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ABSTRACT OF THE DISSERTATION 

EPIGENETIC MECHANISMS AS DRIVERS OF ENVIRONMENTAL RESPONSES 

IN STONY CORALS 

by 

Javier A. Rodriguez Casariego 
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Miami, Florida 

Professor Jose M. Eirin-Lopez, Major Professor 

The current pace of anthropogenic global change is imposing unprecedented 

conditions to biological systems. Coral reef ecosystems are particularly sensitive to the 

rapid increase in thermal anomalies and the changes in water chemistry caused by global 

change. However, although their decline has been documented worldwide, there are signs 

suggesting that stony corals harbor greater phenotypic plasticity than previously 

expected, sparking the interest in the study acquired non-genetic modifications (e.g., 

epigenome, microbiome) potentially increasing their resilience to global change, and 

constituting one of the main targets for intervention. 

Epigenetics constitutes an exciting frontier to understand how the environment 

influences the regulation of the expression of genetic information and modulates 

phenotypic variation. This has the potential to change the way we understand short-term 

acclimation and adaptation to a changing environment, aiding to improve predictive 

models of ecosystemic persistence under current and future climatic scenarios. However, 

while there is evidence supporting the idea of epigenetic mechanisms participating in 

rapid-response acclimatization, specific details about how this process is influenced by 
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specific environmental conditions are lacking. In non-model organisms, we often lack 

information about the presence and functionality of some of these mechanisms, limiting 

the application of epigenetics in the study of ecosystem resilience in response to global 

change. 

This dissertation aims to elucidate how epigenetic mechanisms contribute to coral 

phenotypic responses to the effects of global change in the oceans. For that purpose, 

hypotheses about the presence and responsiveness of different epigenetic mechanisms in 

corals, its interaction with the genome and microbial communities, as well as its role 

modulating gene expression and phenotypic responses to diverse stressors were explored. 

Histone repertoires and/or full methylomes were characterized for the first time in the 

corals Acropora cervicornis and Montastraea cavernosa. The participation of these 

epigenetic mechanisms modulating responses to nutrient contamination, seasonal 

environmental change, thermal stress, and acidification was demonstrated, providing 

evidence supporting its participation in intragenerational plasticity. A conserved seasonal 

methylation program was observed in A. cervicornis. This together with the strong 

influence of the genome over DNA methylation evidence its heritability and its potential 

to participate in intergenerational plasticity 
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CHAPTER I.  

GENERAL INTRODUCTION 



 2 

Human-driven global change is now an unquestionable phenomenon supported by 

abundant evidence (Pörtner et al. 2019; The Royal Society and The National Academy of 

Sciences 2020). The accumulation of greenhouse gas emissions are causing the 

continuous increase in the average ocean-surface temperature (Pörtner et al. 2019), and in 

the magnitude and frequency of thermal anomalies [i.e. marine heatwaves (Frölicher, 

Fischer, and Gruber 2018; Oliver et al. 2021)]. In addition, the modifications in the 

chemical balance of the ocean, caused by CO2 accumulation (i.e., acidification) and 

pollution, and the overexploitation of marine resources, have caused dire effects on the 

physiology of marine organisms (Somero 2010; Bennett et al. 2019), affecting their 

spatial distribution and demographic traits (Poloczanska et al. 2013, 2016; Roberts 2019). 

Environmental stressor (including changes in abiotic parameters and pollutants) effects 

are evident at different levels within individual organisms, from early genetic responses 

triggered by the action of the stressor (Hoffmann and Willi 2008; Hansen et al. 2012; 

Lajoie and Vellend 2018), to whole-individual physiological and behavioral responses 

(Boyd et al. 2014; Beever et al. 2017; Williams et al. 2021). These changes often equate 

to disruptions in population dynamics and interspecific interactions [e.g. trophic 

pathways, (Van der Putten, Macel, and Visser 2010; Kwiatkowski, Aumont, and Bopp 

2019)], instrumental for spreading the effect of climate change bidirectionally (bottom-up 

and top-down) through the ecosystem (Doney et al. 2012). This is particularly evident in 

key organisms (critical for the functioning and the physical structure of an ecosystem 

such as the case of reef-building corals), where their collapse results in the disappearance 

of complete ecosystems.  

https://paperpile.com/c/oCqSTT/iTeD+daaY
https://paperpile.com/c/oCqSTT/iTeD+daaY
https://paperpile.com/c/oCqSTT/iTeD
https://paperpile.com/c/oCqSTT/ucYq+oW76
https://paperpile.com/c/oCqSTT/ucYq+oW76
https://paperpile.com/c/oCqSTT/tDHe+Uhhs
https://paperpile.com/c/oCqSTT/caB9+RZvH+UtjY
https://paperpile.com/c/oCqSTT/qJEX+tG1b+lrWH
https://paperpile.com/c/oCqSTT/qJEX+tG1b+lrWH
https://paperpile.com/c/oCqSTT/2coe+Qtbu+2BdT
https://paperpile.com/c/oCqSTT/ptfj+luzE
https://paperpile.com/c/oCqSTT/ptfj+luzE
https://paperpile.com/c/oCqSTT/1fxg
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Organism functioning, in the broadest sense, ultimately depends on the 

instructions stored in the genome that become active (or inactive) in response to 

environmental fluctuations, defining the phenotype during development and mediating its 

plasticity during adulthood. Thus, the limits to the phenotypic plasticity of an organism 

are ultimately determined by the genetic information stored in the DNA (Li et al. 2018). 

However, within those limits, epigenetics ⸺ molecules and mechanisms able to regulate 

gene expression through the generation of alternative gene activity states in the context of 

the same DNA sequence (Cavalli and Heard 2019) ⸺ contribute to modulate the 

phenome (set of all phenotypes expressed by a cell, tissue or organ) in response to 

environmental conditions, leading in some cases to drastic differences in the resulting 

phenotypes (Biémont 2010; Waddington 2012).  

Epigenetics constitutes an exciting frontier to understand how the environment 

influences gene expression regulation and modulate phenotypic variation (Bollati and 

Baccarelli 2010; Cortessis et al. 2012; Beal et al. 2018; Eirin-Lopez and Putnam 2019). 

Moreover, these environmentally modified transcriptional states may be inherited by the 

offspring [Inherited Gene Regulation, IGR (Adrian-Kalchhauser et al. 2020)], producing 

diverse outcomes from a single genome and accelerating ecological and evolutionary 

change (Eirin-Lopez and Putnam 2018; Ryu et al. 2018). While there is evidence of 

intergenerational inheritance of acclimatized phenotypes (Vignet et al. 2015; Marsh and 

Pasqualone 2014; Greco et al. 2013; Navarro-Martín et al. 2011; Vandegehuchte et al. 

2009), and epigenetic marks (Liew et al. 2020; Schunter et al. 2018; Bernal et al. 2018), it 

is not clear how the regulation and inheritance of gene expression states are mediated by 

a combination of interdependent non-genetic mechanisms during responses to both 

https://paperpile.com/c/oCqSTT/ttAy
https://paperpile.com/c/oCqSTT/czvV
https://paperpile.com/c/oCqSTT/9WxL+GRie
https://paperpile.com/c/oCqSTT/q894+0DHl+3Axa+s7Li
https://paperpile.com/c/oCqSTT/q894+0DHl+3Axa+s7Li
https://paperpile.com/c/oCqSTT/JcZa
https://paperpile.com/c/oCqSTT/xcZV4+XqB52
https://paperpile.com/c/oCqSTT/arTF+tJFB+QPw7+ja3e+43Wn
https://paperpile.com/c/oCqSTT/arTF+tJFB+QPw7+ja3e+43Wn
https://paperpile.com/c/oCqSTT/arTF+tJFB+QPw7+ja3e+43Wn
https://paperpile.com/c/oCqSTT/5kkw+QJOv+7Jm0
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developmental and environmental signals, especially in ecologically relevant non-model 

organisms (Eirin-Lopez and Putnam 2019). In contrast to the stable and irreversible 

variation in the genome (driven by mutation), the epigenome has been shown to be very 

dynamic, reversible, and non-deterministic (Braun et al. 2017; Adrian-Kalchhauser et al. 

2020). Observed crosstalk between epigenetic mechanisms (Zhao et al. 2021; Choi et al. 

2020; Li et al. 2018; Wendte and Pikaard 2017) and non-linear relationships of individual 

mechanisms with gene expression make it extremely complex to study and interpret in 

the context of a specific response to an environmental driver. In addition, epigenetic 

mechanisms, like most cellular functions, depend on the cellular energetic conditions  

(Wallace and Fan 2010; Donohoe and Bultman 2012). Consequently, changes in 

energetic balances induced by environmental conditions can limit the availability of 

cofactors and other compounds necessary for the onset of epigenetic marks, resulting in 

the impairment of gene regulation mechanisms and disease (Wallace and Fan 2010). This 

complex scenario added to the fact that we even lack information about the presence and 

functionality of some of these mechanisms in many non-model organisms, constitutes the 

main factors limiting the broad application of epigenetic analyses to the much-needed 

modeling of ecosystem-level capacity for resilience and adaptability in response to the 

challenges posed by global change.  

Environmental epigenetics: broadening epigenetic analyses to non-model organisms. 

Multiple mechanisms have been proposed to encode epigenetic information 

including methylation of DNA and RNA (Bird 2002; Fu et al. 2014), histone variants 

[replacement of canonical histones with a set encompassing specialized functions in 

chromatin metabolism (Henikoff and Smith 2015; Talbert and Henikoff 2021)] and their 

https://paperpile.com/c/oCqSTT/s7Li
https://paperpile.com/c/oCqSTT/zpo9+JcZa
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post-translational modifications (PTMs) (Ng and Cheung 2016; Taylor and Young 2021), 

non-coding RNAs (Wei et al. 2017; Dhanoa et al. 2018), and transcription factor 

regulatory networks (Davidson 2010). In each one’s specific way, all these mechanisms 

provide the genome with the capacity to produce multiple phenotypes from the same 

genetic material, while influenced by developmental differentiation signals (Waddington 

2012) and/or environmental factors (Cavalli and Heard 2019). Such link between 

environment and gene expression has opened a new field to the study of the epigenetic 

mechanisms mediating exposure-response relationships (Bollati and Baccarelli 2010; 

Vandegehuchte and Janssen 2011; Eirin-Lopez and Putnam 2019), providing information 

about how different environmental factors influence phenotypic variation and starting to 

incorporate this and other non-genetic modulators of the phenome into eco-evo-devo 

theory (Skúlason et al. 2019; Putnam 2021).  

DNA methylation is the best studied epigenetic mechanism, with a growing 

number of studies focused on non-model organisms, including many marine invertebrates 

(Eirin-Lopez and Putnam 2019). In eukaryotes, DNA methylation generally involves the 

transfer of a methyl group (-CH3) from S-adenosyl-L-methionine to a cytosine residue, 

commonly in a CpG (cytosine followed by a guanine) context. This chemical 

modification (5-mC) can physically limit the access transcriptional machinery to gene 

regions and/or serve as signals to other factors binding the DNA, regulating expression, 

generating alternative splicing of expressed genes, or modulating other aspects of 

genomic functioning (Luo, Hajkova, and Ecker 2018). However, major differences 

between the widely studied mammal model and other taxa, make the study of the 

methylome structure and function in non-model organisms very challenging. Mammals 
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display highly methylated genomes with accumulation of 5-mC marks in CpG islands 

associated with gene promoters (Smith and Meissner 2013). Functionally, methylation of 

these CpG islands produce gene silencing by blocking the access to the transcriptional 

machinery, therefore serving as on-off switches for gene expression. In invertebrates, 

conversely, DNA methylation is more sparse through the genome (with as low as 1% of 

the genome being methylated), and occurs predominantly across gene bodies (Sarda et al. 

2012; Gavery and Roberts 2013; Dixon et al. 2018). This overlapping of DNA 

methylation signals and the gene, poses the challenge of balancing methylation-induced 

mutation and the selective preservation of the coding region (Dixon, Bay, and Matz 

2016). Opposite to the mammalian model, highly methylated genes in invertebrates tend 

to be highly expressed, potentially by the reduction of spurious transcription through the 

blocking of intragenomic initiation positions (Roberts and Gavery 2012; Dixon et al. 

2018; Li et al. 2018). Other authors have proposed the hypothesis that gene body 

methylation in invertebrates is involved in differential splicing (Flores et al. 2012). 

Consequently, the function of DNA methylation in invertebrates and its involvement in 

modulating phenotypic plasticity still requires substantial investigation. 

Another key epigenetic mechanism is the modification of the chromatin 

accessibility by the replacement of canonical histones with specialized variants and their 

post translational modifications (PTMs). By regulating the access of different cellular 

components to DNA, these modifications to the chromatin can regulate transcription, 

replication, recombination, and repair (Zink and Hake 2016; Bannister and Kouzarides 

2011). Accordingly, histones not only constitute the basis for the physical structure of the 

chromatin but are also determinants of its functionality (Allis et al. 2007).  The 

https://paperpile.com/c/oCqSTT/97Dx
https://paperpile.com/c/oCqSTT/Du53+FAI5+Rj6L
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interaction between two units of each core histones (H2A, H2B, H3 and H4 families) 

forms an octameric structure around which the DNA wraps. This nucleoprotein complex 

(the nucleosome core particle) is highly dynamic (Zlatanova et al. 2009). The 

replacement of canonical histones by specialized variants (Zink and Hake 2016; Talbert 

and Henikoff 2021) and/or the occurrence of PTMs of their amino-terminal tails [e.g. 

acetylation, ubiquitination, phosphorylation, methylation (Zhou et al. 2014; Ng and 

Cheung 2016; Taylor and Young 2021)] produce changes in the nucleosome compaction, 

allowing or restricting access to the DNA, or serve as signals for effector proteins and 

transcription factors [e.g. H3.3K36me3 as signal for tumor suppressor (Lan and Shi 

2015)]. Despite its incredible appeal, studies addressing the epigenetic role of chromatin 

structural components (e.g., histone variants and their modifications) are very scarce in 

non-model organisms. This is mostly because of the lack of knowledge about their 

specific chromatin structure and dynamic, as well as by the absence of specific antibodies 

enabling the dynamic study of these proteins genome-wide. During the last decade, 

however, several studies have advanced in the description of chromatin in bivalve 

molluscs [reviewed in (González-Romero, Rivera-Casas, Fernández-Tajes, et al. 2012; 

Suárez-Ulloa et al. 2013)]. The presence of very conserved histone variants widely 

studied in model vertebrates including H2A.X, H2A.Z was evidenced in invertebrates 

(González-Romero, Rivera-Casas, Frehlick, et al. 2012; Rivera-Casas, González-Romero, 

et al. 2016; Cheema et al. 2020), including its description in corals as a result of this 

dissertation (Rodriguez-Casariego et al. 2018). More recently, H3.3 and macroH2A 

(Rivera-Casas, Gonzalez-Romero, et al. 2016) were also added to the chromatin 

components repertoire in bivalves. Histone repertoires have been described at the gene 

https://paperpile.com/c/oCqSTT/CYyz
https://paperpile.com/c/oCqSTT/VNF9+y192
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level in other marine invertebrates (Lee et al. 2020; Arenas-Mena, Wong, and Arandi-

Foroshani 2007), but characterizations at the protein level are very scarce with very few 

examples [marine diatom (Veluchamy et al. 2015)]. Overall, the study of epigenetic 

mechanisms (e.g., DNA methylation and histone modification) within the context of 

marine organisms’ responses to global change will be critical for the assessment and 

prediction of the effects global change will have on marine ecosystems.  

Corals as model systems for environmental epigenetics. 

Coral reefs represent the ocean’s most diverse ecosystems (Knowlton et al. 2010) 

providing critical services and goods for human society [e.g. fisheries and aquaculture 

production, shoreline protection, and recreation (Woodhead et al. 2019)]. Hermatypic 

(i.e., reef-building) corals are key foundational organisms for these ecosystems and are 

particularly affected by global change stressors (Hoegh-Guldberg et al. 2017; Vercelloni 

et al. 2020), with documented declines in coral populations worldwide. Among them, 

thermal anomalies surpassing the summer mean are particularly important by disrupting 

coral's obligatory symbiosis with dinoflagellates of the family Symbiodinaceae in a stress 

response known as “bleaching” (Weis 2008; Baker and Cunning 2015). This process is 

the main cause of coral population declines given that often results in mortality or 

increased susceptibility to diseases. Additional reduction of calcification rates and 

skeletal density (Enzor et al. 2018; Putnam, Davidson, and Gates 2016), and decreased 

reproduction success (Putnam et al. 2013) are other effects attributed to global change 

stressors. Consequently, there is an urgency for studying coral responses to global 

change, including ocean acidification, ocean warming and pollution, integrating 
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physiological, ecological, and molecular approaches to determine their capacity for rapid 

acclimatization and adaptation under predicted conditions (Putnam 2021).  

Corals have very complex life cycles and are sessile most of their long lives, 

increasing their vulnerability in a rapidly changing environment, but also supporting the 

idea that their success so far must be driven by mechanisms maximizing phenotypic 

plasticity. Enhanced acclimatization mechanisms have allowed corals to colonize highly 

heterogeneous environments (Todd 2008) and survive drastic environmental changes 

during their evolutionary history (Jackson 2008). Such plasticity could ultimately 

determine the survival of tropical reefs under the predicted future climatic scenario 

(Hoegh-Guldberg et al. 2007; Putnam 2021), making corals remarkable candidates to the 

study of acquired non-genetic modifications (e.g., epigenome and microbiome dynamic) 

potentially increasing their resilience to global change in a relevant time-frame (van 

Oppen et al. 2015; 2017). Accordingly, recent works have highlighted the role of 

microbial communities (Leal et al. 2015; Silverstein, Cunning, and Baker 2015; Peixoto 

et al. 2017; Morrow, Muller, and Lesser 2018), and changes in the epigenome [DNA 

methylation (Putnam, Davidson, and Gates 2016; Liew et al. 2018, 2020; Eirin-Lopez 

and Putnam 2019; Dimond and Roberts 2020), histone variants (Rodriguez-Casariego et 

al. 2018; Li et al. 2018), non-coding RNA (Gajigan and Conaco 2017)] mediating 

responses to different drivers of global change. This has further advanced the idea of 

incorporating epigenetic and microbiome manipulations into “assisted evolution” 

intervention strategies aimed at reverting coral population trajectories (National 

Academies of Sciences, Engineering, and Medicine et al. 2019). However, the current 

understanding of such mechanisms is insufficient to make informed decisions about its 
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feasibility and safety as intervention strategies, requiring additional basic research as has 

been developed in this dissertation.  

Final remarks 

The identification and selection of individuals displaying a better ability to 

respond to environmental stressors or the induction of “preconditioned” or “hardened” 

phenotype, is becoming one of the pillars of the new intervention paradigm in coral reef 

management (van Oppen et al. 2017). The manipulation of non-genetic processes with 

the potential to accelerate the rate of phenotypic change (Fig. 1) can result in enhanced 

resilience of coral recruits, with several studies [previously mentioned and reviewed in 

(Eirin-Lopez and Putnam 2019; Putnam 2021)] providing incipient support for the role of 

epigenetic mechanisms and the microbiome, promoting such “preconditioned” 

phenotypes. Accordingly, lab-based experiments have increased thermal tolerance of 

corals through controlled heat-stress exposures, mainly promoting shifts to more 

thermally tolerant symbionts (Silverstein, Cunning, and Baker 2015; Cunning and Baker 

2020). In addition, the presence gene expression plasticity and frontloading of stress-

response genes (Barshis et al. 2013; Bay and Palumbi 2015; Kenkel and Matz 2016) 

resulting from coral acclimation to stressful conditions hint the intercorrelation of 

mechanisms, including epigenetics (Liew et al. 2018), in the modulation of such 

responses and its memory. However, further efforts are still required to elucidate the 

functionality and responsiveness of epigenetic mechanisms in corals, study the 

interaction between genome, epigenome, transcriptome, and microbiome in holobiont 

physiological responses to realistic environmental conditions, and evaluate the role of 

non-genetic mechanisms in coral acclimatization (including interaction with symbiotic 
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https://paperpile.com/c/oCqSTT/s7Li+Crzy
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and other microbial manipulations). Consequently, these constitute the specific aims 

pursued in this dissertation and divided in four experimental chapters:  

Chapter II. Coral epigenetic responses to nutrient stress: histone H2A.X 

phosphorylation dynamics and DNA methylation in the staghorn coral Acropora 

cervicornis.   

Chapter III. Genome-Wide DNA Methylation Analysis Reveals a Conserved 

Epigenetic Response to Seasonal Environmental Variation in the Staghorn Coral 

Acropora cervicornis 

Chapter IV. Symbiont shuffling induces differential DNA methylation responses to 

thermal stress in the coral Montastraea cavernosa. 

Chapter V. Multi-omic analysis reveals marked phenotypic plasticity in coral clones 

outplanted to divergent environments. 
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Fig. 1. Hypothesized model for environmental preconditioning through non-genetic 

mechanisms in the stony coral holobiont. Both epigenetic memory and microbiome shifts 

have the potential to respond to environmental change providing or modulating 

phenotypic plasticity. Such plastic responses could be reverted to initial conditions or 

result in preconditioned phenotypes in the absence of the stress. Preconditioned 

phenotypes will display enhanced responses to repetitive episodes of the same or similar 

stress. Figure from Beal et al. (2018). 

 

 

  

https://paperpile.com/c/oCqSTT/Aq7Q
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CHAPTER II.  

CORAL EPIGENETIC RESPONSES TO NUTRIENT STRESS: HISTONE H2A.X 

PHOSPHORYLATION DYNAMICS AND DNA METHYLATION IN THE 

STAGHORN CORAL ACROPORA CERVICORNIS. 
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Abstract 

Nutrient pollution and thermal stress constitute two of the main drivers of global 

change in the coastal oceans. While different studies have addressed the physiological 

effects and ecological consequences of these stressors in corals, the role of acquired 

modifications in the coral epigenome during acclimatory and adaptive responses remains 

unknown. The present work aims to address that gap by monitoring two types of 

epigenetic mechanisms, namely histone modifications and DNA methylation, during a 

seven week-long experiment in which staghorn coral fragments (Acropora cervicornis) 

were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of 

thermal stress. The major conclusion of this experiment can be summarized by two main 

results: First, coral holobiont responses to the combined effects of nutrient enrichment 

and thermal stress involve the post-translational phosphorylation of the histone variant 

H2A.X (involved in responses to DNA damage), as well as non-significant modifications 

in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the 

subsequent potential impairment of DNA repair mechanisms) observed after prolonged 

coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont-

driven phosphorus limitation previously observed in corals subject to nitrogen 

enrichment. The alteration of this epigenetic mechanism could help to explain the 

synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased 

bleaching and mortality) while supporting the positive effect of phosphorus addition to 

improving coral resilience to thermal stress. Overall, this work provides new insights into 
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the role of epigenetic mechanisms during coral responses to global change, discussing 

future research directions and the potential benefits for improving restoration, 

management, and conservation of coral reef ecosystems worldwide. 

 

Introduction 

Hermatypic (i.e., reef-building, stony) corals constitute the structural basis of reef 

ecosystems, providing the foundation for over 25% of marine and coastal biodiversity. 

Unfortunately, during the last decades, coral reefs have experienced dramatic declines 

worldwide, caused by local and global anthropogenic stressors (Pandolfi et al., 2003). 

The sessile lifestyle and long lifespan of corals increase their vulnerability to a rapidly 

changing environment (Cunning & Baker, 2012; Nesa & Hidaka, 2009), but also support 

the idea that their evolutionary success relies on a remarkable level of phenotypic 

plasticity (Barshis et al., 2013; Bruno & Edmunds, 1997; Dimond & Roberts, 2016; 

Dixon, Bay, & Matz, 2014). Although a high degree of genotypic diversity can be found 

in some coral species (Ayre & Hughes, 2000, 2004; Souter, 2010), it is becoming 

increasingly clear that the plasticity provided by this mechanism will not be enough to 

keep up with the rapid progression to a warmer, more polluted, more acidic, and 

carbonate-limited ocean (Hoegh-Guldberg et al., 2007; Hughes et al., 2017). Such a dark 

perspective has sparked the interest for the study of environmentally acquired nongenetic 

modifications (i.e., microbiome and epigenome dynamics) in these organisms, given their 

intrinsic potential to increase coral acclimatization and adaptation rates under rapidly 

changing environments (Palumbi, Barshis, Taylor-Knowles Nikki, & Bay, 2014; van 

Oppen, Oliver, Putnam, & Gates, 2015). For instance, recent reports have revealed that 
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specific symbiont strains can provide corals with higher tolerances to thermal stress (Leal 

et al., 2015; Silverstein, Cunning, & Baker, 2015, 2017), and that coral responses to 

different drivers of global climate change do in fact involve changes in the epigenome 

(i.e., DNA methylation) (Beal, Rodriguez-Casariego, Rivera-Casas, Suarez-Ulloa, & 

Eirín-López, 2018; Eirin-Lopez & Putnam, 2019; Liew et al., 2018; Putnam, Davidson, & 

Gates, 2016).  

Organismal responses to environmental changes involve the activation of 

different mechanisms operating at diverse levels, from early genetic responses 

(Hoffmann & Willi, 2008) to whole-individual physiological responses (Boyd et al., 

2015; Shultz et al., 2014). While different, all these mechanisms invariably require the 

modulation of the expression of specific sets of genes, promoting dynamic and 

sometimes reversible responses facilitating the onset of acclimatized phenotypes 

(Stillman & Armstrong, 2015). Epigenetic modifications, defined as phenomena and 

mechanisms that cause heritable (both mitotically and/or meiotically) chromosome-bound 

changes to gene expression, not involving changes to DNA sequence (sensu Deans & 

Maggert, 2015), are at the center of this regulatory process (Eirin-Lopez & Putnam, 

2019). Among the different epigenetic mechanisms known so far, DNA methylation is 

the most studied in all types of organisms (Schübeler, 2015), including corals where 

recent studies have characterized DNA methylation levels in the germline and evidenced 

the involvement of this mechanism in responses to ocean acidification (Dimond & 

Roberts, 2016; Dixon et al., 2014; Liew et al., 2018; Marsh, Hoadley, & Warner, 2016; 

Putnam et al., 2016). Yet, studies elucidating the links between DNA methylation and 

gene expression, the interaction among different types of epigenetic mechanisms, as well 
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as their precise involvement in responses to different drivers of global climate change in 

ecologically and environmentally relevant organisms, are still lacking (Beal et al., 2018). 

Among the multiple threats posed by global change, anthropogenic nutrient 

pollution constitutes one of the major drivers of coral decline (Fabricius, 2005; Wagner, 

Kramer, & van Woesik, 2010; Wooldridge, 2009). Their potential effects include 

increased coral bleaching (Cunning & Baker, 2012; Vega Thurber et al., 2014; 

Wooldridge, 2009), disease (Zaneveld, McMinds, & Thurber, 2017), reduced growth 

rates (Dunn, Sammarco, & LaFleur, 2012; Shantz & Burkepile, 2014) and impaired 

reproduction (Loya, Lubinevsky, Rosenfeld, & Kramarsky-Winter, 2004). A possible 

mechanism underlying these deleterious effects is the rapid proliferation of symbiont 

populations triggered by the disruption of the nitrogen (N)-limited environment 

maintained by the coral host inside the symbiosome (Downs et al., 2002; Nesa, Baird, 

Harii, Yakovleva, & Hidaka, 2012). The resulting phosphorus (P) starvation damages the 

photosynthetic machinery and alters the ionic balance in the symbiont thylakoid 

membranes (Pogoreutz et al., 2017; Wiedenmann et al., 2012), subsequently increasing 

the export of reactive oxygen species (ROS) to the intracellular space while intensifying 

oxidative and DNA damage in both the host and the symbiont (Baruch, Avishai, & 

Rabinowitz, 2005; Ezzat, Maguer, Grover, & Ferrier-Pagès, 2016; McGinty, Pieczonka, 

& Mydlarz, 2012; Nesa et al., 2012; Saragosti, Tchernov, Katsir, & Shaked, 2010; 

Wiedenmann et al., 2012). Overall, the effects of nutrient pollution will work 

synergistically with other stressors (particularly thermal stress) increasing bleaching at a 

mechanistic level (Pogoreutz et al., 2017) and coral mortality (Nesa & Hidaka, 2009; 

Yakovleva et al., 2009). 
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Although the potential ways in which nutrient and thermal stress can affect corals 

are well studied (Brown,1997; D’Angelo & Wiedenmann, 2014; Nielsen, Petrou, & 

Gates, 2018), the identity and the precise role of the epigenetic mechanisms linked to 

acclimatory and adaptive responses to these stressors remains unknown. In order to fill 

that gap, the present work conducted a field experiment consisting of two different types 

of coral nutrient enrichments (treatment 1, nitrogen only; treatment 2, nitrogen + 

phosphorus) using the staghorn coral Acropora cervicornis as model organism. Given 

that a thermal stress event was observed in the study at the same time that this experiment 

was taking place, the obtained results provide a unique opportunity to analyze the 

synergies between both types of stress mediating epigenetic responses in field conditions. 

Two types of epigenetic mechanisms were studied for that purpose, including histone 

modifications [histone H2A.X phosphorylation also known as gamma-H2A.X, a histone 

modification involved in DNA repair and a universal marker of DNA damage (González-

Romero et al., 2012; Maré Chal & Zou, 2013)] and DNA methylation. It is hypothesized 

that nutrient enrichment will accelerate the growth of the symbiont population within the 

holobiont, resulting in a higher production of ROS which will in turn cause DNA 

damage, triggering an increase in gamma-H2A.X (associated to DNA repair activation) 

and changes in DNA methylation. It is also hypothesized that gamma-H2A.X formation 

will be impaired in corals exposed only to N enrichment (treatment 1), due to the P 

limitation caused by proliferation of symbionts in the absence of a P supply. 

Consequently, corals subject to N enrichment (treatment 1) would be expected to 

experience lower levels of DNA repair, encompassing deleterious phenotypic effects. 
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Methods 

Study Site, Experimental and Sampling Design  

Nutrient exposures were conducted using a common garden experiment in a large 

sand flat located near Pickles Reef in the Upper Florida Keys, Key Largo, FL (Fig. 1A) 

(25° 00′ 05″ N, 80° 24′ 55″ W) in approximately 5 - 7 m depth of water. Ambient nutrient 

conditions are relatively oligotrophic at this site (dissolved inorganic nitrogen (DIN) < 

1.2 μM, soluble reactive phosphorus (SRP) < 0.04 μM; Zaneveld et al., 2016), making it 

a suitable location to test the effects of nutrient enrichment on corals. A total of 144 

fragments of the staghorn coral Acropora cervicornis (three parental colonies, 7 to 13 cm 

in length) were obtained from a nearby offshore coral nursery operated by the Coral 

Restoration Foundation (permit no: FKNMS 2014-071). Each coral fragment was secured 

to a 50 cm tall section of PVC tubing (4 cm diameter) set in a base of concrete using 

nylon cable ties, for a total of 12 fragments per stand (Fig. 1B, C). Twelve experimental 

stands were distributed in a randomized block design across the study area with ≥ 2 m 

separation between them. Each stand (n = 4 per treatment) was randomly assigned to one 

of three treatment conditions as follows: Control (Ctrl), nitrogen enrichment (N), and 

nitrogen + phosphorus enrichment (N+P). Controls were replicated in the same way 

treatments were, to account for the potential environmental variability typical of field 

experiments. Coral fragments attached to stands were allowed to acclimate for more than 

10 days without treatment until any visible wounds resulting from the fragmentation 

process healed. N enrichment was achieved using Florikan 0-19-0 slow-release 

ammonium nitrate fertilizer (300 g) as detailed by (Vega Thurber et al., 2014); N+P 

enrichment was obtained by combining 0-19-0 slow-release ammonium nitrate fertilizer 
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(300 g) with 80 g of 40-0-0 slow-release Superphosphate fertilizer. Ctrl stands were not 

exposed to any nutrient source. In both N and N+P treatments, nutrient exposure was 

achieved through the diffusion of nutrients in water by evenly dividing the fertilizer into 

two perforated PVC tubes, wrapped in mesh, and secured at opposing sides of each block 

via cable ties. This method was previously validated to triplicate the ambient levels of 

DIN and SRP for a period of 30 - 45 days in similar conditions (Heck, Pennock, 

Valentine, Coen, & Sklenar, 2000; Sotka & Hay, 2009; Vega Thurber et al., 2014). 

Epigenetic modifications in invertebrates can occur rapidly after exposure to 

environmental stress (Gonzalez-Romero et al., 2017; Rivera-Casas et al., 2017; Suarez-

Ulloa, Gonzalez-Romero, & Eirin-Lopez, 2015). Therefore, coral fragments were 

sampled at three different times during day 1 of exposure (1 h, 2 h, 5 h), day 2, day 7, and 

weekly thereafter for the next 4 weeks. For each sample, one coral fragment was 

randomly collected from each stand (n = 4 coral fragments per treatment, n = 12 

fragments per sampling). Fragments were collected by cutting the cable ties securing 

them to the stands and were subsequently stored in individual sealed sterile plastic bags. 

Once all samples were collected, bags were transported to the surface and immediately 

flash-frozen in liquid nitrogen. Fragments were divided into sub-samples for nutrient 

analyses and for molecular analyses, finally stored at -80 ºC. 

 

Nutrient Quantification 

N and P content were quantified in tissue from coral fragments collected during 

the experiment, including increased sampling frequency during week 1. This sampling 

design is consistent with the findings of Achituv, Ben-Zion, & Mizrahi (1994) and 
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Muller-parker, Cook, & D’Elia, (1994), suggesting that the most significant nutrient 

changes in coral tissue occur within that period. Coral holobiont (the unit formed by the 

coral animal and its associated microorganisms consisting of bacteria, archaea, fungi, 

viruses, and protists including Symbiodiniaceae dinoflagellate algae) tissue was removed 

from a portion of each of the fragments sampled using an airbrush loaded with ultrapure 

water and was dried to a constant weight at 60 °C and homogenized to powder. Samples 

were subsequently fumed with HCl for 14 days to completely remove the skeletal 

inorganic carbon fraction (Szmant et al. 1990) and dried at 70 °C until no further weight 

change was observed. Carbon (C) and N content were measured in aliquots (10 mg) of 

dried and decalcified tissues using a FISONS elemental analyzer (NA1500, 

Loughborough, UK). P content was analyzed sensu Solórzano & Sharp, (1980) using a 

modification adapted for tissue (Fourqurean, Zieman, & Powell, 1992). Briefly, 5 to 10 

mg of dried tissue were placed into glass scintillation vials, diluted  with 0.5 mL of 0.17 

M Na2SO4 and 2 mL of 0.017 M MgSO4, and dried again at 90 °C. The resulting 

powder was incubated at 500 °C for 3 h and cooled down to room temperature. A total of 

5 mL of 0.2 N HCl was added to these oxidized and dried samples and incubated at 80 °C 

for 30 min, after which they were diluted with 10 mL of deionized water and allowed to 

stand overnight for the insoluble ash to settle. The phosphate concentration in the solution 

was determined as SRP using a colorimetric assay. The elemental content was calculated 

on a percentage of dry weight basis, and elemental ratios were calculated on a mole:mole 

basis. Data was collected following time frames reported in the literature, greater than or 

equal to 10 days (Godinot, Houlbrèque, Grover, & Ferrier-Pagès, 2011) but less than 8 

weeks (Godinot, Ferrier-Pagès, & Grover, 2009), while considering the rapid initial 
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changes accounted in the sampling design (Achituv et al., 1994; Gisèle Muller-Parker et 

al., 1994). Accordingly, samples for the first three days were used as initial time (T1) and 

then organized into samples greater than 10 days but less than 8 weeks (T2 and T3) to 

ensure nutrient uptake representation. 

 

Symbiont Density Analysis 

The density of coral symbiont (Symbiodiniaceae) algae was quantified across 

treatments and exposure times by removing all tissue from the coral skeleton using the 

procedure detailed above. Upon extraction, tissue samples were homogenized using a 

tissue grinder and centrifuged for 5 minutes using a hand centrifuge to isolate symbiont 

cells. Each sample was subsequently divided into five technical replicates (100-300 μL 

each) and symbiont cells were quantified using a hemocytometer (Weber Scientific, 

Hamilton, NJ) in an inverted microscope (Leica, Buffalo Grove, IL). The extracted 

fragment’s surface area (cm2) was estimated using the aluminum foil method (Marsh, 

1970). Quantifications were averaged across technical replicates to produce mean 

symbiont density (cells x cm-2) for each fragment. To determine whether enrichments 

impacted Symbiodinaceae growth rates, we tested for differences in the symbiont density 

through time within each of the three treatments. To do so, we used linear mixed effects 

models with hours since enrichment began as a continuous predictor and included growth 

platform as a random factor to account for non-independence within the platforms (using 

χ2 with 1 d.f. to test whether symbiont growth rate significantly differs from zero through 

time). Tests were conducted using the nlme package in R (Pinheiro et al. 2018). 
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Normality and homogeneity of variance were confirmed via quantile-quantile plots and 

plots of fitted versus residual values. 

 

Histone Isolation, Separation and Detection 

Histone proteins were isolated as described elsewhere and adapted to coral tissue 

in the present work (Rivera-Casas et al., 2017). Accordingly, 5 mg of holobiont tissue 

were homogenized in a buffer consisting of 100 mM KCl, 50 mM Tris-HCl, 1 Mm 

MgCl2 and 0.5% Triton X-100 (pH 7.5) and containing a protease inhibitor mixture. 

After homogenization and incubation on ice for 5 min, samples were centrifuged at 

12,000 g for 10 min at 4 ºC. The resulting pellets were resuspended in 0.6 N HCl, 

homogenized, and centrifuged again. The supernatant extracts were precipitated with six 

volumes of acetone at -20 ºC overnight and centrifuged at 12,000 g for 10 min at 4 ºC. 

The acetone pellets were dried using a Vacufuge concentrator (Eppendorf, Hamburg, 

Germany), and stored at -80 ºC. Histone protein separation was carried out in SDS-PAGE 

gels using ClearPAGE SDS gels 4-20% (C.B.S. Scientific, Del Mar, CA). Gels were 

stained with 0.2% (w/v) Coomassie blue in 25% (v/v) 2-propanol, 10% (v/v) acetic acid, 

and de-stained in 10% (v/v) 2-propanol, 10% (v/v) acetic acid. Additional histone 

separation was carried out using High Performance Liquid Chromatography (HPLC) as 

described in Rivera-Casas et al. (2017). Histone proteins were detected using commercial 

antibodies in western-blot analyses, including anti-H2A.X (H2A.X.ab, Abcam 

Cambridge, MA; H2A.Xry, Raybiotech, Norcross, GA) and anti-γH2A.X (γ-H2A.X ab, 

Rockland, Pottstown, PA; γ-H2A.Xry, Raybiotech, Norcross, GA). SDS-PAGE gels were 

electro transferred to a nitrocellulose membrane (C.B.S. Scientific, Del Mar, CA) and 
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processed as described elsewhere (Rivera-Casas et al., 2017). Membranes were incubated 

with a secondary goat anti-rabbit antibody (Rockland, Pottstown, PA) that was 

subsequently detected using enhanced chemiluminescence (Amershan ECL Prime 

Western Blotting Detection Reagent, GE Healthcare Life Sciences, Piscataway, NJ). 

Results were analyzed using the ChemiDoc-It TS2 Imager image analysis system (UVP 

Inc., San Gabriel, CA). 

 

RNA Extraction, cDNA Synthesis and qPCR Reactions 

Total RNA was extracted from coral holobiont tissue using Ribozol Reagent 

(Amresco, Solon, OH), and digested with PerfeCTa DNase I (Quanta Biosciences, 

Gaithersberg, MD) to eliminate residual genomic DNA. cDNA was synthesized using 

qScript cDNA Supermix (Quanta Biosciences, Gaithersberg, MD) and expression 

analyses were subsequently performed by means of quantitative PCR (qPCR). Primers 

specific for H2A.X and H4 histone genes were designed based on sequences retrieved 

from GenBank databases for Acropora cervicornis and A. formosa (Table 1) using the 

Primer-BLAST software (Ye et al., 2012). Histone H4 was used for normalization 

purposes. Primer efficiencies were calculated based on the slope of calibration curves 

constructed using ten-fold dilution steps, according to the formula 𝐸 = 10 −1/𝑠𝑙𝑜𝑝𝑒 . 

The resulting gene expression profiles were subsequently examined in A. cervicornis 

RNA samples by measuring SYBR green incorporation in a LightCycler 96 System 

(Roche, Mannheim, Germany). cDNA amplifications were carried out in 45 cycles under 

the following conditions: Preincubation at 95 °C for 10 min, denaturalization at 95 °C for 

10 s, annealing at 60 °C for 10 s and elongation at 72 °C for 10 s, including a final 
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melting gradient up to 97 °C using a ramp of 4.4 °C x s-1 to confirm primer specificity. 

Each individual reaction was carried out in triplicate, including negative controls (No 

Template Control, NTC; Non-Reverse Transcription Control, NRTC). Results were 

recorded as normalized ratio values by the LightCycler 96 Software version 1.1 following 

the Pfaffl method (Pfaffl, 2001). 

 

gamma-H2A.X/H2A.X Ratio Analysis 

The quantification of histone H2A.X and its phosphorylated form (gamma-

H2A.X) was implemented in coral samples from different experimental treatments by 

using a commercial ELISA kit (Raybiotech, Norcross, GA), providing a simultaneous 

semi-quantitative measure of the gamma-H2A.X/H2A.X ratio in a single experiment. For 

that purpose, 10 mg of coral tissue from each of three samples per treatment per time 

were solubilized in 500 μL of commercial lysis buffer and incubated on ice for 30 min. 

After centrifugation (18,000 g for 10 min at 4 °C), 100 μL of each lysate were loaded by 

duplicate in anti-H2A.X pre-coated microplate along with positive and negative controls 

provided in the kit, and samples were incubated overnight at 4 °C. Subsequently, 100 μL 

of detection antibodies [anti-H2A.X (S139) or anti-pan-H2A.X], HRP (Horseradish 

Peroxidase)-conjugated anti-rabbit IgG (against secondary antibodies) and TMB One-

Step Substrate Reagent were added to the plate following manufacturer’s indications. The 

TMB substrate was incubated for 30 min in the dark with shaking and 50 μL of Stop 

Solution were added to each well before reading absorbances in a ELx808IU microplate 

reader (Biotek, Winooski, VT) at 450 nm. 
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DNA Extraction and DNA Methylation Analysis 

Genomic DNA was purified as described elsewhere and adapted to coral tissue in 

the present work. Briefly, tissue homogenates were incubated at 50 °C for 2 h with 

CTAB lysis buffer (100 mM Tris, 20mM EDTA, 1.2 M NaCl, 2% CTAB, pH 8.0) and 

proteinase K, completing DNA extraction following the phenol-chloroform protocol 

(Sambrook & Russell, 2006). DNA methylation was quantified in genomic DNA samples 

by measuring the amount of 5-methyl-Cytosines (5-mC), using the MethylFlash Global 

DNA Methylation (5-mC) ELISA kit (Epigentek, Farmingdale, NY). Accordingly, three 

genomic DNA samples per treatment/time were loaded in duplicate to ELISA plates, 

along with positive (polynucleotide with 50 % of 5-mC) and negative controls 

(polynucleotide with 50% of unmethylated Cytosine), all with binding solution. All 

samples were diluted to a final concentration of 9.645 ng/μL in NanoPure water, 

corresponding to 77.12 ng of DNA in each well. Once binding was completed, 100 μL of 

capture antibody, detection antibody, developer solution and stop solution were 

sequentially added, performing intercalated incubations and plate washes, following 

manufacturer indications. The absorbance (OD) resulting from the colorimetric reaction 

was quantified at 450 nm in a ELx808IU microplate reader (Biotek, Winooski, VT). 

Quantification of 5-methyl-Cytosine content (ng) was performed following the 

calculations suggested by the manufacturer. 

 

Statistical Analyses 

All results are presented as mean values of replicate samples ± standard error, 

unless indicated otherwise. All statistical analyses were performed with respect to 
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controls to separate the contributions of the experimental variables. The statistical 

significance of the effect of blocks, treatments and exposure time was evaluated by 

means of Two-Way ANOVA and One-Way ANOVA when required. This approach was 

appropriate for the analysis of P content, histone H2A.X quantification, and DNA 

methylation after transformation to natural logarithm. In all cases, data were confirmed to 

follow a normal distribution (Shapiro-Wilk Test, p > 0.05), and variance homogeneity 

(Brown-Forsythe Test, p > 0.05). The analysis of N content data (including N:P molar 

ratios) was done by means of a Two-Way PERMANOVA with Euclidean distance using 

9,999 permutations (Anderson, 2001). Although this is primarily a multivariate method, it 

performs as a univariate test (equivalent to ANOVA) under the current experimental data 

conditions, avoiding the assumption of normality (Anderson, 2017) and allowing for the 

analysis of interactive effects (Doropoulos et al., 2014). PERMDISP was used to test for 

homogeneity of dispersion (equivalent to homoscedasticity). Post-hoc Tukey-HSD tests 

and the Holm-Sidak method were used for multiple comparisons when appropriate. All 

analyses were carried out using R 3.4.1 (R Core Team, 2017), except the Two-Way 

PERMANOVA that was performed using PAST 3.18 (Hammer, Harper, & Ryan, 2001) 

and the PERMDISP analysis that was performed with Primer v6 (Clarke & Gorley, 2006) 

 

Results 

Nutrient Quantification and Thermal Monitoring During Experimental Treatments. 

The nutrient enrichment treatments implemented in the present work did not 

cause coral mortality, and no bleaching or disease were evident during the experiment. In 

addition, it was determined that the studied parameters were not influenced by the block 
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design (p > 0.05, Table 2). N and P levels in the holobiont displayed particularly low 

values (Fig. 2, Table 3), with %P around 0.4 and %N around 2.1 for all treatments. 

Nonetheless, while neither N or P content displayed significant differences among 

treatments (%P: F (2, 34) = 0.744, p = 0.483; %N: F(2, 34) = 0.692 p = 0.427), both 

parameters showed significant changes during the span of the experiment, decreasing in 

the case of P content (F (4, 34) = 5.960, p = 0.007, Fig. 2A), and increasing in the case of 

N content (F (4, 34) = 10.527, p < 0.001, Fig. 2B). As a result, N:P molar ratios displayed 

a significant dependence with time (F (4, 34) = 13.62, p < 0.001; Fig. 2C), as well as a 

statistical dependence with the nutrient enrichment treatments assayed (F (2, 34) = 1.8245 

p = 0.05). Interestingly, although tissue nutrient analyses were not very sensitive to the 

nutrient addition treatments developed on the reef, results showed an antagonistic 

response of N and P through time, evidencing a mild nutrient enrichment in holobiont 

tissues. 

Given that the present experiment was directly developed in the reef, factors other 

than nutrient exposure could be affecting the observed results, notably fluctuating thermal 

regimes. Consequently, temperature data corresponding to the experimental site (long-

term monitoring station, 4 Km away and at similar depth, site 225, 25° 00.807', 80° 

22.677') was subsequently analyzed to evaluate this possibility (Fig. 3). Results revealed 

a temperature increase in the lower portion of the water column (up to 40 cm from the 

bottom) from 28.39 ± 0.15 °C at the beginning of acclimatization period, to 30.52 ± 0.05 

°C by the end of the experiment. This represents a net increase of more than 2 °C during 

the exposure period, reaching the bleaching threshold reported for Acropora cervicornis 

in the Florida Keys (30.5 °C; Manzello, Berkelmans, & Hendee, 2007). Based on this 
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observation, the effect of thermal stress was added to that of nutrient stress, in order to 

better evaluate their combined effect on coral epigenetic responses. 

 

Changes in Symbiont Population Densities Across Nutrient Treatments. 

Symbiont density analyses revealed a significant increase in the symbiont 

populations of A. cervicornis corals subject to nutrient enrichment treatments during the 

course of the present experiment (Table 4), as compared with the constant density levels 

observed in corals subject to control conditions. Additionally, the obtained results 

revealed that changes in symbiont densities were significantly influenced by the specific 

nature of the nutrient treatments as follows: on one hand, corals exposed to N only 

enrichment (treatment 1) displayed a twofold increase respect to control corals; on the 

other, a fourfold increase was observed in corals exposed to N+P enrichment (treatment 

2). Along with nutrient quantification analyses, these results further support the 

efficiency of the nutrient exposures developed during the present work. 

 

Changes in Histone H2A.X Phosphorylation During Nutrient and Thermal Stress. 

Histones from Acropora cervicornis were extracted, isolated, and purified for the 

first time in the present work, including different fractions containing linker and core 

histones, as well as diverse histone-like proteins present in the coral holobiont (Fig. 4A, 

B). In addition, H2A.X and its phosphorylated form gamma-H2A.X were immuno-

detected using western blot analyses (Fig. 4C), validating the use of different commercial 

antibodies for their detection in corals. The role of H2A.X during coral responses to 

nutrient and thermal stress was studied at two different functional levels. First, coral 
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H2A.X gene expression patterns were analyzed using coral-specific qPCR primers 

specifically designed using A. cervicornis and A. formosa sequences retrieved from 

GenBank databases as references (Table 1). The obtained results revealed homogeneous 

gene expression levels across the different nutrient treatments during the first 24 h of 

exposure (F (2, 9) = 1.569, p = 0.265, Fig. 5, Suppl. Fig. 1), suggesting that the main role 

of coral H2A.X during responses to nutrient stress (temperature was not high enough to 

cause stress during the first 24 h) does not take place at the transcriptional level. 

The analysis of the epigenetic effects mediated by H2A.X was subsequently 

expanded to the post-translational level, based on the well-established link between 

H2A.X phosphorylation and DNA damage repair. For that purpose, gamma-H2A.X 

levels were quantified during coral 350 exposure to different nutrient treatments under 

increasing temperature, revealing significant differences between different treatments at 

specific sampling times (F (14, 40) = 4.361, p < 0.001) in spite of the high variability in 

the response of the controls. These results can be interpreted as indicative of DNA 

damage occurring in higher rates under enriched conditions, based on the stress marker 

nature of the gamma-H2A.X modification. Accordingly, the observed response can be 

divided into three major stages (Fig. 6A): first, an early rapid response consisting of a 

significant increase in gamma-H2A.X was observed during the first hour in corals subject 

to both N and N + P treatments (Tukey-HSD test, q = 16.264, p = 0.003); second, a 

suspended gamma-H2A.X response was observed in both treatments starting from hour 2 

to day 7; and third, a late slow response in gamma-H2A.X over a longer period of time 

that was observed after day 7. In this last period, phosphorylation reached significantly 

different values in both enrichment treatments as follows: on one hand, gamma-H2A.X 
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became significantly greater than controls after a 20-day exposure to the N treatment 

(Tukey-HSD test, q = 4.734, p = 0.036) and after a 35-day exposure to N + P treatment 

(Holm-Sidak test, t = 4.057, p < 0.001); on the other, a reduction in gamma-H2A.X levels 

was observed in coral fragments subject to N enrichment for more than 20 days, 

displaying significant differences respect to controls upon reaching the 35-day mark 

(Holm-Sidak test, t = 2.394, p = 0.021). 

 

Changes in DNA Methylation During Nutrient and Thermal Stress. 

In addition to histone modifications, the role of DNA methylation during coral 

responses to nutrient stress was analyzed in the present work to account for the potential 

interaction among multiple mechanisms during epigenetic effects in response to 

environmental stress. In the present case, however, DNA methylation analyses did not 

detect significant differences among different nutrient treatments (F (2, 44) = 2.505, p = 

0.093) or across different time points (F (7, 44) = 2.081, p = 0.066) (Fig. 6B). 

Nonetheless, the obtained results evidenced that the mean DNA methylation content in 

corals exposed to N enrichment was twice as much as that experienced by control corals 

at hour 1, hour 2, day 7, day 27 and day 35. The same was observed for corals exposed to 

N + P for day 27. Interestingly, this trend is similar (although no significant correlation 

was observed) to that observed for gamma-H2A.X (Fig. 6A), including an initial rapid 

response, followed by a suspended response and by a late slow response lasting until the 

end of the experiment. 
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Discussion 

The present work constitutes one of the few pioneering efforts investigating the 

role of epigenetic mechanisms during environmental responses in corals, more precisely 

to nutrient and thermal stress. In doing so, this work also expands recent efforts 

combining the study of multiple epigenetic mechanisms during environmental epigenetic 

responses in marine invertebrates, including histone variants (and their modifications) 

and DNA methylation (Gonzalez-Romero et al., 2017; Li et al., 2018). The obtained 

results constitute the first description of the histone variant H2A.X and its phosphorylated 

form, gamma-H2A.X, in a stony coral species. Such findings, together with the histone 

diversity previously described in cnidarians (Reddy, Ubhe, Sirwani, Lohokare, & 

Galande, 2017; Török et al., 2016) as well as in Symbiodiniaceae dinoflagellates (Lin et 

al., 2015), unveil the potential contribution that chromatin-associated proteins convey 

during epigenetic effects and inheritance linked to environmental epigenetic responses in 

this group (Beal et al., 2018). Along with the study of DNA methylation levels, this work 

starts shaping our knowledge about the potential interactions among different epigenetic 

mechanisms mediating environmental responses, as well as their modulation by the 

combined action of different stressors (e.g., nutrients and temperature). 

 

Coral Nutrient Content Does Not Predict Environmental Nutrient Exposure 

Nutrient quantification analyses revealed a lack of correlation between nutrient 

content in the coral holobiont and the expected environmental nutrient levels derived 

from the experimental exposures. Nonetheless, a nutrient enrichment effect was 

evidenced by the N:P molar ratios estimated during exposures (Fig. 2C), as well as by the 
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increase in symbiont population densities across treatments (Table 4). Although nutrient 

content in water was not evaluated in this work, studies using the same enrichment 

strategy in the same location and season, successfully enriched the water column by 

approximately 3 μM N and 0.3 μM P in a 1 m radius around nutrient diffusers (Vega 

Thurber et al., 2014; Zaneveld et al., 2016), supporting the success of the present 

experimental approach in locally elevating nutrient concentrations available to 

experimental coral fragments. Indeed, it has been demonstrated that changes in 

environmental nutrient concentrations are not necessarily linked to changes in tissue 

content (Achituv et al., 1994; Godinot et al., 2009; Godinot, Ferrier-Pagès, Montagna, & 

Grover, 2011; 406 G Muller-Parker, Mccloskey, Hoegh-Guldberg, & Mcauley, 1994; 

Gisèle Muller-Parker et al., 1994). Accordingly, multiyear nutrient enrichment 

experiment (including both N and P) demonstrated a strong nutrient stoichiometric 

homeostasis and high constancy in coral holobiont tissue, regardless of elevated external 

nutrient levels, and even in the presence of a significant increase in the 15N isotope in 

corals exposed to N enrichment (Koop et al., 2001). Consequently, based on these 

observations as well as on the results obtained in the present work, the lack of a cause-

effect relationship between environmental nutrient enrichment and the nutrient levels 

determined for coral tissues could be due to a rapid nutrient turnover in the holobiont. 

On the other hand, nutrient content changed significantly with time and 

independently of nutrient treatment, suggesting that other factors may be influencing 

nutrient content in coral tissue. Among the different environmental parameters chiefly 

affecting coral fitness, it is well known that thermal stress can modify coral nutrient 

uptake ratios (Ezzat et al., 2016; Godinot, Houlbrèque, et al., 2011), and regulate 
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phosphate transfer to symbiotic vacuoles (Miller & Yellowlees, 1989). The analysis of 

thermal regimes during the present experiment revealed a progressive increase in water 

temperature in the area of study (Fig. 3), potentially affecting the observed nutrient 

dynamics. Accordingly, among the different reports addressing the effect of thermal 

stress on nutrient uptake ratios, at least one has described a sharp increase in N uptake 

(with no change in P intake) in corals subject to mild thermal stress (29 °C, Godinot et 

al., 2011), matching the observations described in the present work (Fig. 2A, B). On the 

other hand, alternative studies have described an inverse pattern in coral species subject 

to severe thermal stress (> 30 °C, Ezzat et al., 2016; Godinot et al., 2011). Altogether, 

these results are illustrative of the complexity of nutrient stress responses in corals, being 

possible that the thermal variation experienced by experimental corals (28 - 30°C) 

contributed to the observed trends in nutrient contents. 

 

gamma-H2A.X Participates in Coral Epigenetic Responses to Nutrient and Thermal 

Stress  

Coral exposure to elevated nutrient levels can promote the rapid proliferation of 

symbionts, leading to a potential increase in the production and export of ROS (Cunning 

& Baker, 2012; Ezzat et al., 2016; Marubini & Davies, 1996; Nesa & Hidaka, 2009; 

Wiedenmann et al., 2012; Wooldridge, 2 433 009), as well as in DNA damage (Lesser, 

2006). Under conditions of nutrient imbalance and/or thermal stress, such deleterious 

effects are likely to be exacerbated by the damage experienced by the photosynthetic 

machinery (Pogoreutz et al., 2017), as well as by the disruption of the symbiont’s 

membrane composition (Wiedenmann et al., 2012). Given the well-established role of 
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histone H2A.X and its phosphorylated form during the activation of DNA repair 

mechanisms in eukaryotes (Maré Chal & Zou, 2013; Suarez-Ulloa et al., 2015), the 

modifications observed in gamma-H2A.X/H2A.X levels are consistent with the role of 

this mechanism mediating epigenetic effects during coral responses to nutrient stress, 

supporting the link between exposure to nutrient/thermal stress and the presence of DNA 

damage. 

The results from gene expression analyses indicate that the role played by H2A.X 

does not appear to take place at a transcriptional level (Fig. 5, Suppl. Fig. 1). Only two 

other studies have evaluated H2A.X gene expression in marine invertebrates, with 

contradictory results. On one hand, increased H2A.X.1 and H2A.X.2 mRNA levels were 

found in Hydra sp. exposed to the genotoxic agent bleomycin (Reddy et al., 2017). On 

the other, no expression changes were observed on variants H2A.X, H2A.Z and 

macroH2A during the exposure of the Eastern oyster Crassostrea virginica to marine 

toxins (Gonzalez-Romero et al., 2017). Nonetheless, both studies reported increased 

gamma-H2A.X levels upon exposure to environmental stress (Gonzalez-Romero et al., 

2017; Reddy et al., 2017), supporting that the main functional role of this variant during 

DNA repair is regulated at a post-translational level. 

The results obtained in this work suggest a link between environmental 

(nutrient/thermal) stress and histone H2A.X phosphorylation in corals. However, the 

observed patterns were complex. First, basal gamma-H2A.X levels (gamma-

H2A.X/H2A.X ratio > 3) in corals are higher than those found in other eukaryotes 

including humans (Ji et al., 2017) and marine invertebrates (Gonzalez-Romero et al., 

2017). Such peculiarity can be interpreted in the context of the recurrent state of 
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hyperoxia to which corals are subject during the day, resulting from the photosynthetic 

activity of symbiotic algae (Kuhl, Cohen, Dalsgaard, Jorgensen, & Revsbech, 1995; 

Shashar, Cohen, & Loya, 1993). This includes the production of ROS (Dykens, Shick, 

Benoit, Buettner, & Winston, 1992), requiring frequent 460 mitigation of the subsequent 

oxidative damage in the coral holobiont (Richier, Furla, Plantivaux, Merle, & Allemand, 

2005; Roth, 2014). Precisely, such complex interaction between the coral host and the 

algal symbiont could also explain the high variability observed for gamma-

H2A.X/H2A.X ratios in controls. Second, the transition from early rapid response, to 

suspended response, to late slow response periods in gamma-H2A.X levels (Fig. 6A) 

agrees with coral acclimatory responses, necessary to activate molecular and 

physiological mechanisms temporally restoring homeostasis until additional responses 

(usually more intense and persistent than the previous) are required. Indeed, a similar 

dynamic response was observed during coral exposure to thermal stress, involving two 

pulses in the expression of the heat shock protein hsp70 linked to acclimatization periods 

to different levels of stress (Gates & Edmunds, 1999). Similarly, Moya, Ganot, Furla, & 

Sabourault (2012) observed a rapid and transient transcriptomic response to stress in the 

anemone Anemonia viridis, followed by a second response after 5 or 21 days depending 

on the combination of thermal stress and UV exposure. The obtained results are further 

supported by the identification of pulse-like or transient responses in the expression and 

activity of stress proteins in coral larvae (Rodriguez-Lanetty, Harii, & Hoegh-Guldberg, 

2009; Voolstra et al., 2009), as well as in molluscs exposed to thermal stress (Anestis, 

Lazou, Portner, & Michaelidis, 2007). The final stage of the experiment was particularly 

interesting regarding histone H2A.X dynamics, as gamma-H2A.X levels displayed 
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significant differences with respect to controls but with different signs depending on the 

nutrient treatment. Accordingly, gamma-H2A.X levels increased drastically in corals 

exposed to N + P by day 35, which not only agrees with a prolonged exposure to nutrient 

stress, but also with the increment in water temperature (more than 2 °C at this point). On 

the contrary, gamma-H2A.X levels decreased significantly by day 35 in corals exposed to 

N only enrichment, which is a remarkable observation considering that these individuals 

were also subject to thermal stress (and therefore require as much DNA repair as 

possible). This is probably one of the most interesting results in the present work, as it 

provides support for the hypothesis suggesting that N enrichment will promote P 

starvation in the coral holobiont (Wiedenmann et al., 2012), hampering the 

phosphorylation of H2A.X and subsequent activation of DNA repair mechanisms. In 

addition, P starvation has been proposed to increase thermally driven damage to 

photosystem II (Pogoreutz et al., 2017), as well as to limit the capacity of the thylakoid 

membrane to contain ROS (Wiedenmann et al. 2012), further exacerbating DNA damage 

in cells where DNA damage repair (by way of gamma-H2A.X formation) is already 

seriously impaired. On the other hand, a higher level of H2A.X phosphorylation 

(indicative of DNA damage sensing and repair) will be expected in corals exposed to N + 

P treatment after 35 days, as corroborated by the obtained results, thanks to the presence 

of P as part of that treatment, therefore preventing the harmful effects of P starvation. 

Overall, the consequences of the impairment in H2A.X phosphorylation are 

enormous, as these will directly affect the ability of the coral holobiont to activate DNA 

damage repair mechanisms (Albino et al., 2009). Indeed, the alteration of this epigenetic 

mechanism could help explaining the synergistic effects of nutrient imbalance and 
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thermal stress on coral fitness, increasing bleaching and mortality (Ezzat et al., 2016; 

Wooldridge, 2009). Similarly, these results also support the positive effect of P addition 

in order to improve coral resilience to thermal stress (Ezzat et al., 2016). 

 

Global DNA Methylation 

Among the different epigenetic mechanisms known to date, DNA methylation is 

the best studied in marine organisms (Beal et al., 2018; Eirin-Lopez & Putnam, 2019). In 

the present work, the analysis of global DNA methylation did not detect significant 

differences among different nutrient treatments or across different time points (Fig. 6B). 

Such result is surprising, based on the multiple reports describing changes in DNA 

methylation levels in marine organisms subject to different environmental stimuli (Beal 

et al., 2018; Eirin-Lopez & Putnam, 2019). A possible explanation could involve the 

scale at which DNA methylation was quantified in the present work. Accordingly, DNA 

methylation was estimated at a global genomic level which provides little resolution, 

therefore, the marginal lack of significance observed could result from limited 

replication. In addition, DNA methylation was quantified for the coral holobiont 

(including both the coral host and the algal symbiont) introducing another potential 

source of variability affecting the results obtained. In addition, the canceling effect that 

specific local modifications may have on each other cannot be neglected. Lastly, both 

promoter and gene-body methylation (or the lack thereof) appear to contribute to 

phenotypic plasticity in marine invertebrates (Eirin-Lopez & Putnam, 2019; Gavery & 

Roberts, 2013; Li et al., 2018; Marsh & Pasqualone, 2014), making the study of this 

epigenetic mechanism extremely complex in this group. An illustration of such 
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complexity is exemplified by responses to stress involving an increase in DNA 

methylation at specific genomic regions accompanied by demethylation at others, 

resulting in a net genome-wide DNA methylation level similar to that present in controls 

(same number of DNA methylation marks but at different genomic regions). Despite the 

limitations of the method, the contribution of DNA methylation to coral stress responses 

is hinted by the trends observed, including pulsed changes in DNA methylation mirroring 

those observed in the case of gamma-H2A.X/H2A.X ratios. Since pulsed responses 

would facilitate immediate responses upon stress exposure, followed by the activation of 

other complementary mechanisms mediating longer-term responses, it would not be 

surprising if DNA methylation also follows such trend by regulating the expression of 

genes linked to other mechanisms involved in the maintenance of genome integrity. 

Further analyses addressing changes in DNA methylation variation at higher resolution 

(i.e., single nucleotide level) will be necessary in order to clarify that aspect. 

 

Conclusions 

This work constitutes a pioneering effort describing coral epigenetic 

modifications during responses to nutrient and thermal stress, including histone 

modifications and DNA methylation. The obtained results support the presence of the 

specialized histone variant H2A.X and its phosphorylated form (gamma-H2A.X) in stony 

corals. The relationship between gamma-H2A.X levels and coral exposure to stress 

appears to be consistent with the role of this histone modification activating DNA repair 

responses. Such function is further supported by the observed impairment of gamma-

H2A.X formation after prolonged exposure to N enrichment, underscoring the 
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detrimental effects that P limitation bears on the epigenetic mechanisms preserving coral 

genome integrity. Although the observed modifications in DNA methylation during 

nutrient and thermal stress were not large enough to be statistically significant, the 

contribution of this epigenetic mechanism to coral stress responses should not be 

disregarded based on: a) the global nature of the DNA methylation estimations developed 

in this work; b) the similarity between the shape of DNA methylation trends (2 major 

pulses during the experiment), and that of the gamma-H2A.X response observed over the 

course of exposures; and c) the complexity of DNA methylation responses to 

environmental stress described in marine invertebrates. Overall, this effort constitutes a 

first step toward understanding the intricacies of the mechanisms regulating 

environmental epigenetic responses in marine organisms. Further efforts will be required 

to bring this research to the next level, including genome-wide, single-nucleotide 

resolution level studies to elucidate the regulatory relationships between different 

epigenetic mechanisms and the genes involved in acclimatory and adaptive responses. 

Similarly, the study of the interaction between the genome and the epigenome will help 

understand how population diversity shapes epigenetic responses in marine populations, 

along with the implications for the implementation of epigenetic selection methods. 

Although these goals will be even more challenging in the specific case of corals (given 

the contribution of the symbiont genome and epigenome to the phenotype of the 

holobiont) the potential benefits for improving restoration, management and conservation 

of coral reef ecosystems worldwide clearly justifies that effort.
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Fig. 1. A. Field experiment site location in Pickles Reef, Upper Florida Keys, Key Largo, 

FL (25°00′05″ N, 80°24′55″W). B. Nutrient exposure experiment design consisting of 12 

blocks evenly distributed across the study area (n = 4 blocks per treatment), randomly 

assigned to one of three treatment conditions: control (C), Nitrogen enrichment (N), and 

Nitrogen and Phosphorous enrichment (N + P). C. Each coral fragment was secured to 

PVC tubing set in a base of concrete using nylon cable ties, for a total of 12 fragments 

per block.  



 60 

 

Fig. 2. Nutrient content in tissue from staghorn coral fragments exposed to the different 

enrichment treatments implemented in the present work. A. Phosphorus tissue content in 

coral fragments expressed as percent of dry mass of reactive phosphate; B. Nitrogen 

tissue content in coral fragments expressed as percent of dry mass; C. N:P molar ratio. 

Exposure times are defined as: T1, hour 1 to day 3; T2, day 3 to day 20; and T3, day 20 

to day 35.  
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Fig. 3. Hourly water column temperatures in the Florida Keys National Marine 

Sanctuary, site 225, for the year 2015. The blue line represents the mean value for the 

temperature registered in this station for the year. The periods corresponding to the 

different stages of the experiment are indicated in green (acclimatization of coral 

fragments) and red (exposure of coral fragments to nutrient enrichment treatments).  
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Fig. 4. A. Purification profile of acid-extracted staghorn coral histones across an 

acetonitrile gradient (ACN) using HPLC. The analyzed histone fractions are indicated by 

numbers 1-12. B. SDS-PAGE separation of HPLC histone fractions 1-12 revealing linker 

and core histones, as well as diverse histone like proteins present in the coral holobiont. 

C. Western blot immunodetection of histone variant H2A.X and its phosphorylated form 

(gamma-H2A.X) to validate antibody specificity (above) and of HCl-extracted histones 
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from A. cervicornis (below) using commercial antibodies H2A.X.ab (Abcam), γ-H2A.X 

ab (Abcam), H2A.Xry (RayBiotech) and γ-H2A.Xry (RayBiotech). ACN, acetonitrile; 

CM, chicken marker; M: molecular weight marker; CR, coral tissue extraction; SS, 

starting sample.  
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Fig. 5. Histone H2A.X gene expression levels in staghorn coral during the first 24 hours 

of exposure to different nutrient treatments. Plots represent mean normalized ratios in 

relation to the study calibrator (Histone H4) ± SE (n=2).  
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 Fig. 6. A. Characterization of histone H2A.X phosphorylation levels in staghorn coral 

fragments across different nutrient treatments, estimated as the ratio between 

phosphorylated H2A.X (gamma-H2A.X) and its non-modified form (H2A.X). Each plot 

represents mean ± SE (n = 3). The level of significance of the post-hoc Holm-Sidak test 

is indicated as * p < 0.05, ** p < 0.01. The response was divided into three parts: early 

rapid response (hour 1), suspended response (hour 2 - day 7), and late slow response 

(after day 7). B. Characterization of global DNA methylation levels in staghorn coral 

fragments across different nutrient treatments, estimated as total mass of methylated (5-

methyl-Cytosine) DNA. Each plot represents mean ± SE (n = 3, biological replicates). 

The response was divided in three parts mirroring gamma-H2A.X, defined as: early rapid 

response (hour 1 - 2), suspended response (hour 2 - day 14), and late slow response until 

the end of the experiment (after day 14).  
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Table 1. qPCR primers used in histone gene expression analyses and species used as 

references for their design.  

 

Gene Primer Name Sequence (5' → 3') Species 

H2A.X Ac-H2A.X-Fw CTCAGGGAGGTGTTTTGCCA Acropora cervicornis 

  Ac-H2A.X-Rv TGGCTTTGGGATGATTTCCCT   

H4 Af-H4-Fw CCGGGCTCCCAGTAAAATGT Acropora formosa 

 Af-H4-Rv TGTCGTATGGGGGAGGGATT   
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Table 2. Two-way ANOVA analysis of the contribution of block design to the studied 

variables. %P and %N represent the percentage of dry weight for each element. 

 

Variable Source of Variation df F p 

%P Block 3 0.574 0.636 

Treatment x Block 6 0.495 0.808 

%N Block 3 1.167 0.336 

Treatment x Block 6 0.407 0.869 

gammaH2A.X/H2A.X Block 3 1.128 0.345 

Treatment x Block 6 0.183 0.833 

DNA methylation Block 3 1.920 0.156 

Treatment x Block 6 0.883 0.419 
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Table 3. Nutrient content in corals (holobiont) exposed to control (C), enriched nitrogen 

(N), and enriched nitrogen and phosphorus (N+P) treatments. Values represent mean and 

standard deviation (in parentheses) for all samples collected during a 4 week-long 

exposure (n=24). N:P and C:N represent molar nitrogen:phosphorus and carbon:nitrogen 

ratios, respectively. %P, %N and %C represent the percentage of dry weight for each 

element. 

 

Treatment %P %N %C N:P C:N 

C 0.382 
(0.096) 

2.136 
(0.790) 

15.592 
(5.049) 

3.011 
(2.163) 

6.350 
(0.498) 

N 0.420 

(0.148) 

2.135 

(0.755) 

15.298 

(4.665) 

2.875 

(2.310) 

6.286 

(0.731) 

N+P 0.404 

(0.106) 

2.116 

(0.715) 

15.791 

(4.615) 

2.493 

(1.132) 

6.480 

(0.556) 

 

  



 69 

Table 4. Mixed effects models analysis of modifications in symbiont population densities 

in A. cervicornis during the course of the present experiment under control (C), enriched 

nitrogen (N), and enriched nitrogen and phosphorus (N+P) treatments*. 

 

Treatment χ2 Slope ± SE p 

C 2.184 0.00034 ± 0.00023 0.140 

N 4.400 0.00084 ± 0.00040 0.036 

N+P 14.061 0.00100 ± 0.00028 <0.001 

* The slope represents the linear estimate of how the symbiont population changes 

through time (106 cell x hour-1) in the different treatments. See Statistical Methods in the 

Methods section of this work for additional details on symbiont density analyses. 
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CHAPTER III  

GENOME-WIDE DNA METHYLATION ANALYSIS REVEALS A CONSERVED 

EPIGENETIC RESPONSE TO SEASONAL ENVIRONMENTAL VARIATION IN 

THE STAGHORN CORAL ACROPORA CERVICORNIS 



 71 

 

This manuscript was published in Frontiers in Marine Science 2020 and formatted 

according to the publisher’s requirements.  

 

Abstract 

Epigenetic modifications such as DNA methylation have been shown to 

participate in plastic responses to environmental change in a wide range of organisms, 

including scleractinian corals. Unfortunately, the current understanding of the links 

between environmental signals, epigenetic modifications, and the subsequent 

consequences for acclimatory phenotypic changes remain obscure. Such a knowledge gap 

extends also to the dynamic nature of epigenetic changes, hampering our ability to 

ascertain the magnitude and extent of these responses under natural conditions. The 

present work aims to shed light on these subjects by examining temporal changes in 

genome-wide patterns of DNA methylation in the staghorn coral Acropora cervicornis in 

the island of Culebra, PR. During a 17-month period, a total of 162 polymorphic loci 

were identified using Methylation-Sensitive Amplified Polymorphism (MSAP). Among 

them, 83 of these fragments displayed changes in DNA methylation changes that were 

significantly correlated to seasonal variation as determined mostly by changes in sea 

water temperature. Remarkably, the observed time-dependent change in DNA 

methylation patterns is consistent across coral genets, coral source sites and site-specific 

conditions studied. Overall, these results are consistent with a conserved epigenetic 

response to seasonal environmental variation. These findings highlight the importance of 

including seasonal variability into experimental designs investigating the role of 

epigenetic mechanisms such as DNA methylation in responses to stress. 



 72 

Introduction 

 Hermatypic (i.e., reef-building) corals play a critical role as ecosystem foundation 

species. Hence, it is not surprising that continuous reductions in their populations for the 

last 30 years have caused the collapse of many coral reef ecosystems worldwide, and a 

drastic deterioration in the ones still remaining (Birkeland 2019; O. Hoegh-Guldberg et 

al. 2007; Pandolfi et al. 2003). Among the different potential drivers for this decrease, the 

increase in average temperature in the upper layers of the ocean (Abraham et al. 2013; 

Hansen, Sato, and Ruedy 2012) and changes in ocean chemistry (Feely, Doney, and 

Cooley 2009) caused by human-driven global change (Ove Hoegh-Guldberg and Bruno 

2010; Rosenzweig et al. 2008) are considered among the most important factors. It is well 

known that corals are particularly sensitive to water temperature fluctuations (Cai et al. 

2016; Hume et al. 2016), with current conditions provoking frequent bleaching events in 

reefs worldwide when temperature increases 1–2°C above normal summer maximum 

(Ove Hoegh-Guldberg 1999; Hughes et al. 2003). This susceptibility, along with the fast-

paced progression of global change has generated concerns about the ability of corals to 

acclimatize and adapt to these conditions.  

Temperature and light represent the main environmental factors responsible for 

the collapse (i.e., bleaching) of the coral holobiont (the unit formed by the symbiosis 

between the coral animal and its associated microorganisms, including dinoflagellate 

algae of the family Symbiodinaceae). In addition, seasonal changes in these parameters 

also drive subsequent variation in coral physiology (Scheufen et al. 2017). Contrary to 

the case of random environmental variation, the predictability of seasonal fluctuations 

can be conducive to the development and inheritance of plastic transcriptional profiles 
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mediating phenotypic responses, regulated by epigenetic mechanisms [e.g., seasonal 

DNA methylation changes in bivalve mollusks (Suarez-Ulloa, Rivera-Casas, and Michel 

2019; Ito et al. 2019) and birds (Viitaniemi et al. 2019)]. Indeed, seasonality produces 

dramatic physiological adjustments in corals, including changes in symbiont’s abundance 

and pigmentation (Fitt et al. 2000; Thornhill et al. 2006), modifications of microbial 

community composition (Sharp et al. 2017), as well as the alteration of transcriptional 

profiles (Edge, Morgan, and Snell 2008; Brady, Snyder, and Vize 2011; Brener-Raffalli 

et al., 2019; Parkinson et al. 2018). On one hand, the different sensitivities to heat stress 

and bleaching displayed by winter and summer coral phenotypes (Berkelmans and Willis 

1999; Scheufen et al. 2017) seem to support the notion that these changes could prepare 

corals to respond to increased temperature and light stress during the summer months. On 

the other hand, recent experiments in A. cervicornis have failed to find additional support 

for this idea (Parkinson et al. 2018). Nevertheless, even if these adjustments were to 

occur, they may fall short when facing altered seasonal regimes and unprecedented stress 

events caused by global change. Consequently, understanding the shared mechanisms 

underlying thermal and seasonal acclimatization in corals will improve our capacity to 

model coral population trajectories, and enhance coral preconditioning and assisted 

evolution approaches (van Oppen et al. 2015).  

As sessile organisms, corals rely exclusively on phenotypic plasticity to respond 

to their environment (López-Maury, Marguerat, and Bähler 2008), a response that is 

largely mediated by the interaction between the coral’s genome and intrinsic and extrinsic 

environmental signals modulating its expression (West-Eberhard 2003). Although the 

role of this plasticity is mostly observed during the life of an organism (IntraGenerational 
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Plasticity, IGP), it has been suggested that parents can “prime” their offspring to better 

respond to changes in their specific environments (InterGenerational Plasticity, ItGP) 

(Salinas and Munch 2012) and even produce phenotypes that will persist for generations 

even in the absence of the initial stressor triggering that phenotype (TransGenerational 

Plasticity TGP) (Perez and Lehner 2019). Based on the current evidence for the 

inheritance of acquired epigenetic marks, it seems plausible that epigenetic mechanisms 

play a critical role providing a mechanistic framework for the acquisition and 

intergenerational inheritance of phenotypes optimized to the prevailing environmental 

conditions (Vignet et al. 2015; Marsh and Pasqualone 2014; Navarro-Martín et al. 2011; 

Vandegehuchte et al. 2009; Eirin-Lopez and Putnam 2019), increasing the resilience and 

resistance of corals to global change. However, in order to disentangle the role of 

epigenetic mechanisms on IGP, ItGP and TGP, there is an urgent need to better 

understand how these epigenetic mechanisms interact with environmental factors. 

Epigenetic mechanisms display extremely dynamic responses to environmental 

changes (Cortessis et al. 2012), serving as a “sensory” interface between the 

environmental condition and the genome function. Therefore, understanding exposure-

response relationships of these molecular mechanisms could potentially allow the 

quantification of the effects of the environment on phenotypic variation (Etchegaray and 

Mostoslavsky 2016; Cortessis et al. 2012; Suarez-Ulloa, Gonzalez-Romero, and Eirin-

Lopez 2015), increasing our capacity to predict population responses after environmental 

change. While increasing evidence points to a relevant role of DNA methylation and 

other epigenetic mechanisms in plastic responses to environmental change in corals 

(Putnam, Davidson, and Gates 2016; Dixon et al. 2018b; Dimond and Roberts 2020; 
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Liew et al. 2018) and other marine organisms (Eirin-Lopez and Putnam 2019; Ryu et al. 

2018), there is limited understanding of the factors influencing dynamic epigenetic 

changes under non-stressed conditions, confounding the ability to determine the 

magnitude and extent of epigenetic responses under natural conditions (Suarez-Ulloa, 

Rivera-Casas, and Michel 2019). In addition, solid baseline data of “natural response” to 

seasonal and diel cycles in most ecologically important organisms is lacking (Suarez-

Ulloa, Rivera-Casas, and Michel 2019). This gap can be bridged by developing seasonal 

monitoring of coral epigenetic signatures, helping disentangle the molecular 

underpinnings of such epigenetic responses, their involvement in seasonal 

acclimatization, and their capacity to respond to factors driving global change in the 

Anthropocene. The present work aims to do so by characterizing temporal changes in 

DNA methylation patterns using the staghorn coral A. cervicornis as model system.  

 

Methods 

Study site, experimental and sampling design 

A total of n=200 staghorn coral (Acropora cervicornis) fragments (naturally 

generated by hurricanes Irma and Maria between August and October 2017) were 

collected from 4 reefs around Culebra Island, Puerto Rico (Figure 1). Naturally occurring 

fragments were used to minimize the effect of sampling on standing colonies of A. 

cervicornis. Therefore, sampling effort was not standardized among sites, and analyses 

on genotypic diversity of the sample pool cannot be extrapolated to compare natural 

levels of sexual recruitment among sites. Fragments were stabilized by immediate 

outplanting into two natural reefs located in the Canal Luis Peña No-Take Marine 
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Reserve: Luis Peña (LP: 18°18'45.0"N, 65°20'08.4"W) and Carlos Rosario (CR: 

18°19'30.2"N, 65°19'52.7"W) reefs. At the time of outplanting, genotyping information 

was not available. Thus, in order to homogenize the distribution of putative genets and 

avoid biases from local adaptation in the site-specific response, fragments from different 

sources were further subdivided before fixing them to the substrate using nails and plastic 

ties at two different depths (5 and 15 m). This yielded an equal representation of putative 

genets at both depths. The outplanting sites were named LP shallow (LPs), LP deep 

(LPd), CR shallow (CRs), and CR deep (CRd). Coral fragments were organized into 5x5 

m plots containing 20 fragments per plot, for a total of 5 plots per site (n=100 fragments 

per site, total=400 fragments outplanted). The size of outplanted fragments ranged 

between 10 and 30 cm in length. 

The characterization of depth-associated changes in dissolved oxygen, pH, 

salinity, and pressure (tides) was performed by deploying YSI EXO2 multiparameter 

sondes (YSI, Yellow Springs, OH) and photosynthetically active radiation (PAR) sensors 

(Sea Bird, Bellevue, WA) at the two studied depths in Luis Peña reef. Sensors were 

deployed for a month in September 2018 and January 2019 in order to capture summer 

and winter seasonal peaks. Daily water temperature (3 m below Mean Lower Low Water) 

records were gathered from NOAA Data Buoy Center, Station CLBP4 located in 

Culebra, PR, approximately 3.8 and 4 km from LP and CR, respectively (Figure 1). 

Regional light data was obtained from the integration of 25 climatological models 

(CMIP5 IPCC) for Puerto Rico (San Juan PR, 18°26'24.0"N 66°07'48.0"W). 

Tissue samples were clipped from coral fragments using bone cutters at the 

beginning of the experiment (April 2018), and subsequently stored in 95% non-denatured 
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ethanol for DNA genotyping. Tissue samples were further collected from selected 

fragments at LP and CR reefs after 3, 5, 6, 9, 12, and 17 months-post-outplanting 

(hereafter referred to as T+ month post outplanting), resampling fragments when 

possible. Repetitive samples were collected from grown branches, discarding the actively 

growing tip (generally without symbionts). The selection of specific fragments for 

sampling was determined based on the availability of healthy branches not previously 

disturbed. Coral samples were immediately flash-frozen, shipped on dry ice to Florida 

International University and stored at -80°C. In order to assess seasonal variation of 

healthy corals during the study period, only corals that survived the 17-month period and 

were sampled at least 4 times were included in DNA methylation analysis. This ensured 

replication at each sampling event. Overall, a total of n=205 samples from the four 

outplanting sites were analyzed for DNA methylation (n=55 for LPs, n=38 for LPd, n=64 

for CRs, and n=48 for CRd). 

   

Coral genotyping and genomic DNA isolation 

We define a collection of fragments sharing the same multilocus genotype as 

belonging to the same ‘‘genet’’, and each of the fragments is referred to as a “ramet”. 

Coral host genotyping was based on DNA isolated using a standard phenol-chloroform 

protocol (Sambrook and Russell 2006) from the samples collected at the beginning of the 

experiment. A panel of 6 microsatellite loci was applied (Baums, Hughes, and Hellberg 

2005). Since these markers were demonstrated to be highly heterozygous, the probability 

of wrongfully identifying ramets as clonemates of the same genet is consequently 

extremely low (Baums, Miller, and Hellberg 2005). Only samples sharing the same 
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alleles at all six loci were classified as ramets of the same genet. The descriptors of coral 

genotypic structure at the sampled sites, genotypic richness, diversity and evenness were 

calculated following (Stoddart and Taylor 1988) and (Baums, Miller, and Hellberg 2006). 

Briefly, genotypic richness was calculated as the number of genets (Ng) over the number 

of colonies sampled (N). Genotypic diversity refers to the diversity of genets in a 

population. Here, it was calculated as the observed over the expected genotypic diversity 

(Baums, Miller, and Hellberg 2006). Observed genotypic diversity (Go) was calculated as 

per the equation (Stoddart and Taylor 1988): 

 

where gi is the relative frequency of each genet. Expected genotypic diversity (Ge) was 

equal to the total number of colonies analyzed (N), assuming a population with only 

sexual reproduction. This index of genotypic diversity, therefore, indicates the 

contribution of sexual reproduction to the population (Baums, Miller, and Hellberg 

2006). Evenness was calculated as the fraction of the observed genotypic diversity (Go) 

over the number of genets (Ng).  

Coral holobiont’s genomic DNA (82.0 ± 41.1 ng/μL, final concentration) was 

purified from flash-frozen tissue using the Quick DNA/RNA Mini-Prep kit (Zymo 

Research, Irvine, CA) with some modifications: Briefly, coral fragments were pulverized 

in liquid nitrogen and approximately 100 mg of the resulting powder was resuspended in 

2 mL vials containing 500 mg of Zirconia/Silica beads (0.5 mm diameter) and 1 mL of 

DNA/RNA Shield (Zymo Research, Irvine, CA). Coral host cells were lysed using two 

pulses of 30 sec in a vortex, in an attempt to leave most of the symbiont cells intact, thus 
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enriching host DNA. However, a significant contribution of symbiont DNA to the final 

sample was assumed. After centrifugation (12,000 x g for 5 min), the supernatant was 

carefully transferred to a new tube and DNA isolation continued following the 

manufacturer's instructions. DNA quality was assessed by gel electrophoresis for 

integrity and spectrophotometric analysis (NanoVue GE Healthcare, Chicago, IL) for 

quality as described elsewhere (Rivera-Casas et al. 2017). DNA concentration was 

measured using a Qubit 2.0 Fluorometer (Thermo Fisher, Waltham, MA) following the 

instructions provided by the manufacturer. Samples with concentrations under 40 ng/μL 

or low quality (i.e., ethanol contamination) were processed using a DNA Clean & 

Concentrator kit (Zymo Research, Irvine, CA) until requirements were met.   

 

Symbiodiniaceae ITS2 Amplicon Sequencing and analysis 

The ITS2 region was sequenced in coral samples in order to assess changes in 

symbiont community composition throughout the experiment. Accordingly, a total of n = 

30 samples, consisting of 10 randomly selected coral fragments from the 4 outplanting 

and three representative time points (T3, T12 and T17), were used in the analysis. The 

isolated genomic DNA was quantified using the Qubit 2.0 DNA HS Assay 

(ThermoFisher, Massachusetts, USA) and the quality assessed by the Tapestation 

genomic DNA Assay (Agilent Technologies, California, USA). Library preparation and 

sequencing was performed by Admera Health (South Plainfield, NJ). Briefly, ITS2 spacer 

regions of the ribosomal DNA of the family Symbiodinaceae were amplified from 50 ng 

of isolated genomic DNA via PCR, using Symbiodinaceae-specific primers [ITS2alg-F, 

5'-GTGAATTGCAGAACTCCGTG-3'; ITS2alg-R, 3'-

https://paperpile.com/c/4oS0hu/1dtep
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TTCGTATATTCATTCGCCTCC-5' (Pochon et al. 2001)] modified to include Illumina® 

adapters. The resulting libraries were quantified and assessed for quality before 

sequencing as detailed above and barcoded for multiplexing using Illumina® 8-nt dual-

indices. An equimolar pooling of the libraries was performed based on QC values and 

sequenced on an Illumina® MiSeq (Illumina, California, USA) with a read length 

configuration of 2x250 for 0.1 M pairs of reads per sample (500K in each direction). 

Symbiodinaceae community composition was analyzed using the SymPortal 

Pipeline (Hume et al. 2019). Untrimmed demultiplexed forward and reverse sequences 

(fastq) were submitted directly into SymPortal for quality control and taxonomic 

assignment as described in Hume et al. (2019). Identified sequence variants per sample 

was used to characterize ITS2 type profiles (Hume et al., 2019). The abundance of ITS2 

type profile and sequencing reads representative of putative Symbiodiniaceae taxa were 

used to evaluate changes in symbiont communities through time (T3, T12, T17). 

Differences of ITS2 profiles between collection times was evaluated by Permutational 

multivariate analysis of variance (PERMANOVA) with the adonis function in vegan 

(Oksanen et al. 2019) fragment identity as strata in the model and performing 9,999 

permutations of residuals from Bray-Curtis dissimilarities. 

 

Genome-wide DNA methylation analysis 

Genome-wide DNA methylation was assessed on coral host-enriched-DNA 

samples using an amplified polymorphism approach specific for DNA methylation states 

(Methylation Sensitive Amplified Polymorphism, MSAP; (Reyna-Lopez, Simpson, and 

Ruiz-Herrera 1997; Xiong et al. 2013; Covelo-Soto, Saura, and Morán 2015). This 
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method is based on the use of isoesquizomeric endonucleases, HpaII and MspI, with 

shared sequence targets (CCGG sites) but differential sensitivities to their DNA 

methylation. More precisely, HpaII cleavage is blocked by methylation on either the 

internal cytosine methylation of the target site (i.e., 5’-CmCGG-3’/3’-GGmCC-5’) or its 

hypermethylation (i.e., 5’-mCmCGG-3’/3’-GGmCmC-5’). MspI, on the other hand, is 

sensitive to external cytosine methylation, including hemimethylation (i.e., 5’-mCCGG-

3’/3’-GGCC-5’) and hypermethylation states. This allows the establishment of global 

cytosine methylation patterns by comparing both amplified restriction profiles (Díaz-

Freije et al. 2014). Accordingly, coral genomic DNA was digested using EcoRI/HpaII 

and EcoRI/MspI endonuclease mixes in parallel reactions. In the same step, the resulting 

fragments were ligated to EcoRI and HpaII/MspI adapters (Table 1). Digestion-ligation 

reactions were performed for 2 h at 37 ºC in a solution consisting of 200 ng DNA, 4 U of 

EcoRI (NEB, Ipswich, MA), 1 U of either HpaII (NEB, Ipswich, MA) or MspI (NEB, 

Ipswich, MA), 1 U T4 DNA ligase (Thermo Fisher Scientific, Waltham, MA), 1X ligase 

buffer (Thermo Fisher Scientific, Waltham, MA) and 1X CutSmart Buffer (NEB, 

Ipswich, MA). The resulting restriction fragments were selectively amplified through two 

consecutive PCR reactions. First, a pre-selective reaction containing 2 μL of diluted (1:7) 

restriction-ligation product, 20 pM of each HpaII/MspI and EcoRI primers combination 

(Table 1), 1X PCR buffer, 0.5 mM dNTPs (Thermo Fisher Scientific, Waltham, MA), 2.5 

mM MgCl2, and 1 U DreamTAQ DNA polymerase (Thermo Fisher Scientific, Waltham, 

MA). Second, a selective reaction used 0.5 μL of 1:9 of the pre-selective PCR product, 

0.83 pM of each labelled selective primer (Table 1), 1X PCR buffer, 0.5 mM dNTPs, 2.5 

mM MgCl2 and 1 U DreamTaq DNA polymerase. PCR conditions were identical to the 

https://paperpile.com/c/4oS0hu/60c7e
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original protocol (Reyna-Lopez, Simpson, and Ruiz-Herrera 1997), and the amplified 

products (2 per enzyme/sample combination, 4 selective combinations multiplexed, Table 

1) were diluted to 1:10 for 6-FAM and 1:5 for 6-HEX prior to multiplexing and run on an 

ABI Prism 310 Genetic Analyzer (Applied Biosystems, Foster City, CA) with a 

MapMarker 1000 ROX marker at  Florida International University’s DNA  Core facility.  

 

Data and Statistical analysis 

MSAP restriction profiles were scored to a binary matrix for each primer 

combination with GeneMapper v.3.7 (Applied Biosystems, Foster City, CA), retaining 

fragments between 50 and 500 bp and above 25 Relative Fluorescent Units for 6-HEX 

and 50 for 6-FAM. The matrices were filtered utilizing a 5% error rate (loci with one 

methylation state in more than 95% of the samples) and a 2% occurrence of any DNA 

methylation state to remove uninformative loci and analyzed using the R-package msap 

(Pérez-Figueroa 2013). For a given animal, loci were scored according to the presence or 

absence of EcoRI-HpaII and EcoRI-MspI bands as either Non-Methylated (NMT, 0/0), 

Hemimethylated (HMM, 1/0), Internal Cytosine Methylated (ICM, 0/1) or 

Hypermethylated (HPM, 0/0). Hypermethylation was assumed on 0/0 loci due to the low 

genetic diversity on our dataset, which comprised the repetitive sampling of ramets of 7 

genets. Loci were further classified as susceptible (MSL) or not susceptible to 

methylation (NML). The resulting data matrix of scored methylation states was subjected 

to further analysis. 

Epigenetic variation on MSL was analyzed with Permutational Multivariate 

Analysis of Variance [PERMANOVA] (Anderson 2001), considering genet, outplant site 
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and collection time as grouping variables in the model genet*fragment*time + site as 

implemented on the R-package vegan [adonis function (Oksanen et al. 2019)]. Fragment 

identity was included in the model and as strata to assess the effect of repeated 

measurements. A Euclidean distance matrix was generated with 9,999 permutat ions. 

Pairwise PERMANOVA (Martinez-Arbizu 2019) with Holm’s correction (Holm 1979) 

was performed to evaluate which variables had significant effects on DNA methylation. 

Statistical significance of each MSL was assessed by means of multiple comparisons 

between the experimental groups by Fisher’s exact tests with Benjamini and Hochberg 

multi-test corrections(Benjamini and Hochberg 2000); adjusted p<0.05, pFDR<0.05), 

identifying loci with non-random distribution of DNA methylation states for each 

experimental variable. Using these significant MSL, pairwise distances between all 

analysed coral fragments with Gower’s Coefficient of Similarity were computed. The 

resulting distance matrix was clustered with UPGMA (unweighted pair group method 

with arithmetic mean) and visualized as a heatmap with ComplexHeatmap (Gu, Eils, and 

Schlesner 2016).  

A Discriminant Analysis of Principal Components (DAPC, (Pritchard et al. 2000; 

Jombart, Devillard, and Balloux 2010; Grünwald and Goss 2011) was performed to 

assess the epigenetic discrimination between groups using adegenet (Jombart 2008). The 

number of principal components (PCs) retained for the analysis was evaluated with two 

rounds of cross-validation [Xval.dapc function, (Jombart and Collins 2015)]. All 

discriminant functions (K-1= 5) were retained in the analysis. Correlation between the 

independent variables (Temperature and light) and DAPC coordinates of temporal 

variation in DNA methylation was evaluated. Appropriate Lag shifts were calculated [ccf 
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function, (Brockwell and Davis 2009)] to determine the cross correlation between each of 

the univariate series. Next, the lag corrected series (Lag corrected +1 shift for 

temperature) were input into a matrix of Pearson's r rank correlation coefficients using 

rcorr in the Hmisc library (Harrell and Harrell 2019).  

Non-Metric Multidimensional Scaling Analysis (NMDS) was performed utilizing 

Gower’s distances, and environmental parameters were fitted as vectors in the ordination 

(envfit function) with vegan (Oksanen et al. 2019) to represent their effect on DNA 

methylation. Monthly mean values, maximum, standard deviations and differences for 

each environmental factor were employed as vectors. For temperature and light irradiance 

long-term data sets, a coefficient of variation of the previous three months (CV3) to each 

sampling month was calculated and employed as an additional vector to evaluate a 

possible response to the relative change in the parameter and not the actual magnitude. 

Significance and coefficient of determination was calculated for each of these parameters.       

 

Fragment sequencing and identification 

Preselective products from 10 samples with high band representation for each 

selective (SL1-4) and enzyme (Hpall and Mspl) combination were pooled and amplified 

with non-labelled selective primers. Resulting products (n=8) were cleaned with a DNA 

Clean & Concentrator kit (Zymo Research, Irvine, CA), quality checked with a 

TapeStation D1000 ScreenTape (Agilent Technologies Inc., California, USA) on a 

Tapestation 4200 system and multiplexed with a Native barcoding expansion kit (EXP-

NBD104, Oxford Nanopore Technologies). Libraries for Oxford NanoPore sequencing 

were constructed with a ligation library kit (SQK-LSK109, Oxford Nanopore 
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Technologies, Oxford, UK) and sequenced to a total of 20GB on MinION R9.4 flowcells. 

The resulting sequences were base-called and demultiplexed with the MinKNOW 

software, trimmed with Porechop (https://github.com/rrwick/Porechop) to eliminate PCR 

adapters, and mapped to the genomes of A. digitifera (Shinzato et al. 2011) and 

Symbiodinium microadriaticum (Aranda et al. 2016) using Minimap2 (H. Li 2018).  

 

Results 

Abiotic characterization and seasonality 

Hourly data (n=824) was recorded for temperature, photosynthetic active 

radiation (PAR), dissolved oxygen (DO), and salinity at two sites at a depth of 5 and 15 

m (LPs and LPd, respectively) during two monthly deployments to capture peak summer 

and winter signals in sites representative of studied depths (Table S1). Greater values 

(two tailed t-test p<0.05) for pH, PAR and Salinity were observed at LPs as opposed to 

LPd. However, as expected, both depths showed greater values of temperature and PAR 

as well as lower pH, DO and salinity during the summer (two tailed t-test p<0.05). 

Temperature daily mean for each month was analyzed for seasonality, revealing a trend 

for the period through 2018 and 2019 (Mann-Kendall trend test p=0.007). This is 

graphically confirmed (Figure S1) by applying a moving average to the data set to extract 

the seasonal component from the trend and error terms assuming an additive model 

because the variance structure remained homogeneous throughout the periods observed 

(decompose function in the Stats package R). Solar Radiation is reported as W/m-2 with 

peak values in April and lowest values reported in December. 
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Genotypic composition of source reefs 

A total of n=81 A. cervicornis host genets were identified in 186 of the 200 initial 

fragments analyzed (14 samples failed): 45 from Los Corchos (LC), 15 from Carlos 

Rosario (CR), 14 from Luis Peña (LP), and 7 from Culebritas (CUL) (Figure 1). All 

genets were exclusive to their corresponding sampling site, and three to four prevalent 

genets accounted for 67-75% of the collected fragments at each site, with the exception 

of LC, where most genets had only one or two ramets. The genotypic structure was 

subsequently described for each site (Table 2), resulting in an overall genotypic richness 

[number of genets (Ng)/number of samples (N)] of 0.38 ± 0.21 for all sites combined. LC 

showed the highest richness amongst all sampled sites. Genotypic diversity [observed 

genotypic diversity (Go)/expected genotypic diversity (Ge)] followed the same pattern 

with combined values of 0.24 ± 0.16 and 0.47 for LC. For evenness (Go/Ng) however, 

both sites in the east of the island (LC and CUL) showed similar values (around 0.68) 

while the sites on the west were lower (around 0.5). 

 

Symbiodinaceae community composition and dynamic 

In order to evaluate symbiotic community dynamics through the duration of the 

study, ITS2 amplicon sequences for the Symbiodinaceae family were analyzed. The 30 

samples generated 5,415,404 sequencing reads, producing 2,707,680 sequences after 

quality filtering into the SymPortal pipeline (50%). A total of 57 operational taxonomic 

units were identified from ITS2 sequences, with the majority of filtered ITS2 sequences 

being of the genus Symbiodinium (formerly Clade A), and a minor representation of 

genuses Brevolium (formerly Clade B) and Cladocopium (formerly Clade C) (Figure S2). 



 87 

Four ITS2 type profiles were identified across samples, all uniquely composed by 

Symbiodinium spp. sequences. ITS2 profile shifts were observed in some of the samples. 

However, no significant dynamic changes were evidenced between collection times 

(PERMANOVA; F = 0.2552, p = 0.6646; Table S2).  

 

Global genome-wide DNA methylation variability 

A total of 7 genets were selected among those represented by the transplanted 

fragments for DNA methylation analyses. Genet selection was based on the number of 

ramets of each genet surviving the 17-month period, allowing appropriate replication 

between outplanting sites and source sites. The availability of a minimum of 3 ramets of 

each genet per outplanting site at the end of the 17-month period were used as criteria for 

selection. Selected genets were n=3 from CR (C1708, C1732 and C1739), n=2 from LP 

(C1727 and C1733), and n=2 from CUL (C1706 and C1734), representing most of the 

highly represented genets at each source site (Figure 1). Unfortunately, no genet from LC 

satisfied the criteria to be included in the DNA methylation analyses.  

MSAP analyses were performed to assess changes in whole-genome DNA 

methylation profiles of corals depending on their outplant site, genet and/or collection 

time. The four combinations of primers tested yielded a total of n=199 loci after quality-

filtering, among which 192 were categorized as methylation-susceptible loci (MSL, 96%) 

and the remaining 7 were non-methylated (NML, 4%) loci. Primer combinations SL2 and 

SL4 (Table 1) showed the highest number of methylation-susceptible loci with 93 

(46.7%) and 81 (40.7%), respectively. The overall epigenetic diversity within 

methylation-susceptible loci, based on the occurrence of the different DNA methylation 
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states by means of Shannon’s diversity index (SDI), was 0.33 ± 0.22, while non-

methylated loci showed a Shannon diversity index of 0.22 ± 0.08. A total of 162 (84%) of 

the methylation-susceptible loci were characterized as polymorphic, showing at least two 

occurrences for each DNA methylation state, either NMT, ICM, HMM or HPM. These 

polymorphic loci were subsequently used for further analyses aimed to describe the 

influence of collection time, outplant sites, and genet on the DNA methylation patterns. 

The results indicate a dynamic fluctuation in coral DNA methylation states over 

time (Table 3, Figure S3). Accordingly, HPM and NMT trended upwards from July 2018 

(T3, i.e., three months post-outplanting) to April 2019 (T12), then decreased by 

September 2019 (T17). ICM and HMM showed the opposite trend, with an absolute 

minimum value by T12 and a subsequent increase by September 2019 (T17). This 

variation of DNA methylation patterns over time was significant, as revealed by 

PERMANOVA (Table S3, F=4.1524, p<0.0001). Further post-hoc analyses (Table 4) 

revealed significantly different DNA methylation patterns between all pairwise sampling 

time comparisons except for October 2018 with September 2018 (T5-T6, F=1.6992, 

p=0.0994) and October 2018 with Jan 2019 (T6-T9, F=1.2757, Adjusted p=0.1782) 

respectively.  

The contribution of genet and outplanting sites to the variability observed in DNA 

methylation states was also evaluated using PERMANOVA analyses (Table S3). While 

no significant differences were observed between outplanting sites (F=0.8735, p=0.6637), 

genets influenced DNA methylation significantly (F=2.3315, p=0.0131). Accordingly, 

post-hoc analyses (Table 5) revealed significant pairwise differences of genet C1739 with 

C1733 (F=3.2225, Adjusted p=0.0084) and marginally significant with C1732 (F=2.539, 
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Adjusted p=0.0494) and C1727 (F=2.449, Adjusted p=0.0494). Additional marginal 

significance was found between genets C1732 and C1708 (F=2.4780, Adjusted 

p=0.0494), and between C1734 and C1708 (F=2.4824, Adjusted p=0.0440). It is 

interesting to note that most genet pairs showing significant differences in DNA 

methylation originated from the same source reefs or from reefs located near each other 

(i.e., CR and LP), making it less likely that similarities in DNA methylation patterns 

displayed by most genets were determined by epigenetic memory or local adaptation. 

Fragment (ramet) identity also had a significant effect on DNA methylation patterns 

(F=1.1037, p=0.0131).   

 

Seasonal influence on global DNA methylation patterns 

Considering the significant fluctuation observed on DNA methylation patterns 

throughout the studied time series, detailed analyses were performed to ascertain the 

exact contribution of seasonality to such variation. First, Fisher’s exact test analyses were 

conducted to identify significant MSL, resulting in n=83 MSL with both significant 

differences among experimental times (Adjusted p<0.05) and low probability of false 

positives (pFDR<0.05). As shown in Figure 2, the clustering analyses of identified loci 

organized the samples into two major groups based on similar distribution of DNA 

methylation profiles, discriminating between cold (T12) and warm (T3, T5 and T17) 

months. Samples from T6 and T9 showed a scattered distribution across these two 

clusters, while most T17 specimens constituted a well-defined sub-cluster within the 

warm group. 
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In order to further assess epigenetic discrimination among sampling times, a 

Discriminant Analysis of Principal Components (DAPC) analysis was employed (Figure 

3). As evidenced by the first discriminant function (LD1, x-axis, horizontal, Figures 3A, 

B), T17 samples constituted a well-defined cluster with distinct epigenetic signatures 

respective to the remaining samples. In contrast, the second discriminant function (LD2, 

y-axis, verticals Figure 3A, C) split the samples into warm (T3, T5 and T17) and cold 

(T6, T9 and T12) months, with each of these sampling times forming a discrete cluster. 

Along this axis, T17 occupied a position between T5 and T6 corresponding to the same 

period in the previous year. Analysis of the individual contribution of each locus to the 

group separation [(Jombart and Collins 2015); Figure 3D, E] resulted in the identification 

of different groups of loci mediating the separation of each discriminant function. 

Marked differences in the frequency of occurrence of each DNA methylation status in 

these loci through time (Figure 3F, G) were observed, with loci contributing to LD1 

showing stable frequencies with a drastic change at T17, while LD2 loci showed a 

variable temporal response. These differences could indicate the occurrence of different 

overlapping responses mediated by DNA methylation changes.  

To further investigate this, discriminant 3 (LD3) was also evaluated (Figure 4), in 

spite of its lower discriminant power (hence significant; F=76.29, p<0.0001). In this 

function, the marked separation of T17 was no longer evident and a clearer seasonal 

pattern emerged (Figure 4A, B). Remarkably, LD3 pattern s correlated significantly to 

Temperature (+1 lag, r = 0.91, p = 0.0310), but not with irradiance (r = -0.76, p = 0.0783) 

that showed significance only for α = 0.1. Although LD3 has lower discriminant power 

(Figure 4B), the temporal changes of DNA methylation status in the main contributing 

https://paperpile.com/c/4oS0hu/3nRtD
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loci showed a dynamic variation as in LD2 (Figure 4C).  Altogether, these results show 

an orderly transition of DNA methylation profiles during the months after the 

introduction of corals in their new environment, apparently driven by a warm-cold 

seasonality, but experiencing a pronounced change from T12 to T17 maybe related with a 

heat-stress event throughout this period. 

 

Contribution of coral host vs. symbiont to MSAP-amplified loci 

Considering the limitations to separate symbiont and host DNA efficiently, 

additional analyses were performed to evaluate the contribution of the symbionts to the 

methylation pattern observed. Therefore, MSAP products were sequenced and aligned 

against the genomes of the closely related acroporid coral A. digitifera (the A. cervicornis 

genome was not available at the time of this analysis) and a representative symbiont (S. 

microadriaticum, formerly clade A). All MSAP selective-enzyme combinations (n=8) 

produced a total of 30,519,266 reads after trimming. From those, 27,696,330 reads 

mapped to the coral genome (90.75%), while only 388,363 reads mapped to the symbiont 

genome (1.27%). This result indicates that although contamination with symbiont DNA 

is present, its contribution to MSAP loci is negligible.  

  

Environmental parameters driving seasonal variability in global DNA methylation 

patterns 

Given the observed seasonal trend in DNA methylation and its link with regional 

temperature and light irradiance patterns, further analyses were performed to evaluate 

such relationship. Accordingly, the contribution of different environmental parameters 
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was assessed by conducting non-metric multidimensional scaling (NMDS), fitting vectors 

to the ordination using the function envfit. Considering the abiotic data available and the 

lack of difference between the DNA methylation response among outplanting sites, two 

separate analyses were implemented. First, only samples from T5 (September 2018) and 

T12 (April 2019) for sites LPs and LPd (where site-specific environmental data was 

collected) were included (Figure 5A). This dataset allowed the evaluation of the 

contribution of temperature, pH, DO, salinity, and PAR to DNA methylation patterns. 

Results revealed that temperature, pH and DO correlated significantly with the NMDS 

ordination of the DNA methylation patterns driven by collection time (Figure 5B; Table 

S4), while surprisingly PAR did not. Despite clear abiotic differences between depths, 

these parameters correlate to DNA methylation differences across sampling time points 

instead of sampling sites, indicating that seasonal variation in these environmental 

parameters was more relevant than site specific conditions in modulating DNA 

methylation patterns. 

The second analysis fitted regional temperature and light irradiance to the 

ordination of all sampling times, but only for shallow sites in both reefs. This was 

performed to determine the influence of these parameters during the duration of the 

experiment without introducing errors derived by differences in irradiance between 

depths. We tested the contribution of monthly averages together with the coefficient of 

variation of the previous three months (CV3) for each variable. The NMDS ord ination 

with all the data corroborated the DAPC analysis by showing T17 as an independent 

cluster (Figure 5C). All vectors analyzed showed a significant correlation with the 

ordination (Figure 5D, Table S5), with temperature mean and CV3 of the irradiance 
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showing the highest coefficients of determination (R2). Interestingly, it seemed that light 

and temperature were sensed differently by DNA methylation mechanisms, with rapid 

responses to temperature and a potentially lagged response to light (Figure 5D). 

 

Discussion 

 This work constitutes the first attempt to characterize seasonal epigenetic 

changes in stony corals, providing support for the role of DNA methylation during 

seasonal acclimatization in the coral A. cervicornis. The results presented in this work 

suggest that DNA methylation profiles in this species vary following a season-dependent 

trend, with similar temporal changes in DNA methylation patterns in all inspected coral 

fragments, regardless of their genotype, source reef or outplanting site. This concurs with 

the frequently proposed notion of a seasonal variation in the phenotype of corals, 

including the presence of winter and summer ecotypes (Scheufen et al. 2017), likely 

driven by observed transcriptional changes (DeSalvo et al. 2008; Kenkel, Meyer, and 

Matz 2013). These findings underscore the importance of including seasonal variability 

in environmental epigenetic studies in marine (especially sessile) organisms (Parkinson et 

al. 2018). 

 

Variability and seasonal trends in environmental abiotic parameters 

Describing changes in environmental conditions is a prerequisite for the 

establishment of a seasonal dependence in any organismal response. Since DNA 

methylation data did not differ among sites, it was possible to use data from NOAA’s 

weather buoy (CLBP4) to describe changes in temperature for all study sites, and data 

https://paperpile.com/c/4oS0hu/gaShN
https://paperpile.com/c/4oS0hu/FPvfr+6NZ96
https://paperpile.com/c/4oS0hu/FPvfr+6NZ96
https://paperpile.com/c/4oS0hu/qlmTg
https://paperpile.com/c/4oS0hu/qlmTg
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derived from climatological models (CMIP5 IPCC) for light irradiance. A limited in-situ 

dataset was used to corroborate the responsiveness of DNA methylation to regional 

seasonal environmental variation, therefore validating the use of regional data and models 

to describe the general seasonal patterns as evidenced in temperature correlation with 

DNA methylation patterns with both datasets (Figure 5). Given the resolution of the 

regional light dataset with a limited sensitivity to differences in depth, it is not possible to 

categorically invoke interactive effects with depth and season based on the obtained data. 

Nonetheless, these results strongly support the interest of future research to understand 

the interactive effects of seasonality and depth differences on global DNA methylation. 

 

Genotypic composition of source reefs 

Genotypic variation is correlated with diverse stress responses, disease resistance, 

epigenetic patterns and reproductive output in Caribbean acroporids (Parkinson and 

Baums 2014; Drury et al. 2019; Durante et al. 2019; Baums et al. 2013). In this 

experiment, fragments were collected using an opportunistic sampling approach that 

favors the collection of dominant genets. It is thus encouraging that multiple genets were 

collected at each site, indicating that the genotypic diversity of A. cervicornis around 

Culebra is not low (Figure 1, Table 2). Genets were restricted to one collection site each, 

and thus there was no evidence of long-distance dispersal of asexually derived fragments. 

This is not surprising, considering that asexual fragmentation (Tunnicliffe 1981; Drury et 

al. 2019), restricts dispersion to a few hundred meters under natural conditions (including 

hurricane impacts), restricting genet distributions. Therefore, genotypic diversity 

observed on each site was mostly based in sexual recruitment.  

https://paperpile.com/c/4oS0hu/SFuto+bcFCC+KKVuV+FwIUk
https://paperpile.com/c/4oS0hu/SFuto+bcFCC+KKVuV+FwIUk
https://paperpile.com/c/4oS0hu/Ympgn+bcFCC
https://paperpile.com/c/4oS0hu/Ympgn+bcFCC
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Temporal differences dominate patterns of DNA methylation 

Epigenetic landmarks, such as histone variants and DNA methylation, influence 

phenotypic plasticity in response to changes in environmental conditions and are, 

therefore, predictors of the general state of the organism in the face of environmental 

alterations and natural cycles (Rivière 2014). Emerging evidence suggests that these 

mechanisms play an important role during responses to environmental changes, likely by 

regulating gene expression and maintaining DNA integrity throughout the entire lifespan 

of an organism (Liew et al. 2018; Roberts and Gavery 2012; Dimond and Roberts 2016; 

Rodriguez-Casariego et al. 2018). Recent studies on marine invertebrates [reviewed in 

(Eirin-Lopez and Putnam 2019)] have shown that DNA methylation exerts a role on 

phenotypic acclimatization (Liew et al. 2018; Putnam, Davidson, and Gates 2016; 

Durante et al. 2019) by modulating gene expression (Dixon et al. 2018a). Moreover, 

epigenetic marks acquired throughout the lifespan of coral can be inherited 

intergenerationally, promoting acclimatized phenotypes in the offspring and thus 

increasing their fitness (Liew et al. 2020; Putnam et al. 2020). In addition, seasonal 

patterns of DNA methylation have been observed in vertebrates (Stevenson and 

Prendergast 2013; Viitaniemi et al. 2019), invertebrates (Pegoraro et al. 2016; Suarez-

Ulloa, Rivera-Casas, and Michel 2019) and plants (Finnegan et al. 1998; Ito et al. 2019; 

Bastow et al. 2004). Based on these elements, it is not surprising that DNA methylation 

could play an active role during coral responses to seasonal variation.  

The PERMANOVA analysis of all loci susceptible to DNA methylation showed 

clear differences in DNA methylation patterns between sampled months and genets, 

while no differences were observed between, sources or outplant sites in this study. This 

https://paperpile.com/c/4oS0hu/ylcqs
https://paperpile.com/c/4oS0hu/HQ4jV+OPsDD+P0LL7+PVyOK
https://paperpile.com/c/4oS0hu/HQ4jV+OPsDD+P0LL7+PVyOK
https://paperpile.com/c/4oS0hu/BLyhb
https://paperpile.com/c/4oS0hu/HQ4jV+bGy1L+KKVuV
https://paperpile.com/c/4oS0hu/HQ4jV+bGy1L+KKVuV
https://paperpile.com/c/4oS0hu/8bTPO
https://paperpile.com/c/4oS0hu/oaUHA+74gbu
https://paperpile.com/c/4oS0hu/Xf3dS+OGyfF
https://paperpile.com/c/4oS0hu/Xf3dS+OGyfF
https://paperpile.com/c/4oS0hu/VEKqd+9HKls
https://paperpile.com/c/4oS0hu/VEKqd+9HKls
https://paperpile.com/c/4oS0hu/1ORrP+LBHET+IV6ml
https://paperpile.com/c/4oS0hu/1ORrP+LBHET+IV6ml
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is a remarkable result, considering the significant differences in environmental conditions 

and habitat type between deep and shallow sites (see Table S1), although the seasonal 

variation is larger for most parameters, including temperature. In corals, several studies 

have also found clear changes in DNA methylation in response to experimental 

manipulation in environmental conditions (Putnam, Davidson, and Gates 2016; Liew et 

al. 2018; Cziesielski, Schmidt-Roach, and Aranda 2019).  On the other hand, a study 

aimed to evaluate the components of phenotypic divergence between clonemates of A. 

palmata under natural conditions (Durante et al. 2019), attributed most of the variation in 

DNA methylation to difference among genets followed by micro-environmental 

conditions, rather than between study sites. Nonetheless, this study was still able to 

observe small differences between sites. In the present work, A. cervicornis fragments 

were transplanted to new locations and only sampled after an acclimation period, hence 

source-site specific differences in DNA methylation profiles could have been diluted 

after a rapid acclimation. Still, evidence here suggests that seasonality remains as a 

stronger modulator of DNA methylation patterns. Coral genotype also exerts a significant 

effect over DNA methylation variability, although to a lesser extent than the 

aforementioned temporal influence, as evidenced by PERMANOVA (Table S3). This 

observation is consistent with the dependence of DNA methylation on the presence of 

CpG sites in the DNA, and is further supported by previous evidence that DNA 

methylation in corals (or in any other eukaryotic organism) directly relies on sequence 

features of the genome, also supporting its heritability (Dixon, Bay, and Matz 2014; Liew 

et al. 2018; Durante et al. 2019). 

 

https://paperpile.com/c/4oS0hu/bGy1L+HQ4jV+Of99N
https://paperpile.com/c/4oS0hu/bGy1L+HQ4jV+Of99N
https://paperpile.com/c/4oS0hu/KKVuV
https://paperpile.com/c/4oS0hu/FsmLm+HQ4jV+KKVuV
https://paperpile.com/c/4oS0hu/FsmLm+HQ4jV+KKVuV
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Coral DNA methylation displays seasonal trends in response to environmental changes  

Seasonal environmental variation, similar to diel cycles, triggers the adjustment of 

physiological functions in corals (Hill and Ralph 2005; Brady, Snyder, and Vize 2011; 

Sorek et al. 2014; Ulstrup et al. 2008). The obtained results support the role of DNA 

methylation on the seasonal acclimatization of A. cervicornis, as evidenced by a clear 

temporal effect over the MSAP methylation patterns. DNA methylation seems to follow 

seasonal trends in temperature, light, DO and pH, as evidenced by the significant 

correlation between DNA methylation ordination and the vectors representing mean-

value variation of these parameters and coefficient of variations in the case of light and 

temperature (Figure 5), hinting a possible lagged response. However, analysis of the 

complete dataset with specific methylation patterns (DAPC) showed that temperature (1+ 

lagged) significantly correlates with changes in DNA methylation, while light was 

significant only under ɑ=0.1. Yet, interactive effects of light seasonality and depth 

differences on global DNA methylation require additional analyses. Overall, it seems that 

seasonal variation in temperature, light, pH, and dissolved oxygen modulate DNA 

methylation patterns.  

This seasonal trend, however, seems to be masked by other phenomena occurring 

in the temporal scale. For example, samples collected during September 2019 have 

homogeneous DNA methylation profiles, markedly differentiated from the remaining 

sampling times by the first discriminant function of the DAPC analysis (Figure 3A). 

However, as revealed by the second and third linear discriminant functions (LD2 & LD3) 

of the DAPC analysis (Figures 3C, 4), these samples are more related to September and 

October 2018. Although this may sound incompatible with an annual periodicity in DNA 

https://paperpile.com/c/4oS0hu/wxxpE+xxZQ5+PNZQH+Fb3Ei
https://paperpile.com/c/4oS0hu/wxxpE+xxZQ5+PNZQH+Fb3Ei
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methylation profiles (considering there is just one replicated time point in both years), 

this change may simply reflect either coral acclimation to the experimental environment 

within the possibilities of its genetic and epigenetic backgrounds, or more likely, a 

response to stress.  

Under an acclimation scenario, the switch in DNA methylation patterns would be 

immediate and then progressively undergo a resilience period after which the epigenome 

would be reprogrammed, resulting in the activation (or repression) of genes previously 

silenced (or activated) under native conditions. Unfortunately, the DNA methylation 

trends characterized in the present work do not support this notion. While rapid 

epigenetic changes were observed by our own previous research in coral (Rodriguez-

Casariego et al. 2018), the constant change in DNA methylation patterns observed in the 

present work is not consistent with a linear progression towards an acclimated state. 

Indeed, several loci follow a seasonal-like pattern returning to DNA methylation values 

similar to those measured during the same season in the previous year (Figure 3G, 4). 

This is especially evident in the loci driving the divergence of T17, which display a rather 

abrupt change instead of a progressive transition towards an acclimated state (Figure 3F).  

A stress response hypothesis, on the other hand, would be consistent with the 

occurrence of an abnormal event in September 2019, justifying the dramatic change 

observed in the aforementioned loci. Abiotic monitoring data seem to validate this idea, 

including extremely high seawater temperatures during the summer of 2019 (+0.5-1.3 ℃, 

between July and October) compared to the same period of 2018. Indeed, a moderate 

bleaching event was observed in the area in subsequent months following an 

accumulation of 7 Degree Heat Weaks (Weil et al. 2019). Thermal-stress has been linked 

https://paperpile.com/c/4oS0hu/PVyOK
https://paperpile.com/c/4oS0hu/PVyOK
https://paperpile.com/c/4oS0hu/qVRuL
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to significant changes in coral transcriptional profiles (Voolstra et al. 2009; DeSalvo et al. 

2008; Kenkel, Meyer, and Matz 2013), and to rapid epigenetic responses (Palumbi et al. 

2014; Barshis et al. 2013), even at stress levels not high enough to produce bleaching 

(Rodriguez-Casariego et al. 2018). However, the anticipation of the response observed in 

T17 to the heat-stress event opens the possibility that DNA methylation could represent 

an early indicator of a changing thermal environment. 

Overall, the evidence of a seasonal-driven response of DNA methylation 

presented by this work is in agreement with observed seasonal changes in gene 

expression in A. cervicornis (Parkinson et al. 2018), and phenotypic changes described in 

the coral holobiont (DeSalvo et al. 2008; Kenkel et al. 2013). Given the proposed role of 

DNA methylation mediating transcriptional plasticity (Dixon, Bay, and Matz 2014; J. L. 

Dimond and Roberts 2016), it is not surprising to find such a seasonal response. Previous 

studies have also highlighted significant responses in the holobiont physiology, 

supporting seasonal variations (Chen et al. 2005; Ulstrup et al. 2008; Carballo-Bolaños et 

al. 2019). Bacterial community composition has been also described to follow a certain 

seasonal pattern in several coral species (Li et al. 2014; Sharp et al. 2017; Cai et al. 

2018). Changes in symbiont cell density, pigment composition, and photosynthetic 

capacity following annual periods have also been reported (Fitt et al. 2000; Warner et al. 

2002; Ulstrup et al. 2008). While the proposed role of temperature mediating seasonal 

changes in coral physiology (Brown et al. 1999; Fitt et al. 2000; Dimond and Carrington 

2007) was confirmed for DNA methylation here, non-conclusive evidence of the 

significant effect of other environmental factors with seasonal trends like pH, DO and 

light was obtained and will require further study. Given the marked seasonality observed 

https://paperpile.com/c/4oS0hu/TAyU4+FPvfr+6NZ96
https://paperpile.com/c/4oS0hu/TAyU4+FPvfr+6NZ96
https://paperpile.com/c/4oS0hu/nbk0d+aaheH
https://paperpile.com/c/4oS0hu/nbk0d+aaheH
https://paperpile.com/c/4oS0hu/PVyOK
https://paperpile.com/c/4oS0hu/qlmTg
https://paperpile.com/c/4oS0hu/FsmLm+P0LL7
https://paperpile.com/c/4oS0hu/FsmLm+P0LL7
https://paperpile.com/c/4oS0hu/0RqoF+Fb3Ei+bRTH7
https://paperpile.com/c/4oS0hu/0RqoF+Fb3Ei+bRTH7
https://paperpile.com/c/4oS0hu/PRM7+Y0Zp7+AoG6
https://paperpile.com/c/4oS0hu/PRM7+Y0Zp7+AoG6
https://paperpile.com/c/4oS0hu/4ZifX+Pslx+Fb3Ei
https://paperpile.com/c/4oS0hu/4ZifX+Pslx+Fb3Ei
https://paperpile.com/c/4oS0hu/Qhnfo+4ZifX+OV8Po
https://paperpile.com/c/4oS0hu/Qhnfo+4ZifX+OV8Po
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in calcification rates and photosynthetic production (Samiei et al. 2016; Hinrichs et al. 

2013), it is not surprising that these factors would also influence DNA methylation 

patterns potentially involved in the establishment of these seasonal phenotypes.  

 

Conclusions 

The present work provides support for the role of DNA methylation during 

seasonal acclimatization of the coral A. cervicornis, based on its correlation with seasonal 

environmental variation independently of genotypic and site-specific differences. The 

emergence of these patterns, despite the complexity of DNA methylation responses to 

environmental stress described in marine invertebrates and the limited resolution of the 

method employed here (when compared to sequencing techniques), support the relevance 

of this phenomena for epigenetic regulation in corals. Given the ecological importance of 

coral acclimatization in the Anthropocene and the potential similarities between seasonal 

adjustments and heat-stress responses, the evidence generated by the present effort 

constitutes an initial approach to understanding the dynamicity and the potential for 

intergenerational inheritance of this epigenetic mechanism. Further studies will be 

instrumental to decipher the extent in which seasonally driven epigenetic patterns are 

indicative of IGP, ItGP or even TGP, encompassing critical implications on the current 

understanding of the epigenetic regulation of phenotypic plasticity. Overall, the data 

generated with this work will serve as a baseline to filter the contribution of seasonal-

driven DNA methylation changes in studies addressing epigenetic responses to stressors, 

and as background for the study of environmental disturbances caused by extreme 

weather episodes (e.g., hurricanes).  

https://paperpile.com/c/4oS0hu/uEYY2+nUtuK
https://paperpile.com/c/4oS0hu/uEYY2+nUtuK
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Fig. 1. Field experiment locations in Culebra, Puerto Rico. Four source sites are denoted 

with gray squares, Luis Peña (LP: 18°18'45.0"N, 65°20'08.4"W), Carlos Rosario (CR: 

18°19'30.2"N, 65°19'52.7"W), Culebritas (18°19'19.4"N 65°14'14.5"W) and Los Corchos 

(18°18'33.0"N 65°13'44.3"W). The genotypic composition was obtained using 6 

microsatellite loci as in (Baums et al. 2005a) and is shown in pie charts.  Outplant sites 

(gray circles) consisted of five 5 x 5m plots located at each site at two depths (5 and 15m). 

A total of n=20 fragments from each source site were outplanted in each plot for a total of 

n=400 fragments. Temperature records were gathered from NOAA Data Buoy Center, 

Station CLBP4 (red circle) located 3.8 and 4 km from LP and CR respectively.  
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Fig. 2. Heatmap representing temporal changes in 83 loci showing a significant non-

random distribution of DNA methylation patterns (p<0.05, pFDR<0.05). Two distinctive 

clusters separate DNA methylation between cold (Apr 2019) and warm (Jul 2018, Sep 

2018, and Sep 2019) months. Samples from Oct 2018 and Jan 2019 show a scattered 

distribution across these two clusters, while most Sep 2019 specimens constituted a well-

defined sub-cluster within the warm group. No clear clustering is observed for specific 

genets. Rows (samples) and columns (MSAP loci) were clustered using Gower’s 

Coefficient of Similarity. The methylation status of each locus is indicated in the right 

margin of the figure: HMM, hemimethylated, HPM, hypermethylated; ICM, internal 

cytosine methylation; NMT, non-methylated (unmethylated).  
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Fig. 3. Discriminant analysis of principal components (DAPC) of complete MSAP profiles 

representing the different groups (i.e., time points). A: scatterplot of monthly clusters 

resolved by DAPC. Barplot shows the significance of each of the five discriminant 

functions retained. In the upper-left corner the variance explained by the 77 PCs retained 

for the study. Horizontal line: x-axis, first discriminant function (LD1) and vertical line: y-

axis, second discriminant function (LD2). B and C: density of methylation profiles of each 

A. cervicornis fragment against discriminant function 1 (LD1) and discriminant function 2 

(LD2), respectively. D and E: loading plot of MSAP loci that most contributed to LD1 and 

LD2 respectively. F and G: temporal variation of the frequency of each methylation status 

of loci with high contribution to LD1 (BB1, BB2, AG1) and LD2 (AB14, BB43, BB44), 

respectively. Methylation status is indicated in the lines of the figure: h, hemimethylated, 

m, hypermethylated; i, internal cytosine methylation; u, non-methylated (unmethylated).  
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Fig. 4. A: time series of DNA methylation pattern separation as given by the DAPC 

discriminant function 3 (LD3, Box Plots). Black dots indicate outliers. Monthly average of 

daily mean temperature (NOAA Buoy CLBP4, blue line), lagg corrected +1 as calculated 

with the ccf function in R, is shown as additional y-axes. Blue shadings indicate 95% 

confidence intervals of temperature variability. Note the clear seasonal variation of the 

DNA methylation patterns evidenced by this discriminant function and its significant 

correlation with temperature changes (Pearson’s rank correlation: r = 0.91, p = 0.0310). B: 

density of DNA methylation profiles of each A. cervicornis fragment against discriminant  

function 3 (LD3) C: temporal variation of the frequency of each methylation status of three 

loci with high contribution to LD3 (BB78, BG12, BG37). Methylation status is indicated 

in the lines of the figure: h, hemimethylated; m, hypermethylated; i, internal cytosine 

methylation; u, non-methylated (unmethylated).  
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Fig. 5. Non-metric multidimensional scaling (NMDS) of global DNA methylation patterns 

using Gower distances. A: temporal separation for T5 and T12 for LP sites. C: 

representation of all sampling times for both shallow sites (LP and CR). B and D: 

significant correlations of environmental parameters to DNA methylation patterns (P < 

0.05). Colors correspond to collection times.   
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Table 1. Adapters and Primers used for MSAP analysis in A. cervicornis. 

Step 
Adapter/ 

Primer  
Sequence (5’→ 3’) Combinations* 

Digestion/ 
ligation 

EcoRI  
3’CTCGTAGACTGCGTACC5’ 

                        5’CTGACGCATGGTTAA 3’ 

DL 

HpaII/MspI 
3’CGACTCAGGACTCAT5’ 

         5’TGAGTCCTGAGTAGCAG 3’ 

Pre-
selective 

PCR 

EcoRI+A GACTGCGTACCAATTCA 
PA 

M/H+T GATGAGTCTAGAACGGT 

EcoR1+C GACTGCGTACCAATTCC 
PB 

M/H + A GATGAGTCTAGAACGGA 

Selective 

PCR 

SL1-TTG FAM-GATGAGTCTAGAACGGTTG 
SL1 

SL1-TCT FAM-GATGAGTCTAGAACGGTCT 

SL2-TCA FAM-GATGAGTCTAGAACGGTCA 
SL2 

SL2-AAC FAM-GATGAGTCTAGAACGGAAC 

SL3-TTA HEX-GATGAGTCTAGAACGGTTA 
SL3 

SL3-TAA HEX-GATGAGTCTAGAACGGTAA 

SL4-AGT HEX-GATGAGTCTAGAACGGAGT 
SL4 

SL4-ATC HEX-GATGAGTCTAGAACGGATC 

* adapters or primers were combined in one PCR reaction for digestion/ligation, pre-

selective, and   selective combinations.  
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Table 2. Genotypic diversity of A. cervicornis at source sites around Culebra, PR. 

  N Ng Ng/N Go Go/Ge Go/Ng 

Los Corchos (LC) 60 41 0.683 28 0.467 0.683 

Culebrita (CUL) 20 7 0.350 4.762 0.238 0.680 

Carlos Rosario (CR) 50 11 0.220 5.438 0.109 0.494 

Luis Peña (LP) 56 15 0.268 7.612 0.136 0.507 

Average 46.500 18.500 0.380 11.453 0.237 0.591 

Std. Dev 18.138 15.351 0.209 11.098 0.163 0.105 

N = sample size, Ng = number of genets, Go = observed genotypic diversity, Ge = 

expected genotypic diversity. 
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Table 3. DNA methylation status of target sequences (percentages) from each time point. 

Band pattern (target state) T3 T5 T6 T9 T12 T17 

HPA+/MSP+(Non-methylated) 17.69 15.48 15.75 17.48 17.45 13.49 

HPA+/MSP-(Hemimethylated) 10.92 13.15 11.57 9.49 8.64 15.68 

HPA-/MSP+(Internal C methylation) 13.39 13.98 13.31 11.45 7.95 15.98 

HPA-/MSP-(Hypermethylation) 58.01 57.39 59.38 61.60 65.97 54.85 

  



 119 

Table 4. Pairwise PERMANOVA of global DNA methylation patterns between time 

points. 

 T3 T5 T6 T9 T12 T17 

T3  0.0660 0.0015 0.0015 0.0015 0.0015 

T5 2.7247  0.0994 0.0015 0.0015 0.0015 

T6 5.5726 1.6992  0.1782 0.0015 0.0015 

T9 7.7282 3.5977 1.2757  0.0015 0.0015 

T12 14.6953 9.6050 5.4069 3.4001  0.0015 

T17 13.3517 9.1919 8.0027 8.4736 16.2329  

Values of F below the diagonal. Adjusted p-values (Holm’s method) above the diagonal. 

Values of p < 0.05 are in bold. 
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Table 5. Pairwise PERMANOVA of global DNA methylation patterns between coral 

genets. 

 C1706 C1708 C1727 C1732 C1733 C1734  C1739 

C1706  0.4536 0.4536  0.2744 0.2744 0.1344 0.2744 

C1708 0.9931  0.2744 0.0494 0.1837 0.0440 0.0765 

C1727 1.1813 1.5936  0.1837 0.2744 0.0688 0.0494 

C1732 1.4882 2.4780 1.9408  0.0765 0.2744 0.0494 

C1733 1.8353 2.1118 1.7832 2.5051  0.1926 0.0084 

C1734 1.9702 2.4824 2.2012 1.6745 1.9121  0.0765 

C1739 1.7727 2.4298 2.4494 2.5393 3.2224 2.2206  

Values of F below the diagonal. Adjusted p-values (Holm’s method) above the diagonal. 

Values of p < 0.05 are in bold. 
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CHAPTER IV  

SYMBIONT SHUFFLING INDUCES DIFFERENTIAL DNA METHYLATION 

RESPONSES TO THERMAL STRESS IN THE CORAL MONTASTRAEA 

CAVERNOSA. 
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Abstract 

Algal symbiont shuffling in favor of more thermo-tolerant species has been 

shown to enhance coral resistance to heat-stress. Yet, the mechanistic underpinnings and 

long-term implications of these changes are poorly understood. This work studied the 

modifications in coral DNA methylation, an epigenetic mechanism involved in coral 

acclimatization, in response to symbiont manipulation and subsequent heat stress 

exposure. Symbiont composition was manipulated in the great star coral Montastraea 

cavernosa through controlled thermal bleaching and recovery, producing paired ramets of 

three genets dominated by either their native symbionts (genus Cladocopium) or the 

thermotolerant species (Durusdinium trenchii). Single-base genome-wide analyses 

showed significant modifications in DNA methylation concentrated in intergenic regions, 

introns, and transposable elements. Remarkably, DNA methylation changes in response 

to heat stress were dependent on the dominant symbiont, with twice as many 

differentially methylated regions found in heat-stressed corals hosting different 

symbionts (Cladocopium vs. D. trenchii) compared to all other comparisons. 

Interestingly, while differential gene body methylation was not correlated with gene 

expression, an enrichment in differentially methylated regions was evident in repetitive 

genome regions. Overall, these results suggest that changes in algal symbionts favoring 

heat tolerant associations are accompanied by changes in DNA methylation in the coral 

host. The implications of these results for coral adaptation, along with future avenues of 

research based on current knowledge gaps, are discussed in the present work.  
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Introduction 

The obligate symbiosis between corals and dinoflagellates in the family 

Symbiodinaceae constitutes one of the most successful biological strategies supporting 

remarkable biodiversity in very oligotrophic waters. This highly efficient symbiosis, 

however, is sensitive to elevated temperatures, among other stressors, leading to the 

disruption of the partnership in a stress response known as “coral bleaching” (Weis 2008; 

Baker and Cunning 2015), often resulting in mortality. Bleaching is the main cause of the 

accelerated decline of coral populations, mainly caused by the anthropogenic alteration of 

the planet’s climate (Pandolfi et al. 2003; Hughes et al. 2017), with dire consequences for 

marine ecosystems and coastal populations. Hence, great efforts have been placed in 

understanding the dynamics and the mechanisms regulating this symbiosis as a way to 

develop strategies to increase coral resilience to global change (National Academies of 

Sciences, Engineering, and Medicine et al. 2019; Bay et al. 2019). 

Several factors have been shown to modulate coral sensitivity to heat stress and 

promote acclimation/adaptation responses [i.e., genetic, epigenetic, symbiotic community 

composition and microbiome (Barshis 2015; Quigley et al. 2018; Eirin-Lopez and 

Putnam 2019)], leading to a wide spectrum of bleaching susceptibility patterns. Focusing 

on the symbiotic relationship, both the identity and population density of the symbiont 

appear to affect thermal sensitivity (Baker 2004; Cunning and Baker 2013; Silverstein, 

Cunning, and Baker 2015; Swain et al. 2020). Particularly, corals hosting symbionts in 

the genus Durusdinium often display higher tolerances to heat stress (Berkelmans and 

van Oppen 2006; Silverstein, Cunning, and Baker 2015) and improved overall survival to 

bleaching events (Glynn et al. 2001; Jones et al. 2008). Current evidence of an increase 
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and persistence of Durusdinium in natural coral populations, with a recent and rapid 

expansion through the Caribbean (Pettay et al. 2015), suggests a positive selection of this 

symbiotic partner under increasingly frequent thermal anomalies. Consequently, 

increasing efforts have been placed to study the mechanisms underlying coral symbiotic 

interactions under stress conditions (Yuyama et al. 2018; Helmkampf et al. 2019; 

Cunning and Baker 2020). Yet, with the exception of a single study investigating the 

epigenetic regulation of transcriptional changes upon the establishment of symbiosis (Li 

et al. 2018), the role of epigenetic mechanisms regulating molecular responses to changes 

in coral symbiont composition under thermal stress remains unknown. 

Accumulating evidence suggests that epigenetic modifications [i.e., molecules 

and mechanisms able to regulate gene expression through the generation of alternative 

gene activity states in the context of the same DNA sequence (Cavalli and Heard 2019)] 

are involved in conveying environmental signals to the genome, and thus participating in 

the regulation of subsequent phenotypic responses. Epigenetic regulation is ubiquitous in 

all eukaryotes, based on the fundamental role that epigenetic mechanisms play in genome 

packing and functional organization within the cell nucleus. In corals, several studies 

have already reported evidence of epigenetic responses to different types of 

environmental stressors such as thermal stress, ocean acidification, and eutrophication, 

among others (Putnam, Davidson, and Gates 2016; Liew et al. 2018; Rodriguez-

Casariego et al. 2018), as well as to broad environmental change (Rodríguez-Casariego et 

al. 2020; Dimond and Roberts 2020), with links to transcriptional plasticity (Dixon et al. 

2018; Li et al. 2018). Since the symbiotic partners of corals also constitute part of (and 

therefore shape) their environment, the present work hypothesizes that transitions in these 

https://paperpile.com/c/PTANLP/ZEdI5
https://paperpile.com/c/PTANLP/FT6q+WKpJ+pQsS
https://paperpile.com/c/PTANLP/FT6q+WKpJ+pQsS
https://paperpile.com/c/PTANLP/fMUp
https://paperpile.com/c/PTANLP/fMUp
https://paperpile.com/c/PTANLP/64O9
https://paperpile.com/c/PTANLP/oDgL+Bdwa+Elbj
https://paperpile.com/c/PTANLP/oDgL+Bdwa+Elbj
https://paperpile.com/c/PTANLP/WYEP+FFb1
https://paperpile.com/c/PTANLP/WYEP+FFb1
https://paperpile.com/c/PTANLP/8LiR+fMUp
https://paperpile.com/c/PTANLP/8LiR+fMUp
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populations will require phenotypic acclimatory responses in the coral host, facilitated by 

epigenetic modifications. Indeed, coral symbiont variants and abundance have been 

shown to significantly modulate gene expression in the host (Barfield et al. 2018; 

Helmkampf et al. 2019), including experiments where the inter-genet variability [genet 

refers to the collection of fragments or “ramets'' originating from the same colony 

(DeSalvo et al. 2010; Cunning and Baker 2020)] was eliminated. In order to elucidate the 

role of epigenetic regulation during symbiont transitions, the present work builds on the 

experimental design developed by Cunning and Baker (2020) in which symbionts were 

manipulated to produce paired ramets with different symbionts to subsequently expose 

them to thermal stress. Epigenetic changes in DNA methylation occurring in response to 

symbiont manipulation and subsequent thermal stress exposure are examined, as well as 

their relationship with gene expression. The obtained results suggest that DNA 

methylation response to thermal stress is symbiont-specific, with accumulation of 

differentially methylated sites in repetitive regions of the genome and evidence of gene-

body methylation reducing spurious transcription but not mediating changes in gene 

expression.   

 

Materials and Methods 

Experimental Design  

Detailed description of coral collection, fragmentation, and subsequent symbiont 

manipulation and short-term thermal stress exposure can be found in Cunning and Baker 

(2020). Briefly, wild colonies of the great star coral Montastraea cavernosa were 

collected near Key Biscayne, FL, fragmented by coring into 2.5-cm diameter ramets, and 

https://paperpile.com/c/PTANLP/HvA1+WKpJ
https://paperpile.com/c/PTANLP/HvA1+WKpJ
https://paperpile.com/c/PTANLP/EkAk+pQsS
https://paperpile.com/c/PTANLP/pQsS
https://paperpile.com/c/PTANLP/pQsS
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acclimated to the University of Miami's Marine Technology and Life Sciences Seawater 

Complex water systems for 3.5 months (26°C, ~230 µmol photons m−2 s−1 in a 12‐

hr:12‐hr light–dark cycle, Reef Chilli twice a week). After this period, half of the ramets 

were maintained in control conditions while the other half were subjected to controlled 

bleaching (temperature was raised from 26 to 32°C at 0.5°C day‐1 and kept at 32°C for 

14 days) and recovery (fragments were transferred to control conditions at 26°C), which 

encouraged symbiont community changes in favor of Durusdinium. After a 4-month 

recovery period, coral symbiotic composition was assessed through qPCR (Cunning and 

Baker 2013), confirming symbiont shuffling from Cladocopium to Durusdinium 

dominance. Paired (same coral genotype) Cladocopium- and Durusdinium-dominated 

ramets were then exposed to control (26°C) or short-term heat-stress conditions for 4.8 

days (~3 degree heating weeks, DHWs) and subsequently flash frozen in liquid nitrogen 

for long-term preservation of samples. Manipulations resulted in 4 groups, control corals 

hosting Cladocopium (CC), control corals hosting Durusdinium (DC), heat-stressed corals 

hosting Cladocopium (CH) and heat-stressed corals hosting Durusdinium (DH). 

    

Coral DNA Extraction and MBD-BS Library Preparation 

In the present work, DNA methylation was studied using a Methyl-binding 

domain capture approach coupled with bisulfite sequencing (MBD-BS). This method 

allows the enrichment of methylated DNA (as low as 1% of the genome in some 

invertebrates) to reduce sequencing requirements, while maintaining base-pair resolution 

of the resulting data. From the subset of flash-frozen samples (see above), a total of n=2 

replicates per genotype, n=3 genotypes, for all 4 symbiont/temperature combinations 

https://paperpile.com/c/PTANLP/b4hT
https://paperpile.com/c/PTANLP/b4hT
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were randomly selected for methylation analyses (n=24 samples). Genomic DNA was 

isolated from flash frozen coral cores after pulverization in liquid nitrogen. 

Approximately 100 mg of the resulting powder was resuspended in 2 mL vials containing 

500 mg of Zirconia/Silica beads (0.5 mm diameter) and 1 mL of DNA/RNA Shield 

buffer (Zymo Research, Irvine, CA). Coral cells were gently lysed with two 30 s vortex 

pulses to enrich host DNA by maintaining symbiont cells intact (Rodríguez-Casariego et 

al. 2020). After centrifugation (12,000 x g for 5 min), 800 µL of the supernatant were 

transferred to a new tube and DNA isolation was continued using the Quick-DNA/RNA 

Mini-Prep kit (Zymo Research, Irvine, CA) as per manufacturer's instructions. DNA 

quality was assessed by gel electrophoresis and spectrophotometric analysis as described 

in our previous work (Rivera-Casas et al., 2017). DNA concentration was measured using 

a Qubit 2.0 fluorometer (Thermo Fisher, Waltham, MA). Samples with concentrations 

under 20 ng/μL and/or low quality (i.e., ethanol contamination) were re-processed using a 

DNA Clean & Concentrator kit (Zymo Research, Irvine, CA) until proper concentration 

and quality were achieved.  

DNA samples ranging from 36.2 to 119 ng/μL (100 µL) were placed in 1.5ml 

polystyrene tubes and sheared in a Bioruptor (Diagenode, Philadelphia, PA) using 25 

cycles of 30s ON and 30s OFF in low power. Shearing size (~350 bp) was confirmed 

using a 2100 Bioanalyzer with High Sensitivity DNA Assay Kit (Agilent Technologies, 

Santa Clara, CA). Capture of methylated DNA was performed with the MethylCap Kit 

(Diagenode, Ougrée, Belgium). A single-fraction elution was performed with 150 μL of 

high-salt buffer to obtain captured DNA only. Purification of the captured DNA was 

performed with the DNA Clean & Concentrator kit (Zymo Research, Irvine, CA), and 

https://paperpile.com/c/PTANLP/WYEP
https://paperpile.com/c/PTANLP/WYEP
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eluted in 25 μL. Bisulfite conversion and library preparation was performed using the 

Pico Methyl-Seq Library Prep Kit (Zymo Research, Irvine, CA). Libraries were barcoded 

and shipped for pooling and sequencing at Admera Health Biopharma Services (South 

Plainfield, NJ), generating 150bp paired-end reads on two lanes of a HiSeq-X sequencer. 

 

DNA methylation quantification 

Sequences were trimmed with 10 bp removed from both the 5′ and 3′ ends using 

TrimGalore! v.0.4.5 (Krueger 2012). Sequence quality was assessed using FastQC 

v.0.11.7 (Andrews, 2010) before and after trimming. The M. cavernosa genome assembly 

was obtained from Dr. M. Matz’s Laboratory (https://matzlab.weebly.com/data--

code.html) and was prepared for downstream use with the Bismark genome_preparation 

function (Bismark v.0.19.0, Krueger and Andrews, 2011) using Bowtie 2-2.3.4 

(Langmead and Salzberg, 2012) as aligner. Trimmed sequences were then aligned to the 

prepared genome using Bismark with non-directionality and alignment score of L,0,-1.2. 

Alignment files (i.e., bam files) were deduplicated (using deduplicate_bismark), sorted 

and indexed [using SAMtools v.1.9 (Li et al., 2009)]. Methylation calls were extracted 

from deduplicated files using bismark_methylation_extractor and separated by context 

(i.e., CpG, CHG, CHH).  

Genomic feature tracks for downstream analyses were derived directly from the 

M. cavernosa genome annotation (https://matzlab.weebly.com/data--code.html) or 

created using BEDtools v2.26.0 (Quinlan and Hall, 2010). Genes, mRNA, exons, coding 

sequences (CDS), and flanking untranslated regions (3’-UTR and 5’-UTR) were obtained  

directly from the genome annotation file while putative promoter regions, intergenic 

https://paperpile.com/c/PTANLP/VF7D
https://matzlab.weebly.com/data--code.html
https://matzlab.weebly.com/data--code.html
https://matzlab.weebly.com/data--code.html
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regions and repetitive regions were created following previously developed pipelines 

(Venkataraman et al. 2020). Introns were derived by subtracting exons from gene tracks. 

Gene body methylation includes CpGs overlapping with intron, CDS and UTRs, but not 

promoters.   

 

Statistical Analyses 

Statistical analyses were all completed in R (v4.0.2; R Core Team 2020) with 

RStudio (v1.3.959; R Studio Team 2020). R scripts used for all analysis were stored in 

Github (see data accessibility statement). 

Describing the DNA methylation landscape 

Sequences from all samples were used to characterize general DNA methylation 

patterns in M. cavernosa. Methylation calls per CpG loci (i.e., .cov files) were merged, 

corrected using a 1% miss-call rate (based on non CpG methylation calls) and filtered to 

maintain individual CpG dinucleotides with at least 5x coverage in each sample. 

Individual loci (i.e., CpG dinucleotides) were classified based on methylation percent in 

unmethylated (<10% methylation), sparsely methylated (10-50% methylation) and 

methylated (> 50% methylation). The genomic feature where they locate was also 

characterized (i.e., CDS, intron, UTRs, putative promoters, transposable elements, and 

other intergenic regions). The significant association between genomic features and 

methylation status was evaluated through a chi-squared test (prop.test R function) using a 

CpG track extracted from the genome assembly. A similar approach was followed for the 

feature overlap of differentially methylated regions (DMR). 

 

https://paperpile.com/c/PTANLP/1faE
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Genome-wide DNA methylation response 

The genome-wide DNA methylation response induced by the experimental 

manipulation (symbiont and temperature) was visualized through principal coordinates 

analysis (PCoA) of Manhattan distances. A variance partitioning analysis was performed 

using the R package variancepartition (Hoffman and Schadt 2016), to visualize the 

variance components within each coral genet. Treatment associated variance across all 

genets was analyzed through a Discriminant Analysis of Principal Components (DAPC) 

using the R package adegenet v2.1.3 (Jombart, Devillard, and Balloux 2010). The effect 

of experimental manipulations in Global percent DNA methylation was also tested by 

ANOVA with the model aov(median~Treatment*Symb*feature).    

Describing DNA methylation in repetitive regions 

Repetitive regions in M. cavernosa were annotated using RepeatMasker v4.1.1 

(A.F.A. Smit, R. Hubley & P. Green RepeatMasker at http://repeatmasker.org). Python 

scripts developed by Dr. Yi Jin Liew (https://github.com/lyijin/smic_dna_meth) were 

used to calculate methylation levels (average % methylation for all sites overlapping 

repeats) and methylation densities (number of methylated Cs) per repeat type. The 

correlation between treatment combinations and DNA methylation density on repeats was 

evaluated through two-way ANOVA and pairwise t-test.  

Determining expression of repetitive elements  

The expression of transcripts originating from repeat elements was quantified 

utilizing the RNA-seq dataset developed by Cunning and Baker (2020). Reads from each 

sample included in the methylation analysis (n=24) were mapped against the genome of 

M. cavernosa with HISAT2 v2.1.0 (Kim, Langmead, and Salzberg 2015). The resulting 

https://paperpile.com/c/PTANLP/DDS9
https://paperpile.com/c/PTANLP/tJWq
http://repeatmasker.org/
https://github.com/lyijin/smic_dna_meth
https://paperpile.com/c/PTANLP/pQsS
https://paperpile.com/c/PTANLP/J6hg
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aligned reads (between 75-90% mapping efficiency) were processed using samtools 

depth (Li et al. 2009) to create a per-base coverage file. RNA-seq reads counts for each 

repeat type were parsed utilizing a python script developed by Dr. Yi Jin Liew 

(https://github.com/lyijin/smic_dna_meth). The significance of the effect of experimental 

manipulations on the expression of repetitive regions was evaluated through paired t -

tests. 

 

Identification of differentially methylated regions and genes 

Differentially methylated regions (DMRs) were identified using the methylpy 

pipeline (Schultz et al. 2015) (https://github.com/shellytrigg/methylpy). This method first 

identifies differentially methylated CpGs between all samples using a mean square root 

test, and then collapses neighboring sites across a specific window size. CpG sites with at 

least 5x coverage were subject to DMR analysis across a 250bp window. DMRs were 

identified from all samples together, and between relevant symbiont/temperature 

combinations. Regions with less than 3 CpGs and present in less than 75% of the samples 

in each treatment were discarded. Significant differences of DMRs between treatments 

was further tested through ANOVA after arcsine-square-root transformation. Two-way 

ANOVA with the model ~symbiont*temperature was applied for DMRs identified from 

all samples together, and One-way ANOVA was employed for combination contrasts 

(i.e., CH vs CC; DC vs CC; etc.).  

Differentially methylated genes (DMG) were identified though a generalized 

linear model implemented in R. CpG methylation (>5x coverage) across gene-body 

(intron, CDS and UTRs) was summarized for each gene as the sum of all methylated and 

https://paperpile.com/c/PTANLP/f7TW
https://github.com/lyijin/smic_dna_meth
https://paperpile.com/c/PTANLP/SvhI
https://github.com/shellytrigg/methylpy
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unmethylated reads for a particular position across the gene. The model glm(meth, 

unmeth~ sym*temp, family=binomial) was applied to all samples, while models including 

only sym or temp were applied to individual combination contrasts as described before. 

Only positions shared by all samples were included in the analyses.  

Functional enrichment of methylated genes and association with gene expression 

Gene ontology (GO) and eukaryotic orthologous groups (KOG) categories 

enrichment in relation to gene-level DNA methylation was performed using GO-MWU 

(Wright et al. 2015) and KOG-MWU (Matz 2016) respectively. Methylation change 

between treatment contrasts used for both enrichment analyses was calculated as log2 

fold of the methylated/unmethylated fraction per gene. M. cavernosa KOG and GO 

categories used here are the same as in (Cunning and Baker 2020) and were obtained 

from https://github.com/mstudiva/Mcav-Annotated-Transcriptome. Additional GO 

enrichment analysis, using topGO (Alexa, Rahnenführer, and Lengauer 2006), was 

performed to identify categories significantly overrepresented in DMGs. Similarities 

between the methylation responses of group contrasts were evaluated by correlation of 

KOG delta-ranks 

Gene expression data, as counts per sample/gene, was obtained from (Cunning 

and Baker 2020) (https://github.com/jrcunning/mcav_shuffle) and filtered to include only 

the samples for which DNA methylation data was generated here. The correlation 

between these datasets was tested with linear regression, including gene-body 

methylation mean (methylated/unmethylated CpGs), gene expression mean (log2-cpm) 

and its respective coefficient of variance (methCV and expressionCV). Variable 

https://paperpile.com/c/PTANLP/9TYz
https://paperpile.com/c/PTANLP/iYtQ
https://paperpile.com/c/PTANLP/pQsS
https://github.com/mstudiva/Mcav-Annotated-Transcriptome
https://paperpile.com/c/PTANLP/3cCw
https://paperpile.com/c/PTANLP/pQsS
https://paperpile.com/c/PTANLP/pQsS
https://github.com/jrcunning/mcav_shuffle
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generation was based on code developed by (Downey-Wall et al. 2020) 

(https://github.com/epigeneticstoocean/AE17_Cvirginica_MolecularResponse).  

Results 

The DNA methylation landscape of M. cavernosa 

Sequencing of 24 MBD-captured bisulfite libraries resulted in a total of ~800 

million paired-end 150 bp-long reads (Pending NCBI data info, Supplementary Figure 

S1), among which ~779 million passed the quality filtering, and 192 million mapped to 

the genome of M. cavernosa. Across all samples, 9,993,450 CpG sites (~36% of 

28,118,336 CpGs in the genome) passed error filtration (1% miss-called Cs) and 

8,412,240 (~30% of all CpGs in the genome) had at least 5x coverage. Although mapping 

and coverage varied between samples, the patterns were not treatment-specific 

(Supplementary Figures S2).   

All CpG sites, after error and coverage filtering, were used to characterize the 

general DNA methylation landscape (Fig. 1). As expected from the enrichment caused by 

the MBD method, most of the CpGs covered by sequencing were either methylated 

(5,226,176; 62.1%) or sparsely methylated (2,881,642; 34.3%) with only 304,422 (3.6%) 

being unmethylated (Gavery and Roberts 2013; Olson and Roberts 2014). The observed 

CpG-methylation level was dependent on genomic location (p < 0.001; Table S1), with 

introns and repetitive regions having proportionally higher methylated CpGs (>50% 

median methylation) compared to all CpGs in the genome (Fig. 1A, Table S1). 

Methylated CpGs overlapped primarily with intergenic regions (including repeats), with 

only ~30% overlapping with genic and flanking regions (Fig. 1A). Introns and exons, 

however, showed higher methylation levels (%) than intergenic regions (Fig. 1B).  

https://paperpile.com/c/PTANLP/egK9
https://github.com/epigeneticstoocean/AE17_Cvirginica_MolecularResponse
https://paperpile.com/c/PTANLP/c4AE+CqQh
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DNA methylation response to symbiont shuffling and heat stress 

Only CpG positions with >5x coverage that were present in at least 80% of samples per 

treatment were used for evaluating epigenetic changes caused by symbiont manipulation 

and/or thermal stress. Principal coordinate analysis (Fig. 2A) revealed that samples 

clustered primarily by genotype along the PC2 axis, with the effect of treatment groups 

somewhat evident across PC1, although the separation along this axis is not consistent 

between genotypes. Variance partitioning analysis (Fig. 2B) also confirmed that the 

effects of the symbiont manipulation and heat stress were not homogeneous across 

genotypes, with the effects of symbiont manipulations and thermal exposure contributing 

differently among colonies. Across all genotypes, however, most of the variance was 

explained by the interaction between symbiont and temperature, indicating variable 

methylation responses to heat stress in corals hosting different symbionts. Significant 

differences in global methylation (calculated as median methylation of all CpGs) due to 

thermal stress (F = 5.943, p.value = 0.0171), but not to symbiont manipulation (F = 

0.572, p.value = 0.4519) or its interaction with thermal stress (F = 0.648, p.value = 

0.4234) were observed using a two-way ANOVA, indicating that the loci specific 

response observed in the PCoA and variance partitioning, is not evident at a global 

methylation level.  

The discriminant analysis of principal components (Fig. 2C for all CpGs; 

Supplementary Fig. S3 by feature) identified consistent differences in DNA methylation 

profiles corresponding to the experimental variables across genets. Along the first 

discriminant axis (LD1) corals hosting Durusdinium, towards the right, separate from 

those hosting Cladocopium, towards the left. Heat stress response was evident along the 
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second discriminant function (LD2), with control corals hosting Durusdinium separating 

from control corals hosting Cladocopium in the same direction of the heat stress 

response. Remarkably, Durusdinium-dominated corals exposed to thermal stress move 

very little along LD2 but separate from control along LD1. This pattern of methylation in 

response to symbiont change, resembling the Cladocopium-dominated corals thermal 

response, as well as the different DNA methylation response to temperature in corals 

hosting Durusdinium, was also evident across genomic features such as gene bodies, 

introns, intergenic regions, and transposable elements (Supplementary Fig. S3).  

 

Overlapping between differential DNA methylation and genomic features 

Regional changes in DNA methylation are more likely to affect genomic 

functioning than variation in individual CpGs. Consequently, DMRs were identified by 

combining differentially methylated cytosines (methylpy pipeline) across 250bp 

windows. DMRs (Table 1) were determined by either comparing samples from all four 

treatment combinations (all-DMR) or from each of the four individual treatment 

contrasts, such as symbiont shuffling under control temperature (DC vs CC), heat stress 

response for both symbiont types (CH vs CC, and DH vs DC), and the combination of both 

symbiont manipulation and temperature (DH vs CH). Symbiont manipulation produced the 

highest number of DMRs (80), but it was mostly contributed by the DH vs CH contrast 

with almost 10 times the number of DMR’s produced by the DC vs CC contrast. 

Interestingly, Cladocopium-dominated corals heat-stress response involves almost three 

times more DMRs than that of Durusdinium-dominated, hinting a potential “milder” 

methylation response to heat-stress in corals hosting Durusdinium.    
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Heatmaps were used to illustrate methylation changes caused by symbiont 

manipulation and thermal exposure on significant DMRs (Fig 3A). Across all 206 

significant DMRs responding to symbiont, temperature and symbiont:temperature 

interaction (Fig 3A), five distinctive clusters (a to e) were defined. DMRs in cluster a 

show DNA methylation changes that are responsive to both symbiont and temperature, 

with a reduction in methylation from control-corals hosting Cladocopium to both heated-

corals hosting the same symbiont and control corals hosting Durusdinium. DNA 

methylation response to temperature of corals hosting Durusdinium show an opposite 

direction than that of Cladocopium dominated corals in this cluster, confirming a 

different response to stress in corals dominated by each symbiont. Clusters b and d 

comprise DMRs responding exclusively to symbiont manipulation but with opposite 

directions of methylation change. DMRs in cluster c show a shared methylation response 

to temperature for corals hosting both symbionts. In cluster e, DMRs show little change 

between control corals hosting both symbionts, but the demethylation response to heat 

stress is smaller in corals hosting Durusdinium. Overall, DNA methylation seems to be 

responding differently to symbiont manipulation and heat stress, with some evidence of a 

milder response to temperature in corals dominated by Durusdinium symbionts.  

Significant DMRs in all clusters mostly overlap with intergenic regions, although 

gene bodies of 68 genes were represented (Table S2). DMRs in each cluster showed 

dependence on genomic regions. Intergenic regions were enriched in DMRs for cluster c 

(chi square p.value < 0.1), while repetitive regions were significantly overrepresented  in 

cluster d (chi square p.value <0.0001; Fig. 3B). Intronic regions were overrepresented in 

cluster e, but this enrichment was not significant. These marked differences in DMRs 
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localization also support a differential response to symbiont manipulation and thermal 

stress. 

 

DNA methylation and expression of repetitive regions      

Given the observed prevalence of methylated positions across repetitive regions 

and the significant representation of these genomic elements in DMRs, a more detailed 

analysis of DNA methylation distribution and variation across these features was 

performed, as well as the evaluation of their expression. No significant change in global 

methylation density or expression was observed between treatment combinations when 

all repeat types were combined (Fig. 4). However, significant changes in the expression 

of long terminal repeats (LTR; Fig 4B) were observed for both thermal stress contrasts 

[Ch vs Cc (t-test: p.value = 0.0238); Dh vs Dc (t-test: p.value = 0.0169)]. Although 

methylation density in these repeats showed a similar trend (Fig 4A), these changes were 

not significant. However, DMRs overlapping with repeats showed a significant 

proportional enrichment in LTR for both Dc vs Cc (prop_test; p.value = 0.0360) and Dh 

vs Ch (prop_test; p.value < 0.0001). Combined, these results are indicative that DNA 

methylation in repetitive regions is responsive to environmental change, and that 

transposable elements are activated under thermal stress. 

 

Gene body methylation and functional enrichment   

Gene methylation information was obtained for 1040 genes represented across all 

groups and covered by at least 3 CpGs. Differentially methylated genes (DMGs) were 

determined through a binomial generalized linear model with symbiont type, temperature, 



 138 

and the interaction as levels, and also as 1v1 comparisons for the contrasts described 

before. Across all 430 DMGs obtained, there was a significant reduction in global DNA 

methylation between control and heated Cladocopium-dominated corals (t-test, p.adjBH= 

0.047; Fig 5A) and a non-significant increase in control corals hosting Durusdinium 

when compared with Cladocopium dominated controls (t-test, p.adjBH= 0.912). There was 

also a slight reduction in global DNA methylation in response to temperature for 

Durusdinium-dominated corals, but it was not significant (t-test, p.adjBH= 0.486). The 

contrast DH vs CH produced the largest number of DMGs (286, Fig 5D) while DH vs DC 

produced less than half of all other contrasts (106 DMGs). Comparisons including 

different symbionts (DC vs CC and DH vs CH) shared 130 DMGs, while only 62 were 

shared between temperature contrasts for both symbionts (CH vs CC and DH vs DC). 

Overall, these results suggest that corals hosting Durusdinium respond to thermal stress 

with substantially less and different methylation changes than those of Cladocopium-

hosting corals.  

Functional enrichment analysis of DMGs identified 34 overrepresented GO terms 

across significant DMGs in all contrasts (Table 2). However, GO_MWU analysis using 

all 1040 genes with methylation data available, did not find any GO significantly hypo- 

or hyper-methylated for any of the treatment groups. Similarly, KOG_MWU analysis 

showed no significantly hypo- or hyper-methylated category across contrasts (Fig. S4A). 

KOG delta ranks (Fig. S4B), however, were significantly correlated between the 

symbiont shuffling contrast (DC vs CC) and the responses to heat stress of both, 

Cladocopium-dominated corals (CH vs CC; R = -0.74, CI95% [-0.47, -0.89]) and 

Durusdinium-dominated corals (DH vs DC; R = 0.61, CI95% [0.25, 0.81]) but in opposite 
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directions. No correlation was observed between the heat stress responses of both 

symbionts. Similar to the case of individual genes, results from DMGs support that DNA 

methylation responses to heat stress are dependent on the dominant symbiont.   

 

Interaction between DNA methylation and gene expression. 

Using a gene expression dataset previously produced for the same set of samples 

(Cunning and Baker 2020), hypotheses were tested about the correlation between DNA 

methylation and gene expression. No linear correlation was observed between mean 

gene-body methylation and gene expression for control corals (R2 = 0.0019, p.value = 

0.348, Fig. 5B). DNA methylation, however, did show a marginally significant (for ɑ = 

0.1) negative correlation with gene expression CV (R2 = 0.0066, p.value = 0.0766, Fig. 

5C), hinting a decrease in DNA methylation in genes with more variable expression. 

Finally, the association between the responses of DNA methylation and gene expression 

to the symbiont and temperature manipulations was also evaluated using linear regression 

(Fig. S5). Again, no significant correlation was observed for any of the contrasts, neither 

for all covered genes nor for DMGs only, in correspondence with the lack of shared 

DMGs/DEGs (i.e., differentially expressed genes) found for all contrasts (Fig. 5D). 

Overall, these results are consistent with a DNA methylation response to experimental 

manipulations, showing certain similarities to the transcriptome, although lacking 

evidence of a direct association between gene expression and DNA methylation at the 

gene level.  

 

 

https://paperpile.com/c/PTANLP/pQsS
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Discussion 

This work constitutes the first evaluation of the epigenetic responses to symbiont 

manipulations in stony corals, and the first description of the DNA methylation landscape 

of the great star coral M. cavernosa, including its response to heat stress. The 

complementarity between the datasets developed in this work and the transcriptional 

plasticity data developed by Cunning and Baker (2020), allowed the analysis of the 

interactions between gene expression and DNA methylation in response to symbiont 

manipulations and thermal stress. Differential DNA methylation in response to both 

symbiont and temperature manipulations was identified at single nucleotide, region, and 

gene levels, following a global pattern similar to that observed in the transcriptional 

response (Cunning and Baker 2020). Both differentially methylated regions and genes 

(DMRs and DMGs) indicate a divergent response to heat stress for corals dominated by 

Cladocopium or Durusdinium symbionts. However, no clear evidence of direct 

interaction between gene body methylation (gbM) and expression was observed, and only 

inconclusive evidence supporting a role of DNA methylation in decreasing spurious 

transcription was found.   

 

The DNA methylation landscape of M. cavernosa depicts a relatively stress resistant 

coral 

About 19% of all CpGs in the genome of M. cavernosa were methylated and primarily 

located in intergenic regions (>60% for all CpGs and methylated CpGs). This is 

comparable with the DNA methylation levels observed in other marine invertebrates 

(Gavery and Roberts 2013; Venkataraman et al. 2020; Strader, Kozal, and Leach 2020), 

https://paperpile.com/c/PTANLP/pQsS
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including the relatively stress resistant corals Porites astreoides (Dimond and Roberts 

2020) and Montipora capitata (Dr. Hollie Putnam, unpublished data). Remarkably, 

methylation levels are significantly higher than those reported for the cnidarian model 

Aiptasia sp. [6.7%; (Li et al. 2018)], the stress-sensitive coral Stylophora pistillata [7%, 

(Liew et al. 2018)], and other corals of the robust clade like Pocillopora damicornis 

(<10%; Dr. H. Putnam, unpublished data) and Acropora cervicornis (<10%; J. A. 

Rodriguez-Casariego, unpublished data).  

Methylated CpGs in M. cavernosa significantly concentrate in introns and 

transposable elements (on both genic and intergenic regions) when compared to the 

global distribution of CpGs in the genome. While gene-body methylation is characteristic 

of invertebrates (Gavery and Roberts 2013; Feng et al. 2010), including corals (Dixon et 

al. 2018; Liew et al. 2018), the presence of similar DNA methylation levels in intergenic 

regions and transposable elements represents a new evidence never observed before in 

corals. An increased DNA methylation of transposable elements has been previously 

observed in plants (Cantu et al. 2010), mammals (Jansz 2019) and other invertebrates 

(Venkataraman et al. 2020), and has been attributed to the defense role of DNA 

methylation by selectively inhibiting mobile elements in the genome (Choi et al. 2020). It 

thus may be plausible that, also in the case of corals, DNA methylation participates in the 

regulation of mobile element activity in the genome, potentially generating new genetic 

combinations. Lastly, Exons displayed higher methylation levels and lower methylation 

variability than introns and intergenic regions. This aligns with DNA methylation 

patterns observed in other invertebrates (Lyko et al. 2010; Downey-Wall et al. 2020), and 

could be related with a role of this epigenetic mechanism in the regulation of differential 

https://paperpile.com/c/PTANLP/FFb1
https://paperpile.com/c/PTANLP/FFb1
https://paperpile.com/c/PTANLP/fMUp
https://paperpile.com/c/PTANLP/Bdwa
https://paperpile.com/c/PTANLP/c4AE+eb7V
https://paperpile.com/c/PTANLP/8LiR+Bdwa
https://paperpile.com/c/PTANLP/8LiR+Bdwa
https://paperpile.com/c/PTANLP/7Idh
https://paperpile.com/c/PTANLP/75yj
https://paperpile.com/c/PTANLP/1faE
https://paperpile.com/c/PTANLP/kwOP
https://paperpile.com/c/PTANLP/ouJA+egK9


 142 

splicing (Lyko et al. 2010; Flores et al. 2012). Nonetheless, since other studies have 

described higher DNA methylation levels in the introns of the coral S. pistillata  (Liew et 

al. 2018), further studies will be required in order to fully elucidate the linkages between 

DNA methylation and genome metabolism.  

 

Symbiont manipulation and thermal stress produce distinctive DNA methylation 

responses 

Symbiont manipulation and thermal stress triggered particular environmentally 

responsive changes in the methylome of M. cavernosa, suggesting the existence of 

distinctive responses for the different types of manipulations used in the present work. 

Estimates of global DNA methylation levels, however, failed to detect  differences 

between treatment groups, consistent with previous reports suggesting that this approach 

provides a poor descriptor of environmental responsiveness in corals [i.e., “seesaw” 

patterns with increases and decreases in DNA methylation canceling each other to 

produce invariant values (Dixon et al. 2018; Dimond and Roberts 2020)]. This is further 

supported by the identification of DMRs and DMGs between symbiont compositions and 

thermal treatments reported in the present work, suggesting significant differences in 

DNA methylation. 

The present work evidences a genet- and treatment-specific DNA methylation 

response that is influenced by the coral genotype, in agreement with previous studies in 

other scleractinian species (Liew et al. 2018; Durante et al. 2019; Rodríguez-Casariego et 

al. 2020). In this case, genets also responded differently to symbiont and temperature 

manipulations. However, across all genets, a clear treatment-specific response and 
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symbiont-driven heat stress pattern was indicated by ordination analyses and variance 

partitioning. Given that symbiont shuffling was achieved by thermal bleaching, there is a 

possibility that the observed differences between symbionts are due to that previous 

bleaching and not the effect of the symbiont identity. In their study, Cunning and Baker 

(2020) discarded carry-over effects by analyzing the transcriptome of corals that bleached 

and recovered with the native symbiont before being subject to heat-stress. Since that 

analysis was not possible in the present work, the contribution of DNA methylation 

changes maintained through epigenetic memory cannot be fully neglected. However, the 

differences between the genomic location of DNA methylation changes resulting from 

symbiont manipulation (at repetitive elements and intergenic regions) from those 

triggered by thermal treatments [at introns and putative promoters, (Liew et al. 2018; 

Dixon et al. 2018)]. strongly suggest that symbiont manipulation shapes the coral DNA 

methylome in ways yet to be known. Overall, it is evident that shifts in symbiont 

dominance from Cladocopium to Durusdinium drive DNA methylation changes 

influencing subsequent responses to thermal stress, in agreement with the transcriptomic 

(Cunning and Baker 2020) and phenotypic features (i.e., thermal resistance) conferred to 

corals by this shift (Silverstein, Cunning, and Baker 2015).   

 

Gene body DNA methylation does not correlate with gene expression. 

Epigenetic modifications play a central role in phenotypic plasticity during 

environmental responses (Eirin-Lopez and Putnam 2019). However, the underpinnings of 

how epigenetic mechanisms convey environmental signals to the genome and the 

resulting shaping of its function is still uncertain, especially in the case of non-model 
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organisms (Eirin-Lopez and Putnam 2019). Accordingly, invertebrate genomes are 

significantly less methylated than vertebrate genomes, with DNA methylation 

accumulating in gene bodies in the former as opposed to promoters in the latter (Gavery 

and Roberts 2013; Dixon, Bay, and Matz 2016). Such differences have generated 

multiple hypotheses describing the role of gene body methylation regulating gene 

expression (Duncan, Gluckman, and Dearden 2014). In cnidarians, the hypothesis most 

widely supported is the reduction of spurious transcription through the blocking of 

intragenomic initiation positions (Roberts and Gavery 2012; Dixon et al. 2018; Li et al. 

2018). The results obtained in the present work provide additional support to this 

hypothesis, based on the higher levels of methylation detected in M. cavernosa genes 

displaying less variable transcription. However, the links between differentially 

methylated genes and changes in gene expression remained elusive, with significant 

changes in gene-body methylation occurring in genes with no differential expression 

regardless of the similarities of the global responses of both mechanisms to the 

experimental manipulations.   

The present work found a significant accumulation of DMRs in transposable 

elements (TEs, including repetitive regions), consistent with the proposed role of DNA 

methylation mediating TE transcriptional silencing (Feschotte, Jiang, and Wessler 2002; 

Choi et al. 2020). Remarkably, the expression of LTRs [retrotransposons linked to 

transcriptional regulation in plants (Jia et al. 2014)], was significantly different between 

thermal treatments regardless of the dominant symbiont. Based on these results, it is 

tempting to hypothesize a link between DNA methylation and the regulation of repetitive 

regions, constituting a very attractive direction for future analyses. 
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Conclusions 

The present work provides evidence suggesting that DNA methylation plays an 

important role mediating the interaction between holobiont composition and phenotypic 

responses in the coral M. cavernosa. Importantly, such a role does not seem to involve a 

direct influence (at least necessarily) on gene expression regulation. Both symbiont 

manipulation and heat stress elicited DNA methylation responses that were not 

homogeneous across genotypes, but consistently showed a treatment-specific pattern. 

DNA methylation response to heat stress was dependent on the dominant symbiont, with 

twice as many significant DMRs found between heated corals hosting different 

symbionts (DH vs CH contrast). Similar to the transcriptional response of M. cavernosa to 

these manipulations (Cunning and Baker 2020), Durusdinium-dominated corals displayed 

a potentially “milder” DNA methylation response to thermal stress. On the other hand, no 

evidence of a direct association between gene expression and DNA methylation at the 

gene level was found, other than the previously described reduction of transcriptional 

variability on highly methylated genes (Liew et al. 2018; Li et al. 2018). Remarkably, our 

analyses showed significant accumulation of methylated and differentially methylated 

loci in transposable elements. Given the activation of some of these elements in response 

to heat stress, the obtained results could provide new research avenues to link DNA 

methylation with transcriptional and phenotypic plasticity involving the regulation of 

repetitive regions in the genome. 
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Fig. 1. DNA methylation characteristics of M. cavernosa. (A) CpG overlap with genomic 

features: “all_CpG'' refers to all positions in the genome of M. cavernosa regardless of 

their methylation status; “methylated” refers to CpG showing over 50% median 

methylation. Significant interaction between methylation and features was obtained 

(p.value < 2.2e-16). Significant proportional enrichment is represented with asterisks 

(*** represents p < 0.001, see Table S1 for details). (B) Distribution of DNA methylation 

levels (% methylation) in exons, introns, and intergenic regions.   
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Fig. 2. DNA methylation variation in M. cavernosa corals (N=3 genets) manipulated to 

host different symbionts (sym) and then exposed to thermal stress (temp). (A) Principal 

coordinate analysis of percent DNA methylation at single CpGs (>5x coverage) shared by 

all samples after variance-stabilization (n = 22,953 loci). (B) Sources of variance in DNA 

methylation calculated as a percentage of the total variance within each coral genet. (C) 

Discriminant analysis of principal components (DAPC) of single CpG methylation 

profiles. Density plots showing the distribution of samples across each discriminant 

function (LD1 and LD2) are shown across the top and left of the figure. Arrows illustrate 

the different position of corals dominated by Durusdinium symbionts compared with 

those dominated by Cladocopium of the same thermal treatment. C refers to native 
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symbionts in the genus Cladocopium and D refers to manipulated symbionts (D. 

trenchii). Small symbols represent coral samples and larger symbols represent centroids 

of two replicates.  
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Fig 3. DNA methylation across differentially methylated regions (DMRs). (A) Heatmap 

of DNA methylation variation (as deviation from the mean; z-score) of significant DMRs 

for all experimental contrasts. Clusters represent groups of DMRs with similar patterns of 

methylation change. (B) Genomic features overlapping with DMRs and differences 

between proportions of CpGs overlapping with each feature within each DMR and 

through all the regions analyzed. Significance of a chi-square proportion test are 

represented for enriched regions ( · = p.adj < 0.1; * = p.adj < 0.05; ** = p.adj < 0.001; 

*** = p.adj  < 0.0001)    
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Fig. 4 Transposable elements methylation and expression by treatment combination (A) 

Density of methylated positions in repeat region types by treatment combination (B) 

Expression of repeat elements for each of the treatment combinations. Error bars denote 1 

SE. DNA: DNA transposons; LINE: long interspersed nuclear elements; LTR: long 

terminal repeat; SINE: short interspersed nuclear elements; srpRNA: signal recognition 

particle RNA.   
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Fig. 5 Differentially methylated genes (DMGs) and correlation with gene expression. A. 

Heatmap representing methylation changes for all significant DMGs across all 

treatments. (*) represent significant differences (p.adj = 0.0429) in total gene-body 

methylation mean evaluated through pairwise t-test with Benjamini-Hochberg correction. 

B. represents the level of gene DNA methylation compared with gene expression CV 

across individuals in the control-Cladocopium group. DNA methylation was not 

significantly correlated with gene expression (R2 = 0.0053, p.value = 0.3265), but it was 

marginally significantly correlated with Gene Expression CVind (R2 = 0.0219, p.value < 

0.0441). Given the low coverage (Supplementary Fig. S2) no filter was applied and 

n=185 genes were included. C. Venn diagram comparing differentially methylated genes 

(DMG) and differentially expressed genes (DEG, data obtained from Cunning and Baker, 

2020) for each of the contrasts between experimental groups (Ch = Cladocopium/heated, 

Cc = Cladocopium/control, Dh = Durusdinium/heated, Dc = Durusdinium/control).   
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Table 1. Differentially methylated regions (DMRs) for general model output and across treatment 

contrasts. Total significant DMRs [hypermethylated, hypomethylated] are represented for 

contrasts.   

 

Contrast all sig_symb sig_temp sig_inter 

all-DMRs 34,419 80 68 62 

DCCC-DMRs 15,598 15 [6, 9]   

CHCC-DMRs 17,000  73 [30, 43]  

DHDC-DMRs 18,353  26 [8, 18]  

DHCH-DMRs 21,585 132 [73, 59]   
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Table 2. Gene ontology (GO) categories overrepresented in differentially methylated genes 

(DMGs)  

Contrast Ontology Genes GO term p.value 

Cc.vs.Ch BP 3/3 endoplasmic reticulum to Golgi vesicle-mediated transport 0.0178 

 BP 4/6 ion transport 0.0327 

 BP 4/6 Golgi organization 0.0378 

 BP 3/4 autophagosome assembly 0.0462 

 MF 5/8 RNA-directed DNA polymerase activity 0.0246 

 MF 3/4 ARF guanyl-nucleotide exchange factor activity 0.0474 

Cc.vs.Dc BP 4/4 positive regulation of I-kappaB kinase/NF-kappaB signaling 0.0022 

 BP 5/10 apoptotic process 0.0391 

 BP 4/7 actin cytoskeleton organization 0.0430 

 BP 2/2 histone deacetylation 0.0446 

 BP 2/2 chemotaxis 0.0493 

 BP 2/2 cellular response to testosterone stimulus 0.0496 

 CC 11/21 extracellular region 0.0018 

 CC 2/2 retrotransposon nucleocapsid 0.0364 

 CC 2/2 mitotic spindle pole 0.0437 

 CC 2/2 spindle pole centrosome 0.0496 

 MF 3/4 RNA-DNA hybrid ribonuclease activity 0.0348 

 MF 2/2 ribonuclease activity 0.0364 

 MF 2/2 tumor necrosis factor receptor binding 0.0415 

Ch.vs.Dh BP 5/6 Golgi organization 0.0089 

 BP 5/8 G protein-coupled receptor signaling pathway 0.0414 

 BP 5/8 negative regulation of apoptotic process 0.0459 

 CC 12/23 integral component of plasma membrane 0.0086 

 MF 4/5 thiol-dependent ubiquitin-specific protease activity 0.0178 

 MF 4/5 cysteine-type endopeptidase activity 0.0270 

 MF 4/5 microtubule motor activity 0.0314 

Dc.vs.Dh BP 2/2 regulation of protein localization 0.0092 

 BP 2/3 cerebellar Purkinje cell differentiation 0.0371 

 BP 2/3 negative regulation of autophagy 0.0418 

 BP 2/4 positive regulation of angiogenesis 0.0472 

 CC 8/23 integral component of plasma membrane 0.0011 

 CC 2/2 cell projection 0.0175 

 MF 2/2 kinesin binding 0.0122 

 MF 3/8 RNA-directed DNA polymerase activity 0.0375 
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CHAPTER V 

 MULTI-OMIC ANALYSIS REVEALS MARKED PHENOTYPIC PLASTICITY IN 

CORAL CLONES OUTPLANTED TO DIVERGENT ENVIRONMENTS. 
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Abstract 

Phenotypic plasticity, defined as a property of individual genotypes to produce 

different phenotypes when exposed to different environmental conditions, may be 

expressed at the behavioral, biochemical, physiological, or developmental levels and 

have direct influence over species' demographic performance. How different mechanisms 

modulate phenotypic plasticity and what is the adaptive potential of their effects is mostly 

unknown. In reef-building corals, a group particularly affected by anthropogenic global 

change, non-genetic mechanisms have been shown to participate in responses to 

environmental change. However, the contribution of different non-genetic mechanisms 

(i.e., Epigenetic and microbiome changes) to plastic physiological responses in corals is 

not clear. This work aimed to aid filling this gap by studying the epigenetic, microbiome, 

and physiological divergence of coral clones outplanted to different natural 

environments. A rapid phenotypic response to the conditions imposed to the outplanting 

site allowing the survival of the fragments, was observed in the lipidome, methylome and 

transcriptome. Remarkably, the symbiotic community remained unchanged, indicating 

that A. cervicornis does not rely on symbiotic changes to acclimatize to divergent 

conditions. Obtained evidence indicates a shift towards a more heterotrophic feeding 

behavior under the lower pH conditions imposed by the deep site. 

 

Introduction 

The persistence of coral reefs will fundamentally depend on the capacity of stony 

corals, the main builders of these ecosystems, to acclimatize and adapt to a rapidly 

changing environment. Paleontological and paleoclimatic evidence indicates that modern 
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corals have successfully survived dramatic shifts in environmental conditions (Allmon 

2001; Pandolfi 2002; Jackson 2008), supporting the notion that they have evolved 

effective mechanisms for acclimatization and adaptation. However, the unprecedented 

frequency of occurrence of extreme conditions, and the overall accelerated pace of global 

change may exceed coral adaptability. Sustained anthropogenic disturbances to the 

planet’s climate (The Royal Society and National Academy of Sciences 2014), ocean 

chemistry (Feely, Doney, and Cooley 2009; Regnier et al. 2013), and biological 

organization and processes (Rosenzweig et al. 2008; Doney et al. 2012; Poloczanska et 

al. 2013), have caused dramatic declines in coral cover and regime shifts in many reefs 

worldwide (Hoegh-Guldberg et al. 2017; Robinson et al. 2019). Such an alarming 

scenario has elicited the interest to study mechanisms with the potential to produce rapid 

acclimatization and adaptation responses (Eirin-Lopez and Putnam 2019; Putnam 2021) 

Organisms have the capacity to rapidly modulate different physiological, 

morphological and behavioral traits (phenotype) in response to environmental change 

(Bonamour et al. 2019), allowing adjustments within the limits imposed by the genome 

(Li et al. 2018). This phenotypic plasticity serves as a base for selection to act upon 

(Yanagida et al. 2015), therefore facilitating population survival under rapid 

environmental change until genetic adaptation can occur. Considering the life history 

traits of stony corals (i.e., sessile, long lifespan) and the rapid pace of current 

anthropogenically driven environmental change, mechanisms enhancing phenotypic 

plasticity may be critical for their long-term survival (Payne and Wagner 2018). Several 

mechanisms have been proposed to generate phenotypic divergence independently of 

genetic mutation [see (Payne and Wagner 2018)]. Among those, epigenetic modifications 
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have been shown to generate heritable alternative gene activity states from the same 

DNA sequence (Cavalli and Heard 2019; Deans and Maggert 2015) in response to 

environmental change, receiving special attention in marine invertebrates including corals 

(Eirin-Lopez and Putnam 2019). Substantial transcriptional plasticity has been observed 

in corals facing environmental stress (Bellantuono et al. 2012; Bay and Palumbi 2015; 

Kenkel and Matz 2016; Traylor-Knowles, Rose, and Palumbi 2017; Yetsko et al. 2020), 

including the accumulation of stress-related transcripts (e.g., heat shock proteins) in 

anticipation of a recurrent stress [“frontloading” (Palumbi et al. 2014; Kenkel and Matz 

2016; Brener-Raffalli et al. 2019)]. Given the rapid induction and persistence of these 

transcriptional responses, it is likely that epigenetic mechanisms are involved in its 

regulation (Torda et al. 2017; Putnam 2021). However, although there is evidence of 

epigenetic regulation of gene expression in corals (Li et al. 2018; Dixon et al. 2018; 

Baumgarten et al. 2018), these mechanisms are not clear. Crosstalk between epigenetic 

mechanisms regulating gene expression (Li et al. 2018; Weizman and Levy 2019) and the 

transient and non-deterministic nature of epigenetic marks make the mechanistic 

association difficult (Adrian-Kalchhauser et al. 2020). 

Additionally, as metaorganisms composed by a multitude of functionally 

connected members (Bosch and McFall-Ngai 2011; Ainsworth et al. 2020), corals have 

further sources of plasticity provided by host-microbiome interactions (Putnam 2021). 

Consistently, ecological, genetic, epigenetic and physiological changes occurring in 

either of the components of the metaorganism (i.e., dinoflagellates, bacteria, viruses, 

fungi, archaea) or in their interaction with the host [i.e., changes in metabolite 

translocation (Cui et al. 2019; Matthews et al. 2017)] can have significant effects on the 

https://paperpile.com/c/lLsrFm/bich+sQIl
https://paperpile.com/c/lLsrFm/syMH
https://paperpile.com/c/lLsrFm/tXyZ+Wi6V+DBXn+8g8G+Zh4K
https://paperpile.com/c/lLsrFm/tXyZ+Wi6V+DBXn+8g8G+Zh4K
https://paperpile.com/c/lLsrFm/Cwv6+DBXn+oqUt
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https://paperpile.com/c/lLsrFm/cBUX+Ep7a
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phenotype of the colony (Silverstein, Cunning, and Baker 2015; Del Campo et al. 2017; 

van Oppen and Blackall 2019), making the overall colony plasticity a complex multi-

mechanism process. Evidence of this complex interplay is the modulation of the host 

transcriptome and epigenome elicited by the composition of the symbiotic community 

(DeSalvo et al. 2010; Cunning and Baker 2020; Rodriguez-Casariego et al., submitted). 

Targeting the complexity and interconnection of the components modulating phenotypic 

plasticity, this work aims to utilize a multi-omics approach to evaluate the acclimatory 

response of coral clones exposed to divergent environments. The main hypothesis 

evaluated here predicts the correlated divergence of the transcriptome, methylome, 

lipidome and symbiotic community to adjust to specific environmental conditions after a 

year post-transplantation in either a shallow (3m) or a deep (15m) site.  

 

Materials and Methods 

Study sites and experimental design 

A detailed description of the study sites, coral collection and host genotyping can 

be found in (Rodríguez-Casariego et al. 2020). Briefly, a total of n=200 naturally 

fragmented colonies of the staghorn coral (Acropora cervicornis) were collected, 

subdivided into two similarly sized ramets and directly outplanted into experimental 5 x 5 

m plots at two depths (5 and 15 m). Initial colonies were genotyped using 6 microsatellite 

loci (Baums, Hughes, and Hellberg 2005), resulting in n=81 genets (Rodríguez-Casariego 

et al. 2020). For this study, and in order to evaluate the phenotypic divergence of ramets 

under different environmental conditions (determined by depth), a subset of (n=13) initial 

colonies outplanted as part of the experiment described in Rodríguez-Casariego et al. 

https://paperpile.com/c/lLsrFm/j0JM+lsJc+YNKZ
https://paperpile.com/c/lLsrFm/j0JM+lsJc+YNKZ
https://paperpile.com/c/lLsrFm/ID5O+wAYG
https://paperpile.com/c/lLsrFm/ID5O+wAYG
https://paperpile.com/c/lLsrFm/ID5O+wAYG
https://paperpile.com/c/lLsrFm/pigA
https://paperpile.com/c/lLsrFm/wjaUK
https://paperpile.com/c/lLsrFm/pigA
https://paperpile.com/c/lLsrFm/pigA
https://paperpile.com/c/lLsrFm/pigA
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(2020) with ramets surviving at both depths for a year, were monitored and sampled. All 

colonies included in this work were ouplanted to Luis Peña reef (LP: 18°18'45.0"N, 

65°20'08.4"W), Culebra Island, PR. This site was chosen given the availability of 

detailed environmental datasets along the study period (Rodríguez-Casariego et al. 2020). 

Such dataset includes depth-associated differences in temperature, dissolved oxygen, pH, 

and salinity, recorded using YSI EXO2 multiparameter sondes (YSI, Yellow Springs, 

OH), and photosynthetically active radiation (PAR), measured with PAR sensors (Sea 

Bird, Bellevue, WA). Duplicated sets of sensors were deployed simultaneously at both 

depths during September 2018 and January 2019.  

 

Phenotypic and molecular datasets 

Sample collection, DNA and RNA extraction.  

Branches of ~5 cm in length, were collected from each fragment (n=26 ramets of 

13 colonies located at both depths) one-year post-outplanting. Coral tissue was 

immediately flash frozen in liquid nitrogen and stored at -80℃. To perform a detailed 

analysis of the symbiont community in addition to the characterization of the coral host 

molecular response, two parallel nucleic acid extraction strategies, “hard” and “soft”, 

were applied to each coral sample. In both cases, DNA and RNA were purified from 

flash-frozen tissue using the Quick DNA/RNA Mini-Prep kit (Zymo Research, Irvine, 

CA) as described before (Rodríguez-Casariego et al. 2020). Briefly, 100 mg of tissue, 

previously powdered in liquid nitrogen, was resuspended in 2 mL vials containing 500 

mg of Zirconia/Silica beads (0.5 mm diameter) and 1 mL of DNA/RNA Shield (Zymo 

Research, Irvine, CA) in duplicate. For the “soft” extraction, coral host cells were gently 

https://paperpile.com/c/lLsrFm/pigA
https://paperpile.com/c/lLsrFm/pigA
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lysed using two pulses of 30 sec in a vortex, leaving most of the symbiont cells intact and 

enriching host DNA (Rodríguez-Casariego et al. 2020). For the “hard” extraction, 

complete tissue homogenization was achieved with a MiniBead Beater (BioSpec, 

Bartlesville, OK, USA). After centrifugation (12,000 x g for 5 min), DNA isolation 

continued following the manufacturer's instructions. RNA was extracted following the 

kit’s protocol, but only for the set of samples subject to “soft” homogenization. DNA and 

RNA were assessed by gel electrophoresis for integrity and spectrophotometric analysis 

(NanoVue GE Healthcare, Chicago, IL) for quality as described elsewhere (Rivera-Casas 

et al. 2017). Concentrations were measured using a Qubit 2.0 Fluorometer (Thermo 

Fisher, Waltham, MA) using appropriate reagent sets and following the instructions 

provided by the manufacturer. RNA quality was also assessed using a 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA).  

 

Symbiodiniaceae ITS2 Amplicon Sequencing 

The internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA of the 

symbionts was analyzed to identify changes in the symbiotic community (Pochon et al. 

2001). Genomic DNA, resulting from the “hard” extraction, was shipped to the Genomic 

Sequencing and Analysis Facility at University of Texas at Austin for amplification, 

library preparation and  sequencing on an Illumina® MiSeq (Illumina, California, USA), 

with a read length configuration of 2x250 bp. Symbiodinaceae community composition 

was analyzed using the SymPortal Pipeline (Hume et al. 2019).  

 

 

https://paperpile.com/c/lLsrFm/pigA
https://paperpile.com/c/lLsrFm/2kbSh
https://paperpile.com/c/lLsrFm/2kbSh
https://paperpile.com/c/lLsrFm/Uzu0
https://paperpile.com/c/lLsrFm/Uzu0
https://paperpile.com/c/lLsrFm/seUH
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Lipid extraction and quantification. 

The extraction and characterization of A. cervicornis lipidome was performed 

following methods previously developed for this coral species in (Lugo Charriez et al. 

2021), and methodological details can be found there. Briefly, 1g of powder resulting 

from the maceration of a coral fragment (including skeleton) was extracted following the 

BUME method (Löfgren, Forsberg, and Ståhlman 2016). After overnight incubation in 3 

mL BUME solvent, samples were centrifuged at 3500 rpm for 10 min and the supernatant 

collected. Two additional re-extractions with 3 mL of BUME solvent were performed to 

the pellets, with 10 min incubations. A total supernatant volume of 9 mL was 

homogenized, and 1 mL aliquot of each sample was transferred to LC vial in duplicate 

for analysis. 

Lipid samples were analyzed by liquid chromatography followed by high 

resolution mass spectrometry (LC-HRMS) in a Thermo Q-Exactive Orbitrap equipped 

with a heated electrospray ionization (HESI) source. Mass spectrometry and liquid 

chromatography separation were performed using the same conditions described in (Lugo 

Charriez et al. 2021)), with 0.1% formic acid instead of ammonium formate in the mobile 

phase. Lipid identification and relative quantitation was performed using the Lipid Search 

Software™ (Thermo Scientific, version 4.2.21). Lipid Search parameters were adjusted 

to include only compounds classified into 8 lipid classes: cholesterol esters (ChE), fatty 

acids (FA), monoacylglycerols (MG), monogalactosyldiacylgylcerols (MGDG), 

phosphatidylcholines (PC), phosphatidylethanolamines (PE), triglycerides (TG), and wax 

esters (WE). These classes were previously described as important components of the 

lipidomes of corals and their symbionts (Harland et al. 1993; Imbs et al. 2010; Lin et al. 

https://paperpile.com/c/lLsrFm/s5fS
https://paperpile.com/c/lLsrFm/s5fS
https://paperpile.com/c/lLsrFm/Zqm2
https://paperpile.com/c/lLsrFm/s5fS
https://paperpile.com/c/lLsrFm/s5fS
https://paperpile.com/c/lLsrFm/yz1L+f8jM+UTLO+4A7E+ugJX
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2013; Rosset et al. 2019; Stien et al. 2020), including A. cervicornis (Lugo Charriez et al. 

2021). Data was blank subtracted and filtered to eliminate all peaks with signal to noise 

ratio < 3 and a delta ppm of ± 10. Peak area was normalized using internal standards 

(Lugo Charriez et al. 2021). 

 

DNA Methylation Library Preparation and Quantification 

Coral host genomic DNA, isolated through the “soft” extraction method 

previously described, was sent to Genewiz (Genewiz, South Plainfield, NJ) for whole 

genome bisulfite sequencing (WGBS) processing. Bisulfite conversion was performed 

with the EZ DNA Methylation-Gold kit (Zymo,CA,USA) and library preparation was 

completed with the NEBNext Ultra DNA Library Preparation Kit (New England Biolabs, 

Ipswich, MA). Resulting libraries were sequenced on a HiSeq platform, generating 150bp 

paired-end reads. 

Quality trimming of the resulting sequences was performed using TrimGalore! 

(v0.6.4; Martin, 2011), removing 10 bp from both the 5′ and 3′ ends. After quality control 

with FastQC v.0.11.7 (Andrews, 2010), trimmed sequences were aligned to the Acropora 

cervicornis genome (Dr. I. B. Baums assembly) using Bismark (v0.22.3; Krueger and 

Andrews, 2011) with non-directionality and an optimized alignment score of L,0,-0.9. 

The Bismark platform was also used to quantify methylated or unmethylated CpGs in all 

samples. Resulting .cov files were filtered to keep only CpG loci with at least 5x 

coverage for each sample. CpG loci were annotated by feature. Genes, mRNA, exons, 

coding sequences (CDS), flanking untranslated regions (3’-UTR and 5’-UTR) and tRNAs 

were obtained directly from the genome annotation file while putative promoter regions, 

https://paperpile.com/c/lLsrFm/yz1L+f8jM+UTLO+4A7E+ugJX
https://paperpile.com/c/lLsrFm/s5fS
https://paperpile.com/c/lLsrFm/s5fS
https://paperpile.com/c/lLsrFm/s5fS


 169 

intergenic regions, introns and repetitive regions were created following previously 

developed pipelines (Venkataraman et al. 2020). Gene body methylation (gbM) includes 

CpGs overlapping with intron, CDS and UTRs, but not promoters. Combined 

methylation calls per CpG loci (i.e., cov files) for all samples were filtered to maintain 

individual CpG dinucleotides with at least 10x coverage and used to characterize the 

methylome of A. cervicornis. Repetitive regions in the genome of A. cervicornis were 

annotated using RepeatMasker v4.1.1 (A.F.A. Smit, R. Hubley & P. Green RepeatMasker 

at http://repeatmasker.org), and methylation levels (average % methylation for all sites 

overlapping repeats) and methylation densities (number of methylated Cs) per repeat type 

were calculated using Python scripts developed by Dr. Yi Jin Liew 

(https://github.com/lyijin/smic_dna_meth). 

 

RNA Library Preparation and Quantification 

Host-enriched RNA, normalized to a concentration of 44 ng/uL (30 uL), was 

shipped to the Genomic Sequencing and Analysis Facility, University of Texas at Austin, 

for tag-based RNA-seq (tagSeq) library preparation and sequencing on an Illumina HiSeq 

2500 (Lohman, Weber, and Bolnick 2016). Gene expression quantification was 

performed following code developed by M. Matz (github.com/z0on/tag-based_RNAseq). 

TagSeq demultiplexed raw reads were trimmed of adaptors and quality filtered using 

fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). PCR duplicates were removed, 

and the resulting reads were mapped to the A. cervicornis transcriptome (Libro, Kaluziak, 

and Vollmer 2013) using bowtie2 (v.2.3.4; (Langmead and Salzberg 2012). Successfully 

mapped reads were compiled into a count table for downstream analysis. 

https://paperpile.com/c/lLsrFm/RXCmG
http://repeatmasker.org/
https://github.com/lyijin/smic_dna_meth
https://paperpile.com/c/lLsrFm/NwnK
http://hannonlab.cshl.edu/fastx_toolkit/
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To evaluate the expression of transcripts originating from repeat elements 

trimmed RNA reads were mapped against the genome of A. cervicornis using HISAT2 

v2.1.0 (Kim, Langmead, and Salzberg 2015). For the aligned reads, a per-base coverage 

file was created using samtools depth (Li et al. 2009). Per-repeat read counts were parsed 

utilizing a python script developed by Dr. Yi Jin Liew 

(https://github.com/lyijin/smic_dna_meth).   

 

Statistical Analyses 

All statistical analyses were completed in R (v4.0.2; R Core Team 2020) with 

RStudio (v1.3.959; R Studio Team 2020). Analysis code is available on Github (see data 

accessibility statement). 

 

Divergence of the symbiotic community 

SymPortal output, including the absolute abundance of each ITS2 type profile and 

sequenced reads representative of putative Symbiodinaceae taxa, were analyzed to 

evaluate symbiont community divergence between depths. The hypothesis that 

Symbiodinaceae communities differ between outplant depth was evaluated by 

Permutational multivariate analysis of variance (PERMANOVA) with the adonis 

function in the R-package vegan (Oksanen et al. 2019).  Fragment identity was used as 

strata in the models for both ITS2 type profiles and individual taxa distributions, and 

9,999 permutations of residuals from Bray-Curtis dissimilarities were employed. 

 

 

https://paperpile.com/c/lLsrFm/axNHH
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Differences in lipid profiles 

 The differentiation of the lipidome in response to depth was evaluated with two 

variables describing the lipidome of each sample, the number of different compounds per 

class and the proportional abundance of lipids in each class per sample. Hypothesis 

linking these variables with outplanting depths were evaluated through PERMANOVA 

and proportion using chi-squared tests (prop.test R function).  

 

Global molecular response 

To evaluate the hypothesis that transcriptome and methylome are influenced by 

the outplanting environment, genome-wide gene expression and DNA methylation was 

visualized through principal coordinates analysis (PCoA) of Manhattan distances, and 

differences between sites were tested through ANOVA. Treatment associated variance in 

DNA methylation and gene expression across all colonies was further analyzed through a 

Discriminant Analysis of Principal Components (DAPC) using the R package adegenet 

v2.1.3 (Jombart, Devillard, and Balloux 2010). Gene expression count data were 

previously filtered to exclude genes with a mean count <1 and normalized using the 

variance stabilizing transformation implemented in DESEQ2 (Love, Anders, and Huber 

2014). DNA methylation data were previously filtered to include only CpGs with at least 

10x coverage and were present in all samples. Methylation was further summarized 

keeping CpGs with potential differential methylation between all samples (regardless of  

treatment) at a regional level (100bp windows) using the methylpy DMRfind function 

(Schultz et al. 2015) (https://github.com/yupenghe/methylpy). 
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Differential responses of DNA methylation and gene expression. 

Hypotheses testing the influence of the outplanting environment over DNA 

methylation and the expression of individual genes were evaluated through differential 

methylation analysis at regional and gene levels, and differential gene expression 

analysis, respectively. Differentially methylated regions (DMRs) were identified through 

ANOVA on arcsine-square-root transformed methylation data. Differentially methylated 

genes (DMG) were identified using a generalized linear model implemented in R, with 

the model glm(meth, unmeth~ site, family=binomial). Regions and genes with p-adjusted 

values < 0.05 were considered differentially methylated. Only shared CpG positions, with 

at least 10x coverage, were included in the differential methylation analyses. 

Differentially expressed genes were identified using a generalized linear model approach 

implemented with the R package DESEQ2 with site as fixed effects. Genes with FDR ≤ 

0.1 were considered differentially expressed.  

 

Functional enrichment analysis. 

Analyses of gene ontology (GO) and eukaryotic orthologous groups (KOG) 

enrichments associated with gene expression and methylation were performed using GO-

MWU (Wright et al. 2015) and KOG-MWU (Matz 2016) respectively. These were based 

on log2 fold of the methylated/unmethylated fraction of all CpG loci per gene for gene-

level DNA methylation, and on signed log(p-values) for gene expression. A. cervicornis 

KOG and GO categories used for the functional analysis of gene expression were 

obtained from a previously published transcriptome for the species (Libro, Kaluziak, and 

Vollmer 2013). GO terms used for DNA methylation functional analysis was derived 

https://paperpile.com/c/lLsrFm/q0aMu
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from the annotation of the genome (I. B. Baums assembly) Additional GO enrichment 

analysis, using topGO (Alexa, Rahnenführer, and Lengauer 2006), was performed to 

identify categories significantly overrepresented in DMGs. 

 

Results 

Coral Holobiont physiological divergence 

Symbiodinaceae community composition 

The sequencing and analysis (SymPortal) of the ITS2 region of Symbiodinaceae 

members of the holobiont identified 69 symbiont types and 6 profiles across all analyzed 

samples (n = 26, Fig. 1). ANOVA analyses found a significant effect of colony identity 

on the beta diversity of ITS type profiles (F = 1.0259e31, df = 12, p-value < 2.2e-16), but 

no changes between outplanting sites (F = 0.2188, df = 1, p-value = 0.6442). Similarly, 

no effect of outplanting depth was found for ITS2 sequence distribution (PERMANOVA, 

R2 = 0.00535, df = 1, p-value = 0.7703). In summary, the symbiotic community seems to 

remain stable regardless of the marked differences of the environmental conditions of the 

outplanting sites. 

 

Lipidome differentiation 

A total of 3,062 lipidic compounds were identified across all samples for eight 

lipid classes previously shown to be the major components of coral lipidomes (Harland et 

al. 1993; Imbs et al. 2010; Rosset et al. 2019; Stien et al. 2020; Lugo Charriez et al. 

2021). The class of monogalactosyldiacylgylcerols (MGDG) presented the highest 

number of compounds, with a mean of 217.5 compounds per sample (Fig. 2A). However, 

https://paperpile.com/c/lLsrFm/TPgGs
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the most abundant lipid classes were triglycerides (TG) followed by monoacylglycerols 

(MG) (Fig. 2B). As evidenced by PERMANOVA (Table S1), there was a significant 

effect of the outplanting site and its interaction with the lipid class in the number of 

compounds found, with significant changes in TG (Paired t-test: t = -3.9567, df = 12, p-

value = 0.002) and WE (Paired t-test: t = -2.5695, df = 12, p-value = 0.0246) classes, and 

marginally significant in MGDG (Paired t-test: t = -2.1071, df = 12, p-value = 0.0568) 

and PC (Paired t-test: t = -2.0694, df = 12, p-value = 0.0608; Fig. 2A). 

Similar to the number of compounds, relative abundances of lipids of each class 

were dependent on the coral colony (PERMANOVA: R2 = 0.59617, df = 12, p-value = 

0.0029; Fig. 2B). However, for this variable, all classes were dependent on the 

outplanting site (Contingency tests, Table S2), with the most dramatic changes occurring 

in PE (reduced in half on the deep site) and MGDG (doubled in the deep site) (Fig. 2B). 

 

Differential molecular response 

Gene expression divergence 

RNA sequencing (Tag-Seq, n = 26 samples) produced a total of 309,224,452 

reads, with a median of 11,497,504 reads per sample. Trimming, quality filtering and 

PCR duplicate removal resulted in 5,313,517 (median) sequences per sample. A median 

of 3,757,251 reads per sample, mapped to the transcriptome assembly of A. cervicornis 

(Table S1, Fig. S1), covering 69,954 of the 95,390 predicted genes in the assembly. 

Finally, 45,518 genes had mean counts >1 and were utilized for downstream analyses. 

Significant inter-genet variability was evidenced through PCoA analysis of 

variance-stabilized gene counts (Fig. 3A), with samples clustering primarily by colony. 
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However, a clear divergence between ramets by outplanting site can be observed across 

PC1 (explaining 12.6% of the total variance). This separation between depths was 

corroborated by DAPC regardless of the high variability between genets (Fig. 3B). 

Given the high variability observed in the PCoA analysis, differentially expressed 

genes (DEGs) between corals outplanted to each depth were identified by genotype and 

across all samples. The number of DEGs was highly dependent on the genotype (Table 

1), with half of the genets having <1 DEGs and the rest ranging from 10-65 DEGs each. 

Combining all samples, 300 DEGs were identified, with up- and down-regulated genes 

almost evenly distributed. 

GO (Table S4) and KOG (Fig. 4, Table S5) functional analyses, revealed 

significant responses across all genets regardless of the substantial variability between 

genets. Corals outplanted to the shallow reef (LP15) significantly up-regulated KOG 

categories “replication, recombination and repair”, “RNA processing and modification” 

and “signal transduction mechanisms”; while corals maintained in the deep reef up-

regulated the categories “translation, ribosomal structure and biogenesis”, “nucleotide 

transport and metabolism”, “energy production and conversion” and “post-translational 

modification, protein turnover, chaperones” (Fig 4, Table S5). Similar functional 

categories were also evidenced in the GO analysis (Table S4), with corals outplanted to 

the deep site upregulating mostly components and functions of the cellular energetic 

metabolism, and corals in the shallow reef up-regulating mostly RNA processing and 

signal transduction elements and functions. 
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DNA methylation landscape. 

Sequencing of WGBS libraries (n = 26) produced a median of 40,706,732 reads 

after trimming and quality filtering. From those, 30,465,974 reads per sample (median) 

mapped to the genome of A. cervicornis, for a mean overall mapping efficiency of 74.7%. 

Sequencing and mapping statistics were homogeneous (low inter-sample variation), 

reducing potential biases for comparisons between treatments (Fig. S2). After error (1% 

miss-called Cs) and coverage (5x) filtration, 17,428,204 CpGs (91% of all CpGs in the A. 

cervicornis genome) in total were used for methylome characterization. 

Most of the CpGs in the A. cervicornis genome were unmethylated (82.9%), with 

1,981,493 CpGs (11.4%) displaying methylation levels over 50%, and only a 5.7 % 

showing sparse methylation (between 10-50% of the reads methylated). As commonly 

found in invertebrates, methylated cytosines were accumulated in gene bodies, with 

significantly higher methylation levels (% methylation) when compared with intergenic 

regions (Fig. 5A, B). Introns showed significantly higher methylation levels that exons 

(Fig. 5B). Although, across a gene model, methylated CpGs were more frequent at the 

gene boundaries, including the first and last exons, and flanking regions (Fig. 5C). 

A total of 146,849 methylation islands were identified in the genome of A. 

cervicornis, containing between 11 and 13,212 CpGs (mean = 42 CpGs) and a length 

ranging from 500 to 395,513 bp (mean = 1,576 bp). Methylation islands majoritarily 

overlapped with gene bodies (50,751, 34.56% with exons; 48,494, 33.02% with introns). 

Interestingly, the proportion of methylation islands overlapping with genomic features 

was significantly different when compared with the general distribution of CpGs in the 

genome (Contingency test; p-value < 0.001, Fig. S3), with a 3x enrichment in exons and 
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a 26x enrichment in repetitive regions (transposable elements). Remarkably, repetitive 

regions in the genome of A. cervicornis account only for approximately 1.4% of the 

genome (less than half of the regions in the genome of Montastraea cavernosa, 

Rodriguez-Casariego et al. submitted), with only 145 retroelements and 45 DNA 

transposons. 

 

Divergence of DNA methylation patterns 

Significant differentially methylated regions (DMRs) were evaluated across 

genomic windows of 100 bp between all samples regardless of their treatment. Similar to 

gene expression, DNA methylation patterns were highly influenced by the genotype as 

evidenced through PCoA analysis (Fig. 6A), but the effect of depth of outplant was not 

clear. Only through DAPC (Fig. 6B) the divergence of the methylation patterns on a 

subset of samples was evident along LD1, explaining 30.4% of the total variance. To 

further evaluate treatment-induced differences, ANOVA analyses identified 149 DMRs 

(p < 0.05) across all samples, between corals in deep and shallow sites. Substantial 

variability across genets was also evidenced in the methylation level of DMRs (Fig S4A). 

A significant portion of these DMRs occurred in gene bodies (71 overlapped with genes) 

and flanking regions (39 overlapped with 3’UTRs and 18 with putative promoters). 

Compared with the general distribution of methylated CpGs across genomic features, 

coding regions (CDS) and 3’UTRs were proportionally enriched in DMRs (Fig S4B), 

although these differences were not significant (chi square adjusted p.value > 0.1). 

In correspondence with the prevalence of differential methylation in gene bodies 

and flanking regions, differential methylation (identification of DMGs) was evaluated on 
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a set of 22,258 genes containing at least 5 CpG positions covered at least 10x in all 

samples. Gene body methylation was significantly influenced by the outplanting site (F = 

5.776, df = 1, p-value = 0.0163), genotype (F = 39.656, df = 11, p-value < 2e-16) and 

their interaction (F = 2.430, df = 11, p-value = 0.0050), in correspondence with the 

previously observed inter-genet response variability. 1,316 genes were identified as 

differentially methylated across all genets, with a general increase in methylation in 

corals maintained in the deep reef (Fig. 7A). Only 2 genes were both differentially 

methylated and expressed (Fig. 7B). 

Two KOG categories showed differential methylation between sites, with “amino 

acid transport and metabolism” significantly (p-adj < 0.1) under-methylated in the 

shallow reef and “transcription” under-methylated in the deep reef (Fig 7C). GO-MWU 

analysis did not find any term significantly (FDR < 0.1) over- or under-methylated. 

Interestingly, both functional categories with significant changes in methylation were 

slightly up-regulated (in terms of gene expression) in the shallow reef but non-significant. 

Overall, a clear relationship between gene expression and gene body methylation was not 

evident, although both mechanisms seem to diverge in response to environmental change. 

 

Discussion 

With a multi-omics approach, this work attempted to discern the response of 

different mechanisms potentially involved in rapid acclimatization responses of stony 

corals under divergent natural conditions. Pioneering is such an approach, datasets 

covering the responses of the symbiotic community, the lipidome, the transcriptome and 

the methylome were generated for the first time in a single experiment. Building on the 
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complementarity of these datasets, further analysis (beyond the scope of this work) will 

allow the study of the interaction between these mechanisms and their combined role 

modulating phenotypic plasticity under predicted future conditions [i.e., sea level rise 

scenario (Rahmstorf 2010)]. Phenotypic divergence in response to global environmental 

change, as provided by experimental outplanting at reefs located at 5 and 15 m of depth, 

was evidenced in the lipidome, transcriptome and methylome, but no significant shifts in 

the symbiotic community was observed. 

 

Stability of the symbiotic community. 

Stability rather than plasticity was observed in the Symbioninaceae community 

(Fig. 1) under divergent environmental conditions [pH, salinity, and irradiance 

(Rodríguez-Casariego et al. 2020)]. Symbiont identity has been shown to affect coral 

phenotype (Mieog et al. 2009; Silverstein, Cunning, and Baker 2015; Cunning and Baker 

2020), with dynamic changes in the symbiotic community composition potentially 

contributing to plastic holobiont responses to environmental change, mostly thermal 

stress. Although the genus Acropora has been described to host a highly diverse 

symbiotic community when compared to other coral genera (Putnam et al. 2012), 

remarkable stability of the consortia has been observed through seasons (Thornhill et al. 

2006; Rodríguez-Casariego et al. 2020) and experimental manipulations (O’Donnell et al. 

2018), with minimum and only transient changes under thermal stress (Thornhill et al. 

2006). Maintaining such stability under divergent environmental conditions, yet not 

thermal (Rodríguez-Casariego et al. 2020), recreated by outplanting A. cervicornis 

fragments below the depth they commonly inhabit, indicates either a limited role of the 

https://paperpile.com/c/lLsrFm/kjV4
https://paperpile.com/c/lLsrFm/pigA
https://paperpile.com/c/lLsrFm/01tA+j0JM+wAYG
https://paperpile.com/c/lLsrFm/01tA+j0JM+wAYG
https://paperpile.com/c/lLsrFm/TJMV
https://paperpile.com/c/lLsrFm/yadg+pigA
https://paperpile.com/c/lLsrFm/yadg+pigA
https://paperpile.com/c/lLsrFm/MIJ0
https://paperpile.com/c/lLsrFm/MIJ0
https://paperpile.com/c/lLsrFm/yadg
https://paperpile.com/c/lLsrFm/yadg
https://paperpile.com/c/lLsrFm/pigA


 180 

symbiotic composition modulating phenotypic plasticity in this species, or a remarkable 

plasticity of the symbiome to maintain appropriate interactions under such divergent 

conditions without affecting the community structure. 

 

Divergence of lipidic profiles indicate increased energetic demands in deep-outplanted 

corals 

Significant changes in the lipidome were observed under divergent environmental 

conditions in the coral A. cervicornis (Fig. 2, Supplementary Tables S1 and S2). Despite 

a large inter-genet variability, consistent changes in both diversity and abundance of 

compounds included in the eight lipid classes studied were observed. MGDG 

galactolipids were the most diverse class across all samples (Fig. 2A). As one of the main 

components of thylakoid membranes (Guschina and Harwood 2009), the diversity of this 

class can be directly linked with the high symbiont diversity characteristic of this group 

(Putnam et al. 2012). Significant increases in MGDG lipids proportional abundance were 

observed in deep-outplanted corals (Fig 2B). Increases of this class of lipids have been 

previously linked with enhanced responses to thermal stress (Rosset et al. 2019) through 

the strengthening of thylakoid membranes in the symbionts. Considering that the deep 

reef displayed lower and less variable temperatures during the study period (Rodríguez-

Casariego et al. 2020), this enrichment can constitute a “frontloading” strategy based on 

the previous stress exposure of these fragments now faced with more favorable 

conditions in the deep reef. Competing hypotheses could include  an increase in the 

symbiont population to compensate for lower carbon translocation under lower irradiance 

(Tremblay et al. 2014), or the activation of heterotrophy in response to the lower pH of 
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the deep site (Edmunds 2011; Towle, Enochs, and Langdon 2015). While the first two 

hypotheses could explain the increase in proportional abundance of this lipid group, the 

increase in diversity of compounds is difficult to accommodate given the observed 

stability of the symbiont community. However, the activation of heterotrophy, including 

items from the phytoplankton, could explain both changes observed in the MGDG class. 

Similarly, triglycerides (TG) and wax esters (WE) classes presented a significantly higher 

number of compounds for corals outplanted to the deep site. 

WE abundance was proportionally higher in the shallow site and TG was more 

abundant in the deep site (Fig. 2B). Reductions in the abundance of WE have been linked 

to stress (Yamashiro et al. 2001; Grottoli, Rodrigues, and Juarez 2004), and 

“frontloading” of both WE and TG lipid classes have been shown to reduce thermal 

stress-related mortality (Anthony, Connolly, and Hoegh-Guldberg 2007). Accordingly, 

this pattern could be indicative of the different stress conditions imposed by each site 

during the year, requiring specific metabolic responses. Additional reductions in 

monoacylglycerols (MG) and phosphatidylethanolamines (PE) in the deep reef (Fig. 2B), 

could be indicative of a response to stress (Grottoli, Rodrigues, and Juarez 2004; 

Solomon et al. 2019), but also of a lower energetic budget given the lower irradiance of 

this site or the demand of calcification under lower pH . In all cases, changes in diversity 

and relative abundance of lipid classes with depth seem to indicate different strategies to 

meet energetic demands and respond to stress under different environmental conditions. 
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Depth-associated transcriptional plasticity indicates more favorable conditions in the 

deep site. 

Gene expression was evaluated in ramets of the same initial fragments, allowing 

the discrimination between the effects of divergent environmental exposure and the host 

genotype. High inter-genet variability has been previously observed for gene expression 

(Granados-Cifuentes et al. 2013; Parkinson et al. 2018; Cunning and Baker 2020) and 

was evidenced here with half of the genets included in the analysis showing reduced 

transcriptional variability (Table 1). However, given the design of the experiment, 

common divergent transcriptional profiles were described in response to transplantation 

to different environments (Fig. 3). 

The largest effect of transplantation in the transcriptome was the differential 

regulation of ribosomal biosynthesis, translation, and energetic metabolism (Fig. 4). This 

response was evident in both the KOG and GO enrichments (Supplementary Table S4), 

and was consistent across genets, with 8 out of the 12 genets in the study significantly up-

regulating “translation, ribosomal structure and biogenesis” when placed in the deep reef. 

Increases in these categories are often related with cellular proliferation (López-Maury, 

Marguerat, and Bähler 2008) and therefore coral growth. This could indicate a more 

favorable energetic conditions in the deep reef since ribosomal synthesis constitutes an 

important proxy for energetic metabolism (Grummt and Ladurner 2008), but it seems 

counter to the notion that lower irradiance produces a reduction in carbon translocation 

from the symbionts (P. Tremblay et al. 2014). Increased protein synthesis can also be 

related with the activation of mechanisms to counteract the lower carbon translocation by 

hosting larger symbiotic populations (Cunning and Baker 2020), or by activating 
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heterotrophic nutrition in response to a higher energetic demand . As hypothesized based 

on the lipidic profiles, the lower pH of the deep site could have also produced the 

activation of heterotrophy (Towle, Enochs, and Langdon 2015), and explain the up-

regulation of the energetic metabolism in deep-outplanted corals. Although low pH 

generally produces metabolic depression in marine invertebrates (Strader, Wong, and 

Hofmann 2020), several studies have shown increases in metabolic processes under 

ocean acidification (Ogawa et al. 2013; Vidal-Dupiol et al. 2013; Davies et al. 2016). 

Although most of these studies were performed in laboratory settings and used unrealistic 

CO2 levels, their findings were corroborated by the study of coral populations inhabiting 

natural CO2 seeps (Kenkel et al. 2018). Similar to the results obtained in this work, these 

authors found a significant up-regulation of ribonuclear protein biosynthesis and 

energetic metabolism (Kenkel et al. 2018). 

Given that the experimental design lacks real controls, the proportional increase 

of these transcripts in the deep corals could also be related to its down-regulation in the 

shallow corals. Shallow corals upregulated repair mechanisms and signal transduction, 

and downregulated ribosomal and energetic metabolism (Supplementary Tables S4 and 

S5), all hallmarks of corals environmental stress response (López-Maury, Marguerat, and 

Bähler 2008), potentially related with the higher thermal variability and light irradiance 

of the shallow site. This is consistent with the observed transcriptional responses to 

transplantation in Porites astreoides between inshore and offshore reefs (Kenkel and 

Matz 2016) and their conclusion that inshore reefs constitute more stressful 

environments. In addition, “G protein-coupled receptor signaling pathway”, a GO term 

linked with coral bleaching (Rose, Seneca, and Palumbi 2015) was significantly up-
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regulated in shallow corals (Table S4). However, very similar patterns of expression of 

stress response components were observed in coral populations inhabiting CO2 seeps 

(Kenkel et al. 2018), with a downregulation of protein folding and stress response 

functions. These remarkable similarities could indicate that differences in pH between the 

outplanting sites (Rodríguez-Casariego et al. 2020) are driving the transcriptional 

response observed. Nevertheless, being conservative, a combination of differential 

responses to stress in the shallow (light and thermal probably) and deep (pH) reefs could 

explain both the divergence of the lipidome and transcriptome observed here.  

 

DNA methylation pattern and divergence 

A single-base resolution methylome of A. cervicornis was described for the first 

time in this work utilizing WGBS. With a high read depth and mapping efficiency 

(Supplementary Fig. S2), over 90% of all the CpG sites in the genome of the species were 

appropriately characterized. 

Recent findings seem to indicate that interspecific differences in genome-wide 

DNA methylation correlates with the level of sensitivity to environmental stress in corals 

(Trigg et al. 2021). Correspondingly, relatively stress resistant corals such as Porites 

astreoides (Dimond and Roberts 2020), Montipora capitata (Trigg et al. 2021) and 

Montastraea cavernosa (Rodriguez-Casariego et al., submitted) show higher methylation 

levels than sensitive species [Stylophora pistillata (Liew et al. 2018), and Pocillopora 

damicornis (Trigg et al. 2021)]. Surprisingly, methylation levels of A. cervicornis (11.4% 

of CpGs are methylated) observed here place the species among more resistant corals like 

M. capitata (Trigg et al. 2021), although in terms of other aspects like genome size, 
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repeat content and overall energetic capacity [see discussion in (Trigg et al. 2021)], 

relevant to DNA methylation, A. cervicornis is very different from resistant species [M. 

capitata (Shumaker et al. 2019) and M. cavernosa (Rodriguez-Casariego et al., 

submitted)]. A possible explanation of this contrast could be related with the seasonality 

of DNA methylation demonstrated in this species (Rodríguez-Casariego et al. 2020), as 

samples used to describe this and other methylomes could have been collected at 

different seasons. Other characteristics of the methylome such as the distribution of 

methylated CpGs across genomic features and the  frequency distribution of methylation 

levels (Fig. 5) was very similar to other previously described coral methylomes (Li et al. 

2018; Liew et al. 2020; Trigg et al. 2021). 

DNA methylation pattern across 100 bp genome windows was dependent on the 

genotype as previously described (Dimond and Roberts 2020; Liew et al. 2020; 

Rodríguez-Casariego et al. 2020) with most samples grouping by genet in a 

multidimensional space (Fig. 6A). Regardless of this variability, significant differences at 

regional and gene levels were observed (Fig. 7, Supplementary Fig. S4), with a consistent 

increase in the level of gene body methylation in corals outplanted to the deep reef. An 

energetically favorable environment in the deep reef, as somehow evidenced by the 

transcriptome and lipidome analyses, could allow higher methyltransferase activities 

(Donohoe and Bultman 2012) reducing spurious transcription (Li et al. 2018), and 

therefore allowing cellular proliferation as evidenced in the transcriptional profile of 

deep-outplanted corals. Alternatively, and similarly to the lipidome and transcriptome 

responses, the consistently lower pH levels occurring in the deep site for the duration of 

the experiment (Rodríguez-Casariego et al. 2020), could potentially influence the 
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methylation state of the fragments exposed to these conditions. Increases in global DNA 

methylation and gene body methylation levels has been consistently observed in corals 

exposed to low pH (Putnam, Davidson, and Gates 2016; Liew et al. 2018). 

Regardless of the commonalities between the general responses of the 

transcriptome and methylome, we could not find evidence supporting a direct interaction 

between both mechanisms as has previously been described in cnidarians (Li et al. 2018; 

Dixon et al. 2018). However, given the current state of the bioinformatic resources 

available for A. cervicornis, a detailed analysis allowing the correlation between gene 

expression and DNA methylation was not possible at this moment. However, the limited 

number of shared differentially expressed and methylated genes (Fig. 7B), and the 

different functional enrichment of the methylation and expression datasets (Fig. 4 and 

Fig. 7C), do not allow any mechanistic inference of the interconnection between DNA 

methylation and gene expression. Nevertheless, the differential methylation observed in 

genes involved in transcription (enriched KOG term) could hint an indirect interaction 

between methylation and gene expression. 

 

Conclusions 

Overall, the evidence provided by the analysis of the lipidome, transcriptome and 

methylome indicate a rapid phenotypic response to the conditions imposed to the 

outplanting sites, allowing the survival of the fragments. Remarkably, the observed 

stability of the symbiotic community indicates that A. cervicornis adjustments to 

acclimatize to divergent conditions rely heavily on other mechanisms, potentially 

including nutritional plasticity. Corals have been proposed to modulate their feeding 
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modes under different environments, providing a potential adaptive mechanism to sustain 

growth under stressful conditions (Anthony and Fabricius 2000; Ferrier-Pagès et al. 2011; 

Tremblay et al. 2014; Pascale Tremblay et al. 2016). Both lipidomic and transcriptional 

responses seem to indicate a change to a more heterotrophic habit in the corals exposed to 

a lower pH in the deep site. Although the DNA methylation response was also consistent 

with a response to elevated pH, evidence of its correlation with gene expression was not 

observed. However, technical limitations did not allow an appropriate interaction analysis 

at this time, and it will be included in the near future clarifying these interactions. 
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Fig. 1. Relative abundance of ITS2 sequences and predicted profiles of symbiont types 

for A. cervicornis ramets outplanted to sites located at 3 m (LP15) and 15 m (LP40) 

depths in Luis Peña Reef, Culebra, PR, and sampled one-year post-outplanting. Each 

column in the stacked bar plots represents a colony with ramets sampled from the depth 

specified on the right-hand side. For each section the relative abundance of ITS2 

sequences (top) and relative abundance of ITS2 type profiles (bottom) are represented. 

Only ITS2 sequences contributing >0.01% in at least 1 sample are labeled. Named 

sequences (e.g., A3ae or A4) refer to sequences used to characterize the ITS2 type 

profiles, or sequences commonly found in previous analysis through SymPortal (Hume et 

al. 2019). Other lesser representative sequences are shown with their database ID and 

their clade identifier (e.g., 29324_B). 
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Fig. 2 Lipid profiles derived from coral ramets maintained at depths of 3m (LP15) or 

15m (LP40) in Luis Peña reef, Culebra. PR. for a year. (A) Lipid extraction results for the 

butanol:methanol methods expressed as number of compounds per each of eight lipid 

classes. Results of pairwise comparisons through t-test between sites are represented by 

asterisks: (*) p < 0.05; (**) p < 0.01. (B) Proportional abundance of lipids (calculated 

from normalized peak areas) per class across all genets and outplanting sites. Asterisks 

represent significance of chi-square tests for each class (p < 0.001). ChE cholesterol 

ester, FA Fatty acid, MG mono-acyl glycerol, MGDG Monogalactosyldiacylgylcerol, 

PC Phosphatidylcholine, PE Phosphatidylethanolamine, TG Triglyceride and WE Wax 

ester. 
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Fig. 3. Divergence of transcriptional state in A. cervicornis ramets maintained at 3m or 

15m for a year. (A) Principal Coordinate Analysis (PCoA) of “manhattan” distances 

based on variance-stabilized gene counts. Larger symbols represent the centroid of the 

sample distribution for each depth (B) Discriminant analysis of principal components 

(DAPC). 
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Fig. 4. Eukaryotic ortholog group (KOG) enrichment analysis results. KOG functional 

categories up- or down-regulated (indicated by color) for the contrast shallow vs deep 

reef of each individual genet and the combination of all genets. Statistical significance is 

represented as: (.) FDR < 10%; (*) FDR < 5%; (**) FDR < 1%; (***) FDR < 0.1 %.  
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Fig. 5. DNA methylation characteristics of A. cervicornis. (A) Number of Methylated 

cytosines overlapping with genic and intergenic regions. (B) Distribution of DNA 

methylation levels (% methylation) in exons, introns, and intergenic regions. Significant 

differences in methylation levels between features is represented by asterisks: (***) p-

value < 0.001. (C) Frequency of methylated CpGs across a gene model with 4-kb 

flanking regions. Solid lines represent start and end transcription sites. Genic region 

lengths were normalized in correspondence with mean lengths in the genome of A. 

cervicornis. 
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Fig 6. General DNA methylation patterns in A. cervicornis ramets maintained at 3m or 

15m for a year. (A) Plot of the first two principal components from a principal coordinate 

analysis (PCoA) by depth and genotype, based on “manhattan” distances of percent 

methylation of 100bp windows. (B) Density plot of a discriminant analysis of principal 

components.  
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Fig. 7. Divergence of gene body methylation in A. cervicornis ramets maintained at 3m 

or 15m for a year. (A) Heatmap of methylation level for 742 differentially methylated 

genes (DMGs) by sample (left) and grouped by site (right). Asterisk represents 

significant differences in gene methylation level between sites (PERMANOVA, p-value 

= 0.0163). (B) Venn Diagram showing relationship between DMGs and differentially 

expressed genes (DEGs). Only 2 genes were differentially expressed and methylated: an 

ATP-dependent RNA helicase DDX41, and a tyrosine-protein kinase Fyn. (C) KOG 

functional categories hyper- or hypo-methylated (indicated by color) for the contrast 

shallow (num) vs deep (den) reefs. Statistical significance is represented as: (.) FDR < 

10%.    
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Table 1. Number of differentially expressed genes (DEGs) within individual genets and across all genets identified using DESeq with 

an adjusted p-value < 0.1. In brackets are the numbers of significantly up- and down-regulated genes. 

 

All genets genet 1 genet 2 genet 3 genet 4 genet 5 genet 6 genet 7 genet 8 genet 9 genet 10 genet 11 genet 12 

300 

 [111, 189] 

1 

 [1, 0] 

10 

 [7, 3] 

32  

[19, 13] 

37  

[18, 19] 

16 

 [6, 10] 

0 

 [0, 0] 

0 

 [0, 0] 

0  

[0, 0] 

42 

 [10, 32] 

64  

[15, 49] 

0 

 [0, 0] 

0  

[0, 0] 
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CHAPTER VI  

GENERAL CONCLUSIONS 



 206 

Oceans bear the brunt of human industrial development, with dramatic increases 

in atmospheric CO2 warming and acidifying surface waters, and pollution disrupting 

biogeochemical cycles and biological processes, and resulting in biodiversity losses and 

ecosystem collapse. The unprecedented rate of disturbance imposed by human-driven 

global change has the potential to overwhelm natural eco-evolutionary mechanisms 

mediating organism’s adaptation and allowing ecosystem resilience. The survival of 

marine ecosystems will therefore depend not only on the capacity of natural ecosystems 

to accelerate their acclimatization/adaptation rates, but on our understanding of the 

mechanisms involved in such responses allowing appropriate interventions to mitigate the 

detrimental effects of climate change when necessary. 

Corals reefs represent the most diverse ecosystems in the oceans providing critical 

services and goods for human society (e.g., fisheries and aquaculture production, shoreline 

protection, and recreation). Unfortunately, coral reef’s decline has been documented for 

decades, with substantial mechanistic evidence linking such collapses to the effects of 

global change on stony corals. A remarkable capacity for phenotypic plasticity and 

acclimation of corals has been observed at molecular, physiological, and morphological 

levels. Despite these elements and the critical ecological and economic importance of 

coral reefs, it wasn’t until very recently that the scientific community started focusing on 

the study of molecular mechanisms mediating such plasticity, and their potential to drive 

corals rapid acclimatization and adaptation (Eirin-Lopez and Putnam 2019; Putnam 

2021). For example, it was not until 2011 that the first coral genome was completed 

(Shinzato et al. 2011), limiting the application of molecular biology tools in this group. 

This dissertation contributes to filling this gap by pioneering the characterization of 

epigenetic mechanisms involved in responses to varied environmental stressors, 

https://paperpile.com/c/laHkwD/JpB9+NPOa
https://paperpile.com/c/laHkwD/JpB9+NPOa
https://paperpile.com/c/laHkwD/scIb
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employing an array of field and laboratory-based experiments to describe the 

functionality and dynamics of such mechanisms, and their interaction with the genome 

and other components of the coral holobiont.  

Accordingly, details of several epigenetic mechanisms were described for the first 

time in corals. In Chapter II we described the histone repertoire at the protein level for the 

first time for corals and demonstrated the functionality of the histone variant H2A.X 

mediating responses to nutrient pollution and thermal stress in the coral Acropora 

cervicornis. Regardless of the limitations of the methodology used to evaluate DNA 

methylation in this chapter, the observed changes in global DNA methylation hinted at 

the possibility of its role in the stress response, and of a cross-talk between epigenetic 

mechanisms, further evidenced in other cnidarians (Li et al. 2018; Weizman and Levy 

2019).  

Focusing on DNA methylation, detailed methylomes for two coral species; 

Montastraea cavernosa in Chapter IV and Acropora cervicornis in Chapter V, were 

characterized for the first time in this work. General methylation landscapes showed 

substantial differences between species, potentially related to differential sensitivity to 

environmental stress (Trigg et al. 2021). Although links between methylation and gene 

expression in corals have been described before (Liew et al. 2018; Dixon et al. 2018), the 

results of these two chapters evidence that other mechanisms might be interacting with 

DNA methylation so the regulation of gene expression can be the results of multi-

mechanism crosstalk. Both inducible DNA methylation and differential gene expression 

[see Cunning and Baker (2020) for gene expression results in M. cavernosa] was 

observed in response to environmental change, adding symbiont shuffling, thermal stress, 

https://paperpile.com/c/laHkwD/0s4Y+xW12
https://paperpile.com/c/laHkwD/0s4Y+xW12
https://paperpile.com/c/laHkwD/jr4K
https://paperpile.com/c/laHkwD/TbVw+7lcN
https://paperpile.com/c/laHkwD/DEPg
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and depth-linked environmental divergence as drivers of epigenetic change and gene 

expression plasticity. However, very little overlapping occurred between differentially 

methylated and expressed genes, only confirming previous evidence of a reduction of 

spurious transcription mediated by increased DNA methylation (Liew et al. 2018; Dixon 

et al. 2018). 

Substantial genotype-driven variability in DNA methylation between corals 

exposed to shared environmental conditions was evidenced at various resolutions (global, 

fragment, base-pair) though all chapters of the dissertation. Adding to previous results in 

A. palmata (Durante et al. 2019), this tight dependence of DNA methylation on the 

genome sequence indicates that at least a portion of the methylation pattern is inherited. 

However, substantial evidence was also found in this dissertation of similarly induced 

DNA methylation changes between genets in response to shared environmental exposure. 

Chapter III, for example, demonstrated dynamic seasonal variability in DNA methylation 

patterns linked to seasonal changes in temperature for the corals A. cervicornis 

irrespective of their genotype and stress exposure history. So, is inducible DNA 

methylation inherited trans-generationally? Although evidence of the inheritance of 

specific methylation patterns in genes functionally enriched under specific environmental 

conditions was observed before in corals (Liew et al. 2020), it is hard to separate 

inducible from stable methylation. Similar to the findings in the coral P. daedalea (Liew 

et al. 2020), global methylation patterns of A. cervicornis and M. cavernosa tend to be 

very similar between ramets or genetically closer individuals, and it’s only at the regional 

or gene levels that clear evidence of environmentally inducible patterns arise. Additional 

work focusing on clonal lines exposed to divergent environments in a multigenerational 

https://paperpile.com/c/laHkwD/TbVw+7lcN
https://paperpile.com/c/laHkwD/TbVw+7lcN
https://paperpile.com/c/laHkwD/iYc2
https://paperpile.com/c/laHkwD/2acz
https://paperpile.com/c/laHkwD/2acz
https://paperpile.com/c/laHkwD/2acz
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design will be required to elucidate the inheritance of inducible DNA methylation and its 

role modulating gene expression plasticity. 

Coral’s symbiotic community composition, abundance and physiology may also 

influence host epigenetic responses. In Chapter II, we evidenced the effect of symbiont-

host nutritional interactions modulating epigenetic mechanisms, demonstrating the 

interaction between host epigenetic machinery and the symbiont physiology. Impairment 

of the phosphorylation of the histone H2A.X, involved in DNA repair and cell cycle 

regulation (Fernandez-Capetillo et al. 2004; Orlando et al. 2021), was observed as a result 

of phosphorus starvation driven by symbiont population growth under nitrogen 

enrichment. Additional evidence of such interaction was provided by the results of 

Chapter IV where DNA methylation responses to thermal stress in M. cavernosa were 

dependent on the dominant clade of Symbiodinacea, similar to the previously described 

changes in gene expression (Cunning and Baker 2020). 

Overall, this dissertation contributes to better understand the epigenetic 

mechanisms and their role modulating plastic responses to environmental variations. 

Through the initial characterization of chromatin associated proteins and DNA chemical 

modifications, their response when faced to various environmental conditions, and their 

interaction with other non-genetic mechanisms to mediate phenotypic responses, this 

work provides significant contributions to the understanding of the mechanisms of rapid 

acclimatization and adaptation in corals. Moreover, this knowledge provides a better 

basis to evaluate the feasibility of intervention strategies aimed at the manipulation of 

these modulators of phenotypic plasticity.  

https://paperpile.com/c/laHkwD/Uvh1+0FuX
https://paperpile.com/c/laHkwD/DEPg
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Further research is needed to identify the interaction between epigenetic 

mechanisms, other non-genetic mechanisms, and expression changes in these organisms. 

Taking into consideration the dynamic response of these mechanisms and the variability 

in their temporal stabilities evidenced in our results, it is very likely that a combination of 

non-genetic mechanisms acting in a probabilistic rather than a deterministic way, interact 

to regulate transcriptional and posttranscriptional processes (Adrian-Kalchhauser et al. 

2020). Recent studies, including that in Chapter II, have found evidence of this epigenetic 

crosstalk in cnidarians (Li et al. 2018; Rodriguez-Casariego et al. 2018), supporting the 

idea that phenotypic responses to environmental variation will depend on the 

establishment of a multi-mechanism epigenetic landscape. However, only the analysis of 

multi-omic data sets resulting from specific tissue types, or even individual cells (Levy et 

al. 2021), will allow the disentangling of such a complex process by reducing variability. 
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Appendix A: Supplementary materials for Chapter II 
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Appendix B: Supplementary materials for Chapter III 

Supplementary Table S1. Environmental parameters summary statistics. Data 

corresponding to deployments in summer (Sept) and winter (Jan) peaks of multiprobe 

sensors at Luis Peña reef, Culebra, PR. Shallow (5 m) and deep (15 m) sites were 

included.  

 
  Depth Season 

Total 
 

Deep | 

A 
Shallow | 

B 
Summer | 

A 
Winter | 

B 

Temperature °C | Mean 27 26.9 28.9 > B 26.2 < A 26.9 

Temperature °C | Std. dev. 1.2 1.2 0.2 0.2 1.2 

Temperature °C | Unw. 
valid N 

824 824 437 1211 1648 

pH | Mean 8.0 < B 8.1 > A 8.0 < B 8.1 > A 8.1 

pH | Std. dev. 0 0.1 0 0.1 0.1 

pH | Unw. valid N 824 824 437 1211 1648 

PAR | Mean 99.0 < 
B 

243.5 > A 201.9 > B 161.8 < A 172.4 

PAR | Std. dev. 143.9 348.6 320.8 258.6 276.8 

PAR | Unw. valid N 819 819 434 1209 1643 

ODO mg L-1 | Mean 6.4 6.4 6.3 < B 6.5 > A 6.4 

ODO mg L-1 | Std. dev. 0.2 0.4 0.3 0.3 0.3 

ODO mg L-1 | Unw. valid N 824 824 437 1211 1648 

Salinity psu | Mean 37.1 > 

B 

37.0 < A 36.1 < B 37.4 > A 37 

Salinity psu | Std. dev. 0.7 0.9 0.1 0.6 0.8 

Salinity psu | Unw. valid N 824 824 437 1211 1648 

only significant differences (p < 0.05) were represented as > or < the corresponding 

factor labeled as A or B as in table header. PAR: Photosynthetically Active Radiation. 

ODO: Dissolved Oxygen derived from an optical sensor. 
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Supplementary Table S2. PERMANOVA results of Symbiodiniaceae ITS2 sequences 

and type profiles derived from ten A. cervicornis fragments sampled at three times during 

the 17-month experiment (T3, T12 & T17). 

Dataset  df SS MS F.model R2 p (>F) 

ITS2 sequences time 2 0.0114 0.0057 0.2360 0.0172 0.7807 

 Residuals 27 0.6500 0.0241  0.9828  

 Total 29 0.6614   1.0000  

ITS2 type profiles time  2 0.2004 0.10019 0.2552 0.0185 0.6646 

 Residuals 27 10.6014 0.3926  0.9815  

 Total 29 10.8018     

 analysis based on Bray-Curtis Dissimilarities. Model ~ time, strata = fragments and 

9,999 permutations to estimate p-values were used in the adonis function (vegan R 

package). df: degrees of freedom, SS: Sum of Squares, MS: Mean Squares, F.model: 

pseudo F statistics, R2: coefficient of determination.  
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Supplementary Table S3. PERMANOVA Partitioning and Analysis of DNA 

Methylation patterns in A. cervicornis in Culebra, PR. 

 df SS MS F.model R2 p (>F) 

genet 6 204.2 34.036 2.3315 0.0593 0.0131 

fragment 35 563.9 16.112 1.1037 0.1636 0.0131 

time 5 454.2 90.838 6.2223 0.1318 0.0001 

site 2 25.5 12.752 0.8735 0.0074 0.6637 

genet:time 29 425.5 14.672 1.0050 0.1234 0.4083 

frag:time 107 1481.5 12.846 0.9485 0.4298 0.6828 

Residuals  20 292.0 14.599  0.0847  

Total  204 3446.8  1.0000   

analysis based on MSAP-patterns-derived Euclidean Distances. Model ~ 

genet*fragment*time + Site, strata = fragments and 9,999 permutations to estimate p-

values were used in the adonis function (vegan R package). df: degrees of freedom, SS: 

Sum of Squares, MS: Mean Squares, F.model: pseudo F statistics, R2: coefficient of 

determination.  
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Supplementary Table S4. Envfit vector adjustment (permutations = 999) of site-specific 

abiotic parameters in Luis Peña deep and shallow sites to the Non-metric 

Multidimensional Scaling (NMDS) ordination of the DNA methylation patterns of T5 

and T12. 

 NMDS1 NMDS2 R2 p (>r) 

PAR_mean 0.0516 -0.9985 0.0066 0.9150 

Temp_mean 0.5829   0.8126  0.6474   0.0010  

pH_mean  -0.5790  -0.8156   0.4008   0.0010 

ODO_mean  -0.4781  -0.8783   0.4532   0.0010  

Sal.psu_mean  -0.4382   -0.8989   0.1047   0.2000   

Pressure  -0.8157   0.5785   0.0048   0.9350  

PAR_var  0.6951  -0.7189    0.0041     0.9480    

Temp_var  0.6128    0.7903  0.0537   0.4370 

pH_var  0.1491    0.9888  0.0132   0.8150  

ODO_var -0.5851  -0.8109  0.0903   0.2310 

Sal.psu_var -0.6465  -0.7630  0.2946   0.0120  

values of p < 0.05 are in bold. R2, proportion of variance explained. NMDS 1 and NMDS 

2, vector orientation respective to first and second axes of NMDS, respectively. 

PAR_mean, monthly average of daily mean photosynthetically active radiation (µmol 

(photons) m-2 s-1); Temp_mean, monthly average of daily mean temperature (°C); 

pH_mean, monthly average of daily mean pH; ODO_mean, monthly average of  daily 

means of dissolved oxygen (mg L-1, optical sensor); Sal.psu_mean, monthly average of 

daily mean salinity (psu). _var, total variance. All environmental variables were 

measured in-situ. 
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Supplementary Table S5. Envfit vector adjustment (permutations = 999) of regional 

temperature and irradiance variables in the NMDS ordination of the DNA methylation 

patterns of all samples in shallow sites for both study reefs.   

 NMDS1 NMDS2 R2 p(>r) 

Temp_mean -0.9795  -0.2017  0.2335   0.0010  

IR_mean  -0.6901   0.7237   0.0810   0.0060  

CV3_temp  -0.2340    0.9722  0.0459   0.0700   

CV3_IR  0.9710   -0.2391  0.3855   0.0010  

values of p < 0.05 are in bold. Temp_mean, monthly average of daily mean temperature 

(°C); IR_mean, monthly average of daily mean of surface solar irradiance (W/m-2). 

CV3_ refers to the coefficient of variation of temperature of irradiance for the three 

months previous to each sample point. 
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Supplementary Fig S1. Decomposition of additive temperature time series of monthly 
daily means to show the trend from 2018-2019 in Culebra, PR. Data records were 
gathered from NOAA Data Buoy Center, Station CLBP4 located 3.8 and 4 km from Luis 

Peña and Carlos Rosario reefs, respectively. 
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Supplementary Fig S2. Relative abundance of ITS2 sequences and predicted profiles 
from A. cervicornis samples collected in July 2018 (T3), April 2019 (T12) and September 
2019 (T17) from Luis Peña and Carlos Rosario Reefs, Culebra, PR. Each column in the 

stacked bar plots represents a fragment sampled at the collection time specified on the 
right-hand side. For each section the relative abundance of ITS2 sequences (top) and 

relative abundance of ITS2 type profiles (bottom) are represented. Only ITS2 sequences 
contributing >0.01% in at least 1 sample are labeled. Named sequences (e.g. A3, A3t, or 
C3) refer to sequences used to characterize ITS2 type profiles or commonly found in 

previous analysis through SymPortal (Hume et al. 2019). Other lesser representative 
sequences are shown with their database ID and their clade identifier (e.g. 50839_A).  
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Supplementary Fig. S3. Temporal trend in DNA methylation states along the 17-month 
period of the study. DNA methylation states are based on differential cuts of MSAP 
restriction enzymes (Reyna-Lopez et al. 1997). Relative frequency of each methylation 

state is composed of all samples (n=205) and the 162 loci showing methylation 
polymorphism. 

  

https://paperpile.com/c/akWGZs/SeG3
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Appendix C: Supplementary materials for Chapter IV 

Supplementary Table S1: Proportion test results for genomic features overlap between 
all genomic CpGs and methylated (>50% methylation) CpGs.  
 

Feature meth CpG all CpG stat conf.low conf.high p.adj Odds ratio 

CDS 257654 1810701 16791.61 0.013616 0.013999 <10-10 0.756755 

5’-UTR 9188 120261 7177.284 0.002282 0.002362 <10-10 0.41132 

Intergenic 3548193 20107691 20990.3 0.031124 0.031989 <10-100 0.871237 

Intron 1375120 5733932 92345.16 -0.05578 -0.05502 <10-100 1.388957 

Promoter 208084 1628282 27158.44 0.016427 0.016777 <10-10 0.677723 

Repeat 204824 680559 38706.82 -0.01412 -0.01379 <10-10 1.647602 

3’-UTR 38199 360414 11189.37 0.00499 0.005146 <10-100 0.569014 

Stat: Pearson's chi-squared test statistic; conf.low/high: 95% confidence intervals; p.adj: 
Benjamini-Hochberg adjusted p.value 
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Supplementary Table S2: Gene annotation details of genes overlapping with differentially methylated regions DMRs. 
 

gene sprot_Top_BLASTP_hit gene_ontology_blast 

Mcavernosa00583 UBXN4_BOVIN\UBXN4_BOVIN\Q:181-379,H:307-

508\41.67%ID\E:1e-38\RecName: Full=UBX 

domain-containing protein 4;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Laurasiatheria; Cetartiodactyla; Ruminantia; 

Pecora; Bovidae; Bovinae; 

Bos||||UBXN4_RAT\UBXN4_RAT\Q:181-

379,H:305-506\40.58%ID\E:4e-37\RecName: 

Full=UBX domain-containing protein 

4;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; 

Rattus||||UBXN4_PONAB\UBXN4_PONAB\Q:190-

379,H:314-508\41.38%ID\E:2e-36\RecName: 

Full=UBX domain-containing protein 

4;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Pongo||||UBXN4_PONAB\UBXN4_PONAB\Q:1-

149,H:1-134\43.62%ID\E:7e-36\RecName: 

Full=UBX domain-containing protein 

4;\Eukaryota; Metazoa; Chordata; Craniata; 

GO:0005829\cellular_component\cytosol||||GO:0005789\cell

ular_component\endoplasmic reticulum 

membrane||||GO:0005635\cellular_component\nuclear 

envelope||||GO:0006986\biological_process\response to 

unfolded 

protein||||GO:0030433\biological_process\ubiquitin-

dependent ERAD pathway 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Pongo||||UBXN4_RAT\UBXN4_RAT\Q:1-130,H:1-

133\47.01%ID\E:3e-35\RecName: Full=UBX 

domain-containing protein 4;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; 

Rattus||||UBXN4_BOVIN\UBXN4_BOVIN\Q:1-

114,H:1-113\48.25%ID\E:4e-35\RecName: 

Full=UBX domain-containing protein 

4;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Laurasiatheria; Cetartiodactyla; Ruminantia; 

Pecora; Bovidae; Bovinae; Bos 

Mcavernosa00795 BMS1_HUMAN\BMS1_HUMAN\Q:1-302,H:140-

433\65.35%ID\E:3e-124\RecName: 

Full=Ribosome biogenesis protein BMS1 

homolog;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||BMS1_SCHPO\BMS1_SCHPO\Q:1-

337,H:132-477\47.11%ID\E:7e-85\RecName: 

GO:0030686\cellular_component\90S 

preribosome||||GO:0005730\cellular_component\nucleolus|

|||GO:0005654\cellular_component\nucleoplasm||||GO:0005

634\cellular_component\nucleus||||GO:0005524\molecular_

function\ATP 

binding||||GO:0005525\molecular_function\GTP 

binding||||GO:0003924\molecular_function\GTPase 

activity||||GO:0003723\molecular_function\RNA 

binding||||GO:0034511\molecular_function\U3 snoRNA 



 224 

gene sprot_Top_BLASTP_hit gene_ontology_blast 

Full=Ribosome biogenesis protein 

bms1;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Taphrinomycotina; Schizosaccharomycetes; 

Schizosaccharomycetales; 

Schizosaccharomycetaceae; 

Schizosaccharomyces||||BMS1_YEAST\BMS1_YE

AST\Q:1-326,H:128-485\45.97%ID\E:1e-

83\RecName: Full=Ribosome biogenesis protein 

BMS1;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Saccharomycotina; Saccharomycetes; 

Saccharomycetales; Saccharomycetaceae; 

Saccharomyces||||BMS1_HUMAN\BMS1_HUMAN

\Q:838-1082,H:992-1257\54.31%ID\E:1e-

75\RecName: Full=Ribosome biogenesis protein 

BMS1 homolog;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||BMS1_HUMAN\BMS1_HUMAN\Q:564-

854,H:647-927\45.42%ID\E:5e-63\RecName: 

Full=Ribosome biogenesis protein BMS1 

homolog;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||BMS1_YEAST\BMS1_YEAST\Q:853-

1059,H:911-1135\53.3%ID\E:4e-61\RecName: 

binding||||GO:0000479\biological_process\endonucleolytic 

cleavage of tricistronic rRNA transcript (SSU-rRNA, 5.8S 

rRNA, LSU-

rRNA)||||GO:0000462\biological_process\maturation of SSU-

rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S 

rRNA, LSU-rRNA)||||GO:0006364\biological_process\rRNA 

processing 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

Full=Ribosome biogenesis protein 

BMS1;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Saccharomycotina; Saccharomycetes; 

Saccharomycetales; Saccharomycetaceae; 

Saccharomyces||||BMS1_SCHPO\BMS1_SCHPO\

Q:853-1042,H:849-1056\52.86%ID\E:4e-

56\RecName: Full=Ribosome biogenesis protein 

bms1;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Taphrinomycotina; Schizosaccharomycetes; 

Schizosaccharomycetales; 

Schizosaccharomycetaceae; 

Schizosaccharomyces||||BMS1_SCHPO\BMS1_S

CHPO\Q:550-851,H:458-764\31.89%ID\E:3e-

31\RecName: Full=Ribosome biogenesis protein 

bms1;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Taphrinomycotina; Schizosaccharomycetes; 

Schizosaccharomycetales; 

Schizosaccharomycetaceae; 

Schizosaccharomyces||||BMS1_YEAST\BMS1_YE

AST\Q:624-854,H:580-830\32.71%ID\E:5e-

20\RecName: Full=Ribosome biogenesis protein 

BMS1;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Saccharomycotina; Saccharomycetes; 

Saccharomycetales; Saccharomycetaceae; 

Saccharomyces 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

Mcavernosa01653 GALM_HUMAN\GALM_HUMAN\Q:14-228,H:127-

341\51.38%ID\E:4e-68\RecName: Full=Aldose 1-

epimerase;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||GALM_BOVIN\GALM_BOVIN\Q:14-

228,H:127-341\51.38%ID\E:4e-67\RecName: 

Full=Aldose 1-epimerase;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Laurasiatheria; 

Cetartiodactyla; Ruminantia; Pecora; Bovidae; 

Bovinae; 

Bos||||GALM_PONAB\GALM_PONAB\Q:14-

228,H:127-341\50.46%ID\E:5e-67\RecName: 

Full=Aldose 1-epimerase;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Pongo 

GO:0005737\cellular_component\cytoplasm||||GO:0070062\

cellular_component\extracellular 

exosome||||GO:0004034\molecular_function\aldose 1-

epimerase 

activity||||GO:0030246\molecular_function\carbohydrate 

binding||||GO:0033499\biological_process\galactose 

catabolic process via UDP-

galactose||||GO:0006012\biological_process\galactose 

metabolic 

process||||GO:0006006\biological_process\glucose 

metabolic process 

Mcavernosa03432 . . 

Mcavernosa03637 WIPI3_XENTR\WIPI3_XENTR\Q:4-238,H:1-

341\54.09%ID\E:4e-114\RecName: Full=WD 

repeat domain phosphoinositide-interacting 

protein 3;\Eukaryota; Metazoa; Chordata; 

GO:0005829\cellular_component\cytosol||||GO:0019898\cell

ular_component\extrinsic component of 

membrane||||GO:0034045\cellular_component\phagophore 

assembly site 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

Craniata; Vertebrata; Euteleostomi; Amphibia; 

Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; 

Silurana||||WIPI3_CHICK\WIPI3_CHICK\Q:4-

238,H:1-341\54.09%ID\E:5e-114\RecName: 

Full=WD repeat domain phosphoinositide-

interacting protein 3;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||WIPI3_DANRE\WIPI3_DANRE\Q:4-

238,H:1-341\54.09%ID\E:7e-114\RecName: 

Full=WD repeat domain phosphoinositide-

interacting protein 3;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Actinopterygii; Neopterygii; Teleostei; 

Ostariophysi; Cypriniformes; Cyprinidae; Danio 

membrane||||GO:0080025\molecular_function\phosphatidy

linositol-3,5-bisphosphate 

binding||||GO:0032266\molecular_function\phosphatidylino

sitol-3-phosphate 

binding||||GO:0000422\biological_process\autophagy of 

mitochondrion||||GO:0044804\biological_process\autophag

y of nucleus||||GO:0006497\biological_process\protein 

lipidation||||GO:0034497\biological_process\protein 

localization to phagophore assembly site 

Mcavernosa03638 . . 

Mcavernosa04452 . . 

Mcavernosa04512 TTC29_XENLA\TTC29_XENLA\Q:52-186,H:67-

201\45.93%ID\E:2e-34\RecName: 

Full=Tetratricopeptide repeat protein 

. 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

29;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Amphibia; Batrachia; 

Anura; Pipoidea; Pipidae; Xenopodinae; 

Xenopus; 

Xenopus||||TTC29_MOUSE\TTC29_MOUSE\Q:52-

180,H:60-188\45.74%ID\E:7e-33\RecName: 

Full=Tetratricopeptide repeat protein 

29;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||TTC29_RAT\TTC29_RAT\Q:52-180,H:60-

188\46.51%ID\E:7e-33\RecName: 

Full=Tetratricopeptide repeat protein 

29;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Rattus 

Mcavernosa05323 . . 

Mcavernosa05655 TXND3_HELCR\TXND3_HELCR\Q:2-538,H:80-

634\40.92%ID\E:2e-135\RecName: 

Full=Thioredoxin domain-containing protein 3 

homolog;\Eukaryota; Metazoa; Echinodermata; 

Eleutherozoa; Echinozoa; Echinoidea; 

Euechinoidea; Echinacea; Echinoida; 

GO:0005623\cellular_component\cell||||GO:0004550\molec

ular_function\nucleoside diphosphate kinase 

activity||||GO:0030154\biological_process\cell 

differentiation||||GO:0045454\biological_process\cell redox 

homeostasis||||GO:0006241\biological_process\CTP 

biosynthetic process||||GO:0006183\biological_process\GTP 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

Echinometridae; 

Heliocidaris||||TXND3_CIOIN\TXND3_CIOIN\Q:2-

526,H:79-590\41.51%ID\E:2e-124\RecName: 

Full=Thioredoxin domain-containing protein 3 

homolog;\Eukaryota; Metazoa; Chordata; 

Tunicata; Ascidiacea; Enterogona; 

Phlebobranchia; Cionidae; 

Ciona||||TXND3_MOUSE\TXND3_MOUSE\Q:2-

528,H:81-581\28.5%ID\E:5e-62\RecName: 

Full=Thioredoxin domain-containing protein 

3;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||TXND3_CIOIN\TXND3_CIOIN\Q:237-

550,H:175-485\31.92%ID\E:3e-40\RecName: 

Full=Thioredoxin domain-containing protein 3 

homolog;\Eukaryota; Metazoa; Chordata; 

Tunicata; Ascidiacea; Enterogona; 

Phlebobranchia; Cionidae; 

Ciona||||TXND3_CIOIN\TXND3_CIOIN\Q:366-

528,H:156-294\36.31%ID\E:1e-19\RecName: 

Full=Thioredoxin domain-containing protein 3 

homolog;\Eukaryota; Metazoa; Chordata; 

Tunicata; Ascidiacea; Enterogona; 

Phlebobranchia; Cionidae; Ciona 

biosynthetic 

process||||GO:0007275\biological_process\multicellular 

organism 

development||||GO:0007283\biological_process\spermatog

enesis||||GO:0006228\biological_process\UTP biosynthetic 

process 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

Mcavernosa05804 . . 

Mcavernosa06970 . . 

Mcavernosa07334 . . 

Mcavernosa07482 GCN1_HUMAN\GCN1_HUMAN\Q:12-331,H:1-

348\36.68%ID\E:5e-62\RecName: Full=eIF-2-

alpha kinase activator GCN1 

{ECO:0000250|UniProtKB:E9PVA8};\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||GCN1_MOUSE\GCN1_MOUSE\Q:12-

331,H:1-348\38.4%ID\E:6e-62\RecName: 

Full=eIF-2-alpha kinase activator GCN1 

{ECO:0000305};\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||ILA_ARATH\ILA_ARATH\Q:36-331,H:147-

455\25.31%ID\E:1e-16\RecName: Full=Protein 

ILITYHIA 

{ECO:0000312|EMBL:AEE34290.1};\Eukaryota; 

Viridiplantae; Streptophyta; Embryophyta; 

Tracheophyta; Spermatophyta; Magnoliophyta; 

GO:0005737\cellular_component\cytoplasm||||GO:0005829\

cellular_component\cytosol||||GO:0016020\cellular_compo

nent\membrane||||GO:0005844\cellular_component\polyso

me||||GO:0005840\cellular_component\ribosome||||GO:0045

296\molecular_function\cadherin 

binding||||GO:0019901\molecular_function\protein kinase 

binding||||GO:0019887\molecular_function\protein kinase 

regulator 

activity||||GO:0043022\molecular_function\ribosome 

binding||||GO:0003723\molecular_function\RNA 

binding||||GO:0008135\molecular_function\translation 

factor activity, RNA 

binding||||GO:0034198\biological_process\cellular response 

to amino acid 

starvation||||GO:1990253\biological_process\cellular 

response to leucine 

starvation||||GO:0033674\biological_process\positive 

regulation of kinase 

activity||||GO:0036003\biological_process\positive 

regulation of transcription from RNA polymerase II 

promoter in response to 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

eudicotyledons; Gunneridae; Pentapetalae; 

rosids; malvids; Brassicales; Brassicaceae; 

Camelineae; Arabidopsis 

stress||||GO:0006417\biological_process\regulation of 

translation 

Mcavernosa07546 NUP85_DANRE\NUP85_DANRE\Q:6-378,H:27-

463\38.65%ID\E:2e-90\RecName: Full=Nuclear 

pore complex protein Nup85;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Actinopterygii; Neopterygii; 

Teleostei; Ostariophysi; Cypriniformes; 

Cyprinidae; 

Danio||||NUP85_RAT\NUP85_RAT\Q:6-378,H:27-

465\35.96%ID\E:1e-86\RecName: Full=Nuclear 

pore complex protein Nup85;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; 

Rattus||||NUP85_MOUSE\NUP85_MOUSE\Q:6-

378,H:27-465\35.96%ID\E:6e-86\RecName: 

Full=Nuclear pore complex protein 

Nup85;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus 

GO:0031965\cellular_component\nuclear 

membrane||||GO:0031080\cellular_component\nuclear 

pore outer 

ring||||GO:0017056\molecular_function\structural 

constituent of nuclear 

pore||||GO:0006406\biological_process\mRNA export from 

nucleus||||GO:0045893\biological_process\positive 

regulation of transcription, DNA-

templated||||GO:0006606\biological_process\protein import 

into nucleus 
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Mcavernosa09311 . . 

Mcavernosa09675 BAZ1A_MOUSE\BAZ1A_MOUSE\Q:392-

1225,H:198-1043\30.99%ID\E:1e-70\RecName: 

Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia; Myomorpha; Muroidea; Muridae; 

Murinae; Mus; 

Mus||||BAZ1A_HUMAN\BAZ1A_HUMAN\Q:596-

1225,H:392-1041\32.72%ID\E:7e-67\RecName: 

Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Homo||||BAZ1A_MOUSE\BAZ1A_MOUSE\Q:1-

154,H:1-155\51.59%ID\E:4e-39\RecName: 

Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia; Myomorpha; Muroidea; Muridae; 

Murinae; Mus; 

Mus||||BAZ1A_HUMAN\BAZ1A_HUMAN\Q:1-

149,H:1-150\51.32%ID\E:2e-38\RecName: 

GO:0008623\cellular_component\CHRAC||||GO:0000228\cell

ular_component\nuclear 

chromosome||||GO:0046872\molecular_function\metal ion 

binding||||GO:0006338\biological_process\chromatin 

remodeling||||GO:0006261\biological_process\DNA-

dependent DNA 

replication||||GO:0006355\biological_process\regulation of 

transcription, DNA-

templated||||GO:0006351\biological_process\transcription, 

DNA-templated 
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Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Homo||||BAZ1A_XENLA\BAZ1A_XENLA\Q:1438-

1534,H:183-277\56.7%ID\E:4e-33\RecName: 

Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Amphibia; Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; 

Xenopus||||BAZ1A_MOUSE\BAZ1A_MOUSE\Q:14

32-1527,H:1104-1199\62.5%ID\E:2e-

32\RecName: Full=Bromodomain adjacent to 

zinc finger domain protein 1A;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||BAZ1A_HUMAN\BAZ1A_HUMAN\Q:1439-

1527,H:1110-1198\66.29%ID\E:2e-32\RecName: 

Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 
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Homo||||BAZ1A_XENLA\BAZ1A_XENLA\Q:1792-

1895,H:507-610\34.62%ID\E:1e-17\RecName: 

Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Amphibia; Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; 

Xenopus||||BAZ1A_MOUSE\BAZ1A_MOUSE\Q:16

65-1895,H:1298-1537\28.23%ID\E:2e-

17\RecName: Full=Bromodomain adjacent to 

zinc finger domain protein 1A;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||BAZ1A_XENLA\BAZ1A_XENLA\Q:1146-

1265,H:45-151\34.43%ID\E:2e-06\RecName: 

Full=Bromodomain adjacent to zinc finger 

domain protein 1A;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Amphibia; Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; Xenopus 

Mcavernosa10323 PO21_NASVI\PO21_NASVI\Q:162-467,H:418-

757\30.9%ID\E:3e-34\RecName: 

Full=Retrovirus-related Pol polyprotein from 

type-1 retrotransposable element 

GO:0004519\molecular_function\endonuclease 

activity||||GO:0046872\molecular_function\metal ion 

binding||||GO:0003676\molecular_function\nucleic acid 
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R2;\Eukaryota; Metazoa; Ecdysozoa; 

Arthropoda; Hexapoda; Insecta; Pterygota; 

Neoptera; Holometabola; Hymenoptera; 

Apocrita; Terebrantes; Chalcidoidea; 

Pteromalidae; Pteromalinae; 

Nasonia||||POLR_DROME\POLR_DROME\Q:168-

450,H:450-767\28.57%ID\E:9e-25\RecName: 

Full=Retrovirus-related Pol polyprotein from 

type-2 retrotransposable element 

R2DM;\Eukaryota; Metazoa; Ecdysozoa; 

Arthropoda; Hexapoda; Insecta; Pterygota; 

Neoptera; Holometabola; Diptera; Brachycera; 

Muscomorpha; Ephydroidea; Drosophilidae; 

Drosophila; 

Sophophora||||PO21_BRACO\PO21_BRACO\Q:1

71-475,H:268-605\27.78%ID\E:2e-22\RecName: 

Full=Retrovirus-related Pol polyprotein from 

type-1 retrotransposable element 

R2;\Eukaryota; Metazoa; Ecdysozoa; 

Arthropoda; Hexapoda; Insecta; Pterygota; 

Neoptera; Holometabola; Diptera; Nematocera; 

Sciaroidea; Sciaridae; 

Bradysia||||POLR_DROME\POLR_DROME\Q:9-

153,H:63-228\28.74%ID\E:9e-07\RecName: 

Full=Retrovirus-related Pol polyprotein from 

type-2 retrotransposable element 

R2DM;\Eukaryota; Metazoa; Ecdysozoa; 

binding||||GO:0003964\molecular_function\RNA-directed 

DNA polymerase activity 
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Arthropoda; Hexapoda; Insecta; Pterygota; 

Neoptera; Holometabola; Diptera; Brachycera; 

Muscomorpha; Ephydroidea; Drosophilidae; 

Drosophila; Sophophora 

Mcavernosa10778 TS101_MOUSE\TS101_MOUSE\Q:33-111,H:253-

391\30.94%ID\E:1e-08\RecName: Full=Tumor 

susceptibility gene 101 protein;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||TS101_HUMAN\TS101_HUMAN\Q:33-

111,H:252-390\30.94%ID\E:1e-08\RecName: 

Full=Tumor susceptibility gene 101 

protein;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||TS101_RAT\TS101_RAT\Q:33-

111,H:253-391\30.94%ID\E:1e-08\RecName: 

Full=Tumor susceptibility gene 101 

protein;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; 

Rattus 

GO:0005737\cellular_component\cytoplasm||||GO:0005829\

cellular_component\cytosol||||GO:0005769\cellular_compo

nent\early 

endosome||||GO:0031901\cellular_component\early 

endosome 

membrane||||GO:0005768\cellular_component\endosome|||

|GO:0010008\cellular_component\endosome 

membrane||||GO:0000813\cellular_component\ESCRT I 

complex||||GO:0070062\cellular_component\extracellular 

exosome||||GO:0090543\cellular_component\Flemming 

body||||GO:0005770\cellular_component\late 

endosome||||GO:0031902\cellular_component\late 

endosome 

membrane||||GO:0005815\cellular_component\microtubule 

organizing 

center||||GO:0005730\cellular_component\nucleolus||||GO:0

005634\cellular_component\nucleus||||GO:0005886\cellular

_component\plasma 

membrane||||GO:0048306\molecular_function\calcium-

dependent protein 

binding||||GO:0030374\molecular_function\nuclear 

receptor transcription coactivator 
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activity||||GO:0042803\molecular_function\protein 

homodimerization 

activity||||GO:0044877\molecular_function\protein-

containing complex 

binding||||GO:0003714\molecular_function\transcription 

corepressor 

activity||||GO:0043130\molecular_function\ubiquitin 

binding||||GO:0031625\molecular_function\ubiquitin 

protein ligase 

binding||||GO:0046790\molecular_function\virion 

binding||||GO:0007050\biological_process\cell cycle 

arrest||||GO:0030154\biological_process\cell 

differentiation||||GO:0051301\biological_process\cell 

division||||GO:0008333\biological_process\endosome to 

lysosome 

transport||||GO:1990182\biological_process\exosomal 

secretion||||GO:0006858\biological_process\extracellular 

transport||||GO:0030216\biological_process\keratinocyte 

differentiation||||GO:0008285\biological_process\negative 

regulation of cell 

proliferation||||GO:0042059\biological_process\negative 

regulation of epidermal growth factor receptor signaling 

pathway||||GO:0007175\biological_process\negative 

regulation of epidermal growth factor-activated receptor 

activity||||GO:0045892\biological_process\negative 

regulation of transcription, DNA-

templated||||GO:1903543\biological_process\positive 
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regulation of exosomal 

secretion||||GO:2000397\biological_process\positive 

regulation of ubiquitin-dependent 

endocytosis||||GO:1903774\biological_process\positive 

regulation of viral budding via host ESCRT 

complex||||GO:0048524\biological_process\positive 

regulation of viral 

process||||GO:1902188\biological_process\positive 

regulation of viral release from host 

cell||||GO:0006513\biological_process\protein 

monoubiquitination||||GO:0015031\biological_process\prot

ein transport||||GO:0001558\biological_process\regulation 

of cell growth||||GO:1903551\biological_process\regulation 

of extracellular exosome 

assembly||||GO:0043405\biological_process\regulation of 

MAP kinase 

activity||||GO:1903772\biological_process\regulation of viral 

budding via host ESCRT 

complex||||GO:0043162\biological_process\ubiquitin-

dependent protein catabolic process via the multivesicular 

body sorting 

pathway||||GO:0046755\biological_process\viral budding 

Mcavernosa10779 TBC15_MOUSE\TBC15_MOUSE\Q:14-589,H:2-

634\39.5%ID\E:2e-148\RecName: Full=TBC1 

domain family member 15;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

GO:0005737\cellular_component\cytoplasm||||GO:0012505\

cellular_component\endomembrane 

system||||GO:0005576\cellular_component\extracellular 

region||||GO:0005739\cellular_component\mitochondrion|||
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Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia; Myomorpha; Muroidea; Muridae; 

Murinae; Mus; 

Mus||||TBC15_HUMAN\TBC15_HUMAN\Q:14-

622,H:2-685\37.46%ID\E:1e-143\RecName: 

Full=TBC1 domain family member 

15;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||TBC17_MOUSE\TBC17_MOUSE\Q:22-

572,H:7-592\37.9%ID\E:2e-129\RecName: 

Full=TBC1 domain family member 

17;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; Mus 

|GO:0005096\molecular_function\GTPase activator 

activity||||GO:0017137\molecular_function\Rab GTPase 

binding||||GO:0090630\biological_process\activation of 

GTPase 

activity||||GO:0006886\biological_process\intracellular 

protein 

transport||||GO:0043087\biological_process\regulation of 

GTPase 

activity||||GO:0031338\biological_process\regulation of 

vesicle fusion 

Mcavernosa10827 PRP4B_RAT\PRP4B_RAT\Q:378-645,H:502-

772\53.74%ID\E:2e-70\RecName: 

Full=Serine/threonine-protein kinase PRP4 

homolog;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; 

Rattus||||PRP4B_MOUSE\PRP4B_MOUSE\Q:378-

645,H:502-772\53.74%ID\E:3e-70\RecName: 

GO:0071013\cellular_component\catalytic step 2 

spliceosome||||GO:0005694\cellular_component\chromoso

me||||GO:0016607\cellular_component\nuclear 

speck||||GO:0005634\cellular_component\nucleus||||GO:000

5524\molecular_function\ATP 

binding||||GO:0004674\molecular_function\protein 

serine/threonine kinase 

activity||||GO:0006397\biological_process\mRNA 

processing||||GO:0006468\biological_process\protein 
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Full=Serine/threonine-protein kinase PRP4 

homolog;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||PRP4_SCHPO\PRP4_SCHPO\Q:413-

645,H:8-243\40.8%ID\E:2e-36\RecName: 

Full=Serine/threonine-protein kinase 

prp4;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Taphrinomycotina; Schizosaccharomycetes; 

Schizosaccharomycetales; 

Schizosaccharomycetaceae; 

Schizosaccharomyces 

phosphorylation||||GO:0008380\biological_process\RNA 

splicing 

Mcavernosa11156 . . 

Mcavernosa11924 GOLI4_XENTR\GOLI4_XENTR\Q:1-260,H:5-

275\31.87%ID\E:3e-28\RecName: Full=Golgi 

integral membrane protein 4;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Amphibia; Batrachia; Anura; 

Pipoidea; Pipidae; Xenopodinae; Xenopus; 

Silurana||||GOLI4_HUMAN\GOLI4_HUMAN\Q:1-

182,H:5-186\35.16%ID\E:7e-27\RecName: 

Full=Golgi integral membrane protein 

4;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

GO:0010008\cellular_component\endosome 

membrane||||GO:0032580\cellular_component\Golgi 

cisterna 

membrane||||GO:0016021\cellular_component\integral 

component of membrane 
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Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||GOLI4_RAT\GOLI4_RAT\Q:1-196,H:5-

207\33.5%ID\E:2e-26\RecName: Full=Golgi 

integral membrane protein 4;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Rattus 

Mcavernosa12387 RBP2A_PLAF7\RBP2A_PLAF7\Q:228-388,H:2740-

2870\22.98%ID\E:2e-06\RecName: 

Full=Reticulocyte-binding protein 2 homolog a 

{ECO:0000312|EMBL:CAD52492.1};\Eukaryota; 

Alveolata; Apicomplexa; Aconoidasida; 

Haemosporida; Plasmodiidae; Plasmodium; 

Plasmodium 

(Laverania)||||RBP2A_PLAF7\RBP2A_PLAF7\Q:22

5-378,H:2757-2882\25.32%ID\E:3e-06\RecName: 

Full=Reticulocyte-binding protein 2 homolog a 

{ECO:0000312|EMBL:CAD52492.1};\Eukaryota; 

Alveolata; Apicomplexa; Aconoidasida; 

Haemosporida; Plasmodiidae; Plasmodium; 

Plasmodium (Laverania) 

GO:0016021\cellular_component\integral component of 

membrane||||GO:0016020\cellular_component\membrane||

||GO:0005886\cellular_component\plasma 

membrane||||GO:0008201\molecular_function\heparin 

binding||||GO:0098609\biological_process\cell-cell adhesion 

Mcavernosa12418 NSF_PONAB\NSF_PONAB\Q:4-370,H:6-

358\53.68%ID\E:7e-126\RecName: Full=Vesicle-

GO:0005737\cellular_component\cytoplasm||||GO:0005524\

molecular_function\ATP 
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fusing ATPase;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Pongo||||NSF_HUMAN\NSF_HUMAN\Q:4-

370,H:6-358\53.68%ID\E:8e-126\RecName: 

Full=Vesicle-fusing ATPase;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||NSF_MOUSE\NSF_MOUSE\Q:4-370,H:6-

358\53.16%ID\E:9e-126\RecName: Full=Vesicle-

fusing ATPase;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus 

binding||||GO:0016787\molecular_function\hydrolase 

activity||||GO:0046872\molecular_function\metal ion 

binding||||GO:0015031\biological_process\protein transport 

Mcavernosa12633 STML2_MOUSE\STML2_MOUSE\Q:35-237,H:27-

243\70.05%ID\E:4e-103\RecName: 

Full=Stomatin-like protein 2, 

mitochondrial;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||STML2_RAT\STML2_RAT\Q:35-237,H:27-

GO:0015629\cellular_component\actin 

cytoskeleton||||GO:0008180\cellular_component\COP9 

signalosome||||GO:0019897\cellular_component\extrinsic 

component of plasma 

membrane||||GO:0001772\cellular_component\immunologi

cal synapse||||GO:0045121\cellular_component\membrane 

raft||||GO:0005743\cellular_component\mitochondrial inner 

membrane||||GO:0005758\cellular_component\mitochondri
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243\70.05%ID\E:6e-103\RecName: 

Full=Stomatin-like protein 2, 

mitochondrial;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; 

Rattus||||STML2_HUMAN\STML2_HUMAN\Q:35-

262,H:27-268\67.77%ID\E:3e-102\RecName: 

Full=Stomatin-like protein 2, 

mitochondrial;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; Homo 

al intermembrane 

space||||GO:0005739\cellular_component\mitochondrion||||

GO:0042101\cellular_component\T cell receptor 

complex||||GO:1901612\molecular_function\cardiolipin 

binding||||GO:0051020\molecular_function\GTPase 

binding||||GO:0035710\biological_process\CD4-positive, 

alpha-beta T cell 

activation||||GO:0006874\biological_process\cellular 

calcium ion 

homeostasis||||GO:0032623\biological_process\interleukin-

2 production||||GO:0010876\biological_process\lipid 

localization||||GO:0042776\biological_process\mitochondri

al ATP synthesis coupled proton 

transport||||GO:0006851\biological_process\mitochondrial 

calcium ion transmembrane 

transport||||GO:0034982\biological_process\mitochondrial 

protein 

processing||||GO:0007005\biological_process\mitochondrio

n organization||||GO:1900210\biological_process\positive 

regulation of cardiolipin metabolic 

process||||GO:0090297\biological_process\positive 

regulation of mitochondrial DNA 

replication||||GO:0010918\biological_process\positive 

regulation of mitochondrial membrane 

potential||||GO:0051259\biological_process\protein 

complex 

oligomerization||||GO:1990046\biological_process\stress-
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induced mitochondrial 

fusion||||GO:0050852\biological_process\T cell receptor 

signaling pathway 

Mcavernosa13288 . . 

Mcavernosa14493 PEAM1_ARATH\PEAM1_ARATH\Q:3-225,H:229-

491\45.63%ID\E:7e-70\RecName: 

Full=Phosphoethanolamine N-

methyltransferase 1;\Eukaryota; Viridiplantae; 

Streptophyta; Embryophyta; Tracheophyta; 

Spermatophyta; Magnoliophyta; 

eudicotyledons; Gunneridae; Pentapetalae; 

rosids; malvids; Brassicales; Brassicaceae; 

Camelineae; 

Arabidopsis||||PEAMT_SPIOL\PEAMT_SPIOL\Q:1

1-224,H:240-493\49.21%ID\E:5e-68\RecName: 

Full=Phosphoethanolamine N-

methyltransferase;\Eukaryota; Viridiplantae; 

Streptophyta; Embryophyta; Tracheophyta; 

Spermatophyta; Magnoliophyta; 

eudicotyledons; Gunneridae; Pentapetalae; 

Caryophyllales; Chenopodiaceae; 

Chenopodioideae; Anserineae; 

Spinacia||||PEAM3_ARATH\PEAM3_ARATH\Q:11-

225,H:236-490\47.06%ID\E:5e-68\RecName: 

Full=Phosphoethanolamine N-

GO:0005737\cellular_component\cytoplasm||||GO:0005829\

cellular_component\cytosol||||GO:0008168\molecular_func

tion\methyltransferase 

activity||||GO:0000234\molecular_function\phosphoethanol

amine N-methyltransferase 

activity||||GO:0042425\biological_process\choline 

biosynthetic 

process||||GO:0006656\biological_process\phosphatidylcho

line biosynthetic 

process||||GO:0009555\biological_process\pollen 

development||||GO:0009860\biological_process\pollen tube 

growth||||GO:0010183\biological_process\pollen tube 

guidance||||GO:0048528\biological_process\post-embryonic 

root 

development||||GO:0009826\biological_process\unidimensi

onal cell growth 
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methyltransferase 3;\Eukaryota; Viridiplantae; 

Streptophyta; Embryophyta; Tracheophyta; 

Spermatophyta; Magnoliophyta; 

eudicotyledons; Gunneridae; Pentapetalae; 

rosids; malvids; Brassicales; Brassicaceae; 

Camelineae; Arabidopsis 

Mcavernosa15231 . . 

Mcavernosa15309 PNO1_NEMVE\PNO1_NEMVE\Q:17-293,H:4-

238\67.51%ID\E:3e-130\RecName: Full=RNA-

binding protein pno1;\Eukaryota; Metazoa; 

Cnidaria; Anthozoa; Hexacorallia; Actiniaria; 

Edwardsiidae; 

Nematostella||||PNO1_XENLA\PNO1_XENLA\Q:2

0-293,H:2-236\62.82%ID\E:4e-116\RecName: 

Full=RNA-binding protein PNO1;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Amphibia; Batrachia; Anura; 

Pipoidea; Pipidae; Xenopodinae; Xenopus; 

Xenopus||||PNO1_XENTR\PNO1_XENTR\Q:23-

293,H:5-236\62.77%ID\E:2e-114\RecName: 

Full=RNA-binding protein PNO1;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Amphibia; Batrachia; Anura; 

Pipoidea; Pipidae; Xenopodinae; Xenopus; 

Silurana 

GO:0005730\cellular_component\nucleolus||||GO:0003723\

molecular_function\RNA binding 
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Mcavernosa15943 . . 

Mcavernosa17684 DHRS7_MOUSE\DHRS7_MOUSE\Q:1-208,H:103-

308\49.28%ID\E:5e-59\RecName: 

Full=Dehydrogenase/reductase SDR family 

member 7;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||DHRS7_HUMAN\DHRS7_HUMAN\Q:1-

201,H:103-301\50%ID\E:2e-57\RecName: 

Full=Dehydrogenase/reductase SDR family 

member 7;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||DRS7C_XENTR\DRS7C_XENTR\Q:8-

137,H:98-226\42.31%ID\E:1e-30\RecName: 

Full=Dehydrogenase/reductase SDR family 

member 7C;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Amphibia; 

Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; Silurana 

GO:0016491\molecular_function\oxidoreductase activity 

Mcavernosa17728 SHKD_DICDI\SHKD_DICDI\Q:320-557,H:283-

522\31.1%ID\E:3e-17\RecName: Full=Dual 

specificity protein kinase shkD;\Eukaryota; 

GO:0005622\cellular_component\intracellular||||GO:001602

0\cellular_component\membrane||||GO:0005524\molecular

_function\ATP 
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Amoebozoa; Mycetozoa; Dictyostelids; 

Dictyosteliales; Dictyosteliaceae; 

Dictyostelium||||SHKA_DICDI\SHKA_DICDI\Q:31

7-557,H:48-292\29.66%ID\E:7e-17\RecName: 

Full=Dual specificity protein kinase 

shkA;\Eukaryota; Amoebozoa; Mycetozoa; 

Dictyostelids; Dictyosteliales; Dictyosteliaceae; 

Dictyostelium||||FPS_FUJSV\FPS_FUJSV\Q:320-

557,H:618-857\28.19%ID\E:2e-15\RecName: 

Full=Tyrosine-protein kinase transforming 

protein Fps;\Viruses; Ortervirales; Retroviridae; 

Orthoretrovirinae; Alpharetrovirus 

binding||||GO:0004674\molecular_function\protein 

serine/threonine kinase 

activity||||GO:0004713\molecular_function\protein tyrosine 

kinase 

activity||||GO:0035556\biological_process\intracellular 

signal transduction 

Mcavernosa17728 SHKD_DICDI\SHKD_DICDI\Q:320-557,H:283-

522\31.1%ID\E:3e-17\RecName: Full=Dual 

specificity protein kinase shkD;\Eukaryota; 

Amoebozoa; Mycetozoa; Dictyostelids; 

Dictyosteliales; Dictyosteliaceae; 

Dictyostelium||||SHKA_DICDI\SHKA_DICDI\Q:31

7-557,H:48-292\29.66%ID\E:7e-17\RecName: 

Full=Dual specificity protein kinase 

shkA;\Eukaryota; Amoebozoa; Mycetozoa; 

Dictyostelids; Dictyosteliales; Dictyosteliaceae; 

Dictyostelium||||FPS_FUJSV\FPS_FUJSV\Q:320-

557,H:618-857\28.19%ID\E:2e-15\RecName: 

Full=Tyrosine-protein kinase transforming 

GO:0005622\cellular_component\intracellular||||GO:001602

0\cellular_component\membrane||||GO:0005524\molecular

_function\ATP 

binding||||GO:0004674\molecular_function\protein 

serine/threonine kinase 

activity||||GO:0004713\molecular_function\protein tyrosine 

kinase 

activity||||GO:0035556\biological_process\intracellular 

signal transduction 
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protein Fps;\Viruses; Ortervirales; Retroviridae; 

Orthoretrovirinae; Alpharetrovirus 

Mcavernosa17732 K0100_HUMAN\K0100_HUMAN\Q:1-1249,H:574-

1883\33.41%ID\E:0\RecName: Full=Protein 

KIAA0100;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||K0100_MOUSE\K0100_MOUSE\Q:1-

1249,H:574-1883\32.74%ID\E:0\RecName: 

Full=Protein KIAA0100;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia; Myomorpha; Muroidea; Muridae; 

Murinae; Mus; 

Mus||||KIP_ARATH\KIP_ARATH\Q:327-

668,H:1082-1456\23.16%ID\E:1e-12\RecName: 

Full=Protein KINKY POLLEN 

{ECO:0000303|PubMed:14675453};\Eukaryota; 

Viridiplantae; Streptophyta; Embryophyta; 

Tracheophyta; Spermatophyta; Magnoliophyta; 

eudicotyledons; Gunneridae; Pentapetalae; 

rosids; malvids; Brassicales; Brassicaceae; 

Camelineae; Arabidopsis 

GO:0005576\cellular_component\extracellular region 
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Mcavernosa17932 PB1_HUMAN\PB1_HUMAN\Q:3-1153,H:5-

1184\35.74%ID\E:0\RecName: Full=Protein 

polybromo-1;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||PB1_MOUSE\PB1_MOUSE\Q:3-

1153,H:5-1184\34.73%ID\E:0\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia; Myomorpha; Muroidea; Muridae; 

Murinae; Mus; 

Mus||||PB1_CHICK\PB1_CHICK\Q:229-

1166,H:169-1196\35.39%ID\E:9e-161\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:46-

799,H:181-877\25.76%ID\E:4e-56\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

GO:0000228\cellular_component\nuclear 

chromosome||||GO:0005654\cellular_component\nucleopla

sm||||GO:0016586\cellular_component\RSC-type 

complex||||GO:0003682\molecular_function\chromatin 

binding||||GO:0003677\molecular_function\DNA 

binding||||GO:0006338\biological_process\chromatin 

remodeling||||GO:0000278\biological_process\mitotic cell 

cycle||||GO:0008285\biological_process\negative regulation 

of cell 

proliferation||||GO:0006355\biological_process\regulation 

of transcription, DNA-

templated||||GO:0006351\biological_process\transcription, 

DNA-templated 
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Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:37-

632,H:373-861\24.14%ID\E:4e-39\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:419-

800,H:54-486\28.77%ID\E:5e-36\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:3-142,H:5-

145\49.65%ID\E:7e-36\RecName: Full=Protein 

polybromo-1;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:527-
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799,H:34-284\32.6%ID\E:2e-34\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:678-

800,H:30-153\39.52%ID\E:2e-18\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:222-

333,H:12-141\31.54%ID\E:1e-10\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:964-

1054,H:1149-1261\29.82%ID\E:7e-07\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 
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Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_CHICK\PB1_CHICK\Q:2-149,H:480-

623\23.49%ID\E:2e-06\RecName: Full=Protein 

polybromo-1;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||PB1_HUMAN\PB1_HUMAN\Q:964-

1054,H:1150-1262\28.07%ID\E:5e-06\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Homo||||PB1_MOUSE\PB1_MOUSE\Q:964-

1054,H:1150-1262\28.07%ID\E:6e-06\RecName: 

Full=Protein polybromo-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia; Myomorpha; Muroidea; Muridae; 

Murinae; Mus; Mus 
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Mcavernosa18050 SYAC_CAEEL\SYAC_CAEEL\Q:38-291,H:3-

272\68.52%ID\E:1e-133\RecName: Full=Alanine-

-tRNA ligase, cytoplasmic 

{ECO:0000255|HAMAP-

Rule:MF_03133};\Eukaryota; Metazoa; 

Ecdysozoa; Nematoda; Chromadorea; 

Rhabditida; Rhabditoidea; Rhabditidae; 

Peloderinae; 

Caenorhabditis||||SYAC_MOUSE\SYAC_MOUSE\

Q:35-291,H:1-272\68.5%ID\E:3e-132\RecName: 

Full=Alanine--tRNA ligase, cytoplasmic 

{ECO:0000255|HAMAP-

Rule:MF_03133};\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||SYAC_HUMAN\SYAC_HUMAN\Q:35-

291,H:1-272\68.13%ID\E:2e-131\RecName: 

Full=Alanine--tRNA ligase, cytoplasmic 

{ECO:0000255|HAMAP-

Rule:MF_03133};\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; Homo 

GO:0005737\cellular_component\cytoplasm||||GO:0004813\

molecular_function\alanine-tRNA ligase 

activity||||GO:0016597\molecular_function\amino acid 

binding||||GO:0005524\molecular_function\ATP 

binding||||GO:0046872\molecular_function\metal ion 

binding||||GO:0000049\molecular_function\tRNA 

binding||||GO:0006419\biological_process\alanyl-tRNA 

aminoacylation||||GO:0006400\biological_process\tRNA 

modification 

Mcavernosa18988 MYH9_HUMAN\MYH9_HUMAN\Q:5299-

6165,H:882-1733\22.86%ID\E:2e-32\RecName: 

GO:0015629\cellular_component\actin 

cytoskeleton||||GO:0042641\cellular_component\actomyosi
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Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||MYH10_HUMAN\MYH10_HUMAN\Q:531

8-6165,H:868-1740\23.03%ID\E:2e-31\RecName: 

Full=Myosin-10;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||MYH9_CANLF\MYH9_CANLF\Q:5299-

6165,H:882-1733\22.49%ID\E:5e-31\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Laurasiatheria; Carnivora; Caniformia; 

Canidae; 

Canis||||MYH9_HUMAN\MYH9_HUMAN\Q:5316-

6173,H:1001-1895\22.29%ID\E:4e-26\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||MYH9_CANLF\MYH9_CANLF\Q:5316-

6159,H:1001-1913\21.52%ID\E:3e-25\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Laurasiatheria; Carnivora; Caniformia; 

n||||GO:0005826\cellular_component\actomyosin 

contractile ring||||GO:0005903\cellular_component\brush 

border||||GO:0031252\cellular_component\cell leading 

edge||||GO:0005913\cellular_component\cell-cell adherens 

junction||||GO:0032154\cellular_component\cleavage 

furrow||||GO:0005737\cellular_component\cytoplasm||||GO:

0005829\cellular_component\cytosol||||GO:0070062\cellula

r_component\extracellular 

exosome||||GO:0005925\cellular_component\focal 

adhesion||||GO:0001772\cellular_component\immunologic

al 

synapse||||GO:0016020\cellular_component\membrane||||G

O:0016460\cellular_component\myosin II 

complex||||GO:0097513\cellular_component\myosin II 

filament||||GO:0031594\cellular_component\neuromuscular 

junction||||GO:0005634\cellular_component\nucleus||||GO:0

005886\cellular_component\plasma 

membrane||||GO:0032991\cellular_component\protein-

containing 

complex||||GO:0001726\cellular_component\ruffle||||GO:000

5819\cellular_component\spindle||||GO:0001725\cellular_c

omponent\stress 

fiber||||GO:0001931\cellular_component\uropod||||GO:0003

779\molecular_function\actin 

binding||||GO:0051015\molecular_function\actin filament 

binding||||GO:0030898\molecular_function\actin-

dependent ATPase 
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Canidae; 

Canis||||MYH10_HUMAN\MYH10_HUMAN\Q:4967

-6049,H:843-1930\22.26%ID\E:8e-25\RecName: 

Full=Myosin-10;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||MYH9_HUMAN\MYH9_HUMAN\Q:5299-

6049,H:1184-1923\22.25%ID\E:1e-21\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||MYH9_CANLF\MYH9_CANLF\Q:5299-

6049,H:1184-1923\22.35%ID\E:5e-21\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Laurasiatheria; Carnivora; Caniformia; 

Canidae; 

Canis||||MYH9_CANLF\MYH9_CANLF\Q:5454-

6174,H:884-1677\21.25%ID\E:5e-20\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Laurasiatheria; Carnivora; Caniformia; 

Canidae; 

Canis||||MYH10_HUMAN\MYH10_HUMAN\Q:5598

-6200,H:840-1390\23.41%ID\E:1e-18\RecName: 

activity||||GO:0043531\molecular_function\ADP 

binding||||GO:0005524\molecular_function\ATP 

binding||||GO:0016887\molecular_function\ATPase 

activity||||GO:0045296\molecular_function\cadherin 

binding||||GO:0005516\molecular_function\calmodulin 

binding||||GO:0000146\molecular_function\microfila ment 

motor 

activity||||GO:0008017\molecular_function\microtubule 

binding||||GO:0003777\molecular_function\microtubule 

motor activity||||GO:0003774\molecular_function\motor 

activity||||GO:0019904\molecular_function\protein domain 

specific binding||||GO:0042803\molecular_function\protein 

homodimerization 

activity||||GO:0043495\molecular_function\protein 

membrane anchor||||GO:0003723\molecular_function\RNA 

binding||||GO:0031532\biological_process\actin 

cytoskeleton 

reorganization||||GO:0030048\biological_process\actin 

filament-based 

movement||||GO:0031032\biological_process\actomyosin 

structure 

organization||||GO:0001525\biological_process\angiogenesi

s||||GO:0043534\biological_process\blood vessel 

endothelial cell 

migration||||GO:0032506\biological_process\cytokinetic 

process||||GO:0051295\biological_process\establishment of 

meiotic spindle 
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Full=Myosin-10;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||MYH9_HUMAN\MYH9_HUMAN\Q:5571-

6175,H:842-1512\24.75%ID\E:1e-16\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||MYH9_CANLF\MYH9_CANLF\Q:5571-

6175,H:842-1512\25.43%ID\E:6e-16\RecName: 

Full=Myosin-9;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Laurasiatheria; Carnivora; Caniformia; 

Canidae; Canis 

localization||||GO:0001768\biological_process\establishmen

t of T cell polarity||||GO:0001701\biological_process\in utero 

embryonic 

development||||GO:0007229\biological_process\integrin-

mediated signaling 

pathway||||GO:0050900\biological_process\leukocyte 

migration||||GO:0000212\biological_process\meiotic 

spindle 

organization||||GO:0006509\biological_process\membrane 

protein ectodomain 

proteolysis||||GO:0007018\biological_process\microtubule-

based 

movement||||GO:0030224\biological_process\monocyte 

differentiation||||GO:0007520\biological_process\myoblast 

fusion||||GO:1903919\biological_process\negative 

regulation of actin filament 

severing||||GO:0006911\biological_process\phagocytosis, 

engulfment||||GO:0070527\biological_process\platelet 

aggregation||||GO:0030220\biological_process\platelet 

formation||||GO:1903923\biological_process\positive 

regulation of protein processing in phagocytic 

vesicle||||GO:0015031\biological_process\protein 

transport||||GO:0008360\biological_process\regulation of 

cell shape||||GO:0032796\biological_process\uropod 

organization 

Mcavernosa19071 . . 
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Mcavernosa21397 . . 

Mcavernosa21398 RPA1_HUMAN\RPA1_HUMAN\Q:5-228,H:548-

767\63.84%ID\E:3e-95\RecName: Full=DNA-

directed RNA polymerase I subunit 

RPA1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||RPA1_MOUSE\RPA1_MOUSE\Q:5-

228,H:555-774\62.95%ID\E:9e-95\RecName: 

Full=DNA-directed RNA polymerase I subunit 

RPA1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||RPA1_RAT\RPA1_RAT\Q:5-228,H:555-

774\62.5%ID\E:1e-93\RecName: Full=DNA-

directed RNA polymerase I subunit 

RPA1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Rattus 

GO:0005736\cellular_component\DNA-directed RNA 

polymerase I 

complex||||GO:0005654\cellular_component\nucleoplasm|||

|GO:0003682\molecular_function\chromatin 

binding||||GO:0003677\molecular_function\DNA 

binding||||GO:0001054\molecular_function\RNA polymerase 

I activity||||GO:0008270\molecular_function\zinc ion 

binding||||GO:1904750\biological_process\negative 

regulation of protein localization to 

nucleolus||||GO:0045815\biological_process\positive 

regulation of gene expression, 

epigenetic||||GO:0006363\biological_process\termination of 

RNA polymerase I 

transcription||||GO:0006361\biological_process\transcriptio

n initiation from RNA polymerase I promoter 

Mcavernosa21581 CASP2_CHICK\CASP2_CHICK\Q:1-411,H:7-

418\30.05%ID\E:4e-62\RecName: Full=Caspase-

2;\Eukaryota; Metazoa; Chordata; Craniata; 

GO:0005737\cellular_component\cytoplasm||||GO:0097200\

molecular_function\cysteine-type endopeptidase activity 

involved in execution phase of 
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Vertebrata; Euteleostomi; Archelosauria; 

Archosauria; Dinosauria; Saurischia; Theropoda; 

Coelurosauria; Aves; Neognathae; Galloanserae; 

Galliformes; Phasianidae; Phasianinae; 

Gallus||||CASP2_HUMAN\CASP2_HUMAN\Q:1-

411,H:32-447\32.95%ID\E:7e-60\RecName: 

Full=Caspase-2;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||CASP2_MOUSE\CASP2_MOUSE\Q:6-

411,H:37-447\32.57%ID\E:1e-59\RecName: 

Full=Caspase-2;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus 

apoptosis||||GO:0097194\biological_process\execution 

phase of 

apoptosis||||GO:0042981\biological_process\regulation of 

apoptotic process 

Mcavernosa22143 ANM5_HUMAN\ANM5_HUMAN\Q:26-327,H:182-

483\65.56%ID\E:9e-140\RecName: Full=Protein 

arginine N-methyltransferase 5;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||ANM5_PONAB\ANM5_PONAB\Q:26-

327,H:182-483\65.56%ID\E:2e-139\RecName: 

GO:0005737\cellular_component\cytoplasm||||GO:0005829\

cellular_component\cytosol||||GO:0005794\cellular_compo

nent\Golgi 

apparatus||||GO:0035097\cellular_component\histone 

methyltransferase 

complex||||GO:0034709\cellular_component\methylosome||

||GO:0005654\cellular_component\nucleoplasm||||GO:0005

634\cellular_component\nucleus||||GO:0001046\molecular_

function\core promoter sequence-specific DNA 
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Full=Protein arginine N-methyltransferase 

5;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Pongo||||ANM5_MACFA\ANM5_MACFA\Q:26-

327,H:182-483\65.23%ID\E:7e-139\RecName: 

Full=Protein arginine N-methyltransferase 

5;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Cercopithecidae; Cercopithecinae; 

Macaca||||ANM5_HUMAN\ANM5_HUMAN\Q:327-

377,H:587-637\47.06%ID\E:3e-08\RecName: 

Full=Protein arginine N-methyltransferase 

5;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||ANM5_PONAB\ANM5_PONAB\Q:327-

377,H:587-637\47.06%ID\E:3e-08\RecName: 

Full=Protein arginine N-methyltransferase 

5;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Pongo||||ANM5_MACFA\ANM5_MACFA\Q:327-

binding||||GO:0044020\molecular_function\histone 

methyltransferase activity (H4-R3 

specific)||||GO:0008469\molecular_function\histone-

arginine N-methyltransferase 

activity||||GO:0042802\molecular_function\identical protein 

binding||||GO:0008327\molecular_function\methyl-CpG 

binding||||GO:0008168\molecular_function\methyltransfera

se activity||||GO:0046982\molecular_function\protein 

heterodimerization 

activity||||GO:0016274\molecular_function\protein-arginine 

N-methyltransferase 

activity||||GO:0035243\molecular_function\protein-arginine 

omega-N symmetric methyltransferase 

activity||||GO:0043021\molecular_function\ribonucleoprote

in complex 

binding||||GO:0003714\molecular_function\transcription 

corepressor activity||||GO:0008283\biological_process\cell 

proliferation||||GO:0032922\biological_process\circadian 

regulation of gene 

expression||||GO:0006353\biological_process\DNA-

templated transcription, 

termination||||GO:0042118\biological_process\endothelial 

cell activation||||GO:0090161\biological_process\Golgi 

ribbon formation||||GO:0043985\biological_process\histone 

H4-R3 methylation||||GO:0097421\biological_process\liver 

regeneration||||GO:0045596\biological_process\negative 

regulation of cell 
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377,H:587-637\47.06%ID\E:3e-08\RecName: 

Full=Protein arginine N-methyltransferase 

5;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Cercopithecidae; Cercopithecinae; 

Macaca 

differentiation||||GO:0018216\biological_process\peptidyl-

arginine 

methylation||||GO:0035246\biological_process\peptidyl-

arginine N-

methylation||||GO:1904992\biological_process\positive 

regulation of adenylate cyclase-inhibiting dopamine 

receptor signaling 

pathway||||GO:0048714\biological_process\positive 

regulation of oligodendrocyte 

differentiation||||GO:0044030\biological_process\regulation 

of DNA 

methylation||||GO:0070372\biological_process\regulation of 

ERK1 and ERK2 

cascade||||GO:0007088\biological_process\regulation of 

mitotic nuclear 

division||||GO:1901796\biological_process\regulation of 

signal transduction by p53 class 

mediator||||GO:0006355\biological_process\regulation of 

transcription, DNA-

templated||||GO:0000387\biological_process\spliceosomal 

snRNP assembly 

Mcavernosa22765 NEO1_MOUSE\NEO1_MOUSE\Q:31-714,H:65-

727\31.07%ID\E:4e-78\RecName: 

Full=Neogenin;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

GO:0009986\cellular_component\cell 

surface||||GO:0005794\cellular_component\Golgi 

apparatus||||GO:0005887\cellular_component\integral 

component of plasma 

membrane||||GO:0097708\cellular_component\intracellular 
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Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||NEO1_CHICK\NEO1_CHICK\Q:17-685,H:6-

659\30.14%ID\E:1e-76\RecName: 

Full=Neogenin;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; 

Gallus||||NEO1_RAT\NEO1_RAT\Q:31-714,H:23-

665\29.6%ID\E:5e-74\RecName: 

Full=Neogenin;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; 

Rattus||||NEO1_MOUSE\NEO1_MOUSE\Q:429-

720,H:563-843\26.94%ID\E:2e-18\RecName: 

Full=Neogenin;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||NEO1_RAT\NEO1_RAT\Q:429-720,H:501-

781\26.6%ID\E:4e-18\RecName: 

Full=Neogenin;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; 

vesicle||||GO:0016020\cellular_component\membrane||||GO

:0043025\cellular_component\neuronal cell 

body||||GO:0005654\cellular_component\nucleoplasm||||GO

:0005886\cellular_component\plasma 

membrane||||GO:0098797\cellular_component\plasma 

membrane protein 

complex||||GO:0070700\molecular_function\BMP receptor 

binding||||GO:0045296\molecular_function\cadherin 

binding||||GO:0039706\molecular_function\co-receptor 

binding||||GO:0038023\molecular_function\signaling 

receptor activity||||GO:0007411\biological_process\axon 

guidance||||GO:0007155\biological_process\cell 

adhesion||||GO:0055072\biological_process\iron ion 

homeostasis||||GO:0007520\biological_process\myoblast 

fusion||||GO:0048681\biological_process\negative 

regulation of axon 

regeneration||||GO:1901215\biological_process\negative 

regulation of neuron 

death||||GO:0050709\biological_process\negative 

regulation of protein 

secretion||||GO:0001764\biological_process\neuron 

migration||||GO:0030513\biological_process\positive 

regulation of BMP signaling 

pathway||||GO:0048679\biological_process\regulation of 

axon 

regeneration||||GO:2001222\biological_process\regulation 

of neuron 
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Rattus||||NEO1_CHICK\NEO1_CHICK\Q:428-

720,H:517-797\26.51%ID\E:3e-15\RecName: 

Full=Neogenin;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; 

Archelosauria; Archosauria; Dinosauria; 

Saurischia; Theropoda; Coelurosauria; Aves; 

Neognathae; Galloanserae; Galliformes; 

Phasianidae; Phasianinae; Gallus 

migration||||GO:0006355\biological_process\regulation of 

transcription, DNA-templated 

Mcavernosa22932 HNRL1_MOUSE\HNRL1_MOUSE\Q:42-

427,H:212-601\53.33%ID\E:3e-139\RecName: 

Full=Heterogeneous nuclear ribonucleoprotein 

U-like protein 1;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||HNRL1_HUMAN\HNRL1_HUMAN\Q:42-

427,H:211-600\53.08%ID\E:3e-139\RecName: 

Full=Heterogeneous nuclear ribonucleoprotein 

U-like protein 1;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||HNRPU_HUMAN\HNRPU_HUMAN\Q:42-

434,H:288-675\45.2%ID\E:2e-107\RecName: 

Full=Heterogeneous nuclear ribonucleoprotein 

U {ECO:0000303|PubMed:1628625};\Eukaryota; 

GO:0005654\cellular_component\nucleoplasm||||GO:00056

34\cellular_component\nucleus||||GO:0019899\molecular_f

unction\enzyme 

binding||||GO:0003723\molecular_function\RNA 

binding||||GO:0006355\biological_process\regulation of 

transcription, DNA-

templated||||GO:0009615\biological_process\response to 

virus||||GO:0006396\biological_process\RNA 

processing||||GO:0006351\biological_process\transcription, 

DNA-templated 
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Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; Homo 

Mcavernosa23092 . . 

Mcavernosa23639 . . 

Mcavernosa23645 LDHD_HUMAN\LDHD_HUMAN\Q:37-381,H:20-

414\53.42%ID\E:1e-141\RecName: 

Full=Probable D-lactate dehydrogenase, 

mitochondrial;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||LDHD_MOUSE\LDHD_MOUSE\Q:44-

381,H:27-391\56.44%ID\E:3e-136\RecName: 

Full=Probable D-lactate dehydrogenase, 

mitochondrial;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||DLD_ARATH\DLD_ARATH\Q:41-

382,H:103-469\38.27%ID\E:2e-80\RecName: 

Full=D-lactate dehydrogenase [cytochrome], 

mitochondrial;\Eukaryota; Viridiplantae; 

GO:0005743\cellular_component\mitochondrial inner 

membrane||||GO:0005739\cellular_component\mitochondri

on||||GO:0004458\molecular_function\D-lactate 

dehydrogenase (cytochrome) 

activity||||GO:0050660\molecular_function\flavin adenine 

dinucleotide binding 
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Streptophyta; Embryophyta; Tracheophyta; 

Spermatophyta; Magnoliophyta; 

eudicotyledons; Gunneridae; Pentapetalae; 

rosids; malvids; Brassicales; Brassicaceae; 

Camelineae; Arabidopsis 

Mcavernosa24360 HMCN1_HUMAN\HMCN1_HUMAN\Q:66-

360,H:3114-3384\22.88%ID\E:5e-08\RecName: 

Full=Hemicentin-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Homo||||HMCN2_MOUSE\HMCN2_MOUSE\Q:61-

367,H:745-1021\24.85%ID\E:9e-08\RecName: 

Full=Hemicentin-2;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia; Myomorpha; Muroidea; Muridae; 

Murinae; Mus; 

Mus||||HMCN1_HUMAN\HMCN1_HUMAN\Q:66-

359,H:3490-3844\22.31%ID\E:2e-07\RecName: 

Full=Hemicentin-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Homo||||HMCN1_MOUSE\HMCN1_MOUSE\Q:40-

354,H:3493-3747\21.77%ID\E:2e-07\RecName: 

GO:0005604\cellular_component\basement 

membrane||||GO:0005938\cellular_component\cell 

cortex||||GO:0030054\cellular_component\cell 

junction||||GO:0032154\cellular_component\cleavage 

furrow||||GO:0070062\cellular_component\extracellular 

exosome||||GO:0005509\molecular_function\calcium ion 

binding||||GO:0007049\biological_process\cell 

cycle||||GO:0051301\biological_process\cell 

division||||GO:0050896\biological_process\response to 

stimulus||||GO:0007601\biological_process\visual 

perception 
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Full=Hemicentin-1 

{ECO:0000312|MGI:MGI:2685047};\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||HMCN1_MOUSE\HMCN1_MOUSE\Q:55-

359,H:2718-3004\23.05%ID\E:4e-07\RecName: 

Full=Hemicentin-1 

{ECO:0000312|MGI:MGI:2685047};\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||HMCN1_HUMAN\HMCN1_HUMAN\Q:67-

359,H:2730-3005\21.79%ID\E:6e-07\RecName: 

Full=Hemicentin-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Homo||||HMCN1_HUMAN\HMCN1_HUMAN\Q:62-

367,H:3393-3670\22.89%ID\E:1e-05\RecName: 

Full=Hemicentin-1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini; Catarrhini; Hominidae; 

Homo 
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Mcavernosa25195 FBP1_STRPU\FBP1_STRPU\Q:220-791,H:227-

823\39.97%ID\E:3e-115\RecName: 

Full=Fibropellin-1;\Eukaryota; Metazoa; 

Echinodermata; Eleutherozoa; Echinozoa; 

Echinoidea; Euechinoidea; Echinacea; 

Echinoida; Strongylocentrotidae; 

Strongylocentrotus||||FBP1_STRPU\FBP1_STRP

U\Q:221-791,H:173-785\38.66%ID\E:6e-

111\RecName: Full=Fibropellin-1;\Eukaryota; 

Metazoa; Echinodermata; Eleutherozoa; 

Echinozoa; Echinoidea; Euechinoidea; 

Echinacea; Echinoida; Strongylocentrotidae; 

Strongylocentrotus||||FBP1_STRPU\FBP1_STRP

U\Q:205-791,H:304-899\38.94%ID\E:2e-

110\RecName: Full=Fibropellin-1;\Eukaryota; 

Metazoa; Echinodermata; Eleutherozoa; 

Echinozoa; Echinoidea; Euechinoidea; 

Echinacea; Echinoida; Strongylocentrotidae; 

Strongylocentrotus||||FBP1_STRPU\FBP1_STRP

U\Q:205-751,H:353-936\39.66%ID\E:6e-

106\RecName: Full=Fibropellin-1;\Eukaryota; 

Metazoa; Echinodermata; Eleutherozoa; 

Echinozoa; Echinoidea; Euechinoidea; 

Echinacea; Echinoida; Strongylocentrotidae; 

Strongylocentrotus||||NOTC1_XENTR\NOTC1_XE

NTR\Q:228-791,H:397-983\38.94%ID\E:4e-

104\RecName: Full=Neurogenic locus notch 

GO:0032579\cellular_component\apical lamina of hyaline 

layer||||GO:0031410\cellular_component\cytoplasmic 

vesicle||||GO:0005615\cellular_component\extracellular 

space||||GO:0005509\molecular_function\calcium ion 

binding 



 267 

gene sprot_Top_BLASTP_hit gene_ontology_blast 

homolog protein 1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Amphibia; Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; 

Silurana||||NOTC1_MOUSE\NOTC1_MOUSE\Q:22

8-791,H:398-984\38.67%ID\E:2e-102\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||FBP1_STRPU\FBP1_STRPU\Q:263-

791,H:172-709\39.45%ID\E:4e-99\RecName: 

Full=Fibropellin-1;\Eukaryota; Metazoa; 

Echinodermata; Eleutherozoa; Echinozoa; 

Echinoidea; Euechinoidea; Echinacea; 

Echinoida; Strongylocentrotidae; 

Strongylocentrotus||||NOTC1_XENTR\NOTC1_XE

NTR\Q:223-788,H:658-1345\33.57%ID\E:3e-

94\RecName: Full=Neurogenic locus notch 

homolog protein 1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Amphibia; Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; 

Silurana||||NOTC1_MOUSE\NOTC1_MOUSE\Q:20

5-791,H:628-1349\33.33%ID\E:2e-93\RecName: 

Full=Neurogenic locus notch homolog protein 
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1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||NOTC1_XENTR\NOTC1_XENTR\Q:228-

787,H:128-712\38.06%ID\E:1e-91\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Amphibia; Batrachia; 

Anura; Pipoidea; Pipidae; Xenopodinae; 

Xenopus; 

Silurana||||FBP1_STRPU\FBP1_STRPU\Q:172-

670,H:392-935\38.83%ID\E:1e-90\RecName: 

Full=Fibropellin-1;\Eukaryota; Metazoa; 

Echinodermata; Eleutherozoa; Echinozoa; 

Echinoidea; Euechinoidea; Echinacea; 

Echinoida; Strongylocentrotidae; 

Strongylocentrotus||||NOTC1_XENTR\NOTC1_XE

NTR\Q:227-790,H:241-790\35.64%ID\E:1e-

87\RecName: Full=Neurogenic locus notch 

homolog protein 1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Amphibia; Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; 

Silurana||||NOTC1_XENTR\NOTC1_XENTR\Q:222

-791,H:542-1221\33.67%ID\E:5e-87\RecName: 

Full=Neurogenic locus notch homolog protein 



 269 

gene sprot_Top_BLASTP_hit gene_ontology_blast 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Amphibia; Batrachia; 

Anura; Pipoidea; Pipidae; Xenopodinae; 

Xenopus; 

Silurana||||NOTC1_MOUSE\NOTC1_MOUSE\Q:20

5-787,H:553-1180\35.03%ID\E:5e-87\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||NOTC1_XENTR\NOTC1_XENTR\Q:172-

788,H:665-1383\32.38%ID\E:7e-87\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Amphibia; Batrachia; 

Anura; Pipoidea; Pipidae; Xenopodinae; 

Xenopus; 

Silurana||||NOTC1_XENTR\NOTC1_XENTR\Q:211

-790,H:18-640\34.93%ID\E:2e-86\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Amphibia; Batrachia; 

Anura; Pipoidea; Pipidae; Xenopodinae; 

Xenopus; 

Silurana||||NOTC1_MOUSE\NOTC1_MOUSE\Q:20

6-748,H:89-675\35.74%ID\E:1e-85\RecName: 
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Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||NOTC1_MOUSE\NOTC1_MOUSE\Q:212-

790,H:21-641\33.54%ID\E:2e-83\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||NOTC1_MOUSE\NOTC1_MOUSE\Q:205-

710,H:856-1425\34.59%ID\E:3e-78\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||FBP1_STRPU\FBP1_STRPU\Q:270-

791,H:22-557\33.93%ID\E:1e-67\RecName: 

Full=Fibropellin-1;\Eukaryota; Metazoa; 

Echinodermata; Eleutherozoa; Echinozoa; 

Echinoidea; Euechinoidea; Echinacea; 

Echinoida; Strongylocentrotidae; 

Strongylocentrotus||||NOTC1_XENTR\NOTC1_XE

NTR\Q:222-631,H:962-1424\33.84%ID\E:7e-
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58\RecName: Full=Neurogenic locus notch 

homolog protein 1;\Eukaryota; Metazoa; 

Chordata; Craniata; Vertebrata; Euteleostomi; 

Amphibia; Batrachia; Anura; Pipoidea; Pipidae; 

Xenopodinae; Xenopus; 

Silurana||||NOTC1_MOUSE\NOTC1_MOUSE\Q:22

2-678,H:963-1555\30.32%ID\E:1e-47\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||NOTC1_MOUSE\NOTC1_MOUSE\Q:172-

485,H:1171-1562\28.39%ID\E:2e-18\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||NOTC1_XENTR\NOTC1_XENTR\Q:172-

488,H:1170-1563\26.93%ID\E:2e-12\RecName: 

Full=Neurogenic locus notch homolog protein 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Amphibia; Batrachia; 

Anura; Pipoidea; Pipidae; Xenopodinae; 

Xenopus; Silurana 
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Mcavernosa25451 TF3C3_HUMAN\TF3C3_HUMAN\Q:152-

960,H:117-886\38.52%ID\E:1e-178\RecName: 

Full=General transcription factor 3C 

polypeptide 3;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; 

Homo||||SFC4_SCHPO\SFC4_SCHPO\Q:802-

953,H:843-999\40.51%ID\E:5e-22\RecName: 

Full=Transcription factor tau subunit 

sfc4;\Eukaryota; Fungi; Dikarya; Ascomycota; 

Taphrinomycotina; Schizosaccharomycetes; 

Schizosaccharomycetales; 

Schizosaccharomycetaceae; 

Schizosaccharomyces||||TFC4_YEAST\TFC4_YEA

ST\Q:800-960,H:881-1025\32.93%ID\E:8e-

17\RecName: Full=Transcription factor tau 131 

kDa subunit;\Eukaryota; Fungi; Dikarya; 

Ascomycota; Saccharomycotina; 

Saccharomycetes; Saccharomycetales; 

Saccharomycetaceae; 

Saccharomyces||||TFC4_YEAST\TFC4_YEAST\Q:1

64-614,H:118-606\20.28%ID\E:3e-11\RecName: 

Full=Transcription factor tau 131 kDa 

subunit;\Eukaryota; Fungi; Dikarya; 

Ascomycota; Saccharomycotina; 

GO:0031965\cellular_component\nuclear 

membrane||||GO:0005730\cellular_component\nucleolus||||

GO:0005654\cellular_component\nucleoplasm||||GO:00056

34\cellular_component\nucleus||||GO:0000127\cellular_co

mponent\transcription factor TFIIIC 

complex||||GO:0003677\molecular_function\DNA 

binding||||GO:0042791\biological_process\5S class rRNA 

transcription by RNA polymerase 

III||||GO:0006359\biological_process\regulation of 

transcription by RNA polymerase 

III||||GO:0006383\biological_process\transcription by RNA 

polymerase 

III||||GO:0006351\biological_process\transcription, DNA-

templated||||GO:0042797\biological_process\tRNA 

transcription by RNA polymerase III 
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Saccharomycetes; Saccharomycetales; 

Saccharomycetaceae; Saccharomyces 

Mcavernosa25785 . . 

Mcavernosa26601 . . 

Mcavernosa27173 SGS1_YEAST\SGS1_YEAST\Q:82-207,H:683-

803\40%ID\E:5e-16\RecName: Full=ATP-

dependent helicase SGS1 

{ECO:0000303|PubMed:7969174};\Eukaryota; 

Fungi; Dikarya; Ascomycota; Saccharomycotina; 

Saccharomycetes; Saccharomycetales; 

Saccharomycetaceae; 

Saccharomyces||||RQL4A_ARATH\RQL4A_ARATH

\Q:82-190,H:458-560\40%ID\E:2e-13\RecName: 

Full=ATP-dependent DNA helicase Q-like 

4A;\Eukaryota; Viridiplantae; Streptophyta; 

Embryophyta; Tracheophyta; Spermatophyta; 

Magnoliophyta; eudicotyledons; Gunneridae; 

Pentapetalae; rosids; malvids; Brassicales; 

Brassicaceae; Camelineae; 

Arabidopsis||||RECQ_HAEIN\RECQ_HAEIN\Q:90-

200,H:41-143\35.65%ID\E:4e-13\RecName: 

Full=ATP-dependent DNA helicase 

RecQ;\Bacteria; Proteobacteria; 

GO:0005737\cellular_component\cytoplasm||||GO:0005730\

cellular_component\nucleolus||||GO:0031422\cellular_com

ponent\RecQ helicase-Topo III 

complex||||GO:0005524\molecular_function\ATP 

binding||||GO:0043140\molecular_function\ATP-dependent 

3'-5' DNA helicase 

activity||||GO:0004003\molecular_function\ATP-dependent 

DNA helicase 

activity||||GO:0003677\molecular_function\DNA 

binding||||GO:0009378\molecular_function\four-way 

junction helicase 

activity||||GO:0051276\biological_process\chromosome 

organization||||GO:0000729\biological_process\DNA 

double-strand break 

processing||||GO:0032508\biological_process\DNA duplex 

unwinding||||GO:0006265\biological_process\DNA 

topological change||||GO:0006268\biological_process\DNA 

unwinding involved in DNA 

replication||||GO:0000724\biological_process\double-strand 

break repair via homologous 
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Gammaproteobacteria; Pasteurellales; 

Pasteurellaceae; Haemophilus 

recombination||||GO:0031292\biological_process\gene 

conversion at mating-type locus, DNA double-strand break 

processing||||GO:0031573\biological_process\intra-S DNA 

damage 

checkpoint||||GO:0045132\biological_process\meiotic 

chromosome 

segregation||||GO:0000706\biological_process\meiotic DNA 

double-strand break 

processing||||GO:0000070\biological_process\mitotic sister 

chromatid 

segregation||||GO:0010947\biological_process\negative 

regulation of meiotic joint molecule 

formation||||GO:0010520\biological_process\regulation of 

reciprocal meiotic 

recombination||||GO:0001302\biological_process\replicativ

e cell aging||||GO:0000723\biological_process\telomere 

maintenance||||GO:0000722\biological_process\telomere 

maintenance via 

recombination||||GO:0031860\biological_process\telomeric 

3' overhang formation 

Mcavernosa27529 . . 

Mcavernosa28002 DEGS1_BOVIN\DEGS1_BOVIN\Q:1-324,H:1-

323\57.41%ID\E:7e-141\RecName: 

Full=Sphingolipid delta(4)-desaturase 

DES1;\Eukaryota; Metazoa; Chordata; Craniata; 

GO:0005789\cellular_component\endoplasmic reticulum 

membrane||||GO:0016021\cellular_component\integral 

component of 

membrane||||GO:0005739\cellular_component\mitochondri
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Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Laurasiatheria; Cetartiodactyla; Ruminantia; 

Pecora; Bovidae; Bovinae; 

Bos||||DEGS1_XENTR\DEGS1_XENTR\Q:1-

315,H:1-315\57.14%ID\E:8e-138\RecName: 

Full=Sphingolipid delta(4)-desaturase 

DES1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Amphibia; Batrachia; 

Anura; Pipoidea; Pipidae; Xenopodinae; 

Xenopus; 

Silurana||||DEGS1_CHICK\DEGS1_CHICK\Q:1-

315,H:1-315\57.14%ID\E:3e-137\RecName: 

Full=Sphingolipid delta(4)-desaturase 

DES1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Archelosauria; 

Archosauria; Dinosauria; Saurischia; Theropoda; 

Coelurosauria; Aves; Neognathae; Galloanserae; 

Galliformes; Phasianidae; Phasianinae; Gallus 

on||||GO:0042284\molecular_function\sphingolipid delta-4 

desaturase 

activity||||GO:0046513\biological_process\ceramide 

biosynthetic 

process||||GO:0006633\biological_process\fatty acid 

biosynthetic process 

Mcavernosa28270 . . 

Mcavernosa29278 . . 

Mcavernosa29636 LRC34_MOUSE\LRC34_MOUSE\Q:8-317,H:5-

338\37.28%ID\E:7e-63\RecName: Full=Leucine-

rich repeat-containing protein 34;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

GO:0005737\cellular_component\cytoplasm||||GO:0005730\

cellular_component\nucleolus||||GO:0030154\biological_pr

ocess\cell differentiation 
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Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||LRC34_HUMAN\LRC34_HUMAN\Q:2-

308,H:48-378\38.39%ID\E:2e-62\RecName: 

Full=Leucine-rich repeat-containing protein 

34;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||LRC34_RAT\LRC34_RAT\Q:8-317,H:5-

338\36.98%ID\E:8e-62\RecName: Full=Leucine-

rich repeat-containing protein 34;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Rattus 

Mcavernosa29916 CAAP1_MOUSE\CAAP1_MOUSE\Q:63-137,H:110-

184\41.33%ID\E:5e-12\RecName: Full=Caspase 

activity and apoptosis inhibitor 1;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||CAAP1_HUMAN\CAAP1_HUMAN\Q:65-

139,H:132-206\41.33%ID\E:3e-11\RecName: 

GO:0006915\biological_process\apoptotic 

process||||GO:0042981\biological_process\regulation of 

apoptotic process 
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Full=Caspase activity and apoptosis inhibitor 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||CAAP1_BOVIN\CAAP1_BOVIN\Q:65-

250,H:133-355\26.03%ID\E:5e-11\RecName: 

Full=Caspase activity and apoptosis inhibitor 

1;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Laurasiatheria; Cetartiodactyla; Ruminantia; 

Pecora; Bovidae; Bovinae; Bos 

Mcavernosa30125 DPYD_MOUSE\DPYD_MOUSE\Q:4-113,H:729-

828\59.29%ID\E:3e-26\RecName: 

Full=Dihydropyrimidine dehydrogenase 

[NADP(+)];\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; Mus; 

Mus||||DPYD_RAT\DPYD_RAT\Q:4-113,H:729-

828\57.52%ID\E:9e-26\RecName: 

Full=Dihydropyrimidine dehydrogenase 

[NADP(+)];\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Glires; Rodentia; 

Myomorpha; Muroidea; Muridae; Murinae; 

GO:0005737\cellular_component\cytoplasm||||GO:0005829\

cellular_component\cytosol||||GO:0051539\molecular_func

tion\4 iron, 4 sulfur cluster 

binding||||GO:0017113\molecular_function\dihydropyrimidi

ne dehydrogenase (NADP+) 

activity||||GO:0004159\molecular_function\dihydrouracil 

dehydrogenase (NAD+) 

activity||||GO:0071949\molecular_function\FAD 

binding||||GO:0005506\molecular_function\iron ion 

binding||||GO:0050661\molecular_function\NADP 

binding||||GO:0042803\molecular_function\protein 

homodimerization 

activity||||GO:0002058\molecular_function\uracil 

binding||||GO:0019483\biological_process\beta-alanine 
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Rattus||||DPYD_PIG\DPYD_PIG\Q:4-104,H:729-

831\59.05%ID\E:1e-25\RecName: 

Full=Dihydropyrimidine dehydrogenase 

[NADP(+)];\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Laurasiatheria; Cetartiodactyla; Suina; 

Suidae; Sus 

biosynthetic 

process||||GO:0007623\biological_process\circadian 

rhythm||||GO:0006145\biological_process\purine 

nucleobase catabolic 

process||||GO:0006208\biological_process\pyrimidine 

nucleobase catabolic 

process||||GO:0042493\biological_process\response to 

drug||||GO:0007584\biological_process\response to 

nutrient||||GO:0014070\biological_process\response to 

organic cyclic 

compound||||GO:0006214\biological_process\thymidine 

catabolic 

process||||GO:0006210\biological_process\thymine 

catabolic process||||GO:0006212\biological_process\uracil 

catabolic process||||GO:0019860\biological_process\uracil 

metabolic process 

Mcavernosa30509 CEBPZ_MOUSE\CEBPZ_MOUSE\Q:59-364,H:40-

381\32.39%ID\E:6e-39\RecName: 

Full=CCAAT/enhancer-binding protein 

zeta;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||CEBPZ_HUMAN\CEBPZ_HUMAN\Q:53-

364,H:34-381\31.46%ID\E:1e-38\RecName: 

Full=CCAAT/enhancer-binding protein 

GO:0005634\cellular_component\nucleus||||GO:0000978\m

olecular_function\RNA polymerase II proximal promoter 

sequence-specific DNA 

binding||||GO:0001077\molecular_function\transcriptional 

activator activity, RNA polymerase II proximal promoter 

sequence-specific DNA 

binding||||GO:0045944\biological_process\positive 

regulation of transcription by RNA polymerase II 
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zeta;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||YEK9_SCHPO\YEK9_SCHPO\Q:219-

364,H:84-228\37.42%ID\E:4e-23\RecName: 

Full=Uncharacterized protein 

C4F10.09c;\Eukaryota; Fungi; Dikarya; 

Ascomycota; Taphrinomycotina; 

Schizosaccharomycetes; 

Schizosaccharomycetales; 

Schizosaccharomycetaceae; 

Schizosaccharomyces 

Mcavernosa31208 ANKF1_HUMAN\ANKF1_HUMAN\Q:302-

849,H:139-650\36.27%ID\E:1e-97\RecName: 

Full=Ankyrin repeat and fibronectin type-III 

domain-containing protein 1;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; Homo 

. 

Mcavernosa31439 ANR54_HUMAN\ANR54_HUMAN\Q:56-265,H:85-

292\42.38%ID\E:2e-52\RecName: Full=Ankyrin 

repeat domain-containing protein 

54;\Eukaryota; Metazoa; Chordata; Craniata; 

GO:0005737\cellular_component\cytoplasm||||GO:0030496\

cellular_component\midbody||||GO:0005634\cellular_comp

onent\nucleus||||GO:0019887\molecular_function\protein 

kinase regulator 
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Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||ANR54_BOVIN\ANR54_BOVIN\Q:56-

265,H:84-291\42.65%ID\E:2e-52\RecName: 

Full=Ankyrin repeat domain-containing protein 

54;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Laurasiatheria; Cetartiodactyla; Ruminantia; 

Pecora; Bovidae; Bovinae; 

Bos||||ANR54_RAT\ANR54_RAT\Q:34-265,H:63-

291\41.2%ID\E:5e-52\RecName: Full=Ankyrin 

repeat domain-containing protein 

54;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Rattus 

activity||||GO:0044877\molecular_function\protein-

containing complex 

binding||||GO:0006913\biological_process\nucleocytoplasm

ic transport||||GO:0045648\biological_process\positive 

regulation of erythrocyte 

differentiation||||GO:1902531\biological_process\regulation 

of intracellular signal transduction 

Mcavernosa31888 . . 

Mcavernosa32022 . . 

Mcavernosa32023 DCAF4_BOVIN\DCAF4_BOVIN\Q:128-508,H:63-

493\26.97%ID\E:1e-40\RecName: Full=DDB1- 

and CUL4-associated factor 4;\Eukaryota; 

Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; 

GO:0071013\cellular_component\catalytic step 2 

spliceosome||||GO:0080008\cellular_component\Cul4-RING 

E3 ubiquitin ligase 

complex||||GO:0071011\cellular_component\precatalytic 

spliceosome||||GO:0005682\cellular_component\U5 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

Laurasiatheria; Cetartiodactyla; Ruminantia; 

Pecora; Bovidae; Bovinae; 

Bos||||DCAF4_HUMAN\DCAF4_HUMAN\Q:297-

508,H:278-494\35.59%ID\E:5e-35\RecName: 

Full=DDB1- and CUL4-associated factor 

4;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||DC4L2_HUMAN\DC4L2_HUMAN\Q:336-

508,H:225-394\39.43%ID\E:2e-32\RecName: 

Full=DDB1- and CUL4-associated factor 4-like 

protein 2;\Eukaryota; Metazoa; Chordata; 

Craniata; Vertebrata; Euteleostomi; Mammalia; 

Eutheria; Euarchontoglires; Primates; 

Haplorrhini; Catarrhini; Hominidae; Homo 

snRNP||||GO:0003723\molecular_function\RNA 

binding||||GO:0016567\biological_process\protein 

ubiquitination||||GO:0008380\biological_process\RNA 

splicing 

Mcavernosa32260 . . 

Mcavernosa32533 PAR14_HUMAN\PAR14_HUMAN\Q:5-

316,H:1495-1799\43.81%ID\E:4e-72\RecName: 

Full=Poly [ADP-ribose] polymerase 

14;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; 

Homo||||PAR14_MOUSE\PAR14_MOUSE\Q:5-

GO:0005737\cellular_component\cytoplasm||||GO:0005829\

cellular_component\cytosol||||GO:0016020\cellular_compo

nent\membrane||||GO:0005634\cellular_component\nucleu

s||||GO:0019899\molecular_function\enzyme 

binding||||GO:0003950\molecular_function\NAD+ ADP-

ribosyltransferase 

activity||||GO:0070403\molecular_function\NAD+ 

binding||||GO:0045087\biological_process\innate immune 
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gene sprot_Top_BLASTP_hit gene_ontology_blast 

316,H:1511-1815\41.59%ID\E:5e-67\RecName: 

Full=Poly [ADP-ribose] polymerase 

14;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Glires; Rodentia; Myomorpha; 

Muroidea; Muridae; Murinae; Mus; 

Mus||||PAR15_HUMAN\PAR15_HUMAN\Q:117-

316,H:482-676\48.77%ID\E:1e-57\RecName: 

Full=Poly [ADP-ribose] polymerase 

15;\Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; Homo 

response||||GO:0010629\biological_process\negative 

regulation of gene 

expression||||GO:0060336\biological_process\negative 

regulation of interferon-gamma-mediated signaling 

pathway||||GO:0042532\biological_process\negative 

regulation of tyrosine phosphorylation of STAT 

protein||||GO:1902216\biological_process\positive 

regulation of interleukin-4-mediated signaling 

pathway||||GO:0042531\biological_process\positive 

regulation of tyrosine phosphorylation of STAT 

protein||||GO:0006471\biological_process\protein ADP-

ribosylation||||GO:0070212\biological_process\protein poly-

ADP-

ribosylation||||GO:0006355\biological_process\regulation of 

transcription, DNA-

templated||||GO:0006351\biological_process\transcription, 

DNA-templated 
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Supplementary Fig. S1. Summary of trimming and alignment statistics resulting from the 

processing of 24 M. cavernosa MBD-BS libraries aligned to the genome assembly 

generated by the laboratory of Dr. M. Matz (https://matzlab.weebly.com/data--code.html) 

using the bismark pipeline. Bars represent read averages and standard errors between 6 

libraries for each of the four symbiont/treatment combinations. C refers to Cladocopium 

spp. Symbionts and D refers to symbionts of the genera Durusdinium. 

  

https://matzlab.weebly.com/data--code.html
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Supplementary Fig. S2. CpG sites coverage distribution by treatment combination of 

uniquely aligned and duplicated reads resulting from 24 MBD-BS libraries aligned to the 

M. cavernosa genome. Treatment combinations represent corals hosting either symbionts 

of the genera Cladocopium (C) or Durusdinium (D) maintained in control temperature (c) 

or exposed to a short-term heat stress (h). 
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Supplementary Fig. S3. Principal component analysis (left) and Discriminant Analysis of 

principal components (right) ordinations of DNA methylation response to symbiont 

shuffling and thermal stress. Analyses were separated by genomic features overlapping 

with methylated CpG loci. [exons (A & B), introns (C & D), gene body (E & F, includes 

introns, exons and UTRs), intergenic (G & H) and repeat (i.e. transposable elements, I & 

J)]. Treatment combinations (as colors) represent corals hosting either symbionts of the 

genera Cladocopium (SymC) or Durusdinium (SymD) maintained in control temperature 

(C) or exposed to a short-term heat stress (H) 

  



 286 

 
 

Supplementary Fig.S4. Eukaryotic ortholog group (KOG) enrichment analysis results. 

(A) KOG functional categories hyper- hypomethylated (indicated by color) for contrasts 

of experimental groups (Ch = Cladocopium/heated, Cc = Cladocopium/control, Dh = 

Durusdinium/heated, Dc = Durusdinium/control). (B) Correlation plots of KOG changes 

between the responses of both dominant symbiont types to thermal stress (Ch versus Cc; 

left  and Dh versus Dc; right) with symbiont shift in control corals (DC versus CC; 

below), and to each other (top panels). 
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Supplementary Fig. S5 Relationship between average gene methylation difference (%) 

and changes in gene expression (log2-fold) for contrasts of experimental groups (Ch = 

Cladocopium/heated, Cc = Cladocopium/control, Dh = Durusdinium/heated, Dc = 

Durusdinium/control). (A) Experimental group average for each gene covered. (B) Only 

significant Differentially methylated genes (DMGs). 
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Appendix D: Supplementary materials for Chapter V 

 

Supplementary Table S1. PERMANOVA results of lipid compound numbers in A. 

cervicornis fragments by site, class and their interaction. 

 
 

df Sum of Sqs. Mean Sqs F. Model R2 p-value 

site 1 0.1487  0.14866      5.973  0.0057  0.0054 

class 7 20.8127  2.97324  119.453  0.7972  0.0001 

site:class 7 0.3670  0.05242     2.106  0.0141  0.0142 

Residuals 192  4.7789   0.02489             0.1831 
 

Total 207 26.1072 
  

1.0000 
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Supplementary Table S2. Results of chi-square analysis comparing proportions of each 

lipid class.     

 

Class Estimate 1 Estimate 2 statistic P.adj (FDR) 

ChE  0.002954824  0.004641770    3144940   < 0.0001 

FA  0.009378445  0.008007381     931593  < 0.0001 

MG  0.258805196  0.228595074   21092503 < 0.0001 

MGDG 0.041926616   0.068187624   55418486 < 0.0001 

PC  0.046957393  0.059219600   12606000 < 0.0001 

PE 0.123915736  0.063869320  183717098 < 0.0001 

TG  0.400967793  0.463937250   68529306  < 0.0001 

WE  0.115093997 0.103541980 5839907 < 0.0001 

ChE cholesterol ester, FA Fatty acid, MG mono-acyl glycerol, MGDG 

Monogalactosyldiacylgylcerol, PC Phosphatidylcholine, PE Phosphatidylethanolamine, 

TG Triglyceride and WE Wax ester. p-values were adjusted using the Benjamini-

Hochberg correction. 
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Supplementary Table S3.  TagSeq read counts per sample at different processing stages 

(raw, post-quality filtering and mapped)  

 

stage Min.  Max.  Median  Total 

raw 7,248,899 18,067,458 11,497,504 309,224,452 

post_trim 3,210,092 8,793,512 5,313,577 140,773,629 

mapped 2,170,526 6,305,585 3,757,251 98,918,140 
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Supplementary Table S4. Gene ontology (GO) enrichment analysis results for Biological 

Processes (BP), Cellular Components (CC), and Molecular Functions (MF). Negative 

delta rank values indicate up-regulation in corals outplanted to the deep reef. Only terms 

with adjusted p-values (FDR) < 0.01 are shown.   

 

Ontology Genes GO term delta.rank P.adj 

BP 34/279 ribosome biogenesis -1887 7.24E-45 

BP 5/23 one-carbon metabolic process -1761 0.002937 

BP 3/39 nucleoside diphosphate metabolic 

process 

-1253 0.00724 

BP 8/110 purine-containing compound metabolic 

process 

-959 1.78E-04 

BP 57/670 cellular component organization or 

biogenesis 

-920 3.84E-24 

BP 7/75 ATP metabolic process -903 0.00724 

BP 77/999 macromolecule biosynthetic process -631 4.24E-16 

BP 23/306 amide transport -528 0.001157 

BP 15/234 cellular localization -521 0.00724 

BP 31/444 small molecule metabolic process -423 0.002232 

BP 31/409 organic substance transport -388 0.008739 

BP 30/361 G protein-coupled receptor signaling 

pathway 

621 5.48E-06 

CC 28/246 ribosomal subunit -528 1.47E-26 

CC 10/63 polymeric cytoskeletal fiber -520 1.69E-07 

CC 16/145 large ribosomal subunit -518 7.03E-16 

CC 12/89 small ribosomal subunit -514 4.62E-10 

CC 6/38 microtubule -494 3.16E-04 

CC 47/494 ribonucleoprotein complex -296 3.35E-15 
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CC 21/327 transferase complex 146 0.004909 

CC 4/115 extracellular region 275 6.53E-04 

CC 1/74 synapse part 298 0.003804 

CC 1/14 DNA replication factor C complex 683 0.003804 

MF 32/345 structural constituent of ribosome -1869 1.81E-29 

MF 45/497 structural molecule activity -1569 1.81E-29 

MF 14/111 cytoskeletal protein binding -1106 0.005394 

MF 27/208 isomerase activity -815 0.005394 

MF 24/299 purine nucleoside binding -769 0.00101 

MF 31/440 ATPase activity 629 0.00101 

MF 23/263 obsolete rhodopsin-like receptor activity 804 0.00101 

MF 12/234 helicase activity 899 6.23E-04 
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Supplementary Table S5. Eukaryotic orthologous groups (KOG) enrichment analysis 

results. Negative delta rank values indicate up-regulation in corals outplanted to the deep 

reef. Only terms with FDR < 10% are shown. 

 

Genes KOG term delta.rank P.adj 

45/645 Translation, ribosomal structure and biogenesis -1422 2.87E-23 

26/411 Replication, recombination and repair 906 1.63E-06 

27/598 RNA processing and modification  519 0.00234 

208/3032 Signal transduction mechanisms 252 0.00279 

6/156 Nucleotide transport and metabolism -795 0.0185 

50/375 Energy production and conversion -501 0.0204 

135/1657 Post-translational modification, protein turnover, 

chaperones 

-232 0.0347 

52/833 Transcription 278 0.0691 
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Supplementary Fig. S1. Tag-Seq mapping statistics. Number of mapped reads per sample 
(left) and number of mapped reads per gene. 
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Supplementary Fig. S2. (A) Summary of trimming and alignment statistics resulting 
from the processing of 26 WGBS libraries aligned to the A. cervicornis genome assembly 

generated by the laboratory of Dr. Iliana B. Baums using the bismark pipeline. (B) CpG 
sites coverage distribution by treatment combination of uniquely aligned and de-

duplicated reads. 
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Supplementary Fig. S3. Proportion of methylated CpGs and methylation islands (MI) 

overlapping genomic features. Asterisks indicate significant enrichment (FDR adjusted p-
values < 0.0001). 
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Supplementary Fig. S4 (A) Heatmap illustrating methylation level variability across 142 

differentially methylated regions (DMRs) between all samples (left) and grouped by 

outplanting sites (right). (B) Proportion of covered CpGs and DMRs overlapping genomic 

features. 
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