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ABSTRACT OF THE DISSERTATION 

EXERCISE, COGNITION, AND CANNABIS USE IN ADOLESCENTS 

by 

Ileana Pacheco-Colón 

Florida International University, 2021 

Miami, Florida 

Professor Raul Gonzalez, Major Professor  

Heavy and/or chronic cannabis use has been associated with neurocognitive 

impairment and decline, often in domains such as memory and executive functioning. On 

the other hand, exercise has been linked to positive effects on brain and cognitive health 

across the lifespan, as well as to better substance use outcomes. Despite this, little is 

known about the ways in which exercise could help prevent or ameliorate adverse 

cannabis-related outcomes among adolescents.  

Through three separate studies, the current dissertation examines interrelations 

among exercise, cognition, and cannabis use in children and adolescents in an effort to 

determine whether exercise can prevent or ameliorate cannabis-related cognitive decline 

and other adverse outcomes. The first study examined whether exercise ameliorates 

cannabis-related declines in episodic memory in a sample of 401 adolescents. Results 

from multivariate latent growth curve models replicated findings that greater frequency 

of cannabis use is associated with declines in episodic memory. However, neither initial 

levels nor change in exercise moderated these associations. The second study examined 

associations between exercise and cannabis-related outcomes (e.g., cannabis use 

frequency, cannabis use disorder, cannabis-related problems) after a 6-month period, and 
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tested the mediating role of exercise effects on decision-making in a sample of 387 

adolescents. Results from prospective mediation analyses revealed that more exercise 

predicted greater cannabis use frequency, but not cannabis use disorder or problems. 

There was no evidence of a mediating role for decision-making in the associations 

between exercise and cannabis-related outcomes, and positive effects of exercise on 

decision-making were better accounted for by demographics. The third study examined 

cross-sectional associations between exercise, task-related brain activation, and executive 

functioning in a sample of 7,733 preadolescent children. Results from cross-sectional 

mediation analyses indicated that the association between exercise and executive 

functioning was largely accounted for by sociodemographic factors, and did not support a 

mediating role for task-related activation of frontoparietal and salience networks. 

Together, findings suggest that effects of exercise on neurocognitive functioning in 

pediatric populations are small, may be more readily observed within the domain of 

executive functioning, and may be better explained by sociodemographic characteristics.  
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I. INTRODUCTION TO THE RESEARCH 

Over the course of my graduate training, I have built a program of research 

examining the effects of lifestyle factors, particularly cannabis use, on neurocognitive, 

psychological, and physical health. Leveraging my personal enthusiasm for the benefits 

of physical activity, my recent independent research has focused on exploring the 

interactions between exercise, cannabis use, and cognition among adolescents. Despite 

high prevalence of cannabis use and knowledge of its adverse effects, little has been done 

to identify potential methods through which these negative effects could be prevented or 

ameliorated. Exercise is one such avenue which has received limited attention in the 

context of cannabis use. Further, although effects of both cannabis use and exercise on 

cognition have been extensively documented among adults, they remain relatively 

understudied among children and adolescents (Donnelly et al., 2016; Gonzalez, Pacheco-

Colón, Duperrouzel, & Hawes, 2017; Herting & Chu, 2017). This is an important gap in 

the literature, as adolescence represents a unique developmental stage characterized by 

rapid neurodevelopment which simultaneously results in increased risk-taking and 

increased vulnerability to adverse effects (Casey & Jones, 2010a; Lisdahl, Gilbart, 

Wright, & Shollenbarger, 2013a).  

My dissertation leverages data collected through two larger longitudinal studies 

for secondary data analyses examining associations between exercise, neurocognition, 

and cannabis use among adolescents and children through three separate studies. The first 

two studies utilize data acquired through a longitudinal study examining the effects of 

adolescent cannabis use on neurocognition, particularly in the domains of episodic 

memory and decision-making (R01 DA031176, PI: Gonzalez). The first manuscript 
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focuses on longitudinal associations between cannabis use and episodic memory among 

adolescents, and examines whether engagement in exercise mediates this association 

(Chapter II). Portions of Chapter II have been accepted for publication in Addiction. The 

second manuscript examines prospective associations between exercise and cannabis-

related outcomes among adolescents, and explores whether exercise-related effects on the 

domain of decision-making may mediate these associations (Chapter III). Chapter III has 

been accepted for publication in Substance Use & Misuse. Finally, the third study uses 

data from a large national sample of children from the Adolescent Brain and Cognitive 

Development (ABCD) study (U01 DA041156). It examines cross-sectional associations 

between exercise and executive functioning, and tests a mediating role for N-back task-

related activation of the frontoparietal and salience networks (Chapter IV). Because the 

majority of the children in the ABCD sample were substance-naïve at the baseline 

assessment (as well as at initial follow-ups), the third study did not explore associations 

between exercise and cannabis use. Nevertheless, these analyses lay the groundwork for 

future exploration of these questions once substance use levels in this sample increase.  

To the best of my knowledge, my dissertation represents one of the first attempts 

at elucidating cross-sectional and longitudinal associations between exercise, 

neurocognition, and cannabis use among children and adolescents. Combining 

neurocognitive with neuroimaging data obtained from cannabis-using adolescents and/or 

substance-naïve children will contribute to a more integrated understanding of these 

relationships. Together, findings from these studies will begin to answer whether, how, 

and which exercise-related cognitive gains can be leveraged in the prevention and 

treatment of problematic cannabis use. 
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II.  

EXERCISE AS A MODERATOR OF THE ASSOCIATION BETWEEN 

CANNABIS USE AND MEMORY 

 

Portions of this chapter are part of a manuscript that has been accepted for publication 

in Addiction.  

 
Pacheco-Colón, I., Lopez-Quintero, C., Coxe, S., Limia, J. M., Pulido, W., Granja, K., 
Paula, D. C., Gonzalez, I., Ross, J. M., Duperrouzel, J. C., Hawes, S. W., and Gonzalez, 
R. (2021). Risky Decision-Making as an Antecedent or Consequence of Adolescent 
Cannabis Use: Findings from a Two-Year Longitudinal Study. Addiction. doi: 
10.1111/add.15626 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This work was supported by a National Research Service Award (F31 DA047750-01A1) 

awarded to Ileana Pacheco-Colón by the National Institute on Drug Abuse. 
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Introduction 
 

Cannabis use is prevalent among Americans, with approximately 16% of 

individuals over the age of 12 years reporting at least some cannabis use in the past year 

(Substance Abuse and Mental Health Services Administration (SAMHSA), 2019a). 

Nearly a fifth of these users reported daily or near daily cannabis use (SAMHSA, 2019b). 

Both of these estimates represent increases relative to estimates from prior years, 

suggesting that prevalence of cannabis use may be on the rise (SAMHSA, 2019b). 

Although these increases were primarily driven by use among adults, cannabis use is also 

common among adolescents, with 12.5% of teens reporting past year use, and about 8% 

of these reporting near daily use (SAMHSA, 2019a, 2019b).  

Concurrently, public opinion toward cannabis legalization has become more 

permissive. Whereas only 12% of Americans supported cannabis legalization in 1969, 

more recent surveys indicate that over 50% support legalization of cannabis (Felson, 

Adamczyk, & Thomas, 2019; Pew Research Center, 2016). Consistent with these trends, 

34 U.S. states have passed medical marijuana laws and 16 (and the District of Columbia) 

have legalized recreational use for adults over the age of 21. This recent proliferation of 

more permissive cannabis laws has been accompanied by lower perceived risk of use 

among adolescents (Hughes, Lipari, & Williams, 2016; Johnston, Miech, Bachman, & 

Schulenberg, 2014), a population that may be particularly vulnerable to adverse effects of 

cannabis use.  

Indeed, several important large-scale neuromaturational changes take place during 

adolescence. Although limbic regions associated with reward processing (e.g., amygdala, 

nucleus accumbens) reach full maturation by adolescence, frontal regions associated with 
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impulse control and executive functioning (e.g., prefrontal cortex) show a protracted 

pattern of development into adulthood (Casey, Jones, & Hare, 2008). As posited by the 

dual systems model of adolescent risk-taking, neurocognitive constructs of reward-

seeking and impulse control develop in parallel to their underlying brain structures, such 

that reward-seeking peaks during adolescence while impulse control increases steadily 

from childhood into adulthood (Steinberg, 2010). As a result of this developmental 

imbalance, adolescents are likely to engage in risky behaviors, such as use of substances 

like cannabis (Casey & Jones, 2010; Steinberg, 2010). Importantly, a growing body of 

work suggests that these changes may also make adolescents more vulnerable to the 

neurotoxic effects of substances (Casey & Jones, 2010; Lisdahl, Gilbart, Wright, & 

Shollenbarger, 2013; Witt, 2010). Thus, developing a more complete understanding of 

the effects of cannabis use on adolescent brain and cognitive health is both necessary and 

urgent, and would serve to inform policy, prevention, and intervention efforts. 

Heavy and/or chronic cannabis use has been associated with poorer functioning 

across several neurocognitive domains, including intellectual quotient (IQ), learning and 

memory, psychomotor performance, processing speed, and aspects of executive 

functioning (Broyd, Hell, Beale, Yücel, & Solowij, 2016). Three meta-analyses have 

synthesized findings from studies examining associations between cannabis use and 

various aspects of neuropsychological functioning, focusing on non-acute effects (i.e., 

effects that persist beyond acute intoxication). Results from these studies suggest that 

frequent or heavy cannabis use is associated with small, negative effects on overall 

cognition, as well as specific domains, particularly learning and episodic memory (Grant, 

Gonzalez, Carey, Natarajan, & Wolfson, 2003; Schreiner & Dunn, 2012; Scott et al., 
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2018), which is here defined as memory for personally experienced events with their 

spatiotemporal context and respective perceptual details (Tulving & Markowitsch, 1998; 

Tulving, 2002). Accumulating evidence also suggests that initiation of heavy and/or 

chronic cannabis use during adolescence may be associated with increased risk of 

harmful consequences, including higher risk of addiction (Volkow, Baler, Compton, & 

Weiss, 2014), lower academic achievement and educational attainment (Pacheco-Colón, 

Ramirez, & Gonzalez, 2019), and steeper declines in neurocognitive functioning, most 

commonly in the domains of IQ and episodic memory (Gonzalez et al., 2017).  

Adverse effects of cannabis use on learning and memory functioning are perhaps 

not surprising, considering the neurobiological mechanisms of action that underlie the 

drug’s effects. Delta-9-tetrahydrocannabinol (THC)—the primary psychoactive 

constituent in cannabis—exerts its effects through cannabinoid receptors type 1 (CB1 

receptors), which are densely concentrated in regions relevant to memory function, such 

as the hippocampus (Glass, Faull, & Dragunow, 1997). Findings from preclinical studies 

have shown that THC activity at hippocampal CB1 receptors inhibits the release of the 

neurotransmitter GABA, which results in learning and memory impairments (Laaris, 

Good, & Lupica, 2010). More recent neuroimaging work with human subjects suggests 

that chronic cannabis use results in the downregulation of CB1 receptors throughout the 

cortex, which may be associated with long-term cognitive impairment (Hirvonen et al., 

2012). This downregulation is greatest, and shows the least improvement with abstinence, 

in the hippocampus (Hirvonen et al., 2012; Villares, 2007), thus lending further support 

to neurocognitive findings. 



 7 

In contrast, both physical activity and chronic exercise have been linked to a 

variety of positive effects on cognitive function spanning multiple domains across the 

lifespan. Physical activity is here defined as bodily movement produced by skeletal 

muscles that results in the expenditure of energy (Caspersen, Powell, & Christenson, 

1985). It is often (though not exclusively) accomplished through exercise, which refers to 

planned, structured, and repetitive physical activity aimed at improving or maintaining 

physical fitness (Caspersen et al., 1985). Cognitive benefits of regular exercise can be 

observed after two- to three-month periods (Best, 2010; Davis et al., 2011; Tomporowski, 

Davis, Miller, & Naglieri, 2008), and may be a result of multiple underlying mechanisms, 

including changes in growth factors (e.g., brain derived neurotrophic factor; Cotman, 

Berchtold, & Christie, 2007), decreased inflammatory response and oxidative stress 

(Sakurai et al., 2009), increased activity of CB1 receptors in areas such as the 

hippocampus (Ferreira-Vieira, Bastos, Pereira, Moreira, & Massensini, 2014), and 

increased levels of circulating endocannabinoids (Koltyn, Brellenthin, Cook, Sehgal, & 

Hillard, 2014). Given well-documented health benefits, the American College of Sports 

Medicine and the Center for Disease Control recommend that adults ages 18-65 engage 

in at least 150 minutes of moderate-to-vigorous physical activity per week, and two days 

per week of muscle-strengthening activities (Piercy et al., 2018). The guidelines for 

children and adolescents ages 6-17 are significantly higher, recommending at least 60 

minutes of moderate-to-vigorous physical activity per day and three days per week of 

muscle strengthening activities (Piercy et al., 2018).  

In spite of these guidelines, available research suggests that there is a significant 

decline in physical activity levels from childhood into adolescence (Cairney, Veldhuizen, 
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Kwan, Hay, & Faught, 2014; Dumith, Gigante, Domingues, & Kohl, 2011; Nader, 

Bradley, Houts, McRitchie, & O’Brien, 2008; Troiano et al., 2008). This age-related 

decline has been observed in studies using both objective (e.g., accelerometer), and 

subjective (e.g., self-report questionnaires) measures of physical activity and exercise 

(Nader et al., 2008; Troiano et al., 2008). One longitudinal study of children ages 9 to 15 

found that physical activity levels decreased by approximately 37 minutes per year 

(Nader et al., 2008). Indeed, recent estimates suggest that only 24% of children 6 to 17 

years of age (and 26% of high school students) participated in the recommended 60 

minutes of daily physical activity (Kann, 2018; The Child and Adolescent Health 

Measurement Initiative, 2016). These estimates are concerning, as physical activity 

during adolescence is predictive of lifestyle behaviors, physical health, and psychological 

well-being in adulthood (Malina, 2001; Sacker & Cable, 2006).  

Among school-age children and adolescents, exercise has been positively 

associated with various school-related metrics, including grade-point averages, academic 

readiness and achievement, reading and mathematical skills, intellectual functioning, and 

perceptual skills (Donnelly et al., 2016; Esteban-Cornejo, Tejero-Gonzalez, Sallis, & 

Veiga, 2015; Herting & Chu, 2017; Sibley & Etnier, 2003; Tomporowski et al., 2008). It 

has also been linked to improvements in specific neurocognitive domains, such as 

memory (Donnelly et al., 2016; Herting & Chu, 2017; Sibley & Etnier, 2003; 

Tomporowski et al., 2008). Children and adolescents engaging in regular exercise and/or 

demonstrating higher fitness levels have shown improvements in verbal working memory 

(Reynolds & Nicolson, 2007), associative memory (Chaddock, Erickson, Prakash, Kim, 

et al., 2010), and visuospatial learning and memory (Herting & Nagel, 2012; Lee et al., 
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2014; Raine et al., 2013; Ross, Yau, & Convit, 2015; Whiteman, Young, Budson, Stern, 

& Schon, 2016). Concordantly, studies have documented effects of exercise and fitness 

on the structure and function of memory-related brain regions in these populations. For 

instance, studies have found larger entorhinal and hippocampal volumes in more 

aerobically fit adolescents and emerging adults (Herting & Nagel, 2012; Whiteman et al., 

2016), as well as preadolescent children (Chaddock, Erickson, Prakash, Kim, et al., 2010) 

relative to their less fit counterparts.  

Importantly, findings from the above-described literature suggest that cannabis 

use and exercise may have opposite effects on brain and cognitive function through their 

activity at CB1 receptors. Whereas cannabis use downregulates CB1 receptors in brain 

regions relevant to cognition (Hirvonen et al., 2012), exercise up-regulates these 

receptors (Ferreira-Vieira et al., 2014).  In addition, exercise results in an increase in 

circulating concentrations of endocannabinoids (Koltyn et al., 2014), which may help to 

restore concentrations among chronic cannabis users, for whom these may be depleted 

(Hirvonen et al., 2012). These opposite effects could potentially result in the prevention 

or amelioration of cannabis-related cognitive impairment. To support this hypothesis, one 

recent study found that aerobic fitness moderated the association between cannabis use 

and neurocognition among adolescents and young adults, such that higher-fit cannabis 

users showed less impairment in visual memory, executive functioning, and psychomotor 

speed than their lower-fit counterparts (Wade, Wallace, Swartz, & Lisdahl, 2019). Thus, 

engagement in exercise may prove an efficacious and cost-effective way to ameliorate 

cannabis-related cognitive impairment. 
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The current study aims to examine associations between exercise, cannabis use, 

and episodic memory among adolescents over time (Aim 1), leveraging data collected 

through a longitudinal study examining the effects of adolescent cannabis use on 

neurocognition, particularly in the domains of episodic memory and decision-making 

(R01 DA031176, PI: Gonzalez). On the basis of the above-described body of work, we 

hypothesized that a) escalation in cannabis use would be associated with declines in 

episodic memory, and b) this association would be moderated by exercise, such that both 

higher initial levels of and increases in exercise over time would be associated with lesser 

cannabis-related memory decline. Findings from these analyses represent the first attempt 

at examining these relationships longitudinally, and in a sample consisting primarily of 

adolescent cannabis users.  

Method 

Subjects and Setting 

Participants were 401 adolescents ages 14 to 17 at baseline who were part a larger 

study examining longitudinal associations between adolescent cannabis use and 

neurocognition (R01 DA031176, PI: Gonzalez). Participants were recruited from Miami-

Dade County middle and high schools, as well as through flyers posted throughout the 

community and word-of-mouth referrals. Eligibility for the parent study was ascertained 

via phone screen. Inclusion criteria included ages 14 to 17 years at baseline, and ability to 

read and write English. In order to recruit a sample that was at risk for escalation in 

cannabis use, use of alcohol, cigarettes, or cannabis, even if minimal, was also an 

inclusion criterion. However, by design, approximately 10% of the sample was allowed 

to have no history of substance use, in order to avoid inadvertently identifying our 
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participants as substance users and to have some representation of non-users in the 

sample (who may still have initiated and escalated use during the study). Exclusion 

criteria included reports of any of the following at the time of screening: lack of 

proficiency in English, birth complications, in utero drug exposure, developmental 

disorders, neurological disorders, history of formal diagnosis or treatment for a mental 

health disorder (excluding ADHD and conduct disorders given high comorbidity with 

adolescent substance use), history of a traumatic brain injury or loss of consciousness for 

more than 10 minutes, and use of psychotropic medications with known neurocognitive 

effects (with the exception of stimulant medications for ADHD). To avoid recruiting 

adolescents who were already at ceiling levels of use that could obfuscate escalation, 

participants were also excluded if their screening responses indicated heavy use of 

alcohol (defined as >13 drinks in a week, or >6-7 drinks in a day, on more than three 

lifetime occasions) or cannabis (defined as using multiple times per day, every day, for 

>12 weeks) or an alcohol or cannabis use disorder based on responses to items from the 

Substance Dependence Severity Scale (Miele et al., 2000). In addition, with the exception 

of alcohol, nicotine, and cannabis, participants were excluded if they reported prior use of 

any drug more than 10 times, any drug use in the two weeks prior to screening, or use of 

any drug to a greater extent than cannabis. It is important to note that, although 

participants were excluded based on these criteria at the time of screening, they were not 

excluded if they met criteria for mental health and/or substance use disorders as assessed 

by structured clinical interviews during any of the study assessments, or if they were 

formally diagnosed with a disorder over the course of the study. Our sample’s detailed 
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demographic, substance use, and mental health characteristics at each assessment wave 

are shown in Table 1. 

Parental consent and participant assent were obtained for all participants prior to 

the baseline assessment. Participant consents were also obtained for adolescents who 

became of legal age during the course of the study. The Institutional Review Board at 

Florida International University approved all procedures for the parent study (IRB-13-

0065), as well as the current study’s secondary data analyses (IRB-19-0117). 

 The study involved five assessments conducted at 6-month intervals over a two-

year period. The baseline assessment (T1), one-year follow-up (T3), and two-year follow-

up (T5) were conducted in person, and consisted of an extensive battery which included 

toxicology testing, paper-and-pencil neuropsychological tests, structured and semi-

structured clinical interviews assessing substance use and mental health, and self-report 

questionnaires assessing various other constructs. The 6-month follow-up (T2) and 18-

month follow-up (T4) were conducted over the phone, and consisted of an abbreviated 

battery which included semi-structured interviews assessing substance use, and self-

report questionnaires assessing mental health and other topics. The current study involves 

substance use data collected at all five timepoints, as well as neuropsychological memory 

performance data collected at in-person assessments (T1, T3, T5). Additionally, an 

exercise questionnaire was added to the study after study onset, and was administered at 

the three final timepoints (T3, T4, T5).  

Measures 

Substance use history. The Drug Use History Questionnaire (DUHQ) is a 

detailed semi-structured interview used to assess frequency and amount of use of 16 
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different drug classes (i.e., alcohol, nicotine, cannabis, K2/spice/synthetic cannabinoids, 

cocaine, methamphetamine, other stimulants, heroin, other opiates, benzodiazepine, 

barbiturates, ecstasy, hallucinogens, other club drugs, PCP, and inhalants) during a 

participant’s lifetime (only at baseline), the past 6 months, and the past 30 days 

(Duperrouzel et al., 2019; Rippeth et al., 2004). For follow-up assessments, examiners 

queried participants’ typical frequency (in days) and amount of use for each month in the 

6-month assessment interval. Cumulative lifetime frequency of cannabis use was 

calculated at each timepoint by adding the lifetime frequency at baseline, and the relevant 

6-month follow-up frequencies, and was used as our primary measure of cannabis use in 

the current study. Cumulative lifetime frequencies of alcohol and nicotine use were also 

included as covariates in our analyses. 

Toxicology testing. During in-person assessments, we collected saliva samples 

with the Intercept® Oral Fluid Drug Test (OraSure Technologies, Inc.: Bethlehem, PA), 

which were sent for laboratory testing to Forensic Fluids Laboratories (Kalamazoo, MI) 

to determine recent use (limit of detection for THC: 1ng/ml). Of note, participants were 

instructed to abstain from using any drugs for at least 24 hours prior to their in-person 

assessments. In addition, any participants who were deemed to be acutely intoxicated by 

examiner observation were asked to return at a later date and did not undergo further 

testing. However, because the toxicology tests were analyzed by an external laboratory, 

we could not exclude participants with positive results at the time of the assessment. 

Thus, we used positive THC test results as a covariate to account for the impact subacute 

intoxication on cognitive performance. 
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Exercise. The Sports and Activity Involvement Questionnaire (SAIQ) is a 

questionnaire originally developed for use in the ABCD study (Barch et al., 2018). It was 

adapted as a self-report questionnaire for use with participants in the current study. The 

SAIQ collects detailed information regarding participants’ involvement in sports, 

exercise, and other types of activities over the past 6 months and past 30 days. 

Participants indicated the number of months, weeks per month, days per week, and 

minutes per day that they spent on each endorsed activity. Using the total number of 

minutes spent on sports and exercise, we calculated the average number of hours per 

week spent on sports and exercise over the past 6 months, which was used as our primary 

measure of exercise. A full list of the activities included in this questionnaire (and in our 

measure) can be found in the Table 2. Because the SAIQ was added to our protocol after 

parent study onset, it was only administered at T3, T4, and T5. It was completed by 60 

participants at T3, 138 participants at T4, and 198 participants at T5 (n = 199 for analyses 

including only the exercise variable). 

Episodic memory. Episodic memory performance was assessed via performance-

based measures administered at in-person assessments (T1, T3, and T5). The California 

Verbal Learning Test—2nd Edition (CVLT-II) is a valid, reliable, and commonly used 

instrument used to assess verbal learning and memory (Woods, Delis, Scott, Kramer, & 

Holdnack, 2006). Participants were orally presented with a 16-item word list that was 

repeated across 5 trials, and they were asked to recall as many words as possible after 

each trial (Immediate Free Recall). Participants were then presented with a new list of 

words, and were asked to recall them. After this, they were asked to once again recall the 

words from the first list, both freely and with semantic cues. Finally, after a 20-minute 
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delay, participants were asked to recall the words from the first list both freely (Long 

Delay Free Recall) and with semantic cues.  

The Wechsler Memory Scale—Fourth Edition (WMS-IV) is another memory 

assessment tool with well-established validity and reliability (Wechsler, 2009). 

Participants completed the Logical Memory and Designs subtests, which assess memory 

for verbal and visual information, respectively. During the Logical Memory subtest, 

participants are orally presented with two structured narratives, and asked to recall as 

much information as they can remember from these stories both immediately (Logical 

Memory Immediate Recall) and following a 20- to 30-minute delay (Logical Memory 

Delayed Recall). The Designs subtest involved the brief (10-second) presentation of a 

visual array consisting of abstract designs on a spatial grid over four trials. After each 

array was removed, participants were asked to select the correct designs from a set of 

cards including target and distractor designs, and to place them in their correct locations 

on the grid both immediately (Designs Immediate Recall) and after a 20- to 30-minute 

delay (Designs Delayed Recall).  

For our primary measures of immediate memory and delayed memory, we 

transformed the raw scores for these trials into T-scores (mean = 50, SD = 10) using the 

mean and standard deviation of each measure at the baseline assessment, and computed 

their average. For our immediate memory index, we averaged the T-scores from the Total 

Immediate Recall across all trials of the CVLT-II, and the Logical Memory I and Designs 

I immediate recall trials. For our index of delayed memory, we averaged T-scores from 

the Long Delay Free Recall of the CVLT-II, and Logical Memory II and Designs II 

delayed recall trials. 
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Estimated IQ. The Wide Range Achievement Test 4 – Word Reading Subtest 

(WRAT-4 Reading) requires participants to correctly read words out loud and is often 

used as a proxy of general intelligence (Wilkinson & Robertson, 2006). We used this 

index to estimate participants’ IQs at baseline, including it as a covariate in our analyses.  

Analytic Plan  

We used latent growth curve modeling (LGCM) to characterize patterns of 

cannabis use and memory performance over the two-year study period, as well as patterns 

of self-reported exercise over the last year of the study. We first ran four separate 

unconditional linear growth models for cannabis use, immediate memory, delayed 

memory, and exercise. 

Next, to examine main effects of cannabis use on memory performance, we ran 

two separate parallel process LGCMs, each of which simultaneously estimated the 

growth curve of cannabis use and one of the memory variables (immediate and delayed 

memory, separately). The following parameters were specified for each parallel process 

model: 1) the cannabis use intercept was correlated with the relevant memory intercept, 

2) the cannabis use slope was regressed on the memory intercept, 3) the memory slope 

was regressed on the cannabis use intercept, and 4) the memory slope was regressed on 

the cannabis use slope (Figures 1 and 2). We then ran two additional parallel process 

LGCMs to examine main effects of exercise on immediate and delayed memory 

performance (Figures 3 and 4).   

To address the study hypotheses, we then conducted a series of latent interaction 

models examining the impact of the interaction between cannabis use and exercise on 

memory performance. These models included a) the simultaneously estimated growth 
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curves of cannabis use, exercise, and memory; b) the same parameters as the parallel 

process models described above; and c) an interaction term. First, we examined whether 

initial levels of exercise prevented cannabis-related memory decline by regressing the 

memory slope on the interaction between the exercise intercept and cannabis use slope 

(Figures 5 and 6). Second, we examined whether change in exercise over time prevented 

cannabis-related memory decline by regressing the memory slope on the interaction 

between the exercise and cannabis use slopes. Separate models were run for immediate 

and delayed memory as outcomes, for a total of four latent interaction models (Figures 7 

and 8). 

Finally, we identified theoretically relevant covariates which may influence 

associations between cannabis use and neurocognition, which included sex (Crane, 

Schuster, Fusar-Poli, & Gonzalez, 2013), estimated IQ, baseline age, use of other 

substances, such as alcohol and nicotine (Jacobus & Tapert, 2013; Schuster, Crane, 

Mermelstein, & Gonzalez, 2015), and toxicology results suggesting sub-acute THC 

intoxication at each available timepoint (Broyd et al., 2016). We re-tested all models and 

compared findings after accounting for these covariates. Importantly, due to power 

limitations and the high number of parameters included in the interaction models, these 

models only retained covariates shown to have significant effects in previous steps. 

All analyses were conducted using Mplus 8 (Muthén & Muthén, 1998).  All 

models were specified using maximum likelihood estimation with standard errors and a 

chi-squared statistic that are robust to non-normality (MLR). Model fit was assessed 

using absolute fit indices, such as the Comparative Fit Index (CFI), root mean square 

error of approximation (RMSEA), and standardized root mean square residual (SRMR). 
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CFI values of .95 or greater were used to indicate excellent fit, and values between .90 

and .94 were used to indicate acceptable fit (McDonald & Ho, 2002); RMSEA values less 

than .05 were used to indicate excellent fit, whereas values between .05 and .10 were 

used to indicate acceptable fit (McDonald & Ho, 2002); and SRMR values below .08 

were considered to indicate good fit (Hu & Bentler, 1999). Of note, these indices are not 

available for the latent interaction models (Muthén & Muthén, 1998).  

Missing data. Of the 401 participants that completed the baseline assessment, 

391 completed the six-month follow-up assessment (98%), 383 completed the one-year 

follow-up assessment (96%), 380 completed the 18-month follow-up assessment (95%), 

and 387 completed the two-year follow-up assessment (96.5%). Thus, there were low 

rates of missingness in the cannabis use and memory variables in our sample. We found 

no differences on any of the variables used in the current study when comparing 

participants with complete data and those who missed entire assessments. However, 

because collection of exercise data began after parent study onset, approximately half of 

our participants completed exercise measure at least once (n = 199 for analyses involving 

only the exercise variable).  

We used full information maximum likelihood (FIML) to handle missing data. 

The FIML method can be applied to an incomplete dataset to produce parameter 

estimates that accurately describe the entire sample. FIML uses information from all 

available data points to construct parameter estimates under the assumption that the data 

are missing at random, as in the current study. 
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Results 

Pattern of Cannabis Use over Time 

The unconditional LGCM of cannabis use showed acceptable fit, as shown in 

Table 3.  On average, lifetime frequency of cannabis use increased significantly over the 

two-year -period (p < .001). With every assessment, lifetime cannabis use frequency 

increased by an average of 42.22 days, which represented an effect approximately ¾ of a 

standard deviation (SD) in magnitude. However, there was significant variability in the 

slope of cannabis use, suggesting that individual participants varied substantially in their 

patterns of change over time. The correlation between the cannabis use intercept and 

slope was also large and significant (p < .001), indicating that participants with more 

frequent cannabis use at baseline demonstrated greater escalation in cannabis use over the 

course of the study. 

Pattern of Exercise over Time 

The unconditional LGCM of exercise showed acceptable fit (Table 3). Of note, 

we obtained a negative, non-significant variance for the slope of exercise, which led us to 

rerun the model setting the slope variance to zero (Dillon, Kumar, & Mulani, 1987). On 

average, participants’ self-reported amount of exercise remained stable over the course of 

the study (p = .081).  

Patterns of Episodic Memory over Time 

For both immediate and delayed memory, the unconditional linear growth models 

showed excellent fit (Table 3). On average, participants’ immediate and delayed memory 

performance increased significantly over time (ps <.001). With every assessment, 

participants’ immediate memory performance increased by an average of 1.01 points, 
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whereas delayed memory performance increased by an average of 1.16 points. These 

represented large effects (~2 SD for immediate memory, and ~2.5 SD for delayed 

memory). The slope variances were not significant, indicating that participants’ memory 

performance improved uniformly among participants across study visits.  The 

correlations between intercepts and slopes were not significant for either immediate (p = 

.436) or delayed memory (p = .494). 

Cannabis Use and Immediate Memory 

Table 4 lists estimates for the unadjusted parallel process model of cannabis use 

and immediate memory. The intercepts were significantly and negatively correlated (p = 

.005). This indicated that a greater number of lifetime days of cannabis use reported at 

baseline was associated with worse immediate recall at baseline. In addition, the cannabis 

use slope predicted the immediate memory slope (p = .023). Participants with greater 

escalation in cannabis use showed lesser gains in memory performance during the two-

year study period, consistent with our hypotheses. Specifically, for every 10-day increase 

in cannabis use, participants’ immediate memory performance improved by .04 fewer 

points; this was a small effect (less than ¼ SD). The immediate memory intercept 

significantly predicted the cannabis use slope (p = .039); however, as illustrated in Figure 

1, this effect became nonsignificant after controlling for covariates. No significant 

associations were observed between the cannabis use intercept and immediate memory 

slopes (p = .963). Detailed results from covariate-adjusted models are presented in Table 

5. 

 

 



 21 

Cannabis Use and Delayed Memory 

As shown in Table 4, the correlation between the cannabis use intercept and the 

delayed memory intercept was negative and significant (p = .001), consistent with 

hypotheses that participants with greater cannabis use at baseline also demonstrated 

worse performance on delayed recall trials at baseline. Surprisingly, the delayed memory 

intercept was negatively and significantly associated with the cannabis use slope (p = 

.001), such that better performance on delayed recall trials predicted lesser escalation in 

cannabis use over the course of the study. Specifically, a one-point increase in delayed 

memory performance predicted 1.5 fewer days of increase in cannabis use frequency. 

This effect was small in magnitude (less than ¼ SD), but remained significant even after 

controlling for estimated IQ, as illustrated in Figure 2. Associations between the cannabis 

use intercept and delayed memory slope, and between the cannabis use and delayed 

memory slopes were not significant (ps = .680 and .351, respectively), suggesting that 

neither baseline nor change in cannabis use predicted changes in delayed memory 

performance. Detailed results from the covariate-adjusted model of cannabis use and 

delayed memory can be found in Table 6. 

Exercise and Immediate Memory 

 As shown in Table 7, associations between exercise and immediate memory were 

not significant. Contrary to expectation, the association between the slopes was non-

significant, suggesting that change in exercise did not impact change in immediate 

memory. Results were similar even after controlling for covariates, as detailed in Table 8 

and illustrated in Figure 3. 
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Exercise and Delayed Memory 

 Results from unadjusted parallel process model of cannabis use and exercise are 

presented in Table 7. The delayed memory and exercise intercepts were negatively and 

significantly correlated (p = .038), suggesting that better memory performance at baseline 

was associated with lower self-reported exercise at T3. However, this correlation was 

non-significant after controlling for relevant covariates (Table 9). These findings are 

further illustrated in Figure 4. 

Interaction between Exercise Intercept and Cannabis Use Slope 

 The interactive effect of the exercise intercept and cannabis use slope on the 

immediate memory slope was not significant (b = -.010, SE = .012, p = .404). Results 

were similar for delayed memory performance (b = -.008, SE = .043, p = .843), and 

remained unchanged after controlling for covariates, as shown in Tables 10 and 11. This 

suggests that initial levels of exercise did not moderate the negative association between 

cannabis use and memory slopes. In other words, individuals who reported higher initial 

levels of exercise showed similar cannabis-related memory decline as those who reported 

lower initial levels of exercise. These models are illustrated in Figures 5 and 6 (not all 

paths are shown). 

Interaction between Exercise Slope and Cannabis Use Slope 

The interaction between the exercise and cannabis use slopes did not significantly 

impact the immediate memory slope (b = .012, SE = .025, p = .640), or the delayed 

memory slope (b = .010, SE = .206, p = .837). Similar results were obtained after 

controlling for covariates, as shown in Tables 12 and 13. Thus, change in exercise did not 

moderate the negative association between cannabis use and memory slopes. Contrary to 
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hypotheses, cannabis-related effects on memory were similar across participants with 

varying levels of change in exercise. These models are depicted in Figures 7 and 8 (not 

all paths are shown). 

Discussion 

The current study examined longitudinal associations between cannabis use and 

episodic memory, and explored whether exercise moderated these associations. 

Consistent with our hypotheses and with the extant literature, greater lifetime cannabis 

use was associated with poorer episodic memory at baseline, and greater escalation in 

cannabis use predicted lesser gains in immediate episodic memory over time. On the 

other hand, exercise did not predict improvements in episodic memory. Contrary to study 

hypotheses, neither higher levels of nor change in exercise moderated the association 

between escalation in cannabis use and change in memory performance over time. These 

findings remained unchanged after controlling for important confounds, such as age, sex, 

estimated IQ, concurrent use of alcohol and nicotine, and sub-acute THC intoxication. 

Thus, in our sample of adolescent cannabis users, there was no evidence that exercise 

could help ameliorate cannabis effects on memory. 

 Even after controlling for effects of sub-acute intoxication via oral fluids testing 

for THC, adolescents reporting more lifetime days of cannabis use showed worse 

immediate memory at baseline, and those with greater escalation in their use showed 

lesser improvements in immediate memory performance over time. Delayed memory, on 

the other hand, was impacted cross-sectionally at baseline, but not longitudinally. This is 

consistent with other studies finding adverse effects of cannabis on the learning of new 

information, rather than with forgetting previously learned information (Bossong et al., 
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2012; Schoeler & Bhattacharyya, 2013). Nonetheless, this does not rule out the 

possibility that delayed recall may also be affected with continued escalation.  Overall, 

our results are consistent with evidence that cannabis use results in the downregulation of 

CB1 receptors, which are found in high density in hippocampal regions (Hirvonen et al., 

2012). This study also replicates findings from a large body of work suggesting that 

cannabis use results in small adverse effects on episodic memory (Grant et al., 2003; 

Schreiner & Dunn, 2012; Scott et al., 2018) even in a young adolescent sample with a 

more limited history of cannabis use.    

 Surprisingly, poorer delayed memory performance at baseline predicted greater 

escalation in cannabis use in our sample, even after accounting for global cognitive 

ability. This suggests that poorer delayed memory could be a neurocognitive risk factor 

for problematic cannabis use. This is consistent with the idea that substance misuse can 

both result from and lead to aberrant learning and memory (Hyman, 2005; Torregrossa, 

Corlett, & Taylor, 2011), although these studies have typically focused on memory 

processes as they relate to reward. Alternatively, several studies suggest that executive 

functioning skills can impact free recall in episodic memory tasks (Dickerson et al., 2007; 

Noël et al., 2012; Parks et al., 2011). Although we were not able to test this in the current 

study, it is possible that the association between baseline delayed memory and cannabis 

use escalation could be better explained by poorer executive functioning, which is a more 

commonly reported neurocognitive risk factor for problematic substance use (Kim-Spoon 

et al., 2017). Nevertheless, this finding warrants replication and further exploration with a 

more diverse sample.   



 25 

Contrary to hypotheses, the current study did not find evidence of either a main 

effect or a moderating role of exercise in the association between cannabis use and 

episodic memory. Our results are thus consistent with those of several previous studies 

that have found no effect of chronic exercise and adolescent cognition (Herting & Nagel, 

2013; Pindus et al., 2015; Tarp et al., 2016; Verburgh, Königs, Scherder, & Oosterlaan, 

2013; Zervas, Danis, & Klissouras, 1991). There are several possible explanations for 

these results. First, adolescents are considered to be approaching peak cognitive health in 

young adulthood (Salthouse & Davis, 2006), which may leave little room for exercise-

related improvement in cognition during adolescence (Hillman, Erickson, & Kramer, 

2008). Indeed, memory performance in our sample was largely within the average range 

at the baseline assessment (Duperrouzel et al., 2019), and improved over time, which 

could be the result of both neuromaturation and practice effects. However, although this 

could explain the absence of a main effect of exercise, it does not preclude the possibility 

of a moderating role of exercise in the association between cannabis use and cognition. 

Second, the average levels of exercise reported by participants in our sample fall below 

the recommended physical activity guidelines for adolescents (Piercy et al., 2018). 

Although evidence suggests that even smaller amounts of exercise and physical activity 

can be associated with cognitive benefits (Piercy et al., 2018), it is possible that higher 

levels of exercise may be needed to combat the effects of escalating cannabis use, 

particularly given the downregulation of CB1 receptors associated with chronic patterns 

of use (Hirvonen et al., 2012). Third, of the studies examining associations between 

exercise and memory, many studies focused on visuospatial learning and memory 

(Herting & Nagel, 2012; Lee et al., 2014; Raine et al., 2013; Ross et al., 2015; Wade et 
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al., 2019; Whiteman et al., 2016), whereas the current study relied on a composite 

measure including two indices of verbal episodic memory and one index of visual 

memory. Thus, it is possible that effects of exercise may be more readily observed in the 

domain of visuospatial learning and memory, or in executive domains not assessed in the 

current study, such as inhibitory control. Finally, it should be considered that exercise 

could have an impact on neurocognition even in the absence of effects on task 

performance. For instance, Herting et al. (2013) found that higher-fit adolescents showed 

lower hippocampal activation during the encoding portion of an associative memory task, 

but had equivalent task performance as their lower-fit counterparts, which the authors 

interpreted as evidence of greater neural “efficiency.” 

One previous cross-sectional study found support for a moderating role for 

aerobic fitness in the association cannabis use and neurocognition among adolescents and 

young adults (Wade et al., 2019). Small moderating effects were reported in the domains 

of visual memory, executive functioning, and psychomotor speed, but not verbal memory 

(Wade et al., 2019). Our study differed from theirs in several notable ways. First, whereas 

the current study focused on reported hours/week of exercise, Wade et al. (2019) tested 

participants’ aerobic fitness, i.e., the ability to deliver oxygen to the muscles and utilize it 

to generate energy to support muscle activity during exercise (Armstrong, Tomkinson, & 

Ekelund, 2011). Although greater involvement in exercise is thought to lead to improved 

aerobic fitness among youth (Armstrong et al., 2011), these are nevertheless distinct 

constructs. Indeed, other studies have found effects of fitness, but not reported exercise or 

physical activity, on cognitive performance among children and adolescents (Oliveira et 

al., 2017; Ruotsalainen et al., 2019). In addition, the SAIQ employed in the current study 
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was a self-report measure. Self-report questionnaires have been shown to have low to 

moderate correlations with objectively measured physical activity (Prince et al., 2008). 

Also, because this measure did not assess the intensity of reported activities, our index of 

exercise may have included both light and moderate-to-vigorous intensities, whereas 

many studies documenting positive effects on cognition focus only on the latter. Finally, 

Wade et al. (2019) conducted cross-sectional group-based comparisons between cannabis 

users and nonusers, whereas the current longitudinal study examined associations 

between cumulative lifetime frequency of cannabis use and neurocognition in a sample of 

adolescents at varying levels of use. It is possible that more positive or ameliorating 

effects of exercise on memory may be more readily observed among more regular, 

chronic users for whom memory performance may be below expectancy. 

The current study has several notable strengths, including the relatively large 

sample of young adolescents, the use of longitudinal LGCMs to examine bidirectional 

associations over time, the exploration of two different aspects of episodic memory, and 

the inclusion of several theoretically important confounding variables as covariates. 

Nevertheless, our findings should be interpreted in light of several limitations. First, our 

measure of exercise relied on participant self-report which, in addition to the above-

described limitations, is likely subject to social desirability and memory biases. Future 

studies should examine these associations using more objective measures of exercise and 

fitness. Second, because the exercise measure was added after parent study onset, there 

was a large proportion of missing data for this variable. Relatedly, this measure was only 

administered at the final three timepoints. Thus, while associations between cannabis use 

and memory were examined over a two-year period, effects of exercise were only 
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examined over a one-year period, as we did not have data regarding participants’ 

engagement in exercise during the first two timepoints. It is possible that effects of 

exercise on change in memory performance would have become apparent if we had 

examined them concurrently at each timepoint. Assessing exercise at additional 

timepoints would also have helped to better characterize the growth curve of the exercise 

variable, as the current study was limited to fitting a linear model given the three 

available timepoints. In addition, the current study relied on composite measures of 

immediate and delayed episodic memory, each of which included two indices of verbal 

memory and one index of visual memory. This method did not allow for more fine-

grained examination of specific sub-domains (e.g., verbal narrative memory, verbal list 

learning, visual spatial memory), but it is less likely to result in Type-I error. Finally, 

several characteristics of our sample may limit the generalizability of our findings. For 

instance, as shown in Table 1, our sample was predominantly White (77%) and of 

Hispanic/Latino ethnicity (90%). Although this is consistent with the demographic 

makeup of the greater Miami metropolitan area, it may limit generalizability to other 

racial, ethnic, and cultural groups.  However, we have no evidence to hypothesize that 

associations between cannabis use and neurocognition may vary across common U.S. 

ethnic groups. In addition, despite observed escalation in cannabis use, the majority of 

participants in the sample had limited histories of cannabis use because of their young 

age, and did not report heavy, daily cannabis use. Additional work is needed to determine 

whether these results would differ in older samples with more chronic histories of heavy 

cannabis use. Lastly, although participants were asked to abstain from drugs for 24 hours 

prior to each assessment and assessments were not completed if participants appeared 
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intoxicated, a subset of the sample tested positive for THC in oral fluids at in-person 

assessments (see Table 1). Although we covaried for positive toxicology results for THC, 

given limits of detection for oral fluids testing, it is possible that some participants may 

have experienced sub-acute effects at the time of testing and therefore exacerbated the 

magnitude of observed effects on memory performance in the current study.      

In conclusion, the current study replicates prior findings that poorer immediate 

episodic memory is a consequence of escalating cannabis use and extends this to a young 

adolescent sample at relatively early stages of use using a longitudinal LGCM design. 

Poorer memory among adolescent cannabis users may explain associations between 

cannabis use and poorer academic outcomes (Lynskey & Hall, 2000; Pacheco-Colón, 

Ramirez, et al., 2019), and further supports the contention that cannabis use is not benign 

among adolescent users. However, our results do not support a role for exercise in the 

amelioration of cannabis-related memory decline, as neither higher levels of nor change 

in exercise moderated the association between escalation in cannabis use and change in 

memory performance over time. Examination of these associations using more objective 

measures of exercise and fitness may help to clarify for whom and under what 

circumstances exercise may help support adolescent cognitive and brain function.   
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Introduction 

Participation in sports and exercise has been consistently linked to increased 

alcohol use and lower cigarette use (Kwan, Bobko, Faulkner, Donnelly, & Cairney, 2014; 

Terry-McElrath, O’Malley, & Johnston, 2011). Associations with cannabis use, on the 

other hand, are less clear, as studies have often lumped cannabis in with other illicit 

substances (Kwan et al., 2014; Lisha & Sussman, 2010; Terry-McElrath et al., 2011). 

Some studies have found that adolescents and young adults who report greater 

engagement in sports and exercise are less likely to use cannabis (Barber, Eccles, & 

Stone, 2001; Darling, 2005; Dawkins, Williams, & Guilbault, 2006; Dever et al., 2012; 

Henchoz et al., 2014; King, Merianos, Vidourek, & Oluwoye, 2016; Terry-McElrath et 

al., 2011), whereas others have found no relationship (Aaron et al., 1995; Eccles & 

Barber, 1999; Mahoney & Vest, 2012; Wichstrøm & Wichstrøm, 2009), or suggested 

moderation by factors such as age, sex, exercise intensity, and team involvement (Boyes, 

O’Sullivan, Linden, McIsaac, & Pickett, 2017; Kwan et al., 2014). There is some 

evidence that exercise and team involvement work synergistically to predict lower 

cannabis use, although this association may also vary with specific sports (Ford, 2007; 

Lisha & Sussman, 2010; Terry-McElrath et al., 2011). Exercise interventions have also 

been linked to increased abstinence rates in the treatment of substance use disorders 

(Wang, Wang, Wang, Li, & Zhou, 2014; Zschucke, Heinz, & Ströhle, 2012), including 

one specifically targeted to cannabis use disorders (Buchowski et al., 2011). Several 

factors have been identified as potential mediators of the association between exercise 

and positive substance use outcomes, including decreases in internalizing symptoms, 

decreased stress reactivity, increased social support, development of adaptive coping 
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strategies, and increased self-efficacy (Wang et al., 2014; Zschucke et al., 2012). 

However, the potential mediating role of exercise-related effects on cognition has not yet 

been examined. 

Indeed, exercise has been linked to a variety of positive effects on cognitive 

function spanning multiple domains, including intellectual functioning, perceptual skills, 

memory, and executive functioning (Hillman et al., 2008; Sibley & Etnier, 2003), which 

can often be observed within two to three month periods (Best, 2010; Tomporowski et 

al., 2008). Within the domain of executive functioning, higher levels of exercise have 

been associated with improvements in attention, reasoning, set-shifting, processing speed, 

inhibitory control, error monitoring, cognitive flexibility, and working memory (Best, 

2010; Guiney & Machado, 2013; Hillman et al., 2014; Kamijo & Takeda, 2010; Kelly et 

al., 2014). All of these aforementioned executive processes are involved in decision-

making, i.e., the ability to make optimal choices that maximize reward in the presence of 

risk (Bechara & Damasio, 2002; Pacheco-Colón, Hawes, Duperrouzel, Lopez-Quintero, 

& Gonzalez, 2019). Despite this, effects of exercise on decision-making have rarely been 

studied. One recent study found that a 3-month exercise program resulted in reduced 

effort-discounting, but had no impact on risky decision-making (Bernacer et al., 2019). In 

other words, participants were more willing to expend physical effort to obtain monetary 

rewards post-intervention, whereas their valuing of monetary rewards based on explicit 

risk probabilities remained unchanged. Thus, there is some evidence that exercise may 

impact certain aspects of decision-making, which could potentially affect substance use 

and other risky behaviors. 
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Poor decision-making has been identified as a potential risk factor for problematic 

substance use, placing certain individuals at greater risk for escalation in use and 

subsequent addiction.  It has been linked to earlier age of onset of substance use disorders 

(Tarter et al., 2003), faster transition to drug co-use (Lopez-Quintero et al., 2018), and 

relapse across various substances (Bowden-Jones, McPhillips, Rogers, Hutton, & Joyce, 

2005; Nejtek, Kaiser, Zhang, & Djokovic, 2013; Passetti, Clark, Mehta, Joyce, & King, 

2008; Paulus, Tapert, & Schuckit, 2005; Verdejo-Garcia et al., 2014). Specifically with 

regards to cannabis use, Gonzalez et al. (2012) found that, despite no differences in 

decision-making performance between young adult cannabis users and non-users, poor 

decision-making was associated with a higher number of cannabis use disorder symptoms 

among cannabis users. Greater cannabis use also predicted a higher number of cannabis-

related problems, but only among those with poor decision-making (Gonzalez, Schuster, 

Mermelstein, & Diviak, 2015).  Thus, there is some evidence that poor decision-making 

may represent a neurocognitive risk factor for adverse cannabis-related outcomes. 

The current prospective study examines associations between exercise, decision-

making, and cannabis use among adolescents over six months (Aim 2). Based on the 

aforementioned findings, we hypothesize that more exercise will be associated with 

positive cannabis-related outcomes, including lower cannabis use frequency, lower odds 

of having a cannabis use disorder, and lower severity of cannabis-related problems six 

months later. In addition, we predict that these effects will be mediated by exercise-

related effects on decision-making, such that higher levels of exercise will be associated 

with better decision-making performance, which will in turn predict better cannabis use 

outcomes. Findings from these analyses will begin to answer whether exercise-related 
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cognitive gains can be leveraged in the prevention of cannabis addiction among 

adolescents. 

Method 

Participants 

Participants were 387 adolescents ages 15 to 18 who were primarily cannabis 

users and were predominantly Hispanic/Latino (90%) and White (77%). Participants 

were recruited from Miami-Dade County middle and high schools, as well as through 

word-of-mouth referrals as part of a larger study examining the effects of different 

adolescent cannabis use trajectories on episodic memory and decision-making (R01 

DA031176; N = 401). This parent study recruited a sample of adolescents who were at 

risk for escalation in cannabis use; inclusion and exclusion criteria for the parent study 

were described in detail in Chapter II.  

Procedure 

 Parental consent and participant assent were obtained for all participants prior to 

the baseline assessment of the parent study. Participant consents were also obtained for 

youths who became of legal age during the course of the study. All study procedures 

were approved by the Institutional Review Board at Florida International University 

(IRB-13-0065 for parent study; IRB-19-0117 for current study). 

As described in Chapter II, the parent study involved five assessments conducted 

at 6-month intervals over a two-year period. However, the current study only includes 

data collected at the fourth and fifth assessments of the parent study. The fourth 

assessment of the parent study is referred to as “baseline” for this study, as it was the first 

measurement wave at which a large number of participants completed the exercise 
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measure, whereas the fifth assessment of the parent study is here referred to as the “6-

month follow-up.” Participants from the parent study were included in the current study if 

they completed at least one of these two measurement waves (N = 387).  

Measures 

Exercise. As described in Chapter II, the current study used the number of hours 

per week spent on sports and exercise over the past six months, as measured by the SAIQ 

as our measure of exercise (Barch et al., 2018). Participants also indicated whether they 

engaged in each activity as part of a team; they were coded as being involved in teams if 

they reported team involvement for most of the activities endorsed. Because the SAIQ 

was added to our protocol after parent study onset, it was completed by 138 participants 

(~36% of the sample) at the current study’s baseline assessment.  

Substance use. We assessed three cannabis-related outcomes at the 6-month 

follow-up through the following three questionnaires. The DUHQ, which was also 

described in Chapter II, yielded past 6-month frequency (in days) of cannabis use at the 

6-month follow-up, which we used as one of our cannabis outcome measures 

(Duperrouzel et al., 2019; Rippeth et al., 2004). To account for the influence of other 

substance use on cannabis outcomes, we covaried for past 6-month frequency of alcohol 

and nicotine use. 

We also used the substance use modules of the Structured Clinical Interview for 

DSM-IV (SCID-IV; First, Spitzer, Gibbon, & Williams, 1994)) to diagnose the presence 

of alcohol and other substance use disorders at the 6-month follow-up. We used a 

dichotomous variable indicating presence of a cannabis use disorder (abuse or 

dependence) in the past 6 months as one of our cannabis outcomes.  
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Finally, participants who reported a history of cannabis use also completed the 

Marijuana Problems Scale (MPS), a 35-item self-report questionnaire with adequate 

validity and reliability (Buckner, Ecker, & Cohen, 2010; Stephens, Roffman, & Curtin, 

2000). This instrument assesses negative social, personal, occupational, and physical 

consequences experienced as a result of cannabis use over the past 6 months. We used the 

total MPS score at the 6-month follow-up as one of our cannabis outcomes. 

Decision-Making. Decision-making was assessed through three computerized 

tasks at the 6-month follow-up. The Cups Task measures decision-making under 

conditions of specified risk for both gain and loss domains (Levin & Hart, 2003). In this 

task, participants were shown a display of 2, 3, or 5 cups on each side of the screen, and 

were instructed to choose a cup from one of the two sides for a total of 54 trials. One side 

always yielded a definite reward or a smaller loss, while the other side provided a chance 

for a greater reward. We used the number of total risky choices from the gain and loss 

domains as our indices of decision-making for this task. 

Participants also completed the Game of Dice Task (GDT), which assesses 

decision-making under explicit risk conditions (Brand et al., 2005). Participants were 

asked to guess the result of a die throw by selecting combinations of one, two, three, or 

four numbers for a total of 18 trials. Low-risk choices (i.e., combinations of three or four 

numbers) are associated with greater probability of smaller gains, whereas high-risk 

choices (i.e., combinations of one or two numbers) are associated with lower probability 

of higher gains. The total number of risky choices was used as our index of decision-

making for the GDT. 
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Finally, participants completed the Iowa Gambling Task (IGT), which measures 

decision-making under conditions of ambiguous risk (Bechara, Damasio, Damasio, & 

Anderson, 1994). Across 100 trials, participants were instructed to select from four card 

decks, which included two “good” decks (Decks C and D), and two “bad” decks (Decks 

A and B), while trying to earn as much money as possible. We used the reverse-scored 

IGT Net Score (i.e. choices from good decks minus choices from bad decks) as our index 

of DM for this task (Bechara, 2007).  

We then used the following four indices—total risky choices in the gain domain 

from the Cups and total risky choices in the loss domain from the Cups Task, total risky 

choices from the GDT, and reverse-scored Net Score from the IGT—to derive a latent 

construct of decision-making, the properties of which have been described in detail 

elsewhere (Pacheco-Colón, Hawes, et al., 2019), for use in our analyses. This variable 

served as our primary measure of decision-making across all analyses. Utilizing latent 

variables reduces measurement error and results in increased power and less biased 

estimates (Little, Bovaird, & Widaman, 2006). This is particularly important for 

mediation analyses, as measurement error associated with a mediator can severely impact 

parameter estimates (Muthén & Asparouhov, 2015). Of note, higher scores in our latent 

construct of decision-making indicate higher risk-taking, and thus, worse decision-

making performance.   

Estimated IQ. As in Chapter II, the WRAT-4 Word Reading subtest was used to 

estimate participants’ IQs at the baseline assessment of the parent study (Wilkinson & 

Robertson, 2006), and covary for effects of global cognitive function on decision-making 

performance.  
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Demographics. Participants’ sex and age at the baseline assessment were also 

used as covariates in our analyses. 

Analytic Plan 

First, we examined the independent direct effects of the predictor on later 

outcomes. Specifically, we conducted three separate regression models examining the 

effect of baseline exercise on each of our three cannabis use outcomes at the 6-month 

follow-up (Path c; Figures 9, 10, and 11).  

In order to evaluate decision-making as a mediator of the relationship between 

exercise and cannabis use outcomes, we then ran prospective mediation models which 

included three paths: the effect of past 6-month exercise at baseline on decision-making 

performance at 6-month follow-up (Path a), the effect of decision-making performance at 

6-month follow-up on cannabis outcomes at the 6-month follow-up (Path b), and the 

direct effect of past 6-month exercise at baseline on cannabis outcomes at the 6-month 

follow-up after controlling for the mediating influence of decision-making (Path c’). We 

ran a total of three such models, using past 6-month cannabis use frequency, past 6-

month presence of a cannabis use disorder, and total MPS score at the follow-up as 

outcomes, respectively. The first two models (cannabis use frequency and disorder as 

outcomes) included the full sample (N = 387). However, participants with no history of 

cannabis use (n = 66) were excluded from analyses involving the MPS score, as this 

questionnaire examines problems experienced as a result of cannabis use and was 

therefore not administered to non-users. Finally, analyses were repeated, controlling for 

theoretically relevant covariates. Covariate-adjusted models controlled for the influence 
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of sex, baseline age, and IQ on decision-making, as well as for the influence of sex, 

baseline age, and concurrent use of alcohol and nicotine on cannabis use outcomes.  

All analyses were conducted using Mplus 8. We used the Mplus INDIRECT 

command to assess the significance of the indirect effect (Path a*b). To account for 

nonnormality in our data and avoid assumptions regarding the distribution of the indirect 

effect, we estimated standard errors and confidence intervals of model path coefficients 

using nonparametric bootstrap sampling (20,000 samples).  

Missing data. There were low rates of missingness in the cannabis use and 

decision-making variables. However, because collection of exercise data began after 

parent study onset, the SAIQ was completed by 138 participants at the current study’s 

baseline assessment (~36% of the sample). Missingness in the exercise questionnaire was 

related to cannabis use, such that users with missing exercise data also reported more 

cannabis use. To ensure that data were missing at random, we examined the effect of 

exercise on cannabis-related outcomes using only those participants with complete 

exercise data; results were unchanged. We used FIML to handle missing data in this and 

all other study variables. This method can be applied to an incomplete dataset to produce 

parameter estimates that more accurately describe the entire sample. FIML uses 

information from all available data points to construct parameter estimates under the 

assumption that the data are missing at random, as in the current study. FIML has been 

shown to outperform other methods for handling missing data even with large 

proportions of missing data (Xiao & Bulut, 2020). 
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Results 

Participant Characteristics 

Demographics and substance use characteristics of our sample are presented in 

Table 14. Use of drugs other than alcohol, nicotine, and cannabis was low. Most 

commonly endorsed drugs were hallucinogens (n = 51), benzodiazepines (n = 38), and 

cocaine (n = 37), with most of these participants endorsing use ≤ 2 days over the past 6 

months.  

Cannabis Use Frequency 

The direct effect of past 6-month exercise at baseline on past 6-month cannabis 

use frequency at the 6-month follow-up was significant (path c: b = 3.02., SE = .89, p = 

.001, 95% CI [1.28, 4.78]). This association was contrary to our hypotheses, such that for 

every additional hour/week of exercise reported at baseline, there was a 3.02-day increase 

in past 6-month cannabis use frequency at the follow-up. This represented a small effect 

(less than ¼ SD). 

Our hypothesized mediation model revealed a marginally significant path from 

exercise at baseline to decision-making at the follow-up (path a: b = -.04, SE = .02, p = 

.059, 95% CI [-.08, -.004]), such that more exercise predicted less risk-raking or better 

decision-making. The path from decision-making to past 6-month cannabis use frequency 

at the 6-month follow-up was not significant (path b: b = 1.26 1, SE = 5.46, p = .818, 

95% CI [-9.41, 9.74]). After controlling for the role of decision-making, the direct effect 

of exercise on cannabis use frequency was largely unchanged (path c’: b = 2.99, SE = .94, 

p = .002, 95% CI [1.05, 4.78]). However, the indirect effect of exercise on cannabis use 
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frequency via decision-making was not significant (path a*b: b = -.04, SE = .22, p = .841, 

95% CI [-.61, .30]).  

As shown in Figure 9, after controlling for effects of sex, age, and IQ, the effect 

of exercise on decision-making (Path a) was not significant. On the other hand, the direct 

effect of exercise on cannabis use frequency (Path c’) remained significant even after 

controlling for covariates. 

Cannabis Use Disorder 

The direct effect of past 6-month exercise at baseline on past 6-month cannabis 

use disorder assessed at the 6-month follow-up was not significant (path c: b = .02, SE = 

.02, p = .197, 95% CI [-.02, .06]).  

The subsequent mediation model showed a significant association between past 6-

month exercise at baseline and decision-making performance at the 6-month follow-up 

(path a: b = -.04, SE = .02, p = .035, 95% CI [-.07, -.01]), such that more exercise 

predicted less risk-taking.  However, decision-making did not predict past 6-month 

cannabis use disorder at the 6-month follow-up (path b: b = -.003, SE = .09, p = .979, 

95% CI [-.18, .19]). After controlling for the mediating role of decision-making, the 

direct effect of baseline exercise on cannabis use disorder at follow-up remained 

unchanged (path c’: b = .02, SE = .02, p = .224, 95% CI [-.02, .06]). The indirect path 

from exercise to cannabis use disorder via decision-making was also not significant (path 

a*b: b = .00, SE = .00, p = .982, 95% CI [-.01, .01]).  

As shown in Figure 10, the effect of exercise on decision-making (Path a) became 

nonsignificant after controlling for covariates. All other findings remained unchanged.  
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Cannabis-Related Problems  

 Among cannabis users in our sample, the effect of past 6-month exercise at 

baseline on cannabis-related problems reported at the 6-month follow-up was not 

significant (path c: b = .03, SE = .08, p = .704, 95% CI [-.12, .21]). Similar to previous 

models, our hypothesized mediation model revealed a significant association between 

baseline exercise and decision-making at the 6-month follow-up (path a: b = -.05, SE = 

.02, p = .026, 95% CI [-.10, -.01]), as well as a nonsignificant association between 

decision-making and cannabis-related problems at the follow-up (path b: b = .06, SE = 

.52, p = .906, 95% CI [-.87, 1.16]). The direct effect of exercise on cannabis-related 

problems remained nonsignificant after accounting for the role of decision-making (path 

c’: b = .55, SE = .34, p = .106, 95% CI [-.10, 1.22]). The indirect effect via decision-

making was also not significant (path a*b: b = -.03, SE = .02 p = .276, 95% CI [-.11, 

.001]).  

As illustrated in Figure 11, after controlling for other covariates, the direct effect 

of exercise on decision-making became nonsignificant, whereas all other findings 

remained unchanged. 

Post-Hoc Exploratory Moderation Analyses 

 In an effort to better understand our unexpected finding, we conducted a series of 

post-hoc analyses to further explore the association between baseline exercise and 

cannabis use frequency at the 6-month follow-up. Because these variables have 

previously been identified as moderators, we conducted separate regression models to 

determine whether a) sex and b) involvement in team sports moderated this relationship.  
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 Results revealed a significant interaction between sex and exercise, (b = -3.02, SE 

= 1.47, p = .039, 95% CI [-5.61, .23]). Probing of this interaction revealed that the 

association between exercise and cannabis use was primarily driven by males (b = 3.07, 

SE = 1.11, p = .006, 95% CI [.88, 5.25]), rather than females (b = .05, SE = 1.17, p = 

.435, 95% CI [-2.02, 5.90]). This interaction is illustrated in Figure 12. The interactive 

effect of exercise and involvement in team sports was not significant (b = 2.55, SE = 

2.11, p = .226, 95% CI [-1.86, 6.55]).  

Discussion 

The current study examined associations between engagement in exercise and 

various cannabis-related outcomes among adolescents, and whether decision-making 

performance mediated these relationships. Our results suggest that, although participation 

in exercise did not predict later presence of a cannabis use disorder or cannabis-related 

problems, there was a significant association between self-reported exercise at baseline 

and greater cannabis use frequency at the 6-month follow-up, even after controlling for 

covariates. Contrary to our hypotheses, none of these associations were mediated by 

exercise-related effects on decision-making. Across models, more exercise at baseline 

predicted better decision-making performance at the follow-up, but this association 

became nonsignificant after controlling for covariates. Decision-making, on the other 

hand, did not predict any of the cannabis-related outcomes explored in this study.  

 Unexpectedly, we found that adolescents who reported more hours/week of 

exercise at baseline also reported greater past 6-month frequency of cannabis use at the 

follow-up assessment. This effect remained significant even after controlling for the 

effects of age, sex, and concurrent use of alcohol and nicotine on cannabis use. Post-hoc 
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exploratory analyses also revealed that this effect was driven by males, as males in our 

sample reported higher levels of both exercise and cannabis use. These findings are 

inconsistent with those of several studies documenting protective effects of exercise and 

sports participation against cannabis use (Barber et al., 2001; Darling, 2005; Dawkins et 

al., 2006; Dever et al., 2012; King et al., 2016; Terry-McElrath et al., 2011). These 

discrepancies may be explained, at least in part, by the characteristics of our sample. 

First, in contrast to previous studies, our study examined these effects in a predominantly 

Hispanic/Latino sample (90%). In addition, our participants were part of a larger study, 

the inclusion/exclusion criteria of which were successfully applied to recruit a sample of 

adolescents at risk for escalation in cannabis use (Duperrouzel et al., 2019; Hawes, 

Trucco, Duperrouzel, Coxe, & Gonzalez, 2018). Thus, by design, our participants may 

have had certain characteristics (e.g., personality traits, lower perceived risk of substance 

use) that made them more likely to use cannabis and other substances, and may not be 

representative of all adolescents. In addition, associations between exercise and cannabis 

use may have been influenced by other variables not assessed by the current study, 

including but not limited to parental monitoring and peer deviance (Dever et al., 2012; 

King et al., 2016). It is possible that participants in our sample may have had lower 

parental monitoring and thus more unsupervised time with peers, which may have placed 

them at greater risk for experimentation with substances and subsequent escalation. 

Finally, many of the studies examining the associations between sports participation and 

later cannabis use utilize data that were collected over a decade ago. The recent 

proliferation of recreational and medical cannabis laws has been accompanied by 

increased acceptance of cannabis use and decreases in perceptions of risk (Hughes et al., 
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2016; Pew Research Center, 2016). Thus, it is possible that associations between exercise 

and cannabis use may be different now than they previously were.  

It should also be noted that there is significant cross-study variability in the 

assessment and operationalization of participation in sports and exercise. For instance, 

some studies have employed binary variables to measure participation in sports (Darling, 

2005), with others using Likert scales to indicate extent of involvement in sports and 

exercise (Darling, 2005; Dever et al., 2012; King et al., 2016; Terry-McElrath et al., 

2011), or continuous variables to represent time or years spent in these activities 

(Dawkins et al., 2006). Because we were interested in the cognitive benefits of exercise, 

we opted for the latter, as minutes per week has been described as the most predictive 

index of total health benefits (Piercy et al., 2018). Furthermore, although the terms 

“sports and exercise,” and “physical activity” are sometimes used interchangeably, they 

are not equivalent (Khan et al., 2012). Sports and exercise are subsets of physical activity, 

but physical activity can also include activities performed through work, chores, at home, 

and while traveling. Effects on health-related behaviors, such as substance use, may be 

different for sports and exercise versus physical activity. Indeed, after adjusting for 

mutual influences, Henchoz et al. (2014) found that participation in sports and exercise 

was protective against later cannabis use, but higher levels of physical activity were 

positively associated with later at-risk cannabis use. Of note, the measure used in the 

current study primarily assessed sports and exercise, although it may also have captured 

some non-exercise components of physical activity (e.g., active transport through bike 

riding or skateboarding). Future studies should assess participation in sports and exercise, 
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as well as overall levels of physical activity in order to determine which of these can be 

protective in the context of substance use, and for whom.  

Nonetheless, several previous studies have found positive associations between 

sports participation and cannabis use. For instance, Ewing (1998) found that sports 

participation predicted greater cannabis use among high school males, whereas Peretti-

Watel (2002) described a “U-curve” such that cannabis use was highest for males at both 

the lowest and highest levels of physical activity. Further, Ford (2007) found that this 

association varied with both sex and specific sport, such that female soccer players and 

male hockey players reported the highest levels of cannabis use, with runners reporting 

the lowest. It is thus possible that engagement in sports and exercise may be a protective 

factor for some and a risk factor for others. More recently, a cross-sectional study found 

that adults who endorsed using cannabis concurrently with exercise were more likely to 

be male, and reported more minutes of exercise (both aerobic and anaerobic) per week as 

well as greater enjoyment of and motivation to exercise (YorkWilliams et al., 2019). This 

is in line with our findings, as well as with athletes’ subjective reports that cannabis use 

enhances their athletic performance (Nguyen, 2019), and evidence of lower body-mass 

index among cannabis users (Ross, Pacheco-Colón, Hawes, & Gonzalez, 2020). It is 

therefore possible that increased enjoyment of exercise while under acute cannabis 

intoxication may have contributed to greater cannabis use frequency, as observed in the 

current study. Large scale longitudinal studies would allow for more fine-grained 

analyses in order to develop a nuanced understanding of the association between exercise 

and cannabis use, and its directionality.  
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In line with our hypotheses, we found a significant association between baseline 

exercise and risky decision-making at the 6-month follow-up, such that more hours/week 

of self-reported exercise predicted less risk-taking, or better decision-making. However, 

this effect appeared to be better explained by effects of age, sex, and IQ on decision-

making. Decision-making encompasses many higher-order cognitive functions (e.g., 

working memory, response activation and inhibition, performance monitoring, reward 

learning). Previous work suggests that exercise effects on executive aspects of cognition 

are most often observed in the domains of inhibitory control and cognitive flexibility 

among pediatric populations. It is possible that the tasks employed in the current study do 

not sufficiently tap into these domains, which are more readily assessed through 

cognitive tasks, such as stop signal and flanker tasks (Erickson, Hillman, & Kramer, 

2015; Hillman et al., 2014; Westfall et al., 2018). Future work should examine whether 

exercise effects on these cognitive domains may mediate associations between exercise 

and substance use. 

In addition, we found no association between decision-making and cannabis use 

outcomes, including frequency of cannabis use, presence of a cannabis use disorder, and 

problems resulting from cannabis use. These findings contribute to a mixed body of work 

examining associations between cannabis use and decision-making (Broyd et al., 2016; 

Crean, Crane, & Mason, 2011; Gonzalez et al., 2012, 2015). Importantly, despite the 

wide range of cannabis use in our sample, most of our adolescents reported relatively low 

levels of cannabis use, with only about a third reporting chronic, near daily use and most 

reporting low severity of cannabis-related problems (as illustrated by the narrow 

interquartile range of MPS scores shown in Table 14). It is thus possible that participants 
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may not have been using cannabis at high levels long enough for more adverse cannabis-

related outcomes to manifest. More longitudinal work is needed to explore associations 

between decision-making and cannabis use over longer periods of time.  

Findings from the current study must be interpreted in light of several limitations. 

First, as mentioned in Chapter II, our measure of exercise relied on participant self-report, 

which has been shown to have low to moderate correlations with objectively measured 

physical activity (Prince et al., 2008). Second, cannabis use is very complex, with 

increasingly varied methods of use and potencies. Our study relied on days of use as our 

index of cannabis use, as frequency indices have been shown to be slightly more reliable 

than reported amounts of use for adolescents completing timeline follow-back interviews 

(Levy et al., 2014). However, we were not able to examine the impact of other factors, 

such as route of administration, product type, and potency. Third, because the exercise 

measure was added after parent study onset, there was a large proportion of missing data 

in this variable. However, we used FIML to handle missing data in all study variables. 

FIML has been shown to produce more accurate parameter estimates than other methods, 

even when data are sparse (Xiao & Bulut, 2020). Also due to limitations regarding the 

exercise measure and parent study design, our study covers a 6-month time window, with 

decision-making and CU outcomes assessed at the same time-point. Although exercise 

effects can be observed over short periods of time (Best, 2010; Tomporowski et al., 

2008), future studies should explore the impact of both exercise and decision-making on 

later cannabis-related outcomes over longer periods of time, as this would also help to 

clarify the temporality of these associations. Finally, as previously mentioned, our sample 
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was predominantly Hispanic/Latino, which may limit generalizability to more diverse 

samples.  

In sum, higher levels of exercise at baseline predicted greater cannabis use 

frequency at the 6-month follow-up, but did not predict the presence of a cannabis use 

disorder, or cannabis-related problems. Baseline exercise predicted better decision-

making at the follow-up, although this path was marginally significant in one of our 

models. However, this effect was better accounted for by the effects of sex, age, and IQ 

on decision-making. Decision-making did not predict cannabis-related outcomes. The 

indirect effects of decision-making were also not significant, and thus did not support a 

mediating role of decision-making in associations between exercise and cannabis-related 

outcomes among adolescents. To the best of our knowledge, ours is the first study to 

examine associations between exercise, cannabis use, and risky decision-making. Future 

studies should continue to examine the effects of exercise on cognition using objective 

measures of exercise and/or fitness to determine whether exercise-related cognitive gains 

can be utilized in prevention and treatment efforts aimed at substance-using adolescents. 
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TASK-RELATED BRAIN ACTIVATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This work was supported by a National Research Service Award (F31 DA047750-01A1) 

awarded to Ileana Pacheco-Colón by the National Institute on Drug Abuse. 



 51 

Introduction 

Positive effects of exercise on executive functioning have been extensively 

documented among older adults (Chen et al., 2020; Colcombe & Kramer, 2003). 

Although there has been increased interest in recent decades, these effects have been 

relatively understudied among children and adolescents (Donnelly et al., 2016). In 

pediatric populations, chronic exercise, physical activity, and/or fitness have been linked 

to improvements in executive functioning performance. These effects have been 

documented in both observational and intervention studies, and span several sub-

domains, including cognitive and/or inhibitory control (Chaddock, Erickson, et al., 

2012a; Crova et al., 2014; Hillman et al., 2014; Khan et al., 2015; Pontifex et al., 2011; 

Scudder et al., 2014; Wu et al., 2011), abstract reasoning (Ardoy et al., 2014), planning 

(Davis & Cooper, 2011; Davis et al., 2007), working memory (Drollette et al., 2016; 

Scudder et al., 2014), and fluid intelligence (Reed, Maslow, Long, & Hughey, 2013). 

Across most studies, positive effects of exercise remained significant even after 

controlling for important confounders, which have commonly included age, sex, 

socioeconomic status, and IQ (Donnelly et al., 2016).  

Similarly, studies have also found exercise-related alterations in the structure and 

function of several brain regions involved in executive functioning processes among 

children and adolescents. For instance, structural magnetic resonance imaging (MRI) 

studies have found larger gray matter volumes in areas such as the medial prefrontal 

cortex (Herting, Keenan, & Nagel, 2016), orbitofrontal cortex (Ross et al., 2015), and 

basal ganglia (Chaddock, Erickson, Prakash, VanPatter, et al., 2010; Chaddock, Hillman, 

et al., 2012) in aerobically fit children. Additionally, a handful of functional MRI (fMRI) 
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studies have examined the effects of chronic exercise and/or fitness on brain function 

among healthy, typically developing children (Chaddock, Erickson, et al., 2012b; 

Chaddock-Heyman et al., 2013; Voss et al., 2011), as well as overweight children (Davis 

& Cooper, 2011; Krafft et al., 2014). Most of these studies have examined cognitive 

and/or inhibitory control using variations of the Eriksen flanker task. Although there has 

been significant cross-study variability with regards to the specific brain regions affected, 

effects of exercise and fitness have been commonly reported in frontal regions, such as 

the anterior cingulate cortex, medial frontal gyrus, and prefrontal cortex (Chaddock, 

Erickson, et al., 2012b; Chaddock-Heyman et al., 2013; Davis et al., 2011; Krafft et al., 

2014; Voss et al., 2011). The directionality of the findings has also varied across studies. 

Some have found that exercise and fitness resulted in decreased task-related activation 

(Chaddock-Heyman et al., 2013; Krafft et al., 2014), which is typically interpreted as a 

sign of “increased efficiency,” whereas others have found increased activation 

(Chaddock, Erickson, et al., 2012b; Davis et al., 2011; Voss et al., 2011).  

Importantly, several studies documenting effects of exercise on brain and 

cognition among children have either failed to find, or failed to examine associations 

between these two constructs (Davis et al., 2011; Krafft et al., 2014; Voss et al., 2011). 

For instance, Krafft et al. (2014) found both improvements in cognition and decreases in 

task-related brain activation during an antisaccade task among children who completed 

an exercise intervention; however, associations between changes in brain activation and 

changes in cognitive performance were not significant. In addition, an exercise 

intervention by Davis et al. (2011) found dose-response improvements in executive 

function (i.e., planning) and math, as well as evidence of increased bilateral prefrontal 
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activation and decreased posterior parietal activation during an anti-saccade task. 

However, they did not describe the association between fMRI activation and cognitive 

performance. Further, in contrast to adult studies (Broadhouse et al., 2020; Liu, Wu, Li, 

& Guo, 2018; Peven et al., 2019; Voss et al., 2010; Wong et al., 2015), studies on 

pediatric populations have not formally tested a mediating role for these neural changes 

in the association between exercise and cognitive performance. For this reason, it is not 

yet clear whether exercise effects on children’s cognition can be explained by effects on 

underlying brain structure and/or function.  

Another limitation of the literature examining the impact of exercise on pediatric 

brain and cognitive functioning is its heavy emphasis on flanker tasks, whereas less is 

known about the effects of exercise on other commonly used executive tasks, such as the 

N-back task. The N-back task is typically used to assess working memory (i.e., the ability 

to mentally hold or manipulate information for a brief period of time), as it requires 

participants to indicate whether each stimulus is the same as the one presented N trials 

ago (Jaeggi, Buschkuehl, Perrig, & Meier, 2010), and has been shown to predict 

performance in other cognitive domains, particularly fluid intelligence (Jaeggi et al., 

2010). This task has been shown to elicit concordant activation of parietal cortices, 

insula, claustrum, and cerebellum across both children and adults, whereas activation of 

specific frontal regions varies by age group (Yaple, Stevens, & Arsalidou, 2019). Two 

behavioral studies have found positive associations between fitness and N-back task 

performance (Drollette et al., 2016; Scudder et al., 2014), but these studies did not 

involve neuroimaging.  One fMRI study of preadolescent children found that acute bouts 

of aerobic exercise resulted in improved N-back task performance, as well as increased 
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activation of parietal cortices, hippocampus, and cerebellum (Chen, Zhu, Yan, & Yin, 

2016). However, less is known about the effects of chronic exercise on brain activation 

during this task. 

The current study examines cross-sectional associations between exercise and 

executive functioning, and explores a potential mediating role for task-related brain 

function in relevant neural networks among children (Aim 3) utilizing data from the 

landmark ABCD study (U01 DA041156). These analyses focus on brain activation 

during an N-back task in the frontoparietal and salience networks due to their 

involvement in cognitive control and executive functioning (Marek & Dosenbach, 2018; 

Seeley, 2019; Seeley et al., 2007). We hypothesized that a) more exercise would be 

associated with better executive functioning, and b) this association would be mediated 

by exercise effects on task-related activation of the frontoparietal and salience networks, 

such that more exercise would predict greater mean-level network activation, which 

would in turn be associated with better executive functioning. In a more exploratory way, 

we also examined the role of the default-mode network (DMN), a network involved in 

self-referential processes and thought to be deactivated during cognitive tasks (Buckner, 

Andrews-Hanna, & Schacter, 2008), but which may also play a role in working memory 

processes (Bluhm et al., 2011; Esposito et al., 2009). Because the majority of the children 

in this sample were substance-naïve at the baseline assessment (as well as at the one-year 

follow-up), we did not explore associations between exercise and cannabis use in the 

current study. Nevertheless, these analyses will lay the groundwork for later exploration 

of these questions once substance use levels in this sample increase.  
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Method 

Participants and Setting 

Data for the current study were obtained from the annual 3.0 data release of the 

ABCD study. The ABCD study recruited 11,878 children aged 9 to 10 years old at the 

baseline assessment to be followed for a period of 10 years into early adulthood. A total 

of 9,553 children completed the N-back task while in the MRI scanner at baseline. Of 

these, 1,820 participants were excluded due to poor data quality (e.g., poor quality of 

structural image, <60% accuracy in task performance), as recommended by the ABCD 

3.0 Release Notes. Thus, the current study utilized data from 7,733 children with quality 

N-back fMRI data the baseline assessment. Participants were recruited across 21 study 

sites through public and private elementary schools with methods intended to yield a final 

sample that approximated national sociodemographic characteristics (Garavan et al., 

2018). Participants and their legal guardian provided assent and consent, respectively, to 

participate. All study procedures were approved by institutional review boards at 

participating institutes.  

Measures 

Exercise. In the current study, exercise was assessed through the SAIQ, which 

was completed by parents at baseline. A full list of the activities included in this 

questionnaire is included in Table 2. For each endorsed activity, parents indicated the 

number of years, months per year, and days per week that their child engaged in each 

endorsed activity. They also indicated the number of minutes spent in each session 

through a Likert scale (1 = less than 30 minutes; 2 = 30 minutes; 3 = 45 minutes; 4 = 60 

minutes; 5 = 90 minutes; 6 = 1 hour; 7 = 2.5 hours; 8 = 3 hours; 9 = greater than 3 hours). 
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Multiplying these variables, we calculated the total time spent on each activity, and added 

these totals (excluding non-sports activities) to obtain lifetime amount of time spent on 

sports for each participant, which was used as our measure of exercise. Of note, although 

this variable does not have meaningful time units due to the Likert scale nature of the 

“minutes per session” ratings, higher values on this variable indicate more time spent in 

exercise.  

Executive functioning. ABCD study participants completed the NIH Toolbox® 

cognition measures. This battery consists of seven tasks and provides several composites, 

which have shown good validity and reliability among both children and adults 

(Akshoomoff et al., 2013; Heaton et al., 2014). The current study used the uncorrected 

Fluid Intelligence Composite as our cognitive outcome measure, as it assesses multiple 

aspects of executive functioning, including attention, cognitive control, working memory, 

and processing speed. Specifically, this composite includes scores from five tests—the 

Toolbox Pattern Comparison Processing Speed Test® (Carlozzi, Beaumont, Tulsky, & 

Gershon, 2015), the Toolbox List Sorting Working Memory Test® (Tulsky et al., 2014), 

the Toolbox Picture Sequence Memory Test® (Bauer et al., 2013), the Toolbox Flanker 

Task®, and the Toolbox Dimensional Change Card Sort Task® (Zelazo et al., 2013).  

N-back task. Participants completed two runs of an emotional N-Back task in the 

scanner, which assesses working memory as well as emotional processing (Barch et al., 

2013; Casey et al., 2018). Each run consisted of eight blocks, half of which involved the 

2-back condition and half of which were 0-back. Stimuli consisted of happy, neutral, and 

fearful faces, as well as places. In the 2-back condition, participants had to press a button 

to indicate whether each picture matched the one they saw two trials back. In the 0-back 
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condition, they indicated whether each picture matched the target. Each block included 

10 trials, and began with a colored fixation (500ms) to signal a switch in task condition, 

by cue indicating the condition (2.5s; e.g., “2-back”). Each stimulus was then presented 

(2s) and followed by a fixation cross (500ms). To assess working memory, the current 

study focused on the 2-back versus 0-back contrast. 

Image preprocessing and calculation of ROI data. Leveraging validated 

methods used in other studies, the ABCD Data Analysis and Informatics Center (DAIC) 

performed centralized processing and analysis of MRI data (Casey et al., 2018; Hagler et 

al., 2019). To summarize, parcellated cortical regions used in study analyses were derived 

from cortical surface reconstruction performed using FreeSurfer v5.3.0 (Fischl, 2012). 

Estimates of canonical task-related activation were computed at the participant level 

using a general linear model (GLM) through AFNI's 3dDeconvolve program and were 

released as contrast beta weights (Cox, 1996). For the 2-back versus 0-back contrast used 

in the current study, average beta coefficients were computed during each of two runs 

and then averaged across runs (Casey et al., 2018; Hagler et al., 2019). Outliers were 

winsorized at ± 3SD, and did not exceed 5% for any brain region. 

Selection of ROIs. We identified ROIs belonging to each network of interest as 

defined by the Gordon parcellation using the nearest Destrieux parcel (Hagler et al., 

2019). We tested 11 ROIs as part of the frontoparietal network: frontomarginal gyrus and 

sulcus, transverse frontopolar gyrus and sulcus, middle frontal gyrus, middle frontal 

sulcus, superior frontal gyrus, intraparietal sulcus and transverse parietal sulci, inferior 

frontal sulcus, supramarginal gyrus, the inferior part of the precentral sulcus, inferior 

temporal sulcus, and orbital gyrus. The salience network consisted of two ROIs: the 
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anterior segment of the circular sulcus of the insula (anterior insula), and anterior 

cingulate gyrus and sulcus. Finally, the default-mode network (DMN) consisted of 13 

ROIs: frontomarginal gyrus and sulcus, middle frontal gyrus, superior frontal gyrus, 

superior frontal sulcus, anterior cingulate gyrus and sulcus, middle to posterior cingulate 

gyrus and sulcus, angular gyrus, precuneus, lateral superior temporal gyrus, superior 

temporal sulcus, middle temporal gyrus, subparietal sulcus, and gyrus rectus.  

Covariates. To control for the influence of demographic factors, we included 

participant age, sex, race/ethnicity, combined household income, and parental education 

as covariates (Zhang, Lee, White, & Qiu, 2020). To control for the influence of mental 

health factors on cognition, we included the internalizing and externalizing problem 

subscales from the Child Behavior Checklist (CBCL) as covariates (Achenbach & Ruffle, 

2000; Thompson et al., 2019). In addition, we controlled for the influence of other social 

and environmental factors that have been shown to influence both cognition and sports 

participation among children (Sangawi, Adams, & Reissland, 2021; Zhang et al., 2020).  

These included parental monitoring, as assessed by the Parental Monitoring 

questionnaire, as well as school involvement and environment, as assessed by the School 

Risk and Protective Factors inventory (Zucker et al., 2018). 

Analytic Plan 

 We used latent variable modeling to determine whether each network’s ROIs 

showed significant co-activation, i.e., whether each ROI loaded significantly onto a 

broader network factor. For each network, we specified a second-order factor model in 

which a) each lateralized ROI loaded onto a right or left hemisphere network factor (first-

order); and b) these lateralized factors loaded onto an overarching network factor 
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(second-order). We also modeled the correlations between the residuals of homologous 

ROI pairs (e.g., the left precuneus with the right precuneus). This modeling approach has 

been previously applied to neuroimaging data (Bolt et al., 2018; Hawes et al., 2020), as 

latent variables are known to reduce measurement error and result in increased power 

(Little et al., 2006). In addition, this modeling approach allows us to explore associations 

between exercise and mean levels of activation in several higher-order network factors, 

rather than individual ROIs, which results in a lower number of comparisons. 

To address study hypotheses, we first examined the independent direct effects of 

lifetime exercise on the fluid intelligence composite through a linear regression model 

(Path c). In order to evaluate network-level task-based activation as a mediator of the 

relationship between exercise and fluid intelligence, we then ran cross-sectional 

mediation models which included three paths: the effect of lifetime exercise on network-

level activation during an executive task (Path a), the effect of network-level task-based 

activation on fluid intelligence (Path b), and the direct effect of lifetime exercise on fluid 

intelligence after controlling for the mediating influence of network-level activation (Path 

c’). We ran a total of three such models to examine the potential mediating roles of the 

frontoparietal, salience, and default-mode networks, respectively. Models were retested 

after accounting for the influence of age, sex, parental education, income, race/ethnicity, 

internalizing and externalizing problems, parental monitoring, and school engagement 

and involvement on both mean network activation and fluid intelligence. 

 All analyses were conducted using Mplus 8 using maximum likelihood estimation 

with standard errors (MLR) that are robust to non-normality. Complex sampling and 

recruitment procedures for the ABCD study were accounted for using CLUSTER 
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correction (for sibling pairs) and stratification sampling (for study site) procedures 

(Muthén & Muthén, 1998). For our three mediation models, we used the Mplus 

INDIRECT command to assess the significance of the indirect effect (Path a*b). Missing 

data were handled using FIML. 

Results 

Second-Order Network Factors 

 The frontoparietal network factor model showed acceptable fit (CFI = .895, 

RMSEA = .057, SRMR = .085). As shown in Table 16, all final ROIs loaded 

significantly onto the frontoparietal network factor. Of note, two ROIs—orbital gyrus and 

inferior temporal sulcus—were excluded from the model because they did not load highly 

onto the network factor and resulted in poorer model fit. Thus, the final frontoparietal 

network factor consisted of nine ROIs, as shown in Figure 13. 

 The salience network factor model showed good fit (CFI = 1.000, RMSEA = 

.008, SRMR = .005). As shown in Table 17, all ROIs loaded significantly onto the 

salience network factor, which is further illustrated in Figure 15.  

 Finally, the DMN factor model showed good fit (CFI = .895, RMSEA = .049, 

SRMR = .060). Due to low factor loading and poorer model fit, the gyrus rectus was 

excluded from the final model. Thus, the final DMN model consisted of 12 ROIs, as 

shown in Figure 16. Factor loadings for the DMN model are found in Table 18.  

Associations between Exercise and Executive Functioning 

 Lifetime exercise was significantly associated with executive functioning, such 

that participants with greater reported involvement in exercise had higher fluid 

intelligence scores at the baseline assessment (Path c: ß = .108, SE = .014, p < .001, 95% 
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CI [.080, .135]). After controlling for the influence of theoretically relevant covariates, 

this association was attenuated but remained statistically significant (Path c: ß = .030, SE 

= .012, p = .016, 95% CI [.005, .054]). This suggests that the association between lifetime 

exercise and executive functioning can be in large part accounted for by other variables, 

including demographics, parental monitoring, and school-related factors.  

Mediating Role of Frontoparietal Network 

Our hypothesized mediation model showed a significant path from lifetime 

exercise to the frontoparietal network factor (Path a: ß = .026, SE = .012, p = .034, 95% 

CI [.002, .050]), suggesting that more lifetime exercise was associated with higher mean-

level frontoparietal network activation in the 2-back versus 0-back condition. The 

frontoparietal factor predicted executive functioning (Path b: ß = .109, SE = .013, p < 

.001, 95% CI [.084, .134]), such that higher mean-level network activation predicted 

higher fluid intelligence scores. After accounting for the potential mediating role of 

frontoparietal network activation, the direct effect of exercise on fluid intelligence 

remained significant (Path c’: ß = .105, SE = .014, p < .001, 95% CI [.078, .132]). The 

indirect effect of exercise on executive function via frontoparietal network activation was 

very small and marginally significant (Path a*b: ß = .003, SE = .001, p = .040, 95% CI 

[.000, .006]). 

 As shown in Figure 16, after controlling for covariates, the association between 

lifetime exercise and the frontoparietal network factor attenuated to non-significance 

(Path a). The paths from frontoparietal network factor to executive function, as well as 

the direct effect of lifetime exercise on executive function (Paths b and c’) remained 

significant. However, the mediated effect of frontoparietal network activation was not 
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significant (Path a*b). Detailed estimates for this covariate-adjusted mediation model can 

be found in Table 19. 

Mediating Role of Salience Network 

 Our hypothesized mediation model showed a nonsignificant path from lifetime 

exercise to the salience network factor (Path a: ß = .019, SE = .014, p = .160, 95% CI [-

.008, .046]), suggesting no effect of exercise on mean-level activation of the salience 

network. The salience network factor was associated with executive function (Path b: ß = 

.059, SE = .014, p < .001, 95% CI [.031, .087]), such that higher mean salience network 

activation predicted higher fluid intelligence scores. After accounting for the mediating 

role of salience network activation, the direct effect of exercise on executive function 

remained unchanged, (Path c’: ß = .107, SE = .014, p < .001, 95% CI [.079, .134]). The 

indirect effect was also not significant (Path a*b: ß = .001, SE = .001, p = .182, 95% CI [-

.001, .003]), indicating that salience network activation did not mediate the relationship 

between exercise and cognitive performance. 

 As previously described, the direct effect of exercise on executive functioning 

was attenuated after controlling for theoretically relevant covariates. Findings remained 

otherwise unchanged, as illustrated in Figure 17. Detailed estimates from this covariate-

adjusted mediation model are presented in Table 20. 

Mediating Role of DMN 

 Our mediation model revealed a non-significant path from lifetime exercise to the 

DMN factor (Path a: ß = .019, SE = .012, p = .121, 95% CI [-.005, .039]), indicating that 

exercise did not predict DMN activation. The association between the DMN factor and 

executive functioning was significant (Path b: ß = .078, SE = .013, p < .001, 95% CI 
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[.053, .103]), such that greater mean-level activation predicted higher fluid intelligence 

scores. Accounting for the potential role of the DMN as a mediator, the effect of exercise 

on executive function remained unchanged, (Path c’: ß = .106, SE = .014, p < .001, 95% 

CI [.079, .129]), and the indirect effect was non-significant (Path a*b: ß = .001, SE = 

.001, p = .135, 95% CI [.000, .003]). Thus, results did not support a mediating role for 

DMN activation. 

 As shown in Figure 18, model results remained mostly unchanged after 

controlling for covariate effects. As in other models, the direct effect of exercise on 

executive functioning was attenuated, but remained statistically significant. Estimates for 

this covariate-adjusted model are detailed in Table 21. 

Discussion 

The current study examined associations between exercise and executive 

functioning in a large sample of children from the ABCD study, and explored the 

mediating role of frontoparietal, salience, and default-mode network activation during an 

N-back task. In line with hypotheses, there was a small but significant association 

between exercise and executive functioning, such that more lifetime exercise was 

associated with higher fluid intelligence scores. However, this association was attenuated 

(while remaining statistically significant) after controlling for the effect of demographic, 

mental health, and school-related factors. Greater activation of frontoparietal, salience, 

and default-mode networks during a working memory task (i.e., 2-back vs. 0-back 

contrast) was associated with better executive functioning. However, contrary to 

expectation, exercise did not predict activation in any of the networks examined, and 
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results did not support a mediating role for task-related network activation in the 

association between exercise and executive functioning. 

 Parent-reported lifetime involvement in exercise was associated with better 

executive functioning at the baseline assessment of the ABCD study. However, this 

association was attenuated after controlling for covariates. With regards to demographics, 

older participant age, male sex, higher household income, and higher levels of parental 

education predicted higher fluid intelligence scores. Of the social factors included as 

covariates, fluid intelligence scores were positively impacted by higher levels of parental 

monitoring, as well as participants’ school environment, and level of involvement in 

school. Finally, lower levels of externalizing problems were associated with higher fluid 

intelligence scores. Of note, with the exception of male sex, these variables were also 

associated with a greater lifetime involvement in exercise. Thus, our results suggest that 

observed associations between exercise and executive functioning in our sample may be 

better explained by sociodemographic factors that influence both cognition and the extent 

to which children participate in sports and exercise. It should also be noted that, although 

this association remained statistically significant, it was a very small effect and is not 

likely to be clinically meaningful. These results stand in contrast to those of several other 

cross-sectional studies suggesting positive effects of exercise and fitness on executive 

functioning among children, even after controlling for effects of potential confounders 

(Chaddock, Erickson, et al., 2012a; Davis & Cooper, 2011; Donnelly et al., 2016; 

Drollette et al., 2016; Jacob et al., 2011; Scudder et al., 2014; Syväoja, Tammelin, 

Ahonen, Kankaanpää, & Kantomaa, 2014).  
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There are several possible explanations for this discrepancy. First, the primary 

variable of interest in many of these studies was aerobic fitness or utilized objective 

assessments of exercise and physical activity, while the current study examined parent-

reported participation in sports and exercise. The limitations associated with self-report 

measures of exercise have been described in great detail in Chapters II and III. In brief, 

self-report assessments of exercise show low to moderate correlations with objective 

assessments, and may be biased in several respects (Prince et al., 2008). Indeed, of the 

studies examining effects of exercise on cognition among children, one study found that 

although objectively measured moderate-to-vigorous physical activity (via 

accelerometer) predicted cognitive performance, self-reported physical activity did not 

(Syväoja et al., 2014). It is thus possible that our results could differ if we used a more 

objective assessment of exercise. In addition, our measure of exercise assessed 

involvement in sports and exercise over the child’s lifetime, which could have obscured 

effects of more recent activity levels. Future studies should focus on a shorter period of 

the child’s life that is more proximal to the cognitive assessment (e.g., past year). Second, 

although most of the aforementioned studies included demographics and physical health 

factors as covariates, they rarely accounted for important social and mental health 

variables that could impact associations between exercise and cognition. Future studies 

should examine whether these factors may moderate effects of exercise, such that 

exercise effects are greater among individuals who do not already have these protective 

factors. Finally, our study utilized a very large sample with characteristics that 

approximated national demographics which was well powered to detect small effects. On 

the other hand, most extant studies, including a prior meta-analysis (Sibley & Etnier, 
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2003), relied on smaller samples. It is thus possible that previously reported effects of 

exercise on pediatric cognitive and brain function may have been overestimated, as 

overestimation of effect sizes has been shown to occur with smaller samples (Button et 

al., 2013; Ioannidis, 2008).  

 Contrary to our hypotheses, the current study did not find support for a mediating 

role of task-related network activation in the association between exercise and executive 

functioning. Given observed covariate effects, it is possible that the effects of exercise on 

cognition may be driven by social, demographic, and mental health variables, rather than 

by causal effects on underlying neurocircuitry. However, associations between exercise-

related constructs and brain activation have previously been described among children 

and adolescents (Chaddock, Erickson, et al., 2012b; Chaddock-Heyman et al., 2013; 

Davis & Cooper, 2011; Krafft et al., 2014). Many of these studies have employed 

cognitive control tasks (e.g., flanker tasks), whereas we focused on a working memory 

task (e.g., N-back task). Like executive functioning, cognitive control is an umbrella term 

which encompasses several more specific domains, including inhibitory control (i.e., the 

ability to ignore distracting information), cognitive flexibility (i.e., the ability to shift 

attention or strategies to meet changing task demands), and working memory. Although it 

is often said that exercise and fitness are associated with better cognitive control, broadly, 

it is possible they may have stronger effects on certain subcomponents of this domain 

(e.g., inhibitory control) than others (e.g., working memory). To obtain a better 

understanding of global and specific effects on cognition, future studies should examine 

the effects of exercise on brain activation during different commonly used fMRI tasks 
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that assess various aspects of executive function (e.g., flanker, N-back, Go-NoGo, 

Stroop).  

The frontoparietal, salience, and default-mode network factors predicted better 

executive functioning, such that greater mean-level activation of all three networks was 

associated with higher fluid intelligence scores. This association was strongest for the 

frontoparietal network factor. This is not surprising, as this network is thought to be given 

its key role in executive functioning and previously documented associations with fluid 

intelligence (Cole, Ito, & Braver, 2015; Marek & Dosenbach, 2018; Ptak, Schnider, & 

Fellrath, 2017). The salience network (particularly, the insula) has also been previously 

implicated in N-back task performance among children (Yaple et al., 2019). In addition, 

greater activation in the DMN factor during the N-back task was associated with better 

cognitive performance. This was somewhat unexpected, as the DMN is thought to be 

most active during rest, and deactivated during active task performance (Buckner et al., 

2008). It should be noted that our DMN factor had several overlapping ROIs with the 

frontoparietal network factor (e.g., frontomarginal gyrus and sulcus, middle and superior 

frontal gyri), which may have influenced our results. However, this overlap is supported 

by evidence that regions of the frontoparietal network are connected to the DMN and are 

involved in the regulation of introspective processes (Dixon et al., 2018).  Finally, some 

studies suggest that DMN regions may play important roles in working memory, which 

may explain activation during a working memory task (Bluhm et al., 2011; Esposito et 

al., 2009).   

The current study has several notable strengths, including the large sample of 

children that are close in age, the application of latent variable modeling to ROI data to 
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examine overarching brain networks, and the examination of the mediating role of task-

related activation as a mediator of the association between exercise and executive 

function. Nonetheless, these findings should be interpreted in light of several limitations. 

First, in addition to the aforementioned limitations associated with self-report (see 

Chapters II and III), the SAIQ used in the current study did not assess for some physical 

activities that are commonly performed by school-age children (e.g., biking). Second, 

mediation examines causal processes that are inherently longitudinal because they unfold 

over time. Cross-sectional mediation models like the one used in the current study may at 

times over- or underestimate these effects (Maxwell & Cole, 2007). Thus, future studies 

should apply longitudinal mediation analyses, as these will also allow us to better isolate 

the effects of exercise and physical activity. Nevertheless, the current analyses lay the 

groundwork for exploration of associations between exercise, brain function, and 

neurocognition in this sample across later timepoints. Third, although the current study 

focused on task-based fMRI, it is possible that exercise could have effects on brain 

structure and/or function that were not assessed or included in our analyses. For instance, 

Chaddock et al. (2012b) found that more aerobically fit children showed increased 

prefrontal and parietal recruitment during the early blocks but reduced activation in the 

later blocks of a flanker task. This suggests that exercise and fitness may impact how 

children adapt to cognitive tasks. Because of our use of average beta weights, we were 

not able to examine variability in network activation throughout the task. In addition, 

several adult studies suggest that exercise results in changes to functional connectivity, 

i.e., the extent to which multiple spatially-distinct brain regions or networks are engaged 

simultaneously in a task (Bernacer et al., 2019; Flodin, Jonasson, Riklund, Nyberg, & 
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Boraxbekk, 2017; Liu et al., 2018; Peven et al., 2019; Rogers, Morgan, Newton, & Gore, 

2007; Tao et al., 2017). However, this has not yet been examined among children. One 

fMRI study found that high-fit adolescents showed greater deactivation of regions 

typically associated with the DMN during a memory task than their low-fit counterparts. 

Although this was not directly assessed, the authors posited that higher aerobic fitness 

may lead to changes in functional connectivity, such that task-relevant networks and the 

DMN are more strongly anticorrelated. Future studies should explore the effects of 

exercise on both resting-state and task-based functional connectivity, particularly in light 

of evidence that the frontoparietal network interacts with other networks (e.g., DMN), to 

coordinate goal-directed behaviors (Marek & Dosenbach, 2018). Fourth, we selected 

ROIs for our network factors based on the Gordon parcellation using the nearest 

Destrieux parcel (Hagler et al., 2019). The Gordon parcellation is based on an adult 

sample; it is possible that these networks may differ among children. Future studies 

should conduct independent component analyses to identify and compare neural networks 

observed in our sample of children. Finally, it should be noted that although our sample 

approximates national sociodemographic characteristics, it overrepresents children from 

higher socioeconomic strata (Table 13), which may limit generalizability to other 

samples. Nevertheless, our sample includes representation from lower socioecomonic 

groups, and we statistically controlled for the influence of related factors, such as parental 

education and combined household income.   

 In conclusion, greater lifetime exercise cross-sectionally predicted higher fluid 

intelligence. However, this association was significantly attenuated after controlling for 

important sociodemographic and mental health factors, including participant age and sex, 
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parental education, household income, parental monitoring, school environment and 

involvement, and externalizing problems. Although this association remained statistically 

significant, it was very small and likely not clinically meaningful. This suggests that 

positive effects of parent-reported exercise on executive functioning may be better 

explained by other factors. Although lifetime exercise did not predict activation of 

frontoparietal, salience, or default-mode networks, greater activation in all three networks 

predicted higher fluid intelligence, with this association being strongest for the 

frontoparietal network. However, the indirect effects of network activation were not 

significant, and thus did not support a mediating role of task-related brain activation in 

the association between exercise and executive functioning.  Future studies should 

continue to examine the effects of exercise on cognition among children longitudinally 

using objective measures of exercise, as well as different neuroimaging analyses 

techniques (e.g., structural imaging, functional connectivity).  
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V. DISCUSSION 

 The studies that comprise this dissertation yielded mixed findings that were at 

times contrary to study hypotheses. The first study replicated previous work that cannabis 

use results in episodic memory declines, but found that exercise did not ameliorate this 

decline among adolescents. The second and third studies found positive effects of 

exercise on executive function among children and adolescents. However, across studies, 

these effects were attenuated after accounting for the influence of several 

sociodemographic variables. These effects were also not mediated by task-related 

activation of cognitive networks during a working memory task. Finally, the second study 

documented a small but significant association between greater engagement in exercise 

and greater cannabis use frequency among adolescents, suggesting that engagement in 

exercise may represent a risk factor for problematic cannabis use. Potential implications 

of these findings are discussed in greater detail below. 

Does Exercise Improve Neurocognition among Children and Adolescents? 

 Prior research suggests that exercise is associated with small to moderate positive 

effects on cognition among children and adolescents (Donnelly et al., 2016; Herting & 

Chu, 2017; Sibley & Etnier, 2003). Although the current project did not find exercise-

related effects on immediate or delayed episodic memory among adolescents, there was 

evidence of small positive effects on aspects of executive function, namely fluid 

intelligence and risky decision-making, among children and adolescents, respectively. 

This is consistent with previous work suggesting that effects of exercise and fitness may 

be more readily observed in certain cognitive domains, such as executive functioning, in 

pediatric populations (Best, 2010; Donnelly et al., 2016). At first glance, this is also 
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consistent with the idea that exercise can help support adolescent brain function, as it 

suggests improved functioning of frontal regions underlying executive functioning, which 

are still maturing during this stage (Casey et al., 2008). 

 However, in both our child and adolescent samples, these associations were 

attenuated after controlling for the confounding effects of third variables. These variables 

included participant sex and age, as well as parental education, household income, school 

environment and involvement, parental monitoring, and externalizing problems; many of 

these factors predicted both greater engagement in exercise and better executive 

performance. Effects of exercise on children’s executive functioning were also not 

mediated by effects on neural activation during an executive task. Thus, our results 

suggest that sociodemographic factors may be driving the association between exercise 

and cognitive function. Although these findings contrast with those of several other 

studies that controlled for demographics and other biological characteristics (Donnelly et 

al., 2016), prior work has rarely accounted for important social factors, such as parental 

monitoring, opportunities available within the school environment, and engagement in 

school activities. In addition, effects of exercise on cognition have typically been studied 

in samples smaller than the ones included in the current project, which may have 

previously resulted in overestimation of effect sizes (Ioannidis, 2008).   

Can Exercise Prevent or Ameliorate Cannabis-Related Cognitive Decline among 

Adolescents? 

 Our findings suggest that exercise does not lessen cannabis-related declines in 

episodic memory among adolescents. Although one prior cross-sectional study suggests 

that aerobic fitness moderates the association between cannabis use and neurocognition, 
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effects reported by this team were small, and would not have survived correction for 

multiple comparisons (Wade et al., 2019). Our results are thus not wholly inconsistent 

with previous findings.  

 However, several considerations hamper the definitiveness of our conclusion. For 

instance, the current study was observational and did not involve any interventions to 

promote exercise or physical activity. Indeed, observed levels of exercise in our sample 

of adolescent cannabis users were lower than recommended by national health guidelines, 

which is not uncommon among adolescents (Kann, 2018; Nader et al., 2008; Piercy et al., 

2018). It is therefore possible that higher levels of exercise, as promoted by an exercise 

intervention, would be better able to combat cannabis-related decline. In addition, 

observed effects of cannabis use on memory in our sample were small (i.e., less than ¼ 

SD), and memory performance fell largely within the average range even among 

cannabis users (Duperrouzel et al., 2019). Positive effects of exercise on memory 

performance may be more readily observed among populations with more room for 

improvement (Kelly et al., 2014; Reynolds & Nicolson, 2007). 

Does Exercise Promote Better Cannabis-Related Outcomes among Adolescents? 

 Contrary to our hypotheses and in contrast to previous work, more exercise was 

predictive of greater cannabis use frequency among adolescents, an effect that was driven 

primarily by males and was not influenced by team involvement. Although exercise did 

not predict the development of a use disorder or cannabis-related problems, this suggests 

that greater engagement in exercise may be a risk factor for problematic cannabis use 

among adolescents. This is concerning, given that adolescent cannabis use has been 

linked to poorer educational outcomes, including higher rates of school dropout, lower 
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academic achievement, and lower educational attainment, in addition to neurocognitive 

decline (Fergusson & Boden, 2008; Gonzalez et al., 2017; Lynskey & Hall, 2000; 

Pacheco-Colón, Ramirez, et al., 2019).  

 Our findings contrast with those of an older body of work suggesting that 

increased engagement in sports and exercise was protective against cannabis use (Barber 

et al., 2001; Darling, 2005; Dawkins et al., 2006; Dever et al., 2012; King et al., 2016; 

Terry-McElrath et al., 2011). However, they are consistent with more recent reports of 

concurrent use of cannabis with exercise among adults (Nguyen, 2019; YorkWilliams et 

al., 2019). Recently reported associations between exercise and cannabis use should be 

interpreted in the context of increasingly permissive cannabis legislation, and lowered 

perceptions of risk of use among both adolescents and adults (Hughes et al., 2016; Pew 

Research Center, 2016). Considering these shifts in public perception, it is entirely 

plausible that associations between exercise and cannabis use may have changed over the 

past few decades. 

 Although these findings warrant replication in more diverse samples, they suggest 

some caution when recommending involvement in exercise and sports to youth. Further 

exploration is necessary to identify for whom and under what circumstances exercise may 

represent a protective versus a risk factor in the context of cannabis and other substance 

use, and what factors can serve to buffer potential risk. For instance, it will be important 

to further examine the role of demographic factors (e.g., age, sex), and to explore the role 

of peer influences, parental monitoring, and sports-specific factors, such as team culture, 

and level of involvement (e.g., competitive versus recreational). This work would help to 
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maximize the benefits associated with physical activity, while minimizing potentially 

detrimental effects. 

Conclusions, Limitations, and Future Directions 

 In summary, findings from this dissertation suggest that associations between 

exercise and neurocognition among children and adolescents are small, not likely to be 

clinically meaningful, not attributable to effects on task-related brain activation, and 

better explained by sociodemographic factors. Further, greater involvement in exercise 

did not ameliorate cannabis-related memory decline, and may instead represent a risk 

factor for problematic cannabis use among adolescents (particularly males).  

 Despite mostly null effects of exercise on neurocognition, there is evidence that 

exercise, physical activity, and fitness contribute to positive outcomes among youth in 

several other ways. For instance, they benefit multiple aspects of physical health (e.g., 

lower adiposity, lower blood pressure), as well as mental health (e.g., lower depression, 

improved self-esteem; Biddle & Asare, 2011; Janssen & LeBlanc, 2010). Physical 

activity in youth is also predictive of lifestyle behaviors, physical health, and 

psychological well-being well into adulthood (Malina, 2001; Sacker & Cable, 2006). 

Thus, exercise should still be promoted among pediatric populations, even if not for its 

benefits to cognition. These recommendations can then be tailored as more evidence 

becomes available regarding the role of sports and exercise in the context of adolescent 

substance use. 

  This dissertation has several strengths, including the use of large samples of 

children and adolescents, high internal validity to examine neurocognitive correlates of 

adolescent cannabis use, the use of multiple indices of neurocognitive function, and the 
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combination of neurocognitive and neuroimaging data. The specific limitations 

associated with each study have been described in detail in each individual chapter. It 

should be noted that although many of the limitations associated with the first two studies 

(Chapters II and III) are not addressable, limitations associated with the third study 

(Chapter IV) should instead be viewed as future directions, as the ABCD study is still 

ongoing. For instance, one limitation common across studies was the use of a subjective 

questionnaire (self- or parent-report) of engagement in sports and exercise, as this type of 

measure typically shows low to moderate correlations with objective measures of 

exercise (Prince et al., 2008). The ABCD study began collecting accelerometer (i.e., 

Fitbit) data for a subset of participants at the one-year follow-up. Thus, as the study 

progresses, future projects will be able to examine correlations between accelerometer 

and questionnaire data over specific time intervals (Bagot et al., 2018). Scientists will 

also be able to determine whether objectively measured physical activity has a more 

significant impact on cognitive and brain function, as previously reported by some 

studies (Syväoja et al., 2014). As data from additional follow-up timepoints continue to 

become available, more complex longitudinal analyses will allow for the examination of 

bidirectional influences between these constructs over time (e.g., multivariate LGCM), 

and for the exploration of longitudinal mediation processes (i.e., the mediating role of 

change in a particular variable). Finally, some studies suggest that aerobic fitness has a 

stronger influence on cognitive and brain function than physical activity (Ruotsalainen et 

al., 2019; Voss et al., 2016). Although greater involvement in physical activity is thought 

to lead to improved aerobic fitness (Armstrong et al., 2011), the latter is also heavily 

influenced by other factors, such as genetics (Bouchard et al., 1999, 2010). Thus, 
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although the ABCD study does not directly assess aerobic fitness, its large sample size 

and wealth of data have positioned it well to disentangle the contributions of genetics and 

exercise to brain and cognitive function among children and adolescents.  
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TABLES 

Table 1. Participant demographics, substance use, mental health, and neuropsychological performance by assessment wave. 
 Assessment Wave 
 T1 (N = 401) T2 (N = 391) T3 (N = 383) T4 (N = 380) T5 (N = 387) 
Demographics (M, SD)      
    Age 15.40 (.72) 15.96 (.81) 16.38 (.71) 16.92 (.78) 17.39 (.75) 
    Sex (% Male) 54.1 53.7 54.0 53.9 54.0 
    Race (% White) 76.8 76.7 76.2 76.8 77.0 
    Ethnicity (% Hispanic/Latino) 89.8 89.5 89.3 89.7 89.7 
    Years of Education  9.11 (.84) 9.74 (.90) 10.08 (.85) 10.73 (.88) 11.07 (.84) 
    Years of Maternal Education 14.23 (2.49)     
    WRAT-4 Reading Standard Score 108.31 (14.73)     
Substance Use Characteristics (Md, 
[IQR]) 

     

    Lifetime Cannabis Use (Days) 21.00 [1.00, 
144.50] 

36.00 [2.00, 
186.00] 

62.00 [3.00, 
266.00] 

82.00 [4.00, 
350.00] 

108.00 [8.50, 
483.00] 

    Lifetime Alcohol Use (Days) 5.00 [1.00, 19.50] 8.00 [1.00,31.00] 13.00 [3.00, 38.00] 17.00 [5.00, 56.50] 24.00 [7.50, 72.00] 
    Lifetime Nicotine Use (Days) .00 [.00, 3.00] .00 [.00, 6.00] 1.00 [.00, 9.25] 1.00 [.00, 12.75] 2.00 [.00, 21.00] 
    Current CUD (%) 13.2 11.5 19.6 17.6 23.3 
    Lifetime CUD (%) 22.2 29.4 37.8 42.4 47.8 
    THC+ Oral Fluids Toxicology (%) 3.5 - 9.5 - 20.7 
Mental Health      
    Current Internalizing Disorder (%) 5.5 - 4.7 - 4.9 
    Current Externalizing Disorder (%) 11.0 - 8.1 - 5.9 
    Lifetime Internalizing Disorder (%) 16.2 - 21.7 - 26.5 
    Lifetime Externalizing Disorder (%) 12.2 - 17.2 - 19.1 
Neuropsychological Performance (M, 
SD)a 

     

    Cups Task, Risky Choices Gain 
    Domain* 

50.00 (10.00) - 50.04 (9.30) - 50.31 (9.84) 

    Cups Task, Risky Choices Loss 
    Domain* 

50.00 (10.01) - 49.64 (9.88) - 49.85 (9.79) 

    GDT, Risky Choices* 50.00 (9.99) - 46.13 (9.16) - 45.28 (9.13) 
    IGT Net Score (reverse-scored)* 50.00 (10.00) - 46.91 (11.90) - 44.90 (12.78) 
    CVLT-II Total Immediate Recall  50.00 (10.00) - 52.50 (10.01) - 54.78 (10.54) 
    WMS-IV Logical Memory I 50.00 (10.00) - 51.52 (9.98) - 54.03 (9.89) 
    WMS-IV Designs I 50.00 (10.00) - 52.75 (10.29) - 53.73 (10.60) 
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    CVLT-II Long Delay Free Recall 49.99 (10.01) - 52.70 (9.66) - 55.18 (9.89) 
    WMS-IV Logical Memory II 50.00 (10.00) - 52.11 (9.72) - 56.12 (10.20) 
    WMS-IV Designs II 50.00 (10.00) - 51.38 (10.92) - 53.01 (11.08) 
Self-Reported Exercise (Md, [IQR])   n = 60 n = 138 n = 198 
    Past 6-mont Hours per Week  - - 3.50 [.78, 7.73] 2.71 [.55, 8.14] 1.50 [.11, 4.69] 
    Number of Sports Endorsed   2.00 [1.00, 2.50] 2.00 [1.00, 3.00] 1.00 [1.00, 2.00] 
    % Reporting Team Involvement   51.7 35.8 31.3 

 
Note: aT-scores were calculated using the T1 mean and standard deviation. *Higher scores for these tests denote worse performance. M = mean; SD = 
Standard Deviation; Md = Median; IQR = interquartile range. Mental Health was assessed through the Diagnostic Interview Schedule for Children using 
DSM-IV criteria. Participants were coded as being involved in teams if they reported team involvement for most of the activities endorsed. 
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Table 2. List of activities queried in the SAIQ and included in our exercise measure. 
Activities Queried in SAIQ Included in Calculation of 

Past 6-month Exercise for 
Chapters II and III (X) 

Included in Calculation 
of Lifetime Exercise for 

Chapter IV (X) 
Aerobics classes (e.g., Zumba) X N/A 
Ballet or dance X X 
Baseball or softball X X 
Basketball X X 
Biking X N/A 
Cardio machine exercise (e.g., treadmill, 
elliptical) 

X N/A 

Climbing X X 
Competitive games like chess, cards, or darts   
Crafts like knitting or building model cars or 
airplanes 

  

Drama, theatre, acting, or film   
Drawing, painting, graphic art, photography, 
pottery, or sculpting 

  

Field hockey X X 
Football X X 
Gymnastics X X 
Ice hockey X X 
Horseback riding or polo X X 
Ice or inline skating X X 
Lacrosse X X 
Martial arts X X 
Music (playing musical instruments like piano, 
drums, violin, flute, or guitar, singing, choir, 
orchestra, band, rock band) 

  

Hobbies like collecting stamps or coins   
Rugby X X 
Skateboarding or longboarding X X 
Skiing or snowboarding X X 
Soccer X X 
Surfing X X 
Swimming or water polo X X 
Tennis X X 
Track, running, or cross-country X X 
Weightlifting or CrossFit X N/A 
Wrestling or mixed martial arts X X 
Volleyball X X 
Yoga or tai chi X X 
Video Games  N/A 
Other * N/A 

*Other responses were included in the calculation if they referred to physical activity. N/A denotes 
activities that were not queried by the original version of the SAIQ employed in the ABCD study; these 
activities were added to the adapted self-report version of the SAIQ used in Studies 1 and 2, as these are 
often endorsed among adolescents.  
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Table 3. Fit indices and estimates for unconditional linear growth models of cannabis use, exercise, and memory. 
Variable c2 df CFI RMSE

A 
SRM

R 
Intercept 

𝑥 
Slope  
𝑥 

Intercept 
s2 

Slope  
s2 

Cov 
(I/S) 

Cannabis use 166.37** 10 .95 .20 .02 10.72** 4.22** 397.67** 28.41** 56.91** 
Exercise 2.47 3 1.00 .00 .12 5.74** -.68 18.68** .00 - 
Immediate memory .00 1 1.00 .00 .00 50.00** 1.01** 38.43** .30 .86 
Delayed memory 3.37 1 1.00 .08 .02 49.83** 1.16** 39.56 ** .20 .74 

**p < .001, *p <.05. All estimates represent unstandardized values.  
Note: df = degrees of freedom; CFI = Comparative Fit Index; RMSEA = Root Mean Square Error of Approximation; SRMR = Standardized Root Mean 
Square Residual; Cov (I/S) = Covariance between intercept and slope. 
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Table 4. Fit indices and estimates for unadjusted parallel process models of cannabis use and memory performance. 

**p ≤ .001, *p <.05.  
Note: CU = cannabis use; IM = immediate memory; DM = delayed memory; df = degrees of freedom; CFI = Comparative Fit Index; RMSEA = Root 
Mean Square Error of Approximation; SRMR = Standardized Root Mean Square Residual. Bidirectional arrows represent correlations and 
unidirectional arrows represent regression paths.  

 
 

 

 

 

 

Parameter Unstandardized 
Estimate (Standard 

Error) 

p-value c2 df CFI RMSEA SRMR 

CU and IM    317.40** 28 .94 .16 .02 
IM intercept ßà CU intercept -22.28 (7.97) .005*      
CU intercept à IM slope .00 (.01) .963      
IM Intercept à CU slope -.09 (.05) .039*      
CU slope à  IM slope -.04 (.02) .023*      
CU intercept ßà CU slope  58.26 (7.25) <.001**      
IM intercept ßà IM slope -.01 (.67) .993      
CU and DM   322.13** 28 .94 .16 .02 
DM intercept ßà CU intercept -24.86 (7.51) .001**      
CU intercept à DM slope .002 (.01) .680      
DM Intercept à CU slope -.15 (.05) .001**      
CU slope à  DM slope -.02(.02) .351      
CU intercept ßà CU slope  49.86 (7.16) <.001**      
DM intercept ßà DM slope .07 (.62) .915      
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Table 5. Detailed estimates for covariate-adjusted parallel process model of cannabis use 
and immediate memory. 

**p ≤ .001, *p <.05.  
Note: IM = immediate memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths.  

 

 

 

 

 

 

 

Parameter Unstandardized 
Estimate  

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

IM intercept ßà CU intercept -14.838 (7.156) .038* -28.864 -.812 
CU intercept à  IM slope .001 (.005) .834 -.010 .012 
IM Intercept à CU slope -.075 (.044) .088 -.161 .011 
CU slope à   IM slope -.051 (.022) .020* -.094 -.008 
CU intercept ßà CU slope  44.947 (6.430) <.001** 32.343 57.551 
IM intercept ßà  IM slope -.011 (.659) .987 -1.302 1.280 
Sexà CU intercept -5.410 (1.856) .004* -9.047 -1.773 
Sexà CU slope -2.066 (.516) <.001** -3.077 -1.055 
Sexà  IM intercept .608 (.741) .412 -.845 2.061 
Sexà  IM slope .129 (.173) .458 -.211 .469 
Baseline Ageà CU intercept 3.278 (1.094) .003* 1.134 5.422 
Baseline Ageà CU slope .672 (.356) .059 -.025 1.369 
Baseline AgeàIM intercept -.074 (.507) .885 -1.067 .920 
Baseline Ageà IM slope .147 (.117) .211 -.083 .376 
Estimated IQ à  IM intercept .163 (.024) <.001** .116 .210 
Estimated IQ à  IM slope .005 (.006) .362 -.006 .017 
Lifetime Alcohol T1 à Lifetime CU T1 .737 (.215) .001** .317 1.158 
Lifetime Alcohol T2 à Lifetime CU T2 .680 (.184) <.001** .319 1.040 
Lifetime Alcohol T3 à Lifetime CU T3 .694 (.157) <.001** .386 1.002 
Lifetime Alcohol T4 à Lifetime CU T4 .725 (.161) <.001** .408 1.041 
Lifetime Alcohol T5 à Lifetime CU T5 .791 (.161) <.001** .476 1.107 
Lifetime Nicotine T1 à Lifetime CU T1 .203 (.164) .215 -.118 .525 
Lifetime Nicotine T2 à Lifetime CU T2 .172 (.129) .182 -.081 .426 
Lifetime Nicotine T3 à Lifetime CU T3 .178 (.096) .063 -.010 .366 
Lifetime Nicotine T4 à Lifetime CU T4 .193 (.082) .019* .032 .354 
Lifetime Nicotine T5 à Lifetime CU T5 .214 (.081) .008** .055 .373 
THC Toxicology T1 à  IM T1 -1.183 (1.064) .266 -3.268 .902 
THC Toxicology T3 à  IM T3 -.210 (1.067) .844 -2.301 1.881 
THC Toxicology T5 à  IM T5 .548 (.749) .464 -.920 2.016 
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Table 6. Detailed estimates for covariate-adjusted parallel process model of cannabis use 
and delayed memory. 

**p ≤ .001, *p <.05.  
Note: DM = delayed memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths.  

 

 

 

 

Parameter Unstandardized 
Estimate 

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

DM intercept ßà CU intercept -16.437 (7.104) .021* -30.362 -2.513 
CU intercept à  DM slope .004 (.006) .529 -.008 .016 
DM Intercept à CU slope -.122 (.045) .006* -.210 -.034 
CU slope à   DM slope -.029 (.023) .213 -.075 .017 
CU intercept ßà CU slope  43.652 (6.308) <.001** 31.287 56.016 
DM intercept ßà  DM slope .014 (.613) .981 -1.187 1.215 
Sexà CU intercept -5.406 (1.856) .004* -9.044 -1.768 
Sexà CU slope -2.071 (.512) <.001** -3.074 -1.068 
Sexà  DM intercept .619 (.739) .402 -.830 2.068 
Sexà  DM slope .027 (.168) .871 -.302 .356 
Baseline Ageà CU intercept 3.276 (1.095) .003* 1.130 5.422 
Baseline Ageà CU slope .642 (.354) .070 -.052 1.336 
Baseline Ageà DM intercept -.039 (.505) .939 -1.029 .952 
Baseline Ageà DM slope .172 (.109) .115 -.042 .387 
Estimated IQ à  DM intercept .163 (.024) <.001** .115 .210 
Estimated IQ à  DM slope .001 (.005) .791 -.009 .012 
Lifetime Alcohol T1 à Lifetime CU T1 .737 (.214) .001** .318 1.155 
Lifetime Alcohol T2 à Lifetime CU T2 .678 (.184) <.001** .318 1.039 
Lifetime Alcohol T3 à Lifetime CU T3 .692 (.158) <.001** .383 1.001 
Lifetime Alcohol T4 à Lifetime CU T4 .723 (.162) <.001** .404 1.041 
Lifetime Alcohol T5 à Lifetime CU T5 .789 (.162) <.001** .472 1.107 
Lifetime Nicotine T1 à Lifetime CU T1 .207 (.164) .208 -.115 .528 
Lifetime Nicotine T2 à Lifetime CU T2 .175 (.130) .178 -.080 .430 
Lifetime Nicotine T3 à Lifetime CU T3 .181 (.096) .062 -.009 .369 
Lifetime Nicotine T4 à Lifetime CU T4 .195 (.082) .018* .034 .356 
Lifetime Nicotine T5 à Lifetime CU T5 .216 (.081) .008* .056 .375 
THC Toxicology T1 à  DM T1 -.654 (.926) .480 -2.469 1.161 
THC Toxicology T3 à  DM T3 -.440 (.932) .637 -2.266 1.387 
THC Toxicology T5 à  DM T5 .144 (.825) .862 -1.473 1.760 
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Table 7. Fit indices and estimates for unadjusted parallel process models of exercise and memory performance. 

**p ≤ .001, *p <.05.  
Note: IM = immediate memory; DM = delayed memory; df = degrees of freedom; CFI = Comparative Fit Index; RMSEA = Root Mean Square Error of 
Approximation; SRMR = Standardized Root Mean Square Residual. Bidirectional arrows represent correlations and unidirectional arrows represent 
regression paths.  

 

 

 

 

 

 

Parameter Unstandardized 
Estimate (Standard 

Error) 

p-value c2 df CFI RMSEA SRMR 

Exercise and IM   48.071** 11 .93 .09 .17 
IM intercept ßà Exercise intercept -2.02 (3.48) .560      
Exercise intercept à IM slope .19 (.65) .772      
IM Intercept à Exercise slope -.01 (.06) .850      
Exercise slope à  IM slope -.14 (.32) .668      
Exercise intercept ßà Exercise slope  6.994 (13.07) .59      
IM intercept ßà IM slope .37 (1.68) .83      
Exercise and DM   55.69** 11 .93 .11 .17 
DM intercept ßà Exercise intercept -7.67 (3.70) .038*      
Exercise intercept à DM slope .07 (.13) .575      
DM Intercept à Exercise slope .07 (.05) .213      
Exercise slope à  DM slope .004 (.09) .964      
Exercise intercept ßà Exercise slope  7.48 (12.87) .561      
DM intercept ßà DM slope .66 (1.27) .602      
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Table 8. Detailed estimates for covariate-adjusted parallel process model of exercise and 
immediate memory. 

**p ≤ .001, *p <.05.  
Note: IM = immediate memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths. 

 

 

 

 

 

 

 

 

 

 

 

Parameter Unstandardized 
Estimate  

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

IM intercept ßà Exercise intercept .053 (2.98) .986 -5.786 5.893 
Exercise intercept à  IM slope .045 (.151) .766 -.252 .342 
IM Intercept à Exercise slope -.008 (.074) .914 -.154 .138 
Exercise slope à   IM slope -.045 (.131) .728 -.301 .210 
Exercise intercept ßà Exercise slope  9.728 (15.156) .521 -19.977 39.434 
IM intercept ßà  IM slope .089 (.674) .895 -1.231 1.409 
Sexà Exercise intercept -2.914 (1.386) .036* -5.631 -.197 
Sexà Exercise slope .406 (.995) .683 -1.544 2.355 
Sexà  IM intercept .708 (.726) .329 -.714 2.130 
Sexà  IM slope .309 (.418) .460 -.510 1.129 
Baseline AgeàIM intercept -.015 (.498) .976 -.990 .960 
Baseline Ageà IM slope .098 (.114) .391 -.126 .321 
Estimated IQ à  IM intercept .165 (.024) <.001** .118 .212 
Estimated IQ à  IM slope .004 (.006) .534 -.008 .015 
THC Toxicology T1 à  IM T1 -1.074 (1.141) .347 -3.309 1.162 
THC Toxicology T3 à  IM T3 -.782 (1.041) .453 -2.822 1.259 
THC Toxicology T5 à  IM T5 -.559 (.690) .418 -1.911 .793 
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Table 9. Detailed estimates for covariate-adjusted parallel process model of exercise and 
delayed memory. 

**p ≤ .001, *p <.05.  
Note: DM = delayed memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths.  

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Unstandardized 
Estimate  

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

DM intercept ßà Exercise intercept -3.854 (2.748) .161 -9.240 1.531 
Exercise intercept à  DM slope .042 (.052) .416 -.059 .144 
DM Intercept à Exercise slope .054 (.056) .333 -.056 .165 
Exercise slope à   DM slope .041 (.052) .424 -.060 .143 
Exercise intercept ßà Exercise slope  10.176 (14.536) .484 -18.314 38.666 
DM intercept ßà  DM slope .215 (.680) .753 -1.119 1.547 
Sexà Exercise intercept -2.756 (1.383) .046* -5.466 -.046 
Sexà Exercise slope .220 (1.028) .831 -1.795 2.234 
Sexà  DM intercept .575 (.724) .427 -.845 1.994 
Sexà  DM slope .171 (.208) .411 -.236 .578 
Baseline AgeàDM intercept -.025 (.497) .960 -.999 .950 
Baseline Ageà DM slope .158 (.108) .144 -.054 .371 
Estimated IQ à  DM intercept .155 (.025) <.001** .107 .203 
Estimated IQ à  DM slope .002 (.005) .698 -.008 .012 
THC Toxicology T1 à  DM T1 -.667 (.985) .498 -2.599 1.264 
THC Toxicology T3 à  DM T3 -1.164 (.926) .209 -1.979 .651 
THC Toxicology T5 à  DM T5 -.585 (.721) .418 -1.771 .829 
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Table 10. Detailed estimates for covariate-adjusted latent interaction model examining 
interactive effect of exercise intercept and cannabis slope on immediate memory slope. 

**p ≤ .001, *p <.05.  
Note: IM = immediate memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths.  

 

 

 

 

 

 

 

 

 

Parameter Unstandardized 
Estimate  

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

IM intercept ßà CU intercept -15.547 (7.079) .028* -29.422 -1.673 
CU intercept à IM slope .001 (.006) .837 -.010 .013 
IM Intercept à CU slope -.092 (.043) .032* -.177 -.008 
CU slope à   IM slope -.041 (.157) .793 -.348 .266 
IM interceptßà Exercise intercept -1.232 (3.273) .707 -7.647 5.183 
Exercise interceptà IM slope -.045 (.086) .601 -.213 .123 
Exercise slope à IM slope -.029 (.042) .479 -.111 .052 
CU intercept ßà Exercise intercept 2.173 (21.477) .919 -39.923 44.268 
CU slope ßà Exercise slope .313 (3.467) .928 -6.482 7.107 
Exercise intercept X CU slopeà IM slope .000 (.026) .990 -.051 .051 
CU intercept ßà CU slope  44.710 (6.699) <.001** 31.273 58.215 
Exercise intercept ßà Exercise slope -4.922 (44.036) .911 -91.232 81.388 
IM intercept ßà IM slope -.092 (.691) .894 -1.340 1.273 
Sexà CU intercept -5.119 (1.825) .005* -8.697 -1.542 
Sexà CU slope -2.236 (.502) <.001** -3.219 -1.252 
Sexà Exercise intercept -3.013 (.820) <.001** -4.620 -1.407 
Baseline Ageà CU intercept 2.177 (.920) .018* .373 3.981 
Estimated IQ à IM intercept .160 (.021) <.001** .120 .201 
Lifetime Alcohol T1 à Lifetime CU T1 .758 (.213) <.001** .341 1.175 
Lifetime Alcohol T2 à Lifetime CU T2 .707 (.178) <.001** .357 1.057 
Lifetime Alcohol T3 à Lifetime CU T3 .738 (.148) <.001** .449 1.027 
Lifetime Alcohol T4 à Lifetime CU T4 .768 (.153) <.001** .468 1.069 
Lifetime Alcohol T5 à Lifetime CU T5 .841 (.151) <.001** .545 1.138 
Lifetime Nicotine T4 à Lifetime CU T4 .044 (.036) .213 -.025 .114 
Lifetime Nicotine T5 à Lifetime CU T5 .072 (.048) .134 -.022 .166 
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Table 11. Detailed estimates for covariate-adjusted latent interaction model examining 
interactive effect of exercise intercept and cannabis slope on delayed memory slope. 
 

**p ≤ .001, *p <.05.  
Note: DM = delayed memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths.  

 

 

 

 

 

 

 

 

Parameter Unstandardized 
Estimate  

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

DM intercept ßà CU intercept -17.578 (6.923) .011* -31.147 -4.010 
CU intercept à DM slope .004 (.006) .527 -.008 .016 
DM Intercept à CU slope -.135 (.044) .002* -.221 -.049 
CU slope à DM slope .018 (.079) .817 -.137 .174 
DM interceptßà Exercise intercept -3.631 (2.351) .122 -8.238 .976 
Exercise interceptà DM slope .011 (.060) .859 -.106 .127 
Exercise slope à DM slope .030 (.055) .592 -.078 .137 
CU intercept ßà Exercise intercept 1.470 (10.092) .884 -18.311 21.250 
CU slope ßà Exercise slope .053 (.673) .974 -3.080 3.186 
Exercise intercept X CU slopeà DM slope -.007 (.013) .585 -.032 .018 
CU intercept ßà CU slope  43.620 (6.564) <.001** 30.754 56.486 
Exercise intercept ßà Exercise slope -2.865 (14.317) .841 -30.925 25.196 
DM intercept ßà DM slope -.095 (.673) .888 -1.415 1.225 
Sexà CU intercept -5.101 (1.824) .005* -8.676 -1.526 
Sexà CU slope -2.239 (.497) <.001** -3.214 -1.264 
Sexà Exercise intercept -2.841 (.862) .001** -4.531 -1.151 
Baseline Ageà CU intercept 2.233 (.915) .015* .439 4.028 
Estimated IQ à DM intercept .152 (.022) <.001** .109 .195 
Lifetime Alcohol T1 à Lifetime CU T1 .757 (.211) <.001** .344 1.170 
Lifetime Alcohol T2 à Lifetime CU T2 .705 (.177) <.001** .358 1.053 
Lifetime Alcohol T3 à Lifetime CU T3 .736 (.147) <.001** .448 1.024 
Lifetime Alcohol T4 à Lifetime CU T4 .766 (.153) <.001** .466 1.066 
Lifetime Alcohol T5 à Lifetime CU T5 .839 (.151) <.001** .543 1.135 
Lifetime Nicotine T4 à Lifetime CU T4 .044 (.036) .214 -.026 .115 
Lifetime Nicotine T5 à Lifetime CU T5 .072 (.048) .134 -.022 .166 
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Table 12. Detailed estimates for covariate-adjusted latent interaction model examining 
interactive effect of exercise slope and cannabis slope on the immediate memory slope. 

**p ≤ .001, *p <.05.  
Note: IM = immediate memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths.  

 

 

 

 

 

 

 

 

Parameter Unstandardized 
Estimate  

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

IM intercept ßà CU intercept -15.463 (7.076) .029* -29.333 -1.594 
CU intercept à IM slope -.007 (.008) .350 -.023 .008 
IM Intercept à CU slope -.087 (.043) .043* -.171 -.003 
CU slope à IM slope -.134 (.354) .704 -.828 .559 
IM interceptßà Exercise intercept -1.220 (2.544) .632 -6.206 3.766 
Exercise interceptà IM slope -.047 (.038) .211 -.122 .027 
Exercise slope à IM slope .146 (1.786) .935 -3.354 3.646 
CU intercept ßà Exercise intercept 3.936 (9.167) .668 -14.032 21.904 
CU slope ßà Exercise slope .492 (.901) .585 -1.274 2.259 
Exercise slope X CU slopeà IM slope -.239 (.495) .630 -1.209 .731 
CU intercept ßà CU slope  44.745 (6.582) <.001** 31.844 57.646 
Exercise intercept ßà Exercise slope -.101 (.542) .852 -1.163 .962 
IM intercept ßà IM slope -.081 (.671) .904 -1.395 1.234 
Sexà CU intercept -5.110 (1.829) .005* -8.694 -1.526 
Sexà CU slope -2.231 (.501) <.001** -3.213 -1.250 
Sexà Exercise intercept -3.192 (.900) <.001** -4.956 -1.429 
Baseline Ageà CU intercept 2.174 (.916) .018* .377 3.970 
Estimated IQ à IM intercept .159 (.021) <.001** .118 .200 
Lifetime Alcohol T1 à Lifetime CU T1 .755 (.213) <.001** .337 1.172 
Lifetime Alcohol T2 à Lifetime CU T2 .707 (.178) <.001** .357 1.056 
Lifetime Alcohol T3 à Lifetime CU T3 .741 (.147) <.001** .453 1.029 
Lifetime Alcohol T4 à Lifetime CU T4 .773 (.153) <.001** .474 1.072 
Lifetime Alcohol T5 à Lifetime CU T5 .847 (.151) <.001** .552 1.143 
Lifetime Nicotine T4 à Lifetime CU T4 .045 (.036) .207 -.025 .115 
Lifetime Nicotine T5 à Lifetime CU T5 .072 (.048) .131 -.022 .166 
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Table 13. Detailed estimates for covariate-adjusted latent interaction model examining 
interactive effect of exercise slope and cannabis slope on the delayed memory slope. 

**p ≤ .001, *p <.05.  
Note: DM = delayed memory; CU = cannabis use; CI = Confidence Intervals. Bidirectional arrows 
represent correlations and unidirectional arrows represent regression paths.  

 

 

 

 

 

 

 

 

 

Parameter Unstandardized 
Estimate  

(Standard Error) 

p-value Lower 
95% CI 

Upper 
95% CI 

DM intercept ßà CU intercept -17.462 (6.937) .012* -31.058 -3.866 
CU intercept à DM slope .001 (.010) .895 -.019 .021 
DM Intercept à CU slope -.133 (.044) .002* -.219 -.047 
CU slope à DM slope .038 (.129) .772 -.216 .291 
DM interceptßà Exercise intercept -3.615 (2.637) .170 -8.784 1.554 
Exercise interceptà DM slope .006 (.054) .912 -.100 .112 
Exercise slope à DM slope .288 (1.276) .821 -2.213 2.788 
CU intercept ßà Exercise intercept 2.830 (10.072) .779 -16.912 22.571 
CU slope ßà Exercise slope -.313 (1.271) .806 -2.805 2.179 
Exercise slope X CU slopeà DM slope .059 (.104) .567 -1.306 1.226 
CU intercept ßà CU slope  43.640 (6.495) <.001** 30.910 56.371 
Exercise intercept ßà Exercise slope -.228 (2.248) .919 -4.633 4.177 
DM intercept ßà DM slope -.040 (.646) .951 -1.306 1.226 
Sexà CU intercept -5.065 (1.830) .006* -8.653 -1.478 
Sexà CU slope -2.222 (.499) <.001** -3.506 -1.245 
Sexà Exercise intercept -3.149 (.906) .001** -4.925 -1.373 
Baseline Ageà CU intercept 2.208 (.927) .017* .391 4.025 
Estimated IQ à DM intercept .152 (.022) <.001** .109 .195 
Lifetime Alcohol T1 à Lifetime CU T1 .758 (.211) <.001** .345 1.171 
Lifetime Alcohol T2 à Lifetime CU T2 .706 (.178) <.001** .357 1.054 
Lifetime Alcohol T3 à Lifetime CU T3 .736 (.148) <.001** .447 1.025 
Lifetime Alcohol T4 à Lifetime CU T4 .765 (.154) <.001** .464 1.066 
Lifetime Alcohol T5 à Lifetime CU T5 .838 (.151) <.001** .541 1.135 
Lifetime Nicotine T4 à Lifetime CU T4 .045 (.036) .213 -.026 .115 
Lifetime Nicotine T5 à Lifetime CU T5 .072 (.048) .134 -.022 .167 
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Table 14. Sample characteristics of participants included in Chapter III.  
 Full Sample  

(n = 387) 
Males  

(n = 209) 
Females  
(n = 178) 

Demographics  M ± SD or % M ± SD or % 
Baseline Age 16.92 ± .78 16.96 ± 0.80 16.89 ± 0.77 
Sex (% Male) 54.0 - - 
Race (% White) 77.0 84.21 88.2 
Ethnicity (% Hispanic/Latino) 89.7 89.95 89.32 
WRAT-4 Reading Standard Score 108.35 ± 14.79 110.06 ± 15.95 106.34 ± 13.06 
Neurocognition 6-Month Follow-Up   
Cups Task, risky choices gain domain 17.15 ± 5,56 16.78 ± 5.67 17.59 ± 5.41 
Cups Task, risky choices loss domain 17.11 ± 6.37 15.75 ± 6.39* 18.78 ± 5.95 
Game of Dice Task, risky choices 5.37 ± 4.70 5.35 ± 4.84 5.40 ± 4.54 
Iowa Gambling Task, Net Score 10.03 ± 28.60 8.90 ± 27.88 11.38 ± 29.46 
Substance Use 6-Month Follow-Up Md [IQR] or % Md [IQR] or % 
Past 6-month Cannabis Use (Days) 14.00 [.00, 105.00] 10.00 [.00, 

135.00]* 
3.00 [.00, 49.25] 

Past 6-month Alcohol Use (Days) 4.00 [1.00, 15.00] 1.00 [1.00, 
15.00] 

1.00 [1.00, 
15.00] 

Past 6-month Nicotine Use (Days) .00 [.00, 2.00] .00 [.00, 3.50]* .00 [.00, 2.00] 
Past 6-month Hallucinogen Use (Days) .00 [.00, .00] .00 [.00, .00] .00 [.00, .00] 
Past 6-month Benzodiazepine Use (Days) .00 [.00, .00] .00 [.00, .00] .00 [.00, .00] 
Past 6-month Cocaine Use (Days) .00 [.00, .00] .00 [.00, .00] .00 [.00, .00] 
Lifetime Cannabis Use (Days) 108.00 [8.50, 

483.00] 
313.00 [14.00, 

588.00]* 
111.50 

[2.50,238.50] 
Past 6-month Cannabis Use Disorder (%) 25.4 31.1* 18.5 
Marijuana Problems Scale Score 2.00 [.00, 4.00] 2.00 [.00, 5.00] 1.00 [.00, 3.00] 

*Denotes significant between-group difference at p < .05. 
Note: M = mean; SD = standard deviation; Md = Median; IQR = interquartile range. 
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Table 15. Sample characteristics of ABCD study participants included in Chapter IV.  
Characteristics (N = 7,733) M ± SD or % 
Demographics  
    Age (years) 9.5 ± .5  
    Sex (% Male) 48.8 
    Race/Ethnicity  
       African American 11.0 
       Caucasian 57.5 
       Hispanic/Latino 12.7 
       Other 18.2 
    Parental Education (years) 16.9 ± 2.6 
    Combined Household Income  
       <$50K 22.7 
       ≤$50K & <$100K 27.0 
       ≥$100K 43.1 
Neurocognitive Performance  
    Fluid Intelligence Composite (uncorrected) 93.7 ± 9.6 
Mental Health Performance      
    CBCL Internalizing Problems 48.2 ± 10.4 
    CBCL Externalizing Problems 45.0 ± 10.0 
Exercise Involvement     Md [IQR] 
    Number of Sports Endorsed 2.0 [1.0, 4.0] 

Note: M = mean; SD = standard deviation; Md = Median; IQR = interquartile range. 
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Table 16. Confirmatory factor analysis for second-order frontoparietal network factor. 
Parameter Standardized 

Loading 
p-value 

Second-Order Frontoparietal Network Factor   
    Left Hemisphere Frontoparietal Network .969 <.001 
    Right Hemisphere Frontoparietal Network .969 <.001 
First-Order Left Hemisphere Network Factor   
    Transverse frontopolar gyrus and sulcus .369 <.001 
    Middle frontal gyrus .868 <.001 
    Frontomarginal gyrus and sulcus .398 <.001 
    Superior frontal gyrus .826 <.001 
    Supramarginal gyrus .746 <.001 
    Inferior frontal sulcus .874 <.001 
    Middle frontal sulcus .802 <.001 
    Intraparietal sulcus and transverse parietal sulci .755 <.001 
    Inferior part of the precentral sulcus .837 <.001 
First-Order Right Hemisphere Network Factor   
    Transverse frontopolar gyrus and sulcus .462 <.001 
    Middle frontal gyrus .837 <.001 
    Frontomarginal gyrus and sulcus .364 <.001 
    Superior frontal gyrus .821 <.001 
    Supramarginal gyrus .726 <.001 
    Inferior frontal sulcus .868 <.001 
    Middle frontal sulcus .826 <.001 
    Intraparietal sulcus and transverse parietal sulci .759 <.001 
    Inferior part of the precentral sulcus .844 <.001 
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Table 17. Confirmatory factor analysis for second-order salience network factor. 
Parameter Standardized 

Loading 
p-value 

Second-Order Salience Network Factor   
    Left Hemisphere Salience Network .989 <.001 
    Right Hemisphere Salience Network .989 <.001 
First-Order Left Hemisphere Network Factor   
    Anterior insula .758 <.001 
    Anterior cingulate gyrus and sulcus .736 <.001 
First-Order Right Hemisphere Network Factor   
    Anterior insula .743 <.001 
    Anterior cingulate gyrus and sulcus .717 <.001 
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Table 18. Confirmatory factor analysis for second-order DMN factor. 
Parameter Standardized 

Loading 
p-value 

Second-Order DMN Factor   
    Left Hemisphere DMN .969 <.001 
    Right Hemisphere DMN .969 <.001 
First-Order Left Hemisphere Network Factor   
    Frontomarginal gyrus and sulcus .376 <.001 
    Middle frontal gyrus .798 <.001 
    Superior frontal gyrus .817 <.001 
    Anterior cingulate gyrus and sulcus .636 <.001 
    Middle to posterior cingulate gyrus and sulcus .725 <.001 
    Angular gyrus .828 <.001 
    Precuneus .854 <.001 
    Lateral superior temporal gyrus .675 <.001 
    Middle temporal gyrus .595 <.001 
    Superior frontal sulcus .847 <.001 
    Subparietal sulcus .797 <.001 
    Superior temporal sulcus .849 <.001 
First-Order Right Hemisphere Network Factor   
    Frontomarginal gyrus and sulcus .339 <.001 
    Middle frontal gyrus .773 <.001 
    Superior frontal gyrus .801 <.001 
    Anterior cingulate gyrus and sulcus .630 <.001 
    Middle to posterior cingulate gyrus and sulcus .716 <.001 
    Angular gyrus .834 <.001 
    Precuneus .827 <.001 
    Lateral superior temporal gyrus .661 <.001 
    Middle temporal gyrus .623 <.001 
    Superior frontal sulcus .841 <.001 
    Subparietal sulcus .813 <.001 
    Superior temporal sulcus .865 <.001 

Note: DMN = default-mode network. 
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Table 19. Detailed estimates for covariate-adjusted mediation model examining the 
indirect effect of frontoparietal network activation. 
Parameter Standardized 

Estimate  
(Standard 

Error) 

p-value Lower 95% 
CI 

Upper 95% 
CI 

Mediation Model     
Path a: Exerciseà FPN .012 (.013) .357 -.013 .037 
Path b: FPNà Fluid Intelligence .092 (.012) <.001 .068 .116 
Path c’: Exerciseà Fluid Intelligence .029 (.012) .019 .005 .053 
Path a*b: Indirect Effect .001 (.001) .361 -.001 .003 
Covariate Effects     
Sexà FPN -.010 (.013) .456 -.036 .016 
Sexà Fluid Intelligence .031 (.012) .011 .007 .054 
Parent Educà FPN .035 (.017) .036 .002 .068 
Parent Educà Fluid Intelligence .103 (.015) <.001 .074 .133 
Ageà  FPN .025 (.013) .057 -.001 .050 
Ageà  Fluid Intelligence .203 (.012) <.001 .181 .226 
Incomeà FPN .013 (.018) .461 -.022 .049 
Incomeà Fluid Intelligence .135 (.016) <.001 .104 .166 
RaceàFPN -.008 (.013) .530 -.034 .018 
RaceàFluid Intelligence -.004 (.012) .737 -.028 .020 
Parental MonitoringàFPN -.011 (.014) .457 -.039 .018 
Parental MonitoringàFluid Intelligence .049 (.013) <.001 .023 .075 
School EnvironmentàFPN -.014 (.016) .389 -.046 .018 
School EnvironmentàFluid Intelligence -.055 (.015) <.001 -.084 -.027 
School Involvement à FPN .018 (.016) .268 -.014 .049 
School InvolvementàFluid Intelligence .074 (.015) <.001 .044 .104 
Internalizing Problems à FPN -.007 (.016) .690 -.038 .025 
Internalizing Problems àFluid Intelligence .011 (.014) .425 -.017 .040 
Externalizing Problems à FPN .001 (.016) .942 -.031 .033 
Externalizing Problems àFluid Intelligence -.065 (.015) <.001 -.094 -.036 

Note: FPN = frontoparietal network. 
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Table 20. Detailed estimates for covariate-adjusted mediation model examining the 
indirect effect of salience network activation. 
Parameter Standardized 

Estimate  
(Standard 

Error) 

p-value Lower 95% 
CI 

Upper 95% 
CI 

Mediation Model     
Path a: Exerciseà SN .012 (.014) .401 -.016 .040 
Path b: SNà Fluid Intelligence .057 (.014) <.001 .031 .084 
Path c’: Exerciseà Fluid Intelligence .029 (.012) .018 .005 .053 
Path a*b: Indirect Effect .001 (.001) .410 -.001 .002 
Covariate Effects     
Sexà SN .010 (.014) .510 -.019 .038 
Sexà Fluid Intelligence .029 (.012) .016 .005 .053 
Parent Educà SN .025 (.018) .178 -.011 .060 
Parent Educà Fluid Intelligence .105 (.015) <.001 .075 .135 
Ageà  SN .007 (.014) .632 -.021 .035 
Ageà  Fluid Intelligence .205 (.012) <.001 .182 .228 
Incomeà SN -.002 (.020) .933 -.040 .037 
Incomeà Fluid Intelligence .136 (.016) <.001 .106 .167 
RaceàSN -.003 (.014) .818 -.032 .025 
RaceàFluid Intelligence -.005 (.012) .697 -.029 .019 
Parental MonitoringàSN -.025 (.016) .122 -.056 .007 
Parental MonitoringàFluid Intelligence .050 (.013) <.001 .024 .075 
School EnvironmentàSN .018 (.018) .335 -.018 .053 
School EnvironmentàFluid Intelligence -.058 (.015) <.001 -.086 -.029 
School Involvement à SN .002 (.018) .897 -.033 .037 
School InvolvementàFluid Intelligence .075 (.015) <.001 .046 .105 
Internalizing Problems à SN -.013 (.018) .455 -.048 .022 
Internalizing Problems àFluid Intelligence .012 (.014) .423 -.017 .040 
Externalizing Problems à SN .026 (.018) .089 -.010 .062 
Externalizing Problems àFluid Intelligence -.066 (.015) <.001 -.096 -.037 

Note: SN = salience network. 
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Table 21. Detailed estimates for covariate-adjusted mediation model examining the 
indirect effect of DMN activation. 
Parameter Standardized 

Estimate  
(Standard 

Error) 

p-value Lower 95% 
CI 

Upper 95% 
CI 

Mediation Model     
Path a: Exerciseà DMN .011 (.013) .395 -.014 .036 
Path b: DMNà Fluid Intelligence .067 (.012) <.001 .043 .091 
Path c’: Exerciseà Fluid Intelligence .029 (.012) .018 .005 .053 
Path a*b: Indirect Effect .001 (.001) .401 -.001 .002 
Covariate Effects     
Sexà DMN -.015 (.013)  .250 -.041 .011 
Sexà Fluid Intelligence .031 (.012) .011 .007 .055 
Parent Educà DMN .025 (.017) .139 -.008 .058 
Parent Educà Fluid Intelligence .105 (.015) <.001 .075 .055 
Ageà  DMN .007 (.013) .594 -.018 .032 
Ageà  Fluid Intelligence .205 (.012) <.001 .182 .228 
Incomeà DMN .006 (.018) .724 -.029 .042 
Incomeà Fluid Intelligence .136 (.016) <.001 .105 .167 
RaceàDMN -.011 (.013) .411 -.037 .015 
RaceàFluid Intelligence -.004 (.012) .736 -.028 .020 
Parental MonitoringàDMN -.013 (.014) .359 -.042 .015 
Parental MonitoringàFluid Intelligence .049 (.013) <.001 .023 .075 
School EnvironmentàDMN -.016 (.016) .339 -.047 .016 
School EnvironmentàFluid Intelligence -.056 (.015) <.001 -.084 -.027 
School Involvement à DMN .020 (.016) .226 -.012 .051 
School InvolvementàFluid Intelligence .074 (.015) <.001 .045 .104 
Internalizing Problems à DMN -.010 (.016) .538 -.042 .022 
Internalizing Problems àFluid Intelligence .012 (.014) .420 -.017 .040 
Externalizing Problems à DMN .013 (.016) .440 -.019 .045 
Externalizing Problems àFluid Intelligence -.066 (.015) <.001 -.095 -.037 

Note: DMN = default-mode network 
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FIGURES 

Figure 1. Covariate-adjusted parallel process LGCM of cannabis use and immediate 
memory performance.  
 

 
 

Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients. 
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Figure 2. Covariate-adjusted parallel process LGCM of cannabis use and delayed 
memory performance.  
 

 
 

Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients 
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Figure 3. Covariate-adjusted parallel process LGCM of exercise and immediate memory 
performance.  
 

 
 
Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients. 
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Figure 4. Covariate-adjusted parallel process LGCM of exercise and delayed memory 
performance.  
 

 
 
Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients. 
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Figure 5. Covariate-adjusted multivariate LGCM examining the interactive effect of the 
exercise intercept and cannabis use slope on the immediate memory slope. 
 

 
 
 
Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients. Some paths not shown. 
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Figure 6. Covariate-adjusted multivariate LGCM examining the interactive effect of the 
exercise intercept and cannabis use slope on the delayed memory slope. 
 

 
 
Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients. Some paths not shown. 
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Figure 7. Covariate-adjusted multivariate LGCM examining the interactive effect of the 
exercise and cannabis use slopes on the immediate memory slope. 
 

 
 
 
Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients. Some paths not shown. 
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Figure 8. Covariate-adjusted multivariate LGCM examining the interactive effect of the 
exercise and cannabis use slopes on the delayed memory slope. 
 

 
 
 
Note: *denotes significance at p < .05, **denotes significance at p < .001. All estimates 
represent unstandardized partial regression coefficients. Some paths not shown. 
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Figure 9. Covariate-adjusted mediation model examining decision-making as mediator of the association between baseline 
exercise and cannabis use frequency at the 6-month follow-up.  
 
 
 

 
 
 
Note: All estimates represent unstandardized partial regression coefficients. Note: GDT = Game of Dice Task; IGT = Iowa 
Gambling Task; 6MFU = 6-month follow-up; ** denotes significance at p < .001; * denotes significance at p < .05. 
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Figure 10. Covariate-adjusted mediation model examining decision-making as mediator of the association between baseline 
exercise and presence of a cannabis use disorder assessed at the 6-month follow-up.  
 
 

 
 
 
Note: All estimates represent unstandardized partial regression coefficients. Note: GDT = Game of Dice Task; IGT = Iowa 
Gambling Task; CUD = cannabis use disorder; 6MFU = 6-month follow-up; ** denotes significance at p < .001; * denotes 
significance at p < .05. 
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Figure 11. Covariate-adjusted mediation model examining decision-making as mediator of the association between baseline 
exercise and total MPS score at the 6-month follow-up.  
 
 

 
 
 
Note: All estimates represent unstandardized partial regression coefficients. Note: GDT = Game of Dice Task; IGT = Iowa 
Gambling Task; MPS = Marijuana Problems Scale; 6MFU = 6-month follow-up; ** denotes significance at p < .001; * denotes 
significance at p < .05. 
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Figure 12. Sex as a moderator of the association between baseline exercise and past 6-month 
cannabis use frequency. 
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Figure 13. Second-order latent frontoparietal network factor. 
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Figure 14. Second-order latent salience network factor. 
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Figure 15. Second-order latent DMN factor 
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Figure 16. Covariate-adjusted mediation model examining frontoparietal network activation as mediator of the association 
between exercise and executive functioning. 
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Figure 17. Covariate-adjusted mediation model examining salience network activation as mediator of the association between 
exercise and executive functioning. 
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Figure 18. Covariate-adjusted mediation model examining DMN activation as mediator of the association between exercise 
and executive functioning. 
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