  

 

The following predictor variables were used in the model: RMS operational status 

(i.e., activated or deactivated), freeway mainline traffic speed, ramp traffic volume, density 

of entrance ramps, density of exit ramps, and mainline traffic congestion levels. The status 

of the RMS variable had two categories: activated (when RMSs are operational), and 

deactivated (when RMSs are not operational). The mainline traffic speed represented the 

study segment's three-year average traffic speed at the 5-minute intervals of the typical 

RMSs operational timeframe. Similar to mainline traffic speed, the ramp traffic volume 

was calculated by averaging the three-year ramp volume during the typical RMSs 

operational timeframe. The density of entrance ramps in a segment was computed as the 

number of entrance ramps per mile, while the density of exit ramps in segment was the 

number of exit ramps per mile.  

The mainline traffic congestion levels were established based on traffic occupancy 

and volume data as in the previous study by Xu et al. (2012). The traffic occupancy and 

volume data used was the segment's three-year average at the 5-minute intervals of the 

typical RMSs operational timeframe. The k-means clustering analysis was used to 

categorize traffic congestion into groups. This method is a common approach used to 
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separate data into subgroups by reducing the within-group distances and maximizing the 

distances between groups (Xu et al., 2012). The k-means clustering allocates each 

observation to a cluster with the nearest center point based on a pre-specified number (k) 

of clustering centers. The objective criterion of the k-means algorithm is the squared-error 

function in (Chu et al., 2012; Govender and Sivakumar, 2020; James et al., 2013):  

                                                              𝐽 = ∑ ∑‖𝑋𝑖 − 𝑐𝑗‖
2

𝑖𝜖𝐶𝑗

𝑘

𝑗=1

                                               (4-1) 

where 

 𝑋𝑖  = ith traffic flow observation, 

 𝑐𝑗  =  jth cluster center, 

 k  =  number of clusters, and  

 𝐶𝑗 = object set of the jth cluster. 

The symbol ||.|| denotes any vector norm representing the distance between the traffic flow 

observation and the cluster center. The k-means algorithm is applied following three main 

steps. First, the algorithm chooses k objects as initial cluster centers. Then, each 

observation is assigned to the cluster with the nearest center. Finally, the centers of the new 

clusters are established after calculating the mean of all observations in each cluster. The 

last two steps are repeated until the criterion function does not change after iteration.  

The k-means clustering was conducted iteratively by setting the number of clusters 

from 2 to 12. The silhouette index, which is one of the indices to determine the optimal 

number of clusters in a dataset, was used to determine the number of clusters. The 

silhouette index combines information about within-cluster and between-cluster variation 

(Charrad et al., 2014; Rousseeuw, 1987). It was observed that the optimal number of 
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clusters was two. Figure 4-3 shows the clusters identified using k-means algorithm, which 

were defined as moderate and severe congestion.  

 
Figure 4-3: Traffic Congestion Levels during the Analysis Period 

Multicollinearity between variables was assessed to avoid two or more predictor 

variables that are linearly related in a statistical model. Multicollinearity can increase the 

variance of regression coefficients leading to unstable estimation of parameter values. 

Multicollinearity was assessed using the Pearson correlation coefficient between each pair 

of predictor variables. A correlation threshold of 0.6 was used to identify highly correlated 

variables (Kwak and Kho, 2016). The pairs of mainline traffic speed, ramp traffic volume, 

and congestion levels variables had a correlation coefficient greater than 0.6. Similar to Shi 

et al. (2020) and Wang et al. (2019) the penalized regression model was used to account 

for the existing multicollinearity between the predictor variables. The penalty term in the 

penalized regression models forces the coefficients of redundant predictors to shrink 

towards zero, or set them to zero, hence addressing multicollinearity (Hastie et al., 2015; 

James et al., 2013; Shi et al., 2020; Tibshirani, 1996; Wang et al., 2019). 
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4.1.4 Identify Factors Influencing Travel Time Reliability 

 

Penalized regression models were used to identify factors that could influence the 

BIs along the study corridor. The model was also used to predict BIs of the freeway 

mainline segment when RMSs are activated and deactivated. These models were selected 

due to their relatively high accuracy in cases with small sample sizes and the presence of 

correlated variables (Hui and Trevor, 2005; James et al., 2013). Penalized regression 

methods regularize (i.e., constrain) regression coefficients to enhance prediction accuracy 

and interpretability of a model (James et al., 2013).  The imposed regularization allows the 

less contributive variables to have a coefficient close to or equal to zero (Kassambara, 

2017), thus identifying the most influential variables. Two of the most common penalized 

regression methods are the ridge regression and the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression (Kassambara, 2017). Two models were developed 

using these two penalized regression methods (i.e., ridge regression and LASSO 

regression), and the model with the best prediction accuracy was selected for predicting 

the BIs along the freeway mainline. 

Given that the BIs are on a continuous scale, the relationship between BIs and the 

predictor variables was established using: 

                                                              𝑦𝑖 =  𝛽0 +  𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖                                                   (4-2) 

where 

 𝑦𝑖  =  response (BI) for observation i, 

 𝛽𝑜  = constant term, 

 𝛽𝑗  = estimated model coefficients, 
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𝑥𝑖𝑗  = vector of predictors j for observation i, and 

 𝜀𝑖  = error term.  

The penalized methods (ridge regression and LASSO regression) were introduced 

in the estimation of the coefficients 𝛽𝑗 of the linear regression. Ridge regression coefficient 

estimates are the values that minimize: 

                   ∑ (𝑦𝑖 −  𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1
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2
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                            (4-3) 

where  

λ  =  tuning parameter (λ ≥ 0),  

n  = number of observations,  

p  = number of predictors, and 

RSS = residual sum of squares.  

Other variables are as defined in Equation 4-2. Ridge regression shrinks close to zero the 

coefficients of variables with only a minor contribution to the response variable 

(Kassambara, 2017). Although ridge regression shrinks coefficients towards zero it does 

not set the coefficients exactly to zero. The LASSO regression is an alternative that 

achieves variable selection by setting coefficients exactly to zero and accounts for the 

existing multicollinearity between variables. 

The LASSO coefficient estimates are the values that minimize: 

                      ∑ (𝑦𝑖 −  𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
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where all variables are as defined in Equation 4-2 and 4-3. As λ increases, the elements of 

𝛽𝑗 are continuously reduced towards zero, such that some elements will be reduced to zero 

and automatically deleted. Both models were developed using the BIs of the study 

segments as the response variable. The penalized regression models were developed using 

the GLMNET package in R (Jerome et al., 2018). 

 

4.1.5 Quantify the Effects of Ramp Metering on Travel Time Reliability 

 

Cross-validation was used to test the prediction accuracy of the models. Data were 

divided into training and testing datasets. About 80% of the data was used as the training 

dataset to fit the models, and the remaining 20% of the data was used for model testing. 

The training and testing dataset observations were selected randomly. The Root Mean 

Squared Errors (RMSE) between the predicted and the observed BIs from the testing 

dataset were used to measure the prediction accuracy of the models. A penalized regression 

model with better accuracy was used to predict the BIs using a fraction of the data that was 

not used to fit the model. The predicted BIs were used to estimate the benefits of ramp 

metering. The BIs were predicted The benefits of ramp metering were calculated as: 

                                                     𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑖 =  
�̂�𝑜,𝑖

�̂�𝑖
                                                 (4-5) 

where �̂�𝑜,𝑖 is the predicted BI of the ith 5-minute time interval assuming the RMSs are 

activated, and �̂�𝑖 is the BI of the ith 5-minute interval assuming that RMSs are deactivated. 

The overall mobility benefits of ramp metering were calculated as: 

                            𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 =
∑ 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑛

𝑖

𝑛
                        (4-6) 

using the estimated benefits from the ith to the nth 5-minute interval. 
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4.2 Estimation of Benefits during Non-recurrent Congestion due to Crashes 

 

This section describes the methodology to quantify the mobility benefits of ramp 

metering during non-recurrent congestion due to crashes. The methodology is divided into 

the following three sections: associating traffic flow parameters with the crashes, 

establishing traffic states upstream of the crash location, identifying factors affecting the 

traffic conditions upstream of the crash location. The following sections discuss the 

adopted methodology in detail.   

 

4.2.1 Associate Crashes with Ramp Metering and Traffic Flow Parameters 

 

Crash data were used to associate the lane closures with the ramp metering 

operations and traffic flow conditions upstream of the crash location. Traffic detectors and 

RMSs upstream of the crash location were identified, as shown in Figure 4-4(a) of a typical 

crash location along the study corridor.  The 5-minute intervals traffic data were then 

collected from the nearest detectors upstream of the crash location. Instead of using the 

lane-wise data, the traffic data aggregated in a zone was collected from RITIS. Figure 4-

4(b) summarizes the process used to associate the traffic flow parameters upstream of the 

crash location with RMSs operations. For each crash, the time and date of occurrence, the 

time when lanes are closed, and the time when lanes are cleared were recorded. This 

information was then associated with the RMS operations data to check whether the two 

nearest upstream RMSs were activated or deactivated during the lane closures. It is worth 

noting that all crashes that occurred on holidays, on weekends, and during Hurricane Irma 

in 2017 and Hurricane Michael in 2018 were excluded from the analysis. 
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(a) Typical Crash Location Scenario  

 
(b) Procedure for Associating Traffic Flow Parameters with Crashes 

Figure 4-4: Summary of Data Processing
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4.2.2 Establish Traffic States Upstream of the Crash Location 

 

The data collected using the procedure described in Section 4.2.1 included three 

traffic flow parameters: volume, speed, and occupancy. This research used traffic 

occupancy and speed to establish traffic states upstream of the crash location. Traffic 

occupancy was used instead of density since density cannot be directly measured from 

detectors. The k-means clustering method was applied to the traffic flow data (speed and 

occupancy) collected at every five minutes that lanes were closed to establish the traffic 

states.  The k-means clustering described in Section 4.1.3 was used to categorize the traffic 

flow observations (speed and occupancy). The k-means clustering was conducted 

iteratively by setting the number of clusters from 3 to 15. The minimum number of 

considered clusters was based on the assumption that traffic flow commonly consists of 

three states: uncongested, transition, and congested. The silhouette index was used to select 

the optimum number of clusters.  

 

4.2.3 Identify Variables Affecting Traffic States Upstream of the Crash Location 

 

The main variables of the models were related to the operations of RMSs upstream 

of the crash location. Other model variables were associated with traffic incident 

management, including the number of responding agencies, the involvement of fire rescue, 

the involvement of towing services, lane blockage, type of lane closure, and the detection 

method. The RMS variables had two categories: whether RMSs are activated or 

deactivated. The number of responding agencies was a continuous variable. The fire rescue 

and towing service involvement variables had two categories indicating whether or not the 

services were required. The lane blockage was estimated by dividing the number of closed 
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lanes by the available lanes at the crash location. The lane blockage variable had two 

groups, the percentage of lane blockage ≤ 33% and percentage of lane blockage > 33%.  

The type of closed lanes indicated whether the closed lanes were on the right, left, or center 

of the freeway. The detection method was categorized into off-site and on-site detection. 

Off-site detection methods included CCTVs and Waze, while the on-site detection methods 

included Road Rangers and Florida Highway Patrol (FHP). 

 

4.2.4 Identify Factors Influencing Traffic Conditions Upstream of the Crash Location  

 

Based on the number of observations in clusters, the generalized ordered logit 

model (GOLM) or the logistic regression model was applied to identify factors that could 

affect traffic conditions upstream of the crash location. The GOLM is one of the ordered 

probability models which include other models such as the Proportional-Odds Ordered 

Model (POOM) and the Partial Proportional-Odds Ordered Model (PPOM). The GOLM 

was preferred to the other models because it assumes that none of the variables is 

constrained by the proportional-odds assumption that all variables had the same effect 

when comparing the medium class (i.e., transition state) with the low class (i.e., 

uncongested state) and when comparing the high class (i.e., congested state) with medium 

class (i.e., transition state). The GOLM was derived by defining an unobserved latent 

variable U as a linear function for each observation such that: 

                                                                       𝑈 = 𝛽𝑋 +  𝜀                                                          (4-7) 

where  

X  =  vector of independent variables determining a discrete ordering for 

each observation,  
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β  =  vector of estimable parameters, and  

ε  =  random disturbance.  

The observed traffic state y for each observation was defined using: 

      y1 = 1 (Uncongested state)  if U ≤ 𝜇1 

      y2 = 2 (Transition state)  if 𝜇1 < U ≤ 𝜇2    (4-8)  

      y3 = 3 (Congested state)  if U > 𝜇2         

where 𝜇1 and 𝜇2 are estimable thresholds that define y1, y2, and y3. The study used the logit 

link function to fit the model. The probability of assigning an observation to traffic state in 

the GOLM was calculated as (Pour-Rouholamin and Zhou, 2016): 

                         𝑃(𝑦𝑖 > 𝑗) =
exp (𝑋𝑖𝛽𝑗 − 𝜇𝑗)

1 + exp (𝑋𝑖𝛽𝑗 − 𝜇𝑗)
          𝑗 = 1, . . . , 𝐽 − 1                           (4-9) 

where  

yi  =  traffic state of observation i, 

j  =  traffic state level (1 = uncongested, 2 = transition, or 3 = congested), 

J  = number of traffic states (in this case J = 3), 

Xi = vector of explanatory variables for observation i, 

βj  =  vector of parameter estimates that vary across equations for different 

traffic states, 

μj = cutoff term for the thresholds defining traffic state j in the model. 

 Results of the GOLM were interpreted using the odds ratio (OR). An odds ratio was 

calculated as the exponential of the estimated mean β, exp (β). An odds ratio of 1.0 

indicates a variable with no effect on the highest class (i.e., congested state). An odds ratio 

greater than 1.0 indicates that a change from the base level to another for the studied 
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categorical variable would increase the odds of the highest class by 100(OR – 1) %. An 

odds ratio less than 1.0 indicates that a change from the base level to another for the studied 

categorical variable would decrease the odds of the highest class by 100(OR – 1) %. 

The logistic regression model was developed to analyze the effect of variables 

between two traffic states. Logistic regression is a widely applied method for analyzing 

binary classification problems (Kitali et al., 2019; Xu et al., 2013). The response variable 

of the logistic regression has two classes: 0 or 1. The probability of classifying the 

observation i in class 1 is estimated as: 

                                                            𝜋𝑖 =
exp (𝑥𝑖

𝑇𝛽)

1 + exp (𝑥𝑖
𝑇𝛽)

                                                    (4-10) 

where  

xi
T  = ith explanatory variable vector-matrix transpose, 

β  = vector of unknown coefficients. 

The parameters of Equation 4-10 were estimated using the log-likelihood function: 

                              ℓ(𝛽) = ∑{𝑦𝑖 log(𝜋𝑖) + (1 − 𝑦𝑖) log(1 − 𝜋𝑖)}

𝑛

𝑖=1

                                   (4-11) 

where  

n  = number of observations, 

yi = response variable for observation i, and 

πi = probability of classifying the observation i in class 1. 

Other variables are as defined in Equation 4-10. 
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4.3 Estimation of Benefits during Non-recurrent Congestion due to Rain 

 

This section describes the methodology to quantify the mobility benefits of ramp 

metering during non-recurrent congestion due to rain. The methodology is divided into the 

following three sections: associating rain with ramp metering and traffic flow parameters, 

establishing traffic states near the RMSs, identifying factors affecting the traffic conditions 

near the RMSs during rainy conditions. The following sections discuss the adopted 

methodology in detail.  

 

4.3.1 Associate Rain with Ramp Metering and Traffic Flow Parameters 

 

Rain data collected from the NOAA database were associated with the ramp 

metering operations and traffic flow parameters. Given that the rain data is collected in a 

raster format, three polygons were defined on the study corridor for data collection. The 

data was extracted from the polygons and was then converted to rain intensity using the 

formula defined in Section 3.2.4. The rain data for each time was then associated with the 

time when RMSs within the polygon were activated and deactivated. It was also associated 

with the 5-min interval traffic flow parameters from the detectors within the polygons that 

a located adjacent, upstream, and downstream of the entrance ramp with RMS. The traffic 

incident data was used to identify and exclude traffic flow observations that were affected 

by crashes. All observations that coincided with the lane closures near the detector were 

identified using the crash notification time and when travel lanes were cleared. The 

remaining observations were then used to establish traffic states. 
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4.3.2 Establish Traffic States Downstream of the Entrance Ramp  

 

The data collected using the procedure described in Section 4.2.1 included three 

traffic flow parameters: volume, speed, and occupancy. This research used traffic 

occupancy and speed to establish traffic states downstream of the entrance ramp with 

RMSs. The procedure for establishing the traffic states was similar to that described in 

Section 4.2.2.  

 

4.3.3 Identify Factors Influencing Traffic Conditions during Rainy Conditions  

 

Based on the number of observations in clusters, the GOLM and the logistic 

regression described in Section 4.2.4 were applied to identify factors that could affect 

traffic conditions downstream of the entrance ramps during rainy conditions. The logistic 

regression was fit using the bootstrap resampling method due to the imbalance in the 

observations in the categories of the target variables. For example, significantly fewer 

observations when RMSs are activated during off-peak periods. Bootstrap resampling 

involves estimating parameters and standard errors by repeatedly and randomly sampling 

subsets of data from the original dataset to reduce bias caused by imbalanced data in 

parameter and standard errors of a model’s estimates (Pei et al., 2016).  

In this study, observations were divided into two datasets. The first dataset was the 

major dataset as it contained the majority of the observations. The second dataset was the 

minor dataset containing relatively fewer observations. Then, a sample of observations that 

amount to the number of observations in the minor dataset was randomly drawn from the 

major dataset in each replication. The subset was then joined with the minor group to form 

a balanced dataset that was used to fit a logistic regression model. The procedure of 
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drawing samples of observations from the majority group was repeated 10,000 times, and 

the variables’ estimates of logistic regression in each replication were recorded. The 

number of repetitions (i.e., 10,000) was arbitrarily selected as an optimum number to 

measure consistent parameters while balancing the computation time. The model results of 

were interpreted using the odds ratio (OR) as described in Section 4.2.4. 

 The main variables of the models were the operations of the nearest and the second 

nearest RMSs upstream of the entrance ramp. The rain category was the other variable 

included in the model. The rain categories were defined according to the HCM. The light 

rain had an intensity > 0 in/hr but ≤ 0.10 in/hr. The medium rain had an intensity > 0.10 

in/hr and ≤ 0.25 in/hr. The heavy rain had an intensity > 0.25 in/hr.  

 

4.4 Summary  

 

This chapter described the approach used to estimate the effect of ramp metering 

during recurrent congestion and non-recurrent congestion due to crashes and rain. The 

incident data from SunGuide®, the RMS operations data from FDOT District Six, the traffic 

flow data from RITIS, and the contextual data from Google Maps were used to accomplish 

the research goal. The approach used the data collected when RMSs are activated and when 

they are deactivated due to unplanned events, including controller failures, communication 

failures, fiber failures, power failures, or detector failures.   

The benefits during recurrent congestion were measured using BIs along the study 

segments when the RMSs are activated and deactivated. Two penalized regression 

methods, ridge and LASSO regressions, were used to identify factors that could predict the 

BIs of freeway segments with RMSs. The regression models evaluated the impact of 
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various factors, including ramp metering operations, freeway mainline congestion levels, 

freeway mainline traffic speed, ramp traffic volume, and density of entrance and exit 

ramps. The mobility benefits were calculated as the ratio of the predicted BIs when RMSs 

are activated to when they are deactivated.  

The study extracted traffic flow parameters (i.e., speed and occupancy) during lane 

closures due to crashes and used k-means clustering to identify the three traffic states (i.e., 

uncongested, transition, and congested) upstream of crash locations. A GOLM and logistic 

regression were then applied to identify and estimate the impact of RMSs operations and 

other factors on the traffic states during lane closures. The study focused on the operations 

of the two nearest RMSs upstream of the crash location. Two GOLMs were developed: for 

crashes that occurred during daytime off-peak periods and for crashes during peak periods. 

Logistic regression was used to evaluate the effect of RMSs on traffic conditions upstream 

of the crash location during the nighttime off-peak periods.  

The benefits of ramp metering during rain were estimated by collecting traffic data 

downstream of the entrance ramps when it was raining. The k-means clustering was applied 

on speed and occupancy to group observations into different traffic states. The GOLM and 

logistic regression were applied to estimate the impact of ramp metering on traffic 

conditions affected by rain. The study focused on the operations of the two nearest RMSs 

upstream of the entrance ramp.  The impact of rain intensity on the traffic conditions was 

also considered in the analysis. A bootstrap resampling method was used to account for the 

imbalance in the number of observations when RMSs are activated or deactivated during 

rain. The analysis was conducted considering the time-of-day: daytime off-peak periods, 

nighttime off-peak periods, and peak periods.  
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CHAPTER 5  

RESULTS AND DISCUSSION 

This chapter is divided into three major sections. The first section presents the 

analyses, results, and discussion of the benefits of ramp metering during recurrent 

congestion. The second and third section discuss the benefits of ramp metering during non-

recurrent congestion due to crashes and rain, respectively. The final section provides a 

summary of the research findings.  

 

5.1 Benefits of Ramp Metering during Recurrent Congestion 

 

The first objective of this research was achieved by evaluating the effect of ramp 

metering on travel time reliability during recurrent congestion. The study corridor was 

divided into segments based on the time when consecutive RMSs are activated and 

deactivated. Travel time reliability, measured using BIs, was estimated for each segment 

using data collected over three years (i.e., 2016 – 2018). The penalized regression models 

were then used to evaluate the effect of ramp metering and other factors on the travel time 

reliability along the freeway segments. The following sections discuss the results in detail. 

 

5.1.1 Descriptive Summary of the Analysis Variables 

 

Travel time data collected on days that RMSs are activated and deactivated were 

used to estimate the BIs for every five minutes during the typical RMSs’ operational 

timeframe. The number of estimated BIs in each segment was therefore equal to the number 

of 5-minute intervals within the operational RMSs timeframe. The average mainline speed 

and ramp volume over the three-year study period corresponding to the 5-minute BIs were 
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calculated. Table 5-1 presents the descriptive statistics of the BIs and other variables (i.e., 

mainline speed and ramp volume) included in the analysis when the RMSs are activated 

and deactivated.  The average, minimum, and maximum BIs when RMSs are activated 

were 0.385, 0.149, and 0.825, respectively. When the RMSs are activated, the mainline 

speed was ranging between 16 mph and 49 mph, with an average of 30 mph. Also, the 

entrance ramp volume was ranging from 18 vehicles/5 minutes to 49 vehicles/ 5 minutes. 

The average entrance ramp volume when the RMSs are activated was 31 vehicles/5 

minutes. When the RMSs are deactivated, the average, minimum, and maximum BIs were 

0.507, 0.211, and 0.885, respectively. Moreover, when the RMSs are deactivated, the 

average, minimum, and maximum mainline speeds were 27 mph, 15 mph, and 38 mph. 

When the RMSs are deactivated, the entrance ramp volume was ranging between 20 

vehicles/5 minutes and 55 vehicles/5 minutes. The minimum and maximum density of 

entrance ramps were 1.110 ramps/mile and 1.540 ramps/mile, respectively. The minimum 

density of exit ramps was 0.670 ramps/mile, and the maximum was 1.390 ramps/mile.  

Table 5-1: Descriptive Statistics of the Variables for the RMS  

  Variable Average S.D Min. Max. 

RMS Activated Buffer Index 0.385 0.132 0.149 0.825 

Mainline Speed (mph) 30 10 16 49 

Mainline Volume (vehicles/5 mins) 374 47 298 492 

Mainline Occupancy (%) 21 5 12 29 

Ramp Volume (vehicles/5 mins) 31 10 18 49 

Density of entrance ramps (ramps/mile) 1.359 0.187 1.110 1.540 

Density of exit ramps (ramps/mile) 1.117 0.263 0.670 1.390 

RMS Deactivated Buffer Index 0.507 0.171 0.211 0.885 

Mainline Speed (mph) 27 8 15 38 

Mainline Volume (vehicles/5 mins) 318 36 410 410 

Mainline Occupancy (%) 17 4 23 23 

Ramp Volume (vehicles/5 mins) 34 10 20 55 

Density of entrance ramps (ramps/mile) 1.359 0.187 1.110 1.540 

Density of exit ramps (ramps/mile) 1.117 0.263 0.670 1.390 

Note: S.D means standard deviation, Min. means minimum, Max. means maximum 
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Figure 5-1(a) shows the BI distributions when the RMSs are activated and 

deactivated. It indicates that the BIs were lower when RMSs are activated than when 

deactivated. For example, approximately 58% and 23% of the BIs were less than 0.4 when 

RMSs are activated and deactivated, respectively. A Welch two-sample t-test was used to 

test the null hypothesis that BIs when RMSs are activated and deactivated were equal. The 

alternative hypothesis was the BIs when RMSs are activated were lower than when 

deactivated. The t-test indicated that, at the 95% confidence interval, the BIs were 

significantly lower when RMSs are activated than when deactivated. It showed that 

travelers experience more reliable travel times when the RMSs are activated than when 

deactivated. 

 
(a) Buffer index 

 
(b) Mainline speed 

 
(c) Mainline occupancy 

 
(d) Mainline volume 

Figure 5-1: Traffic Conditions when RMSs are Activated and Deactivated 
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Figure 5-1(b) shows the distributions of the average traffic speed on the freeway 

mainline when the RMSs are activated and deactivated. The distributions indicate that the 

average mainline speeds were higher when the RMSs are activated than when deactivated. 

For example, approximately 44% and 62% of the average traffic speeds were less than 30 

mph when RMSs are activated and deactivated, respectively. A Welch two-sample t-test 

was used to test the null hypothesis that the average mainline speeds when RMSs are 

activated and deactivated were equal. The alternative hypothesis was the average mainline 

speeds were higher when the RMSs are activated than when deactivated. The t-test 

indicated that, at the 95% CI, the average mainline speeds were higher when RMSs are 

activated than when deactivated.  

Figure 5-1(c) illustrates the distributions of the mainline occupancy when the RMSs 

are activated and deactivated. It shows that the average mainline occupancy values were 

higher when RMSs are activated than when deactivated. A Welch two-sample t-test was 

used to test the null hypothesis that the average mainline occupancy when RMSs are 

activated and deactivated were equal. The alternative hypothesis was the average mainline 

occupancy values were higher when the RMSs are activated than when deactivated. A 

Welch two-sample t-test confirmed, at the 95% CI, that the average mainline occupancy 

values were higher when RMSs are activated than when deactivated.   

Figure 5-1(d) shows the average mainline traffic volume distributions when RMSs 

are activated and deactivated. It indicates that the average mainline traffic volumes were 

higher when RMSs are activated than when deactivated. For example, approximately 25%  

and 80% of the average mainline traffic volumes were less than 350 vehicles/5 minutes 

when RMSs are activated and deactivated, respectively. A Welch two-sample t-test was 
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used to test the null hypothesis that the average mainline traffic volumes when RMSs are 

activated and deactivated were equal. The alternative hypothesis was the average mainline 

traffic volumes were higher when the RMSs are activated than when deactivated. A Welch 

two-sample t-test confirmed, at the 95% CI, that the average mainline traffic volumes were 

higher when RMSs are activated than when deactivated. 

 

5.1.2 Factors Influencing Travel Time Reliability along Segments with Ramp Metering 

Signals 
 

The study developed a model using the BIs when the RMSs are activated and 

deactivated. The model aimed at determining whether ramp metering affected the BIs 

along freeways. The model included other variables (i.e., congestion level, mainline speed, 

ramp traffic volume, and density of entrance and exit ramps) that could be used to predict 

the BIs. Table 5-2 shows the coefficients of the variables used in the penalized regression 

models. The magnitude and sign of the coefficients indicate the influence of the variables 

on the BIs. Results from both LASSO and ridge models were consistent in showing the 

relationship between the predictor variables and the BIs. Both models indicated that 

activating RMSs has a positive impact on the BIs of along freeway segments. The 

coefficients of the ramp metering indicator variable suggested that activating RMSs was 

associated with a decrease in the BIs. Similar to Bertini et al. (2004), this finding indicates 

that RMS operations increase the travel time reliability on the freeway mainline. 

Table 5-2 also shows the impact of other factors that could predict the BIs. It was 

indicated that all variables included in the model were important in predicting the BIs. The 

estimates of the indicator variable for congestion level showed that severe congestion was 

associated with lower BIs than moderate congestion. A minor difference exists between 
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the 95th percentile travel times and the average travel times on the freeway mainline during 

severe congestion. It indicates that most of the time, traffic has relatively the same travel 

time when traversing a segment during severe traffic congestion. 

High mainline traffic speeds were associated with unreliable travel times (i.e., 

higher BIs).  During congested times, high speeds on the freeway mainline reflect a 

segment that is in moderate congestion and has more traffic speed variation as compared 

to during severe congestion. Conversely, during severe congestion, vehicles travel at lower 

speeds but with more consistent travel times, which accounts for the minor difference 

between the 95th percentile travel times and the average travel time. High entrance ramp 

volumes were also associated with high BIs on the freeway mainline and are indicative of 

more traffic entering the freeway mainline. Vehicles can join the mainline traffic with less 

difficulty during moderate congestion compared to severe congestion. Therefore, high 

ramp volumes could predict periods when mainline traffic has a greater variation in travel 

times. 

Table 5-2: Results of the Penalized Regression Models 

  Ridge LASSO 

Variable Category Estimate Estimate 

Intercept  -0.100 -0.641 

RMS operations No*   

 Yes -0.112 -0.146 

Congestion level  Moderate congestion*   

 Severe congestion -0.070 -0.026 

Mainline traffic speed  0.007 0.012 

Ramp traffic volume  0.002 0.003 

Density of exit ramps  0.069 0.171 

Density of entrance ramps  0.213 0.340 

Note: * Base category 
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The high density of exit ramps was associated with high BIs. Traffic on exit ramps 

could affect the mainline when the downstream arterials receiving the traffic are congested. 

Therefore, many exit-ramps in a short segment may result in higher variability in travel 

times along a segment. Model results showed that the high density of entrance ramps was 

also associated with decreased reliability in travel times (i.e., high BIs). Merging locations 

downstream of the entrance ramps are synchronous with increased traffic turbulence and 

variation in traffic conditions between locations upstream and downstream of the merging 

area. Consequently, the high density of entrance ramps could negatively affect the travel 

time reliability on the freeway mainline. 

5.1.3 Prediction of Travel Time Reliability  

 

Two penalized regression were used to analyze the BIs when RMSs are 

activated+deactivated. Results showed that the RMSE of the ridge regression model and 

the LASSO model were 0.108 and 0.107, respectively. It indicates that the prediction 

accuracy of the LASSO model was slightly better than the prediction accuracy of the ridge 

regression. Therefore, the LASSO model was used to predict the BIs.   

The benefits of activating RMSs were estimated using the predicted BIs from the 

LASSO model. The BIs were predicted considering the RMSs are activated and 

deactivated. Figure 5-2(a) shows the predicted BIs distributions when RMSs are activated 

and deactivated. The BIs distribution when the RMSs are activated is more to the right of 

the distribution when RMSs are deactivated. It indicates that the predicted BIs are lower 

when the RMSs are activated than when deactivated. Thus, ramp metering improves the 

travel time reliability of the freeway mainline segments. 
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(a) All congestion levels 

 

(b) Moderate congestion 

 

(c) Severe congestion 

Figure 5-2: Distribution of the Predicted BIs 

The predicted BIs were categorized according to the traffic congestion level to 

evaluate the expected benefits when RMSs were operational during moderate and severe 

congestion. Figures 5-2(b) and 5-2(c) show the distribution of the BIs during moderate and 

severe traffic congestion, respectively. The BIs’ distributions when the RMSs are activated 

were right of the corresponding distributions when the RMSs are deactivated.  It indicates 

that the ramp metering improves the travel time reliability on freeway segments during 

moderate and severe traffic congestion. It was estimated that ramp metering reduced the 
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BIs along a segment by approximately 23% during moderate congestion. Also, ramp 

metering decreased the BIs along a segment by approximately 28% during severe 

congestion. Results suggested that higher mobility benefits were observed at locations with 

severe congestion compared to areas with moderate congestion. These results were similar 

to the findings in Drakopolous et al. (2004), Trinh (2000), and Xie et al. (2012), which 

showed greater mobility improvements due to ramp metering at locations with severe 

recurring congestion than segments that experienced moderate congestion. 

 

5.2 Benefits of Ramp Metering during Non-Recurrent Congestion due to Crashes 

 

The second objective of the research was to evaluate the impact of ramp metering 

operations on traffic conditions upstream of the crash location. About 11,472 crashes were 

recorded during the three-year study period. Approximately 49.5% of the crashes were 

excluded from the analysis because they occurred on ramps, did not require lane closure, 

or involved closure of all lanes. Only 1,046 crashes out of the remaining 5,682 crashes 

were included in the analysis after removing crashes that occurred on weekends, holidays, 

and those associated with missing traffic data. About 30% of the remaining crashes 

occurred during peak periods. Crashes that occurred during daytime off-peak periods and 

nighttime off-peak periods comprised 54% and 16% of the remaining crashes, respectively. 

The k-means clustering was used to classify the traffic flow parameters (i.e., speed and 

occupancy) upstream of the crash locations into traffic states. Three traffic states were 

identified from the traffic flow parameters during the off-peak and peak periods. The 

GOLM and the logistic regression were then developed to show the impact of ramp 
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metering on the traffic states during off-peak and peak periods. The following sections 

discuss the results in detail. 

 

5.2.1 Traffic States Upstream of the Crash Location  

 

The k-means clustering was used to classify the traffic speed and occupancy into 

different traffic states. The clustering method was applied to three sets of traffic speed and 

occupancy observations grouped according to the time-of-day: daytime off-peak periods, 

nighttime off-peak periods, and peak periods. The daytime off-peak periods included 

observations between 6:00 AM and 2:00 PM for the northbound traffic, and between 11:00 

AM and 8:00 PM for the southbound traffic.  The nighttime off-peak periods included 

observations between 8:00 PM and 6:00 AM. The peak periods included observations 

between 2:00 PM and 8:00 PM for the northbound traffic and between 6:00 AM and 11:00 

AM for the southbound traffic. Figure 5-3 shows the traffic flow observations upstream of 

a crash location in all groups before clustering. During the daytime off-peak periods, the 

average traffic speed and occupancy were approximately 17 mph and 34%, respectively. 

During the nighttime off-peak periods, the average traffic speed and occupancy were 

approximately 39 mph and 17%, respectively. During the peak periods, the average traffic 

speed and occupancy were approximately 14 mph and 36%, respectively. 

Using the silhouette index, the k-means clustering showed that three clusters were 

the optimal number of groups for traffic flow observations during daytime off-peak 

periods, nighttime off-peak periods, and peak periods. Based on their speed-occupancy 

characteristics, the clusters were named as an uncongested, transition, and congested state.   
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(a) Daytime off-peak periods 

 
(b) Nighttime off-peak periods 

 

 
(c) Peak periods 

Figure 5-3: Speed-Occupancy Diagram Upstream of Crash Locations 

 

Figure 5-4 shows the speed-occupancy diagram after clustering the traffic flow 

observations upstream of the crash location during the daytime off-peak periods, nighttime 

off-peak periods, and peak periods. The uncongested state was characterized by the highest 

travel speed and lowest occupancy. The transition state was characterized by the moderate 

travel speed and moderate occupancy. On the other hand, the congested state was 

characterized by the lowest travel speed and highest occupancy.  



71 
 

 
(a) Daytime off-peak periods 

 
(b) Nighttime off-peak periods 

 
(c) Peak periods 

Figure 5-4: Traffic States as Classified using k-means Clustering 

 

5.2.2 Impact of Ramp Metering on Traffic Conditions affected by Crashes during Daytime 

Off-Peak Periods 

 

Traffic flow observations upstream of a crash location during daytime off-peak 

periods were grouped into uncongested, transition, and congested states. Approximately 

12%, 43%, and 45% of the observations were classified in the uncongested, transition, and 

congested states, respectively. The average traffic speed and occupancy in the uncongested 

state were approximately 50 mph and 12%, respectively. Also, the average traffic speed 

and occupancy in the transition state were about 18 mph and 30%, respectively. The 

average traffic speed and occupancy in the congested state were approximately 9 mph and 

42%, respectively.  
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Table 5-3 shows the descriptive statistics of the analysis variables according to the 

traffic state during daytime off-peak periods. Fewer observations were classified into the 

uncongested state than the transition and congested state. The transition and congested 

state had the same proportions of observations when the nearest upstream RMSs are 

activated. The percentage of observations involving fire rescue was lower in the transition 

than in the congested state. The percentage of observations associated with lane closure ≤ 

33% was higher in the transition than in the congested state.  In general, the percentage of 

observations associated with left-lane closures were higher than the right-lane closures.   

Table 5-3: Summary of Variables during Daytime Off-Peak Periods 

    

Uncongested 

State 

Transition 

State 

Congested 

State 

Variable   Category Count % Count % Count % 

Nearest Upstream RMS Deactivated 318 97 1,023 87 1,071 87 

  Activated 10 3 155 13 161 13 

Second Nearest Upstream RMS Deactivated 311 95 1,033 88 1,065 86 

  Activated 17 5 145 12 167 14 

Number of responding agencies  * * * * * * * 

Fire rescue present No 218 66 770 65 498 40 

  Yes 110 34 408 35 734 60 

Towing involved No 293 89 1,104 94 1,101 89 

  Yes 35 11 74 6 131 11 

Lane blockage ≤ 33% 224 68 852 72 363 29 

  > 33% 104 32 326 28 869 71 

Closed lane side Right 195 59 450 38 317 26 

  Center 13 4 57 5 45 4 

  Left 120 37 671 57 870 71 

Detection method On-site 110 34 356 30 382 31 

  Off-site 218 66 822 70 850 69 

Note: * Not applicable, Count represents number of 5-minute interval observations 

Table 5-4 presents the results of the logistic regression of the traffic states during 

the daytime off-peak periods. The uncongested state was not included in the model due to 

fewer observations during the daytime off-peak periods. Activating the nearest RMS 

upstream of the crash location decreased the likelihood of traffic flow changing from 

transition state to congested state by 43%. Conversely, activating the second nearest RMS 
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upstream of the crash did not significantly affect the traffic states changing from 

uncongested state to transition state. These findings suggest that activating the nearest 

upstream RMS can help improve traffic conditions upstream of a crash location. Also, 

results suggest that, during off-peak periods, it might not be necessary to activate the farther 

upstream RMSs to improve traffic conditions upstream of the crash location.  

Table 5-4: Results of the Logistic Regression during Daytime Off-Peak Periods 

  Transition vs Congested 

    90% CI  

 Variable  Category Coeff. S. E. 5% 95% OR 

Nearest Upstream RMS Deactivated*      
  Activated -0.571 0.317 -1.091 -0.050 0.57 

Second Nearest Upstream RMS Deactivated*      
Activated 0.176 0.322 -0.353 0.705 1.19 

Number of responding agencies   0.170 0.040 0.104 0.236 1.19 

Fire rescue present No*      
  Yes 0.463 0.117 0.271 0.655 1.59 

Towing involved No*      
  Yes 0.110 0.193 -0.206 0.426 1.12 

Lane blockage ≤ 33%*      
  > 33% 1.498 0.101 1.333 1.664 4.47 

Closed lane side Right*      
  Center 0.880 0.238 0.490 1.269 2.41 

  Left 0.759 0.106 0.586 0.933 2.14 

Detection method On-site*      
  Off-site -0.258 0.102 -0.424 -0.091 0.77 

Constant   -1.981 0.237 -0.975 -0.026  
Note: Bold numbers show significant variables at 90% confidence interval (CI), Coeff. means coefficient, 

S.E. means standard error, OR means odds ratio,* means base category 
 

The presence of fire rescue at the crash location increased the likelihood of traffic 

flow changing from transition to congested state by 59%. Similarly, left-lane closures, 

center-lane closures, increased the likelihood of transition state changing to congested 

state. Left-lane closures and center-lane closures were associated with 141% and 114% 

increase in the likelihood of traffic flow changing from transition to congested state, 

respectively. As expected, lane blockage >33% increased the likelihood of traffic flow 

changing from the transition state to the congested state. Detection of crashes using off-
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site methods lowered the likelihood of traffic flow changing from transition to congested 

state by 33%. Results also indicated that an increase in the number of responding agencies 

at the incident scene was associated with an increase in the likelihood of traffic conditions 

changing from transition to congested state. 

 

5.2.3 Impact of Ramp Metering on Traffic Conditions affected by Crashes during 

Nighttime Off-Peak Periods 

 

Traffic flow observations upstream of a crash location during nighttime off-peak 

periods were grouped into uncongested, transitioned, and congested states. Approximately 

53%, 10%, and 37% of the observations were classified in the uncongested, transition, and 

congested states, respectively.  The average traffic speed and occupancy in the uncongested 

state were approximately 60 mph and 3%, respectively. Also, the average traffic speed and 

occupancy in the transition state were around 29 mph and 19%, respectively. The average 

speed and occupancy in the congested state were approximately 11 mph and 37%, 

respectively.  

Table 5-5 presents the descriptive statistics of the analysis variables according to 

the traffic state during the nighttime off-peak periods. None of the observations were in the 

uncongested state when the RMSs are activated. Approximately the same proportions of 

observations were in the transition and the congested state when the RMSs are activated. 

The percentage of observations involving fire rescue was higher in the uncongested than 

the transition state. The percentage of observations associated with lane closure ≤ 33% 

was higher in the transition than the uncongested or congested state.  In the uncongested 

state, a higher percentage of observations were associated with right-lane/s closure than 

left-lane/s or center-lane/s closure. More observations in the transition and congested state 
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were associated with left-lane/s closure than right- or center-lane/s closure. A higher 

percentage of observations in the uncongested state were associated with crashes detected 

using off-site than on-site methods.  

Table 5-5: Summary of Variables during Nighttime Off-Peak Periods 

    

Uncongested 

State 

Transition 

State 

Congested 

State 

Variable   Category Count % Count % Count % 

Nearest Upstream RMS Deactivated 519 100 96 97 342 95 

  Activated 0 0 3 3 19 5 

Second Nearest Upstream RMS Deactivated 519 100 96 97 342 95 

  Activated 0 0 3 3 19 5 

Number of responding agencies  * * * * * * * 

Fire rescue present No 160 31 45 45 133 37 

  Yes 359 69 54 55 228 63 

Towing involved No 410 79 81 82 324 90 

  Yes 109 21 18 18 37 10 

Lane blockage ≤ 33% 164 32 43 43 117 32 

  > 33% 355 68 56 57 244 68 

Closed lane side Right 380 73 48 48 146 40 

  Center 8 2 1 1 18 5 

  Left 131 25 50 51 197 55 

Detection method On-site 41 18 329 85 161 45 

  Off-site 190 82 58 15 200 55 

Note: * Not applicable, Count represents number of 5-minute interval observations 

The research analyzed the impact of ramp metering on traffic conditions in the 

transition and congested state. The uncongested state excluded in the analysis due to a lack 

of observations when RMSs are activated. Results of the logistic regression of the traffic 

states (i.e., transition and congested state) during nighttime off-peak periods are presented 

in Table 5-6. It was indicated that activating the nearest upstream RMSs did not influence 

the changes in the traffic states. Relatively few observations when the RMSs are activated 

during the nighttime off-peak periods might be the reason for this finding. The effect of 

activating the second nearest upstream RMS was not directly analyzed because it was 

linearly correlated with the nearest upstream RMS. Towing services significantly reduced 

the likelihood of traffic conditions changing to congested state. Compared to when the 
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towing services were not involved, the probability of traffic conditions changing from the 

transition to the congested state was reduced by 65% when the towing services were 

involved.  

Table 5-6: Results of the Logistic Regression during Nighttime Off-Peak Periods 

  Transition vs Congested State 

    90% CI  

Variable Category Coeff. S.E. 5% 95% OR 

Nearest Upstream RMS Off*           

  On 1.046 0.647 -0.015 2.106 2.85 

Number of responding agencies   0.059 0.100 -0.105 0.223 1.06 

Fire rescue present No*           

  Yes 0.474 0.310 -0.034 0.982 1.61 

Towing involved No*           

  Yes -1.053 0.411 -1.728 -0.378 0.35 

Lane blockage ≤ 33%*           

  > 33% 0.458 0.298 -0.031 0.946 1.58 

Closed lane side Right*           

  Center 1.631 1.065 -0.116 3.377 5.11 

  Left 0.367 0.277 -0.088 0.822 1.44 

Detection method On-site*           

  Off-site -0.069 0.246 -0.473 0.335 0.93 

Constant   0.491 0.261 0.063 0.920   

Note: Coeff. means coefficient, CI means confidence interval, OR means odds ratio, and * means 

base category, S.E. means standard error 

 

5.2.4 Impact of Ramp Metering on Traffic Conditions affected by Crashes during Peak 

Periods 

 

Traffic flow observations upstream of an incident during peak periods were 

grouped into uncongested, transition, and congested states. Approximately 9%, 56%, and 

35% of the observations were classified in the uncongested, transition, and congested 

states, respectively. The average traffic speed and occupancy in the uncongested state were 

approximately 42 mph and 14%, respectively. Also, the average traffic speed and 

occupancy in the transition state were about 14 mph and 34%, respectively. The average 

speed and occupancy in the congested state were approximately 8 mph and 46%, 

respectively.  
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Table 5-7 presents the descriptive statistics of the analysis variables according to 

the traffic state during peak periods. In the uncongested state, the percentage of 

observations was higher when the nearest upstream RMSs are activated than when 

deactivated. Conversely, the percentage of observations was lower when the second nearest 

upstream RMSs are activated than when deactivated. In the transition and congested state, 

more observations were associated with activated than deactivated RMSs. A higher 

percentage of observations in the uncongested and transition state were associated with 

fire rescue presence at the crash location. In general, fewer observations were associated 

with crashes involving towing services. The highest percentage of observations associated 

with lane blockage > 33% were in the congested state. The percentage of observations 

associated with crashes detected using off-site methods was higher than on-site methods. 

Table 5-7: Summary of the Variables during Peak Periods 

   

Uncongested 

State 

Transition 

State 

Congested 

State 

Variable    Count % Count % Count % 

Nearest Upstream RMS Deactivated 77 45 297 29 216 33 

  Activated 93 55 744 71 446 67 

Second Nearest Upstream RMS Deactivated 94 55 371 36 250 38 

  Activated 76 45 670 64 412 62 

Number of Responding Agencies   * * * * * * 

Fire Rescue Present No 112 66 638 61 290 44 

  Yes 58 34 403 39 372 56 

Towing Involved No 156 92 987 95 628 95 

  Yes 14 8 54 5 34 5 

Lane Blockage ≤ 33% 98 58 619 59 174 26 

  > 33% 72 42 422 41 488 74 

Type of Lane Closure Right 75 44 348 33 201 30 

  Center 1 1 44 4 36 5 

  Left 94 55 649 62 425 64 

Detection Method On-site 82 48 278 27 230 35 

  Off-site 88 52 763 73 432 65 

Note: * Not applicable, Count represents number of 5-minute interval observations 

 

Table 5-8 presents the results of GOLM of the traffic states during peak periods. 

The nearest RMSs upstream of the crash location did not significantly influence the change 
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from uncongested to the transition state. The second nearest RMS upstream of a crash 

location decreased the likelihood of traffic flow changing from uncongested state to 

transition state by 46%. This finding suggests that ramp metering farther upstream of the 

crash location helps keep the traffic condition near the crash scene uncongested. More 

responding agencies at the crash scene increased the likelihood of changing from 

uncongested to transition state. Lane blockage > 33% was associated with a 36% decreased 

likelihood of traffic flow changing from uncongested to transition state. This finding was 

unexpected, and it requires further analysis. The off-site detection method increased the 

likelihood of traffic flow changing from transition to congested state by 33%. 
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Table 5-8: Results of the GOLM during Peak Periods  

   Uncongested vs Transition State Transition vs Congested State 

    95% CI    95% CI  

Variable  Category Coeff. S. E. 2.5% 97.5% OR Coeff. S. E. 2.5% 97.5% OR 

Nearest Upstream RMS Deactivated*           
  Activated -0.051 0.271 -0.593 0.490 0.95 0.244 0.191 -0.137 0.625 1.28 

Second Nearest Upstream RMS Deactivated*           
  Activated -0.620 0.267 -1.154 -0.085 0.54 -0.216 0.182 -0.579 0.147 0.81 

Number of Responding Agencies   0.186 0.062 0.061 0.311 1.20 -0.113 0.038 -0.188 -0.037 0.89 

Fire Rescue Present No*           
  Yes -0.917 0.219 -1.354 -0.479 0.40 -0.215 0.127 -0.469 0.040 0.81 

Towing Involved No*           
  Yes -0.058 0.351 -0.761 0.644 0.94 0.411 0.248 -0.085 0.907 1.51 

Lane Blockage ≤ 33%*           
  > 33% -0.449 0.181 -0.812 -0.086 0.64 -1.225 0.115 -1.455 -0.995 0.29 

Type of Lane Closure Right*           
  Center -2.232 1.022 -4.276 -0.188 0.11 -0.841 0.261 -1.364 -0.318 0.43 

  Left -0.424 0.175 -0.775 -0.074 0.65 -0.262 0.115 -0.493 -0.031 0.77 

Detection Method On-site*           
  Off-site -0.728 0.170 -1.068 -0.389 0.48 0.285 0.111 0.063 0.506 1.33 

Constant   -1.474 0.291 -2.349 -0.600  1.895 0.209 1.476 2.313  
Note: Bold numbers show significant variables at 95% confidence interval (CI), Coeff. means coefficient,  S.E. means standard error,  OR means odds 

ratio, and * means base category
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5.3 Benefits of Ramp Metering during Non-Recurrent Congestion due to Rain 
 

The third objective of the research was to evaluate the impact of ramp metering 

operations on traffic conditions during rain. Along the study corridor, it rained in about 651 

days during the three-year study period (2016 - 2018). Approximately 579,696 traffic data 

observations were extracted on the days that it was raining. About 4% of the observations 

were excluded because they were collected on holidays and days associated with 

hurricanes. In addition, observations recorded when travel lanes were closed due to crashes 

were excluded from the analysis. The remaining 134,230 observations were divided 

according to the time-of-day: daytime off-peak periods, nighttime off-peak periods, and 

peak periods. The definition of the time-of-day categories was similar to that provided in 

Section 5.2.1. Approximately 34%, 49%, and 17% of the observations were recorded 

during daytime off-peak, nighttime off-peak, and peak periods, respectively. The k-means 

clustering was used to classify the traffic flow parameters (i.e., speed and occupancy) 

downstream of the entrance ramps into traffic states. The logistic regression model and the 

GOLM were used to evaluate the impact of ramp metering on the traffic conditions affected 

by rain during daytime off-peak, nighttime off-peak, and peak periods. The following 

sections discuss the results in detail. 

 

5.3.1 Traffic States Downstream of the Entrance Ramp during Rain 
 

The k-means clustering was used to classify the traffic speed and occupancy into 

different traffic states. Similar to Section 5.2.1, the clustering method was applied to three 

sets of traffic speed and occupancy observations grouped according to the time of day. 

Figure 5-5 shows the traffic flow observations downstream of the entrance ramp during 
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rain before clustering. During the daytime off-peak periods, the average traffic speed was 

55 mph, and the average traffic occupancy was 12%. In contrast, during the nighttime off-

peak periods, the average traffic speed was 62 mph, the average traffic occupancy was 4%.  

During the peak periods, the average traffic speed and occupancy were approximately 42 

mph and 18%, respectively.  

 

(a) Daytime off-peak periods 

 

(b) Nighttime off-peak periods 

 

(c) Peak periods 

Figure 5-5: Speed-Occupancy Diagram during Rain  

The silhouette index of the k-means clustering showed that three clusters were the 

optimal number of groups for traffic flow observations during the daytime off-peak 

periods, nighttime off-peak periods, and peak periods. The clusters were named an 

uncongested, transition, and congested state based on their speed-occupancy 
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characteristics. Figure 5-6 shows the speed-occupancy diagram after clustering the traffic 

flow observations downstream of the entrance ramp during rain according to the time of 

day.  

 
(a) Daytime off-peak periods 

 
(b) Nighttime off-peak periods 

 
(c) Peak periods 

Figure 5-6: Traffic States Downstream of the Entrance Ramp During Rain 

 

5.3.2 Impact of Ramp Metering on Traffic Conditions during Rain in Daytime Off-Peak 

Periods 
 

Traffic flow observations downstream of the entrance ramp during rain in daytime 

off-peak periods were grouped into uncongested, transition, and congested states. The 

average traffic speed and occupancy in the uncongested state were approximately 60 mph 
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and 10%, respectively. The average traffic speed and occupancy in the transition state were 

about 49 mph and 13%, respectively. Also, the average traffic speed and occupancy in the 

congested state were approximately 25 mph and 28%, respectively.   

Table 5-9 shows the descriptive summary of the variables affecting the traffic 

conditions during rain in daytime off-peak periods according to the traffic state. Relatively 

more observations were classified into the uncongested state (64%) than the transition 

(29%) and congested state (7%). The uncongested and transition state had approximately 

the same proportions of observations when the nearest upstream RMSs are activated. The 

proportion of observations when the RMSs are activated was relatively higher in the 

congested state than the uncongested and transition state.  The distribution of observations 

when the second nearest upstream RMSs are activated was similar to the distribution when 

the nearest RMSs are activated. The percentages of observations associated with moderate 

and heavy rain were higher in the transition and congested state than in the uncongested 

state.  

Table 5-9: Summary of the Factors Affecting Traffic Conditions during Rain in 

Daytime Off-Peak Periods 

  

Uncongested 

State 

Transition 

State 

Congested 

State 

Variable   Category Count % Count % Count % 

Nearest Upstream 

RMS 

Off 29,448 99 12,889 98 3,195 94 

On 176 1 262 2 200 6 

Second Nearest 

Upstream RMS 

Off 29,413 99 12,880 98 3,189 94 

On 211 1 271 2 206 6 

Rain Intensity Light 26,266 89 8,651 66 2,027 60 

  Moderate &Heavy 3,358 11 4,500 34 1,368 40 

Note: Count represents number of 5-minute interval observations 

 

A logistic regression was used to analyze the factors affecting the traffic conditions 

downstream of the entrance ramp during rain in daytime off-peak periods. The transition 
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and congested state observations were grouped because they were relatively fewer than 

observations in the uncongested state. Also, considering ramp metering activation was the 

target variable, the bootstrap resampling was used when fitting the logistic regression to 

account for fewer observations when RMSs are activated than deactivated. Therefore, the 

logistic regression model was developed 10,000 times by combining the observations when 

RMSs are activated and 10,000 bootstrapped samples from the observations when RMSs 

are deactivated. The coefficient of each variable was obtained by averaging the coefficients 

of the models when the variable was significant.  

Table 5-10 presents the logistic regression results of the traffic states (uncongested 

state versus transition & congested state) during rain in daytime off-peak periods. Only, 

the variable for activation of the nearest RMS was found significant at the 95% CI. Other 

variables, including activation of the second nearest upstream RMS and rain intensity, were 

not significant at the 95% CI. 

Table 5-10: Factors Affecting Traffic States during Rain in Daytime Off-Peak Periods 

  Uncongested vs Transition & Congested State 

    95% CI  

Variable Category Coeff. S. E. 2.5% 97.5% OR 

Nearest Upstream 

RMS 

Off*          

On -1.622 0.260 -2.132 -1.113 0.20 

Second Nearest 

Upstream RMS 

No*      
Yes -0.212 0.229 -0.660 0.236 0.81 

Rain Intensity Light*      
  Moderate & Heavy -0.084 0.159 -0.397 0.228 0.92 

Constant  2.615 0.160 2.302 2.929  

Note: Coeff. means coefficient, CI means confidence interval, OR means odds ratio, S.E. means 

standard error, and * means a base category,  

 

Figure 5-7 shows the distribution of the coefficient of the variable for activation of 

the nearest upstream RMS. It was indicated that, on average, activating the nearest RMSs 

upstream of the entrance ramp reduced the likelihood of traffic conditions changing from 
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uncongested to transition and congested state by 80%.  This finding suggests that ramp 

metering improves traffic conditions downstream of the entrance ramp during rain in 

daytime off-peak periods. It could therefore be suggested, the nearest upstream RMSs be 

activated during rain to prevent traffic conditions during daytime off-peak periods getting 

worse because of rain.  

 

Figure 5-7: Coefficients of the Nearest Upstream RMS Variable during Daytime 

Off-Peak Periods 
 

5.3.3 Impact of Ramp Metering on Traffic Conditions during Rain in Nighttime Off-Peak 

Periods 
 

Traffic flow observations downstream of the entrance ramp during rain in nighttime 

off-peak periods were grouped into uncongested, transition, and congested states. The 

average traffic speed and occupancy in the uncongested state were approximately 66 mph 

and 3%, respectively. The average traffic speed and occupancy in the transition state were 

about 57 mph and 6%, respectively. Also, the average traffic speed and occupancy in the 

congested state were approximately 32 mph and 18%, respectively. Table 5-11 shows the 

descriptive summary of the variables affecting the traffic conditions during rain in 

nighttime off-peak periods according to the traffic state. More observations were in the 
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uncongested state (58%) than the transition (39%) and congested state (3%). There were 

significantly fewer observations when the RMSs are activated than when deactivated. 

None of the observations in the uncongested state occurred when the upstream RMSs are 

activated.  The distribution of observations when the second nearest upstream RMSs are 

activated was similar to the distribution when the nearest RMSs are activated. The 

percentages of observations associated with moderate and heavy rain were higher in the 

transition and congested state than in the uncongested state. 

Table 5-11: Summary of the Factors Affecting Traffic Conditions during Rain in 

Nighttime Off-Peak Periods 

  

Uncongested 

State 

Transition 

State 

Congested 

State 

Variable   Category Count % Count % Count % 

Nearest Upstream 

RMS 

Off 33,673 100 24,176 100 1,102 96 

On 0 0 21 0 50 4 

Second Nearest 

Upstream RMS 

Off 33,670 100 24,163 100 1,110 96 

On 3 0 34 0 42 4 

Rain Intensity Light 31,380 93 19,210 79 737 64 

  Moderate &Heavy 2293 7 4987 21 415 36 

Note: Count represents number of 5-minute interval observations 

 

Logistic regression was used to analyze the factors affecting the traffic conditions 

downstream of the entrance ramp during rain in nighttime off-peak periods. The 

observations in the uncongested state were excluded due to a lack of observations when 

RMSs are activated. Similar to the model that was fitted when analyzing the traffic 

conditions during daytime off-peak periods in Section 5.3.2, the logistic regression model 

was fitted 10,000 times using bootstrap samples. The coefficient of each variable was 

obtained by averaging the coefficients of the logistic regression model when the variable 

was significant.  
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Table 5-12 presents the results of logistic regression of the traffic states (transition 

versus congested state) during rain in nighttime off-peak periods. The variable representing 

activation of the nearest RMS was found significant at the 95% CI. Other variables, 

including activation of the second nearest upstream RMS and rain intensity, were not 

significant at the 95% CI. 

Table 5-12: Factors Affecting Traffic States during Rain in Nighttime Off-Peak 

Periods 

  Transition vs Congested State 

    95% CI  

Variable Category Coeff. S. E. 2.5% 97.5% OR 

Nearest Upstream 

RMS 

Off*          

On -3.868 0.883 -5.599 -2.137 0.02 

Second Nearest 

Upstream RMS 

No*      
Yes -0.197 0.745 -1.264 1.658 1.22 

Rain Intensity Light*      
  Moderate & Heavy -0.271 0.585 -1.418 0.875 0.76 

Constant  3.060 13.817 -24.021 30.142  

Note: Coeff. means coefficient, CI means confidence interval, OR means odds ratio, and * means 

a base category, S.E. means standard error 

 

Figure 5-8 presents the distribution of the coefficient of the variable for activation 

of the nearest upstream RMS. It was indicated that activating the nearest RMSs upstream 

of the entrance ramp significantly reduced the likelihood of traffic conditions changing 

from transition to congested state by 98%.  This finding suggests that ramp metering 

improves traffic conditions downstream of entrance ramp during rain in nighttime off-peak 

periods.  However, the effect of ramp metering depends on whether the traffic conditions 

are already in transition state.  
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Figure 5-8: Coefficient of the Nearest Upstream RMS Variable during Nighttime 

Off-Peak Periods 
 

5.3.4 Impact of Ramp Metering on Traffic Conditions during Rain in Peak Periods 
 

Traffic flow observations during rain in peak periods were grouped into the 

uncongested state (34%), transition state (25%), and congested state (41%). The average 

traffic speed and occupancy in the uncongested state were approximately 57 mph and 11%, 

respectively. Also, the average traffic speed and occupancy in the transition state were 

about 39 mph and 19%, respectively. The average traffic speed and occupancy in the 

congested state were approximately 19 mph and 32%, respectively. Table 5-13 presents 

the descriptive statistics of the analysis variables according to the traffic state during peak 

periods. In the uncongested state, there were more observations when the nearest upstream 

RMSs are deactivated than when activated. In the transition and congested state, more 

observations were associated with activated RMSs than deactivated RMSs. A higher 

percentage of observations in all traffic states was associated with light rain than moderate 

and heavy rain.  
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Table 5-13: Summary of the Factors Affecting Traffic Conditions during Rain in Peak 

Periods 

  

Uncongested 

State 

Transition 

State 

Congested 

State 

Variable   Category Count % Count % Count % 

Nearest Upstream 

RMS 

Off 5,003 67 1,823 33 2,167 24 

On 2,471 33 3,651 67 6,838 76 

Second Nearest 

Upstream RMS 

Off 4,721 63 2,078 38 2,963 33 

On 2,753 37 3,396 62 6,042 67 

Rain Intensity Light 6,218 83 3,971 73 6,703 74 

  Moderate &Heavy 1,256 17 1,503 27 2,302 26 

Note: Count represents number of 5-minute interval observations 

 

Table 5-14 presents the results of GOLM of the traffic states during rain in peak 

periods. The nearest RMSs upstream of the entrance ramp significantly influenced the 

change from uncongested to the transition state. Activating the RMS decreased the 

likelihood of traffic conditions downstream of the entrance ramp changing from 

uncongested to transition state by 86%.  It also reduced the likelihood of traffic conditions 

downstream of the entrance ramp changing from the transition to the congested state by 

76%. The variable for activating the second nearest RMS was not included in the analysis 

because it was highly correlated with the variable for activating the nearest upstream RMS. 

Moreover, the results indicated that heavy rain was associated with a 45% and 22% reduced 

likelihood of traffic conditions downstream of the entrance changing from the uncongested 

to transition state and the transition to congested state, respectively.  
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Table 5-14: Model of Factors Affecting Traffic during Rainy Conditions in Peak Periods 

   Uncongested vs Transition State Transitions vs Congested State 

    95% CI    95% CI  

Variable   Category Coeff. S.E. 2.5% 97.5% OR Coeff. S.E. 2.5% 97.5% OR 

Nearest 

Upstream RMS 

Off*                

On -1.933 0.052 -2.035 -1.832 0.14 -1.444 0.046 -1.533 -1.354 0.24 

Rain Intensity Light*                 

  Moderate & Heavy -0.606 0.038 -0.680 -0.531 0.55 -0.252 0.034 -0.319 -0.186 0.78 

Constant   0.331 0.023 0.285 0.377 1.39 1.179 0.027 1.127 1.231 3.25 

Note: Bold numbers show significant variables at 95% confidence interval (CI), Coeff. means coefficient,  S.E. means standard error,  OR 

means odds ratio, and * means a base category
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5.4 Summary 

 

This research estimated the mobility benefits of ramp metering. To achieve the 

research goal, the study evaluated the effects of ramp metering during recurrent and non-

recurrent congestion. The research applied an approach utilizing data collected during ramp 

metering operations and unplanned downtime of RMSs to achieve the research objectives. 

This method was selected to account for the limitations of the conventional methods for 

estimating ramp metering benefits.  

The BI, selected as a measure of the travel time reliability, was estimated for 

segments along the study corridor when RMSs are activated and deactivated. Two 

penalized regression methods, ridge and LASSO regressions, were used to identify factors 

that could predict the BIs of a freeway segment with ramp metering. The regression models 

evaluated the impact of ramp metering and other factors, including freeway mainline 

congestion levels, freeway mainline traffic speed, ramp traffic volume, density of entrance 

ramps, and density of exit ramps. Both models indicated that all factors were important in 

predicting the BIs of the segments with RMSs. The LASSO regression model was selected 

to predict the BIs. The predicted values were used to show the overall benefit of ramp 

metering during different congestion levels. It was indicated that ramp metering during 

moderate and severe congestion reduced the BIs by 23% and 28%, respectively.    

The effect of ramp metering on non-recurrent congestion due to crashes was 

evaluated using the traffic speed and occupancy upstream of the crash location when RMSs 

are activated and deactivated. The k-means clustering method was used to classify the 

traffic flow parameters upstream of the crash location into three traffic states (i.e., 

uncongested, transition, and congested). A GOLM or a logistic regression was then applied 
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to estimate the impact of RMSs operations on the traffic states upstream of the crash 

location. The models were also used to identify other factors that could influence the traffic 

states upstream of the crash location, including the percentage of lanes blocked, type of 

lane closed, and the number of responding agencies. Separate analyses were done 

considering the time-of-day (i.e., peak periods, daytime off-peak periods, and nighttime 

off-peak periods). Two logistic regression models were developed: for crashes that 

occurred during daytime and nighttime off-peak periods. A GOLM was also developed to 

analyze traffic conditions upstream of the crash locations during peak periods.  

 It was indicated that activating the nearest RMS upstream of the crash location 

prevented traffic flow changing from transition to congested state during daytime off-peak 

periods. Conversely, ramp metering did not influence the traffic conditions upstream of the 

crash location during nighttime off-peak periods. Activating the second nearest RMS 

upstream of the crash location prevented traffic flow changing from uncongested to 

transition state during peak periods. In general, results suggested that ramp metering 

operations did not significantly impact traffic conditions upstream of the crash location 

when it was already in a congested state. Other factors, including, number of responding 

agencies, lane blockage, type of lane closure, and detection method, significantly affected 

the change of traffic states upstream of the crash location from the transition to the 

congested state during daytime off-peak and peak periods. 

Traffic flow parameters downstream of the entrance ramp when RMSs are activated 

and deactivated were used to estimate the benefits of ramp metering during rain. Similar 

to the analysis of ramp metering during crashes, the k-means clustering was used to classify 
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the traffic flow parameters downstream of the entrance ramp during rain into uncongested, 

transition, and congested states. Depending on the distribution of the data, a logistic 

regression that was fitted using bootstrap resampling and the GOLM were used to evaluate 

the effect of ramp metering on traffic conditions during rain in daytime off-peak periods, 

nighttime off-peak periods, and peak periods. The models were also used to evaluate the 

effect of rain intensity on the traffic conditions downstream of the entrance ramp.  

Results indicated that, during rain in daytime off-peak periods, activating the 

nearest RMSs upstream of the entrance ramp significantly reduced the likelihood of 

downstream traffic conditions changing from uncongested to transition and congested 

state.  Activating the nearest RMSs upstream of the entrance ramp during rain in nighttime 

off-peak periods, significantly reduced the likelihood of traffic conditions downstream 

changing from transition to congested state. During rain in peak periods, activating the 

nearest RMSs upstream of the entrance ramp decreased the likelihood of traffic conditions 

downstream of the entrance ramp changing from uncongested to transition state and 

changing from the transition to congested state. As compared to light rain, heavy rain was 

associated with the decreased the likelihood of traffic conditions changing to transition and 

congested state.   
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CHAPTER 6  

CONCLUSIONS 

The goal of this research was to estimate the benefits of ramp metering. This goal 

was achieved by: (1) estimating the effect of ramp metering on recurrent congestion, and 

(2) quantifying the impact of ramp metering on non-recurrent congestion due to crashes 

and rain. This chapter provides a summary of the effort, contributions, and limitations of 

the research. The chapter concludes by recommending future research efforts. 

 

6.1 Summary and Conclusions 
 

6.1.1 Benefits of Ramp Metering during Recurrent Congestion 

 

Estimating ramp metering benefits helps agencies assess the effectiveness of ramp 

metering programs or plan for future deployment of RMSs. Several challenges limit the 

effectiveness of conventional estimation methods, including the before-and-after approach, 

shutdown experiments, and traffic simulation, in estimating the benefits of ramp metering. 

The principal task of this research was to estimate the benefits using an approach that can 

overcome, to an extent, the challenges of conventional estimation methods. This research 

applied an approach that used traffic data collected during unplanned ramp metering 

downtime to evaluate the benefits of ramp metering during recurrent congestion. Buffer 

index (BI), estimated using the 95th percentile travel time and average travel time, was used 

as a measure of the benefits. BIs along the selected study segments were estimated when 

RMSs are activated and deactivated. Penalized regression methods, ridge and LASSO 

regressions, were used to measure the effect of ramp metering on the BIs and identify 

factors that could predict the BIs along the freeway segments with ramp metering.  
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Descriptive statistics indicated that the average BI was 0.38 when the RMSs are 

activated and 0.51 when the RMSs are deactivated. It was further confirmed that at a 95% 

confidence interval, the average BI when the RMSs are activated was less than when 

deactivated. The regression models indicated that ramp metering had a significant 

influence on the travel time reliability and is one of the factors that could predict travel 

time reliability. Other factors that could predict travel time reliability on segments with 

RMSs include freeway mainline congestion levels, freeway mainline traffic speed, ramp 

traffic volume, and the density of entrance and exit ramps along a segment. The prediction 

model also showed that ramp metering resulted in a 23% and 28% reduction in BIs during 

moderate and severe congestion, respectively. 

 In practice, the observed benefits could be used to inform future ramp metering 

programs and compare its effect on mobility with other alternatives. Also, the research 

methodology could be adopted to measure the effectiveness of ramp metering on other 

corridors. Agencies could utilize the prediction model to determine when it is beneficial to 

activate or deactivate the RMSs.  

 

6.1.2 Benefits of Ramp Metering during Non-recurrent Congestion due to Crashes 

 

Estimating the benefits of ramp metering is essential for agencies to rationalize 

using ramp metering in managing traffic during non-recurrent congestion due to incidents.  

However, the lack of specific criteria for activating RMSs during incidents and the time-

variant attributes of incidents makes it difficult to estimate the benefits. A second research 

objective was to quantify the effect of ramp metering on traffic conditions upstream of the 

crash location. An approach using traffic flow parameters (i.e., speed and occupancy), ramp 
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metering operations data, and crash data was used to estimate the benefits of ramp metering 

during non-recurrent congestion due to crashes. The traffic flow parameters were collected 

during crash clearance duration when ramp meters were activated and deactivated. The k-

means clustering method was used to classify traffic conditions, using the speed and 

occupancy data, in three groups: uncongested state, transition state, and congested state. 

The logistic regression model and GOLM were then applied to measure the effect of ramp 

metering on the traffic condition classes (i.e., uncongested state, transition state, and 

congested state).  The research focused on evaluating the impact of the two consecutive 

RMSs upstream of the crash location. Other factors that could affect the traffic conditions 

upstream of the crash location were also analyzed. These factors included the number of 

responding agencies, involvement of fire rescue, involvement of towing services, lane 

blockage, type of lane closure, and the detection method.   

Results indicated that activating the nearest RMS upstream of the crash location 

prevented traffic flow changing from a transition state to a congested state during daytime 

off-peak periods. Activating the second nearest upstream RMS did not have an impact on 

traffic conditions immediately upstream of the crash location during off-peak periods. It 

was also indicated that activating the nearest upstream RMS did not affect traffic conditions 

upstream of the crash location during peak periods. Results showed that activating the 

second nearest RMS upstream of the crash location prevented traffic flow changing from 

an uncongested state to a transition state during peak periods, and decreased the likelihood 

of changing from uncongested to transition by 46%. Results also suggested that ramp 

metering operations did not have a significant impact when the traffic flow was already in 

a congested state. The model results indicated that the following factors influence traffic 



97 
 

conditions upstream of the crash location on a segment with ramp metering: number of 

responding agencies, involvement of fire rescue, involvement of towing services, lane 

blockage, type of lane closure, and detection method.  

The research findings show the extent to which ramp metering influence traffic 

conditions upstream of the crash location. Agencies could use the estimated benefits to 

rationalize the activation of ramp metering to alleviate non-recurrent congestion due to 

crashes.  Results could further be used to prepare standard guidelines for ramp metering 

operators to determine the time to activate and deactivate the RMSs during non-recurrent 

congestion due to crashes. 

  

6.1.3 Benefits of Ramp Metering during Non-recurrent Congestion due to Rain 
 

Estimating the benefits of ramp metering can help agencies determine the need for 

activating RMSs during non-recurrent congestion caused by rain.  However, the lack of 

reliable rain data due to spatial and temporal attributes of rain limits the estimation of 

benefits.  The third objective of this research was to evaluate the effect of ramp metering 

on non-recurrent congestion due to rain. An approach using traffic flow parameters (i.e., 

speed and occupancy) downstream of the entrance ramp, ramp metering operations data, 

and crash data was used to estimate the benefits of ramp metering during non-recurrent 

congestion due to rain.  

The traffic flow parameters during rain were collected when ramp meters are 

activated and deactivated. The collected traffic data was divided into three groups 

depending on the time-of-day: daytime off-peak periods, nighttime off-peak periods, and 

peak periods. For each time of the day, the k-means clustering classified traffic conditions 
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in the uncongested state, transition state, and congested state. The logistic regression that 

was fitted using a bootstrap resampling was used to analyze the data during daytime off-

peak periods and nighttime off-peak periods. Conversely, the GOLM was applied to 

evaluate the effect of ramp metering on the traffic conditions during peak periods. The 

research also analyzed the impact of the rain intensity on traffic conditions downstream of 

the entrance ramp.  

Results indicated that activating the nearest upstream RMS positively affected the 

traffic conditions downstream of the entrance ramp. During rain in daytime off-peak 

periods, activating the nearest RMSs upstream of the entrance ramp reduced the likelihood 

of downstream traffic conditions changing from uncongested to transition and congested 

state by 80%. During rain in nighttime off-peak periods, activating the nearest RMSs 

upstream of the entrance ramp reduced the likelihood of traffic conditions downstream 

changing from transition to congested state by 98%. The second nearest RMSs upstream 

of the entrance ramp did not significantly impact the traffic conditions during day and 

nighttime off-peak periods. During rain in peak periods, activating the nearest RMSs 

upstream of the entrance ramp decreased the likelihood of traffic conditions downstream 

of the entrance ramp changing from uncongested to transition state by 86%.  Activating 

the nearest RMSs upstream of the entrance ramp also reduced the likelihood of traffic 

conditions downstream of the entrance ramp changing from the transition to the congested 

state by 76%. Moreover, as compared to light rain, heavy rain was associated with the 

decreased likelihood of traffic conditions changing to transition and congested state.   

The research findings show how ramp metering influences traffic conditions 

downstream of the entrance ramp during rain. Agencies could use the estimated benefits to 
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justify activating the RMSs in an attempt to alleviate non-recurrent congestion due to rain. 

Results could help to establish standard operating guidelines of ramp metering during rain.   

 

6.2 Research Contributions 

 

Agencies have been deploying ramp metering to help reduce recurrent and non-

recurrent congestion on the urban roadway network. Future deployment of RMSs depends 

on their effectiveness in reducing congestion. Estimated benefits can justify using ramp 

metering to alleviate non-recurrent congestion due to crashes. Agencies could also 

establish criteria for activating and deactivating RMSs during non-recurrent congestion 

based on the estimated benefits.  

Although few agencies have estimated the benefits of ramp metering during 

recurrent congestion, there are inconsistencies stemming from the constraints of the 

conventional estimation methods. These constraints include failure to separate the effects 

of other changes implemented along study corridors after deployment of RMSs, failure to 

account for changes in driver behavior following a shutdown experiment, and inability to 

mimic field conditions in a traffic simulation. Therefore, an approach that addresses some 

of the limitations of conventional methods can be used complement the conventional 

approaches in estimating the benefits of ramp metering during recurrent congestion. 

While there are some efforts to estimate ramp metering benefits during recurrent 

congestion, most agencies have not quantified the effects of ramp metering on non-

recurrent congestion. Analyses of the benefits during non-recurrent congestion are limited 

by the discrepancies in criteria for activating RMSs during non-recurrent congestion and 

the time-variant characteristics of unplanned events (i.e., crashes or rain) causing the non-
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recurrent congestion. Thus, using a data-driven approach can account for the limitations of 

quantifying ramp metering effects during non-recurrent congestion.  

This research presented the shortcomings of the conventional methods used in 

estimating the mobility benefits of ramp metering during recurrent and non-recurrent 

congestion. Then, the study recommended and demonstrated the use of data collected 

during the unplanned downtime of the RMSs to account for the challenges of using 

conventional estimation methods. Not presented in previous studies, this research 

estimated the benefits of ramp metering using field-collected data that accounts for changes 

in the study corridor and driver behavior. Moreover, the research analyzed other factors 

rarely considered that influence travel time reliability along segments with system-wide 

ramp metering, including congestion level, traffic volume on entrance ramps, and density 

of entrance and exit ramps. 

Also, for the first time, this research estimated the benefits of system-wide ramp 

metering during non-recurrent congestion due to crashes. The impact of the RMS location, 

relative to the crash location, was also explored. This research analyzed other crash 

attributes that could influence the traffic conditions (i.e., speed and occupancy) upstream 

the crash location along a corridor with system-wide ramp metering. The crash attributes 

included the number of responding agencies, involvement of fire rescue, involvement of 

towing services, lane blockage, type of lane closure, and the incident detection method. For 

the first time, this research showed the impact of lane-blockage on traffic conditions along 

segments with ramp metering using historical traffic data.  

This research evaluated the benefits of ramp metering during non-recurrent 

congestion due to rain. The study focused on the impact of activating the RMS on the traffic 
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conditions downstream of the entrance ramp. The effect of ramp metering was explored 

depending on the time of day. Other factors, including the rain intensity and other 

operations of further upstream RMSs were also explored. This research showed the benefit 

of ramp metering operations during rain. 

 

6.3 Study Limitations and Recommendations for Future Research 

 

The benefits of ramp metering during non-recurrent congestion were based on 

crashes. Future studies could consider all other incidents such as disabled and abandoned 

vehicles. The research could focus on incidents that cause lane blockage along on the 

freeway mainline. The extent of the estimated benefits of ramp metering is reliant on the 

quality and availability of data. This research used the crash data from SunGuide® when 

evaluating the benefits during non-recurrent congestion. The location of the crash recorded 

in the data depends on the decision of the operator inputting the crash-related information. 

Instead of geographical coordinates, the crash location was defined according to the closest 

cross-street. Specifically, the crash location along the freeway was defined as before, after, 

or at the cross street. Future research using more detailed crash datasets can improve the 

accuracy of the estimated benefits during non-recurrent congestion. 

The research focused on the benefits of ramp metering on the freeway mainline. It 

is worth noting that the overall benefits of ramp metering depend on its effect on traffic 

along the entrance ramps, adjacent arterials, and parallel arterials. Future studies could 

evaluate the benefits of ramp metering on the urban roadway network by analyzing other 

locations affected by ramp metering, including adjacent arterials and ramps. The analyzed 

study corridor is adjacent to express lanes. During the study period, operations of the 
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express lanes may influence the traffic conditions when ramp meters are activated or 

deactivated. Incorporating express lane operations in the analysis could give further insight 

into ramp metering benefits, especially its interaction with other TSM&O strategies in 

alleviating congestion.  
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