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ABSTRACT OF THE DISSERTATION

A STUDY OF NON-DATAPATH CACHE REPLACEMENT ALGORITHMS

by

Steven Lyons

Florida International University, 2021

Miami, Florida

Professor Raju Rangaswami, Major Professor

Conventionally, caching algorithms have been designed for the datapath — the levels

of memory that must contain the data before it gets made available to the CPU. Attaching

a fast device (such as an SSD) as a cache to a host that runs the application workload are

recent developments. These host-side caches open up possibilities for what are referred to

as non-datapath caches to exist. Non-Datapath caches are referred to as such because the

caches do not exist on the traditional datapath, instead being optional memory locations

for data. As these caches are optional, a new capability is available to caching algorithms

that manage these caches: not caching at all and instead bypassing the cache entirely

for an access. With this option, items may not get inserted into the cache, which is an

outcome that is beneficial to the lifetime of cache devices that can only sustain a limited

number of writes before they degrade and become unusable. We propose several non-

datapath caching algorithms that are optimized to make these choices and achieve high

hit-rates while reducing writes: mARC, FOMO, and ANX. We also propose a polynomial

time optimal solution to non-datapath caches: mOPT. mOPT provides an optimal solution

for non-datapath caches that can maximize hits while minimizing writes. This provides

further insight into how appropriate non-datapath caches are for specific workloads, if at

all.

vi



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Thesis Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 mARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 FOMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 ANX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 mOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Storage Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Host-Side Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Write Caching Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. mARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Dynamic Storage Workloads . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 The Deceptiveness of Stability . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 ARChilles’ Heel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.4 Avoiding Forced Cache Updates . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Workload States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 The States of mARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.1 MSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2 FIU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. FOMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Non-datapath caching algorithms . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 The Fear of Missing Out . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 Miss-History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



5.3.2 FOMO States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.3 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.2 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.3 FOMO’s Miss-History: A Case Study . . . . . . . . . . . . . . . . . . . . 57
5.4.4 Adversarial Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6. ANX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Workload States Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.1 Stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Unstable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.3 Unique Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.4 Individual Identifiers For Workload States . . . . . . . . . . . . . . . . . . 67
6.3 ANX’s Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.1 Hit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.2 Static Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.3 Case Study: src1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7. mOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.1 Need For A New Optimal . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 mOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.1 Generalized Model and Objective . . . . . . . . . . . . . . . . . . . . . . 84
7.3.2 Designing the Offline Optimal Algorithm mOPT . . . . . . . . . . . . . . 86
7.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.1 Offline Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1 Datapath Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2 Flash in Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Host-Side Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.4 Non-Datapath Caching Algorithms . . . . . . . . . . . . . . . . . . . . . . . 99
8.5 Optimality for Non-Datapath Caching . . . . . . . . . . . . . . . . . . . . . 100

viii



9. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.1 Online Non-Datapath Caching Algorithm . . . . . . . . . . . . . . . . . . . 104
10.2 Offline Non-Datapath Caching Algorithm . . . . . . . . . . . . . . . . . . . 104

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

ix

Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



LIST OF TABLES

TABLE PAGE

4.1 Algorithms and workload states . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 mARC State Transition Table . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Sources and descriptions for the 5 storage data sets used in this paper. . . . . 48

6.1 Workload State Identification using New and Old . . . . . . . . . . . . . . . 68

6.2 Workload State Identification Truth Table used by ANX . . . . . . . . . . . 68

6.3 Sources and descriptions for the 5 storage data sets used in this paper. . . . . 70

7.1 The shown example uses a simple request stream of ABAB and a cache size
of 1 to illustrate the different the different shortcomings of MIN and M+.
The use of such a small cache is not important, as theoretically more
can be packed into the examples and keep the most important moments,
the insert-evict decisions the same. MIN is shown to not be capable of
getting a hit within this example. M+ is shown to not be capable of
getting any hits as well, but opts to not insert any of the items into the
cache in order to not incur any writes that do not result in hits. In the
theoretical optimal for this example, we can see that not only is one hit
found, but by opting to cache B instead of A, the extra write imposed by
a write hit is also avoided. . . . . . . . . . . . . . . . . . . . . . . . . . 83

x



LIST OF FIGURES

FIGURE PAGE

3.1 Centralized Storage Architecture . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Distributed Storage Architecture . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 A-U plot for one day of the prn0 MSR trace . . . . . . . . . . . . . . . . . . 21

4.2 Cache churning behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 A-U plot for one day of the src2-1 MSR trace . . . . . . . . . . . . . . . . . 23

4.4 MSR Normalized Average Write-Rate . . . . . . . . . . . . . . . . . . . . . 29

4.5 MSR Normalized Average Write-Rate . . . . . . . . . . . . . . . . . . . . . 29

4.6 FIU Average Hit-Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 FIU Normalized Average Write-Rate . . . . . . . . . . . . . . . . . . . . . 31

5.1 Simplified state diagram for mARC. The missing transitions between the
Stable and Unique access states are shown using dashed edges. (HR
refers to the running average Hit-Rate) . . . . . . . . . . . . . . . . . . 39

5.2 Performance comparison using mARC and ARC over time for MSR work-
load Proj3. Presented are various moments where mARC isn’t perform-
ing or deciding as well as it could. . . . . . . . . . . . . . . . . . . . . 40

5.3 Example of FOMO working in Insert state handling the request stream: X ,
Y , X . (a) Shows the starting state of the cache and Miss History. (b) Has
X missing and being inserted into both the cache and the Miss History.
(c) Has Y missing and being inserted into both the cache and the Miss
History. (d) Has X hitting in the cache and being removed from the Miss
History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Example of FOMO working in Filter state handling the request stream: X ,
Y , X . (a) Shows the starting state of the cache and Miss History. (b) Has
X missing and being inserted only in the Miss History. (c) Has Y missing
and being inserted only in the Miss History. (d) Has X miss in the cache,
but hit in the Miss History. Due to X showing reuse, it is then inserted
into the cache and removed from the Miss History. . . . . . . . . . . . . 43

5.5 FOMO states and transition conditions. . . . . . . . . . . . . . . . . . . . . 44

xi



5.6 Normalized Hit Rate summary results in percentage, including results for
all five different workload sources (FIU, MSR, CloudCache, CloudVPS,
and CloudPhysics) measured for six different cache size configurations
as a fraction of the workload footprint for each algorithm. Each violin
plot also has lines to indicate the max, mean, and min of each algo-
rithm’s normalized performance. Here it can be seen that FOMO(LRU)
and FOMO(ARC) have a notably higher minimum normalized perfor-
mance across the range of workloads and cache sizes. . . . . . . . . . . 50

5.7 Average Normalized Hit Rate results in percentage for the five different
workload sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics)
measured for six different cache size configurations as a fraction of the
workload footprint. Notably, none of the non-datapath caching algo-
rithms performs well for the CloudCache workloads. FOMO(LRU) and
FOMO(ARC) show that FOMO is typically able to improve their under-
lying cache replacement algorithm’s performance. . . . . . . . . . . . . 50

5.8 Normalized Static Rate summary results in percentage, including results for
all five different workload sources (FIU, MSR, CloudCache, CloudVPS,
and CloudPhysics) measured for six different cache size configurations
as a % of the workload footprint for each algorithm. LARC is indis-
putably the algorithm with the fewest cache updates. mARC aimed to
write more for performance gains, but incurs a great deal more than that
of LARC and FOMO, even to levels matching a datapath caching algo-
rithm. Notably, FOMO significantly reduces the number of cache up-
dates of its underlying cache replacement algorithms to levels similar to
that of LARC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.9 Average Normalized Static Rate results in percentage for the five differ-
ent workload sources (FIU, MSR, CloudCache, CloudVPS, and Cloud-
Physics) measured for six different cache size configurations as a % of
the workload footprint. As noted in Figure 5.8, LARC is consistently
having the fewest cache updates, typically followed by FOMO, then
mARC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii



5.10 (a) The hit rates of both LARC and mARC for the CloudPhysics workload
w54 vscsi2.itrace, in which LARC and mARC do not perform well. The
background has colors that indicate the state of mARC where red=Unstable,
blue=Stable, and green=Unique Access. LARC stops seeing a significant
amount of hits after it fills the cache. mARC stops seeing a significant
amount of hits after it switches to the Stable state A©. mARC incurs
unnecessary writes by transitioning to the Unstable state before transi-
tioning to the Unique Access state B©. mARC doesn’t see any cache hit
rate activity and therefore cannot find a reason to change state C©, even
though plenty of opportunities for cache hits exists, as can be seen in Fig-
ure 5.10b. (b) The cache hit rates of LRU and the reuse rates of FOMO’s
Miss-History for the CloudPhysics workload w54 vscsi2.itrace. The caching
algorithm that FOMO augments does not matter here, as the focus is on
the Miss-History. To be able to see both hit rates more clearly, the hit rate
of the Miss-History has been mirrored over the horizontal axis (negated).
This, compounded with the hit rates of LARC and mARC, show both that
LRU is capable of having hits and that FOMO’s Miss-History is seeing
the same hits. Taken together, these plots demonstrate that the workload
is mostly composed of items limited to second accesses. As such, both
LARC and mARC (when acting similar to LARC) are only caching items
when they have the second access, but do not get any benefit in doing so. 56

5.11 The hit rates of LARC, mARC, and FOMO(ARC) for the CloudPhysics
workload w54 vscsi2.itrace. FOMO(ARC) is shown as it performs the
worst among FOMO(LRU) and FOMO(ARC) in this instance. The back-
ground is colored with the state of FOMO, where red=Filter and blue=Insert.
As FOMO state switches, it adapts to the workload for the chance to im-
prove the hit rate and is able to achieve much more than both LARC and
mARC due to FOMO’s Miss-History. A© FOMO(ARC) started filter-
ing prior to mARC, missing out a some hits. B© FOMO(ARC)’s chang-
ing states captures some opportunities for hits by switching to the Insert
state quickly. C© FOMO(ARC) is able to recognize a pattern of reuse
and is able to promptly respond and have many cache hits that LARC
and mARC instead miss. . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.12 Hit rate plot of CloudCache workload webserver-2012-11-22-1.blk, focus-
ing on ARC as the datapath caching algorithm to compare the perfor-
mance of the non-datapath caching algorithm to (LARC, mARC, and
FOMO(LRU)). The background colors correspond to the state of FOMO(LRU)
at the time, with blue=Insert and red=Filter. From around one mil-
lion to four million requests ARC is achieving hits that LARC, mARC
and FOMO(LRU) aren’t able to get, though FOMO(LRU) gets the most
amongst the non-datapath caching algorithms, as seen at A©. Even as
reuse ramps up at B©, FOMO(LRU) is able to achieve many more cache
hits compared to LARC and mARC, while performing close to ARC.
Afterwards, the algorithms perform similarly. . . . . . . . . . . . . . . 58

xiii



5.13 Address plots for CloudCache workload webserver-2012-11-22-1.blk that
highlight the various patterns that could be seen simulataneously during
the time period where non-datapath caching algorithms had poorer hit
rate compared to their datapath counterparts. Among them we can no-
tice scans, random accesses, and loops all occurring concurrently. These
concurrent behaviors are why the non-datapath caching algorithms did
not perform well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 mARC State and ARC Hit-Rate Timeline for MSR Trace proj 3 for 1 Day . 64

6.2 Normalized Hit-Rate summary results in percentage, including results for
all five different workload sources (FIU, MSR, CloudCache, CloudVPS,
and CloudPhysics) measured for size different cache size configurations
as a fraction of the workload footprint for each algorithm. Each violin
plot also has lines to indicate the max, median, and min of each algo-
rithm’s normalized performance. Here it can be seen that ANX has a
normalized hit-rate distribution very similar to that of LARC. . . . . . . 73

6.3 Average Normalized Hit Rate results in percentage for the five different
workload sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics)
measured for six different cache size configurations as a fraction of the
workload footprint. Notably, of the non-datapath caching algorithms,
ANX appears to perform well for the smaller cache sizes in the Cloud-
Cache workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Normalized Static-Rate summary results in percentage, including results for
all five different workload sources (FIU, MSR, CloudCache, CloudVPS,
and CloudPhysics) measured for size different cache size configurations
as a fraction of the workload footprint for each algorithm. Each violin
plot also has lines to indicate the max, median, and min of each algo-
rithm’s normalized performance. Here it can be seen that ANX has a
normalized static-rate distribution is mostly similar to LARC, which is
consistently the algorithm with the best static-rate. . . . . . . . . . . . . 74

6.5 Average Normalized Static Rate results in percentage for the five differ-
ent workload sources (FIU, MSR, CloudCache, CloudVPS, and Cloud-
Physics) measured for six different cache size configurations as a fraction
of the workload footprint. Notably, ANX writes more often than FOMO
in CloudCache, which is a workload ANX had an improved hit rate per-
formance on, as seen in Figure 6.3. . . . . . . . . . . . . . . . . . . . . 74

6.6 Hit-rate of LARC, FOMO(ARC), and ANX over requests. Each point in the
graph is separated by 9 million requests. Under ANX’s hit-rate curve is
a breakdown of these hits: New Reuse (in cache) and Old Reuse. Above
of ANX’s hit-rate curve is a breakdown of its misses: New Reuse (in
history), Stable (Churn), and New. We can see that many of the areas
FOMO(ARC) is achieving hits, ANX is encountering New Reuse in its
Miss History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiv



6.7 Cache insert-rate of LARC, FOMO(ARC), and ANX over requests. Each
point in the graph is separated by 9 million requests. While ANX’s iden-
tifications are not organized to match its line plot, we can still see that
majority of ANX and LARC’s cache inserts occur when reuse is seen
in ANX’s Miss History. Alternatively, we can see that FOMO(ARC)
is inserting more than both LARC and ANX, and when compared to
its hit-rate plot in Figure 6.6 show additional inserts occurring before
FOMO(ARC) achieves additional cache hits. . . . . . . . . . . . . . . . 76

7.1 Violin graphs showing the breakdown of what percent of each trace’s re-
quests that are potentially hits are writes. The whiskers represent the
maximum, median, and minimum write percentages among the traces
within each trace collection. It can be seen that a significant portion of
each trace collection is composed of traces which have 50% or more of
their requests being write requests. . . . . . . . . . . . . . . . . . . . . 81

7.2 Violin graphs showing the breakdown of what percent of each trace’s re-
quests are unique. The whiskers represent the maximum, median, and
minimum write percentages among the traces within each trace collec-
tion. It can be seen that while most of these traces are composed of less
than 50% of their requests are to unique items. However, a significant
portion of each trace collection is composed of traces which have 50%
or more of their requests being write requests, with a few almost entirely
composed of unique items. . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 The simplified anatomy of how a request is represented in mOPT. Each re-
quest exists in mOPT as two vertices, one (top) existing as a represen-
tation of the requested item in the cache, the other (bottom) existing as
a representation of the requested item not in the cache. As such, the
edges connecting the two represent inserting and evicting the item from
the cache. Similarly, the implied connections to other items on the top
represent hits, while the implied connection to other items on the bot-
tom represent misses. Notably, hits are connections only from/to other
requests for the same item; whereas misses are edges from the previous
and to the next requests. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Here we revisit the example stream provided in Table 7.1, using mOPT to
solve for the optimal shown there. As such, the optimal path is repre-
sented by path with bold edges. The total cost of this path is (3,1), or a
hit-rate of 25% and a write-rate of 25%, an exact match for the optimal
within the previous example. . . . . . . . . . . . . . . . . . . . . . . . 90

7.5 This violin graph shows the hit-rate results of M+ and mOPT, normalized to
the hit-rate of MIN. We can see here that M+ will perform slightly better
than MIN, and mOPT will perform very slightly better than M+. An
interesting outlier is that of CloudCache, where neither M+ nor mOPT
was able to find opportunities to improve the hit-rate further. . . . . . . 92

xv



7.6 This violin graph shows the write-rate results of M+ and mOPT, normal-
ized to the write-rate of MIN. We can see here that M+ will reduce the
write-rate a great deal better than MIN, but that mOPT can still find a
significant number of opportunities to reduce writes further. . . . . . . . 92

7.7 Here we can see the Mean Absolute Error (MAE) that MIN and M+ have
due to the sampling of the trace. These errors are determined by the dif-
ference in performance compared to their unsampled counterparts, hence
why mOPT was not capable of having its error measured similarly. We
can see that for the most part, the sampled hit-rate results are typically
accurate, with a number of outliers having an MAE of at most 0.26. . . . 93

7.8 Here we can see the Mean Absolute Error (MAE) that MIN and M+ have
due to the sampling of the trace. These errors are determined by the dif-
ference in performance compared to their unsampled counterparts, hence
why mOPT was not capable of having its error measured similarly. We
can see that for the most part, the sampled write-rate results are typi-
cally accurate. We can see that MIN is less error prone, due to its always
caching nature. M+, making a variety of choices presents more oppor-
tunities for errors, but even so still has typically accurate sampled write-
rate results, with a number of outliers having an MAE of at most 0.242.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xvi



CHAPTER 1

INTRODUCTION

Many applications, either within the enterprise, cloud, or big-data environments have

had storage systems become increasingly important both in terms of larger storage sys-

tems and, more importantly, the distribution and availability requirements of such systems

with the goal of fast, reliable access to data for end-users. Within these storage systems,

large capacity storage is often composed of the more cheaply available magnetic disks,

with caching allowing for speedup of access to important or recently/often accessed data.

While DRAM is typically used within many systems for caching, the complexity of appli-

cations running on systems, like distributed computation systems, may effect the amount

of space available within such memory [MS14]. On top of this large use of DRAM by the

system, DRAM itself is costly and volatile. This cost means that DRAM has to be limited

and a slower but less costly medium is necessary for a viable cache for these systems.

Flash devices, such as solid state drives (SSDs) have become increasingly more com-

monplace within storage systems due to their read and write speeds and comparatively

low cost for the memory space when compared to DRAM. These devices are only able

to handle a given amount of erasures and writes before they are unable to hold new data,

producing errors or potentially making the device corrupt [BD10]. Amongst the latest

developments in storage technology, the introduction of NVM (Non-Volatile Memory)

devices have produced fervent speculation into not only its benefits but how best to use

it. Being faster than flash devices but slower than DRAM, its immediate impact on per-

formance when used is certainly notable [KBC+15]. However, the current estimations

for the number of write cycles a NVM device, such as Intel’s 3D Xpoint technology, can

have before being prone to errors is estimated at a rate similar to that of SSDs [ZHZ+18].

Flash and NVM devices (such as 3D-XPoint) have replaced magnetic disk drives in

many systems, having the filesystem located on the devices themselves and improving

1



boot times and overall system performance [HAWS13]. However, the cost and size

of these devices are still comparatively high when compared to magnetic disk drives,

a much slower medium. Due to this, many systems where a large, slower storage are

required have accommodated flash and NVM devices as large caches to speed up access

to frequently requested items by keeping such data from these slower devices [HAWS13].

We henceforth shall refer to the cache configuration where the slower storage is being

communicated with over a network while the cache may be either flash or NVM, as host-

side caches. A benefit to the use of these host-side caches is the possibility to recover

cached data in situations such as a power loss, as unlike DRAM caches, the devices

used as caches would be non-volatile [HAWS13]. These host-side caches, when given a

request, are capable of a choice impossible for DRAM, or other datapath caches: to not

cache a requested item [SLK+15].

The ability for non-datapath caches to not cache becomes even more important when

we take into consideration what kind of devices they typically are: flash and NVM de-

vices, devices whose number of write cycles are relatively limited. With this, it has been

acknowledged that caching algorithms that know and operate on non-datapath caches

have two objectives: high performance by having many hits, and reducing the number

of writes to the cache in an effort to expand the cache’s usable lifespan. The choice not

to cache a requested item brings new revelations and opens new opportunities. Belady’s

MIN algorithm, a provably best caching algorithm for caches, now has become incom-

patible when solving for non-datapath caches as MIN always caches on a miss [Bel66].

Other algorithms that are used in practice: CLOCK, FIFO, LRU, ARC, LIRS, all have

this same incompatibility with non-datapath caches as they too always cache on a miss

[CoT68, DT90, MM03, JZ02].

So, it comes as no surprise that efforts have already been taken to solve this optimality

for non-datapath caches. However, many who have approached the problem have not
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proposed exact solutions, instead deferring to approximations with the use of intuitive

heuristics [CDS+16]. Beyond this, use cases can vary with the write policy of the cache:

• Write-back: Caches managed with a write-back policy find hits, even those that

lead to writes, valuable.

• Write-through: Caches managed with a write-through policy find hits that lead to

writes to be evaluated the same as an insertion.

• Write-around: Caches managed with a write-around policy find hits that lead to

writes to be disadvantageous, as a write invalidates the item in the cache.

This presents an argument for multiple cost models that a non-datapath optimization al-

gorithm would need to accommodate for.

Existing solutions focus on the limitations of non-datapath caches and put forth work

to reduce the writes to the cache while attaining reasonable performance. Such solutions

have included LARC, a non-datapath caching algorithm that waits until a second access

to an item before it is inserted into the cache [HWC+13]. This approach means the

loss of several hits, placing priority instead on not caching unique accesses such as scans

or random accesses, leading to a lowered hit-rate to achieve a reduction in writes to the

cache. Other solutions include those like LFO, a caching algorithm that uses machine

learning and a model of OPT (Belady’s algorithm) to make decisions to cache or not

[Ber18]. As we shall expand on later in Chapter 2, this approach has the problem of not

being considerate to reducing writes to the cache and is an online algorithm, not an exact

solution to the problem. There is also RL-Cache, a Reinforcement Learning caching

algorithm that shows promise, though its use of machine learning through TensorFlow

has it require a GPU for further computations [KSGS19].

In this thesis, we explore non-datapath caches in detail and identify several problems.

First, we understand that non-datapath caches have the choice to not cache and that many
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other approaches either provide compromises to hit-rate or complexity in the pursuit of a

solution. To address this problem, we proposed mARC, a non-datapath caching algorithm

that identifies the workload state in order to determine whether caching should be optimal

or not. Second, with an understanding of mARC, we saw that mARC was able to identify

the workload state, however it had a missing transition that unnecessarily inserted items

into the cache. To address this problem, we proposed FOMO, an improvement upon

mARC that was capable of not only understanding of the workload from a different angle,

but was also capable of utilizing any other algorithm as its eviction expert. Third, working

with FOMO we found that its main problems were its tunable parameters, its speed to

identify workload states, and its potential to get stuck in a local minima. To address these

problems, we propose ANX, an experimental algorithm built upon our understanding

from the previous work of mARC and FOMO. ANX is a non-datapath caching algorithm

that uses a single parameter to drive its decisions, while using randomization to make use

of probabilistic understanding of the workload that allows ANX to react to workload state

changes much more quickly. In the last part of the thesis, we will focus on the current lack

of a polynomial time solution to the non-datapath caching problem and finally propose a

conversion of the problem into a min-cost flow graph capable of solving the non-datapath

caching problem in polynomial time.

The next chapter outlines the main contributions of this proposal. It starts with a

list of the proposed problems, followed by descriptions of our proposed solutions and

their significance. Each chapter of this dissertation is written to be as self contained as

possible. However, in order to better understand the material here presented, readers are

encouraged to get familiar with the terms and concepts described in Chapter 3. The rest

of this document dedicates a chapter to each of the contributions we have made to address

the proposed problems. We conclude the dissertation with a list of related literature and a

detailed description on how our solutions differ those presented previously.
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CHAPTER 2

PROBLEM STATEMENT

This chapter introduces the proposed research problems and their significance. In

addition, this chapter also identifies the major challenges associated with the problems in

question and outlines our unique contributions.

2.1 Thesis Statement

We propose building non-datapath cache solutions that both focus on using an understand-

ing of the workload to make caching decisions and tackle the theoretical optimization

questions by:

1. developing a hit-rate based, workload-aware non-datapath caching algorithm,

2. building upon the hit-rate based, workload-aware caching algorithm by making it

both generalized and adaptive,

3. developing a new non-datapath caching algorithm that uses individual access indi-

cators for workload-aware capabilities, and

4. providing a reduction of the non-datapath optimization problem to benefit from a

polynomial time solution to this known problem.

2.2 Thesis Contributions

This thesis addresses the challenges of determining the correct decision in non-datapath

caches when trying to optimize both for hit-rate and for writes, making four distinct con-

tributions.

First, we developed a hit-rate based, workload-aware non-datapath caching algorithm

that builds upon the classic ARC caching algorithm. Existing caching algorithms either
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do not consider the main flexibility afforded to non-datapath caches (not caching on a

miss) or typically employ methods that tended to optimize more for either hit-rate or

writes. We found that workloads can be broken down into parts that exhibit definable be-

haviors. With an understanding of the workload, we found that there were many instances

wherein an entire state is defined as benefiting from either always caching or always not

caching. In this thesis, we develop mARC, a non-datapath caching algorithm that utilizes

this understanding, extending ARC to identify workload states and cache or not based

solely off of these identifications, with the idea that a proper balance between caching

and not caching leads to optimal non-datapath performance in terms of both hit-rate and

writes.

Second, we developed further off of the main ideas of mARC, building a new non-

datapath caching algorithm that corrected many of the shortcomings found in mARC.

Working on an understanding of mARC’s limitations we generalized mARC so that not

just ARC, but any datapath caching algorithm can be easily integrated without modifi-

cation. This generalizability allows us to adopt whichever is the best datapath caching

algorithm, doing so allows any datapath caching algorithm to function appropriately in

the non-datapath context. Furthermore, FOMO accounted for all possible workload state

transitions by simplifying mARC’s states and transitions into two states and two transi-

tion conditions. In this thesis, we develop FOMO, an adaptive, generalized non-datapath

cache admission policy that iterates on mARC to improve performance further.

Third, we revisited the definitions we created and used for mARC and FOMO, looking

for new definitions and identifiers that did not require a period of observation to determine

the workload state. This reliance on an observation period is something to be avoided, as

it slows down mARC’s or FOMO’s ability to react and adapt to changes in the workload

behavior. This is especially harmful if these changes are towards behaviors unfavorable
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to mARC’s or FOMO’s current state, where, until noticed, they will commit to improper

actions for the behavior.

The resulting algorithm is a completely unique creation, ANX, an adaptive, non-

datapath caching admission policy that explores a new direction to help in understand-

ing the workload at runtime: a miss history. This miss history keeps track of the past

decisions the algorithm would have made in regards to a requested page: Inserted and

Filtered, which represent the decisions of caching and not caching, respectively. This

allows the algorithm to identify both bad choices (like not caching a page that would have

benefited from being cached) or help identify a workload state before pages were evicted

in many cases, further explored in Chapter 6.

Typically, other algorithms are focused on the eviction history in order to improve

performance. This use of an eviction history is mostly a technique that comes from an

understanding that if a page is found within the eviction history, the algorithm made a

mistake in evicting it. This, unfortunately, is an attempt to identify important pages to

keep in the cache, whereas the miss history instead focuses on not caching unimportant

pages, which can avoid those bad evictions in the first place. Additionally, the miss

history focuses on far more recent actions of the algorithm, allowing the algorithm to

adapt quickly to recent changes in workload behavior, rather than passively protecting

against bad workload behaviors through partitioning (a technique used by both ARC and

LIRS). The workload state transition understanding from mARC and FOMO was also

reworked with the understanding that important transitions were missing: when Stable

transitions to and from Unique Access. ANX uses intelligent identification methods in

conjunction with the miss history to ascertain the current workload state rapidly and adapt

just as quickly, based on these identifiers.

Finally, we move our focus from the practical applications of our understanding of

non-datapath caches to the theoretical. While previous work has gone into producing
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solutions for non-datapath caches that optimize for both hits and writes, all of the work

on the problem thus far has been empirical, and no optimal solutions to the problem have

yet been uncovered. There are also claims that a solution for non-datapath caches has

potentially non-polynomial time complexity, though not proven. In this thesis, we propose

a way to reduce the non-datapath cache optimization problem to a min-cost flow problem

that is capable of solving the non-datapath cache optimization problem in polynomial

time. We have named this solution mOPT (modified-OPT).

2.3 Thesis Significance

The increasing availability and deployment of flash and 3D-XPoint based host-side caches

represent a huge opportunity to accelerate the slowest component of computing systems

— storage. Previously existing solutions, being focused on datapath caches, are not made

to make the best use of these caches [Bel66, CoT68, DT90, MM03, JZ02, Li18]. Though

these solutions are still capable for achieving good hit-rate, their datapath requirements

of always caching on a miss, incur a large number of writes, lessening the lifespan of

the host-side caches unnecessarily. The latest solutions explore the new ability of these

host-side caches: to not cache. However, these solutions either focus too heavily on the

reduction of writes or use advanced techniques that are more resource intensive than can

be typically allowable in production [HWC+13, Ber18, KSGS19]. In this thesis, we

propose solutions that are less resource intensive and, while focusing on the reduction of

writes to the cache, perform as well, if not potentially better, as these previously existing

datapath caching algorithms.

Along with the previous datapath caching solutions being unsuitable for non-datapath

caches, the previous optimization algorithm, Belady’s MIN algorithm, has become im-

proper for determining both optimum hit-rate and, a new concern, writes for a cache
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[Bel66]. As Belady’s MIN suffers from the same datapath cache restriction of always

caching on a miss, it incurs more writes, as discussed before, but potentially more impor-

tant: the option to not cache can cause the hit-rate to improve! Belady’s MIN is often

used as a comparison point for datapath caching algorithms to represent how close the

algorithm is to optimal, it follows that such an algorithm for non-datapath caches would

garner the same importance of comparisons, used as a measurement of the best an algo-

rithm can achieve at a given cache size in this environment. Previous solutions proposed

instead the use of heuristics for approximating reasonable comparisons, even if these an-

swers were not true optimal solutions for the non-datapath cache version of the problem

[CDS+16]. In this thesis, we propose a polynomial time solution capable of determining

the optimal solution for non-datapath caches.

2.3.1 mARC

With an understanding of the capabilities and requirements for non-datapath caches, we

made an effort to look for hints in the composition of workloads. From this effort came

the classification of three workload states and the recognition that each of these states had

a preferred action, where either caching or not caching was preferable in each state. With

these workload states identified, the next step was how could one discover them from a

caching algorithm context. The answer we arrived at, was using our understanding of

these states to identify state changes with the changes in hit-rate. Using ARC as a base

and adding non-datapath capabilities, we developed mARC, a non-datapath cache that

identified the current state of the workload and would the perform the preferred action of

that state. This gave us an opportunity to not compromise hit-rate for reduced writes in

the non-datapath cache or great resource requirements.
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2.3.2 FOMO

With our previous understanding from mARC, we moved towards an improved solution,

one that would have improved capabilities and generalizability, allowing any datapath

caching algorithm to become proper for the non-datapath caching environment. Since

mARC relied heavily on tunable parameters for much of its workload state transition

decisions, it was possible that certain workloads would need tuning in order to have an

improved performance. Furthermore, mARC misses a potential state transition between

two of its states, requiring not only an extra transition but unnecessary insertions into

the cache. Understanding this problem, we worked on simplifying our understanding of

mARC, considering a new understanding of the relationship between internal (cache) hit-

rate and external hit-rate through the use of a structure we call the miss history. In the end,

we developed FOMO, a generalized non-datapath admission policy capable of improving

its ability to identify the current state of the workload through a simplified state model.

2.3.3 ANX

While mARC was capable of identifying the state of the workload, it was complex, with

many tunable parameters that it would use for its decisions. FOMO improved upon this

by introducing a simplified state model, but due to both mARC and FOMO’s reliance on

cache and filter list (or miss history) hit-rate to identify workload states, they have an ob-

servation period that must pass before evaluating these rates and identifying the workload

state, delaying changes that may be critical to preventing the cache from evicting impor-

tant pages while inserting pages of low importance, reducing the resulting hit-rate while

incurring several unnecessary writes. In an effort to address these concerns, we revisited

the definitions and understandings of workload states and found our revised definitions

constantly using two terms: old and new when referring to pages. This drove us away
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from using separate filter and eviction histories and put our focus squarely on misses, or

more accurately, recent misses and the relevant non-datapath decision taken in regards to

these misses. Though it seemed almost sacrilegious to ignore the eviction history, a miss

history allows us to make a relevant distinction between old and new, where new pages

would exist in the miss history and old pages would be in the cache but not in the miss

history, and has more recent events recorded that we would want to respond to. This shift

to a far more recent event, the miss, gives us a proper opportunity to figure out the work-

load, rather than to put a page into the cache, see if it gets hits while in the cache and then

see it being evicted at a later time in order to finally determine qualities of the workload,

while the workload may have changed in the time since then. With this, the focus on

limiting the number of parameters, to simplify our solution compared to that of mARC’s

parameters (and even FOMO’s), had us finally reduce everything to a single parameter to

drive the cache, which we named anxiety. With this model, we developed ANX, a non-

datapath caching policy that uses probability and adapting to identifiable state behaviors

to determine whether it should cache or not. ANX is able to react quickly to changes in

workload state and is incredibly simple for the hit-rate it is able to achieve. On top of

all this, ANX is more than capable of reducing the number of writes to the cache signif-

icantly, providing evidence that this often ignored pipeline, the miss history, may be far

more important to cache performance than the caching community may have imagined.

The design of ANX, and in particular the identifiers it uses are an interesting departure

from traditional design philosophies that shows promise and merits further exploration

and experimentation.
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2.3.4 mOPT

While non-datapath caches have clearly stated statistics to optimize for (hits and writes),

the way to find the optimal solution for a given cache size had remained an open problem.

Having this point of comparison strengthens non-datapath caching algorithms and allows

measuring the gap in performance between such an algorithm and the optimal answer.

This gap, similar to the one existing when comparing Belady’s MIN to other datapath

caching algorithms, is important evidence that further improvement is possible. Presently,

the solutions provided have mostly come in the form of heuristics that make use of an un-

derstanding of the requirements for non-datapath caches to find good enough solutions

for these comparisons [CDS+16]. However, the optimal solution has been elusive. In

this thesis, we present the mOPT solution to non-datapath caches, capable of finding an

optimal solution to a given cache size in polynomial time, providing the missing com-

parison point with a best possible solution, rather than an approximation as presented so

far.

The following chapter will discuss the background details for many of the presented

concepts, assisting those previously unfamiliar in the subject matter to understand the

significance of our contributions further.
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CHAPTER 3

BACKGROUND

In this chapter we define concepts that are prerequisite for understating the problems

described in this thesis as well as the proposed solutions.

3.1 Storage Architectures

Figure 3.1: Centralized Storage Architecture

Figure 3.2: Distributed Storage Architecture

Among network storage systems, two particular architectures are common in data-

centers: centralized storage and distributed storage. With centralized storage, the host

servers communicate over the network to a centralized storage device, such as an array-

based storage, as seen in Figure 3.1. With distributed storage, the host servers have their
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own storage attached, however, data may also be retrieved from another server over the

network, as seen in Figure 3.2. DRAM has been used before to cache this remote data,

improving performance as when the data is located in DRAM a request can be served

without needing to go over the network, and significantly decreasing the latency of the

operation, as the roundtime for a DRAM request is several orders of magnitude faster

than the network attached storage [KMR+13].

3.2 Host-Side Caches

While DRAM is used as a cache and more than capable of improving the performance

of the servers in network storage systems, the amount of data being used and processed

is only ever increasing, increasing the size DRAM would need to be in order to be suffi-

cient for such working set processing requirements. Host-side caches typically use non-

volatile memory (NVM) technology such as flash or 3d-Xpoint. They are represented as

Non-Datapath caches in Figures 3.1 and 3.2 when used with centralized and distributed

storage respectively. Host-side caches, be it flash or persistent memory, are high per-

formance and high capacity caching devices that improve performance when accessing

storage over a network while being able to handle larger working sets than DRAM caches

using their larger capacities [BLM+12]. While these host-side caches are typically an

order of magnitude or two slower than DRAM, the increase in latency by using these

slower storage devices still results in a latency far lower that of accessing any network

attached storage [WOHL17, BLM+12]. The current estimation for the number of write

cycles flash or persistent memory devices, such as 3D Xpoint, are able to have before be-

ing prone to errors are roughly the same, making these devices wear faster when writing

is more common [ZHZ+18].
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These host-side caches, being typically flash or persistent memory devices, are orga-

nized into memory cells. While flash devices are block addressable, persistent memory

devices tout the capability of being byte-addressable. Despite the method of addressing

these devices, blocks are the most common form the data takes when it is being accessed.

These host-side caches, compared to DRAM memory caches, are not a requirement

for the datapath memory hierarchy to function properly. As such, when these host-side

caches are present, the placement of data within them is optional; meaning that misses

to the host-side cache do not carry the datapath requirement that the data must then be

inserted into the cache. Due to their larger and slower nature compared to DRAM, host-

side caches provide another cache level to query prior to other, slower devices. Due

to these caches not being a part of the datapath memory hierarchy these caches can be

referred to as non-datapath caches.

3.3 Write Caching Policies

When using a cache, there are multiple write policies that can be used, each with their

own benefits. While the models we create for caching writes in non-datapath caches

allows for multiple write policies, we assume the implementation of such write policies

are orthogonal to the design of the cache replacement algorithm, which is the focus of

this dissertation.

A classic write caching policy is write-back, where when a write request has a hit in

the cache, the data is written only to the cache; this marks the page as dirty, and only when

the page is evicted from the cache is the data written back to its storage. This reduces

requests to the storage device and improves performance as the process only has to wait

until the data is written to the cache to continue. This write caching policy benefits write
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heavy workloads the most. This write policy has the other beneficial effect of reducing

the volume of write I/O traffic to the network storage system [KMR+13].

Another classic write caching policy is write-through, which is when a write request

has a hit in the cache, the data is written to both the cache and the storage device. This

increases the number of requests to the network storage device and hurts performance,

when compared to write-back, as the process must wait until the data is written to both

the cache and the storage before continuing. However, what is typically gained is a level

of durability of the write, since it is guaranteed to be in the storage device, rather than have

dirty, or more up to date version, data in the cache should any failures occur [KMR+13].

A less classical write caching policy, but one used in enterprise systems, is write-

around, where, should a write request have a hit in the cache, the cached page is marked

as invalid, removing it from the cache. This increases the number of requests and hurts

performance, just as write-through does, though it can be expected to be even worse as

read-after-write behaviors are both misses in a write-around scenario. This write caching

policy is mostly beneficial for workloads where there are either a limited number of writes

or when written data are not typically read immediately afterwards [KKI+14].

3.4 Consistency

For network storage systems, where a specific instance of data can exist amongst the

several hosts, the problem of consistency of this data across these hosts can become a

concern. The problem of consistency within network storage systems has been explored

thoroughly from multiple angles. One such angle is automating the decision of what kind

of consistency is necessary for a system [LLC+14]. These types of consistency consists of

weak consistencies (causal, eventual, and timeline) and strong consistencies (serializabil-

ity and linearizability). Weak consistencies gain performance by having a small number
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of replicas to reduce the number of contacts and operations necessary before replying to

a user. Strong consistencies attempt to treat a networked system as one server, serializing

operations. Another angle explored is the impact of write policies on the consistency and

durability guarantees for host-side caches [KMR+13].

In regards to this dissertation, consistency of these caches is an orthogonal concern to

the caching algorithm itself.

3.5 Optimality

Belady’s MIN Algorithm — also referred to as OPT — is a provably optimal caching

algorithm for datapath caches that uses future knowledge of requests in order to make

decisions on what to evict when inserting a request into a full cache on a miss. By optimal,

we mean that MIN is able to find the maximal number of hits achievable for a given cache

size in a datapath cache. The way that MIN is able to do this, is that on eviction, it chooses

the page in cache that has the longest time until it would be reused. MIN has been used

as a point of comparison for caching algorithms, demonstrating how far any are from this

optimal.

17



CHAPTER 4

mARC

Non-datapath caches are relatively new entrants to the storage stack. All of the previ-

ous work on storage caching had been in the context of data path caches. In this chapter,

we report on our first attempt at modeling the non-datapath caching problem, building

solutions for it, and evaluating it against the state of the art. Specifically, we report on our

learnings from analyzing a large set of production storage workloads in order to identify

periods of time where there is a common behavior, what we refer to as a workload state.

We then demonstrate how we use this knowledge of this state in conjunction with non-

datapath caching to reduce writes to host-side caches while attaining reliable performance

by developing mARC, a workload state aware non-datapath caching algorithm.

4.1 Introduction

CPU and main memory caches are datapath caches. Such caches incur forced cache

updates; they are required to make a cache update on every cache miss so that the data

is accessible by upper-level hardware or software. The widely used cache replacement

policies today, such as(e.g. LRU [DT90], FIFO [DT90], ARC [MM03], MQ [ZPL01])

were designed for datapath caches. Non-datapath caches, on the other hand, are not

required to perform a cache update on every cache miss. One can apply opportunistic

cache updates, whereby case-by-case decisions can be made whether to perform a cache

update. A host-side flash cache is an example of a non-datapath cache. Host-side flash

caches are attractive because they can reduce the demands placed on network storage,

speed up I/O performance, and provide I/O latency and throughput control [BLM+12,

KMR+13, KMR15].

A cache update is composed of two operations: an eviction and an insertion. Perfor-

mance wise, evictions can be detrimental. In case of a host-side flash cache, a dirty item
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chosen for eviction needs to be written to the backing storage consuming both cache and

network storage bandwidth and contending with other items being accessed at the same

time. Furthermore, it can add significant latency to the access inducing the eviction. More

significantly, since the item being evicted may be more valuable than the item being in-

serted in its place, cache updates can be detrimental to the cache hit-rate. This problem is

especially acute for one-time access items, as in a streaming or random access workload,

since they lead to inserting non-reusable items into the cache. Finally, flash-based cache

devices have limited write cycles and cache updates also affect device lifetime.

Lazy adaptive replacement cache (LARC) [HWC+13] is a recent proposal that im-

plements opportunistic cache updates. While LARC benefits from avoiding certain cache

updates, since the LARC cache filter is always operational, it can also prevent impor-

tant items from entering the cache in a timely fashion. As we shall demonstrate later,

because of this shortcoming, LARC performs worse than ARC for the MSR Cambridge

Workloads.

Since LARC, other efforts in online non-datapath caching algorithms has been made.

Two such examples would be Reinforced Learning Cache (RL-Cache) [KSGS19] and

Learning From OPT (LFO) [Ber18]. RL-Cache is a non-datapath caching algorithm that

uses reinforcement learning to figure out whether to cache or not cache items. RL-Cache

requires the use and availability of several threads and GPUs in order to achieve its results.

Furthermore, RL-Cache is primarily designed for variable sized object caches, as RL-

Cache also attempts to reduce the number of objects within its cache. LFO is a non-

datapath caching algorithm that uses machine learning supervised by a modified version

of OPT to learn whether to cache an item or not based on what it thinks OPT would

do. While LFO does well, it uses TensorFlow and has large amounts of overhead that

makes it inappropriate for consideration for production environments. In particular, these
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environments run workloads with a lot of dynamic behavior and learning needs to be

lightweight, online, and continuous.

We propose multi-modal adaptive replacement cache (mARC), a non-datapath ver-

sion of the adaptive replacement cache (ARC) algorithm. mARC is designed to avoid

unnecessary cache updates. It identifies three possible states in which a workload may be

operating in at any given time — Stable, Unstable, and Unique Access — and selectively

disables cache replacement depending on the state.

An evaluation of mARC using a cache simulator for the MSR and FIU block I/O traces

from SNIA [VKUR10, SNI19] is encouraging. For the MSR Cambridge Traces, while

maintaining a competitive hit-rate compared to ARC (1% worse on average), mARC

reduces the number of cache updates by 25% on average. This translates to a significant

improvement in flash cache device lifetimes. For the FIU traces, mARC leads to 9%

better hit-rate on average while reducing the number of cache updates by 23% on average,

when compared with ARC. These results motivate further investigation into replacement

algorithms that are specifically designed for non-datapath caches.

4.2 Motivation

In this section we discuss the workloads for storage systems and the states they consist of,

define the concept of churning, then identify the problems with ARC in regard to these

states, and lastly the discussion of the shortcomings to LARC’s design.

4.2.1 Dynamic Storage Workloads

Storage workloads are dynamic. We model this dynamism using a simple Active-Unique

(A-U) model that is time-aware and describes the amount of unique data accessed as well

as the amount of data that is reused (active data) in the workload. A sample A-U plot is

20



0.0 0.5 1.0 1.5 2.0
Access Number (1e+06)

0.0

2.0

4.0

6.0

8.0

# 
of
 A
ct
iv
e 
Pa

ge
s/

U
ni
qu

e 
Pa

ge
s 
(1
e+

05
)

active unique

Figure 4.1: A-U plot for one day of the prn0 MSR trace

presented in Figure 4.1 for one day of the prn0 MSR Cambridge trace. The A-U model

tracks the number of active and unique pages accessed over time. The active pages at any

instant are the unique pages accessed previously and that will be re-accessed at some time

in the future. As pages get accessed, the unique set of pages never decreases, while the

active set may either increase or decrease depending on the future reuse.

Several combinations of A-U states can be identified with corresponding workload

behavior. We say that a workload is in a Stable state in a given period if the set of

items that are currently referenced and their relative importance (e.g. relative frequency

of access) remains approximately the same as the previous period. When the set of active

and unique pages both remain unchanged, the relative frequency of items being accessed

determine if the workload is in a Stable state. When the set of unique pages remains the

same but the set of active pages decreases, as well as when both the active and unique

page sets increase, the working set is changing, and the workload is an Unstable state.

When the set of unique pages increases but the set of active pages remains unchanged, one

time items (either streaming or random) are being accessed and we refer to the workload

as being in the Unique Access state.

While the active/unique page states provide a good framework to understand behavior,

accurately tracking the active/unique page sets and their relative importance is expensive.
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Further, it is not possible to identify active pages in practice, given that it would require
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Figure 4.2: Cache churning behavior
S(WSi) is the size of the working set at granularity i that is entirely contained within the
larger working set WSi+1 [KVR10]. S(C) is the cache size. Since the cache is not large
enough to contain all pages of WSi+1, non cache-resident pages of WSi+1 continuously

replace cache-resident ones.

knowledge of future accesses. In practice, we found that the cache hit-rate, a relatively

lightweight metric, can serve as an effective proxy for identifying the above set of work-

load states and state change events.

4.2.2 The Deceptiveness of Stability

If the workload is in a Stable state, a cache is expected to perform well. However, if the

cache is not large enough to contain the current set of active pages, the cache contents

can churn needlessly due to forced cache updates in conventional caching algorithms.

Such churning involves the constant eviction of cached pages when pages with relatively

equal or lesser importance get accessed. Figure 4.2 illustrates cache churning behavior

within the Stable state. Cache replacement due to such churning is detrimental to cache
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hit-rate. The optimal operation in such situations is the ”noop”, i.e., not to perform cache

replacement. This phenomenon has been observed for CPU caches earlier [QJP+07].

4.2.3 ARChilles’ Heel
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Figure 4.3: A-U plot for one day of the src2-1 MSR trace

ARC [MM03] is a high-performance algorithm for datapath caches. During Unstable

periods, ARC updates the cache contents efficiently by quickly detecting the important

items in the new working set. During Unique Access periods, ARC retains the frequently

used items while unique items tracked in ARC’s T1 list pass through the cache quickly.

During a workload’s Stable state, ARC is designed to retain frequently used items from

its T2 list in the cache. However, ARC’s cache updating behavior can compromise cache

hit ratio when a stable working set does not fit in the cache. Relatively less frequently

used items continuously lead to cache misses and cache contents churn needlessly.

Figure 4.3 presents an A-U plot for src2-1 MSR Cambridge trace. In this workload,

the number of active and unique pages climbs steadily (introducing a new working set)

until about 4.2M accesses. Following this, the workload reuses a subset of these pages for

about 0.2M accesses and then accesses a majority of the 4.2M unique pages exactly once

again causing a steady decrease in active pages while the number of unique pages stay the
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same. If the cache size is smaller than the maximum number of active pages (i.e., smaller

than 20GB), ARC would continuously evict pages that are about to be used in this trace.

This churning would result in a significantly increased cache miss rate.

4.2.4 Avoiding Forced Cache Updates

This recently proposed LARC [HWC+13] algorithm implements a filtering mechanism

that always avoids cache updates for items not accessed sufficiently recently. LARC

consists of two LRU lists, one for cached items and a filter list for tracking items that

were not in the cache or in the filter list when last accessed. A cache update is only

performed when an item that is not found in the cache is found in the filter list. The filter

list size grows (resp. shrinks) with a decrease (resp. increase) in cache hit-rate.

While LARC presents a new approach for avoiding cache updates, it has its own set

of weaknesses. LARC’s filter is always operational and can prevent important items from

entering the cache in a timely fashion. More specifically, LARC populates the cache in

a timely fashion. More specifically, LARC populates the cache at least twice as slowly

as other algorithms when workload working sets change, negatively affecting cache per-

formance. In such situations, LARC can perform significantly worse than ARC. LARC’s

filtering mechanism can reduce the probability of content churning in the cache by shrink-

ing the size of the filter. However, it can only be successful in doing so when the cache

hit-rate is sufficiently high; in other cases, LARC is unable to avoid churning.

4.3 Design

In this section, we discuss the design and the reasons behind the design decisions. We

first focus on workload states, a core driver for the start of our design, continue onto the

development onto a state model, and finally on the design of mARC itself. mARC builds
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on the strengths of ARC and LARC while addressing their weaknesses, leading to sig-

nificant benefits for non-datapath caches. The intuition behind mARC is that workloads

comprise of multiple states and filtering (or not filtering) exclusively is not effective in

every workload state.

4.3.1 Workload States

mARC characterizes workloads as a state machine with three states — Stable, Unstable,

and Unique Access. By avoiding cache updates when cache contents would otherwise

churn, mARC improves cache hit-rate. By avoiding unnecessary cache updates, it also

improves data access latency and extends cache device lifetime.

Algorithm Stable (no Churning) Stable (Churning) Unstable Unique Access
ARC 4 7 4 ∼
LARC 4 ∼ ∼ 4

mARC 4 4 4 4

Table 4.1: Algorithms and workload states
Legend: 4(full support), ∼ (partial support), 7(no support)

During the Unstable state, mARC implements a simple ARC access for each refer-

enced item, i.e., performs no filtering. mARC implements filtering in the Unique Access

and Stable states. In these states, items either enter the cache or are registered in a filter

list, which only stores metadata about the item. On a cache miss, items that are not found

in the filter list get added to the filter list, whereas those that are found in the filter list

results in an ARC access within the cache. The size of the filter list is maintained and

updated as in LARC [HWC+13]. Table 4.1 provides a qualitative comparison of ARC,

LARC, and mARC.
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4.3.2 The States of mARC

To efficiently identify workload states, mARC uses sampling. It maintains two indicators

to track workload state: a running average cache hit-rate that has been accumulated dur-

ing the current workload state (HRstate) and the cache hit-rate during the current sample

period (HRsample). HRsample is the hit-rate computed over the last n accesses where n

is the size of the cache. In practice, n accesses provide us a valuable mean hit-rate by

ensuring adequate coverage of items compared to the working set resident in the cache.

State Condition Action
Stable HRsample ≤ 0.7*HRstate Switch to Unstable

Unstable 0.9*HRstate ≤ HRsample ≤ 1.1*HRstate Switch to Stable
Unstable HRsample ≥ 1.2*HRstate ∧ HRsample > 0.2 Switch to Stable
Unstable HRstate > HRsample ∨ HRsample < 0.1 Switch to Unique Access

Unique Access 0.1*HRsample > Filter-HRsample ∨ HRsample > 0.1 Switch to Unstable

Table 4.2: mARC State Transition Table

mARC operates as follows. Every n accesses, HRsample is compared with HRstate.

mARC resets the value of HRstate only when entering an Unstable state to quickly and

accurately track the hit-rate of a new working set. Doing so for the other states is not

necessary. While in the Unstable state, to increase confidence and robustness, HRstate

tracks at least 2n accesses before checking if a change of state should take place. Table 4.2

depicts the state machine that mARC implements. The constants used for each condition

were determined by experimenting with a subset of the possible combinations of feasible

values across all the 45 I/O workloads from MSR Cambridge and FIU [VKUR10, SNI19].

mARC starts its operation in the Unstable state. The rest of this section discusses how

the various states of mARC operate, how state transitions occur, andthe resulting impact

to the caching mechanism.
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Stable State

At the beginning of a stable state, mARC enables the filtering mechanism, configuring the

filter to its minimum size. ARC, active during the previous Unstable state, is expected

to have populated the cache with the workload’s working-set. Filtering in this state pre-

vents cache pollution and needless cache updates. Starting with the minimum sized filter

reduces the probability of cache churning as well. When signs of workload instability

appear, the filtering mechanism is stopped and mARC returns to the Unstable state to

repopulate the cache.

The only condition needed for mARC to transition out of the Stable state is that the

performance of the cache is deteriorating over time because of a new working set. As

shown in Table 4.2, we used a HRsample that was 70% of the HRstate as a robust indicator

of instability. In practice, we found that higher values make mRAC prematurely enter the

Unstable state for a substantial fraction of the workloads.

Unstable State

In an Unstable state, mARC uses ARC without filtering with the objective of populating

a new working set. As shown in Table 4.2, there are three possible conditions that lead to

transitions out of this state:

• HRsample is similar to HRstate — within 10% of each other. This implies hit-rate

stability and mARC infers that the workload itself is stable. To respond, mARC

moves to the Stable state to improve the hit-rate by avoiding cache churning and

cache updates. We found 10% of HRstate to be an acceptable margin of error when

detecting stability. If a more rigorous measure of stability were to be used, mARC

delays entering the Stable state and in starting to filter unwanted items. If a less rig-
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orous measure were to be used, the risk of changing state prematurely, and thereby

compromising cache hit-rate, increases.

• If HRsample is significantly higher than HRstate and also above a threshold, mARC

determines that recent performance is better than the historical performance in the

current state and moves to the Stable state. When HRsample is 20% higher HRstate,

then the new state is considered significantly better. However, a minimum threshold

must be met by HRsample for this increase to avoid really low values.

• When HRsample is significantly lower than HRstate or HRsample is below a minimum

value, mARC infers streaming or random (one time) access behavior, and transi-

tions to the Unique Access state. mARC employs 50% decrease in hit-rate as a

good indicator of unique access behavior and this worked well in practice. Further-

more, if HRsample is below 10%, unique access behavior is automatically inferred.

Unique Access State

In a Unique Access state, mARC turns on filtering mechanisms to avoid cache pollution

due tot he cache updates and stops filtering only after transitioning out to an Unstable

state. Table 4.2 shows the conditions that bring mARC back to the Unstable state. These

involve detecting either that (i) a new working set it being introduced or (ii) unique access

behavior has terminated. To determine if a new working set is being accessed, mARC

samples the hit-rate of items in the filter (Filter-HRsample). If this value exceeds 10%, it

concludes that unique access behavior will soon terminate. mARC also uses a minimum

HRsample threshold to detect that the Unique Access state has terminated and a new work-

ing set may already be cache resident. In this case, switching to the Unstable state will

allow confirming that the working set is indeed cache resident and eventually switch to

the Stable state.
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4.4 Evaluation
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Figure 4.4: MSR Normalized Average Write-Rate
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Figure 4.5: MSR Normalized Average Write-Rate

In this section, we observe the hit-rate and write-rate results of mARC. We built ARC,

LARC, and mARC cache simulators which process a block I/O trace and report on the

number of reads/writes, hits and misses, and clean and dirty evictions. To simulate suf-

ficient cache space as well as I/O activity, we controlled the size of the cache to be a

fraction of the workload footprint, defined as the combined size of all unique data ac-

cessed. We varied this fractional cache size from 5% to 25% in our simulations. Our
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evaluation metrics include the mean cache hit-rate and the normalized mean write-rate,

greater write-rates indicate lower flash cache device lifetime. For the workloads, we

used the FIU and MSR Cambridge block I/O traces from the SNIA IOTTA trace reposi-

tory [VKUR10, SNI19]. The MSR Cambridge and FIU traces are two large sets of 36 and

9 I/O traces respectively, from a variety of production servers/systems /citenarayanan08,

VKUR10.

4.4.1 MSR

We first evaluate mARC for the MSR Cambridge traces, averaging across all of its work-

loads. Figures 4.4 and 4.5 depict how the cache hit-rate and cache write-rate vary for

various cache sizes chosen as fractions of the workload footprint size. We observe that

mARC has an average hit-rate that is very competitive with ARC (1% worse on average)

and is greater than the LARC hit-rate (5% better on average) across the various cache

sizes. LARC incurs the least number of cache writes (43% better than ARC on average),

while mARC does 25% fewer writes on average than ARC.

4.4.2 FIU

Figures 4.6 and 4.7 depict results for the FIU traces, averaged across all the workloads.

While mARC and LARC both provide higher hit-rate and ARC, LARC’s hit-rate degrades

as cache size increases form 10% to 15% of the workload footprint. This happens because

LARC makes decisions on what to cache based on a secondary hit in the filter; since

the filter size is proportional to the cache size, cache churning becomes a possibility.

mARC does slightly better than LARC on average (1% better hit-rate) and also performs

better with more cache space. LARC incurs the lowest write-rate (33% lower than ARC),

whereas mARC also reduces write-rate by 23% compared to ARC.
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Figure 4.6: FIU Average Hit-Rate
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Figure 4.7: FIU Normalized Average Write-Rate
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4.5 Summary

Conventional datapath caches have been managed by policies that incur forced cache

updates. For non-datapath caches, these caching policies can become detrimental to cache

performance and cache device lifetime. We demonstrate that managing datapath caches

involves deciding whether and when to filter items from entering the cache, as well as

to turn off such filtering when it becomes detrimental to performance. We show that

for caching purposes, workloads can be modeled as a simple but useful state machine.

mARC modifies the ARC algorithm equaling or exceeding its hit-rate while significantly

lowering cache updates. mARC has its limitations though, the conditions are unchanging

and don’t address the variety of workloads that can be found and ARC may not be the

best caching algorithm to use. In the next chapter, we will discuss FOMO, a solution that

examines these problems further and works to correct them.
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CHAPTER 5

FOMO

Unlike conventional caches, non-datapath caches, such as host-side flash caches, have

distinct requirements. While every cache miss results in a cache update in a conventional

cache, non-datapath caches allow the flexibility of selective caching, i.e., the option of

not having to update the cache on each miss. This flexibility is important because cache

updates are expensive and can be counter-productive to cache performance. Existing

non-datapath caching algorithms, such as LARC and mARC, are limited in their ability

to balance hit rate performance and cache writes, with LARC imposing misses to reduce

writes and mARC imposing writes unnecessarily. We propose a new, bimodal cache, Fear

Of Missing Out (FOMO), for managing non-datapath caches.

FOMO is a generalized non-datapath cache admission policy, managing which re-

quests are passed along to the underlying cache replacement policy. Being generalized

has the benefit of allowing any datapath cache replacement policy, such as LRU, ARC,

or LIRS, to be augmented by FOMO to make these datapath caching algorithms better

suited for non-datapath caches. FOMO is able to achieve this by taking into account that

most storage workloads go through a series of phases during their execution, with ac-

cess behavior varying significantly across these phases. Operating in two states, FOMO

is selective — it selectively disables cache insertion and replacement depending on the

learned behavior of the workload. FOMO is lightweight and tracks inexpensive metrics

in order to identify these workload behaviors effectively. FOMO focuses on two met-

rics: the traditional cache hit rate, but also the reuse rate of recently missed items, which

evaluates how the items outside of the cache are being accessed. FOMO utilizes its Miss-

History structure to collect the reuse rate of recently missed items, which allows FOMO

to understand the workload behavior much more acutely than mARC. This insight allows

FOMO to identify opportunities for improving cache performance that would have oth-
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erwise have been missed. FOMO adjusts its behavior quickly and dynamically based on

the performance of the cache and the observed behavior of the workload.

FOMO is evaluated using 3 different cache replacement policies against the current

state-of-the-art non-datapath caching algorithms, using 5 different storage system work-

load repositories (totaling 176 workloads) for 6 different cache size configurations, each

sized as a percentage of each workload’s footprint. Just as mARC improved upon LARC

by writing to the cache more often to improve hit rates, FOMO similarly improves upon

mARC, achieving improved hit rate and write rate consistency by using a simple model

to avoid the issues present within mARC’s state model. The use of a Miss-History gives

FOMO a more acute understanding of the workload behavior, compared to mARC, which

depends exclusively on cache hit rate to make decisions.

5.1 Introduction

Conventional caching algorithms (e.g LRU [DT90], Clock [Tan07], FIFO [DT90],

ARC [MM03], MQ [ZPL01], LIRS [JZ02], etc.) were designed for datapath caches.

These datapath caches are defined by their requirement whereby every cache miss re-

quires that a cache insertion occurs and, should that cache be full, a cache eviction is

also incurred. While this is suitable for CPU and DRAM caches, where the cost of each

insertion is relatively inexpensive, this no longer holds true in the context of host-side

(flash or persistent memory) SSD caches.

When using host-side SSD caches [Lev08, BLM+12, SSZ12], data can get served to

the application directly from back-end storage without having to first retrieve it into the

cache. This opens up a unique opportunity: selective updates, whereby cache updates

are not always made upon a cache miss but instead get decided on every access. Caches

that allow for this flexibility are non-datapath caches. Non-datapath caching algorithms

with selective updates, can improve the lifetime of cache devices that wear out on account
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of device-level writes [BD10, YKH+20]. These algorithms, also have the ability to im-

prove cache hit rate by avoiding cache replacement in cases wherein the evicted item is

considered more valuable than the inserted item [CDS+16, ZKAV20].

Prior research has demonstrated that state-of-the-art caching algorithms such as ARC

can compromise both the cache hit rate as well as the cache write rate when applied

to non-datapath caches [SLK+15, HWC+13]. In particular, the work of Santana et

al. [SLK+15] demonstrated that workloads are heterogeneous and manifest different char-

acteristics in different phases of their execution. They posited that the existing LARC

caching algorithm was insufficient because it always prevented items from entering the

cache on their first access. They proposed mARC [SLK+15], a non-datapath caching al-

gorithm that responds to workload phases by either turning on or off a filter that prevents

items from entering an ARC-managed cache upon first access. However, it is not clear

whether mARC would generalize to cache replacement policies other than ARC (e.g.,

LIRS [JZ02]), some of which have been found valuable in addressing the wide array of

storage workload types in production. Furthermore, mARC relied on a set of workload-

sensitive constants (totaling 8 in all) that defined cache behavior; we demonstrate that this

compromises mARC’s ability to adapt to the variations within and across workloads.

Since LARC and mARC, other efforts in online non-datapath caching algorithms

has been made. Two such examples would be Reinforced Learning Cache (RL-

Cache) [KSGS19] and Learning From OPT (LFO) [Ber18]. RL-Cache is a non-datapath

caching algorithm that uses reinforcement learning to figure out whether to cache or not

cache items. RL-Cache requires the use and availability of several threads and GPUs in

order to achieve its results. Furthermore, RL-Cache is primarily designed for variable

sized object caches, as RL-Cache also attempts to reduce the number of objects within its

cache. LFO is a non-datapath caching algorithm that uses machine learning supervised

by a modified version of OPT to learn whether to cache an item or not based on what it
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thinks OPT would do. While LFO does well, it uses TensorFlow and has large amounts

of overhead that makes it inappropriate for consideration for production environments. In

particular, these environments run workloads with a lot of dynamic behavior and learning

needs to be lightweight, online, and continuous.

In this paper, we propose the Fear of Missing Out (FOMO) admission policy, a gen-

eralized non-datapath admission policy that can be used to augment any datapath cache

replacement policy. FOMO augments these datapath cache replacement policies to be-

come better suited for non-datapath caches. FOMO exists in one of two possible states at

any given time — Insert or Filter. When in the Insert state, FOMO forwards all cache re-

quests to the underlying cache replacement policy while observing the behaviors of both

the cache and the workload. When in the Filter state, FOMO selectively disables cache

updates to improve both cache update rate (cache writes) and the cache hit rate by pre-

venting cache pollution. Cache pollution is the insertion of items into the cache whose

ultimate value is less than that of the item evicted from the cache, hence the cache is

polluted with worse items.

FOMO decides which state to be in by utilizing information about accesses to items

that were in the cache or were recent cache misses. To determine the reuse of recent cache

misses, FOMO maintains a Miss-History structure that keeps track of these items and their

reuse. Using small periods of observation to come to these decisions, FOMO is capable

of reacting quickly to changes in workload behavior. This reaction speed is important

for FOMO. FOMO doesn’t want to miss out on inserting items into the cache for future

hits nor does it want to miss out on preserving the items in the cache or preventing items

lacking reuse from entering into the cache. So, just as someone wishing to keep up

with the latest trends, FOMO doesn’t want to miss out on reacting to the latest workload

behavior.
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We evaluate FOMO using 3 different eviction policies (LRU, ARC, and LIRS) against

other non-datapath caching algorithms on a workload collection comprising of 176 work-

loads sourced from 5 different storage system workload repositories. For each workload,

we evaluate against 6 different cache size configurations, each sized as a percentage of

each workload’s footprint, defined as the set of unique items accessed by the workload.

Just as mARC improved upon LARC by writing to the cache more often to improve hit

rates, FOMO similarly improves upon mARC, achieving improved hit rate consistency

while reducing writes significantly by using a simple model to avoid the issues present

within mARC’s state model. The use of a Miss-History gives FOMO a more acute under-

standing of the workload behavior, compared to mARC, which depends exclusively on

cache hit rate to make its decisions.

5.2 Background and Motivation

The most popular caching algorithms in the literature are LRU, LFU, LIRS, and ARC.

These approaches attempt to cache items considered important based on different metrics

such as recency, frequency and reuse distance. However, they are all datapath caching al-

gorithms and therefore always make cache updates on a cache miss. When these datapath

cache replacement algorithms are used on non-datapath caches, such as host-side (flash

or persistent memory) SSD caches, the amount of cache updates incurred wears out the

cache at a alarming rate. Not only that, but these datapath cache replacement algorithms

do not utilize a new option possible with these host-side SSD caches: selective updates,

where cache updates are not always made upon a cache miss but instead are decided on

every access. This selectiveness allows non-datapath caching algorithms to improve the

lifetime of cache devices that wear out from device-level writes, and improve cache hit
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rates by avoiding cache replacement in cases wherein the evicted item is considered more

valuable than the inserted item.

5.2.1 Non-datapath caching algorithms

Non-datapath caching algorithms have received attention in the last few years, starting

with the LARC [HWC+13] work.

Lazy adaptive replacement cache (LARC): LARC is a non-datapath solution that fo-

cuses on reducing forced updates to a non-datapath cache. At a high-level, LARC pre-

vents inserting items not found in the cache in case they have not been accessed suf-

ficiently recently. LARC consists of two LRU lists, one for cached items and a first-in-

first-out filter list for tracking non-cached items that have been accessed recently. A cache

update is only performed when an item that is not found in the cache is found in the filter

list. To control how aggressively items are filtered, the maximum filter list size grows

(resp. shrinks) with a decrease (resp. increase) in cache hit rate. While LARC’s filtering

approach is straightforward, its filter is always operational and, as a result, can prevent

important items from entering the cache in a timely fashion. In particular, LARC popu-

lates the cache at least twice as slowly as most other algorithms when workload working

sets change; this behavior is capable of significantly impacting performance due to the

compulsory misses induced by the filter. In addition, LARC considers requests as inde-

pendent, and makes filtering decisions on an individual basis, missing opportunities that

can be afforded by finding patterns within the workload.

Multimodal adaptive replacement cache (mARC): mARC [SLK+15] is a selective

caching algorithm that improves performance and endurance by using cache hit rate as

a metric to selectively turn on/off cache insertions. mARC addresses the limitations of

LARC by monitoring and identifying changes in the workload’s working set and caching
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Figure 5.1: Simplified state diagram for mARC. The missing transitions between the
Stable and Unique access states are shown using dashed edges. (HR refers to the running
average Hit-Rate)

the important items in response to these changes. To make this possible, mARC defines

three distinct workload states: unstable, stable, and unique access and reflects these states

within the mARC state model. In the unstable state, the relative importance of items is

changing and mARC enables cache insertions. In the stable state, the relative importance

of items remains about the same and mARC disables cache insertions. In the unique

state, there is a significant increase in the number of one time accesses — resulting from

either streaming or random access — and mARC disables cache insertions. mARC bases

its state detection mechanisms by observing a single system metric, the cache hit rate.

Figure 5.1 defines a simplified version of how state detection occurs in mARC.

While mARC is able to utilize its knowledge about workload states to allow updates

or not in the cache, it has important limitations. First, since it does not account for the

stable→ unique (and vice-versa) state transitions, it is unable to handle certain workloads.

Without these direct transitions, stable→ unique becomes stable→ unstable→ unique,

incurring many cache insertions while in the unstable state prior to finally transitioning to

unique access. The time within the unstable state pollutes the cache with items with no
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Figure 5.2: Performance comparison using mARC and ARC over time for MSR workload
Proj3. Presented are various moments where mARC isn’t performing or deciding as well
as it could.

reuse. Second, mARC fixes the values of various parameters that compromises its ability

to adapt and recognize workload states for arbitrary workloads. The complexity of mARC

could allow for it to be tuned for specific workloads, but in the end also prevents it from

being properly generalized for all workloads. Thirdly, mARC relies on cache-hits in order

to understand the workload behavior, which leaves mARC not analyzing the workload

itself, but rather the effects of the workload on the cache. This method of analysis is slow,

requiring the item to first be inserted into the cache. Workload analysis based on cache-

hits are also strongly effected by the cache replacement algorithm, which for mARC

would be ARC. Finally, although mARC is able to detect workload state changes, it often

does so with significant delay, with mARC detecting state changes only after accesses

totalling the cache size are observed. Figure 5.2 shows a missing transition from stable to

unique. mARC also has a delayed reaction to identifying changes in the workload states

which can deteriorate the performance due to poor static parameter choices.

5.2.2 The Fear of Missing Out

Non-datapath caching algorithms can experience two potential pitfalls. On the one hand,

disabling cache insertions when the workload changes can compromise cache hit rate.

On the other hand, allowing cache insertions when the workload is unchanged can lead
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to unwanted cache writes. Recent non-datapath caching algorithms [HWC+13, SLK+15]

employ limited ability to handle changes in workload behavior. LARC always filters

items on first access. While there is significant reduction to cache updates, LARC com-

promises the algorithms responsiveness to changing workload behaviors. mARC, on the

other hand, simply monitors the stability of the cache hit rate to evaluate workload be-

havior. Unfortunately, cache hit rate does not properly capture workload behavior, but

rather how well the cache is prioritizing items in the working set. Non-datapath caching

algorithms, owing to the available flexibility of not having to perform cache updates, in-

variably embody a fear of missing out on responding in a timely fashion to changes in

workload behavior.

Classic caching solutions are reactive and this impedes their ability to react to work-

load behavior changes. Many incorporate the notion of eviction history to evaluate

the importance of an item [MM03, JZ02, Li18]. The non-datapath caching algorithm,

mARC [SLK+15], via its internal ARC mechanism, also inherits this approach. Un-

fortunately, reacting as a consequence of accesses to items that were evicted requires

that items must first enter the cache. Furthermore, if the number of cache hits is not

increasing, only having information about the evicted items can obscure the reason for

low performance with a limited view of the workload. To respond to workload changes

quickly, observing accesses to newly requested items are crucial. In particular, keeping

track of recent accesses that resulted in cache misses allows us to understand what the

cache is “missing out” on. Here, timely knowledge of workload behavior helps improve

the accuracy of the filtering mechanism. We assert that the rate of access to recent cache

missed items provides crucial, complementary information about the workload that al-

lows for better understanding of short term workload behaviors. FOMO improves upon

the qualities of mARC, just as mARC had with LARC. FOMO is a general non-datapath

admission policy that is capable of improving hit rate and write rate consistency by utiliz-
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ing a simple model that avoids the issues present within the mARC state model. FOMO’s

Miss-History presents a more acute understanding of the workload behavior through the

reuse of recently missed items, which doesn’t require the items to be inserted into the

cache first, unlike mARC, which depends exclusively on the observed cache hit rate. As

we shall show in the next section, the design of FOMO focuses on comparing the cache

hit rates and rate of reuse of recent cache misses to better understand the general workload

behavior.

5.3 Design

Non-datapath algorithms such as LARC can be counter-productive to the hit rate as they

do not cache an item until it is reused, incurring a compulsory additional cache miss per

item. Additionally, when working sets change frequently, the requirement of proof of

reuse can significantly impair hit rates. In the case of mARC, its high level of complexity

comes not from using three states, but rather its state transitions. mARC’s three states (un-

stable, unique access, and stable) were meant to align to the satisfied workload behavior.

However, in order to do so, mARC employed multiple conditions to be observed before a

state transition is allowed. In total, mARC has seven conditions that dictates all the state

transitions. Some of these conditions can be considered redundant since they address

multiple aspects of workload behavior from the context of the cache hit rate primarily.

However, even with these conditions, mARC still excluded the direct state transitions

between the Unique Access and Stable states. With this missing transition, mARC was

designed to enter the Unstable state as a way to ”safely” learn about a changing work-

load before deciding on either the Unique Access or Stable state. This method however

imposes many unnecessary writes and may cause the removal of ”soon-to-be-hit” items

from the cache in exchange for ”one-hit wonders”.
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Figure 5.3: Example of FOMO working in Insert state handling the request stream: X ,
Y , X . (a) Shows the starting state of the cache and Miss History. (b) Has X missing and
being inserted into both the cache and the Miss History. (c) Has Y missing and being
inserted into both the cache and the Miss History. (d) Has X hitting in the cache and
being removed from the Miss History.

Figure 5.4: Example of FOMO working in Filter state handling the request stream: X ,
Y , X . (a) Shows the starting state of the cache and Miss History. (b) Has X missing and
being inserted only in the Miss History. (c) Has Y missing and being inserted only in the
Miss History. (d) Has X miss in the cache, but hit in the Miss History. Due to X showing
reuse, it is then inserted into the cache and removed from the Miss History.

The following section explains the design of Fear of Missing Out (FOMO) that is

guided, in principle, by the issues explained above. FOMO is designed to be a generic

non-datapath admission policy that could augment any datapath cache replacement al-

gorithm and still provide the write reductions and performance that is expected from

non-datapath caches. FOMO incorporates a simple, two state design: Insert and Filter.

5.3.1 Miss-History

FOMO’s Miss-History is an LRU structure that primarily holds recently missed items.

For fairness against LARC and mARC, the Miss-History is limited to the size of the

cache in a similar manner to that of the ghost lists (or filter lists) of its peers. Whenever

FOMO encounters a cache miss, FOMO’s Miss-History is updated. Should an item that

causes a cache hit also exist in the Miss-History, this item will be removed from the Miss-

History. When FOMO is in the Insert state, as shown in Figure 5.3, the Miss-History
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is straightforward, as any item incurring a cache miss, including those already within the

Miss-History, are moved to the MRU part of the Miss-History, removing the LRU item as

needed. However, when FOMO is in the Filter state, as shown in Figure 5.4, FOMO will

treat the Miss-History as a method to track the filtered items, similarly to LARC. When

FOMO is in the Filter state, the Miss-History will treat items that incur a cache miss and

exist within the Miss-History the same as a cache hit, removing the item from the Miss-

History. Despite the differences in their function, FOMO in both states is utilizing the

Miss-History to discover items with reuse, with the state as context. Since the Insert state

has these items already entering the cache without knowing if they have reuse, the Miss-

History is used to verify the reuse of the item and that the cache is seeing this reuse. With

the Filter state, only the Miss-History is seeing this reuse, after which it passes the item

along to the underlying cache replacement algorithm, believing that it will see further

reuse. In the next section, we go into further detail about FOMO’s states and how they

are determined.

5.3.2 FOMO States

Figure 5.5: FOMO states and transition conditions.

FOMO incorporates a simple, two state design: Insert and Filter. This simplicity

avoids the complexity of mARC’s state transitions, while still encompassing the necessary

actions when identifying workload behaviors. With these states, the compulsory misses
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Algorithm 1 FOMO algorithm
HRC = HRCache
HRMH = HRMiss−History

RecordHits(x)
time++
if time % period size == 0: then

if state == Insert: then
if HRC ≥ HRMH : then

state = Filter
end if

else
if HRMH > 5%andHRC < HRMH : then

state = Insert
end if

end if
CleanUp()

end if
if x in Cache: then

Cache.Request(x)
if x in MissHistory: then

MissHistory.Remove(x)
end if

else
insert = state == Insert
if x in MissHistory: then

if state == Filter: then
MissHistory.Remove(x)
insert = True

else
MissHistory.MoveToFront(x)

end if
else

if MissHistory.IsFull(): then
MissHistory.RemoveLast()

end if
MissHistory.AddToFront(x)

end if
if insert: then

Cache.Request(x)
end if

end if
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of LARC can be avoided while FOMO is in the Insert state and similarly benefit from the

protection against cache pollution while FOMO is in the Filter state.

When FOMO is in the Insert state, all requests are passed to the underlying cache

replacement algorithm, where it may cache it and choose what to evict, if needed. FOMO

always begins in the Insert state to gather information while filling up the cache.

When FOMO is in the Filter state, FOMO decides whether or not a request will be

passed to the underlying cache replacement algorithm. How FOMO decides this is similar

to LARC: the request exists in the cache or reuse is observed for an item not in the cache.

FOMO tracks this observable reuse with the Miss-History. Should FOMO encounter a

cache miss that exists within the Miss-History while in the Filter state, it will observe that

the item has reuse and pass it on to the cache to insert, as well as remove this item from the

Miss-History. This removal from the Miss-History while in the Filter state is desirable

mainly to avoid the possibilities of cache churning [SLK+15]. Cache churning occurs

when the working set is a superset of the items in the cache, but the lowest frequency

items in the cache and some of those outside the cache are similar. This has meant that the

lowest frequency items in the cache are evicted to make way for the similarly (or lower)

frequency items outside of the cache, introducing several misses that instead could be hits

by protecting the items in the cache from eviction. Figures 5.3 and 5.4 show examples of

how FOMO operates within these states and how the Miss-History is affected.

With these two states (Insert and Filter), the conditions to transition between them

must be defined. With the aim to avoid the complexity that mARC had, two condi-

tions that represented each state are defined: HRcache < HRMiss−History and HRcache ≥

HRMiss−History. The transition from Filter to Insert was determined to be advantageous

where the reuse in the Miss-History was significant, or greater than the hits to the

cache. The transition from Insert to Filter was determined to be advantageous where

the reuse of the Miss-History was not significant. In order to calculate both HRcache and
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HRMiss−History, the last period of requests are observed for hits/reuse, where the period’s

size is set to 1% of the cache size. This was set with the intention of having FOMO react

swiftly to changes and protect the items in the cache.

It was quickly noticed that FOMO would at times encounter situations where both

HRcache and HRMiss−History were low and the slightest changes encouraged FOMO too

strongly to transition from the Filter state to the Insert state. This led to an additional

condition being added to the Filter to Insert transition: HRMiss−History > 5%. The addition

of this condition prevented this edge-case scenario from improperly using the reuse of a

few items in the Miss-History as justification to change state to the Insert state. The

final state design can be seen in Figure 5.5, while the finalized algorithm can be seen in

Algorithm 1.

5.3.3 Overheads

FOMO, augmenting the underlying caching algorithm, adds its own overheads on top of

the caching algorithm. As such, FOMO is designed to keep its own overheads low while

achieving its goals. All of FOMO’s operations are achievable in O(1) time complexity.

In terms of space overhead, FOMO’s only large requirement is an array of around cache

size entries large enough to serve as a hash table. Each entry of the array consists of an

integer to track the block address and two pointers (next and prev) for its place in the

Miss-History.

Should FOMO become more integrated with any algorithm, the hash tables may be

merged, along with the entries, to possibly reduce the space overhead by eliminating

redundancy. Furthermore, some space and time overhead may be removed by altering

FOMO to use a CLOCK or FIFO structure for its Miss-History instead of an LRU list.

47



5.4 Evaluation

Dataset # Traces Details

FIU [Sto, KR10] 10
End user/ developer home directories; Web
server for faculty/staff/students; Apache web-
server for research projects; Web interface for
the mail server; Online course management
system

MSR [Sto, NDT+08] 36
User home directories; Hardware monitoring;
Source control; Web staging; Test web server

CloudVPS [AZ14] 18 VMs for cloud provider

CloudCache [AZ14] 6
Online course management website; Web
server for a CS department user webpages

CloudPhysics [WPGA15] 106
VMware VM block traces. Due to the size
of many of the traces within this set, only the
first day of each trace was used for tests.

Table 5.1: Sources and descriptions for the 5 storage data sets used in this paper.

Algorithms State-of-the-art non-datapath caching algorithms LARC and mARC are com-

pared against FOMO using LRU, ARC, and LIRS as underlying cache replacement algo-

rithms. Since FOMO was evaluated with LRU, ARC, and LIRS as their underlying cache

replacement algorithms, these algorithms are also included to demonstrate FOMO’s ben-

efits.

Experimental Setup We built cache simulators for every algorithm that can process block

I/O workloads and report on the number of reads, writes, cache hits and misses, and total

writes incurred. When possible, we used the original authors’ version of the algorithm

implementation. To simulate sufficient cache space as well as I/O activity, the size of

the cache was set to be a fraction of the workload footprint, defined as the total size of

all unique data accessed. This fractional cache size was varied from 1% to 20% of each

workload’s footprint in our simulations (more specifically 1%, 2%, 5%, 10%, 15%, and

20%).
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Workloads To have a large, diverse set of I/O workloads, the workloads used for test-

ing include FIU, MSR Cambridge, CloudCache, CloudVPS, and CloudPhysics block I/O

workloads as detailed in Table 5.1 [Sto]. The FIU, MSR Cambridge, CloudCache and

CloudVPS workloads are all run for their full duration, or for the full length of the work-

loads, with some requiring the merging of individual days into one large, continuous

workload. Tests using CloudPhysics workloads are limited to the first day of the work-

loads in order to reduce the length of the workload and workload footprint so that these

are runnable on the available resources within a reasonabe amount of time.

Metrics As previously mentioned, the cache simulators collect information about read,

writes, cache hits and misses, and total writes incurred. FOMO aims to not only improve

upon its underlying cache replacement algorithms, but also be comparatively better than

its non-datapath cache algorithm peers. For the evaluation, metrics include the mean

cache hit rate and the mean write rate; with greater write rates indicate lower flash cache

device lifetime. To evaluate cache performance, the normalized results are compared

across workloads and cache sizes to understand how consistent the performance of FOMO

is. Normalized hit rates and write rates are computed for a given workload-cache size

combination with respect to the best performing algorithm. This normalization method

better shows the general performance of an algorithm amongst its peers. Furthermore,

it provides a fair method of comparison, as a total average hit rate comparison alonge

would hide how well (or poorly) an algorithm was performing compared to others. As

the write rate is not best presented normalized, the write rate is changed to a static rate,

the rate at which the cache experiences no changes. The best performer has the highest

static rate, as this translates to the fewest writes/updates, which is one of the goals of

non-datapath caching algorithms. In order to prevent small differences in metrics leading

to large normalized differences, the results where the best performance outcome was less

than 5% were not included.
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Figure 5.6: Normalized Hit Rate summary results in percentage, including results for all
five different workload sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics)
measured for six different cache size configurations as a fraction of the workload footprint
for each algorithm. Each violin plot also has lines to indicate the max, mean, and min
of each algorithm’s normalized performance. Here it can be seen that FOMO(LRU) and
FOMO(ARC) have a notably higher minimum normalized performance across the range
of workloads and cache sizes.
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Figure 5.7: Average Normalized Hit Rate results in percentage for the five different work-
load sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics) measured for six
different cache size configurations as a fraction of the workload footprint. Notably, none
of the non-datapath caching algorithms performs well for the CloudCache workloads.
FOMO(LRU) and FOMO(ARC) show that FOMO is typically able to improve their un-
derlying cache replacement algorithm’s performance.
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Each measurable aspect of FOMO is given its own section. First, we discuss both of

the ways FOMO has consistent performance: hit rate and write rate. Of the two, hit rate is

evaluated first due to its general importance to cache performance, then write rate, which

is of great importance for non-datapath caches. Second is a discussion of the impact

that the generality of FOMO’s design has on the performance improvements FOMO can

offer when augmenting datapath cache replacement algorithms. Third, we analyzed how

FOMO’s Miss-History is able to detect patterns of reuse within the workload, using a

particular workload for a case study. Finally, we discuss the adversarial workloads to

FOMO and the other non-datapath caching algorithms.

5.4.1 Consistency

The focus of our evaluation is FOMO’s consistency in both hit rate and write rate per-

formance. This focus on consistency is for one primary reason: since neither always

updating nor always filtering is correct, FOMO must be able to balance the two options

effectively. To clarify, there exists within the many workloads and cache sizes evaluated,

tests where the penalty for being exclusively updating or exclusively filtering is a signif-

icant hinderance. As such, FOMO, making decisions to update or filter, has a responsi-

bility to avoid these penalties as best it can. Hence, this paper’s measure of success for

performance is focused on consistent hit rates and consistent write rates, with reasonable

or improved averages compared to its peers.

To measure consistency of both hit rate and write rate performance, normalized met-

rics are used to draw fair comparisons. This normalization is with respect to the best

performer for a workload at a given cache size, and not with respect to the results for

any particular algorithm. Results are presented both as a violin plot of all normalized

results as well as bar graphs which break down the results by workload and cache size.
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Figure 5.8: Normalized Static Rate summary results in percentage, including results
for all five different workload sources (FIU, MSR, CloudCache, CloudVPS, and Cloud-
Physics) measured for six different cache size configurations as a % of the workload
footprint for each algorithm. LARC is indisputably the algorithm with the fewest cache
updates. mARC aimed to write more for performance gains, but incurs a great deal more
than that of LARC and FOMO, even to levels matching a datapath caching algorithm. No-
tably, FOMO significantly reduces the number of cache updates of its underlying cache
replacement algorithms to levels similar to that of LARC.
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Figure 5.9: Average Normalized Static Rate results in percentage for the five different
workload sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics) measured for
six different cache size configurations as a % of the workload footprint. As noted in
Figure 5.8, LARC is consistently having the fewest cache updates, typically followed by
FOMO, then mARC.
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Consistency is best seen in the distribution of results presented using violin plots, with

narrower distributions indicating a greater degree of consistency in comparative perfor-

mance. Since normalized results where the best performance is still poor can have huge

normalized differences from a small absolute value difference, any results where the best

performing candidates did not exceed 5% in their target metric were excluded.

Hit Rate

Despite the early focus of non-datapath caching algorithms on the reduction of writes, hit

rate performance continues to be of vital importance for many applications that utilize

such caches. This results in a summary of each algorithm’s hit rate performance, shown

through violin graphs in Figure 5.6, where it can be seen that a good degree of narrowing

of the algorithm’s normalized hit rate distribution contributing to improved consistency

in performance has occurred. Both FOMO’s normalized average performance (shown by

the middle line in Figure 5.6) and normalized minimum performance (shown by the bot-

tom line in Figure 5.6) show clear improvement from their underlying cache replacement

algorithms. In fact, FOMO’s normalized minimum performance is substantially higher

than that of the other algorithms tested. Excluding FOMO(LIRS), FOMO has a signif-

icantly higher minimum normalized hit rate (FOMO(LRU) (18.56%) and FOMO(ARC)

(20.62%)) compared to the other non-datapath algorithms(LARC (12.94%) and mARC

(12.82%)), with the next closest being that of LIRS (15.44%). This improvement upon

the normalized minimum performance is confirmation that FOMO is adjusting well to the

workloads and adapting to the worst-case scenarios better than other, stricter algorithms.

One such case will be discussed in greater detail in Section 5.4.3.

Datapath cache replacement algorithms augmented with FOMO show clear improve-

ment when compared with their unaugmented counterparts, as seen in Figure 5.7. This

improvement for normalized minimum hit rate indicates that FOMO is capable of adapt-
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ing to worst-case scenarios better compared to the existing non-datapath cache replace-

ment policies.

Write Rate

While it is expected that all of the non-datapath caching algorithms would have significant

improvements over their datapath counterparts, its is clear that LARC, by always filtering,

would see the largest reduction in writes overall. As with the hit rate analysis, the write

rate results are normalized, with write rate being the number of requests that incurred a

write/update (cache insertion or write hit) over all requests. However, using write rate

itself would result in the “best“ performer having the lowest value, which does not have

a preferred presentation of how well algorithms are doing compared to the best. To be

able to present normalized results, we define a metric called static rate is used for our

normalized analysis. Just as hit rate is the opposite of miss rate, static rate is the opposite

of write rate, where write rate measures the rate of cache updates, the static rate measures

the rate of not updating the cache. This means that results with a higher static rate have

the fewest writes made to the cache, and therefore indicate longer cache device lifetime.

Figure 5.8 and Figure 5.9 both show FOMO strongly improving the normalized static

rate of their underlying datapath cache replacement policy to levels similar to that of

LARC, with LARC having the best static rate performance, as expected. These results

show FOMO drastically improving the static rate performance of their underlying dat-

apath cache replacement policies to the levels expected to that for non-datapath caching

algorithms that aim to drastically reduce writes to the cache. Interestingly, the normalized

static rate performance of mARC has high variance (as seen in Figure 5.8), in the worst

case being similar to a datapath caching algorithm. This distribution in mARC’s perfor-

mance is attributed to mARC’s Unstable state. mARC always transitions to or from the
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Unstable state and, when transitioning to it, remains in the Unstable state for a significant

amount of time before its next chance to change state.

5.4.2 Generality

The design of FOMO is focused on being as generalized as possible, with FOMO treating

the underlying cache replacement algorithm as a black box. This design leads FOMO

to act as the admission policy, filtering when needed, and have the underlying cache re-

placement algorithm responsible for managing the items in the cache. This control of ad-

mission to the cache, with the aid of the Miss-History, which is generalized and primarily

acts the same regardless of the underlying cache replacement algorithm, is a robust tech-

nique for improving both hit rate and write rate of these algorithms when augmented with

FOMO. This approach lets FOMO augment any datapath cache replacement algorithm.

Within our tests, FOMO augmented LRU, ARC, and LIRS to much success, as FOMO

was able to have results that align strongly with those expected of non-datapath caching

algorithms.

FOMO improves upon the results of the underlying cache replacement algorithm for

every workload and cache size, as seen in Figure 5.7, with the exception of CloudCache.

The CloudCache workloads did not appear to have any of the non-datapath caches per-

form well. The investigation into why this is can be found in Section 5.4.4.

Excluding FOMO(LIRS), the average normalized hit rate of underlying cache re-

placement algorithm improved overall when augmented with FOMO (LRU (81.79%),

FOMO(LRU) (91.06%), ARC (91.59%), FOMO(ARC) (92.85%), LIRS (94.83%),

FOMO(LIRS) (91.96%)). Additionally, FOMO achieves an average normalized

hit rate above other non-datapath caching algorithms (LARC (90.17%) and mARC

(90.65%)), regardless of the underlying cache replacement algorithm. Ultimately though,
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Figure 5.10: (a) The hit rates of both LARC and mARC for the CloudPhysics work-
load w54 vscsi2.itrace, in which LARC and mARC do not perform well. The back-
ground has colors that indicate the state of mARC where red=Unstable, blue=Stable, and
green=Unique Access. LARC stops seeing a significant amount of hits after it fills the
cache. mARC stops seeing a significant amount of hits after it switches to the Stable state
A©. mARC incurs unnecessary writes by transitioning to the Unstable state before transi-
tioning to the Unique Access state B©. mARC doesn’t see any cache hit rate activity and
therefore cannot find a reason to change state C©, even though plenty of opportunities for
cache hits exists, as can be seen in Figure 5.10b.
(b) The cache hit rates of LRU and the reuse rates of FOMO’s Miss-History for the Cloud-
Physics workload w54 vscsi2.itrace. The caching algorithm that FOMO augments does
not matter here, as the focus is on the Miss-History. To be able to see both hit rates
more clearly, the hit rate of the Miss-History has been mirrored over the horizontal axis
(negated). This, compounded with the hit rates of LARC and mARC, show both that LRU
is capable of having hits and that FOMO’s Miss-History is seeing the same hits. Taken
together, these plots demonstrate that the workload is mostly composed of items limited
to second accesses. As such, both LARC and mARC (when acting similar to LARC) are
only caching items when they have the second access, but do not get any benefit in doing
so.
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FOMO(LIRS) does bring LIRS in line with expectations for non-datapath caching algo-

rithms by not being a significant hindrance to its hit rate performance while drastically

improving LIRS’s write rate performance, as seen in the next section.

The reason for the hindered hit rate of FOMO(LIRS), as seen in Figure 5.6, comes

from the design of LIRS more than the design of FOMO, as LIRS itself already has

a built-in filtering mechanism: the Q stack. This stack, while aggressively giving newly

inserted items a small time frame to be hit in order to be moved to LIRS’ S stack, works to

filter further the items passed to LIRS by FOMO, which utilizes its own filter. This double

filtering leads to situations where FOMO reasons about items that are passed to LIRS, but

are evicted from LIRS prior to being hit, decreasing performance. Despite this, FOMO

is still helpful when using LIRS for a non-datapath cache, as it still greatly improves the

write rate, as seen in Figure 5.8. The implications of this result and understanding indicate

that datapath cache replacement algorithms that feature aggressive filtering mechanisms,

like those of LIRS, may have degraded hit rate performance when augmented with FOMO

while still seeing significant write rate improvements. Overall, FOMO offers generality

for any datapath caching algorithm.

5.4.3 FOMO’s Miss-History: A Case Study

FOMO’s hit rate and write rate results show the benefit of FOMO’s design. However,

the structure central to FOMO’s understanding of the workload: the Miss-History has

not been analyzed for effectiveness. We present a case where the Miss-History reveals a

pattern that FOMO takes advantage of, but neither LARC nor mARC do — the first 60

million requests of the CloudPhysics workload w54 vscsi2.itrace with a cache size of 1%

of the number of unique addresses requested. Some of the previously noted shortcomings

of mARC are present within Figure 5.10. These particular shortcomings are the lack of a
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Figure 5.11: The hit rates of LARC, mARC, and FOMO(ARC) for the CloudPhysics
workload w54 vscsi2.itrace. FOMO(ARC) is shown as it performs the worst among
FOMO(LRU) and FOMO(ARC) in this instance. The background is colored with the
state of FOMO, where red=Filter and blue=Insert. As FOMO state switches, it adapts to
the workload for the chance to improve the hit rate and is able to achieve much more than
both LARC and mARC due to FOMO’s Miss-History. A© FOMO(ARC) started filtering
prior to mARC, missing out a some hits. B© FOMO(ARC)’s changing states captures
some opportunities for hits by switching to the Insert state quickly. C© FOMO(ARC) is
able to recognize a pattern of reuse and is able to promptly respond and have many cache
hits that LARC and mARC instead miss.

A

B

Figure 5.12: Hit rate plot of CloudCache workload webserver-2012-11-22-1.blk, focus-
ing on ARC as the datapath caching algorithm to compare the performance of the non-
datapath caching algorithm to (LARC, mARC, and FOMO(LRU)). The background col-
ors correspond to the state of FOMO(LRU) at the time, with blue=Insert and red=Filter.
From around one million to four million requests ARC is achieving hits that LARC,
mARC and FOMO(LRU) aren’t able to get, though FOMO(LRU) gets the most amongst
the non-datapath caching algorithms, as seen at A©. Even as reuse ramps up at B©,
FOMO(LRU) is able to achieve many more cache hits compared to LARC and mARC,
while performing close to ARC. Afterwards, the algorithms perform similarly.
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Figure 5.13: Address plots for CloudCache workload webserver-2012-11-22-1.blk that
highlight the various patterns that could be seen simulataneously during the time period
where non-datapath caching algorithms had poorer hit rate compared to their datapath
counterparts. Among them we can notice scans, random accesses, and loops all occurring
concurrently. These concurrent behaviors are why the non-datapath caching algorithms
did not perform well.
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direct transition between the Stable and the Unique Access states, incurring extra writes

to the cache, and mARC’s analysis of the workload using cache hit rate, which prevents

it from noticing opportunities for hits.

What is interesting about this workload is that the majority of repeated accesses are

limited to the second access of an item, with very few third or fourth accesses within a

reasonable time frame. This can be seen in Figure 5.10, where the LRU hit rate mostly

mirrors that of the Miss-History, which, in general, removes items from its structure on

the item’s second access.

FOMO is capable of finding patterns within the workload, and makes reasonable de-

cisions based on these patterns, which can be seen in Figure 5.11. FOMO’s decisions

here capture many opportunities for hits that go unrecognized by both LARC and mARC,

whose hit rate (and mARC’s states) can be seen in Figure 5.10. This is unfortunate for

mARC, which places emphasis on identifying workload states. mARC, due to its focus

on using cache hit rate to identify workload state instead of something similar to FOMO’s

Miss-History, cannot see the pattern within this workload, leaving mARC to stay in the

Unique Access state.

5.4.4 Adversarial Workloads

FOMO improves upon the results of the underlying cache replacement algorithm for every

workload and cache size, as seen in Figure 5.7, with the exception of CloudCache. In fact,

CloudCache workloads did not appear to have any of the non-datapath caches perform

well compared to their datapath caching algorithm counterparts. When investigating the

reason for this behavior, several things of note were observed, which will be highlighted

with a focused discussion on one of these CloudCache workloads: webserver-2012-11-

22-1.blk.
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Webserver-2012-11-22-1.blk has an instance that shows a large time frame where

non-datapath caching algorithms do not perform well compared to the datapath cache

algorithms, shown in Figure 5.12. In particular, the time period between one million and

four million requests has this behavior. When observing the block address access pattern

plots of this CloudCache workload(Figure 5.13) it is noticeable that the workloads include

several concurrent working sets and patterns (combinations of scans, random accesses,

looping and repeated accesses). This mixing of patterns increases the likelihood of both

FOMO and mARC observing reuse and discerning patterns in the workload based on

them. This is why, as the cache size increases, the difference between the datapath and

non-datapath caches begins to decrease.

Each of the non-datapath cache algorithms have their own reasons for why these ac-

cess patterns were problematic. For LARC, which observes reuse on an individual basis,

an item being reused often would not be reused again prior to being evicted, leading

to many missed opportunities that the datapath cache algorithms can take advantage of.

mARC, with its dependence on cache hit rate for decisions, with its use of the Unstable

state as a intermediary transition between Stable and Unique Access states, and the long

evaluation times, finds itself within the Unstable state more often and gains some level of

advantage over both LARC and FOMO because of it. Lastly, FOMO, looking for patterns

in the workload, would periodically find a pattern of reuse, change the state to Insert, get

some cache hits that eventually overtake the reuse found in the workload, change state to

Filter and so on repeatedly during such highly overlapping periods. Finally, we note that

when particular patterns, or reuse in general, were more significant within these work-

loads, all of the non-datapath cache algorithms would identify and react to achieve cache

hits.
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5.5 Summary

We’ve demonstrated that FOMO is a viable non-datapath admission policy that is able to

adapt to the specifics of workload’s behaviors, choosing to admit an item into the cache

or not based on FOMO’s understanding of the workload’s current behavior. Furthermore,

FOMO has also demonstrated its capability to augment existing datapath caching algo-

rithms to provide non-datapath cache benefits, doing so well enough to bring their per-

formance close to that of existing non-datapath caching algorithms. Unfortunately, while

FOMO is able to adapt faster than mARC, it still relies on a window of recent statistics

in order to make decisions. The time period waiting for the statistics to be deemed ready

and relevant in order to properly observe changes in the hit-rate and reuse-rate necessary

for making a decision on which state of FOMO is appropriate for the the current behav-

ior of the workload. Additionally, FOMO still has numerous tunables that have been set

through testing; tunables that are a consequence of using rates and comparison of rates in

order to make decisions for FOMO’s state through the understanding of the workload be-

havior that these rates and comparisons provides. Hence, in an ongoing effort to remove

tunables, a movement away from these methods that made mARC and FOMO work is

necessary: foregoing rates and an internal state transition model, especially one relying

on information gathered over a time period before making a decision. In Chapter 6, we

explore how to understand workload states without rates or internal state transitions and

develop a new non-datapath admission policy that is able to react quickly to changes in

workload states: ANX.
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CHAPTER 6

ANX

FOMO provides an adaptive, general, and workload state aware non-datapath admis-

sion policy, but is still hindered through limitations caused by its design. FOMO had

improved upon mARC, with a new state model that consolidated mARC’s lack of any

transitions from the stable state to the unique access state, with a reduction of parameters

that were tunable and set through testing, a reduction in the observation period’s length,

and a new rate that assists the understanding of the workload state. In particular, FOMO,

taking an approach similar to that of mARC, relies upon rates such as the hit-rate to iden-

tify the workload state with confidence. The reliance on rates for state transitions has

two main limitations: the potential to get stuck in a local minima, and the non-detection

of behaviors by virtue of using rates over the entire observation period. In this section

we propose a non-datapath caching algorithm called ANX that follows many of the same

requirements of FOMO, but reconsiders the method used to identify the workload state

as well as whether confidence should hinder the speed of identification. To do this ANX

doesn’t rely upon any rates, which require a collection of data over a period of time for

confident decisions, but rather upon immediate behaviors of the workload and its relation

to new and old pages. Furthermore, ANX utilizes uncertainty in its understanding of the

workload to keep options available with a chance to occur based on ANX’s level of cer-

tainty for an action. In other words, ANX measures certainty and utilizes randomness in

order to avoid worst-case scenarios as much as possible, while additionally gaining mul-

tiple chances to react much more quickly to changes in the workload state compared to
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Figure 6.1: mARC State and ARC Hit-Rate Timeline for MSR Trace proj 3 for 1 Day

algorithms such as mARC and FOMO, which require more certainty before committing

to decisions.

6.1 Introduction

The process of identifying the workload state reliably is difficult. The approach of taking a

time period and analyzing it, perhaps in comparison with its predecessor, to determine the

state of the workload is used by both mARC and FOMO. Their shared limitations include

the use of tunable parameters that are set through testing, the use of an observation period

in order to gather rate information for decision making, and the potential for them to be

stuck in a local minima due to the non-detection of false negatives. Furthermore, mARC

is missing a transition from the stable state to or from the unique access state. Some of

the limitations of mARC are visible in the MSR trace of proj 3, detection of states is

delayed or states are not detected at all, as shown in Figure 6.1. FOMO improved upon

these flaws, reducing the number of states and state transitions to two and introducing a

Miss History to have more a proactive approach to understanding the workload instead

of being reactive to cache evictions. FOMO unfortunately still requires several tunables,

with the most unfortunate being the window (an observation period) between decisions.

This window, which scales with the cache size in FOMO, slows the potential reaction

time of FOMO to changes in the workload state. We observed these problems and set

several different goals as we began developing the next non-datapath solution: be capable
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of moving directly between stable and unique access states, use as few parameters as

possible, avoid requiring an observation period before reacting to state changes, and it

should be able to correct itself quickly should it make any wrong decision. The proposed

solution, ANX, satisfies all of these goals.

6.2 Workload States Revisited

While we had previously defined the workload states when developing mARC, we de-

cided to revisit these definitions in order to find a new method of identification that would

allow us to move away from windows such as those used to gather hit-rate information in

mARC and FOMO. Presented next are the previous workload state definitions followed

by our new definitions.

6.2.1 Stable

The stable state was previously defined as a period of the workload where the working

set frequency distribution is stable. The way that mARC approached identifying this state

using hit-rate was to check if the cache hit-rate itself was stable, or changed little, asserting

that the working set itself must be stable to achieve this hit-rate stability. FOMO, while

not directly using the stable state in its design, has it implicitly part of its methodology

to filter when the hit-rate of the cache set is higher than that of the external set. To

find a new definition, we re-evaluated what we were truly looking for and came to the

simple conclusion that the stable state is when old items are important. In other words,

identifying the important subset of a working set that has been seen previously and is

being seen right now.

A subtype of the stable state, churning, defined as a period of the workload where the

working set frequency distribution is stable, but the working set is larger than the cache.
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The churn results in low frequency items being inserted into the cache then being evicted

prior to having a cache hit. Problematically, when churning, the item being inserted en-

counters a similar scenario to the item it just replaced, creating a cycle of cache inserts

and evictions that provide no benefit. This, in part, is the reasoning used to justify the

activation of the filtering mechanism during moments of stable state in both mARC and

FOMO. With this understanding, we realized churn can be identified with a new defini-

tion: cache misses on new, recently inserted items. As an aside, this behavior is strongly

tied to the cache eviction policy rather than the workload state.

6.2.2 Unstable

The unstable state was previously defined as a period of the workload where the working

set frequency distribution is unstable, either having a slight or great change in the working

set frequency distribution. The way that mARC would identify this state using hit-rate was

to see if the cache hit-rate was unstable, changing greatly between observation periods,

asserting that the importance of items in the cache are changing and needs the internal

cache to be activated in order to determine what items are important again. FOMO would

implicitly find the unstable state when it observes a higher external hit-rate than the cache

hit-rate. Upon its consideration, we came to the realization that an unstable state, was

composed primarily of a new working set, and therefore the unstable state is when new

items are important. By this, we are saying that the items in the cache are not as important

and so it follows that we must cache these new items that are being requested.

6.2.3 Unique Access

The unique access state was previously defined as a period of the workload where the

frequency of the working set is either just one or is so low as to reasonably be consid-
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ered one. The way that mARC and FOMO identify this state using hit-rate is to see if

the cache and external hit-rates are very low, asserting that if these hit-rates are so low,

we must have a mostly unique access behavior occurring. To find a new definition, we

attempted to determine what we were truly looking to identify for this state, coming to the

conclusion that this state has new items that are not reused within a given amount of time.

This definition makes sense, as many datapath caching algorithms such as ARC, LIRS,

and even the non-datapath caching algorithm LARC, attempt to avoid unique accesses or

low frequency items by giving new items a certain amount of time (often proportional to

the size of the cache) to be reused before either being evicted or no longer being consid-

ered for insertion [MM03, JZ02, HWC+13]. However, in the interest of avoiding these

windows and reacting quickly, we simply consider all new misses to be indicators of a

unique access state, requiring the state and item to prove otherwise by having reuse later.

6.2.4 Individual Identifiers For Workload States

Looking at these new definitions, we can see two key words that repeatedly appear: new

and old. Taking the next appropriate step, we developed a method for determining how

to qualify items as new or old. The way we can determine items are new is whether

we’ve filtered or inserted them recently, so we could just have a data structure to record a

history of misses, or rather an LRU history of item misses. With this, we now have a way

to determine if items are old or new, where new items are items found within the miss

history, and old items are items found in the cache but not in the miss history.

By combining the information about whether a item is old or new and whether it was

found in the cache or not, we establish a truth table to identify the workload state:

In Table 6.1, we can see that all possibilities are accounted for and how each is able to

be an identifier for a workload state, with the included identifiers for impossible entries,
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Hit (in cache) New Old Workload State Identified
7 7 7 Unique Access
7 7 4 Impossible
7 4 7 Unstable or Stable (Churning)
7 4 4 Impossible
4 7 4 Stable
4 4 7 Unstable
4 4 4 Impossible

Table 6.1: Workload State Identification using New and Old

these are situations that break the exclusivity of old and new or the definition of old by

not being in the cache. However, we also see that one of these conditions identifies two

possibilities: a miss on a new item could either be an indicator for an unstable or a stable

state. Looking at the definitions, we see that unstable is focused only on new, but stable,

in particular churning, is interested only in the items that have been recently inserted.

So, let us revisit this truth table again, focusing on the new, or recently accessed items,

identifying whether the item was recently filtered and/or inserted instead.

Hit Inserted Filtered Workload State Identified
7 7 7 Unique Access
7 7 4 Unstable
7 4 7 Stable (Churning)
7 4 4 Stable (Churning)
4 7 7 Stable
4 7 4 Impossible
4 4 7 Unstable
4 4 4 Unstable

Table 6.2: Workload State Identification Truth Table used by ANX

In Table 6.2, we present the workload state identification truth table used by ANX. We

now see all of our states accounted for cleanly, and we are able to identify the stable state

implicitly by using the definition of old items here. We modify our miss history so that
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the metadata items are flagged with inserted or filtered, in order to properly distinguish

an unstable state from a stable state.

6.3 ANX’s Design

A miss history that can flag items as being inserted or filtered is all that is needed to iden-

tify workload states. Next, we need an algorithm that uses this information to make the

appropriate decisions regarding inserting or filtering into the cache. The foundation of the

ANX algorithm is a single parameter that drives it: anxiety. Anxiety is simply a probabil-

ity to not cache (i.e., filter), a item on a miss. By using a single probability value, instead

of an explicit state machine, ANX allows for all possible workload state transitions im-

plicitly. Second, since anxiety gets updated on every access, ANX itself is quick to react

to workload changes, entirely eliminating the need for an observation duration. Finally,

by using probability-based state identification and by reacting on every access, it becomes

difficult for ANX to become stuck at a local minima without the workload behavior itself

driving that conclusion. The only theoretical case would be an adversarial workload for

a given cache size, where the workload would only have reuse distances larger than the

cache and would initialize the cache with single use items, a combination that would be

both short-lived and unlikely in production storage workloads.

Adjusting anxiety is currently very simple. When finding an indicator for either a

stable or unique access workload, increase anxiety to protect what’s in the cache, finding

the items being requested to be less important. Otherwise, when finding an indicator for

an unstable state, decrease anxiety to cache what is assumingly a good, new working set.

There is a single exception however: the indicator for a stable workload on a cache hit that

was not recently inserted or filtered does not change anxiety, instead deferring changes

to its surroundings. For this case, while this indicator can be observed during workload
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behaviors where a working set is larger than the cache (as in the case for churning), it can

also occur as part of a often reused working set that can exist within another working set.

The latter situation is that of a telescoping working set, where within larger scale working

sets smaller working sets can exist with their own access patterns [KVR10].

The rate anxiety increases and decreases is greater when at their opposing extremes to

allow for rapid reevaluations of the workload state. Anxiety increases at a rate of 1−anxiety
3 .

Anxiety decreases at a rate of 2
3anxiety.

The design of ANX is composed of anxiety, the miss history, and the internal caching

algorithm that manages the cache, which is currently LRU.

6.4 Evaluation

Dataset # Traces Details

FIU [Sto, KR10] 10
End user/ developer home directories; Web
server for faculty/staff/students; Apache web-
server for research projects; Web interface for
the mail server; Online course management
system

MSR [Sto, NDT+08] 36
User home directories; Hardware monitoring;
Source control; Web staging; Test web server

CloudVPS [AZ14] 18 VMs for cloud provider

CloudCache [AZ14] 6
Online course management website; Web
server for a CS department user webpages

CloudPhysics [WPGA15] 106
VMware VM block traces. Due to the size
of many of the traces within this set, only the
first day of each trace was used for tests.

Table 6.3: Sources and descriptions for the 5 storage data sets used in this paper.

Algorithms In order to evaluate ANX’s performance, it will be compared to the state-

of-the-art non-datapath caching algorithms LARC, mARC, and FOMO(ARC). Of the
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variations of FOMO, FOMO(ARC) was chosen as it was the best performing of the three

options (LRU, ARC, and LIRS).

Other efforts in online non-datapath caching algorithms exist, such as Reinforced

Learning Cache (RL-Cache) [KSGS19] and Learning From OPT (LFO) [Ber18]. RL-

Cache is a non-datapath caching algorithm that uses reinforcement learning to figure out

whether to cache or not cache items. RL-Cache requires the use and availability of several

threads and GPUs in order to achieve its results. Furthermore, RL-Cache is primarily de-

signed for variable sized object caches, as RL-Cache also attempts to reduce the number

of objects within its cache. LFO is a non-datapath caching algorithm that uses machine

learning supervised by a modified version of OPT to learn whether to cache an item or

not based on what it thinks OPT would do. While LFO does well, it uses TensorFlow and

has large amounts of overhead that makes it inappropriate for consideration for produc-

tion environments. In particular, these environments run workloads with a lot of dynamic

behavior and learning needs to be lightweight, online, and continuous.

Experimental Setup Every algorithm tested had a cache simulator built that would pro-

cess block I/O workloads and report the number of reads, writes, cache hits, misses, and

total writes to the cache. When possible, we used the original authors’ version of the

algorithm implementation. To simulate sufficient cache space, the size of the cache was

set to a faction of the workload footprint, which consists of the total size of all unique

data accessed. This fractional cache size was varied from 1% to 20% of each workload’s

footprint in our simulations. The sizes tested were 1%, 2%, 5%, 10%, 15%, and 20% of

each workload’s footprint.

Workloads To test along a large, diverse set of I/O workloads, we used traces from sev-

eral sources including FIU, MSR Cambridge, CloudCache, CloudVPS, and CloudPhysics

block I/O workloads, each detailed further in Table 6.3 [Sto]. All workloads, with the ex-

ception of CloudPhysics, were run for the full duration (the full length of the workloads).
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To do this, some workloads had separate day workloads merged into one large, continu-

ous workload in order to do so. Cloudphysics, begin as large as it is, was limited to the

first day of the workloads in order to reduce the length of the workload and its footprint in

order to have tests run on the resources we had available within a reasonable time frame.

Metrics Aswith its non-datapath cache algorithm peers, the metrics critical in ANX’s

evaluation are hit rate and write rate; with greater write rates contributing to lesser flash

cache device lifetimes. Results have been normalized to be compared across workloads

and cache sizes in order to confirm the consistency of ANX’s performance. Normalized

statistics are normalized against the best performance of all the algorithms tested for a

given workload and cache size combination. The use of normalization is to better show

the general performance of an algorithm compared to its peers. In order to keep a con-

sistent ”higher is better” visual approach, write rates have been converted to static rates,

or the rate at which the cache experiences no changes. For non-datapath caching algo-

rithms, a high static rate is preferable as it indicates that few writes/updates were made,

which prolongs the lifespan of the flash cache device. In order to prevent small perfor-

mance differences from leading to large normalized differences, the results where the best

performance was less than 5% were excluded from the results.

Currently, the performance of ANX is being evaluated to determine whether its con-

cept has promise or merit for further exploration and experimentation. To do this, we

evaluated ANX’s performance in its current state and compared it to its peers, noting not

only its workload and cache size results, but also the overall consistency of its perfor-

mance. As such, the results are presented both as a violin plot of the normalized results

as well as averaged bar graphs to break down the results by workload and cache size.
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Figure 6.2: Normalized Hit-Rate summary results in percentage, including results for all
five different workload sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics)
measured for size different cache size configurations as a fraction of the workload foot-
print for each algorithm. Each violin plot also has lines to indicate the max, median, and
min of each algorithm’s normalized performance. Here it can be seen that ANX has a
normalized hit-rate distribution very similar to that of LARC.
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Figure 6.3: Average Normalized Hit Rate results in percentage for the five different work-
load sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics) measured for six
different cache size configurations as a fraction of the workload footprint. Notably, of
the non-datapath caching algorithms, ANX appears to perform well for the smaller cache
sizes in the CloudCache workload.
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Figure 6.4: Normalized Static-Rate summary results in percentage, including results
for all five different workload sources (FIU, MSR, CloudCache, CloudVPS, and Cloud-
Physics) measured for size different cache size configurations as a fraction of the work-
load footprint for each algorithm. Each violin plot also has lines to indicate the max,
median, and min of each algorithm’s normalized performance. Here it can be seen that
ANX has a normalized static-rate distribution is mostly similar to LARC, which is con-
sistently the algorithm with the best static-rate.
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Figure 6.5: Average Normalized Static Rate results in percentage for the five different
workload sources (FIU, MSR, CloudCache, CloudVPS, and CloudPhysics) measured for
six different cache size configurations as a fraction of the workload footprint. Notably,
ANX writes more often than FOMO in CloudCache, which is a workload ANX had an
improved hit rate performance on, as seen in Figure 6.3.
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6.4.1 Hit Rate

To summarize the hit-rate results in Figure 6.3, we found ANX to perform similarly to

LARC for most workloads and cache sizes, with a few exceptions. One notable exception

is the smaller cache sizes of CloudCache, a workload known for not being favorable to

non-datapath caching algorithms in the FOMO paper. The other is that LARC appears to

perform slightly better for the smaller cache sizes of CloudVPS. Otherwise, FOMO(ARC)

is generally the best performing non-datapath caching algorithm, with no cases where it

is the worst performing amongst its peers.

This can be seen in Figure 6.2, where LARC and ANX’s violin plots are similar, with

both having a worst case of 22.9% of the best performing. This current version of ANX

does have a slightly higher median than LARC, with ANX’s being 98.2% compared to

LARC’s median of 97.9%. Additionally, FOMO(ARC) can be seen to have a worst case

of 34.2% of the best performing and a median of 99.2%. This is interesting, as ANX does

not have a similar policy to LARC’s policy of inserting an item into the cache should a

missed item be found in its ghost list (or in ANX’s case: the Miss History), leaving this

decision instead up to ANX’s decision table, randomness and anxiety.

6.4.2 Static Rate

To summarize the static-rate results in Figure 6.5, we found ANX to generally write less

often than mARC and FOMO(ARC), but slightly more often than LARC. ANX writes

considerably more than LARC for the FIU and CloudCache workloads, with the former

not resulting in a considerable improvement in hit-rate and the latter producing an im-

provement to ANX’s hit-rate on the smaller cache sizes.

The general similarity of ANX and LARC’s static-rate is visualized well in Figure 6.4,

showing a similar distribution of results, with ANX having notably more writes.
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Figure 6.6: Hit-rate of LARC, FOMO(ARC), and ANX over requests. Each point in the
graph is separated by 9 million requests. Under ANX’s hit-rate curve is a breakdown of
these hits: New Reuse (in cache) and Old Reuse. Above of ANX’s hit-rate curve is a
breakdown of its misses: New Reuse (in history), Stable (Churn), and New. We can see
that many of the areas FOMO(ARC) is achieving hits, ANX is encountering New Reuse
in its Miss History.

Figure 6.7: Cache insert-rate of LARC, FOMO(ARC), and ANX over requests. Each
point in the graph is separated by 9 million requests. While ANX’s identifications are
not organized to match its line plot, we can still see that majority of ANX and LARC’s
cache inserts occur when reuse is seen in ANX’s Miss History. Alternatively, we can see
that FOMO(ARC) is inserting more than both LARC and ANX, and when compared to its
hit-rate plot in Figure 6.6 show additional inserts occurring before FOMO(ARC) achieves
additional cache hits.
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6.4.3 Case Study: src1 1

Analyzing ANX’s hit-rate and static-rate results, we next looked into ANX’s worst case

in order to better understand ANX’s performance. ANX’s worst case wound up being

the MSR Cambridge workload, src1 1, with the cache size being 1% of the workload

footprint. Upon analyzing the hit-rate graph in Figure 6.6, we noticed that LARC also

doesn’t do well in src1 1, but that FOMO(ARC) fares much better. Additionally, it can be

noted that ANX’s identification types are shown, letting us see that ANX identifies New

Reuse (in history) at the same times that FOMO(ARC) is encountering hits, suggesting

that FOMO(ARC)’s gains are due to it inserting items without prior reuse into the cache

to have benefits later. We are able to confirm this when we bring our attention to the

insertions made to the cache (Figure 6.7, as we can notice that FOMO(ARC) is inserting

considerably more prior to experiencing cache hits, with LARC and ANX inserts primar-

ily aligning to the number of hits to the miss history are made (New Reuse in history).

Credit for these insertions would appear to be FOMO(ARC)’s use of rates and therefore

observation periods to continue to insert items into the cache in amounts much greater

than the hits to its Miss History.

With this case study analysis, we can conclude that ANX is too quick to raise anxiety,

suggesting that introducing a method of slowing its rate of increase may prove beneficial

in cases such as this.

6.5 Summary

ANX goes in a radically different direction for adaptive non-datapath caching algorithms,

away from evaluation periods and reliance on rates and toward miss histories utilizing a

new evaluation of workload states and the use of uncertainty in making decisions. The

exploration of this unintuitive direction has appeared to given it the validity necessary
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for justifying further improvements and exploration. Further exploration can determine

the appropriate rates or method that ANX could use to increase and decrease its anxiety.

In particular, as seen in the case study, the rate of increase of anxiety can appear to be

too high in some cases, leaving possible items to insert and have future hits on excluded

from the cache. Another avenue of exploration is in regards to the question of whether it is

appropriate to identify a new miss as an indicator of a Unique state when it is still possible

for that same miss to be part of a new working set. Another direction for exploration for

ANX, which is currently using the LRU eviction policy, is whether ANX should include

further protection for items in the cache by using partitions for higher and lower frequency

cached items, such as those present in ARC and LIRS. In the next chapter, we will discuss

the method of finding the optimal solution for non-datapath caches.
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CHAPTER 7

mOPT

Primarily, focus has been on the development of online non-datapath caching algo-

rithms thus far. While these online algorithms focused on retaining or improving the

hit-rate compared to their datapath cache counterparts, they drastically improve upon

the number of writes made to the cache. However, in thoughts of evaluating these non-

datapath caching algorithms, we came upon an unknown: ideally, how much can we

reduce the writes to the cache yet still perform optimally when it comes to the hit-rate?

The offline algorithm MIN, a common measure for finding the optimal miss rate, does

not consider the option available to these non-datapath caches to not cache on a miss re-

quest and does not consider optimizing for writes at all. Several online algorithms that

use simple heuristics to alleviate the problem tend to use strategies that sacrifice hit-rate

in order to significantly reduce write-rate. This approach is one that is seemingly antithet-

ical to the purpose of caching, but provides an acknowledgement that the non-datapath

caching problem has multiple areas for evaluation: both in respects to performance and

device longevity. As such, an optimization algorithm for non-datapath caches should ac-

count for different levels of sensitivity to writes when finding the optimal hit-rate. We

propose mOPT, a non-datapath cache optimization algorithm that provides the optimal

hit-rate and write-rate for a given write sensitivity. With mOPT, the relation between

the hit-rate and write-rate for a cache when adjusting the cache’s write sensitivity can

demonstrate the appropriateness of the workload for a non-datapath cache.

7.1 Introduction

Belady’s MIN algorithm — also known as OPT — is a provably optimal algorithm in

regards to datapath caches as it follows the requirement of always inserting a missed item

into the cache. MIN has often been applied as a useful comparison for caching algo-
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rithms, as the gap in performance between MIN and these algorithms represents room for

improvement, with the bleeding edge making efforts to move ever close to MIN. Further-

more, while we could apply MIN to the non-datapath caching problem, its propensity to

always insert is in conflict with another requirement of non-datapath cache optimality:

reducing the number of writes. This reduction of writes is important, not only due to

non-datapath caches having the option to not insert on a miss, but also due to the storage

media used for these caches: flash and persistent memory, both of which are known to

have limited write cycles before becoming unusable [BD10, ZHZ+18]. Furthermore,

as we shall elaborate later, applying MIN to non-datapath caches also results in a sub-

optimal outcome for hit-rate since MIN may insert a less important item (because it must

insert on misses) while evicting a more important item from the cache.

Heuristics have been previously proposed to have reasonable comparisons for non-

datapath caches without using computationally expensive methods that would be required

for a true solution [CDS+16]. However, the approximation these heuristics are able

to achieve is unknown other than a notable decrease in the estimated number of writes

incurred in their approximations to use in comparisons while tending towards having a

hit-rate approximately equivalent to MIN. mOPT, on the other hand, derives a correct

optimal solution for non-datapath caches in polynomial time.

7.2 Background and Motivation

Host-side SSD caches, a popular non-volatile caching solution, introduces a large, fast

cache to improve request latency [Lev08, BLM+12, SSZ12]. While these caches are

slower than DRAM, they are significantly faster than both HDDs and requests made over

a network. However, SSDs and other non-volatile storage devices, such as Intel Optane

(3D-XPoint), have a limited write lifespan [ZLL+18, BD10, YKH+20]. This means

80



Figure 7.1: Violin graphs showing the breakdown of what percent of each trace’s requests
that are potentially hits are writes. The whiskers represent the maximum, median, and
minimum write percentages among the traces within each trace collection. It can be seen
that a significant portion of each trace collection is composed of traces which have 50%
or more of their requests being write requests.

that cache updates and insertions are costly in more ways than just performance, and

should be minimized while trying to keep latency as low as possible. This focus presents

a target for caching algorithms to get the most performance throughout the lifetime of

the non-volatile caching solution. Conveniently, these non-volatile caches are not on the

traditional datapath, and as such do not require every request to then exist within the cache

immediately following the request. This provides a unique and useful option: the choice

to not insert an item into the cache.

Two particular events lead to writes to the cache: cache insertions and cache hit on

write requests. The number of cache insertions that occurs are influenced by several fac-

tors, with the two most significant to this paper being the size of the cache and the number

of uniquely requested items. These problems are only exacerbated for traditional datapath

caches, due to every cache miss resulting in a cache insertion. Similarly, cache hits on

write requests result in an update to the item present in the cache, which is effectively a

write.
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Figure 7.2: Violin graphs showing the breakdown of what percent of each trace’s requests
are unique. The whiskers represent the maximum, median, and minimum write percent-
ages among the traces within each trace collection. It can be seen that while most of
these traces are composed of less than 50% of their requests are to unique items. How-
ever, a significant portion of each trace collection is composed of traces which have 50%
or more of their requests being write requests, with a few almost entirely composed of
unique items.

When analyzing several publicly available workloads, we found that a large number of

them have a significant number of potential hits are write requests, as seen in Figure 7.1.

This means that when a non-volatile cache is used, a large number of items that are cached

primarily to provide performance benefits with a cache hit are likely to encounter a cache

write hit significantly more often than a cache read hit. This presents situations where

little benefit is found for non-volatile caches and writes continue to shorten its lifespan.

Additionally, when looking at the number of unique requests we found that some traces

consist almost entirely of unique items, as seen in Figure 7.2. This suggests that a great

number of the publicly available workloads show plenty of signs that traditional caching

strategies are not appropriate for non-datapath caches. Thus, in order to reduce writes to

a non-datapath cache, an optimal non-datapath caching algorithm would both need to not

cache unique requests and prefer read cache hits.
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OPT M+ Optimal
(R)ead/(W)rite W R W R W R W R W R W R
Requests A B A B A B A B A B A B
Cache A B A B - - - - - B B B
Hit 7 7 7 7 7 7 7 7 7 7 7 4

Write 4 4 4 4 7 7 7 7 7 4 7 7

Results HR: 0% WR: 100% HR: 0% WR: 0% HR: 25% WR: 25%

Table 7.1: The shown example uses a simple request stream of ABAB and a cache size of
1 to illustrate the different the different shortcomings of MIN and M+. The use of such a
small cache is not important, as theoretically more can be packed into the examples and
keep the most important moments, the insert-evict decisions the same. MIN is shown to
not be capable of getting a hit within this example. M+ is shown to not be capable of
getting any hits as well, but opts to not insert any of the items into the cache in order to
not incur any writes that do not result in hits. In the theoretical optimal for this example,
we can see that not only is one hit found, but by opting to cache B instead of A, the extra
write imposed by a write hit is also avoided.

7.2.1 Need For A New Optimal

Previous offline solution efforts to this caching problem have noted that Belady’s MIN

(OPT) [ZS15] is inappropriate for the non-datapath cache problem as it neither accounts

for cache writes nor considers the option to not cache a request that does not improve

performance. The M+ offline heuristic [CDS+16] improves the write-rate of MIN by

removing wasted cache insertions that do not improve the hit-rate. This approximation

is good, but as noted by the authors, additional optimization decisions are left for fu-

ture work. The need for such optimization decisions is shown in the example in Table

7.1, where M+ is capable of reducing writes, but has trouble finding particular beneficial

choices.

To illustrate not only the methodology of MIN and M+ but also how they are lack-

ing compared to the theoretical optimal, we focus on a few simple examples, as seen

in Table 7.1. Belady’s MIN evicts the item whose next access is the farthest in the fu-

ture. This strategy has been found to be optimal in calculating the maximum hit-rate for

conventional caches that must insert a requested item on a cache miss. M+’s strategy
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is to run MIN first, noting times where a cache insertion occurred that did not lead to a

cache hit. Following this, M+ then runs MIN once more while avoiding insertions that

are known to provide no benefit to the hit-rate. While this strategy is not an optimal for

non-datapath caches, as seen in Table 7.1, it cannot have a hit-rate that is worse than MIN

while providing a reasonable method of measuring the reduction of writes. Nonetheless,

both have room for improvement with respect to improving hit-rate and reducing writesfor

non-datapath caches; such as acknowledging write updates (write hits) as less preferred

over read hits or finding hits and other trade-offs that are typically not captured with the

strategy MIN employs when given the option to not cache on a miss. As such, an offline

optimal for non-datapath caches should maximize hit-rate while minimizing the writes to

the cache.

7.3 mOPT

Observing the current gap in the optimal for non-datapath caches, we introduce mOPT.

mOPT is an offline optimal algorithm non-datapath caches that prioritizes minimizing

the miss-rate and write-rate. mOPT is designed to consider the three possible options a

non-datapath cache is afforded: cache hit, inserting on a cache miss, and not inserting

on a cache miss. With this algorithm, those designing online algorithms can understand

how much room exists to improve upon. Similarly, non-datapath cache hosts would be

able to evaluate the potential appropriateness of non-datapath caches for their respective

workload.

7.3.1 Generalized Model and Objective

When considering the typical non-datapath cache configuration, there exists both the non-

datapath cache (consisting of a flash device) and the backing store. Within this model,
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we assume that the cache has a capacity of N blocks, that the cache supports both cache

bypass and cache invalidation, and that all data can be served from the backing store.

We define a workload1 as a sequence ~(x,w) = (xt ,wt)
T
t=1 of T unit-size block accesses

where xt ∈ I for all t and I denotes the set of all blocks that can be requested and wt

denotes the request type (a read or write). wt represents a read request with 0 and a write

request with 1. A data placement algorithm processes the sequence ~(x,w) in order, and

for each request xt that is not already in the flash device makes an online decision whether

to:

1. bring xt into the flash device; note that this may potentially evict another block on

demand if the flash device is full, or

2. serve xt directly from the backing store without storing it in the flash device.

Note that (2) represents a cache bypass decision. Additionally, as a data placement algo-

rithm processes the sequence ~(x,w) in order, and for each request xt that is already in the

flash device makes an online decision whether to:

1. read from or write to the cache block containing xt based on the request type wt , or

2. invalidate the cache block containing xt , serving xt from the backing store without

reading, writing, or otherwise storing it in the flash device.

Note that (2) represents a cache invalidation decision.

For mOPT, we focus on a variation of the generalized uniform cache model, where

all object sizes and request times are assumed to be uniform, while not considering the

time between requests to be significant. mOPT diverges from the generalized uniform

cache model only by making a distinction between read and write requests, treating each

differently. As such, mOPT is focused on two primary statistics that it minimizes: misses

1The workload definition is based on that provided in the paper ”Optimal Data Placement for
Heterogeneous Cache, Memory, and Storage Systems” [ZKAV20]
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and writes. To properly optimize for misses and writes in a sensible manner, the write

sensitivity is represented with a variable (α) that we call the write penalty. This write

penalty is applied to all writes to affect mOPT decisions. This primarily manifests with

α being set to a very small non-zero value that influences mOPT to minimize the number

of writes while never choosing to increase the number of misses to reduce the number of

writes.

The general cost model mOPT adopts is C( ~(x,w)) = ∑
T
t=1 mt +αwt . C(~x) is the cost

imposed over the entirety of the workload. mt is the cumulative miss cost of the entire

cache (all N cache blocks) at time t, which is typically N on a cache miss or N− 1 on

a cache hit, where N represents the size of the cache. As previously discussed α is the

write penalty assigned to each write that occurs to the cache. Lastly, wt is the number of

writes that occurs to the cache at time t, which is typically just 0 or 1, which is a read or

write respectively. Hence, each operation incurs different costs:

• Cache write hit: (N−1)+α

• Cache read hit: (N−1)+0

• Cache miss: N +α

• Cache bypass: N +0

• Cache invalidation: N +0

7.3.2 Designing the Offline Optimal Algorithm mOPT

We now introduce mOPT, an optimal offline algorithm for non-datapath caches using the

previously defined cost model. mOPT represents each of the N blocks of cache block

with a network flow using vertices that represent requests and edges to represent cache

operations.
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mOPT then translates the problem of making optimal caching decisions into a Min-

Cost Flow (MCF) problem. The resulting flows of mOPT would be the optimal decisions

the non-datapath cache can make to minimize both misses and writes for a given work-

load, cache size, and write penalty. The translation of optimal caching problems to MCF

problems is shown to be practical and useful [BBH17, ZKAV20, ASWB20]. In Section

7.3.2, we’ll discuss the specifics on how this translation is done.

Within our discussions, we will be using a tuple representation when discussing the

costs of operations, decisions, or flows, such as (4,2). The (M,W ) tuple representation is

shorthand for the cost formula of

E(xta,xtb) =
tb

∑
t=ta

mt +αwt

where the edge flow cost (E) is determined by the number of misses (m) and writes (w)

a flow across an edge would impose. While appearing similar to the cost model defined

in 7.3.1, there is an important caveat: E is a cost for a flow, or a cache block, whereas

C is the cost for the entire cache. This manifests in all previously given costs of cache

operations to not include N−1 misses (the misses imposed by the other flows at the same

time instance). The write penalty (α), when using the shorthand representation, is ideally

so small that misses are not affected directly by the presence of writes. As such, in the

discussions, mOPT will be solving primarily for the minimal hit-rate, then the minimal

write-rate, hence the ordering of the tuple being misses first, then writes.

mOPT Construction

Previous cache optimization algorithms that use MCF, such as FOO [BBH17],

CHOPT [ZKAV20] and Belatedly [ASWB20], have tiered graph designs that represent

a single request for an item with multiple vertices. Within this design, these multiple

vertices are representations of an item existing on a particular tier following the request.
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Figure 7.3: The simplified anatomy of how a request is represented in mOPT. Each re-
quest exists in mOPT as two vertices, one (top) existing as a representation of the re-
quested item in the cache, the other (bottom) existing as a representation of the requested
item not in the cache. As such, the edges connecting the two represent inserting and
evicting the item from the cache. Similarly, the implied connections to other items on
the top represent hits, while the implied connection to other items on the bottom repre-
sent misses. Notably, hits are connections only from/to other requests for the same item;
whereas misses are edges from the previous and to the next requests.

We found the two-tiered design to be rather elegant and easily adaptable towards solving

the presented problem. Within our design, the top tier in examples represents the request

being in cache while the bottom tier is the item existing only in the backing store, or more

simply not being in the cache.

With mOPT using a two-tiered design, each request is represented by two vertices: at

and a′t . Each of these vertices representing the item either being present in the cache or

not. The following description of the request model, focusing on its vertices and edges

has an accompanying visual representation with Figure 7.3. As such, the edge from the

not-in-cache vertex to the in-cache vertex costs a write, due to it representing a cache

insertion. The edge from the in-cache vertex to the not-in-cache vertex costs nothing,
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representing a cache eviction, which presents no costs in our model. Both of the edges

connecting the not-in-cache vertex and the in-cache vertex have a capacity of one. All

requests have the previous request’s not-in-cache vertex connected to their not-in-cache

vertex with an edge. This edge costs a miss with a capacity equal to the cache size, as

any flow going between these not-in-cache vertices is missing whatever the request is

and since the entire cache can miss on the request the capacity of the edge must be the

equivalent to the cache size.

If an accessed item had been previously requested, an edge is created from the most

recent previous request’s in-cache vertex to the current request’s in-cache vertex to rep-

resent a hit. As such, the miss cost is calculated as one less than the number of requests

between them. This provides preference for flows that can produce multiple hits within

the same time frame as another with a single hit. The write cost is either zero or one

based on whether the request is respectively a read or write request. The capacity of this

hit edge is one.

As with many MCMF graphs, we will have a single source and a single sink for flows

to come from and end at. The source only connects to the vertex representing the first

request. Only the vertex representing the final request is connected to the sink. The edge

the source connects with has a cost of a single miss or (1,0) and a capacity equal to the

cache size, just as all of edges connecting to all not-in-cache vertices. The edge connected

to the sink have no cost and have a capacity equal to the cache size.

After construction, an MCMF solving algorithm, such as Bellman-Ford’s algorithm

can be used to find an optimal solution, as shown in Appendix A. With this optimal

solution, we can determine the cache state and decisions by moving along the not-in-

cache vertices and taking note when flows went into or out of the in-cache vertex. As

such, we can write an algorithm that can read a solved graph and determine both whether

to insert an item on a miss and what to evict when performing a cache insert on a full
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cache. While evictions in the graph would be prior to the cache insertion that would cause

it, such an algorithm would be creating a queue of items that are ready to be evicted. This

queue would then be used when performing a caching insert on a full cache to provide an

item for eviction as needed.

7.3.3 Optimization

As the runtime of MCMF solving algorithms are heavily dependent on the number of

vertices and edges, removing any superfluous ones can provide performance benefits. An

optimization employed by mOPT is the removal of any requests that are not referenced

more than once from consideration. The reasoning for this is that there is no way that

mOPT would choose to cache any item that would not be referred to again in the future,

thus its removal from the graph provides a worthwhile optimization.

Figure 7.4: Here we revisit the example stream provided in Table 7.1, using mOPT to
solve for the optimal shown there. As such, the optimal path is represented by path with
bold edges. The total cost of this path is (3,1), or a hit-rate of 25% and a write-rate of
25%, an exact match for the optimal within the previous example.
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7.3.4 Illustrative Example

Figure 7.4 shows that when solving for the previous example shown in Table 7.1. With

a request stream of ABAB, with a cache size of 1, mOPT is able to find the optimal choice

that was previously shown. Here, we can see how when considering the two options of

caching A or B, mOPT determines which is preferred by comparing the number of writes

incurred by each option.

7.4 Evaluation

Experimental Setup We built cache simulators for the MIN, M+, and mOPT algorithms

in C++ that can process block I/O workloads and report on the total number of misses

and writes they incurred. In order to simulate sufficient cache space as well capture a

sufficient amount of I/O activity, the size of the cache was set to be a fraction of the

workload footprint, which is defined as the total size of all unique data accessed. This

fractional cache size was varied from 1% to 20% of each workload’s footprint for our

simulations (with the cache sizes specifically being set to 1%, 2%, 5%, 10%, 15%, and

20%). The following results, unless specified otherwise will have a write penalty (α) of a

small non-zero value.

Workloads To have a large, diverse set of block I/O workloads, we used the FIU

[iod10, Sto], MSR Cambridge [NDR08, Sto], CloudCache [AZ14], CloudVPS [AZ14],

and CloudPhysics [WPGA15] block I/O workloads for testing. Originally, due to their

length, CloudPhysics workloads were limited to the first day. These workloads were

then limited further along with the rest of the workloads. Due to the runtime of mOPT,

all workloads were limited to their first 1 million requests. A reliable spatial sampling

method [ZKAV20, WSAP17] was employed to reduce the number of computations nec-

essary for solving for the workloads used for our simulations. These papers also noted
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Figure 7.5: This violin graph shows the hit-rate results of M+ and mOPT, normalized
to the hit-rate of MIN. We can see here that M+ will perform slightly better than MIN,
and mOPT will perform very slightly better than M+. An interesting outlier is that of
CloudCache, where neither M+ nor mOPT was able to find opportunities to improve the
hit-rate further.

Figure 7.6: This violin graph shows the write-rate results of M+ and mOPT, normalized
to the write-rate of MIN. We can see here that M+ will reduce the write-rate a great deal
better than MIN, but that mOPT can still find a significant number of opportunities to
reduce writes further.
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Figure 7.7: Here we can see the Mean
Absolute Error (MAE) that MIN and
M+ have due to the sampling of the
trace. These errors are determined by
the difference in performance compared
to their unsampled counterparts, hence
why mOPT was not capable of having
its error measured similarly. We can see
that for the most part, the sampled hit-
rate results are typically accurate, with a
number of outliers having an MAE of at
most 0.26.

Figure 7.8: Here we can see the Mean
Absolute Error (MAE) that MIN and
M+ have due to the sampling of the
trace. These errors are determined by
the difference in performance compared
to their unsampled counterparts, hence
why mOPT was not capable of having
its error measured similarly. We can see
that for the most part, the sampled write-
rate results are typically accurate. We
can see that MIN is less error prone, due
to its always caching nature. M+, mak-
ing a variety of choices presents more
opportunities for errors, but even so still
has typically accurate sampled write-
rate results, with a number of outliers
having an MAE of at most 0.242.
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that the amount of error increases when the sampling rate is less than 0.001 or the cache

size is less than 100. As such, any test that was attempted to be reasonably simplified for

runtime improvements, but surpassed these limits are not included. There was a subset

of these tests that did not complete within our 20 hour time frame, despite the techniques

used to improve runtimes and are also not included.

7.4.1 Offline Algorithms

We compared mOPT to MIN and M+, normalizing our results to MIN. As seen in Figure

7.5, there is only a small amount of room for hit-rate improvements within these traces

compared to MIN, and less when compared to M+. The maximum normalized hit-rate

increase mOPT brings is a mere 0.579% over MIN. The bulk of the improvements mOPT

brings lies with the write-rate, which, as can be seen in Figure 7.6, are significantly less

than MIN and still shows a marked improvement compared to M+. Here, we can find

a minimal improvement mOPT brings over MIN of 13.156% less writes, while M+ at

worst reduces writes 11.056% over MIN. At best, we find M+ reducing writes a full 99%

and mOPT reducing writes the whole 100%. This is likely in cases where no reuse is

found, where M+ will still warm up the cache prior to using the OPT eviction algorithm

for decisions and mOPT will optimize this cache warm up period away.

With these results, we then set out to measure the Mean Absolute Error of these results

compared to their unsampled counterparts. Mean Absolute Error is a measure of the

absolute error between the expected and the actual results, the measures are in the same

unit as the statistic the error is being measured. As we sampled our traces in order to

improve test runtimes, we can not include mOPT within this error measurement. As

seen in Figure 7.7 and 7.8, the error is mostly negligible. At worst, we found that the

measured error got as bad as 0.26 Mean Absolute Error for MIN and M+ hit-rate. When
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considering write-rate, MIN had a worst case Mean Absolute Error of 0.083, whereas M+

had 0.242 in the worst case. These worst case scenarios are outliers, with the majority of

cases having a much smaller error.

7.5 Summary

While Belady’s MIN is a wonderful measure for optimal hit-rate, it lacks both the consid-

eration for selective caching as well as optimizing for writes. M+ improves upon MIN,

but is not advanced enough to optimize properly for both hit-rate and write-rate. mOPT

properly considers selective caching and optimizing for writes and is able to optimize

for both the miss-rate and the write-rate within non-datapath caching scenarios. While

mOPT is able to only improve upon MIN’s miss-rate a miniscule amount, the write-rate

measures provide an invaluable understanding of how little writes are necessary in or-

der to achieve such hit-rates. This provides a new measurement for algorithm designers

to compare against in their drive towards designing algorithms that perform as close to

optimal as possible. In the next chapter we will discuss related works.
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CHAPTER 8

RELATED WORK

In this chapter we examine the body of related work for mARC, FOMO, ANX, and

mOPT. In each subsection, we discuss the relevant work for a topic of the solutions pro-

posed in this dissertation and describe the difference between our solutions and previous

works, highlighting our unique contributions.

8.1 Datapath Caches

The processing speed of the central processing unit (CPU) has continuously improved,

but the latency to dynamic random access memory (DRAM) still serves as a bottleneck

to performance, referred to as the memory wall [WM95]. However, while the CPU itself

has static random access memory (SRAM) caches in order to side-step this latency, the

datasets of several applications, such as big-data, are simply too large to be captured solely

by the small SRAM caches, and thus the latency and size of DRAM become important

as DRAM is more capable of holding these larger working sets [JVF13]. The operating

system manages this DRAM using the memory management unit, the Linux kernel will

use DRAM as a cache, attempting to keep hot pages in the cache while evicting cold

pages when necessary [HQS16].

With the management of DRAM being so important, several strategies for managing

this memory were developed. Least recently used (LRU) was among the first and best,

using an understanding of temporal locality, that what has been accessed is likely to be

accessed again in the near future, to develop a stack-based algorithm for determining hot

and cold pages [DT90]. As LRU’s overhead was too great, a 1-bit approximation of LRU

was developed that was called CLOCK, using a circular queue to manage hot and cold

pages in an approximately LRU-like behavior [CV65]. Looking to improve upon LRU,

the adaptive replacement cache (ARC) was developed, introducing a two tiered caching
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algorithm that was able to better hold onto reused pages while also being capable of

resisting scanning workload behaviors while adapting to the workload using its eviction

history [MM03]. Low inter-reference recency set (LIRS), was also built to improve upon

LRU, using a two tiered caching algorithm that was able hold onto reused pages very

well, providing a great amount of correction using its eviction history while resisting

scanning workload behaviors [JZ02]. These strategies are designed for the datapath

cache, making them improper for non-datapath caches. The solutions proposed in this

dissertation (mARC, FOMO, and ANX) are designed for non-datapath caches and they

achieve significantly lower cache write-rate and a comparable hit-rate when compared to

the body of datapath caching algorithms.

8.2 Flash in Storage Systems

Solid State Hybrid Drives (SSHDs) place themselves between SSDs and HDDs in terms

of performance and cost while having storage volumes more in line with HDDs [Sch14].

These SSHDs internally are choosing where data should go, having important data reside

on the SSD portion and others on the slower HDD portion of the device, mARC, FOMO,

and ANX do not control where data goes but just acts as a cache for the data instead.

Another point of hardware development for flash in storage systems is the introduction

of the Flash Cache by NetApp, a PCI-E flash device that uses intelligent caching to im-

prove performance without moving data from a slower existing hard drive [Net]. Flash

Cache offers a caching solution that is similar to the design of the non-datapath caches we

envision, however it is a piece of specialized hardware running a specialized, intelligent

algorithm that determines how it caches. mARC, FOMO, and ANX on the other hand are

designed for general purpose flash drives and persistent memory with the use of kernel

modules such as dm-cache [dm-]. Another solution proposed the use of flash devices
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in storage systems by using a tier system like the Extent-based Dynamic Tiering (EDT)

system that intelligently satisfies performance requirements while reducing power/oper-

ating costs [GPG+11]. EDT is a solution that is built to improve storage systems with

the inclusion of different storage technologies. Our work addresses host-side improve-

ments that are targeted towards the same goal. This class of solutions are built to improve

storage systems by making use of different device technologies. EDT is a solution that fo-

cuses on the management of resources rather than caching, similarly to SSHD. Our work,

in contrast, addresses host-side improvements that are targeted towards the same goal.

8.3 Host-Side Caches

Host-side caching devices are typically non-volatile, being flash or persistent memory

(such as 3D-XPoint) meaning that data written to the cache endures through complica-

tions such as node and power failures. This opens them up to potentially be used for

caching writes [KMR+13]. Most host-side caches, however, use a write-through policy

that makes writes to both the cache and backing storage, making the write to the cache

somewhat redundant, but understandable for strictly fail-safe writes [BLM+12]. While

writes can be cached for performance, there are still many scenarios where the avoidance

of writing to the cache can keep the cache performing well and extend the lifespan of the

flash or persistent memory device, which is the focus of mARC, FOMO, and ANX. Host-

side caches can be a powerful part of delivering a certain amount of quality-of-service

for workloads [KMR15]. The performance speed up from the inclusion of the host-side

cache is enough to accommodate such quality-of-service needs [THL+15]. The work

proposed in this dissertation supports the use of multiple write caching policies.
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8.4 Non-Datapath Caching Algorithms

With the introduction of non-datapath caches and the acknowledgement of their particular

limitations and the shortcomings of using existing caching algorithms, have opened the

doors to new approaches.

Lazy Adaptive Replacement Cache (LARC), is a non-datapath caching algorithm

that focuses on not caching unique accesses or very low frequency items by not caching

anything until its second occurrence [HWC+13]. With how LARC focuses first on avoid-

ing writes, it suffers additional misses that could be otherwise avoided by caching on par-

ticular first occurrances, like the unstable state in mARC and FOMO or when anxiety is

low in ANX.

Reinforced Learning Cache (RL-Cache), is a non-datapath caching algorithm that

uses a subset of machine learning, reinforcement learning, to figure out whether to cache

or not cache items [KSGS19]. RL-Cache requires the use of several threads and GPUs

in order to achieve the results it has, a large overhead that is avoided with our solutions.

Learning From OPT (LFO), is a non-datapath caching algorithm that uses machine

learning supervised by a modified version of OPT to learn whether to cache an item or

not based on what it thinks OPT would do [Ber18]. While LFO does well, it uses Ten-

sorFlow and has large amounts of overhead that make it inappropriate for consideration

for production environments, overheads avoided with our solutions.

Other approaches avoid writing to the cache by using deduplication to reuse existing

data, such as D-LRU and D-ARC [LJBR+16]. While we haven’t explored deduplica-

tion, the amount of complexity added and potential overhead should a write-back write

policy be used to evict dirty data suggest that D-LRU and D-ARC may not be appropri-

ate for certain caching environments where write-back is used to improve performance.
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Nevertheless, deduplication as a general technique for host-side cache management is

orthogonal to our proposed work.

8.5 Optimality for Non-Datapath Caching

While solutions do not exist for non-datapath caches, heuristics have been proposed to

approximate the solution, they are as follows: M+, a MIN variant which determines to

not cache an item if the item would be evicted before reuse, MN , a variant of M+ that

does not insert items with less than N accesses, and lastly, MT , a variant of M+ that gets

the best hit-rate possible while having a given max number of erasures [CDS+16]. With

these heuristics, it is not currently known how closely they approximate the optimal for

non-datapath caches, though that could potentially be answered following the proposal

and evaluation of mOPT for comparison. The proposed mOPT, on the other hand, is

proven to be the offline optimal algorithm for non-datapath caches with fixed sized items,

as seen in Appendix A.

Previous work on optimality of caching decisions has been focused on the datapath

cache, as seen with MIN. More recent works have included a translation of MIN into

a Min-Cost Max Flow problem called FOO [BBH17]. FOO is primarily designed to

extend upon MIN by solving for the non-uniform size caching problem. FOO was also

later used by the same author for LFO’s [Ber18] MIN model that was used for LFO’s

machine learning. mOPT instead solves for the uniform caching problem, which includes

items of the same items, for the non-datapath cache context.

Other works that used Min-Cost Max Flow to solve for cache-based optimality prob-

lems, includes both CHOPT [ZKAV20] and Belatedly [ASWB20]. CHOPT aims not

only to optimize for latency, but to optimize for data placement among multiple tiers of

memory. Belatedly similarly solves for latency, but accounts for an event not typical
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in most optimizations: delayed hits. Delayed hits are hits that occur as the item is being

brought into the cache. While typically reported in most optimizations as hits, these cache

hits must still wait for the item to be in the cache before the request is handled. mOPT

does not currently solve for latency, is currently restricted to two tiers (backing-store and

cache) and does not account for delayed hits. mOPT instead accounts for misses and

writes, though it doesn’t seem impossible to adapt mOPT to account for latency instead

of misses within its optimization.
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CHAPTER 9

CONCLUSIONS

In this thesis we studied the non-datapath caching problem from two perspectives: the

development of online caching algorithms and the development of an offline optimal al-

gorithm. We focused on the new option non-datapath caches provide: selective caching,

where caching algorithms are capable of choosing whether to insert an item on a cache

miss or not. This single additional choice, when compared to datapath caches, has in-

troduced an interesting new angle of complexity towards the decisions a non-datapath

caching algorithm can make. Furthermore, the devices used for non-datapath caches

(flash and other non-volatile devices), introduces a secondary interest in reducing the

number of writes made to the devices as they act as caches in order to stretch out their

lifetime of usefulness.

We began by introducing a non-datapath caching algorithm that was capable of utiliz-

ing hit-rate information to identify workload states that benefit from inserting items on a

cache miss or not. Existing solutions were either datapath caches [MM03, JZ02] that did

not consider the option to not cache an item on a cache miss, or was a simple heuristic

for non-datapath caches that did not adapt with the workload [HWC+13], missing out

on opportunities for hits that were otherwise achievable. This adaption to the workload

allowed mARC to provide performance improvements of both reducing writes compared

to datapath caching algorithms, while having improved hit-rate over LARC.

Next, we focused on the areas mARC could improve. In particular, the reduction

of mARC’s parameters and transition conditions provided an opportunity for improve-

ment. With FOMO, not only were we able to develop a workload identification model

that involved only two states, but also two transition conditions. Additionally, FOMO

was generalized to allow for any datapath caching algorithm to benefit from non-datapath

caching options without modification. These changes resulted in the FOMO version of
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these datapath caching algorithms having write-rates similar to that of LARC while find-

ing hit-rate performances generally improved from their datapath counterparts.

Next, we focused on where FOMO could be further improved. One particular point

present in both mARC and FOMO is the use of an observation period before calculating

rate metrics relevant for making decisions. Through an exploration of options and ideas,

we settled upon what would later be called anxiety. Through this constantly changing

metric, ANX was more than capable of finding opportunities that otherwise would go

unnoticed within the observation periods of mARC and FOMO. ANX has shown great

promise in the ideas used in its design: anxiety, the miss history, the identifiers it uses

to adjust anxiety. With this promise, there exists merit in further experimentation and

exploration of ANX’s design space.

Finally, we developed mOPT to understand both how much room for improvement

was possible for the known online non-datapath caching algorithms. Previously there

existed no non-datapath equivalent to MIN [ZS15], which has often been used to judge

how closely a datapath caching algorithm can perform to optimal.
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CHAPTER 10

FUTURE WORK

10.1 Online Non-Datapath Caching Algorithm

Online caching algorithms, regardless of the application, are still a constantly evolving

area with new ideas and innovation. For non-datapath caches, there is still a wealth of

areas left uncovered for others to venture and experiment. Whether through a more in-

timate knowledge of the workload states, or improved designs, the next best algorithm

is an idea away. Beyond heuristics however, is the field of Machine Learning, which

is currently being explored in several caching contexts and performs well, but generally

requires additional resources to attain.

10.2 Offline Non-Datapath Caching Algorithm

The foundations of mOPT can be further expanded to solve further problems from the

context of a non-datapath cache. A primary example is that of latency, which is a funda-

mentally different statistic from misses, but is essential in performance analysis. Another

example still incorporates latency, but now is aware of delayed hits. mOPT also does not

include different cache write policies and can be expanded to further consider them.
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APPENDIX A

mOPT PROOF

Statement of the problem

Consider the following offline cache management problem: Suppose a sequence of re-

quests R = 〈σ1, . . . ,σT 〉 from a set Σ is known in advance and we are given an empty

cache of size n. On each request, if it is already in the cache, our gain is 1; otherwise the

item must be fetched from the backing store. When this happens, we may either choose

to cache the item and pay a write cost of α or choose not to cache it. The problem is

to design a cache replacement algorithm A which maximizes our gain; namely, a cache

replacement policy which maximizes

cost(A,α,n,R) = (number of hits)−α · (number of writes)

The problem is how to find an optimal replacement algorithm that attains

mOPT(α,n,R) := max
A

cost(A,α,n,R).

In the traditional setting, when an item is fetched from a slower memory, it is neces-

sarily written into the cache; this causes some item that is already in the cache has to be

evicted if the cache is already full — hence the name cache “replacement” problem. It

is well-known [MGST70] that the so-called MIN algorithm, which evicts an item in the

cache whose next request is furthest in the future, is optimal in this setting.

Denote by MIN(n,R) the number of cache hits MIN algorithm achieves for a request

R with a cache of size n. By setting the write cost α to zero, we may compare the

performance of the same size cache under these two different settings.

Theorem A.0.1 For any cache size n and request sequence R, we have

MIN(n,R)≤ mOPT(0,n,R)≤MIN(n+1,R).

112



Proof. The first inequality is trivial since choosing not to write to the cache is a privilege:

the new cache can definitely simulate the behavior of MIN algorithm and achieve the

same number of hits. For the second inequality, one can imagine one slot of the size-

(n+1) traditional cache is a special “temporary storage”, and the rest n slots are normal

storage. It can simulate the cache behavior of a modified size-n cache as follows. If the

fetched item is stored in the modified cache, so does the traditional one, and the item is

stored in the same place in the normal storage space. Otherwise, fetched item will be

stored in the temporary storage. It follows that MIN algorithm with (n+ 1)-sized cache

has at least the same number of hits as any cache algorithm of the modified cache with

n-sized cache.

Theorem A.0.2 Given a request sequence R = 〈σ1, . . . ,σT 〉 from a set Σ, with q = |Σ|,

there is an algorithm that computes an optimal caching policy for a modified cache of

size n, and runs in time O(n · (qT +T logT )).

An algorithm for optimal cache replacement policy

We reduce the offline cache management problem to the MINIMUM COST FLOW PROB-

LEM. By constructing an instance of the MINIMUM COST FLOW PROBLEM, we first

show that the minimum cost flow of the network must be integral-valued. Since all the

edge weights in the constructed network are integers, this implies that the optimal flow

can be decomposed into a set of edge-disjoint paths between the source and sink. Then

we prove a one-to-one correspondence between the

The minimum cost flow problem

In the following, we use R+ to denote the set of non-negative real numbers.

113



A network is a quadruple {G,u,s, t}, where G = (V,E) is a directed graph, u :

E(G)→ R+ is an edge capacity function, and s (the source) and t (the sink) are two

specified vertices in V (G). A flow in a network {G,u,s, t} is a real-valued function

f : E(V )×E(V )→ R+ satisfying the following two properties. (i) Capacity constraint:

f (i, j) ≤ u(i, j) for all (i, j) ∈ E(G) and (ii) Flow conservation: for all i ∈ V (G) \ {s, t},

∑ j∈V (G) f (i, j) = ∑ j∈V (G) f ( j, i). If (i, j) is an edge in G, then the non-negative quantity

f (i, j) is called the flow from vertex i to vertex j. The value of a flow f is defined as

| f |= ∑i∈V (G) f (s, i)−∑i∈V (G) f (i,s).

A useful fact about flows in a network is the following theorem.

Theorem A.0.3 (Flow Decomposition Theorem [FJF62]) Let (G,u,s, t) be a network

and let f be an s-t-flow in G. Then there exists a family P of s-t-paths and a family C

of cycles in G along with a weight function w : P ∪C → R+ such that for every edge

(i, j) ∈ E(G), f (i, j) = ∑P∈P∪C :(i, j)∈E(P)w(P) and ∑P∈P w(P) = | f |. Moreover, if f is

integral then all weights w can be chosen to be integral.

Our approach for the offline modified cache policy problem is to reduce it to the MIN-

IMUM COST FLOW PROBLEM, and then apply a well-known Edmond-Karp algorithm to

solve the problem.

Definition A.0.4 (MINIMUM COST FLOW PROBLEM) Given a directed graph G =

(V,E), a capacity function u : E(G)→R+, a function b :V (G)→R, and a weight function

c : E(G)→R, a b-flow in (G,u,c) is a real-valued function f : E(V )×E(V )→R+ satis-

fying the following two properties. (i) Capacity constraint: f (i, j)≤ u(i, j) for all (i, j) ∈

E(G) and (ii) Flow constraint: for all i ∈ V (G), ∑ j∈V (G) f (i, j)−∑ j∈V (G) f ( j, i) = b(i)

(that is, for every vertex i in the network, the net flow out of the vertex is equal to the

“injected” flow b(i) into that vertex). The MINIMUM COST FLOW PROBLEM is to find a

b-flow f which minimizes the cost function c( f ) := ∑(i, j)∈E(G) c(i, j) f (i, j).
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MINIMUM COST FLOW PROBLEM is one of the central problems in network flow

research and has been extensively studied during the past half century; see e.g. [AMO93,

KV12, Wil19] and references therein. To date, the fastest strongly polynomial1 algorithm

for the MINIMUM COST FLOW PROBLEM is due to Orlin [Orl93], with a running time

O(m logn(m+n logn)) for networks with n vertices and m edges.

Edmond-Karp algorithm

Early network flow algorithms rely crucially on the concept of residual network, in-

troduced by Ford and Fulkerson [FJF62]. Given a flow network G and a flow f , the

residual network G f consists of the same set of vertices as G, but with additional edges

and modified edge capacity. Specifically2, u f (i, j) = u(i, j)− f (i, j) if (i, j) ∈ E(G), and

u f (i, j) = f ( j, i) if (i, j) /∈ E(G). Moreover, the edge weights of the original edges in G

are unchanged, and the newly added edges ( j, i) has weights c f ( j, i) =−c(i, j).

The Edmond-Karp algorithm [EK72] for the MINIMUM COST FLOW PROBLEM is

built on the following basic result (see e.g. [FJF62]), p. 121.

Theorem A.0.5 Let (G,u,c,b) be an instance of the MINIMUM COST FLOW PROBLEM

and let f be a minimum cost b-flow. Let P be a shortest (with respect to edge weight c f )

s-t path in G f Let f ′ be a flow obtained by augmenting f along path P and denote the

resulting flow function as b′. Then f ′ is a minimum cost b′-flow.

1Roughly speaking, an algorithm is said to be strongly polynomial if its running time is a
polynomial only of the problem instance size (in our case, the number of vertices and edges of the
network) but independent of the parameters of the problem instance (in our case, the quantities
such as capacity u, cost c and flows b), as long as we can assume that all basic arithmetic operations
involving these parameters can be computed in O(1) time.

2Without loss of generality, for convenience, we assume that in the network (i, j) ∈ E(G)
implies ( j, i) /∈ E(G). If this condition is not met, we may modify G by adding auxiliary vertices.
Such a condition is certainly satisfied for the network constructed in this paper.
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The Edmond-Karp algorithm starts from an empty flow f = 0. Then repeat the following

process until no such vertices s and t can be found: Choose a vertex s with b(s) > 0,

choose a vertex t with b(t) < 0, such that t is reachable from s in G f ; Augment the flow

f along a shortest path between s and t with flow equaling the minimum edge capacity

along the path; update b.

Therefore, computing a minimum cost flow is reduced to finding a shortest s-t path

in the residual network defined by the previous flow, and augmenting the flow along

this shortest path. As computing a shortest s-t path in a general graph with negative

edge weights is expensive (the best known Bellman-Ford algorithm takes O(nm) time),

the key insight of Edmond-Karp is that we can introduce a “potential function” π f (i)for

each vertex i in the residual graph, defined as the shortest path distance δ (s, i) between

s and i in G f , and use c̄ f (i, j) = c f (i, j)+π f (i)−π f ( j) — which are guaranteed to be

non-negative — as the edge weights to perform shortest path calculation. By employing

Fibonacci heap [FT87], Edmond-Karp algorithm runs in O(B(m+ n logn)) time, where

B = 1
2 ∑i∈V (G) |b(i)| is the size of the flow, n is the number of vertices and m is the number

of edges in the network. See e.g. [KV12] for a detailed description and analysis3.

Network construction

Let Σ = {σ1, . . . ,σq} denote the set of possible requested items with q = |Σ|. Without loss

of generality, assume that every symbol σ ∈ Σ appears in the request (otherwise, we can

remove it from Σ). Let R = 〈σ1, . . . ,σT 〉 be a sequence of T requests. Therefore, each

request can be represented by a tuple (σ , t), where σ ∈ Σ and t ∈ {1, . . . ,T}. Abusing

notation, we will use R to also denote the set of such request tuples. For every σ ∈ Σ,

3The running time stated here applies only to the network constructed in this paper; since our
original network does not have any negative weighted edges, so the initial run of the Bellman-Ford
algorithm to find a shortest path from s to every other vertex in G is avoided in our case.

116



let fi(σ) be the time stamp at which σ first appears in the request, and la(σ) be its last

appearance in the request. Finally, for any (σ , t) ∈R, let ne(σ , t) = min{t ′ > t | (σ , t ′) ∈

R} denote the next time stamp at which symbol σ appears in the request after time t, and

set it to T +1 if (σ , t) is the last occurrence of σ .

Given a modified cache of size n, write cost α , and a sequence of T requests

R = 〈σ1, . . . ,σT 〉, an instance (G,u,c,b) of the MINIMUM COST FLOW PROBLEM is

constructed as follows.

Vertices

Let V ′ ⊂ Σ × {1,2, . . .T} be the set of all request tuples; that is V ′ = {(σ , t) |

the request at time t is σ }. Then V (G) = {s, t}∪V ′, where s is the source and t is the

sink.

Edges

Firstly, for every σ ∈ Σ, add an edge from s to (σ ,fi(σ)) of weight 1+α . We will refer

to these edges as source edges. Also add an edge from (σ , la(σ)) to t of weight 1, call

them sink edges.

Secondly, for every vertex (σ , t) such that t < la(σ) (i.e. t is the not the last time

stamp at which σ appears in the request), add an edge from (σ , t) to (σ ,ne(σ , t)) of

weight ne(σ , t)− t− 1. Note that the weight is a non-negative integer. We refer to such

an edges as a straight edge. If ne(σ , t)− t > 1 (i.e., there are some other symbols between

the current appearance of σ and the next appearance of σ ), then for every t < t ′< ne(σ , t),

add an edge from (σ , t) to (σ ′, t ′) of weight t ′− t +α . Since σ ′ is necessarily different

from σ , such an edges will be called a slanting edge.

Finally, add an edge from s directly to t of weight T + 1. All edges in our network

have unit capacity, except for this last edge from s to t, which has capacity n.
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b-flow

We set the b-flow as follows: b(s) = n, b(t) =−n, and b(i) = 0 for every i ∈V ′.

Fact A.0.6 The constructed network G satisfies that |V (G)|= T +2 and |E(G)| ≤ q(T +

2)+1.

Proof. The size of V (G) is straightforward. To calculate |E(G)|, first note that there are

exactly q source edges, q sink edges, and another edge from source directly to sink. For

any vertex (σ , t) ∈V ′ its total number of outgoing edges (counting both straight edge and

slanting edges) is exactly ne(t)− t. Summing over all such vertices with a fixed σ gives

∑
t:(σ ,t)∈V ′

out-deg((σ , t)) = ∑
t:(σ ,t)∈V ′

(ne(t)− t) = T −fi(σ)< T.

Since there are q such symbols, the total number of such edges is at most qT . It follows

that |E(G)| ≤ q(T +2)+1.

Completing the proof

The key observation of the proof is that there is a one-to-one correspondence between the

paths from s to t in the network and the states of content of storage units in the cache.

Specifically, a straight edge corresponds to a cache hit and a slanting edge corresponds to

writing a new symbol into the cache unit.

We note that the constructed network (G,u,c,b) has the following nice properties.

Firstly, the existence of a capacity n edge from s to t makes the instance of MINIMUM

COST FLOW PROBLEM feasible. It is easy to see that a flow f0 ∈ N along the (s, t) edge

corresponds to that f0 slots of the cache have never been used, making the effective cache

size n− f0. For this reason, in the following, we assume that the flow along this edge is

zero. Equivalently, we may assume that this edge is removed from G and we try flow value
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b from 1 to a maximum value n′ at which an n′-flow between s and t is still feasible in the

modified network. Then n′ is the maximum cache size can be fully utilized by the request

sequence. Consequently, since now all edge capacity is 1, by the Flow Decomposition

Theorem, the minimum cost flow found by Edmond-Karp theorem can be decomposed

into n edge-disjoint s-t paths in G.

If we assign a time stamp 0 to the source and a time stamp T +1 to the sink, then every

edge in the network is of the form ((σ , t),(σ ′, t ′)) with t < t ′. Moreover, the weight of

such an edge is either t ′−t+α if a “write” occurs (that is, symbol of the vertex changes4),

or t ′− t− 1 if a cache hit occurs, or just t− t ′ if neither occurs (this applies only to the

edge from s to t, which corresponds to an unused cache unit). Consequently, the total

weight (hence the cost of a unit flow) of every path P from s to t is

c(P) = T +1+α · (number of writes)−number of hits.

Since the total flow is n, summing the total cost of all n unit flows together gives that

the minimum cost of the flow is

c( f ) = ∑
disjoint s-t path P

c(P) = n(T +1)−mOPT(α,n,R).

Or equivalently,

mOPT(α,n,R) = n(T +1)− c( f ).

Proposition A.0.7 For n and T be positive integers, 0≤ α < 1, Σ be a finite set of size q,

and R = 〈σ1, . . . ,σT 〉 be a sequence of request from Σ. Let (G,u,c,b) be the instance of

the MINIMUM COST FLOW PROBLEM constructed in Section A from an instance of the

online modified cache problme (n,α,Σ,T,R). Then there is one-to-one correspondence

between the cache states of the n units and the n edge-disjoint path of a feasible flow from

s and t.

4We view the empty state as a special symbol; therefore an edge from s to a normal vertex
involves symbol change.
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