
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-25-2021

Enabling Distributed Applications Optimization in Cloud Enabling Distributed Applications Optimization in Cloud

Environment Environment

Pinchao Liu
pliu002@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Liu, Pinchao, "Enabling Distributed Applications Optimization in Cloud Environment" (2021). FIU Electronic
Theses and Dissertations. 4653.
https://digitalcommons.fiu.edu/etd/4653

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F4653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4653?utm_source=digitalcommons.fiu.edu%2Fetd%2F4653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ENABLING DISTRIBUTED APPLICATIONS OPTIMIZATION

IN CLOUD ENVIRONMENT

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Pinchao Liu

2021

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Pinchao Liu, and entitled Enabling Distributed Applications
Optimization in Cloud Environment, having been approved in respect to style and intel-
lectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

S. S. Iyengar

Jason Liu

Deng Pan

Gang Quan

Liting Hu, Major Professor

Date of Defense: March 25, 2021

The dissertation of Pinchao Liu is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2021

ii

© Copyright 2021 by Pinchao Liu

All rights reserved.

iii

DEDICATION

I dedicate this dissertation to my dad, Dianqing Liu, who encouraged me to pursue this

degree but was never able to see me finish, and to my mother and wife, for their uncondi-

tional love, support, and understanding during this process.

iv

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my advisor, Dr. Liting

Hu, for her unlimited support and guidance during my Ph.D. program. Dr. Hu guided

me into new research areas and taught me a lot of research experience. She encouraged

me to create novel ideas, guided me in preparing research draft, and instantly introduced

cutting-edge topics to me. She always encouraged me to attend the top-tier conferences

and supported me to take the opportunity to communicate with other researchers and

scientists. Her unlimited support helps me to be succeed in my Ph.D. career and create

many fantastic research works. She guided me to join the cycle of systems research in

computer science and trained me to be a young scientist.

Second, I would like to thank my committees and professors at Florida International

University. Many thanks to my committees, Dr. S. S. Iyengar, Dr. Jason Liu, Dr. Wei

Zeng, and Dr. Gang Quan, for your great encouragement and support during my research

work and guided me to deeply explore unsolved problems.

Third, I would like to express my thanks to my mentors during my intern at Facebook,

Dr. Hui Cheng and Dr. Vipul Bansal. Thank you for your guidance and support in the fall

of 2020, which gave me a taste of frontier research across the industry and academia.

Forth, I would like to thank my friends at FIU and Miami, who give me warm sup-

ports and brought colorful life during this special journey. Many thanks to Hailu Xu and

Boyuan Guan, my teammates in Elves research Lab. Many thanks to Qian Zhong, Yekun

Xu, Wei Ren, Yuyang Zhou, Xiaoyu Dong, Shaogang Yu, Wang Tang, Tianyi Wang,

Huifeng Zhang, and to all my friends that I encountered in this beautiful city. Thank you

all for being special parts during this journey.

Finally, from the bottom of my heart, I would like to express my gratitude to my

parents and family. My father, Dianqing Liu, who supported me to pursue a higher degree

and always encouraged and trusted me. My mother, Xifeng Wang, who gives me priceless

v

and infinite love and support, which helps me to be here. My wife, Na Jia, who gives her

understanding to let me finish my degree and supports my family in my hometown. Their

love overwhelms everything I have and is so invaluable that it exceeds anything in the

world.

vi

ABSTRACT OF THE DISSERTATION

ENABLING DISTRIBUTED APPLICATIONS OPTIMIZATION

IN CLOUD ENVIRONMENT

by

Pinchao Liu

Florida International University, 2021

Miami, Florida

Professor Liting Hu, Major Professor

The past few years have seen dramatic growth in the popularity of public clouds, such

as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Container-as-a-

Service (CaaS). In both commercial and scientific fields, quick environment setup and

application deployment become a mandatory requirement. As a result, more and more

organizations choose cloud environments instead of setting up the environment by them-

selves from scratch. The cloud computing resources such as server engines, orchestra-

tion, and the underlying server resources are served to the users as a service from a cloud

provider. Most of the applications that run in public clouds are the distributed applica-

tions, also called multi-tier applications, which require a set of servers, a service ensem-

ble, that cooperate and communicate to jointly provide a certain service or accomplish a

task. Moreover, a few research efforts are conducting in providing an overall solution for

distributed applications optimization in the public cloud.

In this dissertation, we present three systems that enable distributed applications opti-

mization: (1) the first part introduces DocMan, a toolset for detecting containerized appli-

cation’s dependencies in CaaS clouds, (2) the second part introduces a system to deal with

hot/cold blocks in distributed applications, (3) the third part introduces a system named

FP4S, a novel fragment-based parallel state recovery mechanism that can handle many

simultaneous failures for a large number of concurrently running stream applications.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.1.1 Dependency Detection of Distributed Applications 3
1.1.2 Storage Optimization of Distributed Applications 3
1.1.3 States Recovery of Distributed Applications 4
1.2 Summary and Roadmap . 4

2. BACKGROUND . 6
2.1 Distributed Applications’ Dependency Detection Works 6
2.1.1 Injecting Code to Obtain Runtime Information 6
2.1.2 Based on Communication Pattern . 6
2.1.3 Network Packets Inference . 7
2.2 Distributed Applications’ Storage Optimization Works 7
2.2.1 Replica Allocation and Management Based Systems 8
2.2.2 Skewed Popularity Based Systems . 9
2.2.3 Caching Based Systems . 10
2.3 Distributed Applications’ States Recovery Works 11
2.3.1 Stateful date Processing Systems . 11
2.3.2 Failure Recovery in Data Processing Systems 12

3. CORRELATION DETECTION OF DISTRIBUTED SYSTEMS 15
3.1 DocMan System Design . 21
3.1.1 Data Collection . 21
3.1.2 Distance Identification . 23
3.1.3 Hierarchical Clustering . 25
3.1.4 Resource Usage Pattern Prediction . 26
3.1.5 DocMan Integrates with Kubernetes . 27
3.1.6 Rationale . 28
3.1.7 Testbed . 29
3.1.8 Workload and Metrics . 29
3.1.9 DocMan’s Functionality Evaluation . 31
3.1.10 Discussion . 40
3.2 Summary . 41

4. ADAPTIVE REPLICATION OF HOT/COLD BLOCKS OF DISTRIBUTED SYS-
TEMS . 43

4.1 Introduction . 43
4.2 Architecture Design . 47
4.2.1 Data Generation . 47
4.2.2 Dynamic Model to Copy Hot Blocks to MemCached 47

viii

4.2.3 Caching with MemCached . 48
4.2.4 Evaluation Metrics . 50
4.3 Experimental Results . 51
4.3.1 Dynamic Hot and Cold Block Detection 51
4.3.2 Vanilla Model to Copy Hot Blocks to MemCached 52
4.3.3 Performance Analysis . 55
4.4 Summary . 58

5. STATE RECOVERY OF STREAM PROCESSING DISTRIBUTED SYSTEMS 60
5.1 Introduction . 60
5.2 System Design and Implementation . 63
5.2.1 Overview . 64
5.2.2 DHT-based Ring Overlay . 65
5.2.3 Fragmented Parallel State Recovery . 67
5.2.4 FP4S API . 69
5.3 Adaptivity Analysis . 70
5.3.1 Adaptive Parameter Tuning . 70
5.3.2 Analysis . 71
5.3.3 Instrumentation requirements . 73
5.4 Evaluation . 75
5.4.1 Setup . 75
5.4.2 FP4S vs Checkpointing Recovery . 77
5.4.3 Fragmented Parallel Recovery Algorithm 79
5.4.4 Load Balance . 82
5.4.5 Overhead Analysis . 83
5.5 Summary . 84

6. CONCLUSION AND FUTURE WORK . 86
6.1 Conclusion . 86
6.2 Lessons Learned . 87
6.3 Broader Impact . 88
6.4 Future Work . 88

BIBLIOGRAPHY . 90

VITA . 102

ix

LIST OF TABLES

TABLE PAGE

3.1 Compare With Other Monitoring Tools . 38

5.1 FP4S API . 70

5.2 Real-world application’s dataset. 76

x

LIST OF FIGURES

FIGURE PAGE

1.1 Optimization stack implemented in this dissertation. Using the cloud en-
vironment and distributed applications as the foundation, we build opti-
mization systems from different perspectives, such as applications place-
ment, storage optimization, and failure recovery, all of which can be in-
termixed implemented into distributed applications. 2

3.1 A containers cluster use case. 17

3.2 Network topology of the shared uplinks with Top-of-Rack crashes, leading
to a decline in the performance of many containers. 19

3.3 Example of a multi-tier RUBiS application showing correlation on server
usage. The different sets of RUBiS applications have their own resources
usage trend. 21

3.4 3D plot of correlation matrix between containers including iPerf containers,
RUBiS containers, and Hadoop containers. 24

3.5 Integrate the DocMan component into Kubernetes. 28

3.6 Hierarchical tree generated by clustering algorithm. 30

3.7 ROC curve shows the accuracy of DocMan black box method. The overall
accuracy area is 0.93, which is considered as excellent level. 32

3.8 Before and after containers mapping. 33

3.9 Throughput comparison for RUBiS before arrangement and after arrange-
ment. It shows after arrangement the throughput increased averagely
1.93 times than before arrangement. 34

3.10 Latency comparison of Hadoop application and Spark application before ar-
rangement and after arrangement. 35

3.11 Resource usage comparison between the actual value and the prediction value. 36

3.12 Microsoft Azure trace prediction for a CPU intensive task. (VM id: YANkW-
PlG) . 37

3.13 The average running time of generating the prediction model and each model’s
mean squared error for different epoch set up. 38

3.14 Compare LSTM different epoch results with default prediction method. . . . 38

3.15 Overhead comparison between DocMan, Wireshark and tcpdump. 39

4.1 MemCached server integration with HDFS to dynamically replicate popular
blocks. 45

xi

4.2 Read count of HDFS data blocks . 51

4.3 After hit count is over the predefined threshold, the block is defined as Hot
and MemCached records it. After a specific period, once the hit count
stops increasing, MemCached will reset the records and release the oc-
cupied memory. 54

4.4 Word count execution time. 55

4.5 Grep execution time. 56

4.6 I/O throughput for word count and grep. 57

4.7 CPU usage comparison. 58

4.8 Memory usage comparison. 58

5.1 Contrast of stateless stream processing and stateful stream processing. 61

5.2 FP4S system design. 64

5.3 The routing process is cooperatively fulfilled by the routing table and the leaf
set. 66

5.4 The fragment-based parallel state recovery process. 68

5.5 Probability of successful recovery. 71

5.6 Maximum limit for HDFS rate vs Recompute rate c in FP4S. 74

5.7 State recovery time for different input state sizes. 77

5.8 State saving time for different input state sizes. 78

5.9 Total failure recovery time by varing # concurrently running stream applica-
tions. 79

5.10 Adjust raw fragment (m) parameter. 80

5.11 Normal probability plot of the state size across all DHT nodes. 80

5.12 Adjust parity fragment (k) parameter. 81

5.13 Adjust unavailable block number (e). 81

5.14 Heatmap of the state size across all DHT nodes. 82

5.15 The overhead analysis of the FP4S-enabled Storm at runtime. 83

xii

CHAPTER 1

INTRODUCTION

In this chapter, we first describe the motivations behind our work. Then, we define the

problems we are going to address in this thesis. Finally, we outline the road map of this

dissertation, which we describe in detail in the later chapters.

1.1 Motivation

Cloud computing services cover a vast range of options now, from the basics of storage,

networking, and processing power through to natural language processing and artificial

intelligence as well as standard office applications. Pretty much any service that doesn’t

require you to be physically close to the computer hardware that you are using can now be

delivered via the cloud. Public cloud is the classic cloud computing model, where users

can access a large pool of computing power over the internet (whether that is IaaS, PaaS,

or SaaS).

One of its significant benefits is the ability to rapidly scale a service. The cloud com-

puting suppliers have vast amounts of computing power, which they share out between a

large number of customers – the ‘multi-tenant’ architecture. Their huge scale means they

have enough spare capacity that they can easily cope if any particular customer needs

more resources, which is why it is often used for less-sensitive applications that demand

a varying amount of resources. Around one-third of enterprise IT spending will be on

hosting and cloud services in 2021 [Ran20], indicating a growing reliance on external

sources of infrastructure, application, management, and security services.

Distributed application architecture is one of the most popular architectural patterns

today. It moderates the increasing complexity of modern applications. It also makes it

easier to work in a more agile manner. That’s important when we consider the dominance

1

Cloud Enviroument

Distributed Applications

Applications Placement Storage Fail over

Dependencies Detection Adaptive Replication State Recovery

Optimization Perspectives

DocMan Hot/Cold Blocks Replication FP4S

Figure 1.1: Optimization stack implemented in this dissertation. Using the cloud environ-
ment and distributed applications as the foundation, we build optimization systems from
different perspectives, such as applications placement, storage optimization, and failure
recovery, all of which can be intermixed implemented into distributed applications.

of data processing and other similar usages today. Sometimes it is called tiered archi-

tecture, or multiple layer architecture. A multi-layered software architecture consists of

various layers, each of which corresponds to a different service or integration. Because

each layer is separate, making changes to each layer is easier than having to tackle the

entire architecture. The solutions to enable the distributed applications optimization in

public cloud become a must-have requirement. However, former studies rarely provide

an overall solution to enable the optimization. As figure 1.1 shows, we do the system

optimization from three perspectives. They all cater to the distributed applications and

are based on cloud environment. These optimization solutions can be implemented stan-

dalone or together as a whole solution. The system DocMan focuses on detecting the

applications dependencies which the information can be used for applications placement.

The system of hot/cold block replication deals with the skewed storage utilization. The

system FP4S used to solve the failure recovery problem to recover states of applications.

2

1.1.1 Dependency Detection of Distributed Applications

To be aware of distributed applications’ dependencies is the first step to do further op-

timization. The novelty of this part of work lies in that, instead of using an intru-

sive approach to detect containerized application’s dependencies (e.g., via intercepting

packet [BDIM04, HSG+12, MPZ10] or injecting code [CKF+02, EPPB11, TTZ+09]),

our designed system, DocMan, uses a non-intrusive approach via capturing the CPU,

memory and I/O logs for detecting dependencies. The rationale behind our approach is

that we observed that real-world containerized multi-tier applications exhibited strong

correlation among their resource usage statistics.

1.1.2 Storage Optimization of Distributed Applications

With the advancement of ever-growing online services, distributed Big Data storage i.e.

Hadoop, Dryad gained much more attention than ever and the fundamental requirements

like fault tolerance and data availability have become the concern for these platforms.

Data replication policies in Big Data applications are shifting towards dynamic approaches

based on the popularity of files. Formulation of dynamic replication factor paved the

way for solving the issues generated by existing data contention in hotspots and ensur-

ing timely data availability. But from the empirical observations, it can be deduced that

the popularity of files is temporal rather than perpetual in nature and, after a certain pe-

riod, content’s popularity ceases most of the time which introduces the I/O bottleneck of

updating replication in the disk.

To handle such temporal skewed popularity of contents, we propose a dynamic data

replication toolset using the power of in-memory processing by integrating MemCached

server into Hadoop for getting improved performance. We compare the proposed algo-

rithm with the traditional infrastructure and vanilla memory algorithm, as the evidence

3

from the experimental results, the proposed design performs better i.e throughput and

execution period.

1.1.3 States Recovery of Distributed Applications

Most distributed applications are by nature long-running. They run in highly dynamic

distributed environments or clouds where many application operators may leave or fail

at the same time. Most of them are stateful, in which operators need to store and main-

tain large-sized state in memory, resulting in expensive time and space costs to recover

them. The state-of-the-art information processing systems offer failure recovery mainly

through three approaches: replication recovery, checkpointing recovery, and DStream-

based lineage recovery, which are either slow, resource-expensive or fail to handle many

simultaneous failures.

We present FP4S, a novel fragment-based parallel state recovery mechanism that can

handle many simultaneous failures for a large number of concurrently running applica-

tions. The novelty of FP4S is that we organize all the application’s operators into a dis-

tributed hash table (DHT) based consistent ring to associate each operator with a unique

set of neighbors. Then we divide each operator’s in-memory state into many fragments

and periodically save them in each node’s neighbors, ensuring that different sets of avail-

able fragments can reconstruct lost state in parallel. This approach makes this failure

recovery mechanism extremely scalable, and allows it to tolerate many simultaneous op-

erator failures.

1.2 Summary and Roadmap

The rest of this dissertation is organized as follows. We introduce the background details

in Chapter 2, then we describe the DocMan system in Chapter 3. We next show the design

4

and details of storage optimization in Chapter 4. The details of design and implementation

of FP4S system in Chapter 5. Finally, we conclude this dissertation and describe the future

work in Chapter 6.

5

CHAPTER 2

BACKGROUND

2.1 Distributed Applications’ Dependency Detection Works

Based on our study, there are three different categories: Injecting code to obtain runtime

information, based on communication pattern between cluster service provider and ten-

ants to detect the dependencies, and optimizing cluster applications based on network

packets inference.

2.1.1 Injecting Code to Obtain Runtime Information

Code injection technologies inject some extra code into the source code of target pro-

grams to capture runtime information. For example, Fay [EPPB11] uses runtime instru-

mentation and distributed aggregation to get software execution traces. vPath [TTZ+09]

provides path discovery by monitoring thread and network activities and reasoning about

their causality. It is implemented in a virtual machine monitor, making it agnostic of the

overlying middleware or application but it requires changes to the VMM code and the

guest OS. Pinpoint [CKF+02] injects end-to-end request IDs to track requests. It uses

clustering and statistical techniques to correlate the failures of requests to the components

that caused the failures. Code injection can achieve more accurate results for detecting

dependencies. However, it requires changing the program infrastructure and source code

of target applications, which we aim to avoid.

2.1.2 Based on Communication Pattern

Cloudtalk [AIR17] lets users describe their tasks to the cloud and help them make appro-

priate choices for task placement. BtrPlace [HLM13] is used as a planning tool to limit the

6

number of applications or to predict the need to acquire new servers, meanwhile, provides

a high-level scripting language, allowing service users to describe requirements. How-

ever, they did not consider the natural dependencies between tasks, and require users to

have domain knowledge to provide accurate resources usage description. Coflow [CS12]

defines a set of APIs to enable cluster applications to optimize the network usage. But

it is limited to a predefined set of communication patterns and only supports network

information.

2.1.3 Network Packets Inference

Meng et al. [MPZ10] propose to initialize the applications in data center based on their

network traffic information. They design a two-tier approximate algorithm to find the

traffic patterns and adjust the network architectures to improve the cluster performance.

Magpie [BDIM04] captures events from OS kernel, middleware, and application compo-

nents and calculates the time correlation of these events. DocMan not only focuses on

network metric but also focuses on other metrics, which enable more considerable factors

for the provider to optimize cluster performance.

2.2 Distributed Applications’ Storage Optimization Works

Distributed applications gained popularity for its high performance and reliability but the

default replication management, such as in HDFS, is not sufficient to handle the conges-

tion that arises from a high density of user requests. Especially the adaptability of data

popularity needs to be handled with a time-based dynamic replication policy for improv-

ing the system performance. As a result, adaptive replica management model is needed

to ensure improved performance along with fault tolerance and studied from various per-

spectives.

7

2.2.1 Replica Allocation and Management Based Systems

Data locality is an important factor to improve the data availability in time. To reach

better data locality an algorithm DARE (Distributed Adaptive Data Replication) [ALC11]

is proposed where probabilistic sampling and competitive aging algorithm is used in each

node to produce solutions of replica allocation and replica placement. Comparing to

DARE, the system we propose, that leverages the memory’s higher I/O speed to obtain

a better replica allocation and placement result. Besides, Dare is adaptive in workload

changes. The experimental studies based on two mixed workload traces from Facebook

show that the data locality improves with different schedulers in Hadoop.

CDRM (Cost-Effective Dynamic Replication Management Scheme) [W+10] is an-

other model that can calculate and maintain a minimal number of replica for a given

availability requirement. It can adapt to the changes of environment in terms of data node

failure and workload changes and maintains a rational number of replica. However, to

use CDRM model, it lacks an uniform algorithm to deal with replica number and locality.

To use the model we present, it is able to dynamically and uniformly adjust replica lo-

cations. It replaces replica based on capacity and blocking probability of data nodes and

dynamically redistributes workloads by the adjustment of replica number and their place-

ment location. CDRM is cost effective and performs better in comparison with default

replication management of HDFS.

An offline replica allocation algorithm named MORM (Multi-objective Optimized

Replication Management) [LZC14] was proposed which looks for near optimal solutions

by balancing different optimization factors. However, it only based on existing DFS

design to balance the trade-offs. The system we propose, not only consider to optimize

the replica, but also add memory component to optimize the overall performance.

EDAS (Efficient Data Access Scheme) [AO15] is an algorithm for HDFS data repli-

cation where user can get quick access of replica data by the decision of access node

8

according to the load of the node. The idea of EDAS is actually based on the historical

data access record from HDFS metadata and anti-blocking probability selection method.

These systems are based on different strategies for replica allocation and management but

there is no use of popularity concept. In the system, popularity is an important concern

and on top of that we cache more popular files in MemCached which should allow us to

increase data availability.

2.2.2 Skewed Popularity Based Systems

ERMS (Elastic Replication Management System) [C+12] is an active storage model for

HDFS. It dynamically increases the number of hot files and reduces the number of cold

files by tracking real time data type. The work is based on probability or constant data

type but we use real time data popularity in Hot/Cold block detection mechanism. ERMS

is also feasible to manage extra replicas of hot data by using a replica placement strat-

egy. Based on their experiments it is clearly shown that ERMS successfully improves the

performance of HDFS and reduce storage overhead.

Predictive analysis is another approach to dynamically replicate the data file where the

utilization of each data can be predicted by probability theory. Then using this utilization

information, popular files can be replicated and non-popular files can be deleted. This

process improves the availability of data files compared to the default scheme [B+15].

HDFS-DRM [LMC15] devised a design to solve the hot issues in HDFS based on

cloud storage where it makes use of dynamic adjustment mechanism and deletes duplicate

node selection mechanism. It increases or decreases the number of replicas by tracking

the record of reading requests from users of each data file in a certain amount of time.

However, the optimization is in the disk storage level, the disk I/O bandwidth will finally

become the bottleneck for the overall application performance.

9

Scarlett [A+11], a replication system for MapReduce, was proposed where data repli-

cation is done based on their popularity to avoid contentions and improve data locality.

Scarlett decreases rack network traffic of jobs by increasing the replication factor of a file

according to its popularity information. They also represent a few experimental statistics

of data popularity based on job logs analysis from a large production cluster supported

by Microsoft’s Bing. After using Scarlett in two MapReduce frameworks, Hadoop and

Dryad, results showed speed up in job execution effectively using limited extra storages

and network resources.

The system is also based on time variant skewed popularity where we detect Hot and

Cold blocks by trace data analysis. Most of the prior works are based on probability

or constant data type but we use real time data popularity in Hot/Cold block detection

mechanism. Definitely real time data set is more reliable as the popularity changes over

time.

2.2.3 Caching Based Systems

In order to reduce I/O bottlenecks of HDFS, MEM-HDFS [I+14] was demonstrated using

MemCached as a caching system. The main focus is to provide intelligent caching and

HDFS data blocks replication with consideration of different deployment strategies for the

local and remote MemCached servers. MEM-HDFS implementation resulted in increased

throughput and reduced job generation time.

HDFS native cache system, Centralized Cache, which is an explicit caching mech-

anism that allows users to specify paths to be cached by HDFS. The NameNode will

communicate with DataNodes that have the desired blocks on disk, and instruct them to

cache the blocks in off-heap caches [cen].

10

In MEM-HDFS or Centralized Cache, they make use of only caching concept while

in the system we merge caching and popularity concept together. After detecting the

Hot blocks we cache them in MemCached that gives more flexibility in reducing data

contention.

2.3 Distributed Applications’ States Recovery Works

Designing a state recovery mechanism for distributed stateful processing systems in cloud

is non-trivial, and existing failure recovery techniques for data processing do not achieve

the necessary scalability and efficiency. We summarize existing stateful stream processing

systems as follows.

2.3.1 Stateful date Processing Systems

Many industrial date processing systems either do not support state (Heron [KBF+15],

S4 [NRNK10], early version of Storm [sto]), or rely on in-memory data structures such

as hash tables and hash table variants to store state. For example, Muppet [LLP+12] and

Trident [ai] (an extension of Storm) store state via hash tables. Spark Streaming [spa]

enables state computation via RDDs [ZCD+12] which are inherent hashmaps. Some

other systems such as Millwheel [ABB+13], and Dataflow [ABC+15] choose to separate

state from the application logic and have state centralized in a remote storage [ABB+16,

CCD+03, ACÇ+03] (e.g., a database management system, HDFS or GFS) shared among

applications, along with periodically checkpointing state for fault tolerance. A few other

systems such as Kafka [ae], Samza [af, NPP+17], Spark Streaming [spa], and Flink [aa,

CEF+17] use a combination of “soft state” stored in in-memory data structures along with

“hard state” persisted in on-disk data store (e.g., RocksDB [aq], LevelDB [am]).

11

Scaling to large distributed states and recovering from failures in such systems is quite

expensive, because when a single node fails, the distributed states for all dependent nodes

must be reset to the last checkpoint, and computation must resume from that point, costing

a lot of extra time and space to accomplish recovery. Moreover, these systems rely on a

single master for handling failures and stragglers, exhibiting significant overhead from

centralization bottlenecks.

2.3.2 Failure Recovery in Data Processing Systems

Existing stream processing systems offer failure recovery mainly through the use of three

approaches: replication recovery, checkpointing recovery, and DStream-based lineage

recovery.

Replication recovery. In the process of replication recovery, there is a completely

separate set of hot failover nodes, which processes the same stream in parallel with the

primary set of nodes. The input records are sent to both. When there is a failure or multi-

ple failures in the primary nodes, the system automatically switches over to the secondary

set of nodes and the system can continue processing with very little or no disruption.

The replication recovery has been widely used in systems such as Flux [SHB04] and

Borealis [BBMS05]. The failover is fast, and it can handle multiple concurrent failures.

However, the replication recovery costs twice the hardware.

Checkpointing recovery. In the process of checkpointing recovery, each of the nodes

in the pipeline has a buffer in memory, which retains a backup of the records that it has

forwarded to the downstream nodes since the last checkpoint. All nodes periodically

checkpoint their states to a remote storage such as HDFS or GFS. A standby set of nodes

is maintained in the system. If any of the primary node fails, the standby node will re-

trieve the latest checkpoint from the persistent storage, and its upstream node essentially

12

replays the backup records serially to this failover node to recreate the lost state. The

checkpointing recovery has been widely used in systems such as TimeStream [QHS+13],

Trident [ai], Drizzle [VPO+17] and Multi-level Checkpointing from LLNL [MBMDS10].

It avoids the 2× hardware cost. However, the failover is much slower than the replica-

tion recovery because it has to retrieve the checkpointed state from the disk and replay

the buffered data on the last state to recompute the new state. Drizzle [VPO+17] intro-

duced group scheduling and pre-scheduling to avoid the centralized scheduling bottle-

neck. However, it used batch processing model and focus on scheduling tasks for one

application while FP4S uses a record-at-a-time processing model and focus on many con-

currently running jobs.

DStream-based lineage recovery. To achieve both fast recovery and small hardware

overhead, the DStream-based lineage recovery was proposed, which is used in systems

such as Apache Spark based systems [aa, CEF+17, ZDL+13, SGH+16]. The most recent

state is stored in each node’s memory using a data structure called Resilient Distributed

Dataset (RDD) [ZCD+12], together with the lineage graph, that is, the graph of determin-

istic operators used to build RDDs. When nodes fail in the system, instead of preparing

nodes for failover, DStream will re-run the lost tasks in parallel on other reliable nodes in

the cluster using the lineage graph. Then these tasks can be parallelized to recompute the

lost states. However, the entire recovery processing is linear, that is, the lost tasks need

to be executed or computed strictly in line with the original lineage graph on other nodes.

As such, the recovery process may be slow when the lineage graph is long and incur mul-

tiple data uploads through the network, consuming a critical resource in geo-distributed

network settings.

To our best knowledge, the very few research projects that are broadly relevant to

state management solutions are [TAB13, HLL16, an, ad], which either point out the criti-

cality of making state explicit [TAB13, HLL16] or develop mechanisms for reprocessing

13

state [an, ad], but propose no effective solutions for fast state recovery for concurrently

running stream applications.

14

CHAPTER 3

CORRELATION DETECTION OF DISTRIBUTED SYSTEMS

Nowadays, there has been a quick growth in the popularity of Container-as-a-Service

(CaaS) clouds. CaaS is a new form of container-based virtualization in which container

engines, orchestration and the underlying server resources are served to the users as a

service from a cloud provider. In CaaS cloud, the customers can manage containers us-

ing the service provider‘s routines or web portal interface and pay for the required CaaS

resources, such as hardware capacities, load balancing, and security level. The purchase

of CaaS resources proceeds as follows: (1) the provider provides to the customers with a

variety of pre-configured, templated container images containing various operating sys-

tems and pre-installed libraries and software; (2) the customer estimates her application

needs, selects container images and resource needed for her application such as the de-

sired vCPU and memory capacities and outbound network bandwidth; also specifies the

operating systems to use and virtual machine instances (the norm is running containers

inside the VMs obtained from the cloud provider); (2) the customer finalizes the con-

tracts with the cloud provider for some period of use, e.g., a one-month term; and (3) the

provider launches the containers and manages them.

With the interest in CaaS clouds skyrocketing among customers, cloud providers are

capitalizing on the opportunity through hosting container management services. For ex-

ample, Microsoft rolled out its Azure Container Service (ACS) [micb]. Google developed

the Kubernetes container orchestration tool for Google Container Engine [goo]. Ama-

zon launched EC2 Container Service (ECS) [Ama]. The list is not long, but they attract

more and more customers. According to the RightScale 2018 report [0], Microsoft Azure

Container Service has reached adoption of 20% (with a strong growth of 82%); Google

Container Engine has reached adoption of 14% (with a strong growth of 75%); and Ama-

zon container service (ECS/EKS) has reached adoption of 44% (with 26% growth rate).

15

Unfortunately, while the progress that towards container management services in CaaS

clouds is remarkable, the performance optimization of the containerized applications has

been largely neglected. Left unchecked, it will pose a threat to customer experiences of

CaaS clouds and cause customers to get much less than what they paid for, which even-

tually waste significant computing resources and power for cloud providers.

Many applications, such as RUBiS [rub], Hadoop MapReduce [map], Storm [sto] are

distributed applications in which two or more components cooperate and communicate to

jointly provide a certain service or accomplish a job. A typical distributed application, for

instance, contains a presentation tier for basic user interface and application access ser-

vices, an application processing tier for processing the core business or application logic,

and a data access tier for accessing data, and finally a data tier for holding and managing

data. Containers are similar to virtual machines (VMs), but much more lightweight, i.e.,

less resource and time-consuming. By comparison, application containerization allows

customers to launch individual applications without the need to rent an entire VM. It does

this by “virtualizing” an operating system and giving containers access to a single operat-

ing system kernel, each container comprising the files, setting, dependencies and libraries

required for the application to run on an OS. Most of the containerized applications that

run in CaaS clouds are the distributed applications, also called multi-tier applications,

which require a set of containers, a container ensemble, that cooperate and communicate

to jointly provide a certain service or accomplish a task.

The containerized applications that run on public CaaS clouds could have been opti-

mized by combining the application’s inter-container dependency knowledge with infras-

tructure’s server load, network topology or links knowledge to choose the optimized end-

point physical servers to place containers [CKS13, CZM+11, CZS14, HKZ+11, PSLJ11].

For example, when the network I/O dependencies are known, the containers that have the

strong network I/O dependencies can be placed geographically close to each other, e.g.,

16

An Ocean of User Containers

?

Application
Server

Containers

?

?

Web
Server

Client

? ?

RUBBoS
App

RUBBoS
App

?

?

MapReduce
App

MapReduce
App

Spark
Streaming

App

Spark
Streaming

App

Container Engine

Containers Containers

Container Engine Container Engine

Host OS Host OS Host OS

Physical Host (Rack 1) Physical Host (Rack 2) Physical Host (Rack 3)

· Network Topology
· Link/Switch Load
· Physical Server Load

· Tenant’s Workload
· Intra-ensemble
sss
· Application’s QoS
sss

Container-as-a-Service
Cloud Resource Manager

Database ?

Dependencies

Requirements

Figure 3.1: A containers cluster use case.

within the same rack or server. In that case, their communicating messages do not need to

traverse long bottlenecked network paths such as Top-of-Rack switches, L2 switches and

etc, significantly reducing the latency for containerized applications. It is also a win-win

for the provider. The oversubscribed uplink bandwidth will be saved and link/switch load

will be reduced accordingly, the provider can save significant power in the data center

network (DSN) [AFRR+10, FPR+10, MYAFM10] by aggregating the traffic into fewer

network devices and links and putting the others into sleep. Another example is that, when

the computational dependencies are known, the containers that have strong computational

dependencies can be placed slightly remote to each other, e.g., within the same rack but on

different servers. In that case, the resource interferences of co-located containers can be

reduced, which will be particularly beneficial to web applications by addressing the long

tail latency problem and big data processing applications by improving their throughputs.

17

The above optimizations and others have been designed for, and used in, private clouds

where the private cloud providers run both the applications and the infrastructure and

have full control over them. Unfortunately, these optimizations are almost impossible

to implement in public CaaS clouds today due to the “double-blind” opacity between the

customers (tenants) and the cloud providers. Thus, public cloud providers are understand-

ably reluctant to share with customers about the underlying network and storage topology

and its current load on links and physical servers. Also, customers are reluctant to share

with providers about the running workload, containerized application’s intra-ensemble

dependencies, or the containerized application’s QoS requirements.

Figure 3.1 demonstrates the scenario of a real-life use case. The cloud provider uses

the container orchestration tool of Kubernetes [kub] for the containerized applications

deployment and management. It will ask customers to declare minimum and maximum

server resources for their containers, and then slot their containers into where ever the

server they fit. Usually, it uses automatic resource binpack algorithms, and without the

consideration of the dependencies among containers. In such a case, catastrophic conse-

quences can occur since the cross rack requests. Such as client’s posts arrive at the front

end container running the web server, then forward to the application server container,

which in turn query data from the database container. While container resource require-

ments are met, the containers collaboration process will use more network resources than

placement with dependency considerations.

In this case, catastrophic consequences may happen, such as the client requests arrive

at the container running the web server front end and are then forwarded to one of the

containers running application servers, which in turn may request data from a backend

container hosting a database. Although the containers resource requirements are fulfilled,

the containers cooperation process will use far more network resources than a placement

with the dependencies consideration.

18

Internet

Core Routers

Edge Routers

Top of Rack
1Gb

10Gb

10Gb

1Gb 1Gb

Chatty Containers 100 Mb~1Gb

...

Figure 3.2: Network topology of the shared uplinks with Top-of-Rack crashes, leading to
a decline in the performance of many containers.

Figure 3.2 shows the network topology of Amazon EC2’ useast-1d datacenter inferred

by CloudTalk[AIR17]. Rack uplink bandwidth is typically oversubscribed, which leads

to significant rack-level congestion [FPR+10, AIR17]. In the public cloud platforms such

as AWS, the norm is running containers inside VMs obtained from the cloud providers.

These VMs are initially launched with only the OS and no application-specific software.

Because VMs within the different racks need to share the oversubscribed uplinks, this

will cause a worst case of end-to-end available bandwidth for containers as low as 100

Mbps (the value ranges from 100 Mbps to 1 Gbps as measured by [GHJ+09].

In order to effectively address the aforementioned issues, we present DocMan, a novel

container toolset that is designed to optimize resources usage in CaaS clouds. Be specifi-

cally, DocMan recognizes the potential container ensembles by using resource utilization

matrix. It assesses the “chattiness” degree among the containers, then enables optimized

container placement strategy to alleviate the bi-section bandwidth saturated condition.

Last but not least, it uses deep learning technology to dynamically provision the running

containers’ resources.

19

DocMan has the following unique properties:

• Transparency and privacy-preserving — as a non-intrusive tool, DocMan does not

require any code modification to the containers or applications.

• Lightweight — unlike the network sniffer tools that bring heavy burdens to the

management software, DocMan has negligible CPU and memory overheads.

• Actionable — insights derived from running DocMan can help management soft-

ware better co-locate container ensembles on the underlying hosts and provision

more reasonable computation resources.

Discovering container ensembles and their inter-container dependencies are quite chal-

lenging. A naive method that continuously gathers statistics about all communicating

containers is prohibitively expensive. First, it would require introspection of all pack-

ets sent and received by the containers; this would induce notable CPU overheads and

additional per packet latency of the tens of microseconds. Second, additional memory

resources would be required to maintain statistics for every pair of IP addresses.

DocMan uses a three-step approach. Firstly, it acquires container-level statistics com-

monly available in container management systems (e.g., Kubernetes), such as the to-

tal numbers of packet in/out over time. Secondly, it computes the correlation coeffi-

cients among these statistics. Finally, it divides the corresponding containers into sub-

sets (also called ensembles) using correlation values and a hierarchical clustering algo-

rithm [War63].

DocMan has been designed and implemented. We evaluated its effectiveness on a

testbed that has 24 physical machines deploying with 144 containers. These containers

perform a variety of batch workloads, Internet services, business tasks, and streaming

tasks. Experimental results demonstrate that DocMan is able to recognize container in-

stances with 92.0% accuracy as well as predict the resource usage pattern with low error

20

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

W o r k l o a d o f 5 0 0 c l i e n t s

 R U B i S I n s t a n c e 1 C l i e n t
 R U B i S I n s t a n c e 1 S e r v e r
 R U B i S I n s t a n c e 1 D a t a b a s e
 R U B i S I n s t a n c e 2 C l i e n t
 R U B i S I n s t a n c e 2 S e r v e r
 R U B i S I n s t a n c e 2 D a t a b a s e

R u n n i n g T i m e i n S e c o n d s

Ne
two

rk
I/O

 (P
ac

ka
ge

s/S
ec

on
d)

W o r k l o a d o f 2 0 0 0 c l i e n t s

Figure 3.3: Example of a multi-tier RUBiS application showing correlation on server
usage. The different sets of RUBiS applications have their own resources usage trend.

rate (root mean square error <0.3) during the limited epochs (<200). The applications

performance is improved in terms of throughput and latency by using the proposed place-

ment strategy. Specifically, we observed that the application throughput of the RUBiS

instance increased by 1.93x, the application throughput of the Hadoop MapReduce in-

stance increased by 33.4%, and the Spark Streaming instance improved by 7.9%. For the

intensive CPU Microsoft Azure trace, it can get potentially 14.9% resource saving.

3.1 DocMan System Design

This section illustrates DocMan’s design, which includes (1) monitoring of basic resource

usage statistics of containers; (2) computing the correlation coefficients among these

statistics to identify their distances; and (3) using hierarchical clustering algorithms to

detect potential container ensembles.

3.1.1 Data Collection

The first step is to capture the following universally available system-level metrics about

each container:

21

CPU : CPU usage per second in percentage terms (%).

Memory: Memory usage per second (MB).

I/O: Packets transmitted per second (KByte/sec).

These periodic measurements result in three time series signals per container. Be-

fore explaining the actual analysis being applied, we illustrate the utility of taking these

measurements with a simple example.

Multi-tier applications (e.g., RUBiS [rub]) typically use a request-response architec-

ture, in which a client container sends a request to the front end (e.g., Apache), which

assigns the work to an appropriate server (e.g., Tomcat) running the application logic.

The application logic services the request by querying the backend (e.g., a database server

like MySQL) to produce the necessary output, and sending the response back to the client.

Therefore, given the nature of multi-tier applications, we can expect correlations between

the “CPU”, “Memory” and “I/O” statistics for interacting containers. For example, an in-

stant rise of CPU usage or packet flow rate in one container directly or indirectly triggers

activities in other containers, thereby creating the correlations among these statistics.

To more clearly show the correlations among these statistics, we did an experiment on

two RUBiS instances with 2000 clients and 500 clients workloads, respectively. Each in-

stance has three containers, i.e., client, Tomcat server and MySql database. The container-

level metrics of CPU, memory and I/O for these containers are continuously collected and

compared in Figure 3.3, where the system load is the normalized value of CPU, memory

plus I/O with the same weight. The results show that the containers that collaborate to-

gether to accomplish the same task within the same instance tend to have similar trends

of system load, while the containers that are responsible for different tasks do not exhibit

correlations. The same logic can be applied to other applications as well, such as big

data analytics application like Hadoop MapReduce applications [map], Storm applica-

tions [sto], Spark Streaming applications [spa], which are popular in CaaS clouds. For

22

example, MapReduce adopts a Partition/Aggregate pattern which scale out by partitioning

tasks into many sub-tasks and assigning them to worker containers (possibly at multiple

layers). These worker containers are expected to work together to accomplish the task.

There are several design tradeoffs about data collection:

• Metrics selection. Although “I/O” (PacketIn and PacketOut) is a more intuitive

metric to do correlation analysis among communicating containers, we also in-

clude “CPU” and “memory” as complementary metrics because they will provide

extra information in certain scenarios. For example, if a bunch of containers do

many-to-many but infrequent data exchanges, it is difficult to detect them using

only I/O metric, especially when the interval between data exchanges is larger than

the sampling window. In such cases, other metrics can capture the missing signals.

• Sampling window. Larger sampling window does not always means more accurate

result. For example, if the large window accidentally covers the idle period when

the container ensemble has no inter-communications. The final result may not be

as accurate as smaller windows. On the other hand, if the sampling window is too

small, it may fail to catch up the useful information timely. Therefore, we need to

find the appropriate sampling window for each representative application.

3.1.2 Distance Identification

Each container’s log can be organized as a vector of an array (α,β ,γ). α is the CPU usage

record; β is the Memory usage record; and γ is the I/O usage record, respectively. Then,

the all containers generate a vector matrix for the cloud service provider to analyze. We

choose the Pearson product-moment correlation coefficient (PMCC) [PMC] to measure

the degree of correlation, giving a value between -1 and +1 inclusive.

23

Figure 3.4: 3D plot of correlation matrix between containers including iPerf containers,
RUBiS containers, and Hadoop containers.

The mathematical logic is as below: there are two vectors X and Y to demonstrate any

two vectors which are generated by the containers. Each element is an array of resources

usage record in the vector. X = X1,X2, . . . ,Xn, Y = Y1,Y2, . . . ,Yn, then the correlation

between X and Y is:

corr =

n
∑

i=1
(


Xαi

Xβi

Xγi

−


X ′αi

X ′
βi

X ′γi

)(


Yαi

Yβi

Yγi

−


Y ′αi

Y ′
βi

Y ′γi

)

√√√√√√√√√
n
∑

i=1
(


Xαi

Xβi

Xγi

−


X ′αi

X ′
βi

X ′γi

)2

√√√√√√√√√
n
∑

i=1
(


Yαi

Yβi

Yγi

−


Y ′αi

Y ′
βi

Y ′γi

)2

(3.1)

The calculation result corr is between -1 and 1. If it is 0, it means they have no relation-

ship. Near -1 means that they are negatively related with each other and near 1 means that

they are positively related with each other. Since the negative relationship is meaningless

in practice, we update all the negative numbers to 0 in the output matrix.

Figure 3.4 shows the result that is performed by Python package numpy[num] cal-

culation. It illustrates that the containers are performing same tasks, which are having a

higher value near to 1. Such as the value between container 0, 1, and 2, the respective

24

values are 1.00, 0.99, and 0.99. In the 3D chart, the values are at the top part. However,

comparing to other containers, they have a lower value which is near to zero, that means

they do not have a direct relationship. Such as 1 and 15, the value is only 0.03. For 2 and

14, the value is only 0.04. These values are at bottom part in the chart.

We further define the concept of distance to describe the strength of dependencies

between two containers:

Distance(Xi,Yi) =


1

corri
, corri > 0

∞, corri = 0
(3.2)

The distance value matrix will be used as input information for the next step hierar-

chical clustering.

3.1.3 Hierarchical Clustering

Clustering[clu] is the process of making a group of abstract objects into classes of similar

objects. A cluster of data objects can be treated as one group. Two commonly used

clustering algorithms are hierarchical clustering and k-means clustering. DocMan uses

hierarchical clustering for the following reasons:

• Hierarchical clustering does not require the number of clusters in advance.

• It works well with both globular and non-globular clusters, while k-means fails to

handle non-globular data.

• k-means clustering is sensitive to initial centroids. If the user does not have ade-

quate knowledge about the data set, this may lead to the erroneous results.

The process of hierarchical clustering is as follows:

• Step 1: initially assign each container to a cluster, so that there are N initial clusters

for N containers.

25

• Step 2: find the closest (most similar) pair of clusters and merge them into a single

cluster.

• Step 3: compute distances (similarities) between the new cluster and each of the

old clusters.

• Step 4: repeat Step 2 and Step 3 until all items are clustered into a single cluster of

size N.

Concerning Step 4, of course, there is no point in having all N items grouped into a

single cluster, but doing so results in the construction of the complete hierarchical tree,

which can be used to obtain k clusters by just cutting its k− 1 longest links. K can be

based on the number of racks in the datacenter, or it can be chosen to make the inter-

cluster distance less than a certain threshold.

3.1.4 Resource Usage Pattern Prediction

After the ensembles of the correlated containers are identified, the system uses deep learn-

ing techniques to predict their resource usage patterns. The fundamental behind our ap-

proach lies in that, many cloud jobs are recurrent. It has been demonstrated in related liter-

ature that over 60% of the jobs in real-world large enterprise clusters are recurrent [?][?].

Inspired by the observation that runtime metrics in a resource usage log are a sequence

of events produced by the execution of a highly possible recurrent job (and hence can be

viewed as a structured language), we use a long short-term memory (LSTM) recurrent

neuron network for the pattern prediction over resource usage traces.

A Recurrent Neural Network (RNN) is an artificial neural network that uses a loop

to forward the output of the last state to current input, thus keeping track of history for

making predictions. However, RNN can only have a short memory of a few terms. To

overcome this limitation, the long short-term memory (LSTM) networks are proposed

26

which can remember long-term dependencies over sequences. LSTMs have demonstrated

success in various tasks such as machine translation [SVL14], sentiment analysis [DL15],

and medical self-diagnosis [LSD+16]. If the prediction results underestimates the actual

resource requirement, the application might suffer performance issue. So a provision

margin concept is introduced, it adds a buffer zone to the predicted value, which will help

to guarantee the required resource utilization meanwhile save the resource comparing to

hard-coded over-provisioning.

Under-estimating the number of future requests results in extra delays when allocating

cloud resources to clients due to the need for waking up machines upon arrival of any

unpredicted request(s). In order to reduce the occurrences of such cases, a safety margin

can be added to the number of predicted requests to accommodate such variations. The

cost of this safety margin is that some PMs will need to be kept idle even though they

may or may not be needed. We propose to use a dynamic approach for selecting the

appropriate safety margin value, where the value depends on the accuracy of predictors:

it increases when the predictions deviate much from the actual number of requests and

decreases otherwise.

3.1.5 DocMan Integrates with Kubernetes

DocMan can help container management software (such as Kubernetes) better co-locate

container ensembles on the underlying hosts. DocMan collects logs from every physical

node by adding one log collector component per node. It doesn’t require any changes to

the applications running on the node.

Figure 3.5 shows the infrastructure of integrating DocMan into Kubernetes. The Doc-

Man Log Collector streams application logs to its own standard out. The DocMan logging

agent is a separate node that in charge of running the algorithm to cluster the containers.

27

Kube-schedulerKube-scheduler

Kubernetes Master

CaaS CloudCaaS Cloud
Log

Monitoring

ContainerContainer

Pod

ContainerContainer

Pod

ContainerContainer

Pod

Kube-apiserver

CPU/Memory/Network I/O
Data

Collection
 Distance

Identification
Hierarchical
Clustering

Data
Collection

 Distance
Identification

Hierarchical
Clustering

Dependency Detection Model

Updated Placement Model

Dependency Results

Kube-CCM (Cloud-Controller Manager)

Initial Placement Decision

 Initial Placement Model

Pattern
Prediction

Updated Placement Decision

Based on the prediction results,
trigger the adjustment placement.

Updated Dependency

Results

PM PMPM VMVM

New Added Component

1

2

3

4

5

6

7

8

Initial placement
command

Update placement
command

Processing Step

Figure 3.5: Integrate the DocMan component into Kubernetes.

The logic behind redirecting logs is minimal, so it’s hardly a significant overhead. The

standard output can be handled by existing component of Kubelet, that gives the feedback

about containers dependency to the service manager.

3.1.6 Rationale

Lightweight property. Containers are regarded as a lightweight replacement of virtual

machines (VMs). Because of the negligible runtime overhead, containers have a much

higher deployment density per physical host than VMs. Although VMs are still widely

used in the Infrastructure as a Service (IaaS) space, we see Linux containers dominating

the Platform as a Service (PaaS) landscape. The DocMan design keeps the lightweight

property by using a black-box approach with minimized runtime overhead.

Micro-services architecture. The need for management and orchestration systems

capable of scheduling, deploying, updating and scaling the containerized applications is

crucial. This is especially true with the rise of the micro-services architecture [mica],

where several software components composing an application. The DocMan’s design

28

tries to explore and clarify the dependencies within these components, acting as an im-

portant tool for micro-services architecture.

The container clustering solutions. To the best of our knowledge, DocMan is the

first tool to detect the dependencies within containerized applications. DocMan leverages

the management utilities’ logs, e.g., from Kubernetes, as input to mine useful information.

3.1.7 Testbed

The experiments are performed on 24 servers with dual-socket and dual-core. The 24

servers are equally distributed across 4 edge switches. The switches are connected with

each other, with an over-subscription ratio of at most 4:1. The servers run Docker version

17.06 on Ubuntu 16.04. The machine learning platform is TensorFlow 2.0, which is a

library for numerical computations using data flow graphs. It supports a wide spectrum

of state-of-the-art deep learning approaches, which includes a class of RNN that has found

practical applications is Long Short-Term Memory (LSTM) .

Experiments use 3 instances of RUBiS (9 containers), 6 instances of Hadoop MapRe-

duce (60 containers), 3 instances of Sparks Streaming (30 containers), 3 instances of iPerf

(9 containers), 3 instances of Redis (9 containers), and 3 instances of Storm (27 contain-

ers) resulting in a total of 144 containers cluster running a variety of business, batch

workloads and internet services.

3.1.8 Workload and Metrics

Apache Hadoop MapReduce(v2.7.1) [had] is a programming model for process vast amounts

of data in parallel on large clusters. We use 6 instances of 10 Hadoop MapReduce contain-

ers, one of them is master, the rest are slaves. The MapReduce application Pentomino

29

Figure 3.6: Hierarchical tree generated by clustering algorithm.

is deployed to Hadoop for LSTM model testing. The applications of Word Count and

Secondary Sort are deployed into Hadoop instances for performance testing purpose.

Apache Spark Streaming(v1.4) [spa] is a big data analytics system. We use three

instances of 10 Spark Streaming containers for master nodes and worker nodes. The

master node starts the master process and the built-in standalone cluster. Each worker

is responsible for launching the executor process. The Spark machine learning applica-

tion Word2Vec with 10GB input data and the MapReduce applications of Word Count,

Secondary Sort are deployed into Spark instances for performance testing purpose.

iPerf3 [ipe] is a tool for network performance measurement and adjustment. It is an

important cross-platform tool that generates standardized performance measurements for

any network. We use three instances of iPerf containers, where every instance having one

server and two clients.

RUBiS(v1.4.2) [rub] is an auction site benchmark modeled after eBay.com. A PHP

version of RUBiS is used, which has an Apache web server front end and a Tomcat appli-

cation server connecting with a MySQL backend database. The benchmark is produced

by adopting a web simulation client. The client performs 2000 rounds basic website ac-

tivities such as register a new account, sell the item, browse item, view homepage, bit

the item and so on. All containers within each instance are interactive and will have the

strong network I/O dependencies.

30

Apache Storm(v1.1.3) [sto] is a distributed real-time computation system. It makes

easy to process unbounded streams of data. We set three instances of 9 Storm containers,

three of them are ZooKeepers, one of the containers is Nimbus, and the rest of them are

Supervisors. The tasks of Reach, RollingTopWords and Topologies of WordCount

are deployed onto the instances respectively.

Redis(v3.2) [red] is an open source data store structure implementing a distributed, in-

memory key-value database with optional durability. We use three instances of 3 Redis

containers, which one of them is the server and two of them are clients.

3.1.9 DocMan’s Functionality Evaluation

We evaluate DocMan’s functionality from following four perspectives:

• The accuracy rate for recognizing the correct set of the container ensembles.

• The benefits of the findings for improving container applications performance through

the comparison of the throughput and latency between initial containers placement

and final containers placement.

• The potential resource saving by using the deep learning prediction.

• The runtime overhead induced by the DocMan toolset.

DocMan Dependency Detection Accuracy Rate

Figure 3.6 shows the hierarchical trees constructed by using the decreasing dependencies

strength. We firstly determine a N ∗N correlation strength matrix, and then run the hierar-

chical clustering algorithm over the distance matrix. It shows the calculated dependencies

between the containers being observed, which are generated by R [r]. It also demonstrates

that DocMan can effectively recognize most of the underlying containers dependencies in

31

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Average ROC curve (area = 0.93)
ROC curve of RUBiS (area = 0.89)
ROC curve of Hadoop (area = 0.90)
ROC curve of iPerf (area = 0.97)

Figure 3.7: ROC curve shows the accuracy of DocMan black box method. The overall
accuracy area is 0.93, which is considered as excellent level.

the testbed. Meanwhile, DocMan finding container ensembles process does not require

any code injecting or modification to the containers or the applications to obtain these

results.

Figure 3.7 shows the ROC curve results of the classifiers, which is a graphical plot that

illustrates a binary classifier system’s diagnostic ability as its discrimination threshold

is varied. In our cases, it is more complicated than the binary classifier since multiple

applications can be co-existing in the same cluster. We depict three classifiers accuracy

results of RUBiS, Hadoop MapReduce and iPerf, and the overall average accuracy line,

which is calculated based on the separate accuracy results. The average accuracy is 92.0%

and the overall underline average area of ROC is 0.93, which 1 means a perfect result. An

area of 1 represents a perfect test; an area of 0.5 represents a worthless test. The result

shown in the Figure 3.7 is considered as an excellent one.

DocMan’s Potential Benefits

After determining the container ensembles, we next evaluate the benefits of using this

obtained information as inputs for improving container placement on the hosts.

Figure 3.8 shows the mapping of applications to host and rack before and after the

arrangement driven by DocMan’s insights. We set the bandwidth between the different

32

Hadoop OthersRUBiS Iperf Storm Spark

Rack 1 Rack 1Rack 2 Rack 2

Rack 3 Rack 3Rack 4 Rack 4

After Relocation

Figure 3.8: Before and after containers mapping.

racks to a 10Mbps limited dual segment to simulate the saturation of the upper network

traffic. Based on the internal dependencies of the collection, we put the same instance

application in a rack to avoid saturated network traffic and then prove that the new place-

ment strategy can optimize applications performance. Here, the assumption is that the

performance bottlenecks are not located in CPU or memory.

Figure 3.9 presents the comparison results for RUBiS instance before and after ar-

rangement. There are three different RUBiS running periods statistic data from 2000

rounds basic website activities. The periods are up ramp, runtime session, down ramp,

and wrap them up as the final overall statistic. It shows that the average throughput after

the arrangement has increased by an average of 1.93x because the new placement effec-

tively avoids saturated networks.

Figure 3.10 presents the enhanced performance of Hadoop MapReduce and Spark

instances. It shows that the performance for Hadoop MapReduce is averagely increased

by 33.4%, and performance for Spark is averagely increased by 7.9%. In the experiment,

the Word Count data source is generated by a program that randomly selects words from

33

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00

1 0

2 0

3 0

T i m e (S e c o n d)

 D a t a b a s e T r a n s i m i t t e d B e f o r e A r r a n g e m e n t

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

 D a t a b a s e T r a n s i m i t t e d A f t e r A r r a n g e m e n t
Th

rou
gh

pu
t:

Nu
mb

er
of

Pa
cka

ge
 pe

r S
ec

on
d

(a) Throughput comparison for RUBiS database transmitted package numbers.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00
1 0
2 0
3 0
4 0
5 0
6 0

 F r o n t e n d T r a n s m i t t e d B e f o r e A r r a n g e m e n t

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

 F r o n t e n d T r a n s m i t t e d A f t e r A r r a n g e m e n t

Th
rou

gh
pu

t:
Nu

mb
er

of
Pa

cka
ge

 pe
r S

ec
on

d

T i m e (S e c o n d)
(b) Throughput comparison for RUBiS frontend transmitted package numbers.

Figure 3.9: Throughput comparison for RUBiS before arrangement and after arrange-
ment. It shows after arrangement the throughput increased averagely 1.93 times than
before arrangement.

the dictionary file and then counts the number of occurrences of each word in the given

input set. The Secondary Sort problem involves ordering values associated with keys

in the decreasing phase.

These experimental results show that dependency perception enables container place-

ment to gain performance, demonstrating that the information obtained using the DocMan

toolset can help improve container placement and migration operations.

34

1 0 0
M B

5 0 0
M B 1 G 2 G

5 0

1 5 0

2 5 0

0

1 0 0

2 0 0 B e f o r e
 A f t e r

Ru
nn

ing
 Ti

me
 (S

ec
on

d)
D a t a S i z e

T i m e C o n s u m p t i o n D e c r e a s e d

(a) Latency comparison of Hadoop Secondary Sort application.

1 0 0
M B

5 0 0
M B 1 G 2 G

0
1 0
2 0
3 0
4 0

T i m e C o n s u m p t i o n D e c r e a s e d B e f o r e
 A f t e r

D a t a S i z e

Ru
nn

ing
 Ti

me
 (S

ec
on

d)

(b) Latency comparison of Spark Word Count application.

Figure 3.10: Latency comparison of Hadoop application and Spark application before
arrangement and after arrangement.

DocMan’s Prediction of Containers Workload Pattern

To further leverage the results from DocMan, we set the deep learning neuron network

to predict the resource usage. We set up the model as 6 layers, which include 3 LSTM

layers, 2 dropout layers, and 1 dense layer. The dropout layer is a regularization tech-

nique for reducing overfitting in neural networks by preventing complex co-adaptations

on training data. It is a very efficient way of performing model averaging with neural

networks [HSK+12].

Figure 3.11a and Figure 3.11b show the comparison result of resources usage pre-

dicted value with the true value for Spark machine learning task Word2Vec and Hadoop

MapReduce task Pentomino. Predicting a single time point resource usage value is not

35

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0- 0 . 1

0 . 0

0 . 1

0 . 2

No
rm

aliz
ed

 M
em

ory
 Us

ag
e

T i m e (M i n u t e)

 A c t u a l
 P r e d i c t e d
 P r e d i c t e d w i t h M a r g i n

4 0 E p o c h s , 3 . 5 e - 5 E r r o r R a t e

L o w m a r g i n r a t e
f o r s m o o t h c h a n g e s .

(a) Spark Word2Vec memory usage prediction. The memory usage changes smoothly, within
limited epoch times, error rate got converged and only require a limited prediction margin.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0
2
4
6
8

1 0

2 0 0 E p o c h s , 0 . 1 E r r o r R a t e

No
rm

aliz
ed

 Ne
two

rk
I/O

 Us
ag

e

T i m e (M i n u t e)

 A c t u a l
 P r e d i c t e d
 P r e d i c t e d w i t h M a r g i n

L e s s m a r g i n r e q u i r e d .

(b) Hadoop Pentomino network I/O usage prediction. The network I/O usage changes suddenly
around the time point 200. The prediction model learns the unexpected change gradually, less
prediction margin required along with the accuracy increasing.

Figure 3.11: Resource usage comparison between the actual value and the prediction
value.

much meaningful since that will not give a chance for the system to automatically or

manually adjust the resource arrangement. We set 50 steps as a prediction period for

the normalized value. Figure 3.11a shows a smooth changing about memory usage, the

prediction error rate converged to 0.0001 after 40 epochs training. Meanwhile, 10% pre-

diction margin will cover all the actual value forming as a sealed envelop. Figure 3.11b

shows the resource usage with a dramatic (increased more than 200%) change during its

running time. The prediction margin needs to set as 100% to cover all the actual value.

However, along with the learning process, the error rate decreased quickly. After 100

time period prediction, the required margin decreased to less than 25%.

36

0 1 2 3 4 5
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5

No
rm

aliz
ed

 CP
U

Uti
liza

tio
n R

ate

T i m e (D a y)

 A c t u a l
 P r e d i c t e d
 P r e d i c t e d w i t h M a r g i n

2 5 0 E p o c h s , 0 . 1 3 E r r o r R a t e

(a) Comparison result of the CPU utilization true value and the prediction value.

0 1 2 3 4 5
0

2 0
4 0
6 0
8 0

1 0 0

 A c t u a l
 O v e r - P r o v i s i o n i n g
 P r e d i c t e d w i t h M a r g i nCP

U U
tiliz

ati
on

 (%
)

T i m e (D a y)

R e s o u r c e S a v i n g 1 4 . 9 %

(b) Comparison result of the hard coded resource over-provisioning with the predicted value with
reasonable margin.

Figure 3.12: Microsoft Azure trace prediction for a CPU intensive task. (VM id: YANkW-
PlG)

Figure 3.12 shows the prediction value about a CPU intensive server in Microsoft

Azure from its traces [CBM+17]. For this CPU utilization trace, we use the prediction

result showing in Figure 3.12a to compare it with hard-coded over-provisioning, there is

14.9% resource saving potentially. Figure 3.12b shows its CPU average utilization is over

70% and has the regular tidal pattern. If the utilization keeps in idle status or keeps in

spike status, there is not much saving space for hard-coded over-provisioning.

Figure 3.13 shows the relationship between running time and prediction error rate

when increasing training epoch. The running time increases linearly with the epoch in-

crement. The error rate decreases when epoch increasing at the beginning, however, after

it reached some point, it will gradually stop decrease, even increase in the figure of 200

epoch, which is caused by model over-fitting.

37

0 5 0 1 0 0 1 5 0 2 0 00

5 0 0

1 0 0 0

1 5 0 0 R u n n i n g T i m e (S e c o n d)
 R o o t M e a n S q u a r e E r r o r

E p o c h
Ru

nn
ing

 Ti
me

 (S
ec

on
d)

0 . 2 5

0 . 3 0

0 . 3 5

 Ro
ot

Me
an

 Sq
ua

re
Err

or

Figure 3.13: The average running time of generating the prediction model and each
model’s mean squared error for different epoch set up.

5 1 0 1 5 2 0 2 5 3 0
0 . 1

0 . 2

0 . 3

Ro
ot

Me
an

Sq

ua
re

Err
or

F o r e c a s t T i m e P e r i o d

 B a s e l i n e
 1 0 E p o c h 5 0 E p o c h
 1 0 0 E p o c h 1 5 0 E p o c h

D e c r e a s e d 2 6 . 9 % A v e r a g e l y

Figure 3.14: Compare LSTM different epoch results with default prediction method.

Table 3.1: Compare With Other Monitoring Tools

Monitor Tool Code Base Memory Cost CPU
Peak

CPU
Average

DocMan 3100 Lines 0.55GB 8.8% 7.8%
Wireshark 30MB 1.20GB 68.0% 14.3%

tcpdump 931KB 0.05GB 10.0% 7.5%

Figure 3.14 shows the result of using LSTM to do the prediction compared with the

baseline prediction. The epoch from 10 to 150, all the results are better than the base-

line result, the best one decreases the error rate about 26.9%, that will provide a more

meaningful hint to the resource management tool or cloud service provider.

38

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 2 0 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0

 D o c M a n
 W i r e s h a r k
 T c p d u m p

T i m e (S e c o n d)
Me

mo
ry

Us
ag

e (
GB

)
(a) Memory usage.

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 2 0 00
1 5
3 0
4 5
6 0
7 5

 D o c M a n
 W i r e s h a r k
 T c p d u m p

T i m e (S e c o n d)

CP
U U

sa
ge

 (%
)

(b) CPU usage.

Figure 3.15: Overhead comparison between DocMan, Wireshark and tcpdump.

DocMan’s Overhead Analysis

Table 3.1 shows the comparison of DocMan and other two popular network monitoring

tools, Wireshark and tcpdump. It demonstrates the attributes of the DocMan toolset’s low

overhead and lightweight feature.

To analyze the overhead of DocMan toolset, the first phase of correlation detection has

no extra overhead because the resource utilization information is existing in the container

management systems such as Kubernetes. The second phase of distance identification and

clustering has a complexity of O(N2), where N represents the number of the containers.

The third phase of offline prediction model training will not introduce new overhead for

the online containers.

Figure 3.15 shows the overhead of DocMan toolset comparing with Wireshark and

tcpdump. Wireshark is a widely-used protocol and network package analyzer. Tcpdump

is a command line tool that analyzes common network packet. Figure 3.15a shows that

39

Wireshark uses 5 times more memory than tcpdump or DocMan. For DocMan clustering

step, it runs on every 50 seconds periodically. The memory additional usage is stable and

as low as 20MB. Figure 3.15b shows the CPU usage overhead. To launch Wireshark, it

incurs a CPU burst. It can potentially impact other running container applications because

it costs high CPU computation within a short period. Although after it goes to the stable

status, it also consumes more CPU resource than DocMan. The CPU usage for tcpdump

is similar to DocMan. However, DocMan can provide more insights to container service

providers than a simple package analyzer.

3.1.10 Discussion

In this section, we discuss the open questions and current limitations of our prototype

DocMan.

Potential drawback of the hierarchical clustering algorithm. Hierarchical cluster-

ing results may suffer from the chain-effect. The Single-link method merges the clusters

whose two nearest neighbors have the smallest distance, which makes this approach sen-

sitive to noise. Once a point would be assigned to a cluster, it will not be considered

by joining into other clusters, which may lead to noisy points interruption. The exper-

iments demonstrate the hierarchical clustering algorithm’s effectiveness, but it is better

to have other clustering approaches compared and evaluated if the noisy point can cause

inaccurate results.

A finer granularity containers dependency level detection. DocMan focuses on the

non-intrusive property to keep the container image isolation. Hence, we try to leverage the

existing available server logs in management utilities. If we remove the constraint, then

we can get a deep insight into containers relationships, such as sequential dependency and

complementary dependency by using the container application level logs.

40

Bi-section network resource performance bottleneck heuristic. The heuristic may

not always the root cause of performance latency, especially when the instance of contains

does not have frequent network communications. In our evaluation, the time-sensitive

instance got tremendous performance improvement such as RUBiS compared to Hadoop.

However, even though the performance improvement is not noticeable, DocMan provides

useful insights for the CaaS management tool to make future sophisticated decisions on

container configuration, deployment, and placement.

Incorporate with incremental learning mechanism. The server resource log input

data is continuously generated which can be used to extend the existing model’s knowl-

edge i.e. to further train the model. It represents a dynamic technique that can be applied

when training data becomes available gradually over time or its size is out of system

memory limits. Our static offline training model is expected to gain more accuracy by

adapted to facilitate with incremental learning mechanism.

3.2 Summary

In this part of work, we study the dependency detection problem in a public CaaS cloud

environment. First, we identify that there exists hidden dependencies between containers

that belong to the same application by monitoring their resource usage statistics at run-

time. Second, we design a black-box toolset called DocMan to detect these dependencies

with negligible overhead. Third, we evaluate the accuracy of DocMan with real-world

containerized applications.

DocMan’s methods are fully implemented, but additional work is required for using

it to continuously detect and manage containers at cloud-scale. For example, we need

to filter out background traffic noises (i.e., heartbeat packets), since such traffic might

otherwise be interpreted as intra-ensemble communications. We also plan to leverage

41

DocMan’s insights to guide the container placement, thus improving containerized appli-

cation’s performance and amortizing the expenses related to their debugging and mainte-

nance.

42

CHAPTER 4

ADAPTIVE REPLICATION OF HOT/COLD BLOCKS OF DISTRIBUTED

SYSTEMS

4.1 Introduction

With the advent of cloud computation and development of infrastructure as a utility, we

witness the emergence of Big Data industries based on data-intensive services i.e. Social

Networking, Online Services especially over the last decade imposing computational,

data and network traffic on the host servers. From the traditional centered file system, the

industry moved towards the distributed scalable file system utilizing MapReduce frame-

work i.e. HDFS [B+08], GFS [DG08], Dyrad [IBY+07] to cope up with the need of pro-

cessing millions of user requests every second. Data replication mechanism has facilitated

the way of fault tolerance and data availability in the distributed systems. Hadoop [had]

is one of the state-of-the-art open source platforms to handle large scale data-intensive

applications. Even though HDFS provides scalable and efficient data processing along

with fault-tolerance [S+10], data access and data movement overheads due to high disk

I/O are primary bottlenecks of its current architectural design [SRC10, LW14].

Data replication is a widely used mechanism in the distributed systems to reduce the

overall bandwidth consumption, response time and increase data availability. With the

advancement and development of various technologies, new data replication and replica

management approaches, both static and dynamic, have been proposed to achieve adap-

tiveness and better performance [W+10].

Data replication and placement in Hadoop are uniform where the load balancing and

the data locality for optimization are mostly handled by the applications. Trace driven

log data analysis and experiments of different popular websites such as Yahoo! and Mi-

crosoft’s Bing depict the existence of skewed popularity of different data and hotspots in

43

clusters [KC13, A+11]. Consequently, keeping the uniform replication for every file with-

out considering their popularity leads to performance overhead incurring data contention

in the nodes denoted as hotspots where the popular data file resides. These drawbacks

of HDFS architecture have lead to different dynamic approaches for the replication man-

agement. Based on the predictive analysis while keeping redundancy of data storage,

dynamic adjustment of replication and replacement has been adapted, and improved al-

gorithms have been introduced to effectively alleviate hotspots and data contention in the

existing design [A+11, B+15, ALC11, VRMB11, AO15]. User access histories analy-

sis, probabilistic prediction of data utilization have been included to effectively figure out

the Hot and Cold blocks triggering the replication management [LMC15, A+10, DL12].

Improvement in data availability has been achieved with replication of popular data in

more locations than the default one. Replica placement also has been considered in these

dynamic approaches [SCW+12].

In fact, memory access I/O bandwidth is much higher than that of disk access band-

width while processing user requests in the clusters. Conventional way of HDFS supports

saving and loading each block from the disk resulting in I/O overhead incurring significant

performance issues. Moreover, existing HDFS design cannot take the full advantage of

the high-performance networks efficiently due to the high latency disk access. Combining

in-memory I/O processing, HDFS can potentially overcome the issues.

On the other hand, in-memory storage systems allow applications to cache the results

of the queries across the cluster nodes resulting in improved performance in SQL on-

line query processing [I+14]. So this introduces the possibility of adapting in-memory

processing power in the existing design of distributed Big Data storage systems, and mo-

tivating to explore the answers of following questions:

• To improve I/O performance, can we leverage in-memory processing and caching

concepts in the traditional HDFS?

44

Client

NameNode

DataNode

MetaData
Metadata Ops

MemCached Clusteris
C

o
ld

->
R

e
a
d

() isHot->Read()

DFS InputStream

Cold Queue Hot Queue

LRU LRUMRU MRU

DataNode

is
C

o
ld

->
R

e
a
d

()

DataNode

Figure 4.1: MemCached server integration with HDFS to dynamically replicate popular
blocks.

• How much overall performance improvement can be achieved with dynamic repli-

cation factor for Hot blocks while keeping the existing default replication for Cold

blocks?

• Can data contention be alleviated or reduced for DataNodes of HDFS by using

distributed in-memory processing?

MemCached [Fit04] is a cost-efficient, high-performance distributed memory caching

system to reduce the disk I/O access. It is designed as an in-memory key-value store to

speed up the data access in the dynamic real-time applications. Leveraging MemCached,

popular Social Networking site Facebook obtained improved performance while provid-

ing almost real time communication for millions of users [N+13].

Integration of MemCached servers in the existing design can either be co-located with

the DataNodes or on the separate nodes in the cluster. Placing MemCached servers in a

separate location other than the DataNodes will result in reduction of contention. Uti-

45

lizing MemCached as the main replication block for popular Hot blocks, to reduce the

load of reading blocks from HDFS and quickly access to the data, can improve overall

performance while maintaining the default replication for fault-tolerance. Overheads of

adding and deleting replicas in hard disks consume more computational power and each

time the popular file is accessed, it needs to be read from disk according to traditional

model. Whereas using MemCached caching capabilities, popular temporal data can be

loaded in memory for the faster access and updated based on the timely access to add

more replicas when required or deleted when they lose the popularity. The data popu-

larity can be modulated by implementing an efficient dynamic replication algorithm for

MemCached. This is more effective and efficient than the conventional approaches of

changing the replication factor frequently in HDFS, as it significantly mitigates the disk

I/O bottleneck and increasing instant data availability. So in a nutshell, integration of

MemCached sever along with HDFS, can be exploited to answer all the above mentioned

questions and guarantee high I/O throughput, performance gain for specific Hot blocks

and finally reduced data contention in hotspots. Figure 4.1 shows the basic ideas to inte-

grate these components together to fulfill the expected requirements. The different steps

involved in accomplishing the proposed design can be outlined as

1. Configuration of MemCached server on separate nodes in cluster with HDFS for

the further experiments.

2. Implementation of effective and dynamic data replication algorithms using Mem-

Cached as a caching layer.

3. Evaluation of the proposed system’s performance to compare with existing system.

46

4.2 Architecture Design

Although different studies have been conducted to improve the dynamic replication man-

agement, there exist different trade-off among the various design choices. Therefore, we

propose a toolset integrating MemCached as a caching layer to handle data popularity for

dynamic replication management with new proposed algorithm.

4.2.1 Data Generation

BigDataBench [big] is used as a benchmark for the work and generated synthetic text

data using its big data generation tools named BDGS (Big Data Generator Suite). BDGS

module generates data in three steps:

• Application-specific and real-world data selection.

• Generation models construction, parameters and configuration derivation from data.

• Provide extensive workload testing.

After data generation, we integrate multiple workloads in BigDataBench to process

the data set. The Wikipedia entries are used as the dataset and are processed to two

different workloads Word Count and grep. Different sizes of data files are generated as

input into HDFS.

4.2.2 Dynamic Model to Copy Hot Blocks to MemCached

HDFS plays the role as data saving layer, it is usually shared by multiple upper level ap-

plications. That means it will be hard to expect all these applications using the consistent

way to access data from HDFS. Using the predefined Vanilla model will not be able to

cater to variety access patterns to the data.

47

To more effectively use the limited space in memory, we propose the WLRU-MRU

collaborative dynamic replacement algorithm. Its main idea is that each accessed data

block will have a higher possibility to be accessed again soon that will have a much

higher weight in the priority queue. But along with the time, the possibility to access it

again will be decreased much more quickly until it is not worth to stay in the memory.

However, during the decay process, if a data block is being hit by any application, it will

be granted more life time, and back to the original decay speed.

Algorithm 1 shows the procedure of how to move the data block in Hot queue and

Cold queue in MemCached by combining LRU and MRU algorithm to collaboratively do

the replacement. LRU makes up for the deficiency of the LRU by introducing the concept

of two checks. MRU replacement policy as the most recently used data block will be

evicted, when a block of data is missing. The time prediction of MRU is higher than

LRU. As for subsequent call for the Hot blocks get the data from MemCached server,

read I/O performance will be improved as the fact is that memory I/O is much more faster

than disk I/O.

4.2.3 Caching with MemCached

The proposed design leverages a caching mechanism which can improve the system per-

formance and perform task based on time sequence. Since MemCached is a key-value

in-memory storage, it is customized to store the detected Hot data blocks over a certain

period of time. All DataNodes will be configured with local MemCached which will en-

sure data locality. When specific block becomes Hot, for the first time we will have to set

the contents in MemCached as key-value pair. For all the subsequent calls, it will be read

from MemCached rather than DataNode till the blocks remain Hot.

48

Algorithm 1: Dynamic collaborative replacement algorithm
Input: Label M, Label N

1 if (M==0) //datablock is not in MemCached. then
2 if (N==0) //tag hit is 0 then
3 LRU; //call LRU
4 Replace(bottom); //replace the data at bottom
5 MoveDown(other data); //other data move down in turn

6 if (N==1) //tag hit is 1 then
7 MRU;
8 //call MRU
9 Replace(top); //replace the data at top

10 MoveUp(other data); //other data move up in turn

11 if (M==1) //datablock is in MemCached. then
12 if (N==0) //tag hit is 0 then
13 MRU; //call MRU
14 minHeap.put(<hitData.id, hitData.weight++>);
15 MoveUp(other data); //other data move up in turn

16 if (N==1) //tag hit is 1 then
17 LRU; //call LRU
18 maxHeap.put(<hitData.id, hitData.weight++>);
19 MoveDown(other data); //other data move down in turn

49

Advantages of MemCached over other approaches are that it can handle high memory

load for it’s distributed characteristics, responds quickly and finally provides accurate

expiration times. Since the main focus is replication depending on time, MemCached has

the advantages over other in-memory key-value storage and it perfectly suits in the design

choice.

4.2.4 Evaluation Metrics

To compare the performance of the proposed model, we need the benchmark performance

which was gathered from the initial log analysis of Hadoop without any modification and

the one with vanilla MemCached integration, which using a simple threshold value to

control the Hot/Cold blocks. Job execution time, I/O throughput, CPU usage and memory

usage are considered as the performance metric for all the workloads. All of the metrics

will be recomputed using modified replication management scheme in Hadoop and will

be used to evaluate the overall performance.

To evaluate the proposed design, we analyze the same performance metrics taken

initially and expecting to get a performance improvement in all the metrics.

Even though we are expecting several improvements, there might be some overhead

involved as follows:

• In case of cache miss, there will be extra overhead in the I/O operation since an

additional layer is involved.

• Since the Hot blocks will get change over time, updating the MemCached will be

another overhead.

• Due to the limited size of caching, we have to design an approximate policy for the

blocks replacement in MemCached.

50

4.3 Experimental Results

The test is performed on the server that has two Intel processors, 16GB of memory and

6TB hard drives. The different sizes (from 100GB to 500GB) of data is generated with

BigDataBench BDGS module and, performed two different operations on these synthetic

data. The experimental results includes i) identification of Hot and Cold blocks in HDFS

(Hadoop 2.8.2 [had]), and ii) Exploration of the initial performance metrics of the system

from log analysis.

4.3.1 Dynamic Hot and Cold Block Detection

To detect which blocks are hot and which are cold in HDFS, first we generated a 60 min

stream of block access using randomization. Then, we analyzed the Global map to get

the number of the read count for each block. In the settings, 16 data blocks are stored in

the Hadoop cluster, each block contained 524MB data generated by BDGS.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 60

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

Re
ad

 Co
un

t

F i l e B l o c k I d

 R e a d C o u n t

The top three access blocks.

Figure 4.2: Read count of HDFS data blocks

Figure 4.2 shows the read count history of each 16 data blocks of the HDFS. Here, data

block 1, 2, and 12 are the top three blocks accessed during the time period. Meanwhile,

51

data block 5 is the least accessed block. Global key-value store is used, so every node in

the Hadoop cluster can access the status of Hot and Cold Blocks.

To detect the Hot and Cold block dynamically, it is required to find the trace of num-

ber of block reads in the real time. And from the trace we find out that, DFSClient

actually sends a read or write request directly to DataNode, where as NameNode only

provides DFSCLient with the list of located DataBlocks which is then used to read the

blocks. Since DFSClient reads the file directly from DataNode, if to modify the NameN-

ode to detect Hot and Cold blocks, we would have to send the packets over network from

DFSClient to NameNode every time for a successful read which would result in extra net-

word overhead. So DFSInpustream which reads the data from DataNode seems to be the

optimal place to inject the modification. Also we use HashMap, Global key-value store,

so every node in the Hadoop cluster can access the status of Hot and Cold Blocks.

Using any other kinds of storage for keeping record of Hot/Cold status, like file will re-

sult in more I/O overhead and might hurt the improvement gain. So using the in-memory

key-value store for Hot and Cold block detection is leveraged for the higher performance.

This will enable the function to analyze the HDFS file access in real time and detect the

Hot blocks in the system.

4.3.2 Vanilla Model to Copy Hot Blocks to MemCached

In this vanilla model, MemCached is used as a caching system to alleviate the loads of

user requests based on a predefined threshold value. Algorithm 2 describes the Hot block

detection mechanism. When DFSClient requests for a specific data block, NameNode

looks for all the available DataNodes options and return the LocatedBlocks as a list to the

client. Then the client processes to choose the best node and passes the request to DFSIn-

putStream to handle packet transfer from DataNode. DFSInputStream uses BlockReader

52

and PacketReceiver sequentially to read the packets from the stream. Then checking the

access pattern in DFSInputStream read function to update the access counts in a map as

key-value. When the access count for any block reaches the predefined threshold, the

system will apply caching techniques.

We compare the proposed design with this vanilla model and the default HDFS in-

frastructure. Since MemCached has the expiration time, if a block becomes Cold after

certain period, it will be automatically deleted which let the vanilla model also serves the

purpose of simple dynamically changing replication.

Figure 4.3 shows the process of moving in the Hot block and moving it out when it be-

comes Cold. This process does not require any complicated calculation, but it is required

to define the Hot block threshold and the expire time in advance. These setups require

the experience of using the HDFS applications, meanwhile, the applications accessing

data blocks method tends to be consistent during the life cycles. The log analysis process

(CPU uses, memory uses, job execution time) will be performed again after copying Hot

files in MemCached and then compare the results with the previous one.

All data blocks are not accessed uniformly in HDFS. Depending on the popularity,

different blocks could be accessed more frequently than the others making the residing

DataNodes hot. So, detecting the Hot and Cold blocks dynamically using the access

history is one of the main challenges. Dynamic detection steps include populating the file

access stream with a randomized scheme over a certain period of time to represent the

real life scenario. During the streaming time, we analyze the file access requests from the

DFSClient (Distributed File System Client) and the most frequently accessed file will be

identified as Hot blocks for the future steps.

53

Algorithm 2: Dynamic Hot and Cold block detection
Input: BlockID and SequenceNo of CurrentLocatedBlock that is being read

from DFSClient, Map with (BlockID,AccessCount), threshold
Output: Set status of BlockID

1 key = CurrentLocatedBlock.BlockID+SequenceNo;
2 if (key exists in Map) then
3 AccessCount = Map.get(key)+1 ;
4 Map.put(key,AccessCount, timer) ;
5 else
6 Map.put(key,1, timer) ;
7 end
8 AccessCount = Map.get(key);
9 if AccessCount > threshold then

10 status(BlockID) = hot;
11 Set BlockID content in MemCached ;
12 else
13 status(BlockID) = cold;
14 Normal operation;
15 end

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 00

1

2

3

4

5

6

7

8

T h r e s h o l d

M e m c a c h e d
r e s e t

Hit
 Co

un
t

T i m e (S e c o n d)

 H i t C o u n t
 H i t C o u n t A c c u m u l a t e dM e m c a c h e d

Figure 4.3: After hit count is over the predefined threshold, the block is defined as Hot
and MemCached records it. After a specific period, once the hit count stops increasing,
MemCached will reset the records and release the occupied memory.

54

1 0 0 2 0 0 3 0 0 4 0 0 5 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Jo
b E

xe
cu

tio
n T

im
e (

Mi
nu

tes
)

D a t a S i z e (G B)

 T r a d i t i o n a l
 W i t h M e m C a c h e d V a n i l l a
 W i t h M e m C a c h e d W L R U - M R U

E x e c u t i o n T i m e D e c r e a s e d

Figure 4.4: Word count execution time.

4.3.3 Performance Analysis

To gather the current system performance metrics, we used two workloads from BDGS:

Word Count and Grep. The workloads are applied on different sizes of data stored in

HDFS. Word Count data source is generated by the program which randomly picks words

from a dictionary file, and then counts the number of occurrences of each word in the

given input set. Grep extracts matching strings from text files and counts how many time

they occurred.

Figure ?? shows the jobs execution time comparison results between original HDFS

framework and the proposed dynamical model design. Figure 4.4 is about Word Count

execution time. It shows after applied new design, the execution time decreased, es-

pecially for the bigger data size input, the decreased time is much more remarkable. For

400GB and 500GB file size input, the execution time decreases 36% and 29% respectively

comparing to the default setup, even 10% and 17% comparing to the vanilla MemCached

integration. Figure 4.5 is about Grep execution time. Although there is no clear trend

55

1 0 0 2 0 0 3 0 0 4 0 0 5 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Jo
b E

xe
cu

tio
n T

im
e (

Mi
nu

tes
)

D a t a S i z e (G B)

 T r a d i t i o n a l
 W i t h M e m C a c h e d V a n i l l a
 W i t h M e m C a c h e d W L R U - M R U

E x e c u t i o n T i m e D e c r e a s e d

Figure 4.5: Grep execution time.

of the impact for execution time along with data size increasing, the performance still

increased after integrating with MemCached.

Figure 4.6 shows the evaluation of read performance in terms of throughput. The

throughput factor is not much sensitive with the changes of input data size. Worth to

note is, that after implementing MemCached, both Word Count and Grep got increased

throughput, since Hot block data are available to be retrieved from memory which far

quickly than retrieving data from the disk. Since the experiments are performed on syn-

thetic datasets and randomizing the file access pattern to simulate the real life scenario,

we need to figure out optimal threshold of time window in MemCached to set after which

the data will expire.

For the overhead analysis, Figure 4.7 shows that 60s expiration window is the optimal

one in the testing cases and CPU time is the lowest for this configuration which is even

lower than the original default HDFS setup. The reason can be explained as the I/O wait

time is negligible because of the in-memory caching. That means deployed MemCached

would cost some CPU resource, but the saved I/O wait time can neutralize the impact.

Figure 4.8 shows that, after implementing MemCached into HDFS, the memory cost is

56

1 0 0 2 0 0 3 0 0 4 0 0 5 0 00

1

2

3

4

I/O
 Th

rou
gh

tpu
t (G

B/m
)

D a t a S i z e (G B)

 T r a d i t i o n a l
 W i t h M e m C a c h e d V a n i l l a
 W i t h M e m C a c h e d W L R U - M R U

T h r o u g h p u t I n c r e a s e d

(a) Word count I/O throughput.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 00

1

2

3

4

I/O
 Th

rou
gh

tpu
t (G

B/m
)

D a t a S i z e (G B)

 T r a d i t i o n a l
 W i t h M e m C a c h e d V a n i l l a
 W i t h M e m C a c h e d W L R U - M R U

T h r o u g h p u t I n c r e a s e d

(b) Grep I/O throughput.

Figure 4.6: I/O throughput for word count and grep.

increased, that because these memory cost is majorly used to save Hot block dynamically.

This is the trade-off for the system performance increase. So to implement the proposed

design is based on the circumstance assumption that the nodes are not struggling in mem-

ory usage and there are spare memory spaces to use for performance increase.

57

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5

0

5

1 0

1 5

2 0

CP
U U

sa
ge

 (%
)

J o b E x e c u t i o n T i m e (S e c o n d s)

 W i t h o u t M e m C a c h e d
 M e m C a c h e d 3 0 S e c o n d s
 M e m C a c h e d 6 0 S e c o n d s
 M e m C a c h e d 1 2 0 S e c o n d s

Averagely Lowest CPU Usage

Figure 4.7: CPU usage comparison.

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 50
1
2
3
4
5
6
7
8
9

Me
mo

ry
Us

ag
e (

GB
)

J o b E x e c u t i o n T i m e (S e c o n d s)

 W i t h o u t M e m C a c h e d
 M e m C a c h e d 3 0 S e c o n d s
 M e m C a c h e d 6 0 S e c o n d s
 M e m C a c h e d 1 2 0 S e c o n d s

MemCached
Memory Usage

Figure 4.8: Memory usage comparison.

4.4 Summary

In this paper, we analyze the possibility to improve the HDFS data blocks replication

mechanism. The caching strategy MemCached is leveraged in the design to effectively

replicate the popular blocks in memory. The experimental results show that the proposed

design is able to improve the HDFS based applications’ performance from different per-

58

spectives and has the potential to overcome the critical issues of traditional Big Data

storage systems.

59

CHAPTER 5

STATE RECOVERY OF STREAM PROCESSING DISTRIBUTED SYSTEMS

5.1 Introduction

Data stream processing technology has become a critical building block of many real-

time applications, such as making business decisions from marketing streams, identify-

ing spam campaigns from social network streams, predicting tornados and storms from

radar streams, and analyzing genomes in different labs and countries to track the sources

of a potential epidemic. Over the last decade, a boom of stream processing systems

has been developed including Storm [sto], Trident [ai], Spark Streaming [spa], Bore-

alis [AAB+05], TimeStream [QHS+13], S4 [NRNK10], etc.

A driving need is that today many stream applications need to store and update the

large-sized application state along with their processing, and process live data streams in

a timely fashion from massive and distributed data sets. This poses a significant challenge

to the failure recovery mechanism of state-of-the-art stream processing systems. This is

because (1) stream operators are by nature long-running in which failures and stragglers

are inevitable and very difficult to predict; (2) a large number of stream applications

may run concurrently on the same platform, and many distributed operators may fail

simultaneously; and (3) large distributed states must be restored efficiently after node

failures.

A stream is an unbounded sequence of tuples (e.g., online social network’s microblog

streams) generated continuously in time. A stream processing system creates a logical

topology of stream processing operators, connected in a directed acyclic graph (DAG),

processes the tuples of a stream as they flow through the DAG, and outputs the re-

sults in a short time. DAGs can be implemented via many patterns, such as the parti-

tion/aggregate pattern which scales out by partitioning tasks into many sub-tasks (e.g.,

60

Operator

State

Operator

Stateless Stateful

Figure 5.1: Contrast of stateless stream processing and stateful stream processing.

Dryad [IBY+07]), sequential/dependent pattern in which streams are processed sequen-

tially and subsequent streams depend on the results of previous ones (e.g., Storm [sto]),

and hybrid pattern with sequential/dependent and partition/aggregate (e.g., Spark Stream-

ing [spa], Naiad [MMI+13]). Figure 5.1 shows the contrast of stateless stream processing

vs stateful stream processing. Input records are shown as black bars. A stateless operator

transforms each input record one at a time and outputs each result based solely on that

last record (white bar). A stateful operator maintains the value of state for some of the

records processed so far (in local memory or remote storage) and updates it with each new

input, such that the output (the bar with the pattern) reflects results that take into account

both historical records and the new input. State recovery is the process of recovering

application states when one or many operators fail or lose their states.

Application developers are facing significant challenges in handling many simultane-

ous failures for a large number of concurrently running stream applications.

The first challenge is “how to scale recovery with the size of the state, the number of

simultaneous failures and the number of concurrently running stream applications on a

shared platform?” Existing studies [sto, ai, spa, NRNK10, ab, ae, af, ABC+15, LLP+12,

KBF+15] mostly inherit MapReduce’s “single master/many workers” architecture, where

the central master is responsible for all scheduling activities. As such, they are limited

to a fixed computation model, e.g., asynchronous stream processing like Storm [sto],

synchronous mini-batch processing like Spark[ag], etc. Note that the recovery operation

is a critical consumer of time and space. It must quickly recover all failure operators’

61

lost states on failover nodes (if any) without blocking the normal processing of stream

applications. As a result, it is difficult (or even impossible) for the centralized master to

manage state recovery of a large number of concurrently running applications due to the

inherent centralized bottlenecks.

The second challenge is “how can we handle many simultaneous failures while achiev-

ing fast recovery and imposing low hardware cost?” State-of-the-art stream process-

ing systems offer failure recovery mainly through three approaches: replication recov-

ery [SHB04, BBMS05], checkpointing recovery [sto, ai, QHS+13] and DStream-based

lineage recovery [aa, CEF+17, ZDL+13, SGH+16], which are either slow, resource-

expensive or fail to handle many simultaneous failures. Replication recovery adds sig-

nificant hardware cost because multiple copies must concurrently run on distinct nodes

for failover. Checkpointing recovery is known to be prohibitively expensive, and users

in many domains disable it as a result [MMI+13, ABB+16, PD10, PLGC15, GXD+14].

DStream-based lineage recovery is slow when the lineage graph is long and falls short in

handling multiple simultaneously failures.

We present FP4S, a novel fragment-based parallel state recovery mechanism to ad-

dress the challenges listed above: to efficiently handle many simultaneous failures for a

large number of concurrently running stream applications in a fast, scalable, and lightweight

manner.

FP4S operates as follows: (1) we first organize all the application’s operators into

a distributed hash table (DHT) based consistent ring [RD01] to provide each operator

with a unique set of neighbors; (2) afterward, we divide each operator’s in-memory state

into many fragments using erasure codes [RS60]. Erasure codes operate by converting a

data object into a larger set of code blocks such that any sufficiently large subset of the

generated code blocks can be used to reconstruct the original data object; and (3) finally,

we periodically checkpoint each node’s state in its neighbors, ensuring that different sets

62

of available fragments can be used to reconstruct failed state in parallel. By doing that, this

failure recovery mechanism is extremely scalable to the size of the lost state, significantly

reduces the failure recovery time and can tolerate many simultaneous operator failures.

We apply FP4S on Apache Storm and evaluate it using large-scale experiments with

real-world datasets. Experimental results demonstrate the scalability, efficiency, and

fast failure recovery of FP4S. When compared to the state-of-the-art solutions (Apache

Storm [sto]), FP4S reduces in 37.8% the state recovery latency and reduces more than

half of the hardware costs. It can scale to many simultaneous failures and successfully

recover the states when up to 66.6% of states fail or get lost.

Contributions. We make the following technical contributions:

• We propose a decentralized architecture using a DHT-based consistent ring and

erasure codes to recover the distributed states for numerous concurrently running

stream applications. To the best of our knowledge, FP4S is the first work to use a

fully decentralized architecture for state recovery.

• We implement the FP4S prototype on the state-of-the-art stream processing system

Storm and demonstrate its portability to many other stream processing systems.

• We make a comprehensive evaluation of the scalability, fast recovery and robustness

of FP4S on a large cluster using real-world stream application’s datasets.

5.2 System Design and Implementation

In this section, we describe the basic workflow of FP4S, introduce each component, show

how stream applications’ distributed states are recovered by the FP4S-enabled stream

processing system, and explain the performance, scalability and flexibility benefits of

using FP4S.

63

Src1

Sink

Leaf set
nodes

O1

O3

O2

O4

Src2

Src1

Src2 O1

O2

O3
O4

Sink

O(logN) hops

Layer 3:

Layer 2:

Layer 1:

DHT-based
Ring

Overlay

Stream
Processing

DAGs

Physical
Network

F1 F2
F3

Encoded
fragments

Stream Processing Application

Stateless Stream
Operators

Stateful Stream
Operators

FP4S Interface

states

FP4S Encode

FP4S Save

FP4S Retrieve

FP4S Recompute

The recomputed state is used to resume
the normal stream processing.

Only m number of fragments are
required to recompute state.

n number of fragments are
saved into leaf set nodes.

Input state is encoded into n
fragments of m raw data and k parity.

 FP4S API

Fr
ag

m
en

te
d

 P
ar

al
le

l R
ec

o
ve

ry
 A

lg
o

ri
th

m
Figure 5.2: FP4S system design.

5.2.1 Overview

The FP4S aims to achieve the following goals:

• Resource efficient. Avoid the replication hardware overhead.

• Fast recovery. Avoid the slow recovery of retrieving state from disk and replaying

the data input that hurts the service quality of stream applications.

• Resilient to multiple failures. The mechanism needs to handle multiple simultane-

ous failures due to the much higher node dynamics in large clusters.

As show in Figure 5.2, the FP4S system consists of three layers: The DHT-based

consistent ring overlay, the fragmented parallel state recovery mechanism, and the high-

level FP4S interfaces that are exposed to the stream processing systems (e.g., Storm [sto],

Spark Streaming [spa], Heron [KBF+15]) for implementing the state recovery for stream

applications.

64

• Layer 1: DHT-based ring overlay. Each data center server is installed with one or

many in-situ stream operators, also called “nodes” in this study. We organize these

potentially hundreds of thousands of nodes into a distributed hash table (DHT)

based ring overlay (e.g., Pastry [RD01], Chord [SMK+01]) which is commonly

used in Bitcoin [N+08], BitTorrent [Coh03], and FAROO [ak]. This overlay is

self-organizing and self-repairing. To do that, each node needs to maintain two

data structures: a routing table and a leaf set, in which the routing table is used

for looking for the state (within log(N) hops) and the leaf set nodes are used for

recovering the application state if one or more nodes fail.

• Layer 2: fragmented parallel state recovery. Periodically, the state in each node’s

memory is divided into m identically-sized blocks, which are encoded into n blocks,

where n > m. The n blocks of the state are replicated to n nodes from the original

node’s leaf set nodes in parallel, guaranteeing that the original state can be recon-

structed from any m blocks.

• Layer 3: high-level interfaces to stream processing systems. The high-level

FP4S programming API (Table 5.1) is exposed to the state-of-the-art stream pro-

cessing systems and programmers for implementing the parallel state recovery poli-

cies for concurrently running stream applications, e.g., Storm [sto], Spark [spa], and

Flink [aa].

5.2.2 DHT-based Ring Overlay

FP4S leverages DHT-based consistent overlay [RD01, SMK+01] to support parallel re-

covery of distributed states for a large number of concurrently running stream applica-

tions. In this DHT-based consistent ring overlay (e.g., Pastry [RD01], Chord [SMK+01]),

each node is equal to the other nodes, and they have the same rights and duties. The

65

3021

3232

3222

3223

0112

Routing Table

Routing Table

Start 0112

3021

3232

3222

1.Hop

2.Hop

3.Hop

4.Hop 3223
Leaf Set

Node

(Target)

Routing Table

Routing Table

Start 0112

3021

3232

3222

1.Hop

2.Hop

3.Hop

4.Hop 3223
Leaf Set

Node

(Target)

next nodenext node

Leaf Set

Routing Table

Leaf Set

Routing Table

Leaf Set

Routing Table

Routing TableRouting Table
Prefix

33

0012
0032

1003
0122

2103
0231

3021
0322

0012
0032

1003
0122

2103
0231

3021
0322

......

0012
0032

1003
0122

2103
0231

3021
0322

...

Routing Table
Prefix

3

0012
0032

1003
0122

2103
0231

3021
0322

...

Routing TableRouting Table
Prefix

3232

0122
3002

1123
3110

2003
3232

3111
3301

0122
3002

1123
3110

2003
3232

3111
3301

......

0122
3002

1123
3110

2003
3232

3111
3301

...

Routing Table
Prefix

32

0122
3002

1123
3110

2003
3232

3111
3301

...

Routing TableRouting Table
Prefix
322322

3211
3230

3222
3231

3230
3232

3200
3233

3211
3230

3222
3231

3230
3232

3200
3233

......

3211
3230

3222
3231

3230
3232

3200
3233

...

Routing Table
Prefix
322

3211
3230

3222
3231

3230
3232

3200
3233

...

3220
3210

3221
3212

3223
3301

3233
3310

3220
3210

3221
3212

3223
3301

3233
3310

3220
3210

3221
3212

3223
3301

3233
3310

3210 32123301 33103210 32123301 3310
......

3210 32123301 3310
...

3220
3210

3221
3212

3223
3301

3233
3310

3210 32123301 3310
...

Figure 5.3: The routing process is cooperatively fulfilled by the routing table and the leaf
set.

primary purpose of this model is to enable all nodes to work collaboratively to deliver a

specific service. For example, in BitTorrent [Coh03], if someone downloads some file,

the file is downloaded to her computer in parts that come from many other computers in

the system that already have that file. At the same time, the file is also sent (uploaded)

from her computer to others that ask for it.

Similar to BitTorrent in which many machines work collaboratively to undertake the

task of downloading files and uploading files, we enable distributed stream operators to

work collaboratively to undertake the original centralized master’s failure recovery task.

First, each stream operator maintains an in-memory buffer to store the application state.

Instead of storing states at a remote storage, these distributed stream operators store the

states for each other. Second, these distributed stream operators (nodes) are self-organized

into a DHT-based overlay. Each node is randomly assigned a unique NodeId in a large

circular NodeId space. NodeIds are used to identify the nodes and route stream data. It

is guaranteed that any data can be routed to a node whose NodeId is numerically closest

to the destination node within O(logN) hops. To do that, each node maintains two data

structures: a routing table and a leaf set.

66

1) Routing table: The routing table consists of physical node characteristics (NodeId,

IP) organized in rows by the length of common prefix. When routing a message, each

node forwards it to the node in the routing table with the longest prefix in common with

the destination NodeId. Figure 5.3 shows this routing process of Pastry’s DHT [RD01].

At each routing step, given a key, Pastry routes messages to the node whose NodeId

is numerically closest to the key. The node first checks if the key falls in the range of

the NodeIds’ leaf set. If so, the message is directly forwarded to that node. If not, the

message is forwarded to another node in the routing table whose NodeId shares a common

prefix with the key by at least one more digit (see Figure 5.3 first, second, and third hops).

In some cases, there is no appropriate entry in the routing table or the associated node is

not reachable. Then the message is forwarded to a node whose prefix is the same as the

local node, but numerically closer.

2) Leaf set: The leaf set contains a fixed number of nodes whose NodeIds are numer-

ically closest to each node, which assists in rebuilding routing tables and reconstructing

application’s state when any operator fails (see Sec. 5.2.3, next, for more details).

5.2.3 Fragmented Parallel State Recovery

The parallel recovery mechanism of FP4S leverages the key idea from erasure codes.

Erasure codes operate by converting a data object into a larger set of code blocks such

that any sufficiently large subset of the generated code blocks can be used to reconstruct

the original data object. For example, (32, 16)-Reed-Solomon (RS) code [RS60] di-

vides a data object into 16 blocks and transforms these blocks into 32 coded blocks,

guaranteeing that any 16 out of the 32 coded blocks are sufficient to reconstruct the orig-

inal data object. Erasure codes have been widely used in massive storage systems (e.g.,

OceanStore [KBC+00]), Bar codes (e.g., QR Code [KLM+10]), data transmission tech-

67

......
Routing table

......
Routing table

...

N0

Leaf set
N1 N2N2 N3

Node N5

N0

N1

N2

N5

Path of state recoveryPath of state recovery

s1s1s0s0 s2s2

s5
N6

N0 N1 N2

Figure 5.4: The fragment-based parallel state recovery process.

nologies (e.g., DSL [GDJ07]) and space transmission technologies (e.g., Galileo Probe).

Figure 5.4 shows the steps of the erasure-code-based parallel recovery algorithm.

Built upon Sec. 5.2.2’s DHT-based ring overlay, each node maintains a routing table

and a leaf set. Periodically, the state in each node’s memory is encoded into n identically-

sized fragments, which include m raw data fragments and k parity fragments, where k >=

1,n = m+ k. Then these n fragments of the state are replicated to n nodes in the original

node’s leaf set in parallel. The error correction mechanism of the erasure codes guarantees

that any m out of the n fragments are sufficient to correctly recompute, even though when

some fragments are not available in the leaf set (denoted as e), to reconstruct the original

state. Thus, as long as n− e >= m, the original state is safe to be accurately recomputed

from the node’s leaf set nodes.

• Step 1: encode state. For each node, FP4S converts its current version of state in

a sliding window into n fragments (configurable parameter) according to RSCodes

algorithm [RS60]. These n fragments include m raw data fragments and k parity

fragments. The amount of m and k are configurable.

• Step 2: save state. Each node sends these n fragments to any n of its leaf set nodes.

We ensure that the size of the leaf set is larger than n. We assign the NodeIds

68

to reflect the physical proximity in order to ensure that the leaf set nodes are also

geographical closest nodes that have abundant bandwidth.

• Step 3: retrieve state. Once any failure happens, the retrieve routine is triggered.

A request to obtain the lost state’s fragments will be sent out. To recompute the

lost state, FP4S only requires m amount of n total fragments. These fragments are

stored at the leaf set nodes that are quite easy to access.

• Step 4: recompute state. Finally, the state recompute routine is triggered, which

reconstructs the lost state using erasure codes [RS60]. After that, the recovered

state will be used as input for the downstream operators and we can resume the

normal stream processing.

The benefits are the following: (1) it allows for tolerating a maximum of (n−m)

simultaneous failures; (2) the recovery process is fast. For multiple failures, different

nodes from non-overlapping leaf set nodes can work in parallel to recompute the lost

state, which is faster than DStream’s line-structured recovery that executes strictly in line

with the original lineage graph; and (3) we achieve data locality because the leaf set

contains nodes that are geographically close to the original nodes (e.g., in the same rack

or in the same site) that have abundant upload bandwidth.

5.2.4 FP4S API

FP4S is platform-agnostic and can be easily integrated with stream processing platforms

such as Storm [sto], Spark Streaming [spa], Flink [aa], Timely Dataflow [QHS+13],

Heron [KBF+15], etc. In our design, using FP4S is essentially a configuration option.

Depending on the usage scenario (e.g., stateful or stateless, latency requirement, relia-

bility requirement), users can choose to configure whether and when they want FP4S

support. Table 5.1 shows the FP4S API.

69

Table 5.1: FP4S API

List <Fragment>Encode(int rawDataNumber, int parityNumber, State inputState)
The function is invoked to encode a state into many fragments. The fragment number is
decided by the inputs of rawDataNumber and parityNumber. The output is a list of encoded
fragments with the length of rawDataNumber + parityNumber.
Boolean[] Save(List<>fragment, DHTNetwork dhtNetwork, int numberOfThreads)
The function is invoked to save state into the DHT’s overlay. It generates multiple threads to
concurrently save the fragments. The inputs are the fragments, the DHT overlay information
and the number of threads. The output is a Boolean array that indicates the status of each
fragment.
List<Fragment>Retrieve(String stateName, DHTNetwork dhtNetwork, int num-
berOfThreads)
The function is invoked when a state recovery request is issued.
String Recompute(List<>fragments)
The function is invoked to recover the state. It loops through all the retrieved fragments. If
the number of fragments is equal or larger than the number of raw fragments, the function will
perform further computation to recompute the retrieved fragments into the original state.

5.3 Adaptivity Analysis

5.3.1 Adaptive Parameter Tuning

We provide a theoretical analysis model that can dynamically adjust the size and number

of FP4S fragments to achieve the adaptability of our system. FP4S collects the instrument

data during each episode, uses this data to train the model that will be exported next, and

then configures system parameters for the next episode. The input to the model includes

hardware properties (e.g., network and CPU speed), application characteristics and also

user preferences. Using this information, our models can accurately moderate the number

of data fragments m and parity fragments k to match the requirements for the subsequent

episodes.

FP4S can adjust the value of k so that it can accommodate multi-fragments failures

during the recovery process. Such extra cushion of reliability is particularly desirable

when the application nodes are known to be more failure prone and unreliable. In con-

70

5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

0 . 4

0 . 6

0 . 8

1 . 0

Pro
b o

f s
uc

ce
ssf

ul
rec

ov
ery

o f t o t a l b l o c k s n

 p = 0 . 0 1
 p = 0 . 0 4
 p = 0 . 0 7
 p = 0 . 1

Figure 5.5: Probability of successful recovery.

trary, some other applications (e.g., real-time network monitoring) may opt for faster

recovery time over 100% reliability. FP4S can adjust m and thereby the default size of

each fragment to reduce the recovery latency.

5.3.2 Analysis

In this subsection, we analyze the performance of FP4S with adaptive number of frag-

ments and compare it with the checkpoint-based recovery (e.g., Apache Storm) in the

cluster. We compare the different methods of failure recovery based on three aspects: (1)

the hardware properties (e.g., network bandwidth, disk speed), (2) the application charac-

teristics (e.g., size of the state, size of fragment), and (3) the DAG length characteristics.

Assume the volume of state that is saved in each operator is s bytes. Considering in a

DAG, where the operator A sends its output to the operator B. Let s be the volume of state

in bytes. That means that A retains s bytes of records that it has passed down to B since the

last checkpoint. For simplicy, we only consider buffer state and ignore processing state

71

for the time being. When (and if) operator B fails, operator C takes over and receives s

bytes from A, which must come from reading HDFS or some sort of network file system.

Assuming HDFS bandwidth to be h-bytes/sec, a checkpoint-based recovery scheme such

as used in Apache Storm will take:

Rc =
s
h
. (5.1)

When implementing FP4S recovery instead of checkpointing in the DAG, the buffer

state of node A is periodically backed up in its leaf set nodes. Note that s bytes of buffer

state is first split into m block (i.e., each being s/m bytes), that are then erasure-coded

into n blocks stored in n leaf-set nodes, where n > m. Therefore, s bytes of buffer state

requires sn/m bytes of storage in FP4S, leading to an overhead factor of (n−m)/m.

Note that although only s bytes of state is needed, C still issues for all n coded blocks

in anticipation of any potential failures among the sending nodes. However, after m blocks

are received correctly, C can ignore the remaining amount. Assuming network bandwidth

of η-bytes/sec, this retrieval takes s/η seconds. After that, C can recompute s bytes of

state from these coded blocks, say, at a rate c-bytes/second, which takes s/c seconds.

Therefore, the recovery time of FP4S, denoted by R f , is:

R f =
s
η
+

s
c
. (5.2)

We next consider the reliability aspect of the derived models, which is an impor-

tant metric to consider because of the random node failure that can lead to some non-

determinism. Assume that p is the probability for a node failure at any time. We also

assume that node failure is a Poisson process, which means that previous failures do not

affect the current failure.

When B fails in the DAG and another operator C needs at least m out of n leafset nodes

of A to recover fully. That means, C will recover in a single hop of data transfer, which

72

we assume in our model, if n−m or less nodes from A’s leafset fail. Let the random

variable X denote the event when this happens, i.e., C can recover using A’s leafset nodes

in a single hop, which requires at least m leafset nodes of A are alive at that moment.

Note that if fewer leafset nodes are available, the DHT overlay will reorganize itself and

provide functioning leafset nodes for A;s leafset. However, that would take more time and

our model in (5.2) does not cover that. Therefore, our model reliability is given by:

P(X = 1) =
n−m

∑
i=0

(
n
i

)
pi(1− p)n−i. (5.3)

While there is no close-form solution to the above expression, we perform numerical

evaluations with varying m, then varying n in range [m,2m], and also varying the the node

failure probability p. Results are shown in Fig. 5.5.

Note that another way to interpret our model reliability equation in (5.3) is that it also

works as a measure of FP4S’s efficiency in that the failure recovery takes the minimum

time when the right parameters m and k are chosen. Of course, FP4S will continue to

work without such parameter tuning, although potentially sub-optimal.

Combining (5.1) and (5.2), we get:

Rc > R f ⇒
s
h
>

s
η
+

s
c
⇒ h <

cη

c+η
. (5.4)

We show the effect of (5.4) in Fig. 5.6, where we compare the maximum allowed

HDFS bandwidth h against FP4S’s recompute rate c. The goal is to see up to what speed of

HDFS it is still viable to use FP4S for a given network bandwidth η . It is clear that for the

most realistic values of c, η and h, FP4S is the preferred choice in terms of performance.

5.3.3 Instrumentation requirements

Here we describe the instrumentation requirements FP4S imposes and discuss the issues

we encountered when integrating it with the Apache Storm processing engine.

73

0 5 0 1 0 0 1 5 0 2 0 01

1 0

1 0 0

HD
FS

 b/
w h

 m
ax

im
um

 (M
B/s

)

F P 4 S r e c o m p u t e r a t e c (M B / s)

 � = 1 0 G b p s
 � = 1 G b p s
 � = 1 0 0 M b p s

Figure 5.6: Maximum limit for HDFS rate vs Recompute rate c in FP4S.

In Apache Storm [sto], stream processing applications are deployed and executed

as topologies. The topologies contain the business logics. These logics are formed as

a DAG (directed acyclic graph) and implemented by spouts and bolts. Spouts are the

data sources of the stream, which accept input data from raw data sources like Twitter

Streaming API [as], Apache Kafka queue [ae], etc. Bolts are the logical processing units.

Spouts pass data to bolts and bolts process and produce a new output stream. IRichBolt

is the common interface for implementing bolts.

FP4S interacts with the IRichBolt interface in Storm [sto]. If FP4S is enabled, FP4S

periodically saves the states into the DHT-based ring overlay for all stateful operators

(bolts). For record-at-a-time systems like Storm, saving every operator’s state may incur

a lot of overhead. Instead, we aggregate the states for all the operators except for sources

(spouts) and sinks. The aggregated state size is configurable in order to satisfy different

real-world stream applications’ requirements. After the size reaches a certain threshold,

the Encode function encodes the states into fragments and the Save function puts these

74

fragments into the DHT-based overlay. If any node fails, the leaf set nodes call the routines

to Retrieve and Recompute states on failover nodes. Any qualified available subset of

fragments will be sufficient to recover the lost states by the Recompute function.

5.4 Evaluation

We integrate FP4S with Apache Storm and evaluate it using large scale real-world exper-

iments, demonstrating its scalability, efficiency, and fast failure recovery. Experimental

evaluations answer the following questions:

• How does the FP4S-enabled Storm system scale with the size of state, the num-

ber of concurrently running applications and the number of simultaneously failed

operators?

• How does the efficiency of the fragment-based parallel state recovery algorithm

change with different parameters, e.g., the number of the raw fragments (m) and

the number of the coded fragments (n), and how does FP4S balance the workload?

• What are the performance and functionality benefits of FP4S compared to the state-

of-the-art solutions?

• What is the overhead and the instrumentation used by FP4S?

5.4.1 Setup

We run all FP4S experiments on up to 4 machines, each with 16 Intel Xeon Gold 6130@2.10GHz

cores and 256GB of RAM, running GNU/Linux 3.10.0. On top of these machines, we

boot up 50 virtual machines to host 650 stream operators in total, each with 4 cores and

8GB of memory, running Linux Ubuntu 4.4.0. We use Apache Storm 2.0.0 [ah] config-

ured with 10 TaskManagers, each with 4 slots (maximum parallelism per operator = 36).

75

Table 5.2: Real-world application’s dataset.

Application Dataset Size
Trending Topics Twitter Streaming API [as] >1TB
Bargain Index Google Finance [al] >1TB

Word Count
Project Gutenberg [ap] 8GB
Wikimedia Dumps [at] 9GB

Traffic Monitoring Dublin Bus Traces [aj] 4GB

We use Pastry 2.1 [ao] configured with leafset size of 24, max open sockets of 5000 and

transport buffer size of 6MB.

To demonstrate generality across diverse computations and streaming operators. We

deploy Yahoo streaming benchmarks [CDE+16] and real-world stream applications to

FP4S (see Table 5.2).

These stream applications contain various representative streaming operators: state-

less streaming transformations (e.g., map, filter), stateful operators (e.g., incremental

join), and various window operators (e.g., sliding window, tumbling window and session

window). We compare FP4S with a state-of-the-art failure recovery solution: the check-

pointing recovery approach commonly used in TimeStream [QHS+13], Storm [sto], and

Trident [ai]. We were not able to compare with Drizzle [VPO+17] because its source

code is not publicly available. We choose the checkpointing recovery approach as the

baseline approach because the replication recovery already costs twice the hardware and

the DStream-based lineage recovery approach is not generalized because it sacrifices pro-

gramming model transparency by forcing programmers to declare and maintain state us-

ing Spark’s RDDs [ZCD+12].

The base value of raw fragments (m) and the coded fragments (n) are derived from

production systems such as Pond [REG+03] and Sia [ar], which set m = 16, n = 16 and

m = 10, n = 20 respectively. To fully evaluate the FP4S performance, we vary the values

of m, n and the input state size.

76

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 20
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

8 2 0 m s4 0 0 m s
3 1 8 0 m sFa

ilur
e r

ec
ov

ery
 tim

e (
s)

A p p l i c a t i o n s t a t e s i z e (M B)

 C h e c k p o i n t R e c o v e r
 F P 4 S - R e c o m p u t e
 F P 4 S - R e t r i e v e

Figure 5.7: State recovery time for different input state sizes.

5.4.2 FP4S vs Checkpointing Recovery

We compare the failure recovery time of FP4S with the checkpointing recovery by varying

the size of the state and the number of concurrently running stream applications.

The FP4S fragmented parallel recovery process consists of two steps: saving the state

to leaf set nodes in the DHT-based overlay, and recomputing the state if any failure hap-

pens. Similarly, the checkpointing recovery process also consists of two steps: check-

pointing the state to the HBase [ad] or HDFS [ac], and retrieving the state from HBase

or HDFS if failure happens. Note that, for both approaches, the first step can run asyn-

chronously with the second step so the first step may not impact the failure recovery time

if they are executed in a pipeline.

Failure recovery time. Figure 5.7 shows the failure recovery time comparison of

FP4S vs Storm’s checkpointing recovery. In this experiment, we focus on a single stream

application that has only one operator failure and we vary the state size. As Figure 5.7

shows, FP4S achieves 40.3% to 87.1% less failure recovery time compared to Storm’s

checkpointing recovery. The improvement gap increases as the size of the state increases.

The rationale behind the result lies in that FP4S fragmented parallel recovery involves

77

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 20
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

1 3 6 1 m s
4 1 9 m s2 1 5 m sSta

te
sa

vin
g c

os
t (s

)

A p p l i c a t i o n s t a t e s i z e (M B)

 C h e c k p o i n t S a v e
 F P 4 S - E n c o d e
 F P 4 S - S a v e

Figure 5.8: State saving time for different input state sizes.

many nodes to help re-compute the state in parallel which significantly reduces the failure

recovery time. Instead, the checkpointing recovery only relies on a single node to retrieve

the state which is constrained by the HBase I/O rate and the network bandwidth.

State saving cost. Figure 5.8 shows the state saving cost comparison of FP4S vs

Storm’s checkpointing recovery. The FP4S state saving cost includes the time cost for

dividing the state into fragments, encoding each state, and then writing the encoded frag-

ments into leaf set nodes. We write them into the leaf set nodes serially to enable a fair

comparison with the checkpointing recovery. As Figure 5.8 shows, the state saving cost

of FP4S is less than the state saving cost of the checkpointing recovery especially for

large state because it runs in parallel with the operators execution.

Scale with the number of applications. Figure 5.9 shows the total failure recovery

time for FP4S and Storm’s checkpointing recovery when there are a large number of

concurrently running stream applications on the platform. We set the failure rate of stream

operators to be 1% according to Zorro [PLGC15]. As Figure 5.9 shows, compared to

Storm’s checkpointing recovery that has linearly increasing state recovery time, FP4S

can handle many simultaneous failures with relatively stable state recovery time. This

78

1 0 2 0 5 0 1 0 0 1 5 0 3 0 0 6 0 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

3 9 4 9 m s8 5 2 m s
To

tal
 fa

ilur
e r

ec
ov

ery
 tim

e (
s)

C o n c u r r e n t l y r u n n i n g a p p l i c a t i o n s n u m b e r

 C h e c k p o i n t
 F P 4 S

4 1 3 m s

Figure 5.9: Total failure recovery time by varing # concurrently running stream applica-
tions.

is because FP4S leverages the DHT consistent ring overlay to distribute the total failure

recovery load across all participating nodes and thus simultaneously failing operators’

states can be recovered in parallel, which significantly improves the scalability.

5.4.3 Fragmented Parallel Recovery Algorithm

Several important factors affect the recovery performance, including the number of the

raw fragments m in a state, the number of the parity fragments k in a state, the number of

unavailable blocks e in a state and the amount of leaf nodes.

Number of the raw fragments (m). We evaluate the impact of the number of the

raw fragments m in a state on the recovery performance by varying m from 11 to 20,

where k is set to be 10. Figure 5.10 plots the performance of state recomputing time when

recovering from single failure by varying m. We can observe that the state recomputing

time increases as the number of raw fragments m increases. The reason lies in that the

recovery time of FP4S is mainly determined by mB/(m+ k− 1), where B is the amount

of data that any providing peer uploads. mB/(m+ k− 1) increases with the increases of

79

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Sta
te

rec
om

pu
tin

g t
im

e (
s)

N u m b e r o f t h e r a w f r a g m e n t s (m)

I n p u t s t a t e s i z e = 5 1 2 M B
k = 1 0

Figure 5.10: Adjust raw fragment (m) parameter.

0 2 5 6 5 1 2 7 6 8 1 0 2 4 1 2 8 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

al
pe

rce
nti

les

S t a t e s i z e (M B)

9 2 . 6 %

Figure 5.11: Normal probability plot of the state size across all DHT nodes.

m when the values of k and B are given. Thus, the performance of FP4S is more sensitive

to m when k is smaller.

Number of the parity fragments (k). We evaluate the impact of the number of the

parity fragments k in a state on recovery performance by varying k from 11 to 20, where

m is set to be 10. Figure 5.12 plots the performance of state recomputing time when

recovering from single failure by varying k. We can observe that FP4S achieves better

recovery performance when k is increasing from 11 to 20. The reason is that the recovery

time of FP4S is mainly determined by by mB/(m+ k−1), where B is the amount of data

80

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Sta
te

rec
om

pu
tin

g t
im

e (
s)

N u m b e r o f t h e p a r i t y f r a g m e n t s (k)

I n p u t s t a t e s i z e = 5 1 2 M B
m = 1 0

Figure 5.12: Adjust parity fragment (k) parameter.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
2
4
6
8

1 0
1 2
1 4 5 1 2 M B s t a t e s i z e

 2 5 6 M B s t a t e s i z e
 1 2 8 M B s t a t e s i z e

To
tal

 fa
ilur

e r
ec

ov
ery

 tim
e (

s)

U n a v a i l a b l e b l o c k n u m b e r (m = 1 0 , n = 3 0)
Figure 5.13: Adjust unavailable block number (e).

that any providing peer uploads. mB/(m+ k−1) decreases with the increases of k when

the values of m and B are given.

Number of unavailable blocks (e). We evaluate the impact of the number of un-

available blocks e on recovery performance by varying e from 1 to 20. We can see from

Figure 5.13 that the total failure recovery time of FP4S increases linearly with the increase

of e. This is due to the current star-like structure of the FP4S prototype, in which the per-

formance bottleneck of FP4S is mainly the upload speeds of providing peers. Thus, the

recovery performance of FP4S is inversely proportional to the amount of data a providing

peer uploads. In the future, we plan to enable fragments to be transmitted and combined

81

1 2 0 4 0 6 0 8 0 1 0 01

1 0

2 0

3 0

4 0

5 0

> 4 6 8 (0 %)
3 6 4 - 4 6 8 (1 . 6 %)
2 6 0 - 3 6 4 (5 . 8 %)
1 5 6 - 2 6 0 (2 9 . 6 %)
5 2 - 1 5 6 (4 3 . 0 %)

D H T n o d e I d i n o r d e r

Se
rve

r Id
 in

 or
de

r
2

5

7

8

1 0

S t a t e s i z e (M B)

0 - 5 2 (2 0 . 0 %)

Figure 5.14: Heatmap of the state size across all DHT nodes.

through a spanning tree covering the replacing node and all providing nodes to mitigate

this performance bottleneck.

5.4.4 Load Balance

FP4S has an attractive load balance feature because it assigns each operator a non-overlapping

set of leaf set nodes, which distributes the total load of state saving and recovery all over

the overlay. We evaluate the load balance of FP4S by running 500 stream applications

on the platform of 50 virtual servers that have 5000 DHT nodes. Each application has

512 MB state and we have 780GB states in total that need to be saved in the above 5000

nodes.

Figure 5.14 plots the heatmap of the state size on each DHT node. Figure 5.11 shows

the normal probability plot for the size of stored state per node. We can observe that over

90% (20%+43%+29.6%) of nodes store state with less than 260 MB (see the blue zone

in Figure 5.14), while less than 7.5% nodes store state over 260 MB, demonstrating its

attractive load balance and scalability features.

82

1 0 2 0 3 0 4 0 5 0 6 00
2 0
4 0
6 0
8 0

1 0 0

1 6 . 5 %

 C h e c k p o i n t - S a v i n g F P 4 S - S a v i n g
 C h e c k p o i n t - R e c o v e r y F P 4 S - R e c o v e r y

CP
U u

sa
ge

 (%
)

T i m e (s)

1 7 . 4 %

(a) The CPU overhead.

1 0 2 0 3 0 4 0 5 0 6 0
4 0 0
6 0 0
8 0 0

1 0 0 0
2 8 . 1 %

Me
mo

ry
us

ag
e (

MB
)

T i m e (s)

2 5 . 2 %

(b) The memory overhead.

Figure 5.15: The overhead analysis of the FP4S-enabled Storm at runtime.

5.4.5 Overhead Analysis

We evaluate FP4S runtime overhead, particularly those pertaining to its saving and recov-

ery execution, and compare them with the checkpointing recovery approach. The FP4S

saving and recovery require additional CPU to compute the fragments and additional

memory for maintaining intermediate results. Figure 5.15 presents these costs, explained

next.

CPU overhead. Figure 5.15a shows the per-node CPU runtime overhead comparison

of FP4S vs checkpointing recovery. The CPU runtime overhead of FP4S is less than the

checkpointing recovery. This is because fragment calculations account for only a small

fraction (<10%) of the entire save and restore execution.

83

Memory overhead. Figure 5.15b shows the per-node memory run-time overhead

comparison of FP4S vs checkpointing recovery. The memory overhead of FP4S is less

than the checkpointing recovery. This is because the checkpointing recovery involves a

centralized daemon process such as Zookeeper for coordination. Instead, FP4S nodes are

independent, which does not require the centralized daemon process to maintain these

relationships.

5.5 Summary

In this paper we have described and evaluated FP4S, a novel fragment-based parallel

state recovery mechanism that can handle many simultaneous failures for stateful stream

applications. Unlike existing failure recovery approaches based on replication or check-

pointing which are either slow, resource-expensive or fail to handle many simultaneous

failures, FP4S leverages DHTs and erasure codes to divide each operator’s in-memory

state into many fragments and periodically save them in each node’s leaf set nodes in a

DHT ring, ensuring that different sets of available fragments can reconstruct failed state

in parallel. By doing that, this failure recovery mechanism is scalable to the size of the

lost state, which significantly reduces the failure recovery time and can tolerate many

simultaneous operator failures.

FP4S is framework-agnostic and broadly applicable to a range of streaming systems.

We have implemented FP4S atop the state-of-the-art stream processing engine Apache

Storm, and demonstrated its scalability, efficiency, and fast failure recovery features that

incur negligible instrumentation overheads. Note that dividing data blocks, encoding raw

fragments, uploading encoded fragments, and reconstructing states are non-overlapping

operations, so many interesting questions for future work arise: such as how to pipeline

them to speed up the recovery process? How to adjust the ratio of m and n to tradeoff

84

the reduced upload data and the increased computation complexity? How to provide a

theoretic model to estimate network I/O cost and computation complexity?

85

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

How should we provide and optimize a system that support next-generation distributed

data processing in cloud? This dissertation presents a possible solution perspective: a dis-

tributed and easy-to-use system, which defined processing abstract, instantly collaborates

with the processing data information, can provide useful knowledge that people need and

promising performances in functionality.

In this dissertation, three research works are introduced from different perspectives

to optimize distributed application in cloud environment. More specifically, they mainly

focus on the system-level design in supporting scalable, online, and efficient system.

Specifically, DocMan, a toolset that adopts a black-box approach to discover container

ensembles and collect information about intra-ensemble container interactions. It uses a

combination of techniques such as distance identification and hierarchical clustering.

For storage optimization, we analyze the possibility to improve the HDFS data blocks

replication mechanism. The caching strategy MemCached is leveraged in the design to

effectively replicate the popular blocks in memory. The experimental results show that

the proposed design is able to improve the HDFS based applications’ performance from

different perspectives and has the potential to overcome the critical issues of traditional

Big Data storage systems.

FP4S is framework-agnostic and broadly applicable to a range of streaming systems.

We have implemented FP4S atop the state-of-the-art stream processing engine Apache

Storm, and demonstrated its scalability, efficiency, and fast failure recovery features that

incur negligible instrumentation overheads.

86

In conclusion, the first work, a system named DocMan, is introduced to support appli-

cation dependencies detection in cloud. The second work proposed a solution to optimize

distributed applications’ storage. The third work is a system named FP4S, is introduced

to achieve applications state failure recovery by using the erasure code method. They

correspond to specific areas but interrelated functions of next-generation distributed data

processing applications in cloud environment.

6.2 Lessons Learned

Non-intrusive approach. To fulfill the same purpose, a non-intrusive approach should

be considered in advance of intrusive approach. The system, DocMan, is used to detect

dependencies. We implement the non-intrusive approach via capturing the CPU, memory

and I/O logs. The rationale behind our approach is that we observed that real-world

containerized multi-tier applications exhibited strong correlation among their resource

usage statistics. It makes the approach having a wide usage instead of just working for a

specific application.

Handle real problem scenarios. When we consider solving a problem, we need to

know if the problem is the same or similar to the real scenarios. For example, when we

do the project for failure recovery, if we only consider to recover a state at a time, it will

be quite different from the real scenario. Then the following optimization will not make

much sense. So we solve the problem based on the problem of how to scale recovery with

the size of the state, the number of simultaneous failures and the number of concurrently

running stream applications on a shared platform, which makes the problem the same as

a real problem that is happening in the industrial world.

Imposing low hardware cost. When we archive a target, we cannot ignore the hard-

ware cost, otherwise it will make the solution not realistic. For example, state-of-the-art

87

data processing systems offer failure recovery mainly through three approaches: repli-

cation recovery, checkpointing recovery and DStream-based lineage recovery, which are

either slow, resource-expensive or fail to handle many simultaneous failures. Replication

recovery adds significant hardware cost because multiple copies must concurrently run on

distinct nodes for failover. Checkpointing recovery is known to be prohibitively expen-

sive, and users in many domains disable it as a result. DStream-based lineage recovery

is slow when the lineage graph is long and falls short in handling multiple simultaneous

failures, so we propose the solution FP4S in a lightweight manner.

6.3 Broader Impact

In this dissertation, the three proposed systems are focus on different optimization per-

spectives. However, they are inter-connected, which can be implemented into distributed

applications platform together or partially. They are framework-agnostic and broadly

applicable to a range of distributed systems. The source code and presentations of the

proposed systems are public to the community, which will make they have a broader

impact.

6.4 Future Work

Many open questions and challenges are needed further consideration and research ef-

forts in supporting scalable, efficient, and distributed data applications, as shown in the

following:

For dependencies detection, DocMan’s methods are fully implemented, but additional

work is required for using it to continuously detect and manage containers at cloud-scale.

For example, we need to filter out background traffic noises (i.e., heartbeat packets), since

88

such traffic might otherwise be interpreted as intra-ensemble communications. Further, it

would be interesting to integrate DocMan into management solutions like Kubernetes and

Docker Swarm. We also plan to leverage DocMan’s insights to directly guide the con-

tainer placement, thus improving containerized application’s performance and amortizing

the expenses related to their debugging and maintenance.

For storage optimization, there might be different levels of content access speed in-

stead of just memory and hard disk. For example, the hard disk access speed may vary

from 1.7MBps to 520MBps for HDD and SSD. For different types of memory also have

this kind of variation. To accurately optimize these different types of storage, we need to

define more complicated algorithms to cater to these scenarios.

For FP4S, note that dividing data blocks, encoding raw fragments, uploading encoded

fragments, and reconstructing states are non-overlapping operations, so many interesting

questions for future work arise: such as how to pipeline them to speed up the recovery

process? How to adjust the ratio of m and n to trade off the reduced upload data and

the increased computation complexity? How to provide a theoretic model to estimate

network I/O cost and computation complexity?

We hope that the continuous research experience of system support in distributed ap-

plications can help us solve these problems and challenges. We also wish more research

efforts can be conducted to design innovative next-generation cloud distributed systems.

89

BIBLIOGRAPHY

[0] Cloud computing trends: 2018 state of the cloud survey. https:

//www.rightscale.com/blog/cloud-industry-insights/cloud-

computing-trends-2018-state-cloud-survey.

[aa] Apache flink. http://flink.apache.org/.

[ab] Apache flume. http://flume.apache.org/.

[ac] Apache hadoop hdfs. https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/.

[ad] Apache hbase. http://hbase.apache.org/.

[ae] Apache kafka. http://kafka.apache.org/.

[af] Apache samza. http://samza.apache.org/.

[ag] Apache spark. http://spark.apache.org/.

[ah] Apache storm 2.0.0. https://storm.apache.org/2019/05/30/

storm200-released.html.

[ai] Apache trident. http://storm.apache.org/releases/current/

Trident-tutorial.html.

[aj] Dublin bus gps sample data from dublin city council. https://data.

gov.ie/dataset/.

[ak] Faroo. https://en.wikipedia.org/wiki/FAROO.

[al] Google finance data api. http://finance.google.com/finance/

feeds/.

[am] Leveldb. https://github.com/google/leveldb/.

[an] Mongodb. http://www.mongodb.com/.

[ao] Pastry. https://www.freepastry.org/FreePastry/.

90

https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2018-state-cloud-survey
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2018-state-cloud-survey
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2018-state-cloud-survey
http://flink.apache.org/
http://flume.apache.org/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/
http://hbase.apache.org/
http://kafka.apache.org/
http://samza.apache.org/
http://spark.apache.org/
https://storm.apache.org/2019/05/30/storm200-released.html
https://storm.apache.org/2019/05/30/storm200-released.html
http://storm.apache.org/releases/current/Trident-tutorial.html
http://storm.apache.org/releases/current/Trident-tutorial.html
https://data.gov.ie/dataset/
https://data.gov.ie/dataset/
https://en.wikipedia.org/wiki/FAROO
http://finance.google.com/finance/feeds/
http://finance.google.com/finance/feeds/
https://github.com/google/leveldb/
http://www.mongodb.com/
https://www.freepastry.org/FreePastry/

[ap] Project gutenberg. http://www.gutenberg.com/.

[aq] Rocksdb. http://rocksdb.org/.

[ar] Sia: a decentralized storage platform secured by blockchain technology.
http://sia.tech/.

[as] Twitter streaming apis. https://developer.twitter.com/en/docs/

tutorials/consuming-streaming-data.

[at] Wikimedia dumps. https://dumps.wikimedia.org/.

[A+10] Jonathan Appavoo et al. Providing a cloud network infrastructure on a su-
percomputer. In 19th ACM International Symposium on High Performance
Distributed Computing, pages 385–394. ACM, 2010.

[A+11] Ganesh Ananthanarayanan et al. Scarlett: coping with skewed content
popularity in mapreduce clusters. In Proc. 6th conf. on Computer systems,
pages 287–300. ACM, 2011.

[AAB+05] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, et al. The design of the borealis
stream processing engine. In Cidr, volume 5, pages 277–289, 2005.

[ABB+13] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haber-
man, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam
Whittle. Millwheel: fault-tolerant stream processing at internet scale. Pro-
ceedings of the VLDB Endowment, 6(11):1033–1044, 2013.

[ABB+16] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur
Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom.
Stream: The stanford data stream management system. In Data Stream
Management, pages 317–336. Springer, 2016.

[ABC+15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, et al. The dataflow model: a practical ap-
proach to balancing correctness, latency, and cost in massive-scale, un-
bounded, out-of-order data processing. Proceedings of the VLDB Endow-
ment, 8(12):1792–1803, 2015.

91

http://www.gutenberg.com/
http://rocksdb.org/
http://sia.tech/
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://dumps.wikimedia.org/

[ACÇ+03] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan
Zdonik. Aurora: a new model and architecture for data stream manage-
ment. the VLDB Journal, 12(2):120–139, 2003.

[AFRR+10] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nel-
son Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for
data center networks. In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, NSDI’10, pages 19–19,
Berkeley, CA, USA, 2010. USENIX Association.

[AIR17] Alexandru Agache, Mihai Ionescu, and Costin Raiciu. Cloudtalk: Enabling
distributed application optimisations in public clouds. EuroSys ’17, pages
605–619, New York, NY, USA, 2017. ACM.

[ALC11] Cristina L Abad, Yi Lu, and Roy H Campbell. Dare: Adaptive data repli-
cation for efficient cluster scheduling. In CLUSTER, pages 159–168. Ieee,
2011.

[Ama] Amazon ec2 container service. https://aws.amazon.com/ecs/.

[AO15] Hnin Htet Htet Aung and Nyein Nyein Oo. Edas: Efficient data access
scheme of data replication for hadoop distributed file system (hdfs). pages
177–183, 2015.

[B+08] Dhruba Borthakur et al. Hdfs architecture guide. Hadoop Apache Project,
53, 2008.

[B+15] Dinh-Mao Bui et al. Replication management framework for hdfs based
on prediction technique. In Advanced Cloud and Big Data, pages 58–63.
IEEE, 2015.

[BBMS05] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael
Stonebraker. Fault-tolerance in the borealis distributed stream processing
system. In Proceedings of the 2005 ACM SIGMOD international confer-
ence on Management of data, pages 13–24. ACM, 2005.

[BDIM04] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Us-
ing magpie for request extraction and workload modelling. OSDI’04,
pages 18–18, Berkeley, CA, USA, 2004. USENIX Association.

92

https://aws.amazon.com/ecs/

[big] Bigdatabench. http://prof.ict.ac.cn/.

[C+12] Zhendong Cheng et al. Erms: An elastic replication management system
for hdfs. In CLUSTER WORKSHOPS, pages 32–40. IEEE, 2012.

[CBM+17] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource central: Understanding and
predicting workloads for improved resource management in large cloud
platforms. In Proceedings of the 26th SOSP, pages 153–167. ACM, 2017.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J
Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel
Madden, Vijayshankar Raman, Frederick Reiss, et al. Telegraphcq: Con-
tinuous dataflow processing for an uncertain world. In Cidr, volume 2,
page 4, 2003.

[CDE+16] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas
Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil,
Boyang Jerry Peng, et al. Benchmarking streaming computation engines:
Storm, flink and spark streaming. In 2016 IEEE international parallel
and distributed processing symposium workshops (IPDPSW), pages 1789–
1792. IEEE, 2016.

[CEF+17] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and
Kostas Tzoumas. State management in apache flink®: consistent state-
ful distributed stream processing. Proceedings of the VLDB Endowment,
10(12):1718–1729, 2017.

[cen] Centralized cache management in hdfs. https://hadoop.

apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-

hdfs/CentralizedCacheManagement.html.

[CKF+02] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric
Brewer. Pinpoint: Problem determination in large, dynamic internet ser-
vices. In Proceedings of the 2002 International Conference on Dependable
Systems and Networks, DSN ’02, pages 595–604, Washington, DC, USA,
2002. IEEE Computer Society.

[CKS13] Mosharaf Chowdhury, Srikanth Kandula, and Ion Stoica. Leveraging end-
point flexibility in data-intensive clusters. SIGCOMM Comput. Commun.
Rev., 43(4):231–242, August 2013.

93

http://prof.ict.ac.cn/
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html

[clu] Cluster. https://en.wikipedia.org/wiki/Cluster_analysis.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on
Economics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[CS12] Mosharaf Chowdhury and Ion Stoica. Coflow: A networking abstraction
for cluster applications. HotNets-XI, pages 31–36, New York, NY, USA,
2012. ACM.

[CZM+11] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and
Ion Stoica. Managing data transfers in computer clusters with orchestra.
SIGCOMM ’11, pages 98–109, New York, NY, USA, 2011. ACM.

[CZS14] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow
scheduling with varys. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, pages 443–454, New York, NY, USA, 2014.
ACM.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[DL12] S. Ding and Y. Li. Lru2-mru collaborative cache replacement algorithm on
multi-core system. In CSAE, volume 2, pages 395–398, May 2012.

[DL15] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Ad-
vances in neural information processing systems, pages 3079–3087, 2015.

[EPPB11] Úlfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. Fay:
Extensible distributed tracing from kernels to clusters. SOSP ’11, pages
311–326, New York, NY, USA, 2011. ACM.

[Fit04] Brad Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[FPR+10] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Ha-
jabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen,
and Amin Vahdat. Helios: A hybrid electrical/optical switch architecture
for modular data centers. SIGCOMM ’10, pages 339–350, New York, NY,
USA, 2010. ACM.

94

https://en.wikipedia.org/wiki/Cluster_analysis

[GDJ07] Philip Golden, Hervé Dedieu, and Krista S Jacobsen. Implementation and
applications of DSL technology. CRC press, 2007.

[GHJ+09] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. Vl2: A scalable and flexible data center network. SIG-
COMM ’09, pages 51–62, New York, NY, USA, 2009. ACM.

[goo] Google cloud platform container. https://cloud.google.com/

container-engine.

[GXD+14] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. Graphx: Graph processing in a dis-
tributed dataflow framework. In 11th Symposium on Operating Systems
Design and Implementation, pages 599–613, 2014.

[had] Hadoop. http://hadoop.apache.org.

[HKZ+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A
platform for fine-grained resource sharing in the data center. NSDI’11,
pages 295–308, Berkeley, CA, USA, 2011. USENIX Association.

[HLL16] Zhiming Hu, Baochun Li, and Jun Luo. Flutter: Scheduling tasks closer
to data across geo-distributed datacenters. In IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communica-
tions, pages 1–9. IEEE, 2016.

[HLM13] Fabien Hermenier, Julia Lawall, and Gilles Muller. Btrplace: A flexible
consolidation manager for highly available applications. IEEE Trans. De-
pendable Secur. Comput., 10(5):273–286, September 2013.

[HSG+12] Liting Hu, Karsten Schwan, Ajay Gulati, Junjie Zhang, and Chengwei
Wang. Net-cohort: Detecting and managing vm ensembles in virtualized
data centers. In Proceedings of the 9th International Conference on Au-
tonomic Computing, ICAC ’12, pages 3–12, New York, NY, USA, 2012.
ACM.

[HSK+12] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

95

https://cloud.google.com/container-engine
https://cloud.google.com/container-engine
http://hadoop.apache.org

[I+14] NS Islam et al. In-memory i/o and replication for hdfs with memcached:
Early experiences. in 2014 ieee intl. In IEEE BigData, 2014.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. Dryad: distributed data-parallel programs from sequential building
blocks. In ACM SIGOPS operating systems review, volume 41, pages 59–
72. ACM, 2007.

[ipe] Iperf. https://iperf.fr.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, et al. Oceanstore: An architecture for global-
scale persistent storage. In ACM SIGARCH Computer Architecture News,
volume 28, pages 190–201. ACM, 2000.

[KBF+15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy,
and Siddarth Taneja. Twitter heron: Stream processing at scale. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, pages 239–250. ACM, 2015.

[KC13] A Kala Karun and K Chitharanjan. A review on hadoop—hdfs infrastruc-
ture extensions. In ICT, pages 132–137. IEEE, 2013.

[KLM+10] Peter Kieseberg, Manuel Leithner, Martin Mulazzani, Lindsay Munroe,
Sebastian Schrittwieser, Mayank Sinha, and Edgar Weippl. Qr code secu-
rity. In Proceedings of the 8th International Conference on Advances in
Mobile Computing and Multimedia, pages 430–435. ACM, 2010.

[kub] Kubernetes. https://kubernetes.io.

[LLP+12] Wang Lam, Lu Liu, Sts Prasad, Anand Rajaraman, Zoheb Vacheri, and An-
Hai Doan. Muppet: Mapreduce-style processing of fast data. Proceedings
of the VLDB Endowment, 5(12):1814–1825, 2012.

[LMC15] Mingyong Li, Yan Ma, and Meilian Chen. The dynamic replication mech-
anism of hdfs hot file based on cloud storage. International Journal of
Security and Its Applications, 9(8):439–448, 2015.

[LSD+16] Chaochun Liu, Huan Sun, Nan Du, Shulong Tan, Hongliang Fei, Wei Fan,
Tao Yang, Hao Wu, Yaliang Li, and Chenwei Zhang. Augmented lstm

96

https://iperf.fr
https://kubernetes.io

framework to construct medical self-diagnosis android. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on, pages 251–260.
IEEE, 2016.

[LW14] Xueping Liu and Ji Wang. The study on capacity enhancement of dis-
tributed systems cloud services. In LEMCS. Atlantis Press, 2014.

[LZC14] Sai-Qin Long, Yue-Long Zhao, and Wei Chen. Morm: A multi-objective
optimized replication management strategy for cloud storage cluster. Jour-
nal of Systems Architecture, 60(2):234–244, 2014.

[map] Mapreduce. https://en.wikipedia.org/wiki/MapReduce.

[MBMDS10] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R
De Supinski. Design, modeling, and evaluation of a scalable multi-level
checkpointing system. In SC’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–11. IEEE, 2010.

[mica] Micro-service. http://microservices.io/.

[micb] Microsoft azure container service. https://azure.microsoft.com/en-
us/services/container-service/.

[MMI+13] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martı́n Abadi. Naiad: a timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, pages 439–455. ACM, 2013.

[MPZ10] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability
of data center networks with traffic-aware virtual machine placement. IN-
FOCOM’10, pages 1154–1162, Piscataway, NJ, USA, 2010. IEEE Press.

[MYAFM10] Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares, and Jef-
frey C. Mogul. Spain: Cots data-center ethernet for multipathing over
arbitrary topologies. NSDI’10, pages 18–18, Berkeley, CA, USA, 2010.
USENIX Association.

[N+08] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.
2008.

97

https://en.wikipedia.org/wiki/MapReduce
http://microservices.io/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/

[N+13] Rajesh Nishtala et al. Scaling memcache at facebook. In nsdi, volume 13,
pages 385–398, 2013.

[NPP+17] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon
Bringhurst, Indranil Gupta, and Roy H Campbell. Samza: stateful scal-
able stream processing at linkedin. Proceedings of the VLDB Endowment,
10(12):1634–1645, 2017.

[NRNK10] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4:
Distributed stream computing platform. In 2010 IEEE International Con-
ference on Data Mining Workshops, pages 170–177. IEEE, 2010.

[num] Numpy. http://www.numpy.org.

[PD10] Daniel Peng and Frank Dabek. Large-scale incremental processing using
distributed transactions and notifications. 2010.

[PLGC15] Mayank Pundir, Luke M Leslie, Indranil Gupta, and Roy H Campbell.
Zorro: Zero-cost reactive failure recovery in distributed graph processing.
In Proceedings of the Sixth ACM Symposium on Cloud Computing, pages
195–208. ACM, 2015.

[PMC] Pearson correlation coefficient. https://en.wikipedia.org/wiki/

Pearson_correlation_coefficient.

[PSLJ11] Balaji Palanisamy, Aameek Singh, Ling Liu, and Bhushan Jain. Purlieus:
Locality-aware resource allocation for mapreduce in a cloud. SC ’11, pages
58:1–58:11, New York, NY, USA, 2011. ACM.

[QHS+13] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi
Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. Timestream: Reliable
stream computation in the cloud. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 1–14. ACM, 2013.

[r] R project. https://www.r-project.org/about.html.

[Ran20] Steve Ranger. What is cloud computing? https://www.zdnet.com/

article/what-is-cloud-computing-everything-you-need-to-

know-about-the-cloud/, 2020.

98

http://www.numpy.org
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://www.r-project.org/about.html
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-about-the-cloud/
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-about-the-cloud/
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-about-the-cloud/

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms and
Open Distributed Processing, pages 329–350. Springer, 2001.

[red] Redis. https://redis.io.

[REG+03] Sean C Rhea, Patrick R Eaton, Dennis Geels, Hakim Weatherspoon, Ben Y
Zhao, and John Kubiatowicz. Pond: The oceanstore prototype. In FAST,
volume 3, pages 1–14, 2003.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain fi-
nite fields. Journal of the society for industrial and applied mathematics,
8(2):300–304, 1960.

[rub] Rubis. http://rubis.ow2.org.

[S+10] Konstantin Shvachko et al. The hadoop distributed file system. In MSST,
pages 1–10. IEEE, 2010.

[SCW+12] Dawei Sun, Guiran Chang, Dongqi Wang, Dong Chen, and Xingwei Wang.
Modeling and Managing Energy Efficiency Data Center by a Live Migra-
tion Mechanism in Mobile Cloud Computing Environments. Sensor Let-
ters, 10(8):1855–1861, 2012.

[SGH+16] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy.
Flint: Batch-interactive data-intensive processing on transient servers. In
Proceedings of the Eleventh European Conference on Computer Systems,
page 6. ACM, 2016.

[SHB04] Mehul A Shah, Joseph M Hellerstein, and Eric Brewer. Highly available,
fault-tolerant, parallel dataflows. In Proceedings of the 2004 ACM SIG-
MOD international conference on Management of data, pages 827–838.
ACM, 2004.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. ACM SIGCOMM Computer Communication Review,
31(4):149–160, 2001.

[spa] Spark. https://spark.apache.org.

99

https://redis.io
http://rubis.ow2.org
https://spark.apache.org

[SRC10] Jeffrey Shafer, Scott Rixner, and Alan L Cox. The hadoop distributed
filesystem: Balancing portability and performance. In ISPASS, pages 122–
133. IEEE, 2010.

[sto] Storm. http://storm.apache.org.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learn-
ing with neural networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[TAB13] Radu Tudoran, Gabriel Antoniu, and Luc Bouge. Sage: geo-distributed
streaming data analysis in clouds. In 2013 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum, pages
2278–2281. IEEE, 2013.

[TTZ+09] Byung Chul Tak, Chunqiang Tang, Chun Zhang, Sriram Govindan, Bhu-
van Urgaonkar, and Rong N. Chang. vpath: Precise discovery of request
processing paths from black-box observations of thread and network ac-
tivities. USENIX’09, pages 19–19, Berkeley, CA, USA, 2009. USENIX
Association.

[VPO+17] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Arm-
brust, Ali Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica.
Drizzle: Fast and adaptable stream processing at scale. In Proceedings
of the 26th Symposium on Operating Systems Principles, pages 374–389.
ACM, 2017.

[VRMB11] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically
scaling applications in the cloud. ACM SIGCOMM Computer Communi-
cation Review, 41(1):45–52, 2011.

[W+10] Qingsong Wei et al. Cdrm: A cost-effective dynamic replication man-
agement scheme for cloud storage cluster. In CLUSTER, pages 188–196.
IEEE, 2010.

[War63] Joe H. Ward. Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association, 58(301):236–244, 1963.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory

100

http://storm.apache.org

cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2–2. USENIX Associ-
ation, 2012.

[ZDL+13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the twenty-fourth ACM sympo-
sium on operating systems principles, pages 423–438. ACM, 2013.

101

VITA

PINCHAO LIU

Born, Tianjin, China

2004-2008 B.A., Computer Science and Technology
Tianjin University of Commerce.
Tianjin, China

2008-2011 M.S., Computer Science
Tianjin University of Science and Technology
Tianjin, China

2011-2016 Software Engineer
Standard Chartered Bank
Tianjin, China

2016-2021 Doctoral Candidate
Florida International University
Miami, Florida

PUBLICATIONS

1. Pinchao Liu, Liting Hu, Hailu Xu, Zhiyuan Shi, Jason Liu, Qingyang Wang, Jai
Dayal, and Yuzhe Tang, ”A Toolset for Detecting Containerized Application’s De-
pendencies in CaaS Clouds”, 2018 IEEE International Conference on Cloud Com-
puting (IEEE CLOUD), June 2018.

2. Pinchao Liu, Adnan Maruf, Farzana Beente Yusuf, Labiba Jahan, Hailu Xu, Boyuan
Guan, Liting Hu, and Sitharama S. Iyengar, Towards Adaptive Replication for
Hot/Cold Blocks in HDFS using MemCached”, In Proceedings of 2019 Interna-
tional Conference on Data Intelligence and Security (ICDIS 2019), June 2019.

3. Pinchao Liu, Hailu Xu, Dilma Da Silva, QingyangWang, Sarker Tanzir Ahmed, and
Liting Hu. ”FP4S: Fragment-based Parallel State Recovery for Stateful Stream Ap-
plications”, 34th IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2020).

4. Hailu Xu, Pinchao Liu, Susana Cruz-Diaz, Dilma Da Silva, and Liting Hu, SR3:
Customizable Recovery for Stateful Stream Processing Systems, In Proceedings of
the 21st International Middleware Conference, December, 2020 (Middleware’ 20).

5. Boyuan Guan, Liting Hu, Pinchao Liu, Hailu Xu, Jennifer Fu, QingyangWang, dpS-
mart: A Flexible Group Based Recommendation Framework for Digital Repository
Systems”, In Proceedings of the 2019 International Congress on Big Data (Big
Data Congress), July 2019.

102

6. Hailu Xu, Boyuan Guan, Pinchao Liu, William Escudero, and Liting Hu. ”Harness-
ing the Nature of Spam in Scalable Online Social Spam Detection”, 2018 IEEE Big
Data workshop on Big Social Media Data Management and Analysis, in conjunc-
tion with IEEE Big Data, 2018.

7. Hailu Xu, Liting Hu, Pinchao Liu, Yao Xiao,WentaoWang, Jai Dayal, Qingyang
Wang and Yuzhe Tang, ”Oases: An Online Scalable Spam Detection System for So-
cial Networks”, 2018 IEEE International Conference on Cloud Computing (IEEE
CLOUD), June 2018.

8. Hailu Xu, Liting Hu, Pinchao Liu, and Boyuan Guan, Exploiting the Spam Cor-
relations in Scalable Online Social Spam Detection”, In Proceedings of the 2019
International Conference on Cloud Computing (CLOUD), June 2019.

103

	Enabling Distributed Applications Optimization in Cloud Environment
	Recommended Citation

	INTRODUCTION
	Motivation
	Dependency Detection of Distributed Applications
	Storage Optimization of Distributed Applications
	States Recovery of Distributed Applications

	Summary and Roadmap

	BACKGROUND
	Distributed Applications' Dependency Detection Works
	Injecting Code to Obtain Runtime Information
	Based on Communication Pattern
	Network Packets Inference

	Distributed Applications' Storage Optimization Works
	Replica Allocation and Management Based Systems
	Skewed Popularity Based Systems
	Caching Based Systems

	Distributed Applications' States Recovery Works
	Stateful date Processing Systems
	Failure Recovery in Data Processing Systems

	CORRELATION DETECTION OF DISTRIBUTED SYSTEMS
	DocMan System Design
	Data Collection
	Distance Identification
	Hierarchical Clustering
	Resource Usage Pattern Prediction
	DocMan Integrates with Kubernetes
	Rationale
	Testbed
	Workload and Metrics
	DocMan's Functionality Evaluation
	Discussion

	Summary

	ADAPTIVE REPLICATION OF HOT/COLD BLOCKS OF DISTRIBUTED SYSTEMS
	Introduction
	Architecture Design
	Data Generation
	Dynamic Model to Copy Hot Blocks to MemCached
	Caching with MemCached
	Evaluation Metrics

	Experimental Results
	Dynamic Hot and Cold Block Detection
	Vanilla Model to Copy Hot Blocks to MemCached
	Performance Analysis

	Summary

	STATE RECOVERY OF STREAM PROCESSING DISTRIBUTED SYSTEMS
	Introduction
	System Design and Implementation
	Overview
	DHT-based Ring Overlay
	Fragmented Parallel State Recovery
	FP4S API

	Adaptivity Analysis
	Adaptive Parameter Tuning
	Analysis
	Instrumentation requirements

	Evaluation
	Setup
	FP4S vs Checkpointing Recovery
	Fragmented Parallel Recovery Algorithm
	Load Balance
	Overhead Analysis

	Summary

	CONCLUSION AND FUTURE WORK
	Conclusion
	Lessons Learned
	Broader Impact
	Future Work

	BIBLIOGRAPHY
	VITA

