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 Electric Vehicles (EVs) are considered one of humanity's greatest hopes to combat 

the climate change crises in light of their great potentials to reduce Greenhouse Gases 

(GHG) emissions from two main sources: the electric power industry and the fossil-based 

transportation sector. To help expedite the large-scale adoption of EVs on the roads, 

optimal solutions are needed to overcome the technical and operational barriers that face 

the electrical network. This is due to the introduction of significant load levels from EVs; 

a substantial number is expected during peak demand hours. This dissertation addresses 

the various interaction between different parts of the electrical system in a hierarchical 

optimization framework to ensure proper large-scale integration of electric vehicles; 

without harm to the grid or the user.

                
            

             
                 

              
 

          
 

            
 

          
 

               
 

  

 To achieve our goals of achieving optimum operation scenarios, we developed a tri- 

level centralized and decentralized optimization methodologies with smart coordination 

algorithms. This will ensure optimal decisions with the simplest required communication 

infrastructure. Specifically, information from the EVs’ owners are collected by an 

aggregator located at the charging station. In a timely fashion, the aggregator sends the
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most updated scheduling information to its assigned microgrid that ensures no 

violation occurs within its jurisdiction and establishes a pricing signal for each 

aggregator. The microgrid takes a decision based on the downstream input 

information from other aggregators attached to it and upstream input information from a

system operator that provides additional energy if needed and update the 

microgrids based on the overall grid’s operation. Additionally, we developed a two-stage 

optimization strategy to ensure proper EVs charging and discharging coordination 

considering voltage and reactive power control levels. The optimization strategy starts 

with the decomposition of the power distribution network into optimal partitions based 

on their voltage sensitivity levels, then solves a centralized energy coordination 

problem using mixed-integer linear programming. The optimization problem takes into 

consideration various aspects of the systems’ operation that include reactive power 

compensation devices and active power curtailment of PV inverters. The developed 

solutions presented in this dissertations have been verified and tested experimentally.
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Chapter 1 Introduction 

1.1 Motivation 

The electrical energy system is currently witnessing profound and historical changes, 

propelled by the recent advancements in renewable energy technologies, transportation 

electrification and the rise of electric vehicles and power electronic applications. The ever-

dreamed concept of smarter and cleaner energy networks is still far from the real 

implementation. The integration of the smart grid is much needed to spare humanity the 

consequences of climate change, of which the electric energy industry has been a significant 

player in its steadily worsening condition. Despite the growing efforts in the recent decades to 

contain greenhouse gas (GHG) emissions, with the inauguration of the Paris Accord and the 

Kyoto Protocol [1, 2], GHG emissions continue to grow more rapidly in recent years. 

Specifically, instead of witnessing a long-awaited decline in its release, GHG emissions have 

hit another high record by the end of 2019, with almost 37 billion tons of total carbon dioxide 

(CO2) released to our atmosphere from the electric power industry solely. This amount of 

released toxic gases constitutes a 0.6% increase from 2018's emissions record [3]. Figure 1.1 

shows the recent accumulated numbers in GHG emissions by sources. In addition to the power 

generation sector, the transportation sector has played a significant role in the global increase 

in GHG emissions. According to the center for climate and energy solutions [4], transportation 

is the number one emitter of CO2 in the United States. Furthermore, both the power and 

transportation sectors account for almost 60% of the total CO2 equivalent emissions. Figure 1.2 

1
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shows the daily CO2 equivalent emission by sector. These catastrophic figures have 

strengthened the calls for the restructuring of both fields, of which electric vehicles comes as a 

common factor of interest between the two industries. Therefore, electric vehicles could be 

critical in the mankind's battling against the climate change crises. Figure 1.3 illustrates the 

future power grids as defined in the IEEE 1547.4 standard, with the potential role that the EVs 

could play in its operation [5]. 

 

Figure 1-1 recent trends in the greenhouse gas emissions by sources [3] 
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Figure 1-2 Global daily carbon dioxide emissions by sector [4] 

 

Figure 1-3 The IEEE 1547.4 definition of the future power grids [5]. 
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There is no doubt that one of the major drivers to construct the smart grid is to meet the 

environmental goals and to accommodate a greater prominence on demand response programs 

and storage capabilities to modernize the ageing electrical infrastructure. Therefore, electric 

vehicles' support will grow substantially, as they are seen as mobile energy storage devices that 

could be exploited to upgrade the grid's operation. Such support to the grid could be utilized 

either as a form of energy source via vehicle to grid (V2G) or flexible loads by reaching 

agreements to delay charging to off-peak demand periods. Nevertheless, orchestrating the EVs 

interaction with the grid will be a challenging task. In addition to the many uncertainties 

involved in its integration process, several operational, technical, economic, and environmental 

hindrances complicate the large-scale adoption of EVs. An example is the fact that the power 

grids' ability to absorb the load of thousands of EVs on an already congested electrical network 

is another major obstacle that needs much attention to achieve optimal solutions to the planning 

and operation of the electrical networks. 

1.2 Problem Statement 

    To ensure proper and safe operation of the power systems in light of the recent 

advancement in technologies with an eye on environmental concerns, many countries have 

started to increase their support for transportation electrification and adopt policies that foster 

its rapid integration. The role of researchers is to ensure feasible solutions to such integration 

in a way that does not alter the reliability nor does affordability of energy to the different 

categorize of consumers. A significant obstacle to reaching a milestone where EVs is 

considered as reliable and trusted as the internal combustion vehicles (ICV) is to allow safe 
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and timely available charging to EVs’ owners without any service rejection due to the power 

grid’s status. However, reaching such a goal will undoubtedly require significant restructuring 

of the current energy infrastructure to optimally manage and control the energy demand, 

considering the highly stochastic nature that EVs would introduce to the power grid. Successful 

implementation of optimal energy management and control in a timely and cost-effective 

manner is indispensable for large-scale adoption of EVs, ultimately contributing to reaching 

humanity’s central goal to reduce the impact of climate change and preserve our planet for 

generations to come. 

     This dissertation research aims to provide solutions to some of the most challenging 

problems currently emerged in the arena of smart grid and electric vehicles load management 

and control. Mainly, we aims to pursue large-scale integration of EVs in a way that does not 

alter operational constraints of the energy infrastructure nor lead to an increase in energy tariffs 

on consumers. Moreover, the feasibility and robustness of such integration require smart 

optimization strategies that can alleviate as much as possible the expected large sums of 

infrastructure investment as well as the technical difficulties that will arise from the large-scale 

integration of EVs. Therefore, building smart, reliable and affordable charging systems is 

essential to facilitate the integration of large scale EVs in the next in the near future. The work 

presented here will provide solutions to make such integration possible in a practical and 

economical manner. 
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1.3 Literature Review 

An important aspect of this dissertation is to investigate, utilize and implement various 

metaheuristic techniques for the purpose of deployment to the PEVs energy management and 

control. Recent years have witnessed growing attention on the metaheuristics and population-

based techniques to solve various problems in power system operation and control. These 

modern approaches have been widely recognized to overwhelm the traditional gradient-based 

optimization methodologies that have been used for a long time [6]. The gradient-based 

approaches to reactive power planning and operation have many valid drawbacks and 

criticisms. One is that solving a large number of gradient variables requires intensive 

computations and tends to converge very slowly [7]. Another aspect of its drawback is that the 

gradient solution to the objective function is utilized as a search method is based on too many 

assumptions. for example, the active and reactive power are not directly influenced by voltage 

levels and phase Angles ϴ [8]. This is unacceptable since ϴ is considered one of the factors 

that determine the active power loss due to its link to the variation of the real power in the 

system. Therefore, the inconsistencies in formulating its mathematical representation lack 

adequate modeling accuracy, leading to repercussions in its search juncture. 

On the other hand, metaheuristic approaches allow abstract-level description that provide 

non-specificity, which is useful for solving a wide range of problems that are presided over by 

the metaheuristics’ upper-level strategies which influence greater search capabilities. They are 

based on utilizing search capabilities, mainly embodied as a form of memory, to be re-

evaluated by successive iterations to steer their search process. This has helped to rapidly 

escalate its use in the literature to solve a variety of engineering and scientific-based, real-life 

problems. Many traditional and bio-inspired optimization algorithms have touched on different 

aspects of the ORPD problem in the literature, such as genetic algorithms (GA) [9, 10], particle 

swarm optimization (PSO) [11, 12, 13, 14], evolutionary programming (EP) [15], Tabu search 
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[16], dynamic programming (DP) [17], harmony search optimization (HSO) [18], gravitational 

search algorithm (GSA) [19, 20], and grey wolf optimizer (GWO) [21]. Some of these 

methodologies show superior performance in reaching a near-global optimum while greatly 

prevailing over the difficulty that arises due to the nonconvexity and nonlinearity nature of 

such problems. 

The significant contribution of chapter three of this dissertation is to develop a 

hybridization of two naturally inspired metaheuristics techniques, particle swarm optimization 

(PSO) and artificial physics optimization (APO), then solve and optimize the complexity and 

nonlinearity of the ORPD problem and test it on various IEEE test systems to evaluate its search 

capacity. The PSO is an evolutionary metaheuristic algorithm that imitates the complex social 

behavior of flocking birds or fish schooling and was firstly introduced by Kennedy and 

Eberhard [22]. It utilizes a set of potential solutions (known as particles) to explore the search 

space, where every possible solution (or particle) modifies its position via the learning-by-

experience concept from the history of its position and its neighboring particles. The use of 

PSO, either as a stand-alone or by hybridization with another metaheuristic methodology, has 

been extensively considered to solve complex problems in various engineering disciplines, 

including studies related to optimal reactive power dispatch. However, in this chapter, we 

present a new form of hybridization with the APO that has not been applied to the ORPD 

problem before. The APO is a probabilistic population-influenced algorithm inspired by 

physics-based swarm intelligence, also known as physicomimetics [23]. In APO, each solution 

is looked at as an individual that exhibits physical properties such as mass, force, velocity, and 

position. Derived mainly from Newton’s second law, every particle (solution) can be optimized 

as the best solution based on the iterative relocations of the population, where a particle’s 

movement is influenced by the force and inertia of other particles (possible solutions). Recent 

literature shows the powerful capabilities of APO in solving various kind of problems as a 
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stand-alone algorithm or when hybridized with other algorithms [24, 25, 26] and it exhibits 

solid search performance and fast convergence. Hybrid APO–PSO has been used in a previous 

study to solve dynamic power security analysis [25] but has never been applied to the ORPD 

problem nor to the microgrid energy management [26]. Our overall goal is to produce an intact 

algorithm that combines the global search capabilities of APO with the strong local exploratory 

search performance of PSO, while improving its convergence characteristics. The APO 

exhibits flexible and wide-range search features that enhance its global population diversity, 

adding a powerful searching-mixture when combined with PSO. After building the 

mathematical representation of each algorithm, we validate the performance of the hybridized 

algorithm on the IEEE 30, IEEE 57, and IEEE 118 bus test systems, and compare with the 

results of previously published reports using other methods to verify its capabilities. 

The rise of microgrids with its dependence on intermittence renewable energy sources 

(RES) as well as stochastic EVs activities have underlined voltage stability and frequency 

control problems that must be carefully addressed for more safe and resilient operation. 

Specifically, uncoordinated large-scale integration of renewables sources, as well as rapid 

adoption of EVs with highly stochastic charging and discharging activities, will lead to 

detrimental consequences such as voltage collapse, power quality problems, frequency and 

stability oscillations, to name a few. Therefore, proper control and operation of microgrids are 

required to allow coordinated control mechanism while taking into consideration the 

heterogeneous mix of parameters corresponding to different attached power sources [27]. 

Research on microgrids operation and control has been widely considered in the literature. The 

authors of reference [28] analyzed various architecture, management and control in the 

microgrid paradigm, while the authors of reference [29] presented a survey on various research 
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that considered the integration of distributed energy resources with microgrids in different 

countries. Reference [30] investigated a decentralized energy control scheme for autonomous 

poly-generation microgrid topology to achieve proper management in case of malfunctioning 

of downstream parts. Besides, the authors of reference [31] presented a valuable review study 

on various hierarchical control schemes of microgrids on the primary, secondary, and tertiary 

control layers that aim to reduce the overall operation cost while improving the controllability 

and the reliability of microgrids. 

Photovoltaic solar (PV) is one of the most advanced and reliable forms of renewable 

energy sources. However, the utilization of PV systems has yet to overcome many operational 

issues to be considered a thoroughly reliable and dispatchable source of energy for microgrids. 

The most critical issue with the consideration of PV systems is its intermittency throughout the 

day. Such shortages in the PV system’s supply of energy could be compromised with increasing 

the level of energy transfer to the microgrid through EVs discharging, which is one of the main 

aspects this chapter is investigating. The work on PV systems is one of the widely considered 

research topics in the past decades. Optimization problems have been well-developed to 

investigate and verify the control of PV systems taking into consideration its stochastic nature 

such as in [32, 33]. The authors of reference [32] investigated the effect of changing cell’s 

temperature and solar irradiance on the design of various DC-DC converter topologies which 

are widely used in PV systems. The authors of reference [33] developed a new topology scheme 

for a photovoltaic dc/dc converter which can drastically enhance the efficiency of a PV system 

by assessing the PV’s module characteristics. The authors of reference [34] developed an 
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algorithm that offers dynamic distributed energy resources control that includes PV systems, 

small-scale wind turbines, controllable loads and energy storage devices. Studies on PV 

systems covered a wide range of applications, and literature are filled with so many great 

studies that investigate the use of PV systems for a more clean energy utilization. 

Another side of consideration in this chapter is the relative impact of EVs integration on 

the hybrid microgrid operation. Reference [35] presents a linearization methodology to model 

real-time EVs activities on residential feeders based on the concept of Kirchhoff laws, nodal 

analysis, and modularity index. EVs offer high potentials to serve as mobile backup storage 

devices that can provide grid support to enhance its reliability as a means of smart grid 

application [36]. Reference [37] provides a Matlab-based Monte Carlo Simulation code that 

allows the incorporation of distributed energy resources (i.e., EVs) to assess the distribution 

network's reliability. Additionally, studies have covered the potentials of EVs in relevant 

frequency regulation and control. The authors of reference [38] developed an intelligent 

aggregator that synchronizes the charging and discharging activities of a group of EVs in order 

to regulate frequency by compensating for any potential power deficiency. Similarly, the 

authors of reference [39] developed a real-time dynamic decision-making framework based on 

Markov Decision Process (MDP) to allow intelligent frequency regulation by energy support 

from EVs. Reference [40] developed a multivariable generalized predictive controller to enable 

load frequency control in a standalone microgrid with V2G integration. The controller aims to 

allow sufficient energy exchange without causing frequency deficiency, considering possible 

load disturbances. Furthermore, the recent progressive policies that aim to reduce GHG 
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emissions from the transportation sector will result in a mass acquisition of EVs in the next few 

years [41], especially in regions where utilization of EV is expected to have a significant 

reduction of GHG emissions as a result of their weather and energy grid mixes [42]. Such rapid 

adoption of EVs on a large scale without proper coordination can result in phase imbalance, 

equipment fallout and degradation, increase active and reactive power losses, among many 

problems [43]. Therefore, careful consideration needs to be given to overcome the problems 

that may arise due to the intermittency and stochastic nature of the energy sources on the hybrid 

microgrids. Therefore, the utilization of a metaheuristic-based algorithm in this dissertation 

was deemed as a promising solution to solve the problem of PEVs integration on hybrid 

microgrids considering the intermittency of renewable energy sources.  

Electric Vehicles, as storage devices, may have an impact on distribution feeder voltage 

and regulation. As the penetration level of such devices increases, reverse power flow on the 

distribution feeder leads to voltage rise and hence violations of voltage boundaries defined by 

American National Standards Institute (ANSI) [44, 45]. Many studies have been conducted on 

distribution feeders to assess the performance of commonly used voltage regulation schemes 

under reverse power flow. The simulation results in reference [45] show that the power quality 

of the system can be improved by suitable location selection of the photovoltaic (PV) system 

or storage devices. References [46, 47] provides a broad overview of the impacts of EVs on 

the system voltage stability and frequency. The introduction of local charging and discharging 

EVs to balance the loads negatively influences the efficiency of short-term load forecasting 

modules. Electric Vehicles characteristics are broken down into vehicle characteristics, 

charging characteristics, and when EVs are plugged in [48]. The impacts of EVs are determined 

through regional grid analysis based on the number of vehicles, vehicle demand profile, and 
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the effect that demand has on supply and demand. The study done in reference [48] does not 

come to any specific conclusions about optimal charging patterns or grid reliability, but it does 

suggest that work must be done to investigate further how EVs will impact the grid. Reference 

[49] provides detailed information on the distribution system modeling which provides a 

valuable resource for modeling and simulating distribution grid used in our study, the IEEE 34 

bus feeder which released in 2003 by the IEEE power society [50]. References [51, 52] study 

the potentials of the EVs in the market and the virtues it makes by its connection to the local 

electrical grid. Also, the idea of charging the EVs considering renewable energy sources have 

been widely investigated, especially when current governmental policies, such as the 2014 

Carbone Dioxide Standards of the Environmental Protection Agency (EPA), are currently 

forcing the power utilities to lessen the reliance on fossil fuels via adopting strict mandates 

such setting prohibited limit on the amount of gases released from their power plants [53]. 

Reference [54] addresses some of the technical and economic challenges during the process of 

designing a green recharge area for EVs with an overall goal to reduce costs and pollution 

connected to the charging process. Reference [55] provides modelling of a smart charging 

station for electric vehicles (EVs) for DC fast charging while ensuring minimum stress on the 

power grid. Furthermore, they analyzed a business model with that aim to provide a cost 

estimation for the deployment of charging facilities in a residential area. Reference [56] 

proposes a methodology aimed to allow the aggregated EV charging demand to be identified. 

Specifically, their methodology is based on an agent-based approach to calculate the EV 

charging demand in a given area. Their model simulates each EV driver in order to obtain the 

EV model characteristics, mobility needs, and charging processes required to reach its 

destination. Reference [57] presents EVs charging and discharging load model based on three 

tiers electricity rates to study the impact of the power flow of the distribution feeder considering 

EVs integration utilizing a probabilistic power flow model. Their model suggests that the 
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operational risk of the distribution network can be estimated and quantified for proper grid 

operation. Reference [58] provides an in-depth study about commanding the power flow 

conversion between the battery pack of the EVs and the load center of the power utilities, as 

they present a novel bidirectional converter to oversee the process of this critical power 

management.  

Unlike traditional methodologies, reinforcement learning (RL) is an artificial intelligence 

technique that has been widely used in solving many scientific problems in recent years [59, 60]. 

The concept of Q-learning was first introduced in [61], and a Deep Q-learning Network (DQN) 

is an extension to it [62]. Applications of RL has been widely employed to perform studies related 

to EVs such as in proposing efficient smart charging algorithm [63], as well as energy 

management and control strategies for hybrid and pure electric vehicles [64, 65]. In addition to 

the battery’s energy management, RL techniques and methodologies have covered a wide range 

of topics related to power and energy engineering, such as electricity market trading in smart 

grids [66], energy production scheduling [67], and multi-agent distributed energy management 

of a microgrid [68]. RL has been extensively investigated in the automotive industry in recent 

years. The authors of [64] employed RL to measure an adaptive optimal energy control strategy 

based on different driving schedules. They tested the learning ability of HEVs and verified via 

simulation the impact on fuel efficiency. They made comparisons of their developed strategy 

with results obtained previously utilizing Stochastic Dynamic Programming (SDP). Similarly, 

based on the Q-learning algorithm, the authors of [69] studied a predictive energy management 

framework for a parallel hybrid electric vehicle (HEV). Their results show significant reductions 

in both fuel consumption and computational time.  Additionally, the authors in [70] tested the 
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capabilities of deep reinforcement learning to train autonomous, self-driving automobiles that are 

aware of other elements in their surroundings, such as pedestrians, other vehicles, etc. The 

probabilistic nature of driving patterns of EVs is modeled in many recent works of literature as a 

Markov decision process (MDP). In [71], researchers tested the behavioral response of the 

stochastic charging of an EV station using MDP methodology. In [72] MDP was utilized to 

model the impact of stochastic driving, parking, and charging patterns of EV loads on the local 

distribution grid. Range anxiety is one of the major obstacles in the EVs market. In addition to 

the automotive industry, RL has been a widely used technique in many fields of research in recent 

years, such as in robotic control [73, 74], computer systems applications [75, 76], image 

processing [77, 78], agent-learning systems [79], traffic improvement and coordination systems 

[80, 81], as well as wirelesses and communication networks [82, 83, 84].  

Stochastic microgrid energy management and control has received considerable attention in 

recent years.  References [85, 86] present mathematical microgrid energy control and 

prediction algorithms considering unforeseen stability issues and renewable energy 

fluctuations. The algorithms were tested and verified in a hardware-in-the-loop testbed that 

resembles a real hybrid microgrid system. Reference [87] utilizes reinforcement learning to 

develop a microgrid energy management framework with the customers acting as intelligent 

agents in a stochastic environment to issue decisions that maximize their utility functions. 

Reference [35] presents a revised linearization methodology to model the real-time EVs 

activities on residential feeders based on the concept of Kirchhoff laws, nodal analysis, and 

modularity index. Furthermore, it provides a methodology to distinguish between EVs and non-
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EVs loads. References [88, 89, 90] present techno-economic studies that examine the relative 

impact of EVs integration on microgrids and distribution systems' hourly operation. It is widely 

evident that large-scale integration of EVs will be pivotal in restructuring future microgrids 

and distribution networks. Several works of literature discussed energy pricing schemes 

considering EVs' charging and discharging process. The authors in reference [91] presented a 

distributed EVs charging methodology and pricing models inspired by the control of Internet 

traffic congestion. The decision on real-time pricing is issued by the smart grid based on total 

supply from renewable and non-renewable sources. The authors in reference [92] developed a 

dynamic pricing scheme following a predictive charging strategy of EVs that considered 

reducing the carbon footprint. The pricing information is exchanged with the EVs via wireless 

communication based on predicted energy prices for the suggested charging period that aim to 

make the time of charging's price is at low-cost.  

The proliferation of PEVs with uncoordinated charging and discharging may lead to 

significant damages to the grid's apparatus and introduce operational difficulties to overcome 

its charging demands, especially those during peak hours. Therefore, a necessity for proper 

coordination and control of the power grid is the meticulous incorporation of the PEVs 

scheduling in a way to make it contribute efficiently to the grid's operation; their exponential 

growth could also be seen as a golden opportunity to get rid of operational deficiencies and 

extend the lifespan of voltage and reactive power support devices. This is true, giving the 

detrimental impacts of renewable energy sources' intermittency on the operation of 

conventional voltage and reactive power compensation devices such as the on-line tap 
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changing transformer (OLTC) and shunt capacitor banks (CBs). Additionally, uncoordinated 

large-scale penetration of PEVs could significantly stress these devices and, therefore, 

contribute to unnecessarily extensive tap operations [93]. As a result, accounting for PEVs into 

the voltage-var optimization (VVO) of the PDNs should be recognized as a priority. 

Regularly, the VVO problem deploys OLTC and voltage regulators (VRs) to regulate the 

voltage level across the PDNs, while considering CBs and other reactive power compensation 

devices (RPCs) such as dispersed energy sources (i.e. photovoltaic systems (PVs) inverter) for 

VAR support. Ideally, the problem of VVO has been investigated within the context of 

centralized control schemes, requiring massive communication infrastructure to promptly deal 

with thousands of equipment. In [94], the authors utilized a genetic algorithm (GA) to solve 

multiobjective voltage regulation control to reduce the system's losses and voltage fluctuations. 

Nevertheless, voltage control from generation resources was not incorporated into their 

formulation. Conversely, the authors of [95] developed an optimal voltage-var control scheme 

with the incorporation of large-scale distributed generators (DGs) to ensure adequate voltage 

regulation on the distribution level. However, their control scheme neglected the impact of 

OLTC and the prospect of active power curtailment (APC) on the voltage regulation problem. 

Besides, reference [96] presented an optimal voltage-var coordination scheme that considers 

day-ahead PV active and reactive power production to reduce OLTC tap operation, yet without 

including the effect of APC in the utilization of PV voltage support schemes. Moreover, one 

potential concern is that their day-ahead forecasting methodology could be adversely 

influenced by common margin errors usually inherited in the traditional forecasting techniques. 
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Additionally, PEVs were not accounted for in their VVO control scheme. In fact, literature that 

reports the utilization of PEVs in the VVO problem is still limited. Reference [97] has indeed 

considered PEVs in the distribution network's voltage regulation process, yet only in a 

centralized manner. It is clear that only a limited amount of literature has considered solving 

the VVO problem on a decentralized scale, with few considering the integration of PEVs. 

Therefore, more research should be performed to fill the gap in this area. Generally, solving 

for the VVO within the context of a decentralized framework requires some sort of 

decomposition methodologies to divide the distribution system into several subgroups.  

Furthermore, the accuracy of the decomposition technique plays a pivotal role in the realistic 

modeling of the information exchange among the divided subgroups of the network topology. 

Reference [98] presented a valuable study on the tradeoff of implementing various algorithms 

on the convergence speed for solving problems related to clustering-based decentralized 

optimization. The study indicates that strategies of low-coupling degrees may lead to an 

insignificant impact of one cluster over its neighboring subgroups. This emphasizes the 

potentiality of obtaining results that inaccurately represent a solution for highly complex and 

dynamical systems like the PDNs. Therefore, careful consideration must be advocated while 

designing decomposition methodologies that model efficiently the steady-state operation of the 

electrical systems. Recent literature has investigated various clustering methodologies applied 

to the power grids. References [99, 100] developed decomposing the large-scale power grids 

into subgroups based on spectral clustering. Specifically, reference [99] developed 

operationally constrained spectral clustering to identify intentional controlled partitioning of 
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wide areas of the power network to defend against cascading failures. The developed 

methodology allows system operators to constrain, without disconnection, branches against 

minimal power flow disruptions. The developed islanding technique was tested to reduce 

power grids that have the size of the United Kingdom’s power network. Similarly, reference 

[100] defined the internal connectivity of the system’s nodes via an undirected edge-weighted 

graph based on spectral clustering and developed solving the VVO problem with respect to the 

quality factor of each obtained partition, yet with no account for PEVs’ integration. Other 

methodologies aimed for solving the VVO problem in a decentralized manner without 

incorporating the decomposition of the PDNs into subgroups. Reference [101] developed 

agent-based for reactive power compensation via DGs to regulate the voltage levels in a 

distributed manner with lower communication capabilities. However, no consideration of the 

active role of OLTC and VRs has been identified which does not provide the technical option 

for voltage regulation if reactive power outputs of the incorporated DGs are reached. On the 

other hand, reference [102] developed a voltage regulation scheme to account for parallel 

distribution networks with a strong assumption that VVO is performed considering only the 

OLTC device. While such assumption may yield valid results, it is a not recommended practice 

as it will increase operational stress on the OLTC and potentially forfeit its economical lifespan. 

Additionally, the solution might be infeasible giving that voltage boundaries of larger 

distribution systems may exceed the capability of the OLTC to solve the problem efficiently. 

     Several studies have studied the impact of the large adoption of PEVs without effective 

uncontrolled charging mechanism [103, 104, 105]. In this dissertation work, we aimed to test 
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the impact of the uncoordinated large-scale adoption of PEVs on the hourly operation of the 

power distribution grid. Specifically, we provided in chapter five of this dissertation dynamic 

modeling of the hourly impact of PEVs integration on the IEEE 34 bus system using the 

OpenDSS dynamic software of the Electric Power Research Institute (EPRI), considering 

different PEVs types and energy needs integrated throughout the whole day. Different testing 

scenarios were conducted and they are presented in detail in chapter five and in [103]. Our 

study in chapter five concludes that uncoordinated large-scale integration of the PEVs will 

definitely violate the system’s voltage limits and lead to overloading condition and increased 

energy prices on all consumers connected to the distribution feeder. The authors of reference 

[104] provide extensive study on the impact of the integration of one million PEVs to the 

VACAR sub-region of the Southeast Electric Reliability Council (SERC). To achieve the 

purpose of testing the impact of modeling PEVs load of this size, the authors utilized the Oak 

Ridge Competitive Electrical Dispatch model to simulate the hourly dispatch of the power 

sources to meet this large loads. Furthermore, they consider various charging and discharging 

scenarios with different PEVs sizes, energy requirement and time of connectivity, and reach a 

conclusion that a typical-size residential power distribution feeder will not be able to withstand 

charging of PEVs for long hours without causing severe overloading and possibly outage.  

Reference [105] presents one of the earliest research literature that studies the impact of 

uncoordinated PEVs integration on the grid. Moreover, the author investigated the integration 

of 7.5 million PEVs and studied the impact of its integration on the technical, economical and 

operational aspect of the power grid. They reached a conclusion that unless PEVs load are 
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managed to delay large-scale charging of PEVs from peak hours to off-peak hours, substantial 

increase of the energy prices is almost certain in several areas of the US interconnected 

network. Furthermore, reference [105] is one of the first studies that emphasize the needs for 

energy management and coordination of PEVs that consider postponing PEVs charging 

demands to times where both energy prices and demand are lower. Additionally, reference 

[106] concludes that simple charging strategies yield peak demands in several time slots of the 

day, which require major investment to upgrade the system’s overall generation and 

transmission capacities. Therefore, there is no doubt that proper energy management and 

control is needed to deal with the uncertainty of large-scale integration of PEVs. Several 

methodologies have been developed in the recent years to deal with the challenging task of 

accounting of PEVs load into the already-congested power grid. Reference [107] presents a 

two-step framework to coordinate the PEVs charging following a price-based coordination 

based on linear programming. The authors of reference [108] propose a methodology that 

account for the design of grid interfaced PEV charging systems incorporating stochastic 

renewable energy sources and storage units on the electrical infrastructure. Specifically, the 

authors utilize a linear programming-based framework to optimally choose designs that reduce 

the overall system’s lifecycle cost.  

1.4 Research Objectives 

     The main goal of this dissertation is to develop multi-level energy management, 

optimization and control methodologies that facilitate large-scale adoption of electric vehicles 

to the power grid. The optimization strategies developed here consider various operational 
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constraints and restrictions that cannot be avoided in typical power system operations. Such 

technical barriers include operating within permissible voltage, active and reactive power limits 

and frequency levels. It also includes unnecessary overloading of power distribution 

transformer and lines beyond their capacities. Another aspect is broadcasting real-time energy 

pricing that is summed with power production and grid operation costs. Additionally, the 

developed optimization strategies consider incorporating various power system components 

that are widely used and significantly impact the power system operation and dynamics, such 

as voltage compensation devices, renewable energy sources, EVs charging and discharging, 

and other non-EVs loads. 

     This research considers various interaction between different parts of the system in a 

hierarchical framework to ensure proper large-scale integration of electric vehicles. Both 

centralized and decentralized optimization methodologies were deployed together to ensure 

optimal decisions with the lowest required communication infrastructure. Specifically, 

information from the EVs’ owners are collected by an aggregator located at the charging 

station. In a timely fashion, the aggregator sends the most updated scheduling information to 

its assigned microgrid that ensures no violation occurs within its jurisdiction and establishes a 

pricing signal for each aggregator to be dispatched for each EV. The microgrid takes a decision 

based on downstream input information from other aggregators attached to it and upstream 

input information from a system operator that provides additional energy if needed and updates 

the microgrids about the overall grid’s operation. 
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     The research in this dissertation also ensure that charging events does not cause any 

voltage, active and reactive power, and frequency levels deficiencies. Therefore, smart 

algorithms were designed to ensure that hybrid microgrid operation, including renewable 

energy sources and stochastic EVs charging and discharging events, never violates system 

levels. Additionally, two-stage optimization techniques were developed and deployed to ensure 

proper EVs charging and discharging coordination concerning the grid's real-time operation. 

At the first stage, a community-based particle swarm optimization algorithm was developed to 

decompose the power distribution grid into well-defined partitions based on their voltage 

sensitivity values with respect to changes in active and reactive power levels, respectively. 

After reaching an optimal decomposition, a centralized optimization technique was formulated 

with mixed-integer linear programming was run to obtain optimal coordination for the voltage 

and reactive power per partition while resolving the nonlinearity and nonconvexity of the 

electrical system via applied mathematical approximation .  Such methodologies mainly aim 

to reach optimal large-scale EVs charging and discharging schedules without integrating 

extensive communication infrastructure. 

Additionally, one of the main goals of this dissertation is to ensure the safe arrival of 

the EVs to their nearest charging stations at the lowest possible energy consumption. Therefore, 

a real-time, metadata-driven electric vehicle routing optimization algorithm was developed. 

The routing algorithm was based on the Double Deep Q-learning Network (DDQN) concept to 

learn the maximum travel policy of the EV as an agent. The policy model was trained to 

estimate the agent's optimal action per the obtained reward signals and Q-values, representing 
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the feasible routing options. The routes' modelling was achieved based on the dynamic Markov 

Chain Model (MCM), defining Markov's unit step as the vehicle's average energy consumption. 

Real-time driving data and road conditions such as traffic jams, road closures, number of stops, 

driving patterns and applicable driving restrictions were integrated via Google's API platform. 

The essence of this algorithm is to ensure that EVs can reach their final destination with the 

lowest possible energy consumption. 

To sum up, the major contributions of this dissertation are as follow:  

1. Developing a mathematical formulation that represents the real-time modeling of 

electric vehicles activities on the power distribution grid.  

2. Designing an intelligent, metaheuristic-based vector-decoupled algorithm to properly 

manage the voltage, power, and frequency levels in hybrid microgrid via smart EVs 

charging and discharging.  

3. Developing an intelligent, real-time data-driven routing algorithm based on Double 

Deep Q-learning Network to reach a destination with the lowest energy requirements.  

4. Developing an intelligent, community-based detection to decompose the power 

distribution grid into well-established partitions based on nodes’ sensitivity values to 

active and reactive power injection and absorption.  

5. Designing and implementing a two-stage optimization technique to solve the voltage 

and reactive power optimization problem (VVO) with the integration of electric vehicle 

scheduling, active power curtailment of PV systems, and reactive power compensation 

devices.  
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6. Designing and implementing a tri-level hierarchical energy management system based 

on the Stackelberg model and real-time demand-inverse curve of various players in the 

energy market. 

1.5 Organization of the Dissertation 

This dissertation is composed of ten chapters.  

 Chapter one provides introduction on general concepts related to the EVs and introduce 

the major contribution of this dissertation.  

 Chapter two provides a revised linearization methodology to model the real-time EVs 

activities based on the concept of Kirchhoff laws, Nodal analysis, and Modularity 

index. Specifically, chapter two proposes modeling methodology and mathematical 

formulation based on the decomposition of the distribution feeder topology into 

clustering nodes while considering on-time demands and EVs activities. It presents a 

scalable and powerful tool that allows researchers to accurately model the grid's real-

time dynamics at each specific node of the system. It also helps determine the voltage 

sensitivity and estimate potential operational deficiencies in reference to the active and 

reactive power conditions at different feeder spots. To verify our modeling strategy, we 

demonstrate it on the modified IEEE 34 node system to measure the impact on the 

system's voltage level for each hour of the day, which could provide an estimate for the 

operational needs of active and reactive power through proper EVs scheduling that is 

investigated in a later chapter of this dissertation. 
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 Chapter three presents a hybridization technique based on integrating particle swarm 

optimization (PSO) with artificial physics optimization (APO) to be used for energy 

management and control of hybrid microgrids considering large-scale integration of 

EVs. To ensure the effectiveness and robustness of the developed hybridization, this 

chapter tests it on one of the most investigated problems in the smart grid arena: the 

reactive power dispatch problem. The hybridized algorithm was tested on the IEEE 30, 

IEEE 57, and IEEE 118 bus test systems to solve both single and Multiobjective ORPD 

problems, considering three main aspects. These aspects include active power loss 

minimization, voltage deviation minimization, and voltage stability improvement. The 

results prove that the algorithm is highly effective and displays great consistency and 

robustness in solving both the single and Multiobjective functions while improving the 

convergence performance of the PSO. It also shows superiority when compared with 

results obtained from previously reported literature for solving the ORPD problem. 

 Chapter four utilizes the hybrid algorithm discussed in chapter three to propose a 

metaheuristic-based vector-decoupled algorithm to balance the control and operation 

of hybrid microgrids in the presence of stochastic renewable energy sources and electric 

vehicles charging structure. The AC and DC parts of the microgrid are coupled via a 

bidirectional interlinking converter, with the AC side connected to a synchronous 

generator and portable AC loads, while the DC side is connected to a photovoltaic 

system and an electric vehicle charging system. The vector-decoupled control 

parameters of the bidirectional converter are tuned via hybridization of particle swarm 
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optimization and artificial physics optimization to properly ensure safe and efficient 

exchange of power within allowable voltage and frequency levels. The developed 

control algorithm ensures the stability of both voltage and frequency levels during the 

severe condition of islanding operation and high pulsed demands conditions, and the 

variability of renewable source production. The developed methodology is verified in 

a state-of-the-art hardware-in-the-loop testbed. The results show the robustness and 

effectiveness of the developed algorithm in managing the real and reactive power 

exchange between the AC and DC parts of the microgrid within safe and acceptable 

voltage and frequency levels. 

 Chapter five provides dynamic modeling of large-scale charging and discharging 

integration of the EVs to assess their timely impact on the distribution grid. Four case 

scenarios were modeled here considering a 24-hour distribution system load data on the 

IEEE 34 bus feeder. The results show the level of charging and discharging allowed on 

this test system, during each hour of the day, before violating the system's limits. It also 

estimates the costs of charging throughout the day utilizing the time-of-use rates and 

the number of EVs to be charged on an hourly basis on each bus and provides hints on 

the best locations on the system to establish the charging infrastructure. 

 In chapter six, a real-time, data-driven electric vehicle (EVs) routing optimization to 

achieve energy consumption minimization is developed. The developed framework 

utilizes the concept of Double Deep Q-learning Network (DDQN) in learning the 

maximum travel policy of the EV as an agent. The policy model is trained to estimate 



 

27 

 

the agent's optimal action per the obtained reward signals and Q-values, representing 

the feasible routing options. The agent's energy requirement on the road is assessed 

following Markov Chain Model (MCM), with Markov's unit step represented as the 

average energy consumption that considers the different driving patterns, the agent's 

surrounding environment, road conditions, and applicable restrictions. The framework 

offers a better exploration strategy, continuous learning ability, and the adoption of 

individual routing preferences. A real-time simulation in the python environment that 

considered real-life driving data from Google's API platform is performed. Results 

obtained for two geographically different drives show that the developed energy 

consumption minimization framework reduced the EVs' energy utilization to reach their 

intended destination by 5.89% and 11.82%, compared with Google's original developed 

routes. Both drives started at 4.30 PM on April 25th, 2019, in Los Angeles, California, 

and Miami, Florida, to reach EV's charging stations located six miles away from both 

of the starting locations. 

 Chapter seven proposes a fair, real-time, demand-influenced dynamic pricing structure 

to accurately allocate more fairness to the billing strategy to reflect updated energy 

prices during the microgrids' real-time operation. This pricing structure comprises two 

pricing fractions; retail energy price that follows time-of-use (ToU) rates and congested 

energy price allocated solely for billing EVs charging events during congested 

timeslots. The developed methodology is implemented in a hierarchal multi-agent 

architecture with a stochastic energy management system that aims to provide a cost-
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efficient microgrid operation. The inputs to the optimization problem are day-ahead PV 

forecast and stochastic EVs energy levels and connectivity times prediction models 

based on a discrete-time Markov chain. Moreover, a predictive model of daily load 

demand is also presented based on adaptive Artificial Neural Network (ANN). The 

models were develop based on historical data for Miami Dade County, South Florida. 

Through numerical simulations, we attest that the developed pricing structure achieves 

significant energy prices reduction when compared with results from previous well-

established pricing policies. 

 Chapter eight proposes a two-stage optimization strategy for solving the voltage-var 

optimization (VVO) problem considering large-scale, stochastic penetration of plug-in 

electric vehicles (PEVs) to unbalanced, 3-phase power distribution networks (PDN). 

The optimization strategy considers the prospect of forced active power curtailment 

(APC) at a minimized level, bidirectional PEVs activities, as well as relaxed tap 

operations of shunt capacitor banks (CBs), online tap changing transformer (OLTC), 

and voltage regulators (VRs) to achieve optimal economic gain while satisfying the 

VVO operational constraints. The first stage aims for the optimal decomposition of the 

PDN into well-defined, cross-checked smaller partitions via a developed community-

based detection particle swarm optimization (CBDPSO) algorithm. The second stage 

incorporates a mixed-integer linear programming (MILP) formulation to solve the 

VVO problem per partition level while considering the nonlinearity and nonconvexity 

of the electrical system via applied mathematical approximation. This reduces the 
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complexity and computational burdens that usually arise in solving the problem on a 

larger scale.  The developed two-stage strategy is tested on the modified IEEE 123 bus 

system with various case scenarios. Economical operation of the PDN is achieved 

during peak demand hours while maintaining a safe operation within the context of the 

VVO problem. 

 Chapter nine proposes a tri-level, hierarchical energy management coordination 

considering large-scale integration of the PEVs. Specifically, the hierarchical 

framework is composed of two energy optimization problem formulation that oversee 

three layers of controls in the electrical infrastructure: a lower-level energy optimization 

problem that is based on the interaction of an aggregator and its assigned microgrid. 

The aggregator is located at the PEV’s charging station, and its main duties is to collect 

in a decentralized manner the required information from the PEVs that would like to 

request connection to its station. Then and on a timely fashion, the aggregator sends the 

collected information to its assigned microgrid which run centralized energy 

management optimization problem to updates the energy prices signals for each 

charging stations based on the updated status of the grid. Moreover, for the microgrid 

to able to obtain efficient and accurate results that reflect the timely dynamic updates 

of the overall electrical interconnection, and to avoid any potential overlaps in peak 

demands in charging loads at other microgrid’s location; the microgrid participates in 

an upper-level energy optimization problem with the system operator that oversee the 

complete generation and operation of the interconnected electrical system and other 
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important factors such as the system’s overloading conditions and constraints. The main 

idea behind the formulation of the tri-level control is based on updating the grid’s 

operation and issuing energy price signals for each station on the system based on 

continuously updated inverse-demand curve of each microgrid. This is because 

accurate representation of the dynamic pricing needs to reflect the updated demand on 

each part of the grid, including the peak and off-peak PEVs demands, and establish 

price signals based on the availability and scarcity of the generation level per microgrid. 

That is to say, the tri-level energy management and control aims to normalize the peak 

demand of the PEVs via influencing the charging behaviors of the PEVs by the 

dynamically issued energy price signals. The developed framework takes into 

consideration reducing the carbon emissions via the incorporation of the cap and trade 

market and renewable energy portfolio (RPS) standards into the upper-level energy 

optimization problem. The optimization strategy is formulated using mixed-integer 

quadratic programming (MIQP), with KKT approximation that aims to linearize the 

electrical energy constraints.  

 Chapter ten gives conclusions of the dissertation’s research. It also discusses the 

outcomes, and future recommendation in this research arena 

 

 



 

31 

 

Chapter 2 Mathematical Modeling of Voltage Drop and Grid Congestion Due to the 

Integration of Electric Vehicles on the Power Distribution Feeders 

2.1 Introduction 

In this chapter, we aim to provide mathematical interpretation and modeling of the EVs 

charging and discharging events, as well as the corresponding voltage sensitivity level that may 

emerge as results of EVs activities. Specifically, we present a revised linearization approach to 

model the voltage and power consumption at each node at the distribution feeder. Such 

modeling simplification and representation provides a relevant framework to dynamically 

model the EVs activities throughout the day, utilizing discretized time slots. The presented 

methodology aims to decompose the feeder into clustering nodes via the concept of modularity 

index, which allows precise estimation of the contribution of the EVs at each specific node of 

the system. This enables smarter load management and monetary control-policy following an 

actual real-time consumption estimation at each part of the system. This linearized approach 

can also serve as a tool to enable the modeling of other low-voltage activities such as demand 

response programs, on-site and low-scaled renewable energy sources, and microgrid control 

strategies, among others. 

The rest of this chapter is organized as follows: section 2.2 presents the linearized 

methodology to estimate the EVs contribution at each node of the feeder, as well as provides 

an intuitive mathematical formulation based on the modularity index to estimate the voltage 

sensitivity with respect to the variation levels of active and reactive power because of EVs 
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activities. Section 2.3 presents a case study to verify the modeling approaches. Section 2.4 

provides concluding remarks on the work of this chapter. 

2.2 Modeling Methodology  

Here, we assume a balanced low-voltage radial distribution feeder, as shown in Fig. 2.1. 

Since most distribution systems operate at low-voltage levels, we can give an intuitive 

assumption that the connected loads are purely resistive, since the resistive portion at the 

distribution feeder is usually much higher than the inductive portion. In a like manner, our 

second assumption is to neglect the modeling of the capacitive compensation devices, although 

they are frequently used as a way of voltage support to the distribution grid. Therefore, we 

assume that the distribution feeder operates close to unity. However, we neglect those 

assumptions in our modeling of the voltage sensitivity to properly estimate the reactive power 

needs of the grid according to the EVs activities. It should be noted that since the voltage level 

is a non-linear variable with the instantaneous active power, a linear approximation of the 

electrical feeder is required. 

 Linear Approximation of a Decomposed Feeder Topology:  

As the electrical infrastructure is dynamic in nature, with its operation change from minute-

to-minute, we discretize the 24-hour time horizon into discrete time slots, 𝑡, such that 

𝑡 = {1,2, . . . , 𝑇}. For the nth node on the feeder with an active power 𝑃𝑡
𝑛 at a specific time slot 𝑡, 

the load at that node could be represented as follows:   
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𝑅𝑡
𝑛 =

𝑉𝑛𝑜𝑚
2

𝑃𝑡
𝑛  (2.1) 

Where 𝑉𝑛𝑜𝑚 represents the nominal voltage of the distribution grid. The power from the 

EVs, during both charging and discharging scenarios, could be modeled as current source 

connected to the grid at the charging location. On the other hand, the power transformer could 

be modeled as a constant voltage source to properly estimate its overloading condition as a 

result of EVs contribution. Denoting the power of the EV at the nth node and time 𝑡 as 𝐸𝑉𝑡
𝑛, 

the correspondent electrical current from each EVs could be found by:    

 
𝐼𝑡
𝑛  =  

𝐸𝑉𝑡
𝑛

𝑉𝑛𝑜
   (2.2) 

Fig. 2.1 presents a clarified description of the distribution feeder with applying our so-forth 

assumptions. We can assume a linear representation of the feeder's circuit based on each node's 

correspondent consumption. Specifically, by inserting the proper resistive parameters of the 

line and properly setting the voltage of the node that resembles the power transformer as well 

as the assigned values of the current source, we can present a linear model to estimate the 

contribution levels of the EVs at each node of the feeder, utilizing the matrix analysis theory 

throughout the way. Let us break-up the feeder's topology into several segments representing 

the nodes that serve different customer classes, as shown in Fig. 2.2. By utilizing the basic 

concept of Kirchhoff's laws and nodal analysis, we can find the current at any node as a result 

of EVs charging or discharging as follows: 
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𝐼𝑡
𝑛 = 𝑉𝑡

𝑖𝑛 (
1

𝑅𝑖𝑛
𝑛 ) − 𝑉𝑡

𝑖𝑛  (
1

𝑅𝑖𝑛
𝑛 +

1

𝑅𝑡
𝑛 +

1

𝑅𝑜𝑢𝑡,1
𝑛 +. . . . . +

1

𝑅𝑜𝑢𝑡,𝑖
𝑛 ) +

𝑉𝑡
𝑜𝑢𝑡,1 (

1

𝑅𝑜𝑢𝑡,1
𝑛 )+. . . . +𝑉𝑡

𝑜𝑢𝑡,𝑖 (
1

𝑅𝑜𝑢𝑡,𝑖
𝑛 )       

 (2.3) 

 

In case of no EVs charging or discharging event, equation (2.3) can be rewritten and 

presented as follows: 

0 = 𝑉𝑡
𝑖𝑛(

1

𝑅𝑖𝑛
𝑛 ) − 𝑉𝑡

𝑖𝑛 (
1

𝑅𝑖𝑛
𝑛 +

1

𝑅𝑡
𝑛 +

1

𝑅𝑜𝑢𝑡,1
𝑛 +. . . . . +

1

𝑅𝑜𝑢𝑡,𝑖
𝑛 ) + 𝑉𝑡

𝑜𝑢𝑡,1(
1

𝑅𝑜𝑢𝑡,1
𝑛 )+. . . . +𝑉𝑡

𝑜𝑢𝑡,𝑖(
1

𝑅𝑜𝑢𝑡,𝑖
𝑛 )

         (2.4) 

Likewise, it should be noted that if we want to quantify the contribution of EVs activities at 

a node that is located directly following the transformer node, equation (2.3) can be rewritten 

as follows: 

𝐼𝑡
𝑛 − 𝑉𝑡

𝑇𝑟(
1

𝑅𝑇𝑟
) = −𝑉𝑡

𝑖𝑛(
1

𝑅𝑇𝑟
+

1

𝑅𝑜𝑢𝑡,1
𝑛 +. . . . +

1

𝑅𝑜𝑢𝑡,𝑖
𝑛 +

1

𝑅𝑡
𝑛) +

𝑉𝑡
𝑜𝑢𝑡,1(

1

𝑅𝑜𝑢𝑡,1
𝑛 )+. . . . +𝑉𝑡

𝑜𝑢𝑡,𝑖(
1

𝑅𝑜𝑢𝑡,𝑖
𝑛 )       (2.5) 

Where 𝑉𝑡
𝑖𝑛 represent the voltage level at the node of connection at time slot 𝑡, while 𝑅𝑖𝑛

𝑛  

and 𝑅𝑂𝑢𝑡.𝑖
𝑛  are the downstream and upstream non-EVs loads (e.g. household loads) of the line 

in regard with the connection node placement on the feeder. 𝑉𝑡
𝑇𝑟  represents the voltage level of 

the power transformer at a given time slot 𝑡, which is modeled as constant voltage source as 

mentioned earlier. 𝑅𝑇𝑟 represents the resistive parameter of the conductor that connect the 
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transformer with its following node. We also emphasize that if a node 𝑛 is the last node on the 

feeder, then equation (2.3) could be rewritten as  

 
𝐼𝑡
𝑛 = 𝑉𝑡

𝑖𝑛(
1

𝑅𝑖𝑛
𝑛 ) − 𝑉𝑡

𝑛 (
1

𝑅𝑖𝑛
𝑛 +

1

𝑅𝑡
𝑛) (2.6) 

 

Figure 2-1 Illustration of a radial low-voltage distribution feeder 

 

 

Figure 2-2 Description of EVs and non-EVs load calculation 

As it may have been noted by now, we incurred 𝑁 linear system equations and 𝑁 voltage 

variables to be determined. Utilizing the concept of linear algebra and matrix analysis, we can 
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arrange the following mathematical expression to calculate the unknown voltages per each 

node of the feeder at a given time slot 𝑡, as follows   

𝐺𝑡𝑉𝑡 = 𝐼𝑡 + 𝑉𝑡
𝑇𝑟(

1

𝑅𝑇𝑟
)   (2.7) 

where 𝐺𝑡 is the conductance matrix of the distribution feeder while 𝑉𝑡 is a vector with the 

unknown voltages as its entries, to be calculated as follows: 

𝑉𝑡 = [𝑉𝑡
1, 𝑉𝑡

2, . . . . , 𝑉𝑡
𝑛, . . . . , 𝑉𝑡

𝑁]𝑇 (2.8) 

where 𝑇 stands for the transpose operator. Similarly, the contribution of the EVs charging and 

discharging is weighted by 𝐼𝑡 which is the vector representation of the corresponding charging 

and discharging current values at each node during a given time slot 𝑡 

𝐼𝑡 = [𝑖𝑡
1, 𝑖𝑡

2, . . , 𝑖𝑡
𝑛, . . , 𝑖𝑡

𝑁]𝑇  (2.9) 

It should be noted that the entry values are represented with a positive sign for the charging 

process on the relative entry, a negative sign for the discharging process, and zero when there 

is no EV connected to the node of interest. Lastly, 𝑉𝑡
𝑇𝑟 is a vector of the same dimension of 𝐼𝑡 

that has zero entries except with only one entry that represent the instantaneous time slot of 

interest that is filled with the voltage level of the power transformer at that time slot. It is 

represented as follows: 

𝑉𝑡
𝑇𝑟 = [−𝑉𝑡

𝑇𝑟 , 0, . . . ,0]𝑇  (2.10) 
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We want to bring to the reader’s attention that the right-hand side of equation (2.7) is 

mathematically equal to the expression shown in equation (2.3). Furthermore, this expression 

allows us to distinguish the contribution to the grid operation for the current sources (the 

connected EVs) from the voltage source (the power transformer). Consequently, we can rewrite 

equation (2.7) following the EVs contribution during a slot, as follows: 

𝐺𝑡𝑉𝑡 = 𝐸𝑉𝑡(
1

𝑉𝑛𝑜
) + 𝑉𝑇𝑟(

1

𝑅𝑇𝑟
)  

(2.11) 

where 𝐸𝑉𝑡 is a vector representation with entries that resemble the charging and 

discharging reference power at each node per a given time slot, with its sign as an indication 

of whether the activity is a charging or discharging event: 

𝐸𝑉𝑡 = [𝐸𝑉𝑡
1, 𝐸𝑉𝑡

2, . . , 𝐸𝑉𝑡
𝑛, . . , 𝐸𝑉𝑡

𝑁]𝑇 (2.12) 

Eventually, the unknown voltage levels of the grid for any time slot can be calculated by 

taking the inverse of the conductance coefficient matrix in equation (2.11), as follows: 

𝑉𝑡 = 𝐺𝑡
−1𝐸𝑉𝑡(

1

𝑉𝑛𝑜
) + 𝐺𝑡

−1𝑉𝑡
𝑇𝑟(

1

𝑅𝑇𝑟
) (2.13) 

It should be noted that the impact of the EVs charging and discharging process on the voltage 

level of the feeder is essentially inferred from the first part of the right-hand side of equation 

(2.13), whereas the second part is dedicated to estimating the voltage level contributed from 

other non-EVs activities. This methodology allows proper modeling of smart scheduling of 

EVs charging and discharging throughout the 24-hour based on the condition of an electrical 

distribution feeder. However, to properly perform such modeling, we need to account for the 
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different parameters of the distribution feeder to properly model active and reactive power 

levels at each node. Thus, we include them in our next step of modeling the voltage sensitivity 

levels of the system, where we consider the unbalanced nature of the distribution grid at this 

point. 

 Modularity Index Representation of the Voltage Sensitivity of the Decomposed 

Feeder 

     We level up the modeling of the feeder to incorporate the voltage sensitivity as a result 

of the reactive power incurred on the feeder due to the charging and discharging process. We 

utilize the modularity index approach presented in [109, 110] to cross-check on the quality of 

the nodal partitioning and change of voltage levels across them as we aim to weight the 

difference between any connected nodes. The virtue of such modeling methodology lies in the 

ability to decompose the distribution feeder and identify the weakest nodes on the system, due 

to both the charging/discharging activities as well as the other non-EVs load consumption. For 

two nodes 𝑖 𝑎𝑛𝑑 𝑗, the modularity index, 𝛭, can be expressed as  

𝛭 =
1

2𝑤
∑ 
𝑖
∑ 
𝑗
 (𝐴𝑖𝑗 −

ℓ𝑖ℓ𝑗

2𝑤
). 𝛿(𝑖, 𝑗) (2.14) 

where 𝐴𝑖𝑗 is a matrix with entries that represent the correspondent weighted values of either 

active power-voltage or reactive power-voltage sensitivity values between two nodes at the 

feeder, described as follows:  

𝐴𝑖𝑗 = {
0 < 𝑎𝑖𝑗 ≤ 1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑘 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.15) 



 

39 

 

 

while ℓ𝑖 and ℓ𝑗 represents the aggregated weighted values of all nodes connected to 

nodes 𝑖 𝑎𝑛𝑑 𝑗, 𝛿(𝑖, 𝑗) represents a connection factor that is labeled zero if there is no connection 

between nodes 𝑖 𝑎𝑛𝑑 𝑗, and assumed unity otherwise. The incremental changes in the values 

of active power (∆𝑃), reactive power (∆𝜃), voltage (∆𝑉) and phase angle (∆𝛿) due to the 

charging of EVs at a specific node during time slot 𝑡 could be represented as follows: 

[
∆𝛿
∆𝑉
] = [

𝔰𝛿𝑃 𝔰𝛿𝜃
𝔰𝑉𝑃 𝔰𝑉𝜃

] [
∆𝑃
∆𝜃
] (2.16) 

where 𝔰𝛿𝑃, 𝔰𝛿𝜃, 𝔰𝑉𝑃, 𝔰𝑉𝜃 represent the sensitivity values of phase angel in regard with active 

power, phase angle in regard with reactive power, voltage corresponding to active power and 

reactive power levels, respectively. As an example, to fill out entries within matrix 𝐴𝑖𝑗, we 

provide the way we calculate the sensitivity of the voltage corresponding to the change in 

reactive power level for the ijth entry of the matrix as follows: 

𝐴𝑖𝑗,𝑡
𝑉𝜃 =

𝔰𝑖𝑗,𝑡
𝑉𝜃 − 𝔰𝑗𝑖,𝑡

𝑉𝜃

2
 (2.17) 

where the variables of the nominator represent the weighted values of 𝔰𝑉𝜃, considering (𝑖, 𝑗) 

and(𝑗, 𝑖) during a time slot 𝑡. The level of reactive power that can be injected at a given node 

is related to its level of voltage drop. Therefore, we can quantify such injection as follows: 

𝜃𝑡
𝑛 = 𝜃𝐸𝑉,𝑡

𝑛 − 𝑅𝑡
𝑛  (2.18) 

where 𝜃𝑡
𝑛 is the aggregated level of reactive power at node 𝑛 given its instantaneous total 

load, while 𝜃𝐸𝑉,𝑡
𝑛  is the allowed permissible reactive power injection as a result of EVs charging 
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at the node during time slot 𝑡. Furthermore, we can extend the assessment of the reactive power 

status per each time slot for a large number of connected nodes, denoted by subsection 𝑅, as 

follows: 

𝔰𝑅 =∑ 𝐴𝑖𝑗
𝑉𝜃

𝑖,𝑗∈𝑅
  

(2.19) 

Finding the values for 𝔰𝑅 provides hints on the condition of different segments of the 

distribution feeder. Specifically, higher value means that due to its current voltage condition, 

subsection 𝑅 of the feeder is more sensitive to the injection of the reactive power at a specific 

time slot. The level of required reactive power compensation in subsection 𝑅 as a result of an 

incremental voltage change can be found as follows: 

𝜃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑,𝑡
𝑖 = ∑ 

𝑖∈𝑅

∆𝑉𝑖

𝒮𝑉𝜃
  

(2.20) 

where the formula expresses the incremental change in voltage level divided by the 

sensitivity of the voltage level as a result of the reactive power changes during time slot 𝑡 at 

node 𝑖 due to an EV activity. This provides the opportunity to quantify the required amount of 

reactive power we could assist to regulate the voltage level at the weakest area in the feeder by 

the mean of EVs discharging at the given node. Then, the voltage levels between nodes 𝑖 and 

𝑗 could be updated according to the following formula: 

𝑉𝑅
𝑖 = 𝑉𝑖

0 +∑ 𝔰𝑉𝑃
𝑖𝑗
∆𝑃

𝑛

𝑗=1
+∑ 𝔰𝑉𝜃

𝑖𝑗
∆𝜃

𝑛

𝑗=1
  

(2.21) 

     It should be noted that to properly identify the weak nodes on the system among 

possible tens or hundreds, we can merge the nodes that operates at the same voltage levels or 
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close to it and consider them as one unified node. Let us consider 𝑀𝑖
0 as the initial modularity 

index for node 𝑖. If the index for its following node is very close to node 𝑖, then we can treat 

the two nodes as a one merged node. This process continues iteratively until a limit is hit when 

the index of a node 𝑘 is bigger than or equal to a predetermined level set by the tertiary operator, 

compared with the initial value of 𝑀𝑖
0. Once this condition reached, node 𝑘 index serve as a 

starting point of comparison with the following node and the process continue so-forth. In 

addition, we present cost function as optimization goal to monetarize the charging events in 

regards with the voltage level deviation as follows: 

𝑚𝑖𝑛𝜃,𝑛  ∑ |𝑉𝑛−𝑉𝑇𝑟|
𝑁𝑇
𝑛=1   (2.22) 

A goal of formulating this global optimization problem is to strictly enforce monetary policy 

that penalize the charging activity of the EVs as a compensation to the level of voltage support 

needed at that point during a given time slot.  

 Operational Constraints 

To govern a stochastic process such as charging and discharging amount of power into the 

grid in a probabilistic manner, a set of constraints must be placed to ensure safe and proper 

operation. We chose voltage limit as the critical factor not to be violated at any time  

𝑉𝑚𝑖𝑛 ⩽ 𝑉𝑡
𝑛 ⩽ 𝑉𝑚𝑎𝑥 , ∀ 𝑛 ∈ 𝑁𝑇          (2.23) 

where 𝑉𝑡
𝑛 is the voltage level at the nth node at time slot 𝑡. Also, both charging and 

discharging rates must remain within a safe and permissible limit, as follows:  
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𝑟𝑐ℎ𝑎𝑟𝑔𝑒,𝑡
𝑛 ⩽ 𝑟max _𝑐ℎ𝑎𝑟𝑔𝑒,𝑡

𝑛  
(2.24) 

𝑟𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡
𝑛 ⩽ 𝑟max _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡

𝑛    
(2.25) 

where 𝑟𝑐ℎ𝑎𝑟𝑔𝑒,𝑡
𝑛  and 𝑟𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡

𝑛  are charging and discharging rates limits of the EVs level 

at the nth node at time slot t, which are set not to exceed certain predetermined limits. Similarly, 

we define the level of charging and discharging power at each node and any time slot as 

follows: 

0 ⩽ 𝐸𝑉𝑐ℎ𝑎𝑟𝑔𝑒
𝑖 ⩽ 𝐸𝑉max _𝑐ℎ𝑎𝑟𝑔𝑒,𝑡

𝑖          (2.26) 

0 ⩽ 𝐸𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡
𝑛 ⩽ 𝐸𝑉max _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡

𝑖           (2.27) 

Therefore, the minimum and maximum allowed SOC levels per node which can be set up 

by the tertiary operator depending on the status of the feeder at each time slot must be strictly 

limited. 

𝑆𝑂𝐶𝑡
𝑀𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡

𝑖 ≤ 𝑆𝑂𝐶𝑡
𝑀𝑎𝑥  (2.28) 

2.3 Case Study and Results  

We assume that a node on the test system may diverge into countable finite number of nodes 

that represent residences. Parameters of the test system, the IEEE 34 bus system, is found in 

reference [111]. The socket rating for EVs in our simulation is assumed to be 3.3 and 7.6 kW. 

The arrival and departure times of the EVs are estimated based on truncated Gaussian 

probability distribution functions which allows us to indicate the voltage level of each node, 
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quantify the contribution of EVs activities more properly, and permit us to decompose the 

feeder into N zones for our second case scenario. 

 The decomposition allows us to indicate the voltage level of each zone on the feeder, which 

could be used to establish proper and real-time smart charging and discharging scheduling 

based on the status of each zone. Specifically, the solution to the voltage sensitivity model 

quantifies the active and reactive power boundary levels for each zone (e.g. the maximum 

allowed active power consumption and maximum allowed reactive power injection per each 

time slot). However, this chapter is only dedicated to the mathematical formulation of the 

electric vehicles on the distribution feeders and introduce the basis of utilizing the modularity 

index to decompose the distribution grid. Therefore, full analysis and detailed results for 

modeling the electric vehicles are illustrated in chapter 5 of this dissertation. Nevertheless, to 

illustrate the concept of using the modularity index in decomposing the distribution feeder, we 

provide in following subsection a case scenario considering the IEEE 34 bus system. A full 

detailed utilization of the modularity index in this dissertation are explained in detail in chapter 

8, where we propose a community-based detection particle swarm optimization (CBDPSO) 

algorithm to decompose the power distribution grid into optimal partitions, considering the 

IEEE 123 bus system as application in that chapter. 

 Decomposition of Zonal Areas Based on Modularity Index: 

Based on the modularity index estimation described in section 2 of this chapter, the 

distribution feeder could be decomposed into N zones with no overlap. We categorize the 

voltage condition at each node as either normal or abnormal nodes. The former labels the nodes 
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remaining within permissible voltage limits during the EVs activities, while the latter labels 

the nodes that violate the system's voltage limits otherwise. The voltage sensitivity level is 

performed according to equation 2.14. Based on our simulation results illustrated in detail in 

chapter 5 of this dissertation, we establish node 830 as the point of authority to control the 

voltage level at the test during the peak demand hours. This leading node could be updated to 

any other node based on the feeder's condition at other times. Assuming a responsible agent at 

each zone, the agent estimates its nodes instantaneous needs of real and reactive power and 

report the findings to the tertiary operator, which determines the scheduling of the EVs 

charging and discharging based on real-time feeder status. The updated voltage levels at each 

zonal section considering the sensitivity of the voltage concerning the active and reactive power 

are calculated from equation 2.19. The process is repeated iteratively at each time slot with 

corresponding charging and discharging scheduling for all decomposed parts until the 

abnormal voltage levels resume normality condition. Fig. 2.3 shows the overall decomposition 

of the feeder into optimal clusters to reduce the voltage variability during peak hours. As per 

the result, the modularity index reaches its highest value when there are six zonal nodes at the 

test feeder with a value of 0.45 instead of the originally established 34 nodes with an index of 

0.20, as shown in Fig. 2.4. The system's optimized decomposition considers the accumulated 

levels of charging and discharging that could be carried out at each node of the feeder. 
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Figure 2-3 The decomposed feeder based on the concept of modularity index. 

 

Upon clustering the feeder, the results show abnormal voltage levels as result of EVs 

activities during peak demand hours at zones 4, 5 and 6, while normal voltage operating 

condition at the rest of the zones. Therefore, after implementing an optimal scheduling strategy 

from the system operator in according with the level of severity, the process is repeated to 

ensure proper handling of any further over- and under-voltage issues at the grid. Fig. 2.5 shows 

the voltage sensitivity results at each node at the feeder based on the analysis described in our 

work. It should be noted that the sensitivity values are not constant and keep updating with 

respect with the operational condition of the grid. The greater the sensitivity value of a node 

the more prone it is to any changes on the system to sizeable EVs activities. Furthermore, 

results indicate that nodes with higher voltage-reactive power sensitivity are the ones that the 

operator should carefully plan their reactive power scheduling as level of voltage variations as 

they record severe voltage drops as consequences. Therefore, the nodes with the highest 
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reactive power absorption have high value representation in the sensitivity matrix in equation 

2.14. 

 

Figure 2-4 Results of modularity clustering versus number of nodes of the feeder 

 

Figure 2-5 Normalized voltage sensitivity levels per each node 
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2.4 Conclusion  

We presented in this chapter a methodology and mathematical formulation to properly 

estimate the dynamic contribution of the EVs activities on each node at the distribution feeder. 

The virtue of the presented modeling techniques lies in the ability to decompose the distribution 

feeder and identify the weakest nodes on the system, due to both the charging/discharging 

events as well as the other non-EVs load consumption. To validate our developed methodology, 

we modeled a case scenario to decompose the system into clustering zones and identify the 

sensitivity levels voltage and phase angels, each in reference to the allowable active and 

reactive power limits per each node on the system. Furthermore, upon using the modularity 

index to break-up to find the most optimal decomposition of the system, we do believe that 

decomposing the feeder into detailed topology offers great tool to the tertiary operator to 

identify on a timely manner the nodes with most deficiency in voltage levels and therefore 

dispatch a more accurate, timely-sensitive active and reactive power scheduling.  
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Chapter 3 Single and Multiobjective Optimal Reactive Power Dispatch Based on 

Hybrid Artificial Physics–Particle Swarm Optimization 

3.1 Introduction 

Optimal reactive power dispatch (ORPD) is an important problem in power system 

operation. The economy of grid operation has two main aspects to consider: active (Watt) and 

reactive (Var) power control problems. The Watt problem concerns regulating and controlling 

the output of the generation units to reduce the overall costs of production. The Var is 

considered a more complex problem due to the nature of control variables involved in its 

operation, where it focuses on different voltage control aspects of the grid components (i.e., 

tap-changing transformers, reactive compensators, etc.) to reduce the overall grid losses, and 

improve voltage balance. ORPD is considered a pivotal problem in this manner, which aims to 

solve highly constrained, nonconvex, and nonlinear optimization problems that possess both 

discrete and continuous control variables to achieve important goals, such as minimizing active 

power losses and voltage deviations, while improving the voltage stability index of the grid. 

These types of operational issues emerge due to the complexity arising in grid modernization. 

Specifically, the ORPD is essential to help maintain the voltage level in loading conditions by 

reducing the voltage deviation and power quality issues that emerge from the stochastic 

fluctuations of the power output. The latter due to the unpredictability of sources such as 

renewable energy and electric vehicle integration. 

The significant contribution of this chapter is to develop a hybridization of two naturally 

inspired metaheuristics techniques, particle swarm optimization (PSO) and artificial physics 

optimization (APO), then solve and optimize the complexity and nonlinearity of the ORPD 

problem and test it on various IEEE test systems to evaluate its search capacity. Our overall 

goal is to produce an intact algorithm that combines the global search capabilities of APO with 
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the strong local exploratory search performance of PSO, while improving its convergence 

characteristics. The APO exhibits flexible and wide-range search features that enhance its 

global population diversity, adding a powerful searching-mixture when combined with PSO. 

After building the mathematical representation of each algorithm, we validate the performance 

of the hybridized algorithm on the IEEE 30, IEEE 57, and IEEE 118 bus test systems, and 

compare with the results of previously published reports using other methods to verify its 

capabilities. 

This chapter is organized as follow: Section 3.2 provides mathematical modeling of the 

ORPD problem. Section 3.3 describes mathematical representations and framework of the 

APO, the PSO, and the hybrid APOPSO and its application to solve the ORPD problem. 

Section 3.4 provides an analysis of the results and compares them with the reported results in 

the literature. Section 3.5 concludes the chapter and provides suggestions for future studies to 

be carried out in this area. 

3.2 Mathematical Formulation of the ORPD 

The hybrid APOPSO algorithm developed in this chapter aims to individually and 

simultaneously minimize three main objectives in the ORPD problem subjected to equality and 

inequality constraints, namely, minimizing total active power loss, reducing voltage deviations, 

and improving voltage stability index (the L-index). 

3.2.1. General Optimization Problem Formulation 

The general mathematical formulation of an objective function can be expressed as 

𝑀𝑖𝑛 𝐹(̃�̅�, �̅�) (3.1) 

subject to 
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E (�̅�, �̅�) = 0 (3.2) 

I (�̅�, �̅�) ≤ 0 (3.3) 

where 𝐹 is the objective function to be minimized, E and I are nonlinear constraints 

represented as vectors that resemble both the independent (control) and dependent variables of 

the problem. Specifically, x is a vector containing the control variables of the ORPD which 

namely include the reactive power compensators Gc, dynamic tap-setting of transformers T, 

and voltage levels at generation units Vg. x can be expressed as 

x = [𝑉𝐺1 ….,𝑉𝐺𝑁𝑔 ; 𝑄𝐶1 …,𝑄𝐶𝑁𝐶
; 𝑇1 ...,𝑇𝑁𝑇] (3.4) 

y is a vector representing the dependent variables, which include slack generator 𝑃𝐺𝑠𝑙𝑎𝑐𝑘 , 

voltage levels at transmission lines VL, reactive power from generation units QG, and the 

apparent power SL. y can be expressed as 

y = [𝑃𝐺𝑠𝑙𝑎𝑐𝑘 ; 𝑉𝐿1  ….,𝑉𝐿𝑁𝐿𝑜𝑎𝑑 
;𝑄𝐺1 …. ,𝑄𝐺𝑁𝑔 ; 𝑆𝐿1 …. ,𝑆𝐿𝑁𝑇𝑟

] 
(3.5) 

3.2.2. Single Optimization Function Formulation 

3.2.2.1. Minimization of MW Losses Function 

The fitness function formulated to reduce the overall MW losses in the system can be 

expressed as 

𝑂𝐹1 = 𝑃𝑚𝑖𝑛 = min [∑ 𝐺𝑚 
𝑁𝑇𝐿
𝑚 [ 𝑉𝑖

2 + 𝑉𝑗
2 − 2*𝑉𝑖 𝑉𝑗 cos ∅𝑖𝑗] (3.6) 
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where NTL is the number of transmission lines in the system, GM is the conductance of the 

transmission lines between the ith and the jth buses, and ∅𝑖𝑗 is the phase angle between buses i 

and j. 

3.2.2.1. Minimization of Voltage Deviation 

It is highly significant to record and notice all the voltage deviations across all the system’s 

buses from reference points. This is done to ensure proper consideration of the voltage limits 

in optimal reactive power planning and operations, and not only as constraints, as bus voltages 

may operate at their maximum limits without invoking any violation yet leading to improper 

reactive power reserves that could cause outages and faults. The fitness function of voltage 

deviation minimization can be written as 

𝑂𝐹2 = min [∑ |𝑉𝐿𝐾  −   𝑉𝐿𝐾
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 |]

𝑁𝐿𝐵
𝐼=1 ² + ∑ 𝑄𝐺𝐾 

𝑁𝑔
𝐼=1  − 𝑄𝐾𝐺

𝐿𝑖𝑚 ]² (3.7) 

 

where VLK is the load voltage at the kth load bus, 𝑉𝐿𝐾
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 is the desired load voltage at the kth 

load bus that is usually set to be 1.0 pu, 𝑄𝐺𝐾 is the reactive power from generators at the kth 

load bus, 𝑄𝐾𝐺
𝐿𝑖𝑚 is the generator reactive power limit, while NLB and Ng are the number of the 

load buses and generation units in the system, respectively. 

3.2.2.3. Minimization of Voltage Stability Index 

The L-index is utilized in this work as a metric indicator of voltage stability performance. 

This index is newly introduced and presented in [112]. It assesses the steady-state voltage levels 

for any node in the test system and provides highly consistent results compared to other voltage 

stability indices, e.g., voltage collapse prediction index (VCPI), equivalent node voltage 

collapse index (ENVCI), fast voltage stability index (FASI), etc. [113]. Such indices are crucial 
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factors to be considered in the planning and operation of an electrical network. L-index can be 

expressed as: 

𝑂𝐹3 = min 𝐿𝑚𝑎𝑥 (3.8) 

where 𝐿𝑚𝑎𝑥= max [𝐿𝑗]; j = 1; 𝑁𝐿𝐵 
(3.9) 

and {  
𝐿𝑗 = 1 − ∑ 𝐹𝑗𝑖 

𝑉𝑖

𝑉𝑗

𝑁𝑃𝑉  
𝑖=1

𝐹𝑗𝑖 = − [𝑌1 ]¯
1[ 𝑌2] 

 (3.10) 

such that 

𝐿𝑚𝑎𝑥 = max [1 − ∑ −
𝑁𝑃𝑉 
𝑖=1 [𝑌1 ]¯¹ [𝑌2] × 

𝑉𝑖

𝑉𝑗
] 

(3.11) 

where 𝑁𝑃𝑉 is the number of the PV (generator type) buses in the system. 

3.2.3. System Constraints (Independent and Dependent Variables) 

3.2.3.1. Equality Constraints 

Equality constraints of the ORPD are the usual nonlinear power flow equations which 

provide voltage levels and angles at each node in the test system, expressed as 

0 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖  −  𝑉𝑖 ∑ 𝑉𝑖
𝑁𝑇𝑜𝑡𝑎𝑙 𝐵𝑢𝑠𝑒𝑠 
𝑗−1  [𝐺𝑖𝑗 cos[∅𝑖  − ∅𝑗] + 𝐵𝑖𝑗 sin[∅𝑖 − ∅𝑗]] (3.12) 

where PGi and PDi are the real power generation and demand at the system respectively 

while 𝐺𝑖𝑗 and 𝐵𝑖𝑗 are the real and imaginary entries of the bus admittance matrix corresponding 

with the ith row and jth column, for i = 1, …, 𝑁𝑇𝑜𝑡𝑒𝑙 𝑏𝑢𝑠𝑒𝑠 . 
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0 = 𝑄𝐺𝑖  − 𝑄𝐷 − 𝑉𝑖  ∑ 𝑉𝑗
𝑁𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑒𝑠
𝑗−1  [𝐺𝑖𝑗  sin[ ∅𝑖 − ∅𝑗 ] + 𝐵𝑖𝑗 sin[ ∅𝑖 −

 ∅𝑗  ] ] 
(3.13) 

where QGi and QDi are the reactive power generation and demand at the system respectively, 

for i = 1, 𝑁𝑇𝑜𝑡𝑒𝑙 𝑏𝑢𝑠𝑒𝑠 . 

3.2.3.2. Inequality Constraints 

It should be noted that both dependent and independent variables must operate within 

specific limits imposed on them to ensure proper operation. Therefore, we carefully consider 

both equality and inequality constraints in our modeling. The boundary of operation for the 

independent (control) variables applies to (i) the slack generator output limit, (ii) reactive 

power limit of the generation units, (iii) the load buses voltage limits, and (iv) the apparent 

power flow limit. These operational inequalities can be represented as 

𝑃𝐺𝑠𝑙𝑎𝑐𝑘
𝑚𝑖𝑛  ≤ 𝑃𝐺𝑠𝑙𝑎𝑐𝑘  ≤ 𝑃𝐺𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥  (3.14) 

𝑄𝐺𝑖
𝑚𝑖𝑛   ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥, i = 1, 𝑁𝑔 (3.15) 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥, i = 1, 𝑁𝐿𝐵 (3.16) 

|𝑆𝐿𝑖| ≤ 𝑆𝐿𝑖
𝑚𝑎𝑥, i = 1, 𝑁𝑇𝐿  (3.17) 

where Ng, NLB, and NTL are the numbers of generators, load buses, and transmission lines 

in the system. The dependent variables, such as (i) the generation unit voltage levels, (ii) 

reactive power compensators, (iii) the position of the tap transformers, are also operationally 

restricted and limited as follows: 
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𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥, i = 1, 𝑁𝑔 (3.18) 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥, i = 1, 𝑁𝐶 (3.19) 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥, i = 1, 𝑁𝑅𝑇 (3.20) 

where NC and NRT are the numbers of the compensator devices and regulating transformers, 

respectively. 

3.2.4. Multiobjective Fitness Function 

The previous fitness functions are incorporated into a multiobjective optimization function 

with penalty factors established to consider the dependent variables into the objective function 

minimization: 

MOF = 𝑂𝐹1 +  𝑥𝑖 𝑂𝐹2 + y 𝑂𝐹3 = 𝑂𝐹1 + [∑ 𝑥𝑣
𝑁𝐿
𝑖=1  [𝑉𝐿𝑖 − 𝑉𝐿𝑖

𝑚𝑖𝑛]² + ∑ 𝑥𝑔
𝑁𝐺
𝑖=1  

[𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛]²] + 𝑥𝑓 𝑂𝐹3 

(3.21) 

where 𝑥𝑣 , 𝑥𝑔, and 𝑥𝑓 are penalty factors incorporated to enforce the limits on the control 

variables to avoid any violation to the voltage deviation and stability index levels, assumed in 

this work to be 100. The limit values are defined as: 

𝑉𝐿𝑖
𝑚𝑖𝑛 = {

𝑉𝐿𝑖
𝑚𝑎𝑥 , 𝑉𝐿𝑖  >  𝑉𝐿𝑖

𝑚𝑎𝑥    

𝑉𝐿𝑖
𝑚𝑖𝑛 , 𝑉𝐿𝑖   <  𝑉𝐿𝑖

𝑚𝑖𝑛  (3.22) 

𝑄𝐺𝑖
𝑚𝑖𝑛 = {

𝑄𝐺𝑖
𝑚𝑎𝑥 , 𝑄𝐺𝑖  >  𝑄𝐺𝑖

𝑚𝑎𝑥    

𝑄𝐺𝑖
𝑚𝑖𝑛 , 𝑄𝐺𝑖   <  𝑄𝐺𝑖

𝑚𝑖𝑛  (3.23) 
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3.3 Mathematical Framework of the Metaheuristic Algorithms 

A thorough discussion on the APO and PSO algorithms and their hybridization is presented 

in this section. 

3.3.1. Artificial Physics Optimization (APO) 

APO, as a naturally inspired metaheuristic methodology, is well presented in [23, 114]. 

APO is based on the idea that an exerted force may result in either attractive or repulsive 

aggregation of physical entities (namely the particles or solutions) leading to a movement that 

represents the search to find local and global optima. Specifically, the process is based on three 

main observations: initializations, calculation of force, and motion of particles. At the 

initialization step, particles are sampled stochastically within a multidimensional decision 

space. The central presumption of APO is based on treating the particles (possible solutions) 

as physical entities that exhibit mass, position, and velocity, with the mathematical 

representation of the mass mapped as the fitness function. The mathematical representation of 

the mass (fitness) function is expressed as follow: 

𝑚𝑖 = g [f (𝑥𝑖)] (3.24) 

when f(x) € [−∞, ∞], then; 

arctan [−f(𝑥1)] € [
−𝑥

2
,
𝑥

2
], and tanh[−𝑓(𝑥𝑖)] € [− 𝐼, 𝐼 ] with tanh(𝑥𝑖) = 

𝑒𝑥 −  𝑒−𝑥 

𝑒𝑥+ 𝑒−𝑥
 

(3.25) 

Equations (3.24) and (3.25) can be mapped into the interval (0, 1) through an elementary 

transformation function. The mass functions can be rewritten as 
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𝑚𝑖 = 𝑒
   
𝑔 [ 𝑓(𝑥𝑏𝑒𝑠𝑡 )−𝑓 ( 𝑥𝑖)  ]

𝑓 (𝑥𝑤𝑜𝑟𝑠𝑡 )−𝑓 (𝑥𝑏𝑒𝑠𝑡) (3.26) 

where the function f (𝑥𝑏𝑒𝑠𝑡) is the objective function value at the position of the best 

received value for the individual (swarm particle), while f (𝑥𝑤𝑜𝑟𝑠𝑡) refers to the function value 

of the worst individual swarm reported: 

Best = avg {min 𝑓(𝑥𝑖 ), 𝑖 ∈ 𝑆 } (3.27) 

Worst = avg {max f (𝑥𝑖), i  ∈ S} (3.28) 

where S = {1; population of N agents}. Once each particle’s mass is identified, a velocity 

vector will be produced. The inevitable changes in velocity in the iteration process are 

controlled by the level and amount of force exerted on the particle, which is the second stage 

of the algorithm; calculation of the force, which is based on the mass of the particle and its 

distance from its neighbors. The force exerted on a particle i via another particle j can be found 

via: 

𝐹𝑖𝑗,𝑘  = {
𝑠𝑔𝑛 (𝑟𝑖𝑗  , 𝑘  ) 𝐺 . ( 𝑟𝑖𝑗 , 𝑘 )  .

𝑚𝑖𝑚𝑗

𝑟𝑖𝑗 ,   𝑘
2 ;   𝑖𝑓 𝑓 (𝑥𝑗) < 𝑓(𝑥𝑖) 

𝑠𝑔𝑛 (𝑟𝑗𝑖  , 𝑘 ) . 𝐺 ( 𝑟𝑗𝑖 , 𝑘  )  .  
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗  ,   𝑘
2 ;   𝑖𝑓 𝑓 (𝑥𝑗) ≥ 𝑓(𝑥𝑖) 

 (3.29) 

𝑟𝑖𝑗,𝑘 = 𝑥𝑗,𝑘 − 𝑥𝑖,𝑘  (3.30) 

where 𝐹𝑖𝑗,𝑘  is the kth force quantity enforced on particle i via particle j in their dimensions; 

𝑥𝑖,𝑘  and 𝑥𝑗,𝑘 are the kth dimension coordinates for the swarm particles i and j; 𝑟𝑖𝑗,𝑘 is the distance 

between these coordinates. Sgn(r) represents the signum function, while G(r) denotes the 
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gravitational factor that follow the changes iteratively with 𝑟𝑖𝑗,𝑘. Both of them can be expressed 

as: 

Sgn(r)= {
1        𝑖𝑓              𝑟 ≥   0

−1           𝑖𝑓           𝑟 <   0    
 (3.31) 

G(r) = {
𝑔|𝑟|ℎ      𝑖𝑓     𝑟 ≤ 1  

𝑔|𝑟|𝑞   𝑖𝑓       𝑟 > 1 
 (3.32) 

Here, the g can be assumed as any value to provide simplicity and flexibility when 

experimenting. In our studies, we assumed these values based on studies presented in [113]. 

The total force exerted on all particles can be rewritten mathematically as: 

𝐹𝑖,𝑘  = ∑ 𝐹𝑖𝑗 ,   𝑘 
𝑚
𝑗=1 
𝑖≠𝑗 

 ∀ i ≠ 𝑏𝑒𝑠𝑡 
(3.33) 

The third stage is understanding the motion principles of the particles in the decision space, 

where the computed force is utilized to determine the velocity of the particles that are used to 

find (and then update iteratively) the respective positions of the particles. Such motions are set 

in either two- or three-dimensional space, in which particles can be locally spotted, and can be 

mathematically represented as 

𝑉𝑖 ,𝑘 (z + 1) = w. 𝑉𝑖,𝑘 (t) + 𝛽 × 
𝐹𝑖,𝑘

𝑚𝑖
⁄  (3.34) 

𝑥𝑖,𝑘 (t + 1) = 𝑋𝑖,𝑘(t) + 𝑉𝑖,𝑘(t + 1) (3.35) 

where 𝑉𝑖,𝑘 and 𝑥𝑖,𝑘 are the kth components of particle i’s velocity and distance at iteration t. 

Beta is a uniformly distributed random number distributed on the interval (0, 1), while w is the 

user-specified inertia weight that can be iteratively updated, usually between 0.1 to 0.99. The 

inertia influences how two velocity values iteratively change. Larger values of w is a good 

indication of greater velocity changes, while small values is only used when we only want to 
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facilitate a local search. Each particle identifies the information of its neighbors, while the 

physical attractiveness/repulsiveness rule serves as the search strategy in this algorithm to 

guide the population to search within the region of a possible solution in accordance with their 

fitness function. The high accuracy and ability to map the particle’s mass as a fitness function 

influence the whole optimization process, to which the relationship is proportionally related; 

the more accurately the objective function is designed, the bigger mass will be produced, which 

leads to a higher level of attractiveness, or in other words, more optimized searching strength, 

as particles will be naturally attracted to higher masses. 

The iteration process in the APO leads to the updating of all particles’ positions, and 

accordingly, the objective fitness function is adjusted to those new positions. Then, the fitness 

function identifies a new best individual and marks its position vector as the best solution. In 

this way, the second and third steps of the algorithm, force calculation and motion, are 

iteratively performed until a stopping criterion is achieved. Such criteria may be a 

predetermined number of executed iterations or reaching several successive iterations with no 

difference in the value of the best obtained particle position. 

3.3.2. Particle Swarm Optimization (PSO) 

PSO is a population-based, bio-inspired metaheuristic algorithm that was established by 

Kennedy and Eberhart in 1995 [22]. It is based on the concept of evolutionary computational 

method, where a system of study is started with an initial population of randomized solutions, 

updated iteratively in the process of searching for the local and global optima. The candidate 

solutions, known as particles, fly in the decision space with the velocity obtained in its previous 

best solutions, as well as its group’s best results. Both the velocity and position of each particle 

are updated accordingly using the following mathematical formulas: 
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𝑉𝑖𝑗 (t + 1) = [W × 𝑉𝑖𝑗(t)] + [𝐶1 + 𝑟1+ [𝑃𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑋𝑖𝑗(t)]] + [𝐶2 + 𝑟1 + 

[𝑔𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑋𝑖𝑗(t)]] 
(3.36) 

𝑋𝑖𝑗 (t + 1) = 𝑋𝑖𝑗(t) + C 𝑉𝑖𝑗(t + 1) 
(3.37) 

Where 𝑋𝑖𝑗(t) and 𝑉𝑖𝑗(t) are vector representations in the solution space for both the velocity and 

position of particle i, while Pbest and gbest are the best individual and global optimal obtained 

solutions. The performance of PSO as a validated and well-proven metaheuristic technique is 

widely spread in the literature in different fields of study. This is due to its powerful searching 

capacity and premature convergence without the need to find local optimal. Fig. 3.1 shows the 

basic concept of the searching methodology and motion principle for particle i in PSO, where 

V(t), Xm, and X are three vectors describing the coordinates of the best solution in the decision 

space. 

 

 

 

Figure 3-1 Criteria of the searching in the particle swarm optimization (PSO). 
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3.3.3. Hybridization of APO and PSO to Solve the ORPD Problem 

The primary goal of establishing a hybridization of APO and PSO is to combine their 

individual strengths to form an optimized algorithm that utilizes the global search capabilities 

of APO with the strong local exploratory search performance of PSO, while improving its 

convergence performance. In other words, such hybridization aims to form a successful 

partnership among the local and global searching capabilities of the two algorithms to 

overcome any shortages each one may face if performed alone. Talbi et al. (2009) provide 

extensive analysis of the concept of integrating two metaheuristic techniques, which can be 

achieved on either lowly or highly heterogeneous integration [115, 116]. This work combines 

the two algorithms as a low-heterogeneity routine. Successful implementation of the 

hybridization requires modifying the particles’ velocity and position equations, as follows: 

𝑣𝑖,𝑘(𝑡 + 1) = 𝑊 . 𝑣𝑖,𝑘(𝑡) + 𝛽1 − 𝑟1 . [
𝐹𝑖,𝑘(𝑡)

𝑚𝑖
] + 𝛽2 . 𝑟2 . [𝑔 𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑘(𝑡)] (3.38) 

𝑥𝑖,𝑘(𝑡 + 1) =  𝑥𝑖,𝑘(𝑡) + 𝑣𝑖,𝑘(𝑡 + 1) (3.39) 

     In our developed APOPSO to solve the ORPD, we first define the dependent and control 

variables with their respective limits over a defined fitness function. Then, we randomly 

initialize the input values of the population (particles or swarms). Each particle represents a 

candidate solution. After the initialization step, we establish the best and worst values of the 

load flow and rank the obtained results. After that, the mass function given in Equation (3.26) 

will be assessed according to those results, and a force calculated using Equations (3.29) and 

(3.33) will be exerted on the particles, then their velocity and positions are updated based on 

Equations (3.36) and (3.37) and the distance between them according to (3.30), then ranking 

the newly produced results according to their fitness values. The process is repeated iteratively, 

and in each iteration, we check whether there is a violation that occurred at any level to ensure 
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proper operation within the limits. The iteration process stops updating the velocities and 

positions once an ending criterion is met. Fig. 3.2 shows the flowchart of the developed 

APOPSO algorithm. The pseudocode of the combined algorithm is as follows: 

Step 1: Read and evaluate the input data [Tr, Qc, ….]. All values must be normalized in per 

unit system. 

Step 2: 2.1: Define the independent (control) variables X within their specific boundary levels; 

2.2: Define the dependent variables Y within their specific boundary levels; 2.3: Define the 

fitness function with its associated penalty factors. 

Step 3: Generate an initial randomized population with N agents in the decision space. Specify 

the desired number of iterations to be performed. It should be noted that the initial positions of 

the population must be strictly within their boundary levels. 

 

POP(0) = 

[
 
 
 
 
 
 
 
 
 
𝑥1 (0)

𝑥2(0)
.
.
.
.

𝑥𝑖(0)
.
.

𝑥𝑁(0)]
 
 
 
 
 
 
 
 
 

 = 

[
 
 
 
 
 
 
 
 
 
 
𝑥1
1(0), ……… . ., 𝑥1

𝑑(0),……… . ., 𝑥1
𝑛(0)

𝑥2
1(0), ……… . ., 𝑥2

𝑑(0),……… . ., 𝑥2
𝑛(0)

.

.

.

.
𝑥𝑖
1(0),……… . . , 𝑥𝑖

𝑑(0),……… . . , 𝑥𝑖
𝑛(0)

.

.
𝑥𝑁
1 (0),……… . . , 𝑥𝑁

𝑑(0),……… . . , 𝑥𝑁
𝑛(0)]

 
 
 
 
 
 
 
 
 
 

 (3.40) 

 

The initialized value of the kth control parameter in an ith particle (candidate solution) 

can be found using the following mathematical expression: 

𝑥𝑖
𝑑(0) = 𝑥𝑖,𝑚𝑖𝑛

𝑑 + 𝑟𝑎𝑛𝑑 . ( 𝑥𝑖,𝑚𝑎𝑥
𝑑 − 𝑥𝑖,𝑚𝑖𝑛

𝑑 ) (3.41) 

Rand is a number randomly allocated in the interval [0–1], while 𝑥𝑖,𝑚𝑎𝑥
𝑑  and 𝑥𝑖,𝑚𝑖𝑛

𝑑  are the 

boundary limits of the control variable d. The ith particles corresponding to the optimal dispatch 

problem can be rearranged in a vector form as follows: 
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𝑥𝑖 = [ 𝑥𝑖
1, 𝑥𝑖

2 , …….. , 𝑥𝑖
𝑑, …….. 𝑥𝑖

𝑛 ] (3.42) 

n = 𝑁𝐺 + 𝑁𝑇 + 𝑁𝐶 (3.43) 

At i = 1, 2, ……; N. 

Step 4: Run the system’s load flow to calculate the transmission line losses. Calculate the 

fitness values of all candidate solutions using the mass function. Select the minimally obtained 

result as best. 

Step 5: Check if the control variables are within their boundary limits. If yes, proceed to step 

6. If no, then penalize using the penalty function in Equation (3.21). The penalization is 

considered only for the multiobjective case studies. 

Step 6: Evaluate the mass function’s best and worst values using equation (3.26). Calculate the 

force based on 𝐹𝑖,𝑘  as in Equation (3.33). 

Step 7: Update the velocity and position of the particles according to the modified PSO 

Equations (3.38) and (3.39). 

Step 8: Evaluate the fitness function by newly obtained population information. Check if the 

control variables are within their boundary limits. If yes, proceed to Step 9. If no, then penalize 

using the quadratic penalty function in Equation (3.21). 

Step 9: Record the best fitness values and rank the best obtained solutions. 

Step 10: Repeat Steps 4–9 until a stopping criterion is achieved. 

Step 11: Print best results and end. 
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Figure 3-2 The developed algorithm to solve the optimal reactive power dispatch (ORPD) 

problem. 

 

3.4 Simulation and Results 

This section provides an analysis of the obtained results on the three (IEEE 30, IEEE 57, 

and IEEE 118) test systems to verify the capacity of the developed algorithm to solve the ORPD 

problem. Table 3.1 shows the parameters of the test systems used in our study. The test 

system’s detailed line data and parameters can be found in [117, 118, 119]. The results were 

obtained utilizing a developed Matlab code that was run in an i7 Core, 3 GHz, 16 GB RAM 
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computer with Matlab 2018-b . For each test system, the main outcomes to be recorded is the 

influence of the algorithm on the minimization of the MW losses, the minimization of the 

voltage deviation, and the voltage stability index (VSI) improvement (L-index), first 

individually and then concurrently. We implemented the APOPSO algorithm on a total 

population of 200 particles, with a maximum iteration run of 100. 

Table 3-1: The test system’s main parameters. 

Description IEEE 30 IEEE 57 IEEE 118 

Buses, NB 30 57 118 

Generators, NG 6 7 54 

Transformers, NT 4 15 9 

Shunts, NQ 9 3 14 

Branches, NE 41 80 186 

Equality constraints 60 114 236 

Inequality constraints 125 245 572 

Control variables 19 27 77 

Discrete variables 6 20 21 

The base case for Ploss, MW 5.66 27.8637 132.45 

Base case for VD, p.u. 0.58217 1.23358 1.439337 

3.4.1. IEEE 30 Bus Test System 

The IEEE 30-bus test system has a total of six synchronous generators located at buses 1 

(the slack bus), 2, 5, 8, 11, and 13, 41 transmission lines, four power transformers with off-

nominal tap-settings at lines 6–9, 6–10, 4–12, and 28–27, and nine reactive power 

compensators at buses 10, 12, 15, 17, 20, 21, 23, 24, and 29, respectively. This test system has 
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a total active and reactive consumption of 2.834 and 1.262 per unit on a 100-MVA base. It has 

a total of 19 control variables that we considered in our study: six generator voltage inputs, 

four transformers tap-settings, and nine reactive power compensation devices. For this study 

to be precise, we constrained the level of the system’s voltages to be strictly within limits of 

0.95 and 1.10 p.u. The lower and upper limits of the transformer’s tap settings are set to be 

between 0.9 and 1.1 p.u., whereas the reactive compensation devices should be ranged from 0 

to 5 MVAR. Failure for a result to be within these limits will result in the use of the penalty 

factors we introduced in the multiobjective fitness function in Equation (3.21). The test system 

data was obtained from [117]. 

We measure the strength of our developed algorithm by initially investigating each 

targeted objective (loss minimization, Vd minimization, and VSI improvement) individually. 

Table 3.2 shows the results obtained for the hybrid APOPSO when applied on the IEEE 30 bus 

system. The table illustrates the results when the simulation performed via APO and PSO 

separately at first before their hybridization. The results show great robustness over their 

integration throughout 100 consecutive trials. The initial values were developed from previous 

literature conducted on the same test system, yet for different studies [120, 121, 122]. The 

optimal results obtained are then compared with previous findings reported in the literature in 

an attempt to illustrate the high consistency and power of the APOPSO algorithm. Table 3.3 

presents the values for the three obtained objectives in comparison with other results reported 

by differential evolution algorithm (DE) [15], gravitational search algorithm (GSA) [19], 

particle swarm optimization with agent leader algorithm (ALCPSO) [13], and comprehensive 

learning particle swarm optimization (CLPSO) [123] in regard to the control variables of this 

study. The results show the superiority of the APOPSO algorithm over the reported results 

from these studies. For example, the power flow results in [13, 19] specify values that are not 

considered optimal at some buses in the system. For instance, reactive power outputs from 
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compensators at buses 15, 17, 20, 21, and 23 are either at or near the violation of their minimum 

limits, where they are too small to be operationally feasible, compared with the values obtained 

in DE, CLPSO, and APOPSO. The overall findings for each case study considered demonstrate 

APOPSO to be superior to the reported algorithms. The final values at 100, 80, and 50 trials, 

respectively, for a population of 200 objects are as follow: Ploss = 4.3982 MW; Vd = 1.0477; 

L-index = 0.1267. Table 3.4 shows the statistical analysis of our simulation, with the best, 

worst, mean, and standard deviations over 100 trials. Fig. 3.3 illustrates the Vd throughout 

these trials for the three test systems. The convergence performance of the PSO significantly 

improved with the hybridization, and Fig. 3.4 shows the algorithm’s fast convergence 

characteristic towards the optimal results considering the loss minimization case on the IEEE 

30 bus system, while Fig. 3.5 provides an insight into the statistical accuracy of the algorithm, 

presenting the Weibull distribution of the VSI values in 100 trials around the mean value. 

 

 
Figure 3-3 The obtained results of voltage deviation (Vd) for 80 trials. 
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Figure 3-4 Convergence performance of the developed algorithm on the IEEE 30 test system. 
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Figure 3-5 The Weibull distribution of the obtained voltage stability improvement (VSI) values  

 

     

around the mean in 50 trials.
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Table 3-2: Results obtained for the developed algorithm on the IEEE 30 bus test system. 

Variables Initial Values MW Loss Minimization Vd Minimization Voltage Stability Improvement 

 APO PSO APOPSO APO PSO APOPSO APO PSO APOPSO 

VG1 1.04 1.1000 1.1000 1.100 1.0211 1.0299 1.012 1.0922 1.0679 1.044 

VG2 1.05 1.1200 1.0844 1.084 1.0110 1.0390 1.001 1.0992 1.074 1.061 

VG5 1.01 1.0710 1.0748 1.056 1.0180 1.0110 1.014 1.0988 1.068 1.061 

VG8 1.01 1.0772 1.0768 1.076 0.9981 1.0522 1.009 1.0991 1.0799 1.057 

VG11 1.05 1.1400 1.1310 1.091 1.0411 0.9854 0.954 1.0987 1.0699 1.048 

VG13 1.05 1.1430 1.1100 1.100 0.9814 0.9910 1.000 1.098 1.091 1.089 

QC10 (MVAr) 0 5.0000 3.5717 5.000 4.9652 1.9754 4.102 0.0019 0.0411 0.040 

QC12 (MVAr) 0 5.0000 3.0984 5.000 0.0000 0.4245 2.124 0.0255 0.0422 0.039 

QC15 (MVAr) 0 5.0000 3.2925 4.879 4.9681 2.2103 4.512 0.0004 0.0413 0.038 

QC17 (MVAr) 0 5.0000 4.0166 4.976 4.9967 2.8845 0.000 0.0001 0.0462 0.040 

QC20 (MVAr) 0 3.4130 3.0309 3.821 4.8456 4.0412 5.000 0 0.049 0.037 

QC21 (MVAr) 0 5.0000 4.0339 4.541 4.8745 3.2412 5.000 0.0001 0.018 0.009 

QC23 (MVAr) 0 5.0000 2.9874 2.354 4.9964 2.4120 5.000 0 0.0191 0.019 

QC24 (MVAr) 0 5.0000 4.3100 4.654 4.9974 2.6612 5.000 0.007 0.04 0.010 

QC29 (MVAr) 0 2.2233 2.7120 2.175 4.9781 2.8456 4.120 0 0.0014 0.0011 

T11 (6–9) 1.080 1.0377 1.0320 1.029 1.0512 0.9721 0.998 0.9712 0.9285 0.919 

T12 (6–10) 1.072 0.9200 0.9200 0.911 0.8912 0.8450 0.822 0.8999 0.9301 0.924 

T15 (4–12) 1.039 0.9910 0.9827 0.952 0.9327 0.9144 0.954 0.9489 0.9478 0.938 

T36 (28–27) 1.068 0.9541 0.9699 0.958 0.9612 0.9601 0.958 0.9488 0.9311 0.924 

Ploss (MW) 5.8223 4.5388 4.5515 4.398 5.4890 5.6980 5.698 4.9011 5.4111 4.478 

VD (p.u.) 1.1500 2.0521 1.9421 1.047 0.1001 0.1189 0.087 1.9781 1.8497 1.857 

L-index (pu) 0.145 0.127 0.1277 0.1267 0.1482 0.1479 0.1377 0.1239 0.1234 0.1227 



 

 

Table 3-3: Comparison with different metaheuristic algorithms reported in the literature for the IEEE 30 bus system 

Variables MW Loss Minimization Vd Minimization Voltage Stability Improvement MO APOPSO 

 DE GSA ALCPSO CLPSO APOPSO DE GSA ALCPSO CLPSO APOPSO DE GSA TLBO CLPSO APOPSO 

VG1 1.1 1.071 1.05 1.1 1.100 1.01 0.983 0.998 1.1 1.011 1.09 1.1 1.06 1.09 1.043 1.020 

VG2 1.09 1.022 1.038 1.1 1.084 0.99 1.044 1.011 1.1 1.001 1.09 1.1 1.08 1.06 1.061 1.033 

VG5 1.07 1.040 1.010 1.07 1.056 1.02 1.020 0.996 1.07 1.014 1.09 1.1 1.07 1.07 1.061 1.000 

VG8 1.07 1.051 1.021 1.1 1.076 1.02 0.999 1.001 1.08 1.009 1.04 1.1 1.08 1.08 1.057 1.004 

VG11 1.1 0.977 1.05 1.1 1.091 1.01 1.077 1.011 1.05 0.954 1.09 1.1 1.07 1.02 1.048 1.032 

VG13 1.1 0.968 1.05 1.1 1.100 1.03 1.044 1.001 1.1 1.000 0.95 1.1 1.09 1.05 1.091 1.028 

QC10 (MVAr) 5 1.653 0.009 4.92 5.000 4.94 0 0.009 0.72 4.102 0.69 5 0.03 3.58 0.040 0.051 

QC12 (MVAr) 5 4.372261 0.0126 5 5.000 1.0885 0.473512 0.0073 1.6812 2.124 4.7163 5 0.0466 3.306 0.039 0.002 

QC15 (MVAr) 5 0.119957 0.0209 5 4.879 4.9985 5 0.0088 2.6462 4.512 4.4931 5 0.0392 4.617 0.038 0.044 

QC17 (MVAr) 5 2.087617 0.05 5 4.976 0.2393 0 0.0399 3.4105 0.000 4.51 5 0.0464 4.945 0.040 0.009 

QC20 (MVAr) 4.41 0.357 0.003 5 3.821 4.99 5 0 1.98 5.000 4.48 5 0.0051 3.814 0.037 0.048 

QC21 (MVAr) 5 0.2602 0.0293 5 4.541 4.90 0 0.0432 0.476 5.000 4.60 5 0.02 5 0.009 0.041 

QC23 (MVAr) 2.8004 0 0.0226 5 2.354 4.9863 4.999834 0 3.5896 5.000 3.8806 5 0.0101 4.8723 0.019 0.033 

QC24 (MVAr) 5 1.383953 0.05 5 4.654 4.9663 5 0.0269 2.9998 5.000 3.8806 5 0.0043 5 0.011 0.050 

QC29 (MVAr) 2.5979 0.000317 0.0107 5 2.175 2.2325 5 0 1.1098 4.120 3.2541 5 0.0016 5 0.001 0.015 

T11 (6–9) 1.04 1.0985 0.9521 0.915 1.029 1.02 0.9 1.0103 1.018 0.998 0.90 0.9 0.93 1.01 0.919 1.042 

T12 (6–10) 0.9097 0.982481 1.0299 0.9 0.911 0.9038 1.1 1.0818 0.9738 0.822 0.9029 0.9 0.9318 0.9469 0.924 0.909 

T15 (4–12) 0.98 1.095 0.972 0.9 0.952 1.01 1.051 1.019 1.02 0.954 0.90 0.9 0.95 0.99 0.938 1.023 

T36 (28–27) 0.9689 1.059339 0.9657 0.9397 0.958 0.9635 0.961999 1.0151 0.9896 0.958 0.936 1.019538 0.9331 0.968 0.924 0.958 

Ploss (MW) 4.555 4.51431 4.4793 4.5615 4.398 6.4755 6.911765 6.28 4.6969 5.698 7.0733 4.975298 5.4129 4.676 4.478 4.842 

VD (p.u.) 1.9589 0.87522 0.8425 0.4773 1.047 0.0911 0.067633 0.0437 0.245 0.087 1.419 0.215793 1.8586 0.5171 1.8579 1.009 

L-index (pu) 0.5513 0.14109 NA NA 0.1267 84.352 0.134937 NA 0.1247 0.1377 0.1246 0.136844 0.1252 0.0866 0.1227 0.1192 
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Table 3-4: Statistical analysis of the APOPSO algorithm for three test system 

Test System 
Best Worst Mean SD No. of Trials 

MW Loss Minimization 

IEEE 30 4.398 5.252 5.037379 0.1093 100 

IEEE 57 19.212 21.131 20.1194 0.5488 100 

IEEE 118 128.591 129.129 128.86098 0.1595 100 

Vd Minimization 

IEEE 30 1.009 1.421 1.1875 0.1189 75 

IEEE 57 0.911 1.081 0.9855 0.05 75 

IEEE 118 0.455 0.659 0.5554 0.05452 75 

                   VSI  

IEEE 30 0.1192 0.3372 0.2246 0.05725 50 

IEEE 57 0.1455 0.1927 0.1686 0.01522 50 

IEEE 118 0.0587 0.0918 0.072236 0.01015 50 

The multiobjective values obtained for MW loss, voltage deviation and L-index are 

simultaneously shown in the rightmost column in Table 3.3, whereas Fig. 3.6 depicts the 

produced Pareto optimal values for the multiobjective fitness function on the IEEE 30 test 

system. In addition to its superiority compared in the reported literature, the results obtained 

from APOPSO show no violations at any dependent variables in the system. It should be 

mentioned that we considered the nondomination criteria in the sorting and crowding of the 

distances when it comes to solving the multiobjective equation. Specifically, fuzzification of 

each fitness function incorporated in Equation (3.21) and applied on particle Z can be carried 

according to: 

𝝁𝒊
𝒁 =

{
 
 

 
 𝟏                          𝒇𝒊  ≤  𝒇𝒊

𝒎𝒊𝒏

𝒇𝒊
𝒎𝒂𝒙 − 𝒇𝒊

𝒇𝒊
𝒎𝒂𝒙 − 𝒇𝒊

𝒎𝒊𝒏
            𝒇𝒊

𝒎𝒊𝒏  ≤  𝒇𝒊  ≤  𝒇𝒊
𝒎𝒂𝒙

  𝟎                          𝒇𝒊  ≥  𝒇𝒊
𝒎𝒂𝒙

 (3.44) 

 

Where the maximum and minimum limits correspond to the objective function of the ith 

objective function, respectively. The normalization of contribution from each fitness function 

on particle Z can be calculated as: 

𝝁𝒁 = 
∑ 𝝁𝒊

𝒁𝑵
𝒊=𝟏

∑ ∑ 𝝁𝒊
𝒁𝑵

𝒊=𝟏
𝑹
𝑲=𝟏

 (3.45) 
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where R is the number of non-dominated obtained results, and N is the total number of 

fitness (objective) functions. 

 

Figure 3-6 Pareto optimal front for the IEEE 30 test system. 

 

3.4.2. IEEE 57 Bus Test System 

  

   

 

   

          

    

 

   

 

    

    

             

                

                

               

              

            

              

              

             

             

                

The IEEE 57-bus system consists of seven synchronous generators located at buses 1, 2,

3, 6, 8, 9, and 12, 80 transmission lines, three reactive power compensators located at buses 

18, 25, and 53, and 15 transformers with off-nominal tap ratio. Line data, bus data, variable 

limits, and the initial values of the control variables are given in [118, 119]. Twenty-five 

variables are set within the decision space to be investigated using the APOPSO algorithm, 

which are seven generator voltages, three reactive compensators, and 15 power transformers’ 

tap-settings. Details about the tests system parameters are shown in Table 3.1. Table 3.5 

presents the values obtained when applying the APOPSO algorithm on the IEEE 57 test 

system. It also shows the multiobjective results in the rightmost column when implementing 

the algorithm over the defined multi-objective function MOF function in Equation (3.21) to 

solve for the three cases with defined penalties for violation of the limits. It shows the 
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capacity of APOPSO to efficiently optimize nonlinear, constrained problems in complex 

systems. 

As the results show, APOPSO demonstrates greater search capabilities in finer results 

obtained compared with GSA [19], multiobjective differential evolution algorithm (MODE) 

[124], and chaotic krill herd optimization (CKHA) [125]. Further comparisons show the 

dominance of APOPSO over other reported findings that are not presented for simplicity of 

presentation. Table 3.4 shows the statistical analysis of the obtained results for the IEEE 57 

test system over 100, 75, and 50 trials for MW loss minimization, Vd minimization, and 

voltage stability improvement respectively. While Fig. 3.3 plots the Vd minimization values 

obtained over the trials, Fig. 3.7 presents the Pareto optimal obtained for the IEEE 57 test 

system. The eminence search capabilities of the APOPSO are perfectly illustrated in the 

Weibull distribution presented in Fig. 3.5, which shows the precision of the algorithm to 

determine the optimum values around the mean obtained over 50 trials. 

Table 3-5: Analysis and comparison of results for the IEEE 57 test system 

 
Variables MW Loss Minimization Vd Minimization Voltage Stability Improvement MO 

APOPSO  GSA MODE CKHA APOPSO GSA MODE CKHA APOPSO GSA MODE CKHA APOPSO 

VG1 1.1 1.04 1.06 1.04 1.1 1.04 1.023 1.02 1.06 1.04 1.0125 1.02 0.998 

VG2 1.1 1.0101 1.059 1.021 1.1 1.0099 1.012 1.009 1.0553 1.0103 1.0111 1.099 1.001 

VG3 1.08981 0.9849 1.048 1.001 1.07379 0.9851 1.003 0.977 1.0348 0.9847 1.0145 0.981 0.979 

VG6 1.08422 0.9805 1.043 0.980 1.04227 0.9803 1.005 0.976 1.0246 0.98 1.0014 0.992 0.879 

VG8 1.1 1.0054 1.06 0.998 1.05239 1.0051 1.018 1.044 1.0418 1.005 1.0014 0.992 0.879 

VG9 1.08467 0.9803 1.0447 0.989 1.04551 0.9804 1.0427 1.001 1.0253 0.9805 1.0345 0.996 0.997 

VG12 1.08006 1.0147 1.041 1.02 1.04682 1.0152 1.003 1.012 1.0232 1.015 1.0041 1.009 1.001 

QC18 

(MVAr) 

0 0.0488 0.089 0.098 0.08 0 0.074 0.02 0.0898 0.0401 0.0519 0.033 0.025 

QC25 

(MVAr) 

0.156 0.0012 0.045 0.048 0.108 0.0008 0.051 0.097 0.0588 0.059 0.0545 0.052 0.045 

QC53 

(MVAr) 

0.15 0.0001 0.063 0.110 0.078 0.0583 0.058 0.042 0.063 0.0166 0.0456 0.060 0.049 

T4–18 1.1 1.0987 0.918 1.022 1.01 0.9831 0.965 0.998 0.9348 0.9801 0.9647 0.922 0.919 

T4–18 1.01 1.082 1.026 1.009 1.01 0.951 0.988 0.944 0.9939 0.9526 0.9818 0.944 0.933 

T21–20 1.1 0.9221 0.9 0.982 1.03 0.9507 0.958 0.959 1.0017 0.9501 0.9415 0.978 0.934 

T24–26 1.1 1.0171 0.902 0.992 0.98 1.0043 1.009 0.980 1.0058 1.0045 1.0047 0.999 1.000 

T7–29 0.97 0.996 0.910 0.995 0.98 0.9769 1.011 0.968 0.9681 0.9777 1.0104 0.980 0.979 

T34–32 1.1 1.0999 0.901 0.996 1.02 0.9139 0.9 0.931 0.9718 0.9138 0.9007 0.899 0.921 

T11–41 1.1 1.075 0.9 1.005 1 0.9461 0.978 0.922 0.9008 0.9465 0.9747 0.882 0.821 

T15–45 0.9 0.9541 0.9 0.942 1 0.9258 0.9 0.911 0.9604 0.9269 0.9111 0.919 0.891 

T14–46 0.9 0.937 1.071 0.922 0.98 0.9957 0.971 0.979 0.9476 0.9962 0.9814 0.939 0.919 

T10–51 0.98 1.016 0.995 1.021 1.02 1.0379 1.042 1.001 0.9571 1.0385 1.0314 1.022 1.001 

T13–49 0.97 1.0998 0.981 0.998 1 0.9053 0.914 0.882 0.9195 0.9052 0.9145 0.901 0.821 

T11–43 0.98 1.098 0.973 1.000 0.99 0.9229 0.922 0.871 0.9477 0.924 0.9014 0.884 0.872 

T40–56 0.94 0.9799 0.900 0.966 1.01 0.9868 0.976 0.966 1.0017 0.9875 0.9415 0.977 0.991 

T39–57 1.09 1.0246 1.014 0.995 0.99 1.0095 1.030 0.951 0.9621 1.0098 1.0141 0.944 0.950 

T9–55 1.03 1.0371 1.009 1.011 1.02 0.9367 0.915 0.911 0.9628 0.9373 0.9045 0.929 0.910 

Ploss 

(MW) 

23.46 15.843 23.41 14.992 24.441 29.917 28.94 23.989 24.388 34.969 27.14 24.011 19.212 

VD (p.u.) 1.09 3.6588 1.052 0.988 1.11 0.6634 0.660 0.943 0.21895 1.0947 0.6514 0.9221 0.911 

L-index 

(pu) 

NR 0.1625 0.412 0.1597 NR 2.7554 0.197 0.1827 NA 0.0977 0.1897 0.1134 0.1455 
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Figure 3-7 Pareto optimal front for the IEEE 57 test system. 

 

3.4.3. IEEE 118 Bus Test System 

For us to confirm the capacity performance and robustness of the developed APOPSO algorithm for solving the ORPD problem on a large scale, 

we applied it on the IEEE 118 test system. This system’s line data and parameters were adopted from [119]. It has 54 synchronous generator-buses, 

64 load-buses, 12 reactive power compensators, nine tap-setting power transformers, and 186 transmission lines. The bus voltages levels are 
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constrained to remain within the strict boundary of the per unit range [0.95, 1.1]. Details of the test system’s parameters are shown in Table 3.1. The 

table presents the values of the simulation results on the IEEE 118 test system. 

The results for the multiobjective function in Equation (3.21) after its fuzzification are presented in the rightmost column of the table, and its 

Pareto optimal is shown in Fig.3.8. The results present evidence of the strength and robustness of APOPSO in solving real-life, highly complex 

scenarios, as the produced outcomes show good optimization for the highly constrained, nonlinear, multiobjective fitness function in a large complex 

system like the IEEE 118. Table 3.4 presents the statistical analysis of the simulation process for each objective, while Table 3.6 shows the results 

obtained for each fitness function when simulated individually and simultaneously. No violations have been recorded in the dependent variables 

throughout the study. Fig. 3.9 presents an illustration of the range of values obtained over the 100 trials for the MW loss reduction objective for this 

test system. The results show superior consistency in getting the results within a close range over a large number of iterations. 
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Figure 3-8 Pareto optimal front for the IEEE 118 test system. 

 

Figure 3-9 Megawatt (MW) loss minimization for the IEEE 118 test system over 100 trials. 
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Table 3-6: Results of the single and multiobjective functions of the algorithm on the IEEE 118 test 

Variable MW Loss Mini Vd Mini VSI Multiobjective Variable MW Loss Mini Vd Mini VSI Multiobjective 

Vg1 (pu) 1.019 1.091 0.978 1.002 Vg99 (pu) 1.049 0.959 0.971 0.998 

Vg4 (pu) 10.344 0.998 0.998 0.998 Vg100 (pu) 1.059 1.047 1.045 0.989 

Vg6 (pu) 1.032 0.982 0.982 1.008 Vg103 (pu) 1.038 0.961 1.087 1.001 

Vg8 (pu) 1.072 0.949 0.998 0.971 Vg104 (pu) 1.021 1.099 0.990 1.019 

Vg10 (pu) 1.082 1.019 1.019 1.028 Vg105 (pu) 1.029 0.988 1.022 0.999 

Vg12 (pu) 1.022 1.032 0.979 1.029 Vg107 (pu) 1.001 1.087 1.016 0.998 

Vg15 (pu) 0.019 1.011 1.042 1.089 Vg110 (pu) 1.021 1.021 1.071 0.990 

Vg18 (pu) 1.090 0.961 1.029 1.031 Vg111 (pu) 1.034 0.957 1.039 0.992 

Vg19 (pu) 1.011 1.042 1.011 1.009 Vg112 (pu) 1.011 1.098 0.990 0.982 

Vg24 (pu) 1.050 0.978 1.039 0.989 Vg113 (pu) 1.051 1.002 1.033 0.998 

Vg25 (pu) 1.100 1.029 1.078 0.995 Vg116 (pu) 1.109 0.990 1.062 0.992 

Vg26 (pu) 1.082 1.019 1.041 1.011 QC5 (pu) 0.002 −0.323 −0.291 −0.298 

Vg27 (pu) 1.042 1.011 1.032 0.981 QC34 (pu) 0.087 0.079 0.011 0.149 

Vg31 (pu) 1.031 0.998 1.035 1.001 QC37 (pu) 0.019 −0.192 −0.163 −0.255 

Vg32 (pu) 1.029 0.987 1.078 1.012 QC44 (pu) 0.098 0.099 0.091 0.104 

Vg34 (pu) 1.029 0.989 1.077 1.012 QC45 (pu) 0.098 0.098 0.099 0.094 

Vg36 (pu) 1.028 1.008 1.011 0.997 QC46 (pu) 0.019 0.052 0.043 0.092 

Vg40 (pu) 1.021 1.009 1.043 1.019 QC48 (pu) 0.089 0.012 0.004 0.009 

Vg42 (pu) 1.098 1.010 1.074 1.020 QC74 (pu) 0.123 0.029 0.119 0.098 

Vg46 (pu) 1.043 1.058 1.099 1.035 QC79 (pu) 0.192 0.018 0.129 0.010 

Vg49 (pu) 1.050 0.998 1.051 0.999 QC82 (pu) 0.182 0.198 0.345 0.192 

Vg54 (pu) 1.021 1.033 1.098 1.029 QC83 (pu) 0.091 0.099 0.062 0.085 

Vg55 (pu) 0.020 1.018 1.097 1.012 QC105 (pu) 0.190 0.087 0.104 0.011 

Vg56 (pu) 1.021 1.041 0.961 0.982 QC107 (pu) 0.001 0.022 0.075 0.017 

Vg59 (pu) 1.038 1.034 0.959 0.998 QC110 (pu) 0.041 0.056 0.045 0.045 

Vg61 (pu) 1.042 1.019 0.970 1.002 T8-5 1.037 0.929 0.956 0.943 

Vg62 (pu) 1.034 0.957 1.090 0.974 T26-25 1.089 0.998 1.098 1.087 

Vg65 (pu) 1.087 0.968 1.021 1.092 T30-17 1.029 1.081 1.026 1.092 

Vg66 (pu) 1.042 1.040 0.990 1.089 T38-37 1.031 1.009 0.989 0.981 

Vg69 (pu) 1.054 0.949 0.987 1.072 T63-59 1.033 0.981 1.092 1.029 

Vg70 (pu) 1.024 0.971 0.993 1.056 T64-61 1.088 1.014 0.921 0.944 

Vg72 (pu) 1.055 0.998 1.076 1.044 T65-66 0.998 1.042 1.058 0.900 

Vg73 (pu) 1.039 1.058 1.062 0.992 T68-69 0.956 1.098 0.919 1.001 

Vg74 (pu) 1.043 1.035 1.076 0.998 T81-80 1.029 0.995 0.999 0.953 

Vg76 (pu) 1.039 1.018 1.034 1.022      

Vg77 (pu) 1.055 1.016 1.009 1.001      

Vg80 (pu) 1.098 1.011 0.998 1.010      

Vg85 (pu) 1.100 1.010 1.019 1.015      

Vg87 (pu) 1.101 1.001 0.998 0.998      

Vg89 (pu) 1.098 1.008 1.075 1.018      

Vg90 (pu) 1.078 0.960 1.097 0.997      

Vg91 (pu) 1.088 1.098 0.976 0.998      

Vg92 (pu) 1.082 0.998 1.008 0.997      

Ploss (MW) 111.873 182.091 281.920 128.591      

VD (pu) 1.711 0.198 1.198 0.455      

L-index (pu) 0.09882 0.0721 0.0692 0.0587      
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3.5 Conclusion 

A new hybrid technique for solving the ORPD problem was developed in this chapter. 

The developed APOPSO algorithm was tested and verified on three IEEE test systems: the 

30, 57, and 118 bus systems. The results demonstrated the excellent search capacity of the 

PSO and APO algorithms when they are integrated. This process creates a robust hybrid 

algorithm to solve the ORPD optimization problem. Furthermore, the consistency of the 

optimized results in large complex systems such as the IEEE 57 and 118 bus systems prove 

that the combined algorithm overcomes some of the difficulties the PSO traditionally faces. 

For instance, being trapped in local optima, which usually lead to slower convergence. 

Comparison with previously reported ORPD results based on different metaheuristic 

methodologies verified the obtained results of the APOPSO algorithm, which shows 

superiority in most of the obtained results for MW loss minimization, voltage deviations 

minimization, and voltage stability improvement. The results obtained were based on the 

solution of both single and multiobjective fitness functions. The results of the hybrid 

algorithm produced no violations of any of the constraints placed on the dependent variables. 

Overall, the APOPSO algorithm shows great potential for various types of studies. Future 

studies may include the incorporation of electric vehicles to improve the voltage profiles’ test 

system during specific operation criteria of the ORPD problem. Another aspect to investigate 

is the integration of flywheel energy storage systems (FESS) in the ORPD problem when 

integrated into the grid [126]. 
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Chapter 4 Hybrid Microgrid Energy Management and Control Based on a 

Metaheuristic-Driven Vector-Decoupled Algorithm Considering Intermittent 

Renewable Sources and Electric Vehicles Charging Lot 

4.1 Introduction 

In this chapter, an energy management and control strategy is developed to overcome 

the fluctuations of the voltage and frequency levels due to the presence of intermittent 

renewable energy sources and electric vehicle charging structure in hybrid microgrids. 

Furthermore, a hybridization algorithm of the Particle Swarm Optimization (PSO) and 

Applied Artificial Physics (APO) is utilized to tune the vector-decoupled control parameters 

of the interlinking converters to ameliorate the performance of the hybrid microgrid to 

achieve better resiliency and operation. Our developed strategy highlights guaranteed 

stability of operation in the DC part of the microgrid while efficiently coordinate with the AC 

part during severe operating conditions such as high pulsed demands and islanding operation. 

The developed algorithm is tested via a hardware-in-the-loop testbed at the Florida 

International University to for results verification. The results embolden the validity of our 

developed strategy and hybridized algorithm to establish secure and safe active and reactive 

power exchange between the two sides of the hybrid microgrid without invoking an 

operational violation. 

This chapter is organized as follow; section 4.2 shows in detail the system description 

and corresponding illustration of the modelling and control of the bidirectional converter, 

section 4.3 presents the APOPSO algorithm deployed in our work to provide the converter 

with optimized control parameters, section 4.4 presents the experimental modelling and 

results of the developed control mechanism, with section 4.5 provides concluding remarks. 

 



 

26 

 

     

  

       

      

 

   

     

  

    

     

     

        

     

  

 

Table 4-1: The Converter Parameters 

Parameter Value 

DC BUS Voltage 

Rating 

380±20 V 

10kW 

Rs, 0.01 ohm 

Cout 1200 µF 

Rcout 0.008 ohm 

L 12.7 mH 

Cin 1200 µF 

Rcin 0.008 ohm 

where Rs, Rcout and Rcin are the resistance of the voltage source located at the DC side, 

resistances of the output and input capacitor of the power converter, while Cout and Cin are 

the values of the output and input capacitors.  

     

 Fig. 4.1 presents the system of study in this chapter which is implemented in hardware 

at the Energy Systems Research Laboratory group (ESRL) of the Florida International 

University (FIU). More information about the hardware testbed and its connections can be 

found in the previously published literature [127, 128, 129]. The hybrid microgrid at the 

testbed incorporates different harvested AC and DC sources that are integrated through 

interfaced power converters. Both sides are interlinked via a bidirectional converter, with the 

DC part contains PV systems, electric vehicles parking structure, and local and pulsed DC 

loads. On the other hand, the AC part of the microgrid is supplied with a synchronous 

generator as well as the typical load demands. During islanding operation, the microgrid is 

isolated and maintain its supply to local loads via both AC and DC sources. The microgrid is 

designed such that it can autonomously satisfy the energy demands without interruption 

under any circumstances. Two DC-to-DC boost converters are used in this work to link the 

DC components to the bidirectional power converter, as illustrated in Fig. 4.1. Table 4.1 

presents the parameters of the interlinking converter used in this work.

4.2 System’s Description, Modeling and Control
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Figure 4-1 Schematic configuration of the hybrid microgrid in this work 

 

4.2.1 PV System Model and Interface 

The PV system is modeled with a PV emulator that has a maximum capacity of 6 kW and 

can imitate a real-time PV system with different characteristics and under various operational 

conditions such as during temperature and irradiance changes. The PV emulator is 

constructed to utilize real-time algorithms that represent the PV array's mathematical models 

to generate reference power output from a programmable DC supply. Specifically, the PV 

models are established in Simulink and resembled in real-time operation via dSPACE 

following a graphic user interface (GUI). Accordingly, the emulator is then tested with real-

time execution of the PV model considering various dynamic operational and steady-state 

conditions. Fig. 4.2 presents the configuration of the laboratory PV emulator, which was first 

introduced by the authors in previous work [128]. Fig. 4.3 shows a schematic illustration of 

the PV system connectivity with the boost converters for accurate integration with the 

microgrid's DC side. It is worth mentioning that the type of PV module in this work is the 

SPR-305-WHT PV system manufactured commercially by SunPower and can generate 305 
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watts as an output power per module with an efficiency of 18.9%. The IV characteristic of 

the PV system could be represented by a single diode model as it provides accuracy and 

simplicity [130]. The current output of the PV arrays can be found by 

𝐼𝑃𝑉 = 𝐼𝐿 − 𝐼𝑆 [𝑒𝑥𝑝(
𝑞(𝑉𝑃𝑉+𝐼𝑃𝑉𝑅𝑠

𝐾𝐵 𝑇 𝐴
− 1) −

𝑞(𝑉𝑃𝑉+𝐼𝑃𝑉𝑅𝑠)

𝑅𝑠ℎ
]   (4.1) 

 

where 𝐼𝑃𝑉 is the output current of the PV array, 𝑉𝑃𝑉 is the voltage reference which is 

established based on the perturbation and observation (P&O) algorithm that takes into 

consideration the temperature and solar irradiation levels, 𝐼𝐿 is the internal PV current, 𝐼𝑆 is 

the diode’s reverse saturation current, 𝑅𝑠ℎ is the parallel leakage resistance, 𝑅𝑠 is the series 

resistance, A represents the ideality factor of the solar cell, while q is the charge of the electron 

that is assumed to be 1.6×10-19 C, and KB is the Boltzmann constant which is 

1.3806488×10−23 J/K. The DC-to-DC boost converter is used to step up the voltage level of 

the PV arrays to the voltage level of the microgrid’s DC side when needed while ensure 

maximum power extraction based on the concept of maximum power point tracking (MPPT). 

Specifically, the P&O algorithm [131, 132] is utilized in this work. This algorithm mainly 

depends on perturbing the voltage level of the PV panels by small magnitude (ΔV) and 

accordingly observing the change of power level (ΔP) to optimize the tracking of maximum 

power transfer from the arrays to take into consideration potential temperature variability 

during the day. 
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Figure 4-2 The PV emulator setup in our hardware testbed 

  

The main contribution from utilizing the (P&O) algorithm in our work is to aim for 

zero difference of power received from the PV arrays in two successive iterations, denoted 

ΔP. This is accomplished by measuring the level of power at each iteration based on the PV 

output current so that the power level at the kth iteration is recorded, Pk, and P (k+1) for the 

following iteration. The DC-to-DC boost converter adjusts the power output of the PV system 

by either decreasing in the case of a negative ΔP or increasing it for the case of a positive ΔP. 

Once ΔP approaches zero, the PV system is said to be reaching its maximum power point 

(MPP). The process is updated iteratively throughout the operation hours to ensure maximum 

power production from the PV arrays. Fig. 4.4 illustrates the described iteration process, 

while fig. 4.5 shows the implementation of the control process for the DC-to-DC converter 

in our work. 
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Figure 4-3 Schematic configuration of the PV system interface with the DC side of the hybrid 

microgrid. 
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Figure 4-4 The P&O algorithm utilized in this work. 

 

The control mechanism for the DC-to-DC boost converter is achieved based on the following 

formulas 
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𝑉𝑃𝑉 − 𝑉𝑇 = 𝐿1
𝜕𝐿1

𝜕𝑡
+ 𝐿1𝑅1     (4.2) 

𝐼𝑃𝑉 − 𝐼1 = 𝐶𝑃𝑉
𝜕𝑉𝑃𝑉

𝜕𝑡
       (4.3) 

𝑉𝑇 = 𝑉𝐷(1 − 𝐷1)           (4.4) 

 

Where  𝐿1 and 𝑅1 are bidrectional converter inductance and resistance, 𝐼1 is the current 

corresponding to the duty-cycle ratio 𝐷1 of the switch 𝑆𝑃𝑉. 𝑉𝑇 is the voltage across the switch, 

while 𝑉𝑝𝑣 is the voltage reference across capacitance 𝐶𝑃𝑉 and is determined following the 

utilization of the P&O algorithm based on the temperature and solar irradiation levels of PV 

arrays, as mentioned earlier. It should be noted that the control process is based on the dual-

loop control mechanism. The inner current loop assists in the improvisation of the dynamic 

response, while the outer voltage loop keep tracks with the reference voltage levels given 

zero steady-state error. 
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Figure 4-5  Block diagram for the boost converter control. 

 

4.2.2 Electric Vehicle’s Battery Converter Model and Control 

The developed scheme for the electric vehicle charging converter is shown in fig. 4.6. The 

converter topology is a composed of a bidirectional DC-to-DC converter, with the EV is 
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connected to the low-voltage side of the converter. The high-voltage side of the converter is 

directly connected with the microgrid DC bus. The converter is composed of two switches, 

Sc and Sd, with each has its own operation mode and time. Specifically, switch Sc is on when 

the converter operates at the buck mode for charging activity during power transfer from the 

DC Bus to the EV’s battery.  

Sc

Vb

L2 CdR2

Vd

VD

ib

ib d2

idc

ic
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Figure 4-6 Configuration of the DC-to-DC converter interface with the EVs battery and the DC 

bus 

 

The switch Sd is on when the converter operates at the boost mode during the discharging 

process of the EV during power transfer from the EV’s battery back to the DC bus. The 

control mechanism for the EV’s battery converter is shown in fig. 4.6, and is mathematically 

illustrated as follows: 

𝑉𝐷 − 𝑉𝑏 = 𝐿2
𝜕𝐼𝑏

𝜕𝑡
+ 𝑅2𝐼𝑏                                              (4.5) 

𝑉𝐷 = 𝑉𝐷𝐷2                                                                (4.6) 

𝐼1(1 − 𝐷1) − 𝑖𝑎𝑐 − 𝑖𝑑𝑐 − 𝐼𝑏𝐷2 = 𝐶𝐷
𝜕𝑉𝐷

𝜕𝑡
              (4.7) 

Where 𝑉𝑑 and 𝑖𝑑𝑐 are the DC side’s voltage and current, 𝑖𝑎𝑐 is the current corresponding to 

the AC side of the hybrid microgrid, 𝑉𝑏  𝑎𝑛𝑑 𝐼𝑏 is the EV battery’s voltage and current, 𝐶𝐷 is 

the bidirectional converter capacitance for boost mode, 𝐿2 𝑎𝑛𝑑 𝑅2 are bidirectional converter 

inductance and resistance. It should be noted that the main task of the bidirectional DC-DC 

converter connected to the EVs charging structure is to regulate the DC bus voltage. To 
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achieve this purpose, a dual-loop control is utilized to assist in providing a stable DC link 

voltage. Specifically, the external voltage-controlled loop establishes a reference charging 

current as a signal for the internal current-controlled loop. The difference between the 

reference and measured bus voltage serves as an input signal to the PI controller. This 

difference is used to measure the reference charging current since the internal current-

controlled loop compares this estimated current-signal with that one of the referenced current 

flowing inside the converter. The produced output of this loop control serves as an input 

signal for a second PI controller for further optimization of the inner controller. 

The EVs battery current 𝑖𝑏 is calculated based on equation (4.5), while the duty cycle is 

estimated by equations (4.6) and (4.7). The discharging current can be calculated as follow 

 

𝐼𝑏 = 𝐼1(1 − 𝐷1) − 𝑖𝑎𝑐 − 𝑖𝑑𝑐   (4.8) 

 

If the voltage of the microgrid’s DC bus is higher than the desired reference voltage signal, 

then the outer voltage control generates a negative reference current signal for the inner 

current-controlled loop. The generated signal current is used to adjust the correspondent duty 

cycle in order to influence the converter to operate in a buck mode only and suspend any 

discharging activity at the moment. On the other hand, if the voltage of the microgrid’s DC 

bus is lower than the desired reference voltage signal, then the outer voltage control generates 

a positive reference current signal to regulate the current flow during the discharging process. 

As a result, an additional amount of energy is incurred and injected to the DC bus while 

improving the voltage profile at the moment. It is worth mentioning that the physical 

reference for the voltage source of the DC bus is 400 V. 
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4.2.3 Bidirectional DC-to-AC converter model and control 

In hybrid microgrids, managing robust frequency and voltage levels is challenging, 

especially during forced islanding operation where the AC side loses its connection to the 

grid's main slack bus. Typically, a hybrid microgrid owns synchronous generators that can 

manage load variations and maintain energy supply, even during islanded operation. 

However, high demands connected to the hybrid microgrid may lead to severe consequences 

such as frequency deficiency and potential voltage collapse. As a result, the bidirectional DC-

AC converter's main task is to enable strict frequency and voltage regulation considering 

severe operational scenarios [133]. We consider this controller type to ensure a smooth power 

exchange between the DC and AC sides of the microgrid. The mathematical representation 

of the DC-AC converter model cis illustrated as follows: 
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Considering D-Q coordinates, equation (4.9) could be rewritten as follow 
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  The control mechanism of the bidirectional DC-AC converter utilized in our work is 

shown in Fig. 4.7, where two-loop controllers, for both real and reactive power, are applied. 

The overall goal is to allow proper and intelligent control of both frequency and voltage levels 

at the hybrid microgrid. For frequency control, the difference between the measured 

frequency signals from that of the obtained reference frequency is established. The result is 

subtracted from the difference error between the measured and referenced DC voltage level, 

as described in part B of this section. The obtained value serves as an input signal to the PI 
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controller, which initiates the current reference value, Id. Likewise, another control loop is 

deployed to achieve voltage stability employing optimized reactive power flow in the hybrid 

microgrid. This is made in the same manner as frequency control, where the difference 

between the measured and referenced voltage levels is calculated to produce a signal that 

serves as input to another PI controller to generate the Iq reference current. In the next section, 

we present a metaheuristic methodology based on the hybridization of Particle Swarm 

Optimization (PSO) and Artificial Applied Physics (APO) to tune the vector-decoupled 

control parameters illustrated in fig. 4.7 optimally. 
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Figure 4-7 Schematic diagram of the bidirectional DC-AC converter 

4.3 Control Parameters Design Using APOPSO  

The central concept of applying our hybridization of PSO and APO is to integrate their 

individual strengths to establish an optimization algorithm that exhibits both the dominant 

global search abilities of the APO and efficient local exploration performance of the PSO 

while enhancing its convergence rate. In this chapter, the hybrid algorithm is utilized to 

optimize the vector-decoupled control parameters of the bidirectional converter to ensure 

efficient energy management driven by optimized variables while reducing the trial-error 
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method described in section 4.2. In a previous study, the authors developed an optimal 

reactive power dispatch study based on the hybrid APOPSO [134]. 

 Artificial Physics Optimization (APO) 

APO is a physics-based metaheuristic technique that is based on the idea of a 

gravitational metaphor that enables forces to produce attractiveness or repulsiveness 

movements on the articles that resemble the solutions of the optimization problem [23, 114, 

134]. These movements represent the searching criteria for estimating the values of local and 

global optima. Furthermore, this is accomplished since the APO treats the examined 

parameters as physical objects that exhibit a mass with relative position and velocity. The 

mathematical description of the APO is as follows 

𝑚𝑖 = g [f (𝑥𝑖)]      (4.11) 

 

When f(x) € [-∞ , ∞], then; arctan [-f(𝑥1)] € [ 
−𝑥

2
 , 
𝑥

2
 ], and tanh[−𝑓(𝑥𝑖)]   €  [− 𝐼 , 𝐼 ] 

with 

tanh(𝑥𝑖) = 
𝑒𝑥 −  𝑒−𝑥 

𝑒𝑥+ 𝑒−𝑥
                        (4.12) 

where equations (4.11) and (4.12) is mapped into the interval (0,1) via basic transformation 

function. Therefore, the mass functions of the APO is described as follows 

𝑚𝑖 = 𝑒
   
𝑔 [ 𝑓(𝑥𝑏𝑒𝑠𝑡 )−𝑓 ( 𝑥𝑖)  ]

𝑓 (𝑥𝑤𝑜𝑟𝑠𝑡 )−𝑓 (𝑥𝑏𝑒𝑠𝑡)                                     (4.13) 

where f (𝑥𝑏𝑒𝑠𝑡) is the objective function corresponding to the position of the best-achieved 

value for the individual solution, which in this work resembles the best-obtained control 

parameter. On the other hand, f (𝑥𝑤𝑜𝑟𝑠𝑡) refers to the value of the worst particular solution 

reported during the searching process. Both represented as follow: 
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Best= avg {min 𝑓(𝑥𝑖 ) ,   𝑖 ∈ 𝑆 }                 (4.14) 

Worst= avg {max f (𝑥𝑖),  i  ∈   S}     (4.15) 

where S is a set that is composed of N population of controlling parameters. A velocity 

vector is produced once each particle’s mass is identified, with the level of exerted force 

influencing the change in velocities in an iterative manner. The amount of exerted force on 

each particle i (solution) can be found as follows 

 

𝐹𝑖𝑗,𝑘  =  {
𝑠𝑔𝑛 (𝑟𝑖𝑗  , 𝑘  ) 𝐺 . ( 𝑟𝑖𝑗 , 𝑘 )  .

𝑚𝑖𝑚𝑗

𝑟𝑖𝑗 ,   𝑘
2
;   𝑖𝑓 𝑓 (𝑥𝑗) < 𝑓(𝑥𝑖) 

𝑠𝑔𝑛 (𝑟𝑗𝑖  , 𝑘 ) . 𝐺 ( 𝑟𝑗𝑖 , 𝑘  )  .  
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗  ,   𝑘
2 ;   𝑖𝑓 𝑓 (𝑥𝑗) ≥ 𝑓(𝑥𝑖) 

            (4.16) 

and   

𝑟𝑖𝑗,𝑘  = 𝑥𝑗,𝑘 -  𝑥𝑖,𝑘             (4.17) 

 

Where 𝐹𝑖𝑗,𝑘  is the kth force exerted on particle i via another particle j in their 

corresponding dimensions; 𝑥𝑖,𝑘  and 𝑥𝑗,𝑘 are the kth dimensional coordinates of the swarm 

particles i and j; 𝑟𝑖𝑗,𝑘 is the distance between the two measured coordinates. Sgn(r) represents 

the signum function, whereas G(r) depicts the gravitational factor that follows the changes 

on 𝑟𝑖𝑗,𝑘 iteratively, both represented mathematically as follows 

Sgn(r)= {
1        𝑖𝑓              𝑟 ≥   0

−1           𝑖𝑓           𝑟 <   0    
       

 (4.18)      

G (r) =  {
𝑔|𝑟|ℎ      𝑖𝑓     𝑟 ≤ 1  

𝑔|𝑟|𝑞   𝑖𝑓       𝑟 > 1 
              (4.19) 
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In a thorough manner, the total force applied on all particles (control parameters of study) 

can be modeled as: 

  𝐹𝑖,𝑘  = ∑ 𝐹𝑖𝑗 ,   𝑘 
𝑚
𝑗=1 
𝑖≠𝑗 

   ∀ i ≠ 𝑏𝑒𝑠𝑡         (4.20) 

One crucial aspect to consider when deploying the APO to solve an optimization problem 

is the understanding of its particles’ motion paradigm in the solution space. Specifically, the 

measured force could be used to estimate the velocity of the moving particles and therefore 

find in an iterative fashion their respected positions in the solution space. Such motion 

paradigm is set in a two- or three-dimensional space and is modeled as follow: 

𝑉𝑖 ,𝑘 (z+1) = w. 𝑉𝑖,𝑘(t) + 𝛽 ∗ 
𝐹𝑖,𝑘

𝑚𝑖
⁄                   (4.21) 

𝑥𝑖,𝑘 (t+1) = 𝑋𝑖,𝑘(t) + 𝑉𝑖,𝑘( t+1)                        (4.22) 

 

𝑉𝑖 ,𝑘 and 𝑥𝑖,𝑘 represent the kth velocity and distance components corresponding to particle 

i during an iteration t, while 𝛽 is a uniformly distributed random variable within the interval 

[0,1] and w is a user-defined inertia weight that is updated iteratively and usually assume a 

value between the interval 0.1 to 0.99. Furthermore, the inertia weight is a good indication of 

the level of performance of the APO algorithm, with higher values of w indicates greater 

velocity changes. It should be noted that at each iteration, each particle identifies the 

information of its nearby particles (solutions) which emphasizes the great search strategy of 

the APO. Once an iteration is performed. All the particles’ relative positions are identified 

and consequently the objective fitness function adjusted to the newly obtained positions. A 

stopping criterion is enabled once a pre-determined number of iterations are reached without 

significant difference in the obtained best particle position.    
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 The Particle Swarm Optimization (PSO) 

Considered one of the most popular metaheuristic techniques, PSO is a bio-inspired, 

population-driven algorithm first presented by Kennedy in [22]. PSO advances based on 

evolutionary computations with a sample of preliminary randomized solutions at the first 

iteration, updated iteratively to establish local and global optima values. The obtained 

solutions are deemed particles that fly in the solution space with a determined velocity from 

preceding iterations. It should be noted that the obtained velocity and position values of each 

solution set are updated iteratively as follows: 

 

𝑉𝑖𝑗(t + 1) = [W ∗ 𝑉𝑖𝑗(t)] + [𝐶1+𝑟1+ [𝑃𝑏𝑒𝑠𝑡𝑖𝑗 - 𝑋𝑖𝑗(t)]] + [𝐶2+𝑟1+ [  𝑔𝑏𝑒𝑠𝑡𝑖𝑗-𝑋𝑖𝑗(t)]]  

 (4.23) 

𝑋𝑖𝑗(t+1) = 𝑋𝑖𝑗(t) + C 𝑉𝑖𝑗(t+1)          

 (4.24) 

Here, 𝑋𝑖𝑗(t) and 𝑉𝑖𝑗 (t) are both vectors representations of velocity and position in the 

solution space for particle i, whereas Pbest and gbest stand for the best individual and global 

obtained solutions, respectively. The popularity of PSO as a well-established and referred 

metaheuristic algorithm is attributed to its efficient searching strategy along with prematurely 

convergence rates without the requisite of finding a local optimum in first place.  

 The Hybridization of APO and PSO to Optimize the Vector-Decoupled Control 

Parameters 

The hybridization of APO and PSO is to establish in this chapter to take advantage of 

their individual strengths that lead to an overall improvement in the optimization process. 

Specifically, such integration utilizes the high efficiency of global search of the APO with 

the strong local exploratory search of the PSO while significantly enhancing its convergence 
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rate. In this chapter, the two algorithms are integrated following a low-level heterogeneous 

routine. As a consequence, the velocity and positions equations are modified as follows:  

𝑣𝑖,𝑘(𝑡 + 1) = 𝑊 . 𝑣𝑖,𝑘(𝑡) + 𝛽1 − 𝑟1 . [
𝐹𝑖,𝑘(𝑡)

𝑚𝑖
] + 𝛽2 . 𝑟2 . [𝑔 𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑘(𝑡)] 

 (4.25) 

𝑥𝑖,𝑘(𝑡 + 1) =  𝑥𝑖,𝑘(𝑡) + 𝑣𝑖,𝑘(𝑡 + 1)      (4.26) 

 

This developed hybridization allows parallel search within a set of population which 

leads to avoidance of getting trapped in local optima. The control parameters to be optimized 

are Kp_f, Ki_f, Kp_vdc, Ki_vac, Kp_m, Ki_vdc, Ki_m and Kp_vac. Following the microgrid’s dynamic 

simulation, the hybrid APOPSO algorithm evaluates the integral absolute values of both the 

frequency (∆f) and the RMS voltage (∆Vrms) deviation levels corresponding to the AC part of 

the microgrid. In this chapter, two fitness functions are applied to the hybrid algorithm to 

properly estimate the self-tuning of the gains of the PI controller. The output of the fitness 

functions is used to control the power-sharing levels of the bidirectional converter, as follows 

𝑚𝑖𝑛{𝐹 = 𝑒(𝑡) = 𝑦(𝑡) ∗ −𝑦(𝑡)}      (4.27) 

MO𝐹 = 𝑀𝑖𝑛 {∫ 𝑥𝑓 |∆𝑓|𝑑𝑡 + 𝑥𝑣 ∫ |∆𝑉𝑟𝑚𝑠|𝑑𝑡 
𝑡𝑓
𝑡0

 
𝑡𝑓
𝑡0

}              (4.28) 

Where e(t) represents the level of the errors, y(t)* the desired value to be obtained and y(t) 

is the actual measured value per each iteration, while 𝑥𝑓and 𝑥𝑣 represent penalty factors to 

enforce the voltage and frequency levels to be within the desired limits. Fig. 4.8 shows the 

flowchart of the developed hybrid algorithm to optimize our control parameters. 
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Figure 4-8 The developed hybrid APOPSO applied to the energy management and control of hybrid 

microgrids 

 

The purpose of utilizing this search strategy is to ensure safe and optimal sharing of the 

power between the two sides of the hybrid microgrid in terms of providing the bidirectional 

controller with optimized vector-decoupled control parameters to achieve ideal converter’s 

operation and ensure operation within system’s limits which are defined in our study not to 

exceed ±5% of the frequency, and ±8% of the base voltage levels. The results of applying 

this hybrid algorithm is shown in Table 4.2 with the produced optimal parameters to ensure 

optimized damping performance. Fig. 4.9 presents the convergence performance of the 

developed algorithm while fig. 4.10 shows the results for best individual results per each of 

the eight variables in our study. 
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Figure 4-9 Convergence performance of the developed algorithm 

 

Figure 4-10 The optimization results of the developed hybrid algorithm. 

Table 4-2: The optimal control parameters 

Variable Obtained Optimal Value 

Kp_f 1.769 

Ki_f, 2856.447 

Kp_vdc, 0.604 

Ki_vdc, 1220.302 

Kp_vac 0.025 

Ki_vac 0.079 

Kp_m 556.071 

Ki_m 4810.291 

 



 

43 

 

The searching criteria stop if any of the following conditions have been reached; i) 

The hybrid algorithm reached the maximum allowed number of iterations, ii) Same solutions 

have been obtained for a predetermined number of iterations, or iii) Same set of solutions (by 

means of particles) are found in the same solution space.  

4.4 Experimental Results 

 To verify our developed methodology, we demonstrate its concept via hardware-in-

the-loop testbed at the Florida International University. A MATLAB/Simulink model is built 

and is shown in fig. 4.11. Specifically, it resembles the hybrid microgrid that consists of a 

synchronous generator and programmable AC loads connected at the AC side, with a PV 

emulator and a lithium-ion battery to resemble EVs activities at the DC side along with 

programmable DC loads. An interlinking bidirectional converter is utilized to connect the 

AC/DC sides of the microgrid. Fig. 4.12 shows the hardware components at our testbed lab 

to perform this study. We set the simulation time to be 4 seconds and applied the vector-

decoupled with the optimization parameters obtained via the hybrid algorithm, as illustrated 

in this work. Fig. 13 through 15 shows the results, with the output of the PV system is 

dropping from 0.8 to 1.5 s as a result of a hypothetical cloud-dense during specific time of 

the day, as shown in fig. 4.13(a).  

 

Figure 4-11 Schematic illustration of the hybrid microgrid connection at our testbed 
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Figure 4-12 Hardware-in-the-loop equipment at our testbed 

To be able to manage such deficiencies in PV generation, the microgrid operator 

allows more EVs discharging events via reduced monetary incentives to encourage the 

consumers to discharge during once such situation incur at any potential time of the day, as 

shown in fig. 4.13(b). In order to compensate for any potential lack of discharging due to the 

randomness of consumer participation, the AC generator increases its output to meet the 

remaining loads to keep the microgrid’s operation in balance. This is demonstrated in fig. 

4.15(a) and is achieved in rapid manner to keep the system’s voltage and frequency levels 

unaffected. Fig. 4.13(c) and 4.15(c) present the load profiles, where considering the 

optimization of the vector-decoupled parameters, based on our hybrid algorithm, lead to more 

contribution from the AC generator side. It noted that assuming coordinated large-scale 

participation of EVs discharging the stress on the synchronous generator could be furtherly 

alleviated. Such incorporation of EVs in the balancing criterion could be then estimated, at 

the discretion of the microgrid’s tertiary control, which eventually contribute to a smarter 

charging and discharging scheduling. 
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Figure 4-13  Results of the DC side: (a) Power generation from the PV system (b) EV’s battery 

power (c) Load power. 

 As noted from fig. 4.14(a), 4.14(b) and 4.14 (c), the pulsed load of the DC side is 

energized for a total duration of 0.4 seconds between the timeslots 2 to 2.4 s, with another 

energized pulsed load between the timeslot 3.2 to 3.5 s. Following our developed mechanism, 

the controller performs the controlling procedure accordingly and mitigates the pulsed loads 

by balancing the power-sharing to a proper ratio to prevent any potential disturbances on the 

microgrid operation. Specifically, the controller force reversed power flow to the DC part of 

the hybrid microgrid if the DC loads are energized. Such a process is shown in fig. 4.15(b) 

in the case of negative power, which is an indication of power flow from the AC part of the 

grid to its DC side to compensate for the deficiency at the DC voltage level. As shown in 

Figure 14, our controlling mechanism achieves stable and secure microgrid operation by 

acceptable variations of the frequency and voltage levels. Although voltage variations are a 

bit high, we emphasize that they remain within a safe and acceptable level of operation. Fig. 
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4.15 (c) shows the DC side voltage level and is stable around the reference value of 400 V. 

As expected, variations of the generator output lead to fluctuations of frequency levels that 

exceed allowable and safe limits, which could trigger the operation of under- or over-

frequency protection relays. However, these fluctuations are significantly reduced and 

managed following our developed control mechanism based on optimized parameters using 

APOPSO. This shows the robustness and effectiveness of our developed technique.   

 

Figure 4-14: (a) AC voltage (RMS value) of phase a (b) AC side frequency level (c) DC voltage 

level. 
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Figure 4-15: Results of the AC side of the hybrid microgrid: (a) AC generator output power (b) 

Inverter power at the point of common coupling (c) Load power 

 

4.5 Conclusion 

In this chapter, a metaheuristic-based vector-decoupled algorithm for hybrid microgrid 

energy control and management is developed. The algorithm aims to ensure safe and stable 

power-sharing between the DC and AC parts of the microgrid considering variable renewable 

energy sources, EV charging structure as well as severe operational condition such as in the 

case of forced islanding operation. The metaheuristic algorithm provides the interlinking 

converter with optimized parameters to manage the microgrid’s operation under various load 

and resources conditions.  A hardware-in-the-loop implementation verifies and validates the 

developed technique and offer stable and robust operation even during islanding situation. 

Furthermore, stable voltage and frequency levels are achieved and the power sharing between 

the two parts of the microgrid are accomplished. Specifically, we assumed a reduction at the 

power level of the DC side due to dense cloud in the time between 0.8s to 1.5s, as shown in 

fig. 4.13 (a). Accordingly, the controller requests more energy discharge from the EVs during 

this period to compensate for this deficiency, as illustrated in fig. 4.13 (b), while it allows for 



 

48 

 

power sharing from the synchronous generator located at the AC side as shown in fig. 4.15 

(a) to assist the deficiency in the DC side. This is pivotal in the balancing of the operation 

especially in the case of insufficient participation of the EVs to discharge their energy during 

the scenario of reduced PV output. It is noted from the results that this has been achieved in 

rapid and robust manner without impacting the load levels. It should be noted that the 

parameter optimization of the developed hybrid algorithm allows more participation from the 

AC side. Since large variations in the generator output may lead to frequency fluctuations, 

optimization of the parameters is required in this work. This is achieved by optimizing those 

parameters using the developed APOPSO algorithm. As can be shown in fig. 4.14 (c), the 

optimized parameters reduced the fluctuations significantly in comparison with case of non-

optimized parameters. Fluctuations in the non-optimization scenario may harm the operation 

of the hybrid microgrids and could trigger false operation of the over/under frequency 

protection relays. The success of the hybrid algorithm in reducing the fluctuations indicate 

its robustness and effectiveness in the hybrid microgrid energy management and control.          

Future work is expected to incorporate algorithms that propose dynamic pricing structure 

to accurately reflect the real-time energy prices as result of control activities in hybrid 

microgrids. Soon, huge participation of EVs as well as privately owned small-scale PV 

systems are expected, and fair pricing structure will be required to encourage more 

participation from consumers sides. The authors of this work propose a new pricing scheme 

that allocate special pricing tariff on electric vehicles that charge considering stochastic 

microgrids operation and energy management [135]. Furthermore, the authors suggest that 

this area of research needs further investigation. Additionally, future work is also anticipated 

in regard with machine learning applications in smart control of power quality problems as a 

result of large adoption of EVs in hybrid microgrids. In such studies, smart control is 

integrated to enhance the voltage fluctuations and harmonics as result of stochastic large-

scale integration of EVs activities on microgrids. 
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Chapter 5 Modeling the Impact of the Bidirectional Integration of Electric 

Vehicles on the Hourly Operation of the Power Distribution Grid 

5.1 Introduction 

Most of the utility distribution feeders are radial where power flows in one direction from 

the substation to the user. The introduction of storage devices like EVs may result in 

revolutionary changes to the distribution system. It could be used as voltage support, provide 

backup power in case of interruption, reduce losses, and defer the need for distribution system 

upgrades [136]. The way the distribution network is connected and operated to provide power 

to a load that changes every minute requires a time analysis to see the effect on the network 

especially with changing household load and Electric vehicle charging and discharging 

timing or in other word demand response. Demand Response (DR) is a term defined by the 

US Department of Energy (DOE) as “changes in electric usage by end-use customers from 

their normal consumption patterns in response to changes in the price of electricity over 

time, or to incentive payments designed to induce lower electricity use at times of high 

wholesale market prices or when system reliability is jeopardized”. According to [137], DR 

is composed of incentive-based programs and price-based programs (time-of-use, critical 

peak pricing, dynamic pricing, and day head pricing). In addition to the popularity of the 

demand response programs which could trigger the interest to acquire the EVs, the 

environmental virtues of operating the EVs are grabbing the attention of the environmentally 

concerned customers, where the level of toxic gases released to the environment will be 

greatly reduced as the EVs’ operation produce zero-emission, albeit this will also be 

depending on the energy grid mix and the efficiency of the charging and discharging process. 

These are just factors that help in driving up the interest on the EVs, where there are over 3.2 

million EVs as of 2018 worldwide, accounting for almost 2% of the current car market. This 

number is projected to surpass 14% of the market by the year 2030 [138]. Such high growth 
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in the electrification of the transportation sector requires extensive research and evaluation 

to measure the capability of the current grid to withstand such increase. Therefore, we aim in 

this work is to provide dynamical modelling of various scenarios, considering real-life feeder 

and data information, to study the capability of the distribution feeder to welcome EVs 

charging and discharging over the hour without hitting the system voltage limits. The 

organization of this chapter includes a literature review on the past work related to the area 

of EVs integrations, model development of our own work and simulation, testing scenarios 

and results, and a conclusion of our findings. 

5.2 Model Development 

The main goal of this work is to measure the impact of V2G technology on a distribution 

system, which mainly consists of the following steps: 

1- Data collection: the first step of the methodology is the collection of specific system 

and feeder information. For this study we will use IEEE34 bus test feeder. 

2- Feeder modeling and validation: build computational models of representative 

feeders and verify that they match the actual loads, voltages, etc. using OpenDSS. 

3- Determination of EV charging scenarios: to determines when, where and how much 

EV load is expected. 

4- Feeder analysis and simulation methodology: to calculate power flows incorporating 

24-hr load data and EV penetration levels using OpenDSS. 

5- Results analysis and mitigation: the impacts on electric and financial variables are 

analyzed. 

The following subsections presents more details about the process of building our model 

in the OpenDSS dynamical software. 
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 Open Distribution System Simulator (OpenDSS) is a comprehensive system simulation 

tool for electric utility distribution systems. It is implemented as stand-alone executable 

program or can be driven from a variety of existing software platforms the support a 

component object model (COM) interface. The executable version has a basic text-based user 

interface on the solution engine to assist users in developing scripts and viewing solutions. 

The program supports frequency domain analyses commonly performed for utility 

distribution systems planning and analysis. In addition, it supports many new types of 

analyses that are designed to meet future needs, many of which are being dictated by the 

deregulation of utilities worldwide and the initiation of the “smart grid” technologies. The 

software is available to download from the website of the Electric Power Research Institute 

[EPRI] website [139]

 Many of the software features were intended to support distributed generation (DG) 

analysis needs. Other features support energy efficiency analysis of smart grid applications, 

power delivery, and also harmonics analysis. The OpenDSS is designed to be expandable so 

that it can be easily modified to meet future needs. The other way to use OpenDSS is through 

the COM interface, the user is able to design and execute custom solution modes and features 

from an external program and perform the functions of the simulator which include definition 

of the model data. Thus, the OpenDSS could be implemented entirely independently of any 

database or fixed text file circuit definition. For example, it can be driven entirely from a MS 

Office tool through the visual basic for application (VBA), as we will see in the analysis of 

this study or from any other 3rd party analysis program that support COM interface. Users 

commonly drive the OpenDSS with MATLAB program, Python, C+, R, and other languages. 

This provides powerful capabilities and excellent way to show the results graphs. An 

overview of the system simulation engine and interconnection with other programs are shown 

in fig. 5.1.

5.2.1. The Open Distribution System Simulator (OpenDSS) Software
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Figure 5-1 The OpenDSS model interface. 

 

 

5.2.2. IEEE 34 bus Model Development using OpenDSS 

The 34-bus test feeder model, shown in fig. 5.2, is modeled in this work using OpenDSS 

simulator. The system simulation results comparison between OpenDSS and another 

software named Electrical Distribution Design (EDD) and IEEE standard results are 

presented in table 5.1 [8]: 

 
Figure 5-2.  The IEEE34 Bus system Layout. 

Table 5-1: IEEE34bus Model Steady State Data Comparison 

 OpenDSS EDD Standard 

Total Power MW 2.03247 2.04317 2.0428 

Total Reactive Power Mvar 0.28252 0.29214 0.29025 

Power Losses MW 0.270494 0.273 0.273049 
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Reactive Losses Mvar 0.0341963 0.03696 0.034999 

Phase 1 Current A 51.507 54.15 51.58 

Phase 2 Current A 44.202 46.81 44.57 

Phase 3 Current A 40.593 42.98 40.93 

 

It is worth mentioning that the EV are modeled as a dynamic kW load in the system in 

the OpenDss. The following equation better describe the amount of energy evaluated by the 

EV charging and discharging process as a dynamic load which was assumed in our 

modelling: 

E𝑖,ℎ  = (1 − d𝑏)E𝑖,ℎ−1 + (𝑛𝐶 P𝑖,ℎ
𝐶 − 

P𝑖,ℎ
𝐷

𝑛𝐷
)∆𝑡 (5.1) 

Where E𝑖,ℎ is the amount of energy consumed as load by an EV i  at an hour h, d𝑏 as the EV’s 

self-discharge rate,, 𝑛𝐶  and 𝑛𝐷 as both the charging and discharging efficiency which could 

be modeled in the software, P𝑖,ℎ
𝐶 and P𝑖,ℎ

𝐷 are the charging and discharging KW of EV i at 

time period h, respectively. While ∆𝑡  is the time step, modeled in hours. 

5.3 OpenDSS Model Testing Scenarios and Results 

In order to test the system and study the effect of adding charging and discharging EVs 

to the system, we define the following cases: 

Case 1: Random EV Load Increase: increase each load (spot or distributed) until bus 

or system limit (transformer loading, voltage, and line limit) is reached. 

Case 2: Distributed Incremental Increases: Increase loads throughout the system in 

percentage proportion to the load at the bus (spot load only) 

Case 3: Random EV load Charging and Discharging Increase: In addition to the 

charging at the spot bus, this case will have V2G loads at the spot bus to see the maximum 

kW that can be discharged to the system. 
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Case 4: Distributed 10% incremental increase of the charging and discharging 

loads: Increase charging and discharging loads throughout the system in percentage 

proportion to the load at the bus (spot load only). 

In order to decide accurately the additional EVs that we can add to the system each hour, 

the following limitations are considered during different scenarios studied in this work: 

 Transformer Loading Limit:  current rating of 100% (normal), current rating of 125% 

(emergency). 

 Voltage limit: minimum and maximum voltage levels are 0.92 pu to 1.08 pu 

respectively. The limit is calculated on 120 V base as 110-130 V. 

 Line Loading Limit: 100% loading condition. 

 

The above criteria are used in determining the level of incremental EVs that can be 

connected to the test systems. After analyzing different loading scenarios using OpenDSS, 

we found that the most sensitive parameter is the line voltages since the lines current in the 

range of 50A which represents around 25-30 % of the lines’ capacity, whereas the most 

sensitive buses voltages are shown in table 5.2: 

 

Table 5-2: Monitored Buses Voltages 

Bus Base kV  Phase 1  pu Phase 2  pu Phase 3  pu 

814 24.9 0.94683 0.99543 0.98993 

852 24.9 0.96451 0.96954 0.9644 

890 4.16 0.92336 0.92513 0.91833 

 

The buses above have the lowest voltage profile and as we test our system and add the 

electric vehicles to the network, these buses should be monitored closely to insure stable 

operation. In the original case without any additional load, we notice that bus 890 have low 
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voltage profile and need voltage support through shunt capacitors or voltage regulator. As we 

test the system for different scenarios, we will stop at the next low bus voltage level to see 

the amount of additional EVs that can be added to the system.    

5.3.1. Load Profile of the Distribution Feeder 

In this work we take into account that the load changes based on the daily time of use 

and this will affect the amount of EVs that can be added to the system at different time of the 

day. The way to test the model in OpenDSS is to increase the loads at the specified buses 

according to the cases. Once the system reach the maximum limit, the maximum amount of 

EVs Charging/ Discharging for each hour of the day can decided and the amount of EVs to 

be connected at that duration is calculated as well. As load change in fig. 5.3, the substation 

power output will vary as expected. The figure shows the substation single-phase power and 

the total three phase power.  

 

Figure 5-3. A daily power demand curve for a typical utility in California  

 

We model the system using OpenDSS by utilizing the COM feature at the simulator to 

communicate with MS excel and Visual Basic Software to capture the data each hour and 

arrange it in a readable format and plot each transformer, line, bus and load data. Fig. 5.4 
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shows the way we introduce the demand load and EV charging/discharging demand and read 

the results.  

 
Figure 5-4. The simulation block diagram in OpenDSS 

In addition to the amount of kW that can be added to the system, the cost of the additional 

charging and discharging kW can be calculated to see the effect of the time of use rate to the 

hourly charging and discharging loads. For a more realistic simulation of our work, we will 

use a time-of-use (ToU) rate for the Miami-Dade County in South Florida [140, 141], 

established by Florida’s Public Service Commission to bill the EVs for their charging and 

discharging activities. We have made an assumption that the rate for discharging power to 

the grid is going to be the same rate. This assumption might not be accurate but for the 

purpose to complete the analysis until the final prices are issued by Southern California 

Edison (SCE). The price of the additional kW will be shown after each case daily power 

curve. The time-of-use rate used in this study is shown in table 5.3. 

Table 5-3: Florida's Time of Use Rates. 

Season, Date 

and Time 

Summer on peak Summer off peak Winter on peak Winter off peak 

June, 1 to October,1 
June, 1 to 

October,1 
October,1 to June, 1 

October,1 to June, 

1 

12:00 PM to 9:00 

PM 
all other time 

12:00 PM to 9:00 

PM 
all other time 

Total 

($/kwh) 
0.48964 0.17177 0.35203 0.1667 
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5.3.2. Model Testing Scenarios and Results Analysis 

Fig. 5.5 shows sample of the network lines loading for nodes node 806 to node 808. The 

utilization is very low and the only option to measure the effect on the system is the voltage 

profile limit of the line not the loading limit.   

 

 

Figure 5-5. Buses 806-808 Line Loading Capacity. 

 

Case 1: Random EV Load Increase: Increase each spot load until bus or system limit 

(transformer loading, voltage, and line limit) is reached: 

For this case study, we worked on several buses on the system to analyze the effect of 

adding EVs as random load increase on the system. For convenience of our work, we show 

the results of work at spot bus 840. First, we start to increase the amount of additional EVs 

charging load to the bus until one of the three buses 890, 852 and 814 reach the lower limit. 

Table 5.4 below shows the amount we added to the bus and the per unit voltage at the three 

buses, while table 5.5 shows the overall results when model this scenario on several load 

buses. As results show, a maximum of 500 kW can be added to the bus without violation at 

buses 852 and 814.  Also, one of the unique features of our study is that we were able to 

visualize the change of voltage level on each bus for each hour as can be seen in fig. 5.6 

which presents the voltage profile of the load bus 890. 
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Table 5-4: Case 1 Maximum Additional kW on Bus 840 During Peak Hours 

Bus Base case Additional 250 kW load on bus 840 Additional 500 kW load on bus 840 

890 Below 0.92 Below 0.91 Below 0.90 

852 No Violation No Violation 0.92 

814 No Violation No Violation 0.92 

 

 

Figure 5-6. Case 1-1 Bus 890 Voltage (in PU) per Each Hour in the day 

 

For instance, we assume that load bus 890 requires voltage support by adding shunt 

capacitor or voltage regulator if we consider the next bus to violate and hit system limit, the 

additional power would be 400 kW. As far as this study, we will not add any additional EV 

to bus 890 since the bus voltage will be very low (0.79). While other buses performs better 

as an ideal location for charging/discharging EVs, namely load bus 830, where the maximum 

power that can be added in period of peak hours (from hour 14 to hour 18) is 600 kW, which 

is equivalent to 75 EVs with level-2 charging and 300 EVs with level-1 charging. The plan 

now is to dispatch the EVs as the demand change. The system demand during the off-peak 

periods is low and the system can have additional charging EVs power added to the system. 

For each hour of the day, we will start to increase the EVs charging load to the buses until 

we reach the system limit. Fig. 5.7 shows the number of EVs charging into the distribution 
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grid, while fig. 5.8 shows the costs for adding them based on our use of SCE’s time-of-use 

rates. 

 
Figure 5-7. Case 1: Number of EVs on Bus 840,860,848 and 844. 

Table 5-5: Summary of Case 1 buses Maximum Additional Load. 

Spot Load Bus Additional load Bus 890 Voltage pu Bus 852 Voltage pu Bus 814 Voltage pu 

Bus 840 Original Case below 0.92 NO Violation  NO Violation  

250 kW below 0.91 NO Violation  NO Violation  

500 kW below 0.90 0.92 0.92 

Bus 860 Original Case below 0.92 NO Violation  NO Violation  

250 kW below 0.90 NO Violation  NO Violation  

500 kW below 0.89 0.92 0.92 

Bus 848 Original Case below 0.92 NO Violation  NO Violation  

250 kW below 0.90 NO Violation  NO Violation  

500 kW below 0.89 0.92 0.92 

Bus 844 Original Case below 0.92 NO Violation  NO Violation  

250 kW below 0.90 NO Violation  NO Violation  

500 kW below 0.89 0.92 0.92 

Bus 890 Original Case 0.92 NO Violation  NO Violation  

10 kW 0.91 NO Violation  NO Violation  

250 kW 0.83 NO Violation NO Violation 

400 kW 0.79 0.92 0.92 

500 kW 0.77 0.91 0.92 

Bus 830 Original Case 0.92 NO Violation  NO Violation  

250 kW 0.91 NO Violation  NO Violation  

500 kW 0.9 NO Violation NO Violation 

600 kW 0.89 0.92 0.92 
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Figure 5-8. Case 1: Charging Cost on buses 840,860,848 and 844. 

 

Case 2: Distributed Incremental Increases  

For this case, we will start to increase the charging load at the spot buses all together at 

the same time 10% of the bus itself loads. The increment will be for all spot buses at the same 

time. For the peak hours, the maximum load that can be increased is as in the following table 

5.6 until the system limit is reached: 

 

Table 5-6: Case 2 Maximum Charging Load kW During Peak Hours. 

Bus 10% 20% 30% 40% 50% 

890 0.91 Below 0.91 Below 0.90 Below 0.89 Below 0.88 

852 No Violation No Violation No Violation No Violation Below 0.92 

814 No Violation No Violation No Violation No Violation Below 0.92 

 

We can increase the spot loads 40% of their original load without any violation on 

buses 852 and 814. Using similar process to find the amount of additional load in the previous 

case, the additional changing load throughout the day was analyzed as well in this chapter. 

Fig. 5.9 shows spot buses 844 and 990 considering additional loads. After adding the different 
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amount of kW at different times of the day, the voltage level at the monitored buses 852 and 

814 is almost constant above 0.92 as shown in fig.5.10. 

 

Figure 5-9. Case 2: Spot Buses 844 and 890 Additional Loads (kW). 

 

 
Figure 5-10. Case 2: Bus 852 Voltage Profile (in Pu) after adding the charging load. 

Case 3: Random EV load Charging and Discharging Increase 

In addition to the charging at the spot bus, this case will have discharging (V2G 

technology) loads at the spot bus to see the maximum kW that can be discharged to the 

system. Usually, the discharging will take place when the energy cost is high and during the 

peak hours. For our study, we consider the discharging process is going to be during the 

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Spot Buses 844 and 852 Additional Loads (kW)

Bus 844 Bus 890

0.85

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bus 852 Voltage Profile

Va Vb Vc



 

62 

 

peaking hours to support the system during high load in addition to the maximum charging 

loads at the spot buses. The results that we obtain should be considered as a good data that 

can be used for short-term operation planning to quantify the amount of the kW that can 

uphold the system during these hours. Table 5.7 shows the maximum charging and 

discharging during the peak hours before any violation to the buses' voltage level. It is worth 

mentioning that for the following cases the discharging of the EVs will take place while the 

maximum number of charging EVs is connected to the system at the same time. This will 

allow us to see the two bounders of charging loads and discharging loads without reaching 

the lowest and highest system voltage limits. As the demand change during the day the 

maximum additional charging and discharging load each hour for each spot bus is changed 

as well based on the grid’s needs. Fig. 5.11 shows the additional charging/discharging and 

number of EVs connected to load bus 830 (provided as an example for the results obtained 

in this case). Such findings show that the idea of peak shifting could be valuably implemented 

with the kW discharging of the EVs during these hours, to be charged at other times in the 

day at predetermined agreements with the utilities.  

Table 5-7: Case 3 Maximum Charging/Discharging Load kW During Peak Hours. 

Spot 

Load 

Bus 

EVs 

Charging 

kW 

EVs 

Discharging 

kW 

Violation  

Bus 840 

 

500 250 No Violation 

500 495 No Violation 

500 500 (Above 1.08pu ) Violation on Buses 

832,834,842,840,844,846,848,858,860,862 864 

Bus 860 500 250 No Violation 

500 495 No Violation 

500 500 (Above 1.08pu ) Violation on Buses 

832,834,842,840,844,846,848,858,860,862 864 

Bus 848 500 250 No Violation 

500 495 No Violation 

500 500 (Above 1.08pu ) Violation on Buses 

832,834,842,840,844,846,848,858,860,862 864 

Bus 844 500 250 No Violation 

500 495 No Violation 

500 500 (Above 1.08pu ) Violation on Buses 

832,834,842,840,844,846,848,858,860,862 864 

Bus 830 600 250 No Violation 

600 500 No Violation 
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600 750 No Violation 

600 810 No Violation 

600 815 (Above 1.08pu ) Violation on Buses 

832,834,842,840,844,846,848,858,860,862 864 

 

 

Figure 5-11: Case 3: Additional Charging/Discharging Load and number of EVs on Bus 830. 

 

 

Figure 5-12. Case 3: EVs Charging and Discharging Cost on Bus 830. 

 

Case 4: Distributed 10% Incremental Increase of the Charging and Discharging Loads 

For this case, we increase EVs’ charging and discharging kW throughout the system in 

percentage proportion to the load at the bus (spot load only).  As we saw from case 3, the 

system will reach the maximum limit if we increase the charging load 40% of the bus total 
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load at certain locations. Table 5.8 shows the results of modeling the distribution feeder in 

this scenario. For EVs discharging loads, we will start to increase the discharging load at the 

spot bus until we reach the high limit (1.08 pu) of the voltage level. Such findings allow us 

to quantify the amount of EVs penetration that can be deployed (with previous agreements) 

into the system as controllable loads that provide local voltage support to help the operators 

in minimizing the congestion during peak hours, while enabling more EVs to charge during 

those hours without causing any voltage dips. Table 5.9 shows the maximum percentage 

amount increase in discharging load which is 80% of the spot buses loads. For the different 

hours of the day other than the peak hours, the charging and discharging loads are simulated 

in our work. Figures 5.13 and 5.14 shows the results for load buses 860 and 844. 

Table 5-8: Case 4 Maximum Charging Load kW During Peak Hours. 

Bus 10% 20% 30% 40% 50% 

890 0.91 Below 0.91 Below 0.90 Below 0.89 Below 0.88 

852 No Violation No Violation No Violation No Violation Below 0.92 

814 No Violation No Violation No Violation No Violation Below 0.92 

 

Table 5-9: Case 4 Maximum Charging/Discharging Load kW During Peak Hours. 

Distributed increase 

on Spot Buses 

EVs Charging 

Violation  

EVs Discharging Violation 

10% Charging and 

10% Discharging  

No Violation No Violation 

20% Charging and 

20% Discharging  

No Violation No Violation 

30% Charging and 

30% Discharging  

No Violation No Violation 

40% Charging and 

40% Discharging  

No Violation No Violation 

50% Charging and 

50% Discharging  

Violation on 

bus 814 

No Violation 

40% Charging and 

60% Discharging  

No Violation No Violation 

40% Charging and 

70% Discharging 

No Violation No Violation 

40% Charging and 

80% Discharging 

No Violation No Violation 

40% Charging and 

90% Discharging 

No Violation (Above 1.08pu ) Violation on Buses 

832,834,842,840,844,846,848,858,860,862 864 
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Figure 5-13. Case 4: Additional Charging/Discharging Load and Number of EVs on Bus 860. 

 

Figure 5-14: Case 4: Additional Charging/Discharging Load and Number of EVs on Bus 844. 

Table 5-10: Summary of the different Cases Charging and Discharging Costs. 

  Total 

charging 

Energy 

(kWh) 

Total 

dischargin

g Energy 

(kWh) 

Net 

Energy 

(kWh) 

Total 

charging 

cost ($ US) 

Total 

dischargin

g cost ($ 

US) 

Net cost ($ 

US) 

Case 1 buses 

840,860,848,844 

26,100 0 26,100 6,183.8 0 6,183.8 

Case 1 bus 830 31,320 0 31,320 7,420.56 0 7,420.56 

Case 2 26,100 0 26,100 6,183.8 0 6,183.8 

Case 3 21,861.36 0 21,861.36 5,179.63 0 5,179.63 

Case 4 buses 

840,860,848,844 

26,100 2,295 23,805 6,183.8 -1,123.724 5,060.07 

Case 4 bus 830 31,320 4,050 27,270 7,420.56 -1,983 5,437.56 

Case 4 21,861.36 4,198.5 17,662.86 5,179.63 -2,055.806 3,123.82 
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5.4 Conclusions 

This chapter presents a study to model the impact of the Electric Vehicle integration on 

the hourly performance and operation of the distribution grid. The system’s sensitive 

parameter to identify violation in our scenarios was the voltage limit not to exceed or degrade 

from the 8% limit of the bus voltage level. In our study, we modeled the IEEE 34 test system 

considering all of its parameters such as transmission line parameters, voltage, line loading 

capacities and frequency, transformers connections, as well as   considered a real-life 24 hour 

load data to present results that simulate a real-life outcomes. We took into consideration the 

financial variables to model the pricing of the EVs charging throughout the day based on 

defined TOU rates for each season of the year. The results show the expected number of EVs 

that could be connected to charged, or discharge as in cases 3 and 4, in each node of that test 

system, along with the projected costs to do so. The results show the locations in the system 

that in need voltage support throughout the charging process in each hour of the day, as well 

as pointing to the most ideal locations to potentially host a charging station to serve the test 

feeder, as our study quantifies the approximate number of the EVs that could be served on an 

hourly basis without causing any violation during the normal daily operation. Table 5.10 

below summarize the different cases total charging and discharging energy of the day and 

summarize the total cost for charging and discharging for each case. We can conclude that 

the additional load on bus 830 for case 1 and case 4 seems to be the best place to have the 

highest possible energy and eventually the highest number of Electric Vehicles.  
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Chapter 6 Real-Time Metadata-Driven Routing Optimization for Electric Vehicle 

Energy Consumption Minimization Using Deep Reinforcement Learning and 

Markov Chain Model 

6.1 Introduction 

Rapidly improving EV technologies promise to overcome many concerns related to the 

EV’s battery capacities and energy management. The latter include extending the driving 

range of the vehicle and reducing the need for charging away from the customer’s home.  

Unlike traditional methodologies, reinforcement learning (RL) is an artificial intelligence 

technique that has been widely used in solving many scientific problems in recent years [59, 

60]. The concept of Q-learning was first introduced in [61], and a Deep Q-learning Network 

(DQN) is an extension to it [62]. Applications of RL has been widely employed to perform 

studies related to EVs such as in proposing efficient smart charging algorithm [63], as well 

as energy management and control strategies for hybrid and pure electric vehicles [64, 65]. 

In addition to the battery’s energy management, RL techniques and methodologies have 

covered a wide range of topics related to power and energy engineering, such as electricity 

market trading in smart grids [66], energy production scheduling [67], and multi-agent 

distributed energy management of a microgrid [68]. RL has been extensively investigated in 

the automotive industry in recent years. The authors of [64] employed RL to measure an 

adaptive optimal energy control strategy based on different driving schedules. They tested 

the learning ability of HEVs and verified via simulation the impact on fuel efficiency. They 

made comparisons of their developed strategy with results obtained previously utilizing 

Stochastic Dynamic Programming (SDP). Similarly, based on the Q-learning algorithm, the 

authors of [69] studied a predictive energy management framework for a parallel hybrid 

electric vehicle (HEV). Their results show significant reductions in both fuel consumption 

and computational time.  Additionally, the authors in [70] tested the capabilities of deep 
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reinforcement learning to train autonomous, self-driving automobiles that are aware of other 

elements in their surroundings, such as pedestrians, other vehicles, etc. The probabilistic 

nature of driving patterns of EVs is modeled in many recent works of literature as a Markov 

decision process (MDP). In [71], researchers tested the behavioral response of the stochastic 

charging of an EV station using MDP methodology. In [72] MDP was utilized to model the 

impact of stochastic driving, parking, and charging patterns of EV loads on the local 

distribution grid. Range anxiety is one of the major obstacles in the EVs market. In addition 

to the automotive industry, RL has been a widely used technique in many fields of research 

in recent years, such as in robotic control [73, 74], computer systems applications [75, 76], 

image processing [77, 78], agent-learning systems [79], traffic improvement and coordination 

systems [80, 81], as well as wirelesses and communication networks [82, 83, 84]. 

This chapter develops an RL-based energy consumption minimization strategy to achieve 

an EV routing optimization considering real-life driving environment. This RL study is based 

on evaluating Q-values through the Double Deep Q-Network (DDQN) algorithm to train the 

EV as an agent that aims to choose actions corresponding to best obtained Q-values. This 

eventually leads to extending the vehicle’s driving range. Modeling energy consumption on 

the road has been achieved based on Markov Chain Modeling (MCM) to estimate the energy 

requirements of traveling paths in accordance to input parameters and learning strategy. The 

learning experience is supported with real-time data retrieved from Google’s API platform 

that serves as the source for input information, feeding the agent with real-time status of 

roads. The remainder of this chapter is organized as follows: section 2  illustrates the main 

concept of the RL and MCM applied in this work with the DDQN algorithm; section 3 

presents the structure of our framework of modeling energy management for the EVs routing 

problem; the metadata utilization based on Google’s API; and the application of the RL by 

calculating the reward arrangement in the RL algorithm; and section 4 presents the results 
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obtained based on experimentation and validation of the developed methodology on two 

geographically distinct routes; section 5 concludes the work with final remarks. 

6.2 Reinforcement Learning 

 Deep Q-Learning Network (DQN) 

RL is based on the concept of an agent, an environment, an inferred policy, Π, trajectory, 

a value V, set of actions ai, set of states si, computed Q-values and established rewards R. An 

agent is an entity or unit that performs an action, with the action being any possible move 

that the agent can make within a given environment. The environment only provides a list of 

some possible actions that are self-explanatory, from which the agent can choose a specific 

action depending on its current state.  Depending on the action chosen by the agent, a reward, 

either positive or negative, is initiated by the learning algorithm and the agent receives a 

discounted factor to decrease the effect of the current reward on the agent’s choice. This 

discounted factor is denoted as γ, and the closer it gets to unity, the more influence the next 

reward will have on the current state, and vice versa. Furthermore, the reward could be seen 

as feedback that indicates the possibility of failure or success of the action in relation to the 

overall driving experience of the agent. The reward can be either immediate or delayed, 

depending on the agent’s available choices for a specific action. Additionally, a set of Q-

values is generated based on the number of actions considered at each state. The state-action 

relationship is considered a generalized policy iteration and is better described by the 

following equation that integrates both the future and current reward of a given action: 

𝑄𝑖+1(𝑠, 𝑎) = 𝑟𝑖(𝑠, 𝑎) + 𝛾∑𝑃𝑖(𝑠’|𝑠, 𝑎) 𝑄𝑖(�̀�, �̀�)

𝑠̀∈𝑆

 
(6.1) 

Where A is the complete set of possible actions ai  A; si  S is the complete set of 

possible states the agent may experience, with 𝑄𝑖(𝑠, 𝑎) as the Q-value based on them; 𝑟𝑖(𝑠, 𝑎) 
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is the reward function corresponding to ai and si; P(s’| s, a) is the probability of state transition 

between two states, given an action; s’, a’ are the updated next state and next action, 

respectively. In an environment, i.e., roads in a given region to navigate toward a destination, 

the agent can find itself in an instant real situation, known as the state. The agent, presumed 

to be an EV in our study, has the authority to move from its current state to the next state by 

inferring a strategy that achieves maximal rewards/minimal energy consumption, known as 

the travel policy Π.  

This policy determines the next action to be taken by the agent, based on the artificial 

learning provided by the RL algorithm. The information accumulated from the learning 

process influences a long-term reward value (v) of the current travel policy and is denoted as 

vπ(s).  

The Q-value is used to show the long-term benefit of the current state. The concept of Q-

values was first introduced by Watkins in reference [61] as an extension of Asynchronous 

Dynamic Programming (ADP). Q-values give the agent powerful learning capabilities via 

successive evaluations of each action the agent aims to perform. Specifically, the agent and 

the environment interact dynamically, based on discrete time steps, and, at each step, the 

agent receives feedback regarding the current state of the environment. With each additional 

step the agent takes, the next reward ri+1 R is achieved.  

This reward influences the learning process to establish the new state, s’, with a particular 

probability for the transformation between states corresponding to each performed action. 

This mapping constitutes the policy of the agent’s learning process and the sequence of 

actions and states for achieving any reward is known as a trajectory. Fig. 6.1 provides a clear 

illustration of the concept of RL performed in this work. 
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For exploration and exploitation, the agent uses the action-value method via the greedy 

policy to achieve the optimum result by choosing the highest-value actions at each state. The 

following value function grades the states and measures the relative strength of the actions 

based on the weights of the associated Q-values: 

vπ(s) =∑ π(a|s) 𝑄π(s , a)
a′∈ A

 
(6.2) 

  

In a continuous-state environment, we may end up having a very large number of states. 

This leads to the fact that the Q-function may not fully converge, even when we can estimate 

the condition under which it should converge. In such cases, we need to perform 

approximations to allow generalization for the states the agent has not yet visited. The deep 

Q-learning network (DQN) estimates for us the Q-values of these states and continues to 

improve them until optimal solution is found, which happen when the estimation of these 

RL Controller

State Si+1 to
Update SoC,
Geocoding of

Current location

Reward r i+1 to
Update the 

weights

Action ai with
Highest Q-

Learning value

Agent s behavior in the dynamic
enviroment

Figure 6-1. Illustration of the learning process in RL 
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states converges. To properly train the Q-function estimator, a common loss function is used 

as follows: 

𝐿𝑖(𝜃𝑖) = 0.5[𝑔𝑖 − 𝑄𝑖(𝑠, 𝑎; 𝜃𝑖)]
2 (6.3) 

Where 𝐿𝑖is the loss value to be estimated at the ith iteration, 𝜃𝑖 is the parameter of the Q-

function at the ith iteration, and 𝑔𝑖 is the target value at the ith iteration which could be found 

as follows: 

𝑔𝑖(𝑠, 𝑎) = 𝑟𝑖(𝑠, 𝑎) + 𝛾∑𝑃𝑖(𝑠’|𝑠, 𝑎) 𝑄𝑖(�̀�, �̀�; 𝜃𝑖−1)

𝑠̀∈𝑆

 
(6.4) 

To ensure more stability while decreasing the loss function, we deploy a target network 

𝑄𝑖(𝑠, 𝑎) that has the same neural network architecture of the regular Q-value network 

𝑄𝑖(𝑠, 𝑎), but with different parameters. When the DQN algorithm updates the Q-values, this 

target network is updated as well. Then, the updated target network is used to calculate the 

target value as follows:  

𝑔𝑖(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾∑𝑃(𝑠’|𝑠, 𝑎) 𝑄𝑖(�̀�, �̀�; 𝜃𝑖−1)

𝑠̀∈𝑆

 
(6.5) 

The drawback of only using the DQN method is the problem of the overestimation of the 

Q-values. Typically, DQN estimates the Q-value as follows 

𝑄𝑖+1(𝑠, 𝑎) = 𝑟𝑖(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑄𝑖(𝑠
′, 𝑎) (6.6) 

 

Sometimes, taking the highest Q-value to represent the best action at the beginning of the 

training process could be misleading, since we have less information about the states. This 

could even complicate the learning process of the agent especially when non-optimal actions 

falsely give higher Q-values than those provided by the optimal-actions. To solve the 
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overestimation problem, the DDQN algorithm was developed by the authors of references 

[59, 60]. Utilizing the DDQN, we first use the DQN to find the best action for the agent 

corresponding to the highest Q-value. Then, we use a target network to estimate the target Q-

value of the agent taking that action for the next state. Accordingly, equation (6) can be 

rewritten as follows: 

𝑄𝑖+1(𝑠, 𝑎) = 𝑟𝑖(𝑠, 𝑎) + 𝛾𝑄𝑖(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑖(𝑠′, 𝑎)) (6.7) 

 Where 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑖(𝑠′, 𝑎) is the DDQN target network which is used to assess the Q-

value of taking an action, 𝑎, at a state 𝑠′. This adds robustness and stability to the learning 

process and eliminate any potentials for overestimation of the Q-values 

 Double Deep Q-Learning Network (DDQN) 

As we mentioned earlier, the role of the DDQN in this work is to produce a set of actions 

to be taken by the EV in Google API’s environment and arrange the obtained Q-values in 

descending order from highest to lowest for the EV to adopt the action with the highest value. 

While Van Hasselt [60] thoroughly explained the DDQN algorithm, the performance of the 

algorithm was investigated and tested in [142] on the Atari 2600 games console, achieving 

performance close to a human level. Specifically, they built a massively distributed 

architecture that lays the foundation for other applications to utilize the DDQN algorithm, 

based on four major aspects: actors that influence new behavior; artificial learners, stored 

consistently, that are trained based on a previous learning experience; a neural network to 

model a value function in accordance with a behavioral policy; and, eventually, a set of 

continually stored experiences to direct the next step of learners. 

Here, we mainly relied on the DDQN algorithm to model and represent the EV drive’s 

learning experience to achieve optimal energy consumption by routing the vehicle toward an 

alternative path that reduces the vehicle’s energy utilization. Metadata for the region of study 
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in this experiment was acquired from Google’s API platform, as explained in section 3 of 

this work. 

 Operation Modes 

The main mission of the neural network in this work is to allow mapping from Rn to Rm, 

correspondingly from the state, s, to updated 𝑄(𝑠, . ).The input is a two-dimensional vector 

that represents coordinates of the geocoded location of the agent, while the output is an eight-

dimensional vector that contains the generated Q-values representing the possible actions, 

i.e., the directions in front of our agent (North, South, West, East, Northeast, Northwest, 

Southeast, and Southwest). We carefully integrated the hidden layers between the input and 

output to avoid any data trapping. Network depth represents the capacity of our framework, 

and proper modeling of the problem is required, as establishing extra or fewer neurons than 

needed in the hidden layers could lead to significant issues of either over-fitting or under-

fitting. Moreover, misrepresentation of the neurons’ numbers results in trapping the training 

data in extreme simulation times that are impractical [143, 144, 145].  

In this energy consumption minimization framework, the input layer represents the 

metadata information retrieved from Google’s API platform, by means of geocoding that 

comprises the longitude and latitude of the starting location for each segment of the road 

during the trip. It is followed by two connected hidden layers, with the first hidden layer of 

12 neurons connected to the second hidden layer of 10 neurons. Lastly, the output represents 

an eight-dimensional layer of eight actions, which are the directions that are offered for the 

EVs to choose from. In this experiment, we set the drop-out rate to 0.30, and the learning rate 

to 0.1 for every step. It worth noting that the drop-out rate is a regularization factor that is 

used to reduce overfitting and improve generalization in deep learning process. On the other 

hand, learning rate is a factor that controls the speed of the learning process in the neural 

network model. Fig. 6.2 shows the integrated neural network for our framework. It should be 



 

75 

 

noted that the Q-learning algorithm converges, given that two conditions are met. The first 

condition is that the reward levels are bounded, meaning that there exists a positive scalar k, 

such that the absolute value of 𝑟(𝑠, 𝑎) is always less than k, while the second condition is that 

the agent strictly explores all the action-state pairs produced in the learning experience. We 

emphasize that both conditions were met while conducting our experiment.  

 

Figure 6-2. Integrated NN for our developed framework 

 Markov Chain Modeling of Traffic Dynamics 

MCM is a popular method for generating traffic models, which we utilize in this work to 

model EV driving patterns and their corresponding energy consumption. The microscopic 

behavior of the MCM allows us to model the journey and driving possibilities of the EV 

realistically. The performance of the MCM was initially evaluated in [146] for capturing and 

modeling a dynamically complex system. It is also suitable for use with large datasets 

containing millions of data, and hence, it is useful for urban network traffic modeling as it 

can handle a large number of roads. MCM is based on a stochastically discrete process with 

finite states. In a homogenous MCM, these states change probabilistically at each time step. 

The probabilities of transition between these states largely depend on the state of the previous 

time step. 
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Modeling roads and vehicle travel is dynamic and is difficult to estimate properly. 

Consequently, the best way to handle these difficulties in the analysis of complex dynamic 

systems is to perturb them to produce the Markov model for the agent’s travel and energy 

consumption requirements that we can integrate with our RL energy minimization 

framework. As required for any dynamic system, we need to set a reference point to quantify 

the contribution from all involved points in the boundary of study. Such a reference point is 

set up to establish the probability of transition between any two states. We define the region 

of study (G, T) to be a mapping from T: G, where G is a non-empty subset belonging to the 

space T and is partitioned into mutually exclusive and collectively exhaustive connected sets 

{𝑆1, 𝑆2, . . . , 𝑆𝑇}, where 𝑇 is the total number of states. Each set is labeled with a specific state 𝑖 

of the Markov chain.  

To put it succinctly, the Markov chain modeling process starts when the agent moves 

from state 𝑠𝑖 to state 𝑠𝑗, in what is known as a step. Such a move can be continued 

successively, with 𝑃𝑖𝑗 describing the probability of moving between any two states. The 

collection of these probabilities forms the transition probabilities, which in return, establish 

a matrix of associated transitional probabilities, known as the transition matrix 𝑇𝑀 needed to 

model the EV’s drive.  

The drive starts at a particular, pre-defined location (the agent starting position), which 

establishes the initial probability distribution for the MCM process. It should be noted that 

the process could be a standstill in a specific state, which, in this case, will have a probability 

of 𝑃𝑖𝑖 . Generally speaking, when we have 𝑟 states in an experiment, then the ijth element of 

the transition matrix after 𝑛 steps can be found using  

𝑝𝑖𝑗
 = ∑𝑝𝑖𝑘𝑝𝑘𝑗

𝑟

𝑘=1

 (6.8) 
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After calculating 𝑝 and 𝑝𝑛, we normalize 𝑝𝑛 so that the sum of all probabilities equals 1, 

as follows: 

𝑃𝑛,𝑖𝑗  =  
𝑚(𝐴𝑛,𝑖 ∩  𝑇

−1 𝐴𝑛,𝑗)

𝑚(𝐴𝑛,𝑖)
 (6.9) 

∑𝑃𝑛,𝑖 = 1

𝑛

𝑖=1

 (6.10) 

It should be highlighted that the transition matrix 𝑇𝑀 must have no negative entries since 

the sum of probabilities will be added to one, with the probabilities of transitions forming its 

diagonal entries. However, we show in the next section how we deal with negative entries 

that are injected due to the regenerative braking property of the EV. Also, in this work, a set 

of graphs is used to model the EV’s geocode history for each drive and is retrieved from 

Google’s API as described in part 1 of the next section. We assume in our modeling that all 

transition matrices produced are primitive and irreducible. The Mean First Passage Time 

(MFPT), an average factor that assess timescale for a stochastic event to first occur, estimates 

the possible paths between vertexes in each episode in the road randomly [147]. Modeling 

the road of interest can be achieved using Markov chain with vertexes representing specific 

geocodes that resemble intersections on roads. Vertexes 𝑖 and 𝑗 are connected by an oriented 

graph G if there is a road segment between them such that 𝐺 = <𝐺𝑖, 𝐺𝑗> is represented by 

the weights 𝑝𝑖𝑗 if 𝑝𝑖𝑗 > 0. We define the weight 𝑊𝑖𝑗 as the average energy consumed during 

the drive between vertexes 𝑖 and 𝑗, as we will discuss in part 2 of section 3 of this work. 

Path 1

Path 2

Path 3

G 1 G 2 G 3 G 4

Figure 6-3. Example of graph representation considering MCM 
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Segments connect the vertexes whenever there is a drivable path. Fig. 6.3 provides an 

illustrative example of graph modeling, considering MCM. Vertexes 𝐺1, … , 𝐺4 represent road 

points in a region where an EV is driving. The segment 𝐺1𝐺2 is the connecting road between 

geocodes represented as 𝐺1and 𝐺2, which represent the geocodes found in what would be the 

least energy-consuming path, based on the learning experience. It is worth mentioning that 

the main concept in MCM is its description of the actual transition from one node to another 

as a step unit of time. In this work, we modify this concept to represent the energy 

consumption information between these nodes instead, in the form of a unit step of energy 

consumed. We considered in our model the extension of the work in [148, 149]. 

6.3 RL for Energy Management of the EVs 

RL provides a promising learning environment for different EV studies. As mentioned 

earlier, RL focuses on the cumulative return instead of immediate reward. Likewise, the EV’s 

energy management focuses on minimizing the energy consumption of the entire driving cycle. 

As an agent, the EV’s energy management relies on information on its current vehicle power 

demand, battery level, and driving conditions, including speed, road condition, etc.  Similarly, 

RL ensures that the agent only needs the current state knowledge and resultant reward; it does 

not have to acquire prior knowledge of the whole system state. Our RL experiment is based on 

the DDQN utilized in the TensorFlow open library. In this experiment, the EV serves as our 

agent navigating in an environment (Google’s Map platform). The set of actions to be made is 

to choose the best direction in the driving cycle, in accordance with the energy consumption 

minimization requirement in the battery model that is set up for eight choices, as described 

previously.  

The main concept of learning is that the EV, as an agent, randomly starts the drive, providing 

geocodes of its current location as an input layer to the neural network. The two inner layers 

have Rectifier Linear Unit (ReLU) serving as an activation function, with the set of actions 
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gradually reduced as a result of feedback from the DDQN algorithm, which consists of 

arranging decisions (actions) based on their respective Q-values, provided in the output layer 

of the network.  

The amount of energy consumed due to changes of state during the EV’s drive is modeled, 

based on the MCM, as a step unit of energy. Similar changes were made in other studies, where 

the authors in [150], for example, utilized the step unit as a unit of pollution in their modeling 

rather than a unit of time. The GridSearch tool was used for hyperparameter tunning in this 

work. This defines a boundary for each hyperparameter, which values will be tested. Our 

discounting factor and learning rate were set to be 0.85 and 0.1, respectively, in this experiment. 

Losses along the drive train are assumed to be 15%, and only 50% of the energy can be retained 

during deceleration [151]. The effect of the regenerative braking has been carefully considered 

in this study, as described in part 5 of this section.  

 Interaction with Google’s API 

The Google Maps Geocoding API is a service provided by Google to transform any physical 

location into geographical coordinates on a map. We utilize the geocoding API to get the 

navigation geocodes needed in the experiment, from the starting through the destination 

positions. We used both the starting and destination geocodes to construct a rectangular 

boundary on the grid map so that the system allows the EV to navigate only within its 

boundaries. The grid map may not always be a rectangle, given spherical geometry and any 

restriction imposed on the length of the stride, with the stride being the distance of a step 

(segment) the vehicle drives toward its final destination.  

     In our study, the EV is set to move in one of eight possible directions. Therefore, the 

Direction API iteratively provides eight possible navigation instructions to the agent at each 

state. The Elevation API provides the height of each position by using the navigation API 

instruction list geocodes. We highlight that, in the case of an unreachable position on the map 
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(e.g., a lake on the road), then the Direction API will return ‘FALSE’, whereas in cases of a 

reachable position, the route is evaluated by making sure the agent will only navigate within 

the boundary of the grid map utilized. Google’s Roads API provides the agent with real-time 

metadata concerning the road to be navigated, such as imposed speed limits, number of traffic 

signals and stop signs, traffic congestion, etc. Such information is important to determine the 

optimal energy consumption route for our agent throughout the learning process. We also 

highlight that raw traffic data were estimated in this experiment based on the returned “duration 

in traffic” results for each trip provided in Google’s Duration, as access to instantaneous traffic 

data is restricted and hard to obtain. 

 Energy Consumption in the Markov Chain Traffic Model 

As mentioned in section 2, modeling the road of the region of interest can be achieved 

using an oriented graph, where each vertex represents a specific geocoded location, with 

edges (𝐺𝑖, 𝐺𝑗) as the path between each pair of vertexes. We define the weights 𝑤(𝐺𝑖, 𝐺𝑗) 

which correspond to the average energy consumption of the agent’s battery on the ith state 

during the traveling path. These weights can be estimated as follows 

𝑊𝑖(𝑃) =∑
𝑤(𝑣𝑖−1,𝑣𝑖) − 𝛽(𝑣𝑖−1,𝑣𝑖)

𝑤(𝑣𝑖−1,𝑣𝑖)

𝑘

𝑖=1

 (6.11) 

Where i = 1... n, and β can be chosen as the step size in the interval between zero and 

weights 𝑤𝑖. To properly integrate these weights into our problem, we transform the 

transitional matrix TM into another MCM matrix, QM, as follows: 

𝑄𝑀 = (𝐼𝑀 − 𝐷)𝑇𝑀 +𝐷 (6.12) 

Where 𝐷 = diag (𝑤1,.. ,𝑤𝑛), which is a diagonal matrix that has weights 𝑤𝑖= 1, ..., n, is 

the number of vertexes in the grid map, with 𝛪 as the identity matrix of the same dimensions 

of the transition matrix 𝑇𝑀. Since the step unit in MCM is modeled as a step unit of energy, 
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rather than a step unit of time, the energy consumption is calculated according to the driving 

style of the agent. In this work, three phases of driving are assumed: cruising, acceleration, 

and deceleration phases. The sum of energy used is calculated as the integral of the EV 

dynamics considering the three forces, 𝐹𝑎𝑐𝑐, 𝐹𝑟𝑜𝑙, 𝐹𝑎𝑑, together with 𝐹𝑠𝑙𝑜𝑝𝑒. In this 

calculation, 𝐹𝑎𝑐𝑐, is the accelerating force; 𝐹𝑟𝑜𝑙 is the force for overcoming rolling resistance; 

𝐹𝑎𝑑 is the aerodynamic drag force; and 𝐹𝑠𝑙𝑜𝑝𝑒 is the hill-climbing force. These dynamics are 

calculated as: 

𝑊1  = ∫ (𝑚𝑎1 + 𝜇𝑟𝑜1𝑚𝑔 +
1

2
𝜌𝐴𝐶d 𝜈

2 +𝑚𝑔 sin(∅))
𝑥1

0

 𝑑𝑥 (6.13) 

𝑊2  = ∫ (𝜇𝑟𝑜1𝑚𝑔 +
1

2
𝜌𝐴𝐶d 𝜈

2 +𝑚𝑔 sin(∅))
𝑥2

𝑥1

 𝑑𝑥 
(6.14) 

𝑊3  = ∫ (𝑚𝑎2 + 𝜇𝑟𝑜1𝑚𝑔 +
1

2
𝜌𝐴𝐶d 𝜈

2 +𝑚𝑔 sin(∅))
𝑥3

𝑥2

 𝑑𝑥 
(6.15) 

 Where 𝛼 is the EVs acceleration factor; A is the area in front of the vehicle; m is the 

vehicle mass at speed V; 𝜇𝑟𝑜1, ρ, 𝐶𝑑 and g are constants and φ is the incline of the traveled 

path. Table 6.1 presents the parameters of the EV modeled in our experiment, where 𝑥1is the 

traveled distance of the cruising phase; 𝑥2 is the traveled distance at which the deceleration 

process starts; while 𝑥3 corresponds to the total length of the travel path. Such information 

provides accuracy for our modeling, as geophysical metadata and relative limitations are 

reflected in the equations accordingly 

Table 6-1: Parameters of the assumed EV 

Parameter Value 

Gravity (g) 9.81 m/s2 

Air density (P) 1.2 kg/m3 

Rolling resistance (𝜇𝑟𝑜1) 0.01 

Drag coef. (Cd) 0.35 

Area in front of the EV (A) 1.6 
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Acceleration constant (a1) 3.5 m/s2 

Deceleration constant (a2) -3.5 m/s2 

Mass (m) 1,961 kg 

 Value-Iteration Network 

During our simulation, we successfully overcame the issues related to continuous control 

and visual constraints by depending on the approximation model of the Value Iteration 

Network (VIN) planning algorithm illustrated in [152]. Specifically, the author of [152] 

introduced the VI module as a neural network (NN) layer that could encode and enable a 

differentiable planning computation. As highlighted in reference [153], each iteration of the 

VIN module can be assumed to pass the previous of both the value and reward functions 

through both a CNN layer and a max-pooling layer. Considering such an analogy, each 

channel in the CNN layer will correspond to a Q-function to estimate a specific action. 

Similarly, the convolution kernel weights will correspond to weights belong to the discounted 

transitional probabilities. We utilize this concept to develop a VIN structure with 

backpropagation, to improve the learning process and reduce errors in the obtained travel 

policy. As described in fig. 6.4, the input represents an image of the coordinates at the current 

state of the drive. The output produced, based on the attention and observation logic, 

influences the travel policy to ensure robust outcomes. From the input, both the 𝑃𝑖𝑗, state-

transition function, and fr, which is a convolutional neural network (CNN) layer that 

transforms the input grid image into another, belong to the reward, with pixels considered 

reward values. The results from the MCM directly influence the value-function described in 

equation (2). Fig. 6.5 explains further the mechanism of the VI module in our training 

process. Specifically, at each iteration, the module treats the input of the probabilities of 

transitions and reward values from the actions into the CNN layer to influence the value of 

V.  
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As we illustrated, each channel in the CNN layer represents a Q-value corresponding to 

the list of actions produced for the EV. Moreover, the CNN layer provides weights based on 

the discounting factor and then starts the process of the next iteration. This layer arranges the 

actions in accordance with their Q-values, where V then provides feedback signals on 

successive iterations of Z to reach a finalized reward information corresponding to the current 

state of the journey. Once iterations conclude, the final policy values are produced. 

 Battery Model 

The battery model incorporated in our simulation is adapted from [154]. Originally, they 

utilized the battery model in [155], but incorporating an update to include the transient 

response effect after long driving schedules to report an accurate SoC throughout the different 

driving cycles. Studies [153, 156, 157] present fast time factors of lithium batteries during 

driving cycles and are incorporated into the calculation of the state of charge by [157] for 

more accurate representations of battery condition during driving patterns. The SoC, battery’s 

voltage, as well as power losses, can be evaluated using the following mathematical 

formulation: 

𝑉𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = 𝑉𝑜𝑐(𝑆𝑂𝐶, 𝑇) − 𝑖𝑏𝑎𝑡(𝑡) × 𝑅𝑖𝑛𝑡(𝑆𝑂𝐶, 𝑇) + 𝑖𝑏𝑎𝑡(𝑡)

× 𝑅𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡(𝔗𝑠𝑒𝑐 , 𝔗𝑚𝑖𝑛, 𝔗ℎ𝑜𝑢𝑟) 
(6.16) 

where 𝔗𝑠𝑒𝑐, 𝔗𝑚𝑖𝑛, 𝔗ℎ𝑜𝑢𝑟 are multiple time-constant factors of the battery consumption 

behavior with time, with the temperature, number of cycles, and, together with discharge rate, 

have been adapted from [157]. 𝑉𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, 𝑉𝑜𝑐, are battery’s terminal and open circuit voltage 

level;  𝑅𝑖𝑛𝑡, 𝑅𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 are the internal and trainset resistance of the battery; Cbattery and Ibattery 

are the battery’s capacity and corresponding current and is modeled as a current source [158]. 

It is found as follows: 

𝐼𝑆𝑜𝐶 = −𝐼𝑏𝑎𝑡(𝑡)/𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦                                               (6.17) 
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𝑉𝑆𝑜𝐶 = 𝑉𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙/𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦                                   (6.18) 

Parameters used in our simulation study is adopted from table 1 of reference [157]. We 

highlight that the degradation level of the battery itself is not incorporated in our experiment. 

 

Figure 6-4. Representation of the VIN structure of our framework 

 

Figure 6-5. Iterations feedback for the value function 
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 Dealing with Negative Values from Regenerative Braking 

Practically speaking, the diagonal entries in the transition matrix should be only positive 

values, which will not be the case considering the impact of the regenerative braking in the EV 

during the trip as a result of the influence of the weights, which may either lead to zero entry 

on the diagonal or produce eigenvectors that are highly complex to solve. This leads us to 

strictly require the energy summation on any road segment to never produce a zero-entry in the 

diagonal. This can be achieved by introducing a medial matrix that has absolute values of the 

unit step of energy in the traveled path. Accordingly, all the weights are rearranged as follows: 

|𝑊| = 𝑑𝑖𝑎𝑔(|𝑤1|, …… . . , |𝑤𝑛|)   (6.19) 

𝐷 = 𝐼− ∝ |𝑊|−1       (6.20) 

Where α indicates the sign of a change of energy transferred from the vehicle to the network 

and is strictly limited within the range 0 < α < minimum 𝑤𝑖. 

 Application of Reinforcement Learning 

The reward is defined as the relative factor to prioritize the levels of energy consumption 

minimization from the current position to the next in one step for the EV. It should be noted 

that the design of any reward signal is mainly heuristic, aiming to accelerate the learning 

process through providing feedback signals to indicate if desired objectives have been reached. 

We decided to simplify the reward feedback in the algorithm, rather than establishing a 

complex reward function, as this usually will not advance the learning process but will result 

in trapping the agent in local optima. The cornerstone of RL is to allow the agent to navigate 

through different alternatives based on the reward feedback signal received.  

 

 

 

No. of 

Episodes 

No. of Failed 

episodes 
Steps 

Unreachable 

positions 

First Route 140 20 5715 1711 

Second 

Route 
143 18 7226 1501 

 

Table 6-2: Total number of episodes and steps per route 
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The agent starts with an initial state and follows the learning process to achieve the goal 

of optimal energy consumption (+1 reward) while establishing knowledge at the same time 

on how to escape the other set of states (-1 reward) that are presented in its environment.  

Table 6-3: Experimental information and results 

Routes 
Starting 

Geocodes 

Destination 

Geocodes 

Energy 

consumed 

by 

framework 

Energy 

consumed by 

Google’s 

main route 

Energy 

from 

Regenerative 

Braking 

Simulation 

time 

FIU college 

of Engineering 

& Computing 

– Doral’s EV’s 

Charging 

Station 

 

25.768506, 

-80.366891 

25.809732, -

80.331379 

1.9388 

Kwh at 25 

minutes  

2.0548 

Kwh at 19 

minutes 

Negligible 3709 s 

J. Paul Getty 

Museum – 

Ventura’s EV 

Charging 

Station 

 

34.077823,-

118.475863 

34.158980,  

-118.499940 

2.1066 

kwh at 31 

minutes 

2.3548 kwh 

at 22 minutes 
0.211 kwh 2,881 s 

So the reward is multiplied by either 1 or -1 as follows 

𝑅𝑥      {  
1     𝑖𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒

−1     𝑖𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒
   }                 (6.21) 

The discounted sum of rewards is defined using the optimal value of a state(s) and 

calculated as follows: 

𝑉∗(𝑠) = 𝑚𝑎𝑥 𝐸
𝜋

(∑ 𝛾𝑡𝑟𝑡
𝑡=𝑡𝜌
𝑡=𝑡0

)    (6.22) 

Because of uniqueness, its value can be reformulated as 

𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

(𝑟𝑖(𝑠, 𝑎) + 𝛾∑𝑃𝑠’|𝑠,𝑎𝑉
∗(�́�)

𝑠̀∈𝑆

)   (6.23) 

We calculate the optimal control policy as follows: 
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𝜋∗(𝑠) = 𝑎𝑟𝑔max
𝑎
(𝑟𝑖(𝑠, 𝑎) + 𝛾∑𝑃𝑖𝑠’|𝑠,𝑎𝑉

∗(�̀�)

𝑠̀∈𝑆

) (6.24) 

The updated Q-learning algorithm is expressed as 

𝑄𝑖+1(𝑠, 𝑎) ← 𝑄𝑖(𝑠, 𝑎) + 𝛾[𝑟𝑖(𝑠, 𝑎) +𝑚𝑎𝑥𝑄𝑖(𝑠′, 𝑎′)𝑄𝑖(𝑠′, 𝑎′)] (6.25) 

The Q-value is obtained using equation (1), while optimal Q-values are calculated as 

follows 

𝑄𝑖+1(𝑠, 𝑎) = 𝑟𝑖(𝑠, 𝑎) + 𝛾∑𝑃𝑠’|𝑠,𝑎max�̀�
𝑄𝑖 (�̀�, �̀�)

𝑠̀∈𝑆

] (6.26) 

Then, the DDQN target network estimates the Q-value of the action, as follows  

𝑄𝑖+1(𝑠, 𝑎) = 𝑟𝑖(𝑠, 𝑎) + 𝛾∑𝑃𝑖(𝑠’|𝑠, 𝑎) 𝑄𝑖(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑖(𝑠′, 𝑎))

𝑠̀∈𝑆 

 (6.27) 

It is important to remember that we have assumed the discounting factor to be 0.85. 

6.4 Results and Discussion  

Consistent with the energy minimization requirement, the EV optimal routing problem is 

achieved based on the learning experience. Translating this problem within the context of Q-

values, our agent follows the learning process to find a travel policy that maximizes the 

reward of its decisions as a mean of minimizing energy consumption throughout the trip. 

Through the MCM process, we represented the dynamics of the traveling path as a Markov 

chain, influenced by 𝑝𝑛 that are updated throughout the drive to reflect energy consumed at 

each path between two vertexes. Our experiment protocol is established based on DDQN. 

The EV is evaluated over 140 episodes of the drive it was trained on, where each episode 

represents a complete set of steps, states and rewards derived from the agent-environment 

interaction. The agent was allowed to navigate until the end of each segment of the road or 
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was terminated if violates any restrictions placed on episodes. Such restrictions may be 

domain-specific, like violating several allowed steps per episode, having already achieved 

the objective of driving that segment optimally, or simply returning FALSE due to an un-

derivable path option (e.g., flooding or a permanently closed road, among others).  

As the agent is a purely electric vehicle, the only source available to its drive is the energy 

stored in its battery. Therefore, our objective in training the agent is to find the optimal path 

that requires least energy consumption to get the agent to its final destination, by extending 

the driving range of the vehicle as much as possible. However, we emphasize that some routes 

may actually result in more drive time for the EV’s owner. Therefore, the duration of the 

drive is neglected in our study, assuming that the EV driver’s main concern is to reach the 

charging location with the most optimal energy. Two routes have been selected to test the 

accuracy and strength of our developed energy consumption minimization framework. The 

first route starts at the College of Engineering and Computing of the Florida International 

University (FIU), Miami, Florida and the destination is set as an electric vehicle charging 

station located nearly six miles away, in Doral, Florida. The second route was chosen in a 

location that exhibits different geographic characteristics, to add more credibility to the 

testing of the developed strategy. It starts at the famous J. Paul Getty Museum, located at a 

hilltop site in the Santa Monica Mountains in West Los Angeles, California. The destination 

is set as a charging station located 5.8 miles away in Ventura, California. The geocodes of 

the starting and ending locations of each route are given in table 6.2, whereas Table 6.3 shows 

the total number of episodes and steps obtained during the simulation of both routes. The 

type of car used in both experiments is assumed to be a Tesla V, and its parameters are shown 

in Table 6.1 in part 2 of section 3. We assume 200 meters as a length of stride to evaluate the 

energy needed to travel between any two vertexes in the grid map, with no more than 80 steps 

within an episode; otherwise, it will be considered an unreachable position and thus labeled 
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as a failed step. The battery degradation level has been ignored in this study, as the focus of 

this study is on finding optimal routing to minimize the energy requirements of the EV. 

Specific features of the dynamic environment, such as time, location and route, could be 

different from one experiment to another. It should be noted that the performed date and time 

for these trips were April 25th at 4:30 PM for each location. It is also of interest to highlight 

that the energy for internal utilization (e.g., using the air conditioner in the car during the trip) 

has been ignored in this experiment. 

The simulation was carried out in an extended Python environment, with TensorFlow, 

NumPy, and Pandas library requirements, at the FIU energy systems research laboratories. 

The input data for this simulation were the current geocodes for each vehicle, which provided 

the physical context around the vehicle and correspondent data related to the road (e.g., 

elevation, height, traffic flow, and allowed speed, among other factors). These data were 

imported into the simulation directly from Google’s Map platform, where a combination of 

APIs and Software Development Kits (SDKs) allow retrieval of information from Google’s 

map systems. Also, we highlight that traffic information and data were not easily obtained, 

as we had to query the Google’s Directions API every time during the simulation to estimate 

the traveling time for each route considering real-time traffic conditions. The simulation takes 

into consideration the energy consumption for each state during the vehicle traveling, and 

then produced the results for the best optimal route that saves energy the most during the 

developed trip. Then, the results are compared with those obtained when strictly imposing 

Google’s suggested route on the vehicle. Fig. 6.6 and Fig. 6.7 show the consumed energy 

throughout the trip, based on our framework versus Google’s suggested routes for the trips 

taken in Miami, FL, and Los Angeles, CA, respectively. The results show that, in both 

simulation scenarios, the EV can reach its intended destination with lower energy than the 

main route developed by Google Maps, by 5.89% and 11.82%. The reason for such 
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differences in the reported results is due to the significant temporal and spatial differences at 

each location, which influence the level of energy consumption.  

 

Figure 6-6. Energy consumption of the first route by the developed framework vs. Google’s suggested 

route. 

 

Figure 6-7. Energy consumption for the second route by the developed framework vs. Google’s suggested 

route. 
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The results of both trips are presented in Table 6.3. It is noted that no detectable amount 

of energy was produced as a result of the regenerative braking mechanism, as the value 

recorded in the first route was trivial, while we can mark 0.211 kWh regenerated energy in 

the second route experiment. This amount of reproduced energy is attributed to driving 

downhill to reach Ventura from the hilltop location of the Getty Museum. We emphasize that 

more energy might have been consumed if the route had been in the opposite direction, such 

that if the drive was toward the museum instead of away from it. Based on 140 episodes of 

simulation, fig. 6.8 and fig. 6.9 present the level of reward returns as feedback that influenced 

the drive of the agent in the two routes. The reward value is influenced by the number of 

steps received by the learning experiment, returning negative values whenever there is a 

failed episode. Furthermore, the returned reward presented in fig. 6.8 and fig. 6.9 provides 

insight into the level of benefits of each action taken by the EV at each state throughout the 

trip; it shows the accumulated sum achieved for each step of the travel policy, based on the 

discounted rate set earlier, 𝛾, at each time-step t.  

 

Figure 6-8. Reward details per number of steps in the first route Framework vs. Google’s suggested route. 
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We highlight that the produced rewards of the experiment show low variation, which is 

an indication of the robustness of our developed framework in executing actions within the 

timeframe of the experiment. However, we believe that the limitation of the number of 

episodes per experiment, due to the highly constrained access to Google’s API platform, has 

greatly restricted our ability to perceive variant rewards. It is of note that, as the training 

process advanced, the random behavior decreased significantly, as shown in fig. 6.10. 

This has an immediate influence on the obtained reward, as the trend of the returned 

rewards indicates more positive outcomes and less negative values that represent failed steps. 

It is also noteworthy that the agent starts the navigation on a limited random action basis, but 

the impact of the learning process reduces this randomness effectively, as fig.6.10 shows for 

the first route. Throughout the journey, it is observed that the level of SoC improves with the 

improving certainty of actions taken as a result of improvement in energy consumption 

retained in the battery. 

 

Figure 6-9. Reward returns per number of steps in the second route. 
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Figure 6-10. SoC vs. probability of taking random actions 

 

6.5 Conclusion  

     An energy minimization framework was developed in this work, based on 

reinforcement learning, to optimize the energy consumption of EVs. The main concept of 

reaching optimal decisions for the EV movement is achieved based in on the deep 

reinforcement learning. The DDQN was utilized in order to overcome any potential 

overestimation of Q-values produced from the target network. A carefully integrated but 

appropriate neural network was designed to provide feedback to the agent as a means of 

optimizing the travel policy. For the EV’s traffic dynamics, we utilized the MCM concept to 

model each part of the roads in a sequenced manner, based on successive portioning. To 

verify the developed framework in this work, two experiments were conducted considering 

two routes of similar length, but at locations that exhibit different geographic characteristics. 

Both experiments were set at a specific time and date, assuming limited SoC of the EV’s 

battery. The results of the simulations show that the energy consumption based on the 
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developed framework is considerably lower than when following the main routes developed 

by Google Maps, for each journey. Additionally, we considered the journey of the EV to be 

at continuous states, and the transitional probabilities are updated throughout as the agent 

considers real-time data absorbed into the framework from the Google Maps Platform. It is 

worth mentioning that a greater number of occurrences would be desirable to produce more 

accurate results. However, this would have resulted in an extremely long simulation time, 

possibly extending to days, in addition to which restrictions from Google’s API platform 

occasionally interrupt the simulations. 
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Chapter 7 Dynamic Real-Time Pricing Structure for Electric Vehicles Charging 

Considering Optimal Microgrids Energy Management System 

7.1 Introduction 

Large-scale integration of Electric Vehicles (EVs) is one of the key solutions to meet 

primary environmental goals, such as reducing greenhouse gases through offering low- or 

free-emissions alternative transportation to the conventional vehicles [159]. However, this 

will undoubtedly lead to add extra burden on the electrical infrastructure. In addition to the 

high-level uncertainty involving the charging activities, the presence of small-scale stochastic 

renewable energy sources adds complexity to the energy management process and the 

establishment of fair pricing at the grid level [160, 161, 162]. Such uncertainty leads to either 

overestimation or underestimation of the real energy prices, as non-EVs owners may have to 

bear extra financial burdens, although they may be participating effectively in demand-side 

programs [163, 164]. 

     To the best of our knowledge, no research work has considered a pricing structure that 

allocates the responsibility of any additional charges that may arise due to EVs charging 

during peak demand to the EVs owners. This work proposes a dynamic, real-time energy 

pricing structure adopted with an optimal energy management system to offer a balanced and 

fair energy consumption and billing. The concept of fairness meant in this work is to allocate 

the financial responsibility of charging EVs during peak demand hours to their owners only. 

This scheme is fairer than increasing the energy prices for all consumers, of whom many of 

them may be participating effectively in demand-side programs that aim to reduce bills via 

efficient energy consumption during peak hours. Moreover, the developed pricing structure 

considers various stochastic dynamics of the microgrid operation, such as forecasting day-

ahead solar energy generation, projecting EVs connectivity, and mobility models based on 

Markov Model. It also estimates the microgrids' daily energy consumptions based on 
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adaptive Artificial Neural Network (ANN), with real-time changes of energy prices based on 

historical data. The developed multi-agent framework allows every microgrid to broadcast 

fair energy prices to all of its consumers, including EVs owners who would like to charge 

their vehicles when the microgrid is congested. The developed pricing structure is managed 

in a distributed, hierarchal multi-agent framework. Specifically, a central agent assumes full 

authority in estimating the fair pricing values for a number of microgrids agents per their 

timely corresponding energy production and consumption. It is worth mentioning that 

dynamic real-time energy prices are usually determined in accordance with biddings within 

the wholesale market participants. In this work, incorporating bidding scenarios is out of 

scope. The utilized retail energy prices data are acquired from the yearly average prices of 

the Florida Public Service Commission, the agency that is responsible for establishing energy 

prices rates and regulations for utilities in Florida [140, 141].  

     The rest of the chapter is organized as follow: Section 7.2 presents the system 

architecture of the hierarchal multi-agent environment; Section 7.3 presents the stochastic 

dynamic models of Markov chain-based solar PV forecast model, stochastic EVs 

connectivity and mobility model, and the adaptive ANN load forecasting model; Section 7.4 

presents the developed dynamic, real-time pricing structure for multi-agent hierarchal 

microgrids operation; Section 7.5 presents stochastic energy management optimization 

problem; Section 7.6 provides numerical results and analysis on the developed framework; 

Section 7.7 concludes the work with a final remark. 

7.2 System Architecture 

Let us consider a microgrid 𝑚 that belongs to a set of microgrids 𝑀 such that 𝑚 ∈

{1,2, . . . , 𝑀}. Each microgrid is represented with an agent connected to a central agent, as 

shown in fig. 7.1. The set of microgrids under the same central agent are assumed to be 

connected electrically. Each microgrid has EVs charging stations, on-site variable-scaled PV 
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systems, and regular loads to serve, and can receive energy from the main grid only when 

needed. The microgrids operate in an equal duration time-slotted fashion, with each timeslot 

is composed of ten timesteps ∆𝑡. We propose that the energy price of each timestep is 

composed of two pricing categories; retail energy price that follows time-of-use (ToU) rates 

and congested energy price that is imposed solely on EVs charging events during the times 

when the microgrid operation reaches a congested level. Furthermore, the retail energy part 

of the pricing structure is valued by the supervisor operator at the top of the chain for each 

central agent. On the other hand, we propose that the central agent is responsible for the 

estimation of the congested part of the energy price for each timeslot and broadcast it to each 

microgrid based on its supply and demand curve at the timeslot of interest. The total energy 

generation and demands for each microgrid is modeled as the average power produced 𝑃𝑡,𝑚 

and demand consumed 𝐷𝑡,𝑚 at each timeslot 𝑡 and is variable throughout the day such that 

𝑡 ∈ 𝑇 {𝑡0 − ∆𝑡, 𝑡0, 𝑡0 + ∆𝑡, . . . , 𝑇}, where 𝐸𝑡,𝑚 = 𝑃𝑡,𝑚. ∆𝑡. Fig. 7.2 illustrates the timely 

interaction between various components within the developed environment. 

 

Figure 7-1. The developed hierarchal multi-agent environment 
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Figure 7-2. Timeline of information exchange in the developed structure. 

7.3 Stochastic Model Development 

 PV Markov Chain Model  

To achieve our purpose in this chapter, we develop a statistical solar power forecast for 

parts of the region of South Florida based on a discrete-time Markov chain model. The 

outcomes of the Markov model are scaled to fit the size of our study of three microgrids and 

serve as an input to the formulated energy optimization problem discussed in section 7.5 of 

this chapter. The solar generation level is estimated as a random process, with 𝜌𝑡 as the 

transition probability of the forecasted power levels, as follows: 

 𝑃𝑖𝑗
𝑡 = ℘𝑟[𝐺𝑡+1 = 𝐺𝑗  I 𝐺

t = 𝐺𝑖, 𝑡]  (7.1) 

Where ℘𝑟 is the transitional probability of moving from state 𝑖 to state 𝑗 between any two 

consecutive timesteps ∆𝑡 within a timeslot 𝑡, as shown in fig. 7.3. We define a finite set 𝐺 

that is composed of variables (i.e. 𝐺𝑗  and 𝐺𝑖) that resemble the projected solar energy 

generation for microgrid 𝑚, such that 𝐺 = {𝐺1, 𝐺2, . . . , 𝐺𝑁}, where N is the total number of 

states, and the variables of this set are arranged in ascending order from the lowest obtained 
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values in the time horizon to the highest obtained values. To properly procure the transitional 

probability of the solar power generation based on the available historical data, we count the 

number of transitions between each two power levels and divide it over the total number of 

transitions for each timeslot. Specifically, the transition probability 𝜌𝑖𝑗
𝑡  between states 𝑖 and 𝑗 

at timeslot 𝑡 can be found by the following formula: 

 
𝑃𝑖𝑗
𝑡 =

𝑛𝑖𝑗
𝑡

∑ 𝑛𝑖𝑗
𝑡

𝑗

  s.t. ∑ 𝑃𝑖𝑗
𝑡 = 1

𝑁

𝑗
 ∀𝑖, 𝑗 (7.2) 

Where 𝑛 is the number of transitions between every two states observed over the 

string of historical solar data accounted for timeslot 𝑡. After measuring all the transitional 

probabilities for a timeslot, a transition matrix, sized 𝑁𝑥𝑁 is established, with each column 

corresponding to timesteps while rows corresponding to accumulated states transitions and 

eventually summed up to 1. The transitions between states stop when the data revels zero 

solar power generation, and the output will be denoted zero for that state. The transition 

matrix of the estimated solar power generation could be constructed as follows: 

 
𝑇𝑚 = [

𝑃11 ⋯ 𝑃1𝑁
⋮ ⋱ ⋮
𝑃𝑁1 ⋯ 𝑃𝑁𝑁

]  (7.3) 

The produced transition matrix is utilized to produce the stationary distribution vector 

of the discrete-time Markov chain such that 𝜋𝐺
𝑡 = 𝜋𝐺

𝑡  . 𝑇𝑚
∗ , with ∑𝜋𝐺

𝑡 = 1
 

, 𝑠. 𝑡.  𝜋𝐺
𝑡 ∈ [0,1]. 

The variable πG
t  is a stationary distribution of a Markov chain and is defined as the probability 

distribution that remains unvaried in the Markov process as time proceeds forward. In other 

words, πG
t  is invariant to the transition matrix 𝑇𝑚

∗ , since it is represented as a row vector whose 

entries are probabilities that summed up to 1. As a result, the projected solar power generation 

at each of the timeslot can be found by the multiplication of πG
t  by the transposed vector of 

the solar power states values Gt, as follows: 
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 PG,total
 t

= πG
t . Gt   (7.4) 

 

Figure 7-3. Illustration of the construction process for Tm 

 

 EV Mobility and Connectivity Model 

Numerous studies have investigated EVs charging strategy and predictive mobility models 

based on the Markov chain.  Some of these studies include a statistical approach developed 

for assessing the impacts of EVs presence on a defined electricity network service boundary 

[165]; utilizing geospatial data to estimate spatial loads of EVs on the electrical grid and their 

relative impact on power quality [166]; and developing a coordinated charging strategy to 

achieve global optimal energy utilization [167].  

We assume that an EV 𝑖 operates within the boundaries of microgrid 𝑚. We utilize a 

Markov chain model to estimate the EVs connectivity time to the microgrids and 

corresponding energy levels based on obtained historical traveling data for South Florida 

[168]. As per our study’s scope, we categorize EV 𝑖 to be either connected to the microgrid 

for charging purposes (𝐶𝑡
𝑚=1) with 𝑞(𝑡) as its corresponding transitional probability, or not 
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interaction of the EVs with the microgrid, and its available energy, as random processes for 

each timeslot 𝑡 by discrete Markov chain as follows: 

 𝑃𝑖𝑗,𝑡 = ℘𝑟[𝐶𝑡+1 = 𝑗 I 𝐶𝑡 = 𝑖, 𝑡]  ∀𝑖, 𝑗

∈ {0,1}2 

(7.5) 

Such that 

 𝑃1−0,𝑡 = ℘𝑟[𝐶𝑡+1 = 0 I 𝐶𝑡 = 1, 𝑡] = 𝑝(𝑡)  (7.6) 

 𝑃0−1,𝑡 = ℘𝑟[𝐶𝑡+1 = 1 I 𝐶𝑡 = 0, 𝑡]  = 𝑞(𝑡) (7.7) 

 𝑃1−1,𝑡 = ℘𝑟[𝐶𝑡+1 = 1 I 𝐶𝑡 = 1, 𝑡] = 1 − 𝑝(𝑡)      (7.8) 

 𝑃0−0,𝑡 = ℘𝑟[𝐶𝑡+1 = 0 I 𝐶𝑡 = 0, 𝑡]  = 1 − 𝑞(𝑡) (7.9) 

 

To properly evaluate the randomness of the EVs charging requests and corresponding level 

of energy, we estimated the driving patterns of 2,000 vehicles assumed to be EVs [168, 169]. 

Those vehicles' trips are assumed to be for regular daily work with a roundtrip that starts at 

6.30 Am and ends by returning home at 6 Pm, with an average roundtrip distance of 15.8 km 

[168]. Therefore, we neglect any trips for pleasure or those carried out during the weekends 

for the simplicity of the study. The temporal distribution of the EVs' connectivity to the 

microgrids due to their traveling times is shown in fig. 7.4. As per the results, the EVs' plug-

out time for the morning trips is centered between the hours 6.45-9 Am with a mean value 

7.55 Am and a standard deviation of 0.51 hours. On the other hand, the EVs' plug-in time 

after the evening drive reaches its peaks in the hours 4.30-6.45 Pm with a mean value of 5.50 

Pm and a standard deviation of 0.59 hours. 
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Figure 7-4. Temporal distribution of EVs connection times 

 

We present a strong assumption that all of the EVs start charging process once they 

conclude their daily trips. In fact, several factors influence the amount of energy of the EV at 

the beginning of the connection time such as driving distance between every two charging 

processes, temperature levels in their surroundings [42], type of chargers [170, 171], types of 

generation and energy prices [172], to name few. For the simplicity of our model, we assume 

the state of the charge (SoC) during the time of the connection to be between 30% to 80%. 

We estimate the SoC of an EV 𝑖 as follows  

𝑆𝑜𝐶𝑡+1,𝑖 = {
𝑆𝑜𝐶𝑡,𝑖 + 𝑃𝐸𝑉

𝑡,𝑖𝜂∆𝑡  𝑖𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑆𝑜𝐶𝑡,𝑖                                  𝑒𝑙𝑠𝑒
 (7.10) 

Where 𝑃𝐸𝑉
𝑡,𝑖

 is the power charging requirement at timeslot 𝑡 and charging efficiency 𝜂. The 

𝑆𝑜𝐶 is a function of the distance 𝑑𝑖 of the trip it had taken before timeslot 𝑡 at an efficiency 

𝜂𝑑
𝑖 , velocity 𝜈𝑡,𝑖 and consumption level ℓ𝑡−1,𝑖, as follows 

𝑆𝑜𝐶𝑡,𝑖 = 𝑆𝑜𝐶𝑡−1,𝑖 − ℓ𝑡−1,𝑖(𝜈𝑡,𝑖,
𝑑𝑖

𝜂𝑑
𝑖 )     (7.11) 
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During the time of connection, the amount of energy of an EV 𝑖 at each timeslot is estimated 

as follows: 

 
𝐸𝐸𝑉
𝑡+1,𝑖 = {

𝐸𝐸𝑉
𝑡,𝑖 + 𝑃𝐸𝑉

𝑡,𝑖. ∆𝑡   𝑖𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐸𝐸𝑉
𝑡,𝑖                                        𝑒𝑙𝑠𝑒

   

  

(7.12) 

Upon receiving a request to connect the EV to its infrastructure at time 𝑡, the 

microgrid is going to dispatch the price for the EVs owner, as follows 

 

 
𝐸𝐶𝑜𝑠𝑡
𝑡+1,𝑖 = {

𝐸𝑐𝑜𝑠𝑡
𝑡,𝑖 + 𝑋𝑝

𝑡𝑃𝑐𝑜𝑠𝑡
𝑡,𝑖 . ∆𝑡   𝑖𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐸𝑐𝑜𝑠𝑡
𝑡,𝑖                                              𝑒𝑙𝑠𝑒

 (7.13) 

Where 𝑋𝑝
𝑡  is a factor that represents the instantaneous charging price issued by the 

central agent to charge the EVs at microgrid 𝑚 and is determined for each timeslot based on 

the congestion level of 𝑚. It is composed of two pricing structures 𝐸𝑟 and 𝐸𝑐, as we describe 

in section 7.6 of this work.  

 Adaptive ANN Load Forecast Model 

We utilize real peak load data for Miami Dade County in South Florida for the years of 

2017 through 2019 to forecast the load demand of 2020 of three hypothetical microgrids 

located in the same region [140, 173]. To properly overcome the uncertainty level in such a 

process, we use adaptive Artificial Neural Network (ANN) as a tool to perform the 

forecasting study. Hourly load curves, which represent electricity utilization during a period 

of one day, are highly dependent on seasonal changes and on other special days like weekends 

and holidays. Hence, it is more convenient to categorize data based on these factors and build 
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a unique artificial neural network for each category. Fig. 7.5 shows the categorization of 2017 

peak load data into five categorizes: summer weekends and weekdays, winter weekends and 

weekdays, and finally holidays (e.g. Independence day, labor day weekends). Fig. 7.6 shows 

the cumulative peak load of the years 2017, 2018, 2019, which we use as training (2017, 

2018) and testing (2019) data for our ANN forecasting model. We use graphical-correlation 

analysis to ensure proper ANN forecasting process. The selected input variables should 

acquire specific characteristics; they have to be highly correlated to the output as their level 

of variation carrys information about output. The developed technique here is to select input 

variables based on a hybrid graphical/statistical technique. Firstly, we use the graphical 

representation of the output to predict the peak load. We intuitively suggest some input 

variables that will have a significant impact on the output, as follows: 

 X1: Peak load of the day before the day to be predicted  

 X2: Peak load of two days before the day to be predicted 

 X3: Peak load of three days before the day to be predicted 

 X4: Peak load of four days before the day to be predicted 

 X5: Average of the peak load of three days before the day to be predicted 

 X6: Average of the peak load of four days before the day to be predicted 

 X7: Difference of the peak load between the day before and three days before the day 

to be predicted 

 X8: Weekday type, i.e. Mon., Tue., ……, etc. 

Then, we utilize statistical inference to estimate the correlation index r as follow  

 
𝑟 =

∑ [(𝑇−𝑇𝑎𝑣𝑔)𝑥(𝑈−𝑈𝑎𝑣𝑔)]
𝑚

∑ (𝑇−𝑇𝑎𝑣𝑔)
2

𝑚
𝑥∑ (𝑈−𝑈𝑎𝑣𝑔)

2

𝑚

     (7.14) 
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Where T and U are any two vectors that have the same length, Tavg and Uavg are their 

corresponding average values. If the correlation index is high, then we ought to keep it; 

otherwise, it will be excluded. We then calculate the cross-correlation index between each 

pair of the remaining variables, and we will exclude any variables with a low correlation to 

the output. A sample of the correlation analysis is shown in Table 7.1. The correlation index 

is an index that ranges from -1 to +1. It indicates how much any two vectors are linearly 

representative to each other, e.g., two vectors that have +1 correlation index are perfect 

representative for each other. 

Table 7-1: Sample results of the graphical-correlation analysis 

Correlation Index Correlation Level 

rX8,y -0.1410 

rX1,y 0.8945 

rX2,y 0.8133 

rX1,X2 0.8918 

 

As shown in Table 7.1, the correlation index between the input variable, X8, and the output 

is - 0.1410, which is very small. This indicates that using X8 as an input will mostly lead to 

insufficient forecasting results and may further lead to more complications and processing 

time for the ANN model. We also note that the correlation index between X1 and X2  with 

respect to the output is high; 0.8945 and 0.8133, respectively. This means that they both can 

be used as inputs, yet once we measure their intra-cross correlation, we find them highly 

correlated. Therefore, we exclude X2 as it shows less correlation to the output. Based on our 

analysis, the best input variables after finishing the correlation analysis are found to be X1, 

X5 and X7. As there might be significant changes in their ranges, we normalize the inputs and 

output data to avoid any saturation, of the ANN model, as follows 
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 𝑇𝑛 =
𝑇

𝑇𝑚𝑎𝑥
  (7.15) 

The developed ANN model's topology consists of one input layer with three neurons 

representing the optimal three inputs, two hidden layers with four neurons in each one, and 

one output layer with one neuron corresponding to the output results. We used the Levenberg-

Marquardt training algorithm [174, 175] with a 0.01 learning rate. The ANN is trained using 

the data of years 2017, 2018 as training data, while 2019 data is used as testing data to ensure 

our forecasting model's adequacy before deploying it to forecast data of the year 2020. The 

ANN model adapts to every new set of data; it predicts the data of a particular day, and when 

we get the actual data of that day, we adapt the network with the new data so that it get 

furtherly trained, which improves the quality of the ANN model. This is achieved in 

MATLAB by coding a statement for training the same network in a loop such that it predicts 

the next day then takes the actual data of that day for training the network for very few 

iterations, which is three epochs in this case. Fig. 7.7 presents forecasted results for 120 days 

of peak load demands in parts of Miami, assumed to be the location of three microgrids in 

our simulation in this work. 
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Figure 7-5: Data categorization for 2017 peak load of parts of Miami-Dade County: (a) Summer 

weekdays, (b) Summer weekends, (c) Winter weekdays data, (d) Winter weekends data, (e) 

Holidays, (f) 2017 aggregated peak load data. 
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Figure 7-6: Training and testing input data for the ANN model. 
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Figure 7-7. 120-days load peak demand forecast results 

 

7.4 Dynamic Real-Time Pricing Structure 

The operation of the microgrid is highly constrained with the main objective to meet all 

demands at the most reasonable price. Therefore, the supply level of the microgrid must be 

either equal or greater than the total demand 𝐷𝑡 

 𝑆𝑡 ⩾ 𝐷𝑡  (7.16) 

During peak loads, microgrid increases its energy prices to maintain its demand and 

relieve its extra load for reliability purposes. Consequently, this may sometimes lead to unfair 

charges to their consumers who are obligated to participate in such a pricing scheme, although 

they may participate effectively in demand response programs to help in alleviating the grid’s 

congestion. As a result, we categorize the supply level in two parts; supply for regular 

demand 𝑆𝑟, and supply for congested demand 𝑆𝑐 of which we focus our attention to the load 

of EVs during timeslots that experience higher demands, such that 
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 𝑆𝑡 = 𝑆𝑟 + 𝑆𝑐  (7.17) 

The demands on each microgrid throughout the time horizon can be represented in vector 

form, 𝐷 = {𝐷1
𝑚, 𝐷2

𝑚, . . . , 𝐷𝑇
𝑚}. We assume that every microgrid will has two categories of 

energy prices; 𝐸𝑟 as the regular energy price for energy consumption which follows the retail 

prices set by the supervisor operator and changes for every timeslot to reflect the ToU rates, 

including high peak demands price, and 𝐸𝑐 as the congested energy price to bill the EVs 

vehicle owners who decide to charge their vehicles during timeslot where their corresponding 

microgrid is overloaded. The central agent establishes the latter in accordance with the type 

and level of generation and demands at each microgrid for every timeslot. We can represent 

both of the energy pricing factors in vector form as follows: 

 𝐸𝑟 = {𝐸𝑟
1, 𝐸𝑟

2, . . . , 𝐸𝑟
𝑇} (7.18) 

 𝐸𝑐 = {𝐸𝑐
1, 𝐸𝑐

2, . . . , 𝐸𝑐
𝑇} (7.19) 

To ensure proper pricing scheme that reflects the real-time dynamics of the microgrid 

operations, we define a fixed-based rate 𝐸𝑓𝑖𝑥𝑒𝑑
𝑡 , that follows ToU rates, to manipulate the 

real-time retail prices in accordance with the level of demands at each microgrid, as follows: 

 𝐸𝑟
𝑡 = 𝐸𝑓𝑖𝑥𝑒𝑑

𝑡 + 𝑎𝑟𝑐tan (𝑒𝜆
𝑡
− 𝑐) (7.20) 

 

Where 𝑐 is a pre-defined variable set by the supervisor operator, 𝜆𝑡 is a variable that 

resembles the per timeslot difference between the supply and demand levels, as follows: 

 𝜆𝑡 = (𝐷𝑐
𝑡 + 𝐷𝑟

𝑡) − 𝑆𝑡 (7.21) 

It should be noted from equation (7.20) that 𝑒𝜆
𝑡
 plays a central role in establishing a 

curve-oriented pricing scheme that follows changes on the demands on a timely basis and 
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influence the pricing fractions. Specifically, a decrease of the level of supply will result in 

the increase of the retail energy price 𝐸𝑟
𝑡 at either a fixed or increase in load demands (both 

EVs and non-EVs). On the contrary, the retail energy prices will witness a reduction in the 

case of increase supply at either fixed or decrease in load demands. Equation (7.20) represents 

how the supply-demand curve influence the consumers’ energy consumption. Usually, 

customers tend to consume more energy when the retail price is low, and vice versa when the 

retail prices are high. The congested price could be assessed based on the following quadratic 

function:  

 𝐸𝑐
𝑡 = 𝐸𝑟

𝑡 + [𝛼(𝐷𝑐
𝑡)2 + 𝛽𝐷𝑐

𝑡 + 𝛾] (7.22) 

Where 𝛼, 𝛽and 𝛾 are predetermined coefficients that could be manipulated based on the 

discretion of the central agent. As someone may note from equation (7.22), the energy 

congested price can always be either greater than the retail energy price, giving that at least 

one of the predefined constants are above zero; or equal to the retail energy price when those 

coefficients are set to zero. The latter is true only when the grid is at normal operation with 

no grid’s congestion. Therefore, we update equation (7.13) to reflect the charging cost for an 

EV 𝑖 at microgrid 𝑚, as following: 

𝐸𝐶𝑜𝑠𝑡
𝑖 (𝑚) =

𝐸𝑐𝑜𝑠𝑡
𝑡,𝑖 + 𝐸𝑟

𝑡𝑃𝑐𝑜𝑠𝑡
𝑡,𝑖 . ∆𝑡     𝑓𝑜𝑟 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑝𝑟𝑖𝑐𝑖𝑛𝑔

𝐸𝑐𝑜𝑠𝑡
𝑡,𝑖                                                                𝑒𝑙𝑠𝑒

𝐸𝑐𝑜𝑠𝑡
𝑡,𝑖 + 𝐸𝑐

𝑡𝑃𝑐𝑜𝑠𝑡
𝑡,𝑖 . ∆𝑡  𝑓𝑜𝑟 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑖𝑛𝑔

        (7.23) 

It should be noted that the grid is set to be congested when a microgrid asks its relative 

central agent for energy supply from the grid, 𝑃𝑔𝑟𝑖𝑑, at a specific timeslot to be able to provide 

service to its consumers. We apply the developed dynamic charging model in accordance 

with results obtained via the optimal energy management optimization, discussed in the next 

section. 
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7.5 Optimal Energy Optimization Problem Formulation 

The energy optimization problem is solved at the central agent level with a goal for proper 

optimal EVs charging schedule by the mean of reducing the charging cost at the microgrid 

while maintaining an optimal energy management process. This is achieved in light of strictly 

enforced constraints. The energy optimization problem considers the projected day-ahead 

solar power generation, highly stochastic EVs connection times and estimated level of 

energy, and forecasted load demand for every timeslot at each of the three microgrids that 

are assumed to be located in South Florida. The finite-time optimization function is 

formulated as follows: 

 

𝑀𝑖𝑛∑𝐸𝑟
𝑡∆𝑡 (𝐶𝑡𝑃𝐸𝑉,𝑡 + 𝑃𝑑,𝑡 − 𝑃𝑃𝑉,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡)

𝑇

𝑡=1

 (7.24) 

The state variable in the optimization problem is the amount of energy at each EV at 

the time of connection, while the decision variable is 𝑃𝐸𝑉,𝑡. We assume that both the energy 

and rated power of the EV is strictly constrained as follows 

 𝑃𝐸𝑉𝑚𝑖𝑛 ⩽ 𝑃𝐸𝑉
𝑡 ⩽ 𝑃𝐸𝑉𝑚𝑎𝑥  (7.25) 

 𝐸𝐸𝑉𝑚𝑖𝑛 ⩽ 𝐸𝐸𝑉
𝑡 ⩽ 𝐸𝐸𝑉𝑚𝑎𝑥  (7.26) 

For every EV 𝑖 connected at each timeslot 𝑡, the SoC is between the minimum allowed 

charging level 𝑏𝑚𝑖𝑛
𝑖 of the full battery capacity  

 𝑏𝑚𝑖𝑛
𝑖 𝑆𝑜𝐶𝑚𝑎𝑥

𝑡,𝑖 ⩽ 𝑆𝑜𝐶𝑡 ⩽ 𝑆𝑜𝐶𝑚𝑎𝑥
𝑡,𝑖

 (7.27) 

The amount of power from the upstream grid is restricted: 
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 −𝑃𝑔𝑟𝑖𝑑𝑚𝑎𝑥 ⩽ 𝑃𝑔𝑟𝑖𝑑,𝑡   (7.28) 

 𝑃𝑔𝑟𝑖𝑑𝑚𝑎𝑥 ⩾ 0  (7.29) 

Table 7-2: Simulation model parameters 

Parameter Description Value 

Microgrid area 4 mi x 3 mi 

Number of microgrids 3 

Total number of EVs 2,000 

Minimum energy level & SoC 15 kWh, 30% 

Maximum energy level & SoC  50 kWh, 80% 

Average retail price over 24 hr 10.75 cents/kWh 

Charging eff ratio 𝜂 0.85 

Timeslot, duration per each 96 T, 900 seconds 

 

7.6 Results and Discussions  

In this work, we data from the Florida Department of Transportation [168], historical solar 

radiation database [141, 176, 177], and load demand forecast [140, 173] for parts of South 

Florida. Table 2 lists the parameters we used in the simulation process. All the simulations 

are performed on a PC with an i7 Intel Core, 3 GHz, 16 GB RAM of internal memory with a 

2018-b MATLAB version at the Energy Systems Research Laboratories of the Florida 

International University. We solved the optimization problem using a modified MATLAB 

optimization toolbox [178], with the execution period for the solar power projection of 24-

hour ahead. The day's cycle in the simulation is estimated for every 15 minutes (T= 96 

timeslots, each slot is 900 seconds). Fig.7.8 shows the projected solar power generation 

compared with the measured data of solar power profiles for parts of South Florida based on 

the Markov model for a randomly selected day with a window size of 320 days. The historical 

database's solar energy values may not match precisely the corresponding values of the 
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projected solar energy generation set, 𝐺. Therefore, we utilized a linear interpolation 

algorithm to estimate the solar set's values, which appears within the proximity range to the 

real database values. Fig. 7.9 shows the simulation results when we scale the results into three 

microgrids in parts of Miami Dade County. For 𝐸𝑟
𝑡, we derived its price based on the average 

ToU energy rates established by [23, 24]. We assumed that each microgrid estimates its 

supply and demand for every 90 seconds interval as a defined timestep, where each timeslot 

is composed of 10 timesteps. The corresponding changes in the real-time energy prices for 

the microgrids are presented in fig 7.10. The upper curve shows the retail energy prices during 

peak timeslot without large-scale EVs charging, while the lower curve resembles the total 

energy prices that include the congested energy price as a result of large-scale EVs charging. 

It is clearly shown that without the implementation of the developed pricing mechanism, the 

total energy price surpasses high levels up to 14.8 𝕔/𝑘𝑤ℎ for all customers during times of 

demands peak. We estimated the changes in the prices for each of the three microgrids from 

equations (7.20) through (7.23). We assume that the central agent is responsible for 

establishing the values of the pre-determined coefficients, which we set in the simulation as 

𝛼 = 0.01, 𝛽 = 𝛾 = 0.0001. Fig. 7.11 illustrates the price difference between the two curves 

presented in fig. 7.10, which coincides with the time of high peak demands 𝐷𝑐
𝑡 when there 

are requests to charge EVs per the model presented in section 7.3 of this chapter. We can see 

that the price difference is always positive and follow the changes in the supply-demand 

curve for each microgrid solely. We propose that this price difference should be billed to the 

EVs owners who charge their vehicles during the timeslots of peak demands. 

To validate the effectiveness of our developed pricing structure, we compare the results 

obtained in our simulation after applying the developed pricing with previously published 

pricing policies to reduce energy billing at peak times. Specifically, the results of Usage-

based dynamic pricing (UDP) [179], Quadratic-based cost function (QCF) [180], and 



 

115 

 

Distributed Demand Response (DDR) [91] are drawn in comparison with our developed 

pricing policy, as shown in fig. 7.12. The pricing structure, coupled with the stochastic energy 

management formulation, yield lower real-time retail energy pricing rates during congested 

grid operation. We note that our fair pricing structure is reached through reasonable rates and 

that only EVs owners who charge their vehicles during timeslots when their microgrid is 

severely overloaded will incur the extra burden. To us, such a pricing scheme is fairer than 

distributing the rate on all consumers who may be collaborating with the utility to reduce the 

demands in specific hours to balance their energy bills. The stochastic energy management 

framework has helped reduce the cost of system operation via accurate incorporation of PV 

energy into the supply curves of the microgrids. 

7.7 Conclusion 

This work proposes a dynamic, real-time pricing structure to equitably distribute and reflect 

energy prices when the microgrids are congested. The pricing mechanism operates in a 

hierarchal multi-agent framework with an optimal energy management system to reduce real-

time retail energy prices. The inputs to this stochastic energy optimization problem include 

solar energy generation, EVs connectivity, corresponding energy availability, and load 

demand forecast models, all performed based on historical data that belong to parts of South 

Florida based on discrete-time Markov chain and adaptive ANN models, respectively. 

Through simulations, we presented the case that our developed pricing mechanism performs 

better than some of the previously published centralized approaches. We believe this is 

achieved by allotting the congested price scheme for EVs owners to assume responsibility 

for charging during congested timeslots, while the microgrid operates on an optimized energy 

management scheme to reduce overall cost. In other words, consumers will not have to bear 

responsibility for any potential increase in demands due to large-scale EVs charging requests 

during congested energy conditions. 
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Figure 7-8.  Real vs Markov chain-based forecasted solar power 

 

Figure 7-9: Supply (upper) and demand (lower) for three microgrids in Miami-Dade County, South 

Florida 
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Figure 7-10. Results for retail pricing (upper) and congested pricing (lower) 

 

Fig. 7.11. Price difference between the two pricing fractions per each time step 
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Figure 7-11: Comparison of the results of developed pricing structure versus previously published work 
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Chapter 8 A Two-Stage Optimization Strategy for Solving the Voltage-Var 

Problem Considering High Penetration of Plug-in Electric Vehicles to Unbalanced 

Distribution Networks 

8.1 Introduction 

Plug-in Electric vehicles (PEVs) offer a great opportunity for mankind to reduce 

greenhouse gas by offering low- or free-emissions alternative transportation to conventional 

vehicles. Moreover, power utilities can exploit the large-scale integration of PEVs to allow 

real-time management and control in the power distribution networks (PDNs) and microgrids 

via providing voltage, frequency, and load support. However, amidst the many merits of the 

PEVs, its increased penetration on a yearly basis may adversely influence the power grid's 

overall control and operation. Specifically, The proliferation of PEVs with uncoordinated 

charging and discharging may lead to significant damages to the grid's apparatus and 

introduce operational difficulties to overcome its charging demands, especially those during 

peak hours. Therefore, a necessity for proper coordination and control of the power grid is 

the meticulous incorporation of the PEVs scheduling in a way to make it contribute efficiently 

to the grid's operation; their exponential growth could also be seen as a golden opportunity 

to get rid of operational deficiencies and extend the lifespan of voltage and reactive power 

support devices. This is true, giving the detrimental impacts of renewable energy sources' 

intermittency on the operation of conventional voltage and reactive power compensation 

devices such as the on-line tap changing transformer (OLTC) and shunt capacitor banks 

(CBs). Additionally, uncoordinated large-scale penetration of PEVs could significantly stress 

these devices and, therefore, contribute to unnecessarily extensive tap operations [93]. As a 

result, accounting for PEVs into the voltage-var optimization (VVO) of the PDNs should be 

recognized as a priority. 
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Regularly, the VVO problem deploys OLTC and voltage regulators (VRs) to regulate the 

voltage level across the PDNs, while considering CBs and other reactive power compensation 

devices (RPCs) such as dispersed energy sources (i.e. photovoltaic systems (PVs) inverter) 

for VAR support. Ideally, the problem of VVO has been investigated within the context of 

centralized control schemes, requiring massive communication infrastructure to promptly 

deal with thousands of equipment. In [94], the authors utilized a genetic algorithm (GA) to 

solve multiobjective voltage regulation control to reduce the system's losses and voltage 

fluctuations. Nevertheless, voltage control from generation resources was not incorporated 

into their formulation. Conversely, the authors of [95] developed an optimal voltage-var 

control scheme with the incorporation of large-scale distributed generators (DGs) to ensure 

adequate voltage regulation on the distribution level. However, their control scheme 

neglected the impact of OLTC and the prospect of active power curtailment (APC) on the 

voltage regulation problem. Besides, reference [96] presented an optimal voltage-var 

coordination scheme that considers day-ahead PV active and reactive power production to 

reduce OLTC tap operation, yet without including the effect of APC in the utilization of PV 

voltage support schemes. Moreover, one potential concern is that their day-ahead forecasting 

methodology could be adversely influenced by common margin errors usually inherited in 

the traditional forecasting techniques. Additionally, PEVs were not accounted for in their 

VVO control scheme. In fact, literature that reports the utilization of PEVs in the VVO 

problem is still limited. Reference [97] has indeed considered PEVs in the distribution 

network's voltage regulation process, yet only in a centralized manner. It is clear that only a 

limited amount of literature has considered solving the VVO problem on a decentralized 

scale, with few considering the integration of PEVs. Therefore, more research should be 

performed to fill the gap in this area. Generally, solving for the VVO within the context of a 

decentralized framework requires some sort of decomposition methodologies to divide the 

distribution system into several subgroups.  Furthermore, the accuracy of the decomposition 
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technique plays a pivotal role in the realistic modeling of the information exchange among 

the divided subgroups of the network topology. Reference [98] presented a valuable study on 

the tradeoff of implementing various algorithms on the convergence speed for solving 

problems related to clustering-based decentralized optimization. The study indicates that 

strategies of low-coupling degrees may lead to an insignificant impact of one cluster over its 

neighboring subgroups. This emphasizes the potentiality of obtaining results that inaccurately 

represent a solution for highly complex and dynamical systems like the PDNs. Therefore, 

careful consideration must be advocated while designing decomposition methodologies that 

model efficiently the steady-state operation of the electrical systems. Recent literature has 

investigated various clustering methodologies applied to the power grids. References [99, 

100] developed decomposing the large-scale power grids into subgroups based on spectral 

clustering. Specifically, reference [99] developed operationally constrained spectral 

clustering to identify intentional controlled partitioning of wide areas of the power network 

to defend against cascading failures. The developed methodology allows system operators to 

constrain, without disconnection, branches against minimal power flow disruptions. The 

developed islanding technique was tested to reduce power grids that have the size of the 

United Kingdom’s power network. Similarly, reference [100] defined the internal 

connectivity of the system’s nodes via an undirected edge-weighted graph based on spectral 

clustering and developed solving the VVO problem with respect to the quality factor of each 

obtained partition, yet with no account for PEVs’ integration. Other methodologies aimed for 

solving the VVO problem in a decentralized manner without incorporating the decomposition 

of the PDNs into subgroups. Reference [101] developed agent-based for reactive power 

compensation via DGs to regulate the voltage levels in a distributed manner with lower 

communication capabilities. However, no consideration of the active role of OLTC and VRs 

has been identified which does not provide the technical option for voltage regulation if 

reactive power outputs of the incorporated DGs are reached. On the other hand, reference 
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[102] developed a voltage regulation scheme to account for parallel distribution networks 

with a strong assumption that VVO is performed considering only the OLTC device. While 

such assumption may yield valid results, it is a not recommended practice as it will increase 

operational stress on the OLTC and potentially forfeit its economical lifespan. Additionally, 

the solution might be infeasible giving that voltage boundaries of larger distribution systems 

may exceed the capability of the OLTC to solve the problem efficiently. 

Generally speaking, an extensive amount of research is needed to assess the capability of 

solving the VVO problem, considering the coordination of stochastic integration of the PEVs 

(incorporating economic compensation for PEVs’ energy demand curtailment) as well as the 

careful implementation of active power curtailment (APC) on the unbalanced operation of 

the PDNs. Moreover, utilizing detailed and organized intelligent optimization techniques that 

consider electrical-coupling degrees to accurately reflect the updated operational status of the 

PDNs are still lacking more studies for proper investigation. In this work, a two-stage 

optimization strategy is developed to reach an optimal solution for the VVO that satisfies 

economic gain while meeting various operational constraints. That is to say, this work 

recognizes the interaction of various elements that influence the optimal decision of the VVO 

problem such as stochastic integration of PEVs to meet all of its demands economically, 

utilization of the APC and RPC capability of the PV inverters in an efficient way, as well as 

consideration to relax the nonlinearity of CBs, VRs, and OLTCs devices to extend their 

lifespan.  

The rest of the chapter is organized as follows: Section 8.2 presents the two-stage 

optimization strategy to tackle the VVO problem in a decomposed PDN; section 8.3 presents 

the partitioning process of the PDNs into smaller subgroups via the developed CBDPSO 

algorithm; section 8.4 presents MILP formulation to solve the VVO economically; section 
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8.5 presents case scenarios and discusses obtained results of applying the developed 

optimization strategy on the decomposed PDN; section 8.6 concludes with final remarks. 

8.2 The Two-Stage Optimization Problem Formulation 

In this work, the first stage in the developed optimization strategy aims to decompose the 

PDN into several partitions per its operational status in an optimal manner. Such 

decomposition is achieved considering the voltage level sensitivity values with respect to the 

amount of active and reactive power flow in the system, respectively. The intention of 

reaching optimal partitioning lays in the desire to solve the VVO problem for carefully 

identified “smaller networks” in a decentralized framework, rather than performing it for a 

whole unified distribution network. The mathematical model behind this decomposition is 

based on the concept of the community-detection algorithm, first developed in [109], and 

later expanded in [110]. Measured by what is known as the modularity index, the virtue of 

the community-based algorithm lays in its robustness and strength in performing cross-check 

on the quality of the nodal partitioning of a complex network. In this work, we utilize this 

index to implement partitioning of the PDNs via the estimation of the electrical-coupling 

degree among any connected nodes in the systems. This degree of coupling realizes the 

instantaneous change of voltage levels across the system due to active and reactive power 

activities, whether caused by charging and discharging events or by non-EVs load demands. 

To ensure reaching optimal partitioning results, this work develops an intelligent 

optimization technique based on the particle swarm optimization (PSO) that aims to produce 

optimal partitioning, taking into consideration the modularity index function as its fitness 

function. The developed intelligent technique is identified as the community-based-detection 

particle swarm optimization (CBDPSO) algorithm, which is described in detail in part B of 

the next section of this work. Once an optimal partition has been developed for the PDN, the 

first stage optimization ends to allow calculation for the VVO problem considering each 
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partition’s voltage capabilities and operational needs, which is presented as the second stage 

of our developed work. The second stage optimization strategy in this work proposes MILP 

to solve the objective function that aims to minimize the operation costs of the PDN in the 

context of the VVO problem. This is achieved at the beginning of each timeslot at this stage 

based on the steady-state operational status of the PDN devices (i.e. active power production 

and demand status, CBs and OLTC status …etc) as well as on the updated PEVs scheduling 

based on stochastic arrival, departure and requested energy. The optimal charging and 

discharging scheduling of the PEVs is estimated for each timeslot based on modified model 

inspired by the study presented in references [181, 182]. Furthermore, the updated scheduling 

of the PEVs considers the unbalanced nature of the three phase PDN. Each group of PEVs 

are going to be scheduled based on the unbalanced load flow per each phase to avoid any 

potential voltage violation on the grid. To reduce computational complexities, decision 

variables for timeslot 𝑡 − 1 are relaxed, enabling the integrality of the decision variables for 

timeslot 𝑡 based on the updated PEVs arrival, departure, current and requested SoC. 

Eventually, a coordination plan that satisfies the operational constraints of each partition is 

dispatched with required level of energy from the grid, energy from the PV system, control 

action of RPC devices (i.e. number of modules to be connected from CBs, OLTC tap 

position), and energy demand curtailment of PEVs, if any. The decomposition of the PDN 

into several autonomous partitions will significantly reduce the computational requirements 

and complexities by performing the optimization problem on a smaller scale, rather than for 

a whole unified network. Consideration such as of fixing the control variables of the previous 

timeslots or decomposing the network into small fractions will not impact the 24-hour 

operation of the PDN. 

It is worth mentioning that the first stage optimization process is performed in a time-ahead 

fashion that is set based on the discretion of the system operator. On the other hand, the 
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second stage optimization is performed considering real-time platform to account for steady-

state operation of the PDN. Fig.8.1 presents an illustration of the timely combination of the 

two stages. It is assumed that for a timeslot in the first stage optimization that ranges from 𝑇𝑜 

to 𝑇1, smaller timeslots 𝑡𝑐 to 𝑡𝑓 represent the timely limits to perform the second stage 

optimization. The size of the timeslots of the second optimization stage is assumed to be 96 

timeslots in every 24-hour horizon, with each timeslot equal to 15 minutes in duration.    
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Figure 8-1. Illustration of the timely interaction of the two-stage optimization strategy 

 

8.3 The Distribution System Decomposition Based on Community-Based Detection 

Algorithm 

 Community-Based Partition Detection Index 

As mentioned in the previous section, the decomposition of the PDN into smaller 

partitions is based on the concept of community-based detection algorithm presented in [109, 

110]. The idea is to establish a categorization process that considers the degree of electrical 

coupling among the nodes and assesses if they are qualified to form a community of their 
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own with other nearby nodes, or to join an already established community made by other 

neighboring nodes. The virtue of such modeling methodology lies in the ability to decompose 

the distribution feeder and identify the weakest nodes on the system, due to both the 

charging/discharging activities as well as the other non-PEVs load consumption. For two 

nodes 𝑖 𝑎𝑛𝑑 𝑗, the modularity index, 𝛭, can be expressed as 

𝛭 =
1

2𝑤
∑ 
𝑖
∑ 
𝑗
 (𝐴𝑖𝑗

𝑡 −
ℓ𝑖ℓ𝑗

2𝑤
). 𝛿(𝑖, 𝑗) (8.1) 

where 𝐴𝑖𝑗
𝑡  is matrix with entries that represent the correspondent weighted values of either 

voltage-active power or voltage-reactive power sensitivity values at timeslot 𝑡, respectively. 

Furthermore, 𝐴𝑖𝑗
𝑡  is established for any two connected nodes at the feeder and is described as 

follows:  

𝐴𝑖𝑗
𝑡 = 1 −

𝐸𝐷𝑖𝑗
𝑡

𝑚𝑎𝑥
𝑢,𝑣∈𝑁

 𝐸𝐷𝑢𝑣
𝑡  (8.2) 

With 

𝛿(𝑖, 𝑗)  = {
1,                     𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑘 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒𝑠
0,                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8.3) 

Where 𝐸𝐷𝑖𝑗
𝑡  refers to electrical distance between nodes 𝑖 𝑎𝑛𝑑 𝑗 at a timeslot 𝑡, a coupling 

degree measure that estimates the electrical connection strength between any two nodes; ℓ𝑖 

and ℓ𝑗 represents the aggregated weighted values of all nodes connected to nodes 𝑖 𝑎𝑛𝑑 𝑗; 

𝛿(𝑖, 𝑗) represents a connection factor that is labeled zero if there is no connection between 

nodes 𝑖 𝑎𝑛𝑑 𝑗, and assumed unity otherwise; and 𝑤 is the cumulative edge weight of all 

nodes. The incremental changes in the values of active power (∆𝑃), reactive power (∆𝜃), 

voltage (∆𝑉) and phase angle (∆𝛿) at the distribution feeder during time slot 𝑡 could be 

represented as follows: 
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[
∆𝛿
∆𝑉
] = [

S𝛿𝑃 S𝛿𝜃
S𝑉𝑃 S𝑉𝑄

] [
∆𝑃
∆𝜃
] (8.4) 

the entries of the matrix in (4) are filled with values that represent the sensitivity values 

of phase angel in regard with active power level (𝑆𝛿𝑃), sensitivity value of the phase angle in 

regard with reactive power level (𝑆𝛿𝑄), sensitivity value of the voltage in regard with active 

power level (𝑆𝑉𝑃), and sensitivity value of the voltage in regard with reactive power level 

(𝑆𝑉𝑄), respectively. In this work, the decomposition of the PDN into well-defined partitions 

is achieved in a time-ahead fashion based on the instantaneous values of 𝑆𝑉𝑃 and 𝑆𝑉𝑄. We 

define the electrical distance between any two nodes by the voltage sensitivity levels at node 

𝑖 with respect to the changes of active power, 𝐸𝐷𝑉𝑃
𝑖𝑗,𝑡
, and reactive power, 𝐸𝐷𝑉𝑄

𝑖𝑗,𝑡
, at the 

neighboring nodes 𝑗, as follows:  

𝐸𝐷𝑉𝑃
𝑖𝑗,𝑡

= 𝑆𝑉𝑃
𝑖𝑖,𝑡 + 𝑆𝑉𝑃

𝑗𝑗,𝑡
− (𝑆𝑉𝑃

𝑖𝑗,𝑡
+ 𝑆𝑉𝑃

𝑗𝑖,𝑡
) (8.5) 

𝐸𝐷𝑉𝑄
𝑖𝑗,𝑡

= 𝑆𝑉𝑄
𝑖𝑖,𝑡 + 𝑆𝑉𝑄

𝑗𝑗,𝑡
− (𝑆𝑉𝑄

𝑖𝑗,𝑡
+ 𝑆𝑉𝑄

𝑗𝑖,𝑡
) (8.6) 

 

Where 𝑆𝑉𝑃
𝑖𝑗,𝑡

 and 𝑆𝑉𝑄
𝑖𝑗,𝑡

 represents the sensitivity levels of voltage magnitude at node 𝑖 as a result 

of active power activities (i.e. PEVs activities, PVs generation or curtailment …etc), and 

reactive power activities (i.e. capacitor bank support) at nodes 𝑗. It is worth mentioning that 

the closer the electrical distance between any two nodes, the more mutual sensitivity values 

they will share. Since 𝐸𝐷𝑉𝑃
𝑖𝑗,𝑡

 is proportionally related to 𝐸𝐷𝑉𝑄
𝑖𝑗,𝑡

, the weighted electrical 

distance at a given timeslot could be formulated as follows:  

𝐸𝐷𝑖𝑗
𝑡 = 𝜓𝒮𝑅

𝑉𝑃 + (1 − 𝜓)𝒮𝑅
𝑉𝑄

 (8.7) 
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To properly decompose the distribution feeder, an improved index that is estimated 

based on the local voltage and reactive power levels is utilized to ensure optimal partitioning. 

It is worth mentioning that the higher the index assessed by equation (8.1), the more accurate 

the partitioning is with respect to the sensitivity values. Therefore, for any timeslot t, the 

voltage capability levels within a partitioning subgroup 𝑅 is assessed according to an average 

sensitivity values for both active power, 𝒮𝑅
𝑉𝑃, and reactive power, 𝒮𝑅

𝑉𝑄 , as follows: 

𝒮𝑅
𝑉𝑄 = 𝑎𝑣𝑔 [∑  

𝑖,𝑗∈𝑅

𝐸𝐷𝑉𝑄
𝑖𝑗,𝑡
] (8.8) 

𝒮𝑅
𝑉𝑃 = 𝑎𝑣𝑔 [∑  

𝑖,𝑗∈𝑅

𝐸𝐷𝑉𝑃
𝑖𝑗,𝑡
] (8.9) 

 

For instance, the higher value for 𝒮𝑅
𝑉𝑄

at a timeslot t, the more sensitive the voltage 

level at partition subgroup 𝑅 for any reactive power support, and vice versa. Accordingly, the 

voltage capability of partition 𝑅, denoted 𝛤𝑅, could be updated based on the status-quo of the 

active power curtailment (APC) and reactive power support to solve the intra-partition 

voltage level problems as follows:  

𝛤𝑅 = 𝑚𝑖𝑛{𝑅𝑉𝑄
𝑡 + 𝑅𝑉𝑃

𝑡 , 1} (8.10) 

Where 𝑅𝑉𝑄
𝑡  refers to the voltage regulation-freedom degree with respect to RPC devices 

at node 𝑗 , defined as follows:  

𝑅𝑉𝑄
𝑡 =

{
 
 

 
 1   𝑖𝑓  ∆𝑉𝑖 ⩽∑ 

𝑗∈𝑅

𝑆𝑉𝑄
𝑖𝑗,𝑡
∗ 𝑅𝑃𝐶𝑗

𝑡

  
𝑆𝑉𝑄
𝑖𝑗,𝑡
∗ 𝑅𝑃𝐶𝑗

𝑡

∆𝑉𝑖
 , , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

 (8.11) 
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 While 𝑅𝑉𝑃
𝑡  refers to the voltage regulation-freedom degree with respect to active 

power curtailment (APC), defined as follows: 

𝑅𝑉𝑃
𝑡 =

{
 
 

 
 1  𝑖𝑓 ∆𝑉𝑖 ⩽∑ 

𝑗∈𝑅

𝑆𝑉𝑃
𝑖𝑗,𝑡
∗ 𝐴𝑃𝐶𝑗

𝑡

𝑆𝑉𝑃
𝑖𝑗,𝑡
∗ 𝐴𝑃𝐶𝑗

𝑡

∆𝑉𝑖
                             

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

(8.12) 

In equations (8.11) and (8.12), ∆𝑉𝑖 represents the gradual voltage change for node 𝑖, 

and is filled with zero when there is no change of the voltage level from the previous timeslot; 

𝐴𝑃𝐶𝑗
𝑡 and 𝑅𝑃𝐶𝑗

𝑡 represent the maximum allowed active power curtailment and reactive 

power compensation at node 𝑗 during timeslot 𝑡 with respect to voltage magnitude at node 𝑖. 

The estimation of the optimality of the decomposition is mainly achieved based on the 

quantification of the electrical coupling levels. Such estimation is achieved by the modularity 

index value that is influenced by the average sensitivity values presented in eqs (8) and (9) 

as well as the voltage regulation degrees (10)~(12). Once the distribution feeder is divided 

into N partitions, then the improved index could be estimated as follows: 

𝑀𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑀 −
1

𝑁
∑  

𝑁

𝑅=1

(𝛤𝑅 + 𝑆𝑅
𝑉𝑄 + 𝑆𝑅

𝑉𝑃) (8.13) 

 

 Community-Based Detection Particle Swarm Optimization (CBDPSO) 

Algorithm   

     This section utilizes PSO as a searching strategy to reach the optimal partitioning of 

the PDN with respect with the highest obtained modularity index value. The search for an 

optimal decomposition of a network can be consider as an optimization problem [183], and 

therefore PSO, a powerful nature-inspired stochastic optimization technique, is seen by the 
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authors as an ideal methodology to be applied to acquire the optimal decomposition of the 

PDN based on the voltage sensitivity values as discussed in part A of this section.  

     The main concept of the PSO is to treat a group of objects as particles that fly only 

within a searching space. Each of the particles of interest acquires a vector representation for 

its relative position and velocity. The position vector produces a candidate solution to the 

applied problem, while the velocity vector indicates the tolerance of the position vector for 

potential changes. The process is repeated iteratively to update the velocity vector and current 

position of the solution particles with respect to other neighboring particles, until a local and 

global optimum is achieved. To place this searching mechanism within the context of the 

PDN’s partitioning process, the PSO utilizes information that represent the distribution 

network topology. Thus, the searching strategy updates the particle’s position and velocity 

with respect to the network linkage information. Denoting the population size as Pop; the 

velocity, 𝒱𝐸𝑖 , and position, 𝒳𝐸𝑖, of a particle ith could be established as follows: 

𝒱𝐸𝑖(𝑡 + 1) = 𝒱𝐸𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝒳𝐸𝑖(𝑡)) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝒳𝐸𝑖(𝑡)) (8.14) 

𝒳𝐸𝑖(𝑡 + 1) = 𝒳𝐸𝑖(𝑡) + 𝒱𝐸𝑖(𝑡 + 1) (8.15) 

 where 𝑖 = [1,2, . . . , 𝑃𝑜𝑝]; 𝑟1 and 𝑟2 represent random numbers that belong between 

[0.1]; 𝑐1 and 𝑐2 represent user-specified cognitive and social learning coefficients, while 

Pbest and Gbest represent the ith particle best local and global positions such that:  

𝑃𝑏𝑒𝑠𝑡𝑖 = [𝑃𝑏𝑒𝑠𝑡𝑖
1, 𝑃𝑏𝑒𝑠𝑡𝑖

2, … , 𝑃𝑏𝑒𝑠𝑡𝑖
𝐷] (8.16) 

𝐺𝑏𝑒𝑠𝑡𝑖 = [𝐺𝑏𝑒𝑠𝑡𝑖
1, 𝐺𝑏𝑒𝑠𝑡𝑖

2, . . . , 𝐺𝑏𝑒𝑠𝑡𝑖
𝐷] (8.17) 

𝒱𝐸𝑖 = [𝒱𝐸𝑖
1, 𝒱𝐸𝑖

2, . . . , 𝒱𝐸𝑖
𝐷] (8.18) 
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𝒳𝐸𝑖 = [𝒳𝐸𝑖
1, 𝒳𝐸𝑖

2, . . . , 𝒳𝐸𝑖
𝐷] (8.19) 

 The evaluation criterion of the developed algorithm follows the fitness function 

presented in equations (8.1) and (8.13) which evaluates, as discussed in the previous section, 

the optimality of the partitioning process. Fig. 8.2 provides an illustration of the application 

of the developed CBDPSO to establish an optimal decomposition for a given network 

topology. Specifically, the position vector, 𝒳𝐸𝑖 , is redefined to represent the actual 

partitioning of the network where 𝒳𝐸𝑖 represents the ith particle position permutation 𝒳𝐸𝑖 =

[𝒳𝐸𝑖
1, 𝒳𝐸𝑖

2, . . .  𝒳𝐸𝑖
𝑗
 , … ,𝒳𝐸𝑖

𝑁] s.t. 𝒳𝐸𝑖
𝑗
 is an integer that holds the partition’s information 

such that if 𝒳𝐸𝑖
𝑗
= 𝒳𝐸𝑖

𝑙, then nodes 𝑗 and 𝑙 will be categorized within the same 

subcommunity,  given that both 𝒳𝐸𝑖
𝑗
, 𝒳𝐸𝑖

𝑙 ∈ [1, 𝑁]. It is worth mentioning that the 

diminution of the fitness function equals the number of nodes in the to-be-decomposed 

network. Fig. 8.3 provides an illustration of the CBDPSO’s searching strategy for updating 

the network topology into optimal partitions. 

 

Figure 8-2. The partitioning ideology of the CBDPSO 

 

 

     That’s to say, the ith particle velocity permutation is arranged in a vector 

representation, 𝒱𝐸𝑖 = [𝒱𝐸𝑖
1, 𝒱𝐸𝑖

2, . . . 𝒱𝐸𝑖
𝑗
, … , 𝒱𝐸𝑖

𝑁], where 𝒱𝐸𝑖
𝑗
is an integer s.t. 𝒱𝐸𝑖

𝑗
∈ [0,1]. 
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For the case of 𝒱𝐸𝑖
𝑗
= 1, then the relative entry element at the position vector, 𝒳𝐸𝑖

𝑗
, is ought 

to change; otherwise, for any other value of 𝒱𝐸𝑖
𝑗
, it will remain in the same position. 

Following the same manner at each iteration, the Pbest vector are initialized similar to the 

position vector, while the Gbest vector is set to be the best obtained position vector for the 

solution space. Accordingly, the mathematical operators will be redefined as following:  

𝒱𝐸𝑖(𝑡 + 1) = 𝜔𝒱𝐸𝑖(𝑡) ⊕ (𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 ⊝𝒳𝐸𝑖(𝑡)) + (𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 ⊝ 𝒳𝐸𝑖(𝑡))) (8.20) 

𝒳𝐸𝑖(𝑡 + 1) = 𝒳𝐸𝑖(𝑡) ⊗ 𝒱𝐸𝑖(𝑡 + 1) (8.21) 

 where 𝜔 is a user-specified inertia assumed to be 0.75 while 𝑐1 and 𝑐2 are assumed to 

be 1.497, respectively. Since a particle in the solution space adjusts its information based on 

knowledge provided from its nearby particles, the learning process is seen as a comparative 

one between two consecutive position. Specifically, any two generated position 

permutations, 𝒫1 = [𝒫1
1, 𝒫1

2, … , 𝒫1
𝑁], and 𝒫2 = [𝒫2

1, 𝒫2
2, . . . , 𝒫2

𝑁] will lead to velocity vector 

as following:  

  𝒫1⊝𝒫2 = 𝒱𝐸 = [𝒱𝐸1, 𝒱𝐸2, . . . , 𝒱𝐸𝑁] (8.22) 

where the operator ⊝ indicates the difference between compared network topology 

indicated by the positions such that: 

  {
𝒱𝐸𝑖 = 1, 𝑓𝑜𝑟 𝒫2

𝑖 ≠ 𝒫2
𝑖

𝒱𝐸𝑖 = 0, 𝑓𝑜𝑟 𝒫2
𝑖 = 𝒫2

𝑖  (8.23) 

 

Additionally, the operator ⊕ ensures the velocity will be binary coded which 

eventually eases the reordering of the position vectors. That is to say, when two velocity 
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vectors are added, an updated velocity vector such that 𝒱𝐸1 + 𝒱𝐸2 = 𝒱𝐸3 =

[𝒱𝐸3
1, 𝒱𝐸3

2, . . . , 𝒱𝐸3
𝑁], where  

     {
𝒱𝐸3

𝑖 = 1, 𝑖𝑓 𝒱𝐸1
𝑖 + 𝒱𝐸2

𝑖 ≥ 1

𝒱𝐸3
𝑖 = 0, 𝑖𝑓 𝒱𝐸1

𝑖 + 𝒱𝐸2
𝑖 < 1

 (8.24) 

 Once a new velocity vector is obtained, the ith particle updates its position following 

the use of the operator ⊗ as shown in equation (8.25). The goodness of the operator ⊗ will 

be reflecting in its ability to place the particle within its most ideal partition that shares with 

it the same sensitivity values described in the previous section. For a modified position 

permutation 𝒫𝑝𝑟𝑒 = [𝒫𝑝𝑟𝑒
1 , 𝒫𝑝𝑟𝑒

2 , . . . , 𝒫𝑝𝑟𝑒
𝑁 ], and a velocity 𝒱𝐸 = [𝒱𝐸1, 𝒱𝐸1, . . . , 𝒱𝐸𝑁] of the 

previous iteration, the new position permutation is achieved by utilizing the operator ⊗ such 

that 𝒫𝑝𝑟𝑒⊗  𝒱𝐸 = 𝒫𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = [𝒫𝑢𝑝𝑑𝑎𝑡𝑒𝑑
1 , 𝒫𝑢𝑝𝑑𝑎𝑡𝑒𝑑

2 , . . . , 𝒫𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑁 ], s.t.:  

     {
𝒫𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑖 = 𝒫𝑝𝑟𝑒

𝑖 ,                                                           𝑖𝑓 𝑉𝐸𝑖 = 0

𝒫𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑖 = tan−1(𝑀𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑(𝒫𝑝𝑟𝑒

𝑖 , 𝑗 𝑗 ∈ 𝐾𝑖), 𝑖𝑓𝑉𝐸𝑖 = 1
 (8.25) 

where 𝐾𝑖 resembles the neighboring nodes to node 𝑖 s.t. 𝐾𝑖 = [𝐾1, 𝐾2, . . . , 𝐾𝑁], while 

𝑀𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 is calculated from equation (8.13). The flowchart of the partitioning process based 

on the concept of CBDPSO is illustrated in fig. 8.4.  

 

Figure 8-3. An illustration of the CBDPSO algorithm for updating the network topology using operator 
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Figure 8-4. Flowchart of the decomposition of PDN based on CBDPSO 
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8.4 MILP Problem Formulation 

 Mixed-Integer Non-Linear Programming Model 

     MINLP is considered a well-established and widely used powerful tool to model vast 

types of general optimization problems; an advantage of the reformulation of MINLP into 

MILP lays in the capability it possesses to solve the latter class problems while avoiding the 

computational burden. An additional virtue is the ability to use the widely available 

commercial programs for solving MILP problems while guaranteeing the existence of a 

unique solution. Throughout the way, an emphasis on the equality and inequality constraints 

associated with voltage and reactive power support must be carefully considered. Such 

emphasis is pivotal to satisfy the requirement of the developed VVO methodology. The 

solution to the objective function is achieved based on optimal values for the energy provided 

by the upstream grid, the energy provided by the PV systems, the amount of reactive power 

support per the CB modules, and OLTC, and the charging and discharging schedule for PEVs. 

1) The objective function: the optimization formula, to achieve economical operation in 

the context of VVO problem while considering stochastic bidirectional penetration of PEVs, 

is formulated as follows:  

    𝑂𝐹 = 𝑀𝑖𝑛 (𝐽1 + 𝐽2 + 𝐽3 + 𝐽4) (8.26) 

The first variable, 𝐽1, aims to minimize the energy cost from the upstream network as follows: 

  𝐽1 = ∑ 

24

𝑡=1

∑  

𝑐

𝜌=𝑎

∑ 

𝑁

𝑖=1

∑ 

𝑁

𝑗=1

[𝒮𝑡
𝐺  . ∆𝑡 . [𝑅𝑒(𝑉𝑝,𝑡, 𝐼𝑝,𝑡) + 𝑖𝑚𝑗(𝑉𝑝,𝑡, 𝐼𝑝,𝑡)] (8.27) 
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Where 𝒮𝑡
𝐺  represents the energy costs, 𝑉𝑝,𝑡 𝑎𝑛𝑑  𝐼𝑝,𝑡 represent the per-phase voltage and 

current per timeslot 𝑡. To coordinate the PEVs charging and discharging activities with the 

timely stead-state operation of the grid, this work proposes an objective function that aims to 

minimize the cost of energy discharged to the grid from a set of PEVs. Additionally, this 

work aims to minimize the energy demand curtailment of PEVs during congestion period to 

avoid increasing energy prices. These two objectives are formulated as follows:  

 𝐽2 =∑ 

24

𝑡=1

∑  

𝑐

𝜌=𝑎

∑ 

𝑁𝑣

𝑣=1

[∆𝑡 . [(𝒮𝑣,𝑝,𝑡
𝑑𝑖𝑠𝑐ℎ . 𝑃𝐸𝑉𝑣,𝑝,𝑡

𝑑𝑖𝑠𝑐ℎ) − (𝒮𝑣,𝑝,𝑡
𝑐ℎ . 𝑃𝐸𝑉𝑣,𝑝,𝑡

𝑐ℎ )] (8.28) 

𝐽3 =∑ 

24

𝑡=1

∑ 

𝑁𝑣

𝑣=1

[ ∆𝑡 [𝒮𝑐𝑢𝑟𝑡
𝑃𝐸𝑉 . 𝑃𝐸𝑉𝑣

𝑐𝑢𝑟𝑡]] (8.29) 

where 𝒮𝑣,𝑝,𝑡
𝑑𝑖𝑠𝑐ℎ and 𝒮𝑐𝑢𝑟𝑡

𝑃𝐸𝑉  represent the costs for PEV’s energy discharge and PEV’s energy 

demand curtailment for a vehicle v, respectively. Finally, this work aims to reduce the cost 

associated with active power curtailment from the PV system during time when the PV 

inverters are used to maintain certain voltage limits, as follows:  

𝐽4 =∑ 

24

𝑡=1

∑ 

𝑁

𝑖=1

∑ 

𝑁

𝑗=1

[ ∆𝑡 [𝒮𝑖,𝑡
𝑃𝑉.𝑐𝑢𝑟 . 𝑃𝑉𝑖,𝑡

𝑐𝑢𝑟]] (8.30) 

where 𝒮𝑖,𝑡
𝑃𝑉.𝑐𝑢𝑟represent the cost for APC of the PV systems, 𝑃𝑉𝑖,𝑡

𝑐𝑢𝑟, at timeslot t for node i.  

2) The Kirchhoff Laws constraints: an important aspect of ensuring an accurate 

representation of the problem formulated in this work is to model constraints that govern the 

physical law of operation for unbalanced power distribution networks. The voltage-current 

relationship of KCL possesses natural nonlinearity for their description of the timely-

changing quantities of power and voltage levels on the grid. Equations (8.31)-(8.40) provides 

mathematical modelling for these relationships as follows:  
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𝑟𝑒 (𝐼𝑚,𝑝,𝑡
𝑙𝑜𝑎𝑑 ) + ∑  

𝑣∈𝑁𝑣

(𝑟𝑒  (𝐼𝑣,𝑡
𝐸𝑉  . 𝛾(𝑣,𝑚, 𝑝))  −  𝑟𝑒 (𝐼𝑖,𝑝,𝑡

𝐺 ) − [𝑟𝑒(∑  

𝑖∈𝐶𝑅

𝐼𝑖,𝑡
𝐶𝐵

+ ∑  

𝑙𝑚∈𝑈

𝐼𝑙𝑚,𝑝,𝑡 − ∑  

𝑚𝑛∈𝑈

𝐼𝑚𝑛,𝑝,𝑡)] + [𝑖𝑚𝑗
 𝑉𝑚,𝑝,𝑡
2

( ∑  

𝑙𝑚∈𝑈

𝐵𝑙𝑚,𝑝

+ ∑  

𝑚𝑛∈𝑈

𝐵𝑚𝑛,𝑝)] = 0 

 

(8.31) 

𝑖𝑚𝑗 (𝐼𝑚,𝑝,𝑡
𝑙𝑜𝑎𝑑 ) + ∑  

𝑣∈𝑁𝑣

(𝑖𝑚𝑗 𝐼𝑣,𝑡
𝐸𝑉 . 𝛾(𝑣,𝑚, 𝑝) − 𝐼𝑖,𝑝,𝑡

𝑖𝑚𝑗
− [𝑖𝑚𝑗(∑  

𝑖∈𝐶𝑅

𝐼𝑖,𝑡
𝐶𝐵 + ∑  

𝑙𝑚∈𝑈

𝐼𝑙𝑚,𝑝,𝑡

− ∑  

𝑚𝑛∈𝑈

𝐼𝑚𝑛,𝑝,𝑡)] + [𝑟𝑒
𝑉𝑚,𝑝,𝑡
2

( ∑  

𝑙𝑚∈𝑈

𝐵𝑙𝑚,𝑝 + ∑  

𝑚𝑛∈𝑈

𝐵𝑚𝑛,𝑝)] = 0 

 

(8.32) 

 

where equations (8.31) and (8.32) present the amount of current at phase 𝑃 for node 𝑖 at 

timeslot 𝑡 in branch 𝑈 within a defined partition. 𝛾 represnts a binary number that indicates 

the status of connection of a PEV 𝑣 that belongs to a set of PEVs associated with node 𝑖 at 

the timeslot of interest. The current-voltage equations represent the timely consumption of 

active and reactive power at the branch of interest. Equations (8.33) and (8.34) represent the 

branch’s per phase voltage level, while equations (8.35) and (8.36) represent mathematical 

modeling of KCL summation for each circuit lm within a partition, as follows:  

𝑟𝑒 (𝐼𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑) =

[(𝑃𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑  . 𝑟𝑒 𝑉𝑖,𝑝,𝑡) + (𝑄𝑖,𝑝,𝑡

𝑙𝑜𝑎𝑑 . 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡)

𝑟𝑒 𝑉𝑖,𝑝,𝑡
 2 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

 2  (8.33) 

𝑖𝑚𝑗 (𝐼𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑) =

[(𝑃𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑  . 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡) − (𝑄𝑖,𝑝,𝑡

𝑙𝑜𝑎𝑑 . 𝑟𝑒 𝑉𝑖,𝑝,𝑡)

𝑟𝑒 𝑉𝑖,𝑝,𝑡
 2 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

 2  (8.34) 

𝑟𝑒(𝑉𝑙,𝑝,𝑡 − 𝑉𝑚,𝑝,𝑡) − ∑  

𝑝,ℎ∈𝑃

[(𝑅𝑙𝑚,𝑝,ℎ . 𝑟𝑒 (𝐼𝑙𝑚,ℎ,𝑡)  − (𝑋𝑙𝑚,𝑝,ℎ  . 𝑖𝑚𝑗 (𝐼𝑙𝑚,ℎ,𝑡) )] = 0 
(8.35) 
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𝑖𝑚𝑗(𝑉𝑙,𝑝,𝑡 − 𝑉𝑚,𝑝,𝑡) − ∑  

𝑝,ℎ∈𝑃

[(𝑋𝑙𝑚,𝑝,ℎ  . 𝑟𝑒 (𝐼𝑙𝑚,ℎ,𝑡)  − (𝑅𝑙𝑚,𝑝,ℎ . 𝑖𝑚𝑗 (𝐼𝑙𝑚,ℎ,𝑡) )] = 0 
(8.36) 

Equations (8.37) and (8.38) represents exponential mathematical modeling of the load 

voltage level from active and reactive power aspect, while equations (8.39) and (8.40) define 

the allowable limitation of both voltage and current at each circuit, as follows:  

𝑃𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑 = 𝑃𝑖,𝑝,𝑡

𝑛𝑜𝑚𝑖𝑛𝑎𝑙[
√𝑟𝑒 𝑉𝑖,𝑝,𝑡  +  𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙
]𝛼 (8.37) 

𝑄𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑 = 𝑄𝑖,𝑝,𝑡

𝑛𝑜𝑚𝑖𝑛𝑎𝑙[
√𝑟𝑒 𝑉𝑖,𝑝,𝑡  +  𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙
]𝛽 (8.38) 

𝑉𝑚𝑖𝑛
2 ≤ 𝑟𝑒 𝑉𝑖,𝑝,𝑡

2 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡
2 ≤ 𝑉𝑚𝑎𝑥

2  (8.39) 

0 ≤ 𝑟𝑒 𝐼𝑙𝑚,𝑝,𝑡
2 + 𝑖𝑚𝑗 𝐼𝑙𝑚,𝑝,𝑡

2 ≤ 𝐼𝑚𝑎𝑥,𝑙𝑚
2  (8.40) 

3) The OLTC Constraints: equations (8.41)-(8.49) represent the mathematical 

formulation for the constraints on voltage output at tap position 𝑟  of the OLTC, as follows: 

𝑟𝑒 (𝑉𝑙,𝑝,𝑡) − 𝜀𝑟,𝑡𝑝 𝑟𝑒(𝑉𝑚,𝑝,𝑡) − 𝑅𝑙𝑚 𝑟𝑒(𝐼𝑙𝑚,𝑝,𝑡) + 𝑋𝑙𝑚 𝑖𝑚𝑗(𝐼𝑙𝑚,𝑝,𝑡) + ∆𝑢𝑙𝑚,𝑡𝑝
𝑟𝑒 = 0 (8.41) 

𝑖𝑚𝑗 (𝑉𝑙,𝑝,𝑡) − 𝜀𝑟,𝑡𝑝 𝑖𝑚𝑗(𝑉𝑚,𝑝,𝑡) − 𝑋𝑙𝑚  𝑟𝑒(𝐼𝑙𝑚,𝑝,𝑡)  −  𝑅𝑙𝑚 𝑖𝑚𝑗(𝐼𝑙𝑚,𝑝,𝑡) + ∆𝑢𝑙𝑚,𝑡𝑝
𝑖𝑚𝑗

= 0 (8.42) 

±(∆𝑢𝑙𝑚,𝑡𝑝
𝑟𝑒 ) + 𝐿𝐺𝑁 𝑏𝑙𝑚,𝑡𝑝 ⩽ 𝐿𝐺𝑁 (8.43) 

±(∆𝑢𝑙𝑚,𝑡𝑝
𝑖𝑚𝑗

) + 𝐿𝐺𝑁 𝑏𝑙𝑚,𝑡𝑝 ⩽ 𝐿𝐺𝑁 (8.44) 

−𝐼𝑙𝑚
𝑚𝑖𝑛𝑏𝑙𝑚,𝑡𝑝 ⩽ 𝑟𝑒 𝐼𝑙𝑚,𝑡𝑝 ⩽ 𝐼𝑙𝑚

𝑚𝑎𝑥𝑏𝑙𝑚,𝑡𝑝 (8.45) 

−𝐼𝑙𝑚
𝑚𝑖𝑛𝑏𝑙𝑚,𝑡𝑝 ⩽ 𝑖𝑚𝑗 𝐼𝑙𝑚,𝑡𝑝 ⩽ 𝐼𝑙𝑚

𝑚𝑎𝑥𝑏𝑙𝑚,𝑡𝑝 (8.46) 

∑  

𝑁𝑡𝑝𝑡

𝑡𝑝=1

𝑏𝑙𝑚,𝑡𝑝 = 100% (8.47) 
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𝑟𝑒 [𝐼𝑙𝑚,ℎ,𝑡 − ∑  

𝑁𝑝

𝑡𝑝=1

𝐼𝑙𝑚,ℎ,𝑡,𝑡𝑝] = 0 (8.48) 

𝑖𝑚𝑗 [𝐼𝑙𝑚,ℎ,𝑡 − ∑  

𝑁𝑝

𝑡𝑝=1

𝐼𝑙𝑚,ℎ,𝑡,𝑡𝑝] = 0 (8.49) 

 

Where 𝑟𝑒(𝐼𝑙𝑚,𝑝,𝑡) and 𝑖𝑚𝑗(𝐼𝑙𝑚,𝑝,𝑡) represent the phase currents at the primary side of the 

OLTC for tap position 𝑟 with corresponding tap rations, 𝜀𝑟. To ensure the tap position, 𝑡𝑝, is 

on 𝑟, we define a binary variable 𝑏𝑙𝑚,𝑡𝑝 that equal to 1 when tp is on, and zero for any other 

positions. Additionally, two auxiliary variables ∆𝑢𝑙𝑚,𝑡𝑝
𝑖𝑚𝑗

  and ∆𝑢𝑙𝑚,𝑡𝑝
𝑟𝑒    are furtherly introduced 

to incorporate OLTC’s terminals voltage differences. For the case of 𝑏𝑙𝑚,𝑡𝑝 = 0, 𝑟𝑒(𝐼𝑙𝑚,𝑝,𝑡) 

and 𝑖𝑚𝑗(𝐼𝑙𝑚,𝑝,𝑡) are going to be zero to limit any excessive operations of the OLTC over a 

specific period to ensure safety of the equipment. 𝐼𝑙𝑚
𝑚𝑖𝑛 and 𝐼𝑙𝑚

𝑚𝑎𝑥 represent the feasible current 

values of the OLTC, while 𝐿𝐺𝑁 is an adequate large number that applies linear relaxation 

following the concept the big-M method. Equations (8.48) and (8.49) describe the real and 

imaginary for the regulated current and voltage output of the OLTC. The modeling of the 

VRs strictly follows the mathematical formulation of the OLTC. 

4) The CBs Constraints: the mathematical representation of the OLTC constraints, the 

real and imaginary current output of the CB are represented by equations (8.50) and (8.51), 

as follows: 

 

𝑟𝑒 𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵

𝐵𝑖,𝑡,𝑠𝑝
+ 𝑖𝑚𝑗 𝑉𝑖,𝑡 + ∆𝑢𝑖,𝑠𝑝

𝐶𝐵,𝑟𝑒 = 0 (8.50) 
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𝑖𝑚𝑗 𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵

𝐵𝑖,𝑡,𝑠𝑝
− 𝑟𝑒 𝑉𝑖,𝑡 + ∆𝑢𝑖,𝑠𝑝

𝐶𝐵,𝑖𝑚𝑗
= 0 (8.51) 

±(∆𝑢𝑖,𝑠𝑝
𝐶𝐵,𝑟𝑒) + 𝐿𝐺𝑁 𝑏𝑖,𝑠𝑝

𝐶𝐵 ⩽ 𝐿𝐺𝑁 (8.52) 

±(∆𝑢𝑖,𝑠𝑝
𝐶𝐵,𝑖𝑚𝑗

) + 𝐿𝐺𝑁 𝑏𝑖,𝑠𝑝
𝐶𝐵 ⩽ 𝐿𝐺𝑁 (8.53) 

−𝑟𝑒 𝐼𝐶𝐵,𝑖,𝑡
𝑚𝑖𝑛 𝑏𝑖,𝑠𝑝

𝐶𝐵 ⩽ 𝑟𝑒 𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵 ⩽ 𝑟𝑒 𝐼𝐶𝐵,𝑖,𝑡

𝑚𝑎𝑥 𝑏𝑖,𝑠𝑝
𝐶𝐵  (8.54) 

−𝑖𝑚𝑗 𝐼𝐶𝐵,𝑖,𝑡
𝑚𝑖𝑛 𝑏𝑖,𝑠𝑝

𝐶𝐵 ⩽ 𝑖𝑚 𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵 ⩽ 𝑖𝑚𝑗 𝐼𝐶𝐵,𝑖,𝑡

𝑚𝑎𝑥 𝑏𝑖,𝑠𝑝
𝐶𝐵  (8.55) 

∑  

𝑁𝑠𝑝

𝑠𝑝=1

𝑏𝑖,𝑠𝑝
𝐶𝐵 = 1 (8.56) 

𝑟𝑒 [𝐼𝑖,𝑡
𝐶𝐵 − ∑  

𝑁𝑠𝑝

𝑠𝑝=1

𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵 ] = 0 (8.57) 

𝑖𝑚𝑗 [𝐼𝑖,𝑡
𝐶𝐵 − ∑  

𝑁𝑠𝑝

𝑠𝑝=1

𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵 ] = 0 (8.58) 

 

The shunt CBs are assumed to be either connected or disconnected in accordance with 

the steady-state operation of each partition, with 𝑠𝑝 represents the switching positions s.t. 

𝑠𝑝 ∈  𝑁𝑠𝑝, and 𝐵𝑖,𝑡,𝑠𝑝 is its corresponding susceptance of the CB. Analogous to the OLTC 

tap position representation, a binary variable 𝑏𝑖,𝑠𝑝
𝐶𝐵  is defined in equations (8.51)~(8.55) to 

represent the connection of the CBs, where it equals 1 once a particular position is set and 

zero otherwise. Equations (8.54) and (8.55) constraint the limit of the real and imaginary CBs 

currents, 𝐼𝐶𝐵,𝑖,𝑡
𝑚𝑖𝑛 and 𝐼𝐶𝐵,𝑖,𝑡

𝑚𝑎𝑥 . Additionally, two auxiliary variables, ∆𝑢𝑖,𝑠𝑝
𝐶𝐵,𝑖𝑚𝑗

and ∆𝑢𝑖,𝑠𝑝
𝐶𝐵,𝑟𝑒

, are 

defined to be zeros if 𝑏𝑖,𝑠𝑝
𝐶𝐵 = 1, or otherwise regulated by an adequate large number. Equation 
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(8.56) assumes one switching position to be selected at a timeslot, otherwise the CB modules 

are considered disconnected, to ensure limited switching actions.  

5) The PV Inverter Constraints: the APC of the PV inverter is constrained as shown in 

equation (8.59), while the active and reactive power injection of the PV inverter are 

established in accordance with equations (8.60) and (8.61). 

0 ⩽ 𝑃𝑉𝑖,𝑡
𝐶𝑢𝑟 ⩽ 𝑃𝑉𝑖,𝑡

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (8.59) 

(𝑃𝑉𝑖,𝑡
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒)2 ⩽ (𝑃𝑉𝑖,𝑡

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
)2 − (𝑃𝑉𝑖,𝑡

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 − 𝑃𝑉𝑖,𝑡
𝐶𝑢𝑟)2 (8.60) 

|𝑃𝑉𝑖,𝑡
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒| ⩽ [(𝑃𝑉𝑖,𝑡

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 − 𝑃𝑉𝑖,𝑡
𝐶𝑢𝑟) 𝑡𝑎𝑛 (𝐶𝑜𝑠 

−1𝑃𝐹)] (8.61) 

 

7) The PEVs Constraints: equation (8.62) constrains the charging and discharging 

process of a PEV 𝑣 connected at a phase 𝑝 at node 𝑖 to not occur simultaneously at timeslot 

𝑡, as follows: 

𝕏𝑐ℎ𝑖,𝑝,𝑡
𝑣 + 𝕐𝑑𝑖𝑠𝑐ℎ𝑖,𝑝,𝑡

𝑣 ⩽ 1 (8.62) 

where 𝕏𝑐ℎ and 𝕐𝑑𝑖𝑠𝑐ℎ are binary variables associated with the PEV charge and discharge at 

a certain timeslot s.t. 𝕏𝑐ℎ, 𝕐. 𝑑𝑖𝑠𝑐ℎ ∈ [0,1]. Equations (8.63)~(8.67) present the active and 

reactive power requirements of the PEV connection to the grid, as follows: 

𝑄𝑖,𝑝,𝑡
𝐸𝑉 ⩽ √(𝑃𝐸𝑉𝑖,𝑝,𝑡

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
)2 − (𝑃𝐸𝑉𝑖,𝑝,𝑡

𝑔𝑟𝑖𝑑
)2 (8.63) 

0 ⩽ 𝑃𝐸𝑉𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ⩽  𝑃𝐸𝑉𝑖,𝑝,𝑡

𝑔𝑟𝑖𝑑_𝑚𝑎𝑥
 (8.64) 

𝑄𝑖,𝑝,𝑡
𝐸𝑉,𝑚𝑖𝑛 ⩽ 𝑄𝑖,𝑝,𝑡

𝐸𝑉 ⩽ 𝑄𝑖,𝑝,𝑡
𝐸𝑉,𝑚𝑎𝑥

 (8.65) 

−𝜍𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑

 𝑃𝐸𝑉𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑

⩽ 𝑄𝑖,𝑝,𝑡
𝐸𝑉 ⩽ 𝜍𝑖,𝑝,𝑡

𝑔𝑟𝑖𝑑
 𝑃𝐸𝑉𝑖,𝑝,𝑡

𝑔𝑟𝑖𝑑
 (8.66) 
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𝑃𝐸𝑉𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑

= 𝑃𝐸𝑉𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑_𝑛𝑜𝑚𝑖𝑛𝑎𝑙

. ∑[
𝑣=1

𝑁𝑣

(𝑟𝑒 𝑉𝑣,𝑖,𝑝,𝑡  . 𝑟𝑒 𝐼𝑣,𝑖,𝑝,𝑡
𝑃𝐸𝑉 ) + (𝑖𝑚𝑗 𝑉𝑣,𝑖,𝑝,𝑡 . 𝑖𝑚𝑗 𝐼𝑣,𝑖,𝑝,𝑡

𝑃𝐸𝑉 ) (8.67) 

𝑃𝐸𝑉𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑

= 𝕏𝑐ℎ𝑖,𝑝,𝑡
𝑣  . [∑  

𝑁𝑣

𝑣=1

𝑃𝐸𝑉𝑣,𝑖,𝑝,𝑡
𝑐ℎ  . 𝜂𝑐ℎ] − 𝕐𝑑𝑖𝑠𝑐ℎ𝑖,𝑝,𝑡

𝑣 . [∑  

𝑁𝑣

𝑣=1

𝑃𝐸𝑉𝑣,𝑖,𝑝,𝑡
𝑑𝑖𝑠𝑐ℎ . 𝜂𝑑𝑖𝑠𝑐ℎ] (8.68) 

𝐸𝑣,𝑖,𝑝,𝑡
𝐸𝑉

= 𝐸𝑣,𝑖,𝑝,𝑡
𝐸𝑉 − 𝐸𝑣,𝑖,𝑝,𝑡

𝐸𝑉_𝐶𝑢𝑟
 (8.69) 

 

Equation (8.63) set the limits for the reactive power of a PEV based on its own power 

requirement as well as the node’s KVA rating. On the other hand, equation (8.64) set the real 

power constraints for a group of PEVs connected during each timeslot. This leads to the 

influence on the amount of reactive power PEVs could support the grid during at any phase 

and nodes during any timeslot which are highlighted in the constraints shown in equations 

(8.65) and (8.66). Specifically, this work defines a fixed variable 𝜍𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑

for each PEV’s charger 

converter, set in the simulation to be 0.25, with capability to modulate the power factor up to 

0.95 of inductive or capacitive capabilities [181, 182]. Equation (8.67) and (8.68) represent 

the PEVs charging and discharge power per phase 𝑝 at node 𝑖 during timeslot 𝑡, while 

equation (8.69) measures the level of energy curtailment the grid is forced to implement at 

each timeslot as a result of grid’s operational status. Fig. 8.5 presents the capability curve of 

a PEV’s bidirectional charger, which shows the operational zones of when the PEVs can 

supply the grid with either active or reactive power and in which mode.  
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Figure 8-5. The PEV’s bidirectional converter capability curve. 

 

 Mixed-Integer Linear Programming Model Formulation:  

The incorporation of discrete decision variables into the problem formulated in the 

previous section is extremely non-trivial due to its non-convexity and non-linearity nature. 

Therefore, in order to reduce complexities and to solve the formulated problem efficiently 

using the available commercial programs, we must apply linearization to the non-linear 

expressions in equations (8.31)~(8.69). This is true since the current available MINLP 

programs do not acquire enough maturity as compared to MILP programs. Several research 

works have investigated linearization of coefficients related to the operation of the 

distribution system. Large part of this subsection of the work is considerably influenced by 

the work of references [184, 185]. 
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1. Linearization of the Load Flow Non-linear Constraints: it is worth to highlight that 

equations (8.33), (8.34), (8.37) and (8.38) are non-linear in nature, and therefore they 

must be linearized to be solved using the developed MILP formulation. Equations 

(8.70) and (8.71) present the linearized form of the above-mentioned expressions, 

while equation (8.72) and (8.73) present first-order approximation of the newly 

linearized expressions. This work defines points of operation, (𝑟𝑒 𝑉𝑖,𝑝,𝑡
∗ , 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

∗ ) for 

the first-order approximation to be operating around. Both 𝑒∗ and 𝑓∗ are nonlinear 

functions that represent the real and imaginary parts of the voltage. 

𝑤(𝑟𝑒 𝑉𝑖,𝑝,𝑡 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡) = 𝑃𝑖,𝑝,𝑡
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 .

𝑟𝑒 𝑉𝑖,𝑝,𝑡

𝑉
𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝛼𝑖,𝑝
 . [𝑟𝑒 𝑉𝑖,𝑝,𝑡

2 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡
2 ]

𝛼𝑖,𝑝
2
−1

 
(8.70) 

𝑧(𝑟𝑒 𝑉𝑖,𝑝,𝑡 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡)

= 𝑃𝑖,𝑝,𝑡
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 .

𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

𝑉
𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝛼𝑖,𝑝
 . [𝑟𝑒 𝑉𝑖,𝑝,𝑡

2 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡
2 ]

𝛼𝑖,𝑝
2
−1

− 𝑄𝑖,𝑝,𝑡
𝑛𝑜𝑚𝑖𝑛𝑎𝑙  .

𝑟𝑒 𝑉𝑖,𝑝,𝑡

𝑉
𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝛽𝑖,𝑝
. [𝑟𝑒 𝑉𝑖,𝑝,𝑡

2 + 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡
2 ] 

𝛽𝑖,𝑝
2 −1

 

(8.71) 

𝑟𝑒 (𝐼𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑) = 𝑤∗ + (𝑟𝑒 𝑉𝑖,𝑝,𝑡 − 𝑟𝑒 𝑉𝑖,𝑝,𝑡

∗ )
𝜕𝑒

𝜕𝑟𝑒 𝑉

∗

+ (𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡 − 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡
∗ )

𝜕𝑒

𝜕𝑖𝑚𝑗 𝑉

∗

 (8.72) 

𝑖𝑚𝑗 (𝐼𝑖,𝑝,𝑡
𝑙𝑜𝑎𝑑) = 𝑧∗ + (𝑟𝑒 𝑉𝑖,𝑝,𝑡 − 𝑟𝑒 𝑉𝑖,𝑝,𝑡

∗ )
𝜕𝑓

𝜕𝑟𝑒 𝑉

∗

+ (𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

− 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡
∗ )

𝜕𝑓

𝜕𝑖𝑚𝑗 𝑉

∗

 

(8.73) 

2. Linearization of the OLTC Constraints: it should be mentioned that part of the 

linearization process of the OLTC constraints in this work is inspired by the model of 

reference [186, 187]. Equations (8.74) and (8.75) can be linearized in the same way 

presented in the KCL load flow linearization process explained in the previous 

subsection of this part. We incorporate with these equations an integer variable, 
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𝑈𝑙𝑚,𝑝,𝑡, that resemble the actual selection of the tap-position of the OLTC located in 

the circuit 𝑙𝑚 at a given timeslot.  

[𝑟𝑒 (𝑉𝑙,𝑝,𝑡) − 𝑈𝑙𝑚,𝑝,𝑡 𝑟𝑒(𝑉𝑚,𝑝,𝑡) − 𝑅𝑙𝑚 𝑟𝑒(𝐼𝑙𝑚,𝑝,𝑡) + 𝑋𝑙𝑚 𝑖𝑚𝑗(𝐼𝑙𝑚,𝑝,𝑡)]. 𝜇𝑙𝑚 = 0 (8.74) 

[𝑖𝑚𝑗 (𝑉𝑙,𝑝,𝑡) − 𝑈𝑙𝑚,𝑝,𝑡  𝑖𝑚𝑗(𝑉𝑚,𝑝,𝑡) − 𝑋𝑙𝑚 𝑟𝑒(𝐼𝑙𝑚,𝑝,𝑡)  −  𝑅𝑙𝑚 𝑖𝑚𝑗(𝐼𝑙𝑚,𝑝,𝑡)] . 𝜇𝑙𝑚 = 0 (8.75) 

𝜇𝑙𝑚 = 𝜇𝑙𝑚
𝑚𝑖𝑛 + 𝑈𝑙𝑚,𝑝,𝑡  . ∆𝜇𝑙𝑚 (8.76) 

∆𝜇𝑙𝑚 =
𝜇𝑙𝑚
𝑚𝑎𝑥 − 𝜇𝑙𝑚

𝑚𝑖𝑛

𝑘𝑙𝑚
 (8.77) 

Equations (8.76) and (8.77) represent the non-convex mathematical expression that describe 

the work of the OLTC, with 𝜇𝑙𝑚
𝑚𝑎𝑥and 𝜇𝑙𝑚

𝑚𝑖𝑛resemble the maximum and minimum turn rations 

of the OLTC, while 𝑘𝑙𝑚represents its total allowed steps. To linearize it, a binary variable 

𝛿𝑙𝑚,𝑡𝑝is introduced and equation (8.76) could be rewritten as follows: 

𝜇𝑙𝑚 = 𝜇𝑙𝑚
𝑚𝑖𝑛 + ∆𝜇𝑙𝑚. ∑  

𝑁𝑡𝑝

𝑡𝑝=0

2𝑡𝑝. 𝛿𝑙𝑚,𝑡𝑝 (8.78) 

s.t.  

∑  

𝑁𝑡𝑝

𝑡𝑝=0

2𝑡𝑝. 𝛿𝑙𝑚,𝑡𝑝 ⩽ 𝑘𝑙𝑚 (8.79) 

With 𝑁𝑡𝑝 represent the total length that represent the binary expression of 𝑘𝑙𝑚. Multiplying 

both sides of (8.78) by 𝑉𝑂𝐿𝑇𝐶, the following formulation is obtained:  

𝑉𝑂𝐿𝑇𝐶  . 𝜇𝑙𝑚
𝑚𝑖𝑛  + ∆𝜇𝑙𝑚. ∑  

𝑁𝑡𝑝

𝑡𝑝=0

2𝑡𝑝. 𝛿𝑙𝑚,𝑡𝑝𝑉𝑂𝐿𝑇𝐶 = 𝑉𝑂𝐿𝑇𝐶  . 𝜇𝑙𝑚  (8.80) 

The variables 𝛿𝑙𝑚,𝑡𝑝𝑉𝑂𝐿𝑇𝐶 could be furtherly replaced by a large number to allow 

transformation of the non-convexity into MILP context as follows: 
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0 ⩽ 𝑉𝑂𝐿𝑇𝐶(1 − 𝛿𝑙𝑚,𝑡𝑝) ⩽ (1 − 𝛿𝑙𝑚,𝑡𝑝). 𝐿𝑁𝐺 (8.81) 

0 ⩽ 𝑉𝑂𝐿𝑇𝐶 . 𝛿𝑙𝑚,𝑡𝑝  ⩽ 𝛿𝑙𝑚,𝑡𝑝. 𝐿𝑁𝐺 (8.82) 

3. Linearization of the CB and PEVs Constraints: the linearization process of the CB as 

well as PEVs follows the same linearization process explained in the KCL load flow part of 

this subsection in defining points of operation (𝑟𝑒 𝑉𝑖,𝑝,𝑡
∗ , 𝑖𝑚𝑗 𝑉𝑖,𝑝,𝑡

∗ ). In this context, equations 

(8.50) and (8.51) could be rewritten as follows:  

𝑟𝑒 𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵

𝐵𝑖,𝑡,𝑠𝑝
+ 𝑖𝑚𝑗 𝑉𝑖,𝑡

∗ + ∆𝑢𝑖,𝑠𝑝
𝐶𝐵,𝑟𝑒 = 0 (8.83) 

𝑖𝑚𝑗 𝐼𝑖,𝑡,𝑠𝑝
𝐶𝐵

𝐵𝑖,𝑡,𝑠𝑝
− 𝑟𝑒 𝑉𝑖,𝑡

∗ + ∆𝑢𝑖,𝑠𝑝
𝐶𝐵,𝑖𝑚𝑗

= 0 (8.84) 

while equation (8.67) could be rewritten as follows:  

𝑃𝐸𝑉𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑

= 𝑃𝐸𝑉𝑖,𝑝,𝑡
𝑔𝑟𝑖𝑑𝑛𝑜𝑚𝑖𝑛𝑎𝑙 . ∑[

𝑣=1

𝑁𝑣

(𝑟𝑒 𝑉𝑣,𝑖,𝑝,𝑡
∗  . 𝑟𝑒 𝐼𝑣,𝑖,𝑝,𝑡

𝑃𝐸𝑉 ) + (𝑖𝑚𝑗 𝑉𝑣,𝑖,𝑝,𝑡
∗  . 𝑖𝑚𝑗 𝐼𝑣,𝑖,𝑝,𝑡

𝑃𝐸𝑉 ) (8.85) 

 

4. Linearization of the PV Inverter Constraints: this work realizes the PV inverter’s 

capability to perform reactive power-voltage control following the real-time steady-state 

operation of each partition of the distribution network [188]. Fig. 8.6 shows the concept of 

linearized reactive power-voltage control via six illustrative points [a1, a2, a3, a4, a5 and a6]. 

The PV inverter goes in capacitive mode (reactive power injection to the grid) for the positive 

value of reactive power on the curve. In contrast, it goes in absorption mode when the reactive 

power values are negative. The latter is performed when the steady-state operation requires 

a reduction in the increased value of the per unit voltage. This is primarily achieved to 

maintain the voltage not to violate acceptable limit to achieve economical operation, as this 

work investigates in the results section. The allowed voltage limits must reside between 
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[0.95-1.05]. The PV inverter operational zones are indicated in points [a1, a2, a5, and a6], 

whereas it provides nor absorbs reactive power support in operational points a3-a4, which is 

when the voltage limit of each partition is within permissible levels. The reactive power of 

the PV inverter is achieved using equation (8.60). Auxiliary continuous variable 𝜗𝑘 (s.t. 𝑘 ∈

{1~6}), and integer variable 𝜎𝑘 (s.t.𝑘 ∈ {1~5}), are utilized in this work. Hence, the reactive 

power-voltage control of the PV inverter could be reformulated as follows: 

𝑉𝑖,𝑡
𝑃𝑉 =∑  

6

𝑘=1

𝜗𝑘. 𝑉𝑘,𝑡 (8.86) 

𝑃𝑉𝑖,𝑡
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 =∑  

6

𝑘=1

𝜎𝑘. 𝑉𝑘,𝑡 (8.87) 

𝜗1 ⩽ 𝜎1 (8.88) 

𝜗6 ⩽ 𝜎5 (8.89) 

𝜗𝑘 ⩽ 𝜎𝑘 + 𝜎𝑘−1, ∀𝑘 = 2,3,4,5 (8.90) 

𝜎𝑘 ∈ {0~1}, 𝜗𝑘 ⩾ 0 (8.91) 

∑ 
𝑘=1

6

𝜗𝑘 = 1 (8.92) 

∑ 
𝑘=1

5

𝜎𝑘 = 1 (8.93) 

𝑃𝑉𝑖,𝑡
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑔(𝑉𝑖,𝑡

𝑃𝑉) (8.94) 

where equation (8.94) presents the piece-wise linear function of the reactive power output of 

the PV inverter. Therefore, voltage-reactive power control mode could be utilized by the PV 

inverter located at each partition to stabilize the voltage limit within a certain limit. 
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Figure 8-6. The voltage-var control for the PV inverter 

8.5 Results and Discussion 

     To verify the efficiency of the developed strategy, this work utilizes the modified IEEE 

123 bus distribution system to perform simulation for different case scenarios. The simulation 

is performed using MATLAB 2019b on a 64-bit, i-7 laptop with 16 G.B. RAM. The 

optimization model was programmed in the YALMIP platform [189] and was solved by the 

CPLEX optimizer [190]. The developed two-stage optimization strategy to optimally solve 

the VVO problem considering PEVs activities on the power distribution network (PDN) is 

constructed to incorporate conventional variables that describe the grid’s steady-state 

operation (i.e. active and reactive power injection/absorption, voltage and current flow). The 

IEEE 123 bus system data has been obtained from [191], with modifications that resemble 

the integration of 500 PEVs assumed to be Tesla model 3 with 75 kWh battery capacity and 

up to 11.5 kW of charging power. The arrival and departure times as well as the charging 

model of the PEVs in this work have been adopted based on the study from references [181, 

182]. Furthermore, the test feeder incorporates shunt capacitor banks, PV systems, and OLTC 

transformer and VRs to achieve the developed coordination scheme. The location and 

capacity of the installed equipment is shown in table 8.1. The values of the 𝛼 and 𝛽 
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parameters, that are used to model different load types in the voltage equation model, are 

utilized from [191, 192]. 

     The two-stage optimization strategy is modelled in a time-horizon fashion; the first 

stage, which aims to decompose the PDN based on the developed CBDPSO, is assumed to 

operate in a time-ahead platform, while the second stage assumes to operate in real-time 

platform with equally distributed 96 timeslots with 15 minutes duration per each timeslot. 

After partitioning the PDN at the first stage based on the sensitivity values of voltage levels 

with respect to active and reactive power levels on the system, the dynamic operation of each 

partitioned cluster follows the formulated MILP to dictate the operational status of the RPC 

devices as well as the APC levels for the PV inverters considering the PEVs charging and 

discharging schedule. It is worth mentioning that a PEV may request to connect or departs 

during any timeslot, but such a decision would only influence the following timeslot's 

operational status. The demand variations and subsequent energy prices of the PDN have 

been assumed for a typical Fall season's day in the region of Miami-Dade County, Florida, 

as shown in fig. 8.7 [141, 173]. 

 

Figure 8-7. Energy demand and prices for a typical South Florida PDN 
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Table 8-1: Location and capacity of the equipment on the test feeder 

Type Taps Capacity 
Location 

Partition 1 Partition 2 Partition 3 

EVs Stations - - 3, 34, 57, 64 30, 24, 19, 46 97, 106, 111, 84, 91 

PV Systems - 850 kVA 55, 14, 16 40, 22, 28 108, 87, 74, 100 

OLTC/VAR 20 0.005 pu 150 (OLTC) 25 (VR) 67 (VR) 

CBs 10 25 kVar 17, 56, 66, 58 29, 32, 45 107, 70, 113, 94 

  

The energy cost of the PV generation is set to be 0.10$/kWh, with capacity of 850 kVA. 

Additionally, this work assumes that the PDN operator assumes full ownership of the PV 

systems installed at premises. Therefore, the PV energy curtailment cost has been set in the 

simulation to be equal to the negative of its generation cost. This could be changed if someone 

desires to estimate true value of the curtailed PV energy to assess alternative economical 

options. In addition, since there is no universal pricing model that reflect the true cost for 

vehicle-to-grid (V2G) services, this work assumes a discharging price that equals to the 

energy costs of the timeslot multiplied by a factor of 100 (i.e. the PEV energy discharge costs 

for a timeslot at 13.00 would be priced at 7.93$/kWh). Since the energy demand curtailment 

of a PEV may significantly leads to customer dissatisfaction, a conservative pricing for PEVs 

energy demand curtailment is set to be $25/kWh in our simulation. A charging and 

discharging efficiency of 91% have been assumed in this work [42]. The permissible voltage 

operation levels are set to be within [0.95, 1.05], with the per unit voltage of the main bus is 

set at 1.02. The primary side of the OLTC devices is assumed to be at unity power factor, and 

the parameters of the RPC devices are illustrated in table 8.1. The goal of the second 

optimization stage is to reduce the voltage level fluctuations with an economical combination 

of RPC, APC of the PV inverters, and PEVs charging and discharging. This indirectly aims 

to relax the operation of OLTC (as in eqs (74) and (75)) and CBs (as in eqs (83) and (84)) to 

ensure their minimal participation in the reactive power-voltage coordination scheme, as the 

PEV and PV voltage support are prioritized as first line of defense.  Finally, the simulation 
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time has been limited to 1000 seconds. If the time elapses at any timeslot without recognizing 

an optimal result, then the best integer’s value is recorded as the best solution.  

     To verify the feasibility of the developed CBDPSO partitioning methodology, a 

simulation that consider the IEEE 123 distribution system parameters was carried out in 

MATLAB. Fig. 8.8 shows the overall decomposition of the feeder into optimal clusters to 

reduce the voltage variability during peak hours. The modularity index reaches its highest 

value when there the modified 123 distribution system is divided into three partitions with a 

measured modularity index value of 0.41, instead of the originally established 123 nodes with 

an index of 0.12, as the results show in fig. 8.9. The optimized decomposition of the system 

takes into consideration the preliminary steady-states operation of the feeder including PV 

system generation and PEVs load demands but before applying any of the developed reactive 

power-voltage coordination scheme that is to be incorporated into the second stage of our 

developed work. 

TR Tap Changer (OLTC) Capacitor Bank (CB) Charging Station (EV) Solar (PV)

Partition 1

Partition 2

Partition 3

 

Figure 8-8. Results of the optimal network decomposition of three partitions 
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Figure 8-9. The modularity index results based on the CBDPSO 

Four case scenarios have been modeled in this work, as follow:  

1) Case A: No changes 

2) Case B: EVs discharge; offline RPC control 

3) Case C: No EVs discharge + APC curtailment; online RPC control  

4) Case D: EVs discharge + APC curtailment; online RPC control.  

Among the four case scenarios, only C and D were considered deploying the RPC devices 

according to the developed coordination scheme to implement the VVO coordination via 

OLTC, CBs, reactive power support from the PVs and PEVs. It is worth to mention that case 

scenarios A and B retain regular reactive power and voltage support that arise from normal 

operation of the PDN. A PEV energy demand curtailment occurs when a partition fails to 

meet the PEVs connection requests at reasonable charging rates due to high demands. 

Similarly, APC occurs when steady-state operations require extensive reactive power support 

from the PV inverters. In this work, no APC is achieved in the first two case scenarios. 

Additionally, it is worth to mention that the developed coordination consider greater PEVs 
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demands for case scenarios B and D during later times of the day to compensate for the PEVs 

discharge during timeslots of peak demands. Table 8.2 provides results corresponding to the 

implementation of the test scenarios. With no PEVs discharging events, case scenario A 

recorded the highest costs incurred on the distribution feeder's partitions. To maintain energy 

supply without increasing prices significantly on consumers, large-scale PEVs energy 

demand curtailment has been recorded during peak hours. As a result of inconvenience 

associated with PEVs owners rescheduled for other timeslots, the highest PEVs energy 

curtailment costs are recognized in the first case scenario. On the other hand, case B 

incorporates the stochastic model of a certain limit of PEVs discharge within each partition, 

without activating the RPC scheme. As expected, the results show a sound reduction of the 

amount of PEV's energy demand curtailment. The total cost has been reduced since each 

partitioned area is responsible for compensating the PEVs that participated in the discharging 

process, based on per kWh rate that is substantially lower than the penalty cost associated for 

curtailing the energy from PEVs. On the other hand, PEVs owners who engage in discharging 

processes during timeslots of congestion demands would receive economic compensations 

for their participation that make it profitable for both parties; the system’s operator and the 

PEVs’ owners. As shown from the results, the third partition would be benefited the most in 

this case scenario, since their PVs generation outmatched their respective PEVs demands, 

and therefore had significantly lower to almost non-PEVs energy curtailment. For the 

following case scenarios C and D, the VVO coordination scheme have been considered. For 

case C, no PEVs discharge has been allocated. However, it is noted that the total production 
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costs of energy at the grid level has increased slightly to compensate for the PVs active energy 

curtailment during peak hours. 

Surely, it is not desirable to curtail active power from the PV systems, as someone may argue 

that this is uncalled economic waste. However, incorporating APC at minimized levels could 

be greatly exploited to relax the OLTC and CB operations while keeping the voltage level 

within permissible limits. This contributed to a slight increase in the grid’s generation cost. 

However, this controlling scheme has resulted in the riddance of PEVs energy demand 

curtailment costs, which significantly improve the total operational costs of the grid as shown 

in table 8.2, and all PEVs demands were met successfully without incorporating significant 

cost on the PDN. Lastly, case scenario D represent the best financial and operational 

outcomes. It allows for PEVs owners participation to discharge their energy during congested 

timeslots, while the VVO coordination scheme is in effect. This will result in lowering the 

PVs energy curtailment by 17.8% than in case C, reducing the PEVs energy demand 

curtailment to zero in the three partitioned clusters throughout the peak demands hours, while 

producing the best financial gain to the grid with the lowest total energy costs incurred. 

Therefore, the results of case scenario D show the effectiveness of the developed coordination 

Figure 8-10. Real power injection to the decomposed PDN for: 1) case A, 2) case B, 3) case C, 4) case D. 
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scheme of this work. Fig 8.10. of this work presents the active power demand of each partition 

of the modified distribution feeder for the four cases. By convention, the power demand of 

the PEVs have been considered as negative load. It is worth to mention that the amount of 

energy requested from the upstream grid during timeslots of peak demands have been reduced 

in case D as a result of the coordination scheme. This contributes to lowering the energy cost 

from the grid as shown in table 8.2.  

     The voltage profile of the modified distribution system considering the four case 

scenarios is illustrated in fig.8.11. It is noted that the voltage levels for cases C and D are kept 

lower than nominal voltage levels for most of timeslots of the day as a result of the 

simultaneous enabling of both RPC and APC in these cases. This is justified from economical 

point of view, as the operational outcomes outlined in table 8.2 show significant economical 

savings for the steady-state operation. In addition, this leads to relaxed CBs and OLTCs 

operations which leads to significant extension to its lifespan. It is worth to mention that the 

VVO scheme could have improved the voltage level a bit higher in both case scenarios C and 

D, but the incorporation of APC contributes to reducing any voltage rise or fluctuations. Upon 

finishing the coordination scheme per each partition in case D, the total APC of the PV 

inverters is found to be 0.3019 MW, while the total RPC is achieved at 0.7811 Mvar, with 

the minimum per unit voltage for the system is improved from 0.9291 for case scenario A to 

0.9612 for case scenario D at timeslots of 15.00.  Primarily, the concept of making each 

partition solving the optimization problem within its own boundary and considering its own 

resources have yield better outcomes in resolving voltage violations issues. Fig. 8.12 presents 

the convergence speed for partition 3 as an example. It can be seen from fig. 8.12 that the per 

unit voltage as well as the RPC and APC levels are continually adjusted in the first few 

iterations while swiftly converges.  
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Table 8-2: Summary of the results for the applied case scenarios 

 

Figure 8-11. The voltage profile for the whole PDN for all case scenarios. 

 

Figure 8-12. Iteration performance for curtailed active power and reactive power absorption for partition 

3. 

  

Case 
Energy 

from Grid 

PV Energy 

Cost 

Total Energy 

Cost 

PEVs Energy Curtailment Cost 

OF Cost 

Partition 1 Partition 2 Partition 3 

A $3,259.87 $494.17 $3,754.04 $2,375.09 $2,551.64 $1,850.11 $10,530.88 

B $3,011.56 $399.29 $3,410.85 $1,175.82 $975.01 $278.63 $5,840.31 

C $3,407.11 $289.84 $3,696.95 0 0 0 $3,696.95 

D $2,697.09 $253.85 $2,950.94 0 0 0 $2,950.94 
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Figure 8-13. Mismatch error for the results of the case scenario A vs standard optimal power flow for the 

PDN considering the hours 13:00 and 21:00. 

To ensure accuracy and robustness of the modified MINLP formulation, comparison 

against OPF for voltage levels is attained for the whole feeder during timeslots that coincides 

with peak load demands as well as PEVs demands is illustrated in fig.8.13. As the results 

shows, a mismatch percentage of 3.59% and 2.87% have been recorded for hours of operation 

at 13.00 and 21.00, respectively. Both resemble percentage of errors to be less than 5%, and 

thus indicate a reliable representation of the PDN steady-state simulation. It is worth to 

mention that the recorded time to find the solution and perform the developed calculations 

for three partitions ranged between 2.1~2.9 seconds per iteration. For each set of results, the 

maximum number of iterations was 125 iterations and 355.6 seconds to reach the border 

residual of less than 0.001. 

8.6 Conclusion 

Two-stage optimization strategy that aims to achieve optimal and economic power 

distribution network (PDN) operation within the context of the voltage-reactive power 

optimization (VVO) problem has been developed. The optimization formulation consisted of 

a first, time-ahead, optimization process that aims to decompose the PDN into optimal 
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partitions per the voltage sensitivity values for active and reactive power 

consumption/injection on the system. An intelligent searching strategy named the 

community-based-detection particle swarm optimization (CBDPSO) has been developed to 

ensure reaching an optimal partitioning. Considering the operation of the PDN during peak 

demands hours, the grid was optimally partitioned into three clusters, which set the stage for 

the second optimization process to be performed based on a modified MILP. The MILP 

solves to obtain feasible, economic results while satisfying the operational needs and 

constraints of the unbalanced three-phase PDN, within the context of the VVO. The goal is 

to allow a faster and accurate calculation of the VVO problem in a distributed manner. The 

developed two-stage strategy was tested on the modified IEEE 123 bus system. The obtained 

results indicate reaching optimal economic gains while maintaining the system’s voltage 

regulation within permissible limits. Furthermore, the solution indicates lower active power 

curtailment of the PV system and zero energy demand curtailment for the PEVs, which means 

each partition in the PDN was able to meet its demand even during peak hours, including for 

the PEVs connection requests. For the PEVs arrival, departure and SoC levels, the work 

adopted models from previous, well-established stochastic studies that were verified in 

experimental hardware [181, 182]. Real-time energy prices and load variations have been 

adopted from real-life distribution feeder data located in Miami-Dade County, Florida, the 

United States of America, indicating accurate financial modelling in our simulation. Future 

studies should investigate monetary policies and financial models that regulate the PEVs 

charging and discharging schedule in a way that contribute to an optimal solution to the VVO 

problem. 
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Chapter 9 A Tri-Level Hierarchical Energy Management with Large-Scale 

Penetration of Electric Vehicles 

9.1 Introduction 

     Major restructuring is in progress for industries that contribute significantly to the 

GHG emissions. Plug-in Electric Vehicles (PEVs) will play a central role in the significant 

restructuring of the sources of GHG emissions, the electric power industry and transportation 

sector. Large-scale penetration of PEVs is considered a major challenge, as the stochastic 

nature of the PEVs owners are hard to follow which make the process of predicting and 

ultimately controlling large-scale integration of PEVs a very challenging process. Moreover, 

uncoordinated EVs charging will lead to significantly overloaded power system networks, 

which introduces a great burden on the power system operation such as increase voltage 

fluctuations, overload power transformers and transmission lines, and amplify power system 

quality problems, to name few. To properly govern such complex process, energy 

management and control considering PEVs integration has been one of the most important 

topics in the electrical engineering literature in the recent decade. This chapter aims to 

provide a unique contribution to this field of study, by proposing tri-level hierarchical 

coordinated energy management framework, considering large-scale integration of PEVs to 

the power grid. It is worth mentioning that applied linearization and developed constraints 

have been achieved to solve the proposed mathematical formula but was removed from this 

chapter due to page limitations and to preserve the authors’ rights to publish them in details 

as a novel work in their future publication in [201]. 

     Several studies have studied the impact of the large adoption of PEVs without 

effective uncontrolled charging mechanism [103, 104, 105]. In this dissertation work, we 

aimed to test the impact of the uncoordinated large-scale adoption of PEVs on the hourly 

operation of the power distribution grid. Specifically, we provided in chapter five of this 
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dissertation dynamic modeling of the hourly impact of PEVs integration on the IEEE 34 bus 

system using the OpenDSS dynamic software of the Electric Power Research Institute 

(EPRI), considering different PEVs types and energy needs integrated throughout the whole 

day. Different testing scenarios were conducted and they are presented in detail in chapter 

five and in [103]. Our study in chapter five concludes that uncoordinated large-scale 

integration of the PEVs will definitely violate the system’s voltage limits and lead to 

overloading condition and increased energy prices on all consumers connected to the 

distribution feeder. The authors of reference [104] provide extensive study on the impact of 

the integration of one million PEVs to the VACAR sub-region of the Southeast Electric 

Reliability Council (SERC). To achieve the purpose of testing the impact of modeling PEVs 

load of this size, the authors utilized the Oak Ridge Competitive Electrical Dispatch model 

to simulate the hourly dispatch of the power sources to meet this large loads. Furthermore, 

they consider various charging and discharging scenarios with different PEVs sizes, energy 

requirement and time of connectivity, and reach a conclusion that a typical-size residential 

power distribution feeder will not be able to withstand charging of PEVs for long hours 

without causing severe overloading and possibly outage.  Reference [105] presents one of the 

earliest research literature that studies the impact of uncoordinated PEVs integration on the 

grid. Moreover, the author investigated the integration of 7.5 million PEVs and studied the 

impact of its integration on the technical, economical and operational aspect of the power 

grid. They reached a conclusion that unless PEVs load are managed to delay large-scale 

charging of PEVs from peak hours to off-peak hours, substantial increase of the energy prices 

is almost certain in several areas of the US interconnected network. Furthermore, reference 

[105] is one of the first studies that emphasize the needs for energy management and 

coordination of PEVs that consider postponing PEVs charging demands to times where both 

energy prices and demand are lower. Additionally, reference [106] concludes that simple 

charging strategies yield peak demands in several time slots of the day, which require major 
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investment to upgrade the system’s overall generation and transmission capacities. Therefore, 

there is no doubt that proper energy management and control is needed to deal with the 

uncertainty of large-scale integration of PEVs. Several methodologies have been developed 

in the recent years to deal with the challenging task of accounting of PEVs load into the 

already-congested power grid. Reference [107] presents a two-step framework to coordinate 

the PEVs charging following a price-based coordination based on linear programming. The 

authors of reference [108] propose a methodology that account for the design of grid 

interfaced PEV charging systems incorporating stochastic renewable energy sources and 

storage units on the electrical infrastructure. Specifically, the authors utilize a linear 

programming-based framework to optimally choose designs that reduce the overall system’s 

lifecycle cost.  

     This chapter is arranged as following: section 9.2 provides illustration on the relative 

information to the developed tri-level hierarchy. Section 9.3 provides the problem 

formulation for the tri-level energy management optimization. Section 9.4 presents case 

studies and results. Section 9.5 concludes this chapter with final remarks. 

 

9.2 The Developed Tri-level Hierarchical Energy Management Methodology  

9.2.1 The inverse-Demand Curve 

As in any other market, consumers in the energy market are expected to naturally 

react to price variability, which influence on their decisions to obtain the desired services at 

certain times. This behavior could be effectively characterized by the inverse-demand curve 

(IDC), which model the price of energy given the overall generation (supply) levels and 

demand (loads) of an electrical system. Furthermore, the inverse-demand curve could capture 

the willingness of the consumers to pay additional price to utilize the electricity during 

specific time frame. This is called as willingness to pay (WTP) factor which indicates the 
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marginal benefit the consumers would acquire if they proceed to utilize the additional energy 

service. In accordance with the infamous microeconomic rules, such marginal benefits is 

estimated based on the requested benefits’ size to the overall available quantity of the product, 

which is the energy service during a specific time period in our study. Rationally speaking, 

the consumers can expand their marginal benefits by utilize the electrical energy until they 

reach a level where their marginal benefits equal the energy market price, where at certain 

points it would be economically unviable and not cost-effective option to continue utilizing 

the energy.  This raises from the fact that basic microeconomics state which is there must be 

an incremental increase of the cost of a product once it has limited supply. Such incremental 

cost is also called as the marginal cost, which is a reflection of other factors involved in the 

market condition, which is in our case, factors that include the level of generation, supply of 

fuel, violation of operational constraints, among others. These variables influence the 

marginal cost, especially on the short-term that characterize the daily and/or weekly operation 

of the power grid. 

      On one hand, PEVs owners are considered regular consumers of the electrical energy 

that is needed to charge their vehicles daily. With that being said, there are different energy 

utilization patterns that are attributed to individual PEV owner. Such patterns are 

characterized by several factors that are solely defined by only the PEV owner such as the 

driving patters, personal habits (travel, outdoor activities that require transportation), work 

condition, vehicle type, etc. Therefore, each PEV would require certain level of energy 

consumption in a decentralized manner. On the other hand, the power production companies 

is almost heterogeneous in regard with the energy’s cost structure. Specifically, each 

generation unit that belong to an electrical utility has its own technical and operational status 

that define the price signal of its energy output. Usually, these generation units run under 

certain circumstances that lead to increase to its price signal. Circumstances of this nature 

include scarcity of its generation limits, environmental policies that could limit its production 



 

163 

 

levels to meet goals of lowering toxic released gases during the generation process, and 

regulations that requires the utility’s operator to run certain types of generators to meet the 

renewable energy portfolio (RPS) goals, among other factors that contribute effectively in 

determining the level of supply of a power utility. Therefore, accurate broadcasting of the 

electrical energy prices must reflect the timely condition of both the supplier (the power 

utility or system operator) and consumer (PEVs owners in this case). Having said that, there 

is scarcity in literature to model this important relationship that is well-captured by the 

demand-inverse curve. Furthermore, the demand-inverse curve is seen by this dissertation as 

the most effective modeling strategy that better describe the minute-to-minute update of the 

electric network operation, which result in accurate and reliable energy price signals that 

could be utilized effectively when determined accurately to manage the energy demand 

considering large-scale integration of the PEVs. Therefore, the concept of the tri-level 

hierarchical control framework developed in this chapter is mainly built on the concept of 

establishing the energy price signals in accordance with the level of supply availability 

determined by the demand-inverse curve.  Finally, this dissertation takes into consideration 

the operational and technical aspects of both the supplier and consumer when establishing 

the demand-inverse curve that represent the operation of the developed test system, such as 

level of congestion on the system, transmission lines constraints, overloading capacities of 

the lines and power transformers …etc. Fig. 9.1 shows an illustration of determining the price 

in an inverse-demand curve, based on the marginal cost established by the relation of the 

available quantity of a product (generation in the energy market) and consumers’ demand. 
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Figure 9-1. Illustration on the concept of the inverse-demand function in microeconomics 

 

9.2.2 Hybrid Centralized-Decentralized PEVs Charging Coordination   

     One of the major benefits of the developed framework scheme is the feature hierarchal 

coordination process has in integrating the control aspect of both decentralized and 

centralized management paradigms. Specifically, hierarchal coordination utilizes the best of 

outcomes of both scheduling mechanisms, based on predetermined duties allocated to 

different parameters that are integrated in the decision process, such as aggregators at the 

station level, microgrid agents, and the system operator that oversee the whole energy grid’s 

generation and operation capabilities. In previous literature, hierarchal coordination was 

developed following either price-based or schedule-based coordination. Decentralized 

charging mechanisms are mainly built on the price-based concept. However, very limited 

research in decentralized coordination have considered any form of dynamic charging, with 

the great majority of this literature focusing on the time-of-use rates, without actually giving 

considerations to the dynamic nature of the supply-demand of the power utilities that reflect 

the timely changes of the energy prices. On the other hand, schedule-based coordination is 

something well-established with the centralized coordination’s concept, as there exists a 

centralized operator or agent that takes decisions, usually in the best of its interest only, based 
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on the abundant available information in front of it an entity that takes part in running the 

electrical grid.  

     In this work, utilization of features from both coordination schemes is a key 

component to achieve successful incorporation of the developed tri-level hierarchical control 

coordination strategy. Specifically, information about the PEVs is collected in decentralized 

manner from the EVs owners (such as the arrival and requested departure times, desired level 

of energy, … etc). The collected information is processed through an aggregator that is 

located at the station level. The aggregator collects the energy and power requirements of all 

connected and request-to-connect PEVs, send it to its attached microgrid for further 

processing. Then, the microgrid runs the lower-level energy optimization problem in a 

centralized manner based on inputs from its connected aggregator downstream, and from the 

system operator upstream. The coordination between the system operator and its attached 

microgrid are solved based on the upper-level energy optimization problem, formulated 

following the Stackelberg leader and follower model, and based on mixed-integer quadratic 

programming (MIQP) formulation that takes into consideration the carbon emissions cap and 

trade policies as well as the RPS requirement from the local authority. Next subsection 

presents the relationship between the system operator (as a leader) and microgrid (as 

follower) that is utilized in the developed energy management hierarchy in this chapter. It 

should be noted that the supply and demand requirements in all of the three levels of 

coordination are represented by the inverse-demand curves, as discussed in the previous 

subsection, and will be furtherly illustrated in the following sections.   

9.2.3 The Stackelberg Model for PEVs Charging Coordination 

     The concept of the Stackelberg model is based on multi-period dynamic games, where 

two players decide their strategic moves in a sequential manner rather than simultaneously. 

Typically, the leader in the Stackelberg model starts with the first move based on knowledge 
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and anticipation of its follower reaction. Once the leader’s move intact, the follower then 

provides its strategic decision in the sequential period with respect with the leader’s first 

move. Such process could be modeled in bi-level optimization problem considering the 

sequential trends in issuing decisions, that could be in our work nothing but the strategic 

moves about the grid’s operation considering large-scale PEVs integration. Specifically, the 

system operator will act in this scenario as leader that solve its own revenue-maximization 

optimization model based on the knowledge of the operation of its attached microgrids, which 

as followers, provide its strategic decisions based on the information from its lower-level 

optimization problem with the PEVs station aggregators. More detail on the scheme of the 

developed hierarchy of this chapter and the modeling of the upper-level optimization problem 

is given in the following section.  

9.3 Mathematical Formulation of the Developed Tri-Level Hierarchical Energy 

Management Strategy 

9.3.1 Mathematical formulation of the lower-level (Hybrid Centralized-

Decentralized PEVs Charging Coordination) 

Suppose that there are a large group of EVs that are looking to charge over a multi-period 

timeslot 𝔍 = {0, . . . , 𝑇 − 1}. The SoC of an EV 𝓃  that would like to connect to an 

aggregator 𝑗 under microgrid 𝑖 is presented as: 

 

(9.1) 
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Where 𝜂𝑛
𝐸𝑉represents the charging efficiency of EV 𝓃 such that 𝜂𝑖𝑗𝑛

𝐸𝑉 ∈ [0.1], 𝐵𝑖𝑗𝑛 represents 

the EV battery’s energy capacity, and 𝐷𝑖𝑗𝑛
𝐸𝑉as the charging power demanded by the 𝓃th EV  at 

an aggregator 𝑗 under a microgrid 𝑖, and is denoted by kW needs of the vehicle such that: 

 
(9.2) 

   ∑  

 

𝑡∈ℑ

𝐷𝑖𝑗𝑛
𝐸𝑉(𝑡) = ∑  

 

𝑛∈𝑁𝑖𝑗𝑛
𝑡

𝐵𝑖𝑗𝑛

𝜂𝑖𝑗𝑛
𝐸𝑉 . [𝑆𝑜𝐶𝑖𝑗𝑛

𝑑𝑒𝑝𝑡_𝑚𝑥 − 𝑆𝑜𝐶𝑖𝑗𝑛
𝑎 ] 

(9.3) 

Where 𝑆𝑜𝐶𝑖𝑗𝑛
𝑎  and 𝑆𝑜𝐶𝑖𝑗𝑛

𝑑𝑒𝑝𝑡_𝑚𝑥
represent the arrival and maximum possible 𝑆𝑜𝐶 of an 

EV 𝓃. It should be noted that 𝐵𝑖𝑗𝑛 highly dependent on several extrinsic factors such as the 

driving distance, driving speed, EVs’ type, road condition and traffic jam. Moreover, the 

charging power is admissible to a charging station with an aggregator 𝑗 if: 

𝐷𝑖𝑗𝑛,𝑡
𝐸𝑉 = {

∈  [−𝜁𝑖𝑗𝑛
− , 𝜁𝑖𝑗𝑛

+ ], 𝑡 ∈ ℑ

= 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9.4) 

Where 𝜁𝑖𝑗𝑛
− , 𝜁𝑖𝑗𝑛

+  are factors that resembles the uniform rate of charging and discharging 

power over time. It should be noted that for an EV to receive service, both (mark the last two 

equations) need to be satisfied. Additionally, the charging needs of an EV must be fully 

satisfied as follows: 

𝜂𝑖𝑗𝑛
𝐸𝑉 . ∑  

𝑇𝑖𝑗𝑛−1

𝑘=0

𝐷𝑖𝑗𝑛
𝐸𝑉(𝑡 + 𝑘). 𝛥 + 𝑆𝑜𝐶𝑖𝑗𝑛(𝑡). 𝐵𝑖𝑗𝑛 = 𝑆𝑜𝐶𝑖𝑗𝑛

𝑑𝑒𝑝𝑡. 𝐵𝑖𝑗𝑛 (9.5) 

 

Additionally, the capacity of the power distribution transformer that aggregator 𝑗 

needs to be within safe limit, such that the accumlated charging demands of EVs do does not 

cause transformer overloading as follow: 
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∑  

 

𝑛∈𝑁𝑖𝑗𝑛
𝑡

∑ 

 

𝑡∈ℑ

𝐷𝑖𝑗𝑛
𝐸𝑉(𝑡 + 𝑘) ≤ 𝑀𝑖𝑗 . 𝜎𝑖𝑗(𝑡 + 𝑘) 

(9.6) 

 
(9.7) 

 

Many studies in literature have considered coordinating EVs charging over multi-

time period. Studies such as in [193] has considered blocking the service requests from EVs 

during peak demands to avoid causing congestion. While this might be a technically valid 

solution, it is against the basic concept of electricity market of which provides are legally 

obligated to provide services to consumers at all time, except when there is an outage. 

Furthermore, it is assuming that service providers must plan their operation in a way that 

make EVs charging request permissible at any time during the day. However, a service 

provider cannot guarantee the best price to the EVs owner based on the status of the grid’s, 

as the pricing is highly dependable on the operational status of the provider (supply 

availability, lines and apparatus overloading, etc.) as well as the demand level.  

     Let us consider a microgrid 𝑖 that is connected to a system of microgrids, all are 

operating under a unified system operator. Each microgrid 𝑖 has 𝐺 generation units s.t. (𝑔 ∈

𝐺𝑖), with each 𝑔 has generation capacity (𝒳𝑖
𝑔

) as well as associated marginal costs (𝐶𝑖
𝑔

). The 

centralized objective function to be solved at the microgrid 𝑖 level during timeslot 𝑡 is 

formulated as follow: 

𝐽 = 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4 (9.8) 
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The first objective function, 𝐽1, accounts for the integration of the area beneath the 

inverse-demand curve for the base demand (non-EVs load) on microgrid 𝑖, denoted 𝐷𝑖
𝐵𝑎𝑠𝑒, 

given the instantaneous marginal cost 𝐶𝑖
′, as follows:  

𝐽1 = [𝐶𝑖
′(𝑡 + 𝑘).𝐷𝑖

𝐵𝑎𝑠𝑒(𝑡 + 𝑘) −
𝐶𝑖
′(𝑡 + 𝑘)

2𝛤𝑖(𝑡 + 𝑘)
[𝐷𝑖

𝐵𝑎𝑠𝑒(𝑡 + 𝑘)2

−∑  

 

𝐽∈𝐽𝑖

∑  

 

𝑔∈𝐺𝑖

𝑥𝑖(𝑡 + 𝑘)
2]. 𝛥 

(9.9) 

Where 𝛤𝑖 is the cumulative capacity of microgrid 𝑖 in MW, represented in the x-axis 

of the inverse-demand curve. The importance of this function is to model the energy price 

with respect to the change of demand of non-EVs loads on the microgrid. The second 

objective function, 𝐽2, accounts for the integration of EVs load demand at the timeslot of 

interest beneath the inverse-demand curve, given microgrid 𝑖’s operational cost directed as a 

result of aggregator 𝑗 EVs scheduling, as follow: 

  

𝐽2 = [𝑏𝑖𝑗
′ (𝑡 + 𝑘). 𝐷𝑖𝑗𝑛

𝐸𝑉(𝑡 + 𝑘) −
𝑏𝑖𝑗
′ (𝑡 + 𝑘)

2𝛤𝑖(𝑡 + 𝑘)
[ ∑  

 

𝑛∈𝑁𝑖𝑗𝑛
𝑡

𝐷𝑖𝑗𝑛
𝐸𝑉(𝑡 + 𝑘)2]. 𝛥 (9.10) 

The importance of this function is to accurately represent the change of demand in 

microgrid 𝑖’s attached aggregators as a result of demand increase, and its subsequent increase 

in the production that the microgrid is expected to generate or buy to meet this specific extra 

demand.  The third objective function, 𝐽3, accounts for the adds-on prices as a result of 

capacity scarcity exchange between interconnected microgrids 𝑖 𝑎𝑛𝑑 𝑚. Someone can look 

at this price as the compensation for the capacity remuneration for being available to another 

market participant.  
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𝐽3 = [ϒ𝑚𝑖
𝑔
(𝑡)[𝑥𝑚𝑖

𝑔
(𝑡) − 𝒳𝑚𝑖

𝑔
(𝑡)]. 𝛥 (9.11) 

The fourth objective function, 𝐽4, estmates the discharging requirements of the PEVs 

which opt to provide their energy toward their assigned microgrids during the times when the 

grid faces higher demand, as following:  

    
(9.12) 

The fifth objective function, 𝐽5, is the utility function associated with an PEV 𝑛, 

connected to an aggregator 𝑗  under microgrids 𝑖, as follows: 

   𝐽5 = ∑  

 

𝑛∈𝑁𝑖𝑗𝑛

𝑈𝑖𝑗𝑛(𝐷𝑖𝑗𝑛
𝐸𝑉) (9.13) 

Where  

𝑈𝑛(𝐷𝑛
𝐸𝑉) = 𝒰(∥ 𝐷𝑛

𝐸𝑉 ∥1) −∑ 

 

𝑡∈ℑ

𝑉𝑛(𝐷𝑛
𝐸𝑉(𝑡)) (9.14) 

 

𝑉𝑛(𝑡 + 𝑘) = 𝐶𝑖𝑗𝑛
𝑒𝑥𝑡𝑟𝑎(𝑡 + 𝑘). 𝐷𝑖𝑗𝑛

𝐸𝑉(𝑡 + 𝑘)] + 𝜁𝑖𝑗𝑛(𝑡 + 𝑘)𝐷𝑖𝑗𝑛
𝐸𝑉,𝑑𝑖𝑠𝑐ℎ(𝑡 + 𝑘) (9.15) 

𝒰(∥ 𝐷𝑛
𝐸𝑉 ∥1) = −𝜑(∥ 𝐷𝑛

𝐸𝑉 ∥1− 𝐵𝑖𝑗𝑛)
2 (9.16) 

The battery degradation cost is found by the following expression [194, 195]: 

𝜁𝑖𝑗𝑛(𝑡) = 𝛼𝑖𝑗𝑛
1 (𝐷𝑖𝑗𝑛

𝐸𝑉(𝑡))2 + 𝛼𝑖𝑗𝑛
2 (𝐷𝑖𝑗𝑛

𝐸𝑉(𝑡)) + 𝛼𝑖𝑗𝑛
3  (9.17) 

𝐿(𝐷𝑖𝑗𝑛
𝐸𝑉 , 𝜆) = 𝐽 +∑  

 

𝐽∈𝐽𝑖

∑  

 

𝑛∈𝑁𝑖𝑗𝑛
𝑡

𝜆𝑖𝑗𝑛 . [𝐵𝑖𝑗𝑛 −∑ 

 

𝑡∈ℑ

𝐷𝑖𝑗𝑛
𝐸𝑉] (9.18) 
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This equation provides the LaGrangian multiplier methodology to  

 
(9.19) 

𝐵𝑖𝑗𝑛 = 𝜉𝑖𝑗𝑛 .[𝑆𝑜𝐶𝑖𝑗𝑛
𝑑𝑒𝑝𝑡_𝑚𝑥 − 𝑆𝑜𝐶𝑖𝑗𝑛

𝑎 ] (9.20) 

 

𝜆𝑖𝑗𝑛 = 𝐶𝑖𝑗
′,∗(𝐷𝑖𝑗𝑛

𝐵𝑎𝑠𝑒_∗) + 𝑏𝑖𝑗
′,∗(𝐷𝑖𝑗𝑛

𝐸𝑉_∗) − 𝜁𝑖𝑗𝑛
′ (𝐷𝑖𝑗𝑛

𝐸𝑉,𝑑𝑖𝑠𝑐ℎ_∗) (9.21) 

 

𝜆𝑖𝑗𝑛 ≥ 𝐶𝑖𝑗
′,∗(𝐷𝑖𝑗𝑛

𝐵𝑎𝑠𝑒_∗) + 𝑏𝑖𝑗
′,∗(𝐷𝑖𝑗𝑛

𝐸𝑉_∗) − 𝜁𝑖𝑗𝑛
′ (𝐷𝑖𝑗𝑛

𝐸𝑉,𝑑𝑖𝑠𝑐ℎ_∗) (9.22) 

{
eq(9.21), if 𝐷𝑖𝑗𝑛

𝐸𝑉_∗ > 0

eq(9.22), if 𝐷𝑖𝑗𝑛
𝐸𝑉_∗ = 0

 (9.23) 

For a group of EVs 𝑛 such that 𝑛 ∈ 𝑁𝑖𝑗𝑛
𝑡 , the energy cost to meet the charging 

requirements for the 𝑛th EV under an aggregator 𝑗 is formulated as following:  

𝐽(𝐷𝑖𝑗𝑛
𝐸𝑉 , 𝑃𝑟(𝑡)) =∑ 

 

𝑡∈ℑ

− 𝜁𝑖𝑗𝑛(𝑡). 𝐷𝑖𝑗𝑛
𝐸𝑉,𝑑𝑖𝑠𝑐ℎ(𝑡) + 𝑃𝑟(𝑡). 𝐷𝑖𝑗𝑛

𝐸𝑉(𝑡) (9.24) 

Where 𝑃𝑟(𝑡) indicates the instantaneous charging price per each connected vehicle, 

and is broadcasted by microgrid 𝑖 as follow: 

 

𝑃𝑟(𝑡) = 𝐶𝑖𝑗
∗ (𝑡) + 𝑏𝑖𝑗𝑛

∗ (𝑡) (9.25) 

Let us denote 𝐷𝑖𝑗𝑛
𝐸𝑉_∗as the updated charging requirement for 𝑛th EV, then the 𝑗th aggregator 

that oversee the charging scheduling aims to minimize the per vehicle charging cost such 

that:   

B
ijn

=z
ijn

[SoC
ijn

dept _mx - SoC
ijn

a ]
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𝐷𝑖𝑗𝑛
𝐸𝑉_∗(𝑃𝑟(𝑡)) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝐷𝑖𝑗𝑛
𝐸𝑉∈𝒟𝐸𝑉

 [𝐷𝑖𝑗𝑛
𝐸𝑉 , 𝑃𝑟(𝑡)] 

(9.26) 

Such that 

𝐶𝑖𝑗
∗ (𝑡) = ∑  

 

𝐽∈𝐽𝑖

𝐷𝑖𝑗 
𝐵 (𝑡) . [𝐶𝑖𝑗 

′ (𝑡)] + 𝜔𝑖𝑗(𝑡) (9.27) 

𝑏𝑖𝑗𝑛
∗ (𝑡) = ∑  

 

𝐽∈𝐽𝑖

∑  

 

𝑛∈𝑁𝑖𝑗𝑛
𝑡

𝐷𝑖𝑗𝑛
𝐸𝑉_∗(𝑡) . [𝑏𝑖𝑗𝑛

′ (𝑡)] + 𝜅𝑖𝑗(𝑡) (9.28) 

Both 𝜔𝑖𝑗(𝑡) and 𝜅𝑖𝑗(𝑡) represent a wheeling charge that resembles the cost of 

exchanging energy during time slot 𝑡 with interconnected microgrids  ∈ 𝐼, and with nearby 

stations. It should be noted that the first part of the summation in equation represent the 

system. The charging requirements for a collection of PEVs are updated in decentralized 

manner. Such requirements depend mainly on the arrival and requested (departure) 𝑆𝑜𝐶, 

parking duration and grid’s operational status that dictate the energy prices based on the 

inverse-demand curve that resemble the grid’s instantaneous supply and demand. 

Specifically, the aggregator receives requests to charge the vehicles for the next timeslot. 

Each aggregator then sends the charging scheduling that includes the currently connected 

EVs and the newly introduced requests to its upstream microgrid. The associated microgird 

then collects the updated scheduling of all aggregators beneath its authority and run its own 

centralized optimization problem (as discussed in the following subsection) based on other 

inputs that includes other load on its grid (non-EVs demand), power production from its own 

generation unit as well as from the system operator upstream, power exchange (receive or 

deliver) among its nearby microgrids, transformer and lines overloading conditions, among 

others. After updating its own inverse-demand curve, each microgrid that broadcast a unique 

price signal for each of its attached aggregators.  
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     As mentioned earlier, the price signal that is sent specifically to an individual EV is 

composed of the power production price that is jointly determined by the upper layer (system 

operator) as well as the middle layer (microgrid), and the marginal operation price that is 

determined for each aggregator by its assigned microgrid.  

𝐶𝑖𝑗
(0)
(𝑡) = [𝐶𝑖𝑗

∗ (𝑡);  𝑡 ∈ ℑ] (9.29) 

𝑏𝑖𝑗𝑛
(0)
(𝑡) = [𝑏𝑖𝑗𝑛

∗ (𝑡);  𝑡 ∈ ℑ] (9.30) 

An iterative, offline, decentralized pricing mechanism is implemented in this work prior 

for the charging timeslot to identify the best pricing signal for each vehicle. Mainly, this 

mechanism takes into consideration the best charging requirement decision taken by each 

EV’s owner, which is assumed to be influenced with respect to the updated pricing signal. 

The decentralized mechanism works as follows:  

 An initial power production and marginal operation prices (based on equations 9.29 

and 9.30)  

 Set  

𝑃𝑟(0)(𝑡) = [𝐶𝑖𝑗
(0)
(𝑡) + 𝑏𝑖𝑗𝑛

(0)
(𝑡);  𝑡 ∈ ℑ] (9.31) 

 Set ℎ = 0, ϵ = ϵ0, such that ϵ0 > 0 

 For ϵ0 > 0,  

- Execute the charging requirement decision 𝐷𝑖𝑗𝑛
𝐸𝑉_(ℎ+1)

 with respect to 𝑃𝑟(ℎ)(𝑡), at 

an aggregator level as follow:  

𝐷𝑖𝑗𝑛
𝐸𝑉_(ℎ+1)

(𝑃𝑟(ℎ)(𝑡)) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐷𝑖𝑗𝑛
𝐸𝑉∈𝒟𝐸𝑉

∑ 

 

𝑡∈ℑ

[𝜁𝑖𝑗𝑛. (𝐷𝑖𝑗𝑛
𝐸𝑉,𝑑𝑖𝑠𝑐ℎ(𝑡) + 𝑏𝑖𝑗𝑛(𝑡). 𝐷𝑖𝑗𝑛

𝐸𝑉_∗(𝑡)] (9.32) 
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- Each aggregator sends the charging requirement decisions of 𝐷𝑖𝑗𝑛
𝐸𝑉_(ℎ+1)

to its 

attached microgrid.  

- Each microgrid report its total demand (EVs and non-EVs), generation level as 

well as its committed power exchange with the system operator. Based on the 

signal from the system operator, the microgrid updates its power production price 

(that includes any energy purchases from upstream grid) as follows:  

𝐶𝑖𝑗
(ℎ+1)

(𝑡) = ∑  

 

𝐽∈𝐽𝑖

𝐷𝑖𝑗
𝐵_∗(ℎ+1)

(𝑡). [𝐶𝑖𝑗
′ ] + 𝜔𝑖𝑗(𝑡) (9.33) 

- Each microgrid updates the pricing signal with respect to its own instantaneous 

inverse-demand curve and operational status as follow: 

𝑏𝑖𝑗𝑛
(ℎ+1)

(𝑡) = ∑  

 

𝑗∈𝐽𝑖

∑  

 

𝑛∈𝑁𝑖𝑗𝑛
𝑡

𝐷𝑖𝑗𝑛
𝐸𝑉_∗(ℎ+1)

(𝑡). [𝑏𝑖𝑗𝑛
′ ] + 𝜅𝑖𝑗(𝑡) (9.34) 

 

- The microgrid broadcasts the charging prices per each vehicle, based on the EV 

scheduling at aggregator 𝑗, as follow:   

𝑃𝑟(ℎ+1)(𝑡) = 𝐶𝑖𝑗
(ℎ+1)

(𝑡) + 𝑏𝑖𝑗𝑛
(ℎ+1)

(𝑡) (9.35) 

- Update 𝜖, as follow: 

𝜖 = ∑  

 

𝑗∈𝐽𝑖

∥ 𝑃𝑟(ℎ+1) − 𝑃𝑟(ℎ) ∥ (9.36) 

- Update ℎ = ℎ + 1, if needed, 
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     Considering an oligopolistic energy market with a system operator that oversee 

collection of microgrids, each microgrid has its own generation units and has the capability 

of exchanging power (selling or receiving) with other interconnected microgrids. Let us 

assume that each microgrid has 𝐺 generation units such that 𝑔 ∈ 𝐺, with their marginal cost 

production at microgrid 𝑖 is represented as 𝐶𝑖
𝑔

in $ 𝑀𝑊ℎ⁄  with generation capacity 𝑥𝑖
𝑔

in 

𝑀𝑊ℎ. The objective function is formulated as follow:  

F =∑ 

10

f=1

f (9.37) 

The following quadratic program (QP) optimization problem is formulated to solve 

for the Nash-Cournot equilibrium as a mixed-integer quadratic programming (MIQP) 

problem, as follow: 

𝐹1 =∑  

 

𝑖∈𝐼

∑  

 

𝑡∈ℐ

[𝐶𝑖(𝑡 + 𝑙). 𝐷𝑖(𝑡 + 𝑙) −
𝐶𝑖(𝑡 + 𝑙)

2𝛤𝑖 (𝑡 + 𝑙)
. [𝐷𝑖(𝑡 + 𝑙)

2 +∑  

 

𝑖∈𝐼

∑  

 

𝑔∈𝐺

𝑥𝑖(𝑡

+ 𝑙)2]. 𝛥 − ∑  

 

𝑖,𝑔∈𝐺𝑖,𝑡

𝐶𝑖
𝑔
(𝑡 + 𝑙). 𝑥𝑖

𝑔
(𝑡 + 𝑙). 𝛥 

 

(9.38) 

The objective function 𝐹1intends to maximize the social-welfare of the consumers. At 

a timeslot 𝑡, the first part of the objective function sums the integral of the area covered under 

the demand-inverse curve, which is subtracted by the second part which represent the energy 

generation costs at microgrid 𝑖 level. 𝛤𝑖 represents the cumulative capacity in MW in the 

inverse-demand curve, 𝐷𝑖 represents the total demand at microgrid 𝑖 that include, at this level 

of the optimization problem, both the EVs and non-EVs loads.  

         9.3.2 Mathematical Formulation of the Upper-Level Based on Stackelberg Model
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𝐹2 = ∑  

 

𝑖,𝑔∈𝐺𝑖,𝑡

ϒ𝑖
𝑔
(𝑡 + 𝑙). [𝑥𝑖

𝑔
(𝑡 + 𝑙) − 𝔛𝑖

𝑔
]. 𝛥 (9.39) 

Objective equation (9.38) represents the net summations of capacity scarcity exchange 

on microgrid 𝑖 during a timeslot 𝑡: 

𝐹3 =∑ 

 

𝑠,𝑡

𝜆𝑠
+(𝑡 + 𝑙). [∑  

 

𝑖

𝕐𝑠,𝑖. ℒ𝑖(𝑡 + 𝑙) − ℤ𝑠]. 𝛥 (9.40) 

𝐹4 =∑ 

 

𝑠,𝑡

𝜆𝑠
−(𝑡 + 𝑙). [−∑ 

 

𝑖

𝕐𝑠,𝑖. ℒ𝑖(𝑡 + 𝑙) − ℤ𝑠]. 𝛥 (9.41) 

 

Here, 𝕐𝑠,𝑖 in equations (9.40 and 9.41) is a matrix representation of the reciprocal of 

the grid’s reactance between microgrids 𝑖 𝑎𝑛𝑑 𝑗. It is worth mentioning that in case of a 

power transfer between the microgrids, then the column that represent the supplier microgrid 

is filled with zero entries to represent the node as a sink bus. Furthermore, matrix 𝕐𝑠,𝑖is 

multiplied by either a positive or negative sign in a way that define the direction of the power 

flow in the interconnected energy network. On the other hand, ℒ𝑖 is a variable that represents 

the net energy mass-balance of receiving and delivering power at the microgrid during a 

timeslot 𝑡. Its multiplication of matrix 𝕐𝑠,𝑖 indicates the upper and lower limits on the 

transmission line between microgrids 𝑖 𝑎𝑛𝑑 𝑗. Finally, ℤ𝑠 represents the MW capacity limit 

of the transmission line between any two microgrids in the system.  

𝐹5 =∑ 

 

𝑖∈𝐼

∑ 

 

𝑡∈ℐ

𝐶𝑖(𝑡 + 𝑙). [ℒ𝑖(𝑡 + 𝑙) − ∑  

 

𝑙,𝑔∈𝐺𝑙,𝑡

𝑥𝑙𝑖
𝑔
(𝑡 + 𝑙) + 𝐷𝑖(𝑡 + 𝑙)]. 𝛥 (9.42) 

𝐹6 =∑ 

 

𝑡∈ℐ

𝜑𝑖(𝑡 + 𝑙). [−∑ 

 

𝑖∈𝐼

ℒ𝑖(𝑡 + 𝑙)]. 𝛥 (9.43) 
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The objective equations (9.42 and 9.43) quantify the total marginal price of each 

microgrid as a result of energy transmission charges between different microgrids. 

Specifically, the microgrid’s locational marginal price, 𝐶𝑖, is composed of both the system 

price, 𝜑𝑖, because of generating or purchasing/selling power, and wheeling charge, 𝜔𝑖(𝑡),  

that represents the charges accumulated for utilizing the network to transfer power when the 

grid is congested. Such charges could be found using the following formula:  

𝜔𝑖(𝑡) = 𝐶𝑖(𝑡) − 𝜑𝑖(𝑡) (9.44) 

Objective function (9.45) is formulated to regulate the carbon emission in the system, as 

follows:  

𝐹7 = 𝑝
𝑐𝑜 [ ∑  

 

𝑙,𝑖,𝑔∈𝐺𝑙,𝑖,𝑡

𝐺𝑙𝑖
𝑐𝑜 . 𝑥𝑙𝑖

𝑔
. 𝛥 − �̅�] (9.45) 

Where 𝑝𝑐𝑜 represents the CO2 permit price that each microgrid must pay with respect 

with the level of emissions from its generating units. 𝐺𝑙𝑖
𝑐𝑜represents the rate of CO2 emission 

from microgrid 𝑖 during timeslot 𝑡, and �̅� is the emission’s cap level, established by the 

system’s operator with respect with the operational status of the interconnected system. 

     Transfer of MW between microgrids 𝑖 𝑎𝑛𝑑 𝑚 I affect directly the linear inverse-

demand curve at both microgrids. Therefore, the elasticity price as a result of changes in both 

microgrids’ x-axis level is described as follows:    

𝐹8 = ∑  

 

𝑚,𝑖,𝑔∈𝐺𝑚,𝑖,𝑡

ℰ𝑚𝑖𝑔(𝑡 + 𝑙). (−𝑥𝑚𝑖
𝑔
(𝑡 + 𝑙)). 𝛥 (9.46) 

Where 
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𝜀𝑚𝑖 =

±𝛤′

𝛤
±𝐶′

𝐶

 (9.47) 

𝐹9 = 𝑝𝑅𝐸𝑃[∑  

 

𝑖∈𝐼

∑  

 

𝑞∈𝑄𝑖

𝑥𝑖
𝑞(𝑡). 𝛥 − 𝛺[∑ 

 

𝑖∈𝐼

∑  

 

𝑔∈𝐺𝑖

𝑥𝑖
𝑔
(𝑡). 𝛥]] (9.48) 

The objective function given in equation (9.48) represents the renewable energy 

portfolio (RPS) requirement per each microgrid at the interconnected system. Furthermore, 

an RPS level of the total generation sources is assumed to be mandated by the local authority 

so that a specific percentage, 𝛺, of the total generation must be incorporated from generators 

𝑞 that belongs to a set of renewable energy sources 𝑄𝑖. 𝑝𝑅𝐸𝑃 represents the monetary 

obligations per each microgrid, with its signs as indication whether the microgrid is selling 

(positive) or receiving (negative) energy from renewable energy sources from a nearby 

microgrid. The emission cost is neglected in the case of RPS certification trading since 

renewable sources does not emit any CO2 in the generation process.  

     Finally, availability of energy to provide to the nearby station (include it only in the 

lower level between the aggregator and microgrid), is represented as the capacity level each 

microgrid has after the implementation of the optimization problem in the previous timeslot, 

as follows:  

𝐹10 =∑ 

 

𝑖∈𝐼

∑ 

 

𝑡∈ℐ

𝒜𝑖(𝑡 + 2𝑙). 𝛥 (9.49) 

The upper level that represents the system’s operator at the first layer could be 

modeled in a similar manner as following:   

∑ 

 

𝑖∈𝐼

∑  

 

𝑔∈𝐺𝑙

[𝐶𝑖(𝑡 + 𝑙) − 𝐶𝑙𝑖
𝑔
(𝑡 + 𝑙) − 𝑝𝑐𝑜𝐺𝑙𝑖

𝑐𝑜−] 𝑥𝑙𝑖
𝑔
(𝑡 + 𝑙). 𝛥 (9.50) 



 

179 

 

ℛ = ℛ1 − [ℛ2 + ℛ3 + ℛ4 + ℛ5 + ℛ6] (9.51) 

ℛ1 =∑ 

 

𝑖,𝑡

[𝐶𝑖
′(𝑡 + 𝑙). 𝐷𝑖(𝑡 + 𝑙) −

𝐶𝑖
′(𝑡 + 𝑙)

𝛤𝑖(𝑡 + 𝑙)
(𝐷𝑖(𝑡 + 𝑙)

2)]. 𝛥 (9.52) 

ℛ2 = ∑  

 

𝑚,𝑖,𝑔∈𝐺𝑚𝑖,𝑡

[
𝐶𝑖
′(𝑡 + 𝑙)

𝛤𝑖(𝑡 + 𝑙)
. ∑  

 

(𝑔′,𝑔)∈𝐺𝑚𝑖

𝑥𝑚𝑖
𝑔′
(𝑡 + 𝑙). 𝑥𝑚𝑖

𝑔
(𝑡 + 𝑙)]. 𝛥 (9.53) 

ℛ3 = ∑  

 

𝑚,𝑖,𝑔∈𝐺𝑚𝑖,𝑡

𝐶𝑙𝑖
𝑔
(𝑡 + 𝑙). 𝑥𝑙𝑖

𝑔
(𝑡 + 𝑙). 𝛥 (9.54) 

ℛ4 =∑ 

 

𝑠,𝑡

[𝜆𝑠
+(𝑡 + 𝑙) + 𝜆𝑠

−(𝑡 + 𝑙)]. ℤ𝑠. 𝛥 − 𝑝
𝑐𝑜�̅� (9.55) 

ℛ5 = ∑  

 

𝑚,𝑖,𝑔∈𝐺𝑚𝑖,𝑡

ϒ𝑚𝑖
𝑔
(𝑡 + 𝑙). 𝔛𝑚𝑖

𝑔
. 𝛥 (9.56) 

 

ℛ6 = 𝑝𝑅𝐸𝑃[∑  

 

𝑞∈𝑄𝑙

𝑥𝑙𝑖
𝑞(𝑡). 𝛥 − 𝛺[∑  

 

𝑔∈𝐺𝑙

𝑥𝑙𝑖
𝑔
(𝑡). 𝛥]] (9.57) 

     The system operator projects revenue from selling energy to the downstream level of 

microgrids minus the operational costs that is imposed on it by its local or state governing 

agency. Such operational costs include the costs of the CO2 permits and RPS permits imposed 

by state or local regulators.  To obtain optimal solution to the microgrid’s layer, variables of 

the system operator’s layer need to be fixed. This to allow representation of the optimal 

primal and dual solutions at the microgrid level as functions of 𝑥𝑙𝑖
𝑔(𝑡 + 𝑙). The objective 

function given in (9.50) is now a convex mixed-integer quadratic programming function, with 

linear equalities and inequalities constraints. It could be solved using commercial 

optimization toolbox such as CPLEX [190] and Gurobi [199, 200]  
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9.4 Case Studies 

     In order to test the effectiveness of the developed tri-level hierarchal control of energy 

management considering large-scale integration of EVs, case studies were carried out on the 

modified IEEE 123 bus system. The case studies considered the optimal decomposition of 

this test system into three partitions, as discussed in the previous chapter of this dissertation. 

In this chapter, we assume that each partition is run by a microgrid. Thus, we assume that the 

system operator is dealing with three microgrid, each microgrid has four charging stations 

within its jurisdiction. The results of the case studies are presented and discussed in this 

section.  

 Case system description 

Figure 9.2 of this chapter presents an illustration of the modified IEEE 123 bus system, 

with the incorporation of three microgrids. The system information are given in tables 9.1. 

The resistive and inductance parameters of the lines are set to be 0.05 and 0.11 per unit, while 

the system’s base MVA is 100 [191]. The system includes ten PV system units at different 

capacities, five gas-fired micro turbines with 250 kW in capacity, and five diesel-fired micro 

turbine at 250 kW. The marginal costs as well as the emission costs of the generation units 

have been adopted from [196], and are labeled in table 9.2. The total load on the system is 

3.8 MW. As stated earlier, when a microgrid reaches its maximum generation capability, it 

can purchase power from either the upstream grid, which run by the system operator, or from 

its neighboring microgrid, based on information supplied by the system operator.  
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Figure 9-2. The modified IEEE 123 test system with the energy grid information 

 

Table 9-1: Characteristic of the generation units in the system 

Unit No of Gen Units Capacity Marginal Cost Capacity Factor CO2 emission rate 

 

MGT 

5 250 kW 0.199 0.72 0.2 kg. Cos /KWh 

MDT 5 250 kW 0.125 0.72 0.28 

PV 10 75 kW   (4) 

100 kW (4) 

125 kW (3) 

0 0.28 0 

 

 Simulation Results 

The results of the developed tri-level structure show that the developed system is able to 

coordinate in an effective and efficient manner the energy management of electric grid, taking 

into consideration large-scale integration of the EVs. The arrival and departure of the EVs 

into the charging station is beyond the scope of this work; therefore, we adopt them based on 

the well-established studies in [181, 182]. As mentioned earlier, the system operator acts a 

leader in the Stackelberg hierarchy, while the microgrid operators act as followers. The 

emission cap is set in this work at 2500 kt. The solutions were obtained based on solving the 
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MIQP function illustrated in this chapter. To show effectiveness of the developed hierarchy, 

we make comparisons with the obtained results versus normalized results of previously-

published energy management framework.  

Tables 9.1 through 9.3 show the effectiveness of the developed framework in this chapter. 

The system operator acts as a leader that exert power in the level of generation, energy and 

permits prices. As noted, the production output is less than the Cournot-based framework 

[198], since the latter surpass the generation levels to increase their revenue margins. 

Nevertheless, the results show that the operational revenue under our developed methodology 

is the highest one which indicates an optimal combination among the generation resources 

and power exchange to reduce the CO2 emissions costs. Furthermore, it is noted that the 

developed hierarchy successfully minimizes the price of CO2 permits since the operator 

allows exchange of energy to reduce dependence on the diesel-fired generation units that 

emits higher level of CO2. As results in figs. 9.2 and 9.3 show, MG1 and MG2, which 

integrate four diesel units on their premises, buy energy from MG3, request energy discharge 

from PEVs consumers, and request energy support from the upstream network to support 

certain amount of energy rather than generating them from their diesel-fired generation units. 

As result of the decentralized charging algorithm, the energy prices successfully influence 

the PEVs owners to postpone their charging. It is worth to mention that the developed 

hierarchy, driven by the need to meet certain RPS percentage per microgird, allows more 

energy exchange. Certainly and as result of the cap and trade implementation, it would more 

cost efficient for MG1 to buy energy from MG3 than to produce it from its own diesel-fired 

micro tubines.  

Table 9-2: Results comparisons between the developed tri-level framework vs previsouly 

reported literature in perfect competition (PC) and Cournot methdologies 

 PC [197] Cournot [198] Ours 

Generation Output (MWh) 



 

183 

 

System operator 84.21 87.25 85.45 

MG1 19.52 17.43 17.92 

MG2 16.35 15.40 16.12 

MG3 20.83 20.95 21.95 

Total 140.91 141.03 141.44 

CO2 emissions [kt]  2500 2500 2500 

Permit price [$/kt] 1500 890 100 

 

As shown in tables 9.2 and 9.3, the developed hierarchy successfully led to reduced energy 

pricing throughout the day. It is worth to mention that prices vary per each microgrid as a 

result of the variety of generation levels of its distributed generators. It is noted from the 

presented results in table that as result of the energy exchange that both MG1 and MG2 

perform during peak demand hours, their peak energy prices are slightly higher than those at 

MG3. This is contributed mainly to the wheeling charges illustrated in equation in this 

dissertation. The wheeling charges has no effect in the off-peak period since the level of 

congestion on the lines is significantly lower than during peak demands hours. Additionally, 

it is worth to mention that if the modified test system has higher congestion capacity, then 

the wheeling charges would have been significantly diminished during peak demand hours, 

and thus the energy prices during these time periods. Also, it is widely evident that the cournot 

model would yield higher energy prices since this type of energy market would lead to lower 

energy generation output and exchanges to drive the energy prices upward and obtain higher 

profits accordingly. This contributes to the developed model surpassing the Cournot model 

in terms of social-welfare to average consumers. Figures 9.3 and 9.4 shows the optimal 

energy prices obtained considering the developed hierarchy. Furthermore, it shows the 

effectiveness in shifting the PEVs loads into off-peak demands following the implementation 

of the developed energy management strategy. The two figures show great improvements in 

the system operation, where there is no system overloading conditions as shown in figures 

9.4 and 9.5, compared with pre-implementation of our developed work.  
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Table 9-3: Peak and off-peak energy prices for the benchmark simulations 

  PC Co Ours 

Peak Off-

peak 

Peak Off-

peak 

Peak Off-

peak 

Energy price ($/KWh) 

System operator 0.214 0.152 0.191 0.142 0.165 0.091 

MG1 0.192 0.154 0.180 0.155 0.160 0.105 

MG2 0.201 0.145 0.178 0.147 0.171 0.110 

MG3 0.188 0.134 0.169 0.125 0.147 0.082 

 

Figure 9-3. The system’s daily operation before the implementation of the developed 

framework 

 

Figure 9-4. The system’s daily operation after the implementation of the developed framework 
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Figure 9-5. System overloading condition with and without the implementation of the 

developed framework 

 

In addition, results show the impact of the updated aggregated charging needs of the EVs 

owners as result of implementing the developed framework. Figure 9.6 provides illustration 

on the charging loads after the implementation of the control strategy. Furthermore, the 

optimal energy management that incorporates accurate energy price signals based on the 

network condition considering the inelasticity of the base demand. Additionally, figure 9.7 

shows the impact of the developed strategy on both energy and power requests on a station’s 

aggregator under MG2. Specifically, each aggregator has upper and lower limit dictated by 

its attached microgrid. During the peak hours, and by implementing the discharging price 

offer illustrated in equation (9.12), the aggregator’s limit move up in values, as positive 

values in figure indicates energy supply to MG2 during the peak demand hours windows. 

Finally, fig 9.6 shows the impact of the implemented strategy on the overloading capacity of 

the system. Specifically, pre-implementation shows that both power transformers at MG1 

and MG2 violates their capacity limitations. Accordingly, incorporating the TRs capacity into 

the pricing scheme have forced good amount of PEVs to change their vehicles charging which 

successfully led to flattening the charging curve, as shown as well in fig. 9.4 of this chapter.  
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Figure 9-6. Convergence of the hybrid centralized and decentralized strategy on the lower-level 

of the developed framework 

 

Figure 9-7. Aggregator’s (A) of microgrid#1 upper and lower limits 

 

9.5 Conclusion 

     In this chapter, we developed a tri-level, hierarchical energy management coordination 

mechanism that aims to optimally manage the electric network considering large-scale 

integration of the PEVs. The main concept that this framework is based on establishing 

energy price signals via following the timely updates of the inverse-demand curve. This 

chapter realizes that the utilization of the inverse-demand function is the best strategy to 

produce accurate and supply-influenced energy prices, since price estimation based on the 

concept of this curve account for any slight modification in the quantity of supply (system’s 
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energy generation) and demand of products (consumers’ utilization of energy). That is to say, 

the tri-level energy optimization problem took into account various operational and policy 

constraints that are imposed on the real-life operation of the system. Such constraints 

including line and transformer overloading, renewable energy portfolio (RPS) requirement, 

carbon emission requirement, and PEVs charging and discharging limitations due to the 

system’s condition. The formulation of the developed framework was achieved by MIQP 

representation, and KKT approximation was performed to ensure accurate implementation 

of the electrical energy system’s constraints, where there is a need to account for its non-

linearity nature. The IEEE 123 bus system was used to test the developed tri-level framework. 

Furthermore, we assumed three microgrid entities that are directly connected to the system 

operator at its upper-level, and charging stations run by aggregators at its lower-level. The 

reason behind such dissection lies in the results obtained in chapter eight, where optimal 

decomposition of the system into partitions based on their voltage, active and reactive power 

limits have been performed. Finally, results have showed that successful implementation of 

the developed framework led to influencing the charging behavior of hundreds of the PEVs 

owners to delay their charging requirements as a result of the dynamic energy price signals 

that are issued based on the system’s timely operation. Additionally, the results show the 

optimal exchange of energy between different microgrids to support their overall operation 

and reduce their overall cost incurred from their generation units. 
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Chapter 10 Conclusion and Recommendation for Future Work 

10.1 Conclusion of the Dissertation 

     Electric Vehicles (EVs) are considered one of humanity's greatest hopes to combat the 

climate change crises considering their great potentials to reduce GHG emissions from two 

main emissions contributors: the power industry and transportation.  For the former, EVs are 

expected to play a central role in constructing smarter and cleaner power grids, offering the 

resiliency and flexibility to support the grid's operation in a meaningful and reliable way. For 

the latter, zero-emissions EVs, fueled by electricity generated by renewables and low-

emissions fuels, are seen as the future of transportation, next to electric buses, trains, and 

trolleys. However, to help expedite the adoption of thousands of EVs on the roads and win 

average consumers' trust over conventional vehicles, lots of effort is still needed to make EVs 

a vital option for regular and middle-class consumers. Specifically, optimal solutions are 

needed to overcome the technical and operational barriers that face the electrical network due 

to the introduction of significant numbers of loads from EVs; a substantial amount of them 

are expected to be during peak demand hours. In this dissertation, we propose different 

solutions related to the optimization and control of large-scale Electric vehicle integration to 

the power distribution grids.  

     There is a great need to understand the mathematics that better model the EVs' 

activities on the power networks. For this purpose, we presented a mathematical framework 

in chapter two of this dissertation that includes linearization of the non-linearities of the 

voltage and power levels variations due to EVs' integration. The theories behind this 

mathematical formulation lie in the concept of linear algebra, matrix analysis, and nodal 

superposition. This mathematical framework was utilized to model the dynamics of the 

hourly EVs' charging and discharging activities on the distribution grid presented in chapter 

five of this dissertation. Additionally. Chapter two of this dissertation lays the foundation for 
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utilizing the concept of modularity index algorithm to decompose the distribution grid into 

optimal partitions. The overall aim is to define the network into partitions based on their 

voltage sensitivity values with respect to the active and reactive power levels variations. This 

will allow better exploration of optimal strategies for EVs smart scheduling, which is 

discussed in detail in chapter eight of this dissertation with the proposal of a smart algorithm 

that we call community-based detection particle swarm optimization (CBDPSO). 

Specifically, the developed CBDPSO algorithm is used as the first part of a two-stage 

optimization strategy to optimally manage the reactive power and voltage levels in 

unbalanced distribution networks, considering the high-penetration of EVs. To sum up the 

introduction of the modularity index concept on the power distribution system's 

decomposition, a case study considering the IEEE 34 bus system with real-life data was 

performed. The overall results show that the test system could be optimally decomposed into 

six zones based on their voltage sensitivity levels during peak demand hours. This makes it 

easier for the system operator to manage and oversee the impact of large-scale integration of 

EVs and the system's need for voltage and reactive power support. 

     The importance of metaheuristic techniques has been increasing rapidly in recent years 

due to its powerful capabilities in solving a wide range of power system optimization 

problems efficiently. While it is hard to find the best solution to many of those optimization 

problems, metaheuristic algorithms guarantee optimal or near-optimal solutions in reasonable 

time and more manageable computational burdens. Therefore, parts of this dissertation were 

dedicated to proposing and utilizing metaheuristic methodologies to serve the purpose of 

large-scale EVs integration. We presented in chapter three of this dissertation an effective 

hybridization of two powerful, nature-inspired metaheuristic techniques: particle swarm 

optimization and applied physics optimization. To test the hybrid algorithm's effectiveness 

and robustness, we applied it to one of the most famous power system optimization problems: 
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the optimal reactive power dispatch (ORPD) problem. The obtained results show that 

combining the two techniques' searching strategies yields superior performance verified by 

solving single and multiobjective ORPD problems considering three IEEE tests systems: 

IEEE 30, IEEE 57, and IEEE 118 bus test systems. Furthermore, the obtained results show 

the superiority of the hybrid algorithm in comparison with previously reported literature. We 

have now confirmed that this metaheuristic hybridization could be effectively utilized to 

optimally solve microgrid optimization and control problems considering PV systems and 

EVs charging stations, presented in chapter four of this dissertation.  

     In Chapter four, the hybrid APOPSO algorithm discussed in chapter three was 

integrated with a vector decoupled algorithm to optimally manage hybrid microgrid operation 

and ensure smooth frequency levels and prevent voltage deficiency problems via utilization 

of the PV system and EVs charging station. Specifically, the developed metaheuristic-based 

vector-decoupled algorithm was deployed to balance the AC-DC microgrid operation with 

the incorporation of a bidirectional interlinking converter. The AC side of the microgrid is 

connected to synchronous generators and portable AC loads. On the other hand, the 

microgrid's DC side is connected to the PV system and EVs charging station. The vector-

decoupled control parameters of the bidirectional converter are tuned via the hybrid 

algorithm. The results show that the developed algorithm successfully balanced the voltage 

and frequency levels considering severe microgrid operation, such as during islanding 

conditions considering high-pulsed demands condition and high PV power production 

variation. The developed methodology is verified in a state-of-the-art hardware-in-the-loop 

testbed. The results show the robustness and effectiveness of the developed algorithm in 

managing the real and reactive power exchange between the AC and DC parts of the 

microgrid within safe and acceptable voltage and frequency levels. 
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     Chapter five presents dynamical modeling of different testing scenarios for large-scale 

EVs integration on the power distribution network. This chapter aimed to build a dynamic 

model in the powerful OpenDSS software of the Electric Power Research Institute (EPRI) 

and study uncoordinated hourly EVs charging and discharging activities on the distribution 

grid. To achieve this purpose, the mathematical formulation of EVs was built in the model, 

incorporated with 24-hour real-life data representing the load demand of a Southern 

California power utility. Furthermore, the IEEE 34 bus system was integrated into the model, 

considering its transmission line parameters and transformer connectivity. Four testing 

scenarios that consider no coordination or management strategies to the EVs integration were 

developed for 24 hours to measure the impact of large-scale EVs integration on the 

distribution system's hourly operation. The results show the level of congestion the EVs 

would accumulate on the test system, with voltage level as an indicator for the system's 

operation. Detailed results and analysis are provided in chapter five, which shows the need 

to coordinate EVs' activities on the power grid properly. 

     Also, we aim in this dissertation to facilitate the integration of EVs on the electrical 

infrastructure via safe and reliable arrival of the EVs into the charging stations. Therefore, 

we propose in chapter six a real-time, metadata-driven routing optimization that aims to 

minimize the EVs' energy consumption. The developed routing algorithm is based on 

evaluating Q-values through the Double Deep Q-Network (DDQN) algorithm to train the 

electric vehicle as an agent that aims to choose actions corresponding to the best-obtained Q-

values. This assessment aims to extend the vehicle's driving range by choosing optimal routes 

that reduce the energy required to reach a destination. Additionally, we model the energy 

consumption on the road via MCM to properly model the traveling paths according to input 

parameters and learning strategy. The learning experience is supported with real-time data 

retrieved from Google's API platform that serves as the source for input information, feeding 
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the agent with real-time status of roads. Two experiments were conducted to verify the 

developed routing algorithm, considering two real-life routes of similar length, but at 

locations that exhibit different geographic characteristics. Both of the experiments were set 

at a specific time and date, assuming limited SoC of the EV's battery. Additionally, we 

considered the EV journey to be at continuous states, and the transitional probabilities are 

updated throughout as the agent considers real-time data absorbed into the framework from 

the Google Maps Platform. The simulation was conducted in the Python environment with 

real-life input information from Google's API. The results show that the energy consumption 

following the developed framework's implementation got considerably lower than when 

following the main routes developed by Google Maps for each journey. Specifically, the 

obtained results show that, in both simulation scenarios, the EV can reach its intended 

destination with lower energy than the main route developed by Google Maps, by 5.89% and 

11.82%. The reason for such differences in the reported results is the significant temporal 

and spatial differences at each location, which influence energy consumption. 

     It is of importance in this dissertation to model the economic structure of large-scale 

integration of EVs. Chapter seven developed a dynamic pricing structure based on the 

demand-supply curve function to manage the billing strategy of EVs charging during peak 

demand hours. Specifically, the developed strategy updates the energy prices to be composed 

of two fractions: retail energy price that follows ToU rates and is directed to regular demands, 

and congested energy price is directed for billing EVs charging events during timeslots of 

peak demands. The developed structure is implemented in a hierarchal multi-agent 

architecture and is incorporated with an optimal energy management system that aims to 

provide a cost-efficient microgrid operation. The optimization problem's inputs are day-

ahead PV forecast and stochastic EVs energy levels and connectivity times prediction models 

based on a discrete-time Markov chain. Besides, a predictive model of daily load demand is 

also presented based on adaptive Artificial Neural Network (ANN). The models were develop 
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based on historical data for Miami Dade County, South Florida. We presented the case that 

the developed pricing scheme performs better than some of the previously published 

centralized approaches through simulations. Specifically, allocating the congested price 

fraction for EVs owners who opt to charge their vehicles during congested timeslots achieves 

overall energy billing savings for non-EV owners. Furthermore, this contributes to better 

charging strategies assuming that many EVs owners would prefer to delay charging to 

timeslots when there is no grid congestion. However, a more-precise model was developed 

in chapter eight to manage the charging and discharging coordination of EVs per the grid's 

operation, incorporating monetary compensation for EVs who opt to charge their vehicles in 

other timeslots, considering the voltage and reactive power constraints on the electrical 

system. 

     In Chapter eight, a two-stage optimization strategy was developed to solve the voltage-

reactive power (VVO) control problem considering large-scale EVs' integration to an 

unbalanced distribution network. At the first stage, we developed decomposing the 

distribution grid into optimal partitions based on the modularity index algorithm concept that 

was discussed in chapter two. Specifically, we developed a smart algorithm called 

community-based detection particle swarm optimization (CBDPSO) to dissect the 

distribution grid into partitions based on their voltage sensitivity values with respect to active 

and reactive power, respectively. Upon clustering the grid, the second stage formulates a 

centralized optimization problem solved by mixed-integer linear programming (MILP). The 

MILP solves to obtain feasible, economic results while satisfying the operational needs and 

constraints of the unbalanced three-phase PDN. Linear approximation of the equalities and 

inequalities of the electrical system was performed to solve the optimization model correctly 

using the available commercial optimization software. Moreover, large-scale integration of 

EVs was modeled to ensure proper operation of the distribution network. The VVO control 

problem in Chapter eight includes accounting for energy not served due to grid's congestion, 
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deployment of reactive compensation devices with a goal of their relaxation to ensure 

economical operation and extend its lifespan, and effective participation of PV inverters via 

active power curtailment and reactive power support. Four case testing were modeled in this 

chapter that incorporated different scenarios, considering the IEEE 123 bus system. The 

obtained results indicate reaching optimal economic gains while maintaining the system's 

voltage regulation within permissible limits. Furthermore, the solution indicates lower active 

power curtailment of the PV system and zero energy demand curtailment for the PEVs, which 

means each partition in the PDN was able to meet its demand even during peak hours, 

including for the PEVs connection requests. 

     In chapter nine, we developed a tri-level, hierarchical energy management coordination 

considering that aims to optimally manage the electric network considering large-scale 

integration of the PEVs. The main concept that this framework is based on utilizing the 

concept of microeconomics in accurately establishing energy price signals via updating the 

inverse-demand curve of the system to reflect the system’s current generation availability and 

scarcity as well as the system’s overloading condition. Such representation of the pricing 

signals have successfully influenced the charging behaviors of hundreds of PEVs as 

simulation results have shown in chapter nine. Moreover, the tri-level energy optimization 

problem took into account various operational and policy constraints that are imposed on the 

real-life operation of the system. Such constraints including line and transformer overloading, 

renewable energy portfolio (RPS) requirement, carbon emission requirement, and PEVs 

charging and discharging limitations due to the system’s condition. The formulation of the 

developed framework was achieved by MIQP representation, and KKT approximation was 

performed to ensure accurate implementation of the electrical energy system’s constraints, 

where there is a need to account for its non-linearity nature. The IEEE 123 bus system was 

used to test the developed tri-level framework. Furthermore, we assumed three microgrid 

entities that are directly connected to the system operator at its upper-level, and charging 
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stations run by aggregators at its lower-level. The reason behind such dissection lies in the 

results obtained in chapter eight, where optimal decomposition of the system into partitions 

based on their voltage, active and reactive power limits have been performed. Finally, results 

have showed that successful implementation of the developed framework led to influencing 

the charging behavior of hundreds of the PEVs owners to delay their charging requirements 

as a result of the dynamic energy price signals that are issued based on the system’s timely 

operation. Additionally, the results show the optimal exchange of energy between different 

microgrids to support their overall operation and reduce their overall cost incurred from their 

generation units.  

10.2 Recommendation for Future Work 

 The implementation of the concept of smart grid is far from being close to 

implementation, as humanity has still long way to cross before reaching a smarter and cleaner 

grid. On research level, there are still many work lay ahead us to achieve our goals in fighting 

the climate change crises. Many of these research efforts should be directed towards the field 

of electric vehicles, as EVs are seen as the intersection points between the two major emitters 

of GHG emissions. Future work should focus on the newly introduced methodologies that is 

based on machine-learning applications, reinforcement-learning, and metaheuristic-based 

research, as these methodologies are still in the beginning in developing smart and useful 

mathematical algorithms that serve the purpose not only in the EVs’ field and electrical 

engineering technologies, but also in many other fields in life. Many of these methodologies 

should be investigated to solve various problem related to the EVs industry, such as 

estimating the arrival/departure and driving patterns of PEVs owners, accurately assessing 

energy price signals that reflect the timely updated operation of the power grid, and achieving 

reliable and economic operation of the grid giving the system’s various barriers and 

constraints.  
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Appendix A: Hardware Setup for Chapter 4 

 

 

Fig.A.1. Experimental setup block diagram 

 

 To investigate the feasibility of the developed metaheuristic-based vector-decoupled 

algorithm for the energy management and control of hybrid microgrids considering electric 

vehicles charging stations, a hardware setup has been established, as depicted in Fig. A.1. It 

has been implemented in the power system testbed at the Energy System Research 

Laboratory, Florida International University. The testbed is composed of AC and DC parts 

connected through an AC-DC converter. The DC part is represented with a DC bus, with its 

voltage set at 380 V. Additionally, a DC-load emulator is integrated to model the load of the 

DC side while a PV emulator is integrated to represent a PV system. The PV emulator model 

is the XR SERIES DC power supply, which is offered by the MAGNA-POWER 

ELECTRONICS. This PV emulator is programmed to simulate the PV I-V characteristics, 

and is connected to the DC bus via a DC-DC boost converter to extract the maximum power 
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generated by the PV system. The mathematical modeling behind the PV system and the 

converter MPPT controller are modeled in MATLAB/SIMULINK environment and are 

executed with the DSpace 1104 real-time interface. In addition, battery packs that resemble 

the electric vehicles are connected to the DC bus, equipped with a signal converter circuit 

and a microcontroller. Furthermore, the battery packs are coupled with the AC part via the 

bidirectional DC-AC converter, as figures A.2 and A.3 show. The DC load emulator is 

composed of of eight resistors with different values as follows: 1 Ω, 5 Ω, 10 Ω, 20 Ω, 30 Ω, 

40 Ω, 50 Ω, and 60 Ω. In addition to these load resistor combinations, eight controlled 

switches are utilized to restructure the topology. This allow obtaining different load patterns 

by the manipulation of the values of the equivalent load resistors. The main concept of the 

operation is based on sending control signals to the switches to change their states (on/off). 

By changing their states, the equivalent load resistance accordingly change. The control 

commands are generated from a load profile generator developed in the LabVIEW 

environment. The control commands are transferred through the PCI 6025E card to a circuit. 

This circuit is based on TEXAS INSTRUMENT inverting buffer module sn7406n. This 

module contains six inverters with open collector output. The RMS values for the voltage in 

the AC zone is set to 208 V. The AC bus is connected to the utility grid at PCC. Also, different 

load models were designed to represent the AC load pattern. One of the passive loads built 

has a switching capacity of 10 levels parallel of resistive loads from 300-W to 3-kW power 

in steps of 300-W at a nominal voltage that can be switched to emulate various load patterns. 

The parameters of the main components of the hardware setup are given in Table A.1. The 

controller is programmed based on the developed modified vector decoupling control. This 

control technique enables the microgrid’s grid-tie converter to act as DSTATCOM to 

maintain the power quality at the bus of connection in the best condition. By counteracting 

the unbalance and harmonics problems with the help of the smart integration of microgrid. It 

is worth to mention that the controller provides harmonic mitigation and power factor 



 

216 

 

correction at the PCC. The controller is verified in MATLAB/SIMULINK for simulation 

purposes.  

TABLE A.1. The parameter of the experimental setup  

Component Parameter Specification 

Boost Converter power rating 2500 W 

IGBT module SKM100GAL12T4 

switching frequency 5 kHz 

LBC, RLBC 6 mH, 0.21Ω 

Bidirectional 

AC/DC Converter 

power rating 1800 W 

IGBT module SK45GB063 

switching frequency 10.89 kHz 

AC Filter L AF, RLAF 12 mH, 0.31 Ω 

 

 

 

Figure A-2 Schematic illustration of the hybrid microgrid circuit in the setup 

 

 

Figure A-3 Hardware-in-the-loop equipment at the testbed 
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