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ABSTRACT OF THE DISSERTATION

PROBING THE STRUCTURE OF DEUTERON AT VERY SHORT

DISTANCES

by

Frank Vera

Florida International University, 2021

Miami, Florida

Professor Misak Sargsian, Major Professor

We study the electro-disintegration of deuteron at quasi-elastic kinematics and high

transferred momentum as a probe for the short distance structure in nuclei. In this

reaction, an electron hits a nucleus of deuterium, which breaks up into a pair of

nucleons (proton-neutron). We focus our attention on events where fast nucleons

emerge, corresponding to nuclear configurations where the bound nucleons have a

high relative momentum (exceeding 700 MeV/c). The present research is relevant

to physical systems where high-density nuclear matter is present. This condition

covers a wide range of physics, from neutron stars to nuclei stability and the repulsive

nuclear core.

Our calculations differ from others in two crucial features. One is that our defi-

nition of the deuteron wave function, as used in high-energy electro-disintegration,

depends on terms (with a relativistic origin) that can be ordered according to their

contribution. These terms, related to the off-shell properties of the nucleon-nucleon

bound-state, are forbidden within non-relativistic quantum mechanics, and they

become increasingly important in describing configurations with a high nucleon-

nucleon relative momentum. The second essential difference is that we account for

the off-shell nature of the bound-nucleon that enters on the (half-off-shell) elec-

tromagnetic current. We avoid many of the difficulties inherent to the relativistic
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nature of the processes involved by adopting a theoretical framework known as

Light Front dynamics. Simplifications in the coherent definition for the relativistic

proton-neutron bound-state wave function and the treatment of the bound-nucleon

(half-off-shell) electromagnetic current are among the essential advantages resulting

from the use of Light Front dynamics. Furthermore, the rescattering between the

emerging nucleons in the final stage of the reaction is also simplified within the Light

Front framework.

Our new theoretical calculation provides new venues for the exploration of the

relativistic structure of nuclear matter. We compared our results with experimental

data produced in a recent experiment conducted at Jefferson Laboratory in Virginia,

USA.
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CHAPTER 1

INTRODUCTION

Despite the overwhelming experimental support pointing to quantum chromo-

dynamics (QCD) as the fundamental theory of strong interaction, it is not fully

known how the nuclear force originates from QCD. Therefore, knowledge about the

mechanism through which this emergence occurs is essential to understand the nu-

clear dynamics at a fundamental level and the phase transition from quark-gluon

to hadronic matter. Since the nuclear force is responsible for binding atomic nuclei

together, this knowledge is also a prerequisite for solving many open problems in

nuclear theory, such as the stability of strongly interacting matter, the existence of

hidden color configurations (multi-quark states) in the nuclei, as well as the origin

of the nuclear core.

The lack of a complete practical theory for the study of the strong force had

pushed forward a program focused on developing models. An example is the hadronic

model of nuclear physics, where it is assumed that nuclei can be described in terms of

constituent baryons interacting through the exchange of mesons. It is expected, how-

ever, that this picture breaks down once the distance between constituent baryons

is less than their radius. In this case, the internal structure of the baryons will play

an explicit role in the nuclear dynamics. In this regard, the study of dense nuclear

matter plays a crucial role, providing a transition from baryonic to quark-gluon

degrees of freedom.

The main goal of our research is the study of nuclear dynamics at short distances.

Considerable progress has been made in understanding the nuclear force at distances

up to r ≈ 1/mπ ≈ 1.8 fm1 within effective theories based on the chiral symmetry

1 One fermi (fm) corresponds to 10−15 meters.
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of QCD and formulated in terms of hadronic degrees of freedom. In these theories,

the short-range phenomena are parameterized through contact interactions, which

are then included in the renormalization scheme. As a result, the dynamic aspect

of the short-range interactions is not resolved.

Another approach in describing the nuclear force is the one boson exchange

model (OBE), which has succeeded in explaining several properties of the nucleon-

nucleon (NN) interaction at intermediate to short distances, such as the large tensor

forces. However, OBE cannot fully describe the interaction strength without includ-

ing phenomenological parameterizations (see, e.g., [1]). Also, it contains the concept

of strongly virtual exchanged mesons, which is not well defined [2].

Yet another successful approach to describe NN interactions is the phenomeno-

logical parameterization (potential models), in which the general spin-isospin struc-

ture of the NN interaction is reproduced by adding a finite number of Yukawa-type

interactions with the long distance interaction given by the pion exchange term (see

e.g. [3]). In this approach, the ansatz parameters used to describe the NN potential

are obtained by fitting experimental phase shifts.

While OBE and phenomenological potential models reproduce the NN scatter-

ing phase shifts with high precision, they considerably diverge in their predictions

for the nucleon momentum distributions in the deuteron above 500 MeV/c. For ex-

ample, the probability (based on OBE) for nucleon momentum of about 600 MeV/c

in the deuteron differ by a factor of two for AV18 [3] and CD-Bonn [4] potentials.

This indicates that there are limitations for OBE and phenomenological NN po-

tentials to gain reliable information about the short-range structure of NN forces

in particular and nuclear forces in general. Moreover, the above approaches are

non-relativistic and attempt to include relativistic effects turn out to be either in-

consistent or make them tremendously complicated, resulting in a set of coupled
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channel equations. Another limitation of the above approaches is that there is no

clear way of including the quark-gluon degrees of freedom in such a way that it is

consistent with QCD.

Our main strategy for probing short-range nuclear forces is to study pairs of

bound nucleons that occupy a small space-time region. In other words, we search for

bound nucleons that have relative momenta much larger than the average momen-

tum found in the deuteron. The most suitable theoretical description for describing

high-energy processes is based on the light-front formalism, which allows avoiding or

suppressing vacuum fluctuations. In this case, the nucleons are treated relativisti-

cally, and the application of diagrammatic methods [43,45] result in light-front wave

functions described by Weinberg-type equations [5]. There have been many exten-

sive studies on the light-front nuclear dynamics (e.g., Refs. [23,24,70,71]). However,

these studies did not focus on (semi) exclusive reactions2, which will allow us to test

many properties of the nuclear structure. In our research, we have focused primarily

on deuteron electron-disintegration experiments at high momentum transfer3, which

are part of the research program of the Jefferson Laboratory, located in Virginia,

USA.

1.1 Why the Deuteron

The program of nuclear physics is to provide a description of the strong interaction

(QCD). From a modern perspective, it presents a roadmap similar to that of atomic

2 Where one or more produced particles are detected, in addition to the scattered elec-
tron.

3 In the present work, the approach chosen to calculate the high momentum contribution
to the nuclear structure is similar to the methods applied in high energy physics for the
description of the parton distributions in the nucleon, where partons are treated fully
relativistic.

3



physics, which led to the establishment of Quantum Electrodynamics (QED) as the

(contemporary) fundamental theory of electromagnetic interaction4. For QCD and

QED, the infinite-dimensional problem resulting from the field-theoretical picture

can be reformulated as a perturbative series5. However, while for the electromagnetic

interaction, the perturbative series approximates the solution beyond the precision

of each experiment carried out so far, the same does not happen with QCD. Finding

non-perturbative solutions for QCD remains an open problem.

As an alternative of tackling the complicated nuclear problem directly from the

fundamental QCD degrees of freedom (quarks and gluons)6, we rely on simplified

models. The first step is to consider the nucleon as a (quasi-)particle, and the inter-

nal structure is quantitatively parameterized by functions called form factors7. An

example of a simplified version of the nuclear interaction is provided by the aforemen-

tioned phenomenological approach, which reduces the many-body field theoretical

problem8 to an interaction potential. The total potential incorporates contributions

from two-body interactions, three-body interactions, etc., i.e.,

VA = V2 + V3 + . . . (1.1)

where, A is the number of nucleons, and Vi corresponds to the ith-body potential.

It has been found that the two-body potential (V2) reproduces about 90% of the

4 The quantum field theory of electrons and photons.

5 For each order in the perturbative expansion, a finite number of terms need to be
calculated. Each term represents the interaction among a finite number of particles.

6 Although important achievements have been made, the computation of solutions re-
mains impractical.

7 Details about the form factors will be provided in subsequent chapters.

8 Where the interaction is carried by an exchanged particle.
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binding energy of light nuclei (A . 12) and becomes even more dominant as the

number of nucleons increases [31].

The deuteron is the simplest nucleus, consisting (predominantly) of a proton-

neutron-bound state. Hence, it is the simplest laboratory for studying the two-body

nuclear problem. Furthermore, it was found that in nuclei, the configurations involv-

ing two nucleons (correlated) with a significant relative momentum are dominated

by proton-neutron pairs, i.e., over proton-proton and neutron-neutron counterparts.

Thus, a better understanding of the distribution of the high internal momentum

in the deuteron will improve the extraction of the correlations of two nucleons in

heavier nuclei. Therefore, our research is important to describe high-density nuclear

matter and the short-range structure of the nuclear force.

1.2 Modern view of the Deuteron

Being the simplest nucleus, the deuteron represents a unique testing ground for

the emergence of nuclear forces from the fundamental interaction of quarks and

gluons. One expects that QCD degrees of freedom become relevant for situations

where the bound proton and neutron in the deuteron are substantially overlapping.

Such a situation can be achieved by probing deuteron at large relative momenta,

comparable with the masses of its constituent nucleons.

Despite the apparent simplicity of the deuteron, the complex character of the

nuclear forces and the hadronic spectrum creates a rather diverse picture for the

composition of the deuteron. Because of the positive parity and total spin J=1 of

the deuteron, it represents a pseudo-vector state. In addition, the deuteron has zero

total isospin, T = 0 (iso-singlet). As a result, the modern view of the deuteron can
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be summarized as a decomposition into Fock states9 with total spin equal to 1 and

isospin equal to 0 [14],

Ψd = Ψpn + Ψ∆∆ + ΨNN∗ + Ψhc + ΨNNπ · · · (1.2)

where ”· · · ” includes the contributions from higher Fock components with poten-

tially higher mass constituents.

The relative contribution of the Fock components in the deuteron wave function,

starting from the lowest number of constituents, is organized as follows:

pn Component: The empirical evidence suggests that the pn component domi-

nates in the deuteron wave function for large internal momenta (∼ 600−700 MeV/c)

[6]. Theoretical calculations based on the pn component of the deuteron wave func-

tion (e.g., Refs. [7,8,10]) provide a good description for a wide variety of the processes

involved in probing deuteron’s wave function for up to 600 − 650 MeV/c internal

momenta.

∆∆ and NN∗ Components: Energetically, the next closest two-particle (isos-

inglet, pseudovector) Fock components of the deuteron are the ∆∆ and NN∗, the

latter representing a radial excitation of one of the nucleons in the deuteron. Such

excitations require energies in the order of 600 MeV, corresponding to internal mo-

mentum of about 800 MeV/c. Due to the large-cross-section of the πN → ∆

transition, it is expected that the ∆∆ component will dominate over the NN∗ com-

ponent. The overall contribution of the ∆∆ component has been experimentally

constrained to ≤ 1% [11], while there is no evidence yet for the possible mixture of

the NN∗ component.

9 By Fock state, we adopt the definition of a state characterized by a well-defined (fixed)
particle number.
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Hidden Color Component: One of the unique predictions of QCD is the possible

existence of the hidden color component in the deuteron wave function. The color

decomposition of the very same six quarks present in deuteron’s pn component

allows for a 6-quark color-singlet configuration consisting of two colored (octet)

baryons. The colored constituents configuration (hidden color component) has been

estimated to be responsible for almost 80% of the high momentum wave function

strength [15, 16]. Such component is expected to dominate at considerable high

excitation energies of the NN system, with the six-quark representation of deuteron

describing the sum of all the possible two-baryonic states. Since large excitations

are relevant to the nuclear core, there is an interesting possibility that the NN

repulsive core results from the cancellation in the overlap between hidden color-

dominated configurations and the NN component.

NNπ Component: The most dominant three-particle Fock component of the

deuteron is the NNπ component, which is expected to become relevant at ex-

citation energies close to the pion threshold (corresponding to internal momenta

∼ 370 MeV/c). There is evidence from reactions probing meson exchange cur-

rents that this component starts to dominate at missing momentum ∼ 350 MeV/c,

which is consistent with the above estimate of the pion threshold (see for example

Refs. [17, 18]). However, in experiments at high energy and momentum transfer

(above the proton mass), aimed at probing short distance nuclei structure, no such

evidence is observed for relative NN momenta up to ∼ 650 MeV/C (e.g., [19–21]).

The latter suppression can be explained by the fact that the transition N → πN

behaves as ∼ exp{λt} with λ ≥ 3 GeV−2 (hard form factor) [11]. Therefore, the

processes in which the high energy probe couples to the exchanged pion in the NNπ

deuteron component are significantly suppressed at high momentum transfer (above

the proton-pion system mass).
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The above discussion indicates that the dominant inelastic component in the

deuteron may be the ∆∆ rather than the NNπ component. This will extend the pn

dominance for internal momenta up to ∼ 750 MeV/c, which lays below the expected

threshold of the ∆∆, and possibly hidden color components in the wave function of

the deuteron.

We conclude that for internal momenta up to ∼ 750 MeV/c, the proton-neutron

Fock component must be the dominant one in the deuteron wave function. The

conventional quantum mechanical description for the pn component becomes ques-

tionable at such high momentum because of significant relativistic effects. Our

calculation of the exclusive deuteron-electro-disintegration reaction consistently ac-

counts for relativistic effects in the bound-proton-neutron component of the deuteron

wave function and the rescattering of the outgoing (produced) nucleons. The im-

plementation of the light-front (effective) Feynman diagrammatic developed in this

work represents the light-front extension of the generalized eikonal approximation

(GEA), which was developed earlier [7,44,45] to account for the relativistic motion

of the nucleons in the final state interaction amplitude.

Our research is motivated by the comprehensive program of electron scattering

experiments with high transferred momentum, which aims to reveal the structure

of nuclei. (e.g., [12, 14, 32]). With this experiments, a deeply bound nucleon in the

nucleus can be probed by a photon with large virtuality10, producing a final nucleon

with very high 3-momentum11. The high-energy nature of these processes allows for

chief simplifications in the description of the scattering process. One of the main

characteristics of high energy scattering is that the process evolves along a light-

like direction (e.g., [2, 24, 63, 64, 68]), making the light-front framework the most

10 The definition of virtuality for the exchanged photon is provided in Eq.(2.5).

11 Roughly equal to that of the virtual photon.
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natural choice to describe the reaction. The crucial advantages of a description

are the suppression of the negative energy contribution in the full propagator of

the bound nucleon and the possibility of identifying the “good” component of the

electromagnetic current, for which the off-shell effects are minimal Off-shell effects

are the sources of many ambiguities in the calculation of the scattering cross-section.

Therefore, its minimization is the first step towards meaningful estimates. All these

features will be described in detail in the following chapters.
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CHAPTER 2

DEUTERON ELECTRO-DISINTEGRATION

Experiments performed at quasi-elastic kinematics, in which electrons are scat-

tered off a deeply bound nucleon producing a struck nucleon (Nf ) in the final state,

are the main tools to directly probe bound nucleons with large momenta. Exper-

iments of this kind have a very small differential cross-section. Therefore, they

require high-intensity electron beams, which became available only after the ad-

vent of the Continuous Electron Beam Facility (CEBAF) at Jefferson Laboratory

(JLab), located in Virginia. The first of such experiments [19–21] reaching large

values of transferred invariant momentum (Q2 ≥ 1 GeV2) were performed at JLab,

and for the first time succeeded in a direct measurement of the deuteron momentum

distribution up to 550 MeV/c [21]. After the 12 GeV upgrade of CEBAF, a new

era of long-awaited electro-disintegration experiments [22] are probing the deuteron

structure at unprecedentedly large internal momenta, up to 1 GeV/c. Such mea-

surements are opening up an entirely new stage for investigating the QCD origin of

nuclear forces.

The advantage of exclusive electro-disintegration experiments is that, in the sim-

plest model known as the plane wave impulse approximation, it directly probes

the deuteron momentum distribution. However, because the outgoing proton and

neutron interact strongly, there is a substantial contribution from the final state

interaction effects, which must be properly accounted for. With the birth of the

experimental program on high momentum transfer electro-disintegration reactions,

various theoretical groups have made intensive efforts to calculate the effects of FSI.

(e.g. Refs. [7, 29, 30, 52]). All these efforts are based on the high-energy nature of

the scattering process. However, the previous works still use the non-relativistic

description of the deuteron wave function. As a result, their validity becomes in-
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creasingly questionable for the description of processes that probe deuteron’s inter-

nal momentum at values comparable to the nucleon mass (∼ 1 GeV/c). One of the

main problems in the interpretation of the experimental data is to account for the

relativistic dynamics of the deuteron adequately.

2.1 Kinematic Definitions

We investigate the reaction,

e+ d→ e′ +Nf +Nr (2.1)

where the deuteron nucleus is disintegrated after interacting with a high energy

electron. The result of this event is the production of two nucleons (proton and

neutron) in the final state together with the scattered electron. Two particles are

detected in coincidence in the final state, the scattered electron and one of the

nucleons. The measured momentum of the detected nucleon is labeled, pf = (Ef,pf).

The second nucleon will be called the recoil nucleon, and labeled as pr = (Er,pr),

its momentum is reconstructed from the energy-momentum conservation,

pd + pe = p′e + pf + pr (2.2)

where, pd = (Ed,pd) is the deuteron’s four-momentum, and pe = (Ee,pe) (p′e =

(E ′e,p
′
e)) is the initial (final) four-momenta of the electron. In the current kinematics,

the initial and final energies of the electron are much larger than its mass,

|pe|, |p′e| � me (2.3)

from where it follows that can be treated as massless particles.

In quantum field theory, the interaction between electron and deuteron is medi-

ated by the exchange of virtual photons. The graph shown in Fig.(2.1) is known as

the one photon exchanged approximation, which is a highly accurate approximation
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Figure 2.1: Deuteron electro-disintegration in the one-photon-exchange approxima-
tion.

due to the small coupling constant of the electromagnetic interaction (α ≈ 1/137).

The four-momentum of the exchanged photon (momentum transfer, q) is,

q = (q0,q) = pe − p′e = (Ee,pe)− (E ′e,p
′
e) (2.4)

It is very convenient to work with kinematic variables that are Lorentz invariant,

since their values are the same for any inertial reference frame. A common choice

are the (negative) invariant momentum transfer squared,

Q2 = −q2 = q2 − q2
0 (2.5)

the fraction of the target’s momentum longitudinal to the momentum transfer

(Bjorken scaling variable)1,

x =
−q · q
pd · q

=
Q2

pd · q
(2.6)

and, the center of mass energy of the photon-deuteron system,

s = (pd + q)2 (2.7)

1 Note that with this definition we have, 0 ≤ x ≤ 2.
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2.2 Reference Frames

In our calculations, we will primarily consider two reference frames. One is the Lab

frame of the deuteron sketched in Fig.(2.2) with coordinate axes defined by,

(x̂lab, ŷlab, ẑlab) =

(
~q × ŷlab

|~q × ŷlab|
,
~pe × ~p′e
|~pe × ~p′e|

,− ~q

|~q|

)
=

(
ŷlab × ẑlab

|ŷlab × ẑlab|
,
p̂e × ẑlab

|p̂e × ẑlab|
,−q̂lab

)
(2.8)

where, ~pe and ~p′e are the (known) 3-momentum vectors of the incoming and outgoing

electron, respectively.

Lab Frame

Figure 2.2: Deuteron Lab (rest) Frame.

The second is the center of momentum frame of the virtual photon and deuteron

(γ∗d-CM), Fig.(2.3), given by the equivalent conditions pd + q = 0 = pr + pf, i.e.

it is also the CM frame of the produced proton-neutron nucleons. The coordinate

axes coincide with the Lab frame ones,

(x̂CM, ŷCM, ẑCM) = (x̂lab, ŷlab, ẑlab) (2.9)
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CM Frame

Figure 2.3: Center of momentum frame for the initial two-body system, deuteron
and virtual-photon, and also for the produced proton-neutron.

In the CM reference frame the four-momenta of the deuteron and virtual photon

are given in terms of invariant kinematical variables by,

pµd ≡ (Ed, pdz,pdT) =

 Q2

x
+m2

d√
s

,
Q2

x
√
s

√
1 +

m2
dx

2

Q2
,0T


qµ ≡ (q0, qz,qT) =

 Q2

x
−Q2

√
s

,− Q2

x
√
s

√
1 +

m2
dx

2

Q2
,0T

 (2.10)

where, the invariant mass s can be written as,

s = (pd + q)2 = Q2 2− x
x

+m2
d (2.11)

and the Bjorken variable x is given in the Lab frame by,

x =
Q2

mdq0
lab

(2.12)

with q0
lab being the energy transferred in the Lab frame and md the deuteron mass.

The mass of the electron is negligible compared with their energies (Eq. 2.3), in

which case we have, Q2 = 4EeE
′
e sin2 θe

2
, where Ee (E ′e) is the energy of the incoming

(scattered) electron, and θe the scattering angle, all their values as measured in the

Lab frame.
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2.3 Reaction Dynamics

Within the one-photon exchange approximation the Feynman diagrams that de-

scribe the reaction Eq.(2.1) given in Fig.(2.4). For definiteness, we consider a proton

to be the knocked-out nucleon.

(e) (f) (g)

(i)

(a) (b) (c) (d)

(h)

Figure 2.4: Diagrams contributing to the exclusive d(e, e′p)n reaction.

These diagrams represent different mechanisms in electro-disintegration of the

deuteron and can be categorized as follows:

(a) PWIA contribution: In Fig.(2.4(a)), the situation in which the nucleon

struck by the virtual photon is detected, while the undetected one is a specta-

tor, corresponds to a mechanism called the direct plane-wave impulse approxi-

mation, hereafter plane-wave impulse approximation (PWIA). The alternative

possibility in which the virtual photon strikes the undetected nucleon while

the detected one emerges as a spectator is called the spectator-PWIA. No fi-

nal state interaction (FSI) is involved. Therefore, the final nucleons emerge as

plane waves.

(b) Direct FSI contribution: In this case Fig.(2.4(b)) the struck proton rescat-

ters off the spectator neutron and is detected in the final state.
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(c) Charge-Interchange FSI contribution: In the case of Fig.(2.4(c)) the

struck-nucleon undergoes a charge interchange interaction with the spectator

nucleon.

(d) Intermediate State Resonance Production: In Fig.(2.4(d)), the elec-

tromagnetic interaction excites the nucleon into a resonance state which then

rescatters with the spectator nucleon resulting in the final proton and neutron.

(e,f) Meson Exchange Contributions: In Fig.(2.4 (e) and (f)), the electromag-

netic interaction takes places with the mesons which are exchanged between

initial nucleons in the deuteron.

(g) Non-Nucleonic Contributions: The last three terms contributing to the

reaction Fig.(2.4 (g), (h), and (i)) are sensitive to non-nucleonic components

of the deuteron wave function. The first two represent an initial state with

baryonic resonance(s), whereas (i) corresponds to the hidden-color component

contributions.

2.4 Main Features of High Energy Approximation Electro-

Disintegration

Among all the reaction mechanisms accounting for deuteron electro-disintegration,

only the PWIA (Fig.2.4 (a)) provides direct access to the NN structure of deuteron.

However, a reliable estimate of the PWIA contribution to the reaction requires a

systematic way to account for all the remaining reaction mechanisms (diagrams

Fig.2.4(b)-(i)) discussed in the previous section. As we explain below, most of

the reaction mechanisms can be suppressed if we consider the reaction (2.1) at

sufficiently high energy and momentum transfer while guaranteeing that the struck
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nucleon (carrying almost all the momentum of the virtual photon) is significantly

more energetic than the recoiling nucleon. Explicitly, in the Lab frame, we must

guarantee,

|plab
r | = |qlab − plab

f | � |plab
f | ∼ qlab| ≥ Q & 2 GeV/c (2.13)

where, the variables are defined in Fig.(2.1). The consequences of applying the con-

ditions (2.13) are different for each of the individual Feynman diagram in Fig.(2.4(b)-

(i)). It is worth noting that this last observation constitutes the central paradigm of

effective field theory, which is that the relevant physics does not come from a graph-

by-graph analysis, but rather comes from a scale-by-scale (energy) breakdown.

In the next chapter, we will see that the scattering amplitude for the PWIA

(Fig.2.4(a)) is proportional to the deuteron wave function. In the Lab frame, the

spectator-PWIA amplitude is then proportional to ψd(p
lab
f ), with plab

f ' few GeV/c.

In contrast, the direct-PWIA graph is proportional to ψd(p
lab
r ), with plab

r ' few

hundred MeV/c. From where it follows that for the PWIA the spectator mechanism

is kinematically suppressed with respect to the direct one.

Diagrams containing meson exchange currents (Fig.2.4(e) and (f)) bear a dy-

namical suppression since, under the condition m2
meson � Q2 ∼ 1GeV2, they are

suppressed compared to the PWIA term by an additional factor of Q−6 [45, 46].

The dynamical suppression also occurs in the charge-exchange diagram (Fig.2.4(c)).

The charge-exchange mechanism (pn→ np) has an additional factor of s−1/2 in the

amplitude and a stronger t dependency compared to the direct-FSI rescattering of

the nucleons (pn→ pn) [7].

The contributions of the intermediate (baryonic) resonance production mecha-

nism (Fig2.4(d)), with the Delta production channel (γ∗N → ∆) being the most

important, are subjected to both kinematic and dynamical suppressions. Kinemat-
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ically, it is possible to control the amount of energy transferred (q0
lab) to the target

such that intermediate exited states are suppressed. This corresponds to probing

the side of the quasi-elastic peak that is far from the inelastic ∆ electroproduction

threshold. Dynamically, due to the spin-flip nature of the transition γ∗N → ∆, a

much steeper falloff in the transition form-factor is expected as Q2 increases, com-

pared to the elastic scattering γ∗N → N [47, 48].

Previous studies [7, 8, 14] analyzed the available deuteron electro-disintegration

experimental data and were able to conclude that optimal enhancement of the direct

PWIA with respect to direct FSI contributions occurs when,

pr,T � plab
r,z (2.14)

However, FSI contributions are always present and must be included in the calcu-

lations.

2.5 High Energy Reactions and the Light-Front Framework

One of the main characteristics of high energy scattering is that the process evolves

along a light-like direction (e.g., [2, 24, 63, 64, 68]), making the light-front frame-

work the most natural choice to describe the reaction. An essential feature of the

LF approach, which can be exploited when describing high-energy reactions with

composite systems, is the possibility of separating the relative momentum between

constituents from the system’s total momentum. This means that analogous to

non-relativistic QM, the center of mass momentum will be kinematical, i.e., it will

not carry any information about the dynamics since the three components of PCM

commute with the Hamiltonian [72–74]. This feature allows for the definition of

observables such as form factors, as well as model-dependent quantities like momen-
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tum distributions, and spectral functions, all of them given in terms of LF wave

functions which exclusively depend on the internal variables2 [77].

The Light Front dynamics was first formulated by Dirac [65] in a pioneering

study on Hamiltonian quantization. Dirac showed that the observer’s time is not

the only possible choice for describing the evolution of a system and introduced

three consistent frameworks fulfilling this purpose, out of which two of them have

been found very useful in the description of quantum mechanical systems. They

are the Instant-Form (IF) and Light-Front-Form (LF) of dynamics, which differ by

the respective fixed “time” surface used for the evaluation of (anti)commutators,

Fig.(2.5).

Figure 2.5: Dirac’s Instant- and Front-Forms of Canonical Quantization. The equal-
“time” quantization planes are shown.

Among the advantages of a LF description are the absence of vacuum fluctua-

tions and the possibility to choose a good parameterization of “time” for which the

negative energy contribution to the interacting particle’s propagator vanishes (see

Chapter 3). The latter allows for a consistent definition of relativistic wave functions

for composite systems, called light-front wave functions (LF-WF) [24,68].

2 More precisely, this is true for any frame collinear with PCM, which without loss of
generality we can choose along the z-axis.
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There are different conventions for the LF notation and scalar product. We use

the Lepage-Brodsky convention [64] (see Appendix B),

x− = t− z

x+ = t+ z = τ

xµ =
(
x+, x−, x, y

)
=
(
x+, x−,xT

)
pµ =

(
p+, p−,pT

)
= (E + pz, E − pz, px, py) (2.15)

x · p =
1

2

(
x+p− + x−p+

)
− xT · pT

The evolution is parameterized by the LF-time x+, therefore, the Hamiltonian is

p−, since it is the operator conjugated to the time parameter.

The quantization surface is defined by x+ = t+z = 0, which represents a front of

light moving along the ẑ-axis. The states are labeled by the kinematical variables3:

p+ = E + pz, and, pT, which are analogous to the standard labeling of states by

the 3-momentum. For a nucleus with the atomic number A, instead of using the

component p+ for the nucleons, it is often convenient to use as a kinematical variable

the light-front longitudinal momentum fraction, which is taken proportional to the

atomic number (A), i.e., α = Ap+/p+
A. In our study of deuteron structure we will

use, αi,r = 2p+
i,r/p

+
d , for the interacting and recoil nucleons (see Fig. 2.4).

High Energy Electro-Disintegration in LF variables

The Lab and CM reference frames of Figs.(2.2 and 2.3) belongs to a family of

collinear frames (chosen here along the z-axis) that can be parameterized in terms

of the LF longitudinal momentum of the deuteron, p+
d [9]. The LF components

of deuteron and virtual photon momenta can be written in terms of the invariant

3 Together with other quantum numbers like spin/helicity, etc.
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kinematical variables as,

pµd ≡ (p+
d , p

−
d ,pdT) =

(
Q2

x
√
s

[
1 +

x

τ
+

√
1 +

x2

τ

]
,
Q2

x
√
s

[
1 +

x

τ
−
√

1 +
x2

τ

]
,0T

)
(2.16)

qµ ≡ (q+, q−,qT) =

(
Q2

x
√
s

[
1− x−

√
1 +

x2

τ

]
,
Q2

x
√
s

[
1− x+

√
1 +

x2

τ

]
,0T

)

where, τ = Q2

m2
d
. With the light-front components for the momentum of deuteron

and the virtual photon given by Eqs.(2.16), we define the the following quantities

relevant to the considered reaction,

αf =
2p+

f

p+
d

, αr =
2p+

r

p+
d

, αq =
2q+

p+
d

, and, αi = αf − αq = 2− αr, (2.17)

where, αf and αr are the LF + component of the deuteron momentum carried by the

final knock-out nucleon and recoil nucleon respectively, whereas αq correspond to

the longitudinal LF momentum fraction between the virtual photon and deuteron.

Note that they have been rescaled by a factor of 2.

The light-cone momentum fraction of the bound nucleon αi is defined through the

energy-momentum conservation. The crucial feature of these momentum fractions

is that they are invariant for boosts in the ẑ direction, taken here anti-parallel to the

momentum transfer q (see Fig. 2.2). The same is true for the transverse components

of the momentum, pT. For example, in the lab frame of the deuteron, these variables

for the recoil particle are given by,

αr =

√
m2
N + p2

r,lab − plab
r · cos θlab

r

md/2
(2.18)

prx = plab
r sin θlab

r cosφlab
r

pry = −plab
r sin θlab

r sinφlab
r ,

where, θlab
r and φlab

r are polar and azimuthal angles of the recoil nucleon in the Lab

reference frame. The Lab coordinates were defined in Sec.(2.2).
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2.6 Relevant Diagrams for High Energy and Momentum

Transfer

From the diagrams involving the nucleonic content of the deuteron, the discussion

of the previous section leaves us with the direct PWIA and FSI diagrams (Fig. 2.6),

which are the dominant contributions in the high energy and momentum transfer

kinematics considered in this work. In addition, at very large internal momenta

700 − 750 MeV/c a gradual increase of the contribution from the non-nucleonic

components (Figs. 2.4 (g)-(i)) may appear [6], which are omitted in this dissertation.

(PWIA) (FSI)

Figure 2.6: PWIA and FSI for deuteron electro-disintegration.

Another important advantage of evaluating the above diagrams at the high en-

ergy and momentum transfer kinematics is the onset of the eikonal regime. In the

eikonal regime, the final state rescattering can be described through the effective

NN → NN , or, NR → NR amplitudes4, which can be taken from high energy

baryon-baryon scattering experiments.

In the high energy and momentum transfer limit we have [45],

q0
lab − |qlab|
q0

lab + |qlab|
� 1 (2.19)

4 These are the nucleon-nucleon and the nucleon-resonance scattering.
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which in the deuteron and virtual photon CM reference frame corresponds to5,

q+

q−
∼ p−d
p+
d

� 1. (2.20)

In Fig.(2.7) the above condition is checked for different Q2 for the reaction of

Eq.(2.1).

Q2 (GeV2) =

0.1

1.0

2.0

4.0

8.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

xB =
Q2

Pd · q

Pd
-

Pd
+

Figure 2.7: The x dependence of
p−d
p+
d

ratio at different Q2.

As the figure shows, one expects the high energy approximation will start to

be valid at Q2 & 2 GeV2 and improve further with an increase of Q2. Assuming

that the condition of Eq.(2.20) is satisfied, the diagrams involving FSI amplitudes in

Fig.(2.4) can be systematically calculated applying effective Feynman or Light-Front

diagrammatic methods. In both cases, effective transition vertices and effective

amplitudes for the NN or NR rescattering are used (see, e.g., Ref. [45]).

5 The components of the momenta for the deuteron and virtual photon in their CM
frame are given by equations (2.10) and (2.16) for the Lorentz and light-front coordinates
respectively.
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2.7 Electro-Disintegration Cross-Section

The differential cross-section for the electro-disintegration reaction within the one

photon-exchange approximation allows to factorize electron and hadronic parts of

the interaction in the invariant Feynman amplitude as follows,

M = 〈λf | jνe | λi〉
e2gνµ
q2
〈sf , sr | Aµ | sd〉, (2.21)

where, q2 is the virtual photon’s momentum squared. The leptonic current je is

defined by,

〈λf | jνe | λi〉 = ū(kf , λf )γ
νu(ki, λi) (2.22)

and, 〈sf , sr | Aµ | sd〉 represents the (total) invariant amplitude of γ∗d → NN

scattering.

Using Eq.(2.21) for the differential cross-section of reaction (2.1) one obtains:

dσ

d3kf/εfd3pf/Ef
=

1

4
√

(pd · ki)2

e4

q4
LµνHµν

δ((q + pd − pf )2 −m2
N)

4(2π)5
(2.23)

where, terms proportional to electron’s mass squared (m2
e) are neglected. The

leptonic tensor is given in terms of the elementary (relativistic) spin 1/2 electro-

magnetic current,

Lµν =
1

2

∑
λ1λ2

(ū(kf , λf )γ
νu(ki, λi))

† ū(kf , λf )γ
µu(ki, λi) (2.24)

whereas the nuclear electromagnetic tensor is expressed through the scattering am-

plitude Aµ as follows:

Hµν =
1

3

∑
sdsrsf

〈sd | Aµ† | sf , sr〉〈sf , sr | Aν | sd〉. (2.25)

As a consequence of the kinematics constrain discussed in the previous sections,

we only need to consider in our calculation the processes corresponding to the dia-

grams in Figs.(2.4 (a) and (b)), i.e.,

Aµ = Aµ0,dir + Aµ1,dir (2.26)
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In the next two chapters (3 and 4) we elaborate on the details involved in the

calculation of the PWIA amplitude (Aµ0,dir), first term on the right hand side of

Eq.(2.26). The calculation of the second term, Aµ1,dir, will be the focus of Chapter

5. Finally, the remaining term Aµ1,chex, is expected to be small in the kinematics of

interest for the current research,thus, it is out of the scope of the present work.
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CHAPTER 3

PLANE WAVE IMPULSE APPROXIMATION

The non-triviality of an accurate description for electro-scattering from deeply

bound nucleon within a nucleus was evident since the 1980s, with the first intermedi-

ate energy experiments at SACLAY [58,59] and NIKHEF [60]. The first theoretical

calculations relied on different prescriptions to describe the nucleon’s change when

bound in a nucleus. For example, one of the earliest models [61], assumed that

bound and free nucleons would be equal in all respects except for their mass, with

the bound nucleon’s mass estimated by momentum conservation.

Currently, the most popular model is due to de Forest [62]. de Forest considered

eight different expressions for the electro-bound-nucleon cross-section eNbound, each

of them corresponding to different assumptions about the electromagnetic (EM)

interaction. The EM interaction is modeled by exchanging a virtual photon (γ∗)

between the electron and bound nucleon, and the strenght of the interaction is

represented by the effective vertex Γµγ∗N (see Fig. 3.1). Once again, the bound

nucleon is approximated by a free nucleon. Hence, on-shell spinors are used. No

preference is given to any of the considered eight expressions of the eNbound cross-

section, and as such, these approximations allowed to check the uncertainty due to

binding effects rather than calculating their actual values1.

Such kind of approaches were characteristic to the intermediate scattering energy

experiments2, where the lack of a small parameter makes impractical the quantifi-

cation caused by the strong binding effects on the nucleon electromagnetic current.

1 In other words, these studies remained largely qualitative.

2 With a momentum transfer of a few hundred MeV/c.
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3.1 Reason for Time-Ordering

In this section we consider the single-photon exchange case of the reaction (2.1)

(see Fig. 2.1) within the covariant plane wave impulse approximation (PWIA),

which is represented by the diagram of Fig.(3.1). The first problem we encounter in

high-energy processes is the increasing probability of negative energy states.

Figure 3.1: Exclusive electro-disinegration of the deuteron in plane wave impulse
approximation (PWIA).

In the case of PWIA the off-shellness of the bound nucleon is completely defined

by the four-momentum of the deuteron (pd) and that of the recoil nucleon (pr),

explicitly,

pi = pd − pr (3.1)

The PWIA amplitude Aµ0 is given by,

〈sf , sr | Aµ0 | sd〉 = −ū(pf , sf )Γ
µ
γ∗N

p/i +mN

p2
i −m2

N

ū(pr, sr)Γ
ν
dNNχ

sd
ν , (3.2)

where, χsd is the spin wave function of the deuteron, and Γµγ∗N and Γd are covariant

vertices (see Fig. 3.1).

The amplitude Aµ0 in equation (3.2) contains neither the electron-bound nucleon

scattering, nor the nuclear wave function in the explicit form. The eNbound scatter-

ing and the nuclear wave function appear only when one considers the amplitude3

3 or equivalently, the PWIA diagram (Fig. 3.1)
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Aµ0 within time-ordered perturbation theory. In this case the covariant Feynman

diagram splits into two noncovariant time-ordered processes, which are represented

by the two diagrams in Fig.(3.2).

(a) (b)

(Z−graph) (Propagating)

Figure 3.2: Representation of the covariant scattering amplitude (a) as a sum two
time-ordered diagrams. (a) Production of the N̄N pair by the virtual photon with
subsequent absorption of the anti-nucleon by the deuteron; (b) Virtual photon scat-
tering from the bound nucleon.

The diagram of Fig.(3.2-b) represents a scenario in which the virtual photon

interacts with the preexisting bound nucleon in the deuteron, with ΓdNN representing

the vertex of d → NN transition and the γ∗N → N electromagnetic interaction.

This contribution corresponds to the noncovariant PWIA, in which case the eA

cross-section is expressed through the product of eN cross-section and noncovariant

nuclear spectral function.

The diagram of Fig.(3.2-a) however, represents a very different scenario. In

this case, the virtual photon couples to an intermediate vacuum fluctuation NN̄

pair, which is parameterized by the transition vertex Γγ∗N̄N. Subsequently, the

anti-nucleon (N̄) is reabsorbed into the deuteron at the ΓN̄DN vertex. The latter

process is not straightforward related to the the nucleon content in the wave func-

tion of the deuteron. Figure (3.2-a) is commonly referred to as a ”Z-graph” and is

a purely relativistic effect. In the nonrelativistic limit, one deals only with the dia-

gram of Fig.(3.2-b), which allows to approximate the covariant scattering amplitude
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with the product of the nonrelativistic nuclear wave function and the amplitude for

the virtual-photon scattering off the bound-nucleon (γ∗Nbound). However, the situa-

tion becomes more complicated when one is interested in bound nucleon 3-momenta

comparable with its mass (|pi| ∼ mN), which can be probed at momentum trans-

fer |q| � mN (see Eq. 2.13). In this case the ”Z-graph” contribution (Fig.3.2-a)

becomes comparable with the one in Fig.(3.2-b), preventing the straightforward fac-

torization of the nuclear wave function. Thus, conventional noncovariant PWIA is

inapplicable for the description of electron scattering from deeply bound (relativis-

tic) nucleons in the nucleus.

This situation is reminiscent of the QCD processes in probing the partonic

structure of hadrons, in which case, due to the relativistic nature of partons, the

vacuum diagrams can not be neglected when the time-ordered perturbation theory

is applied in the Lab reference frame of the hadron [2]. A possible solution is to

consider the scattering process in the infinite momentum frame, which allows to

suppress the ”Z-graphs” and consider only the diagram of Fig.(3.2-b), for which one

can introduce the wave function of the constituents.

Another solution, is to set up the problem within the framework of light-front

form of dynamics, which is the one we follow in this work. Our approach in probing

deeply bound nucleon is similar to that of the partonic model. We formulate the

reaction (2.1) in the light-front formalism, allowing us to exclude the contribution

of the vacuum diagrams (Fig.3.2-a), and consequently be able to define the (light-

front) nuclear wave function of deuteron. A remarkable characteristic of the LF

wave function is that it has probabilistic interpretation similar to that of the non-

relativistic nuclear theory.
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3.2 Light-Front Scattering Amplitude in the PWIA

We consider now the reaction (2.1) on the light-front, where the light-cone time is

defined as τ ≡ t + z. The calculation of the scattering amplitude corresponding

to the PWIA proceeds by applying Light-Front perturbation rules [63, 64] in an

effective theory in which one identifies effective vertices for the nuclear transitions

and the electron-bound nucleon scattering (see Appendix B). The covariant scatter-

ing amplitude Eq.(3.2) is expressed as a sum of noncovariant diagrams ordered in

τ -time, shown in Fig.(3.3). At each vertex on the τ -ordered diagrams the transverse,

pT, and plus, p+, components of momenta are conserved. Here, in addition to the

two τ orderings analogous to the t-time ordering of Fig.(3.2) there is an additional

contribution Fig.(3.3-c). The latter is related to the spinor nature of the bound

nucleon and corresponds to the so-called instantaneous interaction.

(Instantaneous)(Z−graph) (Propagating)

(a) (b) (c)

+

Figure 3.3: Representation of the covariant scattering amplitude as a sum of two
light-cone (τ)-time -ordered diagrams as well as instantaneous interaction. (a) Pro-
duction of the N̄N pair by the virtual photon with subsequent absorption of the
antinucleon by the deuteron; (b) Virtual photon scattering from the bound nucleon;
(c) Instantaneous interaction of virtual photon with the bound nucleon.
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(b) CM Frame(a) Lab Frame

reaction plane
react

reaction plane
react

Figure 3.4: Scattering and Reaction Planes.

Our conventions for the scattering and reaction planes, as well as the reference

frames used, are depicted in Fig.(3.4). They belong to a family of collinear frames

related by boosts along the z-axis. The ẑ-axis is oriented anti-parallel to the virtual

photon 3-momentum, (ẑ‖ − ~q).

The scattering plane corresponds to,

(x̂scatt, ŷscatt, ẑscatt) =

(
~q × ŷscatt

|~q × ŷscatt|
,
~q × ~pe
|~q × ~pe|

,− ~q

|~q|

)
(3.3)

where, ~pe (~p′e) is the 3-momentum vector of the incoming (scattered) electron.

The reaction plane is defined by,

(x̂react, ŷreact, ẑreact) =

(
~q × ŷreact

|~q × ŷreact|
,
~pf × ~q
|~pf × ~q|

,− ~q

|~q|

)
(3.4)

Notice that conventionally the z-axis is defined parallel to ~q. The reason for our

choice of reference frame, with the ẑ axis antiparallel to the transferred momentum

(ẑ||−q) follows from the fact that in this frame we have, q+ = q0−|q| < 0. Therefore,

due to the conservation of the +-component of momenta at an interaction vertex

(see Appendix B), the diagram of Fig.(3.3-a) (Z-graph) is kinematically forbidden,

since the production of the N̄N pair requires q+ > 0.

The diagram in Fig.(3.3-b) corresponds to the amplitude Aµprop, representing

a virtual photon that knocks-out a bound nucleon, which subsequently propagates

from the ΓdNN transition vertex to the Γγ∗N interaction vertex. Finally, in Fig.(3.3-c)
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we have the “instantaneous” amplitude Aµinst, in which the d→ NN transition and

γ∗N interaction take place at the same light-front time (τ). In both diagrams,

the nucleus exposes its constituents, and the scattering takes place off the bound

nucleon, allowing for a probabilistic interpretation of the scattering process with the

bound nucleon.

The propagating part of the scattering amplitude (Fig.3.3-b) yields,

〈sf , sr | Aµprop | sd〉 = −ū(pf , sf )Γ
µ
γ∗N

1

p+
i

(p/i +mN)on

(p−d − p−r − p
−
i,on)

ū(pr, sr)ΓdNNχ
sd (3.5)

where p−d , p−r and p−i,on are defined from the light cone energy on-shell condition,

p−j =
m2
j + pj

2
T

p+
j

(3.6)

with, j = d, r, (i, on). The subscript ”on” indicates that the light-cone components

of the bound nucleon momenta are taken on-energy shell.

Applying the rules of Appendix B to the instantaneous diagram (Fig.3.3-c) one

obtains,

〈sf , sr | Aµinst | sd〉 = −ū(pf , sf )Γ
µ
γ∗N

1

p+
i

(
1

2
γ+

)
ū(pr, sr)ΓdNNχ

sd (3.7)

Note that in both expressions (3.5) and (3.7) one has the same nuclear (ΓDNN) and

electromagnetic (Γγ∗N) vertices.

For further elaborations, we introduce the LF off-energy shell of the bound nu-

cleon ( “-” component), p−i = p−d −p−r , which is defined through the (LF) on-energy-

shell ( “-” component) of the deuteron and recoil nucleon,

1

p−d − p−r − p
−
i,on

=
1

p−i − p−i,on

=
p+
d

m2
d − 4

(m2
N+p2

T)

α(2−α)

(3.8)

where, we have used Eq.(2.17). Together with the completeness relation for on-shell

spinors,

(p/i +mN)on =
∑
si

(u(pi, si)ū(pi, si))on (3.9)
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Putting together the two contributions Aµprop and Aµinst the PWIA scattering

amplitude is given by,

Aµ0 = Aµprop + Aµinst =− ū(pf , sf )Γ
µ
γ∗N

∑
si
u(pi, si)ū(pi, si)

α
2

(
m2
d − 4

m2
N+p2

T

α(2−α)

) ū(pr, sr)ΓdNNχ
sd

− ū(pf , sf )Γ
µ
γ∗N

1
2
γ+
(
p−i − p−i,on

)
α
2

(
m2
d − 4

m2
N+p2

T

α(2−α)

) ū(pr, sr)ΓdNNχ
sd (3.10)

Furthermore, Aµ0 can be factorized into the product of two terms,

Aµ0 = Aµprop + Aµinst =
∑
si

JµN (pfsf , pisi)
ψsisrsdLF (α,pT)

α

√
2 (2π)3 (3.11)

the light-front wave function, which is defined by [24,69]:

ψsisrsdLF (α,pT) = − ū(pi, si)ū(pr, sr)ΓdNNχ
sd

1
2

(
m2
d − 4

m2
N+p2

T

α(2−α)

) 1√
2 (2π)3

(3.12)

and the electromagnetic current for the bound nucleon,

JµN(pfsf , pisi) = ū(pfsf )Γ
µ
γ∗Nu(pisi) + ū(pfsf )Γ

µ
γ∗N

∆p/i
2mN

u(pisi) (3.13)

where, 2∆p/i = γ+
(
p−i − p−i,on

)
. For more details we refer the reader to Ref. [50].

The current operator of Eq.(3.13) is half off-shell, i.e., the initial state of the

nucleon is off-shell while the final state is on-shell. It differs from the free nucleon

EM current in the additional last term. The primary focus of the next section is

the calculation of this half-offshell electromagnetic current.

3.3 Nucleon EM Current and Form Factors

The most general parameterization for the matrix element electromagnetic (EM)

current operator (jµEM)free of the free nucleon satisfying Lorentz and gauge invariance

consists of two form factors (FF), its matrix elements are given by,

〈p′, s′ |jµ| p, s〉 = u (p′, s′)

[
F1(Q2)γµ +

F2(Q2)

2mN

iσµνq
ν

]
u(p, s) (3.14)
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where, mN is the nucleon mass, p and s (p′ and s′) are the initial (final) nucleon

momentum and spin respectively. The Dirac and Pauli form factors, F1 and F2,

are scalar functions of the four-momentum transfer squared, q2 = (p′ − p)2 < 0

(Q2 = −q2 > 0), and σµν = i
2
(γµγν − γνγµ).

The FF are normalized at Q2 = 0 as follows,

F p
1 (0) = 1, F n

1 (0) = 0, F p
2 (0) = κp, F n

2 (0) = κn (3.15)

with, κp = 1.79, (κn = −1.91), the anomalous magnetic moment of proton (neutron)

in units of nuclear magneton.

For a static target (m → ∞) the charge and magnetization distributions are

given as Fourier transforms of the Sachs FF,

GE(Q2) = F1(Q2)− τF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

(3.16)

where, τ = Q2/ (4m2). When the recoil of the target is not small and can not be

ignored, the interpretation of GE and GM as the Fourier transforms of the charge and

magnetization distributions can still be valid if we describe the process in the Breit

frame (BF), which is defined by: Q2 = q2
BF (q0

BF = 0). This follows from the fact

that in the BF, the initial three-momentum (pi) of the interacting particle is equal

to minus its final three-momentum (pf = −pi), henceforth during the interaction,

the target appears to be (on average) as if it is at rest. Thus, the Breit frame picture

is the closest to have the target at rest during the interaction. Furthermore, we have

〈p′, s′ |jµ| p, s〉
−−−→
BF 〈−p, s′ |jµ| p, s〉 = u (−p, s′) Γµu(p, s) (3.17)

showing, that the matrix elements of the electromagnetic current receive an equiva-

lent contribution from relativistic effects (like Lorentz contraction), which arise from

the target’s motion.
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Contributions to the Electromagnetic Current

To identify the propagating and instantaneous parts of the electromagnetic current

in Eq.(3.13), we consider first the electromagnetic vertex Γµγ∗N . Since the final state

of the interacting nucleon is on mass shell, and only the positive light-front energy

projections enter in the amplitude, we are led to the half off-shell vertex function in

the general form (see e.g. [83–85]):

Γµγ∗N = γµF1 + iσµνqν
F2

2mN

+ qµF3 (3.18)

where the form-factors F1,2,3 = F1,2,3(m2
N , p

2
i , q

2) are functions of Lorentz invariants

constructed from the momenta of initial and final nucleons and momentum transfer

q. In general one expects F1,2(m2
N , p

2
i , q

2) not to be identical with the correspond-

ing on-shell nucleon form-factors (F1,2(m2
N ,m

2
N , q

2)). This difference is due to the

modification of the internal structure of nucleons in the nuclear medium. Such

modification, in principle, should originate from the dynamics similar to the one

responsible for the medium modification of partonic distributions of bound nucleon,

commonly referred to as EMC effect [86]. This, however, is out of the scope of our

discussion since we are interested only in the effects related to the off-shellness of

the interacting nucleon’s electromagnetic current. Thus, in the numerical estimates,

we will use unmodified nucleon form-factors measured for free nucleons.

Concerning F3, it does not contribute to the cross-section of the process due to

the gauge invariance of the leptonic current: qµj
µ
e = 0. However, for consistency,

one can estimate the F3 form-factor based on the fact that due to the conservation

of the momentum sum rule in the light-front approach, the electromagnetic current

of the bound-nucleon is conserved:

qµJ
µ
N = 0. (3.19)
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Using equations (3.13) and (3.18) one obtains:

F3 = F1
q/

Q2
(3.20)

Substituting the later into Eq.(3.18) one can separate the propagating and instan-

taneous parts of the electromagnetic vertex, which are given by,

Γ
(prop)µ
γ∗N = γµF1 + iσµνqν

F2

2mN

(3.21)

and,

Γ
(inst)µ
γ∗N =

(
γµF1 + iσµνqν

F2

2mN

)
∆p/i
2mN

− F1
qµ

q2
q/
(
1 +

∆p/i
2mN

)
(3.22)

where, ∆pµi = pµi − p
µ
i,on.

Because ∆p+
i = ∆piT = 0, we have 2∆p/i = γ+

(
p−i − p−i,on

)
, and we use that,

∆p−i = −q− + (p−f − p
−
i,on) =

Q2

q+
− m2

N + p2
T

p+
f p

+
i

q+ =
1

p+
d

(
m2
d − 4

(m2
N + p2

T)

α(2− α)

)
(3.23)

as well as,

2∆pi · pi = ∆p−i p
+
i = p2

i −m2
N (3.24)

which allows to express the electromagnetic current in boost-invariant (along the

z-axis) variables.

The separation of the electromagnetic vertex into propagating and instantaneous

parts in equations (3.21) and (3.22) allows to separate the electromagnetic current

in Eq.(3.13) into corresponding parts in the following form:

JµN(pfsf , pisi) = Jµprop(pfsf , pisi) + Jµinst(pfsf , pisi) (3.25)
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where,

Jµprop(pfsf , pisi) = ū(pfsf )Γ
(prop)µ
γ∗N u(pisi)

Jµinst(pfsf , pisi) = ū(pfsf )Γ
(inst)µ
γ∗N u(pisi) (3.26)

It is worth mentioning that even though the propagating vertex in Eq.(3.21)

has the same form as the free on-shell nucleon vertex the corresponding electromag-

netic current Jµprop does not correspond to an on-shell scattering amplitude, since

qµ 6= pµf − p
µ
i,on. Also, the current conservation (Eq. 3.19) is satisfied only for the

sum of the propagating and instantaneous currents in Eq.(3.25).

Off-Shell Parameter of eN bound Scattering

While the off-shell effects in the propagating vertex of Eq.(3.21) are kinematical,

due to the fact that qµ 6= pµf − p
µ
i,on, the off-shell effects in the instantaneous vertex

are dynamical. The latter interaction arises exclusively due to the binding of the

nucleon. As it follows from Eq.(3.22) the strength of the instantaneous vertex is

proportional to the magnitude of the factor ∆p−i defined in Eq.(3.23). One can

express the ∆p−i factor through a boost invariant quantities by defining the light-

front reference frame such that the four-momenta of the deuteron, pµd and momentum

transfer qµ are:

pµd =

(
Q2

mN

,0T,
m2
dmN

Q2

)
(3.27)

qµ =

− Q2x

mN

(
1 +

√
1 +

4m2
Nx

2

Q2

) ,0T,
mN

x

1 +

√
1 +

4m2
Nx

2

Q2


 (3.28)

Using the above definitions we introduce the off-shell parameter η such that,

∆p−i = −mNη (3.29)
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where,

η =
1

Q2

(
4

(m2
N + p2

T)

α(2− α)
−m2

d

)
(3.30)

which coincides with the ratio between the binding effects on the nucleon and the

resolution of the probe (Q2).

In the next section, we show how the half-off-shell cross-section can be expanded

in powers of the parameter η, hence providing a universal measure to off-shell effects

in the quasi-elastic reaction.

3.4 Electron Bound-Nucleon Scattering Cross-Section

In many practical applications one needs to evaluate the electron–bound-nucleon

cross-section σeN as it is defined in reference [62]. Such a cross-section is calculated

within PWIA in which case using Eq.(3.11) the nuclear electromagnetic tensor of

Eq.(2.25) can be expressed as follows:

Hµν = Hµν
N (pf , pi) ρd (α,pT)

2− α
α2

2 (2π)3 (3.31)

where, the spin averaged light-front density matrix of the deuteron ρd(α,pT) and

bound-nucleon electromagnetic tensor Hµν
N (pf , pi) are defined by,

ρ (α,pT) =
1

2sd + 1

1

2

∑
sd,si,sr

|ψsisrsdLF (α,pT)|2

2− α
(3.32)

and,

Hµν
N =

1

2

1/2∑
sisf=−1/2

JνN (pfsf , pisi)
† JµN (pfsf , pisi) (3.33)

In the invariant cross-section for the PWIA (Eq. 2.23), we replace the hadronic

tensor Hµν by the factorization of Eq.(3.31), which yields,

dσ

d3kf/εfd3pf/Ef
=

1

2pd · ki
α2

EM

q4
LµνH

µν
N ρ (α,pT)

2− α
α2

δ
(
p2
r −m2

N

)
(3.34)
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where, αEM = e2/(4π) is the electro-magnetic coupling constant. Finally, introduc-

ing the Light-Front nuclear spectral function (Ref. [24]),

SLF
d (α,pT) = ρd (α,pT)

2− α
α2

δ
(
p2
r −m2

N

)
(3.35)

one can present the differential cross-section as a product of σeN and the spectral

function as follows:

dσ

dεfdΩkfd
3pf

= σeN SLF
d (α,pT) (3.36)

were, the off-shell electron–bound-nucleon cross-section assumes the form,

σeN =
1

2mdεi

εf
Ef

α2
EM

q4
LµνH

µν
N (3.37)

Here, εi (εf ) is the initial (final) scattered electron energy, and Ef represents the

energy of the knock-out nucleon in the final state.

It is worth mentioning that within the PWIA, the factorization showed in Eq.(3.36)

is universal for any nuclei, in which case one needs to replace the deuteron spectral

function by the light-front spectral function of the nucleus being considered.

Bound-Nucleon Structure Functions

In calculating σeN in Eq.(3.37) it is convenient to present it through the four inde-

pendent structure functions of the nucleon wNL , wNTL, wNT and wNTT in the form:

σeN =
1

2mdEf
σMott

(
vLw

N
L + vTLw

N
TL cosφ+ vTw

N
T + vTTw

N
TT cos(2φ)

)
(3.38)

where,

σMott =
α2 cos

(
θ
2

)2

4ε2i sin
(
θ
2

)4 (3.39)
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is the Mott cross section, with θ being scattered electron angle. In equation (3.38)

the coefficient functions vi are given by,

vL =
Q4

q4

vT =
Q2

2q2
+ tan2 θ

2

vTT =
Q2

2q2

vTL =
Q2

q2

(
Q2

q2
+ tan2 θ

2

)1/2

(3.40)

where, Q2 = 4εiεf sin
(
θ
2

)2
, and q is the three momentum of the virtual photon. The

above defined structure functions of the bound nucleon can be related to the light-

front components of the nucleonic electromagnet tensor as follows (see Appendix B):

wNL =
q2

4Q2

(
H++ Q2

(q+)2
+ 2H+− +

(q+)2

Q2
H− −

)
wNTL =

|q|
q+

(
H

+‖
N +H

−‖
N

(q+)2

Q2

)
wNT = H

‖‖
N +H⊥⊥N

wNTT = H
‖‖
N −H

⊥⊥
N (3.41)

where, ± correspond to t ± ẑ directions on the light-front, with ẑ defined in the

negative direction of the transferred three momentum q. The transverse components

are chosen as follows: the perpendicular direction is defined by, n⊥ =
pf×q
|pf×q|

, and the

parallel unit vector projection is, n‖ = q×n⊥
|q×n⊥|

. The scattering and reaction planes

of the reaction are defined in Fig.(3.4).

Using now the Eq.(3.33) and the expression of the bound nucleon electromagnetic

current from equations (3.25) and (3.26) one can calculate the nucleon structure

functions explicitly. In what follows we split the structure functions into two terms,

wNi = wNi,prop + wNi,inst , for, i = L, TL, T, TT (3.42)
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where, the subscript “prop” corresponds to the structure functions calculated using

only the propagating part of the electromagnetic current Jµprop, whereas the terms

with the subscript “inst” correspond to the contribution from Jµinst, and its interfer-

ence with Jµprop.

Using the explicit expressions for the currents, given by equations (3.25) and

(3.26), we calculate the above structure functions expressing them through the

off-shell parameter η (Eq. 3.30) as follows4:

wNL,prop = q2
[
F 2

1 τ
−1

(
1 +

p2
T

m2
N

+ τηi(ηi + ηq)

)
− F1F2κ (2 + ηq)

+ F 2
2 κ

2

(
p2

T

m2
N

+ τ(1 + ηq)

)]
(3.43)

wNL,inst = q2
[
F 2

1 ηi

(
τηi(1 + ηq)− 2− ηq

)
+ F1F2κ

(
τηi (2− 2ηi − ηq) + ηq

)
+ F 2

2 κ
2τ
(
τηi(ηi + ηq)− ηq

)]
(3.44)

wNTL,prop = 2 |q| |pT|
(
F 2

1 + F 2
2 κ

2τ
) [

2 + 4
αN
αq

+ 2ηi + ηq

]
(3.45)

wNTL,inst = 2 |q| |pT|
(
F 2

1 + F 2
2 κ

2τ
)

(1− τηi) ηq (3.46)

wNT,prop = 4m2
N

[
F 2

1

(
p2

T

m2
N

+ 2τ(1 + ηq)

)
+ 2F1F2κτ (2 + ηq)

+ F 2
2 κ

2τ

(
2 +

p2
T

m2
N

+ 2τηi(ηi + ηq)

)]
(3.47)

wNT,inst = 2Q2
[
F 2

1

(
τηi(ηi + ηq)− ηq

)
+ F1F2κ

(
τηi (2ηi + ηq − 2)− ηq

)
+ F 2

2 κ
2τηi

(
τηi(1 + ηq)− 2− ηq

)]
(3.48)

wNTT,prop = 4p2
T

(
F 2

1 + F 2
2 κ

2τ
)

(3.49)

wNTT,inst = 0 (3.50)

4 In App.(C) we write the structure functions explicitly in terms of light-front kinemat-
ical variables (see Eq.(C.16)).
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where, τ = Q2/(4m2
N), ηi = η αN/2, ηq = η αq/2. Alternatively, one can write,

ηi = −2∆pi · pi
Q2

=
(m2

N + p2
T)

Q2

αq
αf
− αN
αq

(3.51)

ηq = −2∆pi · q
Q2

=
(m2

N + p2
T)

Q2

α2
q

αfαN
− 1 (3.52)

The structure functions in Eq.(3.50) are invariant under boosts along the di-

rection of transfer momentum, which follows directly from the fact that they are

expressed through the boost invariant variables η, αi, αq and αf . Since many ex-

periments in probing high momentum bound nucleons are performed in the fixed

target experiments it is convenient to express the above variables through the four

momenta measured in the lab frame. Considering the Lab reference frame, in which

ẑ||q, the αi, αq and αf parameters can be expressed as follows,

αi = 2− αr = αf − αq (3.53)

αr =
2(Er − pr cos θr)

md

, αq =
2(q0 − q)

md

, αf =
2(Ef − pf cos θf )

md

(3.54)

where, pµd = (md, 0), qµ = (q0,q), pµr = (Er,pr), and pµf = (Ef ,pf ), are the target

(deuteron), virtual photon, recoil and struck nucleon four-momenta measured in the

Lab frame.

3.5 Numerical Estimates

We present numerical estimates for kinematics which will be explored in experiments

planned for 12 GeV upgraded Jefferson Lab. In all calculations below, we take the

initial energy of the electron beam εi = 11 GeV. In order to quantify the extent of

the binding effects we consider the ratio,
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R =
σeN

σon
eN

(3.55)

where, σeN is the cross-section of electron bound-nucleon scattering that was de-

fined in Eq.(3.37), while σon
eN corresponds to the same cross-section for the electron

scattering off the free moving nucleon with the same initial momenta.
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Figure 3.5: Angle dependence of R (Eq. 3.55). The solid (blue) curves are the
LF calculations, dashed (green) and dash-dotted (orange) curves corresponds to cc2
and cc1 de Forest approximations [62] for the off-shell cross section σeN . The minus
sign in θpiq axis corresponds to an angle of φ = 1800 between scattering and reaction
planes (Fig. 3.4). Calculations are done with a value of εi = 11 GeV for the initial
electron (beam) energy.
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Figure 3.6: The same as in Fig.(3.5) but for scattering from bound neutron.

We consider first the dependence of R on “traditional” kinematical parameters,

which define the electronuclear processes such as initial momentum of the bound

nucleon (pi) its relative angle with respect to the transferred 3-momentum (q) as

well as the virtuality of the transferred momentum (Q2). Additionally, we compare

the predictions of LF approximation with that of the de Forest formalism [62], which

is commonly used in the analysis of the experimental data. In all these estimates,

we use the same parameterization for the electric and magnetic form-factors of the

nucleons. These parameterizations are the same as for the free nucleon. Thus we
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do not consider the effects related to the possible modification of the charge and

magnetic current distributions in the bound nucleon.
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Figure 3.7: The Q2 dependence of the off-shell effects for θpiq = −700 for proton
and neutron targets.

In Fig.(3.5) and Fig.(3.6) we compare the angular dependences of ratio R at

different values of missing momenta at fixed Q2 = 1 and 4 (GeV/c)2 for bound

proton and neutron respectively. As Fig.(3.5) shows LF approximation predicts off-

shell effects for Q2 = 1 (GeV/c)2 as large as 40− 250% for bound proton momenta

≥ 400 MeV/c. Even larger effects are expected within the de Forest approach [62].

It can be observed from the figures, that the predictions based on the LF formalism

and the de Forest approximation significantly diverges close to the kinematical limit

of the scattering process, as shown in calculations for pi = 600 MeV/c. Note that

because of the different magnitude and signs of the proton and neutron form-factors,

we expect different off-shell contributions for scattering from a bound proton or neu-
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tron. However, as can be seen from Figs.(3.5 and 3.6), qualitatively the dependence

of the ratio R on the kinematical parameters of the reaction is similar for both

proton and neutron.

An important feature of LF calculations following from Fig.(3.5) and Fig.(3.6)

is that the off-shell effects diminish with the increase of Q2. This reflects the nature

of the LF dynamics, in which case the harder the probe (larger Q2), the lesser is the

sensitivity to the binding effects of the target nucleon. It is worth mentioning that

no such behavior exists in the de Forest approximation, since in this case, part of

the off-shell effects are kinematical. In particular, the energy of the bound nucleon

is taken to be equal to the on-shell energy for the given momentum of the nucleon,

with the phase space of the initial nucleon being proportional to 1√
m2
N+p2

i

.
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Figure 3.8: The left panel presents the off shell effects expected for the experiment
of References [21,22]. The right-panel shows the off shell effects for kinematics with,
φ = 0.

The off-shell effects suppression due to the increase of transfer momentum (Q2)

is addressed in Fig.(3.7), where the Q2 dependence of the ratio R for proton and

neutron with initial momenta pi = 600 and 800 MeV/c is shown. Here we choose

θpiq = −700, for which large off-shell effects are observed in Fig.(3.5) and Fig.(3.6).
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These calculations indicate that, even at such high bound nucleon momentum, the

off-shell effects predicted by the Light-Front calculation are not more than 10%

already at Q2 ∼ 4 GeV2.

For practical purposes in Fig.(3.8), we estimate the dependence of the off-shell

effects on the momentum of the bound nucleon for kinematics relevant to the JLab

experiment [22], which is aimed at probing deuteron structure at very large internal

momenta. As the figure shows for both the angles between scattering and reaction

planes (φ), the light-front approach predicts off-shell effects to be less than 8% for

all kinematics with the latter value happening at pi = 850 MeV/c.
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Figure 3.9: The η parameter dependence of the off-shell effects |R − 1| for pi = 0.6
and 0.8 GeV/c at different values of the transverse momentum pT.

We discuss now why the parameter η introduced in Eq.(3.30) can be used as

a universal parameter for estimation of the off-shell effects for any kinematic con-
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ditions of the electro-production reaction. For this, in Fig.(3.9) we calculate the η

dependence of |R−1| for very large magnitudes of bound nucleon momenta (pi = 600

and 800 MeV/c) at different values of transverse momentum pT.

Note that the expected off-shell effects will be much less for smaller values of pi.

As the figure shows, for any possible scenarios of kinematics, the off-shell effects can

be confined below 5% as soon as η < 0.1. This represents a strong indication that

the variable η can be considered a universal parameter for controlling the off-shell

effects in the reaction mechanism for electronuclear processes. The universality rest

in the fact that if our goal is to probe a bound nucleon with very large momenta, we

can use the corresponding LF longitudinal momentum fraction α together with the

transverse momentum pT to calculate the required Q2, such that it makes η < 0.1.

Satisfying this condition guarantees that the off-shell effects in the electromagnetic

current can be neglected up to the bound-nucleon momentum planned to probe.
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CHAPTER 4

RELATIVISTIC DEUTERON WAVE FUNCTION

We dedicate this chapter to the study of the second term that makes up the

deuteron electro-disintegration PWIA amplitude (Eq. 3.11), i.e., the deuteron wave

function. Since 1970’s considerable theoretical efforts have been made towards a

consistent formulation of the relativistic framework for the description of deuteron

structure (see e.g. [23–26,28]). However, the experimental verification of the various

approaches was somewhat limited since the existing nuclear labs could only measure

the elastic and inclusive scattering of electrons from deuteron at sufficiently large

momentum transfer. Such measurements probe the deuteron wave function only in-

directly since the measured cross-sections are sensitive to the integrated properties

of the deuteron structure, which are obscured considerably by long-range phenom-

ena (see the discussion in Ref. [14]). As a result, it was not possible to establish

the validity of any theoretical approach unambiguously. The present situation is

unprecedented due to recent high energy measurement of exclusive disintegration,

in which case, due to the set up of the eikonal regime of FSI (Fig.2.4 (b) and (c)),

it is possible to isolate the PWIA contribution (Fig. 2.4 (a)) which directly probes

the deuteron wave function.

Our goal is to obtain a parameterization of the deuteron wave function that

allows us to evaluate the pn component in the limit of large internal momenta. We

use a light-front diagrammatic definition of the deuteron wave function, in which case

it can be related to the light-front time-ordered amplitude describing the electro-

disintegration reaction. Within this approach, the deuteron is first resolved into

its proton-neutron constituents, and one of the nucleons then interacts with the

external electromagnetic probe, Fig.(4.1).
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+
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Figure 4.1: LF-ordered diagrams contributing to the PWIA

The LF deuteron wave function is then defined as in Eq.(3.12), which is rewritten

here for convenience,

ψλd(LF)
sisr

= −
ū

(LF)
(pi,si)

ū
(LF)
(pr,sr)

ΓµdNNχ
λd(LF)
µ

1
2

(
m2
d − 4

m2
N+p2

T

α(2−α)

) 1√
2 (2π)3

(4.1)

As a reminder, we have specified in Eq.(4.1) that the nucleon spinors (ūi,r) that

enter in the wave-function are light-front spinors, likewise the deuteron polarization

vector (χλd) is in the light-front parameterization. For the explicit form of these

objects we refer the reader to the section App.(G.2).

4.1 General Properties of the Deuteron Wave Function in

the Light-Front

To explore the general properties of the deuteron light-front wave function, first, we

absorb the denominator in Eq.(3.12) into the vertex function,

ΓdNN

1
2

(
m2
d − 4

m2
N+p2

T

α(2−α)

)√
2(2π)3

→ ΓdNN√
2

(4.2)

The 1/
√

2 factor in the denominator of the vertex function is kept explicitly to make

a straightforward correspondence with the non-relativistic deuteron wave function

in the small momentum limit.
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(a) (b)

Figure 4.2: (a) Represents the d → NiNr vertex. (b) Represents the N̄id → Nr

vertex

In Fig.(4.2) the crossing symmetry between channels d → NiNr and N̄id → Nr

is shown schematically. Applying the charge conjugation operation allows us to

express the deuteron wave function in the form,

ψλdsi,sr = −ū(pr, sr)ū(pi, si)
ΓµdNN√

2
χλdµ

= −ū(pr, sr)
ΓµNdN√

2
(iγ2γ0)ū(pi, si)

Tχλd
µ (4.3)

where, ū(pi, si)
T means the transposition of ū(pi, si) = u(pi, si)

†γ0, and the two

vertex functions are related by the charge conjugation operation, ΓµdNN = C[ΓµNdN].

Furthermore, making use of the identity,

(iγ2γ0)ū(pi, si)
T =

∑
s′i

γ5εsis′iu(pi, s
′
i) (4.4)

results in the following convenient expression for the deuteron LF wave-function,

ψλdsi,sr(pd, pi, pr) = −
∑
s′i

ū(pr, sr)
ΓµNdN(pd, pi, pr)√

2
γ5εsis′iu(pi, s

′
i)χ

λd
µ (4.5)

Here, εij is the two-dimensional (totally) anti-symmetric (Levi-Civita) tensor, and

the subscripts, si, s
′
i = ±1/2, label the spin states of the nucleon.

The advantage of the above representation for the deuteron wave function is

that it allows to write down a general covariant expression for the vertex function,
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ΓµNdN. Since deuteron is a spin 1 particle with even parity1, it has the transformation

properties of a pseudo-vector particle. Therefore, the γ5 matrix in the wave function

(Eq. 4.5) indicates that the vertex ΓµNdN must transform as a Lorentz vector. Hence,

the construction of the most general ΓµNdN vertex function is reduced to write down all

the independent Dirac bi-linear terms that can be built out of a set of independent

four-vectors. For example, the three independent on-shell four-momenta of the

particles connected to the vertex, i.e., the deuteron, the proton, and the neutron [27].

In order to separate the effects due to the internal relative momentum between

the nucleons (responsible for the bound state dynamics), from those related with

the motion of the system as a whole (kinematic effects), a more useful choice of

three independent variables are the two-body total momentum,

P µ
NN = pµi + pµr (4.6)

the two nucleon relative momentum,

pµrel =
pµi − pµr

2
(4.7)

and the four-vector,

∆µ = P µ
NN − p

µ
d (4.8)

which accounts for the difference between the bound and on-shell nucleons. In our

present case (two-body problem) the four-vector ∆µ can always be chosen to be light-

like, i.e., ∆2 = 0. Then, ∆µ = (∆+,∆T,∆
−) can be chosen in the direction of light-

front-energy, ∆µ = (0,0T,∆
−), which guarantees that the longitudinal light-front

(p+) and transverse (pT) components of momentum are conserved at the deuteron

to pn transition vertex (ΓµNdN). As a consequence, the application of light-front-time

ordering technic is consistent. For more details, we refer the reader to App.(H).

1 Symmetric under space reflection.
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The only non-vanishing component of the four-vector ∆µ is therefore the light-

front off-shell energy for the pn system, which is given by,

∆− = P−NN − p
−
d =

sNN −m2
d

p+
d

(4.9)

where, sNN is the invariant mass of the on-shell NN system,

sNN = 4
m2
N + p2

T

α(2− α)
= P 2

NN = M2
NN (4.10)

Note that p2
T = p2

i T = p2
rT, and the symmetry of the denominator α(2− α) = αiαr

in Eq.(4.10) with respect to the labels i, r allows us to omit indices referring to

particular nucleon species. It can be checked that in the static limit, p2
T → 0,

α → 1, ( p2
i,r → 0) the light-front off-shell energy approaches to the deuteron

binding energy ∆− ≈ 2|εB|.

With the above choice of four-momenta, the general form of the ΓµNdN vertex can

be written in the following form:

Γµ =Γ1γ
µ + Γ2

(pi − pr)µ

2m
+ Γ3

∆µ

2m
+ Γ4

(pi − pr)µ∆/

4m2
+ iΓ5

1

4m3
γ5ε

µνρσpdν (pi − pr)ρ∆σ

+ Γ6
∆µ∆/

4m2
(4.11)

Each of the six Γi are scalar2 functions that depend on prel via the bound state

constrain:

p2
d = m2

d = (PNN −∆p)
2 = M2

NN − 2PNN ·∆p (4.12)

where, we have taken into consideration the light-like nature of the ∆ four-vector,

∆2
p = 0. It follows that,

2PNN ·∆p = M2
NN −m2

d
LF coord−→ ∆−p =

M2
NN −m2

d

P+
NN

=
M2

NN −m2
d

p+
d

(4.13)

2 In other words, they remain invariant under Lorentz transformations.
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which in the center of momentum frame of the NN system results in (see the

discussion in App. H.1 and App. I.3),

∆−p cm
=
M2

NN −m2
d

M12

=
4E2

k −m2
d

2Ek
≈ 4E2

k − 4m2

2Ek
=

2k2

Ek
(4.14)

The computation of the vertex functions over the entire allowed kinematic region

requires a self-consistent theory of the NN interaction, which is currently an imprac-

tical task. However, we can continue our study of the transition vertex (Eq. 4.11)

by limiting our attention to high momentum transfer kinematics, where it can be

simplified3.

As a first step, we observe that in the high energy kinematics (see Eq. 2.20) and

for small4 |k|, the off-shell light-front-energy to mass ratio,

∆−

2mN

= 2
m2
N + k2

T

mNp
+
d

∼ 2mN/p
+
d (4.15)

can be considered a small parameter.

In the CM frame of the deuteron and the virtual-photon, for high momentum

transfer we have mNp
+
d � mNmd ∼ 2m2

N . Therefore, we can classify each of the six

vertex functions regarding its contribution to the transition vertex (Γµ) by counting

how many powers of the small factor (2mN/p
+
d ) they contain. As follows from

Eq.(4.11), Γ1, Γ2, and Γ5 correspond to the leading order contribution, they have

zero power of the small factor, (2mN/p
+
d )0. On the other hand, Γ3,4 and Γ6 are

suppressed by one power, (2mN/p
+
d )1, and two powers, (2mN/p

+
d )2, respectively.

The conditions under which ∆−

2mN
can be considered a small parameter depend

also on the magnitude of the internal momentum. In Fig.(4.3) we show the depen-

3 It is worth to remind ourselves that, as established in Sec.(2.4), this kinematics permits
the unambiguous identification of events involving large internal momentum.

4 Here we are considering α ∼ 1, and k2
T � m2

N . In the next paragraph we take care of
the case when |k| may be large.
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Figure 4.3: The momentum, k dependence of ∆−

2m
factor at different Q2.

dence of ∆−

2mN
as a function of the internal momentum magnitude (k =

√
−k2 =

√
k2)

for different values of momentum transfer (Q2 = −q2). In order to take advantage of

the high energy kinematics, the plot is presented in the γ∗d CM reference frame (Fig.

2.3). It is easy to see in the figure that for Q2 ≥ 4 GeV/c the parameter remains

small, ∆−

2mN
≤ 1/2, up to high values of the internal momentum k ∼ 1 GeV/c.

The next step is to use the fact that at the limit of small NN relative 3-

momentum (prel), the non-relativistic quantum mechanical wave function of the

deuteron must be recovered. As a result, we will be able to constraint the form of

the vertex function that dominates in the high energy limit.
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4.2 Calculation of the Deuteron Wave Function in the Light

Front

Keeping the leading terms in Eq.(4.11), containing no powers of (2mN/p
+
d ), the

deuteron LF-wave-function reduces to,

ψλdsrsi = −
∑
s′i

ū(pr, sr)

{
Γ1γ

µ + Γ2
(pi − pr)µ

2mN

+ iΓ5
1

2m3
N

εµνρσp+
d ν(pi − pr)ρ∆σγ5

}

×γ5

εsi,s′i√
2
u(pi, s

′
i)χ

λd
µ

(4.16)

where, pT = piT−prT

2
, and the deuteron polarization vectors are chosen as (see

Appendix section I.4 and Fig.I.1),

χλdµ =
(
χλd0 , χ

λd
T , χ

λd
z

)
=

(
PNNzsdz
MNN

, sdT,
ENNsdz
MNN

)
(4.17)

with,

PNN = (0T, p1z + p2z), ENN =
√
M2

NN + P2
NN , and, M2

NN = sNN = 4
(m2

N + p2
T)

α(2− α1)

(4.18)

Since the wave function in Eq.(4.16) is Lorentz boost invariant along the z-axis,

we can perform the calculation in the more convenient reference frame obtained by

boosting with the velocity v = P12

E12
. Such a transformation will result in a wave

function of the form:

ψλdd (αi,kT) = −
∑

λ2,λ1,λ′1

ū(−k, λ2)

{
Γ1γ

µ + Γ2
kµ

mN

+
2∑
i=1

iΓ5
1

2m3
N

εµ+i−p′+d ki∆
′−γ5

}

×γ5

ελ1,λ′i√
2
u(k, λ′1)sλdµ

(4.19)
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where, kµ = (0,kT, kz) with kT = p1T, and,

kz = Λ(v)zµp
µ
1 =

E12

M12

(p1z −
P12

E12

E1) = Ek(α1 − 1)

−kz = Λ(v)zµp
µ
2 =

E12

M12

(p1z −
P12

E12

E1) = Ek(α2 − 1)

kT = p1T = −p2T

Ek = Λ(v)0
µp

µ
1 = Λ(v)0

µp
µ
2 = Ek =

√
m2
N + k2 (4.20)

with5,

k2 = k2
z + k2

T , and, Ek =
√
m2
N + k2 =

√
SNN
2

(4.21)

Notice that, p′+d and ∆′− correspond to the Lorentz boosts of respective unprimed

quantities and are expressed as follows:

p′+d =
1

M12

(E12 − P12z)p
+
d =

1
√
sNN

[
4(m2

N + k2
T)

α1(2− α1)

]
=
√
sNN = 2Ek

∆′− =
1

M12

(E12 + P12z)∆
− =

1
√
sNN

[
4(m2

N + k2
T)

α1(2− α1)
−m2

d

]
p′+d ∆′− = p+

d ∆− =

[
4(m2

N + k2
T)

α1(2− α1)
−m2

d

]
≈ 4k2 (4.22)

where, the last relation is correct up to the binding energy of the deuteron. Finally,

the polarization vector of the deuteron is three-dimensional sλdµ = (0, sλd) in which

s1
d = − 1√

2
(1, i, 0), s−1

d =
1√
2

(1,−i, 0) s0
d = (0, 0, 1) (4.23)

where, the z-axis is defined along the direction of the deuteron momentum in the

reference frame defined in Sec.(2.2).

For numerical calculations of the LF deuteron wave function we adopt the follow-

ing approximation. Since the term related to the vertex function Γ5 is proportional

5 More details can be found in App.(I.3).
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to the virtuality factor p+
d ∆− ≈ 4k2, at small internal momentum the deuteron LF

wave function will approach to the traditional non-relativistic form, with its charac-

teristic S- and D-waves components of the deuteron. On this regard, one can follow

the approach of Ref. [24], which is based on the assumption of the angular condition

according to which, in the on-shell limit the Γ5 term is absent. Then one can relate

the Γ1 and Γ2 vertices to the radial functions of the S- and D-wave components

in the deuteron wave function, which are evaluated on the momenta k defined in

Eq.(4.20).

We relate the vertices Γ1 and Γ2 to the radial functions S- and D-wave com-

ponents in the same way, however keeping the Γ5 term which can be evaluated

from comparison with specific observables of deuteron electro-disintegration sensi-

tive to the transverse momenta of the bound nucleon in the deuteron. Note that

such an approach requires rescaling of the S- and D- contribution into the overall

normalization of the deuteron wave function (see section 4.3). Following the above

prescription one obtains for the Γ1 and Γ2 vertices (see Appendix section I.4),

Γ1(k) =
1

2
√
Ek

(
U(k) +

W (k)√
2

)
1√
4π

Γ2(k) =
mN

√
Ek

2k2

(
U(k)(Ek −mN)

Ek
− W (k)√

2

(mN + 2Ek)

Ek

)
1√
4π

(4.24)

As it follows from the above relations, both vertex functions are finite and depend

on the magnitude of momentum k. The two vertex functions Γ1 and Γ2 are shown

in Fig.(4.4) as a function of k for the three realistic potentials, Paris, AV-18, and

CD-Bonn. One can not make a similar correspondence for Γ5 vertex function since

as we will show below it corresponds to the effective P-wave that vanishes in the

non-relativistic limit.
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Figure 4.4: The momentum, k dependence of the vertex function Γ1 and Γ2 calcu-
lated for different NN potentials.

To proceed, it is convenient to represent the LF deuteron wave function through

to two-dimensional spinors in the form (see Appendix I for more details),

ψλdd (α1, kt, λ1, λ2) =
1√
4π

∑
λ′1

φ†λ2

√
Ek

[
U(k)(σ · sλd)−

W (k)√
2

(
3(σ · k)(k · sλd)

k2
− σ · sλd

)

+
4
√
Ek√
3

(
k

mN

)3

f5(k)
2∑
i=1

−i
√

3(k× sλd)z
k

]
ελ1,λ′1√

2
φλ′1

(4.25)

In Eq.(4.25) the angular dependency of the f5 factor can be written as,

−i
√

3
2∑
i=1

−i
√

3(k× s±1
d )z

k
= ±
√

4πY ±1 (θ, φ) (4.26)

which allows to identify the radial part of the effective “P”-wave in the form,

k2

m2
N

P (k) =
k2

m2
N

[
4
√
Ek√
3

k

mN

f5(k)

]
(4.27)

In Eq(4.27), one power of k
mN

is included in the definition of the radial wave

function to satisfy the quantum-mechanical relation that for a radial wave function
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corresponding to the orbital angular momentum quantum number l, in the limit of

small momentum (k) it behaves as, limk→0Rl(k) ∼ kl. The remaining k2

m2
N

factor

indicates the relativistic nature of the “P”-wave term that vanishes in the non-

relativistic limit.
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Γ5 -Dipole
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Γ1, Γ2, Γ5 Vertex Functions

Figure 4.5: The momentum, k dependence of the vertex function Γ1, Γ1, and Γ5.
Γ1, Γ1 have been calculated using the CD-Bonn potential, while for Γ5 has been
parameterized using the dipole model shown in the text.

For a comparison among the three vertex functions we plot them in Fig.(4.5).

Here, we have employed for Γ5 a parameterization using a simple dipole-like model,

Γ5(k) = P (k) =
k

mN

4
√
Ek√
3

1√
4π

gω

(k2 +m2
ω)2 (4.28)
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with a typical value for the coupling, g2
ω

4π
= 20 [57]. The dipole-like term is physically

motivated, e.g., it provides the correct asymptotic behavior, for small momentum

(k → 0) the P-wave behaves as kL with L = 1, and for large k the vertex function

(Γ5(k)) scales as k−2, which guarantees that the momentum distribution will scale

as k−4, which is shown in Fig.(4.6). Therefore, the dipole parameterization can be

seen as a simple interpolation between the two limit behavior of the momentum

distribution, that is, for small and high momenta.
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Figure 4.6: The k−4 scaling of the momentum distribution. The right panel only
includes the S and D radial wave functions calculated with the AV18 potential. The
left panel also includes the P-wave-like term.

In Fig.(4.7) we show the angular dependency for different values of internal

momentum (k) that results from the inclusion of the Γ5 term in the deuteron’s

wave function. The panel on the right only includes the radial S and D wave

functions, while the left panel shows the effect of including also the P-wave-like

structure within the dipole model. As expected, at low momentum they are similar,

and at high momentum there is an angular dependency coming from the P-wave

term. Moreover, it is easy to see that (for each value of k) the (constant) angular

distribution from nSD (with only S and D waves) lays at the minimum of nSDP
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Figure 4.7: Angular dependency of nSDP using the AV18 potential for the S and D
radial wave functions, and the dipole model for the P-wave.

(which includes also the P-wave), this minimum occurs at cos θ = −1, 0, 1, i.e.,

parallel, antiparallel, and transverse to the 3-momentum transfer (q).

Since the “effective P”-wave does not contribute to the λ = 0 polarization of

the deuteron, the most important implication of this effect will be the polar angle

dependency of the unpolarized momentum distribution function extracted at large

momenta. Another effect will be the enhancement of the tensor-polarization of the

deuteron, again in the large momentum limit.

4.3 Normalization

The normalization condition of the above wave function is defined according to

the observable quantities such as deuteron baryonic number, or the charge form

factor GC(Q2 = 0) = 1. Both approaches result in the normalization condition (see

Appendix J),

1

3

∑
λd,sr,si

∫
| ψsi,sr,λdd (α,pT) |2 dα

(2− α)α
d2pT = 1 (4.29)
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Using the dipole model for the Γ5 vertex function, we can estimate the angular

averaged one-body momentum distribution. A comparison with the equivalent mo-

mentum distribution that only takes into account the S and D waves contributions

is shown in Fig.(4.8). In both cases the S and D-waves are calculated using the

AV18 potential.
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Figure 4.8: Momentum distribution, n(k) = nS(k) + nD(k) + nP (k), and n(k) =
nS(k) + nD(k), together with individual contributions, nS(k), nD(k), nP (k).
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CHAPTER 5

FINAL STATE INTERACTIONS

During the last two decades significant efforts have been made in the calculation

of FSI effects in high Q2 electro-nuclear processes (see e.g. Refs. [7,44,45,51–56]). In

the kinematics where the momentum transferred at the rescattering vertex is signif-

icantly smaller than the momentum of the fast nucleon there is an especially reliable

approach called generalized eikonal approximation (GEA) [7,44]. The GEA is a self-

consistent procedure the relativistic effects associated with the large momentum of

the nucleons involved in the reaction, and provideds a theoretical framework for cal-

culating FSI effects relevant to studies of the nuclear structure at short distances.

5.1 The Generalized Eikonal Approximation

In the kinematics in which the struck nucleon carries about the same high momen-

tum (≥ 1 Gev/c) of the virtual photon, the final state interaction process can be

described within GEA [44, 45]. The GEA is especially reliable in the situations in

which the momentum transfer in the rescattering vertex is significantly smaller than

the momentum of the fast nucleon. This covariant approach is based in Feynman

rules defined for effective interaction vertices.

In this chapter we carry out the calculation of the FSI diagrams of Fig.(2.4 (b))

within the LF, i.e., we rewrite the (covariant) Feynman diagram as the τ -ordered

non-covariant diagrams in Fig.(5.1). The variables used for the τ -ordered FSI tran-

sition amplitudes are defined in Fig.(5.1), where pf and p′f are the final and inter-

mediate momentum of the fast (struck) nucleon.

In the case the virtual photon transfers a large momentum to the struck nu-

cleon, and working in the reference frame of Fig.(3.4), the intermediate light-front

longitudinal momentum of the nucleon will be very small, p′+f ∼ 0. Because the LF
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(a) (b)

+

Figure 5.1: FSI τ -ordered diagrams.

longitudinal component of the momentum (p+) is conserved by the interaction, and

it is positive for real particles, it follows that choosing events for which p+
f ∼ p′+f ∼ 0,

i.e. pf z ∼ |q|, the re-scattering between the struck and the recoiling nucleon is con-

strained to be mostly along the direction transverse to q. This peculiar feature of

the GEA leads to a strong angular anisotropy for the corresponding FSI and can be

used to aid the extraction of the probability distributions provided by the PWIA

diagram, e.g. selecting kinematics that minimize the FSI effects.

5.1.1 Calculation of Final State Interactions Amplitudes

To calculate final state interaction one considers the light-front diagrams of Fig.(5.1).

Similar to the case of PWIA (Chapter 3), the interacting nucleon enters with a

propagating and instantaneous parts. which results in an electromagnetic current

as in Eq.(3.13).

The latter will result in a diagram of Fig.(5.1 (b)) where the vertical dashed

line indicates the intermediate state in light-front time sequence of the scattering

process. Note that this diagram still contains instantaneous propagators of recoil

(r′) and struck (f′) nucleons whose contributions will be discussed below. Applying

now effective light-front diagrammatic rules from Appendix B, for the scattering
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amplitude one obtains,

Aµ1 =

∫
ūhf (pf )ūhr(pr)ΓNN [p/r′ +m][p/f ′ +m]Γµγ∗N [p/i′ +m]ΓDNNχ

λd

p+
f ′ D2 p

+
i′ D1

dp+
r′

p+
r′

d2p⊥r′

16π3

(5.1)

where, D1 and D2 correspond to the light-front energy denominators, given by the

expressions,

D1 = p−d − p
−
r′ − p

−
i′ + iε

D2 = p−d − p
−
r′ + q− − p−f ′ + iε (5.2)

and ΓNN represents the NN rescatering amplitude.

For further derivation we introduce light-cone momentum fractions,

αi′ = 2
p+
i′

p+
d

and αr′ = 2
p+
r′

p+
d

(5.3)

and use the ”+” component conservation to obtain, αf ′ = αi′ + αq.

We now consider the instantaneous parts of propagators of recoil and struck

nucleons. For the recoil nucleon we get,

p/r′ +m =
∑
h′r

uhr′ (pr′)ūhr′ (pr′) +
2(p2

r′ −m2)γ+

αr′p
+
d

(5.4)

where, the instantaneous part will be dominated in the integral of Eq.(5.1) at αr′ → 0

limit which corresponds to strongly virtual nucleon emerging form the deuteron ver-

tex and instantaneously interacting with struck nucleon. Moreover, the magnitude

of the momentum transfer in the rescattering vertex is ∼ α2
rp

+,2
d , which provide

another factor of suppression for the term contributing to the instantaneous part of

the recoil nucleon propagator. For the struck nucleon propagator we have,

p/f ′ +m =
∑
h′f

uhf ′ (pf ′)ūhf ′ (pf ′) +
2(p2

f ′ −m2)γ+

αf ′p
+
d

(5.5)
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The reason leading to the suppression of the instantaneous terms as compared to the

propagating term is that, due to the knock-out kinematics we have p2
f ′ ≈ m2, hence

the term is dominated by the αf ′ → 0 limit. Therefore, the momentum transfer in

the rescattering amplitude is again large ∼ α2
fp

2
d.

Thus within the approximation for which one expects that FSI is dominated by

small momentum transfer rescattering (eikonal approximation) one can keep only

propagating terms from Eq.(5.4) and Eq.(5.5) in the amplitude of Eq.(5.1), yielding:

Aµ1 =
∑
hr′ ,hf ′

∫
ūhf (pf )ūhr(pr)ΓNNuhr′ (pr′)uhf ′ (pf ′)

p+
f ′ D2

×
ūhf ′ (pf ′)Γ

µ
γN [
∑
hi′

uhi′ (pi′)ūhi′ (pi′) + γ+

2
(p−i′ − p

−
i′,on)]ūhr′ (pr′)ΓDNNχ

λd

αi′
1
2

[
m2
d −

4(m2+p2
i′,⊥)

αi′ (2−αi′ )

] dαr′

αr′

d2p⊥r′

16π3

(5.6)

where, in the derivation we used the definitions of αr′ and αi′ from Eq.(5.3) as well

as the relation:

D1 =
1

p+
d

[
m2
d −

4(m2 + pi′,⊥)

αi′(2− αi′)

]
(5.7)

Using now the definition of Light-Front wave function from Eq.(3.12), prop-

agation and instantaneous component of nucleon’s electromagnetic current from

Eq.(3.13), as well as defining the NN → NN scattering amplitude as:

FNN(p3, h3, p4, h4; p1, h1, p2, h2) ≡ ūh3(p3)ūh4(p4)ΓNNuh1(p1)uh2(p2) (5.8)

for scattering amplitude one obtains:

Aµ1 =−
∑

hr′ ,hf ′hi′

∫
FNN(pf , hf , pr, hr; pf ′ , hf ′ , pf ′ , hr′)

p+
f ′ D2

JµN(pf ′ , hf ′ ; pi′ , hi′)

× ψd(αi′ , pi′,⊥)
√

2
√

16π3

αi′

dαr′

αr′

d2p⊥r′

16π3
(5.9)
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Now we consider the denominator p+
f ′ D2 taking into account that the reac-

tion (2.1) is quasi-elastic and satisfies energy-momentum conservation according to

which:

(pd − pr + q)2 = m2
N . (5.10)

Using above equation and on-shellness of the recoil nucleon in the intermediate state,

one obtains:

p+
f ′ D2 = (pd − pr + q)2 + 2(pr − pr′)(pd − pr + q) + (pr − pr′)2 −m2

N + iε(5.11)

=
s+Q2 − q+p−d

2
[αr − αr′ + δ + iε]

with

δ =
4

(p+
d )2

(
p2
r,⊥

αr
−
p2
r′,⊥

αr′

)
≈

4(p2
r,⊥ − p2

r′,⊥)

(p+
d )2αr

, (5.12)

were in the last part we used the fact that due to the peaking of the deuteron

wave function at small internal momenta, the integral in Eq.(5.9) is dominated by

p2
r′,⊥ ∼ 0, thus effect due to the replacement of αr′ by αr in the

p2
r′,⊥
αr′

term will be

negligible. Note that in the above equation p+
d is defined according to Eq.(2.16).

Substituting Eq.(5.12) in Eq.(5.9) one obtains:

Aµ1 =
∑

hr′ ,hf ′hi′

∫
FNN(pf , hf , pr, hr; pf ′ , hf ′ , pf ′ , hr′)

s+Q2−q+p−d
2

[αr − αr′ + δ + iε]
JµN(pf ′ , hf ′ ; pi′ , hi′)

× ψd(αi′ , pi′,⊥)
√

2
√

16π3

αi′

dαr′

αr′

d2p⊥r′

16π3
. (5.13)

Before to proceed with the calculation we evaluated that δ function for several

high energy kinematics, using the empirical observation that average transverse

momentum transferred in NN → NN scattering is about 250 MeV/c. As it turns

out the δ is negligible enough to be ignored in the calculations. The outcome of this

is that the rescattering amplitude Aµ1 evaluated at the pole value of the denominator

conserves the variable αr. This represents a unique feature of high energy scattering

on the light-front.
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To evaluate the integral in Eq.(5.13) we use the relation:

1

αr − αr′ + δ + iε
= −iπδ(αr′ − (αr + δ)) + P 1

αr − αr′ + δ
(5.14)

where the second part of the right hand side of equation corresponds to the con-

tributed in Eq.(5.13) where integral over αr′ is evaluated through the principal

value integration. Substituting Eq.(5.14) in Eq.(5.13) and taking the delta function

through the dαr′ integration, we split the expression for the amplitude Aµ1 into two

parts. The first in which the rescattering is defined by on-shell elastic NN scattering

amplitude and the other in which NN scattering is half-on-shell.

Furthermore, it is convenient to redefine the NN scattering amplitude in the

form:

FNN(pf , hf , pr, hr; pf ′ , hf ′ , pf ′ , hr′) =
√
s(s− 4m2

N)fNN(s, t, hf , hr;hf ′ , hr′) (5.15)

In the case of small angle scattering, fNN corresponds to the diffractive scattering

amplitude, which has a well known form as a function of the invariant momentum

transfer,

t = (pr − pr′)2. (5.16)

and can be extracted from NN cross-section measurements.

Substituting Eq.(5.14) and Eq.(5.15) into Eq.(5.13) one obtains:

Aµ1 =i
∑

hr′ ,hf ′hi′

√
2
√

16π3

2

∫ √
s(s− 4m2

N)f on
NN(s, t, hf , hr;hf ′ , hr′)

s+Q2 − q+p−d
JµN(pf ′ , hf ′ ; pi′ , hi′)

× ψd(α̃i, pi′,⊥)

α̃iα̃r

d2p⊥r′

(2π)2
+

−
∑

hr′ ,hf ′hi′

P
∫ √

s(s− 4m2
N)f off

NN(s, t, hf , hr;hf ′ , hr′)
s+Q2−q+p−d

2
[αr − αr′ + δ]

JµN(pf ′ , hf ′ ; pi′ , hi′)

× ψd(αi′ , pi′,⊥)
√

2
√

16π3

αi′

dαr′

αr′

d2p⊥r′

16π3
, (5.17)

where, f on
NN and f off

NN amplitudes correspond to one-shell and half-off-shell ampli-

tudes of NN scattering.

69



Forward Final Sate Interaction Contribution

In this case the lines labeled by momenta of pr′ , pr and pf ′ , pf correspond to the same

nucleons and fNN corresponds to a elastic forward scattering amplitude, which in

high energy limit can be parameterized in the following form:

f on
NN(s, t, hf , hr;hf ′ , hr′) = σtot(i+ α)e

B
2
tδhr,hr′δhf ,hf ′ , (5.18)

where σtot, α and B correspond to the total cross section, real part and slope factor

of small angle elastic NN scattering amplitude which can be taken from experiments

on elastic NN scattering.

For the off-shell part we use similar parameterization as in Ref. [7]:

f off
NN(s, t, hf , hr;hf ′ , hr′) = f on

NN(s, t, hf , hr;hf ′ , hr′)e
B
2

(m2
off−m

2
N ) (5.19)

where,

m2
off = (md − Er′ + q0)− (q− pr′)

2 (5.20)

with, Er′ , q0, q and pr′ are defined in the lab frame of the deuteron.

5.2 Numerical Evaluations and Discussions of Results

We now proceed to study the effects of including the Final State Interaction mech-

anism for the reaction as compared with only account for the the PWIA. To this

end, we define the following ratio between the two cross sections,

R =
σPWIA+FSI

σPWIA
(5.21)

The cross section σPWIA, is calculated by inserting in Eq.(2.23) the probability

amplitude Aµ0,dir, given by Eq.(3.11). On the other hand, σPWIA+FSI is the result

of using the amplitude Aµ = Aµ0,dir + Aµ1,dir (Eq. 2.26), where Aµ1,dir is given by

Eq.(5.17).
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Figure 5.2: ependence of the ratio R on the recoil angle of the neutron for a kine-
matics with Q2 = 6 (GeV/c)2, and different values of missing momenta (pr). The
left panel shows the ratio R between the two cross sections calculated in this work
within the Light-Front framework. The right panel shows the same ratio, but for
calculations based on the Virtual Nucleon Approximation from M. Sargsian [7].

The numerical calculations are presented in Fig.(5.2). It can be seen from the

figure that both calculations account for the characteristic anisotropy of the eikonal

regime, found in [7]. As expected, at small values of the momentum, the prediction

for the ratio R from both calculations (VNA and LF) is similar, while for high

momenta their predictions diverge. The difference at high momentum is the result

of relativistic effects, which are not accounted for in the VNA. The disagreement

starts to be noticeable already at pr ∼ 300 MeV/c, and it becomes quite prominent

as the value of the momentum increases. The result derived within the LF formalism

shows that the effects of the FSI mechanism are much more sensitive to the increase

of the missing momentum that what would be expected from the use of VNA. In

particular, the LF result predicts that the contribution of the FSI, relative to that

from the PWIA, drops rapidly as the missing momentum increases. We expect these

interesting results will emerge from experiments as more data for the high energy

kinematics electro-disintegration of the deuteron become available.
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CHAPTER 6

SUMMARY OF THE RESULTS

In this dissertation, we have developed a theoretical technique for the description

of the deuteron electro-disintegration reaction in high energy kinematics within a

completely relativistic approach based on Light Front dynamics. The advantage

of this new procedure is twofold, it simplifies the calculations without sacrificing

accuracy, and it also allows a transparent interpretation of the physical processes

involved in the reaction.

Explicitly, we present a new approach for calculating the electromagnetic tran-

sition current of a nucleon from a bound state to a free state. We also introduce

a new procedure to describe the relativistic nucleonic composition of the deuteron

in the form of its LF wave function and identify a new term that dominates the

relativistic structure of the NN bound system.

The relativistic formulation of these two objects, that is, the electromagnetic

current of the bound nucleon and the wave function of the deuteron, are the main

achievements of this dissertation.

6.1 The Light-Front Electromagnetic Current of the Bound-

Nucleon

Based on the light-front approach we calculated electron-deuteron scattering within

PWIA which allowed us to isolate the electron-bound-nucleon scattering cross-

section, σeN . Within the LF framework the contribution from processes where the

exchanged photon couples to non-nucleonic constituents can be tamed. In partic-

ular the so called Z-graphs naturally disappears while the off-shell nature of the

nucleon results in the appearance of an extra term in the electromagnetic current of
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electron-bound nucleon scattering called the instantaneous term. In deriving σeN we

separated the propagating and instantaneous contributions in the electromagnetic

current which allowed explicitly to trace the effects associated with the binding of

the nucleon. Furthermore, within the LF framework we were able to identify the

parameter (defined as η) that universally characterizes the extent of the off-shellness

of electromagnetic current.

The derived off-shell cross esction σeN is used to estimate the expected off-shell

effects in electro-nuclear processes in kinematics relevant to the 12 GeV energy

upgraded Jefferson Lab experiments. We compared the LF predictions with that of

the de Forest approximation widely used by experimentalists to estimate the off-shell

effects in the reaction mechanism of electro-nuclear processes. These comparisons

indicate that practically in all kinematic cases the LF approach predicts less off-shell

effects at Q2 ≥ 1 GeV2 than the de Forest approximation does. Most importantly

the LF approach predicts a significant drop of the off-shell effects with an increase

of Q2 which intuitively can be understood as a decrease in the sensitivity of the hard

processes on the off-shellness of the target nucleon.

We also examined our conjecture that the η-variable can be considered as a

universal parameter in controlling off-shell effects. We found that for wide range of

kinematics the off-shell effects can be suppressed on the level of 5% as as soon as

η < 0.1. The latter gives an effective method for controlling the uncertainties in the

reaction mechanism for large varieties of electro-nuclear processes probing deeply

bound nucleons in the nucleus.

Finally, it is worth mentioning that even though we considered the eA scattering

within PWIA the obtained expressions for electromagnetic current are applicable

also for scattering amplitudes in which the final state interaction between outgoing

nucleons is considered within eikonal approximation. The main contribution to the
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re-scattering amplitude coincides with the pole value of the struck nucleon prop-

agator in the intermediate state. Hence, the electromagnetic current is the same

half-off-shell electromagnetic current of Eq.(3.25).

6.2 Development of Light-Front Wave Function of the Deuteron

There have been intensive theoretical efforts aimed to the description of the rel-

ativistic wave function of the deuteron during the past decades, however, limited

experimental data [14,49] has been available. Moreover, the vast majority of exper-

iments were in low and intermediate energy domain and the handful of high energy

experiments involved inclusive and elastic processes neither of them being able to

probe directly high momentum component of deuteron wave function.

In the present work, our main goal was to develop a calculation that allows to

probe the high momentum components of the deuteron nucleonic (pn) wave function.

This requires a proper relativistic description of the deuteron wave function in terms

of bound proton and neutron. We consider the deuteron wave function on the Light

Front, in which case the vacuum fluctuations that obscure the probability amplitude

to find the pre-existing pn component with large relative momentum are removed.

Applying effective LF diagrammatic rules to the scattering amplitude for the

processes depicted in Fig.(4.1) the LF wave function of deuteron is introduce by

Eq.(4.3). The transition vertex ΓdNN is parameterized by 6 invariant function as

in Eq.(4.11), of which the first two (Γ1, Γ2) are related to the familiar S and D

deuteron’s radial partial waves. Within the leading contribution, we must include

also the Γ5 vertex function, which is related to a P-wave-like angular structure.

Physical motivations pointed out to the use of a dipole-like parameterization as a

simple model for the vertex function Γ5 (Eq. 4.28). It was shown that the dipole-like
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term provides the correct asymptotic behavior for small momentum (k → 0), for

which the P-wave behaves as kL with L = 1. Moreover, it assures that for large

momentum k the vertex function Γ5(k) scales as k−2, which in turns guarantees that

the momentum distribution will scale as k−4, which is shown in Fig.(4.6). Finally,

the inclusion of the P-wave term modifies the relative contributions to deuteron’s

wave function normalization. Within the dipole-like model for the Γ5 term, we can

estimate the angular averaged one-body momentum distribution, which is shown

in Fig.(4.8) together with the equivalent momentum distribution that only takes

into account the S and D waves contributions. The main result is the dominance

of the P-wave term in the deuteron’s wave function for high internal momentum

configurations.
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Appendix A: Notation and Conventions

Dirac matrices are defined in four-dimension space-time by the conditions (Clifford

algebra),

γµγν + γνγµ = 2gµν (A.1)

They are used to generate a basis for the linear operators in Dirac space, i.e. the

(4-dimensional) spin 1/2-spinor space with definite parity1. The basis is formed by

the 5 (multi-)linear operators,

14 , γ5 , γµ , γµγ5 , σµν = (i/2)[γµ, γν ] = (i/2)(γµγν − γνγµ) (A.2)

where, µ, ν = 0, 1, 2, 3 are space-time indices, the fifth gamma matrix is γ5 =

iγ0γ1γ2γ3, and 14 is the four-by-four identity matrix.

When an explicit representation for the gamma matrices is needed, they are

written in the Dirac-Pauli representation,

γ0
D = γ0 =

 12 0

0 −12

 , γiD = γi =

 0 σi

−σi 0

 , γ5
D = γ5 =

 0 12

12 0


(A.3)

where, 12 is the two-by-two identity matrix and σi = (σ1, σ2, σ3) is a vector whose

components are the Pauli matrices,

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 (A.4)

1 They are eigenstates of the parity operator. For the definition of the parity operator
see section App.(I.4).
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Because in this representation γ0 appears diagonalized, the spinors that form

the basis of the representation (Dirac spinors) are eigenstates of γ0. This basis is

convenient for study non-relativistic limits or approximations.
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Appendix B: Diagrammatic Rules for Nuclear Scattering Am-

plitudes

A brief summary of the rules for computation of scattering amplitudes within the

Light Front (LF) formalism is presented below. We follow the Lepage-Brodsky

convention [64,68].

The notation for the components of a generic 4-vector is,

vµ =
(
v+, vx, vy, v

−)
v± = v0 ± vz (B.1)

thus, the position and momentum 4-vectors are written as,

xµ =
(
x+, x, y, x−

)
=
(
x+,xT, x

−)
pµ =

(
p+, px, py, p

−) =
(
p+,pT, p

−) (B.2)

The LF scalar product takes the form,

x · p =
1

2

(
x+p− + x−p+

)
− xT · pT (B.3)

The LF evolution is parameterized (as usual) by the first component of xµ, which

is therefore referred as the LF time. When ambiguities may appear, the LF time

is single out from the other components by using a new label, a frequent choice is

τ = x+.

Diagrammatic Rules for effective light-front perturbation theory can be formu-

lated as follows:

1. Draw all topologically distinct τ ≡ x+-ordered diagrams at the desired cou-

pling power. In addition to the usual advanced and retarded propagation

between two events one needs to include a third possibility in which the two
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(a) (b) (c)

Figure B.1: Example of the scattering amplitude on the light-front (τ = x+ flows
from left to right).

events connected by an internal fermion or photon interact at the same LF

τ -time, commonly referred as instantaneous term.

2. Assign to each line a four-momentum pµ and spin s (or helicity, λ) correspond-

ing to a single on-mass-shell particle, i.e. p2 = m2.

3. With spin 1/2 fermions associate on-mass-shell spinors u(p, s), with antifermions

v(p, s), with photons εµ(q, λ), etc, such that,

ū(p, s′)u(p, s) =− v̄(p, s′)v(p, s) = 2mδss′∑
s

u(p, s)ū(p, s) =p/+m

∑
s

v(p, s)v̄(p, s) =p/−m

(εµ(q, λ′))∗εµ(q, λ) =− δλ′λ , q · ε(q, λ) = 0∑
λ

(εµ(q, λ))∗εν(q, λ) =− gµν +
qµην + qνηµ

q · η
(B.4)

where η is a null vector (η2 = 0), given in LC gauge by, η = (0, 0, 0, 2)

4. Each intermediate state gets a factor of Light-Front energy denominator:

1∑
ini p

− −
∑

int p
− + iε

(B.5)

where, the sums run over LF energies of particles in the initial (ini) and

intermediate (int) states. For each particle, its LF energy is fixed by the

on-mass-shell condition, p− =
m2+p2

T

p+ > 0.
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5. Internal lines account for two kind of interactions:

• Propagating, in which case, for a vertex like in Fig.(B.1-a) one has:

ū(p′, s′)ε/(q, λ)u(p, s) δ2

(∑
in

pTin −
∑
out

pTout

)
δ

(∑
in

p+
in −

∑
out

p+
out

)
(B.6)

where, in and out refer to flowing into and out of the vertex. The δ func-

tions at the vertex guarantee the conservation of the plus and transverse

components for in and out momenta.

• Instantaneous. For each vertex like in Fig.(B.1-b) (fermionic), include,

ū(p′, s′)(ε/(q′, λ′))∗
γ+

2(q+ − p′+)
ε/(q, λ)u(p, s)

× δ2

(∑
in

pTin −
∑
out

pTout

)
δ

(∑
in

p+
in −

∑
out

p+
out

)
(B.7)

• And, for each vertex like in Fig.(B.1-c) (vector), include,

Γ2 ū(p′, s′)γ+u(p, s)
1

(p′+ − p+)2
ū(k′, σ′)γ+u(k, σ)

× δ2

(∑
in

pTin −
∑
out

pTout

)
δ

(∑
in

p+
in −

∑
out

p+
out

)
(B.8)

6. Each vertex in the diagram is associated with an effective transition factor Γ.

For elementary interactions among bare particles the Γ factors correspond to

the fundamental vertices with coupling constants.

7. For a composite particle A, represented by a state with momentum pA and

spin sA, the LF wave function associated with its transition to n-constituents

is defined by:

ψ ({xi,kiT, si} ; sA, pA) =

(∏n
i=1 χ

†
i (xi,kiT, si)

)
· Γ · χA (pA, sA)

p+
A

(
p−A −

∑n
i=1 p

−
i + iε

) (B.9)
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where, xi and kiT is the LF longitudinal momentum fraction and transverse

momentum of the ith constituent particle. The spin wave functions of outgoing

particles are described by χ†i (xi,kiT, si), and Γ is the effective vertex of the

transition of particle A to n-constituents.

8. Sum over polarizations and integrate over each internal line with the factor,

∑
s

∫
dpTdp

+

2(2π)3p+
Θ(p+) (B.10)

which ensures the plus component positivity (all particles move forward in LF

time).

9. To convert incoming into outgoing lines, or particles to antiparticles, replace,

u↔ v , ū↔ −v̄ , ε↔ ε∗ (B.11)

10. Symmetry factors must be included as usual. As well as a factor of -1 for each

fermion loop, for any fermion line beginning and ending at the initial state,

and for every diagram in which fermion lines are interchanged in either of the

initial or final states. Also, the overall sign from Wick’s theorem.
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Appendix C: Half Off-Shell Nucleonic Electro-Magnetic Cur-

rent and Tensor

The proper requirement of charge conservation in field theory is given by the Ward-

Takahashi identity, which in the problem at hand states that the equation of con-

tinuity must be satisfied at the photon-fermion vertex. For bound particles (off

the energy shell), gauge invariance requires some additions to the free EM current

operator, which can make important contributions to the form factors.

The form for the off-shell EM vertex is [83–85],

Γµγ∗N =

(
γµF1 + iσµνqνF2

κ

2mN

+ qµF3

)
(C.1)

This is the EM vertex one would use to study elastic scattering off constituents

in a bound system like nuclei, e.g. the triangle diagram of Fig.(J.1). The Ward-

Takahashi identity can be used to impose a constrain over Γµγ∗N that allows to write

the F3 form factor in terms of F1. This is equivalent to solve, qµJ
µ
N = 0. Using

Eq.(3.13) together with Eq.(C.1) one obtains:

F3 = F1
q/

Q2
(C.2)

Resulting in the off-shell EM vertex,

Γµγ∗N =

(
F1

(
γµ + qµ

q/

Q2

)
+ iσµνqνF2

κ

2mN

)
(C.3)

where the form-factors (F1,2,3) are functions of Lorentz invariants constructed from

the initial (p1) and final (p2) nucleon’s momenta and the momentum transfer (q) in

Fig.(J.1).
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C.1 Nucleonic Tensor

In this section we provide explicit expressions for the components of the nucleonic

tensor (Hµν
N ). Substituting Eq.(3.25) into Eq.(3.33), allows us to express the nucle-

onic tensor as a sum of two terms:

Hµν
N = Hµν

N,prop +Hµν
N, inst (C.4)

where, the the propagating contribution is given by,

Hµν
N,prop =

1

2

∑
sisf

(J
sisf µ
prop )†(J

sisf
prop)ν =

1

2
Tr
[
Γ

(on)µ

γ∗N (p/f +mN)Γ
(on)ν
γ∗N (p/i,on +mN)

]
(C.5)

and the instantaneous by,

Hµν
N,inst =

1

2

∑
sisf

((
J
sisf ν

off

)†
J
sisf µ
inst +

(
J
sisf ν
prop

)†
J
sisf µ
inst +

(
J
sisf ν
inst

)†
J
sisf µ
prop

)
(C.6)

=
1

2
Tr
[
Γ

(off)ν

γ∗N (p/f +mN)Γ
(off)µ
γ∗N (p/i,on +mN)

+Γ
(on)ν

γ∗N (p/f +mN)Γ
(off)µ
γ∗N (p/i,on +mN) + Γ

(off)ν

γ∗N (p/f +mN)Γ
(on)µ
γ∗N (p/i,on +mN)

]
where, Γ

µ

γ∗N = γ0
(
Γµγ∗N

)†
γ0. Notice that the initial momentum of the nucleon, pi,

occurring from now-on corresponds to pi,on, which allows to drop the on-shell label

”on” without confusion. With this, we can write propagating and instantaneous

contributions of the tensor, Hµ,ν as functions of the nucleon form factors F1 and F2

as follows:

Hµν
N,prop = 2F 2

1

[
gµν
(
m2
N − pi · pf

)
+
(
pµi p

ν
f + pνi p

µ
f

) ]
+ F1F2κ

[
2gµνq · (pf − pi) + (pµi q

ν + pνi q
µ)− (pµfq

ν + pνfq
µ)
]

+ F 2
2

κ2

2m2
N

[
gµν
[
q2
(
pi · pf +m2

N

)
− 2 q · pi q · pf

]
− q2

(
pµi p

ν
f + pνi p

µ
f

)
− qµqν

(
pi · pf +m2

N

)
+ q · pf (pµi q

ν + pνi q
µ) + q · pi

(
pµfq

ν + pνfq
µ
) ]
(C.7)
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and the instantaneous correction as follows:

Hµν
N,inst = 2F 2

1

[
gµν
(

∆pi · (pi − pf )− ∆pi · pi
m2
N

∆pi · pf
)

+
(

∆pµi p
ν
f + ∆pνi p

µ
f

)(
1 +

∆pi · pi
m2
N

)
+

2

q2
qµqν

( 2

q2
q · pf q · (∆pi + pi)− (pi − pf ) · (∆pi + pi) +

∆pi · pi
m2
N

(∆pi · q
q2

pf · q + ∆pi · pf
))

− 2

q2
(pµi q

ν + pνi q
µ) q · pf −

2

q2
(pµf q

ν + pνfq
µ)
(
q · (∆pi + pi) +

∆pi · pi
m2
N

∆pi · q
)

− 2

q2
(∆pµi q

ν + ∆pνi q
µ) q · pf

(
1 +

∆pi · pi
m2
N

)]
+ F1F2κ

[
gµν
(∆pi · pi

m2
N

q · (2pf −∆pi)− 2∆pi · q
)

+ qµqν
(∆pi · pi
m2
Nq

2
q · (∆pi − 2pf )− 2

)
− (pµi q

ν + pνi q
µ) + (pµf q

ν + pνfq
µ)
]

+ F 2
2

κ2

2m2
N

[
gµν
[ (
q2 ∆pi · pf − 2 q ·∆pi q · pf

) (
1 +

∆pi · pi
m2
N

)
+ q2 ∆pi · pi

]
−
(

∆pµi p
ν
f + ∆pνi p

µ
f

)
q2
(

1 +
∆pi · pi
m2
N

)
− qµqν

[
∆pi · pf

(
1 +

∆pi · pi
m2
N

)
−∆pi · pi

]
+ (∆pµi q

ν + ∆pνi q
µ) q · pf

(
1 +

∆pi · pi
m2
N

)
+
(
pµf q

ν + pνfq
µ
)
q ·∆pi

(
1 +

∆pi · pi
m2
N

)]
(C.8)

With our choice of reference frame (Fig.3.4), one can expand the LµνH
µν product

in the following form:

LµνH
µν
N =

(
L00H

00 − 2L0zH
0z + LzzH

zz
)

+
(
−2L0‖H

0‖ + 2Lz‖H
z‖)

+
1

2

(
L‖‖ + L⊥⊥

) (
H‖‖ +H⊥⊥

)
+

1

2

(
L‖‖ − L⊥⊥

) (
H‖‖ −H⊥⊥

)
(C.9)

Furthermore, using the gauge-invariance of leptonic current, one expresses the above

product in the form:

LµνH
µν
N = L00

(
H00 − 2

q0

qz
H0z +

(
q0

qz

)2

Hzz

)
+ 2L0‖

(
−H0‖ +

q0

qz
Hz‖

)
+

1

2

(
L‖‖ + L⊥⊥

) (
H‖‖ +H⊥⊥

)
+

1

2

(
L‖‖ − L⊥⊥

) (
H‖‖ −H⊥⊥

)
= Q2(tan(θ/2))2 (ηLVN,L + ηTLVN,TL cos(φ) + ηTVN,T + ηTTVN,TT ) (C.10)
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Using the definitions of ηi for i = L, T, TL, TT , from Eq.(3.30) for hadronic structure

functions, (VN,i), one obtains:

wNL =
q4

Q4

(
H00 − 2

q0

qz
H0z + (

q0)2

q2
Hzz

)
=

q2

4Q2

(
H++ Q2

(q+)2
+ 2H+− +

(q+)2

Q2
H− −

)
wNTL = 2

q2

Q2

(
q0

qz
H
z‖
N −H

0‖
N

)
=
|q|
q+

(
H

+‖
N +H

−‖
N

(q+)2

Q2

)
wNT = H

‖‖
N +H⊥⊥N

wNTT = H
‖‖
N −H

⊥⊥
N (C.11)

where we have used, −qz = |q|, as well as the relation between components of the

nucleonic tensor in light-cone and Minkowski coordinates:

H00 =
1

4
(H++ + 2H+− +H− −)

H0z =
1

4
(H++ −H− −)

Hzz =
1

4
(H++ − 2H+− +H− −)

H0‖ =
1

2
(H+‖ +H−‖)

Hz‖ =
1

2
(H+‖ −H−‖) (C.12)

From Eqs.(C.7, C.11) we compute the explicit forms of the structure functions.

In the reference frame of Fig.(3.4), they are given by:

wNL prop = F 2
1 q

2αNαf
α2
q

(m2
N + p2

T

Q2

α2
q

αNαf
+ 1
)
− F1F2q

2κ

(
m2
N + p2

T

Q2

α2
q

αNαf
+ 1

)

+ F 2
2 q

2

(
κ

2mN

)2
(

(m2
N + p2

T)
α2
q

αNαf
+ 4p2

T

)

wNL inst =F 2
1

αN
αq

q2

1−

(
m2
N + p2

T

Q2

α2
q

αNαf

)2

+
(m2

N + p2
T)

2m2

αq
αN

+

(
m2
N + p2

T

Q2

α2
q

αNαf
− 1

)2


− 2F1F2κ
αN
αq

q2 (q ·∆pi)2

m2Q2

(
2
αf
αq

+ 2
m2

q ·∆pi
+ 1

)
+ F 2

2

( κ

m2
N

)2
q2 q ·∆pi

(
1 +

q ·∆pi
m2

αNαf
α2
q

)
(C.13)
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wNTL prop =|q|
αN + αf

αq
pT

(
2F 2

1 + 2F 2
2

( κ

2mN

)2
Q2

)(
1 +

m2
N + p2

T

Q2

α2
q

αNαf

)

wNTL inst =8|q|q ·∆pi
Q2

pT

(
1 +

pi ·∆pi
m2

)(
F 2

1 + F 2
2

( κ

2mN

)2
)

(C.14)

wNT prop = F 2
1

(
2(m2

N + p2
T)

α2
q

αNαf
+ 4(pT)2

)
+ 2κF1F2

(
(m2

N + p2
T)

α2
q

αNαf
+Q2

)

+ F 2
2

(
κ

2mN

)2
2

αNαf
α2
q

(
(m2

N + p2
T)

α2
q

αNαf
+Q2

)2

− 4Q2p2
T


wNT inst =8F 2

1

(
q ·∆pi + pf ·∆pi

pi ·∆pi
m2

)
+ 8F1F2κ

(
1 +

pi ·∆pi
m2

)(
q ·∆pi − pf · q

pi ·∆pi
m2 + pi ·∆pi

)
+ 8F 2

2

(
κ

2mN

)2(
1 +

pi ·∆pi
m2

)(
q · pf q ·∆pi +Q2 pf ·∆pi +Q2 m2 pi ·∆pi

m2 + pi ·∆pi

)
(C.15)

wNTT prop =4p2
T

(
F 2

1 + F 2
2

κ2

4m2
N

Q2

)
wNTT off =0 (C.16)

The kinematic variables, and scalar products used in the calculation are:

• The light-cone momentum fractions,

αN =
2p+

N

p+
d

=
2(EN + pN,z)

p+
d

, αq =
2q+

p+
d

=
2(q0 − |q|)

p+
d

, αf = αN + αq

(C.17)

• The off-shell factor,

∆pµi = pµi − p
µ
i,on , with, pµi = pµd − p

µ
r (C.18)

Since, ∆p+
i = ∆p⊥i = 0, we have, 2∆p/i = γ+

(
p−i − p−i,on

)
, hence the minus

component is given by,

∆p−i = p−i − p−i on = −q− + (p−f − p
−
i on) =

Q2

q+
− m2

N + p2
T

p+
f p

+
i

q+ (C.19)
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• The initial (pµi,on), final (pµf ), and transfer (qµ) momenta scalar product with

the off-shell factor ∆pµi can be written as:

2∆pi · pi = Q2αN
αq
− (m2

N + p2
T)
αq
αf

2∆pi · pf = Q2αf
αq
− (m2

N + p2
T)
αq
αi

2∆pi · q = Q2 − (m2
N + p2

T)
α2
q

αfαN
(C.20)
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Appendix D: The Rotation Group

The fact that fermions exist leads to the conclusion that the Rotation Group in

Physics is SU(2). Relativistic Theories of Quantum Mechanics take into account

this fact by using spinors for the description of fermions2. However, for the sake of

clarity, we start with the more familiar case of 3-dimensional (spatial) rotations.

D.1 Rotations in three dimensions

A rotation3 of a 3-dimensional vector ~r = (x, y, z) ∈ R3, can be seen as a transfor-

mation that leaves invariant the length of the vector, ~r
R→ ~r′ =⇒ ~r 2 = ~r′

2
. In

matrix form, the rotations around the Cartesian axes are,

Rx(θ) =


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 , Ry(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)



Rz(θ) =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (D.1)

Any rotation can be decompose as a sequence of rotations from Eqs.(D.1) with some

particular choice of angles.

2 All relevant definitions are provided below.

3 Rotations on a 3-dimensional real vector space form a Group called SO(3). Written
as matrices these are orthogonal, R−1 = RT , and have determinant 1.
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Generators

The rate of change of the rotation matrices Eqs.(D.1) at θ → 0 4, contain enough

information such that they can be used to parameterize arbitrary rotations. This

limit can be readily obtained from Eqs.(D.1) by differentiation,

Jm =
∂Rm(θ)

i∂θ

∣∣∣
θ=0

(D.2)

hence we get,

Jx =


0 0 0

0 0 −i

0 i 0

 , Jy =


0 0 i

0 0 0

−i 0 0

 , Jz =


0 −i 0

i 0 0

0 0 0

 (D.3)

This construction guarantee that the rotations in Eq.(D.1) can be written asRm(θ) = eiθJm ,

with, m = x, y, z. Furthermore, an arbitrary rotation by an angle θ around an axis

represented by a unit vector n̂, can be parameterized in terms of the matrices in

Eq.(D.3) as,

R(n̂, θ) = eiθn̂·
~J = R(~n) = ei~n·

~J (D.4)

where, ~n = θn̂. It follows that any 3-dimensional rotation is completely characterized

by a set of three parameters. Because of this feature, the matrices (D.3) are called

the generators of rotations.

Notice that any set of rotations around three independent axes can be used

to obtain an arbitrary rotation. Different choices of the three independent axes

correspond to different parameterizations.

4 This is, limθ→0
1
θRi(θ).
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D.2 General Correspondence between SU(2) and SO(3)

If instead of a 3-dimensional space, we work in a complex 2-dimensional space, the

transformations equivalent to the 3-dimensional rotations are written as5,

U(n̂, θ) = eiθn̂·
~σ
2 = cos

(
θ

2

)
+ in̂ · ~σ sin

(
θ

2

)
(D.5)

where, ~σ = (σ1, σ2, σ3) and

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 (D.6)

are the standard Pauli matrices. The parameter θ represents an angle, and n̂ a

unit vector associated with a direction in 3-dimensional space. The complex 2-

dimensional space of tuples (χ1, χ2) ∈ C2, on which the SU(2) matrices U(n̂, θ) act

is called spinor space.

In general, an SU(2) transformation in spinor space and an SO(3) transformation

in 3-dimensional space (x, y, z) ∈ R3, are related by the following correspondence,

U(n̂, θ) = eiθn̂·
~σ
2 = cos

(
θ

2

)
+ in̂ · ~σ sin

(
θ

2

)
←→ R(n̂, θ) = eiθn̂·

~J (D.7)

which implies that the groups must have6 a similar structure. Indeed, this follows

from the fact that their Generators obey the same Commutation Relations,

[Jl, Jm] = iεlmnJn ,
[σl

2
,
σm
2

]
= iεlmn

σn
2

(D.8)

5 These are unitary matrices, U−1 = U †, with determinant equal to 1.

6 At least locally, i.e., the infinitesimal transformations.
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D.3 Proof of the Correspondence between SU(2) and SO(3)

From the vector ~r = (x, y, z) we can form the matrix,

~σ · ~r =

 z x− iy

x+ iy −z

 (D.9)

This is a traceless Hermitian matrix with determinant, det{[~σ · ~r]} = −~r · ~r = −r2.

Since the trace and the determinant are invariant under unitary transformations, it

follows that SU(2) transformations acting on ~σ ·~r behave similar to rotations acting

on ~r in the sense that,

U~σ · ~r U † = ~σ · ~r ′ =⇒ r2 = (r′)2 (D.10)

In other words, they preserve the length of the 3-dimensional vector. Thus, an SU(2)

transformation induces a rotation on the position vector ~r, and vice versa.

In order to explicitly construct a map between SU(2) and SO(3) we can build

a traceless Hermitian 2× 2 complex matrix H, that transform under SU(2), i.e., it

has SU(2) as its group of symmetry.

Noting that, on the 2-dimensional complex space the most general form an ele-

ment of SU(2) can have is7,

U =

 a b

−b∗ a∗

 (D.11)

with, |a|2 + |b|2 = 1. It is straightforward to check that an arbitrary element of the

space transform as,

χ =

 χ1

χ2

 ∈ C2 → Uχ =

 aχ1 + bχ2

−b∗χ1 + a∗χ2

 =

 χ′1

χ′2

 = χ′ , χ′† = χ†U †

(D.12)

7 Resulting from the two conditions, UU † = 1 and det{U} = 1.
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and satisfy,

χ†χ → χ′†χ′ = |χ1|2 + |χ2|2 (D.13)

χχ† =

 |χ1|2 χ1χ
∗
2

χ∗1χ2 |χ2|2

 → χ′χ′† = Uχχ†U † (D.14)

Although, χχ† transform under SU(2) as we want, and it is Hermitian, it is not

traceless. However, because χ transform like the combination: (−iσ2χ)∗ = −iσ2χ
∗.

Explicitly we have,

exp
{[
−iπσ2

2

]}
χ∗ = −iσ2χ

∗ =

 0 −1

1 0


 χ∗1

χ∗2

 =

 −χ∗2
χ∗1


−iσ2χ

∗ → (−iσ2χ
∗)′ = U (−iσ2χ

∗) =

 a(−χ∗2) + bχ∗1

−b∗(−χ∗2) + a∗χ∗1

 = −iσ2 (χ′)
∗

(D.15)

Furthermore, χ† transform like the combination: (−iσ2χ)T = iχTσ2, i.e.,

(−iσ2χ)T = (−χ2 χ1) →
(

(−iσ2χ)T
)′

=
(
−iσ2

(
χ†′
))T

(D.16)

then8, (−iσ2χ
∗)(−iσ2χ)T transform like χχ†,

(−iσ2χ
∗)(−iσ2χ)T =

 −χ1χ2 χ2
1

−χ2
2 χ1χ2

→ (iσ2χ
∗)′
(
(iσ2χ)T

)′
= U(iσ2χ

∗)(iσ2χ)TU †

(D.17)

and it is traceless. We can now identify9,

(−iσ2χ
∗)(−iσ2χ)T ↔ −~σ · ~r

x =
1

2

(
χ2

2 − χ2
1

)
, y =

1

2i

(
χ2

2 + χ2
1

)
, z = χ1χ2 (D.18)

8 These are outer products. They are equivalent to Projection operators, which means
that this map is a projective representation of rotations on SU(2).

9 Note that, hermiticity is not necessary for the following map, however, if the matrix
is not traceless the map can not be constructed.
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It is worth to stress that because −iσ2 can be represented as,

−iσ2 = exp
{[
−iπσ2

2

]}
(D.19)

it follows that the equivalent spinors and transformations,

−iσ2χ
∗ = exp

{[
−iπσ2

2

]}
χ∗ (D.20)

can be express in terms of elements of the algebra (the generators). Therefore, the

construction is guaranteed to work for any representation, not only for the two-

dimensional case explicitly shown in this section.
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Appendix E: Tensorial Representations of the Lorentz Group

Special Relativity requires requires that two observers’ descriptions of a physical

system be equivalent if a Poincaré transformation relates their reference frames

(RFs). Poincare transformations include rotations in space, boosts, and translations

in space-time10.

Note that the existence of fermions indicates that the representations of the

Lorentz group associated with particles in Physics are spinorial representations (see

App. F). However, for the sake of clarity, we start with the four-vector representation

of the Lorentz group.

E.1 Generators

The Lorentz Transformations include space rotations (see App. D.1) together with

(rotationless) Boosts, which are defined below.

Rotations

The standard representation for Generators of rotations can be inferred directly

from Eq.(D.3) together with the fact that they only act on spatial components of

4-vectors. Explicitly we have,

J1 =



0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0


, J2 =



0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0


, J3 =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


(E.1)

They occupy a reduced block form of the matrix, which is related to the fact that

the generators of spatial rotations form a subgroup.

10 Lorentz transformations and space-time translations.
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Boosts

The equations relating two inertial frames that differ only by a relative motion along

the z-axis with relative speed speed v12 are11,

x̃0 = γ
(
x0 + βx3

)
, x̃3 = γ

(
x3 + βx0

)
, x̃1 = x1 , x̃2 = x2 , (E.2)

where,

γ = (1− v2
12)−1/2 , (E.3)

Because, γ2 − γ2β2 = 1, the transformation can be re-parameterized (v12 → φ) in

terms of hyperbolic functions,

γ = coshφ , γβ = sinhφ (E.4)

which leads to an expression for the Lorentz boosts that resembles rotation trans-

formations. Furthermore, with this parameterization the boosts acquire a form that

simplifies the study of their infinitesimal limit.

In matrix form the z-boost can be written as,

x̃µ = (Λz-boost)
µ
νx

ν (E.5)

where the matrix Λz-boost has the form,

(Λz-boost)
µ
ν =



coshφ 0 0 sinhφ

0 1 0 0

0 0 1 0

sinhφ 0 0 coshφ


(E.6)

11 We use the notation, xµ = (x0, x1, x2, x3) = (t, x, y, z), and the speed of light is set to
1, (c = 1).
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and φ can be seen as a hyperbolic angle corresponding to a hyperbolic rotation

satisfying, cosh2(φ)−sinh2(φ) = 1 12. Equivalently to the case of rotations (Eq. D.2),

the generator of this transformation is obtained by differentiation with respect to

the parameter,

Kz =
∂Λz-boost(φ)

i∂φ

∣∣∣
φ=0

(E.7)

which results in,

Kz =



0 0 0 −i

0 0 0 0

0 0 0 0

−i 0 0 0


(E.8)

thus,

(Λz-boost)
µ
ν = exp (iKzφ) (E.9)

Repeating this procedure for boosts along x- and y-axis we find the three generators

of rotation-less boosts to be,

Kx =



0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0


, Ky =



0 0 −i 0

0 0 0 0

−i 0 0 0

0 0 0 0


, Kz =



0 0 0 −i

0 0 0 0

0 0 0 0

−i 0 0 0


(E.10)

The matrices of (Eq. E.10), associated with Ki are called the vector or fundamental

representation for the generators of standard Lorentz boosts.

12 The main difference between the hyperbolic (boosts) and the circular (rotations)
parameterizations is found in the domain of definition of their respective parameters. For
the circular ones, satisfying cos2(θ) + sin2(θ) = 1, the domain of θ is closed, θ ∈ [0, 2π].
In this case, the parameter can take any value of the domain (including the boundary),
a property called compactness. On the other hand, the domain for the hyperbolic angle
φ ∈ (−∞,∞) does not include the boundaries, it is not closed, therefore non-compact.
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Commutations Relations

The defining properties of the generators are their commutations relations, among

them and with the other generators of symmetry transformations,

[Jl, Jm] = iεlmnJn , [Jl,Km] = iεlmnKn , [Kl,Km] = −iεlmnJn (E.11)

E.2 Standard or Instant-Form 4-vector Representation

The standard boost is conventionally defined as a rotationless boost in the direction

of the relative velocity between two frames of reference (observers). Let us assume

that in the “first” reference frame a massive particles is at rest. The components of

the particle four-momentum in the “first” frame are then,

◦
pµ = (m, 0, 0, 0) (E.12)

A standard boost to the “second” frame transforms the momentum components

to, pµ = (E, ~p ). In other words, this is how an observer in the “second” reference

frame perceives the momentum of the particle. Note that we have assumed that

the four components of the momentum are parameterized as, pµ = (p0, p1, p2, p3) =

(E, px, py, pz), which is familiar from any textbook in special relativity. In matrix

form we can write the standard boost as,

pµ =
(
ΛIF
)µ

ν
◦
pν (E.13)

where, IF stands for Instant Form of dynamics, to be defined in section App.(E.3)

below.

The main feature of the Instant Form boost is that they are defined to be rota-

tionless, which implies the following parameterization in terms of the generators Ki

(Eq. E.10),

ΛIF = exp
(
i~K · ~φ

)
= exp

(
iφ~K · φ̂

)
(E.14)
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where13, ~φ = φφ̂ = (φx, φy, φz), correspond to three parameters that completely

characterizes each transformation. Note that because the generators Ki do not

commute (Eqs. E.11), it follows that14,

ΛIF = exp
(
i~K · ~φ

)
6= exp (iKxφx) exp (iKyφy) exp (iKzφz) (E.15)

The parameterization15 of Eq.(E.14), is called the Canonical parameterization.

Explicit Representation

In order to obtain an explicit representation we substitute the vector representation

for the boosts generators (Eq. E.10), into the definition for the IF boost Eq.(E.14)16,

we have,

(ΛIF)µν =



cosh(φ) φ̂1 sinh(φ) φ̂2 sinh(φ) φ̂3 sinh(φ)

φ̂1 sinh(φ) φ̂2
1 cosh(φ) + φ̂2

2 + φ̂2
3 2φ̂1φ̂2 sinh2

(
φ
2

)
2φ̂1φ̂3 sinh2

(
φ
2

)
φ̂2 sinh(φ) 2φ̂1φ̂2 sinh2

(
φ
2

)
φ̂2

2 cosh(φ) + φ̂2
1 + φ̂2

3 2φ̂2φ̂3 sinh2
(
φ
2

)
φ̂3 sinh(φ) 2φ̂1φ̂3 sinh2

(
φ
2

)
2φ̂2φ̂3 sinh2

(
φ
2

)
φ̂2

3 cosh(φ) + φ̂2
1 + φ̂2

2


(E.16)

The meaning of the parameters come from the action of ΛIF on the 4-momentum

associated with a particle at rest,
◦
pµ = (m, 0, 0, 0), which produces,

pµ = (E, ~p) = (ΛIF)µν
◦
pν = m

(
cosh(φ), φ̂1 sinh(φ), φ̂2 sinh(φ), φ̂3 sinh(φ)

)
(E.17)

13 φ = |~φ|, and, φ̂ = ~φ/φ.

14 Or any other order for what matters.

15 Where all the generators are collected in one single exponent, which in general is a
linear combination of the generators.

16 Notice that by definition the dummy index in the Lorentz transformation ΛIF is a
lower index.
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thus, showing that the parameters are,

cosh(φ) =
E

m
, φ̂j sinh(φ) =

pj
m

(E.18)

from where we get,

(φ̂)2(sinh(φ))2 = (φ̂)2
(
1 + cosh(φ)2) =

(pj
m

)2

=⇒ φ̂ =
~p

|~p|
, sinh(φ) =

|~p|
m

(E.19)

Using now the relations for the half “angle” of hyperbolic functions we find,

cosh

(
φ

2

)
=

√
E +m

2m
, sinh

(
φ

2

)
=

√
E −m

2m
(E.20)

which results in,

(ΛIF)µν =



E
m

p1

m
p2

m
p3

m

p1

m

p2
1

|~p|2
E
m

+
p2

2

|~p|2 +
p2

3

|~p|2 2 p1

|~p|
p2

|~p|
E−m
2m

2 p1

|~p|
p3

|~p|
E−m
2m

p2

m
2 p1

|~p|
p2

|~p|
E−m
2m

p2
2

|~p|2
E
m

+
p2

1

|~p|2 +
p2

3

|~p|2 2 p2

|~p|
p3

|~p|
E−m
2m

p3

m
2 p1

|~p|
p3

|~p|
E−m
2m

2 p2

|~p|
p3

|~p|
E−m
2m

p2
3

|~p|2
E
m

+
p2

1

|~p|2 +
p2

2

|~p|2


(E.21)

Note that,

p2
1

|~p|2
E

m
+

p2
2

|~p|2
+

p2
3

|~p|2
=

p2
1

|~p|2
E −m
m

+ 1 =
p2

1

(E +m)m
+ 1 (E.22)

and with similar manipulations for other matrix elements, we arrive to the well

known result,

(ΛIF)µν =

 E
m

~p
m

~p
m

δij +
pipj

(E+m)m

 (E.23)
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E.3 Instant Form Dynamics

Note that the so called “standard” or Instant Form definition is actually a param-

eterization choice over the geometrical structure of space-time. In the next section

(App. E.4) we will see how a different parameterization choice results in a different

transformation law, i.e., a different relation between the momentum components of

a particle at rest and its momentum components when is moving. A useful param-

eterization entails to relate different regions (events) in space-time in a consistent

manner17 while providing a reasonably “simple” interpretation. Among the possible

(re)parameterizations that can be made, three has been shown to be most useful.

They differ on the direction along which the evolution of a system is parameterized,

which is also referred as the dynamics of a physical system, and the parameter is

called time. The three forms of dynamics were unveiled in 1949 by P.A.M. Dirac

in a seminal paper [65]. Dirac called them the Instant Form (IF), the Light Front

Form, and the Point Form.

For the Instant Form, the chosen direction of the evolution time is our experi-

ential time t, and evolution is understood as the study of changes occurring from

one instant of time t to another (later) one. Therefore, Poincare transformations

that leave invariant the condition t = constant, will have no effect on the descrip-

tion of the evolution of a system18. Since they do not interfere with evolution, the

generators of this transformations are called kinematical. On the other hand, the

generators of Poincare transformations that do not leave invariant the condition

t = constant are called dynamical.

17 Agrees with physical experiments.

18 Or better say, the way we experience the evolution of the system.
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Instant Form Kinematical Generators

The kinematical generators in the case of the Instant Form of dynamics are spatial-

rotations and spatial-translations19,

Jx , Jy , Jz , Px , Py , Pz (E.24)

They form a subgroup of the Poincare group, i.e., the subgroup of (space) rotations

and translations.

Instant Form Dynamical Generators

The generators of the Dynamics, also called Hamiltonians, are the energy (generator

of time (t) translations) and standard boosts,

E , Kx , Ky , Kz (E.25)

They generate transformations that do not fulfill the constrain, t0 = constant.

Hence, knowledge about the system at times different than t0 is needed in order

to perform the transformation, which implies having solved the dynamics20.

E.4 Light Front Dynamics

Although the standard form of dynamics is the most familiar and natural to us, it

turns out that for fast-moving systems21, there are other parameterizations of the

dynamics that simplify the description and interpretation of the system’s evolution.

For the present work, the most relevant is the so-called Light Front form of dynamics

19 Related to the canonical momentum operators

20 At least over some interval of time.

21 “Close” to the speed of light.
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(LF), discussed in this section. In the Light-Front parameterization for evolution,

the parameter “time” is denoted by τ and chosen along a light-like direction, which

is (conventionally) chosen to be τ = x+ = t+ z.

We will follow the same procedure used in Sec.(App. E.2) to find the explicit

four-vector representation of the standard (IF) boosts, i.e., Eq.(E.23). However,

now we want to find the matrix for the Light-Front boosts. As we shall see, in the

case of the four-vector representation, it all boils down to identify which are the

parameters in the definition of the general LF boost. This identification is provided

in section App.(E.4.1).

Light Front Kinematical Generators

The LF kinematical generators are defined by linear combinations of the standard

generators in such a way that its action leaves invariant the hyperplane, x+ = 0,

these are:

• Rotation about the LF axis,

J3 = Jz , (E.26)

• Translations within the x+ = 0 plane,

P+ = P0 + Pz , Px , Py (E.27)

• LF Boosts,

G1 = Gx = Kx − Jy , G2 = Gy = Ky + Jx , K3 = Kz (E.28)

Substituting the 4-vector representation of the IF generators (Eqs. E.1 and E.10)

we find the explicit representation for the kinematical LF boost generators.
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For G1 and G2, we have

G1 =



0 −i 0 0

−i 0 0 −i

0 0 0 0

0 i 0 0


, G2 =



0 0 −i 0

0 0 0 0

−i 0 0 −i

0 0 i 0


(E.29)

The LF boosts commutation relations follows directly from using the IF algebra

Eq.(E.11),

[K3,G1] = iG1 , [K3,G2] = iG2 , [Gi,Gj] = 0 (E.30)

Light Front Dynamical Generators

As expected, the LF Dynamical Generators relate regions of space-time outside the

plane, x+ = 0,

P− = P0 − Pz , Dx = Kx + Jy , Dy = Ky − Jx (E.31)

where, P− is called the LF energy and generates the LF time evolution, whereas

Dx, Dy, are called LF rotations and they change the light-like direction chosen to

parameterize the evolution.

E.4.1 Vector Representation of the Light Front Boost

A general LF boost is conventionally defined22 as a two step process, first a boost

in the direction of LF propagation (z−axis) from rest,

◦
pµ = (m, 0, 0, 0) (E.32)

22 For its action on a particle.
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to a frame where it achieve its final component of momentum along the z−axis

(pz)
23, followed by a linear combination of generators24 such that attains its final

transverse momentum ~pT, explicitly

ΛLF
def = exp

[
i~G · ~vT

]
· exp [iK3η] (E.33)

where, ~vT = (v1, v2) and η correspond to three parameters that completely charac-

terizes the LF boost.

It is worth to mention that in the definition of the LF boost the order between

the action of K3 and Gi matters, since they do not commute. On the other hand,

for G1 and G2 we have

[G1,G2] = 0 (E.34)

hence, they can be trivially added into one exponent like in Eq.(E.33). In other

words, we can write,

ΛLF
def = exp

[
i~G · ~vT

]
· exp [iK3η]

= exp [iG1v1] · exp [iG2v2] · exp [iK3η]

= exp [iG2v2] · exp [iG1v1] · exp [iK3η] (E.35)

where, the parameters ~vT = (v1, v2) and η are the same in the three statements.

Although, the definition of LF boosts Eq.(E.33) is more elegant, the three statements

in Eq.(E.35) are equivalent.

Substituting the LF parameterization of the generators (Eq. E.29) in the defi-

nition of LF boosts (Eq. E.33), we arrive at,

23 Chosen here as the spatial direction for the light-like parameterization of evolution.
The intermediate result would be, pµint = (Eint, 0, 0, pz).

24 Note that these generators do not change the null plane, x+ = 0.

110



(ΛLF
def)

µ
ν =



1
2e
−η (1 + e2η + e2ηv2

1 + e2ηv2
2

)
v1 v2

1
2e
−η (−1 + e2η + e2ηv2

1 + e2ηv2
2

)
eηv1 1 0 eηv1

eηv2 0 1 eηv2

−1
2e
−η (1− e2η + e2ηv2

1 + e2ηv2
2

)
−v1 −v2

1
2e
−η (1 + e2η − e2ηv2

1 − e2ηv2
2

)


(E.36)

The meaning of the parameters comes from acting with ΛLF
def on the 4-momentum

associated with a particle at rest (Eq. E.32), which results in,

pµ = (E, px, py, pz) = (ΛLF
def)

µ
ν
◦
pν

=
m

2

(
e−η + eη + eη~v2

T , e
ηv1 , e

ηv2 , e
η − e−η − eη~v2

T

)
(E.37)

using now the LF coordiantes, p+ = E + pz and p− = E − pz, we get

(p+, px, py, p
−) = m

(
eη , eηv1 , e

ηv2 , e
−η + eη~v2

T

)
(E.38)

showing that the parameters must fulfill the conditions,

p+ = m eη , ~pT = m eη~vT , p− = m e−η +m eη~v2
T (E.39)

Thus, we arrive to the following simple form for the LF boost parameters,

eη =
p+

m
, ~vT =

~pT
p+

, p− =
m2 + ~p2

T

p+
(E.40)

E.4.2 Light Front Boost in Light Front Coordinates

A question may rise when following the procedure in the previous section. Why are

we using Eq.(E.33)25 to transform the 4-vector
◦
pµ = (m, 0, 0, 0)26? The answer is

25 LF boost definition.

26 Momentum at rest in standard coordinates.
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that (ΛLF
def)

µ
ν is written in standard coordinates as well. To write down ΛLF

def in light-

front coordinates we must perform a change of coordinates27. The representation of

this transformation in space-time is,

ΩIF→LF =



1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 −1


(E.41)

Its action on the momentum of a particle at rest results in,

ΩIF→LF
◦
pµIF = (m, 0, 0,m) =

◦
pµLF (E.42)

which applied to the LF boost produces,

(
ΩIF→LF · ΛLF

def · Ω−1
IF→LF

)µ
ν = (ΛLF)µν =



eη 0 0 0

eηv1 1 0 0

eηv2 0 1 0

eη~v2
T 2v1 2v2 e−η


=



p+

m
0 0 0

p1

m
1 0 0

p2

m
0 1 0

~p2
T

mp+
2p1

p+
2p2

p+
m
p+


(E.43)

Hence, by adopting LF coordinates we obtain more simple expressions. In partic-

ular, the action of ΛLF on the momentum of a particle at rest, also written in LF

coordinates (Eq. E.42), reproduces the results in Eq.(E.39), which is the meaning

of the last equality in Eq.(E.43).

From Eq.(E.43), it can be seen explicitly that, contrary to the IF case, the LF

“space” components of momentum, p+, ~pT, do not receive any contribution from the

p− component when is boosted from rest. Therefore, LF boosts can be performed

over states labeled by p+ and ~pT independently of any knowledge about the LF

energy (dynamics), i.e., the LF boosts are kinematic.

27 This change of coordinates do not correspond to any Lorentz transformation. Note
that it does not leave the Lorentzian metric (gµν = diag(−1, 1, 1, 1)) invariant.
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E.5 “Canonical” Parameterization

In order to use the conventional method for deriving the irreducible representa-

tions of the Lorentz group, corresponding to particles with non zero spin, we must

transform the boost definition into the exponential map form (Canonical form),

ΛDefinition → ΛCanonical = exp [i(. . .)] (E.44)

where all the generators appear in a single exponential. The definition of standard

boost is already in this form. However, the LF definition must be transformed.

E.5.1 LF Boost in “Canonical” Parameterization

We have identified what are the parameters that characterize the LF boosts. To be

able to use the general methodology for deriving the irreducible representations of

the Lorentz group we must recast the LF boost definition into the canonical form

(Eq. E.44) 28,

ΛLF
Can = exp

[
i~G · ~̃vT + iK3η̃

]
(E.45)

where, the parameters ~̃vT = (ṽ1, ṽ2) and η̃, are in principle different from those in

Eq.(E.40). Indeed, the matrix form of Eq.(E.45) is,

(
ΛLF

Can

)µ
ν =



(eη̃+e−η̃)η̃2+

(
e
η̃
2−e

η̃
2

)2

(ṽ2
1+ṽ2

2)

2η̃2

(1−e−η̃)ṽ1

η̃
(1−e−η̃)ṽ2

η̃

(eη̃−e−η̃)η̃2+

(
e
η̃
2−e

η̃
2

)2

(ṽ2
1+ṽ2

2)

2η̃2

−(1−eη̃)ṽ1

η̃ 1 0
−(1−eη̃)ṽ1

η̃

−(1−eη̃)ṽ2

η̃ 0 1
−(1−eη̃)ṽ2

η̃

(eη̃−e−η̃)η̃2−
(
e
η̃
2−e

η̃
2

)2

(ṽ2
1+ṽ2

2)

2η̃2

(e−η̃−1)ṽ1

η̃
(e−η̃−1)ṽ2

η̃

(eη̃+e−η̃)η̃2−
(
e
η̃
2−e

η̃
2

)2

(ṽ2
1+ṽ2

2)

2η̃2


(E.46)

28 Note that the generators of LF boost form a closed algebra Eq.(E.30), hence no others
generators appear in the exponent.
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which in LF coordinates acquires the form,

(
ΛLF

Can

)µ
ν =



eη̃ 0 0 0

(eη̃−1)ṽ1

η̃
1 0 0

(eη̃−1)ṽ2

η̃
0 1 0

e−η̃(eη̃−1)
2
(ṽ2

1+ṽ2
2)

η̃2

2e−η̃(eη̃−1)ṽ1

η̃

2e−η̃(eη̃−1)ṽ2

η̃
e−η̃


(E.47)

To identify the meaning of the parameters in the matrix ΛLF
Can we make the fol-

lowing observation. The matrices Eq.(E.47) and Eq.(E.43) must transform the LF

momentum components of a particle at rest Eq.(E.42) into the very same trans-

formed momentum. In other words, the two matrices must be identical. Comparing

them we find the relations between the two set of parameters,

η̃ = η = log

(
p+

m

)
, ~̃vT =

η

1− e−η
~vT =

η

1− e−η
~pT

p+
=

η

p+ −m
~pT (E.48)

Then the LF boost in “canonical” form and in terms of “good” parameters is,

ΛLF = exp

[
i~G · ~vT

η

1− e−η
+ iK3η

]
= exp

[
i

η

p+ −m
~pT · ~G + iηK3

]
(E.49)

Note that compared with the canonical re-parameterization (Eq. E.45), the

definition of LF boosts (Eq. E.33) results in more simple relations between the

boost parameters and the LF variables p+ and ~pT
29. On this regard, it is preferred

as the definition for the LF boosts. However, the canonical form is more useful for

generalizations to spinorial representations30.

29 Compare Eq.(E.40) with Eq.(E.48).

30 See Appendix F.
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E.6 Higher Rank Tensor Representations

A rank k tensor T µ1···µk , transform on each index as a four-vector representation,

i.e., each index transform under the action of a matrix ΛLF. All the tensorial rep-

resentations can be reduced to more simple ones. The more simple ones, called

irreducible, are preferred because they reflect the correct number of degrees of free-

dom for particles that transform under such a rule.
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Appendix F: Spinorial Representations of the Lorentz Group

In Appendix section (D.2), we found that 3-dimensional (Euclidean) vectors31, and

2-dimensional (Pauli) spinors32 can be related via Eq.(D.7). It follows that each ro-

tation in 3-dimensional space corresponds to two different rotations in spinor space,

i.e., for a unit vector n̂ the map of Eq.(D.7) means that when the two-component

spinor rotates a full cycle, as θ runs from 0 to 4π, the corresponding Euclidean

vector cover two cycles in 3-dimensional space33.

This result is so general that can be used to define what we mean by a spinor.

An m-dimensional spinor is a complex m-tuple, which is an element of a complex

vector space34 transforming under rotations with the corresponding law,

U(s, n̂, θ) = eiθn̂·
~J(s)

(F.1)

where, ~J(s) = (J(s)
1 , J(s)

2 , J(s)
3 ), are the generators for the spin (s = 1/2, 1, 3/2, . . .)

representation of SU(2), and n̂ is a unit vector in the direction of the rotation axis,

n̂2 = 1. The dimension m and the spin are related by, m = 2s + 1. Note that for

half integer spin representations Eq.(F.1) results in the half angle transformation

law, in particular, for the spin 1/2 representation we have, ~J(1/2) → ~σ/2.

31 Meaning three real numbers forming an ordered array (3-component tuples), and with
the property that they transform under rotations by matrix multiplication with (D.4).

32 Complex 2-component tuples transforming under rotations with the half angle law of
Eq.(D.5).

33 This is the statement that SU(2) is the double covering group of SO(3)

34 It has the structure of a vector space under the operations of vector addition and
multiplication by scalars.
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The correspondence between rotations in 3-dimensional space and spinor space35,

i.e., the map,

~r ∈ R3 → ~r · ~σ =

 z x− iy

x+ iy −z

 ∈ C2 (F.2)

induces for every spatial rotation in R3 an SU(2) transformation in C2, such that,

U(s, n̂, θ) = eiθn̂·
~J(s) ←→ R(n̂, θ) = eiθn̂·

~J (F.3)

This relation shows that all spinors with definite spin s transform under spatial

rotations with the very same law. This is to be contrasted with Lorentz boosts

transformations. We will see that for each spin there are two types of spinors,

which can be identified from each other by their distinct transformation rules under

boosts. We say that for spinor representations there are two inequivalent Irreducible

Representations (IRReps) for each spin. In general, the two IRReps are related by

“parity conjugation”. There is however a caveat, since parity conjugation must

act only on “space” components, the appropriate “parity conjugation” operation

depends on what particular parameterization is used to describe the geometry of

space-time.

F.1 Correspondence between so(1,3) and sl(2,C)

In the previous section, we have established the explicit correspondence between

the rotation a spinor undergoes in spinor space, and the space rotation experienced

by a vector in space-time Eq.(F.3)36. This allows to compare spinors on frames of

35 For the sake of simplifying the notation, whenever it does not lead to confusion,
sometimes we will omit the label for the spin.

36 Note that the difference between the original and rotated vector is space-like, which
means there is a frame where the rotation takes place on a fixed time hyper-surface.
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reference that differ by some rotation of the space coordinates. We want now to

obtain the analogous correspondence for the case of Lorentz boosts, i.e., we want to

know how the components of a spinor transform between inertial frames that only

differ by a relative velocity37.

There is a correspondence between Lorentz transformations in 4-dimensional

space-time and spinor space, i.e., the map,

xµ ∈M4 → xµσµ =

 t+ z x− iy

x+ iy t− z

 ∈ C2 (F.4)

induces for every Lorentz transformations in M4 an SL(2,C) transformation in C2,

such that,

D(Λ) = ei
~θ·~J(s)±~φ·~K(s) ←→ Λ(~θ,~φ) (F.5)

The procedure followed here is similar to that one used in relating SO(3) with

SU(2), i.e. finding a map between the real group and the complex covering group

[66, 67]. For the 4-vector representation, we found that the standard Generators

satisfy the algebra,

[Jl, Jm] = iεlmnJn , [Jl,Km] = iεlmnKn , [Kl,Km] = −iεlmnJn (F.6)

therefore, the combinations38,

Am =
1

2
(Jm + iKm) , Bm =

1

2
(Jm − iKm) (F.7)

37 Note that, like in the case of rotations, as seen by a third observer (which could be
on one of the two frames related by v12) a 4-vector on the frames of reference related by

v12 differ by a space-like 4-vector, ∆p2 = (pµ − ◦pµ)2 = 2m(m− E) < 0. Hence, there is a
frame where the change is of the form, ∆p̃µ = (0, ~p), this is the Breit frame.

38 Complexification of the algebra.
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satisfy the commutation relations of the SU(2) algebra39,

[Al,Am] = iεlmnAn , [Bl,Bm] = iεlmnBn , [Al,Bm] = 0 (F.8)

where, indices l, m, and n run over 1, 2, 3. Since the new generators ~A and ~B com-

mute with each other, it follows that they generate independent transformations40.

Complex vectors transforming only under A correspond to constrain the gener-

ators to satisfy,

Bm = 0 ≡ Km → KR
m = −iJm (F.9)

which are classified by an angular-momentum-like label41, jR, and they are referred

as the right-handed chiral representations. Analogously, complex vectors transform-

ing only under B correspond to constrain the generators to satisfy,

Am = 0 ≡ Km → KL
m = iJm (F.10)

which are classified by another (independent) angular-momentum-like label jL, and

are called left-handed chiral representations42.

Therefore, choices Eq.(F.9) and Eq.(F.10) correspond to two kind of complex

vectors each transforming differently. As can be seen from Eq.(F.8) these are the

only two independent possibilities. This result is summarized by the statement that

any arbitrary representation of the Lorentz group43 can be written in terms of ~A

39 Thus, each set (Am and Bm) generates the SU(2) group.

40 It follows that the Lorentz Group can be mapped (locally) to: SU(2)⊗ SU(2).

41 Since they generate the SU(2) group, the representations can be classified in the same
way as the Rotation group.

42 Note that both Eq.(F.9) and Eq.(F.10) are consistent with the commutation relations
of Eqs.(E.11).

43 Here we always refer to the simple connected proper orthochronous subgroup of the
Lorentz group.
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and ~B. Henceforth, the representations of the Lorentz group are classified by two

angular momentum labels (jR, jL) corresponding to Ar and Bl respectively.

The Lorentz transformations for right an left handed (chiral) spinors then be-

come,

(jR, 0) : DR
(Λ)

(s) = D
(s)
(Λ) = exp

[
i~J(s) ·

(
~θ − i~φ

)]
(0, jL) : DL

(Λ)
(s) = D̄

(s)
(Λ) = exp

[
i~J(s) ·

(
~θ + i~φ

)]
(F.11)

where, Λ is an arbitrary Lorentz transformation with parameters ~θ, and, ~φ, charac-

terizing (space) rotations and (pure) standard boosts respectively44. The transfor-

mation laws Eq.(F.11) show that both type of spinors transform in the same way

under rotations but not under boosts. Thus, they only differ from each other when

have been boosted, i.e. there is no meaningful way to distinguish them when they

are at rest.

It is worth to stress the generality of this construction. Notice that nowhere

in the derivation we need to make reference to what spin are we dealing with, i.e.

a knowledge of the algebra45 was enough. This construction is used to represent

chiral spinors with the spin labeled by jR,L, which translates into a representation

of the generators ~J of SU(2). The advantage of these construction over a tensorial

one, is that it does not introduces superfluous degrees of freedom which need to be

removed later. For example, the spin 1 representation can be obtained from the

tensor product of two spin 1/2 representations, 1/2 ⊗ 1/2 = 1 ⊕ 0, from where we

must remove the trivial spin 0 representation.

44 See Eq.(D.4) and Eq.(E.13).

45 Which must be satisfied by every particular representation.
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F.2 Discrete Space-Time Symmetries and Bi-spinors

Parity and Time reversals

Since the algebra of the generators is the same for every representation, we can

use the scalar representation to explicitly show these statement. For the scalar

representation the indices on the matrices are space-time indices, thus the Parity

and Time reversal operations are represented as,

P(0) =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


, T (0) =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(F.12)

which transform the generators of rotations Eq.(E.1) and boosts Eq.(E.10) by,

P(0)J(0)
m

(
P(0)

)−1
= P(0)J(0)

m P(0) = +J(0)
m =⇒ ~J P←→ ~J

T (0)J(0)
m

(
T (0)

)−1
= T (0)J(0)

m T (0) = +J(0)
m =⇒ ~J T←→ ~J

P(0)K(0)
m

(
P(0)

)−1
= P(0)K(0)

m P(0) = −K(0)
m =⇒ ~K P←→ −~K

T (0)K(0)
m

(
T (0)

)−1
= T (0)K(0)

m T (0) = −K(0)
m =⇒ ~K T←→ −~K (F.13)

It follows from Eq.(F.9) and Eq.(F.10) that, the right (jR, 0) and left (0, jL)

handed representations (corresponding to the same spin) transform into one another

under Parity or Time reversal,

(j, 0)
Parity←→
Time

(0, j) , φR
Parity←→
Time

φL (F.14)
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Bi-Spinors

For some theoretical models Parity is consider a symmetry46, then it follows that the

two type of spinors47, are not independent anymore. In other words, if Parity is not

taken into account the two type of spinors are independent. However, introducing

Parity as a symmetry leads to a constrain which must be satisfied by both spinors

at the same time. It is no longer convenient to treat them separately, and we shall

consider the (Weyl) bi-spinor χ 48,

χ =

 φR

φL

 (F.15)

As it follows from the relations (F.14), under parity the Weyl bi-spinor transform

as,

χ =

 φR

φL

 Parity−→ P [χ] =

 φL

φR

 (F.16)

Hence, the representation for Parity in Weyl bi-spinor space is,

P [χ] = PWχ =

 0 1

1 0


 φR

φL

 = γ0
Wχ (F.17)

i.e., PW = γ0
W is the Weyl representation of the γ0 matrix49.

46 This means that the interactions are invariant under Parity, like it is the case for QED
and QCD.

47 These spinors describe particles with spin that are subjected to interactions ruled by
such models.

48 The situation is similar to consider 3-vectors instead of individual components for the
study of spatial rotations.

49 Note that different conventions may differ from this by a phase factor.
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Under Lorentz Transformations (Λ), the Weyl bi-spinor χ is transformed by50,

χ =

 φR

φL

→MW
(Λ)χ =

 exp
[
i~J(s) ·~b

]
0

0 exp
[
i~J(s) ·~b∗

]

 φR

φL


=

 D(Λ) 0

0 D̄(Λ)


 φR

φL

 (F.18)

where,

~b = ~θ − i~φ (F.19)

On the other hand, the parity transformed bi-spinor changes as,

P [χ] =

 φL

φR

→MW
(Λ)χ =

 exp
[
i~J(s) ·~b∗

]
0

0 exp
[
i~J(s) ·~b

]

 φL

φR


=

 D̄(Λ) 0

0 D(Λ)


 φL

φR

 (F.20)

which shows that the Weyl spinor and its parity related partner transform differently

under Lorentz transformations51.

Since right- and left-chiral spinors transform differently under boosts, whereas

under rotations they transform with the same unitary matrix, it follows that they

differ from each other only when their momentum is not zero. In other words, there

is no Chiral classification for spinors at rest (Isotropy of space). Hence, for massive

spinors at rest we must have,
◦
ϕR =

◦
ϕL. Since at rest there is no distinction between

50MW
(Λ) is the representation of the Lorentz Transformation Λ in Weyl’s bi-spinor space.

51 The three J(s)
l are the (2s + 1) dimensional representation for the generators of the

rotation group, and the three bl correspond to the chosen parameterization.
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them, we must consider the two linear independent combinations,

◦
ψ =

1√
2

 ◦
ϕR +

◦
ϕL

◦
ϕR −

◦
ϕL

 (F.21)

These are called Dirac bi-spinors. Dirac bi-spinors ψ are obtained from Weyl bi-

spinors χ by the transformation,

ψ = TW−Dχ = TW−D

 ϕR

ϕL

 =
1√
2

 12s+1 12s+1

12s+1 −12s+1


 ϕR

ϕL

 (F.22)

The matrix TW−D perform a change from Weyl representation to Dirac representa-

tion. For the Lorentz transformations we have52,

MD
(Λ) = TW−DM

W
(Λ)T

−1
W−D =

1

2

 exp
[
i~J ·~b

]
+ exp

[
i~J ·~b∗

]
exp

[
i~J ·~b

]
− exp

[
i~J ·~b∗

]
exp

[
i~J ·~b

]
− exp

[
i~J ·~b∗

]
exp

[
i~J ·~b

]
+ exp

[
i~J ·~b

]


(F.23)

An arbitrary Dirac bi-spinor is obtained by applying the representation of boosts

in Dirac bi-spinor space to an at-rest bi-spinor,

ψ(p) =
1√
2

 ϕR(p) + ϕL(p)

ϕR(p) − ϕL(p)


=

1

2

 exp
[
i~J ·~b

]
+ exp

[
i~J ·~b∗

]
exp

[
i~J ·~b

]
− exp

[
i~J ·~b∗

]
exp

[
i~J ·~b

]
− exp

[
i~J ·~b∗

]
exp

[
i~J ·~b

]
+ exp

[
i~J ·~b

]
 1√

2

 ϕR
(
◦
p)

+ ϕL
(
◦
p)

ϕR
(
◦
p)
− ϕL

(
◦
p)


(F.24)

Similarly, the Dirac representation of Parity is obtained by,

PD = TW−Dγ
0
WT

−1
W−D = γ0 =

 12s+1 0

0 −12s+1

 (F.25)

52MD
(Λ) is the representation of the Lorentz Transformation Λ in Dirac’s bi-spinor space.
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Under parity the Dirac bi-spinor transform as,

ψ(p) =
1√
2

 ϕR(p) + ϕL(p)

ϕR(p) − ϕL(p)

 → P [ψ] = PD
1√
2

 ϕL(p) + ϕR(p)

ϕL(p) − ϕR(p)


=

1√
2
γ0

 ϕR(p) + ϕL(p)

−(ϕR(p) − ϕL(p))

 = ψ(p)

(F.26)

which means that Dirac spinors are eigenvectors of Parity. The Dirac bi-spinors

(ψ), shown in Eq.(F.24), are eigenvectors of the (space) Parity operator with eigen-

value +1 and they correspond to particles. The eigenvectors with eigenvalues −1

are associated with anti-particles. Thus, when parity is a good symmetry53, it is

convenient to work with Dirac bi-spinors.

53 Which is to say, that during the evolution of the system the interaction between
particles do not change their Parity.
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Appendix G: Spinors and Polarization Vectors for Single

Particle States

G.1 Canonical Spin

Spin 1/2 particle - Canonical

The canonical spinors for a (free) spin 1/2 particle are obtained from at-rest spinors

by applying a rotationless boost54. This is equivalent to substituting in Eq.(F.24)

the spin 1/2 representation of the rotation group (Eq. A.4), while we set the rotation

parameter to zero (~θ = ~0) in Eq.(F.19). We first observe that,

exp
[
~J(s=1/2) ·~b

]
→ exp

[
~σ

2
· ~φ
]

= cosh

(
|~φ|
2

)
12 + ~σ ·

~φ

|~φ|
sinh

(
|~φ|
2

)
(G.1)

Using now the identification of the boost parameters in equations (E.19) and (E.20)

we find the following representation of the boosts for canonical Dirac bi-spinors,

BIF
(s=1/2) =

 cosh
(
|~φ|
2

)
12 ~σ · ~φ

|~φ|
sinh

(
|~φ|
2

)
~σ · ~φ

|~φ|
sinh

(
|~φ|
2

)
cosh

(
|~φ|
2

)
12

 =


√

E+m
2m

~σ · ~p√
2m(E+m)

~σ · ~p√
2m(E+m)

~σ · ~p
m


(G.2)

The spinors themselves follow straightforwardly from Eq.(F.24), explicitly we get,

u(~p, s) =

(
E +m

2m

) 1
2

 ◦
χ(s)

~σ·~p
E+m

◦
χ(s)

 (G.3)

where, m is the mass of the spin 1/2 particle, and the two-component spinors φ(s)

are given by,

◦
χ (+1/2) =

 1

0

 ,
◦
χ (−1/2) =

 0

1

 (G.4)

54 They are solution of Dirac’s (homogeneous) equation.
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The canonical states transform properly under rotations,

D[R]
(1/2)
IF u(~p, s) =

∑
s′

u (R(~p ), s′)D
(1/2)
s′s [R] (G.5)

where, the representation of rotations D[R] follows from setting now the boost pa-

rameter to zero (~φ = ~0) in Eq.(F.19). Hence, we have

exp
[
~J(s=1/2) ·~b

]
→ exp

[
i
~σ

2
· ~θ
]

= cos

(
|~θ|
2

)
12 + i~σ ·

~θ

|~θ|
sin

(
|~θ|
2

)
(G.6)

and,

D[R]
(1/2)
IF =

 exp
[
i~σ

2
· ~θ
]

0

0 exp
[
i~σ

2
· ~θ
]
 (G.7)

Spin 1 particle - Canonical

The general set of polarization vectors for deuteron (with ~pdT = ~0) are obtained by

boosting55 the at-rest polarization vectors, we get,

χ0
C =

(
pdz
Md
, 0, 0, Ed

Md

) −−−−−−→
rest frame (0, 0, 0, 1)

χ+1
C =

(
0, −1√

2
, −i√

2
, 0
)

χ−1
C =

(
0, 1√

2
, −i√

2
, 0
) (G.8)

G.2 Light Front Spin and Melosh Rotation

Spin 1/2 particle - LF

Light-front states of a massive particle are obtained from its rest frame state by

first boosting in the z-direction to obtain the desired p+, followed by a light-front

transverse boost from the z-axis to obtain the desired transverse momentum ~pT.

The light-front spinors at any momentum are thus given by

55 Applying a rotationless Lorentz boost transformation relating the frame where the
deuteron is at rest with that one in which it has momentum, pd = (Ed, 0, 0, pdz).
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u(p,1/2) =
1√
2p+



p+ +m

pr

p+ −m

pr


u(p,−1/2) =

1√
2p+



−p`

p+ +m

p`

−p+ +m


(G.9)

v(p,1/2) =
1√
2p+



−p`

p+ −m

p`

−p+ −m


v(p,−1/2) =

1√
2p+



p+ −m

pr

p+ +m

pr


(G.10)

The relation between light front and canonical spinors (Melosh rotation) is given

by,

Ω1/2(p) =

 β1(p) 0

0 β1(p)

 (G.11)

where the 2× 2 block matrix β1/2 is given by,

β1/2(p) =
1

N1/2

 p+ +m −p`

pr p+ +m

 (G.12)

Like any rotation the determinant of this matrix must be 1, from where it follows

the value of the normalization constant,

1 = Det[β1/2] =
1

N2
1/2

(
(p+ +m)2 + ~p 2

T

)
=

1

N2
1/2

(
2(E +m)p+

)
(G.13)

this is,

N1/2 =
√

(p+ +m)2 + ~p 2
T =

√
2(E +m)p+ (G.14)
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Furthermore, the angle of rotation can be easily identified by comparing β1/2(p) with

the spin 1/2 representation of rotations (Wigner matrices) parameterized by Euler

angles56,

RM
1/2 =

 cos θM
2
− sin θM

2

sin θM
2

cos θM
2

 (G.15)

Notice that for the correct angle θM , both matrices RM
1/2 and β1/2 correspond to the

same rotation. There most be a coordinate transformation relating them. Since the

trace of a matrix is invariant under a change of coordinates, we have,

Tr
{
β1/2

}
= Tr

{
RM

1/2

}
(G.16)

from where we get the relation,

p+ +m√
2(E +m)p+

= cos
θM
2

→ cos θM = 1− ~p 2
T

(E +m)p+
~p 2

T = 0
−−−−→

θM = 0

(G.17)

hence, if the spin 1/2 particle moves along the LF there is no rotation to correct for.

The inverse Melosh rotation is the complex conjugate transposed (adjoint) of

Eq.(G.12).

β−1
1/2(p) =

1

N1/2

 p+ +m p`

−pr p+ +m


(G.18)

which corresponds to the change, ~pT → −~pT.

56 This is, RM1/2 = d
1/2
λ′,λ, where djλ′,λ are the Wigner d-functions for spin j.
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Spin 1 particle - LF

For this case we use the at-rest reference four-vector,

+ 1 2 −
◦
p
µ

=

(
m 0 0 m

) (G.19)

which is time-like, (
◦
p)2/m2 = 1. The polarization vectors (as usual) correspond

to eigenvectors of the little group with different eigenvalues, we will use the labels,

λ = ±1, 0.

Explicitly, the at-rest light-front polarization vectors for a massive spin 1 particle

are,

εµ+(
◦
p) =



0

−1√
2

−i√
2

0


= −εµr , εµ−(

◦
p) =



0

1√
2

−i√
2

0


= εµ` , εµ0(

◦
p) =



1

0

0

−1


(G.20)

and, the corresponding polarization vectors in a frame where the particle has mo-

mentum p are given by,

εµ+(p) =



0

−1√
2

−i√
2

−
√

2pr
p+


, εµ−(p) =



0

1√
2

−i√
2

√
2p`
p+


, εµ0(p) =



p+

m

p1

m

p2

m

− ~p 2
T+m2

mp+


(G.21)

where, pr = p1 + ip2 and p` = p1 − ip2.

Notice that the transformation law guarantee the constrain, ε∗ε = −1. This

polarization vectors are a 4-dimensional representation of spinors, not 4-vectors.

The fact that in the case of spin 1 there are three of them, which together with a

time-like vector can be used as a basis for the 4-dimensional Minkowski space is just

a coincidence that may end up being very confusing.
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For matrix elements of spin 1 operators, e.g., the deuteron electromagnetic cur-

rent (see Eq. J.1), which has been written on a basis of light-front polarization

vectors (Eq. G.21) we have,

〈p′dλ′d |J
µ
d | pd, λd〉 = εαλ′d

∗Jµαβε
β
λd

= ε†λ′d
Jµd ελd = JµLF(λ′d,λd) (G.22)

Then, the relation with the corresponding matrix elements written on a basis of

canonical polarization vectors (in the same reference frame), is given by a Melosh

rotation57,

JµLF = β1
†JµCβ1 → JµLF(λ′lf,λlf)

= β1
∗
(λ′lf,λ

′
c)J

µ
C(λ′c,λc)β1(λc,λlf)

= β1
∗
(λ′lf,λ

′
c)ε

α
λ′c
∗Jµαβε

β
λc
β1(λc,λlf)

(G.23)

where the Melosh rotation matrix β1 is given by,

β1(p) =
1

N1


(p+ +m)2 −

√
2(p+ +m)p` p2

`

√
2(p+ +m)pr (p+ +m)2 − ~p 2

T −
√

2(p+ +m)p`

p2
r

√
2(p+ +m)pr (p+ +m)2

 (G.24)

Like any rotation the determinant of this matrix must be 1, from where it follows

the value of the normalization constant,

N1 = (p+ +m)2 + ~p 2
T = 2(E +m)p+ (G.25)

Furthermore, the angle of rotation can be easily identified by comparing β1(p) with

the spin 1 representation of rotations (Wigner matrices) parameterized by Euler

angles58,

RM
1 =


1
2

(1 + cos θM) − 1√
2

sin θM
1
2

(1− cos θM)

1√
2

sin θM cos θM − 1√
2

sin θM

1
2

(1− cos θM) 1√
2

sin θM
1
2

(1 + cos θM)

 (G.26)

57 Here, we use ε to denote LF polarization vectors, and ε to denote canonical ones.

58 This is, RM1 = d1
λ′,λ, where djλ′,λ are the Wigner d-functions for spin j.
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Notice that for the correct angle θM , both matrices RM
1 and β1 correspond to the

same rotation. There must be a coordinate transformation relating them. Since the

trace of a matrix is invariant under a change of coordinates, we have,

Tr{β1} = Tr
{
RM

1

}
(G.27)

from where we get the relation,

3 (p+ +m)
2 − ~p 2

T

(p+ +m)2 + ~p 2
T

= 1 + 2 cos θM → cos θM = 1− ~p 2
T

(E +m)p+
~p 2

T = 0
−−−−→

θM = 0

(G.28)

which, as expected coincides with the rotation angle for a spin 1/2 particle (Eq. G.17).

Thus, analogous to the case of spin 1/2, for a spin 1 particle moving along the LF

there is no rotation.

The inverse Melosh rotation is the complex conjugate transposed (adjoint) of

Eq.(G.24),

β−1
1 (p) =

1

N1


(p+ +m)2

√
2(p+ +m)p` p2

`

−
√

2(p+ +m)pr (p+ +m)2 − ~p 2
T

√
2(p+ +m)p`

p2
r −

√
2(p+ +m)pr (p+ +m)2

 (G.29)

which corresponds to the change, ~pT → −~pT.
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Appendix H: Basis for the Relativistic Two-Body Problem

H.1 Two-Body basis - Momenta

Our task is to provide a consistent decomposition of deuteron momentum. Let us

start with the description of the two-body system. Some variables necessary to

characterize the state of the system are kinematical (also called external), like the

total momentum,

Pcm = p1 + p2 (H.1)

others are dynamical (internal) variables, like the relative momentum (prel), which

are defined by decomposing the momenta of each constituent particle into its pro-

jection onto the total momentum of the 2-body system and the rest, explicitly

pµ1 =
p1 · Pcm

P 2
cm

P µ
cm + pµrel (H.2)

pµ2 =
p2 · Pcm

P 2
cm

P µ
cm − p

µ
rel (H.3)

therefore, the relative momentum is,

pµrel =
(p1 − p2)µ

2
− (p1 − p2) · Pcm

2P 2
cm

P µ
cm (H.4)

The main reason for the above definition of prel is the following orthogonality con-

dition

prel · Pcm = 0 (H.5)

which guarantee a simple separation between kinematical and dynamical variables.
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Useful Intermediate Results

The invariant mass of the system (M12 = Mpn) is an important quantity that will

appear frequently,

M2
12 = P 2

cm = sNN = m2
1 +m2

2 + 2p1 · p2 = m2
1 +m2

2 + 2E1 · E2 − 2~p1 · ~p2 (H.6)

The relative momentum can be written in term of the invariant mass,

pµrel =
pµ1
2

(
1− m2

1 −m2
2

M2
12

)
− pµ2

2

(
1 +

m2
1 −m2

2

M2
12

)
(H.7)

For every practical purpose the masses of proton and neutron are equal. Hence, in

our particular case (m1 = m2) the relative momentum acquires a very simple form,

pµrel =
pµ1 − p

µ
2

2
(H.8)

H.1.1 Momenta - IF

In the center of momentum of the two-body system the expressions on our previous

section achieve their simplest form. In the case of IF this is,

kµc =
E2√
P 2

cm

pµ1 −
E1√
P 2

cm

pµ2 (H.9)

where,

E1,2 =
p1,2 · Pcm√

P 2
cm

=
P 2

cm + p2
1,2 − p2

2,1

2
√
P 2

cm

=
P 2

cm +m2
1,2 −m2

2,1

2
√
P 2

cm

=
P 2

cm

2
√
P 2

cm

=
M12

2

(H.10)

with, M2
12 = P 2

cm.

This is a crucial result, it shows that in this frame both particles have the

same energy. Therefore, the relative momentum decouples from the “evolution”

time59. For numerical calculations it leads to two important simplifications. On one

59 This is the time that defines the hyper-plane t = 0 of Instant Form.
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hand, the description of the internal dynamics happens in a three-dimensional space,

reducing the required computational power. On the other hand, the reduction is

such that the three-dimensional space is orthogonal to the evolution time direction,

hence the signature of the metric is Euclidean which simplifies convergence.

The energies end up being the same only for two particles with equal masses.

However, because the difference in energies do not depend on the internal momen-

tum, only on the total momentum, there is also a kinematical definition of the

two-body frame that decouples internal an external motion.

In particular, we have

kµc = kµ =
pµ1 − p

µ
2

2
(H.11)

E12 = E1 + E2 = M12 =
P 2

cm√
P 2

cm

=
4m2 − 4k2

M12

= 4
m2 + ~k2

M12

− Ek (H.12)

In this frame60 the components of the vector ∆p become,

∆0
p = p0

d − (p0
1 + p0

2) = p0
d − Ek (H.13)

~∆p = ~pd − (~p1 + ~p2) = ~pd =
~pd√
~p2
d

~k2
c

Ek
= ~n

~k2
c

Ek
(H.14)

which shows that in the two-body rest frame the deuteron momentum is not zero.

H.1.2 Momenta - LF

In the Light Front Form of dynamics we have,

p+ = p0 + ~p.~n , p− = p0 − ~p.~n , p− =
m2 + p2

T

p+
, ~pT · ~n = 0 (H.15)

we shall choose, ~n along deuteron’s momentum, which we identify with the positive

z direction61.

60 As stated above, this is the rest frame for the two-body system, ~Pcm = 0.

61 Therefore, we have assumed that, ~P cm
T = 0, and, in agreement with the previous

section, p2
1 = p2

2 = m2.
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The equivalent relations to Eqs.(H.9, H.13) in the LF are62,

∆−p = p−d − (p−1 + p−2 ) =
1

p+
d

(
M2

d − 4
m2
N + k2

T

α(2− α)

)
(H.16)

with all other components zero. It is worth to stress that within the LF framework,

the kinematical picture is not only more simple, e.g., ∆µ
p has only one non-vanishing

component, but also more general since the component of P µ
cm along the z direction

does not have to be zero.

In this case the relative momentum is written as,

k−LF =
(p1 − p2)−

2
− (p1 − p2) · Pcm

2P 2
cm

P−cm =
1− α1

P+
cm

2
m2 + k2

T

α(2− α)
(H.17)

Eq.(H.17) clearly establish that the evolution time decouples when, α = 1 63, or,

P+
cmα(2 − α) � 4m2, since the numerator is (approximately) bounded by the term

(1− α1)4m2. This argument shall become clear when we use the WF in the scatter-

ing amplitude, because then k−LF is the conjugate variable to time64 in the transition

amplitude.

From Eq.(H.4) we also have,

k+
LF =

P+
cm

4P 2
cm

(α1 − 1)

(
P 2

cm + 4
m2 + k2

T

α(2− α)

)
=
P+

cm

2
(α1 − 1) (H.18)

whereas the transverse components of the relative momentum are the same to those

of the Instant frame. Notice that,

k+
LFk

−
LF = −(α1 − 1)2 m

2 + k2
T

α(2− α)
(H.19)

62 Notice that the term, α(2− α), is the same independently of which particle, 1, or, 2,
it refers to. Whenever a situation like this appears the labels will be omitted in order to
keep the expressions uncluttered.

63 This case reduces to the previous section when ~Pcm = 0.

64 Dynamical time.
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Therefore, after using,

kz = (1− α1)
M12

2
(H.20)

we get,

k2 = k2
LF = −k2

T − k2
z (H.21)

which explicitly shows that both formulations (IF and LF) agree with each other.

H.2 Two-Body basis - Spin

The Pauli-Lubanski pseudo-vector,

W µ =
1

2
εµαβδPαJβδ (H.22)

is the closest to a relativistic (covariant) spin axial vector. Because the spin is an

axial vector it is frame dependent, only at rest it can be defined unambiguously.

Moreover, it depends on the origin of coordinates, which for a multi-particle rela-

tivistic theory does not have unambiguous definition65.

For massive particles, which is the only case considered here, the spin operator

is defined by,

(0,Jcm) = Λ−1
cm(Pcm)µνW

ν/M (H.23)

where, Λ−1
cm(Pcm)µν represents a Lorentz transformation from a reference frame

where the system have momentum Pcm = 0 66.

65 For composite states, binding via strong interactions (and also Gravity at large scale),
the ambiguity on the definition of a relativistic spin operator remains an unsolved problem.
Here, we overstep the problematic issues by studying a region of phase space where am-
biguities can be suppressed, i.e. they can be kept under control under certain conditions,
which are presented below.

66 If there is only one particle, this frame coincides with its rest frame. If there are more
than one particle, it refers to the center of momentum frame of the system.
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The Pauli-Lubanski operator (Eq. H.22) for a Dirac particle is67,

W µ
1/2(P ) =

1

2
(P µ +mγµ)γ5 (H.24)

Notice that68,

W µ
1/2(P )u(p, s) =

1

2
(P µ +mγµ) γ5u(p, s) =

1

2
(pµ +mγµ) γ5u(p, s)

= W µ
1/2(p)u(p, s) (H.25)

W
µ

1/2(P )u(p, s) = γ0
(
W µ

1/2(P )
)†
γ0u(p, s) =

1

2
γ0
(
P µ −m(γµ)†

)
γ5γ

0u(p, s)

=
1

2
(−P µ +mγµ) γ5u(p, s) =

1

2
(−pµ +mγµ) γ5u(p, s)

= W µ
1/2(−p)u(p, s) (H.26)

and,

u(p, s)W µ
1/2(P ) = u†(p, s)γ0W µ

1/2(P ) =
1

2
u†(p, s)

(
−P µ −m(γµ)†

)
γ5γ

0

=
1

2
u†(p, s) ((−P µ +mγµ) γ5)† γ0 =

1

2
((−P µ +mγµ) γ5u(p, s))† γ0

= (W µ
1/2(−p)u(p, s))†γ0 = u(p, s)

1

2
(−pµ +mγµ)γ5

= u(p, s)W µ
1/2(−p) (H.27)

u(p, s)W
µ

1/2(P ) = u†(p, s)
(
W µ

1/2(P )
)†
γ0 =

1

2
u†(p, s)

(
P µ −m(γµ)†

)
γ5γ

0

=
1

2
u†(p, s)

(
−(−P )µ −m(γµ)†

)
γ5γ

0

= u(p, s)W µ
1/2(p) (H.28)

67 Which is just the result of substituting in Eq.(H.22) the bi-spinor representation of the
Angular Momentum tensor (Spin 1/2 representation extended by Parity), Jµν = σµν/2 =
i[γµ, γν ]/4. Remind that Jµν = σµν/2 correspond to the bi-spinor representation for the
Generators of the Lorentz Group (proper and orthochronous).

68 Strictly speaking, the spinors are only the components of the state, and the operator
should be evaluated on the state (ket). However, this notation is less cluttered and easier
to read.
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Thus, the Pauli-Lubanski operator is not Dirac self-adjoint69. However, we can

use it to construct a self-adjoint (observable) spin 1/2 operator,

S1/2(P ) =
1

2m

(
W1/2(P ) +W 1/2(P )

)
(H.29)

where, we have divided by the mass to make sure that at rest it coincides with

the standard non-relativistic notion of spin. This definition is consistent , i.e. it

produces the same result no matter to which spinor side of the matrix element it is

applied.

In bi-spinor space, we have,

[S1/2(p)]s2,s1 =
1

2m
u(p, s2)

(
W1/2(P ) +W 1/2(P )

)
u(p, s1) (H.30)

which results in70,

[Sµ(p)]s2,s1 =
1

4m
u(p, s2) ((p− p)µ + 2mγµ) γ5u(p, s1) =

1

2
u(p, s2)γµγ5u(p, s1)

(H.31)

H.2.1 Two-Body Spin 1/2 - Canonical

If we use in Eq.(H.31) the canonical spinors we get the Instant Form of spin,

[SµIF(p)]s2,s1 =
1

2
ūC(p, s2)γµγ5uC(p, s1) (H.32)

we obtain,

SIF =

(
p · σ
m

, px
p · σ

m(m+ Ep)
+ σx , py

p · σ
m(m+ Ep)

+ σ2 , pz
p · σ

m(m+ Ep)
+ σ3

)
(H.33)

69 This is a necessary condition for any operator with observable eigenvalues.

70 This is the simplest non-trivial case of a spin density matrix: ρ1/2 = 1
2(a1 + s · σ).
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which defines a spin-polarization vector,

χµ(p, s) =
1

2

∑
s2,s1

[(s · σ)s1,s2(SµIF)s2,s1(p)] =
1

2
Tr [(s · σ)SµIF(p)] (H.34)

where, s is the unit 3-vector in the direction of the spin when the particle is at rest.

Repeating the steps leading to Eq.(H.31), but now for two different particles

with respective momenta p and p′, we will arrive to the spin operator for the two

body system71,

S2B
IF =

(
P12 · σ
M12

, P12x
P12 · σ

M12(M12 + P 0
12)

+ σx , P12y
P12 · σ

M12(M12 + P 0
cm)

+ σy , P12z
P12 · σ

M12(M12 + P 0
12)

+ σz

)
(H.35)

where, the total momentum and the invariant mass of the two-body system are

respectively,

P12 = p1 + p2 , and, M2
12 = P 2

12 (H.36)

The spin S2B defines a spin-polarization vector χµ(p, s) which reassembles that of a

spin 1 particle (see section App.(79)). In the CM frame (Pcm
12 = 0), it reduces to,

S2B
IF,CM = (0 , σx , σy , σz) (H.37)

H.2.2 Two-Body Spin 1/2 - LF

Accounting for the contribution from each particle to the two body system, and

restricting ourselves to collinear frames (PT
12 = 0), we have,

S2B
LF =

(
P+

cm

M12

σz , σT ,
P 2

cm − 2M2
12

2M12P+
cm

σz

)
=

(
p+

d

M12

σz , σT ,
−M12

2p+
d

σz

)
(H.38)

71 The Spin operator for two spin 1/2 particles is constructed out of the tensor product of
the individual spin 1/2 operators, and can be conveniently separate into rotation invariant
structures, scalar (singlet), vector (triplet), and the symmetric and traceless rank-2 spin
tensor: (ρ1)ij = 1

3

(
aδij + 3

2(s · J)ij + 3TilJlj
)
.
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Appendix I: Relativistic Two-Body Wave Function

The wave function (WF) of a bound state is dictated by the symmetries it must

satisfy and is constructed out of all the degrees of freedom (dof) necessary to achieve

a satisfactory description of the system. Deuteron is a spin 1, iso-singlet (isotopic-

spin zero) state that is invariant under parity transformation (space reflection). We

work on the two nucleon approximation, which is the most important component

in Fock space expansion. In other words we assume is made out of (mainly) two

massive spin 1/2 constituents.

It is convenient to write the WF Eq.(3.12) in a form that permits a parameteri-

zation in terms of Dirac structures. We have,

ūsiūsrΓ
µ
dNNχ

λd
µ → ūsiΓ

µ
dNNχ

λd
µ (iγ2γ0) ūTsr = ūsiΓ

µ
dNNχ

λd
µ γ5ε

rr′usr′ (I.1)

The first step makes use of Charge Conjugation, i.e. crossing between the exchange

and annihilation channels, thus relating the charge conjugated fermion with its

antiparticle. The second uses CPT symmetry, i.e. the relation between the fermion

and its antiparticle, vsr = γ5ε
rr′usr′ . Thus, we have

Ψλd
sisr

= ūsiΓ
µ
dNNχ

λd
µ γ5ε

rr′usr′ (I.2)

I.1 General Structure of the Vertex

The most general form that satisfy all the requirements is,

Φλ
s2s1

= χλµ(Pd)ū(k2,s2)Γ
µ
(
u(k1,s1)

)C
(I.3)

where,

Γµ =Γ1γ
µ + Γ2

kµ

m
+ Γ3

∆µ
p

2m
+ Γ4

kµ∆/p
2m2

+ Γ5
1

2m3
γ5ε

µνργ(pd)νkρ(∆p)γ + Γ6

∆µ
p∆/p

4m2
(I.4)
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Here, χλµ is the polarization vector with λ labeling the 3 possible polarizations of a

spin 1 particle, e.g., λ = 1, 0,−1, are, right handed, longitudinal and left handed,

respectively. The covariant functions, Fi, convey the dynamics for deuteron decom-

position into proton-neutron system, they are functions of the invariant mass of the

two-nucleon system,

M2
NN = sNN = (Ep + En)2 = 4(m2 + k2) = 4

m2 + k2
⊥

α(2− α)
= M2

d −∆p · Pd (I.5)

here, Ep,n =
√
m2
p,n + k2 are the respective energies of proton and neutron in the

two-body center of momentum frame, the (reduced) mass m is approximated by

m = (mp + mn)/2), the 3-vector k = (k⊥, k3) = (kr − ki)/2 is half the relative

momentum, where kr refers to the recoil nucleon and k3 is defined by Eq.(I.5) as,

k3 = (αr − 1)MNN/2 (I.6)

where the longitudinal momentum fraction is,

α = 2
Er + krz
Ed + pdz

= 2
p+
r

P+
d

(I.7)

Here we particularize our study to the unpolarized scattering cross-section. There-

fore, in our calculation within the Impulse Approximation (also for the case with

Final State Interactions restricted to the GEA) the relevant object is the spin aver-

aged LF density matrix of the deuteron (see Eq.(J.30)),

ρd(α, k⊥) =
1

3
· 1

2

∑
λd,sr,si

|Ψλd
sisr

(α, k⊥)|2

(2− α)
(I.8)

which after using Eq.(I.6), we get,

ρd(α, k⊥) =
1

3
· 1

2

∑
λd,sr,si

Ek − k3

Ek
|Ψλd

sisr
(α, k⊥)|2 (I.9)

where, Ek =
√
m2 + ~k2.
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I.2 Comparison with Partial Waves Analysis

For sufficiently low energies it is reasonable to expect that the contribution to the

scattering amplitude other than the lowest partial waves must be kinematically

suppressed. This means that at low relative momentum, and in the CM of the

on-shell nucleons, valuable insight about the functional form of the covariant vertex

functions (Γi) can be obtained by matching the covariant WF decomposition72 with

the Partial Wave decomposition73. Although, this identification provide expressions

for the relativistic WF which rely on non-relativistic QM74.

To proceed with the matching of the two WF decompositions both of them must

be expressed on a spherical basis, thus we shall use canonical spinors since these

are manifestly rotational invariant75. To this end we apply a change of basis to our

light-front wave function Eq.(4.5), which has the effect of a spatial rotation, known

as the Melosh rotation. In general, a spin 1/2 particle with momentum p can be

represented equivalently with light-front or canonical bi-spinors, which are related

by a rotation as follows,

uLF
s (p+,pT) = uCs′(~p)D [RM(p)]ss′ (I.10)

D [RM ] =

 RM 0

0 RT
M

 (I.11)

72 Which results from the simplification of the electro-disintegration cross-section pro-
vided by the PWIA.

73 Which results from the simplification that occurs at low energy (transferred) allowing
us to treat the reaction as scattering by a Potential.

74 Note that the Partial Waves depend uniquely on a relative 3-momentum, which in
potential scattering theory would be the momentum transferred in the NN scattering.

75 As it is well known the canonical spinors are invariant under SO(3) spatial rotations.
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where, RT
M is the transpose of RM , which is the representation of the Melosh rotation

in two-dimensional spinor space,

RM(p) =
1√

2p+(Ep +m)

p+ +m −(px − ipy)

px + ipy p+ +m

 (I.12)

and Ep =
√
m2 + ~p2.

I.3 Dirac Bilinears - Canonical

We use Canonical spinors to evaluate the following Dirac bilinears. The reference

frame is such that, ~P T
NN = 0.

We find, for the bilinear, ūpi1upr ,

ūpiupr =
1√

p0
i +m

√
m+ p0

r

(
~pi · ~pr +m

(
p0

i +m+ p0
r

)
1− iσjεjlnpilprn

)
(I.13)

for the bilinear, ūpi (γ5)upr ,

ūpi (γ5)upr =
√
p0

i +m
√
m+ p0

r

(
~pr · ~σ
p0

r +m
− ~pi · ~σ
p0

i +m

)
(I.14)

for, ūpi (γ0γ5)upr ,

ūpi (γ0γ5)upr =
√
p0

i +m
√
m+ p0

r

(
~pi · ~σ
p0

i +m
+

~pr · ~σ
p0

r +m

)
(I.15)

and for, ūpi (γjγ5)upr , we find,

ūpi (γjγ5)upr = 2

√
m+ p0

r

p0
i +m

σj

(
p0
i + p0

r

2
1−

(
prjσj −

piz + prz
2

σ3

)
~pr · ~σ
m+ p0

r

)
(I.16)

More useful for our purpose is to work in the basis of total (PNN) and relative

(prel) momenta, here we have,

ūpiupr =
2√

(2m+ ENN) 2 − 4E2
rel

((
mENN +

M2
12

2

)
1 + iσjεjnlPNNlpreln

)
(I.17)
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ūpi (γ5)upr = 2
(2m+ ENN) ~prel · ~σ − Erel

~PNN · ~σ√
(2m+ ENN) 2 − 4E2

rel

(I.18)

ūpi (γ0γ5)upr = 2

(
m+ ENN

2

) (
~PNN · ~σ

)
− 2Erel (~prel · ~σ)√

(2m+ ENN) 2 − 4E2
rel

(I.19)

ūpi (γjγ5)upr = 2
σj

(
mENN +

M2
NN

2

)
− 2prelj (~prel · ~σ) + 1

2
PNNj

(
~PNN · ~σ

)
+ iεkljprelkPNNl1√

(2m+ ENN) 2 − 4E2
rel

(I.20)

From equation (4.7) we note that,

p2
rel = m2 − M2

NN

4
< 0 (I.21)

i.e., prel is a space-like four-vector. Thus, it is always possible to find a frame where

the relative energy vanishes,

p0
rel = Erel = 0 (I.22)

This frame is given by the condition,

0 = E2
rel = p2

rel + ~p2
rel = m2 − M2

NN

4
+ ~p2

rel =⇒ P 2
NN = M2

NN = 4
(
m2 + ~p2

rel

)
(I.23)

For two particles of equal mass, like the nucleons, the condition, Erel = 0, occurs in

the two-body (NN) center of momentum (CM), i.e. ~PNN = 0. In this frame, it is

useful to define the four-momentum of the two nucleons through kµ = (Ek,kT, kz),

which has components,

Ek =

√
sNN

2
=
MNN

2
=
√
m2

N + k2, kT = prT , and, kz = Ek(αr − 1), (I.24)
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then we have, ~k = ~p cm
rel /2 = ~p cm

r = −~p cm
i , and the bilinears are given by the

following expressions,

ū−~ku~k = MNN1 (I.25)

ū−~k (γ5)u~k = 2~k · ~σ (I.26)

ū−~k (γ0γ5)u~k = 0 (I.27)

ū−~k (γ5γj)u~k = MNNσj − 2
2kj

(
~k · ~σ

)
2m+MNN

(I.28)

The wave function (Eq. 4.5) in the two-body CM is then given by,

ψλdCM =− 2Γ1

(
Ek(~σ · ~χλd)−

1

m+ Ek
(~k · ~χλd)(~k · ~σ)

)
− 2Γ2

(
1

m
(~k · ~χλd)(~k · ~σ)

)
+ 2Γ3

(
∆µ
pχ

λd
µ

2m
(~k · ~σ)

)
+ 2Γ4

~k · ~χλd
m

(
Ek

~∆p · ~σ
2m

−
~∆p · ~k

2m+ 2Ek

~k · ~σ
m

)

− 2Γ5
M2

NN

2m

(
~χλd × ~k
m

)
·
~∆p

2m
− 2Γ6

∆µ
pχ

λd
µ

2m

(
Ek

~∆p · ~σ
2m

−
~∆p · ~k

2m+ 2Ek

~k · ~σ
m

)
(I.29)

I.4 Separation into Angular and Radial Dependencies

In order to compare with the partial wave decomposition of the NN interaction we

need to separate the angular and radial variables. In other words, the vertex function

must be expressed in terms of irreducible space tensors (spherical harmonics).

We first pull out the spin part, after which the components of vectors k, and

∆ are separated into symmetric and anti-symmetric terms. Both of this terms are

invariant under rotations. The last step is to extract from the symmetric structure

the trace, which is invariant by it self.
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For the structure associated with Γ1 we have,

Γ1 →− 2Γ1

(
Ek(~σ · ~χλd)−

~k2

m+ Ek
(k̂ · ~χλ)(k̂ · ~σ)

)

= −2Γ1

(
mδij − (m− Ek)k̂ik̂j

)
σiχ

λd
j

= −2

3
Γ1

(
(2Ek +m) [δij] + (Ek −m)

[
3k̂ik̂j − δij

])
σiχ

λd
j (I.30)

where, we use the notation, k̂ = k
|k| . Note that in the NN-CM, ~χλd = χ̂λ − ~∆

2m
Ek−m
Ek+m

,

where χ̂λ is the polarization vector for a massive spin 1 particle (like deuteron) at

rest, i.e.

χ̂λ=0 = (0, 0, 1), χ̂λ=+1 = − 1√
2

(1, i, 0), χ̂λ=−1 =
1√
2

(1,−i, 0) (I.31)

The difference only appears for the longitudinal polarization (λ = 0), and it reaches

about 7% at k ∼ 1 GeV/c. In Fig.(I.1) we show that this correction is much smaller76

than the small parameter ∆−

2m
. Hence, the use of the more simple polarization vector

χ̂λ instead of the actual ~χλd is justified.

For the Γ2 term,

Γ2 →− 2Γ2

~k2

m
(k̂ · ~χλd)(k̂ · ~σ) = −2Γ2

~k2

m
(k̂ik̂j)σiχ

λd
j

= −2

3
Γ2

~k2

m

([
3k̂ik̂j − δij

]
+ [δij]

)
σiχ

λd
j (I.32)

For the Γ3 term,

Γ3 → 2Γ3

(
∆µχλdµ

2m
(~k · ~σ)

)
= −2Γ3

~k3

2m2

(
k̂i∆̂j

)
σiχ̂

λd
j = −2Γ3

k3

2m2

[
1

2

(
k̂i∆̂j ± k̂j∆̂i

)]
σiχ̂

λd
j

= −2Γ3

~k3

2m2

[(
1

2

{
k̂∆̂
}
ij
− 1

3
(k̂ · ∆̂)δij

)
+

1

3
(k̂ · ∆̂)δij +

1

2
εijlεmnlk̂m∆̂n

]
σiχ̂

λd
j

= −Γ3

~k3

2m2

{
2

3

[
3

2

{
k̂∆̂
}
ij
− (k̂ · ∆̂)δij

]
+

2

3
(k̂ · ∆̂) [δij] +

[
εijl

(
k̂ × ∆̂

)
l

]}
σiχ̂

λd
j

(I.33)

76 Notice that it is compared with the square of the small parameter.
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where,
{
k̂∆̂
}
ij

=
(
k̂i∆̂j + k̂j∆̂i

)
indicates the symmetrization on indices ij, and

we use the notation, ∆̂ =
~PNN−~pd
|~PNN−~pd|

.

For the Γ4 term,

Γ4 → 2Γ4

~k · ~χλd
2m

(
Ek

~∆ · ~σ
2m

−
~∆ · ~k

2m+ 2Ek

~k · ~σ
m

)

= Γ4

~k3

2m2Ek

(
∆̂ik̂j

)
σiχ

λd
j − Γ4

~k3

2m2Ek
(Ek −m)

(
k̂ik̂j k̂l

)
σiχ

λd
j ∆̂l

= Γ4

~k3

4m2

[
2m

3Ek
(k̂ · ∆̂)δij − εijl

(
k̂ × ∆̂

)
l

]
σiχ̂

λd
j

+ Γ4

~k3(3Ek + 2m)

20m2Ek

({
k̂∆̂
}
ij
− 2

3
(k̂ · ∆̂)δij

)
σiχ̂

λd
j

− Γ4

~k3(Ek −m)

10m2Ek

[
5
(
k̂ik̂j k̂l

)
− δij k̂l − δjlk̂i − δlik̂j

]
σiχ̂

λd
j ∆̂l (I.34)

Notice that in principle ∆̂p is arbitrary. In practice however, when the deuteron to

proton-neutron transition vertex is used in a break-up reaction, ∆̂p is specify by the

direction of the transfer momentum. In this case we get,

Γ4 → Γ4

~k3

4m2

[
2m

3Ek
(k̂ · ∆̂)δij − εijl

(
k̂ × ∆̂

)
l

]
σiχ̂

λd
j

+ Γ4

~k3(3Ek + 2m)

20m2Ek

({
k̂∆̂
}
ij
− 2

3
(k̂ · ∆̂)δij

)
σiχ̂

λd
j

− Γ4

~k3(Ek −m)

10m2Ek

[
5
(
k̂ik̂j

)(
k̂ · ∆̂

)
− δij

(
k̂ · ∆̂

)
− ∆̂j k̂i − ∆̂ik̂j

]
σiχ

λd
j

= Γ4

~k3

6m2

[
3

2

{
k̂∆̂
}
ij
− (k̂ · ∆̂)δij

]
σiχ̂

λd
j − Γ4

~k3

4m2

[
εijl

(
k̂ × ∆̂

)
l

]
σiχ̂

λd
j

− Γ4

~k3(Ek −m)

6m2Ek

(
∆̂ · k̂

) [
3k̂ik̂j − δij

]
σiχ

λd
j + Γ4

~k3

6mEk

(
k̂ · ∆̂

)
[δij]σiχ̂

λd
j

(I.35)
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For the Γ5 term,

Γ5 →− iΓ5
M2

NN

m

(
~∆

2m
×
~k

m

)
· ~χλd12 = −iΓ5

2Ek~k
3

m3

(
∆̂× k̂

)
· χ̂λd12

= −iΓ5
Ek
m

~k3

2m2
k̂T · χ̂λT12 = −iΓ5

Ek
m

~k3

2m2

(
k̂ · χ̂λ − (∆̂ · k̂)(∆̂ · χ̂λ)

)
12

= iΓ5
Ek
m

~k3

6m2

(
k̂i

[
3∆̂i∆̂j − δij

]
− 2k̂i [δij]

)
χ̂λj12 (I.36)

where, 12 is the 2× 2 identity matrix.

For the Γ6 term,

Γ6 →− 2Γ6

∆µχλdµ
2m

(
Ek

~∆ · ~σ
2m

−
~∆ · ~k

2m+ 2Ek

~k · ~σ
m

)

= Γ6

~k4

2m3Ek

(
Ek∆̂i∆̂j − (Ek −m)(∆̂ · k̂)k̂i∆̂j

)
σiχ

λd
j

= Γ6

~k4

6m3

(
(3∆̂i∆̂j − δij) + δij

)
σiχ

λd
j

− Γ6

~k4(Ek −m)

2m3Ek
(∆̂ · k̂)

[
1

6

(
3
{
k̂∆̂
}
ij
− 2(k̂ · ∆̂)δij

)
+

1

3
(k̂ · ∆̂)δij +

1

2
εijl

(
k̂ × ∆̂

)
l

]
σiχ̂

λd
j

= Γ6

~k4

6m3

[
3∆̂i∆̂j − δij

]
σiχ̂

λd
j − Γ6

~k4(Ek −m)

4m3Ek
(∆̂ · k̂)

[
εijl

(
k̂ × ∆̂

)
l

]
σiχ̂

λd
j

+ Γ6

~k4

6m3Ek

(
Ek −

(
∆̂ · k̂

)2
(Ek −m)

)
[δij ]σiχ̂

λd
j

− Γ6

~k4(Ek −m)

3m3Ek
(∆̂ · k̂)

[
3

2

{
k̂∆̂
}
ij
− (k̂ · ∆̂)δij

]
σiχ̂

λd
j (I.37)
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We arrive then to the separation,

ψλdCM =
{
σiχ̂

λd
j

}{
[δij]

[
−2

3
Γ1 (2Ek +m)− 2

3
Γ2

~k2

m
− Γ3

~k3

3m2
(k̂ · ∆̂) + Γ4

~k3

6mEk

(
k̂ · ∆̂

)
+Γ6

~k4

6m3Ek

(
Ek −

(
∆̂ · k̂

)2

(Ek −m)

)]

+
[
3k̂ik̂j − δij

] [2

3
Γ1 (m− Ek)−

2

3
Γ2

~k2

m
− Γ4

~k3(Ek −m)

6m2Ek

(
∆̂ · k̂

)]

+

[
3

2

{
k̂∆̂
}
ij
− (k̂ · ∆̂)δij

][
−Γ3

~k3

3m2
+ Γ4

~k3

6m2
− Γ6

~k4(Ek −m)

3m3Ek
(∆̂ · k̂)

]

+
[
εijl

(
k̂ × ∆̂

)
l

] [
−Γ3

~k3

2m2
− Γ4

~k3

4m2
− Γ6

~k4(Ek −m)

4m3Ek
(∆̂ · k̂)

]

+
[
3∆̂i∆̂j − δij

] [
Γ6

~k4

6m3

] }

+
{

12χ̂
λd
j

}{[
3∆̂i∆̂j − δij

]
− 2 [δij]

}(
iΓ5

Ek
m

~k3

6m2
k̂i

)
(I.38)

In this form we can now make the following associations. The terms proportional to{
σiχ̂

λd
j

}
[δij] and

{
σiχ̂

λd
j

}[
3k̂ik̂j − δij

]
correspond to an S-wave and D-wave tran-

sition, respectively. These terms must converge to the nonrelativistic deuteron S-

and D-wave radial functions77, when the contribution from the vertex functions Γ3,

Γ4, and Γ6. The conditions for which we expect this to be a good approximation

are stablished at the end of Sec.(4.1). Since, the terms associated with Γ3,4,6 are

expected to be small we focus on the angular structures associated with Γ5, which

contributes as P-wave and has a relativistic origin with no analogous in the nonrel-

ativistic framework.

77 From the deuteron wave function which is a solution to the Shrodinger equation with
an NN interaction potential, e.g., CD-Bonn or AV18.
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Figure I.1: Deviation of deuteron longitudinal polarization 3-vector ~χλ=0
d from that

of the two-body in the NN-CM ~χλ=0
NN

I.5 Dirac Bilinears - LF

To recover the light-front wave function we must apply the Melosh rotation Eq.(I.12)

to the Canonical bilinear structures. The LF bilinears in the two-body CM and two

dimensional spin space are,

ūLF
−~ku

LF
~k

=
MNN√
k2
T +m2

(
m1 +

(
~kT · ~σT

)
σ3

)
(I.39)

ūLF
−~kγ5u

LF
~k

=
1√

k2
T +m2

(
MNN

~kT · ~σT + 2mk3σ3

)
=

MNN√
k2
T +m2

(
~kT · ~σT +m(α− 1)σ3

)
(I.40)
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ūLF
−~k

(
γ+γ5

)
uLF
~k

= ūLF
−~k (γ3γ5)uLF

~k
= 2
√
k2
T +m2

(
~k · ~σ − ~kT · ~σT

)
= MNN

√
α(2− α)σ3

(I.41)

ūLF
−~k

(
γ−γ5

)
uLF
~k

= −ūLF
−~k (γ3γ5)uLF

~k
= −MNN

√
α(2− α)σ3 (I.42)

ūLF
−~k (γ1γ5)uLF

~k
=

1√
k2
T +m2

(MNNmσ1 − 2k3σ3kx + iMNNky1)

=
MNN√
k2
T +m2

(mσ1 − (α− 1)σ3kx + iky1) (I.43)

ūLF
−~k (γ2γ5)uLF

~k
=

MNN√
k2
T +m2

(mσ2 − (α− 1)σ3ky − ikx1) (I.44)
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Appendix J: DEUTERON ELECTRO-MAGNETIC CUR-

RENT AND WAVE FUNCTION NORMALIZATION

Figure J.1: Deuteron elastic scattering: d+ γ∗ → d′

The normalization of deuteron’s wave function is fixed relative to its elastic

charge form-factor: GC(Q2 = 0) = 1.

Equivalently to the EM nucleon current parameterization in terms of form fac-

tors, in the one-photon exchange approximation, Lorentz invariance constrains the

deuteron EM current to be completely described by three form factors [49]:

〈p′ds′d |J
µ
d | pdsd〉 =−

(
G1(Q2)(χ

′∗ · χ)−G3(Q2)
(χ
′∗ · q)(χ · q)

2m2
d

) (
pµd + p′µd

)
+GM(Q2)

(
χµ
(
χ
′∗ · q

)
− (χ′µ)∗(χ · q)

)
(J.1)

where, χ = χsd (χ′ = χs′d) are deuteron polarization vectors. The charge (GC) and

quadrupole (GQ) FF are related with G1, G3 and (GM) by,

GC = G1 +
2

3
τGQ (J.2)

GQ = G1 −GM + (1 + τ)G3 (J.3)

At Q2 = 0, they are conventionally normalized to,

GC(0) = 1 (in units of e)

GQ(0) = Qd ( in units of e/m2
d)

GM(0) = µd ( in units of e/2md)

(J.4)
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The FF can be extracted from combinations of the EM current matrix elements.

On the Briet frame and in the limit, Q2 → 0, the unpolarized elastic scattering is

proportional to the charge form factor. For the (+) component of the current on

the LF we obtain:

1

3

∑
sd,s
′
d

〈
p′ds
′
d

∣∣J+
∣∣ pdsd〉 = (pd + p′d)

+
G1(0) = (pd + p′d)

+
GC(0) = (pd + p′d)

+
(J.5)

In this frame we have, pµd = (md

√
1 + τ , 0, 0,−Q/2), and, (p′d)

µ = (md

√
1 + τ , 0, 0, Q/2),

which yields,

1

3

∑
sd,s
′
d

〈
p′ds
′
d

∣∣J+
∣∣ pdsd〉 = (pd + p′d)

+
GC(0) = 2md (J.6)

where, τ = Q2

4m2
d
.

The relation with deuteron’s WF is provided by the elastic scattering diagram

Fig.(J.1), which has the transition amplitude,

〈p′ds′d |Aµ| pdsd〉 = −
∫

d4pr
i(2π)4

χ†s′d
Γ†dNN

p/f +m

pf 2 −m2 + iε
Γµγ∗N

p/i +m

pi2 −m2 + iε
ΓdNNχsd

p/r +m

p2
r −m2 + iε

(J.7)

a sum over r is implicit, where r = p, n, accounts for the two nucleons.

Changing to LF variables (d4pr → 1/2dp−dp+d2p⊥), and integrating over the

light-cone energy, dp−r , puts the recoil particle on shell, we obtain

〈p′ds′d |Aµ| pdsd〉 =

∫
d2pr⊥dp

+
r

2p+
r (2π)3

χ†s′d
Γ†dNN

p/f +m

p2
f −m2 + iε

Γµγ∗N
p/i +m

p2
i −m2 + iε

ΓdNNχsd
∑
sr

u(pr, sr)ū(pr, sr) (J.8)

The evaluation of result is that the active nucleon, used to construct the EM

current, is off-shell for the initial (pi) and final (pf ) states. Therefore, we write the

respective propagators as follows:
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p/i,off +mN

p2
i,off −m2

N

=

∑
si

(u(pi, si)ū(pi, si)) + ∆/pi
αi
2

(
m2
d − 4

m2
N+p2

iT

αi(2−αi)

) =

∑
si

(u(pi, si)ū(pi, si)) + ∆/pi
αi
2

(m2
d − sNN)

(J.9)

p/f,off +mN

p2
f,off −m2

N

=

∑
sf

(u(pf , sf )ū(pf , sf )) + ∆/pf
αf
2

(
m2
d − 4

m2
N+p2

fT

αf (2−αf )

) =

∑
sf

(u(pf , sf )ū(pf , sf )) + ∆/pf
αf
2

(m2
d − s′NN)

(J.10)

Notice that in general, for the diagram of Fig.(J.1),

αf = 2
pf

+

(p′d)
+
6= αi = 2

pi
+

p+
d

= 2− αr = 2− 2
p+
r

p+
d

(J.11)

The substitution of the propagators into the amplitude produce,

〈p′ds′d |Aµ| pdsd〉 =
∑
sr

∫
d2pr⊥dp

+
r

αiαfp+
r

Ψ
s′d†
sf sr (pr, p

′
d) J̃

µ
N Ψsd

sisr
(pr, pd)

=
∑
sr

∫
d2pr⊥dα

α(2− α)(2− α + αq)
Ψ
s′d†
sf sr J̃

µ
NΨsd

sisr
(J.12)

where, α = αr. The WF of deuteron is given by (Eq.(3.12)),

Ψsd
sisr

=
ūiūrΓdNNχ

sd

1
2

(sNN −m2
d)

1
√

2 (2π)3/2
(J.13)

and the off-shell nucleon current has the following four contributions,

J̃µN (sf , pf , si, pi) = JµN,on (sf , pf , si, pi) + JµN,off (sf , pf,off, si, pi,off)

+ JµN,off (sf , pf,off, si, pi) + JµN,off (sf , pf , si, pi,off)

(J.14)
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where,

JµN,on (sf , pf , si, pi) = ū(pfsf )Γ
µ
γ∗Nu(pisi) (J.15)

JµN,off (sf , pf , si, pi,off) = ū(pfsf )Γ
µ
γ∗N

∆/pi
2mN

u(pisi) (J.16)

JµN,off (sf , pf,off, si, pi) = ū(pfsf )
∆/pf
2mN

Γµγ∗Nu(pisi) (J.17)

JµN,off (sf , pf,off, si, pi,off) = ū(pfsf )
∆/pf
2mN

Γµγ∗N
∆/pi

2mN

u(pisi) (J.18)

Hence, it can be written as the succinct expression,

J̃µN (sf , pf ; si, pi) = ū(pfsf )Γ̃
µ
γ∗Nu(pisi) (J.19)

with the vertex function given by,

Γ̃µγ∗N =

(
1 +

∆/pf
2mN

)
Γµγ∗N

(
1 +

∆/pi
2mN

)
(J.20)

J.1 Wave Function Normalization from EM Charge

In the reference frame of Fig.(3.4), we have q2 = q+q−, and q+ < 0. Then, the limit

of real photon scattering (Q2 → 0) is given by, q+ → 0. As a consequence, p′d → pd,

and p+
f → p+

i . Eq.(J.20), is

Γ̃+
γ∗N =

(
1 +

∆/pf
2mN

)(
F1

(
γ+ − q+ γ+q−

2q+q−

)
+ iσ+νqνF2

κ

2mN

)(
1 +

∆/pi
2mN

)
(J.21)

In the real photon limit we have,

Γ̃+
γ∗N (Q2,q+→0) →

(
1 +

γ+∆−pi
4mN

)(
F1
γ+

2
+ iσ++q−F2

κ

4mN

)(
1 +

γ+∆−pi
4mN

)
=

(
1 +

γ+∆−p1

4mN

)(
F1
γ+

2

)(
1 +

γ+∆−pi
4mN

)
which reduces to,

Γ̃+
γ∗N (Q2,q+→0) → F1(0)

γ+

2
(J.22)
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Hence, the matrix elements of the EM current read as,

J̃+
N (Q2,q+→0) → ū(pfsf )F1(0)

γ+

2
u(pisi) = F1(0)

√
pf+pi+δsf si

J̃+
N (Q2,q+→0) → F1(0)pi

+δsf si (J.23)

The normalization condition acquires the form,

1

3

∑
sd,s
′
d

〈
p′ds
′
d

∣∣J+
∣∣ pdsd〉 = (pd + p′d)

+
GC(0)

−→ 1

3

∑
sd,s
′
d

1

2

∑
si,sf ,sr

∫
d2pr⊥dα

α(2− α)(2− α)
Ψ
s′d†
sf sr

(
F1(0)pi

+δsf si
)

Ψsd
sisr

(J.24)

where we have averaged over initial states (sd, si) and sum over final (s′d, sf )
78.

Taking one of the sums over deuteron polarization indices fixes, s′d = sd (orthogonal

states), and substituding (pd + p′d)
+ → 2p+

d , it becomes

2p+
dGC(0) =

1

3

∑
sd,sr,s1

∫
d2pr⊥dα

α(2− α)(2− α)
Ψsd†
d,s1,sr

(F1,p(0) + F1,n(0))p+
1 Ψsd

d,s1,sr
(J.25)

Since the charge FF of neutron vanishes at Q2 = 0, it follows that, F1,p(0)+F1,n(0) =

F1,p(0) = 1 = GC(0). Thus, in terms of LF variables we arrive to the following result,

GC(0)

F1,p(0)
=

1

3 · 2
∑

sd,sr,s1

∫
d2pr⊥dα

2α(2− α)
Ψsd†
d,s1,sr

Ψsd
d,s1,sr

(J.26)

where we have used the equality, 2− α =
2p+

1

pd
.

If in equation Eq.(J.26) we change the LF variables for k = (pr⊥, k3), then the

integral acquires a more familiar form, explicitly,

α =
2(er + k3)

(er + e1)
, k3 = (α− 1)

(
m2 + p2

r⊥
α(2− α)

)1/2

(J.27)

78 Note that the sum over the internal index sr is shown explicitly.
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In the center of mass frame, k = pr = −p1, the integration measure transform to,

d2pr⊥dα

2α(2− α)
=
d3k

Ek
(J.28)

where, Ek =
√
m2 + k2, and we find,

1

3

∑
sd,sr,s1

∫
d3k

2Ek
|Ψsd

d (k, s1, sr)|2 =
GC(0)

F1,p(0)
= 1 (J.29)

J.2 Wave Function Normalization from Baryonic Number

The current operator we have constructed is such that coupled to an EM probe, it is

an EM (transition) current. Nevertheless, the baryonic nature of the nucleon allows

for a normalization procedure based on baryonic charge conservation which is more

simple than the one using EM charge conservation.

We start by noting that the main interaction between the bound nucleons is the

residual strong force. Hence, Eq.(J.19) which describes the transition of deuteron to

constituent nucleons can be seen as a hadronic current. Within the approximation

in Fock space decomposition of deuteron as two nucleon bound state, the baryonic

charge is conserve during the interaction.

Explicitly, using the number density operator79 [24],

ρsdd (α, p⊥) =
∑
sr,s1

|Ψsd,sr,s1
d (α, p⊥)|2

(2− α)
(J.30)

79 This is the zero component of the matrix element of the current.
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Evaluating the integral of ρsdd results in the baryonic number for each deuteron

polarization, which is equal to 2 in this case, since each polarized state have 2

baryons (in this NN Fock component), explicitly,

Bsd =

∫
d2p⊥dα

2α
ρsdd (α, p⊥) =

∑
sr,s1

∫
d2p⊥dα

2α

|Ψsd,sr,s1
d (α, p⊥)|2

(2− α)
= 2 (J.31)

For the unpolarized case we have again 2,

1

3

∑
sd

Bsd = 2 (J.32)

Which is consistent with Eq.(J.26),

1

3

∑
sd,sr,s1

∫
d2pr⊥dα

2α(2− α)
Ψsd†
d,s1,sr

Ψsd
d,s1,sr

=
1

3

∑
sd,sr,s1

∫
d2pr⊥dα

2α

|Ψsd
d (k, s1, sr)|2

(2− α)
=
GC(0)

F1,p(0)
= 1

(J.33)

and also with Eq.(J.29), from where we get,

∑
sd,sr,s1

∫
d3k

2Ek
|Ψsd

d (k, s1, sr)|2 = 3 (J.34)
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