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The rapid advancement in sensors and their use in devices has led to the drastic

increase of Internet-of-Things (IoT) device applications and usage. A fundamental

requirement of an IoT-enabled ecosystem is the device’s ability to communicate with

other devices, humans, etc. IoT devices are usually highly resource-constrained and

come with varying capabilities and features. Hence, a host-based communication

approach defined by the TCP/IP architecture relying on securing the communication

channel between the hosts displays drawbacks, especially when working in a highly

chaotic environment (common with IoT applications). The discrepancies between

the requirements of the application and the network supporting the communication

demand a fundamental change in securing the communication in IoT applications.

This research along with identifying the fundamental security problems in the

IoT device lifecycle in the context of secure communication also explores the use of

a data-centric approach advocated by a modern architecture called Named Data

Networking (NDN). The use of NDN modifies the basis of communication and

security by defining data-centric security where the data chunks are secured di-

rectly and retrieved using specialized requests in a pull-based approach. This work

also identifies the advantages of using semantically-rich names as the basis for IoT

vi

ABSTRACT OF THE DISSERTATION

SECURING THE INTERNET OF THINGS COMMUNICATION USING 

NAMED DATA NETWORKING APPROACHES

by

Sanjeev Kaushik Ramani

Florida International University, 2021

Miami, Florida

Professor Alexander Afanasyev, Co-Major Professor

Professor Sitharama S Iyengar, Co-Major Professor



communication in the current client-driven environment and reinforces it with best

practices from the existing host-based approaches for such networks. We present

in this thesis several solutions built to automate and securely onboard IoT de-

vices; encryption, decryption, and access control solutions based on semantically

rich names and attribute-based schemes. We also provide the design details of solu-

tions to support trustworthy and conditionally private communication among highly

resource-constrained devices through specialized signing techniques and automated

certificate generation and distribution with minimal use of the network resources.

We also explore the design solutions for rapid trust establishment and vertically

securing communication in applications including smart-grid operations and vehic-

ular communication along with automated and lightweight certificate generation and

management techniques. Through all these design details and exploration, we iden-

tify the applicability of the data-centric security techniques presented by NDN in

securing IoT communication and address the shortcoming of the existing approaches

in this area.
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Chapter 1

INTRODUCTION

1.1 Background

The Internet of Things (IoT) vision conceives a connected world with seamless com-

munication between humans and things [RI17a]. This communication and intercon-

nection of the world‘s “things” is through the use of a common set of networking

technologies. However, a major roadblock in the IoT ecosystem is the high degree of

heterogeneity among the plethora of sensors that make the building blocks of these

devices. Realizing security in this non-standardized environment is a challenge that

has to an extent hampered the growth of IoT device use in daily life compared to

what was predicted in the last decade [Nor16]. The existing Internet architecture

which is the backbone of IoT communication is built as a host-to-host connectiv-

ity model which has showcased poor performance in situations involving multiple

interfaces, security regimes, mobility, intermittent connectivity, etc.

The IoT vision has over time shifted the focus of communication to being context

and content-aware with millions of smart devices coordinating and working towards

achieving their application goals. The traits of IoT devices include mobility, inter-

mittent connectivity, variable interfaces, and capabilities based on the applications

they are designed for and thus raise concerns on using the current TCP/IP-based

communication for such networks. In this work, we analyze techniques that can

be employed in secure communication among resource-constrained devices which

constitute > 70% of the IoT population.

To overcome the fundamental challenges in the ad hoc communication scenario

posed by IoT systems, we explore solutions based on the approaches of Information-

Centric Networking (ICN). Named Data Networking (NDN) which was introduced
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as an abstraction of networking is a prominent realization of the ICN-based data-

centric approach that is advocated as a part of the future internet architecture

funded by the US National Science Foundation. The inherent feature of the com-

munication paradigm is a shift from the five-decade-old Internet Protocol (IP) in

advocating a client-driven approach to exchange information. NDN succeeds in pro-

viding a secure, trustworthy solution to address the root causes of the fundamental

challenges with the use of semantically rich names as the driver of the communica-

tion without the need for addresses. This allows the application users and developers

to directly interact with the entities in the IoT ecosystem and thus eases the de-

ployment, configuration, and data exchange.

In this work, we understand and build on the NDN-advocated communication

model for IoT networks and applications with a specific focus on securing commu-

nication. Using the data-centric architecture of NDN we can ensure the IoT nodes

can operate in an “off-by-default” state until they explicitly either need or like to

share information with other nodes in the network thus conserving their power us-

age. Data-centric security mandated by the architecture adds to ensure that data

communicated in the system is secured (authenticated) and when needed encrypted,

thus preventing malicious information from entering and compromising the system.

It thus makes it possible to create a system with reduced risk of adversarial activity

and is successful in eliminating common attacks like Denial-of-Service (DoS), Dis-

tributed Denial-of-Service (DDoS), etc., which are highly prevalent in IoT networks

[SBL+16]. The flexibility provided by the approach aids in the possibility of ex-

tending the NDN security model beyond mere networking to securing the software

and hardware components of the system. The secured firmware along with secured

updates and messages can be ascertained by ensuring that no information commu-

nicated within and across the system is unforgeable and the content producer can

2



not repudiate the creation of the information. The contents of this thesis are thus

organized to discuss our exploration of the fundamental processes involved in the

IoT device life-cycle and describe the NDN-based solutions developed for onboard-

ing (secure bootstrapping), authenticating information (signing, verification, and

certificate management), and confidentiality and access-control.

1.2 Named Data Networking of Things - supporting IoT

Applications

Named data networking (NDN) is a prominent realization of Information-Centric

Networking and is conceived to be a future internet architecture that eliminates the

reliance on host-based information exchange. NDN provides a pull-based approach

for information retrieval with the “consumer” of data creating a specialized packet

called the “Interest packet” to request for the desired data chunk. The semantically

rich name associated with the interest packet is used to forward this request towards

a node that either produces the data or even has a copy of the data that it can send

as a response. This requested data is packaged in the form of a “Data packet” that

has the same name as the interest packet and the requested content. The names

used in the interest and data packets can directly be the application level names

which solves one of the fundamental issues with TCP/IP based networking where

the application names can not be directly used in the network layer.

In addition to the name and content, the data packet also carries a signature

field that has the signature of the content producer. This signature plays a vital role

in defining the data-centric security primitives of NDN with the data packet being

secured directly as against the channels that are used to deliver these packets as is the

case with the IPSec [KS05], SSL/TLS [DR08] that are used in the TCP/IP model.
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The signatures on the data ensure that any entity involved in the communication can

at any time verify the authenticity of the data packet. As an added advantage, the

signatures enable the data packet to be temporarily cached in any of the containers

without the loss of any integrity leading to the possibility of content delivery even in

conditions where connectivity is highly intermittent. Along with security primitives,

the specialized data structures used in NDN communication ensures that data can

be transmitted and received over any interface that the device is capable of using

(WiFi, Bluetooth, LTE, Zigbee, Zwave, etc.).

Inherent security support, the possibility of direct use of application names, data-

centric security, in-network caching of data packets, use of any available interface

for communication, etc. solves the fundamental challenges that are posed by highly

dynamic and ad-hoc networks like IoT networks. In this thesis, we explore these

benefits in detail along with the design of enhancements that can enable secure

communication in a connected ecosystem built using IoT devices.

1.3 Research Challenges

IoT devices have fundamental variations to the traditional legacy devices that are

supported by the current networks. IoT systems introduce highly resource-constrained

devices (power and computation) that operate in adverse non-typical environments

(being embedded into objects, immersed or buried), have high mobility, and thus

intermittent connectivity along with being highly heterogenous, manufactured by

different vendors, etc. The devices thus created may also have minimal or non-

existent user interfaces, limiting how users may interact/participate with them for

various operations including bootstrapping and configuration. IoT ecosystem thus

poses two fundamental challenges for the communication architecture supporting it.
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The first being the ways and means to provide local and global inter-connectivity

among the different devices. The second relates to securing the devices and com-

munication consistently across all messages and updates, storage, configuration,

on-boarding, and enabling effective access control techniques in highly intermittent

connectivity.

Extending the second challenge, the inherent questions that arise are: “Is it

possible for highly diverse devices from varying vendors to communicate locally and

globally without prior knowledge of the existence of other devices?”. With the

basic blocks of IoT devices being sensor and sensor networks, we also explore to see

“Can information in the form of updates/messages be shared and received securely

through any interface without establishing secure channels?”. The other impending

question that is to be addressed in this cyber-era with an explosion of information

is: “Can we control and manage what information is read and used by which entity

and can data be stored, shared, and processed securely in a highly untrustworthy

environment?”. IoT devices possessing limited power and computing resources make

it inevitable for the need to design a system that ensures their efficient utilization

while not compromising on the security and trust aspects. In this dissertation thesis,

we thus explore solutions to address the above-mentioned challenges by leveraging

the data-centric thinking advocated by NDN.

1.4 Research Objectives

This research aims to design security algorithms and solutions that can be applied in

conjunction with the NDN-advocated architectural primitives in securing the com-

munication of IoT devices within a network. The research identifies the fundamental

challenges in the current scenario that encompasses the entire IoT device lifecycle
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within a network from when it is onboarded to the network to when it is in opera-

tion within the network. This research also decreases the traffic in the network and

focuses on describing specialized techniques that can be used to automate the tasks

while improving the performance of the network.

As a part of this dissertation, we will discuss the design, development, and eval-

uation of novel techniques that are useful in various applications. The dissertation

focuses on the following three thrusts:

• Automated Secure Onboarding / Bootstrapping

Onboarding IoT devices into a network is a critical part of the IoT device

lifecycle in ensuring that a device joins the correct network and receives the

required cryptographic materials to continue secured communication within

the network. This process also ensures that the network is aware of the device

that is joining and hence can ascertain the legitimacy of the device. The

existing techniques to bootstrap such devices are static or involve the use of

increased network resources. The objective of the dissertation in this context

is the design of dynamic, automated trust establishment in trivial and complex

networks with minimal use of network and devices’ resources.

• Authentication Techniques

IoT applications built to use the NDN advocated data-centric security model

will exchange data packets that are signed by the producer of the content. Re-

peated use of keys and certificates by the producers in signing the data packets

can lead to in the long run leakage of key information if not secured well and

thus provide adversaries with an opportunity to wage targeted attacks. The

number of exchanges between the consumer and producer or other network

entities also increases drastically with every node trying to verify every data

packet. In scenarios where the network connectivity is intermittent, depen-
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dence on network entities for verification becomes infeasible. The objective of

this thrust is to identify techniques that can reduce network dependence and

provide a solution that can prevent exposure of the producer while still being

able to verify the authenticity of the exchanged data.

• Data Confidentiality and Access Control techniques

Controlling a device or system’s access to resources and cryptographic mate-

rial is of utmost importance. Unintended access, if provided to an adversary

can lead to catastrophic outcomes. In this thrust, we focus on identifying tech-

niques that can conform with the principle of least privileges while following

all the security requirements of the NDN-based IoT applications.

1.5 Research Contributions

In this dissertation to address the above-mentioned objectives, we have focused on

designing solutions that be used in IoT networks designed with NDN capabilities.

• We designed NDNViber which is an automated, dynamic bootstrapping tech-

nique for onboarding multiple IoT devices (even when they are placed in highly

unapproachable positions) using a vibration channel. NDNViber [RPA20] is

designed to use a “Commercial Off the Shelf (COTS)” android phone as the

controller to bootstrap multiple IoT devices that are equipped with an ac-

celerometer in the presence of a medium that can conduct vibrations. As a

part of this work, we also surveyed the possible channels that can be used for

bootstrapping devices and identified the security properties, advantages, and

disadvantages of each of the options.

• A rapid trust establishment technique [RA20b] using a request-response ap-

proach for short-term trusted communication in vehicular networks is devel-
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oped. Using this technique, vehicles that have no prior information about a

surrounding vehicle can for a short duration exchange information securely en-

abling applications like collaborative lane changes, vehicular platooning, etc.

This work identifies specialized naming conventions and queries that can be

used for computing cognitive and normative trust components and thus com-

pute the transient trust values. This work also discusses the security properties

of the proposed approach along with the threats and possible solutions to ad-

dress them.

• An authentication technique that reduces the dependency on the network by

using specialized policies and the attribute-based signature scheme was devel-

oped in NDN-ABS [RTT+19]. The design details are discussed for an illus-

trative smart-campus environment where conditional privacy can be achieved

along with reduced traffic to the network even while ensuring the NDN trust

schema can validate the proposed design. We also discuss the performance lim-

itations and techniques that can be used to overcome them in the production

environment.

• We designed CertCoalesce [RA20c] which is a method that the IoT devices

can use to generate, receive and use multiple valid certificates at once and use

either of them to sign the content they produce without any overheads. In con-

trast to the traditional approaches used for certificate request and retrieval, in

CertCoalesce, one request from the device can be used by the certificate issuer

to provide “infinite” (a large number) of short-term private keys/certificates

with limited storage requirements. The design is based on elliptic curve cryp-

tography and thus also ensures forward secrecy.

• We designed a specialized access control scheme using names in [ZYR+18].

This design supports data confidentiality by ensuring that content is encrypted

8



on production and the keys required to decrypt it are distributed correctly to

the specific entities that are authorized to access the information. Hierarchical

names are used to ascertain the granularity of access control and key distri-

bution is handled using the NDN enabled interest/data exchanges. This work

also explores the use of an Attribute-Based encryption scheme for improved

scalability and performance.

• The use of NDN in vertically securing the various operations of a smart grid

is described in [RA20a]. Secure communication among the various stakehold-

ers for the operations including power generation, distribution, consumption,

billing, and analytics is discussed. The use of data-centric security, data im-

mutability, and opportunistic in-network caching for enhanced grid operation

while providing the consumers with better quality of service (QoS), quality of

experience (QoE), and most importantly vertical security is discussed in this

work.

1.6 Dissertation Outline

The remaining chapters of this dissertation will focus on the various aspects of the

IoT device starting with secure device bootstrapping, authentication techniques,

data confidentiality, and access control inspired by NDN. In chapter 2, we discuss

the existing work and provide the literature review. Chapter 3 highlights the survey

conducted on various bootstrapping techniques and the design of NDNViber which

is an automated bootstrapping technique using a vibration channel. We also ex-

plore the need for rapid transient trust and the NDN-enabled design for achieving

this in a vehicular environment while identifying the security properties, challenges,

and potential solutions. Chapter 4 describes an authentication technique designed
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using attribute-based signature schemes to reduce network overhead and reliance

for validation while providing conditional anonymity to the content producer. This

chapter also describes the design details of CertCoalesce which can be used for re-

questing a pool of valid certificates in a single request along with the various security

benefits it provides. Chapter 5 presents a name-based technique for ensuring access

control and data confidentiality which can be enhanced by adopting attribute-based

encryption techniques. Chapter 6 describes the use of NDN for vertically securing

the various components, communications and operations of the various stakeholders

in a smart-grid system. Finally, we summarize the work, identify the limitations,

and future directions of research and conclude in Chapter 8.
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Chapter 2

Related Work

The commonly used techniques in current IoT architectures and frameworks for

communication is Bluetooth [SSKR], and ZigBee [All] with their primary focus being

device-to-device connectivity. However, each of these protocols is developed as silos

preventing their ability to interoperate with each other [SWA+17]. To interface

these technologies and the other internet services, current techniques involve the

need for a middleware (working as a translator). This drastically prevents the

development and innovation of IoT technologies. Thus, the growing demand is for

comprehensive frameworks that can integrate and manage different types of devices

and communication technologies to provide a simplified and effective user experience.

While current research on IoT security focuses on solving the fundamental issues

of IoT systems. These issues arise due to the architectural inefficiencies of the

currently used TCP/IP-based internet architecture. The host-based nature of this

approach is more than five decades old and incapable of handling the needs of the

edge-based and IoT networks that are moving towards context-aware and content-

aware computing. The architectural changes advocated by the data-centric ideas of

NDN [ZAB+14] solve a good portion of the fundamental issues. We thus explore the

techniques and ideas to enhance the working of the NDN-based IoT communication

with a specific focus on vertically securing the communication and reducing the

burden on the network.

Security in NDN is data-centric and highly reliant on the names and the signature

that is bound to the content in the data packets. The earliest work on securing

the network elements using a name-based approach was discussed by Smetters and

Jacobson in a PARC Technical Report in 2009 [JST+09]. However, a major part of

the research effort that followed focussed on exploring ways to provide a robust and
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highly flexible architecture to support all network activities. On a parallel front,

a series of research articles specific to security were published which identified the

performance benefits of the data-centric security in the presence of DoS, DDoS,

and Interest flooding and in general extending the security requirements of the

architecture [AMM+13, CCGT13, GTUZ13]. We focus on the publications that

discuss these security issues as they form a major chunk of the security challenges

in the IoT domain.

The initial implementations of an IoT-like system were discussed in the building

management system (NDN-BMS) [SDM+14] where the use of distributed network

elements was highlighted. The IoT toolkit that followed under the name NDN-

IoT [Ban] showcased the practical benefits of the use of NDN in IoT scenarios. A

comprehensive account of the design details and specifications in the adoption of

NDN for IoT was later provided by Shang et al. [SBL+16] explaining the name-

based networking of “things”.

Trust bootstrapping is considered is usually defined as an approach that can be

used to assign trust scores for devices and services that are new to the network. This

is also an integral part of the trust-building stage of any network wherein the nodes

either have very limited or no prior interactions. Existing literature related to this

aspect considered assigning pre-determined values as a default to any new entity and

then update it either by incrementing or decrementing relative to the entities activ-

ities and specified criteria as discussed in [BFL96]. Other existing techniques that

are identified utilize the reputation values attached to the devices/entities retrieved

from other devices that have interacted with that specific device.

The work in NDN-based IoT device bootstrapping is limited. However, boot-

strapping is considered a required aspect and is given emphasis even in the recent

works on IoT communication. The initial work on NDN-based IoT device boot-
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strapping schemes has the following takeaways:

• assume the presence of symmetric keys that are pre-shared for mutual authen-

tication among the device and controller [CCD16];

• embedding a pre-conceived PKI-based private key directly within the device

during its manufacturing [LZW+19] and

• scanning static patterns like barcodes or QR codes to initiate the bootstrap-

ping process.

The above-mentioned techniques and assumptions cater well to a large number

of IoT applications but will perform poorly in scenarios with restrictions in terms of

resource availability, lack of interfaces, difficulty in accessing the installed location,

etc. Moreover, the static nature of the approaches adds to the disadvantages when

we need to re-bootstrap the devices leaving them unusable when compromised or

misconfigured. The highly human-involved approaches make the existing techniques

not very user-friendly and augers the need for a dynamic and user-friendly approach

with no or minimal requirement for human intervention.

The work described in [BFL96] can be cited as one of the earliest works on trust

modeling. A more proactive approach to assigning new entities with reputation

scores is discussed in [Swa08] which highlights the reputation development among

peers in an environment conducive for collusion. Malik et.al, in [MB09], describe

an approach to realizing community-based bootstrapping. The high dependence on

community-based approaches and reliance on third-party entities is a major limita-

tion of these approaches. A user should be able to trust a service before its invocation

without requiring the existence of a community that evaluated the service in the

past. Feldman et.al, in [FC05] describe another community-based approach to trust

computation using a probabilistic approach that aggregates probability of the new

node to cheat. The main limitation here is the reliance on other entities to reflect
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on a new entity joining the node. In this dissertation, we explore the a design for

enabling transient trust with vehicular networks as a use-case that can address these

shortcomings.

After successful bootstrapping into the network, the devices will have to be

able to successfully communicate and authenticate messages it receives from other

entities. In most cases, the traditional signature schemes involve the need for obtain-

ing/retrieving multiple NDN certificates following the chain-of-trust for any entity

to verify the authenticity of the message. The NDN packet specification [NDNb]

provides the details of the current signature scheme and the ways to use it. Key

management and network overhead are issues identified with the current scheme.

The current scheme also does not provide a way to anonymously publish valid in-

formation which may be a requirement for certain applications. Group signatures

and identity-based approaches have been discussed by researchers as an option to

sign anonymously. Attribute-based signatures (ABS) built on the primitives of

attribute-based systems is a variation of digital signatures which is applicable use

cases where attributes are used. The general properties of ABS are defined by au-

thors in [LAS+10, MPR11]. In ABS-based systems, which is an extension of the

identity-based signature scheme, the signing entity (signer) is provided with a set

of attributes combinations of which can be used in the signing process and thus

provide unique advantages of producer anonymity. Thus, a scheme involving the

use of ABS in NDN could leverage the inherent benefits and provide a way to au-

thenticate the signatures used as a part of the data-centric security concept of NDN.

The applicability of identity-based and attribute-based encryption schemes in ICN

is explored by Tohru et al. [ANK+15], A M Malik et al. [MBO16], Mihaela et al.

[IZS13], and others.
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sent in the system, the next important part of the life-cycle of the IoT communica- 

tion is the manage the access of this information among the entities participating in 

the system. With the importance of names and naming conventions defined in the 

NDN architecture [ZAB +14], it is imperative of the many advantages of the names. 

Manipulation of the naming scheme and the flexibility in scaling to ensure granular- 

ity are important pieces that define the specifics of access control policies. However, 

the complexity of IoT systems and the sheer number can lead to scaling the system 

as a costly affair. This provided the basis for exploring the use of such ABE schemes 

in designing and enhancing the automated access control techniques. Extensive re- 

search on such access control along with integrity and non-repudiation, particularly 

ABE and ABS schemes, has neither been performed in the ICN community nor has 

it been demonstrated with deployments in security earlier. In this dissertation, we 

comprehensively use the best practices from all these works in defining a robust and 

highly usable communication scheme for IoT devices based on NDN.

Having explored the attribute-based systems, and authenticated the messages



Chapter 3

Automated Secure Bootstrapping

The proliferation of sensors and their use in the Internet of Things (IoT) environ-

ment has led to a highly connected environment. These inexpensive and connected

devices can function efficiently only if they can communicate with the other enti-

ties in the network and this is possible only after they can identify the trustworthy

networks and entities. The action of pairing such devices securely is the first and

foremost task in the IoT lifecycle which ensures that the devices can trust the in-

formation exchanged between them. In IoT terminology, this action is called device

onboarding/trust bootstrapping and is the first step of our exploration to secure

the overall IoT communication. Bootstrapping is usually a highly cumbersome pro-

cess, especially in resource-constrained and interface-less devices, which may not

be accessible even physically after installation. In this chapter, we discuss in brief

the various OOB channels and our proposed design of NDNViber that facilitates

automated and secure IoT device bootstrapping. Following this in the latter part

of this chapter, we discuss a design for the rapid establishment of transient trust in

a vehicular application using the cognitive and normative components in a request-

response-based approach.

3.1 Overview of out-of-band (OOB) communication chan-

nels

The traditional channels that are used for communication are often filled with at-

tackers eagerly plotting ways to compromise the systems. Thus, we explored the

possible auxiliary (out-of-band (OOB)) channels that can be used for pairing. The

exploration also focussed on the various properties that these auxiliary channels can
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offer with a specific focus on the security of the information being communicated.

The main motive to use an OOB channel is for exchanging cryptographic infor-

mation and thus enhance the systems‘ security. Figure 3.1 depicts a subset of the

possible modalities in which OOB channels can be used in an IoT-based smart envi-

ronment with an emphasis on securely bootstrapping these devices. In this section,

we survey such techniques and discuss the security properties they provide along

with a note on the vulnerabilities they expose.

Controller

Acoustic wavesHearing aid

z

Visual aid Barcode / QR code

Gestures

Haptics/Touch Gesture patterns

Wireless RF 

communication
BLE / Wi-Fi

Magnetic field Magnetometer

Figure 3.1: Existing OOB communication methods

A brief account of the taxonomy of the OOB channels for secure communication

in an IoT environment with examples of applications that use the channel aggregated

as a survey is as follows:

Bluetooth Low Energy (BLE) is a common choice for OOB communication.

Device Provision Protocol (DPP) [Wi-18] describes a use-case of BLE for secure

onboarding of devices. An important vulnerability of using such BLE-based pairing

is the large communication range which leads to a possible leak of information to
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malicious nodes that are eavesdropping on the channel. Also, the BLE protocol by

itself does not provide a proof of possession of bootstrapping keys in the auxiliary

channel.

Haptics/Touch Button Enabled Device Association (BEDA) protocol [STU07]

describes the typical use of haptics technique with a reliance on physical button

press patterns for bootstrapping. This is a very common approach with the patterns

translating to the shared secret with usability being a major concern. Visual aids

can extend the attack surface with the method having large possibilities of false

negatives. Also, the reliance on an interface makes it infeasible in certain IoT

applications.

Magnetic field technique Pairing devices using magnetic field values are dis-

cussed by Jin et al. [JSZ+15] where smartphones were paired using their magne-

tometer readings. The magnetometer data, device orientation, and position at that

instant of time are recorded and with the addition of ambient noise, a unique corre-

lated message is generated which plays a crucial role in pairing the devices. However,

the addition of bulky coils and difficulty in generating stable signals by manipulating

the magnetic field reduces their scope in IoT systems.

Visual techniques An account of the visible light-based approach is provided

by Kovacevic et al., in [KPČ16]. The main vulnerability of this method of boot-

strapping is that a malicious onlooker could view the flashing sequence and inject

or interfere with the sequences. Also, the need for specialized light sensors or even

cameras in some cases leads to bulky upgrades to devices that are not desired in

IoT scenarios.
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Audio techniques Modulated sonic frequencies and audio patterns can also be

used to perform bootstrapping. Soriente et al. [STU08] discuss a technique where

bootstrapping information is exchanged using different codecs that generate audio

that is nonsensical to humans. Audio techniques though can be vulnerable to DoS

attacks where the attacker can disrupt the communication using noise that interferes

and modifies the encoded audio. Another commonly used acoustic technique is the

use of ultrasonic frequencies as described by Mayrhofer and Gellersen in [MG07].

Ultrasonic approaches however need a highly controlled environment for effective

pairing and can easily be tampered with by third-party devices or physical obstacles

in the vicinity.

Vibration techniques Prior attempts to use vibration as a mode of communi-

cation for security purposes can be seen in [AS16, KLR+15, SUVA11, DLVZH09,

KFR09]. Lee et al. [LRRK18] describe an approach to enhancing the communica-

tion rate when using a vibration channel to pair devices. These articles discuss the

benefits of the use of vibration for secure communication and its role in alleviating

the threats of other techniques. Controlled vibrations can be effectively used if the

devices are very close to each other thus creating a reduced attack surface. However,

there are trade-offs related to the data rate and the bit errors that can occur due to

lack of synchronization1.

1A more detailed account of all the OOB channels along with their merits and demerits
for IoT-bootstrapping is discussed in the paper titled “NDNViber” which is published as
a part of the IEEE ICC - ICN-SRA Workshop in 2020
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3.2 NDNViber: Automated bootstrapping of IoT Devices

using vibration based auxiliary channel

Based on the outcomes of the above study, we identified that modulated vibrations

can provide a robust and dynamic approach to bootstrapping even highly resource

constrained devices which are devoid of interfaces or direct external contact. Thus,

we designed the NDNViber approach (Figure 3.2 which uses the semantically rich

NDN naming and a specialized encoding method, to provide a solution that uses a

vibration-based OOB channel for securely bootstrapping IoT devices. Our prototype

implementation involves a commodity (COTS) smartphone as the controller that can

bootstrap many small IoT devices that possess accelerometer sensors. The analysis

reveals the following advantages of NDNViber:

• real-time generation of initial secret eliminating the need for embedding private-

keys or certificates at the time of device manufacturing;

• requirement of the physical proximity of the devices and controller in the order

of < 1.5 centimeters 2 thus reducing the attack surface significantly;

• ability to bootstrap multiple devices simultaneously (with the availability of

appropriate medium);

• ability to bootstrap devices deployed in inaccessible locations that are hard to

reach (e.g., behind a wall along the pipes sensing for any leaks, etc.);

• ease of use of commodity Android phones as controllers without requiring any

additional hardware (i.e., via programing using the built-in vibration motors);

and

2Increasing distance, lowers the intensity of perceived vibrations and thus higher is the
probability of erroneous reception.
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• no additional (when already built-in) or a meager cost for accelerometers3, is

the only required component on the IoT device side.

Bootstrapping Information
Generate keys
Identify channel 
and frequency

Controller

Information Exchange 
over the channel

IoT Device

Multiple IoT devices 
embedded on a wall

Simultaneous 
Bootstrapping

Bootstrap 

hidden 

IoT devices

Figure 3.2: NDNViber based secure IoT device bootstrapping

3.2.1 Existing Bootstrapping techniques in ICN/NDN

Initial work on NDN-based bootstrapping schemes either (a) assumes the existence

of a pre-shared symmetric key between the device and the controller which is used

to achieve initial mutual authentication [CCD16]; or (b) expect the private key

of the PKI-based approach to be embedded and installed in the device when it

is being manufactured [LZW+19] and the controller scanning either a QR code or

other static patterns to initiate the onboarding. While these are extensively being

used, the above-mentioned assumptions become a major limitation in smart systems

used in futuristic homes. Consider the example of a smart thermostat which includes

hundreds of tiny temperature sensors and actuators embedded along the walls of the

house, air ducts, windows, and doors. One of the properties of such a thermostat is

the fact that it may not have any user interface and be completely inaccessible after

3Typical accelerometer sensors cost less than 1 USD
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the installation, yet requiring bootstrapping and, potentially, re-bootstrapping (e.g.,

after upgrading the controller or selling the house). In these cases, it is necessary to

have a dynamic and automated approach for bootstrapping.

The goal of NDNViber-based bootstrapping is thus to provide these smart but

highly resource-constrained devices with information about:

• which WiFi/BlueTooth/ZigBee network they should be connected to and what

are the network credentials;

• the trust anchor of the system (a cryptographic certificate of the trusted con-

troller) and any associated trust schemas [YAC+15c];

• the namespace under which they can publish data; and

• obtaining a certificate so the data created by them can be properly authenti-

cated in the network.

3.2.2 Bootstrapping using NDNViber

The complete NDNViber bootstrapping technique includes four stages (Figure 3.3,

three of which include communication over the vibration channel: pilot sequence

(vibro), trigger (hybrid), anchor (WiFi/Bluetooth/ZigBee), and ndncert (hybrid)

exchanges.

The technique is designed to have a pilot sequence that can target all devices

within the vibro range while acting as a (re-)activation mechanism for the IoT de-

vice bootstrapping by waking up the device to actively observe the vibration channel

and attempt to decode the modulated messages. After being informed to listen over

the channel, the controller initiates the trigger exchange constituting an NDN Inter-

est targeting all devices over the vibro channel. This interest includes environment

identity information (e.g., the namespace used for the smart house), auxiliary in-
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PILOT sequence (vibro channel, to all)

Trigger Interest (vibro channel, to all)
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Figure 3.3: NDNViber Bootstrapping Overview
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formation (including temporary encryption key), and necessary information for the 

device to connect to the desired WiFi, Bluetooth, or ZigBee network along with 

the request for the device identifier. On successful decoding, the IoT devices can 

connect to the target network and individually respond with the unique device infor- 

mation, including their serial numbers, temporary encryption keys, etc. The anchor 

exchange which follows is realized entirely over the primary networking channel 

using the information and temporary encryption keys mutually obtained from the 

trigger exchange. The purpose of the anchor exchanges, initiated by the devices, 

is to obtain the public key and certificate of the network, i.e., to ensure the device 

can successfully be authenticated for any future exchanges. Finally, the NDNCERT 

exchanges, again initiated by the individual IoT devices, run the NDNCERT proto- 
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corresponding private key, and obtain the NDN certificate for this key/namespace.

 While most of the protocol exchanges are realized over the traditional channels 

(not fully shown in the illustration in Figure 3.3), the key security part: security 

challenges to ensure vibro-proximity of the device, is done using vibrations. Even 

though the vibration channel will reach all devices in the range, each response is 

unique to the challenge-requesting device and is properly encrypted with device- 

specific keys making it a highly robust approach.

Naming Scheme

To leverage the name advantages of an NDN system, NDNViber directly uses NDN 

names (more specifically, Interest packets for the named data) as a trigger sequence 

to initiate (re-)bootstrapping (“TRIGGER”), control sequences to send the system’s 

trust anchor (“ANCHOR”) and initiate NDNCERT vibro-challenge (“NDNCERT”). 

The generalized naming convention NDNViber follows is “/ndnViber/[sequence- 

type]/[device-name]/[params...]”. The details of the components are:

• “/ndnViber” is the prefix name that the device and controller used to identify

 the communication to be a part of the NDNViber bootstrapping protocol.

• “[sequence-type]” identifies the sequence in progress to being either TRIG-

 GER, ANCHOR, or NDNCERT. This is very important for the exchange of

 appropriate information especially when we use this technique to bootstrap

 multiple devices simultaneously.

            

     

             

          

 

col [ZYAZ17a, ndna] to retrieve the assigned namespace for the device, generate the

            

     

             

          

    

            

     

             

          

 

            

     

             

          

    

• “[device-name]” denotes the unique name for the device in the operating envi-

 ronment. Examples are “FIU-PG6/142/duct-temp001”, “AA-house/washer-

 temp002” etc. The granularity can vary based on the number of devices de-

 ployed in the vicinity. We can thus have “CPW-SR/kitchen”, “FIU-PG6/

 MeritLab/142” etc.



• “[params...]” here represent the other parameters including the nonces, times-

tamps, information regarding channels for communication, etc.

Vibration Coding Scheme

It is common for IoT devices and other sensors to go into an idle state when not

sensing to save power and the pilot sequence triggers their monitoring of the channel.

The pilot sequence initiating the NDNViber approach includes vibrations from the

controller for a duration of 250 ms followed by an idle state of 25 ms (these values

can be altered based on the sensitivity of the devices and the sensors). NDNViber

trigger sequence follows the pilot. The information exchange is performed using

a variation of the on-off keying (OOK) technique with the duration being altered

instead of the amplitude4.

Table 3.1: Vibration durations Mapping table
Quad number 00 01 10 11

Decimal Equivalent 0 1 2 3
Vibration Duration (ms) 50 60 70 80

A common trend among most IoT applications is to use a mobile phone as the

single controller to manage all the devices and make them highly usable. Thus, our

initial version of NDNViber is designed to use a commodity smartphone running

Android OS as the controller. Android provides the option to control the vibra-

tion motors [vib] while designing applications. In our design, the vibration channel

is used only for transmitting the information from the controller to the device(s).

The bits of each octet of the packet’s wire encoding are grouped and independently

converted to a vibration duration value using a simple lookup table as shown in Ta-

ble 3.1. The mapped durations as seen, start from 50ms because general commodity

4OOK is one of the forms of amplitude-shift keying (ASK) modulation used to represent
data based on the presence or absence of a carrier
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android phones are assembled with vibration motors from different vendors and are

thus not precise for vibrations ≤ 50ms. To ease the identification of the vibration

durations accurately, between subsequent vibrations, an idle period of 20ms is in-

troduced. This idle period helps in (a) determining the end of vibration and (b)

providing the receiver enough time to process the received vibrations.

At the receiver end, the device measures the presence of an acceleration value

between two idle periods and records them. Acceleration values ≤ 0.1 m/s2 is con-

sidered part of the idle period and not a part of the encoded information. The

recorded vibrations are then rounded off to the nearest integer value using the

“round” function. The mapping table is subsequently used to identify the corre-

sponding equivalence of the decoded value. On completion of the transmission, the

device now has the entire information decoded. Figure 3.4 depicts the vibration

pattern as detected by the accelerometer associated with the device showing vibra-

tions that are a part of the encoded information and the introduced idle time. The

vibration durations in the figure decode to a value of “1032...”.

Figure 3.4: NDNViber Encoded Information as detected by the accelerometer asso-
ciated with the receiver
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3.2.3 Evaluation and Discussion

Design Considerations

The use of the duration of vibrations instead of the amplitude of vibration presents

the following advantages:

1. All android phones can be used as a controller since the duration is pro-

grammable in all versions of android whereas the amplitude can be pro-

grammed only in phones running newer versions of android.

2. The transmission error reduces significantly. A carefully selected value for the

idle period based on the sensi- tivity of the available controller and device can

provide optimal results.

3. The computational load on the resource-constrained de- vice decreases as pro-

cessing is limited to the round-off function.

4. Time synchronization does not become too critical after the pilot sequence is

identified.

Security Properties Analysis

The use of vibrations as a mode for communication ensures that the controller and

the device are in very close physical proximity of ¡ 1.5cm. Increasing this distance

leads to a drop in the accuracy of reception which leads to the exchange of corrupted

information. The drop in received signal power as the controller and device move

apart in the absence of a medium (like wood) is exponential. The proximity thus

ensures that the probability of an attacker intercepting messages or making any

attempts to tamper with the messages is very low.

An attacker can attempt to introduce random and rogue vibration signals to

disrupt the system and wage a Denial of Service (DoS) attack. However, the use of
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specific naming conventions alleviates the impact of such rogue vibrations as they

will not correspond to valid interest or data. The data-centric security leveraged

using NDN provides added security. The nonces and the timestamp that are ex-

changed with the messages also ensure the freshness and authenticity of the devices

and controller while also ensuring that replay attacks are thwarted. Every time a

device is to be (re-)bootstrapped, NDNViber being a dynamic approach, uses a new

set of message exchanges ensuring the completed requests invalid.

3.2.4 Performance Evaluation

The limited use of vibratory channels for communication and bootstrapping is be-

cause of the observed low throughput which is an outcome of (a) commodity smart-

phones (controller in our scenario) use the vibration motors for providing user notifi-

cations and thus response times are not considered too seriously; (b) android phones

have different vibration motors and thus the accuracy in terms of the duration of

vibration are not precise for values ≤ 50ms.

The target devices we consider have low computational capabilities, no interfaces,

etc. NDNViber thus employs a simple transformation of the data into vibration

durations for encoding data. The time taken to transfer a byte using the encoding

scheme described including the 20ms idle period ranges between 260ms to 380ms.

Even though this technique is slower than the other OOB methods, our initial

experiments yielded an error ratio5 of the order of 10−9. Figure 3.5 depicts the

vibratory signals sent by the controller (in blue) and vibrations sensed (in red) by

the accelerometer in the device. The variations in the duration are because of the

5We expect the group bootstrapping to be more erroneous because of the impact the
medium has on the communication and is a part of our future work
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possible addition of noise in the channel. These received vibrations are rounded off

thus eliminating the errors and aiding the correct decoding of the intended message.

Figure 3.5: Comparison of sent and received vibratory information

An important advantage of using NDNViber is the possibility of being able to

bootstrap multiple devices simultaneously. The requirement is the availability of

a conducive medium that can transmit the vibrations generated by the controller

to the target devices. There are inherent challenges that this brings up like (a)

interference among devices; (b) induced passive vibration by the medium affecting

the transmitted vibrations; (c) minor degree of acoustic leakage and attenuation;

(d) orientation induced errors, etc. However, the use of a controlled environment

allows the controller to successfully bootstrap the devices. We intend to explore this

extensively in the future.

In the following section, we will discuss a transient trust establishment approach

to initiate communication among multiple devices that have very limited or no-prior

interaction but will be in contact only for a very short duration for employing the

long process involved in building traditional trust values.
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3.3 Transient Trust Bootstrapping for NDN-Based Vehicu-

lar Networks

Secure communication among entities necessitates the establishment of trust. The

frequency of contact and the duration of pairing determine the need for either the

traditional computation of trust scores or a transient value that can initiate the

communication. Vehicular networks are a specialized IoT application where the

communication duration among vehicles is usually very short and the frequency of

such communication among the same entities is very low. This to a large extent lim-

its the applicability of the traditional long-standing trust management techniques.

NDN based on the data-centric architecture provides a highly conducive ap-

proach to design vehicular networks. The mobility support and request-response

type model of communication can be used to design a transient trust establishment

scheme that can provide a short-term trust value that can be used for various col-

laborative applications among the vehicles. This section highlights the use of ideas

inspired by the Swift Trust model and explores its use in a vehicular communication

application design based on NDN. With the proposed design, vehicles in the com-

munication range can quickly make short-term trust decisions for secure publishing,

consumption, and processing of data (e.g., to cooperatively analyze the nearby en-

vironment for potential safety issues). The proposed design employs a task-oriented

method of establishing trust based on request-response communication.

Trust among the communicating entities effectively determines the services or

applications that the entities are willing to accept or provide information to. At

a high level, trust can broadly be categorized under static/knowledge-based or

dynamic/interaction-based trust. The static/knowledge-based trust expects the

communicating entities to possess complete or partial knowledge about the other en-
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tity, e.g., gained based on prior encounters or from trusted third parties. Dynamic/interaction-

based trust involves entities willing to collaborate on a common task without any

prior interactions or the involvement of trusted third parties.

In traditional approaches to trust establishment, the communicating parties can

rely on pre-existing configurations— pre-configured sets of root Certification Au-

thority (CA) certificates and transitive trust in Public Key Infrastructure (PKI)

model—or dynamically build trust relations—using feedback or explicitly setting

trust decisions of certificate trustworthiness in Web-of-Trust (WoT) model. In a

highly dynamic environment like vehicular networking, these traditional methods

may not work. PKI and WoT usually require connectivity to infrastructure which

may not be feasible to maintain due to the mobility patterns of the vehicles. The

trust relationships thus defined are usually long-standing and not applicable to most

vehicular network applications. Existing literature on VANETs [RP09] suggests that

in 97% of cases, two vehicles come in communication proximity for less than 10 sec-

onds. In such scenarios, message dissemination by applications and services is highly

time-critical and thus needs trust computation on the fly with minimum involvement

of external factors.

In this chapter, we explore the applicability of social trust concepts of Swift

Trust [MRL13] in designing a transient trust model that can be used in the rapid

bootstrapping of trust among vehicles6. The problems we aim to solve using this

design are

• a technique for entrusting another vehicle (or entity) into performing a task

without any prior interactions with it.

6The contents of this chapter has been published in IEEE ICC Workshop (ICN-SRA)
[RA20b]
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• in a vehicular environment, perform complex collaborative tasks like a lane

change maneuver with the assistance of the surrounding vehicles

• identify the benefits of using the asynchronous communication model of NDN

in successfully passing messages even in the absence of infrastructure support.

The data-centric communication model with the built-in data-centric security

primitives offered by the NDN [ZAB+14] architecture provides unique advantages

for a large class of inter-vehicular communication scenarios [GPW+13]. In this sec-

tion, we will be focusing on the opportunity the vehicles are provided with to use

any of the available communication interfaces (e.g., WiFi or Bluetooth) to transmit

and receive data along with the support for in-network caching that enables robust

communication even in intermittent connectivity. Flexible naming eliminates the

dependency on mapping systems like DNS, allowing applications to use the network

in a semantically meaningful way and using the application names directly for com-

munication in the network. However, the application of NDN still requires a proper

bootstrapping of trust to ensure secure production, consumption, and processing of

data, which is the research objective we accomplish in this work. Our contributions

are thus threefold.

• This is the first attempt to use a design inspired by the swift trust model in

computing transient trust scores in a vehicular environment.

• We integrated the benefits of data-centric communication using NDN in the

dissemination of important messages.

• We defined a specific mechanism to ensure time-limited validity of the trust

scores and possible use of ledgers in cases where trust provenance is desired.
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3.3.1 Motivation

Maneuvering through traffic and lane changes is a common sight among moving

vehicles. Currently, such operations are totally dependent on the decisions made

by the person operating the vehicle. The decisions are made based on the traffic

conditions, assessment of the speeds of the surrounding vehicles (moving in the

direction of oncoming traffic), proper indications to alert the surrounding vehicles

and pedestrians regarding the lane change, etc. The number of parameters involved

in the decision-making showcases the important role that the human intellect plays

in this context. Even with the human operator, there is a need for a transient trust

in order to act as we are still dependent on the actions and indications provided by

the surrounding vehicles the operator of which we have to trust.

Figure 3.6: Collaborative lane changes

Futuristic vehicles are being designed to operate and make decisions autonomously

without any human intervention. This setup will need multiple interactions among

the vehicles to successfully perform a complex operation like a lane change maneuver

which involves multiple parties. The onus for trust computation and usage shifts

to the vehicles from the operators and these operations have to be completed in

a very short duration. Any miscommunication or false messages/actions in such a

situation can have catastrophic outcomes. The trust values thus computed for a

certain vehicle or group of vehicles may not be useful after the completion of the

action and thus is highly transient.
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We will use this lane change maneuvering as shown in Figure 3.6 as an example

to explain our design. This chapter describes our proposal of a model to compute

rapid transient trust based on task-oriented concepts.

3.3.2 Background on Swift Trust

The earliest work on introducing Swift trust was introduced by Meyerson [RDH09]

to explain the trust paradox in temporary groups. The groups under discussion

involve individuals who did not have any prior interaction but need to collaborate

to accomplish a common objective. Any temporary team has several common traits,

including:

• limited or no previous collaborations. In most cases, the entities may not work

again together after the specific goal is achieved

• final goal (is usually very complex to achieve individually), requires entities

with varied skillsets

• presence of tight deadlines for meeting the goals and objectives.

Swift trust has two components (a) cognitive and (b) normative (i.e., ideal or

standard) components. The cognitive components of swift trust depend on the

aggregated opinions of the communicating group about traits that are obvious.

These traits could be due to the social identities the entities possess or even self-

categorizations. Minimal or no prior interactions make this component of trust

computation highly critical as it leads to fostering the initial trusting behavior.

The normative components define a set of norms/guidelines that has to be met to

enhance the early trust behaviors to be more prominent and less erosive. Setting

mutually agreeable norms and meeting them improves the trusting beliefs that one

entity has on the other.
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Swift Trust

Cognitive 
component

Normative 
component

Figure 3.7: Swift Trust model

Swift trust is thus a type of subjective trust model [RDH09] where every node

computes trust values of the neighbors/service provider based on its interaction with

them. It is different from the objective model where reputation values propagate in

a network and entities rely on various forms of transitive trust rules. A basic model

of Swift trust designed on the basis of Harwood’s Swift Trust Model [Har12] is as

depicted in Figure 3.7.

For the scenario depicted in Figur 3.6 to be successfully accomplished, the model

is adopted such that the car sends out a signal to collaborate in the lane change. The

surrounding vehicles that receive this signal will aggregate the responses to calculate

the cognitive trust component. On receiving a response to the request, the car will

then provide tasks to the potential collaborators. The tasks are to be strategically

designed to be able to receive responses that are within certain guidelines. The

responses from surrounding vehicles for this task and the deviation from the defined

norms will determine the normative component for computing the trust. The trust

scores are the weighted sum of the cognitive and normative components. Once the

car has recorded a trust score above a defined threshold from all the surrounding

collaborators, the car will commit to doing the lane change.
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The detailed design to achieve short-term and rapid transient trust using special-

ized interest and data exchanges for NDN-based vehicular communication systems

is discussed in the following sections of this chapter. This design can be adapted for

any situation where such transient trust is required to bootstrap devices and ensure

that there can be a trusted and secure long-term communication with the device in

the future. According to the design, the communicating entities can at any point

in time attempt to re-verify the integrity of the results or even trigger the entire

process again to ensure that the communicating devices do not turn rogue in the

future. Such a random re-verification can be used in times of suspicion and ensures

that the devices in the network abide by the trust principles agreed upon and do

not turn malicious after a time interval and is supported by the famous prisoner’s

dilemma concept defined in game-theoretic approaches.

3.3.3 Design Details

In the trust computation, the design focuses on the calculation of both the cognitive

and normative components. In our application scenario, we expect the vehicles to

be equipped with all the standard recommendations identified for a smart vehicle

that is capable of communicating autonomously with its surroundings in the form of

V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastructure) communication modes.

The Society of Automotive Engineers (SAE) also recommends that all vehicles peri-

odically (at a frequency of a signal every 0.1 seconds) send out a heartbeat-like Basic

Safety Message (BSM) so that the surrounding vehicles can learn of its presence.

The BSM has a specialized payload that includes information related to the current

state of the vehicle including details of the velocity, acceleration, brake status, and

steering angle.
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Let us also consider a road transport route to have n lanes with m segments

in each lane. We assume vehicle A to be traveling in one such lane. Consider an

instance of a time when In any specific area in the lane (i, j) there are K vehicles.

The area is defined as 1 < I < N , 1 < j < M . Any vehicle k in the lane can receive

a message from the preceding or succeeding vehicles, say l where (l = 1, · · · , k −

1)and1 < k < K.

Each communicating party, (a vehicle) assumes the role of a possible trusted

entity with the desire to maintain a good reputation among other vehicles. While

occupying this role, they make a promise to the requesting entity to accomplish a

task at hand without any malicious intent.

As a part of this mechanism, each vehicle sends out an interest requesting the

BSM data packets from its neighbors. The surrounding vehicles on receiving the

interest will reply with their BSM data which will contain details about its current

state. The car that receives and aggregates these messages, can also verify them as

it can compute the relative velocity, acceleration, and other common surrounding

parameters and compare them with the received response. The proximity to the

correct value will provide a higher cognitive trust score.

The car that desires to perform a lane-change maneuver will formulate some

tasks based on the surroundings and the states of the vehicles it received responses

from. The car also defines the guidelines for performing the tasks. The car then

sends out an Interest packet requesting possible collaborators. The vehicles that are

willing to collaborate and receive the interest respond with a data packet accepting

a possible collaboration. The car then poses the formulated questions to the vehicle.

The responses are gathered and the normative scores are computed.

The cognitive component of the trust score is computed using the following

equation.
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Tcognitive = (TA + TB + TI)/S (3.1)

where

• TA depicts Ability based trust which is derived from either the sensor cal-

culations, the manufacturers’ certificate, or other means that highlight the

capability of the vehicle.

• TB depicts Benevolence based trust which is based on how prompt and precise

the responses are to the questions posed by the requester.

• TI depicts Integrity based trust which is based on the manner in which the

remote vehicle handles the interest messages, aggregation of the requests and

responses and the prompt retransmission of the time-stamps or nonces.

• S denotes the self-orientation referring to the current focus of the car and

what is its expectation as a response to the sent interest.
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Computes initial 
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task sets
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Test

Reputation / 
Trustworthiness

D
esires to m
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for a reward
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computation

Compares and 
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Input
Outcomes

Defines

Car A

Car B

Figure 3.8: Design details

The computation of the normative component of trust involves the risk that the

other vehicles are willing to take to accomplish the provided task. The performance

of the task as per the set guidelines also plays an important role. The computation
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of the normative component is based on the game-theoretic approach involving an

incentive to lure the surrounding vehicles to collaborate. A special case of prisoner’s

dilemma involving a donation game is used as the approach here. According to this

game, if a vehicle cooperates by performing the task, it is offering the requesting

vehicle with a benefit b which is the outcome of the task at a personal computation

cost c with b > c. If the vehicle declines to perform the task, it offering nothing.

If T is the temptation to perform the task, R is the reward on completion, P the

punishment for not meeting the outcome and S refers to no-loss or no-gain, then

based on game-theory, the collaborator will collaborate only if T > R > P > S.

Once the vehicle is convinced to collaborate and perform the task, the responses

received lead to the computation of the normative trust component and is computed

using the following formula:

Tnormative =
k∑

i=1

Tb(i)(ŵi) (3.2)

where k is the total number of tasks provided to the vehicle b. Tb represents the

normalized value of the responses provided by b such that 0 < Tb < 1. Weights for

each task are assigned by the developer depending on the complexity and compu-

tation involved in the task. It is to be noted that the value of Tnormative lies in the

range 0 < Tnormative < 1.

Once the cognitive and normative components have been computed, the overall

transient trust score is given by

Ttransient = Tcognitive ~ Tnormative (3.3)
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3.3.4 Simulation Scenario

In this section, we will explain the use of specialized NDN names for fulfilling the

communication requirements among the entities while describing possible vehicu-

lar networking applications and network messages to compute transient trust as

described in the design.

/SWIFT/East/PROBE/102318113015/CarA/Nearest?/(RSU_Distance)

/SWIFT/East/PROBE/102318113015/CarA/Nearest?/(RSU_Distance)/CarB
    Content: 1 mile; North East

Figure 3.9: Spatio-temporal task: Identifying nearest RSU

As an example for a formulated normative task, we consider a spatio-temporal

question requesting the distance of the nearest Road-Side Unit (RSU). Figure 3.9

shows the various exchanges between Car A and Car B. Car A sends out an interest

packet with the Probing request asking for the distance of the nearest RSU. The

interest packet has various components highlighting the application pertaining to

which the message is being transmitted, the direction and the timestamp at which

the packet is transmitted, and finally the request shown by “/Nearest?”. Any car

that receives this interest packet and is willing to participate can reply with the

appropriate content. Car B, which has received this interest packet, replies with

the content that states that the nearest RSU is at a distance of 1 mile in the North

Eastern Direction. Based on the guidelines set, Car A computes the value of Tb for

Car B.

Similarly, Figure 3.10 depicts another complex task that can be used by the car

to compute the normative component of swift trust. Car A in this instance sends out

an interest packet requesting the surrounding vehicles to perform a pattern/image
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/SWIFT/East/PROBE/102318113015/CarA/Visual_Match?
     Param: /CarA/Capture/Images/SpeedLimit_SignBoard/_v=15

/CarA/Capture/Images/SpeedLimit_SignBoard/_v=15/s=0

/CarA/Capture/Images/SpeedLimit_SignBoard/_v=15/_s=0

/SWIFT/East/PROBE/102318113015/CarA/Visual_Match?/CarB/_v=424
   Content: <match results>

/CarA/Capture/Images/SpeedLimit_SignBoard/_v=15/s=1

/CarA/Capture/Images/SpeedLimit_SignBoard/_v=15/s=X

...

/CarA/Capture/Images/SpeedLimit_SignBoard/_v=15/_s=1

/CarA/Capture/Images/SpeedLimit_SignBoard/_v=15/_s=2

...

Figure 3.10: Visual Matching task

match of the specific signboard. On receiving such a request, the interested cars

respond with interest packets requesting for the image to be matched. Car A sends

out the data packet with the image it wants the surrounding cars to work. Car B,

one of the cars interested in performing the computation on receiving the image from

Car A queries its internal sensors (like a camera) to capture the particular image

in question and thus use it for the matching process. Car B then would perform

the matching operation and return the result to Car A as a data packet with the

content specifying if it is a match or not. Car A could alter the images being sent

and based on its knowledge of if the image/pattern should match, can determine

the trustworthiness of the Car that responds.
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 After all the tasks have been completed, the vehicle computes the trust scores 

based on the cognitive and normative component values it has aggregated for a 

particular vehicle. If the trust score thus computed exceeds a set threshold defined 

by the developer, the car will transmit an interest to collaborate in a lane change. 
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compared for reciprocity and thus lead to building long-standing reputation values.

3.3.5 Security Properties and Threats

In vehicular communication environments, we encounter malicious nodes that intend 

to attack and bring down the system/network. Deploying an NDN-based approach 

handles some of the attacks. However, the content-centric approach raises the pos- 

sibility of encountering newer and more complex attacks/threats. A list of possible 

threats/attacks with potential counter-measures is provided below.

Denial of Service (DoS) Malicious vehicles could send multiple queries to spam 

the network. This makes the network unavailable for legitimate users requesting 

data at the same time. The outcome is an increase in lost packets and exchange of 

NACK packets in the network. NDN solutions to counter the DoS and Distributed 

Denial of Service (DDoS) attacks as highlighted in [CCGT13, GTUZ13]. Other 

solutions include limiting the number of outgoing interests to a threshold above 

which the vehicle cannot transmit new interests until their existing interests have 

been satisfied.

Replay As explained earlier, every vehicle can assume multiple roles depending on 

the scenario. A vehicle can transmit interest packets with the intention to identify 

trustworthy neighbors and simultaneously be answering the requests of other neigh- 

bors. There is thus a possibility where some of the vehicles replay the responses 

from other vehicles to gain a trustworthy status. Timestamps along with nonce’s 

and other freshness metrics are possible counter-measures.

The trust scores thus computed for individual vehicles can be stored in a ledger and



Collusion Vehicles with malicious intent can operate alone or with the help and

support of other surrounding peers to either wage any or multiple of the attacks

mentioned above trying to break down the network. A simple example could be in

vehicles trying to falsify information and gain access to the network.

Fake Data Injection (Cheating with Sensor Information) Attackers try to

alter their perceived position, speed, direction, etc. to escape liability, notably in

the case of an accident. In the worst case, colluding attackers can clone each other

and harness the full trust of the target vehicle.

ID disclosure To track the location as in a Big Brother like scenario, wherein

a global observer constantly monitors trajectory information of targeted vehicles.

This data could later be used to profile the user and try to infect the vehicles with

malware.

In this chapter, we discussed the need for secure communication among social

objects and the requirement of transient trust to initiate communication. We also

identified a task-oriented approach to accomplish short-term transient trust among

entities that have had no prior communication.7

3.4 Summary

In this chapter, we discussed two approaches towards trust-bootstrapping of entities

in an IoT network. We surveyed the various options available under the vast number

of out-of-band auxiliary channels that can be used for the exchange of cryptographic

material required for successful bootstrapping. With NDNViber, we designed a dy-

7The security and privacy issues specified in the paper offer many open questions to
be addressed and is a motivation for our future work
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namic, automated technique to onboard multiple devices simultaneously in devices

with no interfaces and even in scenarios where the devices are installed in loca-

tions that are unapproachable. As a part of this work, a new encoding technique

was introduced that leads to very low errors in the transmitted information. The

vibration-based channel used decreases the attack surface significantly and also en-

ables the use of a commodity android device as the controller.

Furthermore, we also discussed a technique for establishing short-term transient

trust among vehicles in a vehicular network that can be used to initiate message

exchanges and hence play a vital role in securely performing complex collaborative

tasks like lane changes, platooning, etc. The proposed request-response-based ap-

proach to compute cognitive and normative components for final trust evaluation

can be applied for any network involving communication among social objects that

have not had any prior interaction.
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Chapter 4

Authentication techniques

NDN [ZAB+14, ABR+18], by design, provides inherent security features, such

as data integrity and provenance as well as producer’s trust assessment, through

data signatures and the NDN trust schema [YAC+15b]. The NDN cryptographic

signatures of packets at the network layer ascertain authenticity. However, the

traditional RSA and ECDSA public key signatures that are used currently require

obtaining the signer‘s NDN certificate (and, if needed, the next-level certificates

of the trust chain) to validate the signatures. This mechanism as defined in the

NDN packet specification [NDNb] has two distinct disadvantages/problems (a) the

communication channels must be always active in order to retrieve the certificates,

which is not always true in IoT systems1; (b) the certificate identifies the individual

producer and thus producer anonymity cannot be guaranteed if necessary. In this

chapter, we study these two problems and propose an NDN attribute-based signature

(NDN-ABS) mechanism as a potential solution for the IoT environment wherein

devices that have joined the network can produce and authenticate the content they

share. We also propose the retrieval of multiple simultaneously valid certificates in

the design of CertCoalesce.

4.1 NDN-ABS: Attribute based Signature Scheme for Named

Data Networking

To address the issue of network dependence for signature verification and to ensure

conditional anonymity of the data producer, we propose a novel signature scheme

inspired by the attribute-based signature techniques. With the approach proposed

1IoT devices tend to hibernate often to manage the limited power and resources it
possess
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in NDN-ABS, consumers (IoT devices or controllers) can verify the signature and

ensure integrity and authenticity of the produced and communicated data with-

out the need for any additional information from the network, provided they are

provisioned with the attribute authority’s public parameters (i.e., NDN-ABS trust

anchor). Every entity in the system, requests the public parameters from the au-

thority only once and then install and stores them (e.g., in persistent storage for

reuse). Moreover, the authority (the controller or data owner) has public keys that

are constant and do not change irrespective of the number of attributes used in the

signature generation.

NDN-ABS provides a system where neither signatures nor certificates can be

used to correlate a set of data to a single entity thus ensuring data integrity and

provenance while still being able to preserve the anonymity of individual publishers.

A system deployed to use NDN-ABS ensures that neither signatures nor certificates

generated and used can be correlated to a set of data from an entity. The data

producers have the flexibility to sign data using attributes of varying granularities,

revealing more or less (conditional privacy) about themselves, as required by the

system design. The traditional identity-based signature schemes proposed in [Sha84,

ANK+15, MBO16, IZS13] cannot provide producer anonymity which is a major

contribution of the proposed scheme.

In particular, for IoT applications, the devices can sign data merely with “<

Registration >” and “< Location >” attributes; while the controller can sign with

“‘‘Namespace’’”, “ControllerID” or other corresponding attributes.

Our contributions in developing NDN-ABS 2 are five-fold:

• We designed NDN-ABS by integrating ABS signatures as part of NDN protocol

operations: (a) defined a new signature type; (b) data formats and naming

2The detailed design and contributions are specified in the article [RTT+19]
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for ABS elements (public parameters of the attribute authority); (c) naming

structure for NDN signature key locator, identifying authority and signing

policy; and (d) defined how NDN trust schema can validate attribute-based

signatures.

• We defined a specific mechanism to ensure the time-limited validity of NDN-

ABS signatures, approximating validity periods of traditional certificate-based

signatures.

• We created the first comprehensive prototype implementation of the ABS sig-

nature mechanism, which was proposed by Maji et al. [MPR11] in 2011, but,

to the best of our knowledge, did not have a standalone codebase support3.

• We evaluated the ABS signature performance overhead and proposed potential

ways to optimize signing and verification in production environments.

• We discussed NDN-ABS in the context of multiple attribute authorities, ABS

signature revocation strategies, and NDN-ABS adoption challenges.

4.1.1 Motivation

The mandate that all NDN data packets are signed makes the proposed signature

scheme applicable for many ICN applications apart from use in IoT environments.

One of the expected features of IoT applications is its reliance on ad hoc communi-

cation that is enabled by ICN/NDN technology. The existing signature mechanisms

have these two distinct disadvantages pertaining to IoT scenarios:

• with the possibility of ad hoc connectivity, there is no guarantee that keys to

verify data (the certificate chains) will still be available after retrieving the

data; and

3Our implementation is based on code by Mauri Miettinen [Mie], that includes only
the basic ABS framework.
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• the corresponding public key of the signature can be used to identify individual

data producers unless the same private key is shared among different users

(which is a dangerous practice).

When using NDN-ABS, these two problems can be effectively solved. For exam-

ple, the smart-home owner can act as an attribute authority (AA) to issue attribute

secret keys (ska) to authorized entities4:

• controllers, sensors, actuators, devices, network elements, and other entities

can receive “[device-name]”, “[ID]”, “[capability]”, and other attributes by

registering and bootstrapping into the home network;

• edge devices can be configured with “[home-name]”, “[unit-id]”, etc., obtained

from responsible personnel/entities; and

• guest devices can receive the “guest” attribute if required in the system to

verify when they are present in the smart-home site.

In addition to attributes, the authority also publishes its public parameters data

packet (“PubParams”) that act as the trust anchor certificate, which can be provi-

sioned on the devices during attribute request or through dedicated bootstrapping

protocols [MTM18] one of which was described in the previous chapter. With this

initial setup, IoT and edge devices can start publishing data that can be reliably

authenticated. For signing, the application needs to define a policy predicate, e.g.,

a set of attributes combined with “AND” and “OR” operations (e.g., “[house-name]

AND ([capability1] OR [capability2])” or “[house-name] AND [unit-id]”), which,

along with the attribute signing keys, can create a verifiable signature. For verifica-

tion, the receiver just needs to know the producer’s claimed policy predicate (which

is identified in the data packet itself) and the attribute authority’s public parame-

4Note that the specific mechanism to determine which attribute can be used by which
entity is outside the scope of this chapter and the current NDN-ABS framework.
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ters (which, as mentioned above, is already known). This effectively addresses the

first problem of traditional signatures (Figure 4.9).

Network

Storage

Compute

Get-Pub-Params

Can verify as long as public 
parameters of authority are 
known / configured

Verifier

Figure 4.1: Ease of verification using NDN-ABS

The specific attributes used in the policy predicate allow the producers to reveal

or hide the identity (actual identity or a pseudonym) of the individual producer. The

properties of ABS construction guarantee [MPR11] that (a) signatures are unforge-

able; (b) two data packets signed by the same producer and with the same policy

predicate cannot be linked to the producer unless the producer explicitly identified

himself in the predicate, and (c) two users cannot combine attribute private keys

(ska) to create a signature with the claim predicate that covers both user‘s attributes

(collusion resistance property). In other words, it is not possible for device D1 that

has skah for “[humidity]” attribute and device D2 that has skat for “[temperature]”

to collude and sign with the policy “[humidity] AND [temperature]”. With these

essential properties, NDN-ABS provides a way to ensure the anonymity of the in-

dividual from the edge-computing entity by the creation of an anonymity set using

the same attributes. This approach is different from the common edge computing

services which currently run on edge resources in a sandbox environment wherein
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data is received from the owner or device using its attributes. NDN-ABS thus can

realize the desired level of conditional privacy, as illustrated in Figure 4.8.

Policy: 
‘sensor’ OR …

A =  {sensor, … }
Verifiers

signs

Signed 
by

Policy: 
‘sensor’ AND ‘living_room’

A =  {sensor, living_room,…}

Producer 
Pool

Verifiers

signs

Signer:
• In group with A
• Not in group with A’

A’ =  {sensor, bedroom,…}

(a)

(b)

Producer Pool

Figure 4.2: Conditional privacy using NDN-ABS: (a) Verifier unable to decide the
identity of the signer; (b) Verifier can identify the group containing the signer

To summarize, the main benefits of NDN-ABS are (a) the system can be designed

to provide conditional privacy wherein the amount of detail revealed about a data-

publisher can be controlled using the attributes used to sign the content; and (b)

the data can be verified without the need to retrieve any additional information,

such as keys in the certification chain.

4.1.2 Related Work

Attribute-based signature [MPR11, LAS+10] is a variant of digital signatures made

applicable for situations involving the use of attributes. ABS is an extension of the

identity-based signatures, which generalizes the signing entity (signer) with a set of

attributes. The identity-based signature schemes have their own set of advantages

but will not be able to provide producer anonymity which is a major achievement
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of the ABS scheme. ABS and ABE use similar mathematical concepts of bilinear

pairing and monotone span programs to define signature and encryption policies,

but they substantially differ in the specific algorithmic steps.

Some important terms related to ABS are as follows:

• Attribute Authority (AA): The authority is involved in the generation

of public parameters pk and generating and supplying signers with the secret

keys ask for attribute sets A that correspond to signers‘ authorized properties.

The controller (or homeowner) can act as the AA. In the proposed NDN-ABS

scheme, the AA is required to be online during the generation of the public

parameters and when there is a need for re-keying or revocation. In all other

instances, the system can work seamlessly even if the AA is offline5.

• Signer : The user creates message signature σ with a policy predicate Υ that

is defined over a subset of attributes A using ask obtained from the attribute

authority. In the IoT scenario, we expect all the devices to sign the data that

they publish and NDN-ABS provides a means to do such signing anonymously

yet verifiable.

• Verifier : The users who verify message signatures σ using public parameters

pk of the authority (e.g., pre-provisioned and trusted) and the policy predicate

Υ (e.g., extracted from the message). The IoT devices, controller, and the

other service providers and users will have to verify the content published by

the devices for the service to be provided seamlessly.

• Policy Predicate Υ: A boolean-valued logical function that is constructed

by combining attributes A using “AND”, “OR”, “NOT”, and threshold gate

operations which is a logical claim of the signer of possessing a set of attributes.

5Rekeying overhead and other related details are documented in literature and are not
discussed as a part of this paper as we are not attempting to solve this and does not have
too much relevance to ICN.
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4.1.3 NDN-ABS Design

Overview

The functionality of the attribute-based signature scheme depends on the attribute

authority who is entrusted with the responsibility of distributing attributes to other

users (producers, consumers, forwarders, intermediate nodes) involved in the system.

In the description, we use a single attribute authority, but our design generalizes to

multi-authority systems as well.

(1) Setup à Generate 
pub params

(2) Request &
install public 

params

(3) Request attr. 
secret signing key 

Producer / 
Publisher role Consumer role

(4) Sign data 
packet

(7) Verify 
signature on 
data packet

(5) Signed 
data packet

Attribute Authority (6) Request &
install public 

params

Figure 4.3: Overview of NDN-ABS

Figure 4.3 depicts a typical ABS scenario that begins with the generation of

public parameters by the AA. These are further published as data packet(s) and

provisioned or retrieved by all parties. However, this process is performed only once

by the authority and the parameters do not change, except when rare “rollover”

events similar to root key change in today‘s DNSSEC occurs. In subsequent steps,

the signers request and retrieve the public parameters and the secret signing key for

attributes, e.g., using a modified version of the NDNCERT [ZYAZ17b] framework.

To verify signatures, the consumers extract information from the Data packet’s
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KeyLocator field containing the name of the attribute authority associated with

the signature and the claim predicate of the signature6. The validity of an NDN-

ABS signature ascertains that a producer, whose attributes satisfy the predicate, has

indeed signed (endorsed) the message. A more elaborate design with all the steps

and the associated algorithms is discussed in the paper by Ramani et. al. [RTT+19].

4.1.4 Adversary Model

The primary motive of any adversary in the NDN-ABS system would be to either

• try to forge a signature with a predicate/policy that does not satisfy her/his

assigned attribute set.

• dissect the signature to get hold of the attributes in the predicate/policy to

identify the specific individual who signed the message and thus breach the

privacy.

NDN-ABS signatures are unforgeable owing to the condition that an adversary

will not be able to generate a signature that will satisfy a given predicate if she/he

does not possess the attributes (u∗) that satisfies Υ(u∗) = 1 [MPR11]. Moreover,

a trustworthy AA will not provide the attributes that do not correspond to the

said user to be used in the extraction of the secret signing key. This argument also

provides NDN-ABS with resiliency to collusion attacks which is a situation wherein

a group of entities with malicious intent pool their attribute sets and generate pred-

icates that match the one generated by the legitimate signer to sign the data and

thus use it to wage an attack.

6The numbers highlighting the steps in the figure are just a representation and the
steps pertaining to the generation of public parameters, the request and installation of
them are performed only once for an authority and do not repeat every time a data-packet
has to be signed or to verify the signature.
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From the privacy point of view, the claim-predicate rule that is used as a basis

for the signature goes by the assumption that as long as the claim is satisfied by the

said predicate, the Boolean output is an Accept / True and does not reveal anything

more about the individual signer. Moreover, the signature takes in the tuple which

includes the data packet and the predicate along with the pk and the ska. Thus,

even if the adversary manages to get access to the signing secret key, the adversary

can not cause much havoc since the signature is independent of everything except

the message and the predicate. Related work by Maji et. al [MPR11] that discusses

the ABS constructs gives detailed security proofs describing the inherent advantages

of using the ABS scheme and is applicable for the NDN-ABS design.

4.1.5 Evaluation

Attribute-based signature schemes have been discussed in many works earlier. How-

ever, we were the first to implement a comprehensive Python library [RA], to evalu-

ate the performance of NDN-ABS in terms of the time it takes to sign and verify (in

milliseconds) as well as the signature size. To run the experiments and evaluate the

performance of the implemented scheme, as described in Figure 4.4, we use various

platforms running the implemented NDN-ABS library.

Signature Cost Per Attribute

Figure 4.4 depicts the results from 10 runs of the implemented library for experi-

ments with measurements averaged over 64 ABS signatures each time on different

platforms. The results depict the mean values; we observed that the standard de-

viation is very small. The results also show the variation of time for the signing

and verification operations for a various number of attributes. The time for signing
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and verification grows super linearly (the growth is quadratic when the policy is

generated by combining the attributes using the “AND” operation as is the case

in our evaluation setup). As shown, the verification process incurs a higher cost

compared to the signing process. Figure 4.4 also highlights the varying signature

size with the increase in the number of attributes and the adjusted overhead per

signature. Scaling the number of attributes involved in the signature process results

in a bigger predicate, which consequently increases the signature size.
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Figure 4.4: Cost for signing and verification using NDN-ABS (Server: Intel i7
4.00GHz, 62.8 GB RAM; Macbook Pro: Intel i9 2.9GHz, 32 GB RAM; Laptop:
Intel T2300 1.66GHz, 2.4 GB RAM; Raspberry Pi 3: Raspbian, ARM v7 1.4GHz,
0.9 GB RAM)

As depicted in the results, the NDN-ABS signature scheme incurs a substantial

computational cost, especially on limited resource platforms like the Raspberry Pi

3 which is the most commonly used platform for IoT system setup. In our eval-

uations (not shown due to space constraints), NDN-ABS signing/verification is at

least two orders of magnitude slower than the same operation using RSA. However,

with limited policy size (2-3 attributes), aggregated signing (if possible), and future

implementation optimizations, we believe NDN-ABS can be a very efficient signa-
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ture scheme especially in scenarios where the specific advantages of the scheme are

of prime importance.

Performance of the Optimized Signing

To optimize the cost for signing and verification, we ran the experiments on a test

input file of size 10MB. Instead of signing the hash of each packet, hashes of several

packets are composed into a manifest (a manifest can have a chosen number of

packet hashes). These manifests are signed using the proposed NDN-ABS scheme.

Policies generated using a varying number of attributes are used in realizing the

signatures. For each such generated policy, we ran 10 iterations and observed that

the output values were very consistent.

Thus, the signer at the time of production can opt for one or many of the

following optimization choices

• a policy that uses required attributes and is not too long,

• create a manifest with appropriate group size and sign the manifest instead of

signing every data packet,

• hardware acceleration techniques that can provide improved performance.

The manifest approach can also be used to amortize the cost. Another approach

to reducing the amortized cost will be using a third attribute that encompasses

multiple attributes in the policy (e.g., “[attr1-attr2]” instead of “[attr1] AND [attr2]”

policy).

Figure 4.5 shows the mean and confidence intervals for 10 runs of the experiment.

The experiments were run with manifests having a varying number of implicit di-

gests. It can be observed that the signing and verification times decrease drastically

as the group size increases.
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Implementation Optimization

To the best of our knowledge, our work is the first comprehensive prototype im-

plementation of the ABS scheme proposed by [MPR11] with a basic adaptation of

the ABS scheme from [Mie] and thus, we do not have any reference to compare

with. We evaluated the performance of available implementations of attribute-

based encryption (ABE) because the underlying computations are similar even

though the specific constructs differ. We compare the existing CP-ABE libraries

[Zeu, SA, JB, Agr, Wan], which have been implemented in various languages show-

casing the time taken for key generation, encryption, and decryption operations for

scenarios with 10 and 30 attributes. Figure 4.6 depicts the evaluation results of

running the experiments in a standalone system running Ubuntu with an Intel i7

4.00GHz processor and 16 GB RAM.

Even though the experimentation was in a device with better capability than

IoT devices, the results can be consistently extrapolated. The results show that

OpenABE is consistently the most efficient implementation (in C++) across all op-

erations. The common trend shows that the key generation and encryption are costly

operations as opposed to often cheap decryption operations except for the BSWABE

(Python) implementation. We also noticed that the implementation language plays

an important role in the efficiency of the system.
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Overall, from the results presented above, we observe that the overhead numbers

of NDN-ABS can be significantly reduced by a more optimized implementation. We

also expect that incorporating hardware acceleration mechanisms can provide a

significant boost to the performance and make the NDN-ABS signature an even

more viable option to be used in production.

4.1.6 Discussion

Multiple Attribute Authorities

Practical applications of using attribute-based signatures will involve users receiving

attributes from multiple attribute authorities. This also works as a solution for the

issue wherein a single attribute authority in the system can be a bottleneck or a

single point of failure when they are compromised. However, there may not exist any
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mutual trust among these attribute authorities and there can be situations where

an attribute authority may not be aware of the presence of another.

The proposed NDN-ABS scheme can work seamlessly in an environment with

multiple authorities without the need for the addition of a third party or external

entity as discussed in earlier works [LW11, CZWS12, KK18]. This will prevent the

users from colluding with other users and perform any malicious activities in the

system. The public parameters that are generated can by themselves act as au-

thority ”certificates”. It can either be trusted as a pre-configuration (based on a

trust anchor) or signed by a higher layer authority. Such linkage can be easily real-

ized in the NDN-ABS design using the trust schema as described by the authors in

[YAC+15b]. In other words, the trust schema does not have to include public pa-

rameters of all authorities as trust anchors, but only the higher-level ones. The rest

can be automatically taken care of during the automated schema-based validation.

Revocation strategies in ABS

The motivation for introducing revocation in the system is two-fold: (i) revoking the

compromised private keys and attributes and (ii) revoking the users’ attributes that

have been terminated. The compromised key and terminated attributes should be

identified, eliminated, and potentially replaced with new credentials. The existing

attribute revocation techniques, in general, are classified into three groups; time-

based revocation, revocation using a trusted third party, and using revocation lists.

Among all, the most common attribute revocation approach is extending users’

attributes with an expiration date. Time-based revocation, in general, requires pe-

riodic interactions between the users and the authority for obtaining fresh creden-

tials [PTMW10]. In [BGK08]. This is an aspect we explore in the following section

of this chapter which described the details of a Butterfly-key expansion-based ap-
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proach for automated generation of multiple certificates and distribution that can

support the functionality of IoT systems as well.

4.2 Certificate pools for IoT applications

Named Data Networking (NDN) architecture advocates a data-centric security ap-

proach, which relies on the public key signing of the data packet to maintain data in-

tegrity and to ensure authenticity. From the perspective of least privilege separation

and limiting exposure of individual keys, it is desirable to have certificates that have

short-term validity, thus eliminating the need for complex revocation mechanisms.

In traditional public-key cryptography techniques, entities generate public/private

key pairs, followed by corresponding certificate requests for which the issuers create

certificates for each of the public keys. In the case of using short-term validity for a

certificate (say, five minutes), each entity will be required to generate a large number

of key pairs (288 per day in the example), generate the corresponding requests, and

finally store the issued certificates. In the case of IoT networks, such an approach

is neither possible nor feasible, because of the highly constrained computation and

storage capabilities.

In this section of the chapter, we discuss the design of CertCoalesce7 which is

an alternative way to generate, receive, and use multiple certificates simultaneously

without incurring major overheads. In CertCoalesce, a certificate issuer only needs

to receive a single request with a “master” key pair called the butterfly key, af-

ter which it can issue an unlimited number of caterpillar certificates for derivative

private/public keys. Therefore, it becomes possible to maintain “infinite” pools of

short-term private keys/certificates with very limited storage requirements. More-

7The details of the design and contributions are discussed in [RA20c]
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over, CertCoalesce preserves forward secrecy (i.e, a compromised key does not reveal

other keys/certificates in the pool) and inherits all the strong security assurances of

elliptic curve cryptography.

To reduce the scope of the Certificate Issuer and possible key exposure (and

damage if it happens), NDN advocates for the use of certificates with a short-term

validity, measured in minutes rather than months or years as in today‘s practice.

With CertCoalesce, we provide the opportunity to tune this value based on the

application requirements. Dealing with certificates having short-validity periods is

a challenge in traditional systems, and also becomes completely infeasible on the

Internet-of-Things (IoT) use cases because of the following reasons:

• the constrained IoT devices may not have enough capacity to store a variety

of private keys to sign produced data (certificates can be stored externally).

• given the predicted explosion of the number of IoT “things”, the number of

interactions and exchanges with the certificate issuers can easily overburden

the network.

Therefore, to fully realize the NDN vision especially in the IoT environment, we need

a fresh look into certificate management and CertCoalesce is one of the outcomes.

The proposed CertCoalesce approach is inspired by the cryptographic constructs

[CAM] and is based on existing Elliptic Curve-based public cryptography primitives.

The proposed approach can significantly alleviate capacity and network overhead

problems that are introduced by the use of traditional approaches to certificate man-

agement. CertCoalesce uses concepts of “Butterfly key expansion” which deals with

the expansion of a “master” private key into unlimited sets of unlinkable private

keys and certificates. With CertCoalesce, an IoT ecosystem will possess an option

where the devices can (a) receive multiple derived certificates using a single master

public key, (b) select and use certificates from the pool as long as they are valid, (c)
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minimize the storage requirements for certificates and keys, and (e) limit commu-

nication with certificate issuers. At the same time, the certificate issuers preserve

the ability to perform “effective revocation” of malicious devices (which is necessary

for the IoT environment) by simply stopping the generation and distribution of the

derived certificates inhibiting the device’s ability to produce content further in the

network.
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Figure 4.7: Comparison of (a) traditional certificate requisition process (a key-
pair for each certificate) (b) CertCoalesce certificate requisition (1 key-pair for a
certificate pool)

Following the traditional approach of certificate requisition from the Certificate

issuer involves the generation of unique pairs of keys for each certificate. In contrast,

the CertCoalesce approach will need a single key pair with the expansion functions

to generate an arbitrarily large number of derived certificates. Figure 4.7 highlights

62



this difference and the limited requirement of communication with certificate issuers

in the proposed CertCoalesce approach.

Our contributions in this work towards the objective of enhanced authenticity

in NDN based IoT networks are four-fold:

• the design of CertCoalesce for an NDN-based IoT ecosystem by integrating

butterfly key expansion with traditional crypto to form a new efficient certifi-

cate generation method

• data formats and naming for the crypto-material that is exchanged between

the devices and the Certificate Issuer

• define how devices can compute multiple valid certificates with a single spe-

cialized private key

• time-limited validity of the certificates and revocation of the invalid certificates

by the certificate issuer.

4.2.1 Motivation

To understand the design of CertCoalesce, let us consider an IoT-enabled smart

home ecosystem. Such a smart home will be equipped with multiple sensors and

actuators [RI17b] that will be involved in the exchange of interest and data pack-

ets to perform their designated activities and provide appropriate services. As an

example let us consider the smart climate-control system. This system involves the

thermostats, the air conditioning system, access to the flow control valves attached

to the sprinklers, metering system, control of the lightings, etc. All these devices will

communicate amongst most or all of the other devices for the system to seamlessly

be able to control the climate in the house. If the devices use the same certificate for

all such communications, there is a possibility that the associated public key will be
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identified and the corresponding private key becomes vulnerable to being exploited

if not stored securely. It is thus a good practice to have multiple certificates used

for the various communications which will help in the device being (a) unlinkable,

(b) anonymous, etc. while the data exchanged still being valid and verifiable by the

consumers.

Smart climate 
control

Air conditioning 
system

Thermostat

Flow control 
sensor

Sprinkler 

Lighting system 

Smart home

Figure 4.8: Smart home environment showing interactions among devices

Figure 4.8 shows the described smart-home ecosystem with the possible commu-

nications among the devices. Also, the thermostat shown here is specifically designed

to sense the temperature of its surroundings and propagate the information when

requested by the controlling and actuating system or other authorized systems. It

is too much of an ask for this small thermostat to be able to hold onto multiple

keys and certificates for use and even more for it to be generating public-private

key pairs, creating Certificate Signing Requests (CSRs), retrieving certificates, and

finally storing all these crypto-material. In comparison, what we expect is a tech-

nique like in Figure 4.9, where the IoT devices will be able to request for an arbitrary

number of certificates using a generated “master” public-private key pair and use

the certificates from the pool to certify its messages. The proposed CertCoalesce

design provides this functionality with the certificates in the pool being such that

the compromise of one will not reveal the other ensuring forward secrecy and the

compromised certificates can easily be avoided and removed from the system with
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minimum damage. The certificate issuer in the system will periodically provide the

devices with new sets of valid certificates with short validity periods which can be

tuned according to the application needs ensuring that the revocation is easier and

transparent.

Smart climate 
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certificate issuer

Thermostat

CertCoalease enabled 
Smart home

Certificate pool

Air Conditioning system

Data Signed using one of 

the certs from pool

Request for

temperature

Figure 4.9: Thermostat receiving a pool of certificates by adopting the proposed
CertCoalesce scheme

4.2.2 Butterfly Key Expansion

The traditional certification methods of requesting and fetching certificates will be

cumbersome in an IoT environment with the need for the creation of thousands or

even more public keys for the multiple certificates that are desired. Butterfly keys

depict a novel cryptographic construction that can aid in addressing this problem by

allowing the certificate requesting devices the liberty to obtain an arbitrary number

of valid certificates using a single public key. Also, each of the certificates received

will have a unique signing key that is encrypted such that only the legitimate re-

questor can decrypt and use the certificate. As an important feature, the use of

such a method leads to a reduced upload size enabling devices to be able to request

certificates even with intermittent connectivity which is common in IoT networks.
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The requesting device will be the only entity that can decrypt and calculate the

private keys to be used for signing.

The working of butterfly key expansion depends on elliptic curve cryptography

[BH19]. A brief account of the working of the Butterfly keys is discussed here with

specific design details in Section 4.1.3. The working of butterfly keys involves an

agreed-upon elliptic curve base point G which is of the order of l. The devices are

expected to generate the master public-private key pair and a pair of AES keys

which will provide the expansion functions. The certificate issuing authority (could

be one level or multiple levels based on the available resources and application

necessities) with the value of the curve point derived from the signing key and a

derived expansion function fk(l) will be able to generate an arbitrary number of

derived certificates. The expansion function is a pseudo-random permutation in the

integers modl with l being a counter used by the certifier to iterate and generate

multiple certificates 8.

4.2.3 CertCoalesce Design

The functionality of the CertCoalesce scheme depends on the Certificate Issuer (CI)

who validates the certification requests and issues certificates. The other actor in the

system is the certificate requestors who are highly resource-constrained IoT devices,

controllers, and all other entities that will produce data and engage in communica-

tion in the given smart-home environment. The actual process for requesting the

CertCoalesce certificates can be embedded as part of the NDNCERT [ZYAZ17b]

protocol, therefore in the design, we focus on data naming and crypto aspects of the

proposal.

8More details about this is available in the paper [RA20c]
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Figure 4.10: Overview of CertCoalesce design

Figure 4.10 depicts a typical certificate request procedure involved in the CertCo-

alesce operation. The CertCoalesce design of automated certificate issuance involves

multiple steps as described below.

Butterfly Key Generation

To request CertCoalesce certificates, the node needs to generate a butterfly key

according to Algorithm 1. The butterfly key-pair created acts as a “seed” and is

more than just a regular key. It is a combination of ECC signing keys with ECC

encryption keys and AES expansion functions. The name of this key follows the

standard NDN conventions with a small specialization of the ID part is “/<identity>

/KEY/butterfly-<keyId>”.

Algorithm 1 Butterfly Key

Input: Elliptic curve base point G, f1, fname.
Output: Caterpillar private key tuple (keyId, ck, a, p) and public key tuple (keyId,

ck, A, P )
1: Generate keyId
2: Generate key-pair a and the curve point A = aG.
3: Generate key-pair p and the curve point P = pG.
4: Generate an AES key ck acting as expansion function for signing keys.
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The butterfly private key component is the only key that needs to be stored on

the device for a long time and is used to derive private keys of the CertCoalesce pool.

However, as a limitation of CertCoalesce, the device cannot derive (and therefore

use) the private keys until it receives the “kaleidoscope” from the certificate issuer.

“Laying” Egg Keys

After receiving the certificate request for a Butterfly key and successfully validating

the legitimacy of the request using security challenges,9 generates a set of “Egg keys”

as defined in Algorithm 2. Each of the egg keys created is regular ECC public keys.

These keys do not have to be stored separately as their names can be expanded

from the “butterfly key + ID inside the pool”. The name of the keys follows

the following naming convention “<identity>/KEY/<key-id>-<ID-in-the-Pool>”

Algorithm 2 Egg Keys

Input: G, f1, Butterfly public key tuple (keyId, ck, A, P )
Output: Set of Egg keys Bl

1: “Lay” egg public keys Bi = A+ f1(ck, i) ·G

As stated above, the number of the egg keys depends on the use case but needs

to be known to the requester, either as a pre-configured parameter or via explicit

notification as part of NDNCERT exchanges. For example, if we assume a 5-minute

validity of individual certificates and that a single certificate request “covers” a 1-

month time frame, then the certificate issuer will generate the egg keys set of size

8640 (12 key pairs per hour × 24 hours × 30 days).

9Since CertCoalesce is designed to be integrated with NDNCERT, mechanics of this
verification is outside the scope of this dissertation and a complete integration is a part
of the future work
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Hatching Eggs / Generation of Caterpillar Certificates

Using the set of Egg public keys, the certificate issuer can then finally issue Caterpil-

lar certificates for each of the keys (hatching each egg into a caterpillar), as defined

in Algorithm 3. Note that though the issuer created Egg keys, it can only create the

public keys, as it lacks the knowledge of values corresponding to a and p generated

by the device, making it incapable of being able to decipher the private keys.

Algorithm 3 Hatching Eggs into Caterpillars

Input: G, fname, Butterfly public key tuple (keyId, ck, A, P ), set of Egg public
keys Bl

Output: Set of Caterpillar certificates Ac
l , encrypted secret of the butterfly set C

(kaleidoscope), set of derived key ids “derived(i)”
1: Generate a random secret c representing butterfly kaleidoscope
2: Hatch each egg into Caterpillar certificate Ac

i = Bl + c×G
3: Derive a set of certificate names “derived(i)” = fname(keyId, i)
4: Create C by encrypting the secret c with P

Each created certificate will follow the NDN certificate naming conventions [NDN20]:

“<identity>/KEY/<key-id>-<ID-in-the-Pool>/Coalesce/_version=<XX>”.

Note that we are still exploring options for the most appropriate fname. For

example, it can be a SHA256 over the original key id and the sequence number.

Note that CertCoalesce requires that the encrypted secret C (which is the “kalei-

doscope” value) is communicated back to the requestor before it can start signing.

In other words, the private caterpillar keys cannot be derived until c is known.

The certificate issuer does not need to generate all of the certificates in the set

right away. To allow for “revocation”, it can only generate certificates on-demand,

or pre-generate sets of certificates and publish them (e.g., in NDN repos) in periodic

batches, such as every day.
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Pupate Caterpillar into Cocoons (Deriving Private Keys)

As soon as the device receives confirmation of the issued Caterpillar certificates, it

can immediately pupate the caterpillars or, in regular terms, derive private keys as

described in Algorithm 3.

Algorithm 4 Pupate Caterpillar into Cocoons (Deriving Private Keys)

Input: f1, fname, C, Caterpillar Private key tuple (keyId, ck, a, p), i
Output: Derived Private key PrvKey(i)
1: Use p to decrypt C and recover value of c
2: Calculate bl as bi = a+ f1(ck, i) ·G
3: Derive private key id “derived(i)” = fname(keyId, i)
4: PrvKeycacoon(i) = bi + c

Note that such derivations can be done on-demand, depending on the need

and/or use case. In our example with 5-minute validity per certificate, the de-

vice will need to run this derivation a dozen times an hour, which correspondingly

increases the value of i. However, there is no additional storage overhead and deriva-

tion computation overhead includes only several elliptic curve point calculations.

4.2.4 Security Analysis

The primary motive of any adversary in a system using the CertCoalesce design will

be to identify the private keys corresponding to a received set of butterfly public

keys in polynomial time. So even when the values of multiple derived certificates

like (A+ fk(1) ∗G+ c1 ∗G), (A+ fk(2) ∗G+ c2 ∗G), ..., (A+ fk(q) ∗G+ cq ∗G)) are

given, it is close to impossible for the adversary to identify a+ fk(x) + cr for any 1

≤ r ≤ q. The expansion function fk used is a pseudo-random permutation making

it hard for any polynomial-time adversary to be able to distinguish between the

various expansion function (fk) outputs (that are truly random values) and thus be

able to recreate the values of ck, ek, etc. Based on the underlying constructs and the
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derived values, we can concur without any loss of generality that the CertCoalesce

design is highly secure given that the elliptic curve discrete logarithm problem is

hard to crack in polynomial time [GG16].

Also, the fact that the certificate-issuing authority does not have complete infor-

mation of the values of the device-generated keys and the recreation of the keys with

the available information being hard in polynomial time, ensures that the proposed

CertCoalesce design can secure the system against common security attacks10. The

CI on receiving a single request and the expansion functions can generate sets of

simultaneously valid certificates at a constant frequency determined by the activity

of the device and the validity of the certificates provide the sets to the devices. Each

of the certificates is unique and thus compromise of one of the certificates will not

yield access to the other certificates upholding forward secrecy. With the validity of

certificates being tunable based on the certificates and the forward secrecy in place,

it is easier to publish revocation lists and the device can use other valid certificates

in the pool to continue its operations.

After the initial computation related to the creation of the caterpillar keys, the

device will have to only store the values of a and p (the master keys) that will be used

in decrypting and deriving the butterfly private key for the certificate that can then

be used to sign the data packets. Thus it prevents the need for the device to store

multiple public and corresponding private keys which if misplaced can compromise

the system completely and is thus dangerous. The devices using the proposed scheme

can on the fly select a certificate, decrypt it, extract the required information to

derive the private key, and sign data packets. This process reduces the storage

burden on devices and safeguards them against possible security infringements.

10The underlying construct of the design ensures that even in a system with multi-level
certificate issuers, collusion attack is averted.
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4.2.5 Evaluation of CertCoalesce

The initial use of Butterfly key expansion as a method to create pseudonym cer-

tificates was implemented in the Secure Credential Management System (SCMS)

Proof of Concept (PoC) [CAM]. We ran our initial performance analysis experi-

ments on an implemented python variant of the design11 to identify the time taken

for a device to retrieve certificates from the certificate issuer in comparison to the

traditional approaches. The comparison involves request generation for 5 and 50 cer-

tificates and the total cost involved for the entire certification retrieval process. The

CertCoalesce certificate requisition and retrieval process involve a single instance

of generation of the public and private key pair and the initial computation of the

caterpillar key which is sent for retrieving an arbitrary number of certificates hence

is highly cost-efficient in comparison to the traditional approach (see Figure 4.11

(a)).

(a)

(b)

Figure 4.11: Comparison of performance of CertCoalesce: (a) Time taken for gen-
erating certificate request; (b) Time for entire process till certificate is received and
extracted

11At the time of writing this dissertation, we are still exploring better options for the
namespace design as a part of the future work in this direction
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Figure 4.11 (b) shows the comparison of the time taken for the certificate requi-

sition using the two approaches. The CSR in CertCoalesce design has to be created

only once and involves the creation of one pair of public and private keys as against

the traditional methods that involve a new pair of keys and a brand new request

for all the certificates. The performance of CertCoalesce is thus highly superior in

this regard. The design also ensures minimal storage requirements for certificates

and keys as the device will have to store only the master keys while the remain-

ing certificates can be stored in a repository. The communication requirement for

retrieving these large number of certificates is also reduced considerably as the CI

can use the series of cocoon keys to periodically generate derivative certificates and

send them to the device for use. Also, the entire process of retrieving the certificate

from sending the request to receiving the response consumes way less time than the

traditional method.

4.3 Summary

In this chapter, we discussed two approaches towards authentication of messages

transmitted within the IoT network. With NDN-based networks requiring that

every data chunk be signed at the site of production and the consumers or any

intermediate node are given the option to verify the authenticity through the verifi-

cation of the signatures. We identified the major issues with the existing approaches

when adopted to an IoT network which usually witnesses highly intermittent con-

nectivity were related to the high reliance on the network to retrieve verification

keys and certificates requiring all the network components to be online always and

the possibility of the producer privacy being breached if the certificates are reused

multiple times for signing data-chunks.
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In this chapter, we proposed two techniques to address the above issues. NDN-

ABS is built over the Elliptic curve cryptography and Attribute-based signature

primitives to be able to create policies using certain chosen attributes from the

producer’s list for signing. At the receiver’s end, as long as the device has been

bootstrapped and has received the trust-anchor information, verification is possible

without any dependency on the network. This drastically reduces network over-

head. We implemented the first python based library to realize this design and also

identified techniques that can provide better performance in the production setting.

To improve on the conditional privacy benefits that NDN-ABS provides and to

eliminate the need for CRLs, we developed CertCoalesce which provides a certifi-

cate pool of short-term simultaneously valid certificates to choose from to sign the

produced data packet. Based on the proposed design, a single master key pair can

be used to request multiple certificates (which the issuer can provide periodically as

well) and only the initially generated master keys will have to be stored to be able

to derive all the certificates in the pool. This technique is built over the security

benefits offered by the Elliptic Curve Discrete Logarithmic problem. The certificates

in the pool also ensure that the forward privacy is maintained (i.e., the compromise

of any of the certificates does not compromise the other certificates and keys in the

pool).

Overall, using the above two approaches, we can drastically reduce the network

dependence for the signing and verification operations and hence the traffic that is

generated for these purposes while being able to provide conditional anonymity to

the data producers.
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Chapter 5

Data Confidentiality and Access Control

A common and important requirement of IoT and distributed applications is an

effective and usable access control solution that can ensure application features and

information access to only authorized devices/users. Literature showcases numerous

methods that can provide efficient access control [KRD06, Shi07, GPSW06, BSW07,

JMB11] have been proposed. Their implementation in the current internet archi-

tecture involving TCP/IP protocol stack though is cumbersome and prone to faults

especially when distributing access keys. The IP model utilizes DNS services that

are offered by third-party service providers for effective key distribution and storage

making the system vulnerable and prone to attacks. In an IoT environment, this

issue is magnified purely because of the involvement of a large number of entities

which complicates the key management process that is vital in providing effective

access control facilities.

We thus explore the use of an access control mechanism based on the semantically

rich NDN names that can provide content confidentiality and highly fine-grained ac-

cess control 1. Name-based Access Control (NAC) scheme, thus is built to provide

automated access control using the combination of symmetric and asymmetric cryp-

tography algorithms. The advantages we achieve by using this approach are:

• automatic retrieval of cryptographic information using NDN naming conven-

tions

• effective and flexible namespace design providing fine-grained access control

• support resilient communication and data integrity and confidentiality even

with intermittent connectivity using in-network caching.

1The content of this chapter was published in MILCOM 2018 [ZYR+18]
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5.1 Access Control using names

We assume that the IoT devices have by now been bootstrapped and the messages

exchanged by them can be authenticated by the network. The design of using

names to perform access control assumes that proper trust relationships have been

established among the communicating entities in the system. In our design, we

assume the existence of an entity that takes the role of being the owner of the

information (data owner), and to better explain the design we will consider the

example of a smart-home. The owner of the house thus is considered as the data

owner. The data owner is also called the access manager and is given the right to

define the policies that will be used to identify who has access to which content.

The access manager is then responsible for the generation of a key pair which is

called the KEK - Key encryption Key and KDK - Key decryption Key.

The design uses the NDN naming convention to define the granularity of access

management with the components in the KEK name determining the prefix of the

content that can be encrypted with the key and the corresponding decryption keys

(KDK) is given to the appropriate entities that should be able to access the infor-

mation. In the example depicted in Figure 5.1, the access manager has generated

the specific KEK and KDK keys and distributed them to the producer (a smart

thermostat) and consumer (air conditioning system) based on the policies defined

ensuring that the air conditioning system can access the information published by

the thermostat. The working of this system is such that the thermostat on creat-

ing data (of the temperature/humidity in a room etc.), encrypts the content with

a content key (CK). The CK thus generated is encrypted with the KEK that the

thermostat received from the access manager. The encrypted content is then pulled

by the air conditioning system which then again requests for and receives the en-
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crypted CK. The air conditioning system then requests the access manager for the

decryption key (KDK) and based on the policy defined, is either given access to

the key or not. If the policy authorized the air conditioning system to be allowed

to read the content, the KDK is provided which is used to decrypt the encrypted

content key to reveal the CK which is then used to decrypt the actual content.

It is important to note that the named policy can be configured or inferred from

configuration and data name and the content is not directly encrypted using the

KEK As a result, encryption (or decryption) key chain can be established from a

producer to a consumer under the control of the access manager.

Access manager

Key 
Decryption 

key

Key 
Encryption 

key

Content 
key

Data 
packet

Policy

Figure 5.1: NAC Scheme

The hierarchy thus defined does not have to be strictly enforced. In a typical IoT

system, the access manager, encryptor, and decryptor could be the roles adorned

by the same entity at different points in time. For instance, in a smart home,

the controller can act as an access manager, encryptor (when bootstrapping other

devices), and decryptor (when working with responses from other controllers or

devices).

Fine-grained access control can be achieved by following the KEK name to en-

crypt the content. The more specific the KEK name is, the fewer Data packets can
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be decrypted using the corresponding KDK. NAC also allows the access manager to

control the access through KDK distribution. The more KDKs a decryptor can ob-

tain, the more Data packets it can access. The different keys we have discussed thus

far are packaged as data packets that can be retrieved from the network using the

wel-defined request-response architecture advocated by NDN. Also, the opportunis-

tic in-network caching aids in effective dissemination of the keys even in intermittent

connectivity and mobility which is common in IoT scenarios. A detailed account of

the entities involved in and the working of NAC is defined in the paper by Zhang

et. al [ZYR+18].

5.1.1 Specialized Naming Conventions for access control

A well-defined naming scheme is required for both the retrieval of packets and the

automated distribution of keys in the system. Encryptors / Data producers need

to fetch the KEK generated by the access manager to encrypt the content key that

they used to encrypt the content. The naming convention for KEK and KEK Data

packet thus can be in the following format are:

KEK Name = “/<access_manager_prefix>/NAC/<granularity>/KEK/<key-id>”

where the access manager prefix field indicates the producer of the KEK, and the

granularity is the name prefix of the data that is being produced by the encryp-

tor/producer for which this key is being retrieved, and the key-id is the unique

identifier of the key.

The corresponding KDK follows the same naming convention as the KEK and

is void of the name component “KEK” which was present in the KEK and is now

replaced with KDK:

KDK Name = “/<access_manager_prefix>/NAC/<granularity>/KDK/<key-id>”
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Because the KDK is encrypted for each authorized decryptor/consumer, the

KDK Data packet has additional components:

KDK Data packet Name = “/<access_manager_prefix>/NAC/<granularity>/KDK

/<key-id>/ENCRYPTED-BY/<consumer_prefix>/KEY/<consumer_key-id>”

where the key-id is the same as its corresponding KEK, and the key identified by

decryptor/consumer key-id is the consumer’s public key that is used to encrypt the

KDK.

CK name and CK Data packet names follow conventions similar to KDK. The

CK Data packet name follows the naming convention:

CK Name = “/<content_producer_prefix>/CK/<key-id>”

CK Data packet Name = “/<content_ producer_prefix>/CK/<key-id>

/ENCRYPTED-BY/<access_manager_prefix>/NAC/<granularity>/KEK/<key-id>”

Key Generation and Delivery

The access manager is responsible for the generation of the KDK and KEK pairs

as in the access control policies with the KEK put in as a part of the data packet.

The access policy is next defined to identify the entities that have access to the

information and thus should be able to retrieve the corresponding KDK. Once the

policies are defined, they are published and the access manager does not have to be

online. In-network caches are used in cases when there is intermittent connectivity

and the keys have to reach a large number of devices.

The KEK and KDK names following the above-mentioned naming conventions

carry the information as to (a) who can access the information, and (b) which set

of keys will have to be fetched and used to decrypt and access the content. This
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flexibility allows for the granularity to be altered as per the requirement of the

system and application that it is servicing.

Content Encryption

Symmetric encryption mechanisms like AES-CBC [FGK03] are used in the produc-

tion of encrypted content (Encrypted with content key CK). The retrieved KEK

provides the encryptors with information as to the granularity to which it can use

and encrypts the content with the CK and in turn the CK with the KEK which is

then bundled into a data packet that is published.

Content Decryption

Only authorized decryptors should have access to the content and hence should

be able to get the CK that was used to encrypt the data. The fetched content,

provides information about the KDK to be used and retrieves this information from

the network based on the information in the key-locator field, and then uses the CK

to finally be able to retrieve the content.

5.2 NAC based on Attribute-based Encryption

The prototype of the above-described access control scheme using names used RSA [ZYR+18]

but did not scale well when deployed in scenarios involving a large number of con-

sumers which is a common sight in an IoT ecosystem. Assuming that there are

about k devices deployed in the system, and p authorized granularities, to grant

access permissions for each of the k devices to all the p granularities will need about

O(p) KDKs thus burdening the access manager who will have to produce O(p) pairs

of keys (KEK and KDK) and O(p× k) KDK data packets.
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If we consider a situation that demands fine granularity of data access, this

number will increase as the number of components in the KEK will increase thus

increasing the corresponding KDK count as well. Thus, based on our understanding

of the attribute-based system from the previous chapter, we define a Ciphertext-

Policy Attribute-Based Encryption (CP-ABE) [BSW07] variant of the access control

scheme using names to define NAC-ABE. This modification provides better control

on defining the access policies even when the number of nodes/devices in the system

is large.

Access manager

Content 
key

Data 
packet

Policy

Attribute authority

Attributes

Public 
parameters

Figure 5.2: NAC-ABE Scheme

Figure 5.2 shows the proposed model wherein the KEK is modeled as an attribute

policy and the decryption key is a set of attributes that can satisfy the policy.

Thus, the encryptors/producers, encrypt the content-key using a specialized policy

that satisfies the attribute list that the consumers/decryptors can retrieve from the

attribute authority defined in the system and thus be able to decrypt to reveal the

content-key which can further be used to decrypt the content received. We can

either have a separate access manager and attribute authority or a single entity

performing both roles.
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In comparison to the generic NAC model, considering k devices, and possible p

granularities, the access manager can define A different attributes to create ABE

keys for O(A) times. It is important to note here that A is much smaller than k

and the access policies are combinations of these A attributes using “AND”, “OR”,

“NOT”, or threshold gates. Since the data consumer’s attributes can be issued

at one time, the access manager only needs to generate O(k) packets and can be

provided to the devices when they are bootstrapped into the network. The public

parameters of the attribute authority are also published just once and can at any

time be requested for and used in the system. In practice, this process can be greatly

improved by issuing attributes in groups or along with identity certificates.

5.2.1 Specialized Naming Conventions of NAC-ABE

The naming convention follows the general naming conventions explained above with

minor modifications. The “/<key-id>” component of the KEK name is no longer

a unique identified but a policy of attributes defined by combining the attributes

using common “AND”, “OR”, “NOT”, and threshold gates. Through the name,

the consumer/decryptor learns which attribute policy should be used to encrypt the

data in granularity.

When a decryptor needs to fetch an authorized attribute from the attribute

authority, the decryptor can generate the attribute Interest packet by following the

convention.

Attribute Interest Name = “/<attribute_authority_prefix>/ATTRIBUTE

/<attribute name>/ENCRYPTED-BY/<consumer_prefix>/KEY/<consumer-key id>”

In NAC-ABE, as in any attribute-based system, attributes are expected to be pro-

visioned before the system starts.
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5.3 Security Assessment

Our focus here is on threats that are specific to communication confidentiality and

access control. NAC is based on NDN, and thus inherits all the security benefits of

the data-centric model that NDN advocates. The NDN prowess to mitigate MITM

and DoS attacks are studied by researchers and thus is applicable in this context as

well.

Eavesdropping Attackers may sniff on the broadcast media or retrieve published

Data packets from in-network caches. However, since all the sensitive content (e.g.,

data, CK, KDK) in NAC are encrypted, even though attackers can collude and

aggregate the sensed and published information from the various sensory nodes,

they cannot make sense of these ciphertexts.

Device Compromise Attackers may compromise individual devices to gain the

data access that is granted to the unit. There is no means to stop a compromised

device from accessing the previously published content, but an access control scheme

is supposed to revoke the device’s privilege as soon as possible in order to prevent

further leaks of data. Short-lived KEK-KDK pairs are used in the NAC design to

reduce information leakage in cases of compromised devices. Based on the applica-

tion‘s needs, the access manager may have to take an initiative to notify encryptors

to re-encrypt the content using new keys before the old keys expire.

Man-in-the-Middle Attack In NAC, when attackers perform Man-in-the-Middle

(MITM) attack and modify the KDK packets, signature verification can throw light

on this abnormality to the decryptors.
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Denial-of-Service Attack Since all the content Data packets and key Data pack-

ets are published in the NDN network, these packets can be cached in cache or dedi-

cated data repositories. NDN and thus NAC‘s resilience methods to DoS and DDoS

attacks are derived from the concepts discussed in [ZVL+18, ASWS15, DWFL13,

CCGT13, AMM+13].

5.4 Discussion

Assuming a system with k consumers and p granularities, there are totally d content

data packets (each granularity has the same number of data packets) that will be

controlled by the access controller. In NAC, we let each decryptor has access right to

all d content Data packets. In NAC-ABE, we assume there are totally A attributes

and each decryptor has all the attributes. The cryptographic operations are listed

in Table 5.1.

Table 5.1: Number of cryptographic operations in the design
Actor/Role Traditional NAC Scheme NAC-ABE Scheme

Data Owner/controller Gen keys + distribute Gen attributes + distribute
Producer (Encryptor) Sign data + encrypt Sign data + encrypt
Consumer (Decryptor) Decrypt + verify signature Decrypt + verify claim

In an access control system over TCP/IP, to achieve key distribution, the network

configuration (e.g., IP address, DNS name) or the equivalent service invocation

(e.g., database query) is linear to the number of keys in the system. In contrast,

the network configuration for key delivery in NAC is independent of the number of

keys.
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5.5 Summary

The existing content sharing techniques rely heavily on third parties to host content

and security is enabled using encrypted channels. The channels thus created are not

directly between the data producer (or host with the data) and the data consumer

but involves multiple containers from various service providers and hence end-to-end

data confidentiality is very cumbersome. This is amplified in an IoT environment

where we have a large number of producers and consumers in a highly chaotic

environment with a protected channel to deliver information not being very secure

in ensuring confidentiality and integrity.

In this chapter, we described the use of names for ensuring access control and

hence maintaining data confidentiality in NDN-based environment. The proposed

design eliminates the need for secure channels or third-party services to deliver data

but ensures that the data by itself is secured. We discussed the design with an

access manager and a set of rules in the form of a policy that can be used with

specialized naming to achieve fine-grained access control. We also introduced the

use of attribute-based encryption techniques for better flexibility and scalability in

situations where the number of consumers is very large (which is common in the

IoT use-cases).
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Chapter 6

Application Use-cases

6.1 Vertically securing Smart Power Distribution systems

using NDN

Smart grids (SG) is a modern adaptation of power systems that deals with effi-

cient power distribution deals using digital communication to satisfy the demand

for power from consumers [KCW+14] and effective regulation and billing for the

power generators and distributors. The use of smart grids decouples the strong in-

terconnection between power generation sites and the consumption sites and makes

power available as a commodity that can be requested based on the need by any

consumer. As a distributor or power generator, the use of SG‘s the enables pooling

of generated power from various sources and distributing and trading is based on the

requirements and demand, and localization. Successful deployment of smart grids

will provide a hassle-free catering to the worldwide need for power. As a consumer

or producer of power, the expectation from such a smart system is to ensure afford-

able power is available according to the demand with transparent and automated

billing options.

Sensors and sensor networks [RI17c] play an important role in smart grids. Nu-

merous sensory devices are usually deployed to assess the flow of power in the

system be it at the site where it is generated, the intermediate locations where

the power is transformed using step-up and step-down transformers, the power en-

trance into a residential house/commercial establishment, etc. Figure 6.1 highlights

the flow of power from the generation station(s) to the consumer(s). The Power

generation site is composed of various renewable (Solar, Wind, Tidal, etc.) and
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non-renewable (Thermal, Atomic, etc.). In a typical smart grid scenario, the power

corporation/distributor will have the capability to pool this generated power into a

“Power Pool” and based on the request/demand for power give it to the appropriate

transmission site(s) that can forward it to the receiving site(s) and finally route it to

the consumer(s). Request for a specific quantum of power received by the power grid

from the consumer (or smart devices) leads to the power pool delivering it based on

availability.

At each of these sites, deployed sensors sense the quantum of power that has been

transmitted or consumed and if any of it is misused (by attackers/malicious users)

and accordingly generate the bills. The consumer‘s bill is updated based on the

consumption and the producers‘ share in each transaction is updated (there can be

multiple producers involved from multiple sites serving the pool for a transaction).

Secure exchange of actuating and transaction information is of utmost importance

in smart-grid communication. Traditional communication approaches have proven

shortcomings [TBES16, MCHM13] when deployed for smart grids. NDN provides a

data-centric approach to communication among the entities and stakeholders in the

smart grids and the development of a highly robust grid that is vertically secured

from end to end.

Power Generation sites

Power 
pool

Consumption sites

Tx 
site

Rx 
site

Figure 6.1: Power Transmission overview

The data-centric architecture of NDN ensures that the grid nodes are “off-by-
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default” (unreachable) until they explicitly either need or would like to share in-

formation with other nodes in the grid. NDN also advocates data-centric security

where every single piece of data communicated in the system is secured, authen-

ticated, and when needed encrypted. This inherently prevents “bad” data from

entering the system and significantly reduces potential risks by ensuring that data

communicated in the system is secured (authenticated) and when needed encrypted

preventing malicious information from entering and compromising the system. This

helps in the creation of a system with a reduced risk of attack and has been shown

to eliminate common attacks like Distributed Denial-of-Service (DDoS) [GTUZ13].

The benefit of NDN is even enhanced by the support it provides not just to the

network but for the fact that the security model can be extended to the software

and hardware components of the energy system. All the updates that are communi-

cated in the system are secured along with the firmware being secured. The preset

of NDN is naming data which ensures that nothing that is communicated within

and across the system is forgeable and the content producer can not repudiate the

creation of the information.

The current smart grid communications involve the use of host-centric approaches

which makes the system incapable of effective sharing of information. The power

systems are highly diverse and in most cases are legacy systems that are at times

incapable of effectively communicating with the modern smart systems. These in-

teroperability issues and the need for modification of the protocol stack for net-

working and the added need for container/session-based security are a hassle and

challenge to be addressed. These challenges make the trading of power among the

users, power corporations, and others complex and at times improbable with this

approach. NDN along with providing secure communication among the nodes in the

system also provides other benefits due to the flexible naming which ensures seamless
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integration among the various applications and devices being used. A subset of the

benefits includes optimal paths used for routing information, opportunistic caching

at nodes (in-network storage) of the frequently requested information so that power

consumed in retrieving the information from the producer is saved. This architec-

ture fits seamlessly in the smart grid system with power being handled efficiently

from all sources and even at the consumption end. The access control policies and

the trust schema enables trusted and secure information exchange even in a highly

distributed setup like that of the power-grids.

In this chapter, we explore the use of NDN in smart-grid communication 1 by

showcasing the benefits of the architecture with the power consumption of a smart

refrigerator as an example. Our contribution in this chapter is threefold: (a) intro-

duce the use of NDN in smart grid communication, (b) design of specialized naming

convention for the exchange of information, (c) identifying security challenges in

conventional smart grid communication and provide NDN-based solutions.

6.2 NDN based Smart Power Distribution

Smart grids (SG) are a specialized and well-knit version of Cyber-Physical systems

with digital communication being its lifeline. It is a system that is solely based

on the communication of information and the other underlying technology related

to the generation, delivery, and consumption of energy. The information exchange

represents the buying and selling power from the grid to the use of sensors and

actuators by the independent service operators (ISOs) to manage the power produc-

tion, distribution, and consumption. Securing the information is thus essential and

NDN [ZAB+14] as the prominent architecture of Information-Centric Networking

1The content of this chapter was published in IEEE CyberPels 2020 [RA20a]
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(ICN) provides the benefits of end-to-end data security. In this section, we discuss

the inherent benefits that using NDN based approach can provide to smart-grid

communication.

6.2.1 Data-centric security

A smart grid is composed of numerous subsystems which continuously exchange

updates and information that can be categorized as

• technical data corresponding to energy profiles

• management information related to billing, pricing, etc.

The are several stakeholders in the system who are interested in different aspects

of this information and NDN being a client-driven approach allows them access to

specific information using specialized interest packets. These interests follow the

NDN stateful forwarding (optimal routes) till it reaches a node with the requested

information. The breadcrumb trail is followed to reach the requestor. Thus infor-

mation is exchanged in the system only when needed and prevents the injection of

malicious information that can compromise the systems. It also ensures that only

entities that are interested in the data are receiving the information from the grid

thus ensuring full end-to-end security.

NDN mandates that every data packet be signed by the producer of the content

and bound to the name during production allowing information to be verified and

authenticated by any node at any time. Cryptographic keys which are used in

encryption and verification are also fetched the same way as data packets. These

keys can be a part of a chain of keys that follow the NDN trust schemas [YAC+15a]

till a mutually trusted anchor is reached. The sign associated with the data packet

also provides a way to be able to store the content in the cache of intermediate nodes
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(in-network cache‘s) so that they can serve future requests for the same data without

any compromise on the integrity of the data. Overall, the NDN security model allows

for a decentralized and distributed way of secured information exchange with peers

and other nodes in the network.

6.2.2 Naming

Names associated with the interest and data packet determine the information being

requested and obtained. Application names are directly used across all the network-

ing layers enabling devices with heterogeneous interfaces to obtain data over the

said interface. The components in the name also define the granularity to which the

communication/information is being sent or fetched.

Local Reservoir 
& datastore

Solar Irradiance

②

Charging

Power stations

③

④ ⑤

Stakeholders

Billing and Prediction system

①

Smart 
Refrigerator

Controller

Smart Home 
(home1)

Pstn A

Pstn A

Interest Packet
Data Packet

Figure 6.2: A typical scenario of a smart-home connected to the grid

To explain the need and benefits of NDN names, let us consider a smart-home

with the Internet of Things (IoT) devices at the culmination end utilizing the re-

quested and acquired power. Let the house also be deployed with solar panels that

can generate power when there is adequate solar irradiance. Figure 6.2 depicts the
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scenario wherein a smart refrigerator requires additional power to sustain the cooling

within. The steps followed in the NDN-based approach is:

1. Based on the need for the compressor, the refrigerator requests the controller

for 250 watts of power “/pndn/home1/sg/refrigerator1/kitchen/250W”.

2. The controller, in turn, forwards this request to the solar power reserve “/pndn

/home1/sg/controller/reservoir/250W”

3. The solar power reservoir, based on the availability, either sends the requested

power and an acknowledgment or further requests the grid “/pndn/home1/sg

/pstnA/200W/1PM” for the remaining power.

4. The various stakeholders (user/power company), can periodically request for

the consumption report “/pndn/home1/sg/owner/cooling_report/021720/1300”

of the house or each device and use this for the billing information.

5. The stakeholders can also retrieve historical information and use it for predic-

tive analysis “/pndn/FPL/sg/pstnB/022020/home1” of the power requirement

in the upcoming hour/day/month/year as required.

6.2.3 Routing and Forwarding

Routing and forwarding in NDN are solely based on names eliminating problems

faced by the host-based IP networks. The Forwarding Strategy and Forwarding

Information Base (FIB) use the longest prefix matching to identify the Multi-path

routing are inherently supported by NDN which is missing in IP-based routing and

plays a major role in preventing prefix-hijacking. The use of names for routing

and the pull-based approach ensures that no targeted attacks on the grid nodes

are possible. Even though the names can uniquely identify the information being
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requested, the requestor information is opaque to the network, and with the data

packet being signed, it allows for the packet to be cached in the router‘s buffer so

that it can satisfy an impending request for the same data. Specialized forwarding

strategies can be employed that benefit the smart-grid communication making NDN

a versatile choice.

The next section describes the security primitives provided by the NDN archi-

tecture and how they can be used in ensuring vertical security for the smart grids.

6.3 Vertical Security using NDN

Smart Grids is a sophisticated architecture that is highly reliant on the underlying

communication between the various involved entities and nodes and thus is faced

with a plethora of security and privacy challenges. These challenges can be broadly

categorized based on the need of the application as authentication, authorization,

access-control, compromised keys, and certificates, etc. The smart grid system is

built around different types of devices from small sensors to large power systems,

billing, and financial systems, and hence there is always a risk of not being able to

provide end-to-end security leading to the system being vulnerable to attacks and

compromise. As an added complication, the interfaces and communication protocols

used by the systems can vary drastically based on the capability of the device (IoT

based sensors may use ZigBee, ZWave, Bluetooth Low Energy (BLE), etc. and large

legacy power systems can use Wifi, cellular links, etc.) which makes the channel-

based security prone to attacks. Also, the software and firmware used by the systems

can largely influence the security design.
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6.3.1 NDN Trust Schema

NDN by design as discussed provides inherent security features, such as data in-

tegrity and provenance. NDN‘s architecture also provides producer’s trust assess-

ment, through data signatures and the NDN trust schema.

Key Locator 
value

Figure 6.3: A typical NDN Data packet [YAC+15a]

Figure 6.3 depicts a typical NDN data packet. The fields showcase the name that

is tightly bound to the content and the signature that is associated with the data.

The other important field is the Key-locator that provides information of how the

key that is used to sign this data packet can be retrieved and thus the trust chain

similar to that in Web-of-Trust (WoT) can be followed to verify the authenticity

till the mutually trusted “Trust Anchor” is reached. In the smart grid use-case,

let us consider the Smart Grid deployed by vendor PowerCorp has a headquarters

and multiple regional offices. Each of these regional offices is in turn responsible for

power generation sites (called ProductionSite here) that serve the customers based

on the requests received. The trust hierarchy follows the format where the main

establishment which is the trust anchor signs the keys of the headquarters using

“/pndn/SG/powerCorp/KEY/...”. The headquarters in turn signs the keys for the

regional offices using “/pndn/SG/powerCorp/HQ/KEY/...” and these offices sign the
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keys of the power generators who finally sign the data they produce. Figure 6.4

describes this process. The smart home (or device in the house) on receiving the

data can follow this hierarchical chain and continue to verify the trust anchor to

validate the authenticity of the information.

Power corp. HQ

/pndn/SG/powerCorp/HQ/KEY/15

Power corp. 
Regional Office

/pndn/SG/powerCorp/RO/KEY/61

Power corp. 
ProductionSiteA

/pndn/SG/powerCorp/PSA/KEY/2

Smart Grid 
PowerCorp 
extension

/pndn/SG/powerCorp/KEY/7

/pndn/SG/powerCorp/PSA/250KW/20200820

Consumer

signs

signs

signs

signs

Figure 6.4: Authentication path in a Smart grid application

6.4 Summary

With the understanding of the data-centric benefits of NDN, robust smart grids can

be designed and deployed. The paper explored the various advantages of secure

communication from the end-user device to the main grid and the ease with which

management information can be retrieved, shared, and used. In the future, we pro-

pose to extend this exploration and evaluate the complexity concerning time and

space in deploying NDN-based smart-grid applications. We shall also build proto-

types and Proofs-of-Concept that will be capable of implementing predictive models

that can be used to efficiently manage and distribute power in a local and global
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setting. The use of centralized repositories or cloud-based storage for ensuring data

provenance also opens up security challenges solutions to which will be explored

in detail. We are also interested to understand and utilize distributed ledger ap-

proaches with NDN for automated maintenance of distribution of power without

the involvement of third parties to complete the transactions.
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Chapter 7

Future Work

It is the hard reality that virtually all levels of IoT systems today are far from

being perfectly safe from attacks. It is thus required for all the information and

transactions performed as part of the system to be duly signed with appropriate

certificates as advocated by the data-centric security of NDN. However, resource

constraints at the device level result in the storage of certificates being a burden

that most developers and devices do not welcome in their design. To address this

issue, our ongoing research and future work explore the solutions to automate and

secure provisioning of computing and storage resources to assist the IoT devices and

improve the performance of the system on the whole. To the best of our knowledge,

the proposed solution is the first attempt that tries to combine the freedom and

flexibility of the data-centric architecture model with the best practices inspired

and employed by novel technologies.

7.1 Automated IoT processing and storage provisioning

An IoT environment is a source for enormous amounts of data from the sensing

operations performed by the plethora of sensory units. Studies conducted by Dave

Evans [Eva11] and supported by Satyanarayanan et al. [SSX+15] predicted this

information collection to explode beyond 1.6 zettabytes by 2020. However, most of

this information is not directly in the form to be either used or stored for further use.

A major concern and aspect that consumes an abundance of resources thus, is the

preprocessing and storage requirements. The edge-computing capabilities provide a

solution with offloading the computing to the more capable edge servers. We thus

are now looking at a time where information flow changes from predominantly being

“core-to-edge” to being “edge-to-core” [PAR+18].
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In this direction of ongoing and future research, we will explore the data-centric

ways advocated by NDN to facilitate the efficient provisioning of storage and process-

ing capabilities. This will ultimately reduce stress on the cellular network links/edge

access and provide better context on which information has to be stored or dis-

carded. Mobility of the devices adds to the problem with intermittent connectivity

hampering the offloading of information or carry-forward to the next location for

continued processing. Provisioning storage efficiently is thus economically more fea-

sible compared to laying more physical components which are not a viable option in

devices that are designed to move. The local storage services (either in associated

caches, cellular base stations, etc.) can be utilized as a buffer for IoT devices and

user-generated data at the edge for either access or pre-processing before synchro-

nization with the cloud.

Smart contracts (SC), is a new technology built to act as a virtual agreement

between two entities while utilizing the benefits of an underlying distributed ledger.

We intend to effectively utilize these SCs to provide a trusted way to provision stor-

age and processing resources in the IoT environment. The use of SC also eliminates

the need for middleware or an external agency to moderate resource availability and

usage. SmartProv (the proposed concept), thus provides a set of legal constraints

and policies based on SCs to get a consensus among involved parties by defining

software code that is executed amid many peering eyes operating as verifiers.

SmartProv thus offers the following benefits:

• Inheritance of trust benefits of smart contracts in building decentralized access

to the storage

• Flexibility to define software-based policies to automate resource availability

and provisioning
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• Orchestration of the benefits of pre-processing data and opportunistic caching

that are feasible through the use of data-centric approaches.

• Delegation of processing activities thus reducing the burden on the individual

devices.

• Improved performance of the system even in intermittent connectivity and

highly reduced network overhead.
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Chapter 8

Conclusion

In this dissertation, we have identified the challenges in IoT systems with a

specific focus on securing communication. To alleviate the fundamental issues that

arise because of the host-centric approach of the current internet architecture, we

have employed the data-centric models advocate by Named Data Networking (NDN)

which is a prominent architecture under Information-Centric Networking. Along

with providing a conducive platform for designing robust IoT networks with the

benefits that revolve around the direct use of application names, support for in-

network caching, use of multiple interfaces for communication, etc., NDN also offers

data-centric security primitives.

In the works described in this dissertation, we have identified novel approaches

that can enhance the NDN-enabled IoT networks in being able to automate and

securely bootstrap devices, enable transient trust establishment for initial informa-

tion exchange among entities with minimal or no prior interactions. We have also

designed an attribute-based signature scheme with the first comprehensive proto-

type that can reduce the consumer’s dependence on the network for verifying the

authenticity of the received data while also providing conditional and tunable pri-

vacy to the content producer using elegant policies. To further facilitate the devices

(communicating entities) to reduce the need for storage of crypto-material and even

generation of certification requests, we propose CertCoalesce for the retrieval of mul-

tiple simultaneously valid certificates that can be generated for shot validity periods

using a single request. This design also alleviates the issues caused by faulty or

incomplete Certificate Revocation Lists (CRLs). Further, it is important to give the

correct access control authorization and permissions to consumers for any informa-

tion, and to enable this we have introduced a name-based access control technique
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and extended it to use attribute-based encryption techniques for better flexibility

and scalability.

The objectives of the various proposed techniques have been to reduce the overall

network overhead and dependence of the devices on the network while being able

to provide tunable and conditional anonymity to content producers. The various

aspects of NDN architecture including the naming conventions are used in real-

izing automated bootstrapping techniques, authentication techniques, and access

control mechanisms. We also discussed various application scenarios including the

bootstrapping of hidden devices, vehicular networks to the end-to-end security of

network and the firmware as well as the smart-grid examples. The future work

described in this dissertation will introduce a distributed ledger approach to auto-

mate and manage resource allocation and use which along with the other objectives

realized will aid in the realization of a truly connected ecosystem that is vertically

secured.
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