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ABSTRACT OF THE DISSERTATION 

DEVELOPMENT OF PHOSPHORUS-BASED ELECTRODE MATERIALS FOR 

ENERGY STORAGE APPLICATIONS 

by  
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Miami, Florida 

Professor Chunlei Wang, Major Professor 

 

With the rapid development of modern society, the huge demand for energy storage 

systems from fossil fuels leads to dramatic increasing of greenhouse gases. Therefore, 

an efficient green energy storage system with high energy density and stable 

cyclability is urgently required for advanced electronics. The electrochemical 

performance of energy storage devices strongly depends on the electrode materials. 

Among the recent advances on electrode materials, phosphorus as an earth-abundant 

element with high theoretical specific capacity (2596 mAhg-1) and low cost 

has attracted intensive attention. However, low conductivity and high volume 

expansion of phosphorus-based electrodes hindered its real performance in energy 

storage applications. Moreover, exfoliation of BP into phosphorene nanosheets is still 

time-consuming, toxic, and leads to high defect concentration. This dissertation is 

tailored to overcome both materials engineering and eco-friendly and scalable 

manufacturing issues to make high-performance phosphorus-based electrode 

materials.  

In the first part of this dissertation, RP with sulfurized polyacrylonitrile (RP-SPAN) 

hybrids were synthesized via electrostatic spray deposition (ESD) and characterized 
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as an anode material for lithium-ion batteries (LIBs). The developed hybrid anode 

delivered excellent specific capacity up to 1605 mAhg-1 at 0.1 A g-1 at 100 cycles. 

The fabricated electrode improved the conductivity of RP and also endured its large 

volume changes upon cycling. Moreover, the fabricated RP-based LIBs were 

evaluated in both frequency and time domains in terms of stationarity, stability, and 

linearity, as well as degradation with extended charge/discharge cycling. 

Exfoliation and deposition of BP into 2D phosphorene nanosheets through the novel 

one-step, facile, and environmentally friendly method of bipolar electrochemical 

exfoliation (BPE) on the feeding electrodes was other major goal of the dissertation. 

The presence of point defects, grain boundaries, and amorphization of bipolar 

exfoliated phosphorene nanosheets was evaluated through high-resolution 

transmission electron microscopy (HRTEM) analysis and density functional theory 

(DFT) calculations. The electrochemical performance of the bipolar exfoliated 

phosphorene nanosheets with an orthorhombic crystal structure was also evaluated in 

a symmetric two-electrode configuration for supercapacitor applications. The 

fabricated device delivered a high power density of 351 mW cm-2 at a constant current 

load discharge of 500 mA cm-2 with high stability and reversibility for at least 40000 

cycles. The results in this dissertation could open up new horizons to improve the 

performance of P-based electrodes for energy storage applications.  
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1. Introduction 

 Overview 

With the fast development of the worldwide economy, increasing population, fossil 

fuel consumption, and also global warming sustainable and renewable energy 

technologies are needed for future energy storage devices. Most renewable energy 

sources are dependent on weather conditions and time of the day. Rechargeable 

batteries and electrochemical supercapacitors with high power/energy densities are 

the most important electrochemical energy storage devices based on the conversion of 

chemical energy into electrical energy and have been successfully commercialized for 

a wide range of applications such as portable power sources and electric vehicles. 

However, there is a concern about the ability of rechargeable battery and 

supercapacitor technology to meet the growing demands of electronic devices [1, 2].  

Each battery or supercapacitor device is composed of negative and positive electrodes 

separated by a separator that allows ion transfer in a specific electrolyte solution with 

mobile ionic species [3]. The key factors for an ideal electrochemical energy storage 

device include high energy storage density, power density, excellent cyclability, and 

rate capability, which are strongly dependent on the type of electrode materials [4]. 

Among different types of rechargeable batteries, lithium-ion batteries (LIBs) 

providing a high gravimetric energy density of about 250 W h kg-1 with long service 

life. However, the sluggish oxidation/reduction reaction, electrode instability, and 

unpredictable side reactions at electrode/electrolyte interfaces in LIBs limiting its 

actual performance. Supercapacitors with high power density, fast 

charging/discharging rate, and long cycle life (more than 100000 cycles) have 

attracted attention in both academia and industry [5]. However, their insufficient 
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energy density <10 W h kg-1 hinders their widespread application in electronic 

devices [6]. 

Enhancing the performance of advanced energy storage devices through the 

development of electrode materials is one of the promising approaches for the future 

of energy industries. From the electrode point of view, different one-dimensional (1D) 

and two-dimensional (2D) nanostructured materials have been utilized in batteries and 

supercapacitors to improve the cyclability and rate capability. Moreover, many kinds 

of hybrid composite materials have been developed in order to improve the 

electrochemical performance of energy storage devices. In terms of structure, various 

types of one-dimensional (1D) and two-dimensional (2D) nanosheets have been 

evaluated for high-performance energy storage devices. However, developing a novel 

environmentally friendly electrode material with high electrochemical performance is 

still challenging. Moreover, providing a facile, straightforward, and scalable 

technique to produce novel materials for energy storage devices is necessary. 

 Research Problems 

The ultimate goal of this dissertation is to develop and assess high electrochemical 

performance LIBs and supercapacitors through novel phosphorus-based electrode 

material synthesis. The research problems encountered in this dissertation and their 

possible solutions are discussed as follows: 

1. How to increase the electrochemical performance of Phosphorus-based material for 

energy storage devices? 

Poor conductivity and large volume expansion: Phosphorus-based electrodes have 

been studied as an electrode material for LIBs and supercapacitors because of their 

chemical stability in an ambient environment. However, its low conductivity (~ 10-4 
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S/cm) and volume expansion up to 300% leading to pulverization of the electrode 

material, and thus poor reversibility and fast capacity fading [7]. Due to the nature of 

phosphorus as a nonmetallic element, there is a far away between its theoretical 

capacity (2596 m A hg-1) and experimental results [8, 9]. To address this problem, 

various strategies have been explored. It has been evaluated that the conductivity of 

phosphorus-based electrodes can be improved by introducing a conductive 

carbonaceous agent and providing a hybrid composite. Different types of 1D and 2D 

carbon materials have been incorporated with phosphorus for different energy storage 

systems [10]. However, using a carbon-based material with stable chemical bonding 

with phosphorus is still a challenge, and therefore developing a unique conductive 

matrix to realize the strong chemical interaction with phosphorus is still lacking. 

Obtaining stable cycling performance of P-based electrodes need a high percentage of 

carbon source up to 70% and as a results, decreases a real energy density. Moreover, 

the electrochemical stability of the P-based electrodes in energy storage applications 

is still unclear. Obtaining stable cycling performance needs a high proportion of the 

low capacity carbon from 30 to 70%, results in the decrease of real battery energy 

density. 

2. How to effectively develop the single-step exfoliation and deposition of black 

phosphorus? 

In recent years, exfoliation and preparation of black phosphorus (BP) as a 2D material 

knows as phosphorene through top-down and bottom-up techniques have been 

demonstrated. Specifically, liquid-based exfoliation of bulk BP is considered an 

inexpensive method to produce BP nanosheets in large quantities. However, typically 

these methods are time-consuming, toxic, multi-step, and not scalable. Moreover, 
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degradation of the synthesized material hindered its real performance in energy 

storage applications. As a result, providing a single-step, facile, and scalable 

exfoliation and deposition of BP into phosphorene nanosheets is necessary. 

Furthermore, optimization of the exfoliation of BP setup in terms of voltage, current, 

and size of the conductive substrate through the process is still challenging. Therefore, 

choosing the optimal experimental procedure can enhance the exfoliation of 

nanosheets. 

3. What are the defects structures for the bipolar exfoliated phosphorene nanosheets 

via transmission electron microscopy (TEM) analysis?  

Researchers handled phosphorene nanosheets under ambient conditions for a short 

period of time, but invariable instability and degradation of phosphorene nanosheets 

still have been a major impediment in different exfoliation techniques and the 

presence of lone pairs of phosphorus atoms at the surface of nanosheets makes it air-

sensitive. Therefore, there is a need to understand the fundamental properties of BP 

nanosheets. Despite the theoretical calculation efforts, in-depth experimental defect 

analysis of BP nanosheets has not been extensively explored so far. Evaluating the 

types of defects on exfoliated phosphorene nanosheets via TEM may open a new 

horizon to control its degradation and improve its electrochemical performance. 

 Hypotheses 

Phosphorus-based electrodes are very promising for rechargeable batteries and 

supercapacitors. As discussed in the previous section, a various type of conductive 

carbonaceous hosts has been applied to Phosphorus-based electrodes to improve the 

conductivity and control the volume expansion during cycling. The hypothesis 

encountered in this thesis are as follows:   
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1. The strong chemical bonding of phosphorus with the conductive agent could 

maintain the electrical connection and suppress the huge volume change of 

phosphorus and thus maintain its structural stability during cycling. Forming an 

effective chemical bond among hybrid electrodes could improve the kinetics and 

electrochemical performance of phosphorus-based electrodes.  

2. Single-step bipolar electrochemistry (BPE) technique could create enough potential 

on the bipolar electrode to break the bonds between the BP layers and exfoliate BP 

into crystalline phosphorene nanosheets with low defect concentration. 

3. Due to the redox reactions on the two poles of the bipolar electrode, BP nanosheets 

with different functionality could deposit on different sides of conductive feeding 

electrodes. By tuning the applied voltage, current, and time, phosphorene nanosheets 

with preferred thickness and high stability could deposit on the conductive substrates.   

4. The unique vertically aligned 2D phosphorene nanosheets on the conductive 

substrate via the BPE method could improve the kinetics and provide a binder-free 

electrode material for high-performance energy storage applications.  

 Research Plan  

The research plan adopted for this dissertation is presented in Figure 1.1; the specific 

goals that were worked toward are as follows: 

1. Material development and synthesis: In order to overcome the low conductivity and 

large volume expansion of red phosphorus (RP) as an anode material for LIBs, it is 

imperative to identify the novel conductive matrix. To attain this goal, sulfurized 

polyacrylonitrile (SPAN) was synthesized from a mixture of PAN and sulfur, and the 

developed anodes were prepared via ball milling and electrostatic spray deposition 

(ESD) techniques and were characterized from both materials and electrochemical 
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aspects. Moreover, the electrochemical stability and linearity/nonlinearity of the 

developed anode was evaluated through small-amplitude sinusoidal voltage 

excitations and its time-domain constant-current charge/discharge dynamics. 

Moreover, single-step exfoliation and deposition of BP into phosphorene nanosheets 

via novel bipolar electrochemistry method was evaluated. Due to the anodic and 

cathodic reaction on the two poles of the bipolar electrode, exfoliated nanosheets 

migrate and deposit on both feeding electrodes. The possibility of exfoliation and 

deposition, the chemical composition, and the surface properties on two positive and 

negative feeding electrodes were investigated using different material characterization 

techniques. The exfoliation parameters were optimized for maximal uniform 

deposition of nanosheets for high-performance energy storage applications.  

2. Defect characterization of phosphorene nanosheets: Possible formation of defects 

and amorphization in bipolar exfoliated phosphorene nanosheets were evaluated 

through transmission electron microscopy (TEM) analysis and Density Functional 

Theory (DFT) calculations. 

3. Electrochemical performance of the developed electrode material: The hybrid RP-

SPAN electrode material and the exfoliated phosphorene nanosheets were evaluated 

as electrode material for energy storage devices such as batteries and supercapacitors. 
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Figure 1.1: Flow chart of the research plan. 

 

 Scope of the Dissertation 

My PhD dissertation consists of eight chapters. Chapter 1 is highlighted the 

motivation, research problem and hypothesis. Chapter 2 provides the background of 

the dissertation about the phosphorus properties. The two main allotropes of 

phosphorus which are RP and BP have been discussed for energy storage 

applications. In order to provide an insight for further investigation of BP, the 

historical background of its liquid-based exfoliation and its application for energy 

storage devices were discussed comprehensively. Chapter 2, in part, is a reprint of the 

material “Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its 

Application for Energy Storage Devices” as it appears in the Small Structures, A. 

Rabiei Baboukani, I. Khakpour, V. Drozd, C. Wang, (2021), 306, 2000148. The 

dissertation author was the first author of this paper. 
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Chapter 3 provides a detailed methodology of the experimental methods adopted for 

this dissertation including ESD and BPE techniques. Moreover, different materials 

and electrochemical characterization techniques were highlighted. 

Chapter 4 presents the results of RP-SPAN anode material by electrostatic spray 

deposition for LIBs. The half-cell performance of the developed anode was evaluated 

with lithium metal as the counter and reference electrode. Chapter 4, in full, is a 

reprint of the material “High-performance red Phosphorus-sulfurized polyacrylonitrile 

composite by electrostatic spray deposition for lithium-ion Batteries” as it appears in 

the Electrochimica Acta, A. Rabiei Baboukani, I. Khakpour, E. Adelowo, V. Drozd, 

W. Shang, C. Wang, (2020) 345, 136227, 2020. The dissertation author was the 

primary investigator and first author of this paper. 

 Chapter 5 discusses ESD derived RP-SPAN electrode as an anode of LIBs with the 

transfer function stability analysis and the differential capacity analysis to evaluate the 

system’s behavior in both frequency and time domains in terms of stationarity, 

stability, and linearity, as well as dissipation and degradation with extended 

charge/discharge cycling. Chapter 5, in full, is a reprint of the material “On the 

electrochemical stability analysis of red phosphorus-based anode for lithium-ion 

batteries” as it under review in the Electrochimica Acta, A. Allagui, A. Rabiei 

Baboukani, A. S. Elwakil, C. Wang. The dissertation author was the co-primary 

investigator and co-first author of this paper. 

Chapter 6 investigates an in-depth study of exfoliation and deposition of BP into 

phosphorene nanosheet on the positive and negative feeding electrodes via single-step 

BPE technique. Also, the electrochemical performance of the exfoliated nanosheets 

on the positive feeding electrodes have been evaluated as an electrode for 

supercapacitor applications. Chapter 6, in part, is a reprint of the material “Single-step 
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exfoliation of black phosphorus and deposition of phosphorene via bipolar 

electrochemistry for capacitive energy storage application” as it appears in the Journal 

of Materials Chemistry A, A. Rabiei Baboukani, I. Khakpour, V. Drozd, A. Allagui, 

C. Wang (2019), 7(44), 25548-25556. The dissertation author was the primary 

investigator and first author of this paper. 

Chapter 7 expands on the defect formation and degradation of exfoliated phosphorene 

nanosheets via the BPE method using TEM analysis and DFT calculations. Chapter 7, 

in full, is a reprint of the material “Atomic Defects Characterization of Bipolar 

Exfoliated Black Phosphorus Nanosheets Using Transmission Electron Microscopy”, 

as it under review in the Journal of Nanotechnology, A. Rabiei Baboukani, S. M. 

Aghaei, I. Khakpour, V. Drozd, C. Wang. The dissertation author was the primary 

investigator and first author of this paper. Chapter 8 provides a conclusion and future 

work direction of this dissertation.  
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2. Background and Literature Review 

 Historical Overview  

With the increasing demand for energy and exhausting refined fossil fuels during the 

past decade, different types of clean energy sources are emerging very fast. Therefore, 

a large-scale energy storage systems such as rechargeable batteries and 

electrochemical capacitors (also known as supercapacitors or ultra-capacitors) are 

necessary for future practical applications [1]. Lithium-ion batteries (LIBs) as the 

most common rechargeable batteries have been presenting great promises due to their 

high energy conversion and stable cyclability. Since the first commercial LIB in early 

1990s, this technology has been experiencing great progress in different applications 

ranging from portable electronics to electric vehicles and large industrial equipment 

[2]. Developing fabrication method along with advances in nanomaterials as an 

electrode, electrolytes and packaging, has resulted in improved electrochemical 

performance of LIBs [3]. However, due to the slow power delivery and resistive 

losses from sluggish electron and ion transport in LIBs, there is a need for fast and 

high power energy systems. On the other hand, supercapacitors provide high power 

density, fast charging/discharging, and great stability [4]. The energy density of 

supercapacitors (~ 5 W h kg-1) is lower than LIBs, but provides higher power density 

up to 10 k W kg-1 in a few seconds. Figure 2.1 illustrates a plot of energy density 

versus power density known as a Ragone plot for different energy storage 

applications. Although the supercapacitors filled the gap between conventional 

capacitors and LIBs, their energy density is still too low for power future electronic. 

The report from the US Department of Energy has confirmed the importance of LIBs 

and supercapacitors for future energy storage applications [5].  
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Figure 2.1: Ragone plot of specific power versus specific energy for different energy storage devices 

[5]. 

 

 Phosphorus Allotropes 

Phosphorus (P) as a nonmetallic element from group 15 of the periodic table and one 

of the most abundant element in the Earth’s crust (0.105%) possesses four main 

allotropes: white phosphorus (WP), violet phosphorus (VP), red phosphorus (WP), 

and black phosphorus (BP), named based on their appearance (Figure 2.2). WP is 

highly symmetrical with tetrahedral crystal structure and large bonding strain. 

Meanwhile, WP is flammable in air at 34°C and very toxic which is not suitable for 

energy storage applications from the viewpoints of safety concern. However, WP 

always serves as the starting material to synthesis other allotrope of phosphorus. RP is 

an amorphous allotrope of phosphorus with covalent molecular structure obtained 

from cleavage of P4 molecule. RP is thermodynamically stable in air and can directly 

obtained from WP in N2 atmosphere at 300°C. As shown in Figure 2.2, VP can be 

synthesized through the annealing of WP at 550°C with the presence of molten lead. 
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In different types of phosphorus, BP is the most thermodynamically stable allotrope 

and can produces from WP or RP. BP presents higher electrical conductivity 

compared to RP and has a similar structure to graphite [7].  

 Red Phosphorus 

RP is the most common allotrope of phosphorus which is stable in air up to 260°C 

and in terms of cost, it is comparable to graphite and much less expensive compared 

to silicon nanoparticles [8]. Many types of flares use RP to help in the ignition 

process. The sustained combustion of the flare is also achieved with the help of this 

allotrope. Moreover, the mixture of RP with magnesium and a binder, can be used as 

a smoke device that can create a smoke screen quickly. It also used as a flame 

retardant in many thermoplastics [9]. Considering the abundance, environmental 

friendliness, high chemical stability, and easy handling of RP, great progress has been 

made in the development of RP-based electrodes for high-performance energy storage 

application. 

 

Figure 2.2: Different Phosphorus allotropes with their transformation reactions [7]. 
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RP is a promising electrode material for energy storage application due to its high 

theoretical capacity of 2596 m A hg-1. However, the drastic volume change (300%) of 

RP during cycling and its low conductivity (10-14 S cm-1), limiting the actual 

performance of RP. To alleviate these issues, different strategies via the nanoscaling 

of RP particles and providing conductive materials have been evaluated to decrease 

the ion transport distance and improve the electrochemical performances. Up to now, 

Carbonaceous materials including graphene, reduced graphene oxide (rGO), activated 

carbon, carbon nanotube, etc., served as the conductive matrix to scaffold phosphorus. 

Very recently, conductive polymers were also introduced to phosphorus to form a 

heterostructure composite for high-performance energy storage devices by taking the 

advantages of both components [10]. The main synthesis techniques in preparing the 

RP-based composites are ball milling and vaporization-condensation. In the ball 

milling process, the bulk RP with the conductive hosts are mixing together under the 

argon atmosphere. During the process, particles milled into nano sized material with 

the formation of chemical bonds. This method is very simple and productive, that can 

control the ration of RP in the hybrid material precisely. The vaporization-

condensation strategy is based on the sublimation of RP and conductive host. When 

the RP is heated above the 600°C (sublimation temperature) under the argon 

atmosphere or vacuum, the phosphorus sublimate diffuses into the pores due to the 

capillary forces and then, deposited or adsorbed on the surface of the host materials 

[11]. The general reaction of phosphorus with lithium during cycling are as follows: 

-
P + xLi + xe Li Px


                                                                                                 (2.1) 

x 3

3 3
Li P + Li e Li P

x x

                                                                                       (2.2) 
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During the lithiation step, phosphorus reacts with lithium and form LixP, with the 

final product of Li3P. The Delithiation process is a stepwise extraction of lithium ion 

from the fully discharged Li3P, which is detectable from several plateaus in 

charge/discharge and cyclic voltammetry profiles [10]. Although RP has been 

evaluated for different types of rechargeable batteries, the fundamental mechanism of 

its capacity decay even in the composite form is still unclear.   

 Black Phosphorus and Phosphorene Nanosheets 

Since the discovery of graphene in 2004, 2D materials have attracted much attention 

in many fields, from materials science to biomedical and electrical engineering, due to 

their thermal conductivity, optical transparency, high carrier mobility, and surface 

area [12-14]. Among different 2D materials beyond graphene, metal dichalcogenides 

[15], boron nitride [16], carbon nitride [17], and MXenes [18] have been evaluated in 

recent years for energy storage applications due to their unique properties [19, 20]. 

Black phosphorus (BP) as a popular member of 2D materials was discovered in 1914 

via high pressure (1.2 Gpa) and high temperature (200 °C) conversion of white 

phosphorus [21]. 2D BP was “rediscovered” in 2014 and attracted attention owing to 

its interesting anisotropic chemical and physical properties [22].  

Among different allotropes of phosphorus, BP is non-toxic and the most 

thermodynamically stable allotrope with a tunable direct bandgap of 0.3-2.05 eV, high 

carrier mobility (≈1000 cm2 V-1 s-1), moderate current on/off ratio (104 ~ 105), 

mechanical flexibility, and high theoretical capacity up to 2596 mAhg-1 as an anode in 

rechargeable batteries [23-25]. Similar to graphite, in terms of structure (space group 

Cmca (64), Z=8), each layer of BP has a puckered honeycomb structure and BP layers 

adhere together with van der Waals interactions (20 meV atom-1). These layers can 
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easily be separated to a few-layers or a monolayer of phosphorene, as shown in Figure 

2.3 (a-c), through different exfoliation methods [7, 26, 27]. During the exfoliation of 

BP weak van der Waals bonds brakes and the phosphorene nanosheets with sp3 

hybridized P atoms and the bond angles of 96.3° and 102.1° are formed. The two 

bond lengths of 2.224 Å (in-plane) and 2.244 Å (out of plane) connect the P atom in 

either below or above the layer of BP [28]. The interlayer distance between 

phosphorene nanosheets is around 5.3 Å with the lattice constant of a=3.31 Å, 

b=10.47 Å, and c=4.37 Å [29, 30]. These unique crystal structure characteristics and 

physical properties make BP a promising 2D material for application in different 

fields of science and technology such as energy storage devices [7, 31-33], catalysts 

[34, 35], field-effect transistors [36, 37], sensors [38, 39], optoelectronics [40, 41], 

and biomedical devices [42, 43].  

 

Figure 2.3: (a) The crystal structure of BP, (b) Crystal structure view along b axis, and (c) P-P bond 

distances and bond angles in the phosphorene. 

 

The properties and the device performance of phosphorene largely depend on its 

thickness and preparation method. Generally, phosphorene nanosheets can be 

generated through bottom-up methods from the phosphorene precursors and through 

top-down techniques based on the breaking weak interactions between 2D layers in 

the bulk BP [44]. The typical bottom-up synthesis methods of BP include chemical 

vapor deposition (CVD) and pulsed laser deposition (PLD). The first report published 

in 2016 by Smith et al. describes growth of few-layer phosphorene nanosheets from 
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amorphous red phosphorus via the CVD method at 950°C under the pressure of 2758 

KPa in the argon atmosphere [45]. Yang et al. synthesized amorphous phosphorene 

nanosheets with disordered structure on Si/SiO2 or graphene/copper substrates using 

PLD technique at 150°C and the chamber pressure of 1.9×10-8 KPa [46]. However, 

CVD and PLD synthesis techniques are expensive and require ultra-high vacuum or 

high temperature [47]. Compared to the bottom-up methods, top-down techniques, 

which include mechanical and liquid exfoliations, are more common for the 

exfoliation of BP [48]. For the first time in 2014, high-quality phosphorene was 

obtained by mechanical exfoliation through repeatedly attaching and detaching bulk 

BP specimen onto adhesive tape and then transferring the produced phosphorene 

nanosheets onto Si/SiO2 substrates [49]. However, the contamination caused by 

adhesive residue, low yield, and non-uniform distribution of phosphorene nanosheets 

at different thickness on the substrates make this method less attractive compared with 

other exfoliation techniques [50-52]. In comparison to the mechanical exfoliation, the 

liquid-based exfoliation of BP is a straightforward, scalable, and size-controllable [53-

55] and has been widely employed to exfoliate different 2D materials such as 

graphene [56], hexagonal boron nitride [57], and transition metal dichalcogenides 

(TMDs) [58].  

This chapter aims to highlight the liquid-based exfoliation of BP into phosphorene 

nanosheets via sonication, electrochemical anodic and cathodic exfoliation, and 

bipolar electrochemical exfoliation in terms of mechanism, material properties, and 

synthesis approach. In addition, the recent applications of exfoliated BP for energy 

storage devices such as secondary batteries and supercapacitors are summarized and 

discussed. Moreover, the challenges and perspectives of liquid-based exfoliation of 
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phosphorene and its application for energy storage devices will be presented to inspire 

the future opportunities of BP use.   

 Liquid-Based Exfoliation of Black Phosphorus  

In liquid-based exfoliation, the bulk BP is suspended in a preferred solvent. The ionic 

species driven by applied ultrasound energy or voltage intercalate into the BP 

interlayer space. As a result of  increasing lattice distance, bulk BP exfoliates into a 

few-layer or monolayer of phosphorene nanosheets with different size ranges [58]. 

Until now, exfoliation through ultrasonication, electrochemical anodic or cathodic 

techniques, and bipolar electrochemical methods are the main liquid-based methods 

for the preparation of phosphorene nanosheets. The schematic of the liquid-based 

exfoliations of BP are shown in Figure 2.4 (a-c). Moreover, microwave, microfluidics, 

laser-assisted, and wet-jet milling are also employed for the liquid exfoliation of BP. 

The effects of different conditions and parameters on the liquid-based exfoliation of 

BP into phosphorene will be briefly reviewed and discussed in this paper.   

 

Figure 2.4: Schematic illustrations of the liquid-bases exfoliation, a) Sonication, b) Electrochemical 

Anodic/Cathodic, and c) Bipolar electrochemical exfoliation method. 
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 Phosphorene Nanosheets via Sonication 

In the ultrasonication exfoliation of BP as one of the straightforward methods, first, 

the bulk material is dispersed in a solvent, then the horn sonication is applied and 

finally, the exfoliated nanosheets are collected by the centrifuge process [44]. During 

the sonication, micro- and nano-sized bubbles are produced from fluctuations and 

shear forces, which together with the solvent molecules expand the BP layers via 

intercalation and disperse the phosphorene nanosheets into the solvent [59]. Selecting 

a suitable liquid system for the exfoliation and dispersion of the 2D phosphorene is a 

key factor of the liquid exfoliation through sonication. Theoretical calculations have 

been used to analyze the surface energy and tension of the solvents to provide the 

conditions for liquid exfoliation of 2D materials. Previous studies confirmed that 

similar to graphene and TMDs, by increasing the surface tension of the solvents, the 

exfoliation yield of BP increases dramatically [60-62]. Unlike the exfoliation of 

graphene, large scale exfoliation and production of phosphorene nanosheets must be 

in anhydrous and oxygen-free organic solvents, due to the chemisorption of oxygen 

atoms by phosphorus on the surface of nanosheets.   

Regarding the surface energy of around 59 mJ m-2 for the phosphorene multilayers, it 

was predicted that the surface tension of around 40 mJ m-2 (such as for NMP and 

DMF) is enough for the exfoliation of BP [63]. Density functional theory (DFT) 

calculations also evaluated the effect of molecular shape of different solvents such as 

dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), isopropyl alcohol 

(IPA), and dimethylformamide (DMF) on the liquid exfoliation of phosphorene 

nanosheets [64]. Solvent molecules penetrating within phosphorus layers in BP stack 

can intercalate and exfoliate the phosphorene nanosheets [65]. The intercalation of the 
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abovementioned molecules in terms of Gibbs free energy (kJ/mol) and also the NMP 

intercalation into the BP monolayers gap during the exfoliation are shown in Figure 

2.5 (a-d). Figure 2.5 (a) shows the potential of mean force (PMF) versus reaction 

coordinate (separations between the edges of both the uppermost phosphorene 

monolayer and the monolayer immediately below it). It is clear that the gradual 

solvent infiltration and exfoliation of BP occurs first at d=0.8 nm and continues to the 

values around d=1.2 nm. At low d values (<0.8 nm), the intercalation of molecules is 

sluggish due to the small interlayer gap between phosphorene layers. Figure 2.5 (c, d) 

displays the complete intercalation at d values around 1.0 nm. Sresht et al. proved that 

the BP exfoliation becomes easier for common solvents in the order of 

DMF>NMP>DMSO>IPA [64]. According to the theoretical studies, for successful 

exfoliation of BP, the adhesion between the phosphorene and solvent must be higher 

than the solvent’s molecule cohesion.  

 

Figure 2.5: (a) Gibbs free energy by the phosphorene monolayers as a function of reaction coordinate 

in the presence of DMSO, DMF, NMP, and IPA, and intercalation of NMP molecules into the 

phosphorene nanosheets gap during the peeling apart for (b) d = 0.36, (c) d = 0.95, (d) 1.26 nm [64]. 
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Since 2014, phosphorene nanosheets have been prepared by ultrasonication 

techniques in different solvents such as alcohols, acidic solutions, ionic liquids, and 

DI water, which are summarized in Table 2.1. Brent et al. evaluated the liquid-phase 

exfoliation of BP in NMP and confirmed the exfoliation of BP for up to five layers 

with a thickness of 4-5 nm [66]. Generally, a solvent for the successful exfoliation of 

BP must satisfy the following conditions: (1) exfoliate BP into phosphorene 

nanosheets, (2) disperse the nanosheets effectively without precipitation or 

flocculation, (3) control the oxidation and degradation of the nanosheets, (4) be 

efficiently removed from the surface of phosphorene without creating defects or 

introducing impurities [67, 68].   

To evaluate the effect of centrifuge speed and to control the exfoliated BP nanosheets 

oxidation in NMP, Kang et al. fabricated a custom-tip sonicator setup sealed with 

polydimethylsiloxane and Teflon to restrict O2 and H2O penetration (Figure 2.6 a). In 

the meantime, the concentration of exfoliated BP in different solvents was evaluated 

through the same procedure. By increasing the centrifuge time, the exfoliated 

phosphorene dispersion’s color changed from dark brown to yellow (Figure 2.6 b) 

[69]. As it’s clear from Figure 2.6 (c), compared to the conventional solvents such as 

acetone, chloroform, ethanol, IPA, and DMF, NMP solvent with higher boiling point 

and surface tension provides stable dispersions of phosphorene with higher 

concentration. The same trend is reported for the exfoliated graphene via liquid 

exfoliation [60]. According to the literature, compared to IPA, DMF, and CHP, the 

solvation shell of NMP molecules could partially control the oxidation of 

phosphorene nanosheets [69]. Yasaei et al. in a comprehensive study evaluated the 

exfoliation yield of BP in DMSO and DMF as an organic, polar, and aprotic solvent. 
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Results showed that the ultrasound parameters such as power and time play a major 

role in the BP exfoliation yield in organic solvents. The prepared phosphorene 

nanosheets formed stable dispersions in both solvents and show low degradation over 

time [70, 71]. Moreover, the presence of polar molecules such as phytic acid 

(containing polar phosphate and hydroxyl groups) accelerated the exfoliation of large 

size of BP with high stability for large scale characterizations [72]. Exfoliation of BP 

in the presence of surfactants may weaken the interlayer bonds and reduce the damage 

caused by ultrasound on the produced phosphorene nanosheets.  

Exfoliated phosphorene nanosheets are characterized by quantitative and qualitative 

methods. In particular, Raman spectroscopy, transmission electron microscopy 

(TEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy 

(AFM) are main powerful tools used to evaluate the morphology (in terms of shape, 

thickness, and size), stability, and chemical properties of phosphorene nanosheets. It 

was found that the addition of NaOH as an auxiliary agent can apparently improve the 

exfoliation efficiency of phosphorene. Gue et al. introduced NaOH into NMP as a 

solvent to increase exfoliation yield and aqueous stability of phosphorene nanosheets. 

As it is clear from Figure 2.6 (d), they applied horn sonication for 4 hours to disperse 

BP and then centrifuged the suspension for 10 minutes to separate the exfoliated 

phosphorene from the bulk BP particles, and finally re-dispersed them in DI water 

[73]. Among six theoretical Raman vibration modes of BP, three of them ( 1
Ag , B

2g
, 

and 2
Ag ) are active in the range of 300-500 cm-1 [23]. During the liquid exfoliation via 

sonication interaction of BP with solvent, produces strong stress due to intercalation 

of ions and bubbles. As a result, large distortion of the structure and restacking of 

phosphorene nanosheets occurs, as it evident from the changes in the Raman spectra 
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[74]. As shown in Figure 2.6 (e), there are three Raman active peaks at 362.2 cm-1, 

439.3 cm-1, and 467.6 cm-1 for bulk BP, which correspond to the 1
Ag , B

2g
, and 2

Ag  

vibration modes, respectively. After the exfoliation, the decrease in the number of 

phosphorene layers manifests itself in a blue shift of three Raman modes [73]. The 

morphology, size, nanosheets’ edges, and the number of the phosphorene layers are 

usually evaluated via TEM analysis [75]. Woomer et al. exfoliated BP in electronic 

grade isopropyl alcohol (IPA) for 16 hours in an inert atmosphere to control the 

oxidation rate. Figure 2.6 (f) shows the TEM image of the exfoliated phosphorene, 

which reveals the uniform transparent nanosheets with a planar morphology [76].  

Exfoliation of BP using solvents which have high boiling point is typically toxic, and 

tough to be removed from the surface of nanosheets after exfoliation. Presence of 

absorbed solvent on the surface of phosphorene nanosheets limits application of the 

phosphorene. Hence, researchers began exploring the possibility of environmentally 

friendly BP exfoliation in DI water using the hydrophilic properties of BP [78]. Wang 

and co-workers for the first time prepared the ultrathin solvent-free phosphorene 

nanosheets in DI water with a concentration of 0.02 mg.mL-1 through sonication in ice 

water for 8 hours [79]. By increasing the sonication time and power, the color of the 

solution changed from light yellow to dark brown. High-resolution TEM (HR-TEM) 

of the exfoliated phosphorene, which confirms the transparent orthorhombic crystal 

structure of a few-layer phosphorene nanosheets via liquid exfoliation, is shown in 

Figure 2.6 (g) [77]. To compare the phosphorene exfoliation yield in deoxygenated 

water and NMP as the most suitable solvent for the exfoliation of BP (Table 2.1), 

Kang et al. evaluated the effect of centrifuge speed on obtained nanosheets 

concentration. In order to stabilize the exfoliated BP, 2% (m/v) sodium dodecyl 
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sulfate (SDS) was added to the water. Figure 4 (h and i) shows the dispersion of 

phosphorene obtained at different centrifuge speeds (0-15000 rpm) in water and 

NMP. The darker yellow color of water compared to NMP confirms higher 

phosphorene nanosheets concentration. The phosphorene concentration in water is in 

an order of magnitude higher than in NMP as shown in Figure 2.6 (j) [78].  

 

Figure 2.6: (a) Schematic of the ultrasonication setup in order to control the phosphorene nanosheets 

exposure to ambient air. (b) Dispersion of phosphorene nanosheets in NMP after 5000 and 15000 rpm 

centrifugation. (c) Concentration and boiling point relationship of phosphorene nanosheets for different 

solvents before and after 5000 rpm centrifugation [69]. (d) Schematic of the liquid exfoliation of BP in 

NMP/NaOH solution. (e) Raman spectra of BP and different numbers of phosphorene nanosheets 

obtained from liquid exfoliation in NMP/NaOH [73]. (f) TEM image of phosphorus nanosheets 

obtained by the liquid exfoliation of BP inside IPA [76]. (g) HRTEM image of a phosphorene 

nanosheets with orthorhombic crystal structure [77]. (h, i) Phosphorene nanosheets dispersions in water 

and NMP after different centrifugation speed. (j) Dispersion concentration of the phosphorene 

nanosheets [78]. 
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Matching the surface tension between the bulk BP and solvent is the key factor for 

exfoliation of BP. One method to overcome this issue is the introduction of ionic 

liquids, polymers, surfactants, or organic compounds [80]. Ionic liquids have attracted 

attention recently due to their high stability, non-toxicity, and low vapor pressure 

[81]. Solvents with ionic liquids as molten salts may be adsorbed on the surface of 

phosphorene nanosheets and provide an electrostatic repulsion that controls the 

degradation of the phosphorene products at room temperature [82]. Zhao and co-

workers for the first time developed the “green” exfoliation of BP in different types of 

ionic liquids. Their results confirmed sufficient dispersion of phosphorene nanosheets 

with high concentration (around 0.95 mg mL-1) after 24 hours’ sonication in 1-

hydroxyethyl-3-methylimidazolium trifluoromethansulfonate ([HOEMIM]- [TfO]). 

The exfoliated nanosheets were stable in terms of morphology and degradation for 

one month, making them a suitable choice for device fabrication [80]. As shown in 

Figure 2.7 (a), to tackle the fast oxidation rate of phosphorene in the presence of light, 

Hu et al. focused on the liquid exfoliation, surface encapsulation, and passivation of a 

few-layer phosphorene with noncovalent conductive polymeric ionic liquids. The 

obtained highly conductive phosphorene nanosheets were stable in an ambient 

environment for more than 100 days [83]. XPS analysis is a powerful tool to 

investigate the chemical properties of the phosphorene nanosheets after liquid 

exfoliation. In general, the P 2p3/2 and P 2p1/2 doublet in the range of 129.5-131.0 eV, 

and the subbands of POx in the range of 133-135 eV correspond to the crystalline BP 

and oxidized phosphorus, respectively [84]. Changes in the phosphorus atoms 

bonding in phosphorene, produced in different solvents after exposure to air, can be 

monitored by the high-resolution P 2p spectra, as shown in Figure 2.7 (b). As it is 

clear, exfoliated phosphorene in two different polymeric ionic liquids compared to 
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pure water and DMF after 8 days’ exposure to air, shows much weaker P-O bonds. 

This confirms higher stability of phosphorene nanosheets prepared in P([VPIm]PF6) 

and P([VPIm]TFSI) [83]. Thickness of the phosphorene nanosheets after exfoliation 

can be measured using AFM by dividing the nanoflakes height by interlayer distances 

[75]. Figure 2.7 (c) shows the AFM image of the phosphorene nanosheets from the 

exfoliated BP in ([VPIm]TFSI), as an ionic liquid. Measured thickness of 2.5-7.6 nm 

corresponds to form 3 to 9 layers of phosphorene (based on the thickness of 0.85 nm 

for a mono layer of phosphorene) [83]. It is important to mention that the AFM 

provides very rough estimation of thickness and the result depends on the properties 

of the substrate such as hydrophobicity, roughness, and force magnitude of the tip 

[85]. Very recently, thionine (TH) and lithium hexafluorosilicate (Li2SiF6) have been 

used with organic solvents for the exfoliation of BP [86, 87]. Figure 2.7 (d) shows a 

nonoverlapping 3D layer of phosphorene nanosheets on silicon wafer obtained from 

the liquid exfoliation of BP into NMP/TH [86]. Such a morphology of phosphorene 

nanosheets provides longer diffusion pass for high-performance electrochemical 

applications.  

As it is shown in Table 2.1, the liquid-based exfoliation of BP via sonication attracted 

a lot of attention due to its feasibility and scalability. However, the disadvantages of 

this method such as sonication long time requirement, causing defects especially on 

the edges, fast degradation of the phosphorene, high energy-extensive consumption, 

and difficulty with size control, convinced researchers to find alternative methods 

such as electrochemical anodic/cathodic and bipolar exfoliation. 

http://www.endmemo.com/chem/compound/li2sif62h2o.php
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Figure 2.7: (a) Schematic illustration of the BP exfoliation in the polymer ionic liquid solution. (b) XPS 

spectra of the exfoliated BP in different solvents after 8 days exposure in the air, (c) AFM image of 

phosphorene nanosheets obtained from P([VPIm]TFSI) [83]. (d) SEM image of the phosphorene 

nanosheets obtained from the liquid exfoliation of BP in NMP/thionine [86].   
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Table 2.1: Summary of liquid exfoliation of BP via sonication, properties and applications of the product. 

Solvent Time Sonication 

Power/Frequency 

Size/Thickness Application Ref. 

 

 

 

NMP1 

 

 

 

1-24 h 

 

 

 

30-820 W/20-40 kHz 

 

 

 

6 nm-μm range/3.5-5 nm 

 

Field effect transistors, Optical 

devices, Catalytic, Li/Na-ion 

batteries, Li-S batteries, Humidity 

sensors, Antibacterial applications, 

Flame retardant, Therapeutic 

application 

 

 

 

[34, 39, 66, 69, 

88-106] 

 

 

IPA2 

 

3-24 h 

 

300-650 W/20 kHz 

 

50 nm-μm range/0.26-22 nm 

 

Solid-state laser, Memory devices, 

Field effect transistors, Flame 

retardant 

[76, 107-111] 

 

 

DMSO3 

 

10-20 h 

 

130-300 W/19-37 kHz 

 

4.5-1200 nm/2-26 nm 

 

Field effect transistors, Humidity 

[70, 71, 112, 

113] 
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sensor,  Therapeutic application 

Acetone 6-10 h 300 W/---  10-100 nm/7-10 nm Supercapacitors,  

Li-ion batteries 

[114-116] 

CHP4 5-6h 750 W/--- 60-100 nm/2.06-8.1 nm Gas sensors,  

Li-ion batteries 

[116, 117] 

 

 

DMF5 

 

6-15 h 

 

130-500 W/--- 

 

190-200 nm/1-8 nm 

 

Field effect transistors, 

Li-metal batteries 

 

 

[70, 118] 

Ethanol 43 h 400 W/--- 100 nm /4-25 nm Pulsed laser [119] 

GBL6 10 h 300 W/--- 1-10 μm/--- Memory devices [108] 

Formamide 4 h 200 W/--- 50 nm-1 μm/--- Li-ion batteries [62] 

PVP7 --- 400 W/40 kHz 200 nm-4 μm/--- Catalytic devices [120] 

Acetonitrile 1 h 360 W/--- ˃10 μm/1.9-2.1nm --- [121] 

DMPU8 3 h 400 W/40 kHz 100 nm-4 μm/1200 nm Antibacterial application [122] 

DGME9 3 h 130 W/--- ---/7.56-24.1 nm Gas sensors [123] 

 

 

NMP/NaOH 

   Ultrafast photonics,   
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4-12 h 300-400 W/25-40 kHz 100-670 nm/2-12 nm Supercapacitors, Antibacterial 

application, Therapeutic application, 

pH sensors 

[73, 124-127] 

NMP/IPA 2 h --- 150-350 nm/4.9-13.9 nm Optical devices [128] 

NMP/Acetone 1 h 125 W/35 kHz 99.8-159 nm/1.5 nm --- [129] 

NMP/Sodium citrate 4 h 540 W/--- ---/0.9-9.6 nm Catalytic devices [130] 

IPA/Li2SiF6 5 h 400 W/40 kHz 0.5-5 μm/3 μm Antibacterial application [87] 

DMF/phytic acid 8 h ---/50 kHz 24-28 μm/3-4 nm Catalytic devices [72] 

DMF/1-pyrenylbutyric 

acid 

16 h 200 W/--- <200 nm/1.3 nm Therapeutic application [131] 

NMP/NaOH/Ethanol 6 h 200 W/53 kHz --- Supercapacitors [132] 

DMF, NMP, DIGLYM10 0.5-6 h 400 W/--- 20-100 nm/2-5 nm --- [133] 

 

 

DI Water 

 

1.5-10 h 

 

90-950 W/--- 

 

200 nm- μm range/2-9.4 nm 

 

Catalytic devices, 

 Li-ion batteries, Supercapacitors 

[77, 79, 134-

136] 

 

 

Deoxygenated water 

 

1-6 h 

 

70-100 W/20 kHz 

 

μm range/1.1-8.3 nm 

Field effect transistors, 

Antibacterial application 

[78, 137] 

Millipore water 8 h 37.5 W/--- 208-884 nm/17.4-91.9 nm Cytotoxicity application [138] 

DI water/Ethanol 0.33 h 100 W/20 kHz 756 nm/1-2.5 nm Field effect transistors [139] 
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([HOEMIM]- [TfO]11 24 h 100 W/--- 459 nm/3.58-8.90 nm --- [80] 

[Emim][Tf2N]12 1 h --- 600 nm/2-2.6 nm --- [82] 

NMP/TH13 8 h 200 W/50 kHz μm range/--- Catalytic devices [86] 

DMF/ionic liquids 6 h ---/50 kHz ---/1.6-4.9 nm Optoelectronic devices [83] 

                                              1 
N-methyl-2- pyrrolidone, 2 Isopropyl alcohol, 3 Dimethyl sulfoxide, 4 N-cyclohexyl-2-pyrrolidone, 5 Dimethylformamide, 6 -butyrolactone, 7 Polyvinylpyrrolidone, 

                                              8 N,N'-dimethylpropyleneurea, 9 Diethylene glycol dimethyl ether, 10 Bis(2-methoxyethyl) ether, 11 1-hydroxyethyl-3- methylimidazolium trifluoromethansulfonate, . 

                             12 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 13 Thionine. 
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 Phosphorene Nanosheets via Electrochemical Exfoliation  

                       

Electrochemical exfoliation of BP is an alternative liquid-based method which is more 

tractable, faster, and cheaper compared to liquid-based exfoliation via sonication 

[140]. This technique has been applied for exfoliation of the large variety of 2D 

materials [141]. Electrochemical exfoliation of BP is a very straightforward technique 

at ambient environment conditions and the reactions finish in a short period of time, 

that allows to control the degradation of obtained phosphorene nanosheets. This 

method is based on weak van der Waals interactions breaking, using relevant 

reduction and oxidation reactions to provide preferable nanosheets thicknesses with 

large-scale quantity for practical applications [142]. As it is clear from Figure 2 (b), a 

regular electrochemical exfoliation cell includes working and counter electrodes, 

which are connected to the power supply, and an optional reference electrode in an 

electrolyte (aqueous or nonaqueous solution). The exfoliation electrolytes with 

sufficient surface tension, support anions and cations migration to BP layers and 

prevent the restacking of nanosheets after exfoliation. In the presence of an optimal 

voltage/current applied to bulk BP as a working electrode, the ionic species from a 

solution intercalate into the bulk layered BP under the electric field and expand BP 

into phosphorene nanosheets [143, 144]. In general, ions intercalation, and their 

interaction with electrodes during exfoliation, control the exfoliation yield and 

properties of phosphorene nanosheets [145].  

Depending on the applied potential and chemistry of intercalating anions/cations, 

electrochemical exfoliation can be classified as anodic and cathodic. In addition, bulk 

BP can act as an anode and cathode simultaneously in the bipolar electrochemical 

exfoliation method (Figure 2.4 c). As shown in Figure 2.8 (a, b), in the anodic 
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exfoliation, bulk BP acts as an anode and anions (negatively charge ions) from the 

electrolyte or produced via electrolysis intercalate between the layers of BP in the 

presence of positive bias. On the other hand, in cathodic exfoliation, bulk BP as a 

cathode under a negative bias, exfoliates into phosphorene nanosheets in the presence 

of cations (positively charge ions) [146]. As it is shown in Table 2, like for graphene, 

both anodic and cathodic exfoliation were evaluated for the exfoliation of bulk BP 

[54]. The phosphorene nanosheet’s yield and quality depends on applied voltage, 

physical and chemical properties of electrolyte, and cation or anion size [140].  

 

Figure 2.8: Mechanisms of electrochemical (a) cathodic and (b) anodic exfoliation of BP [146]. 

 

 Phosphorene Nanosheets via Anodic Exfoliation  

 

Anodic exfoliation in aqueous solutions of electrolytes such as H2SO4, Na2SO4, 

NaClO4, and NaNO3 has been evaluated for different types of 2D materials [147]. 
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Evidently, sulfates are the most efficient negative ion intercalants for anodic 

exfoliation. The first attempt for anodic exfoliation of BP in 0.5 M Na2SO4 was made 

by Erande and co-workers. In their setup,  BP and platinum wire were used as an 

anode and counter electrode, respectively, in the presence of an applied positive 

voltage of 7V (Figure 2.9 a) [148]. In a comprehensive study from the same group an 

exfoliation yield of up to 80% has been obtained in anodic exfoliation of BP, which is 

much higher compared to the previous liquid-based exfoliation of BP through 

sonication. Similar to anodic exfoliation of graphene, phosphorene nanosheets are 

more prone to oxidation during exfoliation [149]. By applying a negative bias, active 

radicals (oxides and hydroxides) are produced at anodic side around the bulk BP due 

to water electrolysis. The radicals attack the bulk BP together with 2

4SO  , weakening 

the van der Walls forces between the BP layers. Then, water oxidation generates O2 

molecules as gaseous species and exfoliate the phosphorene nanosheets. The overall 

reaction of anodic exfoliation of BP in sodium sulfate solution is as follows: 

+ 2

2 4 4Na SO  2Na  + SO                                                                                          (2.3) 

2 2 2(g) (g)2H O 2H + O                                                                                            (2.4) 

The reduction (
2 2 (g) 2H O + 2e H + 2OH  ) and oxidation                                         

(
2 2 (g)4OH 2H O + 4e O   ) reactions occur at the cathodic and anodic sites, 

respectively. As it is shown in Figure 2.9 (b, c), the selected area electron diffraction 

(SAED) pattern and HRTEM image confirmed the crystal structure of the 

phosphorene nanosheets via anodic exfoliation [149]. Ambrosi et al. evaluated the 

anodic exfoliation of BP in acidic solutions. Figure 2.9 (d-f) shows the 

electrochemical cell with diluted H2SO4 both in the absence and presence of applied 

3V potential after two hours. As it is clear, over time, small particles are dispersed and 
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precipitated, and the color of the electrolyte are changed to dark yellow. In anodic 

exfoliation, working at lower potential may decrease the oxidation of the phosphorene 

nanosheets. The high-resolution XPS of nanosheets confirms the presence of 

phosphorus P 2P components (Figure 2.9 g). Higher intensity of POx peak of the 

exfoliated BP compared to the bulk BP indicates that the exfoliated phosphorene has a 

higher degree of oxidation due to its sensitivity to oxygen [150]. Recently, a large 

variety of electrolytes have been employed for modified anodic exfoliation of BP. 

Results confirmed that electrolytes containing sulfate anions are more favorable for 

the exfoliation of BP due to their lower reduction potential compared to anions such 

as 
4ClO  or 

3NO  (0.2V for 2

4SO  , 1.42V for 
4ClO , and 0.96V for 

3NO ). The AFM 

and TEM images of the phosphorene nanosheets obtained from anodic exfoliation of 

BP in Na2SO4, show transparent nanoflakes with a thickness of 8 nm and their size 

being in the micron range (Figure 2.9 h, i) [151]. Furthermore, similar to the liquid-

based exfoliation via sonication, anodic exfoliation of BP has been evaluated using 

polar solvents such as phytic acid to increase the exfoliation yield and to control the 

surface oxidation of the nanosheets [152]. Although there are a lot of research efforts 

in anodic exfoliation of 2D materials, employing this method for the preparation of 

BP nanosheets is in its early stages due to rapid phosphorene oxidation. 
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Figure 2.9: (a) Schematic of the anodic exfoliation of BP in Na2SO4 electrolyte [151], (b) SAED 

pattern, and (c) TEM image of the phosphorene nanosheets after anodic exfoliation [149], (d) Anodic 

exfoliation setup of BP in aqueous solution of H2SO4 electrolyte in the absence of potential, (e) After 

20 minutes, V=3V, (f) After 2 hours, V=3V, (g) XPS analysis of bulk BP and anodic exfoliated BP in 

H2SO4 [150], (h) AFM image, and (i) TEM image of the phosphorene nanosheets obtained in Na2SO4 

[151].   

 

 Phosphorene Nanosheets via Cathodic Exfoliation  

 

In general, cathodic exfoliation is based on the application of negative potential and 

insertion of positive ions and electrolyte molecules into the layered BP. As it is shown 

in Table 2.2, cathodic exfoliation of BP has been more widely used in recent years 

compared to the anodic exfoliation because of very low oxidation rate during the 

process and low defect concentration in the final product due to the absence of 

oxygen-based radicals [141]. In general, the intercalating agent must have high 

solubility in the solvent to generate cations and exfoliate BP in the presence of applied 

voltage. Huang et al. evaluated the cathodic exfoliation of BP in the presence of 
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tetrabutylammonium hexafluorophosphate (TBAP) as an intercalating agent in DMF 

solution. They confirmed that the number of phosphorene layers (2 to 11) can be 

controlled by applied voltage and, as a result, by the  intercalation rate [144]. 

Following this study, Li and co-workers developed a fast and high-yield cathodic 

exfoliation of BP in tetraalkylammonium (TAA) as a nonaqueous electrolyte in the 

presence of DMSO as a solvent. As shown in Figure 2.10 (a), in a two-electrode setup 

equipped with an optical microscope for in-situ characterization, BP and platinum 

wire act as a cathode and counter electrode, respectively. During the process, when 

the applied cathodic potential is lower than -4V, the intercalation of cations into the 

layered BP occurs and by decomposition of ions, gaseous species are produced, 

rapidly exfoliating the BP into 5-layer phosphorene (less than 10 minutes). DMSO as 

a polar solvent provides high solubility for alkylammonium salts and facilitates the 

exfoliation of BP at low voltage. TEM image and SAED pattern of the exfoliated BP 

in TAA revealed the microsized morphology and high crystallinity of the product 

(Figure 2.10 b) [153].  

Yang et al. also investigated the cathodic exfoliation of BP in the presence of different 

cations such as Li+, Na+, tetramethylammonium (TMA+), tetraethylammonium 

(TEA+), and tetra-n-butylammonium (TBA+) in propylene carbonate (PC) solution. 

Small Li+ (r=0.09 nm) and Na+ (r=0.12 nm) ions cannot effectively expand BP into 

phosphorene nanosheets due to their size. Among ammonium salts, TBA+ (r=0.83 

nm) could exfoliate BP with the exfoliation yield of up to 78%. Theoretical 

calculations confirmed that interlayer separation of 0.8 nm is enough for exfoliation 

of BP [154]. Following the diffusion of TBA+ cations inside the layered BP, the 
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reduction of 
4HSO  anions produces hydrogen bubbles that increase the interlayer 

distance and accelerate the intercalation of cations: 

4 4TBA . HSO TBA HSO                                                                                 (2.5) 

2

4 4HSO SO H                                                                                                   (2.6) 

Figure 2.10 (c) shows the SEM images of the BP before and during the process of 

cathodic exfoliation for 150 seconds. Before exfoliation, the puckered structure of BP 

is well-defined, but after 150 seconds, dramatic inhomogeneous expansion and 

exfoliation of phosphorene nanosheets are achieved under ambient environment 

conditions. The Raman, XRD, and XPS analysis (Figure 2.10 d-f) confirmed defect-

free and oxygen-free exfoliated phosphorene nanosheets with the lateral size up to 

20.6 μm [155].  

Very recently, Huang et al. developed a novel and scalable technique of plasma-

assisted cathodic exfoliation of BP in DMF without an intercalating agent. As shown 

in Figure 2.11 (a-c), bulk BP and stainless steel needle tube served as a cathode and 

anode, respectively. By applying a high voltage (around 2 kV) and in the presence of 

stable plasma exfoliation of BP occurred in a short period of time (90 seconds) and 

the electrolyte turned to dark yellow (Figure 2.11 a). The high-resolution mass 

spectroscopy analysis of the DMF before and after plasma treatment is shown in 

Figure 2.11 (b). Decomposition of DMF molecules into cationic species such as 

C2H4N
+, C2H8N

+, and C2H6N
+, their intercalation into the layered BP, and formation 

of gas molecules from H+ accelerate the expansion and exfoliation of BP [156]. The 

quality of exfoliated BP through cathodic exfoliation depends not only on the applied 

voltage, but also on solution temperature and concentration of electrolyte. Luo and co-

workers confirmed that by increasing the electrolyte temperature up to 50°C and the 
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applied voltage of -30V, exfoliation of BP begins and temperature of 70°C provides 

high-yield exfoliation of BP. They also showed that the optimum 

hexadecyltrimethylammonium chloride (CTAC) electrolyte concentration is 0.5 M. It 

can be seen from Figure 2.11 (d, e), after applying a high voltage, the expansion of the 

phosphorene nanosheets can be detected by naked eye due to the diffusion of CTA+ 

cations and generation of gaseous bubbles [157].  

 

Figure 2.10: (a) Schematic illustration and intercalation mechanism of the cathodic exfoliation setup 

equipped with an optical microscope (b) TEM image of phosphorene nanosheets with SAED pattern 

[153], (c) SEM image of the BP exfoliation at different times, (d) Raman spectra, (e) XRD, and (f) 

XPS analysis of the phosphorene nanosheets [155]. 

 

High-yield up to 80%, large-size, crystallinity, and single-phase composition of 

cathodically exfoliated BP, make this technique more favorable for both industry and 
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academia compared to previously discussed liquid-based exfoliation methods. 

Nevertheless, compared to graphene exfoliation, the preparation of phosphorene 

nanosheets via the multi-step cathodic exfoliation is in its early stages. The post-

sonication of the exfoliated BP in a separate solvent and transferring them for 

practical application may affect the quality and performance of the products. More in-

detail studies are necessary to optimize the electrolyte composition and concentration, 

solvent quality, and electrochemical parameters.  

 

Figure 2.11: (a) Cathodic exfoliation process of BP at a different time in the presence of plasma 

treatment, (b) High-resolution mass spectroscopy analysis of DMF before and after plasma treatment, 

(c) Schematic illustration of cathodic exfoliation of BP with plasma treatment [156], SEM images of 

the cathodic exfoliation of BP (d) Before and (e) After applying -30V in CTAC electrolyte [157]. 
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Table 2.2: A summary of the electrochemical exfoliation of BP into phosphorene by anodic and cathodic electrochemical methods, some properties and applications of 

the products. 

Exfoliation type Electrolyte Applied Voltage Time Size/Thickness Application Ref. 

 

Anodic 

 

Na2SO4 

 

+7 to +10 V 

 

0.8-1.5 h 

 

μm range/1.4-10 nm 

Field emitters, 

Humidity sensor, 

Supercapacitors 

[148, 149, 151] 

Anodic H2SO4 +3 V 2 h μm range/--- --- [150] 

Anodic Phytic acid +10 V 2 h ---/6.08 nm Optical devices [152] 

 

 

Cathodic 

 

 

TBAP1/DMF 

 

 

-5 to -3.8 V 

 

 

0.08-0.5 h  

 

 

μm range/0.76-5.8 

nm 

 

Li/Na-ion batteries, 

 Hybrid capacitors, 

Catalytic devices, 

Gas sensors 

 

[144, 158-161] 

 

Cathodic 

 

TBATFB2/DMSO 

 

-10 to -4.8 V 

 

0.4-0.5 h 

 

μm range/3.4-6 nm 

 

Catalytic devices 

[162-164] 

Cathodic TBAP/PC3 -30 to -5 V 12 h μm range/2-7 nm Electroactive tissues [165, 166] 

Cathodic TBA·HSO4/PC -8 V 1 h 2-20.6 μm/1.3-9.5 

nm 

Field effect 

transistors 

[155] 
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Cathodic TAA4/DMSO -5 V 0.15 h ---/1.1-3.7 nm Optoelectronic 

devices 

[153] 

Cathodic TBPB5/DMF -5 V 0.05 h μm range/4.8-4 nm Supercapacitors [167] 

Cathodic CTAC6 -30 V 0.5 h μm range/5-8 nm --- [157] 

Cathodic DMF -2 kV 0.08 h 1-10 μm/3-5 nm --- [156] 

Cathodic TBAP/AN7 -3.8 V 3 h 500 nm/3.5 nm --- [159] 

Cathodic TBAP/DMSO -3.8 V 5 h 4 μm/2.4 nm Supercapacitors [168] 

                                                            1 Tetrabutylammonium hexafluorophosphate, 2 Tetrabutylammonium tetrafluoroborate, 3 Propylene carbonate, 4 Tetraalkylammonium 
                                                            5 Tetrabutylphosphonium bromide, 6 Hexadecyltrimethylammonium chloride, 7 Acetonitrile 
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 Phosphorene Nanosheets via Bipolar Electrochemical Exfoliation  

In the liquid-based exfoliation through sonication, and also via anodic and cathodic 

electrochemical exfoliation of BP, post-treatment is required to collect the 

phosphorene nanosheets from solution, which may decrease the quality of produced 

2D materials for practical applications. Recently, bipolar electrochemical exfoliation 

technique of 2D materials has been developed as a single-step, eco-friendly, scalable, 

and inexpensive method. Bipolar electrochemistry is a well-known technique from 

1960s, based on the polarization of bipolar electrode in the presence of an electric 

field (Figure 2.4 c) [169]. Compared to the regular two- or three-electrode 

electrochemical systems, a bipolar electrode acts as a cathode and anode 

simultaneously [169-171]. A typical bipolar electrochemistry setup consists of two 

feeding electrodes (connected to the power supply) and a bipolar electrode placed 

between them wirelessly in a proper electrolyte [172]. By applying a potential 

between the two feeding electrodes, an electric field is introduced into the electrolyte. 

This electric field is constant throughout the volume of electrolyte due to electrolyte’s 

electrical conductivity. The electric field produces interfacial potential differences (δ+, 

δ-) between the bipolar electrode and the electrolyte, leading to polarization of the 

bipolar electrode edges. It also drives reduction and oxidation reactions, which occur 

simultaneously on the cathodic and anodic poles of the bipolar electrode [173]. This 

interfacial potential depends on the length of the bipolar electrode and the applied 

potential. The opposite direction of the bipolar electrode poles with the feeding 

electrodes polarity is an important key parameter in the process [172, 174]. This 

technique has been evaluated for a large variety of applications such as electronic 

device fabrications, electrochemical sensing, and electrodeposition [169].  Recently, 
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this method has been employed for the exfoliation of 2D materials such as graphene 

[175-177], molybdenum diselenide (MoSe2) [178], tungsten disulfide (WS2) [179], 

and hexagonal boron nitride (hBN) [180].  

Mayorga-Martinez et al. evaluated the bipolar electrochemical exfoliation of BP into 

phosphorene nanosheets in Na2SO4 solution. They sonicated the bulk BP for 4 hours 

and then, in the bipolar setup with two-platinum electrodes, applied 10V for 30 

minutes and collected the supernatants after one week of aging [181]. Although the 

XPS and TEM analysis confirmed the successful exfoliation of BP, more in-depth 

characterization is needed to evaluate the bipolar electrochemical exfoliation 

mechanism and the quality of the obtained phosphorene nanosheets. Very recently, in 

our group, a novel single-step bipolar electrochemical exfoliation of BP and 

deposition of phosphorene nanosheets on conductive substrates in DI water was 

developed [23, 182]. Two stainless steel electrodes were used as a negative and 

positive feeding electrode and a bulk BP was placed in between, in the presence of 

30V for 24 hours. By applying a voltage, hydrogen and oxygen bubbles were 

produced (due to the water electrolysis) at the extremities of the bulk BP specimen. 

Then, H+ and OH- ions, generated from water decomposition during the process, 

intercalate into the layered BP. The transport of ions produces phosphorene 

nanosheets due to weak van der Walls attractive forces between layers of BP. Because 

of the applied potential and electrophoresis phenomenon, exfoliated phosphorene 

migrates and deposits on the surface of stainless steel electrodes. However, 

controlling the oxidation of the phosphorene nanosheets through bipolar 

electrochemical exfoliation in DI water is still challenging.  
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 Other Liquid-Based Exfoliation Methods 

Given the size-dependent properties of 2D materials and the scalability of liquid-

phase exfoliation of BP, other liquid-based techniques have been evaluated for the 

preparation of phosphorene nanosheets. Toward this, Bat-Erdene and co-workers 

reported a novel and ultra-fast two-step microwave-assisted liquid exfoliation of BP 

in an ambient environment [183]. As shown schematically in Figure 2.12 (a), the 

dispersion of BP in NMP solution was heated for 4 minutes at 50°C using microwave 

generating device (600 W power), followed by another 3 minutes long exfoliation at 

70°C using the second microwave system (220 W power). Then, the exfoliated 

nanosheets were collected from solution through centrifugation. Weakening of the 

bulk BP van der Waals interactions in the first step and the expansion of the layers in 

the second step of microwave irradiation is the confirmed mechanism of BP 

exfoliation via microwave-assisted liquid exfoliation [184]. AFM characterization 

revealed the thickness of 2-15 nm of the phosphorene nanosheets with low oxidation 

rate after exfoliation in less than 10 minutes (Figure 2.12 b) [183]. Microfluidization 

as another liquid-based exfoliation technique has been used for the preparation of 

phosphorene with the low defect concentration in minute time-scale. The 

microfluidization is based on the  high pressure in the solution and diffusion of fluid 

into the microchannels (diameter of microchannel, d < 100 μm) by pressure force 

[185]. This method provides mild exfoliation conditions which can control the 

formation of defects on the surface of phosphorene nanosheets. The schematic 

illustration of the exfoliation of BP via acoustic-microfluidics (AM) combined with 

the sonication method is shown in Figure 2.12 (c). A syringe pump, containing bulk 

BP as a dispersion in NMP, transfers the content to the sonication bath in the presence 
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of microfluidization. BP exfoliates into phosphorene inside the 

polytetrafluoroethylene (PTFE) tube. As shown in Figure 2.12 (d), the exfoliation 

yield of the AM technique depends on the flow rate during microfluidization. Flow 

rate 5 mL.min-1 was found to be the optimum value for the exfoliation of BP. Raman 

spectroscopy (Figure 2.13 e) of the phosphorene nanosheets confirmed the successful 

exfoliation of BP by the blue-shift of Raman modes [186].  

Laser-assisted exfoliation of BP has been evaluated as an eco-friendly method via 

laser irradiation/ablation without specific additives or solvents [187-189]. Very 

recently, Zheng et al. indicated the possibility of BP exfoliation via a Q-switched 

pulsed laser system in a 2-propanol solution. The proposed mechanism of the laser-

assisted BP exfoliation is shown in Figure 2.12 (f). By the interaction of Nd:YAG 

pulsed laser beam (λ =1064 nm, 650 mJ) and generation of plasma from ns to μs 

duration range on the surface of bulk BP (stage I), small BP particles and fragments 

are dispersed into the solution. The high pressure and high temperature of the process 

produces bubbles and increases the energy of solvent molecules around the generated 

plasma that accelerates their movement (stage II). The generated bubbles and 

molecules diffuse into the layered BP in perpendicular and parallel directions and 

exfoliate the bulk BP into phosphorene with the yield up to 93% (stage III). The P 2p 

and O 1s XPS spectra of the bulk and exfoliated BP indicated the presence of 

phosphorus and oxygen (Figure 2.12 g, h). XPS analysis showed a higher areal ratio 

of unoxidized P in P-P bonding to oxidized P atoms, which increased from 2.3 in bulk 

BP to 4.6 in phosphorene, suggesting the reduction of nanosheets surface through 

laser treatment [190]. From the initial results, this method could offer an alternative 

path toward the exfoliation of BP. However, the morphology-controlled production of 

phosphorene nanosheets via laser-assisted exfoliation at a massive scale is not yet 
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available. The shear forces has been utilized in another liquid-based method for the 

exfoliation of bulk BP in an appropriate solvent [191]. Sajedi-Moghaddam et al. 

demonstrated the possibility of shear-assisted exfoliation of BP in the DMF solution. 

In this research the solution was stirred in the laminar regime at 15°C for one hour 

[192]. In terms of mechanism, the shear force, jet cavitation, and collision during the 

hydrodynamic exfoliation expand the layered BP [192, 193]. Wet jet milling is 

another liquid-based exfoliation technique that has been evaluated for the mass-

production and exfoliation of layered materials [194]. As shown schematically in 

Figure 2.12 (i), the shear stress applied to the dispersed BP in acetone through the 

perforated disks (with adjustable hole diameters 0.1-0.3 mm, named nozzle) and 

piston-pass and the exfoliates phosphorene transferred to the second container from 

chiller and processor. The process time in this method is reduced to a fraction of a 

second compared to the time-consuming sonication process. This process 

reproducibly provides the appropriate thickness and dimensions. TEM analysis 

revealed the exfoliated phosphorene nanosheets with the lateral size of around 600 nm 

(Figure 2.12 j) [195].  

Instability of exfoliated phosphorene nanosheets especially in ambient environment 

results in fast degradation [196]. Therefore, innovative techniques for protecting 

phosphorene nanosheets from degradation are much needed. Surface modification 

through passivation or functionalization by a protective layer can suppress the 

oxidation of the phosphorene nanosheets. However, passivation or functionalization 

of the phosphorene nanosheets may have complex effect on surface state and charge 

transport. Due to the relatively low reactivity of bulk BP, covalent functionalization 

has faces limited success. Using surfactants including ionic liquids as a non-covalent 
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functionalization agent that can be removed without altering the BP properties, may 

be promising for the BP protection [197]. 

 

Figure 2.12: (a) Schematic illustration and (b) AFM analysis of the microwaved-assist liquid 

exfoliation of BP [183], (c) Schematics of the acoustic-microfluidic exfoliation of BP, (d) BP 

exfoliation efficiency at different flow rates, (e) Raman analysis of the bulk BP and phosphorene 

nanosheets after 6 minutes exfoliation [186], (f) Laser-assisted exfoliation mechanism of BP, (g and h) 

P 2p and O 1s XPS spectra of the exfoliated BP [190], (i) Schematic illustration of the exfoliation of 

BP via wet-jet milling, (j) TEM image of the exfoliated phosphorene with the average size diagram 

[195].   
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 Phosphorus for Energy Storage Applications  

Liquid-based exfoliated BP nanosheets with 2D structure and light molecular weight 

have been considered as a promising electrode material for energy storage devices 

such as rechargeable batteries (host for Li+ and Na+ ions) and supercapacitors due to 

their high theoretical capacity, surface area, and charge mobility. Phosphorene 

nanosheets-based electrodes have been employed as an anode material for Li-, Na-, 

Mg-ion, and Li-S batteries through the alloying-dealloying mechanism. However, 

large volume expansion up to 300% during cycling and sluggish reaction kinetics 

obstructed its real performance. 

 Phosphorus for Rechargeable Batteries 

 

Theoretical calculations evaluated the favorable diffusion pass of Li atom on the 

surface of phosphorene nanosheets (Figure 2.13 a, b) [198]. As shown in Figure 2.14 

(b), the low energy barrier of 0.08eV along the zigzag direction provides a diffusion 

pass for Li ions at room temperature with good reversibility. This high anisotropic 

properties of phosphorene block the Li+ diffusion in the armchair direction with the 

high energy barrier of 0.68 eV. Li et al. showed that the intercalation of Li into 

phosphorene layers provided a good electrical conductivity with a high open-circuit 

potential of 2.9 V, which is sufficient for high-performance lithium ion batteries 

(LIBs) [198]. The theoretical specific capacity of 432.79 mAhg-1 is found for the 

phosphorene nanosheets, which is higher compared to carbon (372 mAhg-1) as the 

main commercial (LIB) anode [199]. Introducing defects on the surface of BP 

nanosheets can also improve the binding energy of Li and phosphorene from 1.73 eV 

to 3.31 eV. Moreover, introduction of  conductive agent such as graphene to 
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phosphorene as a heterostructured anode improves the mobility of Li ions by reducing 

the polarization effect [200].  

 

Figure 2.13: (a) Schematic illustration, and (b) Li-ion diffusion profile along with the zigzag and 

armchair directions of phosphorene [198], (c) Cyclic voltammetry at the rate of 30 μVs-1, (d) 

Galvanostatic charge/discharge at 100 mAg-1 (thick line: cycle 1, thin line: cycle 20), and (e) Rate 

capability tests at a different current of the exfoliated phosphorene in acetone (blue lines) and CHP 

(orange lines) [116], (f) Photograph of the phosphorene/graphene flexible electrode, (g) Cross-section 

of phosphorene/graphene hybrid anode (red and blue arrows are graphene and phosphorene, 

respectively), and (h) Rate capability performance of the phosphorene, graphene and hybrid anode at 

different current densities [77].   

 

Following the theoretical characterization, Castillo et al. evaluated the 

electrochemical performance of phosphorene nanosheets obtained via liquid 

exfoliation of BP in acetone and CHP (Figure 2.13 c-e) [116]. As shown in Figure 

2.13 (c), the cyclic voltammetry of the half-cell anode in the voltage window of 0.05 

to 3V exhibited the solid electrolyte interface (SEI) produced by the BP nanosheets 

and Li+ reactions and lithitan-delithation of phosphorene in LiPF6 solution. In general, 



51 

 

the electrochemical mechanism of BP nanosheets during charge-discharge cycles is as 

follows [201]: 

Discharge process: BP → LinP → LiP → Li2P → Li3P (n˂1) 

Charge Process: Li3P → Li2P → LiP → LinP → BP (n˂1) 

Galvanostatic charge/discharge profiles revealed the initial capacity of 1732 and 545 

mAhg-1 at 100 mAg-1 for the exfoliated phosphorene in acetone and CHP, 

respectively. However, the huge capacity fading observed after 20 cycles (480 and 

250 mAhg-1 for acetone and CHP) is due to the large volume expansion of 

phosphorene. Furthermore, the rate capability performance of the anodes showed a 

low specific capacity of 345 and 200 mAhg-1 for the exfoliated phosphorene in 

acetone and CHP at 1 Ag-1 [116]. In general, Li3P formed in the first discharge cycle 

does not reversibly transform to BP in the subsequent charging cycle. The 

disbondment of the active phosphorene material from the current collector reduces the 

active sites for energy storage and as a result, the material shows high initial 

irreversible capacity, low columbic efficiency, and side reactions with electrolyte, 

which hinders the real performance of pure phosphorene in LIBs [202]. For the first 

time, Chen and co-workers evaluated the electrochemical performance of the paper-

like exfoliated BP and a phosphorene (80 wt.%) with graphene (20 wt.%) hybrid 

obtained by vacuum filtration as a LIB anode. The synthesized composite is flexible, 

and the phosphorene and graphene nanosheets are stacked in parallel that improves 

the conductivity of phosphorene and shortens the lithium ions diffusion (Figure 2.13 f, 

g). Graphene nanosheets provide a preferential electrical highway for the 

transportation of electrons produced through the redox reaction of phosphorene. The 

structural stability during cycles was greatly improved by forming the chemical P–C 

bonds. As shown in Figure 2.13 (h), the hybrid anode delivers a specific capacity of 
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920 mAhg-1 at the current density of 100 mAg-1 which is much higher compared to 

the pure phosphorene (180 mAhg-1) and pure graphene (435 mAhg-1). By increasing 

the current density up to 500 mAg-1 the hybrid anode still provides high specific 

capacity (501 mAhg-1), reversibility, and rate capability [77]. Following this research, 

Zhang et al. evaluated the high yield exfoliated BP in formamide as an air-stable 

anode material for LIBs. Compared to graphene, they confirmed that the phosphorene 

nanosheets react much easier with graphene oxide. The developed anode showed high 

specific capacity of 1013 and 415 mAhg-1 at the current density of 100 mAg-1 and 10 

Ag-1, respectively. Moreover, after 60 days of exposure to the ambient atmosphere, 

the specific capacity dropped slightly to 823 mAhg-1, which confirms the passivation 

of phosphorene by graphene oxide [62]. Very recently, incorporation of other agents 

into phosphorene such as TiO2 [203], cellulose [204], and carbon nanotube (CNT) 

[205] were evaluated for LIB applications. Zhang et al. selected CNT to provide a 3D 

phosphorene composite with stable chemical bonds (P-C, P-O-C, and P-N-C). The 

hybrid anode delivered a high capacity of 1088 mAhg-1 at the current density of 100 

mAg-1. Figure 2.14 (a, b) shows the schematic illustration and SEM analysis of 

phosphorene and phosphorene/CNT anodes before and after 500 cycles. For the pure 

phosphorene, due to the volume expansion and produced cracks, the active material 

didn’t recover to the original structure (Figure 2.14 a). In comparison, the hybrid 

composite presented a dense morphology without obvious cracks in the presence of 

conductive CNT as a supporting matrix even after 500 cycles (Figure 2.14 b). Figure 

2.14 (c, d) displays the galvanostatic charge/discharge and cycling performance of 

hybrid composite at a moderate current density of 500 mAhg-1. After the fast capacity 

fading in the second cycle (from 2229 to 1725.3 mAhg-1), the capacity continues to 

fade until the 50th cycle, declining very slowly to become stable at about 757 mAhg-1 
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until 650 cycles [205].  It is reported that volume expansion in phosphorene-based 

electrodes is highly anisotropic in nature and the loss of electric contact is only 

associated to the de-lithiation step rather than lithiation [206] .  

Due to the abundance, low cost, and eco-friendly compatibility of sodium compared 

to lithium, Na-ion batteries have attracted attention in recent years. Theoretical 

investigation for the sodiation mechanism of phosphorene nanosheets revealed that 

until the Na concentration of Na0.25P, the chemical bonds in the layered BP are not 

altered but by increasing the Na content to Na0.28P, the cleavage of P-P bonds starts 

precipitating the amorphous phase of Na3P from NaxP (Figure 2.15 a) [207]. The two-

step process of Na storage in phosphorene is includes intercalation and alloying 

mechanisms. By the diffusion of Na ions along the zigzag direction, when the Na ion 

concentration is higher than Na0.25P, the formation of NaxP through alloying 

mechanism is suggested [208]. Notably, Kulish and co-workers calculated the energy 

barrier of 0.04 eV along the zigzag direction of phosphorene, which provides a fast 

diffusion path for Na ions [209]. Huang and co-workers directly employed a few-

layer exfoliated phosphorene as an anode of SIBs in NaClO4 solution. As shown in 

Figure 2.15 (b), the reversible redox peaks in the CV curves at around 0.45 and 0.9 V 

are related to the NaP formation and decomposition. The cycling performance of the 

anode at the current density of 100 mAhg-1 presented a rise of specific capacity after 

15 cycles due to the electrochemical activation of nanosheets (Figure 2.15 c). 

Furthermore, the galvanostatic charge/discharge profiles at different current density in 

the voltage range of 0.02 to 1.5 V plotted in Figure 2.15 (d) exhibited a specific 

capacity of 1878 and 321 mAhg-1 at the current density from 100 mAg-1 to 2.5 Ag-1, 

respectively, which is much better than the pure phosphorene-based anode for LIBs 

[144].  
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Figure 2.14: Schematic illustration and SEM images of (a) The phosphorene and (b) Phosphorene/CNT 

hybrid after 500 cycles as an anode of LIB, (c) Galvanostatic charge/discharge, and (c) Cycling 

performance of phosphorene/CNT hybrid at the current density of 500 mAg-1 [205].   

 

Similar to LIBs, the electrochemical performance of the phosphorene nanosheets have 

been improved using carbonaceous materials [210, 211]. Sun et al. for the first time 

evaluated the nanostructured graphene in exfoliated phosphorene as a hybrid anode 

for SIB application. The exfoliated phosphorene through the sonication of BP in 

NMP, is mixed with graphene nanosheets to provide a self-assembly layer-by-layer 

composite. The hybrid anode exhibited a high specific capacity of 2080 and 497 

mAhg-1 at low and very high current of 0.05 and 26 Ag-1, respectively. The 

combination of phosphorene/graphene provides fast transport for the ions and 

electrons and buffers the expansion of phosphorene. Moreover, in the presence of 

high-conductive graphene, phosphorene redox reactions are much faster [88]. Inspired 

by this work, Shuai and co-workers developed a phosphorene/graphene sandwich 

structure through the electrochemical exfoliation for SIB application. As shown in 

Figure 2.15 (e), the intercalation of phosphorene nanosheets between graphene layers 

through P-C and P-O-C chemical bonds provides a sandwich structure of the hybrid 
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anode with high Na+ ion storage capability. The prepared hybrid anode with the 1:1 

mass ratio delivered a high specific capacity of 1455 and 1011 mAhg-1 after 200 

cycles with more than 79% and 67% capacity retention at 1 and 5 Ag-1, respectively 

(Figure 2.15 f) [158]. Due to the excellent electrochemical performance and the 

outstanding mechanical flexibility of phosphorene/graphene sandwich structure, the 

developed hybrid electrode could be used in wearable electronics in near future. Very 

recently, the electrochemical performance of the exfoliated phosphorene as an 

electrode material for K-ion and Li-S batteries was evaluated. However, the actual 

mechanisms of electrochemical reactions are still unclear and the obtained specific 

capacities are not comparable with the state of the arts [33, 92].  

 

Figure 2.15: (a) Sodiation mechanism of phosphorene nanosheets (the solid gray is the supercell of 

phosphorus and the numbers are formation energy) [207], (b) CV at 0.1 mVs-1, (c) Cycling 

performance at 100 mAhg-1, and (d) Galvanostatic charge/discharge profiles at different current 

densities of exfoliated phosphorene as an anode of SIB [144], (e) TEM image of the cross-section of 

phosphorene/graphene hybrid, and (f) Cycling performance of phosphorene/graphene sandwich 

structure at the 1 and 5 Ag-1 [158].   
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 Phosphorus for Capacitor Applications 

 

Supercapacitors with high power density (~103 W kg-1), great cyclability, and ultrafast 

charge/discharging rate (~1 s) have been attracting attention in different energy 

storage devices. Based on the charge storage mechanism, supercapacitors are divided 

into pseudocapacitors and electrical double-layer capacitors (EDLCs). Fast reversible 

redox reactions near the electrode/electrolyte and charge storage at the 

electrode/electrolyte interfaces are the main working mechanisms of pseudocapacitors 

and EDLCs, respectively [212]. Hao et al. for the first time investigated the exfoliated 

phosphorene nanosheets in all-solid-state supercapacitors. As shown schematically in 

Figure 2.16 (a), they dispersed the nanosheets on two coated platinum/polybutylene 

terephthalate electrodes and prepared a sandwich-type phosphorene electrode with the 

solid polyvinyl alcohol/phosphoric acid (PVA/H3PO4) as an electrolyte. The semi-

solid gel electrolyte may control the oxidation of nanosheets at the ambient 

environment. The obtained double-layer capacitor delivered a high capacitance of 

13.75 F cm-3 at 0.01 Vs-1  at the scan rate of 0.01 V S-1 with significant cyclability up 

to 30000 cycles [108]. Inspired by this study, Yang and co-workers designed solid-

state micro-supercapacitors with a free-standing BP thin film electrode via the laser 

machining process. The CV curves of the symmetric device at different scan rates 

have rectangular shapes confirming an ideal double-layer capacitor behavior (Figure 

2.16 b). The galvanostatic charge/discharge at different current densities also 

presented a linear capacitive performance with a very small ohmic drop (Figure 2.16 

c). The fabricated device exhibited a high volumetric capacitance and energy density 

of 26.67 F cm-3 and 3.63 mWh cm-3 at 0.5 A cm-3, respectively. As shown in Figure 

2.16 (d), the high energy density of 1.53 mWh cm-3 remained at the very high power 
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density of  10.1 W cm-3, which is higher than other 2D-based micro-supercapacitors 

and can successfully light the red LED [151].  

 

Figure 2.16: (a) Schematic fabrication process of the all-solid-state supercapacitors with sandwich 

structure with PVA/H3PO4 [114], (b) CV profiles at different scan rate, (c) Galvanostatic 

charge/discharge at different current densities, and (d) Ragone curve for the exfoliated PB-based 

supercapacitor with some other reports as a comparison [151]. 

 

Similar to rechargeable batteries, in order to improve the conductivity and to control 

the volume expansion, conductive agents are often introduced to the phosphorene 

nanosheets for capacitor applications [115, 124, 213, 214]. Xiao et al. fabricated a 

symmetric phosphorene/graphene hybrid composite through a mask-assisted filtration 

method for a flexible micro-supercapacitor application. As shown in Figure 2.17 (a), 

the exfoliated phosphorene and graphene inks were filtered onto a poly-

tetrafluoroethylene (PTFE) membrane and then, transferred onto to PET substrate and 

packaged with 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) as an 

ionic liquid electrolyte. The phosphorene/graphene hybrid electrode can effectively 

hinder the disordered stacking and self-standing lamellar film with wrinkle inside, 
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thus arranging more ion-accessible sites for the active material on the substrate. The 

galvanostatic charge/discharge profiles for the EDLC-type hybrid composite and pure 

graphene, confirmed the synergetic effect of phosphorene nanosheets, which 

delivered remarkable aerial capacitance and energy density of 9.8 mF cm-2 and 11.6 

mWh cm-3 at 5 mV s-1, respectively (Figure 2.17 b). As shown in Figure 2.17 (c, d), 

similar to the one device performance, the three serially hybrid composites, presented 

a rectangular CV with the 9 V voltage extension, which can easily power a red LED 

[135]. Table 3.3 presents the research progress on the phosphorene-based electrodes 

for energy storage applications. As shown in Table 3.3, exfoliated phosphorene 

nanosheets stand out to be a promising candidate for rechargeable batteries and 

supercapacitors.  

 

Figure 2.17: (a) Preparation and fabrication process of the mask-assisted phosphorene/graphene micro-

supercapacitor, (b) Galvanostatic charge/discharge profiles for the graphene and phosphorene/graphene 

composite at 0.3 A cm-3, (c) CV curves for the single and three serial hybrid electrode at 100 mV s-1, 

and (d) Photograph of the three serial hybrid electrode to power a LED [135].    
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Table 2.3: Electrochemical performances of the liquid-based exfoliated BP for energy storage applications. 

Material Device Voltage 

Window 

Electrochemical Performance Ref.  

Phosphorene nanosheets LIB 0.05-3 V Specific capacity of 480 mAhg-1 at 100 mAg-1, capacity 

retention of 70.0% at 1 A g-1 after 100 cycles 

[116] 

Phosphorene nanosheets 

 

LIB 0.001-3 V 

 

Specific capacity of 510 mAhg-1 at 200 mAg-1, capacity 

retention of 103.9% at 200 A g-1 after 35 cycles 

[190] 

Phosphorene/graphene hybrid paper LIB 0.001-3 V 

 

Specific capacity of 920 mAhg-1 at 100 mAg-1, capacity 

retention of 80.2% at 0.5 A g-1 after 500 cycles 

[77] 

Phosphorene/graphene oxide hybrid 

paper 

LIB 0.01-3 V 

 

Specific capacity of 1013 mAhg-1 at 100 mAg-1, 

capacity retention of 91.9% at 10 A g-1 after 800 cycles 

[62] 

Phosphorene/Poly(3,4-

ethylenedioxythiophene hybrid 

LIB 0.01-3 V 

 

Specific capacity of 1408 mAhg-1 at 100 mAg-1, 

capacity retention of 77.6% at 100 mAg-1 after 100 

cycles 

[94] 

Phosphorene/graphene hybrid paper LIB 0.01-3 V Specific capacity of 1633 mAhg-1 at 100 mAg-1, 

capacity retention of 85.8% at 100 mAg-1 after 200 

cycles 

[215] 

Phosphorene/graphene/TiO2 composite  LIB 0.01-3 V Specific capacity of 502.9 mAhg-1 at 1.25 Ag-1 after 180 

cycles 

[203] 

Phosphorene/nanocellulose composite LIB 0.01-3 V Specific capacity of 1020.1 mAhg-1 at 100 mAg-1, 

capacity retention of 87.1% at 100 mAg-1 after 230 

cycles 

[204] 

Phosphorene/CNT hybrid composite LIB 0.01-2 V Specific capacity of 521.9 mAhg-1 at 500 mAg-1, 

capacity retention of 80.3% at 500 mAg-1 after 550 

cycles 

[205] 

Phosphorene nanosheets 

 

SIB 0.02-1.5 V Specific capacity of 1878.4 mAhg-1 at 100 mAg-1, 

capacity retention of 102.1% at 1.5 Ag-1 after 100 cycles 

[144] 

Phosphorene/graphene hybrid  SIB 0.02-1.5 V Specific capacity of 2080 mAhg-1 at 50 mAg-1, capacity 

retention of 83% at 50 mAg-1 after 100 cycles 

[88] 

Phosphorene/Poly(3,4-

ethylenedioxythiophene hybrid 

SIB 0.01-3 V 

 

Specific capacity of 1397 mAhg-1 at 100 mAg-1, 

capacity retention of 67.4% at 100 mAg-1 after 100 

cycles 

[94] 
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Phosphorene/reduced graphene oxide 

hybrid  

SIB 0.01-3 V 

 

Specific capacity of 1472 mAhg-1 at 100 mAg-1, 

capacity retention of 82.2% at 100 mAg-1 after 50 cycles 

[210] 

Phosphorene/graphene hybrid  SIB 0.02-1.5 V Specific capacity of 1297 mAhg-1 at 100 mAg-1 after 

100 cycles 

[211] 

Phosphorene/graphene hybrid  SIB 0.02-1.5 V Specific capacity of 2311 mAhg-1 at 100 mAg-1, 

capacity retention of 83.9% at 100 mAg-1 after 100 

cycles 

[158] 

Phosphorene/MXene hybrid SIB 0.01-3 V 

 

Specific capacity of 535 mAhg-1 at 100 mAg-1, capacity 

retention of 87% at 1 Ag-1 after 1000 cycles 

[216] 

Phosphorene nanosheets Supercapacitor 

 

0-1 V Capacitance of 13.75 F cm-3 at 0.01 V s1, capacity 

retention of 71.8% after 30000 cycles 

[114] 

Phosphorene nanosheets 

 

Supercapacitor 

 

-0.4-0.4 V Specific capacitance of 80 F g-1 at 100 mVs-1, capacity 

retention of 80% after 15000 cycles 

[167]  

Phosphorene nanosheets 

 

Supercapacitor 

 

0-1 V 

 

Energy density of 3.63 mWh cm-3, power density of 

26.67 F cm-3, capacity retention of 94.3% after 50000 

cycles 

[151]  

Phosphorene nanosheets 

 

Supercapacitor 

 

0-0.7 V Discharge energy of 0.01 mWh cm-2 and power density 

of 351 mW cm-2 at 500 mA cm-2 after 40000 cycles 

[23] 

Phosphorene nanosheets 

 

Supercapacitor 

 

-0.1-0.7 V Specific capacitance of 12.3 F g-1 at 0.025 V s-1, 

capacity retention of 82.3% at 0.5 V s-1 after 200 cycles 

[168]  

Phosphorene/graphene hybrid  Supercapacitor 

 

0-3 V Areal capacitance of 9.8 mF cm-2, energy density of 

11.6 mWh cm-3 at 5mV s-1 

[135] 

Phosphorene/polyaniline hybrid 

 

Supercapacitor 

 

-0.4-0.6 Specific capacitance of 354 F g-1 at 0.3 A g-1, capacity 

retention of 96% after 175 cycles 

[192] 

Phosphorene/CNT composite paper 

 

Supercapacitor 

 

0-1 V 

 

Volumetric capacitance of 41.1 F cm-3, power density of 

821.62 Wcm-3, capacity retention of 91.5% after 10000 

cycles 

[115] 

Phosphorene/polypyrrole composite 

paper 

 

Supercapacitor 

 

0-0.7 V Specific capacitance of 431.4 F g-1, cycling stability up 

to 10000 cycles 

[124] 

Phosphorene/graphene oxide hybrid 

paper 

Supercapacitor 

 

0-1 V 

 

Specific capacitance of 104.4 F g-1 at 0.25 A g-1, 

capacity retention of 62.3% at 50 A g-1 after 5000 cycles 

[214]  

Phosphorene/CNT composite  

 

Supercapacitor 

 

0-3 V Specific capacitance of 308.7 F g-1 at 0.1 A cm-3, 

capacity retention of 90.2% after 10000 cycles 

[213] 

 



61 

 

 Conclusion 

The research on novel 2D materials is an ongoing study and has attracted significant 

attention in recent years due to chemical, physical, and mechanical properties on these 

materials. In this chapter, we comprehensively summarized different exfoliation of BP 

into phosphorene techniques and its application for batteries and supercapacitors. The 

real electrochemical performance of phosphorene strongly depends on its preparation 

technique. Due to the high theoretical capacity, structural anisotropy, and surface area of 

phosphorus-based electrodes, their electrochemical performance has been demonstrated 

for rechargeable batteries and supercapacitors. Phosphorene-based anode material has 

shown high specific capacity and rate capabilities in LIBs. However, providing a scaled-

up phosphorene-based electrode preparation for energy storage applications is still 

challenging. We believe that phosphorus-based material will develop in near future and 

contribute to reliable, eco-friendly, and high-performance energy storage devices.  
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3. Methodology 

 Introduction  

In this section, the methodology adopted in this dissertation – for both material synthesis 

as well as material and electrochemical characterization is provided. For the material 

preparation in this thesis, three techniques were used to design the electrodes – i) ball 

milling, ii) electrostatic spray deposition (ESD), and iii) bipolar electrochemical 

exfoliation. Moreover, all the developed materials were evaluated through different 

material and electrochemical characterization techniques.  

 Materials Synthesis 

 Ball Milling 

High-energy ball milling or mechanical alloying is a common method widely used to 

grind materials into nanoparticles and blend them into composite structures for many 

years. This method is cost-effective, reliable, environmentally-friendly, and scalable 

which has found wide application in industry and academia. In general, this technique 

consists of a hollow cylindrical shell rotating around its axis and filled with balls made of 

stainless steel or ceramics. It depends on the energy released from impact and attrition 

between the balls and starting powders. During the process, the rapid collision applies a 

large compressive force on the surface of the original material [1, 2]. This technique is 

not only applied for electrode material production but also provides enough energy for a 

chemical reaction. In recent years, the high-energy ball milling method was used to 

fabricate novel electrode materials for high-performance energy storage devices [3].    
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 Electrostatic Spray Deposition (ESD) 

Electrostatic Spray Deposition (ESD) is an attractive thin film fabrication technique 

which developed in 1996 [4]. In this method, the applied high DC voltage between a 

metal nozzle and a substrate atomized the precursor solution into an aerosol spray and 

leading to solvent evaporation and deposition on the preheated substrate [5, 6]. The 

schematic of the ESD technique is shown in Figure 3.1. In this method, parameters such 

as applied voltage, substrate temperature, nozzle geometry, the distance between the 

substrate and nozzle, and flow rate are the attractive features of ESD to control the 

morphology of the resulting thin film. The feasibility of preparing a high-surface area and 

uniform thin film deposition makes ESD unique for energy storage devices. In recent 

years, ESD-based materials were used as an electrode for Li-ion batteries and 

supercapacitors [3, 7-10].   

 

Figure 3.1: Schematic illustration of the ESD technique. 
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 Bipolar Electrochemical Exfoliation (BPE)  

Bipolar electrochemistry (BPE) is a technique based on the polarization of an isolated 

electrode (known as a bipolar electrode), under the presence of an external electric field. 

The concept of BPE was first introduced in the 1960s by Fleischmann et al, who 

evaluated fluidized bed electrodes comprising copper particles [11]. As shown in Figure 

3.2, a bipolar electrode is immersed inside the solution in the presence of an external 

electric field applied between two feeding electrodes [12]. The electric field inside the 

solution and through the bipolar electrode is constant and depends on the applied 

potential (V) and distance (L) between two feeding electrodes. In the presence of the 

electric field, polarization potential (ΔV) arises due to the solution potential differences 

and conductive object and oxidation/reduction reactions happened on the two poles of 

bipolar electrode simultaneously in the presence of sufficient polarization potential [13, 

14]. This technique has been used for different applications such as electro-sensing, 

optical detection, selective deposition, and electronic device fabrication due to its 

efficiency, low cost, and simplicity [15, 16].  

 

Figure 3.2: Schematic illustration of bipolar electrochemistry technique [12]. 
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 Material Characterization 

The techniques used for characterization of the materials used in this thesis are 

described in this section:  

 Scanning Electron Microscopy (SEM) 

In order to evaluate the morphology and microstructure of the synthesized materials, a 

field-emission scanning electron microscopy (JEOL 6330FE-SEM and JEOL FESEM 

7000) was used with the accelerating voltages of 5-25 kV for a typical working distance 

between 5-40 mm. 

 Transmission Electron Microscopy (TEM) 

To investigate the morphology, crystallinity, and properties of the synthesized materials, 

transmission electron microscopy (TEM-Philips CM-200 FEG and Tecnai TF 20 TEM) 

was used. Moreover, selected-area electron diffraction (SAED) patterns were conducted 

at an accelerating voltage of 200 kV using a field emission gun with a resolution of 2 °A. 

 X-Ray Diffraction (XRD) 

X-Ray diffraction (XRD) analysis is a powerful technique to evaluate the crystallinity 

and crystallographic orientations of material. In this thesis, XRD analysis was used to 

study the phosphorus-based materials using Siemens D-5000 diffractometer (Cu Kα, 

λ=0.154056 nm, 40mA, and40 kV). After the XRD analysis, the results were identified 

using Joint Committee on Powder Diffraction Standards - International Center for 

Diffraction Data (JCPDS-ICDD) database. 
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 Raman Spectroscopy 

Raman spectroscopy is a powerful spectroscopic technique for the evaluation of 

vibrational modes and the fingerprint of chemical structures. This characterization 

method is based on the change of the vibrational quantum states of illuminated material 

which must be Raman active. After the interaction of laser with molecular vibrations, its 

energy being shift and this blue to red shift gives information about the vibrational mode 

of the chemical species. In this thesis, the Raman spectra of the samples were collected 

using a BaySpec Raman spectrometer with a 514 nm laser source.  

 Fourier Transform Infrared (FT-IR) Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy measures the range of wavelengths in the 

infrared region that are absorbed by a material. The sample’s absorbance of the infrared 

light’s energy at various wavelengths is measured to determine the material’s molecular 

composition and structure. In this dissertation, FTIR analysis of the synthesized samples 

were carried out using a JASCO FTIR-4100 equipped with an attenuated total reflectance 

(ATR) accessory between 500-4000 cm-1.  

 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is an advanced spectroscopic technique for 

analyzing the surface chemistry and overall electronic structure of the material. This 

method is based on irradiating a solid surface with an X-ray beam that can identify the 

elements and chemical bonding that exist within a material. A photoelectron spectrum is 

recorded by counting ejected electrons over a range of electron kinetic energies. Peaks 
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appear in the spectrum from atoms emitting electrons of a particular characteristic 

energy. In this thesis, the surface chemistry of the synthesized materials was evaluated by 

XPS-VAC-PHI 5000 and Physical Electronics 5400 ESCA instrument with Al Ka 

radiation (1486.6 eV). 

 Electrochemical Characterization 

 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a frequency response technique where 

a sinusoidal potential is applied to the electrochemical system and the sinusoidal current 

signal is measured. Small amplitude perturbation signals are normally conducted in EIS 

analysis. In this dissertation, EIS analysis was performed for rechargeable batteries and 

supercapacitors using a Bio-logic versatile multichannel potentiostat (VMP3, BioLogic). 

Depends on the electrode materials, the EIS characterization was measured at different 

DC voltages and ac amplitudes from 1 mHz to1 MHz. To analyze the obtained EIS 

results, an equivalent electrical circuit model is developed to fit the Nyquist and Bode 

diagrams.  

 Cyclic Voltammetry (CV) 

Cyclic voltammetry (CV) is a potentiodynamic electrochemical technique to understand 

the reversibility of electrochemical reactions. In this method, the potential is swept at a 

constant scan rate as a function of time. The current versus voltage (known as 

voltammogram) is generated at an applied scan rate and provides information about the 

electrochemical mechanisms of the system. In a typical CV test, the voltage first is swept 

in one direction and then in a reverse step to evaluate the reversibility of the device. Bio-
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logic versatile multichannel potentiostat (VMP3, BioLogic) was used for CV analysis in 

this dissertation. 

 Galvanostatic Charge-discharge (GCD) 

Galvanostatic charge-discharge (GCD) is an electrochemical analysis to study the 

cyclability, rate capability, and electrochemical reactions of the energy storage device. By 

this technique, the electrochemical performance of the device can be obtained in a plot of 

potential versus capacity (or time) during the charge/discharge process. To investigate the 

rate performance of the device, the charge/discharge process is carried out at different 

current densities. In this dissertation, GCD tests were performed at room temperature 

using BioLogic VMP3 potentiostat and NEWARE BTS-610 Battery Test System.  
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4. High-Performance Red Phosphorus-Sulfurized Polyacrylonitrile Composite by 

Electrostatic Spray Deposition for Lithium-Ion Batteries 

 Introduction 

In the past few years, due to rapidly increased global demand for energy storage devices 

such as advanced electronics, electric vehicles (EVs), and implantable medical devices, it 

is essential to develop novel materials for energy storage technologies [1]. Lithium-ion 

batteries (LIBs) have been the most popular and commercially available energy storage 

devices [2, 3]. However, anodes of LIBs still suffer poor theoretical capacity of graphite 

(372 mAh g-1) [4]. Until now, several materials such as Sn-based electrode [5], Si-based 

electrode [6], Ge-based electrode [7], metal nitrides-based electrodes [8], and metal 

oxides-based electrode [9] utilizing either alloying or conversion mechanisms have been 

developed as an anode material for LIBs [10]. 

Recently, phosphorus as an anode material has attained much attention owing to its high 

theoretical capacity (2596 mAh/g) via Li3P alloying formation [11]. White P (WP), black 

P (BP) and red P (RP) are the main three allotropes of solid phosphorus. WP is not stable 

in the air, flammable and very toxic, which impose safety concerns for LIBs. BP is the 

most thermodynamically stable form of phosphorus with an orthorhombic crystal 

structure. However, synthesis of BP via high-pressure and high-temperature process is 

expensive, which restricts its practical application [12, 13]. Compare to WP and BP, RP 

is non-toxic, low cost, eco-friendly, and easy to handle, making RP a promising anode for 

LIBs [14-17]. Nevertheless, the application of RP in LIBs is obstructed by two serious 

issues: low electrical conductivity of RP (∼ 10-14 S cm-1) [15], and huge volume change 
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(more than 300 %) during lithiation and delithiation causing the pulverization of the 

active materials which leads to significant capacity fading, and poor cycling performance 

[18, 19]. Different methods have been evaluated to resolve the issues and improve the 

electrochemical performance of P-based electrode materials. Compositing phosphorus 

with carbonaceous materials is one of the useful methods to increase the conductivity and 

control the volume expansion [11]. To date, different types of 1D and 2D carbon 

materials has been incorporated with RP, such as graphene-based materials [20], carbon 

nanotube (CNT) [14, 21], and carbon nanofibers (CNF) [4, 16]. Additionally, by 

decreasing the particle size of RP, using additives, encapsulation, and forming chemical 

bonding to enhance the stability of SEI, volume expansion can be effectively decreased, 

and cyclability can be improved [22]. For example, Sun et al. prepared TiO2-modified RP 

and CNT composite by ball milling and ultrasonication technique which exhibited 

specific capacity of 750 mAh g-1 at 10 A g-1 [23]. Very recently, Li et al. demonstrated 

that encapsulated RP particles inside multi-walled carbon nanotubes showed high 

capacity of 1012 mAh g-1 at 0.1 A g-1 [24]. Song et al. found that strong P-O-C chemical 

bonding between RP and C matrix could enhance the cyclability of RP-C composite [25]. 

Yu et al. showed that the P-C chemical bonding could reduce the agglomeration of RP-

based composite and improve cycling performance of electrode [26]. Since the first 

attempt to synthesize sulfurized polyacrylonitrile (SPAN) as functional polymer 

composite by Wang et al. in 2002 [27], SPAN-based electrodes have shown attractive 

electrochemical performance such as good cycling life and Coulombic efficiency due to 

its chemical compatibility for energy storage devices  [28-31]. In addition, due to the low 

bonding energy of S-S (265 kJ mol-1) [32] and its high reactivity to form additional 
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chemical bonds with RP, the conductive SPAN could be an ideal composite to increase 

the conductivity and control the volume expansion of RP in Li-ion batteries.  

Electrostatic spray deposition (ESD) is a facile spraying technique, which involves 

applied DC voltage between a heated substrate and a spray nozzle with precursor solution 

[33-37]. By applying the voltage, the precursor atomizes into an aerosol and deposits 

uniformly on the substrate with various favorable morphologies particularly helpful for 

effectively buffer volume change for LIBs application [38, 39]. Herein, we developed a 

binder-free RP-SPAN hybrid composite through ball milling and ESD technique. The 

RP-SPAN hybrid electrode exhibited excellent specific capacity up to 1605 mAh g-1 at 

0.1 A g-1 at 100 cycles. Moreover, a specific capacity of 320 mAh g-1 was maintained at 3 

A g-1. This study demonstrates that ESD-based RP-SPAN hybrid is a promising anode 

electrode with remarkable electrochemical performance for LIBs. 

 Materials and Methods 

 Materials Synthesis 

Amorphous Red phosphorus powder (98.9%) was obtained from Alfa Aesar. 

Polyacrylonitrile (PAN), and sulfur (≥99%) as raw materials were purchased from Sigma 

Aldrich. SPAN was prepared from a mixture of PAN and sulfur (mass ratio of 2:1) which 

were uniformly mixed by using a mortar and pestle for 30 minutes. Then, the mixture 

was heated at 450 °C in Ar atmosphere using a tube furnace with a ramping rate of 

5°C/min for 2 h [29]. To prepare the RP-SPAN hybrid, the synthesized SPAN and pure 

RP were mixed in a mass ratio of 1:5 and placed into a stainless steel vessel which was 

sealed inside a glovebox under Ar atmosphere. The ball milling was conducted in Ar 
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atmosphere under 100 bar pressure by Retsch PM 10 planetary ball mill for 36 h at 350 

rpm. RP-SPAN composite anode on Ni foam electrode was fabricated via ESD technique. 

For preparing the ESD precursor, the RP-SPAN hybrid material (90 wt%) was mixed 

with super P Li (10 wt%) and dispersed in 1,2-propanediol (Sigma Aldrich) followed by 

stirring for 1 h and next, transferred to a syringe. Pure RP powders without SPAN were 

also prepared by a similar procedure for comparison. During the ESD, electrode films 

were deposited at 200 °C with a flow rate of 2 mL h-1 for 2 h. The distance between the 

substrate and needle was 3 cm and the applied voltage was about 6-7 kV. 

 Materials Characterization 

The microstructure and elemental analysis were conducted using both scanning electron 

microscopy (SEM-JEOL 6330F) equipped with dispersive X-Ray spectroscopy (EDS-

UltraDry) detector and transmission electron microscopy (TEM-Philips CM-200 FEG). 

X-ray diffraction (XRD) analysis was conducted using a Siemens 5000D diffractometer 

(λ=1.154056 Å, Cu Kα, 40 mA, and 40 kV). Raman spectroscopy was performed using a 

514 nm laser excitation source. Surface chemistry of the materials was evaluated by 

Fourier transform infrared spectroscopy (JASCO FTIR-4100 equipped with an ATR-

PRO 450S) and X-ray photoelectron spectroscopy (XPS-VAC-PHI 5000). 

 Electrochemical Characterization 

Electrochemical properties were characterized using VMP3 Bio-Logic workstation. 

Swagelok electrochemical cell assembled in argon controlled glovebox was used for half-

cell test, which contained RP-SPAN hybrid as a working electrode, and lithium as both 

counter and reference electrodes. A 100μl of 1M LiPF6 in ethylene carbonate - diethyl 
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carbonate (1:1, volume ratio) was used as an electrolyte. Celgard 2400 polypropylene 

was used as a separator. Electrochemical Impedance Spectroscopy (EIS) was conducted 

between 100 kHz and 0.01 Hz. Cycling voltammetry (CV) test was performed in a 

voltage range from 0.01 to 3.0 V at a scan rate of 0.1 mV s-1. Galvanostatic 

charge/discharge (GCD) and rate capability tests were conducted using a battery tester 

(NEWARE BTS-610).   

 Results and Discussion 

The preparation process of RP-SPAN composite is shown in Figure 4.1. In brief, SPAN 

was synthesized through dehydrogenation of PAN and formation of bonding with S at 

450 °C for 2 h taking advantage of low S-S bond energy (around 264 kJ mol-1) [40]. 

Elemental analysis of the synthesized SPAN by EDS detected 38.2 wt% of sulfur. It was 

reported that sulfur content around 40 wt. % in SPAN revealed higher specific capacity 

and stable cycle life [28]. The morphologies of the RP and synthesized SPAN are shown 

in Figure 4S.1 (a, b). As shown in Figure 4S.1 (a), RP particles are irregular in shape with 

size ranging from less than 1 to 20 μm. In contrast, SPAN particles display uniform 

spherical shape with the particle size of around 300 nm. The featureless agglomerated 

morphology of the synthesized RP-SPAN hybrid is shown in Figure 4.2 (a). A typical 

TEM image with selected area electron diffraction pattern shown in Figure 4S.2 revealing 

the amorphous nature of the RP-SPAN hybrid.  
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Figure 4.1: Schematic illustration of the RP-SPAN hybrid anode preparation. 

 

The XRD patterns of the pure RP, SPAN, and RP-SPAN hybrid materials are shown in 

Figure 4.2 (b). One peak at around 15° and two broad peaks at around 32° and 55° are 

clear for the pure RP, indicating the medium-range ordered structure which is consistent 

with the previous studies [15, 41]. The XRD analysis of SPAN exhibited a broad peak at 

around 25°, which is related to the hexagonal graphitic (002) plane of amorphous carbon 

[29]. For the RP-SPAN hybrid, a small graphitic peak of SPAN and three broad peaks of 

RP appeared. The broader and weaker XRD peaks for the hybrid sample could be due to 

the further amorphization and strain/stress induced by the ball milling process. As shown 

in the Raman spectra in Figure 4.2 (c), for the pure RP, there are wide wavebands in the 

range of 300 to 500 cm-1 originated from the P9 cage of P and a broad luminescence peak 

centered around 1100 cm-1 [14]. Peaks at 498 and 956 cm-1 could be assigned to the S-S 

bonds in the SPAN [31]. For the hybrid sample, two peaks at around 1367 and 1578 cm-1 

are related to the D (disordered carbon) and G (ordered graphitized carbon) bands, 

respectively [42]. No noticeable change was detected for the peak locations of SPAN and 

hybrid sample, confirming that the structure of SPAN was well-maintained in the RP-
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SPAN hybrid. In addition, the Raman peaks of RP could not be detectable for the hybrid 

sample. The surface chemistry of samples was further studied by FTIR analysis (Figure 

4.2 (d)). The bands of P=O (1034 cm-1, and 1749 cm-1) and P−OH (1263 cm-1) vibrations 

are commonly observed in  RP due to its surface oxidation [43, 44]. For the SPAN and 

hybrid sample, the modes in the region of 1150-1600 cm-1 can be assigned to C-S 

stretching at 1357 cm-1, C=N symmetric stretching at 1260 cm-1, C−C deformation at 

1273 cm-1, and C=C asymmetric stretching at 1590 cm-1, respectively [40]. The peaks at 

527, 675, and 947 cm-1 can be assigned to the S-S stretching, C-S stretching and the ring 

breath of the side-chain containing S-S bonds, respectively [45-47]. Specifically, peak at 

929 cm-1 for RP-SPAN hybrid could be attributed to the P−O−S stretching, indicating the 

chemical bonding formation of phosphorus with sulfur [45, 48]. Due to the 

heteroaroamatic structure of SPAN, the C=N symmetric stretching is still present in the 

hybrid sample after ball milling.  It has been reported that the chemical bond of P to the 

conductive matrix could contribute to the integrity of the electrode during cycling [49].  

The XPS analysis of the samples are shown in Figure 3 (a-d). The P2p XPS spectrum of 

RP (Figure 4.3 (a)) reveals two major peaks of P2p1/2 and P2p3/2 components at around 

130.7 and 129.7 eV, respectively. The broad peak at around 133.3 eV could be assigned 

to phosphates bond (POx), which indicates surface oxidation of RP after exposure to the 

air [15]. Figure 4.3 (b) shows two sets of double fitted peaks at about 161.8 and 163.0 eV, 

which belong to S2p3/2, 162.9 and 164.1 eV, which belong to S2p1/2, respectively. The 

main fitted S2p3/2 peak at 163.0 eV is assigned to the 2p electrons of S atoms either 

bonded to sulfur or carbon [31, 40, 50]. The S2p1/2 peak at 164.1 eV is attributed to the 

single S-S bond [51]. The S2p3/2 and S2p1/2 peaks at around 161.8 and 162.9 eV are 
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related to the C-S chemical bond [51-53]. For the P2p spectrum of RP-SPAN hybrid 

(Figure 4.3 (c)), a new peak centered at 134.1 eV can be attributed to S-P bond [54]. For 

the S2p spectrum of hybrid sample (Figure 4.3 (d)), two new S2p3/2 and S2p1/2 peaks at 

162.0 eV and 163.1 eV are most likely attributed to the S-P bond, respectively [52, 54-

56]. The S2P3/2 and S2p1/2 peaks at 162.7 and 163.8 eV are assigned to the S-S or S-C 

bond, respectively [50]. The spin orbit doublet at 160.3 and 161.3 eV, can be attributed to 

the S2p3/2 and S2p1/2 peaks of the C-S bond, respectively [50, 51].  

 

Figure 4.2: (a) Typical SEM image of RP-SPAN hybrid; (b) XRD patterns, (c) Raman and (d) FTIR spectra 

of RP, SPAN, and RP-SPAN hybrid. 
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The wide-scan survey spectrum and C1s spectrum of SPAN and RP-SPAN hybrid are 

shown in Figure 4S.3 (a-d). The C1s spectra of SPAN (Figure 4S.3 (c)) reveal C=N 

bonds (288.4 eV), C-S bonds (286.4 eV), and C-C bonds (284.7 eV). For the RP-hybrid, 

the peak at 285.4 eV is related to the C-P bond [57, 58]. The binding energies in RP-

SPAN spectrum are shifted to the lower values most likely due to the amorphization and 

interaction of P with SPAN during ball milling [54].  

 

Figure 4.3: XPS spectra of (a) P2p of RP, (b) S2p of SPAN, and (c) S2p of RP-SPAN hybrid. 

 

As shown in Figure 4.4 (a-f), the electrochemical characterization of the RP and RP-

SPAN hybrid anodes was conducted. Figure 4.4 (a, b) shows the 1st, 5th, and 10th cycle of 

the CV test for the RP and RP-SPAN hybrid at 0.1 mV s-1. Four cathodic peaks at 0.03, 

1.09, 1.57 and 2.27 V were observed for pure RP in the first cycle and disappeared in the 
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subsequent cycles, which could be assigned to the decomposition of LiPF6 and SEI 

formation. The cathodic peak at 0.63 V and anodic peak at 1.37 V are related to the 

lithiation/delithation mechanism of P-based anode material 

( P + xLi + xe Li P (1< x  3)x
    ) [57, 59]. For the RP-SPAN hybrid anode, in the 

initial cathodic scan, peaks at 0.41, 1.21 and 2.30 V are detected but disappear in the 

following cycles due to the SEI formation. The cathodic peak at 0.58 V can still be 

observed for the hybrid sample, but in the anodic scan, the main peak at 1.09 V shifted to 

the left compared to the pure RP. Besides, the reversible redox peaks at around 0.11, 

0.18, and 0.24 V most likely correspond to the lithium intercalation with the carbon 

component in the composite [26]. Good reversibility was observed for the RP-SPAN 

hybrid in the subsequent CV curves. Compare to the hybrid sample, pure RP electrode 

shows low current density and low capacity.  

Figure 4.4 (c, d) show the galvanostatic charge/discharge curves for the RP and RP-

SPAN hybrid at 1st, 2nd, 5th, 10th, 25th, 50th, and 100th cycles at the constant current 

density of 0.1 A g-1 from 0.01 to 3 V. Three major plateaus can be observed in Figure 4.4 

(c) for pure RP sample at around 0.6, 1.5 and 2.2 V on the first discharge curve due to the 

SEI formation and disappeared in the next cycles which are slightly consistent with the 

peaks observed in CV test. The small shift in plateau positions in the cathadic peaks is 

probably due to the kinetics of reactions and complex alloying behavior of phosphorus 

[17, 49, 60]. Pure RP displays specific discharge/charge capacities of 3393/976, 

1059/695, 787/598, 630/583, 575/557, 381/372, and 358/352 mAh g-1 at the 1st, 2nd, 5th, 

10th, 25th, 50th, and 100th cycle, respectively. The significant capacity fading for the RP 

sample is reported in the previous studies [4, 26]. 
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Figure 4.4: Electrochemical characterization of the pure RP and RP-SPAN hybrid anodes, Cyclic 

voltammetry at 0.1 mV s-1 for (a) pure RP, and (b) RP-SPAN hybrid. Typical charge/discharge profiles at 

0.1 A g-1 for (c) pure RP, and (d) RP-SPAN hybrid. Cycling performance at 0.1 Ag-1 and rate capability at 

0.2, 0.5, 1.0, 2.0, 3.0 Ag-1 for (e) pure RP and, (f) RP-SPAN hybrid. 
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Similar to the RP sample, for the hybrid sample (Figure 4.4 (d)), in the first discharge 

curve, the plateaus at around 2.3 and 1.5 V are observed and disappeared in the 

subsequent cycles. The plateaus at around 0.6 to 0.7 and 1.4 V on the first discharge and 

1.0 V on the first charge curve are observed for RP-SPAN hybrid due to the stepwise 

lithiation and delithiation, which is consistent with the CV test. Plateaus stayed 

unchanged in subsequent cycles, confirming reversible lithiation/delithiation reactions for 

the hybrid electrode. The hybrid sample, delivered the specific discharge/charge capacity 

of 4810/2809, 3130/2162, 2724/2089, 2359/2084, 2052/1921, 1724/1664, and 1605/1579 

mAh g-1 at the 1st, 2nd, 5th, 10th, 25th, 50th, and 100th cycle, respectively. The high 

discharge capacity of 1605 mAh g-1 at 100 cycles for the hybrid sample is one of the best 

reported performances among the RP-based composite electrode in LIBs (Table 4S.1). 

The cycling performance and rate capability of the RP and hybrid samples are shown in 

Figure 4.4 (e, f). The curves remain stable after 50th cycle, indicating high reversibility 

for both RP and hybrid sample. The rate performance of pure RP exhibited discharge 

capacities of 318, 231, 170, 124 and 88 mAh g-1 at 0.2, 0.5, 1.0, 2.0 and 3.0 A g-1, 

respectively. The specific capacity of 287 mAh g-1 recovered when the current density 

returned back to 0.2 A g-1 after 150 cycles, which confirms good rate capability of ESD-

based pure RP anode compare to previous studies [21, 61]. Furthermore, the hybrid 

sample delivered high discharge capacity of 1220, 956, 696, 480, and 320 mAh g-1, at 

0.2, 0.5, 1.0, 2.0, and 3.0 A g-1, respectively. The capacity recovered to ~1210 mAh g-1 

when the current density returned back to 0.2 A g-1 after 150 cycles, indicating higher 

discharge capacities of RP-SPAN hybrid electrode at different current densities compared 

to pure RP.  
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Figure 4.5 shows the EIS characterization of the RP and hybrid anodes before and after 

cycling. As shown, each Nyqiust curves consists of the semicircles and a straight line at 

high to low frequency, respectively. The Nuquist curves are simulated by the modified 

Randles equivalent circuit (inset of Figure 4.5) [62]. The elements in the circuit are 

solution resistance (R1), charge transfer resistance (R2), constant phase element (CPE), 

and Wurburg (W). The dashed lines are data fitted based on the equivalent circuit. The 

simulation parameters from the equivalent circuit are listed in Table 4S.2. The solution 

resistance for all the samples are similar before and after 180 cycles. The semicircle 

diameter of the Nuquist curve shows the charge transfer resistance. For the fresh cells, the 

charge transfer resistance of RP-SPAN hybrid anode (592 Ω) is much lower compared to 

the pure RP anode (1797 Ω), which indicates better electronic conductivity and kinetics 

of the hybrid sample. After 180 cycles, the hybrid electrode showed very low charge 

transfer resistance of 35 Ω compare to the fresh cell indicating improved charge transfer 

kinetics after cycling. The morphology of the prepared hybrid electrode before and after 

180 cycles were evaluated by SEM (Figure 4S.4 (a, b)). The hybrid electrode still 

maintains its microstructural integrity without obvious degradation, indicating that the 

volume change didn’t affect the structural stability.  

Our results show that the ESD method is an effective approach to prepare RP-based 

composite with favorable morphology and composition in order to buffer mechanical 

stress and alleviate crack formation during cycling. The RP-SPAN hybrid delivered an 

excellent specific capacity of 1605 mAhg-1 at 0.1 Ag-1, which is among the best 

performance in P-based anodes for LIBs [11]. The RP-SPAN hybrid delivered high 

specific capacity most likely due to the synergetic effect of chemical bonding and 
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improved kinetics. For practical application, future study need to be done to evaluate the 

electrochemical performance of hybrid anode in a full cell setup.  

 

Figure 4.5: Electrochemical impedance characterization of RP and RP-SPAN hybrid before and after 180 

cycles (the inset shows the equivalent circuit). 

 

 Conclusion 

In summary, the RP-SPAN hybrid anode was fabricated for LIB application by the facile 

ball milling and ESD technique. The electrochemical characterization of the pure RP and 

hybrid electrodes revealed a specific discharge capacity of 358 and 1605 mAh g-1 at 0.1 

A g-1 with good cyclability and rate capability. The highly reversible specific capacity of 

the hybrid electrode could be ascribed to the improved kinetics and chemical bonding 

formed during the ball milling and the electrode preparation through the binder-free ESD 

method. Considering the facile preparation and excellent electrochemical performance, 

our study demonstrates promising RP-SPAN hybrid anode for high-performance LIBs. 

https://www.powerthesaurus.org/ascribed/synonyms
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5. On the Electrochemical Stability Analysis of Red Phosphorus-Based Anode for 

Lithium-Ion Batteries 

 Introduction 

The rechargeable lithium-ion battery (LIB) is probably the most actively investigated 

type of modern batteries. Its basic design consists of (i) a negative and a positive 

electrode with open crystalline structure capable of repeatedly allowing the intercalation 

and de-intercalation of lithium ions, in addition to (ii) an ionic conducting and chemically 

stable electrolyte compressed between the two electrodes. (iii) An electronic insulating, 

porous membrane (separator) is placed between the two electrodes to prevent electrical 

shorts and provide mechanical stability of the cell while allowing ionic movements [1]. 

This type of intercalation battery is truly a multi-physics, multi-scale system that involves 

nonequilibrium thermodynamics, interfacial chemistry and electrochemistry, material 

science, thermofluidics, charge and mass transfers, electrolytics, etc. [2-4]. At a system 

level it can be viewed as an energy conversion system converting its stored chemical 

energy to electrical energy when connected to an external load, and quasi-reversibly 

converting the electrical energy provided by a power supply back to chemical energy [4]. 

In fact, LIBs are able to store high energy densities per unit mass and volume, which 

makes them the solution of choice for a wide array of applications including consumer 

electronics, medical devices [5], industrial systems [6], automobile [7], military 

equipment [8] and aerospace [9, 10]. 

Research and development on LIBs has been focused on engineering new materials and 

new structures and designs for the constituting electrodes. The goal is always geared 
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towards potential advantages in terms of cost-effectiveness, safety and reliability, and 

electrochemical performance during discharge. However, the behavior of batteries in use, 

which includes alternating charge and discharge sequences of different forms and nature, 

is also of great importance for real-world applications [1, 2, 11]. This includes aging and 

lifetime analysis as well as stability considerations. 

In a recent paper [12], some of us showed the high lithium storage capability of a binder-

free red phosphorus sulfurized polyacrylonitrile (RP-SPAN) composite anode material in 

LIB. The main motivation of using this structured electrode is that RP possesses a 

considerably high theoretical specific capacity of 2596 mA hg-1 (in the reaction 3Li + 

P→Li3P) while being earth-abundant and inexpensive [13]. However, amorphous RP is 

also known to have a very low conductivity (~ 10-14 S cm-1 [14]) and can show very large 

volume changes (~ 300% [15, 16]) during lithiation/delithiation sequences. As a result, 

this causes significant electrode material pulverization, and destabilization and thickening 

of solid electrolyte interface (SEI) film, and as such fast capacity fading [17]. One of the 

main effective techniques to overcome these issues is compositing RP with conductive 

agents such as carbonaceous materials (e.g. graphene, graphene oxide, carbon black, and 

carbon nanotubes [13]), which confirmed improved specific capacity, cyclability, and 

rate capability of RP/C composite when compared to pure RP [18]. Although, different 

RP/C composites have been evaluated as anode materials for LIBs, their application at 

high current densities is still limited, maybe due to the unstable P-C chemical bonds. In 

our previous study [12], we confirmed that SPAN did not act as a carbon source only, but 

the high-energy ball milling process used for the preparation of the material allowed the 

interaction of RP with sulfur to form strong P-S chemical bonds, which improved the 
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overall conductivity. In addition, the RP-SPAN composite anode helped accommodating 

the volume expansion during cycling with an outstanding specific capacity of over 1600 

mA hg-1 at 100 mAg-1 with good long-term cyclability [12].  

However, the question on the stability of the RP-SPAN-based anode is still unclear, and 

that is the main purpose of this work. Broadly speaking, stability of a dynamic system 

means that the system output is bounded in response to a bounded excitation (bounded-

input/bounded-output stability) or the system output tends to an equilibrium state 

(asymptotic stability). In addition, for the case of batteries, studies are usually on the 

degradation of the electrodes materials because of mechanical, chemical or structural 

changes during the processes of charge and discharge. Here, we first inspect the stability 

of the frequency-domain transfer function estimate of the battery response to small 

amplitude sinusoidal voltage excitations from 1 MHz down to 1 mHz. This assumes a 

priori that the battery can be viewed as an impedance block which is a characteristic 

property of linear and time-invariant systems. The results show that all poles of the 

transfer function lie in the left-half of the complex s-plane which implies indeed stability 

of the system. Moreover, the Kramers-Kronig (KK) integral analysis shows clear 

departure of the experimental spectral data from the KK-transformable real and 

imaginary parts, and magnitude and phase functions at very low frequencies (below 100 

mHz), which indicates that the system is more likely nonlinear time-invariant The system 

is also dissipative given its goodness-of-fit with non-integer, fractional-order impedance 

functions. These characteristics of the battery were in line with time-domain 

measurements of differential capacity (with respect to voltage) obtained from low-

frequency constant current charging/discharging over 200 consecutive cycles. 
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 Materials and Methods 

 Materials Synthesis 

First, sulfurized polyacrylonitrile (SPAN) was prepared from a mixture of 

polyacrylonitrile (PAN, Sigma Aldrich) and sulfur (Sigma Aldrich) at the mass ratio of 

2:1, which were uniformly mixed by using a mortar and pestle for30 minutes. The 

mixture was then heated at 450°C in Ar atmosphere using a tube furnace with a ramping 

rate of 5°C min-1 for 15 minutes. Second, SPAN and pure red phosphorus (RP, Alfa 

Aesar) were mixed at the mass ratio of1:5 and placed in a stainless steel vessel which was 

sealed inside a glovebox under Ar atmosphere. Subsequently, ball milling of the RP-

SPAN composite was carried out using a Retsch PM 100 planetary ball mill at 350 rpm 

and under a pressure of 100 bar for a duration of 36 hours (Figure 5.1 (a)). 

For preparing the RP-SPAN composite anode on Ni foam (current collector), we 

employed the well-known electrostatic spray deposition (ESD) technique (Figure 5.1 (a)), 

which is also referred to as electrostatic spray pyrolysis (ESP) [12, 19-22]. The ESD 

precursor solution consisted of mixing RP-SPAN material (90 wt.%) with super-P Li (10 

wt.%) and dispersing in 1,2-propanediol (no binding agent is needed), followed by 

stirring for one hour and transferring to a syringe. For the ESD setup, we placed a Ni 

foam substrate at a distance of 3 cm from the needle, and we applied a terminal voltage of 

about 6-7 kV between the substrate and the precursor solution. The electrode films were 

deposited at 200°C (temperature of the hotplate in Figure 5.1 (a)) with a flow rate of 2 ml 

h-1 for a duration of two hours, resulting in a visually uniform and mechanically stable 

coating. The mass of active materials was 0.4 mg. CR2032 type lithium-ion coin cell 
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consisting of RP-SPAN composite as the working electrode, and battery grade lithium 

foils (Alfa Aesar, purity 99.9%, thickness: 0.75mm) as both counter and reference 

electrodes (half-cell) was assembled in Ar-filled glovebox (less than 0.1 ppm of oxygen 

and water). A volume of 100 μl from 1 mol l-1 of LiPF6 in ethylene carbonate-diethyl 

carbonate (1:1 volume ratio) was used as an electrolyte. Microporous Celgard 2400 

polypropylene membrane of 25 μm thickness was used as a separator. The geometrical 

area of the electrode was 0.5 in. 

 Materials Characterization 

The morphological and microstructural properties of the synthesized and deposited RP-

SPAN hybrid sample was evaluated by scanning electron microscopy (SEM-JEOL 

6330F) in the secondary electron imaging (SEI) mode, with energy-dispersive X-Ray 

spectroscopy (EDS-Ultra-Dry). Powder X-ray diffraction (XRD) analysis was conducted 

on a Siemens 500D X-ray diffractometer with Cu Ka (λ= 0:154178 nm) radiation. Raman 

spectroscopy measurements were performed using a 514 nm laser excitation source 

BaySpec Raman spectrometer. 

 Electrochemical Characterization 

All electrochemical measurements were conducted at room temperature on a Bio-Logic 

VMP3 workstation. All potentials are reported vs. Li/Li+. First, we measured the spectral 

response of the battery with frequency sweep method (1 mHz to 1 MHz) under 

potentiostatic mode at open-circuit voltage, and with different ac amplitudes: 5, 10, 20, 

30, 40, and 50mV. Then, measurements were conducted with a constant ac amplitude of 

20mV but at different dc voltage biases from 2.5 V down to 10 mV. Constant current 
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charge/discharge tests were carried out between the voltage limits 0.01 V and 3.0 V. 

Cyclic voltammetry was performed at scan rates from 1 to 10 mVs-1, also within the 

voltage range of 0.01–3.0 V. 

 Results and Discussion 

In Figure 5.1 (b-e) we show results obtained from the materials characterization by means 

of SEM, XRD and Raman spectroscopy. The SEM micrograph in Figure 5.1 (b) presents 

the microscopic features of a sample of RP-SPAN composite material collected right 

after ball-milling process. One can observe that the high-energy mechanical grinding and 

blending by impact and friction forces on the constituting components led to the 

formation of polydisperse microaggregates. Figure 5.1 (c) presents a lower magnification 

SEM image of the RP-SPAN film after ESD coating on Ni foam. With this technique, 

under a high enough dc voltage, the solution precursor is atomized at the small orifice of 

the nozzle, and hence a conical spray of material is generated and dragged towards the 

substrate by electrostatic force. Upon contact with the heated substrate (set to 200°C in 

this study), fast pyrolysis of the precursors takes place leaving a relatively thin and 

uniform deposit. Visually, the Ni foam substrate is uniformly covered with porous, 

network-like morphology of inter-connected micro particles which is expected to be 

beneficial for solute wetting and ion diffusion and migration in LIB cell. 

XRD patterns of pure RP and RP-SPAN composite material are given in Figure 5.1 (d). 

For the RP sample, the relatively broad diffraction peaks are within the range of 14-17°, 

26-35° and 46-54° confirming the medium-range ordered structures of RP [23]. For the 

composite sample, the graphitic hkl Miller plane (002) of amorphous carbon is detected 
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at around 25° in addition to three broader and weaker peaks of RP. From the Raman 

spectroscopy results depicted in Figure 5.1 (e), the RP signature response corresponds to 

the low-intensity and wide wavebands in the range of 300-500 cm-1. Whereas for the 

hybrid sample, two additional prominent peaks are observed at 1367 and 1571 cm-1 

corresponding to the D-band (disordered structure in carbon matrix) and G-band (E2g 

graphitic mode) of SPAN carbon source [24], respectively. The characteristic peaks of 

the S-S bond at around 499 and 957 cm-1 were also detected for the composite sample 

[25]. 

 

Figure 5.1: (a) Schematic of preparation procedure of RP-SPAN anode for LIB via ball-milling and 

electrostatic spray deposition; (b)-(c) SEM, (d) XRD, and (e) Raman spectroscopy characterization results 

of RF-SPAN composite material. 

 

In Figure 5.2 we show results compiled from the spectral response of the battery half-cell 

measured at open-circuit voltage (zero net current flow) with steady-state sinusoidal 

voltage excitation (i.e. ( )  Sin(2 )
dc ac

v t V V ft   with 0dcV  ). The spectral response of 

the system is described by the transfer function: 
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 
 

( ) ( )
( )    ( )  ( )

( ) ( )
r i

F v t V s
H s H s jH s

F i t I s
                                                                    (5.1) 

with F being the Fourier transform operator and s = j! is the Laplace complex number. 

These data cannot be considered as impedance data yet (see arguments below) which is 

characteristic of linear time-invariant (LTI) systems, and as such cannot be directly 

analyzed with equivalent (passive) circuit models. Figure 5.2 (a) presents the spectral 

data in the form of real vs. imaginary part (Nyquist plot) and Figure 5.2 (b) depicts the 

data in the form of magnitude and phase vs. frequency (Bode plot) using sinusoidal 

voltage excitations of different ac amplitudes from 10 to 50 mV (7.07 to 35.35 mV rms). 

The curves in both figures are relatively identical to each other whether a small 10 mV or 

a larger 50 mV perturbation is applied, which implies that the measurements are 

conducted within the linear regime of the battery cell at the operating open-circuit voltage 

(steady-state). Nonetheless, one can observe from the Nyquist plots increased variations 

between the measured real and imaginary parts of the data as the frequency is decreased. 

For example, for f = 1 mHz in Figure 5.2 (a) (outlined with red dashed rectangle),                        

(Hr;  -Hi) = (14:783; 17:973) kΩ when using 10 mV ac perturbation and (16:006; 18:602) 

kΩ when using 50 mV, whereas for f = 521 mHz, we have much closer values, i.e. 

(0:2624; 0:3099) kΩ and (0:2766; 0:3189) kΩ, respectively. 

We studied the stability of the transfer function estimate of the battery half-cell spectral 

response data acquired with 20 mV ac amplitude as an example, but similar results were 

found with the other ac magnitudes. This assumes a priori that the system is LTI. The 

estimation of the transfer function can be computed using either the function tfest or fitfrd 
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of MATLAB R2019b. We found that the data can be fitted with up to 98.3% normalized 

root mean squared error (NRMSE) with the following 4-poles, 4-zeros transfer function: 

6

4 3 2

4 3 2

42.62 1389 912.3 47.92 0.3158
( )

1.454 0.1771 0.0031 3.941 10
est

s s s s
H s

s s s s


   


    
                                                      (5.2) 

The system would be stable if and only if all of the poles in the partial fraction expansion 

occur in the left-half of the complex s-plane. Marginally stable parts correlate with a zero 

real part, and unstable parts to a positive real part. All 4 poles in Equation 5.2 are found 

to be negative (i.e. -1.3214, -0.1118, -0.0191, and -0.0014), that is they all lie in the left 

half of the complex s-plane, which confirms that the system stable around open-circuit 

voltage conditions. 

Moreover, to properly assess the consistency of the measured data so that they qualify as 

impedance data (i.e. H(s) = Z(s)), it is necessary to apply the Kramers-Kronig (KK) 

transforms on the obtained results. Again, we take the spectral response acquired with 20 

mV ac amplitude as an example (similar results were found using the other ac magnitude 

excitations). According to Kramers and Kronig, for causal, stable, linear time-invariant, 

and finite transfer functioned, one can calculate its imaginary part from its real part as 

[26, 27]: 

2 2

0

2 Re( ( )) Re( ( ))
Im( ( ))KK

Z x Z
Z dx

x

 


 




 
                                                              (5.3) 

and its real part from its imaginary part as: 

Re( ( )) Re( ( ))
kk kk

Z Z    

                         
2 2

0

2 Im( ( )) Im( ( ))x Z x Z
dx

x

 

 





                                                        (5.4) 
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if the high frequency asymptote for the real part is known, and as 

Re( ( )) Re( (0))
kk kk

Z Z   

                   
2 2

0

2 ( / ) Im( ( )) Im( ( ))x Z x Z
dx

x

  

 





                                                       (5.5) 

if the zero-frequency asymptote for the real part is known. The results are shown in 

Figure 5.2 (c-f) in which the experimentally-measured real, imaginary, magnitude and 

phase of the transfer function are compared to those computed using the KK transforms 

(ZKK(s)). It is clear that the data shows severe discrepancies with ZKK(s), and as such does 

not comply as a whole with the KK transforms and associated conditions. The impedance 

spectroscopy technique is recognized as a powerful tool for the characterization of 

electrical, thermal and aging behavior of batteries and other electrochemical systems. 

Unfortunately, the validation of the spectral data and their compliance with the KK 

transforms before proceeding with equivalent circuit modeling is often bypassed and 

overlooked in the literature. In particular, for our case, from Figure 5.2 (e, f) in which the 

relative deviations between the actual and KK-transformed measurable, i.e. Δ(Re(Z)),  

Δ(-Im(Z)), Δ( Z ), and Δ( (Z)), are plotted vs. frequency, one can see that most of the 

discrepancies are localized at the low and high frequency tails, approximately below the 

100 mHz and above 1 kHz limits. Thus, from the results of Figure 5.2, we can expect 

some forms of nonlinearities and/or instabilities at the extremities of the covered 

frequency range, and as such the transfer function may be identified as the impedance 

Z(s) of the half-cell battery system only within the range of 100 mHz to 1 kHz [28]. 

Nonetheless, we recognize that errors in the estimation of the KK functions are 
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unavoidable at extreme (low and high) frequencies given that a low number of discrete 

data points are used for approximating the continuous KK functions, which require the 

integrations to be carried out from zero to infinity. Thus, in connection with the result 

found from the transfer function estimate and the KK transforms analyses, we may 

conclude at this point that at low frequencies (below the 100 mHz limit and at which 

batteries are expected to operate) the system is either nonlinear (but stable) or time 

variant or both. These two situations violate the validity conditions of the KK transforms. 

The time variance of the battery may appear at low frequencies because the measurement 

time is significantly long (e.g. 1000 seconds at 1 mHz). During this time, chemical and 

structural changes may still be active rendering the impedance time-varying as well. The 

high frequency region of the spectrum is usually assumed to be related to the electrolyte 

system, and we will not focus on it in this study. The main findings resulting from the 

spectral measurements carried out different dc biases from 2.5 V down to10 mV (not 

shown here) were relatively similar to those reported at open-circuit voltage. 

Now that we have established that the measured frequency response H(s) may be 

identified as the impedance Z(s) of the battery half-cell configuration only within the 

intermediate frequency range 100 mHz to 1 kHz, it is safe to utilize the equivalent circuit 

model approach with the data [27]. We applied complex nonlinear least squares (CNLS) 

fitting of the data (from 109 mHz to 878 Hz) collected at open circuit voltage with 20 mV 

ac amplitude (taken as an example, but comparable results were found for the other ac 

amplitudes) to the double-dispersion, fractional-order impedance Cole-Cole function: 

2

1

( )
1 i

i

Pi
cc s

i Pi

R
Z s R

R s C




 


                                                                                           (5.6) 
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This model, in which 1/ i

i
s C


 corresponds to the impedance of a fractional-order 

capacitor or constant phase element(CPE), is known to be able to simulate with high 

fidelity the impedance of LIBs [29], and other energy materials and devices [30, 31]. The 

values of  {
1 1 2 21 2, , , , , ,s p PR C R C R   } (Equation 6.2) where found to be 8.264 Ω, 0.043 

mFs-0.128, 0.769, 192 Ω, 1.111 mFs-0.128, 0.873, and 11.246 kΩ, respectively with high 

degree of accuracy
2 3( / 2.473 10 ).X Z    We deduct from these values, and in 

particular from the values of 1i  , that the system is dispersive (non-ideal) with built-in 

memory effects [32-34]. This can be attributed to the porous (open) structure and nature 

of the RP-SPAN electrode material. The polydisperse distribution of particles in the 

composite electrode (Figure 5.1 (a, b)) are self-arranged in a highly dimensional network 

along the thickness, and as such form interconnected spaces with irregular sizes. Such 

spatial features and their different length scales have direct implications on the electrical 

parameters of the cell and render them highly frequency-dependent [32, 35]. This 

deviation from regular RC semi-circles (Figure 5.2 (a)) is usually recognizable from 

relatively common features of LIBs: i.e. (i) the depressed mid-frequency arc which is due 

to the resistance/pseudocapacitance (fractional-order capacitance) associated with charge 

transfer processes and chemical/electrochemical reactions taking place during battery 

operation, and (ii) the inclined low-frequency branch which is attributed to solid-state 

diffusion and battery capacity [29]. Furthermore, one can compute an equivalent time 

constant for the high-frequency loop as 1

1 1

1/

1 ( ) 1.95PR C


   ms (i.e. 511 Hz), and 
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similarly an equivalent time constant for the low-frequency arc as 2

2 2

1/

2 ( ) 18.0PR C


    

s (i.e. 55 mHz). 

 

Figure 5.2: Spectral response results of RP-SPAN-based anode: (a) Nyquist plots and (b) Bode plots of data 

measured at Vdc = 0 with different values of ac sine perturbation, (c) Nyquist plots and (d) Bode plots of 

data measured at Vdc = 0 with Vac = 20 mV compared to those computed with the Kramers and Kronig 

(KK) transforms. In (e) and (f) we illustrate the relative deviation of real and imaginary parts, and 

magnitude and phase of the measured data from those computed with the KK transforms. 

Additional information on the dynamic behavior and stability of the RP-SPAN electrode 

for LIBs application can be deducted from time-domain measurements. In Figure 5.3 we 

show the battery response to an instantaneous step current from 45 mA down to zero. The 

device’s voltage was increased and limited to 3 V during the charging period (t < 0 in the 
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figure), after which the cell was disconnected from the power amplifier of the 

electrochemical station, and the rest voltage was measured for up to 48 hours (t > 0 in the 

figure). It is clear that the relaxation voltage follows initially a power-law decay with 

time, and then rebounds to asymptotically tend to a stable, steady-state value of 2 V. 

However, the time needed for the quasi steady-state equilibration of the cell extends to 

more than 24 hours which leads to the conclusion that the system is still 

electrochemically evolving during this transition period with possible formation for 

instance of new crystalline structures. This further confirms that the prerequisite of 

stationarity is not strictly fulfilled when shorter measurements are conducted (1.88 hours 

to scan the frequency range 1 mHz to 1 MHz), and is in line with the fact that the low-

frequency spectral data is not KK-compliant as shown in Figure 5.2. 

In Figure 5.4, we present the results obtained from 200 consecutive cycles of 

charge/discharge using ±95 mA with the voltage limits set to 0.01 V and 3.0 V. Because 

of these two limiting values on the allowed potential window, it is understood that the 

excitation signal is not necessarily stationary because of capacity fading as we go with 

the measurements. This will render the duration of the charge/discharge periods shorter 

and shorter with time. Discrete Fourier transform of the signal is given in Figure 5.4 (a), 

and shows that most of the signal’s power is nonetheless concentrated at the low 

frequencies end, below 0.2 mHz (the lower limit of spectral response of the battery half-

cell system was set to 1 mHz). However, in order to fully capture how the square wave 

current excitation evolves with time, we carried out time-frequency analysis of the 

current signal as shown in the joint time-frequency spectrogram in Figure 5.4 (b). The 

spectrum is estimated over sliding windows; (stationarity is assumed in each window) 
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using short-time Fourier transform (STFT). The figure confirms that the signal’s power is 

mostly in the very low frequencies but with some contributions from higher frequencies 

that tend to show up at higher cycle numbers (see the increase in concentration of green 

or magenta colors with time for a fixed frequency). The FFT and spectrogram results of 

time-domain voltage response are provided in Figure 5S.1 from which the same 

conclusions can be drawn. 

 

Figure 5.3: Rest voltage of RP-SPAN-based anode in response to step current from 45 to 0 mA. 

 

We computed the differential capacity with respect to voltage, dQ/dV, from the 

alternating current steps ±95 mA test results. Differential capacity analysis (and its 

inverse, differential voltage dV/dQ, or delta differential capacity analysis [36]) is known 

to offer greater sensitivity than those based on traditional capacity vs. voltage 

measurements, and can probe much better the cell degradation with continuous cycling. 

Figure 5.4 (c) depicts the change in dQ/dV vs. voltage for different cycle numbers from 3 

to 200. The fading of several peaks in the dQ/dV profiles with continued cycling from 

cycle #3 to cycle #100, whether during the charge or discharge of the battery, might be 

associated with active material loss and side reactions. This is somehow expected 
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because RP is known to undergo large volume expansion (more than 300% [15, 16]) 

during repeated lithium insertion and extraction causing the disintegration of the 

electrode’s active materials. This leads to the structural destabilization or delamination of 

the solid-electrolyte interphase (SEI) film and the deterioration of proper electrical 

contact with the current collector [16]. In addition, the reduction in sulfur content, 

possibly by dissolution into the electrolyte (compare EDX elemental mapping results 

obtained from on a fresh and cycled RP-SPAN in Figure 5S.2 and 5S.3), could be another 

capacity fading reason during cycling [37-39]. However, we did not observe any 

detectable peak shifting to higher potentials for the first few cycles, which is usually an 

observable attributed to SEI growth and/or electrolyte oxidation [36]. We also remarked a 

relatively negligible change in the magnitude of dQ/dV between cycle #100 to cycle 

#200. This may indicate that the cell reached some sort of an endurance plateau that can 

be better visualized from the coulombic efficiency results presented in Figure 5.4 (d). It is 

clear that from cycle #75 onwards, the coulombic efficiency of the cell flattens and 

remains constant at approximately 103%. Nonetheless, there is a gradual capacity fading 

that seems to slow down after ~150 consecutive cycles (in average 0.21% loss of 

discharge capacity per cycle), which is due to the gradual competition between 

irreversible electrochemical processes and reversible lithium intercalation in the electrode 

[40]. 

We recall that the battery half-cell of this study consists of RP-SPAN lithium-ion 

insertion anode on the one hand, and concentrated solution of LiPF6 in ethylene 

carbonate-diethyl carbonate on the other hand. This means that the measurement of 

spectral response using stepped-frequency sinusoidal voltage from 1 mHz to 1 MHz (Fig. 
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2) will excite the cell’s electrochemical adsorption and intercalation/deintercalation 

processes at all these frequencies. This takes up to 1.88 hours in measurement time. We 

can assume for instance the system of three reversible elementary steps [3]: 

+

E E E.ads ELi +Σ Li +Ω
                                                                                                    (5.7) 

 
+ -

E,ads e,ads a,ads ELi e Σ Li Σ                                                                                      (5.8) 

 

a,ads aLi Li Σa a                                                                                                   (5.9) 

 

where the subscripts “a”, “E” and “ads” refer to the anode, electrolyte and surface 

adsorption, respectively, whereas Σ  and Ω indicate surface vacancy and volume 

vacancy, respectively [3]. Reactions 5.7 and 5.8 describe the adsorption of lithium ions 

from the electrolyte onto the active electrode material coupled with electronic charge 

transfer, and reaction 9 describes the intercalation of the surface-adsorbed lithium atom 

into the bulk [41]. These reactions are interdependent, can take place at overlapping time 

scales and at different locations in the porous electrode/electrolyte interface, and can be 

accompanied with irreversible processes such as the formation of new crystalline 

structures and irreversible transformations [4]. In addition, the reactions rates depend on 

the state of charge, capacity, aging conditions of the battery as well as the type and 

structure of charging/discharging waveforms. The thermal decomposition of the LiPF6 

based electrolyte and the resulting adverse effects on its frequency-dependent 

conductivity and permittivity can also play significant roles in the overall electrical 

response of the cell [42-44]. Therefore, it is understood that since the spectral response is 

the result of cumulative signals originating from the different constituting elements of the 

battery, it is very difficult to identify their individual contributions from such 
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measurements. These effects are due not just to the responses of electrodes, supporting 

electrolyte and separator where multiple transport processes of charge, mass, and energy, 

as well as chemical and electrochemical reactions are taking place, but also to eventual 

impedance artifact due to battery peripherals such as current collectors and leads. 

Nonetheless, it is always instructive to characterize the system-level spectral response of 

the cell, especially when it can be qualify as an impedance and be simulated with 

equivalent circuit models as done using Eq. 6. The analysis provided also the information 

that the LIB cell’s frequency response is not KK-compliant at low frequencies and as 

such maybe in breach of the conditions of stationarity and/or nonlinearity. It is not always 

correct to directly interpret the ratio of measured voltage to measured current at these 

frequencies as an impedance, which by definition is valid only for linear time-invariant 

systems. Figure 5.5 shows the current vs. voltage and capacity vs. voltage profiles of the 

battery half-cell in response to triangular charging/discharging waveforms at different 

scan rate from 1 to 10 mVs-1. The cathodic and anodic peaks from the CV plots at around 

0.6 V and 1.1 V are clear even at high scan rates which correspond to the 

intercalation/deintercalation of Li ion into the P-based electrodes. These results 

demonstrate clearly high degree of nonlinearities, asymmetry in charge-voltage profiles 

and general hysteresis effects [45]. 
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Figure 5.4: Results compiled from constant current -95 mA charging/discharging of RP-SPAN-based 

anode: (a) FFT of the time-domain input current signal; (b) spectrogram computed using short-time Fourier 

transform (STFT) which depicts the frequency content of the input current signal as it varies with time; (c) 

plots of differential capacity dQ/dV of the battery with respect to voltage for different cycles; (d) plots of 

the evolution of the battery capacity during charge and discharge, and the resulting coulombic efficiency 

vs. cycle number. 

 

Figure 5.5: Cyclic voltammetry results of RP-SPAN-based anode at different low-frequency voltage scan 

rates: (a) current vs. voltage profiles; (b) capacity vs. voltage profiles. 
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At lower frequencies where batteries are usually operated at, other subsequent processes, 

such as the formation of new crystalline structures, can become the limiting kinetic steps 

[28]. The battery’s behavior below the 100 mHz limit cannot be modeled with passive 

linear circuitry, and one may need other modeling tools such as active and nonlinear 

circuitry as recently shown for the low-frequency inductive loop in perovskite solar cells 

[30]. Referring to the measured phase angle (see Figure 5.2 (b)) which is always negative 

below 100 mHz, the possibility of inductive behavior is excluded [30]. Negative 

resistances or negative capacitances (or more generally negative impedances) are known 

to be obtainable from active, power-consuming circuits such as voltage-controlled 

voltage sources (VCVS) or current-controlled voltage sources (CCVS). A schematic of 

an equivalent circuit model of the battery is shown in Figure 5.6, wherein the voltage 

source and impedance block (Equation 5.6) are nonlinear and depend on the state-of-

charge (SOC), C-rate, operating frequency, state-of-health (SOH) and age, temperature, 

etc. [46]. Further investigations are ongoing on this point. 

However, a modified CPE function can be used to fit and interpret the low-frequency 

spectral data instead of developing nonlinear models. The modified CPE impedance is 

given as: 

,

1
Z

( )j
   

                                                                                                            (5.10) 

instead of the classical CPE impedance Z 1/ ( )j 

   . In this three-parameter CPE 

function, the magnitude and phase are actually decoupled from each other (and as a 

consequence the real and imaginary parts), which renders the fitting of spectral response 

to do not be constrained by the KK transform rules. We verified the superiority of the 
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modified CPE compared to the classical one as shown in Fig. 6. The fitting parameters 

obtained by flower pollination algorithm are found to be 

60.572, 0.637, 0.218 10 .       This modified, linear CPE function can be viewed 

as roundabout way to model non-KK compliant data. Further investigations on the 

physical interpretation of the double-exponent CPE model are underway. 

 

Figure 5.6: (a) Equivalent electric circuit model of RP-SPAN-based anode for LIB applications. (b) Fitting 

of spectral response data of using a standard CPE impedance compared to a modified CPE impedance 

given by equation 5.10. 

 

 Conclusion 

In this chapter we investigated RP-SPAN-based anode spectral response to small-

amplitude sinusoidal voltage excitations, and its time-domain constant-current 

charge/discharge dynamics in order to assess its stability, linearity/nonlinearity and time 

variance/invariancce. Low-frequency spectral data were found to be violating the KK 

transforms which indicates that the battery is either nonlinear or time-invariant or both. 

Nonlinearity arises from the existence of active processes within the cell (e.g. voltage-

controlled voltage sources or current-controlled current sources) which are necessary to 

explain the appearance of inductive behavior [30] or the appearance of negative 
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impedances (this work) at low frequencies. On the other hand, time invariance can be 

easily violated at low frequencies due to the very long measurement time resulting from 

the frequency-sweep measurement technique employed in impedance analyzers. During 

this long measurement time (e.g. 1000 seconds at 10 Hz) irreversible chemical and 

electrochemical reactions may take place, hence changing the structural composition and 

properties of the material under test. Other impedance measurement methods such as 

those based on wide-band random excitations could be better measurement alternatives in 

order to reduce the measurement time while covering a wide frequency range [47]. It 

should be noted however that the KK transform itself requires caution when applying it at 

low frequencies due to the well-known tails problem. The error in calculating the 

imaginary part of an impedance from its real part (or vice versa) at a given frequency 

point depends on the amount of data points available to execute the computations. As a 

rule of thumb, data measured in the frequency range fmin to fmax implies that the KK 

transform can be accurately computed in the frequency range10 fmin to 0:1 fmax without 

showing tail frequency errors. This again suggests that the frequency-sweep 

measurements at very low frequencies are not optimal and should preferably be replaced 

by wide-band noise-like excitation signal measurement techniques that can guarantee a 

much larger number of data points to enable the accurate computation of the KK 

transform. Time-domain results, whether the differential capacity (with respect to 

voltage) as a function of both voltage and cycle number (from constant-current 

charging/discharging sequences) or cyclic voltammetry, are in line with the those found 

from spectral measurements. Nonlinearities and time-variance of the cell performance are 

clearly illustrated in Figure 5.4 and Figure 5.5. A modified CPE function given in 
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Equation 5.10 is proposed as an alternative model to fit such type of non-KK-compliant 

data. 
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6. Single-Step Exfoliation of Black Phosphorus and Deposition of Phosphorene via 

Bipolar Electrochemistry for Capacitive Energy Storage Application 

 Introduction 

Alongside with graphene and its fascinating properties [1], other two-dimensional 

(2D) materials, such as transition metal oxides [2], layered transition metal 

dichalcogenides (TMDs) [3], and boron nitride [4] have stimulated significant 

research interest for next-generation electronic and optoelectronic devices because 

of their outstanding structural and physical properties [5-7]. Among all 2D 

materials, graphene has the highest charge carrier mobility (up to 100,000 cm2 V-1 

s-1), but its zero bandgap prohibits its operation as a semiconducting material in 

electronic applications [8, 9]. Molybdenum disulphide presents a remarkable 

bandgap but suffers from limited carrier mobility [10]. Recently, black phosphorus 

(BP), which was discovered by Bridgman back in 1914 [11], has recaptured 

attention due to its promising physical and chemical properties [12-14]. In terms of 

structure, which is similar to graphite, strong P-P covalent bonds in each layer of 

BP form a puckered honeycomb structure, and neighbouring layered BP nanosheet 

(known as a phosphorene) adhered together with a weak van der Waals interlayer 

interactions (see Figure 6S.1) [15]. BP is a p-type semiconductor which shows a 

tuneable direct bandgap in a desirable range from 0.3 eV for bulk to 2.0 eV for a 

few-layer BP [16, 17], high carrier mobility (up to 1000  cm2 V-1 s-1) [18], and 

acceptable mechanical flexibility compared to the other 2D materials [19]. 

Furthermore, BP is the most stable allotrope of phosphorus compared to the white 
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phosphorus and red phosphorus (RP) [20]. These exclusive properties suggest the 

possible usage of phosphorene in nanoelectronics and optical devices. 

Additionally, due to its high surface area and high theoretical capacity, 

phosphorene is viewed as a great candidate for electrochemical energy storage 

devices, such as batteries and supercapacitors [21, 22].  

According to theoretical studies and experimental characterizations [23], the real 

application of BP depends on the method of preparation and exfoliation of few-layer 

phosphorene from the bulk material [24]. To date, different top-down and bottom-up 

approaches have been used to prepare phosphorene nanosheets. The top-down processes 

are more common and rely on chemically or mechanically weakening and breaking the 

interlayer interactions, while the bottom-up techniques are based on chemical synthesis 

from phosphorus precursors [25]. Smith et al. synthesized a few-layer phosphorene films 

of 3.4 to 600 nm thickness on a silicon substrate through the bottom-up chemical vapor 

deposition (CVD) method using RP as a starting material [26]. Besides CVD, there are 

limited bottom-up synthesis methods due to the lack of suitable precursors and the 

associated high costs of preparation [27]. Top-down methods are mostly used for the 

formation of phosphorene based on mechanical and liquid exfoliation of BP. The well-

known Scotch tape method of micromechanical cleavage was applied by Li et al. to 

exfoliate and fabricate phosphorene on SiO2/Si substrate [28]. However, this method 

suffers from low yield and poor scalability. As an alternative, liquid-phase exfoliation 

revealed promising results for BP exfoliation. It consists of the dispersion of BP in a 

solvent (deionized (DI) water or organic/inorganic solutions), sonication, and 

centrifugation of the exfoliated materials [29, 30]. 
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Brent et al. obtained two layers of phosphorene using a one-step ultrasonication of 

BP in N-methylpyrrolidone (NMP) solution [31]. By controlling the sonication 

power and centrifuge speed of rotation, large quantities and to a certain extent 

controllable size of phosphorene nanosheets (a few nanometres to several tens of 

micrometres) have been produced, which makes this method more favourable 

compared to the mechanical exfoliation [32, 33]. Yasaei et al. used 

dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) as a stripping solvent 

to synthesize large scale and highly crystalline phosphorene nanosheets with the 

thickness of 11 nm [34]. Isopropyl alcohol (IPA) [35], ionic liquids [36] and N-

cyclohexyl-2-pyrrolidone (CHP) [37] were also reported as solvents for liquid 

exfoliation of BP. Very recently, Yan et al. developed a simple solvothermal-

assisted exfoliation method with acetonitrile as a solvent to synthesize a few-layer 

phosphorene within a size range up to 10 µm. Acetonitrile was shown to weaken 

the van der Waals bonds and decrease the sonication time [38]. However, the use 

of hazardous solvents and the high concentration of structural defects in the final 

products remain the major disadvantages of liquid exfoliation methods, which may 

limit their widespread adoption. Electrochemical exfoliation is another liquid-

based exfoliation technique to prepare a few-layer phosphorene that is faster, 

inexpensive and more tractable [39]. In this method, the exfoliation occurs in 

organic or aqueous solutions by applying a fixed voltage between the bulk BP and 

an inert platinum electrode [40, 41]. Li et al. successfully synthesized highly 

crystalline phosphorene nanosheets using BP as a cathode in a nonaqueous 

electrolyte (0.01 M tetraalkylammonium salt in DMSO) and by applying a 
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cathodic voltage of -5 V [42]. Ambrosi et al. used 0.5 mol l-1 H2SO4 solution and a 

BP anode. First, they applied 1 V to the bulk BP to initiate the intercalation of the 

electrolyte anions and then 3 V for the exfoliation process [43]. Although the 

electrochemical exfoliation methods can successfully exfoliate bulk BP into 

phosphorene, they are nonetheless multi-step and time-consuming procedures, and 

thus less attractive for practical applications. It is therefore necessary to develop 

alternative techniques that can fabricate a few-layer BP-modified substrate in a 

facile, single-step, scalable, and eco-friendly manner.  

In this study, we propose a novel and straightforward two-in-one process to 

exfoliate BP into phosphorene nanosheets in DI water, which are then dragged 

electrophoretically to be deposited on a conductive substrate. The procedure is 

based on the mechanism of bipolar electrochemistry (BPE). BPE is a well-known 

technique since 1960s which is based on applying a sufficiently high voltage to 

generate electrochemical reactions between two feeding electrodes and a 

conductive bipolar electrode placed wirelessly between them [44]. The difference 

in the electric potential between the solution and the bipolar electrode drive redox 

reactions on the cathodic and anodic poles of the bipolar electrode [45]. This 

method has been used for different applications such as electronic devices 

manufacturing, electrochemical sensing, and optical detection due to its low cost, 

user-friendly, and high-efficient operation [46, 47]. It has been recently used for 

the simultaneous exfoliation of graphene from graphite and its deposition on 

stainless steel feeding electrode [48-50]. As mentioned earlier, liquid-based 

exfoliation of BP is mainly conducted in organic solvents that are adsorbed by the 
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surface of exfoliated BP and are very difficult to be removed later. Here, we use DI 

water as a solvent for the exfoliation of BP, which makes this technique cost-

effective and environmental-friendly. The exfoliated-and-deposited BP nanosheets 

were characterized morphologically, optically and chemically using scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), Raman 

spectroscopy and X-ray photoelectron spectroscopy (XPS). The electrochemical 

characterization of the phosphorene-modified positive feeding electrode showed a 

fractional-order capacitive behaviour with discharge energy of 22.8 nW.h cm-2 

recoverable with very high efficiency after 10000s of charge/discharge cycles. 

Fractional-order capacitors or constant phase elements (CPE) have an impedance 

of the form Z(s) = 1/sαCα, (0<α<1) and constant impedance phase angle φ(Z) = 

−απ/2 independently of the frequency, which is suitable for instance for oscillator 

circuits for timing applications, filters for frequency selectivity purposes, and in 

fractional-order proportional–integral–derivative controllers. 

 Materials and Methods 

 Materials Synthesis 

Two 316 stainless steel electrodes (1×4 cm2) serving as positive and negative 

feeding electrodes were placed vertically in DI water (18 MΩ∙cm resistivity) at a 

distance of 3 cm from each other (see BPE cell in Figure 6.1). A 1 cm long and 2.5 

mm in diameter bulk poly-crystalline BP bar (99.998% purity, supplied by Smart-

Elements, Germany) was placed wirelessly between the two feeding electrodes. A 

multi-channel DC Power Analyzer (Agilent Technologies N6705A) was used to 
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drive the BPE process, which was conducted with 30 Vdc (i.e. electric field of 10 

V cm-1) for continuous 24 hours at ambient conditions.  

 Materials Characterization 

The microstructural and morphological properties of the exfoliated BP were 

characterized by field-emission scanning electron microscopy (JEOL FESEM 

7000) and field-emission transmission electron microscopy (Tecnai TF 20 TEM). 

High-resolution TEM (HRTEM) with selected-area electron diffraction (SAED) 

were conducted at an accelerating voltage of 200 kV, and the field emission gun 

with a resolution of 2 Å. Focused Ion Beam (Quanta 3D; Dual Beam) was used for 

the TEM sample preparation. The Raman spectra were collected on a BaySpec 

Raman spectrometer using a 514-nm laser excitation. The chemical composition of 

the exfoliated-and-deposited phosphorene on the stainless steel substrates was 

evaluated using X-ray photoelectron spectroscopy (XPS) on a Physical Electronics 

5400 ESCA instrument with Al Kα radiation (1486.6 eV). 

 Electrochemical Characterization 

The electrochemical measurements were performed on a VMP3 Bio-Logic 

potentiostat. Two symmetric positive feeding electrodes (after BP exfoliation) of 

0.5×0.5 cm2 were assembled in a Swagelok electrochemical cell using 1 mol l-1 

Na2SO4 solution and Celgards 2400 microporous polypropylene separator. The 

spectral impedance of the device was measured at 0 Vdc with 10 mV ac 

perturbations from 1 MHz down to 10 mHz. The cyclic voltammetry (CV) tests at 

the scan rates of 2 to 1000 mV s-1 and galvanostatic charge/discharge (GCD) at 
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different current densities from 25 to 500 μA cm-2 were carried out over the 

voltage range of 0 to 0.7 V.  

 

Figure 6.1: Schematic illustration of the two-in-one bipolar electrochemical cell used for (i) BP exfoliation 

into phosphorene, and (ii) subsequent electrophoretical deposition of the suspended phosphorene on the 

feeding electrodes. 

 

 Results and Discussion 

The BPE setup used to exfoliate-and-deposit phosphorene nanosheets starting from 

bulk BP is shown in Figure 6.1. In brief, a BP bar was placed wirelessly in the 

centre of the cell pre-filled with DI water, and two stainless steel feeding 

electrodes were placed at a distance of 3 cm apart. Figure 6S.2 which shows 

typical SEM images of the bulk BP before exfoliation consisting of an angular, 

closely-stacked and layered structure. Due to the concept of bipolar 

electrochemistry, in general the induced voltage on the two pole of bulk BP 

depends on the applied voltage, length of BP electrode, and distance between two 

feeding electrodes. By applying higher voltage, using longer bulk BP and 

decreasing distance between two feeding electrodes, the induced voltage will 
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increase. The typical electric field was reported as around 5 to 15 Vcm-1 for 

successful BPE exfoliation of graphite [48-51]. In this study, cell voltage of 30 V 

was selected based on the electric field of 10 Vcm-1. The extremities of the BP 

substrate across the direction of the electric field get polarized in the opposite 

polarity to the feeding electrodes resulting in the wireless compartmentalization of 

the BP into anodic and cathodic poles [46]. The bulk BP remains almost 

isopotential during BPE. When the bipolar potential is large enough hydrogen and 

oxygen bubbles were generated at the surface of the negative and positive poles of 

bulk BP, respectively, as a result of water electrolysis reaction, and can be easily 

visualized (Supplementary Video 1). Given the “crumbly” and layered nature of 

the bulk BP bar, H+ and OH- ions generated during the water decomposition can be 

intercalated to the bulk BP and overcome the weak van der Waals forces of BP 

layers. Therefore, 2D phosphorene particles can be detached and exfoliated from 

the bulk BP. Due to the Vdc electrophoresis phenomena, 2D phosphorene 

nanosheets will be transported and deposited on to the feeding electrode. Figure 

6S.3 shows the change of the cell current versus time during the exfoliation 

process. It is clear that the current progressively increased with the time as a result 

of increased conductivity of the solution, which can be attributed to the collective 

effect of water electrolysis and by-products from BP exfoliation.  

After 24 hours of BPE, the bulk BP did not show any noticeable change, however, 

obvious deposition of a thin film on the positive electrode of the bipolar cell can be 

observed. It should be noted that in our recent study of graphene exfoliation via 

BPE [50], deposition occurs on both positive and negative feeding electrodes. 



144 

 

More detailed study needs to be done to investigate the possible deposition of 

phosphorene on the negative feeding electrode. Typical SEM micrographs of the 

positive feeding electrode after 24 hours of operation are shown in Figure 6.2 (a-c) 

at different magnifications. One can observe a homogeneous distribution of thin 

phosphorene nanosheets on the substrate with a structured and fractal structure. 

The Raman spectroscopy results of the same feeding electrode are shown in Figure 

6.2 (d) along with the Raman spectrum of the bulk BP for comparison. From the 

six theoretical Raman vibration modes of black phosphorus, three prominent peaks 

appear in the range from 300 cm-1 to 500 cm-1 [52, 53] which confirms that the BP 

exfoliation/deposition was successful. These peaks are
1

gA  (out of plane), 
2gB , and 

2

gA  (in-plane) vibration modes at 361 cm-1, 439 cm-1, and 467 cm-1, respectively, 

indicating good agreement with previous results [54-56]. For the exfoliated BP, 

compared to the bulk BP, blue-shifts by about 3.1 cm-1, 7.0 cm-1, and 5.7 cm-1 can 

be observed for the Raman modes 
1

gA , 
2gB , and 

2

gA , respectively. These shifts may 

be associated with the less hindered vibration of the phosphorus atoms due to the 

weakened interlayer van der Waals forces [30, 37]. The observed blue shifts for the 

exfoliated BP confirm the reduction in the number of BP layers. It is also clear that 

due to the reduction of BP thickness, the intensity of the three bands decreased 

significantly for the phosphorene nanosheets [57-59]. The number of phosphorene 

layers after exfoliation could be estimated as 3 to 5 layers based on the intensity 

ratio of 2.75 for the 
2

gA /
1

gA  vibration modes [60].  
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XPS spectra of the bulk BP and exfoliated BP nanosheets (Figure 6.2 (e)) revealed 

two well-defined P2P1/2 and P2P3/2 components at a binding energy of about 130.8 

eV and 129.8 eV, respectively, which are related to the crystalline black 

phosphorus peaks. A broad peak can be observed at around 133.0 eV and 132.8 eV 

for bulk BP and exfoliated BP nanosheets, respectively, which could be assigned 

to phosphorus-oxygen bond (POx) [61]. The POx bond can be attributed to the 

high reactivity of BP and spontaneous formation of surface oxide layer in air [43]. 

The XPS spectrum of the exfoliated phosphorene on the stainless steel show less 

intense POx peak compared to the bulk BP indicating that the bipolar exfoliated 

phosphorene has higher degree of oxidation because high surface area 

phosphorene nanosheets are more reactive and sensitive to oxygen. The peak shifts 

for the POx, P2P1/2and P2P3/2 are around 0.3, 0.2, and 0.09 eV to the lower values, 

respectively. The peaks shift to the lower binding energies could be attributed to 

the reduced number of layers of BP nanosheets after bipolar exfoliation [62, 63]. 
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Figure 6.2: (a-c) Typical SEM images of exfoliated and deposited black phosphorus nanosheets on 

the positive electrode in different magnification. (d) Raman spectra, and (e) XPS spectra of the BP 

crystal and bipolar exfoliated-and-deposited BP nanosheets. 

 

In order to investigate the morphology of the exfoliated BP nanosheets as well as 

the crystalline quality, TEM characterization was carried out. The TEM images of 

the exfoliated BP nanosheets collected from the DI water after the 24-hour BPE 

operation are shown in Figure 6.3 (a-f). Figure 6.3 (a), shows a low-resolution 

TEM image of electron-transparent, thin phosphorene nanosheets with lateral size 

in the range of a few hundreds of nanometres which demonstrate the successful 

exfoliation of BP by bipolar electrochemistry method [43, 64]. HRTEM images 

confirming the crystallinity of the phosphorene are shown in Figure 6.3 (b-f). The 

interplanar distances and corresponding Miller indices of the BP nanosheets are 

labelled on the HRTEM images. It is clear from Figure 6.3 (b-f) that the 

orthorhombic crystal structure of BP appears to be not affected by the bipolar 
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exfoliation, which confirms a low defect concentration in produced phosphorene 

nanosheets. The exfoliated BP nanosheets revealed different lattice fringes with 

interplanar distances of 0.34, 0.21, 0.23, and 0.25 nm, which could be assigned to 

the (021), (002), (041), and (111) atomic planes of orthorhombic black 

phosphorus, respectively. From SAED pattern presented in the insets of Figure 6.3 

(e, f), the orthorhombic single crystals of the exfoliated BP is confirmed which is 

in good agreement with previous reports [36, 65]. The possible reason for various 

size of crystalline domains of phosphorene nanosheets after bipolar exfoliation 

could be due to the poly-crystalline nature of the bulk BP. The interplanar 

distances are matched with the d-spacing of orthorhombic black phosphorus 

(JCPDS No 96-101-0326).  

Finally, owing to the structured surface of the exfoliated-and-deposited 

phosphorene nanosheets, the electrochemical performance of the positive feeding 

electrode was evaluated for capacitive energy storage application in a two-

electrode symmetric configuration. We first analysed the open-circuit spectral 

impedance of the device which was measured with 10 mV ac amplitude excitations 

from 1 MHz down to 10 mHz. The Nyquist plot and Bode plot (inset) are depicted 

in Figure 6.4 (a). The spectral phase is relatively constant at an average of -66.5 

deg. in the low-to-medium frequencies (less than 1000 Hz) and heads towards the 

resistive, and then inductive behaviour as the frequency is increased. The non-ideal 

behaviour can be attributed to the crystalline inhomogeneity and surface roughness 

of the electrode. Such non-ideality can be modelled using the fractional-order 

Randles model (see inset in Figure 6.4 (a)) of impedance: 
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Rp
Z(jω) = R +s αR C (jω) +1p α

                                                                                                           (6.1)                                              

The model includes a series resistance Rs, a parallel resistance Rp, and a constant 

phase element (CPE) of impedance proportional to 1/(jω)α (ZCPE = 1/Cα(jω)α where 

Cα is the CPE parameter and α is a dispersion coefficient that can take values 

between 0 and 1) [66]. Using nonlinear least square fitting (Figure 4(a) in dashed 

line), the value of Rs was found to be 3.135 Ω, Rp = 251 kΩ, Cα = 0.103 mF s−0.261, 

and α = 0.739. In the time domain, this non-ideal behaviour can be viewed as a 

fractional differentiation of order α performed by the capacitive part of the device, 

i.e. i(t) = Cαd
αv(t)/dtα [67-69]. This is different from the first-order differentiation 

i(t) = Cdv(t)/dt known for ideal capacitors, and can find application in fractional-

order PID controllers [70], impedance matching circuits [71], filters [72], etc. 

A particular output of the fractional differentiation operation of the device is its 

response to a step function. For a step current input (i.e. i(t) = 0 for t < 0, and i(t) = 

Icc for t ≥ 0), and given that Rp ≫ Rs, the voltage-time response is actually 

proportional to a power law function and not a linear function, such that [69]: 

αtv(t)=V +I R +cc s0 C Γ(1+α)α

 
 
 
 
 

                                                                                       (6.2)        

Here V0 is the initial voltage on the device and Γ(·) is the Gamma function. The 

same can be adapted to a step decrease using −Icc which results in a power law 

decrease [73]. In Figure 6.4 (b) we show the resulting voltage-time profiles in 

response to GCD tests with different values of Icc from 25 to 500 μA cm−2. Using 

discrete Fourier decomposition, these responses correspond to fundamental 

frequencies from about 50 mHz to 1 Hz. At low current rates, it is clear that the 
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device voltage discharge is relatively linear with negligible low Ohmic drop. 

However, a clear transition from linear to nonlinear, power law voltage-time 

relationship can be observed as the current charging/discharging is increased. 

Nonlinear least-squares fitting of the experimental discharge data using equation 

6.2 (Figure 6.4 (b) in dashed lines) resulted in the values of the dispersion 

coefficient α being 0.927, 0.978, 0.844, 0.800 and 0.759 and those of Cα being 

0.188, 0.210, 0.224, 0.259 and 0.297 mF sα-1 for the discharge currents 25, 50, 100, 

250 and 500 μA cm-2, respectively. The values of α for the five corresponding 

charging waveforms were found to be practically constant with an average of 

0.674 and a small standard deviation of 0.008, with Cα being 0.268, 0.282, 0.237, 

0.236 and 0.253 mF sα-1. The variation in the values of α in these cases is actually a 

characteristic feature of fractional-order capacitive devices. Contrary to ideal 

capacitors, these devices possess an inherent memory effect that makes their 

response sensitive to the type and form of the applied excitation [74], as well as to 

the pathway they followed to reach a given state [67]. The same applies to the 

different parameters values extracted from the EIS modelling at which the device 

is perturbed with small signals around its equilibrium state (open-circuit voltage), 

whereas with the square wave currents, the device is operating in dynamic mode. 

For the sake of comparison, it is convenient to define, with caution, an effective 

capacitance Ceff = CαГ(1+α)t1-α in units of Farads that combines both parameters α 

and Cα and this by equating the term tα/CαГ(1+α) in equation 6.2 with t/Ceff as if 

the device is an ideal capacitor (i.e. α=1) [69]. The values of Ceff computed for the 

charging/discharging sequences at the increasing currents ±25, ±50, ±100, ±250 
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and ±500 μA cm-2 were found to be decreasing as expected, i.e. 0.369, 0.300, 

0.244, 0.194 and 0.165 mF, and 0.305, 0.288, 0.243, 0.196 and 0.164 mF, 

respectively. The difference between the two sets of values, especially at low rates, can 

be attributed to (i) possible electrochemical irreversibility, (ii) increased resistive 

behavior of the device (see the Bode plot in the inset of Fig. 6.4 (a) in the low frequency 

window), and (iii) the fact that the parameters of fractional-order devices are dependent 

on the past history of the device (e.g. charge or discharge). 

The dynamic performance of the device was then characterized using CV test. 

Figure 6.4 (c) shows the current-voltage response of the phosphorene-based device 

recorded at the scan rate of 1000 mV s-1 compared to that of a bare stainless steel-

based device. Clearly, the phosphorene coating exhibits a capacitive electrical 

energy storage capability. In Figure 6.4 (d), the performance of the device was 

measured at different voltage scan rates (2 to 1000 mV s-1). The voltammograms 

get wider with the increase of scan rate. The curves are nearly rectangular without 

any noticeable peaks belongs to reversible redox reactions, implying the storage 

mechanism of the device based on double-layer charge storage. (this do not 

exclude completely the existence of some parasitic redox reaction that may take 

place).  
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Figure 6.3: (a) Typical low-magnification TEM image of the BP nanosheets. (b-f) HRTEM images of 

exfoliated BP nanosheets. The insets of (e, f) are the SAED patterns of exfoliated BP nanosheets. 
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Figure 6.4: Electrochemical characterization results of positive feeding electrode-based device: (a) 

Complex-plane representation of real versus imaginary parts of impedance; the inset shows the impedance 

phase angle plot versus frequency and circuit of the fractional-order Randles model. (b) Voltage-time 

profiles resulting from constant-current charging/discharging measurements. (c) Cyclic voltammetry profile 

compared to that of a bare stainless steel-based device at the same voltage scan rate of 1000 mVs-1. (d) 

Cyclic voltammetry profiles at different scan rates. 

 

We also evaluated the electrochemical stability of the device. Figure 6.5 shows the 

results of its rate capability performance computed from tests conducted at 

different constant charging/discharging currents for 40000 successive cycles. The 

plot shows the discharged energy vs. cycle number which is directly computed 

from the time-integral of the instantaneous power, i.e. e(t) = p(t)dt  with

p(t)= i(t).v(t) , and not from the computation of the capacitance which, again, can be 
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ambiguous to define for this case given the fractional-order nature of the device. 

The discharge energy of the electrode with area of 0.5 cm2 prepared by BPE 

method provides 22.8 nW.h cm-2 for a constant current density of 25 μA cm-2. The 

flatness of the curves for the different applied currents demonstrates the superior 

stability and reliability of the phosphorene electrodes used for the fabrication of 

the device. Furthermore, the recovery of the same discharge energy for Icc = 25 μA 

cm-2 after 30000 charge/discharge cycles is clear an evidence of its excellent 

reversibility and long-term stability. 

The delivered energy density vs. power density computed from the response of the 

device at different discharge currents from 25 to 500 μA cm-2 are plotted in Figure 

6.6. Again, the energy and power are computed directly from the current and 

voltage time recordings and not from any particular electric model, which are 

believe to represent better the true performance of the device. The delivered energy 

density at current density of 500 μAcm-2 reaches 0.01 μWh cm-2 which is 

comparable to MXene/CNT (0.05 μWh cm-2 at 2 μAcm-2 [REF 8 from SI of 

chapter 6]) and MXene/CNF (0.08 μWh cm-2 at 570 μAcm-2 [REF 10 from SI of 

chapter 6]), but lower than the energy performance reported for other 2D 

materials-based devices (see Table 6S.1). This energy storage capability could be 

enhanced for instance by further increasing the deposition time and/or chemically 

or physically post-process the active material to increase its electrical conductivity. 

However, the power performance is outstanding with 351 μW cm-2 at a constant 

current rate of 0.5 mA cm-2, which is comparable with other 2D materials-based 

devices (see Table 6S.1), such as MXene (2.4 μW cm-2 at 2  μA cm-2 for 
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MXene/CNT [REF 8 in SI of chapter 6] or 145 μW cm-2 at 570  μA cm-2 for 

MXene/CNF [REF 10 in SI of chapter 6]), 2D MnO2 (639 μW cm-2 at 500  μA cm-

2 [REF 7 in SI of chapter 6]), and comparable to graphene (750 μW cm-2 at 20  mA 

cm-2 [REF 3 in SI]) and graphene oxide (1051 μW cm-2 at 1100  μA cm-2 [REF 11 

in SI of chapter 6]). This high-rate energy delivery capability is in line with the 

CPE behaviour in the low-to-medium frequencies as reported in Figure 6.4 (a). 

The results indicate that BP is a promising candidate for capacitive energy storage 

application.  

 

Figure 6.5: Discharge energy vs. cycle number measured at different currents of the exfoliated-and-

deposited phosphorene on the positive electrode. 
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Figure 6.6: Ragone plot of energy density vs. power density at different currents from 25 to 500 μA 

cm-2 of the exfoliated-and-deposited phosphorene on the positive electrode. 

 

In order to study the exfoliation and deposition of phosphorene nanosheets on the 

negative feeding electrode, the modified bipolar setup was employed as shown in Figure 

6.7. As shown in Figure 6.7, one stainless steel electrode serving as negative feeding 

electrode and platinum wire acted as a positive side and were placed vertically in DI 

water similar to the regular bipolar setup. After 25 hours of BPE, partially 2D reduced 

phosphorene nanosheets were deposited on the surface of negative feeding electrode. The 

SEM images of the negative feeding electrode after 24 hours of operation are shown in 

Figure 6.8 (a-c). As it is clear, 2D vertically aligned reduced phosphorene nanosheets 

were deposited on negative feeding electrode. The Raman spectroscopy and XPS results 

of the same feeding electrodes are shown in Figure 6.8 (d, e). Similar to the positive 

feeding electrode, blue-shift by about 6.1 cm-1, 9.2 cm-1, and 7.2 cm-1, confirms the 

exfoliation of BP into reduced phosphorene nanosheets on the surface of negative 

feeding electrode. The higher amounts of shift for the peaks in negative feeding 

electrode compared to the positive feeding electrode may related to the 2D 
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morphology of reduced phosphorene nanosheets. The XPS spectrum of the 

exfoliated reduced phosphorene nanosheets on the negative feeding electrode show 

similar intense of POx peak indicating the reduction of phosphorene nanosheets on 

the negative feeding electrode compared to the positive feeding electrode.  

 

Figure 6.7: Schematic illustration of the modified bipolar electrochemistry setup. 

 

Figure 6.8: (a-c) SEM images of exfoliated and deposited reduced phosphorene nanosheets on the 

negative electrode in different magnification. (d) Raman spectra, and (e) XPS spectra of the BP and 

reduced phosphorene nanosheets. 
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Due to the 2D morphology reduced phosphorene nanosheets, the electrochemical 

performance of the negative feeding electrode was analyzed for supercapacitor 

application. The Nyguist plot and Bode plot (inset) of the device is shown in Figure 6.9 

(a). The spectral phase is relatively constant at an average of -78.7 deg. in the low-

to-medium frequencies and compared to the positive feeding electrode, presented a 

more capacitor behavior. This is because of the 2D morphology of reduced 

phosphorene nanosheets on the negative feeding electrode. The performance of these 

devices was also studied by galvanostatic charge/discharge (GCD) and cyclic 

voltammetry (CV) test (Figure 6.9 (b-c)). The electrical behavior of the device based on 

negative electrode is closer to that of a capacitor based on positive feeding electrode 

because its GCD curves are highly symmetric and linear with negligible ohmic losses. In 

terms of CV results, the curves are almost rectangular in shape at different scan rates 

which demonstrates an electric double-layer capacitor (EDLC) behavior similar to the 

positive feeding electrode. The symmetry of the curves with respect to the zero y-axis 

shows the excellent reversibility of device. The deposited reduced phosphorene 

nanosheets delivered a high specific capacitance of 11 mF cm-2 at the scan rate of             

2 mV s-1. Moreover, the deposited reduced phosphorene nanosheets delivered specific 

capacitance of 8.57, 7.62, 6.66, 5.0, 4.65, 4.01, 3.32, and 2.86 mF cm-2 at the scan rate of 

5, 10, 20, 50, 100, 200, 500, and 1000 mV s-1, respectively. 
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Figure 6.9: (a) Complex-plane representation of real versus imaginary parts of impedance; the inset shows 

the impedance phase angle plot versus frequency. (b) Constant-current charging/discharging results, and (c) 

Cyclic voltammetry results of the negative feeding electrode. 

 

 Conclusion 

In summary, a novel two-in-one exfoliation and deposition from bulk BP to 

phosphorene nanosheets were carried out for the first time via BPE method. In 

addition to the main advantage of this technique, which is the two-in-one 

exfoliation-and-deposition process, this method is proven to be simple, reliable, 

and eco-friendly. It is operated at ambient temperature in DI water without any 

chemical additives which makes it more attractive compared to previously reported 

electrochemical exfoliation approaches. In principle, a large number of conductive 
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substrates can be coated at once with this method using a single dc power supply 

without any Ohmic connection to the bipolar electrode, which could be positive 

attribute for scaling up purposes for different applications. The high-quality 

exfoliated BP nanosheets were then analyzed with different microscopic and 

spectroscopic techniques, revealing thin layers of phosphorene with orthorhombic 

crystal structure and lateral dimensions up to a few hundreds of nanometers. 

Furthermore, the electrochemical evaluation of the positive feeding electrode 

assembled in a symmetric configuration revealed a relatively acceptable discharge 

energy of 0.01 μWh cm-2 at a constant current load discharge of 500 μA cm-2 but 

with a very high rate of 351 μW cm-2. The device exhibited a fractional order 

capacitive behavior in the low-to-medium frequency, and a high stability and 

reversibility for at least to 40000 cycles. In the modified bipolar setup, vertically 

aligned reduced phosphorene nanosheets were deposited on the negative feeding 

electrode. In terms of electrochemical performance, the fabricated device based on 

the negative feeding electrode revealed a specific capacitance of 11 mF cm-2 at the 

scan rate of 2 mV s-1 which is around 10 times higher than the positive feeding 

electrode. We believe that this study could open up new horizons for the 

exfoliation and deposition of not only BP, but also other 2D materials for 

electronic and electrochemical energy storage device applications. 
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7. Defects Investigation of Bipolar Electrochemically Exfoliated Phosphorene 

Nanosheets Using Transmission Electron Microscopy 

 Introduction 

Motivated by the discovery of graphene [1], other diversified atomically thin two-

dimensional (2D) materials such as transition metal dichalcogenides (TMDs) [2], 

hexagonal boron nitride (hBN) [3], and layered transition metal oxides [4] have been 

evaluated for different applications due to their distinctive properties. Black phosphorus 

(BP) nanosheets (so-called phosphorene) as a unique member of 2D materials, has 

recently attracted considerable attention due to its physical and chemical properties [5-7]. 

In the structure of BP, each P atom is connected to three neighboring P atoms covalently 

and form a honeycomb puckered layered structures with an interlayer distance of around 

5.3 Å [8]. BP can be exfoliated into a few or monolayer of 2D BP nanosheets through 

bottom-up and top-down techniques [9, 10]. Compared to the expensive and low-yield 

bottom-up methods, mechanical and liquid-based exfoliations of BP into phosphorene 

nanosheets have been successfully demonstrated in numerous studies [5, 11]. Very 

recently, we developed a novel bipolar electrochemical (BPE) approach for simultaneous 

exfoliation and deposition of phosphorene nanosheets on conductive substrates [12, 13]. 

In general, 2D materials inevitably incorporate different structural defects such as point 

defects, grain boundaries (GBs), impurities, and dislocations [14-16]. Due to the non-

negligible effect of structural defects on the physical, chemical, and optical properties of 

2D materials, investigating the defect structure is essential for further practical 

applications [17]. Besides, through the defect engineering of 2D materials, their 
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properties can also be tailored for specific applications [18]. With the rapid progress in 

high-resolution transmission electron microscopy (HR-TEM) as the most commonly used 

techniques, 2D materials have extensively been characterized in terms of atomic 

structure, the motion of atoms, chemical composition, and structure transformations in 

real-time [19, 20]. Moreover, large area diffraction can be performed to evaluate the 

crystallinity of exfoliated materials with atomic resolution [21]. Direct evidence by high-

resolution transmission electron microscopy (HR-TEM) analysis has revealed the various 

types of defects, the modulation of the electronic structure and dopants within the lattice 

of their monolayer of graphene, TMDs, and hBN [22, 23]. Although invariable 

degradation of phosphorene nanosheets have been reported  [24-27], its in-details defect 

characterization using TEM is still missing.  

Recently, Density Functional Theory (DFT) calculations have been employed to evaluate 

the defects formation and their stability on the phosphorene nanosheets. DFT calculation 

predict different types of defects in phosphorene nanosheets with intriguing electronic 

properties [28]. For example, Wang and co-workers predicted the various stable defects 

such as single vacancies (SW), double vacancies (DV), and self-interstitials [29]. 

Theoretical calculations confirmed that the formation energies of these point defects are 

much lower compared to those in graphene, hBN, and TMDs [30]. On the other hand, Li 

et al. demonstrated that the migration and aggregation of point defects such as anisotropic 

SVs and DVs provided GBs between domains of different orientations in phosphorene 

nanosheets [31]. The formation energy of less than 1.5 eV nm-1, revealing the 

thermodynamically stable phosphorene GBs [32].  
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In this study, we conducted the TEM investigation for the BPE exfoliated phosphorene 

nanosheets and obtained direct evidence of point defects, GBs, and amorphous regions on 

the phosphorene. Moreover, DFT calculations reveal that the amorphization occurs as a 

result of surface oxidation of phosphorene. Combining TEM analysis and DFT 

calculation provides new insight to understand the effect of the BPE method on defect 

formation and surface properties of phosphorene nanosheets. 

 Materials and Methods 

 Materials Synthesis 

The schematic and in-details setup for the bipolar exfoliation of BP into phosphorene has 

been reported in our previous study [12]. In brief, a 1 cm long and 3 mm in diameter bulk 

BP bar (99.998% purity from Smart-Elements) was placed between the two 316 stainless 

steel feeding electrodes (1×2 cm2) in deionized water. The 30 Vdc (i.e. an electric field of 

10 V cm-1) was applied between the two feeding electrodes for 24 hours under an 

ambient environment using a multichannel DC power analyzer (Agilent Technologies 

N6705A). 

 Material Characterization 

After the bipolar exfoliation process, the dispersed phosphorene nanosheets were 

collected with DI water for HRTEM analysis (model Tecnai TF 20 TEM). The HRTEM 

analysis was conducted at an accelerating voltage of 200 kV, using a field emission gun 

with a 2 Å resolution. For the sample preparation, after the separation and dispersion of 

phosphorene nanosheets through sonication, one droplet of the solution was transferred 
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on the TEM grid covered by formvar carbon transparent film, and then, the TEM grids 

were stored in a dry atmosphere to remove the remaining liquids.  

 Computational Details 

The first-principles density functional theory (DFT) calculations were performed by 

Atomistix ToolKit (ATK) package [33-35] using Generalized Gradient Approximation of 

Perdew–Burke–Ernzerhof (GGA-PBE) functionals with a double-ζ polarized basis set. 

To include the long-range van der Waals interactions, the Grimme vdW correction (PBE-

D2) [36, 37] was considered. A supercell of monolayer phosphorene that contains 64 

phosphorus atoms was assumed (Figure S1a). A vacuum space of 20 Å was added on 

both sides of the phosphorene plane in the direction that the sheet is not periodic (z) in 

order to avoid the image-image interactions. The oxygen atom was placed on various 

adsorption sites (top of phosphorus atoms, above hollow site, and top of a bridge between 

two phosphorus atoms) on phosphorene. All the possible structures were fully relaxed 

using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton 

method, with 0.01 eV/Å force tolerance and 0.001 eV/Å3 stress tolerance. The electronic 

temperature was 300 K and the density mesh cut-off was set to be 125 Rydberg. 

Moreover, Monkhorst-Pack k-points mesh of 5 × 5 × 1 and 11×11×1 were used to sample 

the Brillouin zones during geometry optimization and to calculate the total energy and the 

electronic band structures. The adsorption energy per oxygen atom on the phosphorene 

sheet was calculated using equation 7.1 to find the most stable adsorption configuration 

(with the most negative adsorption energy).   
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where n, Phosphorene nOE  , PhosphoreneE , and OE are the number of O atoms, total energies of 

the phosphorene-n oxygen atoms complex, pristine phosphorene sheet, and the isolated 

oxygen atom, respectively.  

 Results and Discussion 

Similar to other 2D materials, phosphorene nanosheets could be damaged by electron 

irradiation during the TEM investigation. In order to obtain atomic-resolution images 

from the phosphorene nanosheets, the exposure of the material to the electron beam has 

to be minimized. The TEM images of the phosphorene nanosheets collected from DI 

water after 24-hour BPE exfoliation are shown in Figure 7.1 (a-d) and Figure 7.2 (a-d). 

The interplanar distances and the corresponding Miller indices are labeled on the TEM 

images. The exfoliated phosphorene nanosheets revealed different lattice fringes with 

interplanar distances of 0.21, 0.34, 0.25, and 0.23 nm, which could be assigned to the 

(002), (021), (111), and (041) atomic planes of orthorhombic BP crystal structure 

(JCPDS no 96-101-0326) [12]. These various plane orientations and domains of 

phosphorene nanosheets indicate the polycrystalline nature of the bulk BP. It is clear 

from the TEM images that the crystal structure of phosphorene nanosheets appears to be 

not affected much during the BPE exfoliation. However, as shown in Figure 7.1 (a), point 

defects as mono- and di-vacancies are present in phosphorene nanosheets (black patches 

indicated by red dashed circles). As shown in Figure 7.1 (a), the smallest defect located at 

the center of the image and labeled in red as (1) is related to the mono-vacancy. 

According to the DFT calculations, the simplest type of defect in phosphorene nanosheets 
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is the missing of one or two lattice atoms [28]. In general removal of a single phosphorus 

atom in phosphorene nanosheet and creating three dangling atoms distributed in two 

neighbors can form mono-vacancies on the nanosheet. The di-vacancies labeled in red as 

(2) in Figure 7.1 (a) could be created either by removing two neighboring phosphorus 

atoms or by coalescence of two mono-vacancies during the exposure of exfoliated 

phosphorene nanosheets to ambient environment or inside the TEM chamber [30]. 

Kistanov et al. theoretically demonstrated that the mono- and di-vacancies, which consist 

of pentagon-nonagon (59) and pentagon-heptagon-pentagon-heptagon (5757) rings, are 

the most common point defects in phosphorene nanosheets from the viewpoint of 

energetic stability [38]. 

Figure 7.1 (b) shows a few heavier bright atoms sprinkled over the whole surface of the 

phosphorene nanosheets, which are impurities as an ad-atom defect. The zoomed-in TEM 

image confirmed the presence of ad-atom. However, its origin is not entirely clear. It 

might present due to the contact with sample preparation equipment, impurity atoms in 

the TEM chamber or it could be introduced during the BPE exfoliation process where the 

stainless steel as a feeding electrode in DI-water were used. Clarification of this issue 

requires the employment of additional analytical methods, i.e., electron energy loss 

spectroscopy (EELS) which has been successfully employed to characterize impurities on 

the atomic scale in other 2D materials [39]. The zoomed-in TEM image on Figure 7.1 (b) 

revealed the honeycomb crystal structure of phosphorene nanosheets where each 

phosphorus atom is distinguished, and the pattern is repeated throughout the image. 

Figure 7.1 (c, d) show the GBs defect composed of linear dislocation arrays of the (021) 

and (002) atomic planes of exfoliated phosphorene nanosheets. The main reason for the 
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GB formation in 2D materials is typically related to the polycrystalline nature of bulk 

material. As shown in Figure 7.1 (c), the GB region presents larger brightness than the 

rest of the nanosheet because of the high partial charge density around the GBs. Liu and 

co-workers theoretically confirmed that the GB energies in phosphorene nanosheets are 

lower than those in graphene, TMDs, and hBN [32]. This suggests higher stability of 

phosphorene nanosheets against lattice distortions compared to other 2D materials. 

Moreover, in a theoretical study by Zhu et al. high reactivity of GB regions with O atom 

as an impurity in phosphorene nanosheets has been confirmed. The GB defects in 

phosphorene do not have a significant effect on its electronic properties [16, 40]. The 

TEM images of the exfoliated phosphorene nanosheets via BPE method confirmed that 

the atomic network remains coherent with minor perturbations in the bond lengths. 
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Figure 7.1: HRTEM images of (a) intrinsic mono- and di-vacancies, (b) ad-atom, and (c) grain boundary 

defects in phosphorene nanosheets obtained via bipolar electrochemistry method. 

 

Figure 7.2 (a-c) shows the TEM images of phosphorene nanosheets with amorphous 

regions, which are most likely produced during the exfoliation of BP in DI water or 

exposure of nanosheets during sample preparation for TEM. The uniform amorphous 

layer can be easily visualized on the edge of (021) phosphorene nanosheets with less than 

10nm thickness, as shown in Figure 7.2 (a, c). In Figure 7.2 (b), an amorphous domain 

with a size of about 10nm could be found in another (021) nanosheet. The instability of 

the phosphorene nanosheets upon exposure to the ambient environment was initially 

evaluated by theoretical calculations [41]. Several studies have shown that oxygen and 
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water degrade the phosphorene nanosheets [42-44]. Previous studies also confirmed that 

the phosphorene nanosheet rapidly degraded in vacuum at 300 kV accelerating voltage of 

e-beam [24]. The TEM images of phosphorene nanosheets obtained via BPE method 

revealed relatively good stability under the accelerated voltage of 200 kV. Figure 7.2 (a, 

c) shows the oxidation and amorphization on the edges of the phosphorene nanosheet 

which is likely related to the presence of phosphorus oxide along the edge of the 

nanosheets. The amorphous domains on the phosphorene nanosheet in Figure 7.2 (b) may 

be related to the polycrystalline nature of bulk BP. However, e-beam could also create 

oxygen radicals and degraded the phosphorene nanosheets. Especially, the phosphorus 

atoms on the surface do not have to be squeezed into an interstitial site; as a result, they 

are free to leave the nanosheets and then enter the chamber of the microscope. The 

theoretical calculations confirmed that due to the low displacement threshold in 

phosphorene nanosheets even a 80 kV beam should rapidly provide considerable damage 

[45]. Degradation of the sample exposed to ambient atmosphere confirms the high 

sensitivity of phosphorene nanosheets to oxygen and/or water molecules. 

The stability of the pristine phosphorene sheet in the presence of an atomic oxygen was 

investigated by DFT calculations to further comprehend the degradation of the 

nanosheets during the bipolar exfoliation process, there storage and handling. The lattice 

constants for a monolayer of phosphorene were found to be a = 3.32 Å, b = 4.41 Å and 

the  bandgap was calculated to be ~ 0.923 eV at the Γ point of the Brillouin zone, as 

shown in Figure 7S.1 that is in agreement with the previous reports [46]. 
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Figure 7.2: HRTEM images of (a-c) amorphization on the edges and surfaces of phosphorene nanosheets. 

 

Due to the electron lone pair on the P atoms on the surface of phosphorene, P atoms are 

preferential sites to form bonds with O atoms. For the adsorption of a single oxygen 

atom, the most energetically favorable position was found to be on top of a phosphorus 

atom in the phosphorene’s top sublattice (with P-O bond length of 1.52 Å and O-P-P 

angle of 113.06°, as shown in Figure 7.3 (a)). The large adsorption energy of −2.936 eV 

suggests that phosphorene can be easily oxidized through an oxygen atom’s 

chemisorption. Figure 7.3 (b) shows the change in adsorption energy per oxygen atom on 
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the monolayer phosphorene as a function of the of oxygen concentration. With increasing 

the number of oxygen atoms in the supercell, the adsorption energies first increase (the 

structure becomes less stable) to −2.861 eV (for 4 oxygen atoms), then decrease (the 

structure becomes more stable) to −2.877 eV (for 8 oxygen atoms), are almost constant (1 

meV fluctuations) for 8, 12, and 16 oxygen atoms, where the half of phosphorus atoms in 

the top sublattice of the phosphorene are oxidized. By increasing the number of oxygen 

atoms from 16 to 32 (where all the phosphorus atoms on the top side were oxidized), the 

adsorption energy was dramatically decreased with the rate of 0.028 eV/oxygen atom and 

reached −2.419 eV for 32 oxygen atoms. The most stable adsorption configurations for 

phosphorene oxide sheets with various oxygen concentrations (1-32) were provided in 

Figure 7S.2, and their adsorption energies were listed in Table 7.1. While the 

phosphorene sheet retains its initial puckered structure for 1-28 adsorbed oxygen atoms, 

its structure was distorted upon adsorption of 32 oxygen atoms, as shown in Figure 7.3 

(a). From Figure 7S.3, one can see that fraction of oxygen atoms is adsorbed at the top 

site with P-O bond length of 1.49 Å and O-P-P bond angle of 133.56°, while others are 

embedded in the bridge between two phosphorus atoms with P-O bond lengths of 1.63 Å 

and 1.70 Å and P-O-P bond angle of 111.49°, resulting in cleavage of P-P bonds. The P-P 

bond length changed from 2.24 Å in bare phosphorene to 2.87 Å in phosphorene with 32 

O atoms. Figure 7S.4 shows the energy band structures of phosphorene oxide sheets with 

various oxygen concentrations. Although the energy bandgap values for phosphorene 

with 1, 2, 4, 8, 20, and 24 oxygen atoms are larger than that of bare phosphorene, the 

presence of 12, 16, 28, and 32 oxygen atoms reduces the energy bandgap of the 
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phosphorene. Interestingly, the bandgap reduction caused by half top side oxygenated (16 

atoms) and all top side oxygenated (32 atoms) are more highlighted.  

In summary, the high adsorption energy obtained for an O atom on phosphorene suggests 

a chemisorption process and high sensitivity of phosphorene nanosheets to oxygen that is 

in agreement with TEM observations. Furthermore, our DFT data indicated that the 

breakage of P-P bonds in phosphorene upon oxidation results in amorphization, which 

correlates well with the TEM data observed in Figure 7.2 (c-d).  

 

Figure 7.3: (a) The representative structures of phosphorene oxides with 1, 8, 16, 32 oxygen atoms. (b) 

Adsorption energy per oxygen atom as a function of oxygen concentration (P: Orange and O: red). 
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Table 7.1: The calculated adsorption energy per oxygen atom (Ead) and energy bandgap (Eg) for bare 

phosphorene and phosphorene oxide sheets with various oxygen concentrations. 

System Ead per O atom (eV) Eg (eV) 

Bare Phosphorene - 0.923 

Phosphorene + 1 O −2.936 0.985 

Phosphorene + 2 O −2.896 1.039 

Phosphorene + 4 O −2.861 1.060 

Phosphorene + 8 O −2.877 1.099 

Phosphorene + 12 O −2.876 0.901 

Phosphorene + 16 O −2.875 0.852 

Phosphorene + 20 O −2.719 0.980 

Phosphorene + 24 O −2.606 1.129 

Phosphorene + 28 O −2.502 0.912 

Phosphorene + 32 O −2.419 0.377 

 Conclusion 

Since the novel 2D materials will function significantly in the future development of 

materials, evaluating the relationship between their atomic structure and properties is 

vital. In this study, for the first time, we present a study on defects in bipolar exfoliated 

phosphorene nanosheets. We have shown in this chapter that different types of atomic 

defects can directly be determined via high-resolution TEM imaging. TEM 

characterization suggests that the point defects, GBs and amorphous regions are formed 

in phosphorene nanosheet. It observed that the exposure of phosphorene for several days 

to ambient conditions leads to very fast degradation of phosphorene nanosheets. Finally, 

DFT results disclosed that surface oxidation of the phosphorene caused the breakage of 

P-P bonds and the amorphization.  The atomistic insight into the phosphorene nanosheets 

from our study will likely benefit future experimental and theoretical studies on BP for 

novel futuristic applications.  
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8. Conclusions and Outlook 

 Summary 

 

This dissertation presents design, construction, and materials/electrochemical 

characterizations of phosphorus-based electrodes for high-performance Li-ion batteries 

and supercapacitors. Increasing the conductivity and controlling the volume expansion 

are the main solutions to enhance the electrochemical performances of P-based 

electrodes. In terms of 2D phosphorene nanosheet synthesis, several top-down and 

bottom-up exfoliation techniques are proposed which are multi-step and toxic. To 

overcome these issues, bipolar electrochemical exfoliation technique has been adopted in 

order to maximize the materials and electrochemical performance of the BP-based 

electrodes. The major findings of this dissertation are summarized as follows: 

In this first phase of this project, red phosphorus/sulfurized polyacrylonitrile (RP-SPAN) 

hybrid anode was synthesized and analyzed for high-performance Li-ion batteries (LIBs) 

through high-energy ball milling and electrostatic spray deposition (ESD) technique. The 

fabricated electrodes were evaluated as an anode material against a lithium as counter and 

reference electrode and delivered a highly reversible specific capacity of 1605 mAh g-1 at 

100 mAh g-1 and high-rate capability of 696 mAh g-1 at 1 A g-1. The superior cell 

characteristics of RP-SPAN composite were attributed to the improved kinetics and 

chemical bonding formed of SPAN with RP during the ball milling and binder-free ESD 

technique which improved the conductivity and control the volume change of P-based 

electrodes.   
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In the second phase of this project, RP-SPAN hybrid anode were synthesized using ball 

milling and ESD techniques and investigated its stability in both frequency and time 

domains using the transfer function stability analysis, the Kramers-Kronig (KK) integral 

relations, and the differential capacity analysis for LIB application. The electrochemical 

behavior of RP-SPAN electrodes was evaluated in terms of stationarity, stability and 

linearity, as well as dissipation and degradation with extended charge/discharge cycling. 

we inspected the stability of the frequency-domain transfer function estimate of the 

battery response to small amplitude sinusoidal voltage excitations from 1 MHz down to 1 

mHz. The results show that the system is highly nonlinear and time-variant at the low-

frequencies spectrum which is in line with the 0.21% average capacity loss per cycle that 

we computed from consecutive charge/discharge measurements. We proposed a modified 

constant phase element in which magnitude and phase, and thus real and imaginary parts, 

of spectral response are decoupled to fit the low-frequency non-KK-compliant data. 

These characteristics of the battery were in line with time-domain measurements of 

differential capacity obtained from constant current cycling.  

In the third phase of this project, a novel two-in-one exfoliation and deposition from bulk 

BP to phosphorene nanosheets was carried out via bipolar electrochemical exfoliation 

(BPE) method for supercapacitor applications. In the initial step of this phase, in the 

presence of Vdc electrophoresis phenomenon, exfoliated phosphorene nanosheets were 

transferred and deposited on the positive feeding electrode. Materials characterization 

techniques confirmed the orthorhombic crystal structure of the deposited materials 

on stainless steel. Furthermore, the fabricated device based on the symmetric in a 

two-electrode symmetric configuration delivered a discharge energy of 0.01 mW h 
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cm-2 at a constant current load discharge of 500 mA cm-2 but with a high power 

density of 351 mW cm-2, which is comparable with other 2D-based devices. The 

nearly rectangular cyclic voltammetry curves of the fabricated device confirmed the 

double-layer charge storage mechanism. The device also exhibited a fractional order 

capacitive behavior in the low-to-medium frequency range, and a high stability and 

reversibility for at least 40000 cycles. To further examine the utility of BPE in the 

exfoliation of BP and in the modified BPE setup, positive feeding electrode was 

replaced with platinum wire to evaluate the possible deposition of exfoliated 

phosphorene nanosheets on the negative feeding electrode. After 24 hours of the 

process, obvious 2D reduced phosphorene nanosheets were deposited uniformly on the 

stainless steel substrate. Using X-ray photoelectron spectroscopy (XPS) and Raman 

analysis confirmed the successful exfoliation and deposition of phosphorene nanosheets 

on the negative feeding electrode. 

In the last phase of this project, a combination of high-resolution transmission electron 

microscopy (HRTEM) imaging and density functional theory (DFT) calculations were 

provided to study the defects formation of phosphorene nanosheets obtained via BPE 

process. The TEM results demonstrated that the mono- and di-vacancies, ad-atoms, and 

grain boundary defects are formed in phosphorene nanosheets. However, the atomic 

orthorhombic crystal structure of phosphorene shows a minor perturbation. Moreover, the 

DFT calculations confirmed the breakage of P-P bonds of phosphorene nanosheets upon 

surface oxidation, which results in amorphization. The defect analysis of phosphorene 

nanosheets obtained from this phase could benefit both fundamental research and 

technological applications. In summary, in this dissertation, a systematic study of P-based 
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electrodes from materials and electrochemical point of view were evaluated for energy 

storage applications. Also, from stability point of view, the in-details P-based electrodes 

were analysis using TEM analysis and DFT calculation. 

 Future Works 

The present dissertation has introduced novel techniques to fabricate phosphorus-based 

electrodes for high-performance energy storage devices. Based on the current work, the 

author suggests the following future work to be undertaken: 

1. Optimization of P-based electrodes for energy storage devices: Continuous efforts 

should be made to optimize the morphology and microstructure of the conductive 

polymer matrix in the developed P-based electrode. A comprehensive theoretical 

calculation for predicting the optimum composition of phosphorus with the 

conductive matrix is essential for high-performance energy storage devices. 

Exfoliated phosphorene provided continuous pathways for ion transport in energy 

storage applications. However, the mass loading of phosphorene nanosheets and the 

specific capacitance is still low compared to the graphene-based devices.   

2. In-depth understanding of the reaction mechanism of P-based electrodes: Although 

the performance of the P-based electrodes is exceptional in different energy storage 

devices, the detailed systematic evaluation on the reaction dynamics and 

electrochemical mechanisms are still missing. For instance, using operando 

spectroscopy analysis (in situ XRD, TEM, SEM) to study the intercalation and 

degradation mechanism of P-based electrodes will be helpful.    
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3. Layer-by-layer exfoliation and deposition of phosphorene nanosheets with other 2D 

materials: One of the major goals in dissertation was based on the exfoliation of BP 

into phosphorene nanosheets for energy storage devices. Design the experimental 

setup to exfoliate and synthesized a nanostructured phosphorene/graphene hybrid or 

other 2D materials with a layer-by-layer sandwiched structure and its material and 

electrochemical properties will reveal useful information. The author believes that the 

2D layer-by-layer structure of phosphorene/graphene would increase the conductivity 

and control the volume change and as a result better energy storage properties. 

4. Full-cell characterization of P-based electrodes: To the best of our knowledge, most 

of the recent research have focused on the design and characterization of P-based 

electrodes as a half-cell or symmetric device. Evaluation of P-based electrodes in a 

full-cell setup for practical applications is a necessary future research direction.  

5. Control the degradation of exfoliated phosphorene nanosheets: Single-step 

exfoliation and deposition of BP into phosphorene nanosheets via eco-friendly BPE is 

an attractive technique. However, the surface stability of phosphorene nanosheets in 

this method is still difficult to control and it needs a synergy approach to overcome 

this issue. Introducing an additive into the DI water during the exfoliation may 

control the degradation of nanosheets for device applications. 
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APPENDIX 

 Supplementary Information for Chapter 4 

 

 

 

Figure 4S.1: Typical SEM images of (a) pure RP, (b) SPAN. 

 

 

 
 

Figure 4S.2: TEM image of RP-SPAN hybrid (the insert showing the SAED pattern). 
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Figure 4S.3: XPS survey and C1S spectra of (a, c) SPAN, and (b, d) RP-SPAN hybrid. 

 

Table 4S.1: Electrochemical performance of P-based composite as an anode material for LIBs. 

Sample Preparation 

Method 

Potential 

Window 

(V) 

Retained 

Discharge 

Capacity (mAhg-1)  

Current 

Density 

(mAg-1) 

Cycle 

Number 

Ref. 

RP/Bacterial 

cellulose 

Vaporization-

condensation 

0.01-2.5 1039  260 100 [1] 

RP/Porous CNF Electrospinning 0.01-3.0 900  100 35 [2] 

RP/CNT hybrid Ball milling 0.01-2.0 1850  780 50 [3] 

RP/TiO2/CNT Ultrahigh 

Sonication 

0.01-3.0 1250  200 300 [4] 

RP/CNT Solution 

approach 

0.01-2.0 1012  100 100 [5] 

RP/Graphene Electrospraying 0.01-3.0 1450  50 100 [6] 

RP/rGO Hydrothermal 0.01-2.5 1000  100 80 [7] 

RP/Fluffy carbon Ball milling 0.01-3.0 1480  130 100 [8] 

RP/Graphene  Ball milling 0.01-2.0 1283 130 100 [9] 

RP/CNT Ball milling 0.01-2.5 1640  50 50 [10] 

RP/CNT Solution 

approach 

0.01-3.0 960  200 120 [11] 

RP/CNT sponge Hydrothermal 0.01-3.0 1600 100 50 [12] 

RP/SPAN Ball 

milling/ESD 

0.01-3.0 1605  100 100 This 

work 
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Table 4S.2: Electrochemical parameters of the equivalent circuit for the prepared electrodes. 

Sample R1 (Ω) R2 (Ω) CPE (F) W (Ω S-0.5) 
RP 9.95 1797 1.50 × 10-4 163.50 

RP – SPAN hybrid 

before cycling 

8.33 592 1.80 × 10-4 71.71 

RP – SPAN hybrid 

after cycling 

7.53 35 2.07 × 10-4 35.11 

 

 

 

Figure 4S.4: SEM images of the ESD-based RP-SPAN hybrid electrode, (a) before, and (b) after 180 cycles 

charge/discharge cycles. 
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Supplementary Information for Chapter 5 

 

 
Figure 5S.1: Results of constant current ±95 mA charging/discharging of the battery cell: (a) FFT of the 

time-domain outup voltage signal; (b) spectrogram computed using short-time Fourier transform (STFT) 

which depicts the frequency content of the output voltage signal as it varies with time. 

 

 

Figure 5S.2: EDS elemental mapping images for P, Ni, O, C, and S in RP-SPAN hybrid composite. 
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Figure 5S.3: EDS elemental mapping images for P, Ni, O, and C in RP-SPAN hybrid composite after 

cycling. 
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Supplementary Information for Chapter 6 

 

Figure 6S.1: Atomic structure of black phosphorus. 

 

 
Figure 6S.2: FESEM images of bulk crystal of black phosphorus. 
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Figure 6S.3: Change of current vs. time during the bipolar exfoliation. 

 

Table 6S.1: Summary of electrochemical performance of 2D materials for micro-supercapacitor 

application. 

Material Experiment 

Parameter 

Power Density 

(μW cm-2) 

Energy Density 

(μWh cm-2) 

Ref. 

Polyelectrolyte-wrapped 

Graphene/CNT 

100 μAcm-2 20 3.84  [1] 

CNT/MnO2/Polymer 

Fiber 

420 μAcm-2  66.9 2.6  [2] 

Modified Graphene 

sheets 

20 mAcm-2 749.8 109.6 [3] 

Vertically aligned CNT 10  1000 0.1  [4] 

Graphene-Ag-3D 

graphene foam  

 

0.67  mAcm-2 270 3.4  [5] 

3D Graphene/graphite  500  μAcm-2 24.5 1.24 [6] 

2D MnO2  0.5  Acm-2 639 9.0 [7] 

MXene/CNT 2  μAcm-2 2.4 0.05 [8] 

PANI/GO 3  mAcm-2 200 2.52 [9] 

MXene/CNF 0.57  mAcm-2 145 0.08 [10] 

Laser-assisted GO 1100  μAcm-2 1051 32.1 [11] 

Bipolar Exfoliated 

Phosphorene 

500  μAcm-2 351 

 

 

0.01 This Work 
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Supplementary Information for Chapter 7 

 

Figure 7S.1: (a) The optimized structure of a bare phosphorene sheet (Top and side view (b) and its 

corresponding electronic band structure. The dotted green line indicates the Fermi level, which is set to 

zero (P: Orange and O: red). The unit cell is outlined with red dashed lines. 

 
Figure 7S.2: The most stable adsorption configurations for phosphorene oxide sheets with various oxygen 

concentrations (1-32) (P: Orange and O: red). 

 



200 

 

 
Figure 7S.3: Optimized structures of bare phosphorene and phosphorene with 32 O atoms (P: Orange and 

O: red). All bond lengths are in Å. 

 

 
Figure 7S.4: Energy band structures of phosphorene oxide sheets with various oxygen concentrations (1-

32). The dotted green line indicates the Fermi level, which is set to zero. 

 



201 

 

VITA 

AMIN RABIEI BABOUKANI 

2006-2010 B.Sc., Materials Science and Engineering 

Azad University of Najafabad 

Najafabad, Isfahan, Iran 

2010-2013 M.Sc., Materials Science and Engineering  

Azad University of Najafabad 

Najafabad, Isfahan, Iran 

2017-2021 Doctoral Candidate (Ph.D.), Materials Science and Engineering 

Florida International University 

Miami, FL, USA      

  

 Dissertation Year Fellowship, Florida International University (2020) 

 Doctoral Evidence Acquisition (DEA) Fellowship, Florida International University 

(2020) 

 

SELECTED PUBLICATIONS:  

1. Amin Rabiei Baboukani, Iman Khakpour, Vadym Drozd, Chunlei Wang, “Liquid-

Based Exfoliation of Black Phosphorus into Phosphorene and its Application for Energy 

Storage Devices”, Small Structures, 306, 2000148, 2021.  

2. Amin Rabiei Baboukani, Iman Khakpour, Ebenezer Adelowo, Vadym Drozd, Wei 

Shang, and Chunlei Wang, “High-Performance Red Phosphorus-sulfurized 

polyacrylonitrile Composite by Electrostatic Spray Deposition for Lithium-Ion 

Batteries”, Electrochimica Acta, 345, 136227, 2020. 

3. Amin Rabiei Baboukani, Iman Khakpour, Vadym Drozd, Anis Allagui, Chunlei Wang, 

“Single-Step Exfoliation of Black Phosphorus and Deposition of Phosphorene via Bipolar 

Electrochemistry for Capacitive Energy Storage Application”, Journal of Materials 

Chemistry A, 7(44), 25548-25556, 2019. 

4. Amin Rabiei Baboukani, Ebenezer Adelowo, Richa Agrawal, Iman Khakpour, Vadym 

Drozd, Wenzhi Li, Chunlei Wang, “Electrostatic Spray Deposited Sn-SnO2-CNF 

Composite Anodes for Lithium Ion Storage”, ECS Transactions 85(13): 331-336, 2018. 

5. Amin Rabiei Baboukani, Sadegh Mehdi Aghaei, Iman Khakpour, Vadym Drozd, 

Chunlei Wang, “Defects Investigation of Bipolar Electrochemically Exfoliated 

Phosphorene Nanosheets”, Nanotechnology, Under Review.     

6. Amin Rabiei Baboukani, Iman Khakpour, Vadym Drozd, Chunlei Wang, Deposition of 

Exfoliated Reduced Phosphorene Nanosheets Through Modified Bipolar 

Electrochemistry for High-Performance Energy Storage Applications, To be submitted.  

https://www.mdpi.com/search?authors=Ebenezer%20Adelowo&orcid=


202 

 

7. Amin Rabiei Baboukani, Iman Khakpour, Vadym Drozd, Anis Allagui, Chunlei Wang, 

“Deposition of Exfoliated 2D Reduced Phosphorene Nanosheets on the Negative Feeding 

Electrode”, US Patent 17,015,237, 2021. 

8. Amin Rabiei Baboukani, Iman Khakpour, Chunlei Wang, “Bipolar Exfoliation of 

Black Phosphorus into Phosphorene”, US Patent 10,676,357, 2020.  

9. Anis Allagui*, Amin Rabiei Baboukani*, Ahmed S. Elwakil, Chunlei Wang, “On the 

electrochemical stability analysis of red phosphorus-based anode for lithium-ion 

batteries”, Electrochimica Acta, Under review, *Co-first Author.  

10. Ebenezer Adelowo, Amin Rabiei Baboukani, Omena Okpowe, Iman Khakpour, Meer 

Safa, Chunhui Chen, Chunlei Wang, “A High-Energy Aqueous On-Chip Lithium-Ion 

Capacitor Based on Interdigital 3D Carbon Microelectrode Arrays”, Journal of Power 

Sources, 455, 227987, 2020.     

11. Iman Khakpour, Amin Rabiei Baboukani, Anis Allagui, Chunlei Wang, “Bipolar 

Exfoliation and In-situ Deposition of High-Quality Graphene for Supercapacitor 

Application”, ACS Applied Energy Materials, 2(7), 4813-4820, 2019.                          

12. Meer Safa, Ebenezer Adelowo, Amir Chamaani, Neha Chawla, Amin Rabiei 

Baboukani, Marcus Herndon, Chunlei Wang, Bilal El-Zahab, “Poly(Ionic Liquid) based 

Composite Gel Electrolyte for Lithium Batteries”, ChemElectroChem, 6 (13), 3319-3326, 

2019. 

13. Richa Agrawal, Amin Rabiei Baboukani, Chunlei Wang, “Expanding the potential 

window of aqueous electrochemical capacitors with binder-free electrostatically sprayed 

manganese oxide composite cathode films”, Materials Research Express, 6 (8), 085012, 

2019. 

14. Richa Agrawal, Ebenezer Adelowo, Amin Rabiei Baboukani, Michael Franc 

Villegas, Alexandra Henriques, Chunlei Wang, “Electrostatic Spray Deposition-Based 

Manganese Oxide Films-From Pseudocapacitive Charge Storage Materials to Three-

Dimensional Microelectrode Integrands”, Nanomaterials, 7(8), 198, 2017. 

15. Amin Rabiei Baboukani, Iman Khakpour, Vadym Drozd, Chunlei Wang, “Exfoliation 

and Deposition of 2D Phosphorene Nanosheets via Bipolar Electrochemistry for High-

Performance Capacitive Energy Storage Applications”, MRS Fall Meeting (virtual), 

2020. 

16. Amin Rabiei Baboukani, Iman Khakpour, Ebenezar Adelowo, Vadym Drozd, 

Chunlei Wang, “Red Phosphorus-Span Composite Anode through Electrostatic Spray 

Deposition for High Performance Lithium-Ion Batteries”, 235th Electrochemical Society 

Meeting (ECS), Dallas, 2019. 

17. Amin Rabiei Baboukani, Iman Khakpour, Chunlei Wang, “Exfoliation of black 

phosphorus into phosphorene by bipolar electrochemistry”, Energy Harvesting and 

Storage: Materials, Devices, and Applications IX, SPIE Defense + Commercial Sensing 

2019, Maryland, (2019). 

https://iopscience.iop.org/journal/2053-1591
http://www.mdpi.com/search?authors=Richa%20Agrawal&orcid=
http://www.mdpi.com/search?authors=Ebenezer%20Adelowo&orcid=
http://www.mdpi.com/search?authors=Amin%20Rabiei%20Baboukani&orcid=0000-0002-0774-8973
http://www.mdpi.com/search?authors=Michael%20Franc%20Villegas&orcid=
http://www.mdpi.com/search?authors=Michael%20Franc%20Villegas&orcid=
http://www.mdpi.com/search?authors=Alexandra%20Henriques&orcid=
http://www.mdpi.com/search?authors=Chunlei%20Wang&orcid=

	Development of Phosphorus-Based Electrode Materials for Energy Storage Applications
	Recommended Citation

	Development of Phosphorus-Based Electrode Materials for Energy Storage Applications

