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ABSTRACT OF THE DISSERTATION

DESIGN AND REALIZATION OF FULLY-DIGITAL MICROWAVE AND

MM-WAVE MULTI-BEAM ARRAYS WITH FPGA/RF-SOC SIGNAL

PROCESSING

by

Sravan Kumar Pulipati

Florida International University, 2021

Miami, Florida

Professor Arjuna Madanayake, Major Professor

There has been a constant increase in data-traffic and device-connections in mobile

wireless communications which led the fifth generation (5G) implementations to ex-

ploit mmWave bands at 24/28 GHz. The next generation wireless access point (6G

and beyond) will need to adopt large scale transceiver arrays with a combination of

multi-input-multi-output (MIMO) theory and fully digital multi-beam beamform-

ing. The resulting high gain array factors will overcome the high path losses at

mmW bands, and the simultaneous multi-beams will exploit the multi-directional

channels due to multi-path effects and improve the signal to noise ratio. Such access

points will be based on electronic systems which heavily depend on the integration

of radio frequency (RF) electronics with digital signal processing performed in field

programmable gate array (FPGA)/ RF system-on-chip (SoC).

This dissertation is directed towards investigation and realization of fully-digital

phased arrays that can produce wideband simultaneous multi-beams with FPGA or

RF-SoC digital back-ends. The first proposed approach, a spatial bandpass (SBP)

infinite impulse response (IIR) filter-based beamformer, is based on the concepts of

space-time network resonance. A 2.4-GHz 16-element array receiver has been built

for real-time experimental verification of this approach. The two other approaches

vii



are based on discrete Fourier transform (DFT) theory and and a lens-based ap-

proach, lens plus focal planar array theory, which is essentially an analog model

of DFT. These two approaches are verified for a 28 GHz, 800 MHz mmWave im-

plementation with RF-SoC as the digital back-end. It has been shown that for all

proposed multi-beam beamformer implementations, the measured beams are well

aligned with the simulated beams. The proposed approaches differ in terms of

their architectures, hardware complexity and costs. This dissertation also presents

an application of multi-beam approaches for RF directional sensing applications to

explore white spaces within the spatio-temporal spectral regions. A real-time direc-

tional sensing system is proposed to capture the white spaces within the 2.4-GHz

Wi-Fi band.

Further, this dissertation investigates the effect of electro-magnetic (EM) mutual

coupling in antenna arrays on the real-time performance of fully-digital transceivers.

Different algorithms are proposed to uncouple the mutual coupling (MC) in digital

domain. The first one is based on finding the MC transfer function from the mea-

sured S-parameters of the antenna array and employing it in a Frost finite impulse

response (FIR) filter in the beamforming backend. The second proposed method

uses fast algorithms to realize the inverse of mutual coupling matrix via tridiago-

nal Toeplitz matrices having sparse factors. A 5.8 GHz, 32-element array and 1-7

GHz, seven-element tightly coupled dipole array (TCDA) have been employed to

demonstrate the proof-of-concept of these algorithms.
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CHAPTER 1

INTRODUCTION

It is an exciting time for wireless communications! At this point of time, we can

all agree on the fact that wireless networks are omnipresent. Development of new

mobile technologies introduced different wireless services, which has caused smart

devices to become widely known and has attracted new users. Owing to advances in

the wireless field, there is a constant increase in the amount of data-traffic and device

connections. It was predicted that the number of mobile connections would surpass

100 billion by the year 2020 [7]. This increase in demand for wireless connectivity led

to massive modifications to the cellular infrastructure, and in just over four decades,

mankind has witnessed the evolution of five generations of mobile communications

from first generation (1G) to fifth generation (5G) as shown in Fig. 1.1. All these

advancements aim at providing smooth and flawless mobile connectivity between

users that significantly improve their daily lives.

Figure 1.1: The evolution of mobile communications [1]
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1.1 Motivation

Mobile technologies up to fourth generation (4G) utilized only the lower frequency

bands such as microwave sub-6 GHz bands, where the channel bandwidths are typ-

ically 20 MHz for a connection [8]. Subsequently, this led to global scarcity in the

available spectrum and demands to leverage the unused spectrum at higher frequen-

cies. This motivated the exploration of the mm-wave (mmW) frequency spectrum,

and mmW-enabled mobile communications are now at the verge of becoming reality.

The benefits of adopting mmW systems for wireless communications has been well

known for a long time as reported in [9, 10], and they have finally garnered enough

interest to become a part of 5G infrastructure. The frequency spectrum specified by

the International Telecommunication Union (ITU) for 5G communication includes

the bands 3.4–3.6 GHz, 5–6 GHz, 24.25–27.5 GHz, 37–40.5 GHz, and 66–76 GHz [11],

while the Federal Communications Commission (FCC) has specified the 27.5–28.35

GHz frequency band for 5G [12]. This spectrum allocation is aimed at densely con-

necting both people and the Internet of Things (IoT), to achieve higher levels of

efficiency and data rates as compared to existing 4G long-term evolution (LTE) and

Wi-Fi networks. The communication links envisaged for 5G wireless networks are

expected to exhibit ultra-low latency (less than 1 ms) [13], enrich crowded connec-

tions and provide enhanced spectral energy. In addition, it will support a multitude

of services and devices, with a range of brand new applications that includes but is

not limited to augmented reality, virtual reality, security/surveillance, autonomous

cars, remote health-care, and much more [14,15].

Nevertheless, the challenge associated with the transition from 4G to 5G is that

the radio transceiver front-end needs to be redesigned, since the mmW 5G links

are now subjected to a completely new radio-propagation environment [16]. Also,
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the blockage of EM waves at mmW frequencies will tremendously affect their power

values owing to Friis’ path loss formula, and will considerably reduce the signal-

to-interference and noise ratio (SINR) [8]. High-gain directional antennas can be

used at both the transmitting and receiving ends to circumvent these path losses,

resulting in a significantly enhanced SINR. [17, 18]. However, directional antennas

with narrow beams are applicable to long-range mm-wave point-to-point communi-

cations with a line-of-sight (LOS) link and become unsuitable for multiuser mobile

communications, as they provide only limited spatial coverage [19–21]. Moreover,

directional beams need to be steered either electronically or mechanically to obtain

a better substitute link for non-LOS communications [20]. This beam steering tech-

nique is widely known as beamforming. Mechanical beam steering is rarely used

now because it is bulky, cumbersome and has a non flexible architecture. Instead,

front-ends use antenna arrays that apply signal processing techniques for directional

transmission/reception of electromagnetic (EM) waves and thus achieve electronic

beam steering. This technique of utilizing an array of sensors in conjunction with

signal processing algorithms is called spatial filtering [22]. With advent of 4G and

5G wireless communications, beamforming has drawn great deal of attention, as it

is one of the critical requirement for 5G applications [23–26].

However, as mentioned before, directional antennas are prone to have less spatial

coverage, and such systems have reduced performance levels without an LOS path.

Thus, communications at mmW necessitate multi-beam beamforming in order to

utilize the complex urban wireless channels that suffer from occlusions, path loss,

and multi-path effects [27]. Next-generation wireless access points will likely em-

ploy a combination of multi-input-multi-output (MIMO) theory with multi-beam

fully-digital beamforming [26,28–31]. The high-gain array factors provided by very

sharp beams will be required for overcome high path losses and mitigate environ-
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Figure 1.2: Possible applications of MIMO + multi-beam beamforming (a) in a
blocked LOS path; (b) to improve SNR when LOS is available by using multi-path
techniques, and to connect across corners in an urban environment.

ment attenuation due to absorbing gases (e.g., oxygen at 60 GHz), rain, hail, dust,

and other opaque objects (trees, humans) that degrade the signal-to-noise ratio

(SNR) at the receiver [19]. These networks will exploit both the massive bandwidth

available in the mmW bands and the high SNR available due to the use of high-

gain antenna arrays to achieve spectral efficiency via orthogonal frequency division

multiplexing (OFDM) [32]. In particular, the high SNR that can be achieved with

digital beamforming will allow quadrature amplitude modulation (QAM) with up

to 1024 discrete constellation points per OFDM sub-carrier. As discussed in one of

our recent works [33], the combination of MIMO techniques with fully-digital multi-

beam beamforming allows coherent combination of several ray-like channels (from

the sharp beams) to achieve several important capabilities, such as 1) connecting

when LOS is not available due to channel blockage, 2) connecting across corners in

a densely built environment (e.g., downtown Miami/ New York City), and 3) co-

herent combination of multiple ray-like channels to improve SNR even when LOS is

available. These scenarios are illustrated in Fig. 1.2 [33]. Multibeam beamforming
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Figure 1.3: (a) Satellite communication with multi-beam beamforming covering
wider geographical areas [2]. (b) Starlink constellation of cubesats and utilization of
adaptive multi-beam beamforming to track neighbor cubesats in motion and perform
data transfers and handovers [3].

on linear/rectangular apertures is thus important for exploiting multi-directional

channels in massive-MIMO systems.

Further, mmW applications are emerging relevant to defense systems, such as

space-based mesh networks between low earth orbit satellites, cross-platform high-

capacity data connectivity (air/space/land/sea) and electronic warfare [14, 19, 21].

Satellite communications with multibeam beamforming enables wider coverage ar-

eas, thus increasing the number of simultaneous users as shown in Fig. 1.3(a). In

addition, SpaceX’s Starlink satellites that guarantee ultra-fast internet connections

feature four phased array antennas to increase the data throughput [3]. These cube-

sat satellites are arranged in a constellation as shown in Fig. 1.3(b), must main-

tain connection with their five nearest neighbors in order to achieve successful data

transfers and handovers [3]. Hence, they would require adaptive multi-beam beam-

forming to track the moving cubesats. These scenarios are listed in Fig. 1.3. All

these applications demand multi-beam beamforming networks that can accommo-

date massive number of high-bandwidth beams. Because of this, recently Defense

Advanced Research Project Agency (DARPA) have recently called a separate pro-

gram (the MIDAS program) that is dedicated to real-time mm-wave (18–50 GHz
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band) digital multi-beam beamforming to enhance secure communications between

military platforms [34]. One crucial step in implementing these mmWave systems

is to provide critical timing functionality and high-rate element-level processing in

the digital back-end. Xilinx radio frequency (RF) system-on-chip (SoC) devices are

currently the state-of-the-art digital signal processing back-ends that are capable of

sampling a 100 MHz signal with sub-nanosecond timing. They provide the flexibility

to meet the needs of multiple wireless applications, for example in the development

of holographic radars that demand state-of-the-art processors to enable rapid adap-

tivity of the digital back-end circuits [35].

By utilizing the Xilinx RF-SoC analog-to-digital converters (ADCs) that are ca-

pable of sampling in GHz range, wideband fully-digital beamfilters with more than

2 GHz bandwidth are on the verge of becoming reality. Also, the antenna engi-

neers are coming up with designs that assume a small form factor while providing

huge bandwidths, such as a tightly coupled dipole array [36]. However, due to

smaller physical area, the mutual coupling between the antenna elements for lower

frequency bands tends to be higher and directly reflects the real-time performance.

Although a plethora of array factors can be realized with fully digital approaches,

the real-time performance on an array of antenna elements is thus typically reduced

due to the non-ideal effects present in real-world antenna systems, particularly elec-

tromagnetic mutual coupling (MC) between neighboring elements. The impedance

mismatches between the antennas and the low-noise amplifiers (LNAs) across the

radio band of interest cause significant deviation of the measured performance com-

pared to theoretical best-cases scenarios developed in computer based simulations.

For high-performance receiver arrays, the MC can significantly impact the stop-band

performance i.e., the side-lobe (SL) level and nulls of the receiver.
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Considering how noisy and lossy the wireless communication channel can be, we

need to improve the array performance whenever possible. The channel is time-

varying but the RF transceiver systems are under our control and, hence, it is

critically important that the noise, EM interference and the non-ideal effects in-

troduced by our system are kept to minimum. Generally, it is the amplifiers, and

mixers (which introduce harmonics, inter-mods, and DC offsets) cause degradation

to real-time performance [37]. However, in case of wide-band arrays such as tightly

coupled dipole array (TCDA) [36], it is the mutual coupling between these anten-

nas that plays a crucial role in affecting the beam performance. MC also has a

significant impact on the array active reflection co-efficient Γact in the antenna ar-

ray that makes the design of LNA challenging [38]. Γact is beamformer-dependent

(i.e., dependent on beam-direction) and differs from an isolated antenna-element

reflection coefficient, as MC causes the distortion in the array pattern [38]. In ad-

dition, MC makes it impossible for LNA designers to simultaneously achieve input

power match and noise match for all beam directions, thereby making array sen-

sitivity beam-dependent [38]. Literature shows that using several approaches for

mutual coupling reduction such as using low-scattering antennas [39], electromag-

netic bandgap structures [40], split ring resonators [40], which are all implemented

at the analog stage. But in this dissertation, we explore two digital approaches

for MC compensation. One is based on finding the MC transfer function from the

measured S-parameters of the antenna array and then employing it in a Frost fi-

nite impulse response (FIR) filter in the beamforming back-end. The second one

uses novel fast algorithms to realize the inverse of the mutual coupling matrix via

tridiagonal Toeplitz matrices having sparse factors.
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1.2 Contributions of this Dissertation

A large portion of this dissertation is directed towards the implemention of phased

arrays that can produce simultaneous multi-beams using both analog and digital

networks. These front-ends are supported by highly sophisticated digital back-ends

to support wider bandwidths. Further, we explore how one of these multibeam

approaches is utilized in sensing applications. Finally, we investigate and validate

different algorithms used for the mutual coupling compensation. The contributions

of each topic are briefed described below:

Multi-beam Approach 1: The first approach is based on multi-beam beam-

forming using spatial bandpass (SBP) 2D infinte impulse response (IIR) digital

filters. These IIR filters are multi-dimensional filters and are based on the concepts

of space-time network resonant theory. The proposed filters provide a wideband re-

sponse across the entire temporal bandwidth of the incoming signal at the antenna

array and encompass a trapezoidal-shaped passband to filter out the desired 2D

spatio-temporal broadband bandpass plane waves (PWs). The proposed filters are

very low in complexity compared to the FIR-based implementations while achieving

a wideband frequency response. Chapter 3 discusses the theory and realization of

these filters. For proof of concept verification, a 16-element 2.4-GHz digital array

receiver is designed and employed. A Reconfigurable Open Architecture Computing

Hardware 2 (ROACH-2) field programmable gate array (FPGA) is used as the dig-

ital signal processor (DSP) to realize two simultaneous beams using the proposed

SBP filter.
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Multi-beam Approach 2: The second approach is based on aperture beam-

forming, which uses an antenna array receiver where a discrete Fourier transform

(DFT) is used to create multiple beams. Orthogonal simultaneous multi-beams in

theory can be achieved by employing a spatial DFT operation across a uniform lin-

ear array (ULA) antenna samples in receive/transmit mode. Chapter 4 discusses

the theory behind the DFT-based beamforming and the implementation of a fully

digital four-beam beamformer using a four-element array at 28-GHz. The digital

multi-beam beamforming is accomplished using a Xilinx radio-frequency system-

on-chip (RF SoC) platform that can support 2 GSps sampling of 16 analog input

channels. The digital beamforming supports 845 MHz of bandwidth and is per-

formed in a polyphase DSP architecture.

Multi-beam Approach 3: The third approach is based on a focal plane ar-

ray (FPA) and lens assembly to achieve multi-beam beamforming. Dielectric lens

antennas are of great interest because they allow high gain with beam steerability,

when fed using a properly designed FPA feed. The FPA is located on the focal

region of the lens, and it is connected to dedicated receivers (or transmitters) that

are interfaced to digital receivers (or transmitters). This dissertation proposes to

build and implement a lens+FPA-based multi-beam beamforming architecture at

mmW frequencies to provide sharp and directed RF beams. Chapter 5 discusses the

theory behind the lens+FPA-based beamforming and the design steps for its imple-

mentation. This approach is validated by employing a 4-element aperture array as

a feed array for a high-gain ABS dielectric lens antenna. The lens is mounted onto

the 28-GHz digital array receiver with RF SoC back-end to form multi-beams.
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Multi-beams for Directional Sensing: We discuss the possibility of using

one of the multi-beam beamforming approaches for RF spectrum sensing applica-

tions in Chapter 6. It discusses the exploration of the white spaces within the

spatio-temporal spectral regions that can be used to fulfill our need to alleviate the

spectral scarcity. By studying the network surroundings using directional sensing,

the white spaces in the spatio-temporal spectral region can be used to fill in the

wireless channels that are not being used efficiently. In this work, a 16-point FFT

based multi-beam directional sensor is realized on the ROACH-2 digital platform to

capture the white spaces within the 2.4-GHz Wi-Fi band.

Frost FIR filters based Mutual Coupling Compensation: This chapter

discusses a wideband FIR-based digital beamformer design that de-embeds the ef-

fect of MC from the array factor leading to improved SL and null performance.

A 3D spatio-temporal coupling transfer function is derived from the measured S-

parameters of a uniform planar array (UPA). The theoretical formulations for de-

signing a 3D complex-coefficient FIR filter, optimal in the minimax sense, are pre-

sented. Later, the 3D MC transfer function is employed in the 3D FIR filter design

to de-embed the coupling effects. In particular, this chapter shows that this multi-

dimensional filter design problem can be converted as a second-order cone program-

ing problem. The proposed minimax design is the first optimizations-based design

technique for 3D FIR filters having coefficients with complex values. The proposed

models are validated for both 3D and 2D case using experiments on a sven-element

TCDA operating in the frequency range of 1 to 7 GHz and a 32-element patch an-

tenna array operating in the frequency range of 5.7 to 6 GHz, respectively.

10



Mutual Coupling Compensation based on a Fast Algorithm: Chapter

8 introduces us to a fast algorithm implemented on a digital hardware back-end

suitable for real-time uncoupling of mutually coupled arrays. This algorithm finds

the inverse of the mutual coupling matrix and is based on inversion of N × N

tridiagonal Toeplitz matrices having sparse factors. To this end, a low-order coupling

function is considered where each antenna is coupled to its two nearest neighbors.

The proposed method can nevertheless be extended to higher-order coupling, albeit

at increased system complexity. The proposed algorithm has been experimentally

verified for an eight-element antenna array at 5.8-GHz.

1.3 Publications

The research outcomes from this dissertation has resulted five journal publications

and twelve conference papers, which are listed in the vita at the end of the disser-

tation.

1.4 Dissertation outline

The rest of the dissertation is organized as follows:

Chapter 2 presents a review of propagating electromagnetic (EM) plane waves,

also known as space time plane waves (STPW) as seen by antenna arrays. The

work in this dissertation is based on spatial filtering of the space time waves, so

this review chapter helps us to understand the concepts of beamforming and the

methods used for its realization. Section 2.1 discusses STPWs propagating in 3D

space and the relevant signal processing as received by uniform linear arrays and

rectangular arrays. Sections 2.2 and 2.3 continue the discussion of the frequency
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spectrum of 2D STPWs and shows how the spatial frequency is related to their

direction of arrival. This section also describes the region of support (ROS) of the

2D STPWs frequency spectrum and the trapezoidal passband of the downconverted,

downsampled RF signals. In Section 2.4 we investigate the requirements of spatial

filters to enhance the desired STPW signals. Finally, Section 2.5 reviews the basic

concepts of multibeam realization and presents an overview of their implementation

topologies.

Chapter 3 proposes a multi-beam implementation topology based on IIR filters

that are known to be 2D spatial bandpass (SBP) filters. The SBP digital beamfil-

ters are derived from frequency planar (FP) filters, hence this chapter starts with

a discussion of the evolution of FP IIR filters in Section 3.1. The frequency planar

filters are wideband array processing algorithms that are based on the concepts of

multi-dimensional space-time network resonance. Section 3.2 describes the evolution

of 2D IIR SBP beam filters from the frequency planar filters. The proposed filter’s

transfer function is derived such that its magnitude response encompasses the trape-

zoidal passbands of the 2D broadband downconverted PWs. Sections 3.2.1 and 3.2.2

discuss the systolic array architecture of the proposed filters and hwo a multi-band

approach is derived. Section 3.3 describes a 2.4 GHz, 16-element array designed

and built for real-time verification of the proposed work. Section 3.3.1 provides de-

tails about the setup of the antenna arrays, RF front-end and digital systems. The

discussion on the measurements of beam patterns, the filter’s performance, and the

hardware complexity is included in Sections 3.2.3 and 3.2.4.

Chapter 4 presents multi-beam beamforming using fast Fourier transforms (FFTs)

and includes a four-element 28 GHz receiver array implementation with an RF-SoC

digital back-end. It starts with a background on the mathematical properties of

FFT and how they are utilized as spatial filters to realize simultaneous multi-beams.
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Section 4.2 describes a 28-GHz, 32-element receiver array design for 5G wireless com-

munication. The front-end design assumes a 16 × 16 beamforming MIMO access

point with Xilinx RF-SoC performing the DSP. Section 4.2.1 presents the link bud-

get and noise figure analysis for front-end design assuming 64 QAM modulation,

512 point OFDM to establish a wireless communication link with bit error prob-

ability better than 10−5. Due to cost limitations, a four-element, 28-GHz receiver

array realizing four beams is implemented. The antenna array design, receiver array

and the digital back-end details are all presented in Sections 4.3.1 to 4.3.4. Section

4.3.5 describes a four-point FFT digital design implemented on an RF-SoC–based

ZCU1275 hardware platform. The measurement setup and the calibration proce-

dure to correct the RF front-end amplitude and phase mismatches are discussed in

Sections 4.3.6 and 4.3.7. Finally, performance evaluation of the digitally measured

beams in comparison with the simulated beams is presented in Sections 4.3.8.

An analog multi-beam beamforming approach is presented in Chapter 5. The

contents of this chapter describe a lens and focal plane array assembly for a 28

GHz, four-element receiver array to achieve four simultaneous sharp beams. It

starts by describing the motivation and background for the lens-based approach in

Section 5.1. It continues with specifications of the system architecture using lenses

and an FPA assembly to realize multi-beams. Section 5.3 provides details about

the implementation of the proposed approach at 28 GHz. A lens made from ABS

material is designed to achieve a directivity of 29 dBi, and a description of the lens

design is provided in Section 5.3.1. The experimental setup of the digital back-end

RF SoC system, receiver chains design is explained in Sections 5.3.2 and 5.3.3. This

section also presents the full-wave EM simulations of the lens design performed in

CST simulation software. The discussion of the simulated beams is also provided

in this section. Section 5.3.4 discusses the measured 28-GHz lens + FPA digital

13



beams. The measured beams are compared with the beams simulated using CST

and conclusions are drawn regarding ways to improve the gain enhancements due to

lens. Finally Section 5.3.5 describes a hybrid beamforming approach using lenslets.

Chapter 6 explores the applications of beamforming for spectrum sensing. A

real-time FPGA based multi-beam directional sensor based on FFT algorithms is

proposed in this chapter. Section 6.1 gives a background on white spaces available in

the spatio-temporal frequency domain. Section 6.2 continues the discussion by look-

ing into the theory of directional sensing of EM waves emanating from an RF source.

The ROSs of the spectra of plane waves and white spaces is revisited in this section.

Section 6.3 demonstrate sensing over multi-beams using the spatial FFT approach.

The chapter continues with a discussion of a 16-element, 2.4-GHz implementation of

the multi-beam directional sensor to verify the proof-of-concept. Details about the

16-point FFT realized on a ROACH-2 digital platform are provided in Section 6.4.1.

The theoretical RF beams and the experimentally measured beams are presented as

well. Sections 6.4.2 and 6.4.3 describe the digital architectures of RF sources for 1D

(direction only) and 2D (direction and frequency) applications. This dissertation

is limited to 1D directional sensing only. Section 6.4.4 describes the experimental

setup, and the preliminary measurements conducted with known sources and di-

rections is explained in Section 6.4.5. Finally, the real-world measurements with

2.4-GHz Wi-Fi sources are presented in Section 6.4.6.

In Chapter 7, novel wideband Frost FIR filter-based digital beamformer design

for mutual coupling compensation is proposed. Section 7.1 introduces us to mutual

coupling (MC) and other non-ideal effects present in an array that can effect the

real-time performance of large-scale, fully-digital phased arrays. A description of

the signal processing model for developing the proposed filters starts in Section 7.2.

Derivation of the mutual coupling transfer function for uniform planar arrays using
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S-parameter based formulations is included in the Section 7.2.1. Section 7.2.2 de-

scribe the design and the transfer function of the Frost 3D FIR beamformer. The

MC transfer function derived earlier is incorporated in the Frost FIR filter design to

derive the transfer function of the proposed MC compensation beamformer. This

is detailed in Sections 7.2.3 and 7.2.4. Section 7.3 describes the design of complex-

coefficient FIR filters. In this Section, the 3D FIR filter design is formulated as a

convex optimization problem, and the filter co-efficients are derived. Section 7.4

presents the experimental validation of a 2D FIR MC compensated beamformer.

The 5.8-GHz, 32-element receiver array setup with ROACH-2 based digital back-

end is described in Section 7.4.1. Section 7.4.2 presents the experimental setup and

measured beams, while the limitations and performance improvement is discussed

in Sections 7.4.3 and 7.4.4, respectively. We then move onto experimental validation

of 3D case in Section 7.5. The TCDA antenna array design operating in the range

of 1 to 6 GHz is described in Section 7.5.1. The rest of the experimental setup and

digital back-end details are included in Sections 7.5.2 and 7.5.3. Beam measure-

ments are carried out at 2 GHz with 100-MHz IF signal for two scanning angles.

Section 7.5.3 includes performance evaluation of the proposed filter by comparing

the measured beams and the ideal beams with and without the proposed mutual

coupling technique.

Chapter 8 also presents a digital technique for mutual coupling compensation,

which is based on fast algorithms and has lower digital complexity as compared

to the FIR-based approach. Section 8.1 gives a brief background about the effect

of MC on array performance. Section 8.2 introduces the structured coupling ma-

trix Kc used to model the effect of mutual coupling, and Section 8.2.2 describes

its structural properties and how the fast-algorithms can be used to implement the

inverse of coupling matrix with low hardware resources. Section 8.3 presents the sig-
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nal flow graph of the proposed fast-algorithm–based MC compensation technique.

The details of the sparse factorization of the inverse matrix that uncouples the mu-

tual coupling in the array is discussed in the same section. Section 8.4 discusses

the experimental verification of the proposed approach by employing a 5.8 GHz,

eight-element receiver array with ROACH-2 digital back-end. Microwave receiver

designs, digital back-end details, and S-parameter measurements to model the cou-

pling matrix are all discussed in Sections 8.4.1 and 8.4.2. Section 8.4.3 presents the

array pattern measurements corresponding to all eight bins of spatial FFT with and

without mutual coupling compensation.

Finally, Chapter 9 summarizes all the research work carried out in this disserta-

tion and provides insights for future work.
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CHAPTER 2

REVIEW OF RF BEAMFORMING THEORY AND TECHNIQUES

The contents of this work are based on spatial filtering techniques of space-time

plane waves. The mathematical analysis of space-time plane waves received by an

array of antennas is essential to completely understand the concepts of beamforming

and its techniques. This chapter presents presents a review of the spectrum for

propagating the plane waves, also known as spatio-temporal plane waves (STPWs),

as seen by an antenna array in a receive mode beamformer. All the concepts related

to to the receiver will apply to the transmitter due to the reciprocity nature of the

antennas.

2.1 Spatio-temporal plane waves

Consider the wave propagation scenario between a transmit and receive antenna

shown in Fig. 2.1. At any point in the far field1 of an antenna the radiated wave

can be represented by a plane wave whose electric-field strength is the same as that

of the wave and whose direction of propagation is in the radial direction from the

antenna [42]. As the radial distance approaches infinity, the radius of curvature

of the radiated wave’s phase front also approaches infinity; thus, in any specified

direction, the wave appears locally as a plane wave as illustrated in Fig. 2.1. This

is a far-field characteristic of waves radiated by all practical antennas. A spatio-

temporal plane wave is a special case of a plane wave that is a function of two

independent variables: space and time.

1Far-field is generally considered to be at a distance d from the transmitter, where
d > 2D2/λ, while λ is the wavelength of the wave in the propagating medium, and D is
the aperture of the radiating antenna [41].
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Figure 2.1: Propagating EM waves emitted from a source can be approximated as
plane waves in its far-field region. Such plane waves in 3D space are described as a
function of space and time by wPW .

A time-varying plane-wave wpw propagating in the 3D far-field space {x, y, z} ∈

R3 can be represented by a 4D spatio-temporal plane-wave wpw(x, y, z, t) [43] of the

form given by the following equation:

wpw(x, y, z, t) = spw(ct+ dxx+ dyy + dzz), (2.1)

where d̂ = [dx dy dz] is the unit vector specifying the direction of arrival (DoA)

of the signal in the 3D space {x, y, z} ∈ R3 such that d2
x + d2

y + d2
z = 1, c is the wave

propagation speed, and spw(λ),∀ λ = ct+dxx+dyy+dzz ∈ R is the one dimensional

1D temporal intensity function [44, 45]. For each value of λ, s(λ) corresponds to a

4D iso-surface in {x, y, z, ct} ∈ R4. The unit vector d̂ can be expressed in terms of

elevation angle ψ and azimuth angle φ as d̂ = [sinψ cosφ − sinψ sinφ cosφ] [42].

A good demonstration of signal processing of the plane waves with different

planar antenna configurations is shown in Fig. 2.2. A uniform linear array (ULA)
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can process signals varying in single space vector and is a function of elevation angle

ψ, whereas a rectangular array is a function of both elevation angle ψ and azimuth

angle φ. The STPW signals received in a planar region, which is the uniform

rectangular array in our case placed in the (x, y) region, can be expressed as shown

in Eq. (2.2) by setting z in Eq. (2.1) to 0:

wpw(x, y, t) = spw(dxx+ dyy + ct). (2.2)

Rectangular antenna array

 DOA

Uniform linear array

Planar wavefront in 3D space Planar wavefront in 3D space

on x−y plane
Projection 

 DOA = Direction of Arrival

(a) (b)

 DOA

x

y

z

x

y

z

wPW (x, y, z, ct) wPW (x, y, z, ct)

ψ

φ

Azimuth angle=φ

Elevation angle=ψ

ψ

Figure 2.2: (a) 2D signal processing by a linear array of antennas; (b) 3D signal
processing by a rectangular array of antennas.

Thus, the 4D hyper planar iso-surfaces of constant λ in Eq. (2.1) are simplified to

3D iso-surfaces in Eq. (2.3). For a ULA placed along the x axis, the 3D iso-surfaces

simplify further to 2D iso-lines in the region {x, ct} ∈ R2 as given:

wpw(x, ct) = spw(−(sinψ)x+ ct). (2.3)
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Figure 2.3: (a) STPW propogating in 2D (space-space) domain; (b) STPW pro-
pogating in 2D (space-time) domain; (c) Light cone demonstration; (d) ROS of the
STPW aligned along spatio-temporal DOA.

The angle ψ is the spatial DOA i.e., the angle between the normal to the x axis

(array) and normal to the plane wavefront as shown in Fig. 2.3 (a). Assuming the

constant λ surfaces are now 2D iso-lines that contain a slope of tan θ as shown in

Fig. 2.3 (b), the spatial DOA ψ is related to the spatio-temporal DOA θ [43, 44] as

given:

tan θ = sinψ. (2.4)

Since the spatial DOA |ψ| ≤ 90◦, the spatio-temporal (ST) DOA is limited to
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|θ| ≤ 45◦. This illustrates that all plane-wave that are propagating in the 2D

space-space with an angle ψ are confined to a 45◦ light cone in the spatio-temporal

domain [45] as shown in Fig. 2.3 (c).

2.2 2D ST plane-wave spectrum and its properties

Since most of the work in this dissertation deals with ULAs, this section describes

the theory and spectral properties of spatio-temporal plane-waves that are relevant

to ULAs. The analysis will be conducted in continuous space-time domain, but it

must be noted that, in practical cases, spatial domain is non-continuous because the

STPW is sensed by antenna elements that are spaced at discrete locations along the

array. To analyze the 2D frequency spectrum of the spatio-temporal PW given in

Eq. 2.3, we apply the 2D continuous domain Fourier transform (CDFT). Let it be

defined as Wpw(Ωx,Ωct) and is given by:

Wpw,2D(Ωx,Ωct) =

∞∫
−∞

∞∫
−∞

wpw(x, ct)e−j(Ωxx+Ωctct)dxdct, (2.5)

where (Ωx,Ωct) ∈ R are the angular frequencies with respect to x and ct respec-

tively [44]. Here Ωct = Ωt/c denotes the temporal angular frequencies of the STPW

signal.

With reference to [43], the 2D CDFT in Eq. (2.5) can be further simplified to

the expression given by:

Wpw,2D(Ωx,Ωct) = Spw(Ωt)cΩctδ(dxΩct − Ωx), (2.6)

where Spw(Ωt) is the 1D continuous-time FT of the temporal signal spw(t) and where

δ(.) is the 1D impulse function. According to Eq. (2.6) it can be seen that the region

of support (RoS) of the spectrum of 2D STPW is confined to a line in the (Ωx,Ωct)
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Figure 2.4: Relevance of spatial frequency to direction of arrivals of STPW. In all
plots, the x-axis refers to spatial element index and y-axis to the normalized by ’c’
time samples. Spatial frequency is the frequency of the wavefront observed from
x-axis.

domain as shown in Fig. 2.3 (d) [44]. The ROS of a frequency spectrum is defined

as the region where its magnitude is not defined to be zero.

Equation (2.6) indicates the region occupied by the desired STPWs and thus

allows us to design beamfilters. Such a filtering technique is called spatial filtering.

This concept is illustrated in Fig. 2.4 where the relevance of spatial frequency to

beamforming is demonstrated. It assumes a 2D sinusoidal STPW arriving at differ-

ent DoA towards a ULA placed on the x-axis. It is evident that different DoAs will

result in different Ωx values.

2.3 Uniform linear arrays to spatially sample 2D STPWs

Consider a ULA where the elements are spaced ∆x apart is being illuminated by

a 2D STPW wpw,2D(x, ct), then the spatially sampled ideal signal will be a mixed

domain signal in (x, ct) and is given by wpw,2D,m(nx, ct), where nx ∈ Z. The mixed

domain FT can be defined for the Fourier transform pair, and it is given in the

following equation:
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Wpw,2D,M(ωx, ct) =

∫ t=∞

t=−∞

∞∑
nx=−∞

wpw,2D,m(nx, ct)e
−jωxnxe−jΩctctdct (2.7)

where, ωx = Ωx∆x. Using the reference in [46], the Eq. (2.7) can be expressed

as follows:

Wpw,2D,M(ωx, ct) =
1

∆x

∞∑
nx=−∞

Wpw,2D

(
wx − 2πnx

∆x
,Ωct

)
, (2.8)

where Wpw,2D is the 2D continuous domain Fourier transform of the 2D contin-

uous domain STPW. From (2.8), it can be understood that the spatially sampled

signal will have an infinitely repeating spectrum pattern with a periodicity of 2π

along the ωx axis. In order to avoid aliasing in the spatial frequency domain, the

inter-element distance ∆x should satisfy the following Nyquist criteria [46],

∆x ≤ c

2fu
(2.9)

where fu is the maximum spatial frequency component in the received STPW and

where c is the wave propagation speed. From [46], fu = ft,max sin θ, where ft is the

temporal frequency and θ is the DoA of the signal in the elevation plane.

2.4 Spatial filter requirements

From the previous discussion, we found that the RoS of the 2D STPW frequency

spectrum lies on a straight line oriented at some angle (which is the corresponding

DoA) to the Ωct axis, and thus spatial filters are required to contain their spectral

passband within that RoS region. Such passbands can be generated by either ana-

log or digital filter circuits. The conventional technique is based on phase-shifting;

however, they are narrow band and contain the effect of beam squinting. For wide-

band filtering, the passbands should be frequency independent (i.e., it should be a
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Figure 2.5: 2D mixed-domain (ωx,Ωct) frequency spectrum of three broadband
Gaussian-modulated cosine pulses.

wideband space-time filter). Figure 2.5 shows the spectrum of three Gaussian cosine

modulated signals illuminating a ULA at angles θ1, θ2 and θ3 respectively. If we

desire to enhance one PW while filtering out the others, we essentially need a filter

with the ideal passband as shown with a red box. Beamforming at such frequen-

cies is known as RF beamforming. However, digital beamforming will need the RF

signal to be downconverted and downsampled due to limitations of the data conver-

tors on the digital platform. The next paragraph discusses the spectral properties

of downconverted and downsampled STPWs.

Fig. 2.6 shows an illustration of the 2D spectral transformation of a 2D broad-

band bandpass STPW from RF to baseband. Fig. 2.6(a) shows the spectrum of an

RF signal with temporal frequency fc possessing a double-sided bandwidth of 2B

and is arriving at a ULA at an angle of ψ, remember that sinψ = tan θ. If there is

certain uncertainty in predicting the spatial DoA ψ, say ε, then the 2D straight-line

RoS of the STPW occupies a trapezoidal region as shown in Fig. 2.6(a), where ∆θ

is the variation in spatio-temporal DoA θ due to uncertainity in the spatial DoA

ψ. The trapezoidal RoS plot of the temporally in-phase (I) quadrature (Q) down-
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Figure 2.6: (a) RoS of the ST broadband bandpass PWs received by a ULA (b)
RoS of the ST broadband bandpass PWs following I-Q downconversion. (c) RoS of
the ST broadband bandpass PW following I-Q downconversion and downsampling.

converted signal is shown in Fig. 2.6(b), which corresponds to the Fourier shifting

property shown in Eq. (2.10),

s(x, ct)
F−→ S(ωx,Ωct) ⇒ s(x, ct)e−jΩcct

F−→ S(ωx,Ωct + Ωc) (2.10)

The temporal down-conversion stage brings the temporal frequency content to

the base-band without affecting the spatial frequency ωx, where ωct = Ωct∆Ts.

Due to this effect, RoS of the produced signal is spatially shifted by ω′x, where

ω′x = ±
(
π fc
fc+B

sin θ
)

[47]. Now the signal is at baseband, and and analog-to-digital

conversion (ADC) sampling by a frequency fs = 1/∆Ts down-samples the signal by

a factor of Ns ∈ Z and causes the spatio-temporal DoA to change to angle α [43]

given by Eq. (2.11) and as shown in Fig. 2.6 (c),

α = tan−1

(
∆x

Nsc∆Ts
sinψ

)
. (2.11)

ADC sampling transforms the analog temporal domain Ωct to ωct, where ωct =

∆TsΩct. Thus the filter in digital domain should encompass a trapezoidal passband
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Figure 2.7: Beamforming architectures: 1) Analog beamforming, 2) Digital beam-
forming, 3) Hybrid beamforming.

that encloses the region ωx = ω′x and is aligned at α to the ωct axis, in order to

beamfilter the plane-waves that are arriving at an ULA with an angle ψ [43, 48].

Next section describes about such filter architectures.

2.5 Beamforming or spatial filtering techniques

This section provides an overview of beamforming techniques and their architectures.

Beamformers are categorized based on the hardware implementations, bandwidth

requirements, pattern synthesis techniques, and the type of beam required (fixed

or adaptive). Based on these features, the beamforming is accomplished by us-

ing three main approaches: analog beamforming, digital beamforming, and hybrid

beamforming; their architectures are shown in Fig. 2.7 (a). Analog beamforming

implements the spatial filtering operation by employing analog electronics either in

RF/IF stages of a phased array. Phase-shift–based analog beamfilters as shown in

Fig. 2.7 (a), are widely used among all the analog approaches. Digital beamforming
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Figure 2.8: Receive mode model of an N-element phased array.

provides maximum flexibility, reconfigurability, and maximum degree of freedom for

beam combinations over traditional analog phased-array implementations. An ex-

ample architecture for a digital beamforming implementation is shown in Fig. 2.7(b).

However, digital beamforming requires one RF chain and two ADCs per antenna

element assuming I-Q downconversion. This results in high power consumption be-

cause of the power-hungry ADCs, especially when larger arrays are implemented

with high bandwidths. To get the best from both worlds, a hybrid beamforming

approach is developed that is shown in Fig. 2.7(c). It combines the analog beam-

formers having the lowest power consumption with low-dimensional digital beam-

formers. This approach typically uses RF phase-shifters, true-time-delays (TTDs),

or lenses for level-1 analog beamforming and digital filters/algorithms for level-2

beamforming. In simple terms, all these beamformers can be treated as a circuit

with multipliers/weights applied to the incoming signal from the antenna array.
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2.5.1 Beamforming implementation with fixed weight set

Consider an N-element ULA with elements spaced at ∆x = λmin/2 satisfying the

Nyquist spatial sampling as shown in Fig. 2.8. A 2D STPW is arriving at the ULA

with an angle ψ and the time-continuous signal received by the array is x, which is

given in the equation below:

x = [x0(t) x1(t) . . . xN−1(t)]T , (2.12)

where xnx(t) is the signal at nx th spatial location. The signal received from each

nx antenna element is subjected to a specific weight αnx that is essential to the

formation of beams. If the weighting vector w is given as in Eq. (2.13),

w = [α0 α1 . . . αN−1]T , (2.13)

then the beamformed time domain output y is given by Eq. (2.14),

y = wTx. (2.14)

The beam pattern corresponding to the weight vector w is related to its DFT [42].

In a narrowband case, these weights are complex constants, to produce a broadband

beam, the weights are modified to incorporate the time delay τ = ∆x sinψ
c

rather than

just the phase [49], and such an implementation has a weight vector w that looks

like the one shown here:

w =
[
1 e−jΩtτ . . . e−jΩt(N−1)τ

]T
, (2.15)

where Ωt = 2πft is the temporal frequency variable. Since the weights are frequency-

dependent that realize a true time delay across the signal bandwidth, such an ar-

chitecture will produce a wideband squint-free beam. Such implementions are real-

ized in analog using progressive transmission line delays [50], antenna/sensor delay
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lines [51] and using analog all-pass filters that realize the required time delays [52].

Wideband implementations in digital domain include both IIR and FIR filter real-

izations. For IIRs, the filters are designed in such a way that they encompass the

trapezoidal pass band of the downconverted, downsampled STPW signal. Several

such implementations have already been reported in the literature [53–56]. FIR

implementations achieve the true time delay using higher-order FIR or fractional

delay filters [43,48,57–60]. Another wideband digital approach is through utilization

of FFTs where the wideband signal is decomposed to a set of narrowband outputs,

and each output is applied to a specific complex coefficient that realizes the required

corresponding phase delay.

2.5.2 Multi-beam beamformers implementation

We have looked at implementations of a single-beam beamformer where the systems

are multi-input and single output. However, the maximum beams that can be

formed through a phased array is equal to the number of elements in it. Producing

multibeams involves realizing more than one complex vector–perhaps a matrix of

the vectors that are mentioned in (2.13). Such a matrix is given in Eq. (2.16),

Wp = [w1 w2 . . . wp]T (2.16)

where Wp ∈ Cp×N is the matrix containing p weighting vectors that is used to realize

p beams. From inspection, Wp is a p ×N matrix that takes the form of a Vander-

monde matrix [61]. Each beamforming weight vector w =
[
1 e−jΩtτk . . . e−jΩt(N−1)τk

]T
,

where τk = (∆x sinψk)/c and 1 ≤ k ≤ p, corresponds to a steering weight vector to

realize a beam at an angle of ψk off broadside. To maximize the degrees of freedom,

it is essential that all of the weighting vectors are linearly independent. Choosing

p = N will capture all the degrees of freedom from the array.
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Figure 2.9: Mutibeam beamforming architectures: (a) analog beamforming (b)
digital beamforming (c) hybrid beamforming.

Similar to single-beam beamformer approaches, multi-beam beamformers can

be categorized into three main approaches: analog multibeam beamforming, digital

multibeam beamforming, and hybrid multibeam beamforming. The corresponding

architectures for each approach are shown in Fig. 2.9. Realization of multi-beams

can be achieved by cascading single-beam realizations to achieve one or more pass-

bands. A quite popular way of achieving it is through Fourier transform. A Fourier

transform contains an N×N matrix that contains different weights and is analogous

to the weighting matrix as shown in (2.16). Thus, selecting Wp=N to be the N -point

DFT matrix produces N RF beams for both transmit and receive multibeam appli-

cations. The orthogonal property of the DFT matrix ensures there is no inter-beam

interference. The analog-based FFT realizations include implementations based on

a Butler matrix and a lens based focal planar array (FPA) [62, 63]. This work con-

tains three multi-beam beamformer implementations that are based on trapezoidal

passband IIR filters, FFT algorithms, and lens + FPA structures.
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2.6 Conclusion

This chapter presented a review of propagating plane-waves a.k.a spatio-temporal

plane-waves (STPW) and their properties relating to the beamforming theory. First,

we described the STPWs propagating in 3D space and derived the mathematical

function to express those waves in space and time. Continuing the same discussion,

this chapter demonstrated the signal processing of the plane waves with different

planar antenna configurations. Next, the spectral properties of the STPWs relevant

to ULAs were discussed and the spectrum’s region of support (ROS) was defined.

The trapezoidal passbands of the downconverted, downsampled STPWs signals was

demonstrated, and the requirements for digital spatial filters to enhance those sig-

nals was investigated. Finally, we discussed different implementation topologies for

beamformer implementations. This was extended for multi-beam approaches. The

multi-beam beamformers developed in the subsequent chapters of this dissertation

will be based on these concepts.
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CHAPTER 3

MULTIBEAM ARRAY RECEIVER USING 2D SPATIALLY

BANDPASS DIGITAL IIR FILTERS

This chapter provides the background and implementation of multibeam beam-

former architectures based on IIR filter topology. These IIR filters employ 2D space-

time networks where the network parameters can be tuned to achieve electronical

beam steering/filtering. The filters that are proposed in this chapter include the

trapezoidal passband required for filtering the 2D ST broadband bandpass PWs;

hence they are called 2D spatial bandpass digital IIR filters. First, we will discuss

the evolution of such filters from basic circuit theory; next, we will discuss the filter’s

spectral properties and how the filter will be implemented to achieve beamforming.

We will then discuss the realization of a 2.4-GHz 16-element multi-beam digital ar-

ray receiver that incorporates a 2D spatial bandpass IIR filter in the DSP back-end.

The proposed work is verified for a two-beam case. This work, which was done in

collaboration with Dr. Chamira Edussooriya of the University of Moratuwa, has

resulted in one publication [64].

3.1 Background

In Chapter 2, we discussed the spectral properties of the 2D ST broadband PWs

and the requirements for spatial filters to enhance the desired PWs coming from a

specific DoA while filtering out the rest. The spectral properties and RoS for a 2D

STPWs at various stages in an RF signal processing chain are shown in Fig. 3.1. In

this work, we explore multi-dimensional signal processing algorithms that operate

on an array of digital receivers to perform the beamforming. The proposed system

uses 2D linear space-time invariant frequency plane-wave (FPW) filters possessing
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Figure 3.1: (a) RoS of the ST broadband bandpass PWs received by a ULA; (b)
RoS of the ST broadband bandpass PWs following I-Q downconversion; (c) RoS of
the ST broadband bandpass PW following I-Q downconversion and downsampling.

trapezoidal passbands and with an infinite impulse response (IIR). These filters have

been proposed in [53–55] and they have been proven to be stable 2D filters [56,65].

Although 2D finite impulse response (FIR) filter–based algorithms have desirable

properties, such as unconditional filter stability and linear-phase response when

required, they have greater DSP computational complexity as compared to 2D IIR

filters of similar beam selectivity. Therefore, the 2D IIR filter implementations

proposed are preferable for achieving designs with low sizes, weights, power, and

costs. This work reports the experimental verification of the use of such multi-

dimensional filters for the first time. Trapezoidal 2D spatial bandpass IIR filters are

derived from frequency planar filters. Thus, in the next paragraph, we cover the

evolution of frequency planar filters.

Two-dimensional IIR frequency planar filters are wideband array processing al-

gorithms that were derived based on the concept of multi-dimensional space-time

network resonance [44]. These space-time networks networks were first described

by Bruton and Bartley in 1985, and they take the form shown in Fig. 3.2(a). They
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(a)

(b) (c)

𝜃

Figure 3.2: (a) A 2D resistively terminated passive prototype network with spa-
tial inductor Lx and temporal inductor Lct; (b) A 2D magnitude response of filter
H(sx, sct), and (c) A 3D view of the frequency response in (b).

are resistively terminated passive networks that achieve filtering using the concept

of network resonance [44,45,66].

In the prototype networks shown in Fig. 3.2(a), X(sx, sct) is the input Laplace

transform, Y (sx, sct) is the output Laplace transform, sx ∈ C is the spatial Laplace

operator, sct ∈ C is the temporal Laplace operator and {Lx, Lct, R} ≥ 0 are the

parameters that define the filter performance. The prototype transfer function in

the Laplace domain is given in Eq. (3.1) [44],

H(sx, sct) =
Y (sx, sct)

X(sx, sct)
=

R

R + Lxsx + Lctsct
, (3.1)

The 2D frequency response transfer function (TF) is found by setting the spatial

frequency variable sx to jωx and setting the temporal frequency variable sct to
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jωctand as given by Bruton and Bartley [44]:

H(jωx, jωct) =
R

R + j(Lxωx + Lctωct)
, {Lx, Lct} ≥ 0 (3.2)

From filter theory, it can be said that this passive prototype network resonates

when Lxωx +Lctωct = 0. To suit our needs, such a network can be transformed to a

2D IIR frequency planar beam filter by choosing Lx = cos θ and Lct = sin θ [53,55].

Hence, this causes the passband of the filter to be aligned to an angle θ to ωct axis

as shown in Fig. 3.2. We recall that θ is the ST DoA of the PW signal.

The prototype transfer function is then converted to a discrete domain by ap-

plying the normalized 2D bilinear transform given by sk = (1− z−1
k ), k ∈ {x, ct} to

obtain H(zx, zct) as shown in Eq. (3.3), where the denominator coefficients can be ex-

pressed in closed form in terms of the network parameters as b′ij = R+(−1)iLx+(−1)jLct
R+Lx+Lct

with i + j 6= 0. The 2D z-domain TF can be mapped into a 2D discrete domain

difference equation to achieve real-time implementation [53,67,68].

H(zx, zct) =
1 + z−1

x + z−1
ct + z−1

x z−1
ct

1 + b′10z
−1
x + b′01z

−1
ct + b′11z

−1
x z−1

ct

(3.3)

We have shown how 2D frequency planar filters can be utilized to enhance plane

waves arriving at a ULA with an angle θ as shown in Fig. 3.1(a). However, these

filters perform the beamforming directly at RF frequencies; in contrast, we need to

selectively enhance the plane waves following downconversion and downsampling,

as shown in Fig. 3.1 (c), and those filters are called 2D IIR SBP beam filters. In

the next section, we look into the evolution of the 2D IIR SBP beam filters from

2D IIR frequency planar filters.
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3.2 Evolution of first-order 2D IIR SBP beam filters

The 2D IIR SBP beam filters are required to contain a frequency response that en-

compass the trapezoidal passband of the downconverted and downsampled STPWs

that is centered at ωx = ω′x. Thus, if we can center the passband of the frequency

planar wave (FPW) filters on spatial frequency ω′x rather than the origin, we can

process the desired STPWs. Therefore, the TF of the 2D IIR SBP beam filter can

be obtained by applying spatial modulation to the the impulse response of (3.3) i.e.,

multiplying the impulse response of the FPW filter by the factor e(jω′xnx), where nx

is the spatial index.

Consider hFP (nx, nct) to be the impulse response of the 2D IIR frequency planar

filter with a transfer function HFP (zx, zct) given by (3.4) [53, 54],

HFP (zx, zct) =
(1 + z−1

x )(1 + z−1
ct )

1 + b′10z
−1
x + b′01z

−1
ct + b′11z

−1
x z−1

ct

, (3.4)

then the impulse response of the first-order 2D IIR SBP beam filter is obtained as

shown in (3.5) [64,69],

hIIR(nx, nct) = ejω
′
xnxhFP (nx, nct), (3.5)

where HIIR(zx, zct)
2D⇐⇒ hIIR(nx, nct) is the transfer function of the proposed beam

filter. Using the scaling property of the z-transforms [70],

an1hFP (n1, n2)
2D⇐⇒ HFP (z1/a, z2), |a| ≤ 1

we obtain the normalized transfer function of the 2D IIR SBP beam filter as given

in (3.6) [64,69],

HIIR(zx, zct) =
(1 + e−jω

′
xz−1
x )(1 + z−1

ct )

1 + b′10e
−jω′xz−1

x + b′01z
−1
ct + b′11e

−jω′xz−1
x z−1

ct

, (3.6)
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(a) (b)

Figure 3.3: Magnitude response of (a) first-order and (b) second-order 2D IIR SBP
filter for θ = −30◦.

where the coefficients b′ij are defined in (3.7) and are expressed in terms of the

ST angle α as follows

b′ij =
R + (−1)iLx + (−1)jLct

R + Lx + Lct
, (3.7)

for i, j = 0, 1, i+ j 6= 0, and R > 0 sets the selectivity of the filter pass band. Here

Lx = cosα and Lct = sinα (normalized to ∆x = c∆Ts = 1), where 0 ≤ α ≤ π/2

[54, 66]. Thus, the beamwidth ad directivity of the beam can be controlled by

changing the value of R. The magnitude frequency response plot for the 2D IIR

filter TF given by (3.6) for θ = −30◦, ft = 2.4 GHz, and Bt = 200 MHz is shown in

Fig. 3.3 (a). The filter has a magnitude response that accompanies a beam having

a trapezoidal passband shifted on spatial spectral axis. It should be noted that

the proposed IIR filter is practical bounded-input-bounded-output (P-BIBO) [66]

in only one quadrant (only for negative angles of arrival). The filter can be tuned

to positive beam directions by flipping the signs of the antenna inputs to the filter

so that the spectrum is mirrored on the ωct axis.

The 2D IIR SBP beam filter given in (3.6) is a first-order filter, but a second-

order version of the filter is proposed in [54] in which the the spatial modulation
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is accomplished by multiplying with a factor cos(ω′x) to the impulse response of

FPW filter. The magnitude frequency response plot for the second-order 2D IIR

SBP filter for the similar parameters considered above is shown in Fig. 3.3 (b). It

contains double-sided trapezoidal passbands and such a filter response is suboptimal

if we perform a complex I-Q downconversion in which the beam-shaped passband

corresponding to a 2D PW occupies only the negative ωx axis because the extra

band that is not occupied by the signal itself still passes noise and interference.

Therefore, the first-order single-band version provides a beam in the direction of

the RF signal without spurious responses in undesired directions. Moreover, the

first-order filter is less complex from a digital arithmetic standpoint (although it

requires complex-valued DSP due to its single-band nature).

3.2.1 Architecture and implementation of the 2D IIR SBP

filter

If the 2D discrete input and 2D discrete output for the proposed filter are given by

pw2D(nx, nct)
2D⇐⇒ PW2D(zx, zct) and y(nx, nct)

2D⇐⇒ Y (zx, zct), respectively, its transfer

function can be expressed as HIIR(zx, zct) = Y (zx, zct)/W (zx, zct). Computing the

inverse 2D Z-transform of (3.6) under zero initial conditions, the 2D difference

equation that can be implemented in digital hardware is obtained. The simplified

difference equation of the first-order single-band 2D IIR SBP filter is given by (3.8)

[64,67,69],

y(nx, nct) = [pw2D(nx, nct) + pw2D(nx, nct − 1)]− b′01y(nx, nct − 1)

+ e−jω
′
x
[

[pw2D(nx − 1, nct) + pw2D(nx − 1, nct − 1)]

− [b′10y(nx − 1, nct) + b′11y(nx − 1, nct − 1)]
]
.

(3.8)
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The direct-form-I implementation of the above difference equation yields a novel

parallel processing core module (PPCM) block shown in Fig. 3.4(a), where several

such blocks are systollically inter-connected to yield the proposed first-order SBP

beam filter for the required number of spatial inputs. The digital architecture for

implementing the filter is shown in Fig. 3.4(b). This direct-form-I implementation

of the proposed filter requires only one complex multiplier and six real multipliers

per antenna element (PPCM), where each complex multiplier is implemented using

a Gaussian complex multiplication algorithm that requires only three real multi-

plications. In contrast, the direct-form-I implementation of the second-order filter

requires 13 real multipliers per an antenna element (PPCM); thus, by implementing

a complex first-order filter, we are able to reduce the silicon real estate by a margin

of four multipliers per element. We have looked into the SBP filters that provide

single beam enchancements, however the contents of this work require multi-beam

architectures. In the next section, we discuss on how we build multi-beam / multi-

band 2D IIR SBP beam filters.

3.2.2 First-order 2D IIR SBP multiband trapezoidal filter

The proposed 2D IIR SBP multiband filters having K multiple trapezoidal pass-

bands (hence, K beams) are designed by combining K 2D IIR SBP filters having

single trapezoidal passbands. Multibeam apertures are realized via corresponding

multiband digital filters in the DSP system. Each passband of a particular multi-

band filter generates a far-field beam on the array. The filter-bank structure for the

proposed 2D IIR SBP multiband filters is shown in Fig. 3.5, and their corresponding
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Figure 3.4: (a) Direct-form I implementation of the first-order single-band 2D IIR
SBP beam filter. (b) Systolic array architecture of the proposed IIR filter accepting
digitized I-Q inputs from the array receiver.

transfer function HIIR,multi(zx, zct), is given by (3.9),

HIIR,multi(zx, zct) =
K∑
k=1

γkH
k
IIR(zx, zct), (3.9)
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Figure 3.5: Structure for the filter-bank of a 2D SBP multiband trapezoidal filter.

where γk, k = 1, 2, . . . , K are complex-valued constants and Hk
IIR(zx, zct) is the kth

2D IIR SBP filter having a single trapezoidal passband. Note that complex constant

γk determines the relative contribution to the array pattern by Hk
IIR(zx, zct) corre-

sponding to the kth beam. The special case, γk = 1, k = 1, 2, . . . , K, corresponds

to a 2D IIR K-beam filter, in which all the K beams have equal contribution to the

array pattern. The temporal output out(nct) of HIIR(zx, zct) is obtained as given in

Eq. (3.10),

out(nct) =
K∑
k=1

outk(nct), (3.10)

where outk(nct) is the temporal output of Hk
IIR(zx, zct).

The multiband version of the proposed first-order 2D IIR SBP filter is evolved

by summing up a parallel collection of several such first-order filters for each 2D

PW signal of interest (SOI); thus, the transfer function of the K-band version of the

proposed filter, HIIR,multi is given by Eq. (3.11),

HIIR(zx, zct) =
K∑
k=1

Hk
IIR(zx, zct)

=
K∑
k=1

(1 + e−jω
′
kxz−1

x )(1 + z−1
ct )

1 + b′k10e
−jω′kxz−1

x + b′k01z
−1
ct + b′k11e

−jω′kxz−1
x z−1

ct

,

(3.11)
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(a) (b)

Figure 3.6: (a) Magnitude response of the 2D IIR multiband trapezoidal filter
HIIR(zx, zct); (b) cross section of (a) at ωct = 0.

where Hk
IIR(zx, zct) is the filter transfer function corresponding to the kth 2D PW

SOI, where ω′kx, b
′
k01, b

′
k10, b

′
k11 are the coefficients and spatial shifts corresponding to

each individual filter in the filter bank. The outputs from all filters are summed to

determine the beam pattern of the multi-beam beam former. The proposed 2D IIR

SBP multibeam filter is verified for the case of two broadband bandpass PW SOIs

arriving at θ1 = −10◦ and θ2 = −30◦ at a ULA consisting of 16 antennas. Both

broadband bandpass SOIs are assumed to have a bandwidth Bt = 200 MHz from 2.3

GHz to 2.5 GHz and are quadrature-sampled with a fCt = 2.4 GHz local oscillator.

The inter-antenna distance ∆x is 6 cm, and the temporal sampling frequency fSt is

240 MHz. The magnitude frequency response plot is shown in Fig. 3.6(a), and the

cross section at fc is shown in Fig. 3.6(b). The two 2D PW are assumed to have

different power spectral densities, leading to γ1 = 1 and γ2 = 1.35. The response

consists of two trapezoidal frequency-invariant main lobes, and the PSL is found to

be −13 dB.
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Figure 3.7: Architecture of the test setup for verifying the 2D IIR SBP beam filter.

3.3 Proposed filter validation with a 16-element 2.4-GHz

I-Q array receiver

This section describes a 16-element array receiver that is designed and built for

real-time verification of the beam patterns arising from the proposed 2D IIR filter

designs. The overall system architecture of the test setup is shown in Fig. 3.7. The

RF receiver employs a 16-element super heterodyne architecture producing 16 I-

Q IF outputs to be sampled by ROACH-2 ADCs. The next section describes the

details of the antennas, the receiver chains and the digital back-end.
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3.3.1 Antenna array, RF front-end, and digital systems setup

Fig. 3.8(a) shows the practical experimental setup that is used to implement the

system architecture in Fig. 3.7. The antenna array consists of 16 rectangular patch

antennas operating at 2.4 GHz, and the RF front-end employs a 16-element single-

mixer super-heterodyne architecture. The RF front-end shown in Fig. 3.8(b) is im-

plemented using commercial-off-the-shelf components from MiniCircuits (combiner

- ZN2PD 63S+, bandpass filter - VBFZ 2340S+, low-noise amplifier - ZX60-242LN,

mixer - ZFM-15S+, lowpass filter -SLF-550+, intermediate frequency amplifier -

ZFL-1000LN+). We employ power combiners prior to the first stage of low noise

amplifiers (LNAs) processing, which helps calibrate each RF chain by sending a

reference signal. The signal in each chain is then band-pass-filtered, amplified, and

received by an I-Q mixing network. The local oscillator (LO) signals are distributed

to the 32 identical mixers using a microwave 1:16 splitter. Each of the outputs of

the LO distribution system is split to 0◦–90◦ for the I-Q direct-conversion mixers

using hybrids. The I-Q downconverted outputs from 16 channels are then low-

pass–filtered, amplified, and provided for sampling to the digital platform. The

2D IIR first-order multi-band beamformer is implemented on the ROACH-2–based

FPGA system shown in Fig. 3.8(c). ROACH-2–based FPGA system is a standard

high-performance FPGA signal processing platform used in the radio astronomy

community [71]. The digital conversion of the baseband analog signals from the

receiver chains is achieved by using “ADC16x250-8 coax rev-2 daughter cards” [72].

Each daughter card is connected to two ZDOK+ interfaces available in the ROACH-

2 platform, via which the sampled data is sent to the ROACH-2’s Virtex-6 FPGA

over high-speed serializer/deserializer links. This receiver provides a gain of 40 dB

and a noise figure of 4 dB. Comprehensive details of the antenna array, RF front-end,

and ROACH-2–based FPGA system can be found in [73].
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Figure 3.8: (a) The overall experimental setup; (b) RF receiver chain imple-
mented using commercial-off-the-shelf components; (c) ROACH-2 FPGA–based dig-
ital back-end.

It is essential that all RF signal generators are synchronized to the same reference

clock to avoid frequency drifts. In our case, a 10-MHz reference from the NOISE XT

signal generator is used to drive the VALON at receiver side for clocking ROACH-2

analog-to-digital converters (ADCs). NOISE XT generates frequencies from 2 MHz

to 7 GHz with a resolution of 1 Hz and ultra-low noise floor down to −178 dBc/Hz.

The VALON is a dual frequency synthesizer module whose frequency range spans

from 23 MHz to 6 GHz, and it provides 32 dB of attenuation control.
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Figure 3.9: Measuring the filter beam patterns from the RF receiver setup placed
inside a parking garage.

3.3.2 Measurement setup and limitations

The simulated beam responses assume that the source and transmitter are in the

far-field zone. Hence, the measurements have to be computed for the similar setup,

which is approximately 16 m for the array under consideration. Such a test setup

would require a much larger anechoic chamber than the one that is available to us.

Hence, to approximately model the reflection-free anechoic chamber, the measure-

ments are taken in a more spacious environment (a car parking garage), as shown

in Fig. 3.9. The designed receiver needs at least -40 dBm of signal power level to

reasonably occupy the full scale range of the ADCs; thus, it limits the separation

between the transmit antenna and the array to 8 m in order to transmit < 10 dBm.

Other limitations include the difference in the polarization reference planes for the

transmit and the array and a measuring environment that is not reflection-free.

3.3.3 Measured beams

To measure the beam patterns of the proposed filters, their digital designs are in-

tegrated to the array receiver setup. The array was illuminated with a 2.4-GHz
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Figure 3.10: Measured beam patterns vs. the fixed-point simulated beam patterns
of (a) 2D IIR SBP filter having passbands at −10◦ and −35◦; (b) 2D IIR SBP filter
having passbands at −15◦ and −40◦. The fixed point simulated beams are generated
from the digital design from Matlab Simulink and do not incorporate any microwave
effects.

sinusoidal carrier and precisely rotated (to keep the transmitter stationary) to ob-

tain a measure of the energy received digitally for each angle of reception. An LO

signal of 2.41 GHz was used for downconversion, which corresponded to a signal of

10-MHz at IF. A separate digital circuit was designed and employed for computing

the energy received. The effect of channel noise and interference was compensated

by periodically switching the transmitter on and off and by using a digital circuit

to obtain the difference between the energy accumulated in the two states. Mea-

surement was conducted for a fixed time (109 samples) for each angle of reception,

and the accumulated signal energy was recorded from −63◦ to 63◦ with a step size

of 0.9◦.

Measurements are performed for two cases. In Case I, coefficients corresponding

to the SBP filter having two-beam passbands at −10◦ and −35◦ are realized and

the beam pattern plot is shown in Fig. 3.10(a). In Case II, the co-efficients are

realized, to have two-beam passbands at −15◦ and −40◦, and its beam pattern

plot is shown in Fig. 3.10(b). The main lobe direction and the peak side-lobe level
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(PSL) for both the cases are included in Table 3.1. For both cases, the simulated

and measured patterns possessed a maximum absolute error of 0.9◦ in their beam-

directions, whereas the PSL differed by 2.2 dB and 1.7 dB in Case I and Case II

respectively.

Table 3.1: Comparison between Simulated and Measured RF Beams

Parameter
Passband (-10,-35) (IIR) Passband (-15,-40) (IIR)
Simulated Measured Simulated Measured

Angle (deg) (-9,-34.2) (-9.9,-34.2) (-14.4,-38.7) (-14.4,-39.6)
PSL (dB) -11.1 -8.9 -11.3 -9.6

It can be seen that the measurements are generally in agreement with the theoret-

ical patterns. The mismatches in front-end electronics, deviations in cable lengths,

phase noise in clocks and LO signals, interference, and reflections from the test envi-

ronment leads to the reflected performance degradation of the beamformer. There-

fore, the post-calibration errors sets the best case performance of the 2D filter and

the overall beamformer.

3.3.4 Contribution and comparison to previous work

The 2D IIR SBP filters proposed in [54,55] are second-order filters that have double-

sided trapezoidal passbands. Those filters are sub-optimal since the extra band that

is not occupied by the signal itself still passes noise and interference as shown in

Fig. 3.3. This work proposes a first-order single-band version which provides a

beam in the direction of the RF-signal without spurious responses in undesired

directions. In addition, the first-order implementation is less complex from a digital

arithmetic standpoint compared to the second-order 2D IIR SBP filter. This work

also proposed the multi-beam/multi-band version of the 2D IIR SBP filter to realize

more than one beam simultaneously. We reported the experimental verification of
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the use of such multi-dimensional filters for the first time. We have discussed and

validated a real-time implementation of a 16-element 2.4-GHz 2D IIR SBP filter for

two beams. The maximum number of independent beams is limited by the number

of antennas in the array; for an N -element array we can realize N -independent RF

beams using this approach. It is also possible to have a linear combination of a set

of beams to produce a beam in another direction. Considering the relative lower

digital complexity of these IIR filters, it is definitely possible to fit more beams into

an FPGA when compared to other multi-beam approaches using FFTs, FIRs or

true-time delays. A comparison for digital complexity of the proposed beam filters

with an FIR implementation is discussed next.

The proposed first-order 2D IIR SBP filter requires nine multipliers per PPCM;

thus, for a two-band version of 16-element filter would consume 288 multipliers. An

equivalent FIR realization to obtain a similar beam response is found by computing

the number of multipliers/coefficients in the impulse response of the IIR filter. The

response is obtained for different combinations of angles from two sets ranging from

(0◦ to 90◦), and only the filter coefficients whose values are greater than the threshold

of (1%) of the normalized response are taken under consideration. Doing so yielded

a count of 120 with both I and Q responses combined, and thus is the number of

taps required for the FIR for one spatial index. For 16 spatial locations, such a

realization would need 1920 multipliers, which is significantly larger compared to

the proposed IIR design. The 2D IIR SBP filter implementations are preferable for

achieving designs with low sizes, weights, power and costs.
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3.4 Conclusion

This chapter presented the design, implementation and the experimental verification

of a 2.4-GHz multi-beam array receiver consisting of 16 patch antennas and element-

wise fully digital signal processing on a Xilinx FPGA. The IIR SBP PW digital filters

having multiple trapezoidal passbands are used to realize multi-beams in real time.

These filters are implemented using the ROACH-2 FPGA platform with 32 ADC

inputs operating up to 240 MSamples per channel. The measurements are carried

out for a two-beam case for two scenarios (10◦, 35◦) and (15◦, 40◦). The measured

array patterns are in good agreement with the simulated multi-beam patterns, thus

validating the proposed 2D IIR multi-beam beamformer. For a two-beam case, the

2D IIR SBP filter saves 81.3% of hardware resources compared to the 2D FIR SBP

digital filter implemented on the same FPGA platform.
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CHAPTER 4

MULTI-BEAM BEAMFORMING USING FAST FOURIER

TRANSFORM

Chapter 2 introduced multi-beam beamforming theory, and we looked at differ-

ent architectures used to form multi-beams using analog and digital circuits. In this

chapter, we discuss multi-beam digital beamforming using fast Fourier transform

(FFT) and also realize a four-element receiver array at 28 GHz. The objective of this

work is to demonstrate a fully digital multi-beam beamformer at mmW frequencies

(27.5–28.3 GHz) with Xilinx RFSoC-based digital back-ends. This frequency range

is within the ranges allocated by the Federal Communication Commission (FCC)

in the United states for 5G mobile communications. This chapter begins with a

brief background on digital multibeam beamforming using fast Fourier transforms

(FFT). It continues with a system and link budget analysis of a 28-GHz 32-element

receiver array with RF SoC digital back-end, which supports a 64-QAM modulation

for 5G orthogonal frequency division multiplexing (OFDM)–based wireless commu-

nications. For proof of concept verification, a four-point FFT multi-beam beam-

forming receiver at 28 GHz is implemented. The antenna array design, receiver

array setup and the digital back-end details are presented. A Xilinx ZCU 1275

hardware platform featuring a Xilinx RFSoC device is employed for sampling and

to perform the beamforming. This work was done in collaboration with Dr. Elias

Alwan at Florida International University and Dr. Ted Rappaport at New York

University and with input from my former colleague, Dr. Viduneth Ariyarathna, on

the construction of the 28-GHz receiver setup and the realization of the polyphase

digital architecture. The research outcomes of this work were disseminated in three

publications [33, 74, 75], and the content of this chapter is sourced from these pub-

lications.
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4.1 Background

As discussed in the Chapter 2, a beamformer is realized by applying a weighting

vector W across the spatial samples of a uniform linear array. An N -point DFT

matrix contains a set ofN complex weights for each antenna element. Thus, selecting

Wp=n to be the N -point DFT matrix produces N RF beams for both transmit and

receive multibeam applications. While the following analysis is conducted on the

receiver side, it can be applied to the transmit side due to the reciprocity.

The N -point DFT of a finite duration sequence xn of length N is defined as,

Yk =
N−1∑
n=0

xne
−j2πkn/N ; k ∈ [0, N − 1], (4.1)

where, Yk ∈ CN×1. Each output Yk is subjected to a set of weights e−j2πkn/N that

corresponds to a beam with a peak directivity at ωx = 2πk/N [76, 77]. Recalling

the relation between spatial frequency and temporal frequency ωx/∆x = −Ωct sinψ

from Chapter 2, solving for beam direction for each output ψk for a narrow band

system at frequency fc will produce

ψ = sin−1

(
kc

∆xfcN

)
. (4.2)

For a ULA with an inter-element spacing ∆x = λc/2 = c/fc, the above equation

simplifies to

ψ = sin−1

(
2k

N

)
(4.3)

Hence, an N -point spatial DFT based approach produces N RF beams with each

beam points in a unique direction given by sin−1(2k/N), where k is the bin number.

Fig. 4.1 illustrates the spatial filtering operation performed by DFT algorithms on

STPWs. Fig. 4.1 (a) recalls the 2D frequency response of downconverted, down-

sampled plane wave and DFT responses in Fig. 4.1(b) approximately realize the
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ωx

ct

ωx

ω

Ideal passband

Figure 4.1: (a) 2D frequency response of the I-Q downconverted, downsampled
STPW. The red path indicates the ideal passband required by the beamformer, (b)
Frequency response of an eight-point DFT filterbank.

filter passbands required for a typical beamformer. The example is shown for N =8,

however the filtering resolution increases with higher FFT realizations.

The orthogonality property of the DFT ensures that the main lobe of a given

beam falls into the nulls of the other (N − 1) beams, in turn, ensuring no inter-

beam interference (under the assumption of negligible mutual coupling between

elements). The DFT computation at each time step requires an N -point vector of

complex valued transceiver signals (i.e., I and Q samples) to be multiplied with the

N ×N DFT matrix; thus, direct realizations of the DFT requires digital fixed-point

arithmetic circuitry that needs O(N2) complex multiplications and parallel addi-

tions/subtractions. The DFT computation can be significantly accelerated by using

fast algorithms (i.e., FFTs). An FFT factorizes the DFT matrix into a product of

sparse matrices, such that the overall multiplicative complexity is reduced. The FFT

reduces the digital system complexity (number of multipliers and adders) for an N -

point FFT to O(Nlog2N). In this work, we employ an FFT based on Cooley–Tukey
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FFT factorization [78]. Cooley-Tukey algorithm is the radix-2 decimation-in-time

FFT, which splits the N -point DFT computation into two N/2-point DFT com-

putations, resulting in an overall reduction in complexity. Recursive use of this

algorithm reduces the number of multiplications from O(N2) down to O(Nlog2N).

Thus, formation of N beams in narrowband digital is achieved by employing a dig-

ital N -point FFT on each of the complex I and Q signal vector from the array at

every time sample. A spatial FFT–based digital multibeam beamformer is discussed

in [79], and [80] describes a multibeam digital array for MIMO 5G wireless communi-

cations applications. More recent digital multibeam integrated circuits realizations

on the same spatial FFT–based multibeam beamforming can be found in [81,82].

4.2 Development of a 28-GHz 32-element digital receiver

array

The proposed work is aimed at designing and developing a 32 element phased array

on a 28 GHz receiver to support 64-QAM modulation for 5G OFDM-based wireless

communications. The receiver array has been designed to support 845 MHz band-

width using OFDM that incorporates an FFT size of 512 frequency bins, such that

each RF chain establishes a wireless communication link with a bit error probability

better than 10−5. Please refer to [83] for details on the theoretical basis for the sys-

tem design. This section provides the full design schematics of the 28-GHz receivers

including the specifications, system design constraints and the RF front-end design.
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4.2.1 Design specifications and constraints

The proposed receiver is designed to operate in the frequency range from 27.5 GHz

to 28.35 GHz, which is the range allocated for commercial 5G applications in the

United States [84]. The OFDM parameters listed below were used for the theoretical

calculations: FFT size (NFFT ) of 512, modulation (M) of 64 QAM, guard interval

(GI) of 1/8, number of data subcarriers of 336, and a subcarrier spacing (CS) of

1.65 MHz. These system parameters provide the required bandwidth (800 MHz)

and a maximum data rate of Rb given by the following equation:

Rb =
log2(M)×ND × CS

1 + GI
=

6× 336× 1.65× 106

1 + 0.125

' 3 Gbps. (4.4)

To establish a wireless communication link with bit error rate better than 10−5

for M = 64, Eb/N0 should be at least 17.8 dB [85]. Hence, the required SNR at the

demodulator inputs is given in Eq. (4.5),

SNRdB =

(
Eb
N0

)
+ 10 log10

(
log2(M)ND

(1 + GI)NFFT

)
= 23.2 dB. (4.5)

The receiver chain is designed by taking this SNR value as the design constraint.

4.2.2 Front-end design

A system overview of the proposed front-end design is shown in Fig. 4.2. The front-

end design assumes a 16 × 16 beamforming+MIMO architecture that serves as a

5G wireless access point. The performance of a receiver is optimized by designing

its electronics to have a low noise figure and high gain. The cascade noise figure of

the chain plays a vital role in delivering the required SNR at the digital back-end.

The front-end design and the selection of components based on the required SNR

are discussed in this section.

57



RX

RX

P
h

as
ed

−
ar

ra
y

3
2

−
el

em
en

ts

P
h

as
ed

−
ar

ra
y

3
2

−
el

em
en

ts

P
h

as
ed

−
ar

ra
y

3
2

−
el

em
en

ts

TX

P
h

ased
−

array

3
2

−
elem

en
ts

Rx 

RX

Rx 

beam 1
Rx 

1

15

16 16

15

1

(FPGA CORE)

beam 16

TX

TX

P
h

ased
−

array

3
2

−
elem

en
ts

P
h

ased
−

array

3
2

−
elem

en
ts

ZynQ

Xilinx

RF−SoC

ZCU−1275

beam 16

beam 15

beam 1
Tx

Tx

Tx

beam 15

A
D

C

D
A

C

A
D

C

D
A

C

A
D

C

D
A

C

Figure 4.2: System overview: a 16×16 beamforming+MIMO access point for 28-
GHz OFDM.

Cascaded noise figure and gain

The analysis for the required noise figure of the receiver chain Fcas for a minimum

detectable signal Pin at its input is as follows,

SNRout = SNRin,eq =
Pin
Nin,eq

, (4.6)

where Nin,eq = kT0FcasBn, kT0 = −174 dBm
Hz

is the input equivalent noise temper-

ature, and Bn is the noise bandwidth. Converted Equation 4.6 to the log domain

and solving for Pin (dB) gives the equation in (4.7),

Pin,dB = SNRdB + Fcas,dB − 174
dBm

Hz
+ Bn dBHz

= 23.2 + Fcas,dB − 174
dBm

Hz
+ Bn dBHz (4.7)

Since the FCC allocation for 5G 28-GHz band has a bandwidth of 850 MHz,

the low-pass filter (LPF) at the end of the RF chain is assumed to have a 3-dB

bandwidth of Bn =1000 MHz. Equation ((4.7) is reduced to the following equation:
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Pin,dB = Fcas,dB + (−60.8) = β. (4.8)

The SNR computed above is for a single received path. Hence for an N -element

array receiver, the received SNR can be improved by a factor of N . Thus, the

input received signal can be as low as (β − 10 log10N) for an N -element array by

using such a receiver. Hence, if we assume that the signal levels at the input of the

antenna are in the range of −85 dBm, for a 32-element array with a gain of 15 dB

for each element, the required Pin at the receiver chain will be −55 dBm. When

substituting this value into Eq. (4.8), a noise figure of Fcas,dB = 5.8 is obtained for

the RF receiver design, which is a tolerable noise figure. The cascaded gain of the

chain was calculated based on Pin,min,dB computed above, assuming the signals are

being sampled by by the ADCs on the Xilinx RF SoC. The full-scale input power

for these ADCs are 1 dBm [86]. To operate at 0 dBm (1 dBm below full scale),

the cascaded gain Gcas,max should be 55 dB. To accommodate the gain, the receiver

chain includes an LNA at the beginning and two stages of amplification (IF-VGA

amplifiers in cascade) after mixing; this enables the gain to be reduced to fit the IF

signal to the ADC full scale for higher input power levels.

Thus, the components for the receiver chain are selected based on the reported

noise figure and gain value requirements, which are 5.8 dB and 55 dB, respectively.

Architecture and component selection

A heterodyne I-Q receiver architecture as shown in Fig. 4.3 is employed for our

receiver array. The narrow-band nature of patch antennas eliminated the need for

separate band-pass filters. A low-side local oscillator is used at the I-Q downcon-

verter (HMC1065LP4E) to generate an intermediate frequency signal of 0.15 to 1

GHz, which is further amplified and sampled by high-speed RF-SoC ADCs. Careful
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Figure 4.3: Architecture of the single receiver chain of the proposed mmW hetero-
dyne receiver array.

selection of components is critical for providing the desired NF and gain values.

Components with higher third-order intercept levels are desirable to provide better

linearity and thus higher dynamic range. The final component selections are shown

in Table 4.1.

Table 4.1: Components and specifications for the mmW receiver design

Component Gain NF OIP3

(dB) (dB) (dBm)

LNA (MAAL-01111) 19 2.5 20

Downconverter (HMC1065LP4E) 9 3 14

Low-pass filter (LPF) (LFCN-900+) −1 1 N/A

IF amplifier (RAM-8A+) [31.5,24] 2.6 24.4

VGA (ADL5331) [−15,15] 9 39

Ideal values of cascaded gain and NF using the selected components are com-

puted using standard formulas [37], resulting in Gcas,dB = 70 dB and Fcas,dB =

2.5 dB. For computing the cascaded gain, the maximum gain of the variable gain

amplifier (VGA) and the mid-band gain of the IF amplifier are taken into account.

The receiver’s noise performance is within the NF requirements and, with the help

of the VGA, it can provide 30 dB of adjustable gain to increase the dynamic range,

which will keep the amplified signal levels within the full-scale range of the ADCs.
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4.3 Design of a four-point FFT multi-beam beamforming

receiver at 28 GHz

Following the receiver design analysis and component selection, the 32-element 28

GHz receiver array has to be developed. However, due to cost limitations, the exper-

imental setup in this dissertation is limited to only four elements, and a 32-element

implementation is reserved for future work. For the proof of concept verification,

a four point FFT multi-beam beamformer at 28-GHz is implemented. This 28-

GHz four-element receiver array design is a collective effort made by me and my

former colleague, Dr. Viduneth Ariyarathna. I have taken the primary responsibil-

ity of designing the 28-GHz receiver array starting with the antenna array design

and fabrication, component selection of RF-Front ends, and implementation of the

four-point FFT design in the RF-SoC FPGA of ZCU1275 board. The individual

parts of the antenna array, the RF front-end and FPGA board are integrated to

build this four-element, 28-GHz receiver array. Dr. Ariyarathna has contributed

towards construction of the 28-GHz setup and fabricating the balun boards needed

to interface the analog front-end to the ADCs of the RF-SoCs. He also helped in

RF-SoC configuration, ADC calibration, and the building of the polyphase archi-

tecture for the FFT digital design; the details of his work can be found in his Ph.D.

dissertation [87]. The same setup was also used by Dr. Najath Akram in his Ph.D.

research work for validating frequency division multiplexing method at mmWave

frequencies [88]. Hence, it must be noted that a overlap of the content and the

figures is expected. The following section describes the design and performance of

the antenna.
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4.3.1 Patch antenna design

For this work, a patch antenna is used due to its advantages, which include but

are not limited to low cost, small size, easy to feed, and easy to use in an array.

Due to the requirement of high gains at mmW frequencies, we use an eight-element,

series fed, vertical sub-array is designed. This sub-array employs a series feeding

structure to provide more directive gain in the elevation plane. The geometry of

the sub-array to be designed is shown in Fig. 4.4. The vertical sub-array decreases

the width of the field patterns in the vertical plane (elevation) so as to suppress

interference and spurious signals. Additionally, designing a series fed array with

tapered patch widths helps in significantly reducing the side lobe levels (SLLs) of

the field patterns along the axis of the array. In series feeding, elements are spaced a

guided wavelength apart along a uniform transmission line. By tapering the widths

from one edge to the center element in ascending order, excitation is maximum at

the center and decreases as it approaches the edge, which results in a slight increase

in beam width and a reduction of gain when compared to uniform excitation (i.e.,

a non-tapered structure). The 28 GHz eight-element subarray is designed with a

Table 4.2: Specifications for the patch antenna
Frequency (f0) 28 GHz

Substrate RO4350B
Dielectric constant (εr) 3.66

Dielectric height (h) 0.254 mm

linear tapering having a −6 dB pedestal that controls the SLL. The patch array is

evaluated using a transmission line model [42] in conjunction with wavelength-apart

series-fed analysis [89], to compute the dimensions of each patch that produce the

corresponding amplitude excitation for the board specifications shown in Table 4.2.

The materials were chosen to optimize performance at mmWave frequencies as well
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as to account for practical element and transmission line dimensions at these fre-

quencies. The subarray is designed in CST studio suite antenna simulation software.

The optimized dimensions for each patch are shown in Table 4.3.

Table 4.3: Dimensions for the Patch Antenna Design
Patches 1st, 8th 2nd, 7th 3rd, 6th 4th, 5th

Width (mm) 1.55 2.06 2.59 3.12
Length (mm) 2.81 2.77 2.74 2.72

1

8

(c)

5

4

3

6

7

2

(a) (b)

Figure 4.4: (a) Geometry of the designed antenna sub array (b) CST-simulated
return loss (c) CST-simulated polar pattern of the sub-array at 28 GHz. Note that
the polar pattern is along the axis of the array i.e., in the elevation plane.

Matching to the 50- Ω feed is based on a quarter-wave transformer. Full-wave EM

analysis for the patch designed with the optimized dimensions in performed using

CST studio suite, and the simulation results were extracted. Simulated |S11| and the

far-field patterns (vertical plane) are shown in Figs. 4.4(b) and 4.4(c), respectively.

The proposed antenna resonates at 28.05 GHz with a return loss of 27.41 dB. The

tapered 28-GHz array results in a side lobe level lower than −18 dB in the elevation

plane as compared to a −13 dB for the side-lobes for a non-tapered rectangular

structure. The subarray layout was exported and the patch was fabricated using

LPKF laser fabrication tool. The fabricated patch is shown in Fig.4.5 (a). The
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measured return loss |S11| is shown in Fig.4.5 (b) and the patch resonates at 28.05

GHz with 800 MHz of bandwidth.

(a) (b)

Figure 4.5: (a) Close-up image of the fabricated antenna sub-array. (b) Measured
return loss of the fabricated antenna.

4.3.2 Patch antenna array

To develop the four-point FFT multibeam beamformer, a four-element ULA is de-

signed and fabricated by replicating the available patch layout four times. The

inter-element spacing of the four-element array that was used for the digital beam-

forming setup has been set to 0.75λ (8 mm) at 28-GHz. The antenna array is shown

in Fig. 4.6. The inter-element spacing requirement for an antenna array to have

Nyquist spatial sampling of 0.5λ [42]. Choosing 0.75λ would give rise to grating

lobes within the scanning angle range [−90◦, 90◦] [42] at the broadside of the an-

tenna. However, these grating lobes would occur near to the edges, where the gain

of the antenna is drastically reduced compared to the broadside at 0◦. In turn, this

extra spacing gives us more room to work, considering that the smallest available

edge-mount connectors are atleast 6 mm wide. The left and right edges of the patch

are at a distance of 16 mm (2 ∗ 0.75λ) from the subarray. This would completely

reduce any fringing-field effects occuring at the edges of the patch array [42]. A sub-
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miniature push-on micro (SMPM) edge connector is soldered onto the 50 Ω trace

and is interfaced to the front-end circuits using a SMPM to 2.92mm cable.

Figure 4.6: A four-element ULA developed from the single patch subarray with an
inter-element spacing of 8 mm.

4.3.3 Receiver chain

The initial setup containing the ULA is verified with the downconverter component

mentioned in Table 4.1. The receiver array front-end containing the ULA and the

down-converter module is shown in Fig. 4.7(a). The downconverter module contains

an Analog Devices HMC1065LP4E chip operating in the frequency range of 27 to 34

GHz with a baseband bandwidth of 4 GHz [4]. It provides a small signal conversion

gain of 13 dB with 17 dBc of image rejection and 2 dBm of input intercept point

(IP3). The Analog Devices chip utilizes an RF LNA followed by an I-Q mixer which

is driven by an x2 active frequency multiplier as shown in Fig. 4.7(b). Due to this

internal frequency doubler, the LO input can be driven at half the frequency of the

RF band. IF1 and IF2 mixer outputs are provided, and an external 90◦ hybrid is

needed to select the required sideband. The I/Q mixer topology reduces the need
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for filtering of the unwanted sideband. A centralized LO distribution network is

used to simultaneously and coherently drive all the channels from the array. This

downconverter module is employed in our setup to mix down the 28-GHz band to

baseband (up to about DC-1 GHz). The entire receiver array setup stands on a

rotation platform with the support of polyvinyl chloride (PVC) pipes as shown in

Fig. 4.7(c). The receiver array setup rotates in tandem with the rotation platform,

which enabled us to measure the signals from each direction of arrival to plot the

beam patterns.

(a) (b) (c)

Receiver
(HMC1065LP4E)

LO Splitter
(ZN2PD63S) 

Rotation
platform

Figure 4.7: (a) Four-element receiver array front-end with HMC1065LP4E I-Q
down-converter. (b) Functional block diagram of HMC1065LP4E [4]. (c) Receiver
array mounted on a rotating platform

4.3.4 Digital back-end

A Xilinx ZCU1275 evaluation board [90] is used as the digital processing back-end

of the 28-GHz array receiver. Fig. 4.9(a) shows a close up of the Xilinx ZCU 1275

board. The board contains a XCZU29DR-2FFVF1760E Zynq UltraScale+ RF-

SoC chip, which integrates high-speed data converters along with a programmable

logic fabric and application processing unit. Specifically, the chip supports 16 ADC

channels up to 2 GSPS and 16 DAC channels upto 4 GSPS [5]. In the RF-SoC ar-
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chitecture, the 16 ADC/DAC channels are distributed into four tiles, where each tile

contains four ADCs/DACs as shown in Fig. 4.8(a). The ADCs/DACs on the RF-

SoC can be configured through a ”data-converter IP” included in the Xilinx Vivado

IDE. This IP allows each tile of the RF-ADC or RF-DAC to be clocked either using

an external clock input or using the phase-locked loop (PLL) that is inbuilt into

each tile. Each RF-ADC and RF-DAC tile includes a clocking system with an input

clock divider, a PLL, and an output divider. For any internal PLL use, the frequency

system has the formula Fs = (Fin/R)*(FBDiv/M) as shown in Fig. 4.8(b), where

Fs is the PLL frequency output and Fin is the reference frequency. When used

with the SYSREF reference signal input, the clocking system can be synchronized

in multi-tile or multi-device designs. The multi-tile synchronization mechanism is

discussed in [5].

The ZCU1275 board is shipped with a HW-CLK-102 analog super clock module

as a solution to provide phase-locked clocking to the data-converters. The HW-CLK

102 has two PLLs: PLL-A and PLL-B. PLL-A is able to provide four-phase aligned

RF clocks in differential form for clocking the RF-ADCs and DACs in the RFSoC.

PLL-B is able to generate two pairs of differential clocks. It also provides three

phase-aligned reference clocks for synchronization. The programming instruction

steps for configuring the clocks on this module are provided in [91].

The ZCU1275 board provides Bull’s Eye interfaces to access all the RF SoC’s

data converters. The RF data converters with bulls-eye interface demand differential

input signals for AC coupled operation mode, hence the I-Q downconverted signals

are converted to differential from single-ended using a custom set of balun boards

that contain the baluns (MiniCircuits TCM2-33WX+) shown in Fig. 4.9(b). The

array receiver uses eight ADC channels in the RF SoC to synchronously sample the

four I-Q IF signal pairs from the 28-GHz antenna front-ends in order to perform
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Figure 4.8: (a) RF-SoCs Quad RF-ADC tile overview (b) PLL clocking system in
RF-SoC data converter chip. Taken from [5].
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digital signal processing (DSP) in real time. Eight balun boards were fabricated

on a 20-mil-thick RO4350B board were tested, and these boards are employed in

our setup. Dr. Viduneth Ariyarathana has provided his support for this work by

designing the custom balun boards and helping to configure the RF-SoC ADCs.

HW−CLK−102 boardXilinx ZCU1275 

Custom made baluns for interfacing ADCs
TCM2−33WX+
Minicircuits

(a) (b)

(c)

Figure 4.9: RF SoC digital back-end used for the implementation of four-point FFT
beamformer at 28-GHz.

4.3.5 Four-point FFT digital design

In the experiments, the IF signals are connected to the data converters of the Xilinx

RF SoC, which are configured to sample at 1966.08 MHz. Since the FPGA fabric

cannot handle such high clock frequencies, a polyphase architecture containing eight

parallel cores is employed for digital designs to accommodate the entire 850 MHz of

bandwidth1. Therefore, the inbuilt first in first out (FIFO) of the XDCIP core was

configured to output a sample rate of 1966/8= 245.76 MSps rate with 8 sampled

words per clock edge streamed into the digital beamforming cores. The outputs of

each FIFO clocked memory stream are synchronized to a single reference clock at

245.76 MHz that was derived from the analog sampling clock. The four-point FFT

1The polyphase digital architecture for this work is designed by Dr. Viduneth Ari-
yarathna
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digital core is designed across the four spatial channels to realize four simultaneous

beams. As shown in the Fig. 4.10, the digital design uses eight parallel such digital

cores to process the entire sampled bandwidth.
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Figure 4.10: Architecture of the digital back-end with a four-point FFT digital core.
Each core is realized in a polyphase manner to support wide bandwidths.

4.3.6 Real-time beamforming and measurement setup

Fig. 4.11 shows the entire 28-GHz transmitter and receiver array setup used for

measuring beams in real time. A transmit horn antenna is used to send out a 28-

GHz carrier onto the receiver array placed at distance of 1 m. The local oscillator

frequency is set to 27.9 GHz to generate 100-MHz baseband signal. The accuracy of

the measurements require RF chain and ADC calibrations. The next section talks

about the calibration technique.
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Figure 4.11: A 28-GHz transmitter and receiver array setup for taking measure-
ments.

4.3.7 Calibration

The calibration mode of each ADC channel was set to “Mode-2” [5] in the XDCIP.

In this mode, ADC calibration is handled by the start-up finite-state machine of

the XDCIP. In addition, the RF front-ends were digitally calibrated using gain and

phase correction. For this purpose, a complex multiplier is added at each phase of

each channel as shown in Fig. 4.10. The gain and phase mismatches with respect to

a reference receiver were pre-measured using a reference signal. Complex calibration

constants αi + jβi, where i = {0, 1, 2, 3} and {α, β} ∈ R, were then estimated for

each channel. Typical I and Q baseband channel data measured before calibration

at an IF of 100 MHz are shown in Fig. 4.12(a), whereas Fig. 4.12(b) shows the

digitally calibrated versions that are fed into the digital beamforming cores.
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(b)(a)

Figure 4.12: (a) The sampled I and Q channels of each baseband signal at an IF
of 100 MHz. (b) The digitally-calibrated channels fed to the digital beamforming
cores.

4.3.8 Real-time beam measurements

For measurement of the beam patterns, the angle of arrival of the incident wave was

slowly varied by rotating the receiver array. The beamformed outputs of each beam

of each phase is then used to compute the received energy for each direction of arrival

using digital integrators. Fig. 4.13 compares the measured and simulated beams that

correspond to outputs of 4-bins of the 4-point FFT operation. Measured beams are

indicated in red and the simulated beams in blue. Simulated beams are generated

from fixed-point simulations of the four-point FFT design in Matlab Simulink, and

they do take the element pattern into effect. The beam look directions are set by the

antenna spacing and adhere to the values given by (4.2). The beam corresponding to

bin-1 points to the bore-sight direction (0◦) whereas bin-2 and bin-3 produce beams

at ±19.5◦. Since the antenna array is not Nyquist spaced, grating lobes occur for

angles beyond ±41.8◦ and, hence, the beam corresponding to bin-3 points at ±41.8◦

with two main lobes.

The plots convey that the measurements and simulations are well-matched with

respect to beam direction as well as side lobe performance, thus validating the pro-

posed 28-GHz four-element digital array receiver. Hence, this prototype 4-element
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receiver array can be scaled to higher number of antenna elements to produce more

number of simultaneous multi-beams which could be a subject of future work.
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Figure 4.13: Four-point FFT real-time digital multi-beam beamforming at 28 GHz.
Simulated and measured beam patterns corresponding to each output of the FFT
multi-beam beamformer at fIF = 100 MHz.

4.4 Contribution and comparison to previous work

The concept of Fourier transforms is well-known and the attempt to realize simul-

taneous multi-beams using 8-point, 16-point, 32-point FFT algorithms has been

accomplished in our prior works reported in literature [73, 92, 93]. In [93], the au-

thors have implemented a 32-point FFT on a 32-element 5.8-GHz receiver array with

ROACH-2 digital hardware platform as its digital back-end to achieve 32-orthogonal

simultaneous beams. Similarly, the other multi-beam beamformer implementations
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have been limited to sub-6 GHz bands. In this work, we demonstrated a fully digi-

tal FFT based multi-beam beamformer at mmW frequencies (27.3-28.5) GHz with

Xilinx RFSoC–based digital back–ends. The 28 GHz beamforming implementations

that have been reported prior to this work have been limited to analog implemen-

tations such as the ones in [94–96]. This work utlilized the concept of FFTs to

realize fully digital simultaneous multi-beams at mmWave frequencies and lever-

ages the larger bandwidths supported by the latest Xilinx RF-SoC–based digital

hardware platforms. To accommodate such larger bandwidths on a FPGA fabric,

we developed polyphase architectures. The design details of such an architecture

was discussed here as well. These 28-GHz multi-beam wideband implementations

are very likely to be used in the future mmWave wireless access points to achieve

maximum capacity in a multi-path channel scenario. This work presented complete

design details for a four-element 28-GHz implementation using an RF-SoC platform

that are capable of handling signals up to 800-MHz bandwidths. Beam patterns

measurements are conducted to verify the proposed work. The design details pre-

sented here could very well be used for implementing larger arrays.

4.5 Conclusion

This chapter presented a four-element digital beamforming array receiver at 28

GHz. The RF-front end including a custom-designed high-gain four-element ULA

of patch antennas is integrated with a Xilinx RFSoC-based ZCU1275 platform as

the digital back-end. The Xilinx RF-SoC platforms are equipped with high-speed

RF data converters and are used for huge bandwidths at mmW frequencies, in

our case 800 MHz at 28 GHz. Two ADC tiles in the RFSoC have been used to

sample all eight I-Q channels into digital to perform a four-point spatial-FFT–based
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multibeam beamforming to produce four simultaneous mmW beams. Polyphase

digital architectures have been employed to support the full baseband bandwidth as

the permitting FPGA fabric clock rate is way less compared to the ADC sampling

rate. The measured digitally formed multi-beams are very well in agreement with

the simulated beams, thus validating our implementation.

This 28-GHz array receiver is also employed by my ex-colleagues Dr. Viduneth

Ariyarathna and Dr. Najath Akram in their respective Ph.D. research studies [87,

88]. Dr. Ariyarathna has contributed towards construction of the 28-GHz setup

and fabrication of the balun boards needed to interface the analog front-end to the

ADCs of the RF-SoCs. He also helped in RF-SoC configuration, ADC calibration,

and building of the polyphase architecture for the FFT digital design.
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CHAPTER 5

MULTI-BEAM BEAMFORMING USING LENSES AND FOCAL

PLANE ARRAYS

The previous chapter discussed the theory of multi-beam beamformers using digital

Fourier transforms, and presented a four-point FFT implementation to realize four

simultaneous RF beams. Such a beamforming approach is known as an aperture

array beamformer, where an array receiver is used in conjunction with a digital

algorithm to create beams. Whereas analog implementations use front-end analog

electronics to achieve beamforming through approaches such as RF phase shift-

ing [97], progressive transmission line delays [98], analog all-pass filters to realize

the true-time delays [99, 100], Butler matrices [62, 63], analog lenses [101, 102], and

others. Of these implementations, beamforming using phase shifters is the most

conventional and widely used method. However, phase-shifting based approach is

narrow band and possess highly complex architectures. Lens-based architectures

replace the network of analog phase shifters with a lens in order to reduce the com-

plexity and power consumption. This chapter discusses a lens and focal plane array

(FPA) assembly where multi-beam beamforming is achieved along with high gain

supported by the lens. This is the first attempt to realize a lens and focal plane

array beamformer at a mmWave frequency of 28 GHz.

This chapter begins with a discussion of the motivation and background for the

lens-based approach and continues with the architecture needed for such an ap-

proach. A four-element, 28-GHz receiver array to realize four simultaneous high

gain beams is designed. An acrylonitrile butadiene styrene (ABS) dielectric lens is

chosen for this work and a four-element, 28-GHz patch antenna array attached to its

base acts as its focal plane array. The lens design and simulations are presented be-

fore we discuss the system implementation and the measurements. A Xilinx RFSoC
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based ZCU 1275 platform was used as the digital back-end for sampling the four I-Q

channels with its integrated, high-speed RF ADCs clocked at 2 GHz. The measure-

ments are provided for a 100-MHz IF signal with with a carrier frequency of 28.1

GHz, and these measurements are compared with simulation results for evaluation

purposes. This work is done in collaboration with Dr. Shubhendu Bhardhwaj; he

designed the 28-GHz lens as per the requirements and specifications. The contents

of this work and the results have been published in [75] and were presented at the

2020 International Microwave Symposium.

5.1 Background

Wireless communications in the mmW bands require highly directional beams to

circumvent high path loss. However, as wavelength is reduced with an increase in

frequency, for a given physical aperture size, the antenna produces gains that are

high enough to maintain link budgets. The use of aperture arrays allows maximum

flexibility in digital beamforming. Nevertheless, sharp beams (i.e., beams with high

gain) can only be achieved with large numbers of antennas and their dedicated

transceivers, making aperture arrays a relatively high-complexity (and a higher cost)

approach. Dielectric lens antennas are of great interest in this regard because they

allow high-gain with beam steerability when fed using a focal plane array (FPA)

[103, 104]. The use of the lens allows sharper beams due to the inherent high-gain

arising from the larger physical aperture of the lens, albeit at the same degrees of

freedom as an aperture array, because the number of degrees of freedom depends only

on the number of independent channels (i.e., four). The spatial filtering algorithms,

in conjunction with the FPA feed, are used to mitigate radio frequency interference

[39, 105]. Exploiting the high gain lenses along with beamforming abilities of the
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Figure 5.1: Architecture of a lens + focal planar array (FPA)–based multi-beam
beamforming.

aperture antennas has critical applications for the upcoming 5G/6G communication

links [106]. The digital beam forming on the array aperture allows multiple beams,

while the lens allows for gain enhancements and directivity improvements in such

approaches.

5.2 Architecture of multi-beam beamforming using lens and

FPA assembly

Figure 5.1 shows the system architecture of a lens + FPA multibeam beamformer

to realize multiple simultaneous beams. The antenna array is located on the focal
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region of the lens and hence, is termed as an FPA. The lens is an analog passive

device that uses refraction to compute a spatial Fourier transform in the frequency

band of interest. The plane waves impinging onto the lens surface at a specific angle

will converge at a unique point on the focal plane of the lens as shown in Fig. 5.1.

So for every DOA, we probe at that particular point on the focal plane fo the lens

to capture the incoming plane wave. The number of beams realized is equal to the

number of sensors/antennas located on the focal plane. Each element of the FPA

is connected to dedicated receivers (or transmitters) that are interfaced to digital

radio for post-processing.

5.3 Design of a four-element, 28-GHz multi-beam beam-

former

To realize and verify the multi-beam production using a lens based approach, di-

electric lens is designed specific to 28-GHz band. A 28-GHz, four-element array

serves as the FPA and is connected to four dedicated direct-conversion receivers.

The digital back-end employs a Xilinx ZCU 1275 RF-SoC digital platform to gener-

ate four 28-GHz RF receive-mode beams with a bandwidth of 850 MHz per beam.

The following sections discusses the lens design, array setup, simulations, and mea-

surements. The lens used for this work is designed by Dr. Shubhendu Bhardwaj at

FIU.

5.3.1 Lens design

A hemispherical lens with a cylindrical base was designed by first determining the

aperture area of the lens based on the desired directivity of 29 dBi and then by
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calculating the height of cylindrical section based on the known dielectric constant

of the ABS printing material. A lens radius of r = 5 cm was used to obtain a

directivity D = 10log(4π × 2πr2/λ2) of 29.3 dBi for λ = 10.7 mm at 28 GHz. The

geometry of the designed lens is shown in Fig. 5.2(a). The hemispherical lens is

indeed an approximation of ellipsoidal lens with an antenna positioned at the focus.

An elaboration of the equivalent design equations for this approximation can be

found in [107]. The length of the base is calculated to be L = 5.7 cm using the

following design equations [107],

L = b
1 + 1

n√
1− 1

n2

− r where b = r(1 +
1

3n2
). (5.1)

Here n =
√
εr=1.581 is the refractive index of the ABS material as per εr = 2.5.

The performance of the array and lens structure was then evaluated using full-

wave electromagnetic simulation as shown in Fig. 5.2(a). Beam steering is made

possible by changing the position of the 1D array xo, which emulates the excitation

of two of the four 1D arrays implemented in the patch array. The beam position

by considering two other positions xo= -4 and -12 mm (not shown in the figure) are

found to be at symmetrical elevation angles. Simulation and measurement results

of patch antennas with lenses are shown and discussed in Figs. 5.2(c) and (d).

5.3.2 28-GHz digital array receiver specifications

The 28-GHz four-element array receiver designed for FFT multibeam beamformer

in Chapter 4 is employed for this work as well. The RF front-end consists of a

28-GHz four-element patch antenna array supported by four downconverters. Each

individual antenna has been built as an eight-element series fed vertical sub-array to

provide higher gain in the elevation plane to aid the real-time beam measurements.

The four-element patch antenna array is taped to the back of the lens on its focal

80



(a)

(c) (d)

(b)

5 cm

10 cm
5.7 cm𝑥଴

𝜽

𝝓

Figure 5.2: Validation of the lens + 1D array using full-wave electromagnetic simu-
lations using CST studio suite. (a) Designed lens structure along with dimensions.
Parameter xo was varied as xo = −12,−4, 4, 12 mm to emulate the beams radiated
by the four 1D arrays. (b) 3D printed lens used for measurements. 3D beams with
peak at θ = 4o, 12o resulting due to xo = 4 and 12 mm are shown in (c) and (d) re-
spectively. For xo = −12,−4 mm cases, beams in opposite directions were obtained
(not shown).
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plane and serves as the focal plane array/ feed array. For the 28-GHz receivers, a

HMC1065LP4E downconverter chip from Analog devices is used to mix down the 28-

GHz RF signal to baseband. The I-Q downconverted signals are passed through the

balanced-to-unbalanced RF transformers baluns (sourced from MiniCircuits TCM2-

33WX+) so as to interface to the ADCs of the digital back-end RF SoC.

The digital back-end is implemented using Xilinx ZCU-1275 [86] development

platform, which incorporates a Zynq Ultrascale+RF SoC. The array receiver uses

eight ADC channels in the RF SoC to synchronously sample the four I-Q IF sig-

nal pairs from the 28-GHz antenna front-ends in order to perform digital signal

processing (DSP) in real time. Similar to the one designed for FFT multi-beam

measurements, a digital design with polyphase architecture containing eight par-

allel cores is employed. The polyphase architecture is needed to accomodate the

850-MHz bandwidth. Calibration of the RF front-ends were performed by employ-

ing a complex multiplier at each phase of each channel to correct the gain and phase

mismatches. Comprehensive details of receiver design and specifications along with

digital back-end details can be found in Chapter 4.

5.3.3 Measurement setup for 28-GHz lens

The experimental setup to measure the RF beams is shown in Fig. 5.3. A 28-GHz

horn antenna is used as a transmitter and LO is set to 27.9 GHz. Eight ADC

channels of Xilinx RF SoC are configured to sample the four I-Q signals at 1966.08

MHz. To emulate the direction of arrival for beam pattern measurements, the array

setup is rotated along its axis while keeping the transmitter fixed. ADC samples

from each channel are passed onto a digital integrator block to compute the gain for

the respective angle.
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Figure 5.3: (a) Experimental setup with digital back-end RF SoC system and local
oscillator (b) Receiver chains for the four-element FPA (and aperture array) with
array taped to the base of the ABS plastic lens. The LO is split four-ways using a
microwave divider network.
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Figure 5.4: (a) Simulated normalized gain patterns of the beams using fullwave
electromagnetic simulation using CST studio suite. Elemental subarray gain pat-
tern (normalized by the maximum of beam pattern) is shown for comparison. (b)
Measured normalized gain patterns of the beams extracted from RF SoC and cor-
responding normalized elemental subarray pattern.

5.3.4 Measured 28-GHz lens + FPA digital beams

Fig. 5.4 (a) shows the normalized gain patterns of the lens and array configuration

using the CST simulation setup shown in Fig. 5.2. The 4-beams are indicated in red,

green, black and blue. The elemental pattern (1D patch subarray without a lens)

is also shown in sky blue, showing the relative gain improvement due to introduced

lens. Similar beam patterns and elemental subarray patterns were also extracted

from the measurements utilizing the RF SoC platform for digital signal processing.

For this measurement, the LO was set to 27.9 GHz at mixer to provide 100-MHz

IF signal. Fig. 5.4(b) shows the corresponding measurements obtained from the

Xilinx RF SoC ZCU 1275 digital platform, where it independently received and

integrated the samples from each of the receivers connected to the FPA at the

base of the lens. Comparing the simulation and measurement results, we observed

there is good agreement in the position of the beam in elevation space and gain

enhancement of 8 dB is noticed due to lens placed over the patch array. This gain
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Figure 5.5: System overview of cascaded Lens + FPA multibeam beamformer to
generate sharper beams.

is much smaller than the anticipated gain of the lens, since the theoretical design

equations of the lens assumed an isotropic point source positioned at the focus of

the lens. In practice, due to its high gain, 1D subarray’s focal point lies behind

the base of the lens and should be adjusted to match with lens’ focal point. These

effects were not considered in current work and will be part of our future work.

Furthermore, comparing the simulated and measured peak gain values, 2 to 3.5

dB difference between the simulated and measured data is observed. We expect

these differences to be due to (1) material losses in ABS material, which are not

accounted for in the simulation model and (2) due to uncertainties in the knowledge

of dielectric constant which is reported to be between 2.5 to 3.0 in prior literature.

Consideration of these effects will further improve the effectiveness of the lens design

and will be the subject of future work.
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Figure 5.6: (a) Simulated beam patterns from lens+FPA setup for a lenslet ar-
ray. (b) Simulated beam patterns obtained from cascaded lens+FPA setup using
measured lens beam data.

5.3.5 Simulated 28 GHz beams using lenslets

The beams obtained from the original setup can be further narrowed down by cascad-

ing several such array structures and feeding to a phased array digital beamformer.

A system overview of such lenslet approach is shown in Fig. 5.5. A MATLAB sim-

ulation is set up to illustrate this effect using measured data from a single lens.

The setup assumes four lens+FPA (current setup) placed next to each other, such

that interelement distance between two corresponding antenna elements is equal to

the diameter of the lens i.e., 10 cm. To compute the beampatterns for this setup,

measured beampattern for one antenna is multiplied with the array factor of a four-

element phased array beamformer. Fig. 5.6 (c) and (d) shows the simulated and

measured beampatterns respectively. It is observed that the beams are much nar-

rower now and provide an additional gain of 6 dB achieved due to the 4-element

digital phase shifting beamformer. We can use additional windowing methods in

our digital approach to improve side-lobe performance in the obtained beam mea-

surements.
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5.4 Contribution and comparison to previous work

We have discussed in the early stages of this dissertation that there are several

ways of performing analog beamforming; using phase shifters [97], Butler matrices

[62, 63] or analog lenses. Phase-shifting approaches are narrow band and possess

highly complex architecures. Lens–based architectures replace the network of analog

phase shifters with a lens in order to reduce the complexity and power consumption.

Similarly, lens based architectures are better compared to Butler matrices in terms

of implementation complexity, broadband performance and flexibility of choosing

arbitrary number of beams and array ports. The use of lens in the beamforming

setup will not only allow formation of multiple sharper beams which are essential to

overcome high path losses but also exploit multi-path channels in a typical mmWave

wireless communication scenario.

A discrete lens array beamforming for continuous aperture phased (CAP) MIMO

is discussed in [25]. Analog beamforming based on Fourier Rotman lens for multi-

beam applications are discussed in [108,109]. Unlike the discrete array or dielectric

lens–based approach, in the Rotman lens, the output ports are lower than the num-

ber of the elements in the antenna array, hence reduction in number of beams. The

array implementations for the above reported work in literature are under 10 GHz.

A multi-beam MIMO prototype for real-time multi-user communication at 28 GHz

is reported in [104]. The authors in [104] utilized a Xilinx VC707 evaluation board

with Virtex-7 FPGA as its digital back-end. Whereas, in this work, we employ

a Xilinx ZCU1275 evaluation board with a XCZU29DR RF–SoC FPGA chip as

the digital back-end. The RF–SoC architectures are very advanced compared to the

VC707 architectures since they integrate high speed RF ADCs with an FPGA on the

same chip and contain several other sophisticated features as mentioned in Chapter
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4. By employing a RF–SoC based architecture, we can realize a wideband lens based

beamformer. The objective of this work is to discuss how a powerful FPGA platform

that is available to us can be used for a lens plus FPA based analog beamformer.

In this work, we designed a dielectric lens–based analog beamformer that incorpo-

rates a 4-element, 28-GHz patch antenna receiver array as its focal plane array to

realize four simultaneous high gain beams with a bandwidth of 850 MHz per beam.

The lens antenna design, CST studio simulations, configuration of integration of the

RF front-end with RF-SoC–based digital back-end are all discussed in detail. The

measured beams for a 100 MHz IF case were reported and are compared with the

simulated beams. While the results are promising, addressing the hardware impair-

ments would achieve the full potential of our lens based beamformer. We have also

proposed a hybrid beamforming approach that integrates lens–based analog beam-

former in level-1 and a digital phase shifting beamformer in level-2. This cascaded

lens array architecture would further narrow down the beam patterns and produce

much sharper beams. This approach is also validated by the measurements obtained

from the lens setup.

5.5 Conclusion

This chapter presented an analog implementation of a multi-beam beamformer using

a lens and a focal plane array setup at 28 GHz. Lens based architectures replace the

conventional analog phase shifters to produce sharp beams with reduced complexity

and power consumption. The lens dimensions are designed to provide a directivity

of 29 dBi with ABS as its dielectric material. It was 3D printed and is attached to

four-element ULA of patch antenna array operating at 28 GHz, acting as a focal

plane array. The Xilinx RFSoC based ZCU1275 platform is used as the digital

88



back-end here as well due to its support for high bandwidths. The four I-Q channels

sampled at 2 GHz are passed to the digital circuits implemented in the RF SoC’s

programming Logic (PL). This core is constructed with a polyphase architecture

similar to the one in Chapter 4, and it realizes an integration logic to compute

the power for each channel/beam. The measurements were carried out for a 28.1-

GHz transmit frequency producing a 100-MHz IF. The simulated array factors are

generated using Microwave CST studio suite. Although the gain enhancement due

to the lens is not as anticipated, the beam positions are very well aligned which

validates our implementation. Further, the measured data is used in simulating a

lenslet array, an hybrid beamforming approach to provide very sharp beams with

certain degrees of freedom arising from the digital end.
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CHAPTER 6

REAL-TIME FPGA BASED MULTI-BEAM DIRECTIONAL

SENSING

The review chapter introduced us to various applications of beamforming especially

for the multi-beam beamforming approaches. In this chapter we explore one such

application that relates to the RF directional spectrum sensing for exploration of

white spaces within the spatio-temporal regions. In this work, a real-time directional

sensing system is proposed for 2.4-GHz ISM band by exploiting the concept of

spatio-temporal spectral white spaces. The proposed system consists of a 16-element

patch antenna array supported by a 16-point FFT-based multi-beam beamformer.

A ROACH-2 based digital hardware platform is used as our digital back-end to

sample the incoming 16 I-Q streams and also to realize the FFT beamformer and

the energy detectors. This energy detector is a simple integrate-and-dump circuit

used to compute power for directional sensing. The system design details, digital

back-end details and the measurements obtained using Wi-Fi devices to verify the

proof-of-concept are all presented as the chapter proceeds. This work is done in

collaboration with Dr. Chamira at University of Moratuwa and Dr. Chamith at

University of Queensland. This work has contributed to one publication [110], and

the content of this chapter is based on the same publication.

6.1 Background

Abundant growth and usage of wireless devices led to scarcity of the available radio

spectrum as the wireless frequency channels being occupied are increasing with

time [111–113]. Spatio-temporal properties of the wave propagation is a hot topic

that is being explored for frequency reuse. This scheme adopts sharing of the carrier
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frequencies as a function of the wave propagation direction. Wireless channels are

sparsely spread in the spatio-temporal frequency domain and the white spaces within

these regions can be used for directional channel multiplexing for increased system

capacity [114].

There are many theories and implementations to alleviate the spectral scarcity

that are discussed in this section. Cognitive networks exploit the opportunistic

communication channels via a spectrum sensing and monitoring subsystem within

an overall dynamic spectrum management and allocation system [111–113,115,116].

Similarly, there are approaches that explore the opportunistic spectral access via

spatial domain sparsity i.e., spatial reuse of the available spectrum [117–126]. These

approaches exploit directional transmission and reception using various methods of

beamforming.

This chapter proposes a RF multi-beam array receiver for the sensing of RF

sources operating at 2.4 GHz ISM band, such as Wi-Fi devices. This spectrum

sensor takes into account both channel frequency and direction of propagation. The

directional spectrum sensing is employed at baseband stage of the RF using spatially

bandpass beamfilters implemented using FFT algorithms. This is more efficient

compared to the directional spectrum sensing presented in [114], because of the

significantly lower temporal sampling in our approach.

6.2 ROSs of the spectra of plane waves and white spaces

In this section, we look into the theory of directional sensing of an electromagnetic

wave emanating from an RF source 1; in our application a Wi-Fi enabled device lo-

cated in the far field by a ULA as shown in Fig. 6.1(a). In Chapter 2, we have looked

1Equations and the mathematical analysis involving the multi-dimensional space-time
spectrum theory in this section is provided by Dr. Chamira Edussooriya.
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Figure 6.1: (a) An RF signal received by a ULA; (b) The ROS of the spectrum of
a plane wave signal in the 2D frequency domain.

into the spectral properties of a 2D spatio temporal PW received by a ULA. Consid-

ering wC(x, ct) be the incoming PW in the 2D continuous temporal domain (x, ct)

arriving at an angle ψ, we concluded that its ideal continuous-domain spectrum

say WC(Ωx,Ωct) lies on a straight line going through the origin of (Ωx,Ωct) ∈ R2.

Precisely, ROS consists of two segments lying on that straight line as shown in

Fig. 6.1(b), where the length of the segments is determined by the temporal band-

width of the plane wave.

However, for an RF signal having a fractional bandwidth less than 50%, tem-

poral sampling at the baseband is more economical than at RF stage. Hence, the

signal is downconverted to the basband using LOs, processed through low pass

filters and provided for quadrature sampling with I and Q components. Assum-

ing wD(nx, nct) is quadrature-sampled 2D discrete domain signal, the ROS of its

spectrum WD(ωx, ωct), consists of line segments inside the principal Nyquist square

N [64,127] as shown in Fig. 6.2(a). It can be observed that this line segment is gener-

ated by down-shifting the upper segment of the ROS of WC(Ωx,Ωct). The principal

Nyquist square N is defined as region where {(ωx, ωct) ∈ R2,−π ≤ ωx, ωct < π)},
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Figure 6.2: (a) The ROS of the 2D spectrum of a quadrature-sampled plane wave;
(b) ROSs of the spectra of plane waves and white spaces.

and ωi = 2πΩi/Ω
S
i fori = (x, ct), where ΩS

i is the corresponding sampling frequency.

If we consider the case where M (≥ 2) plane waves with different DOAs are received

by the ULA, the ROSs of the spectra of quadrature-sampled plane waves consist

of M single line segments inside the principal Nyquist square N as shown in Fig.

6.2(b). The location of a straight line segment depends on the temporal bandwidth

and the DOA of a plane wave. The presence of a plane wave or the absence of

a plane wave (i.e., a white space) with respect to the DOA can be sensed using

a multi-beam beamformer having spatially bandpass responses as described in the

next section.

6.3 Sensing over multi-beams

The 2D spectrum of a discrete-domain plane wave is computed by using the 2D

discrete Fourier transform (DFT) using the FFT algorithms [128]. The 2D DFT

is a row-column separable operation. Therefore, we may compute the spatial FFT
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for each temporal sample, and then compute temporal FFTs along each of the

spatial-FFT’s column outputs, which appear as temporal sequences. The outputs

of the spatial-FFT bins are in fact directional RF beams, with beam axis defined

by the bin number of the spatial FFT. The N -point spatial-FFT can be computed

using fixed-point arithmetic at arithmetic complexity O(N logN) or approximated

at low-complexity without using any multipliers at all, with about a 2 dB loss in

directivity [92].

6.4 Design of a 16-element FFT multi-beam based direc-

tional sensor for 2.4 GHz Wi-Fi sources

To verify the concept of directional sensing, a multi-beam beamformer is designed us-

ing spatial-FFT and is realized on an FPGA. The beamformer produces RF beams,

which are in the mixed spatial-Fourier-temporal domains. These beams are used

here for directional sensing using energy detectors presented in Sec. 6.4.2, for real-

time directional sensing of 2.4-GHz Wi-Fi sources.

This section presents the 16-element RF receiver array setup, the digital archi-

tectures for a multi-beam directional energy detector and a 2D FFT-based spatio-

temporal energy detector, and the experimental measurements obtained using Wi-Fi

sources operating at the 2.4-GHz ISM band.

6.4.1 RF receiver array setup with 16-point FFT beam-

former

The 2.4 GHz 16-element patch antenna array receiver described in Chapter 3 is

employed for this work as well. The RF receiver employs a 16-element super het-
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Figure 6.3: (a) Theoretical RF beams corresponding to the spatial FFT outputs;
(b) the experimentally measured beams using a fixed-point implementation of the
16-point FFT.

erodyne architecture producing 16 I-Q IF outputs to be sampled by ROACH-2

ADCs. A 16-point FFT is implemented on ROACH-2 digital platform along the

16-element receiver array to form 16 simultaneous beams. Fig. 6.3(a) shows the

expected theoretical RF beams. Fig. 6.3(b) shows the measured beams from exper-

imental evaluation using an anechoic chamber, with the FPGA operated at a clock

frequency of 200 MHz.

6.4.2 Multi-beam directional energy detectors

Fig. 6.4(a) shows the full system implementation of the multi-beam directional en-

ergy detectors. Here, each of the parallel multi-beam RF signals are squared, inte-

grated, and down-sampled (standard integrate-and-dump algorithm) for measuring

the receive signal power at 16 simultaneous look directions using the FFT-based

multi-beam beamformer. This is a simple energy detector where the signal content

and features are not considered. The only measurands are DOAs and average re-

ceived energy per beam (using a sliding-window approach). This energy detector
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allows the directional sensing but can not differentiate sources based on frequency,

modulation type, bandwidth, or other features of the plane waves received. This

work provides real-time experimental results for such “crude” RF sensing of Wi-Fi

devices, operating in the 2.4-GHz ISM band, using the proposed RF multi-beam

receiver.

6.4.3 Average 2D FFT-based power spectral density func-

tion

Fig. 6.4(b) shows ongoing extension to the architecture presented in the previous

subsection, where temporal DFTs are employed for each of the beams obtained from

the spatial-DFT based multi-beam beamformer. In fact, the 2D DFT of the antenna

array output signal is computed with respect to both discrete spatial and temporal

dimensions, i.e., power spectral density (PSD) function. The architecture therefore

requires one spatial-FFT core for the 16 beams, and 16 more temporal FFT cores for

computing the temporal DFTs. Therefore, the digital circuit area is ×17 larger than

that of the previous architecture, based on the FFT-core area alone. In practice,

the digital complexity is even larger due to bit-growth of the system word size as

the signal progresses from the 32-ADC ports and through the different FFT stages.

The 2D FFT output bins correspond to an 16× 8 matrix, assuming a basic 8-point

temporal FFT per beam. The clock frequency of 160 MHz is chosen for the design

so that each of the temporal FFT bin approximately covers a 20 MHz channel of

the 2.4 GHz ISM band. The 2D FFTs are integrated in a traditional integrate-

and-dump loop to improve the signal to noise ratio (SNR) under the assumption

of a quasi-static condition for the incident RF plane waves. The integration of K

samples of each of the 2D FFT bins leads to improve the SNR in the order of
√
K
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because the signal is correlated and wide sense stationary additive white Gaussian

noise is uncorrelated. The outputs of the integrate-and-dump circuits update at

a relatively slow rate (in kHz) compared to the 160 MHz clock frequency of the

system. Therefore, software registers in the ARM core in the Xilinx Virtex-6 FPGA

of the ROACH-2 system can be used for update. The software registers are read

into the random access memory of the host computer using a Python script. The

experimental verification of the 2D FFT-based spectral measurements is reserved

for future work.

6.4.4 Experimental setup

Measurements are carried out with the 2.4-GHz antenna array placed in two differ-

ent situations as shown in Fig. 6.5(a). For this experimental setup, the transmitter

sources are placed at 30◦ apart relative to the 16-element receiver array. The signals

received from the array are sampled by ROACH-2 ADCs and are provided to the

spatial-FFT core implemented on the ROACH-2 FPGA. The outputs of each FFT

bin are then passed on to the digital integrator block for power computation. For

each beam output corresponding to a spatial-FFT bin, the energy detector is con-

figured to integrate 160, 000 temporal samples, which corresponds to 1 ms of time

duration. The system is configured to produce 1000 samples of such outputs, hence

the total time of energy capture is 1s.
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Figure 6.5: (a) Different situations in which measurements are performed; (b) mea-
surements for the case of known RF sources; (c) real-time measurements using Wi-Fi
access points. The detected energy is subjected to thresholding to make a binary
decision for spectral occupancy.

6.4.5 Control experiments with known sources and

directions

As a proof of the concept of the proposed directional sensor, directional sensing of

known sources with fixed carrier frequencies is considered. For this, an RF signal
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modulated by a 5-Hz square wave is transmitted. So, in a 1 s duration, RF signal

contain 5 pulses. Fig. 6.5(b) shows the computed received energy per beam for a

transmission frequency of 2.412-GHz while the LO frequency is set to 2.4-GHz. The

chosen frequency corresponds to 802.11n Wi-Fi channel number 1. Our plots contain

16 windows with each window corresponding to one of the 16-bins of the FFT and

specifies whether that channel is occupied or not. To specify spectral occupancy

in a channel, we mapped the measured energy to either 0 or 1 with respect to a

threshold. The plots in each window are color-coded that correspond to a particular

beam in the 16-point FFT beamformer. The average beam separation between two

beams in a FFT approach is 18◦ and since the two sources are 30◦ apart, we should

expect the spectral occupancy in windows that are only one beam apart.

In scenario I, where the antenna array is oriented at−45◦, the spectral occupancy

is observed in beam 11 corresponding to source 1, and beams 13,14 corresponding

to source 2. For a particular source we can expect the occupancy in two beams if it

falls within the region between those two beams. However, this can be eliminated

by increasing the number of beams to obtain much precise beams. Once we orient

the antenna array to 45◦ and keep the sources at their original position, we observe

spectral occupancy in beams 4,5 corresponding to source 1, and beam 4 correspond-

ing to source 2. Thus, the beams containing energy are shifted according to the

array direction verifying the performance of our directional sensor.

6.4.6 Real-world measurements

The experiment described in section 6.4.5 is repeated in an indoor environment

with the presence of real Wi-Fi access points. The Wi-Fi signals are generated by

continuously streaming Youtube videos and attending skype calls on a laptop. This
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will generate continuous stream of data that will be enough to measure the energy

occupied by our multi-beam beamformer and validate our concept. These access

points are kept at 30◦ apart similar to source 1 and source 2, whereas the antenna

array is randomly placed at a particular direction in quadrant 1 and quadrant 2 for

two experimental scenarios. The integration is performed for the same time duration

of 1s. The corresponding measurements are shown in Fig. 6.5(c). As expected, we

observe the bins/beams that contain significant energy is shifted to the bins in

one quadrant to the other, with directions corresponding to the two sources. And

since the streamed data is not as pure as the transmit sources used in the fixed point

sources we expect the measured energy to be non-uniform. Also, we detected energy

in other random directions which we believe is due to some external Wi-Fi access

points not used in our experiment. It should be noted that the case we consider

here only corresponds to the antenna array placed in the two quadrants, as shown

in Fig. 6.5(a), and is not exactly aligned for the case of known RF transmission

and real-world measurements. Hence, this accounts for a mismatch in the results in

beam directions in both cases. Through these measurements, we have thus validated

our multi-beam directional sensor in real-time for 2.4 GHz Wi-Fi sources.
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6.5 Conclusion

In this chapter, an FFT-based spatio-temporal RF directional sensing system is

proposed for the 2.4-GHz ISM band. The objective of these systems is to exploit

the concept of spatio-temporal spectral white spaces and be able to provide more

opportunistic channel access in the crowded spectrum. The system consists of a 16-

element patch antenna array and a FFT based multi-beam beamformer implemented

on a ROACH-2 based FPGA system. The 16 I-Q channels are sampled by ROACH-

2 ADCs at 160-MHz sampling rate. The incoming samples after beamforming are

passed through energy detectors that employ integrate-and-dump circuits. The

proposed system performs sensing over 16 look directions simultaneously and each

beam output is analyzed through a temporal FFT in order to sense spectra of RF

signals corresponding to each beams. Experimental measurements obtained for Wi-

Fi devices with a single Wi-Fi channel verify the proof-of-concept directional sensing

of the proposed system.
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CHAPTER 7

DIGITAL MUTUAL COUPLING COMPENSATION USING FROST

FIR FILTERS

Up until this point, we have discussed the importance of fully-digital beam-

forming, several ways of its implementation and further walked through one of its

applications for directional sensing of RF sources. Although plethora of array fac-

tors can be realized by using fully-digital approaches, the real time performance

on an array of elements is typically reduced due to the non-ideal effects present in

the real-world antenna systems particularly electromagnetic mutual coupling (MC).

This chapter proposes a technique for compensating electromagnetic mutual cou-

pling (MC) effects between nearest neighbors of wideband antenna array receivers.

A closed-form mathematical model for MC in uniform planar arrays (UPAs) is de-

rived with the help of measured S-parameters across a dense set of frequencies in the

bandwidth, measured LNA reflection coefficients and transmission line parameters.

Mutual coupling in uniform linear arrays (ULAs) is a special case of this model. Fur-

ther, we look into a wideband beamformer design that incorporates the estimated

MC transer function to deembed the MC effects digitally. The design of the beam-

former is formulated as a design of multi-dimensional finite impulse response filters

which are optimal in the minimax sense. A wideband 7× 7-element tightly coupled

dipole array operating in the frequency range of 1 to 7 GHz and a 32-element patch

antenna array operating in the frequency range of 5.7 to 6 GHz are employed as a

UPA and a ULA, respectively, to verify the proposed MC compensation technique.

The experimental setup employs ROACH-2 board featuring Virtex-6 FPGA and a

Xilinx ZCU-1275 hardware platform featuring the XCZU-29DR RF SoC chip as the

digital back-ends for the ULA and UPA implementations, respectively. Real-time

performance with and without MC compensation is discussed further. This work
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is done in collaboration with several members of RF COM research team at FIU,

Dr. Chamira Eddussooriya at University of Moratuwa (Sri Lanka), Dr. Chamith

Wijenayake at University of Queensland (Australia) and Dr. Leonid Belostotski at

University of Calgary (Canada). The research outcomes of this work has produced

one publication at IMS 2020 [129].

7.1 Background

For decades, analog beamforming has been the predominant approach and a stan-

dard in providing directional gain in wireless transceiver applications. However,

fully-digital beamforming has come into limelight and is replacing the analog ways

of implementing beamformers, thanks to the advanced field programmable gate

arrays (FPGAs). Currently, fully-digital beamforming has its applications in radio-

frequency (RF) antenna array systems, including phased-array radar, communica-

tions, space systems, positioning, and imaging [130]. Although it requires a dedi-

cated transceiver chain for each antenna element, it offers several degrees of freedom

in terms of beam flexibility, reconfigurability, simultaneous multi-beam capability

when compared to analog implementations [93,131]. With significant advancements

to FPGAs such as the Xilinx RF-SoCs [132] that are capable of clocking in the

GHz range, wideband fully-digital beamfilters with more than two GHz bandwidth

are on the verge of becoming reality. Also, the antenna engineers are coming up

with designs that assume a small form factor while providing huge bandwidths, one

example would be a tightly coupled dipole array [36]. But, due to smaller phys-

ical area, the mutual coupling between the antenna elements for lower frequency

bands tends to be higher and directly reflects the real-time performance. Mutual

coupling arises due to near field interaction of electric and magnetic fields which

causes changes to element radiation patterns compared to the patterns of individual
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antennas [133, 134]. For high-performance receiver arrays, it can significantly im-

pact the stop-band performance (that is, the side-lobe (SL) level and nulls) of the

receiver. Hence, the advantages of the fully-digital approaches to realize plethora

of array factors is shadowed by the fact that its real-time performance is typically

reduced due to the electromagnetic mutual coupling present in real-world antenna

systems. In addition, other non-ideal effects such as the impedance mismatches

between the antennas and the low-noise amplifiers (LNAs) across the radio band of

interest cause significant deviation of the measured performance compared to theo-

retical best-cases developed in computer based simulations [38]. The consideration

of these effects is beyond the scope of this Dissertation and is reserved for future

work.

This chapter proposes a wideband Frost finite impulse response (FIR) filter [6]

based digital beamformer design that de-embeds the effect of MC from the array fac-

tor leading to improved side-lobe and null performance. The proposed filter design

is shown in Fig. 7.1. We start the chapter by presenting a signal processing model

for 3D Frost FIR beamformer for MC compensation. A 3D spatio-temporal coupling

transfer function that models the effect of MC from the measured S-parameters is

derived. Next, it presents the theoretical formulations for designing a 3D complex-

coefficient FIR filter, optimal in the minimax sense [135], for the beamforming back-

end. The 3D MC transfer function derived earlier is incorporated into this 3D FIR

filter design to de-embed the coupling effects as well as to perform beamforming.

In particular, it is shown that the multi-dimensional filter design problem can be

converted as a second-order cone programming problem. To the best of our knowl-

edge, the proposed minimax design is the first optimization-based design technique

for 3D FIR filters having complex-valued coefficients. A 2D wideband beamformer

employed with uniform linear arrays (ULAs) is a special case of the proposed MC
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Figure 7.1: Structure of a Frost beamformer [6] implemented for a Nx × Ny UPA.
The coefficients βi,j,k can be derived to realize either a true-time-delay beamformer
or a more generic 3D FIR frustum filter, while taking into account the effect of MC
such that the effect of MC is de-embedded in the resulting array pattern.

de-embedding technique. The proposed models are validated for the 2D case using

experiments on two ULAs: a seven-element tightly-coupled dipole array (TCDA)

operating in the frequency range of 1 to 7 GHz and a 32-element patch antenna

array operating in the frequency range of 5.7 to 6 GHz.

7.2 Signal processing model

This section presents mathematical models for designing 3D Frost FIR beamform-

ers with MC compensation. The Frost digital beamforming structure is a general
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Figure 7.2: Measured S-parameters of a tightly coupled 5 × 5 uniform rectangular
array showing (a) coupling between elements within a row ULA (b) coupling between
two row ULAs. (c) Frequency response of the 3D MC transfer function in (7.1) for
this TCA considering η = 13 as the reference element in the 25×25 coupling matrix
Kc.

purpose FIR filterbank that implements a filter-and-sum output between multiple

receivers. The Frost structure is employed for true-time-delay wideband beamform-

ers by employing fractional delay filters as the FIR filters. Alternatively, the Frost

structure can be utilized for realizing other wideband beamforming algorithms, in-

cluding adaptive beamformers (e.g., Applebaum filters), adaptive nulling filters in-

cluding spatial notch filters, and 2D trapezoidal filters [48, 136]. Next, we continue

with the derivation of the 3D MC transfer function that needs be incorporated into

our Frost FIR filter design. This derivation and analysis of the 3D MC transfer

function is performed by Dr. Chamith Wijenayake.

7.2.1 Three dimensional mutual coupling transfer function

for uniform planar arrays

The effect of electromagnetic MC can be modeled via a coupling matrix, whose ele-

ments are either estimated using numerous parametric estimation methods [137] or

explicitly found, using methods such as Fourier decomposition of measured element

patterns [138], measured using Wheeler caps [139] or measured S-parameter based
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formulations [140]. This work employs S-parameter based approach, where a vector

network analyzer is employed to obtain measurements of the S-parameters between

nearest neighboring elements on the array. The measured S-parameters are not di-

rectly related to beamformer behavior due to the effects of the reflection coefficient

at each LNA input port, and the finite propagation delay and transmission-line ef-

fects due to the finite length transmission lines that appear between antenna ports

and their corresponding LNAs. The S-parameters lead to a coupling matrix Kc,

an (N × N) square matrix, for an N -element uniform linear array (ULA). This

coupling matrix can be computed in terms of the S-parameters, transmission line

characteristic impedance, and LNA driving point impedance, across each antenna

location in the array. As presented in [140], the coupling matrix can be used to

derive a spatio-temporal coupling transfer function, which in turn can be used to

de-embed the effects of mutual coupling during the beamformer design stage. This

work extends the 2D spatio-temporal coupling transfer function in [140] to the 3D

case corresponding to uniform planar arrays.

For a uniform rectangular array (URA) of antennas of size N × N , the S-

parameter matrix can be formulated as a block matrix S = (Pij)N×N , where each

sub-matrix Pij is of size N ×N . Note that, the diagonal sub-matrices Pij for i = j

represent mutual coupling within each ULA row of the URA (see Fig. 7.2(a)) and

the off-diagonal sub-matrices Pij for i 6= j represent mutual coupling between the

rows in the URA (see Fig. 7.2(b)). Also note that, in the flattened form of this

S-parameter block-matrix S = (sij)N2×N2 , element sij represents coupling between

the antenna elements (nx = q, ny = p) and (nx = n, ny = k) in the URA, with the

index mapping

i = N(p− 1) + q

j = N(k − 1) + n
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where p, k, q, n = 1, 2, ..., N . Using the above S-parameter matrix, we can find the

mutual coupling matrix Kc of size N2 × N2 using the formulation given in [140]

as, Kc = ZA (ZM + ZA)−1, where ZA = ZAIN , ZM = (IN − S)−1 (IN + S) Z0, and

Z0 = Z0IN , where S is the measured S-parameter matrix, IN is the (N2×N2) identity

matrix, Z0 is the characteristic impedance of the transmission line connecting the

antenna to LNA and ZA is the LNA input impedance.

We obtain Kc = [mi,j(sct)](N2×N2), where mi,j(sct) represents the temporal fre-

quency dependent coupling coefficients in the normalized Laplace transform domain.

By extending [140, Equation 3], we can obtain the corresponding 3D spatio-temporal

coupling transfer function, considering the middle antenna element in the URA as

the reference, which corresponds to the reference element mη,η, η = (N2 + 1)/2 in

Kc as,

HC(zx, zy, sct) =
n∑

ny=−n

n∑
nx=−n

mη,η−(Nny+nx)(sct)z
−nx
x z−nyy , (7.1)

where n > 0 defines the URA size as N = 2n + 1. Here, zx, zy are the spatial z-

transform variables corresponding to discrete spatial dimensions x, y (on the URA

plane) respectively, and sct is the Laplace transform variable corresponding to the

continuous and normalized time dimension ct. The frequency response of the above

coupling transfer function can be obtained by evaluating (7.1) for zx = ejωx , zy =

ejωy and sct = jωct, where −π < ωx,y ≤ π are the spatial frequency variables

and −2πFmax/c < ωct ≤ 2πFmax/c is the normalized temporal frequency variable,

assuming a maximum frequency of operation Fmax, which is typically set by the

bandwidth of the antennas and RF front-end. Fig. 7.2(c) shows the magnitude of

the coupling frequency response for our URA of size 5×5, computed using measured

S-parameters and evaluated at frequency 6.6 GHz. The effect of mutual coupling on

the overall array pattern can be then obtained by computing the above 3D frequency
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response in terms of spatial angles θ and φ (elevation and azimuth, respectively) as,

HM (θ, φ, ωct) = HC(zx = ejωct sin θ cosφ, zy = ejωct sin θ sinφ, sct = jωct). (7.2)

7.2.2 Frost 3D FIR beamformer

For a URA of size N × N with analog to digital conversion at each antenna, the

Frost beamformer can be described in z-transform domain as

Y (z) =
N−1∑
p=0

N−1∑
q=0

Xp,q(z)Hp,q(z), (7.3)

where Hp,q(z) are the 1D FIR filter transfer functions, and Xp,q(z) ∈ C are the z-

transforms of the outputs of the digital receivers at antenna array location (p, q) on a

URA of receivers. In true time delay beamforming, the filter design problem amounts

to approximating a series of time delays τp,q = p∆x
c

sinψ cosφ + q∆y
c

sinψ sinφ in

the digital domain, where c, (∆x,∆y) and (ψ, φ) are the wave speed, inter-antenna

spacing in (x, y), and beam direction, respectively. This is usually achieved by

expressing the time delays in the form τp,q = k′Ts + τf (k) where 0 ≤ τf (k) < Ts,

k′ = b
(
p∆x

c
sinψ cosφ+ q∆y

c
sinψ sinφ

)
/cTsc and where Ts = 1/Fs is the temporal

sampling period of the analog to digital converters clocked at frequency Fs at each

antenna. The FIR filters of order P take the form Hp,q(z) =
∑P−1

i=0 βp,q,iz
−i, where

the coefficients are selected based on a fractional time delay interpolation scheme.

The integer delays of k′ sample duration is realized as first-in first-out (FIFO) buffers

using clocked D-flops as shown in Fig. 7.1.

The complete Frost beamformer realized by these element delay filters Hp,q(z)

can be described by a 3D FIR filter of order (N − 1) × (N − 1) × (P − 1) having

a suitable passband shape (typically beam or frustum shaped [44, 141–143]). The

coefficients βp,q,i represent the value of the 3D filter impulse response h(nx, ny, nt)
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at (nx, ny, nt) = (p, q, i), where 0 ≤ nx,y ≤ (N − 1) and 0 ≤ nt ≤ (P − 1). Note

that h(nx, ny, nt) ∈ C3. In this case, the complete 3D transfer function of the filter

is given by,

H(zx, zy, zt) =
N−1∑
nx=0

N−1∑
ny=0

P−1∑
nt=0

h(nx, ny, nt)z
−nx
x z−nyy z−ntt . (7.4)

In the next section, we present how to design this 3D filter using numerical op-

timization techniques, while taking into account the previously derived 3D coupling

transfer function. This mathematical analyis is done by Dr. Chamira Edussooriya,

and the design of the complex-coefficient FIR filter was done by his student, Ashira

Jayaweera at University of Moratuwa, Srilanka.

7.2.3 Frequency-dependent array factor

Considering the outputs Xp,q(z) of the digital receivers at each antenna, the direc-

tional 3D input of the URA can be expressed as

X(θ, φ, ω) = Xk(e
jω)e−jω(p sin θ cosφ+q sin θ sinφ), (7.5)

where θ and φ are elevation and azimuth angles respectively, and ω < 2πFs/2 is the

normalized (radian) frequency. The array output in the 3D angular-frequency do-

main is therefore given by Y (θ, φ, ω) = X(θ, φ, ω)HT (θ, φ, ω), where HT (θ, φ, ω) de-

notes the total array pattern of the directional receiver, which, following the principle

of pattern multiplication, is given byHT (θ, φ, ω) = HE(θ, φ, ω)HA(θ, φ, ω)HM(θ, φ, ω),

where HE(θ, φ, ω) is the element radiation pattern of a signal antenna in isola-

tion, HA(θ, φ, ω) is the array factor produced by the 3D Frost beamformer, and

HM(θ, φ, ω) represents distortions in the array pattern caused by the effect of MC
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as given by (7.2). Here, the array factor of the Frost beamformer is given by

HA(θ, φ, ω) =
N−1∑
p=0

N−1∑
q=0

Hp,q(e
jω)e−jω(p sin θ cosφ+q sin θ sinφ)

=
N−1∑
p=0

N−1∑
q=0

P−1∑
i=0

βp,q,ie
−jω(p sin θ cosφ+q sin θ sinφ+i)

(7.6)

having the magnitude response ρ(θ, φ, ω) = ‖HA(θ, φ, ω)‖.

7.2.4 Proposed design with compensation of MC

The MC on the URA produces a 3D coupling transfer function HM(θ, φ, ω) that

is both angle and frequency dependent. The presence of MC modifies the input

signal from the array such that if the original input signal is X(θ, φ, ω) the signal

that is practically available at the output of the URA is X(θ, φ, ω)HM(θ, φ, ω). This

coupling function modifies the beamformer array factor to HA(θ, φ, ω)HM(θ, φ, ω).

Therefore, we propose that the FIR filters in the beamformer be modified using an

MC compensation function 1
‖HM (θ,φ,ω)‖+ε , where ε > 0 is a small real-valued constant

chosen to avoid division by zero at the zeros of HM(θ, φ, ω) yielding the required

form

ρnew(θ, φ, ω) = ‖HM(θ, φ, ω)‖ ·
∥∥∥∥∥
N−1∑
p=0

N−1∑
q=0

Hp,q(e
jω)e−jω(p sin θ cosφ+q sin θ sinφ)

‖HM(θ, φ, ω)‖+ ε

∥∥∥∥∥
≈ ρ(θ, φ, ω)

Small ε limits the depth of array factor nulls to −10 log10 ε
2. Typical values

around ε = 0.01 leads to nulls that do not go down below −40 dB after compen-

sation of MC. Next, we look into the design of complex-coefficient FIR filter using

optimization techniques.
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7.3 Design of complex-coefficient FIR filters

The 3D FIR filter design is formulated as a convex optimization problem [144, ch.

14.7]. To this end, we first write the array factor HA(θ, φ, ω) of the 3D beamformer

filter as

HA(θ, φ, ω) =
Nx−1∑
nx=0

Ny−1∑
ny=0

P−1∑
n=0

h(nx, ny, n)

× e−j[ω sin(θ) cos(φ)nx+ω sin(θ) sin(φ)ny+ωn]. (7.7)

Note that the order of the 3D beamformer filter is Nx×Ny×P , which corresponds to

a UPA having Nx×Ny antenna elements, and each signal of these antenna elements

is temporally processed by a P -tap filter. Here, h(nx, ny, n) denotes the complex-

valued coefficient (i.e., weight) of the 3D beamformer, corresponding to the n-th

tap of the (nx, ny) antenna element. For brevity and to comply with the standard

notation of 3D filters [145, ch. 3], we denote ω sin(θ) cos(φ) and ω sin(θ) sin(φ) as

ωx and ωy, respectively. Then, we express the HA(θ, φ, ω) as a frequency response

of a 3D FIR filter with the standard notation [145, ch. 3] as

H(ejω) = HA(θ, φ, ω)

=
Nx−1∑
nx=0

Ny−1∑
ny=0

P−1∑
n=0

h(nx, ny, n)e−j[ωxnx+ωyny+ωn],

where ω = (ωx, ωy, ω) ∈ F and F = {ω ∈ R3 | −π ≤ ωx, ωy, ω < π}).

In order to achieve approximately equal SL levels, the optimal design, i.e., the

impulse response h(nx, ny, nct), is obtained with respect to l∞ norm (called the

minimax design). This convex optimization problem can be converted to a second-

order cone programming problem, which can be efficiently solved using optimization

toolboxes with MATLAB. To avoid the intensive mathematical analysis, the problem

formulation is not presented here, and the reader is referred to [135] for a formulation
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Figure 7.3: The 5.8-GHz 32-element antenna array setup used for experimentally
verifying the 2D case of the proposed MC compensated Frost beamformer.

of minimax design of the 3D FIR filters. The design of 2D FIR filters is a special

case of the proposed design method. In order to design a 2D FIR filter of order

Nx×P that corresponds to a ULA having Nx antennas, we can use the same design

procedure, however, with Ny = 1 and φ = 0◦. In this case, ωy = 0 and H(ejω)

in (7.8) reduces to the frequency response of a 2D FIR filter. In the next section, we

cover the implementation of the proposed FIR MC compensated Frost beamformer

for a 2D case.

7.4 Experimental validation of 2D FIR MC compensated

beamformer

The antenna array and the RF front-end is described in the next subsection.
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7.4.1 Receiver array setup

The antenna array consists of 32-element ULA where each element is a 4-element

vertical subarray that provides an enhanced gain in the elevation pattern. The hor-

izontal spacing of the antenna array has been set to 31 mm. As shown in Fig. 7.1,

the front-end includes a single mixer-based receiver architecture. Each RF chain

employs the following components in sequence- low noise amplifier (LNA) → band-

pass filter (BPF) → mixer → lowpass filter (LPF) → IF Amplifier. The receiver

chains are fabricated on FR-4 PCB using the surface-mount devices corresponding

to the RF components. The LNA (LEE-39) being the crucial component to dictate

the cascade noise figure provides a low noise figure of 2.4 dB with 16 dB Gain. A

centralized LO is developed for all 32 elements using commercial-off-the-shelf power

splitters (ZN2PD-63-S). Mixer (SIM-83-LH) downconverts the incoming amplified-

and-bandpass-filtered signals using the common LO signal. All 32 IF channels are

sampled in the ROACH-2 platform using two ADC16x250-8 analog-to-digital con-

verter (ADC) cards, where each card supports 16 analog channels at a rate of 240

MSps. An FIR filter based implementation of the Hilbert transform is used to ob-

tain the in-phase and quadrature-phase (I-Q) channels for each sampled IF channel.

The I-Q digital streams of each channel are then used for calibrating each receiver

channel to get rid of gain and phase mismatches by using a complex multiplier in

the data path. This 5.8-GHz 32-element array receiver has been a collective work of

several members from The University of Akron. The antenna design and selection

of components was done by Suresh Madishetty. The development of layouts for

the PCB design and construction of the array receiver is done in collaboration with

Suresh and Dr. Viduneth. This array has been utilized in many of our previous

works to implement multi-beam beamformers [131,146]. The complete details of the

array design can be found in [147].
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Figure 7.4: Measured beam patterns in comparison with the ideal beam patterns
for cases (a) 10-MHz IF signal; (b) 20-MHz IF signal; (c) 30-MHz IF signal for the
5.8-GHz 32-array 2D FIR filter implementation.

7.4.2 Experimental setup and beam measurements

The 2D FIR trapezoidal filter is realized at a bandwidth of ±30 MHz centered

at 5.86-GHz. The number of antennas and dedicated receivers (i.e., N) is 32, see

Fig. 7.3. 2D FIR trapezoidal filters with and without the proposed MC compensa-

tion are implemented and tested in real-time to evaluate the relative improvements

of SL levels (i.e., directional beam selectivity as a function of frequency across the

30 MHz band of interest). Fig. 7.4 shows measured beam patterns obtained for

three different IFs where the center frequency was fixed at 5.8-GHz. The IFs were

selected at 10-MHz, 20-MHz, and 30-MHz, with a digital clock frequency (same as

ADC sample frequency) of 160 MHz. The transmitter was a horn antenna (gain 13

dBi) placed in the array plane at a distance of 6.3 m.

7.4.3 Limitations

The presence of 32 elements requires a relatively large area for experiments because

the near field region now extends to about 700λ. The use of a fully anechoic antenna

test chamber of such dimensions is prohibitively expensive for the authors; therefore,

a large underground parking garage was used for conducting the experiments. The
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Table 7.1: SL Level Reductions Achieved with the Proposed Approach

Parameter (dB)
IF

10 MHz 20 MHz 30 MHz
Reduction of worst-case SL level 7.5 11.2 5.6
Reduction of average SL level 5.1 5.2 2.1
Maximum reduction of SL level 12.1 13.5 11.7

garage was clear of obstacles within four meters height but there exists metal piping

close to the ceiling which causes some strong reflections. The concrete ceiling and

tarred floor of the building are also expected to contribute to strong multipath

reflections which prevents more accurate measurement of SLs and directional nulls.

7.4.4 Discussion

This section described real-time antenna, microwave and digital signal processing

systems for implementing digital Frost beamforming receivers across up to 32 an-

tenna elements on a ULA. The 5.8-GHz realization supports up to 100-MHz of

bandwidth but non-ideal effects in the antenna array and microwave circuitry lim-

its performance compared to theoretical best-case of the digital beamformers. The

reflections in the measurement chamber further degrades measurement of the deep

SLs. However, we demonstrate that measured S-parameters from the antenna array

can lead to optimized digital circuit designs that de-embed the MC effects between

elements up to the first order, thereby allowing reduced SLs compared to direct

implementation of a given digital beamformer. The improvements in SL perfor-

mance by the proposed approach is shown in Table 7.1 for the 30-MHz band. We

observe 5.2 dB and 13.5 dB reductions in the average SL level and the worst-case SL

level, respectively, at an IF of 20-MHz. Furthermore, more than 11.7 dB maximum

reduction of SL levels are achieved for the 30-MHz band.
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Figure 7.5: Setup for TCDA array measurements. A seven-element ULA (part of
the 7× 7 TCDA) was connected to broadband receivers (1-6 GHz).

7.5 Experimental validation of 3D FIR MC compensated

beamformer

To demonstrate the real-time functionality of the proposed approach for a 3D case,

a tightly-coupled dipole array (TCDA) based seven-element fully digital receiver

array shown in Fig. 7.5 is employed. This version of the TCA is designed by Dr.

Alexander Johnson of the RFCOM lab at FIU. Dr. John Volakis, Dr. Satheesh

Venkatakrishnan, Dr. Elias Alwan are few among others from this lab who have

worked on TCA’s in the past and am grateful for their contribution for this work.

The following sections describe the details of the hardware setup that include the

antenna array design, RF chains design and the digital hardware platform.

7.5.1 Antenna array design

A low profile and wideband performance is key to the operation of modern active

electronically scanned arrays (AESAs). An ultra-wideband (UWB) array replaces
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several narrowband antennas to reduce the space, weight, power, and cost (SWaP-

C) requirements in digitally controlled arrays. These multi-functional arrays also

require high isolation and polarization purity to enable polarization dependent com-

munications and simultaneous transmit and receive (STaR) capabilities [148]. Ad-

ditionally, such arrays must maintain these features across a wide angle scanning

range for comprehensive spatial coverage.

UWB phased arrays are often hindered by their size, bandwidth, and efficien-

cies. For example, Vivaldi or tapered slot arrays are known for their large (10:1)

impedance bandwidths, but are multiple wavelengths tall [149] (> 3λHigh) and show

high cross-polarized (X-pol) gains in the diagonal planes. As an alternative to Vi-

valdi, Tightly Coupled Dipole Arrays (TCDA) have demonstrated large impedance

bandwidths and scanning performance with lower cross-polarized gain levels and

lower profiles on the order of λHigh/2. Recent TCDAs have demonstrated UWB per-

formance by increasing the capacitive coupling between antenna elements and intro-

ducing integrated wideband printed feed networks [36,150–153] to control impedance

matching. Further optimization of TCDAs have extended impedance bandwidths

to 50:1 via substrate loading [151, 154] and scanning down to 70◦ using Frequency

Selective Surface (FSS) superstrates [152,153].

The TCDA design in Fig. 7.6(left) employs two independent linear polarizations

using an egg-crate arrangement. This array uses a microstrip configuration, on a

single 0.5 mm (20 mil) Rogers 4003 substrate to achieve a low-cost UWB TCDA.

The UWB and low-angle scanning performance is achieved through a Marchand

balun and metal FSS superstrate following the design considerations in [36, 152].

The balun consists of a series open stub (Zoc) and a parallel short stub (Zsc), whose

lengths and characteristic impedances are tuned to achieve wideband matching and

common-mode cancellation. The FSS superstrate consists of sub-wavelength metal-
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Figure 7.6: Fabricated dual polarized microstrip TCDA (left) with infinite array
active VSWR (right), showing VSWR <3 scanning down to 60◦ in the principle
(E/H) and diagonal (D) planes.

lic rectangles printed above the dipoles, which produce an effective dielectric con-

stant (εeff ) and replace thick and heavy dielectric slabs as free space matching

layers.

Initially, an infinite array simulation was used to represent the 8 × 8 finite

element array using ANSYS HFSS v.19. The infinite array VSWR in the principle

planes, with scanning to 60◦ is given in Fig. 7.6(right). As seen, the array provides

a VSWR < 2 across 1.05-6.3 GHz at broadside and VSWR <3 in all planes when

scanning down to 60◦. Notably, it is difficult to maintain low reflection impedance

matching across an UWB when scanning in the H-plane [150]. The trade-off between

impedance bandwidth and maximum mismatch comes from a high reactance seen

when scanning in the H-plane [155], which can be difficult to control over a very

wideband without significant increases in height and complexity.

7.5.2 Receiver chain and digital back-end

Due to resource limitations, a ULA of seven elements (center row) part of the 7× 7

TCDA planar array, is considered for the prototype work. The seven-element ULA

is connected to broadband receiver chains employing a single mixer direct down-
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conversion architecture, and built using commercial-off-the-shelf components. Each

antenna under consideration is connected to a LNA (Minicircuits-ZRL2400LN+)

that provides 30 dB of gain and a low noise figure within the frequency range 1-2.4

GHz. The signals are then routed to a downconversion stage that includes Mixer

(Minicircuits-ZFM15S+) and LPF (Minicircuits-VLF-1450+) for bringing down the

RF to baseband. This downconversion stage support upto 1.5 GHz of bandwidth.

To provide a common local oscillator signal for all the mixers, a centralized LO

stage is built using the power splitters (ZN-2PD-63-S+). A external RF frequency

synthesizer is connected to this centralized LO stage to provide eight LO signals.

Post downconversion, the baseband signals are passed on to the digital back-end.

The Xilinx ZCU-1275 hardware platform board is used as the digital back-end

for this work as well. The calibration of the RF chains was performed digitally.

For this, an RF source placed in the far-field region of the ULA transmits a desired

signal onto it’s broadside, and from the ADC samples captured from each receiver

chain, we computed the gain and phase mismatches. A digital complex multiplier

is employed to compensate for these mismatches while taking real-time beam-filter

measurements.

7.5.3 Measurement setup and beam measurements

Figure 7.7 shows the overall system architecture of the measurement setup. For

beam measurements, the angle of arrival is emulated by rotating the TCDA array

using a rotation platform while keeping the transmitter fixed. The transmitter is a

Vivaldi antenna operating in the frequency range of 1 to 3 GHz and is at a distance

of 4m from the receiver array. The digital back-end interfaced to Xilinx Vivado

software collects the ADC samples for desired degrees of interest, and a MATLAB
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Figure 7.7: Experimental setup for measuring the filter beam-patterns using the
TCDA array.
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Figure 7.8: Measured beam patterns in comparison with the ideal beam patterns
for (a) IF = 100-MHZ, Scanning angle=−10 degrees; (b) IF=100-MHZ, Scanning
angle= −20 degrees.

simulation is set up to post-process the captured data. The post-processing includes

the calibration, filtering and beam plotting.

The beam measurements are carried out for 100-MHz IF frequency generated

from a 1.9-GHz transmitter signal and a 2-GHz LO signal. The ZCU-1275 RF-SoC

ADCs are clocked at 1966-MHz to digitize the 100-MHz IF signal. A 3D FIR MC
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compensate beamformer is designed for 10 and 20 degrees of arrival. Fig. 7.7 shows

the comparison of the three curves: measured beam patterns using the original

filter (without MC compensation), measured pattern using the MC compensation

beamformer, and the ideal beam patterns that doesn’t incorporate the channel and

microwave non-ideal effects. The simulated responses are generated in Matlab from

the 2D frequency response of the original filter (filter without MC compensation) in

closed form. It should be noted that the antenna array has a inter-element spacing

of 0.5λ at 6-GHz (25 mm), and as we picked 1.9-GHz frequency for measurement,

this comes under a spatially oversampled case. The generated beam patterns will

be broadened along the desired range of angles, and thus contain less number of side

lobes. Hence, we evaluated our performance in terms of the nulls in the pattern.

From the measurements in 7.8, it can be observed that the beam positions are

very well in agreement for all curves in both cases. Whereas, the nulls of the original

filter without MC compensation are deepened and improved by 2.4 dB for 10 degrees

and 5.2 dB for 20 degrees by employing the proposed MC compensated filter, thus

validating our proposed work for these preliminary measurements.

7.5.4 Limitations

The measurements were taken in an indoor apartment environment for the frequen-

cies ranging between 1.2 and 2 GHz, a band that is prone to strong interference. Due

to this, the received signal power at the antenna array was at the same level as the

interference even while using the highest power level permitted for ISM commercial

applications. We expect that the MC filter performance can be further improved if

the measurements were carried out in an anechoic chamber or an outdoor environ-

ment free from interference.
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7.6 Contribution and comparison to previous work

This chapter discussed compensation of mutual coupling in antenna arrays; a non-

ideality that greatly affects the antenna array’s beam performance especially for

wideband, highly sensitive applications. Prior methods on reduction of MC include

modification to antenna structures using EBG structures [156], using special struc-

tures like parallel coupled-line resonators [157] or using low-scattering antennas [39].

The above techniques are implemented at the analog-level and lack the ability of

adaptation, so we look into digital techniques where the MC is modeled as a ma-

trix. The effect of mutual coupling is typically modeled by a coupling matrix [138],

whose elements are either estimated using numerous parametric estimation meth-

ods [134,137,158] or explicitly found, using methods such as Fourier decomposition

of measured element patterns [138,159] or measured scattering (S-) parameter based

formulations [140,159]. In this work, we employ S-parameter based approach which

is the simplest of all the mentioned methods.

The proposed method is a novel digital MC compensation technique where the

MC coupling transfer function is embedded into Frost FIR-filter based digital beam-

former to provide beams in the desired direction while improving the side-lobe and

null performance. This approach is well suited for wideband applications and pos-

sess all advantages available for a digital beamformer. The filter co-efficients are

adaptive and can be reconfigured to optimize the array performance when desired.

In this work, we have validated our proposed technique for the 2D case using experi-

ments on two ULAs: a seven-element TCDA array operating in the frequency range

of 1 to 7 GHz and a 32-element patch antenna array in the frequency range of 5.7

to 6 GHz. The measured beams with and without mutual coupling compensation

technique are presented for various IF frequencies (upto 30 MHz bandwidth) which
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convey the improvement in side-lobe levels as well as null performance, using the

proposed method.

7.7 Conclusion

A mutual coupling transfer function is designed with a technique based on measured

S-parameters that attempts to de-embed and uncouple the antenna arrays. The MC

transfer function when integrated to the beamformer design improves the side-lobe

levels and null performance of the array patterns that are originally distorted due to

the MC. 3D and 2D Frost based FIR beamfilters that compensate these MC effects

are developed to validate the proposed technique for UPA and ULAs. For a 2D FIR

Frost beamformer implementation with MC compensation employing a 32-element

patch antenna array (5.6 − 6) GHz, > 5 dB (average) SL level reduction can be

achieved having 20-MHz bandwidth. For the 3D case, preliminary measurements

were taken for the central row of the 7×7 wideband TCDA array (1-6 GHz), and the

experimental results indicated a 5.2 dB null performance improvement for 100-MHz

bandwidth using the proposed technique.
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CHAPTER 8

DIGITAL MUTUAL COUPLING COMPENSATION USING FAST

ALGORITHMS

In the previous chapter, we have looked at one of the approaches used for mutual

coupling (MC) compensation. It is a Frost FIR filter based architecture [6] and

utilizes convex optimization techniques with minimax design analysis to de-embed

the effect of MC. One disadvantage in such filters is the digital complexity associated

with Frost architectures. Hence, in this chapter we look into another approach

based on fast-algorithms and has lower digital complexity compared to the Frost

FIR based approach. The proposed approach is a fast, low-complexity, real-time

capable algorithm that will furnish the uncoupling of mutually coupled elements

in the digital signal processing back-end. It aims at realizing the inverse of Mutual

coupling matrix by using a fast inversion algorithm for tridiagonal Toeplitz matrices.

An eight-element 5.8-GHz array receiver with a ROACH-2 based digital hardware

platform is realized to verify this proposal. This work is done in collaboration

with Dr. Sirani Perera at Daytona College of Arts and Sciences and Dr. Chamith

Wijenayake at University of Queensland, Australia. Dr. Wijenayake generated the

MC coupling matrix from the measured S-parameters. Dr. Perera proposed and

derived the mathematical proofs for the fast-algorithms discussed in this chapter.

8.1 Background

In an array configuration, electro-magnetic mutual coupling (MC) between antenna

elements is always present. MC arises due to near field interaction of electric and

magnetic fields and cause distortions to element radiation patterns of individual

antennas and subsequent array processing [138, 159, 160]. Such distortions are un-

tolerable for high performance receivers. Coupling is a function of array geometry
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Figure 8.1: Overview of the proposed real time mutual uncoupling architecture.

and inter-element spacing and because electromagnetic fields attenuate with dis-

tance from an antenna, for a given antenna element, the effect of MC is dominant

across its few nearest neighbors. Measurements confirm coupling is negligibly small

for antenna arrays where the inter-element spacing is more than a wavelength [134].

This chapter proposes a fast algorithm implemented on a digital hardware back-end

suitable for real-time digital uncoupling of mutually coupled arrays. A low order

coupling function where each antenna is coupled only to its two nearest neighbors is

considered. The proposed method can nevertheless be extended to higher order cou-

pling albeit at increased system complexity. The system overview of the proposed

MC compensation technique is shown in Fig. 8.1. We start with modeling the MC

effects by a coupling matrix whose elements are the measured S-parameters. This

is demonstrated in previous chapter but we revisit this theory briefly to understand

the concepts from the perspective of the fast-algorithm approach.
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8.2 Structured coupling matrix

As described in Chapter 7, the effect of mutual coupling is typically modeled by a

coupling matrix [138], whose elements are either estimated using numerous para-

metric estimation methods [134,137,158] or explicitly found, using methods such as

Fourier decomposition of measured element patterns [138,159] or measured scatter-

ing (S-) parameter based formulations [140, 159]. This work employs S-parameter

based approach, and for simplicity, narrowband operation at a particular frequency

is assumed. Hence, the S-parameters only need to be measured at the frequency of

interest. The S-parameters are not directly related to beamformer behavior due to

the effects of the reflection coefficient at the LNA input port, and the finite propaga-

tion delay and transmission-line effects. The S-parameters lead to so-called coupling

matrix Kc, which is an (N × N) square matrix, for an N -element uniform linear

array, and computed in terms of the S-parameters, transmission line characteristic

impedance, and LNA impedance, across each antenna location in the array. Follow-

ing [140, Sec. II-A], the coupling matrix can be computed as Kc = ZA (ZM + ZA)−1,

where ZA = ZAIN , ZM = (IN − S)−1 (IN + S) Z0, and Z0 = Z0IN , where S is the

measured S-parameter matrix, IN is the (N × N) identity matrix, Z0 is the char-

acteristic impedance of the transmission line connecting the antenna to LNA and

ZA is the input impedance. Dr. Wijenayake at University of Queensland has col-

laborated in this work by generating the MC coupling matrix from the measured

S-parameters.

8.2.1 Structural properties of the coupling matrix

Consider a normalized mutual coupling between P nearest neighbors of a uniform

linear array of N elements. The coupling matrix Kc = (km,n)N×N takes an (P + 1)-
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diagonal form, where the elements km,n for 1 ≤ m,n ≤ N are of the form,

km,n =


a ifm = n

bk if |m− n| ≤ P/2

0 if |m− n| > P/2

Here, the diagonal coefficients a = αe−jθ ∈ C correspond to self-coupling and the

P off-diagonal coefficients bk ∈ C, k = 1, 2, ..., P correspond to mutual coupling

from the P neighboring elements, and α ≤ 1, ‖bk‖ ≤ 1 due to passivity, and

‖bk‖ < ‖bk+1‖, k ≤ P − 1 because mutual coupling reduces monotonically with

distance from the antenna to its neighbors. The coefficient α captures the effect of

the reflection coefficient at the LNA combined with the antenna impedance, trans-

mission line characteristic impedance, and transmission line length, while the phase

lag θ corresponds to the phase at the driving point of the LNA transformed due

to finite transmission line length (i.e., time delay) [161]. The mutual coupling ma-

trix Kc embeds the frequency-dependent behavior of the measured electromagnetic

effects between elements, antenna driving point impedance function, characteristic

impedance of the transmission lines, and frequency dependent behavior of the LNA

driving point impedance, in one convenient matrix of complex coefficients. For sim-

plicity (also validated by our measurements), we assume that coupling is dominant

across two neighbors (i.e., P = 2), leading to a tridiagonal coupling matrix for an

N = 8 element array, of the form,
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Kc =



a b1 0 0 0 0 0 0

b1 a b1 0 0 0 0 0

0 b1 a b1 0 0 0 0

0 0 b1 a b1 0 0 0

0 0 0 b1 a b1 0 0

0 0 0 0 b1 a b1 0

0 0 0 0 0 b1 a b1

0 0 0 0 0 0 b1 a


8×8

It is well-known that such tri-diagonal matrices are non-singular provided a 6= 0

which is always satisfied physically in an array processing system. Hence, the inverse

of the coupling matrix exists and can be denoted as Q = Kc
−1.

8.3 Uncoupling the mutual coupling

The existence of Q is of significance because it is possible to digitally “undo” the

physical coupling of fields by multiplying the array outputs by the matrix Q at each

time step. The coupling is a spatial linear matrix operation, which therefore, can be

reversed (i.e., uncoupled) in the digital signal processor (DSP) using a brute-force

matrix vector multiplication at every time step. Interestingly, the spatial nature
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Figure 8.2: The signal flow graph corresponding to N = 8.
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of the operation allows uncoupling operations to be conducted at intermediate fre-

quency (IF) or even at baseband: there is not need for the matrix-vector product

to be updated at the radio frequency (RF) rate. For example, for a baseband band-

width of B GHz and carrier frequency f >> B GHz, the digital mutual uncoupling

algorithm requires a matrix-vector product that needs updating at a systolic array

clock rate of Fclock = 2B GHz rate (twice the baseband rate).

8.3.1 Brute-force computation

This work proposes a fast-algorithm1 to realize y = QCu where u = RKcv where

v is the input without mutual coupling between elements, and R is a diagonal ma-

trix that describes the varying gains and phase-offsets present in the receivers, and

where C is the diagonal matrix that must be inserted before Q to calibrate the

system. Ideally, C = R−1 and is found experimentally by illuminating the array

with a plane-wave at broadside direction. The realization would require measure-

ment of S-parameters, one-time pre-computation of Q computed measured using

KC. The computational (arithmetic) complexity of the brute-force computation of

y is O(N2). Although perfectly reasonable for small arrays (example, when N = 4)

the arithmetic complexity grows quadratically with array size, and becomes com-

putationally difficult even for reasonable large N . In a typical phased-array radar

containing hundreds of elements, the computational complexity of the brute-force

matrix-vector computation can become expensive in terms of both power and chip-

area (cost).

1Dr. Sirani Perera at Daytona College of Arts and Sciences proposed and derived the
mathematical proofs of this algorithm. This algorithm is used in this work in generating
the inverse Q matrix and realize it on hardware for real-time performance evaluation.
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8.3.2 Fast algorithms

To reduce the arithmetic complexity to a manageable level, this work explores a

range of mathematical techniques that exploit the structural properties of the cou-

pling matrix to facilitate a sparse matrix factorization. This in turn allows the

desired matrix-vector product albeit at significantly reduced arithmetic complexity

when compared to the direct (brute-force) approach. If the coupling is given by

tridiagonal matrix Kc, then its inverse Q can be computed and for a given time

step vector u, the mutual coupling effects can effectively by uncoupled via y = Qu.

The sparse factorization of the inverse matrix that uncouples the mutual coupling

in the array takes the form,

Q = G1G2 · · ·GN−1 D̃ GT
N−1G

T
N−2 · · ·GT

1 (8.1)

where Gk =



Ik−1

1 −lk
0 1

In−k−1


for k = 1, 2, · · · , N−1, D̃ = diag

(
1
dk

)N
k=1

,

d1 = a, l1 = b1
a

, dk = a − b1lk−1 and lk = b1
dk

for k = 2, 3, · · · , N − 1, and

dN = a − b1lN−1. The above mentioned matrix factorization of Q leads to a par-

allel digital realization, which realizes the desired uncoupling y = Qu. The two

coefficients defining the tridiagonal matrix Kc are a ∈ C, b1 ∈ C and are found

experimentally via VNA measurements.

For a clock frequency of Fclock the computational throughput is 3(2N − 1)Fclock

real parallel multiplications per second, and (12N − 7)Fclock real parallel add/subs

per second. The proposed algorithm has the arithmetic complexity of order O(N),

which is a significant reduction compared to O(N2) complexity that corresponds to

a direct (i.e., brute force) matrix-vector product computation.
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8.4 Experimental verification

To verify the proposed real-time uncoupling algorithm, a fully-digital array receiver

operating at 5.8 GHz is used. IF signals from the array are sampled through high

speed ADCs on the digital back-end where the mutual uncoupling Q-block digital

design is implemented. The design of this receiver array is already discussed in Sec-

tion 8.4.2. So, the following section briefly cover the antenna array design, receiver

chain design and the digital back-end details. Next, we continue the discussion on

the measurements, and check the validation of the proposed uncoupling algorithm.

The experimental setup is shown in Fig. 8.3.

8.4.1 Antenna array and S-Parameter measurement

The receiver array setup used for experimental validation consists of a 32-element

uniform linear array (ULA) is shown in Fig. 8.3(a). Each antenna element is a 4×1

sub-array of patch antennas designed to resonate at 5.8 GHz and are spaced at

31 mm. The sub array employs a series-fed architecture and introduces additional

gain along the vertical plane providing a sharper beam in the elevation plane. To

verify the proposed work the center eight-elements of the ULA have been used. A

VNA was used for measuring S-parameters on seven central elements of a 32-element

array and are shown in Fig. 8.4. At 5.86 GHz, the measured Kc was found to be

a = 0.5756− j0.8178, b1 = 0.0052 + j0.0022 and b2 = −0.0015− j0.0005.

8.4.2 Microwave receivers and digital back-end

The receiver array is designed to employ fully digital beamforming through a ded-

icated receiver for each antenna. Each receiver is a direct-conversion RF receiver
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chain as shown in Fig. 8.3(b). The receiver chain includes a LNA (16 dB gain at 5.8

GHz, 2.4 dB noise figure), bandpass filter, mixer, lowpass filter, and an intermediate-

frequency (IF) amplifier (≈ 30 dB gain). Direct IF downconversion is done instead

of I-Q, since the other quadrature signal is generated digitally using Hilbert trans-

form. The IF signal is further low pass filtered and amplified before being sampled

by ADCs on Reconfigurable Open Architecture Computing Hardware (ROACH-2)

that is shown in Fig. 8.3(c). Further details and specifications for the array front-end

can be found in Section 8.4.2.

For this work, ROACH-2 digital platform serves as the digital back-end. The sig-

nal flow graph corresponding to the mutual coupling algorithm as shown in Fig. 8.2

along with a spatial eight-point FFT based multi-beam beamforming architecture

was implemented targeting the Xilinx Virtex-6 sx475t chip on the ROACH-2 pro-

cessing platform. The calibration of the RF receiver chains were performed digitally

by imposing gain and phase corrections in baseband. The gain and phase mis-

matches are premeasured using a reference signal (transmitted over the air from

broadside) with respect to one receiver chain. Finally, the mismatches are compen-

sated digitally by employing complex multipliers.
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Figure 8.5: Comparison of measured beam patterns corresponding to all the eight
bins of the spatial FFT based beams with and without mutual coupling compensa-
tion.
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Table 8.1: Beam performance improvement using the proposed method

Beam
Worst SLL reduction
(dB) (dashes in Fig. 8.5)

Dominant null depths
reduction (dB) (dots in
Fig. 8.5)

1 0.4 Left Null: 2.2 Right Null : 2.0
2 0.5 Left Null: 3.4 Right Null : 7.5
3 0.9 Left Null: 3.7 Right Null : 6.6
4 1 Right Null : 9
5 1.2 Right Null : 9.4
6 1.5 Left Null: 5.8
7 2.2 Left Null: 6.2 Right Null : 3.7
8 0.5 Left Null: 5.2 Right Null : 8

8.4.3 Measurements

The experimental setup for measurements is shown in Fig. 8.3(d). A horn antenna

(13 dBi gain) is used to transmit a 5.86-GHz tone to the receiver array placed at a

distance of 6 m. The low side LO of 5.85-GHz provided an IF of 10-MHz, which is

sampled at 200-MHz by ROACH-2 ADCs. For measurement of the beampatterns,

the angle of arrival of the incident wave was slowly varied by rotating the receiver

array with transmitter fixed at its position. Fig. 8.5 shows the comparison in the

measured beams without MC reduction (FFT only), with uncoupled mutual cou-

pling (Q-matrix+FFT) and the ideal beampatterns for the eight FFT bins. The

performance improvement by the proposed design in terms of worst sidelobe level

(SLL) reduction and the null depths is summarized in Table. 8.1. The maximum

and minimum SLL reductions are observed to be 0.4 dB and 2.2 dB in beams 1

and 7 respectively, while the nulls have been reduced by a maximum of 9.4 dB for

Beam 5. The results indicate that the proposed design improves the side lobe level

performance providing deeper nulls, thus beam patterns that approaching the ideal

ones.
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8.5 Contribution and comparison to previous work

In Chapter 7, section 7.6 we have looked into different techniques available in lit-

erature for compensating the effect of MC on antenna array’s performance. The

reader is referred to that section to identify the prior work. Similar to the Frost FIR

filter–based digital MC compensation technique in chapter 8, we investigate another

digital technique in this Chapter. Both techniques rely on developing a coupling ma-

trix using the measured S-parameters. The idea behind the method presented in

this Chapter is to compute the inverse of the coupling matrix and digitally uncouple

the coupled multi-beam arrays. Since the brute-force computation of the inverse of

matrix takesO(N2) multiplications, we proposed a novel fast-algorithm that reduces

the complexity to O(N). The proposed method is validate for a 8-element 5.8-GHz

antenna array employing a 8-point FFT multi-beam beamformer. The measured

beams with and without mutual coupling compensation technique are presented

which convey the improvement in side-lobe levels and null performance using the

proposed method.

The proposed method in this Chapter has relatively lower digital complexity

compared to the Frost-FIR–based technique and has the flexibility to be applied to

any beamforming approach. However, this method is well suited for narrow-band

applications in contrast to Frost FIR filter–based technique which is a wideband

approach.
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8.6 Conclusion

Mutual coupling between elements of antenna arrays cause deviations to the ex-

pected beam responses in beamforming applications. Also, coupling of antennas

causes LNA noise coupling that degrades the noise performance of the array re-

ceiver. These issues can be reduced by incorporating mutual coupling decoupling

algorithms once the mutual coupling has been properly quantified. A novel fast

algorithm has been proposed to digitally uncouple antenna arrays via inversion of

N ×N tridiagonal Toeplitz matrices having sparse factors. The proposed algorithm

has been experimentally verified for an 8-element antenna array at 5.8 GHz. The

measured results show 0.4-2.2 dB improvement of the highest (worst case) sidelobes

on all measured beams of the spatial FFT–based eight beams while nulls (zeros in

the array pattern) have been deepened by up to 9.4 dB, thereby moving closer to

the desired beam responses
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Future wireless communication systems involving mmW bands will need large

scale transceiver arrays with high gain to overcome the resulting free space path

losses at those frequencies. These transceivers will most likely need the services

of MIMO in combination with multi-beam beamforming to leverage the multi-path

channels to improve SNR and mobile connectivity. This dissertation is focused on

design and realization of fully-digital multi-beam phased arrays with digital sig-

nal processing performed using FPGA/RF SoC. Different analog and digital based

multi-beam beamforming approaches have been proposed and validated with 2.4,

5.8 and 28 GHz RF system implementations. Digital designs to compensate the

mutual coupling in the antenna arrays have also been investigated.

Chapter 2 presented a review of the concepts of beamforming and its techniques.

We studied the properties of propagating plane waves(PW) and discussed how they

can be applied for designing multi-beam beamformers. Using those concepts, a dig-

ital IIR filter employing 2D space-time networks is proposed in Chapter 3. These

filters known by the name 2D spatially bandpass (SBP) filters encompass trapezoidal

shaped passband and are used to realize multi-beams in real time. A 16-element

2.4-GHz I-Q direct conversion receiver array is built for its experimental verification.

ROACH-2 FPGA platform with 32 ADC channels is used as the DSP back-end and

to implement the digital circuitry. For proof-of-concept verification, the measure-

ments are carried out for a two-beam case realized on the ROACH-2. The measured

beams were well aligned with the fixed-point MATLAB simulated beams. It is also

found that this approach would save 81.3% of hardware resources compared to an

FIR implementation on the same FPGA platform.
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Chapter 4 discussed in detail another multi-beam digital beamformer using fast

Fourier transform. For the first time in literature, a fully digital 28-GHz four-

element multi-beam receiver array is realized across the entire 800 MHz bandwidth.

The Xilinx RF SoC based ZCU 1275 digital platform is used as the digital back-end

to sample the incoming eight I-Q channels and to implement the four-point spatial

FFT beamformer. Polyphase architectures have been employed to support the full

bandwidth. The digitally measured beams were observed to be in good agreement

with the simulated beams. The next chapter presented an analog implementation

of a multi-beam beamformer using lenses and a focal plane array, also at 28-GHz.

Lens based architectures replace the conventional analog phase shifters to produce

sharp beams with reduced complexity and power consumption. An ABS material

lens with 29 dBi directivity is designed and 3D printed for this work. The 28-GHz

array receiver setup built in Chapter 4 is used for this realization and the antenna

array acts as the focal plane array for the lens. For verification, measurements are

conducted with the test setup configured for 28.1-GHz transmit frequency producing

a 100-MHz IF. These measured array factors are compared to the CST simulated

array factors. Although the gain enhancement due to the lens is not as anticipated,

the beam positions are very well aligned which validate the analog multi-beam

implementation. The study of these mismatches will be a subject of future work. At

the end, this chapter also discussed briefly about a hybrid beamforming approach

with an array of lenses called lenslet array that can provide very sharp beams with

additional degrees of freedom arising from the digital end. The implementation of

this lenslet array would be very promising for future wireless access points and is a

subject of future work.

An FFT-based spatio-temporal RF directional sensing system is also proposed in

this dissertation. These systems aimed at exploiting the concepts of spatio-temporal
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spectral white spaces and be able to provide opportunistic channel access in the

crowded spectrum. The proposed system performs sensing over 16 look direction

simultaneously through a 16-point FFT based multi-beam beamformer implemented

on ROACH-2 based FPGA system. Experimental results obtained for 2.4-GHz Wi-fi

devices show the white spaces available during their operation, thus verifying the

proof-of-concept directional sensing of the proposed system. The directional sensor

in combination with a temporal FFT can be used to distinguish different channels

along with the direction of the sources. Its realization can be a subject of future

work.

Fully-digital approaches provide plethora of array factors and offer more degrees

of freedom. However, the real time performance of an array of elements is effected

by the non-ideal effects present in the antenna systems especially mutual coupling.

Chapter 7 and 8 presented digital mutual coupling compensation techniques for these

fully digital systems. The first design is based on finding a mutual coupling transfer

function with the help of measured S-parameters of the array. This MC transfer

function is integrated to a Frost-based FIR beamfilter to compensate the MC effects

while realizing the multi-beams simultaneously. A 32-element 5.8-GHz path antenna

array and a 7x7 wideband TCDA array (1-6 GHz) are employed as the linear array

and planar array for 2D and 3D Frost based FIR beamfilters validation. For the

linear case, more than 5 dB SL level reduction is achieved for 20-MHz basedband

bandwidth. While, the experimental results for the 3-D case indicated a 5.2 dB null

performance improvement for 100-MHz bandwidth. Similarly, a novel fast-algorithm

has been proposed in Chapter 8 to digitally uncouple antenna arrays via inversion

of NxN tridiagonal Toeplitz matrices having sparse factors. This is experimentally

verified for an eight-element antenna array at 5.8-GHz. The measured results show

0.4-2.2 dB improvement of the highest sidelobes on all measured beams while the
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nulls have been deepened by upto 9.4 dB. The fast algorithm based approach is a

narrow band approach, hence the wideband design and realization can be a subject

of future work.
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