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ABSTRACT OF THE THESIS 

CARBON STORAGE OF RESTORED MANGROVE FORESTS IN BISCAYNE BAY, 

FLORIDA 

by 

Daniel Chomin-Virden 

Florida International University, 2021 

Miami, Florida 

Professor Tiffany G. Troxler, Major Professor 

Space-for-time substitution was used to evaluate the rate of carbon storage in 

three carbon pools (aboveground, belowground, and soil organic carbon) across four 

restored mangrove forests in Biscayne Bay, Florida, USA. The restored forests ranged in 

age from 8 to 20 years. Diameter at breast height was used to estimate aboveground 

biomass. Belowground biomass and soil carbon were determined using 15 cm soil cores. 

Time to equivalence was calculated for the sites by reference to geographically proximate 

natural mangrove forests. Time to equivalence in aboveground and belowground biomass 

were 50.4 and 13.6 years, respectively. Soil organic carbon and total carbon stock did not 

display a linear trend over time. The study did not show the anticipated recovery within 

20 years, but the results varied widely by carbon pool. The study suggests mangrove 

restorations seeking to match the carbon storage from natural forests should expect a 

longer time to recovery.   
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CHAPTER I. Carbon Mitigation Potential of Natural and Restored Mangrove 

Ecosystems: A Key Part of the Portfolio Toward Global Negative Carbon Dioxide 

Emissions 

1. Introduction 

The release of carbon dioxide (CO2) into the atmosphere is the largest 

anthropogenic contributor to climate change (IPCC 2014). Carbon dioxide leaves the 

atmosphere when it diffuses directly into the ocean or is removed from the air by 

photosynthesizing organisms such as plants. Intertidal or subtidal vegetation such as 

mangroves, marshes, or seagrasses that store significant amounts of carbon are referred to 

as “blue carbon ecosystems” (Crooks et al. 2019); of these three major blue carbon 

ecosystems, the greatest carbon (C) per unit area is stored in mangrove forests (Lovelock 

et al. 2019). Mangrove forests are intertidal ecosystems with woody plants and are 

globally distributed across tropical and subtropical latitudes (Mukherjee et al. 2014). 

Mangroves survive in a variety of salinities and tidal ranges, producing substantial 

physiological variation both within and among their approximately 70 species (Alongi 

2014) and supporting substantial coastal productivity (Twilley et al. 2017). Blue carbon is 

one of several “negative emissions technologies” (NETs), which are approaches to draw 

down atmospheric CO2 levels (NASEM 2019). To avoid the most significant impacts of 

climate change, NETs would need to be deployed to sequester 10 Gt per year over the 

next 10 years (NASEM 2019). While the capacity for emissions reduction by blue carbon 

is among the lowest NETs when scaled to US and global capacities, restoration and 

creation of blue carbon ecosystems offer additional benefits, or ecosystem services, 

beyond C mitigation and cost significantly less than alternative NETs  (NASEM 2019). 
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Mangrove forests provide ecosystem services that can be categorized into three 

major groups: provisioning, regulating, and supporting services (Millennium Ecosystem 

Assessment 2005, Vegh et al. 2019). The provisioning services are the resources that can 

be directly harvested from mangrove forests, which have historically included timber and 

charcoal, fish and shells (López-Angarita et al. 2016). The regulating services are those 

that are mediated through ecosystem processes. For example, mangroves provide coastal 

protection by reducing wind and wave energy by up to 66% (McIvor et al. 2012), filter 

nutrients from wastewater (Robertson and Phillips 1995), and promote sedimentation by 

trapping organic and sedimentary material (Horstman et al. 2014). The supporting 

services mangroves provide enhanced conditions for other organisms. Mangroves provide 

habitat for reptiles, mammals, birds, fish, and invertebrates (Nagelkerken et al. 2008). For 

fish in particular, mangroves serve as nurseries, providing shelter, sources of food, and 

reduced predation for fish that support recreational and commercial fisheries (Barbier et 

al. 2011, Whitfield 2017). The blue carbon service provided by mangroves can be 

considered both a supporting service, for building soil and trapping nutrients to be used 

by other organisms, and a regulating service, for its concurrent effect capturing CO2 from 

the atmosphere. 

Resulting from their location along tropical and subtropical shorelines, mangroves 

have faced significant development pressure; approximately 1/3 of global mangrove 

forest area was destroyed in the years between 1950 and 2000 (Lovelock et al. 2019). The 

specific causes and degree of loss vary by region, with the greatest loss in recent years 

occurring in southeast Asia, where aquaculture and logging are the greatest proximate 

threats (Thomas et al. 2017).  
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The blue carbon storage of mangroves and other coastal ecosystems has prompted 

global and national efforts to quantify the C mitigation benefits provided through their 

conservation, creation, and restoration (NASEM 2019). However, because the carbon 

mitigation benefit of created and restored forests can not necessarily be approximated 

from natural forests, additional research is needed to determine the carbon mitigation 

benefit that planted mangrove forests can provide. This review highlights the carbon 

stored by natural and restored mangrove forests in each of three major C pools: 

aboveground biomass, belowground biomass, and soil C. For each pool, the variation 

among global mangrove forests is explored, along with the rate of C storage at different 

ages of the restoration process. 

 

2. Carbon Storage in Natural Mangrove Forests 

 Carbon sequestration refers to the process through which plants and other 

photosynthesizing organisms capture CO2 from the atmosphere and convert it to biomass 

(Windham-Myers et al. 2019). Average C stored by tropical terrestrial forests range from 

an average of 140 Mg C/ha (95% confidence interval: 133-148 Mg C/ha) in South 

America to 197 Mg C/ha (95% confidence interval: 180-215 Mg C/ha) in Asia (Sullivan 

et al. 2017), while mangrove forests in their most productive region average 1023 ± 88 

Mg C/ha, with some forests reaching over 2200 Mg C/ha (Donato et al. 2011). 

Mangroves are able to sequester large stocks of soil C through morphological traits such 

as extensive aboveground root structures which trap leaves and sediment in place, 

contributing to deposition of decomposed organic matter as peat (Lugo 1997, Gillis et al. 

2016). Dead roots are also a significant component of mangrove peat (Alongi 2012). 
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Mangrove peat-building enables the land-building service mangroves provide, 

accumulating meters of peat over the course of centuries or millennia (e.g., Ezcurra et al. 

2016).  

 Natural mangrove forests can serve as a useful reference for whether a mangrove 

forest restoration has been successful, and often rates of natural mangrove forest C 

storage and accumulation are used to estimate the C benefit of created and restored 

mangrove forests. However, the C storage benefit of mangroves is highly sensitive to 

environmental conditions, and restoration efforts must be balanced against competing 

social priorities and opportunity costs (Romañach et al. 2018) which may resist the 

creation of the ideal growing conditions found in the natural forests for which many 

studies have been completed.  To make meaningful comparisons between natural and 

restored mangrove forests, it is important to understand the environmental factors that 

influence C storage and the methods of measuring the C that is stored.  

 

3. Environmental Influences on C Storage 

A. Nutrient Availability 

The quantity of C stored by mangrove forests varies by species and according to 

environmental conditions including nutrient availability and hydrology. Castañeda et al. 

(2013) found mangroves in the Florida coastal Everglades varied in productivity and 

forest structure (characteristics which influence C storage) according to soil phosphorus, 

soil sulfide concentration, and the frequency and duration of inundation, with 52% of the 

variation attributed to phosphorus availability.  Phosphorus limitation can cause 

mangroves to take on stunted growth forms, limiting aboveground biomass and slowing 
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belowground C storage (Feller 1995). For example, phosphorus limitation in the Florida 

Everglades is a contributing factor in creating “dwarf” mangrove scrub forests, mangrove 

forests in which the average tree height is under 3 meters (Rivera-Monroy et al. 2011).   

B. Hydrology 

The influence of hydrology on mangrove forest structure is one of the longest-

studied aspects of mangrove ecology, tracing back to Watson’s hydrological 

classification of the mangrove forests of Malaysia (Watson 1928). Watson observed that 

mangrove forests could be grouped into distinct forest types according to the tidal cycle, 

elevation, and frequency of inundation. These factors are aggregated into five numbered 

“classes,” ranging from Class 1 sites, which are too inundated for mangrove survival, to 

Class 5 sites, which are inundated too rarely for most mangroves to outcompete non-

mangrove species, with Class 3 sites at the peak frequency to allow diverse mangrove 

species to flourish. Subsequent researchers have modified Watson’s classification system 

to simplify and generalize its applicability. For example, Van Loon (2016) highlights a 

system that reduces the variables to elevation and duration of inundation, utilizing both 

total daily minutes of inundation and total length of time per inundation to account for 

diverse tidal regimes without needing to specify the number of inundations per day (Van 

Loon et al. 2016). 

Rovai et al. (2018) used hydrological and geomorphological factors such as 

riverine and tidal influences on salinity and sediment supply to classify forests into 

distinct coastal ecological settings (CES). They then developed a model for estimating 

carbon storage in mangrove forests according to CES.  Thirty-six (36) mangrove forest 

sites from previous studies, representing a broad range in geography and mangrove 



6 

species, were each classified into one of nine CES. Sites were then compared to identify 

the primary drivers of inter-group variation in mangrove soil organic carbon (SOC), 

finding tidal amplitude and minimum temperature to be the most important factors 

distinguishing soil C storage in mangroves in different CES. Rovai et al. (2018) attributed 

the tidal influence to the ability of tides to supplement nutrient levels in mangrove 

forests, aerate soils, and regulate organic matter (OM) decomposition. The effect of 

temperature was attributed to its effect on OM decomposition and root growth. The 

authors compared the SOC estimated by their model against the SOC estimation in 

Jardine and Saakimäki’s 2014 model attributing regional variation among mangroves to a 

climatic gradient. Rovai et al. (2018) found the climatic model underestimated mangrove 

SOC in carbonate settings by 44%, and overestimated SOC in deltaic settings by 86%. 

Combining the CES model with high-resolution mangrove forest cover maps, three of the 

researchers from Rovai et al. (2018) estimated the global mangrove SOC at 2.3 Pg C 

(Twilley et al. 2018).  The model developed by Rovai et al. (2018) demonstrated the 

importance of hydrology in mangrove forest C storage. 

 

 

4. Measurement of C Pools 

 The methods used to calculate the C stored in mangrove forests have a significant 

influence on our knowledge of the C stored in the forests. Stored C is measured using 

components of the total C “stock.” Mangrove forest C stock is the sum of the C stored in 

four different pools: aboveground live biomass, aboveground dead biomass,  

belowground biomass, and soil C (Howard et al. 2014). The aboveground live biomass is 
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the mass of all aboveground components of the living trees in the forest: the wood, the 

leaves, and the aboveground roots. The biomass is converted to mass of C by either direct 

elemental analysis of dried, ground biomass or by the use of a C conversion factor, a ratio 

of C per unit mass determined for a particular mangrove species by a previous direct 

measurement. The aboveground dead biomass is the total of those same components 

(wood, leaves, and roots) for any fallen trees and any broken off limbs within the study 

area. The aboveground dead biomass is measured separately because the C stored in each 

tree decreases as the tree decomposes and loses biomass. The belowground biomass is the 

mass of all the subterranean roots of the trees, and the soil C is the C stored in the soil 

itself, enriched by decomposing leaves, branches, and roots. Soil C measurements include 

C stored in situ by the mangroves on site (“autochthonous” C), and C captured elsewhere 

and transported to the mangrove forest by water, wind, or living organisms 

(“allochthonous” C). The C stock is measured by measuring the C in each of these pools 

in vegetation plots or transects, then converting those measurements into C stored per 

unit area. If the stock of the entire forest is sought, the C per unit area is multiplied across 

the area of the forest for a total C stock. Mangrove forest C storage can be compared by 

their storage per unit area, usually in megagrams C per hectare (MgC/ha) (Howard et al. 

2014). 

 

A. Aboveground Live Biomass  

 Direct measurement of aboveground live biomass (AGB) is completed by cutting 

down trees, drying the samples, and weighing all the constituent parts of the tree (Howard 

et al. 2014). The direct method is inherently highly destructive; therefore, researchers 
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have developed alternative means of measuring aboveground biomass. One common 

non-destructive way to measure mangrove biomass is through allometric measurements, 

where a correlation is found in a previous direct measurement between the trees’ biomass 

and an easily-measured attribute of the trees such as height or diameter at breast height 

(DBH) (Fromard et al. 1998, Smith and Whelan 2006, Howard et al. 2014). Allometric 

equations are species-  and region-specific, so the equation used must be one that was 

developed in a location as similar to the area of interest as possible, both in proximity and 

environmental conditions (Komiyama et al. 2008). The specificity of allometric equations 

is the result of mangroves’ sensitivities to a wide range of environmental factors that are 

controlled for within the region where the equation is developed (Adame et al. 2017). In a 

review of over 50 mangrove C stock assessments, Komiyama et al. (2008) found 

aboveground live biomass in mangrove forests to range from 7.9 Mg/ha to 460 Mg/ha. 

 

B. Aboveground Dead Biomass 

 Non-destructive measurements of aboveground dead biomass C also use the DBH 

of the trees to estimate the biomass with an allometric equation; however, the biomass 

estimate is modified according to each tree’s “decay status” (Howard et al. 2014). For 

standing dead trees that are mostly whole but defoliated, the allometric equation for the 

live aboveground biomass would be used, then the leaf volume would be subtracted 

according to a leaf-specific biomass equation. For dead trees in a further state of decay, 

the percent of the volume lost from branches can be estimated, using a 10-20% estimate 

for an intact stem with only some branches missing. For severely decayed trunks missing 

significant segments from their stems, the volume can be estimated using the equation for 
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the volume of a cone, then the biomass calculated using a reference wood density for the 

species. The C content of the dead wood biomass can be estimated at 50% (Kauffman 

and Donato 2012). One study of C stock in a mangrove forest in Chiapas, Mexico, found 

an average of 29.4 MgC/ha stored in aboveground dead biomass (referred to as “downed 

wood”), which was approximately 13% of the mean C stored in aboveground live 

biomass (Adame et al. 2015). A study of a mangrove forest in the Zambezi River Delta in 

Mozambique found dead standing tree biomass to make up 4% of the total aboveground 

biomass (Trettin et al. 2016). 

 

C. Belowground Live Biomass 

 Direct measurement of belowground biomass can be made in several ways. Like 

aboveground live biomass, belowground live biomass can be directly measured through 

highly destructive methods, the excavation and removal of entire mangrove root systems 

(Adame et al. 2017). A less destructive sampling method is to subsample mangrove root 

biomass within narrow soil cores; however, this methodology necessarily excludes large 

root biomass, as the coring apparatus may not able to cut through large roots, so sampling 

locations are generally selected that avoid the large roots (Adame et al. 2017). Non-

destructive allometric methods using DBH, like those for above-ground biomass, have 

been used for belowground biomass; however, far fewer species-specific allometric 

equations have been developed for estimating belowground live C than for live 

aboveground biomass (Howard et al. 2014, Adame et al. 2017). To accommodate for the 

difficulty of producing numerous species-specific equations for belowground biomass, 

Komiyama et al. developed a general equation that can be used to calculate the 
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belowground biomass of mangroves that do not have a species-specific equation 

(Komiyama et al. 2005).  Allometric equations for belowground biomass are constrained 

by a considerable amount of uncertainty; in a meta-analysis comparing published direct 

measurement samples of belowground root biomass to Komiyama’s general equation and 

several species-specific allometric equations, Adame et al. (2017) found Komiyama’s 

general equation to produce values 40 ± 12% higher than the values reported from narrow 

core measurement of belowground biomass. Howard et al. (2014) recommend using a C 

content of 0.39 for belowground live biomass.  

 

D. Soil C 

 Soil C is measured by taking a sediment core from within the mangrove forest, 

then measuring the soil mass, bulk density, and carbon content directly (Howard et al. 

2014). The soil coring method used is decided by the soil mineral content and the soil 

depth. Mangrove forests with low sediment input and high retention of organic material 

such as leaves and roots develop darker, “organic” soils. Organic carbon (OC) is the C 

stored through retention of organic material. Mangrove forests with high sediment input 

and lower retention of organic material develop lighter-colored “inorganic” soils 

containing high concentrations of calcium carbonate. Inorganic carbon (IC) is the C 

stored by other processes such as marl production or deposition of calcareous marine 

invertebrates. Total Carbon (TC) is the sum of both OC and IC. When studying the soil C 

of highly organic soils, the OC is roughly equivalent to the TC. When studying soils with 

both OC and IC, the OC can be found by subtracting the inorganic carbon (IC) from the 

TC (OC = TC – IC). Mangrove forests can develop layers of organic soil over 3 meters 
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deep (Howard et al. 2014); however, examination of deeper cores can be prohibitively 

labor-intensive, therefore most analyses limit their scope to the top meter or less, 

following Kauffman and Donato’s recommendation (Kauffman and Donato 2012). Rovai 

et al. (2018) estimated average soil OC stocks in the top meter of soils to range from 250 

to over 500 MgC/ha across environmental settings.  

 

5. Carbon Storage in Restored Mangrove Forests 

The C stored by mangrove restorations is typically studied in reference to a 

natural forest in close geographic proximity and having similar hydrogeological 

conditions (Salmo et al. 2013). Comparison between restored and natural forests is often 

made in reference to the “time to equivalence,” the amount of time in years after 

restoration required before the value of interest is equivalent in magnitude to the value in 

the natural reference sites (Osland et al. 2012). Time to equivalence is estimated by 

evaluating the value of C stored in sites of different ages using a method called “space-

for-time” substitution. Space-for-time substitution evaluates similar sites of different ages 

since restoration as “snapshots” across a common growth trajectory for the restored 

mangrove system, enabling efficient study of long-term ecological trends. 

One example of the space-for-time substitution approach is Osland et al.’s (2012) 

study comparing natural and restored mangrove forests in Tampa Bay, FL. The forests in 

Osland et al.’s study contained a mix of red, white, and black mangroves (Rhizophora 

mangle, Laguncularia racemosa, and Avicennia germinans, respectively). A 20-year 

chronosequence was established using nine mangrove restorations, which were compared 

to geographically proximate reference sites of natural mangrove forest. The study found 
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soil TC reached equivalence with natural mangroves in 20 years. The study did not report 

the C stored in aboveground biomass but estimated a time to equivalence of 25 years for 

adult tree diameter (a common indicator used to estimate total aboveground biomass 

through allometry). All the natural reference sites in the study had organic soils, with a 

mean natural reference value for soil TC of 144.2 ± 16.4 g C/kg.  

DelVecchia et al. (2014) did not use space-for-time substitution, instead 

comparing two restorations of similar age (10 years) and an afforested site (age 20 years) 

to natural mangrove sites of unknown age. The study of natural and restored red 

mangrove (Rhizophora mangle) forests in Muisne, Ecuador, found equivalent soil C 

stored in natural and restored forests, with 1-m-deep soil cores containing an average soil 

C of 0.055 ± 0.002 g/cm3 in natural mangrove forests and an average soil C of 0.058 ± 

0.002 g/cm3 in restored forests (DelVecchia et al. 2014). The authors found the soil C to 

be 411.6 ± 27.9 MgC/ha in the restored sites and 365.3 ± 23.8 MgC/ha in the natural 

sites. While the difference between these values is not statistically significant, the authors 

noted this finding of greater soil C in the restored sites contradicts that of Osland et al. 

(2012), which did not report C stock but clearly showed 10-year-old restorations bearing 

transitional C values trending toward the natural reference. DelVecchia et al. (2014) 

suggest the prior land use at their study site (shrimp farms) may have played a role in 

enriching C storage at the Muisne mangrove restorations.  

Salmo et al. (2013), studying Rhizophora mucronata stands in the Philippines, 

estimated that Rhizophora mucronata stands in the Philippines would reach equivalent 

DBH, AGB, and soil OM in approximately 25 years. In addition to comparing raw values 

of these features, the authors also studied each site three to five times over the course of 2 
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years, enabling them to identify the change in each measurement over time. Frequent 

measures as in Salmo et al. (2013) provide robust data, but are extremely resource 

intensive, preventing wide application. 

 

6. Economic Mangrove Restoration for C Storage 

One key factor in promoting carbon storage through mangrove restoration is the 

need for a market that accounts for the C storage benefit that mangroves provide. A 

market can contextualize the ecological benefit from mangrove restoration so that 

investments in mangrove restoration can be balanced against alternative C management 

strategies (Barbier 2013, Locatelli et al. 2014). The VM0033 Tidal Wetland and Seagrass 

Restoration Methodology is a system created to align wetland restoration, including 

mangrove restoration, with the Verified Carbon Standard, the largest global carbon 

standard (Needelman et al. 2019). The VM0033 methodology lays out a standardized 

way to account for the C and other greenhouse gases (GHGs) stored by wetland 

restoration projects by estimating the existing GHG stock, projecting the GHG storage 

rate under “business as usual” conditions, and estimating the GHG storage rate predicted 

for a restoration project (Emmer et al. 2015). By comparing the business-as-usual 

scenario to the restoration scenario, the methodology provides an estimate of reduction in 

CO2 equivalents (a standard unit for carbon markets that accounts for both CO2 and other 

greenhouse gases), which can be converted to credits for sale in a carbon market. 

Mangroves are well-suited to marketed restoration because they produce forests with 

significant aboveground C storage in the short- to medium-term (for immediate, 

quantifiable gains) in addition to their long-term soil C storage potential (Locatelli et al. 
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2014). Under the methodology, projects may estimate the expected mangrove soil C 

storage rate by using a published rate from a similar location or by using a default value 

of 1.46 t C/ha/year (1.32 MgC/ha/year) (Needelman et al. 2019).  

At present, there is not a global C market where mangrove forest C credits can be 

sold; however, national and international markets are available (Vegh et al. 2019). The 

carbon standards have established agreements with registries to facilitate the sale of 

credits from approved projects for voluntary C credit sale; proposed mangrove projects 

could apply for inclusion on one of these registries (Lee et al. 2018).  The Mikoko 

Pamoja mangrove restoration project in Gazi Bay, Kenya, is one of the first mangrove 

restoration projects to be financed through the sale of carbon credits (Wylie et al. 2016). 

Through an agreement with Edinburgh organization Plan Vivo, credits representing one 

metric ton of C are sold for between 6.50 USD and 10.00 USD.  

Regulations requiring compensation for destroyed forests play a part in slowing 

the loss of mangrove forests. In the United States, mangroves are protected at the federal 

level by Section 404 of the Clean Water Act, which regulates dredging or filling of 

waters of the United States, including coastal wetlands such as mangrove forests (Hough 

and Robertson 2009). Section 404 requires that impacts to wetlands be minimized, and 

unavoidable impacts be mitigated. In Florida, USA, where most mangroves in the United 

States are located (Romañach et al. 2018), mangroves are protected by the Mangrove 

Trimming and Preservation Act of 1996 (Florida Statutes § 403.9321), which requires 

any trimming of existing mangroves be performed by a licensed professional and 

establishes morphological benchmarks for the level of protection afforded to mangroves. 

Both federal and state protection in Florida are focused on the preservation of and 
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compensation for mangroves that remain; neither framework provides an incentive for 

increasing mangrove restoration beyond the current extent.  

 

7. Carbon Storage and Other Ecosystem Services 

Under certain circumstances, mangrove C storage can compete with the other 

ecosystem services that mangroves provide. For example, when mangroves are used to 

treat unfiltered wastewater, it can lead to increases in emissions of N2O and CH4, 

counteracting the climate benefits of mangrove C storage with these more potent 

greenhouse gases (Konnerup et al. 2014). A study of riverine mangroves along the 

Danshuei River in northern Taiwan found the mangroves decreased river velocity, 

increasing flooding; this resulted in a need to clear a portion of the mangroves and 

sacrifice their C storage potential in order to reduce river flooding (Shih et al. 2015). The 

same study noted that as mangroves spread into mud flats, this necessarily reduces the 

habitat available to fauna that live in or migrate through the mud flats. When quantifying 

the benefits of mangrove forest restoration, the secondary impacts of the restoration must 

also be accounted for. 

Even when mangroves are not restored specifically to store C, C storage will 

result as an ancillary benefit. Mangrove restoration in Florida is often motivated by the 

other ecosystem services mangroves provide, including their role as fish nurseries and 

their ability to stabilize shorelines (Milano 1999). Still, using the C benefit as a lens for 

selection of restoration sites has been shown to be a reliable strategy for securing water 

purification and coastal stabilization, as the quality of these services are closely linked 

(Adame et al. 2014).   
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8. Conclusion 

 Mangrove forest restoration has the potential to contribute to global C storage 

strategies. Mangrove forests provide both rapid C storage in aboveground biomass and 

long-term, continual C sequestration through development of thick layers of mangrove 

peat. Preservation of existing mangrove forests is also essential considering the large C 

stock stored within peat layers accumulated over hundreds or thousands of years. 

Additional research is needed to better understand how the rate of mangrove C storage 

varies within different ecological contexts. This research will inform region-specific 

climate planning and support international cooperation by providing insight into where 

and how to allocate mitigation funding. 
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CHAPTER II. Carbon Storage in Restored Mangrove Forests in Biscayne Bay, Florida  

1. Introduction 

Mangrove forests are salt-tolerant, coastal, hardwood ecosystems found in 

tropical latitudes around the world (Mukherjee et al. 2014). Mangroves have faced 

significant threats from agriculture, aquaculture, and urban development, with over 35% 

of all mangrove forests having been destroyed since 1980 (Romañach et al. 2018). 

Mangroves provide a variety of ecosystem services, including habitat for a wide range of 

terrestrial and aquatic wildlife  (Nagelkerken et al. 2008), protection from wind and wave 

energy (Zhang et al. 2012, Das and Crépin 2013), and sequestration of carbon (Donato et 

al. 2011). When mangrove forests are destroyed for development, they are no longer able 

to provide these services, as the ecological structure and productivity fundamental to 

these services is degraded or lost.  

The carbon (C) sequestered by mangroves, along with coastal marshes and 

seagrasses, is known as “blue carbon” (Crooks et al. 2019). Blue carbon ecosystems are 

significant, as they store significantly more C than terrestrial ecosystems covering the 

same areal extent; mangrove ecosystems store more than twice as much C in tons per 

hectare than boreal, temperate, or tropical forests (Alongi 2012). Mangrove C is 

overwhelmingly stored within mangrove soil, built up over hundreds and sometimes 

thousands of years as C is converted into leaf and root matter then trapped and broken 

down into mangrove peat. Conversion of mangrove forests for development results in the 

release of that C as CO2 (Lovelock et al. 2019). One way to counteract these effects is by 

restoring lost ecosystems so they can resume sequestering C. 
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Miami, Florida, USA, is a highly urbanized coastal city where the effects of 

development claimed 82% of the mangrove forest by 1976 (Harlem 1979). To restore 

coastal wetlands, including mangrove forests, Miami-Dade County Department of 

Environmental Resource Management (DERM) developed the Coastal Wetland 

Restoration Program (CWRP) (Milano 1999a). The CWRP was also interested in the 

ecosystem services provided by restored wetlands, especially habitat for native species 

and shoreline stabilization (Milano 1999a, 2000). In 2010, Miami-Dade County 

developed its Climate Action Plan, which included habitat restoration as one of its 

environmental goals, suggesting C offset programs as a possible funding stream (Miami-

Dade County 2010).  

To determine the amount of C credits available from a proposed ecosystem 

restoration project, it is necessary to know the amount of C anticipated to be stored by the 

project and how it compares to a “business-as-usual” scenario without the restoration 

project (Emmer et al. 2015). The type and strength of ecosystem services provided by 

coastal wetlands are dependent on the specific qualities of the ecosystems providing them 

(Folke et al. 2004), particularly in mangrove forests, which are made up of a few species 

with highly plastic growth forms that reflect hydrology and nutrient profile (Feller et al. 

2010). Storage of C in natural mangrove forests is well studied (Donato et al. 2011, 

Alongi 2014, Ribeiro et al. 2019), but because of mangroves’ variable growth rates and 

forms, there is a need to study C storage in restored mangrove forests, particularly in 

urban environments, to understand the potential C benefit of restored mangrove forests.  
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The present study aims to identify how the C storage service varies in time and 

space in restored mangrove forests on a narrow urban coastline relative to mature, natural 

mangrove forests in a similar hydrogeologic setting. Previous research found that for 

restored mangrove forests in Tampa, Florida, soil organic matter (SOM) in the top 10 cm 

of soil reached equivalency to proximate natural mangrove forests after 20 years (Osland 

et al. 2012). Accordingly, I expected the C stored in restored mangrove forests around 

Biscayne Bay to reach equivalence with local natural reference sites after 20 years.  To 

measure the change in stored C over time, I used a “space-for-time” approach in which 

contemporary sites representing differing lengths of time since establishment were used 

in the absence of long-term ecological data. The space-for-time approach has been used 

previously to evaluate mangrove restorations in the Philippines (Salmo et al. 2013, 2014) 

and Tampa Bay, FL, USA (Osland et al. 2012, Krauss et al. 2017). The present study is 

the first attempt to apply the space-for-time approach to mangrove restoration sites in 

Biscayne Bay in Miami, Florida.  
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Figure 1: Site Locations. Location of each natural and restored mangrove forest studied in Biscayne Bay. 
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Figure 2: Plot Locations. Close-up of the four mangrove restorations. Sites: Bill Baggs 

Cape Florida State Park (BBCF), North Point Virginia Key (NPVK), Oleta River State 

Park (ORSP), Historic Virginia Key Beach Park (HVKB). 
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2. Methods 

A. Study Sites 

Four restored mangrove forests around Biscayne Bay were selected with the 

assistance of Miami-Dade DERM (Figure 1). The sites were located at Bill Baggs Cape 

Florida State Park (BBCF), at the north point of Virginia Key (NPVK), at the Historic 

Virginia Key Beach Park (HVKB), and at Oleta River State Park (ORSP) (Figure 2). The 

restoration sites selected were fringe mangrove forests restored by Miami-Dade County’s 

DERM CWRP 20, 19, 10, and 8 years, respectively, prior to the beginning of the study. 

The sites were restored by adjusting the elevation using a backhoe to scrape coastal areas 

to elevations appropriate for mangrove establishment: 1.0’-1.2’ NGVD for red mangrove 

(Rhizophora mangle) areas; 1.25’-1.5’ for black mangrove (Avicennia germinans) areas; 

and 1.5’-2.0’ for white mangrove (Laguncularia racemosa) areas (Milano 1999a). The 

restoration sites were planted by both contractors and volunteers with one-year-old red 

mangrove saplings (Milano 1999a). Saplings were planted on a 3’ center, a density of 

approximately 1.2 plants/m2 (Milano 1999a). White and black mangroves were typically 

not planted because of their abundance in surrounding areas, providing ample recruits 

without individual planting. Instead, areas targeting black or white mangroves would be 

leveled to the appropriate grade and allowed to recruit naturally (Milano 1999a). Specific 

attributes of each site are described below (Table 1). Natural reference sites were selected 

by identifying mature mangrove forests in close geographic proximity to each restoration 

site. Exact plot locations for each forest management type (“restoration” and “natural 

reference” or “natural”) were selected by identifying areas with relatively uniform 
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canopy height accessible on foot. An onsite mature mangrove forest was selected as the 

natural reference for sites where such forests were available (HVKB, ORSP). For the 

other two sites (BBCF, NPVK), the nearest available mature forest along the same coast 

was selected as the natural reference site. 
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Table 1: Site Conditions. Four restorations in Miami-Dade County, FL, USA were selected for study. Mature mangrove forests in 

close geographic proximity to each restoration were selected to serve as natural reference sites. 
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Bill Baggs Cape Florida State Park is located on the southern point of Key 

Biscayne (Figure 2, BBCF_REST_1-3). Aerial imagery from 1925 shows the west coast 

of the key with mangrove cover, but in the 1950’s the site was filled with dredged 

sediment from Biscayne Bay to elevate the grade for development (Milano 1999b). In 

1992, Hurricane Andrew destroyed a large area of invasive vegetation, with significant 

cover of Australian pine (Casuarina equisetifolia), creating an opportunity for the county 

to restore 65 acres of red mangrove forest on the west coast property (Liddell 2003). The 

restoration included a series of pools and channels to facilitate hydrologic flow (Milano 

1999b). This restoration was completed in phases, and the phase containing the site used 

in this study was completed in 1998 (Liddell 2003). For a natural reference site, I selected 

Calusa Park, a Miami-Dade County park on the west side of Key Biscayne and part of 

Crandon Park, as it is the geographically closest mature mangrove forest on the west 

coast of Key Biscayne (Figure 2, BBCF_NAT_1-3). 

The first of the two restoration projects on Virginia Key that were studied was 

located at the northern point of Virginia Key (Figure 2, NPVK_REST_1-3). This area is 

built out from the historical coast, originally extended with dredge spoil from the 

widening of Government Cut (Harlem 1979). The shape of the restoration is a narrow 

“lasso” shape, with a narrow channel encircling a raised forest area. This restoration was 

completed in 1999 (Liddell 2003). The natural reference for this site is the mature 

mangrove forest on the east side of Virginia Key, adjacent to Lamar Lake, selected for 

both its proximity and ease of access (Figure 2, NPVK_NAT_1-3). 
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The second restoration on Virginia Key is located at the Historic Virginia Key 

Beach Park (Figure 2, HVKB_REST_1-3), a city-owned park on the eastern coast of 

Virginia Key. The restoration area is located adjacent to the park on land owned by 

Miami-Dade County, which had suffered extensive invasion by Australian pine 

(“Virginia Key Master Plan” 2010). The non-native vegetation was removed and replaced 

with a range of native ecosystems including forests of red and black mangroves; the black 

mangrove forests were left to recruit naturally, and the red mangroves finished planting in 

2008 (Gary Milano, personal communication).The HVKB site includes a long mosquito 

ditching channel through the park, providing limited tidal flow to different sections of the 

restored area along its bounds (“Virginia Key Master Plan” 2010).  The location selected 

for the present study was roughly 900 m from the shore along this channel, at a point 

across the channel from the mature forest that was selected to serve as its natural 

reference site (Figure 2, HVKB_NAT_1-3). 

The final restoration site is a 22.2-acre triangular restoration with its long edge 

along the Oleta River in Oleta River State Park (Figure 2, ORSP_REST_1-3). Records 

from as late as 1925 recognized much of this area as freshwater marl prairie, but 

following significant dredging in what came to be known as the Interama property, as 

well as an increased nutrient load from rapid urbanization upriver, mangroves colonized 

the prairie and began to prosper (Teas 1974, Harlem 1979). In the 1960’s, the newly 

grown mangrove forest was dredged and filled to create a marina along the Oleta River 

(Florida Department of Environmental Protection 2008). The property became part of the 

state park in 1985, and the former marina was selected for restoration in the 2000s 
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(Florida Department of Environmental Protection 2008). Like the restoration at BBCF, 

the site includes pools and channels; restoration was completed in 2010 (Gary Milano, 

personal communication). The natural reference forest for this site is the mature 

mangrove forest directly across the river from the restoration (Figure 2, ORSP_NAT_1-

3), which has grown uninterrupted since the initial expansion into the prairie (Harlem 

1979). 

In each of the 4 restoration and natural sites, three 10 x 10 m vegetation plots 

were established. The plots were located 20 m apart and 5 m away from the nearest water 

channel or river, measured from the mean extent of red mangrove prop roots into the 

water. 

B. Hydrology 

Water levels were measured using a combination of water level gauges and 

manual depth-to-water (DTW) measurements. In each plot, three 5.08 cm (2 in) diameter 

PVC wells approximately 1 m in length were installed 50 cm deep into the soil, 

approximately 2.5 m apart along a straight line extending from the center of the water-

ward side of the plot, enabling measurements 2.5 m, 5.0 m, and 7.5 m from the edge of 

the plot. In one well at each restoration site, an Onset HOBO pressure gauge was 

installed to collect water level data at half-hour intervals, while all other wells at the 

restoration sites and all natural site wells were ungauged. At ORSP and HVKB, an 

additional HOBO sensor was placed in the well above the expected maximum water level 

to correct measurements for variation in barometric pressure. Sites were then visited 

bimonthly to manually record DTW and download gauge measurements. An average 
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offset was calculated from the mean difference between the manual water level 

measurements at each ungauged well and the gauge in the restoration plot. The offset was 

used to approximate water levels at each ungauged well from the water levels collected 

by the gauge between manual water level measurements. These adjusted water levels 

were used to determine hydroperiod for each plot, characterized as “flood frequency” in 

floods per year and “flood duration” in hours flooded per year (October 2017 – October 

2018). A site was considered flooded any time the water level was at or above the soil 

surface (water level ≥ 0 m). Flood frequency was standardized by calculating floods per 

day (the total number of independent submersion events observed at a site divided by the 

total number of days for which data was collected at that site) and multiplying by 365 

days to yield floods per year (greatest loss at site NPVK, missing data from May 6th to 

August 3rd). Similarly, flood duration was standardized by calculating hours flooded per 

day (the total number of hours the site was submerged over the course of the study 

divided by the total number of days for which data was recorded) and multiplying by 365 

days to yield hours flooded per year. 

C. Forest Structure 

In each plot, every red, black, and white mangrove with a diameter at breast 

height (DBH) of 2.5 cm or larger was marked with an aluminum tag. Tagged trees were 

measured for DBH and height. The DBH was measured using diameter tape at 1.3 m or 

above the highest prop root (whichever was higher), and tree height was measured with a 

telescopic rod. Density was measured as tagged mangrove tree count per unit area, and 
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basal area for each tagged tree was calculated from its diameter. Trees less than 2.5 cm 

DBH were not measured as part of the study.  

D. Carbon Storage in Aboveground Biomass 

My study examined carbon storage in three carbon pools: aboveground live 

biomass, belowground biomass, and soil carbon. Aboveground live biomass was 

estimated using allometric equations developed by Smith and Whelan (2006) relating 

mangrove DBH to aboveground dry biomass in kg. These equations were developed in 

South Florida, so they are expected to approximate the aboveground biomass of Biscayne 

Bay’s mangroves more closely than equations developed in other regions. Carbon content 

was then estimated using a 0.44 ratio of mass carbon to aboveground biomass (Ewe et al. 

2006).  

 

Table 2: Allometric Equations. Allometric equations for calculating aboveground 

biomass (AGB) from diameter at breast height (DBH) along with the diameter range at 

which the equations are most accurate. Equations are provided for the three mangrove 

species found in South Florida, black mangrove (Avicennia germinans), white mangrove 

(Laguncularia racemosa), and red mangrove (Rhizophora mangle). The equations were 

developed by Smith & Whelan (2006) using direct measurement of South Florida 

mangroves.  

Equation 

Number Species Equation 

Diameter 

range (cm) 

Equation 1 Avicennia germinans AGB =0.403*(DBH)1.934 2.5-21.5 

Equation 2 Laguncularia racemosa AGB =0.362*(DBH)1.930 2.5-18.0 

Equation 3 Rhizophora mangle AGB =0.722*(DBH)1.731   2.5-20.0 

 

E. Carbon Storage in Belowground Biomass and Soil 

In each plot, one 15 cm soil core was collected. Sediment accumulation rates for 

mangrove forests vary widely, but previous research found South Florida mangroves to 
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accumulate sediment within a range of 0.6 – 7.2 mm/year (Sasmito et al. 2016). Because 

the oldest restoration in the study was 20 years old, I determined 15 cm cores to be 

sufficient for comparing the restored forests to natural forests. Cores were collected using 

a 15.24 cm (6-inch) diameter PVC suction-corer. Cores were capped and transported out 

of the field in the PVC corer, which was placed in ice and transported back to the lab. 

Using a custom-made core extruder (manufactured by Nolan’s Machine Shop, Lafayette, 

LA, USA, according to specifications sent by Dr. Edward Castañeda, Research Associate 

Professor at Florida International University), soil cores were then pressed out of the 

PVC corer and cut into 1 cm segments. Half of each segment was frozen and archived, 

while the other half-section (hereafter “sample”) was frozen until being processed for 

analysis. Samples were thawed for 24 hours, then weighed. Samples were dried at 60°C 

until constant weight, then finely ground with mortar and pestle and stored in 20 ml glass 

scintillation vials. Total carbon (TC) and total nitrogen (TN) for each sample was found 

using a FlashEA 1112 elemental analyzer (Thermo Scientific) (Howard et al. 2014). 

Inorganic C (IC) content for each sample was then determined by ashing a subsample of 

the dried soil sample at 500°C for 4 hours and running the ashed subsample through the 

elemental analyzer. The mass of organic C (OC) in grams was determined by multiplying 

the mass of TC by 100 minus the percent IC, and the percent OC of the subsection was 

determined by dividing the mass of OC by the subsection dry mass. The soil OC 

measured in this way was used as the soil C pool. 

Roots and rocks larger than 2 mm in diameter (“large roots and rocks”) were 

removed during grinding and weighed; these weights were subtracted from the dry mass 
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of the soil. Large root volumes and rock volumes were measured using water 

displacement and subtracted from the sample’s total volume before calculating bulk 

density. Bulk density was measured as the dry mass without the large roots and rocks 

divided by the sample’s total volume without the large roots and rocks, measured in 

grams per cubic centimeter. The belowground biomass was determined from the dry 

mass of the large roots (including live and dead roots) removed during the grinding 

process. Belowground biomass C was determined by multiplying the belowground 

biomass by the 0.44 C conversion rate.  

F. Soil Carbon Accumulation Rate 

The rate of soil C accumulation was estimated using 210Pb, half-life 22.3 years, 

using the methods described in Smoak et al. (2013) and Breithaupt et al. (2014). Due to 

the costly and time-consuming nature of 210Pb sampling, 4 cores were selected to be 

sampled, one restored and one natural plot from the oldest restoration (BBCF) and from 

the youngest restoration (ORSP). From each dried, ground, 1 cm subsection of these 4 

cores, a 4 mL subsample was set aside in a 7 mL scintillation vial and sent to the 

University of South Florida for processing. After samples were packed into gamma 

counting tubes, an intrinsic germanium well detector coupled to a multi-channel analyzer 

was used to measure gamma activity. 210Pb activity was measured at the 46.5 keV peak, 

and background 226Ra was measured with its surrogate, 214Pb, at 351.9 keV. While 137Cs 

is sometimes used for additional validation of 210Pb analyses, highly organic mangrove 

soils can cause 137Cs to leach out of the soil, compromising its utility as an independent 

verification of 210Pb dates (Breithaupt et al. 2014). For this reason, 137Cs validation was 
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not used. Instead, 210Pb response trends were compared to redox-sensitive 238U (measured 

via a 234Th proxy) to gain additional insight into the soil profiles.   

In the restored sites, the 210Pb activity-versus-depth profile was expected to show 

a steady decline in 210Pb activity with a sudden break that would indicate the boundary 

between sediment accumulated since restoration and the pre-restoration sediment below 

the excavation depth. The percent OC and soil bulk density profiles were also compared 

to this breaking point to confirm the depth of the breaking point. Soil C accumulation rate 

in grams C per meter squared per year (gC/m2/yr) was then determined as the sum of the 

soil C in all segments above the breaking point divided by the depth. Mass accumulation 

was calculated similarly, by summing the mass in grams per meter squared (g/m2) above 

the breaking point and dividing it by the time since restoration in years. Total sediment 

accretion was determined by dividing the depth of the break in cm by the time since 

restoration in years and multiplying by 10 for units of millimeters per year (mm/yr). 

Natural sites were expected to have deeper accumulated sediment than the 15 cm 

collected in the soil cores, so an irregularity in the 210Pb activity-versus-depth profiles 

was not anticipated in the natural cores. Because the profile was assumed to represent 

uninterrupted accumulation, the 210Pb activity-versus-depth profile can itself be used to 

estimate the rate of sediment accumulation by linear regression on the graph of the 

natural log of the 210Pb activity over depth (as described in Smoak and Patchineelam 

1999). The sediment accumulation rate was calculated using the following equation 

(simplified from Smoak and Patchineelam 1999): 

Equation 4:  S =  λ * m 
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where S is the rate of sediment accumulation in millimeters per year (mm/yr), λ is the 

decay constant of 210Pb (the natural log of 2 divided by the half-life; ln(2)/22.3 in units of 

/yr), and m is the slope of the linear regression of the graph of the natural log of the 210Pb 

activity over depth. The rate of mass accumulation in grams per centimeter squared per 

year (g/cm2/yr) was calculated using the same equation, replacing the depth factor with 

mass depth (the sum of the dry bulk density in grams per centimeter cubed at a given 

depth times the 1 cm subsection thickness and every subsection above it in the core, units 

of grams per square centimeter). The rate of OC accumulation was calculated using the 

density of OC in grams per centimeter cubed in place of the dry bulk density to calculate 

OC mass depth for use in Equation 4. 

G. Statistical Analyses 

All statistical analyses were conducted in IBM SPSS Statistics 26 and graphed in 

Microsoft Excel for Office 365 (Version 16.0.12527.21296). To evaluate whether the 

restored forests are approaching equivalence with the natural forests, the mean values of 

the restored plots for each measurement were plotted against the time since the site’s 

restoration was completed. Values for all the natural sites were averaged to create a 

single mean reference value. Finally, a time to equivalence (teq) was calculated for each 

measurement by setting the regression equation for the restored forest equal to the mean 

reference value (Osland et al. 2012): 

teq = mean reference value / slope of the restored forest regression 

Two-way ANOVA was used to evaluate all the environmental variables 

(hydroperiod and TN) across site and forest management type. To test the assumption 
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that natural sites were sufficiently equivalent to one another to be averaged for 

comparison to the restored sites, I used a single factor ANOVA to evaluate the mean 

difference in the values of all response variables. Linear regression was also used to 

evaluate the relationship between the C pools of natural sites and the environmental 

variables, soil TN, and hydrology, to determine if these environmental variables 

explained the variation among natural sites.  

Because the sites were cleared of all vegetation prior to planting, any 

measurement representing the physical biomass (aboveground or belowground) at the 

time of planting was inferred to be zero (t = 0; as measured in terms of trees with DBH ≥ 

2.5) with regression model fit through the origin. Soil OC did not use this assumption, as 

the restoration sites varied in soil OC content at planting according to the qualities of the 

planting soil. Baseline soil OC must therefore be assumed to be an unknown non-zero 

value.  

 

3. Results 

A. Hydrology 

Water levels recorded by the gauges over the course of the study ranged from 

0.36 m below to 0.50 m above the soil surface (Figure 3). After applying the offsets to the 

manual wells, water levels at all wells ranged from 0.41 m below to 0.69 m above the soil 

surface. The maximum water level of HVKB unexpectedly flattened at approximately 0.6 

m.  
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Hydroperiod for each forest management type (“type,” natural and restored) was 

characterized in terms of frequency and duration of flooding at each plot (Figure 4). 

Flood frequency ranged from 5.8 to 627.1 floods per year in the restored sites (mean ± 

SE: 231.2 ± 55.6), and from 0 to 611.9 floods per year in the natural sites (158.1 ± 62.8). 

Flood duration ranged from 4,631 hours to 8,672 hours per year in the restored sites 

(7,044 ± 390) and from 0 to 8,746 hours per year in the natural sites (5071 ± 1063). Two 

plots were not submerged at any point over the course of the study (HVKB_NAT_1 and 

HVKB_NAT 2), which was interpreted to indicate a hydrological disturbance (perhaps 

historical fill that disrupted the hydrology but did not kill off the existing mangroves). 

Flood frequency and flood duration varied by both site and forest management 

type. The interaction between site and type was significant for flood frequency [2-way 

ANOVA; F(3,16) = 9.426, p = 0.001] and flood duration [F(3,16) = 13.969, p <  0.001]. 

Significant differences were found among sites in mean flood frequency [1-way 

ANOVA; F(3,16) = 4.739, p = 0.015] and flood duration [F(3,16) = 13.496, p < 0.001]. 

Tukey’s post hoc test showed BBCF differed significantly from NPVK in flood 

frequency (p < 0.05), but neither site was significantly different from the other two sites. 

Tukey’s post hoc test showed the sites divided into two distinct groups in flood duration, 

with BBCF and HVKB significantly greater (p < 0.05) than NPVK and ORSP. The effect 

of forest management type was significant for flood duration [F(3,16) = 13.557, p = 

0.002] but not flood frequency [F(3,16) = 2.02, p = 0.174].  

One-way ANOVA showed natural sites differed significantly in flood frequency 

[F(3,8) = 14.061, p = 0.001] and flood duration [F(3,8) = 25.919, p <  0.001]. For flood 
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frequency, Tukey’s post hoc test showed BBCF differed from the other natural sites (p < 

0.05) with significantly greater flood frequency (mean ± SE of 487.6 ± 83.1 floods per 

year, versus 48.0 ± 24.8 floods per year for the other natural sites). For flood duration, 

Tukey’s post hoc analysis showed the natural site hydrology data could be differentiated 

into two groups (p < 0.05), with HVKB and BBCF submerged for relatively few hours 

per year (1730 ± 687 hours) and NPVK and ORSP submerged for almost every hour of 

the year (8412 ± 197 hours, or 96% of the entire year).  

The restored sites did not differ significantly in flood frequency [(F(3,8) = 3.692, 

p > 0.05] or flood duration [F(3,8) = 1.271, p > 0.05)]. None of the restored-natural pairs 

differed significantly in flood frequency, and only BBCF differed significantly in flood 

duration [t(2) = 5.932, p < 0.05]. 
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Figure 3: Hydrographs of Restored Sites. Water levels recorded using Onset HOBO 

pressure gauges. Water level is measured in meters above ground level, where 0 m = soil 

surface. 
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Figure 4: Average Annual Hydroperiod at Each Natural and Restored Site. Data are 

means with standard error. Sites are Oleta River State Park (ORSP), Historic Virginia 

Key Beach Park (HVKB), North Point Virginia Key (NPVK), and Bill Baggs Cape 

Florida State Park (BBCF). Flood frequency recorded as independent occurrences of 

surface submergence (floods per year), and flood duration recorded as the sum of all 

time during which the soil surface was submerged over the course of one year (flood 

duration). 
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Table 3: Forest Structure Characteristics by Species. Black (B), red (R), and white (W) 

mangroves were observed. Data are mean ± standard error. Values marked with a single 

asterisk (*) indicate a species was observed in only one plot from that site and 

management type. Values marked with a double asterisk (**) indicate a species was not 

found in any plot for that site and management type.  
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Figure 5: Forest Structure Measurements at Each Natural and Restored Site. Forest 

structure measurements, from top: basal area in meters squared per hectare; stem 

density in tagged stems (stems with DBH ≥ 2.5 cm) per hectare; average height in 

meters; maximum height in meters; average DBH in cm; and maximum DBH in 

centimeters. All measurements mean ± standard error. 
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Figure 6: Species Composition at Each Natural and Restored Site. Number of black, red, 

and white mangroves with DBH ≥ 2.5 cm at each study plot, converted to stems per 

hectare. Red mangroves are the only species present at every site and are the most 

numerous species in 18 of the 24 sites. 

B. Forest Structure  

The average value for basal area, average height, maximum height, average DBH, 

and maximum DBH was greater in the natural sites as compared to the restored sites 

(Table 3; Figure 5). Stem density in restored sites, in contrast, was greater than or equal 

to stem density in natural sites (Table 3, Figure 5). 
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Red mangroves were the only species present in every study plot, with white 

mangroves present in 66% of the plots and black mangroves present in 58% of the plots 

(Figure 6). Red mangroves were the most abundant species in 18 of the 24 plots; white 

mangroves were the most abundant in five of the remaining plots (ORSP_REST_1-3, 

NPVK_REST_1, NPVK_REST_3), and in one plot red and white mangroves were 

equally abundant (HVKB_NAT_3). Natural plots ranged from 1,100 to 4,100 red 

mangroves per hectare, with up to 2,100 black mangroves and up to 4,100 white 

mangroves per hectare. Restored plots ranged from 900 to 13,500 red mangroves per 

hectare, with up to 2,000 black mangroves and up to 4,800 white mangroves per hectare. 

Basal area in restoration plots ranged from 0.63 to 13.32 m2/ha (4.31 ± 0.96), 

while natural plots ranged from 6.61 to 24.99 m2/ha (18.18 ± 1.63). I did not find a 

significant interaction between site and type [F(3,16) = 0.663, p = 0.587] nor due to site 

[F(3,16) = 1.270, p = 0.318]. Mean basal area was significantly higher in the natural sites 

than the restoration sites [F(3,16) = 54.346, p <  0.001]. One-way ANOVA did not show 

a significant difference among the natural sites [F(3,8) = 0.939, p = 0.466] or the restored 

sites [F(3,8) = 1.054, p > 0.05)]. Three of the four restored-natural pairs differed 

significantly in basal area: BBCF [t(2) = 4.918, p < 0.05], NPVK [t(2) = 5.645, p < 0.05], 

and ORSP [t(2) = 14.920, p < 0.05].  

Stem density ranged from 1,200 stems/ha to 13,500 stems/ha in restored plots 

(6233 ± 915) and from 1,100 stems/ha to 10,000 stems/ha in natural plots (3308 ± 722). I 

did not find a significant interaction between site and type [F(3,16) = 1.048, p > 0.05] nor 

a significant difference due to site [F(3,16) = 0.931, p > 0.05 ]. Mean stem density was 
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significantly greater in the restoration types than the natural types [F(3,16) = 6.283, p < 

0.05]. One-way ANOVA did not show a significant difference among the natural sites 

[F(3,8) = 0.603, p = 0.631] or the restored sites [F(3,8) = 1.280, p > 0.05)]. None of the 

restored-natural pairs showed a significant difference in stem density. 

The average height of all mangroves in the restoration plots ranged from 3.89 m 

to 6.65 m (6.30 ± 0.36), while the average height in natural mangroves ranged from 5.63 

m to 11.27 m (12.30 ± 0.61). I did not find a significant difference among the means in 

the interaction between site and type [F(3,16) = 1.899, p > 0.05] nor due to site [F(3,16) 

= 0.393, p > 0.05]. The average height of all mangroves was found to be significantly 

greater in the natural types than the restoration types [F(3,16) = 47.419, p <  0.001]. One-

way ANOVA did not show a significant difference among the natural sites [F(3,8) = 

1.151, p > 0.05] or the restored sites [F(3,8) = 1.113, p > 0.05)]. Only two of the four 

restored-natural pairs were significantly different in average height: NPVK [t(2) = 

22.460, p < 0.05] and ORSP [t(2) = 5.727, p < 0.05]. 

The maximum height for restored mangroves ranged from 4.55 m to 8.44 m (4.73 

± 0.21), and the maximum height in the natural mangroves ranged from 7.9 m to 15.1 m 

(8.73 ± 0.55). I did not find a significant difference among the means from the interaction 

between site and type [F(3,16) = 0.894, p > 0.05], nor due to site [F(3,16) = 0.116, p > 

0.05]. The maximum mangrove height in the natural types was found to be significantly 

greater than in the restoration types [F(3,16) = 61.640, p <  0.001]. One-way ANOVA 

did not show a significant difference among the natural sites [F(3,8) = 0.191, p > 0.05] or 

the restored sites [F(3,8) = 1.942, p > 0.05)]. Three of the restored-natural pairs were 
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significantly different: BBCF [t(2) = 15.560, p < 0.05], NPVK [t(2) = 10.799, p < 0.05], 

and ORSP [t(2) = 7.004, p < 0.05] 

Average DBH in restored mangroves ranged from 2.8 to 3.9 cm (3.3 ± 0.1), while 

the average DBH in natural forests ranged from 3.3 to 19.5 cm (9.8 ± 1.3). I did not find a 

significant interaction between site and type [F(3,16) = 0.966, p > 0.05], nor did I find a 

significant difference among the means due to site [F(3,16) = 0.517, p > 0.05]. Average 

DBH was significantly greater in the natural types than in the restoration types [F(3,16) = 

23.765, p <  0.001]. One-way ANOVA did not show a significant difference among the 

natural sites [F(3,8) = 0.725, p > 0.05], but did show a significant difference among the 

restoration sites [F(3,8) = 6.360, p < 0.05)]. Tukey’s post-hoc analysis identified two 

subgroups, with HVKB_REST and ORSP_REST in one subgroup, BBCF_REST in the 

other subgroup, and NPVK_REST in both subgroups. Two of the four restored-natural 

pairs were significantly different: BBCF [t(2) = 9.572, p < 0.05] and NPVK [t(2) = 6.561, 

p < 0.05]. 

Maximum DBH in restored forests ranged from 3.5 to 7.4 cm (5.185 ± 0.374), 

and maximum DBH in natural forests ranged from 5.4 to 27.9 cm (18.746 ± 1.626). I did 

not find a significant interaction between site and type [F(3,16) = 0.190, p > 0.05], nor 

due to site [F(3,16) = 0.112, p > 0.05]. Maximum DBH was significantly higher in the 

natural types than in the restoration types [F(3,16) = 50.755, p <  0.001]. One-way 

ANOVA did not show a significant difference among the natural sites [F(3,8) = 0.063, p 

> 0.05], but did show a significant difference among the restoration sites [F(3,8) = 4.670, 

p < 0.05]. Tukey’s post-hoc analysis identified two subgroups, with HVKB_REST in one 
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subgroup, NPVK_REST in another, and ORSP_REST and BBCF_REST in both 

subgroups. Three of the restored-natural pairs differed significantly: BBCF [t(2) = 

19.377, p < 0.05], NPVK [t(2) = 5.667, p < 0.05], and ORSP [t(2) = 5.308, p < 0.05]. 

Linear regression analyses were used to estimate the time for each forest structure 

measurement to reach equivalence to the mean reference values derived from the natural 

sites (Figure 7, Table 4). All six forest structure measurements demonstrated a strong, 

significant relationship (r2 > 0.90, p < 0.05). The teq values varied widely, from 7.8 years 

for stem density to 59.7 years for basal area. Besides stem density, none of the forest 

structure values had reached equivalence after 20 years (Table 4).   
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Table 4: Forest Structure Regression Values. Key measurements from the regression for 

each measurement of forest structure over time since restoration. Mean reference value, 

time to equivalence (teq), r
2, and p-value are provided. 
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Figure 7: Regression of Forest Structure Measurements over Time. Restoration values 

are graphed on the x axis at the time since restoration was completed (in years), while 

the natural sites are all graphed to the right of the regression over time. Forest structure 

measurements, from top: basal area in meters squared per hectare; stem density in 

tagged stems (stems with DBH ≥ 2.5 cm) per hectare; average height in meters; 

maximum height in meters; average DBH in cm; and maximum DBH in centimeters. 

 

 



 

 

53 

C. Carbon Storage 

 

Figure 8: Carbon Storage at Each Natural and Restoration Site. Data are means with 

standard error. From top: aboveground biomass; belowground biomass; soil OC; and C 

stock (sum of the three pools), all in megagrams C per hectare. 
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Table 5: Carbon Storage Regression Values. Key measurements from the regression for 

each C pool. Mean reference value, mean restoration value, time to equivalence in years 

(teq), r
2, and p-value are provided. 

 

 

Figure 9: Regression of Carbon Storage over Time. Restoration values graphed on the x 

axis at the time since restoration was completed (in years), while the natural sites are all 

graphed to the right of the regression over time. From top: aboveground biomass; 

belowground biomass; soil OC; and C stock (sum of the three pools), all in megagrams C 

per hectare (MgC/ha). All values with standard error. 
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D. Carbon Storage in Aboveground Biomass 

The C stored in aboveground biomass (AGB) at the restoration sites ranged from 

2.26 to 46.77 MgC/ha (15.06 ± 3.41) and at natural sites ranged from 20.58 to 62.16 

MgC/ha (41.99 ± 3.54) (Figure 8). I applied two-way ANOVA to test whether C differed 

by site or type and did not find a significant interaction of site and type [F(3,16) = 0.472, 

p > 0.05] nor from the effects of site [F(3,16) = 1.303, p > 0.05]. The C stored in AGB 

was found to be significantly greater in the natural sites than the restoration sites [F(3,16) 

= 29.109, p <  0.001]. One-way ANOVA did not indicate a significant difference in mean 

aboveground biomass among natural reference sites [F(3,8) = 0.239, p > 0.05] or restored 

sites [F(3,8) = 2.001, p > 0.05]. A significant difference was not found between any of 

the restored-natural site pairs. 

The mean reference value was 41.99 MgC/ha. Under the inference conditions (t = 

0, AGB = 0, with regression forced through the origin), linear regression analysis showed 

a strong positive relationship over time (r2 = 0.946 and p <  0.05). The teq = 50.4 years 

(Table 5, Figure 9).  

E. Carbon Storage in Belowground Biomass 

Belowground biomass (BGB) ranged from 3.57 to 14.96 MgC/ha (9.09 ± 1.16) at 

the restoration sites and from 2.79 to 23.53 MgC/ha (9.89 ± 1.63) at the natural sites. 

There was a significant interaction between site and type [F(3,16) = 5.384, p < 0.05]. No 

significant difference was found due to the effects of site alone [F(3,16) = 3.150, p > 

0.05] or type alone [F(3,16) = 0.303, p > 0.05]. One-way ANOVA did not indicate a 

significant difference in belowground biomass among natural sites [F(3,8) = 3.364, p > 
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0.05], but a significant difference was found among restoration sites [F(3,8) = 7.186, p < 

0.05]. Tukey’s post-hoc analysis identified two subgroups within the data, one containing 

HVKB_REST, another containing NPVK_REST, with BBCF_REST and ORSP_REST 

in both subgroups. Of the restored-natural site pairs, only two were significantly 

different: BBCF [t(2) = 5.731, p < 0.05] and NPVK [t(2) = 28.993, p < 0.05]. 

The mean reference value for C in belowground biomass was 9.89 MgC/ha. 

Under the inference conditions, there was a strong, positive relationship for belowground 

biomass in the restored sites as belowground biomass increased over time (r2 = 0.895 and 

p < 0.05) (Table 5; Figure 9). The teq = 13.6 years.  

F. Soil Carbon Storage 

Soil organic C (OC) ranged from 21.75 to 78.01 MgC/ha (41.36 ± 4.74) in 

restoration sites and from 33.41 to 86.68 MgC/ha (64.17 ± 5.40) in the natural sites. 

There was not a significant interaction between site and type; however, a significant 

difference was found due to the effects of site alone [F(3,16) = 14.469, p <  0.001] and 

type alone [F(3,16) = 34.347, p <  0.001]. One-way ANOVA of the soil OC of the 

natural sites indicated one of the natural sites differed significantly from the other natural 

sites [F(3,8) = 12.233, p < 0.05]; Tukey’s post hoc test confirmed the soil OC at 

HVKB_NAT to be significantly lower than at the other three natural sites with a mean 

soil OC of 36.18 ± 1.43 MgC/ha versus 73.50 ± 3.11. A significant difference was also 

found among the restored sites [F(3,8) = 7.643, p < 0.05]. Tukey’s post hoc test identified 

two subgroups, with NPVK_REST in one subgroup and ORSP_REST in the other, with 

BBCF_REST and HVKB_REST in both subgroups. Only NPVK differed significantly 
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between the restoration and natural sites [t(2) = 9.533, p < 0.05]. Dry bulk density, soil 

OC, and soil IC were also graphed over depth (Figure 10, Figure 11, Figure 12, 

respectively); no consistent trend over depth was observed among sites, forest 

management types, or  restored-natural pairs. 

The mean reference value derived from the natural sites was 64.166 MgC/ha. Soil 

OC cannot be assumed to have a value of 0 at time t = 0, because the OC of the initial 

planting soil is not known, so inference conditions could not be used for soil OC; 

accordingly, the regression was not forced to pass through the origin. No relationship was 

found between mean soil OC and time (r2 = 0.059, p > 0.05) (Table 5; Figure 9); 

therefore, teq could not be calculated. 
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Figure 10: Dry Bulk Density over Depth. Dry bulk density (g/cm3) over depth (cm) for restored and natural 

soil cores at all four study sites. All values are mean ± SE. 
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Figure 11: Soil Organic Carbon over Depth. Soil organic carbon (mg/cm3) over depth (cm) for restored 

and natural cores at all four study sites. All values are mean ± SE. 
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Figure 12: Soil Inorganic Carbon over Depth. Soil inorganic carbon content (mg/cm3) over depth (cm) for 

restored and natural cores at all four study sites. All values are mean ± SE. 

 

G. Soil TN 

Soil TN was characterized by area in megagrams of TN per hectare (Mg/ha) and 

by mass in grams TN per kilogram (g/kg) (Figure 13). Soil TN in restoration sites ranged 

from 1.213 to 3.429 Mg/ha by area (2.092 ± 0.163) and 0.923 to 8.639 g/kg by mass 
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(2.686 ± 0.619), while soil TN in natural sites ranged from 2.363 to 4.202 Mg/ha by area 

(3.241 ± 0.172) and 1.393 to 15.924 g/kg by mass (11.314 ± 1.695). 

Mean soil TN by area among all sites differed by forest management type but not 

by site. There was a significant interaction between site and type [F(3,16) = 4.510, p = 

0.018]. The effect of type was also significant in soil TN by area [F(3,16) = 38.812, p <  

0.001] but there was not a significant difference by site.  

One-way ANOVA was applied in the natural sites to test whether soil TN by area 

differed among sites, and a significant difference was found [F(3,8) = 4.206, p = 0.046]. 

Tukey’s post-hoc test showed HVKB_NAT was distinct from NPVK_NAT, with a mean 

soil TN by area of 2.490 ± 0.089 Mg/ha, versus a soil TN for NPVK_NAT of 3.661 ± 

0.285 Mg/ha. Neither HVKB_NAT nor NPVK_NAT differed significantly from the other 

two natural sites. One-way ANOVA did not indicate a significant difference among the 

restored sites [F(3,8) = 2.685, p > 0.05)]. Of the natural-restored pairs (Figure 13), only 

NPVK had a significant difference in soil TN by area [t(2) = 17.549, p < 0.05]. Soil TN 

was also graphed over depth (Figure 14). 

Sites differed by both site and type in soil TN by mass.  There was a significant 

interaction between site and type indicating differing means for soil TN by area [F(3,16) 

= 27.499, p <  0.001]. The effect of site and type individually were also significant in soil 

TN by mass [F(3,16) = 44.766 and 241.846, respectively; for both, p <  0.001]. One-way 

ANOVA was applied in the natural sites to test whether soil TN differed by mass, and a 

significant difference was found [F(3,8) = 110.740, p <  0.001]. Tukey’s post-hoc test 

showed the natural sites at HVKB are distinct from all other sites, with a mean soil TN by 
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mass of 1.706 ± 0.219 g/kg versus the mean soil TN of the other natural sites, for which 

mean soil TN was14.517 ± 0.371 g/kg. One-way ANOVA did not indicate a significant 

difference among the restored sites [F(3,8) = 3.870, p > 0.05)]. Three of the natural-

restored pairs differed significantly in soil TN by mass: ORSP [t(2) = 7.599, p < 0.05], 

NPVK [t(2) = 60.659, p < 0.05], and BBCF [t(2) = 4.894, p < 0.05].  

To understand why soil OC at HVKB_NAT differed from the other natural sites, 

the relationship between soil OC and hydrology and soil TN were evaluated by linear 

regression. For the four natural sites, there was no linear relationship between flood 

frequency and soil OC (r2 = 0.039, p > 0.05) (Figure 15). For flood duration versus soil 

OC, the four sites together had a significant relationship of moderate magnitude (r2 = 

0.423, p < 0.05). Soil OC and soil TN had a strong linear relationship across both 

measurements of soil TN in the natural sites (Figure 16); for soil TN in MgC/ha, r2 = 

0.879, p < 0.05; for soil TN in g/kg, r2 = 0.788, p < 0.05). 

 

Figure 13: Soil TN at Each Natural and Restored Site. Data are means with standard 

error, measured in megagrams per hectare (left) and grams per kilogram (right). 
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Figure 14: Soil Total Nitrogen over Depth. Soil total nitrogen (TN) content (mg/cm3) 

over depth (cm) for restored and natural cores at all four study sites. All values are mean 

± SE. 
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Figure 15: Regression of Soil OC Values at Natural Sites over Hydrology Measures. No 

linear relationship was found between flood frequency and soil OC in the natural sites 

(left; r2 = 0.039, p > 0.05). A significant linear relationship of moderate magnitude was 

found between flood duration and soil OC in the natural sites (right; r2 = 0.423, p < 

0.05). 

 

 

Figure 16: Regression of Soil OC Values at Natural Sites over Soil TN. Soil OC and soil 

TN had a strong linear relationship across both soil TN by area (left; r2 = 0.879, p < 

0.05) and by mass (right; r2 = 0.788, p < 0.05). 
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Figure 17: Relative Contribution of Each Carbon Pool to Stock. Percent of C stock 

provided by soil organic carbon (Soil OC), belowground biomass (BGB), and 

aboveground biomass (AGB). Data are presented as percent of the mean C stock for each 

site and management type.   

H. Carbon Stock 

The total C stock, the sum of all three C pools, ranged from 27.91 to 104.19 

MgC/ha (65.50 ± 6.55) in restoration sites, and from 71.73 to 149.41 MgC/ha (116.05 ± 

6.41) in natural sites (Table 5). One-way ANOVA found a significant difference in mean 

C stock among the natural sites [F(3,8) = 5.966, p <  0.05]. Tukey’s post hoc test 

identified two subgroups, one with HVKB_NAT and one with BBCF_NAT and 

NPVK_NAT; ORSP_NAT was present in both subgroups. Of the restored-natural pairs, 
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only two sites were significantly different: BBCF [t(2) = 6.275, p < 0.05] and NPVK [t(2) 

= 20.947, p < 0.05].  

The mean reference value was 116.05 MgC/ha. C stock over time since 

restoration showed no linear relationship (r2 = 0.041, p > 0.05). The C stock does not 

display a trend over time, therefore a teq cannot be calculated from the data collected. Soil 

OC was the largest C pool for every site-management type pair except HVKB_NAT 

(Figure 17).  

Linear regression analysis was completed to evaluate the relationship between soil 

C stock and hydrology and soil TN for the four natural sites. There was no significant 

relationship between C stock and flood frequency or flood duration (r2 = 0.173, p > 0.05 

and r2 = 0.067, p > 0.05, respectively). Soil C stock had a significant positive relationship 

with both soil TN in Mg/ha (r2 = 0.568, p <  0.05) and soil TN in g/kg (r2 = 0.533, p <  

0.05). 
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Figure 18: Excess 210Pb and 234Th Activity over Depth. For soil cores from two natural 

and two restored sites. The natural sites show a steady decline in activity, indicating a 

steady, relatively uninterrupted accumulation of sediment. The restored sites feature 

interruptions which may indicate disturbance from the initial restoration or other factors. 

 

 

 

10-11 to 11-15cm 
below detection 
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Figure 19: Soil OC % and Bulk Density over Depth. Soil OC % in decimal notation (0.35 

= 35% soil OC). For soil cores from two natural and two restored sites. The natural sites 

maintain relatively stable values of both measurements across their profiles, indicating a 

steady, relatively uninterrupted accumulation of sediment. The restored sites demonstrate 

two states, indicating a transition from organic, low-density soils to inorganic, high-

density soils. 
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Table 6: Rates of Sediment Accretion, Mass Accumulation, and Soil OC Accumulation. 

Rate of sediment accumulation (mm/yr), mass accumulation (g/m2/yr), and soil OC 

accumulation (gC/m2/yr) for one plot at the oldest (BBCF) and youngest (ORSP) 

restoration sites, and one plot from each of their natural reference sites. 

 

I. Soil Carbon Accumulation Rate 

Excess 210Pb and Th-234 in disintegrations per minute per gram (dpm/g) for the 

four plots tested for C accumulation rate (BBCF_REST_1, BBCF_NAT_3, 

ORSP_REST_3, and ORSP_NAT_3) and plotted on a logarithmic scale showed patterns 

that suggest information about the age of each 1-cm segment (Figure 18). The higher the 

excess 210Pb in dpm/g, the more recently that layer accumulated. The restoration plot at 

Bill Baggs Cape Florida (BBCF_REST_1) showed a significant drop-off in excess 210Pb 

activity after 5-6 cm. The segment at 5-6 cm was therefore interpreted to represent the 

depth of new sediment accumulated at the site, with lower depths representing either fill 

material or pre-fill sediment. BBCF_REST_1 also showed a dramatic drop below 

detection after the 9-10 cm increment. The BBCF restoration was completed 20 years 

before the sample was taken; considering the results in Figure 18 that 6 cm of sediment 

accumulated since restoration, the sediment accumulation rate was 3 mm/year. The soil 

bulk density in this profile ranged from 0.146 g/cm3 to 0.862 g/cm3, and the soil OC % 

ranged from 2.3% to 30.5% (Figure 19). The mass accumulation rate was 521.7 g/m2/yr, 

and the soil OC accumulation rate was 123.8 g OC/m2/yr (Table 6). The natural 
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reference, (BBCF_NAT_3) had a sediment accumulation rate of 3.9 mm/yr, mass 

accumulation rate of 507.1 g/m2/yr, and soil OC accumulation rate of 161.8 g C/m2/yr. 

The excess 210Pb profile of the restoration plot at Oleta River State Park 

(ORSP_REST_3) showed three distinct segments, with a slight drop in activity over the 

0-1 cm and 1-2 cm segments, then a relatively steady segment, until a drop-off at the 10-

11 cm increment. These three phases make determination of the breaking point between 

pre-restoration and post-restoration sediment difficult, as either the high or the low point 

could represent the boundary between new and old sediment. The crossing point between 

the soil % OC and soil bulk density occurred at the lower drop-off at 10-11 cm, so the 

deeper point, at the 10-11cm increment, was selected to represent the beginning of the 

newly accumulated sediment. The ORSP restoration was completed 8 years before the 

sample was taken; interpreting the results from Figure 18 and Figure 19 to show 11 cm of 

sediment accumulated since restoration, the sediment accumulation rate was 13.75 mm/yr 

(a high value but not unheard-of; see Sasmito et al. 2016). The soil bulk density in the 

profile ranged from 0.103 g/cm3 to 0.336 g/cm3, and the soil % OC ranged from 12.2% to 

29.4%. The mass accumulation rate was 1,569.6 g/m2/yr, and the soil OC accumulation 

rate was 457.9 g C/m2/yr. The natural reference (ORSP_NAT_3) had a sediment 

accumulation rate of 4.3 mm/yr, a mass accumulation rate of 638.3 g/m2/yr, and a soil 

OC accumulation rate of 242.0 g C/m2/yr. 

Using the sediment accumulation rates and OC accumulation rates from Table 6, 

the anticipated accumulated OC from an entire 15 cm core of new soil was calculated for 

each of the cores (Table 7). The predicted soil OC values in BBCF_NAT_3 and 
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ORSP_REST_3 are very similar to the total soil OC observed in the collected 15 cm soil 

cores. In contrast, the predicted soil OC in BBCF_REST_1 and ORSP_NAT_3 is slightly 

higher than the values observed. It is beyond the scope of the present study to explain the 

discrepancy observed, but future work is recommended to identify potential sources of 

variation between the predicted and observed soil OC.  

 

4. Discussion  

A. Carbon Stock and Carbon Pools 

This study predicted restored mangrove forests would reach equivalent forest 

structure and C storage across all three C pools within 20 years. Ultimately, only stem 

density and C in belowground biomass were found to reach the natural reference value 

with a teq < 20 years, with values for other measurements ranging from 29.2 years for 

average mangrove height to 62.2 years for basal area. Soil OC did not trend toward the 

natural reference value, so teq could not be calculated. Because soil OC made up the 

largest component of the C stock across all sites and management types (except 

HVKB_NAT), the trend in C stock was weakened below significance, so teq could not be 

calculated for C stock either. 

Early growth mangrove restorations in South Florida were previously studied by 

Osland et al. (2012) in the mangroves around Tampa Bay. Osland et al. studied 9 natural 
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and 9 restored mangrove forests in the Tampa Bay area, representing a 20-year 

chronosequence. Their study examined soil cores in two groupings, the soils from the top 

10 cm from the surface (0 – 10 cm) and the soils from 10 to 30 cm deep.  Soil organic 

matter (in %), TN (in g/kg), and soil TC (in g/kg) in the top 10 cm of soil were found to 

reach equivalence in approximately 20 years. Soil bulk density and soil moisture percent 

in the top 10 cm were predicted to reach equivalence in 30 years. The 10-30 cm soil core 

segments did not trend toward equivalence in any of sites studied by Osland et al. The teq 

for aboveground biomass in the present study (50.4 years) was considerably higher than 

that found by Osland et al. Using a nonlinear regression model, Osland et al. predicted a 

teq of 25 years for mean adult tree diameter (Osland et al. 2012). Osland et al.’s study 

analyzed adult and juvenile mangrove trends separately, classifying trees with DBH > 6 

cm as “adult mangroves.” The adult mangrove tree diameter was selected for comparison 

to the present study as diameter was the measurement used in the allometric equation for 

aboveground biomass; comparison to average DBH, however, was very similar (teq = 47 

years).  

The comparison to Osland et al. (2012) highlights one of the challenges in 

studying restored ecosystems, which is that there is not one standard method or unit used 

for studying restored forests. As mentioned above, Osland et al. (2012) measured the 

trees above 6 cm DBH as “adult trees,” but in the present study, two of the four 

restoration sites did not contain a single mangrove with a DBH greater than or equal to 6 

cm. The results are therefore highly sensitive to the criteria for inclusion, and the methods 

used in mature forests may not be suitable to conditions in a restored forest. Pool et al. 
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(1977) and Castañeda-Moya et al. (2013) measured DBH of all trees over 2.5 cm. Other 

studies measure all trees in a plot with DBH over 5 cm (Friess et al. 2016), sometimes 

going on to account for trees thinner than 5 cm by subsampling their vegetation plots 

(Howard et al. 2014). Studies can be compared through conversion to common units, but 

the fundamental resolutions will vary according to how each study defines and accounts 

for seedlings, saplings, and small trees.  In the present study, in order to capture the 

smaller mangroves common in recent restorations, Pool et al. (1977) were followed in 

using the 2.5 cm threshold for inclusion, with everything smaller than 2.5 cm DBH 

excluded. 

As with aboveground biomass, belowground biomass measurements are sensitive 

to the chosen collection method. Sampling root biomass through soil cores is inherently 

subject to a bias excluding large roots that resist the cutting strength of the corer, as well 

as sampling bias that prioritizes a flat soil surface for collecting a solid soil core (Adame 

et al. 2017). Species-specific allometric equations for belowground biomass are less 

commonly calculated than species-specific equations for aboveground biomass due to the 

highly destructive and labor-intensive process of excavating the full root system of a 

mangrove (Howard et al. 2014). Komiyama (2005) produced a general equation for 

belowground biomass in mangroves as a function of wood density and DBH. Adame et 

al. (2017) found the general equation produced biomass values 40 ± 12% larger than 

values derived from field measurements; however, they note it is not clear whether this 

difference is due to overestimation of biomass by the allometric equations or 

underestimation of biomass by the field measurements. As the present study required the 
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removal of roots from soil cores, the directly sampled values were selected for study 

rather than making use of the general equation. Because the central question of the 

present study is comparative in nature, the uncertainty introduced by choosing one 

method over the other should not affect my conclusions for belowground biomass; 

however, the observed belowground biomass may be lower than the true value. Similarly, 

the soil OC in the present study accounts for only the top 15 cm of soil, as the 

restorations were anticipated not to have accumulated more than 15 cm, so the total C 

stock reported here cannot be directly compared with total stock in sites using cores 30 

cm deep, 1 m deep, or deeper. A close comparison would be Dontis et al. (2020), who 

found a soil OC stock of 24.3 ± 4.3 MgC/ha in the top 10 cm of mangroves forests 

between 14 and 26 years of age; the top 10 cm of soil in the oldest site in the present 

study (BBCF) contained slightly more C at 29.9 MgC/ha.  

To understand why soil OC in the restored sites did not trend to equivalence with 

the natural sites, the influence of environmental factors such as hydrology and TN 

content must be considered. Previous research on mangroves in South Florida has 

focused on the natural mangrove forests in Taylor Slough and Shark River Slough in the 

Florida Everglades (Castañeda-Moya et al. 2013). From 2001 to 2005, Taylor Slough had 

flood frequencies ranging across sites from 6 to 48 floods per year, with flood durations 

ranging from 3,541 to 8,653 hours per year. In the same time period, Shark River Slough 

sites experienced 165 to 395 floods per year and 3,965 to 5,592 hours per year of 

flooding. The restored sites in the present study had flood duration values within the 

range of values seen at Taylor Slough and exceeding the flood duration values at Shark 
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River Slough; thus it seems the hydrology of the restored sites are within a range that can 

support natural mangrove forest growth. The natural reference sites in the present study 

present a more complicated picture, with the natural sites at HVKB and BBCF flooding 

for approximately one fourth of the total annual flood duration of the other natural and 

restored sites in this study. This difference in hydrology suggests that incorporating 

hydrology directly into the site selection process would influence the C storage results. 

The linear regression of soil OC versus flood duration showed a positive relationship of 

moderate explanatory power (Figure 15); however, excluding HVKB_NAT with its 

significantly lower soil OC and overall low flood duration (with two plots never 

submerged over the course of the study) eliminates this relationship: looking at only the 

remaining 9 natural plots, there is no significant relationship between soil OC and flood 

duration (r2 = 0.085, p = 0.445). Accordingly, hydrology does not seem to be a primary 

driver of soil OC in these sites, and the explanation for the failure of restored soil OC to 

trend to equivalence with the natural sites must lie elsewhere.  

Soil TN is another environmental factor that could be driving deviation in soil 

OC. Soil TN and soil OC were shown to have a strong, significant relationship, as 

documented in Figure 16; however, this relationship cannot speak to causality. A major 

source of N in mangrove soils is the in-situ decomposition of organic material; the 

relationship between soil OC and TN may be due to their sharing a common source. 

Previous research proposed treating soil TN as an indicator of mangrove restoration 

success rather than an environmental factor contributing to that success (Salmo et al. 

2013).  
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It is possible the relationship between the soil OC in the sites is being obscured by 

another factor not measured in the present study. For example, phosphorus (P) is known 

to increase soil OC in mangroves (Rovai et al. 2018); analysis of soil P or aquatic inputs 

of N or P may explain the observed soil OC. The sites may also differ in their exposure to 

storm sediment and nutrient inputs, a significant fertilization source for mangroves 

elsewhere in South Florida (Castañeda-Moya et al. 2020).  

Similar to the present study, Dontis et al. (2020) also found no relationship 

between soil OC stock and site age in mangrove forests up to 26 years in age. In their 

study, Dontis et al. suggested this could be a function of soil C accumulating more slowly 

than aboveground C, predicting that with more time the relationship would become 

evident (Dontis et al. 2020). Accordingly, revisiting the present study sites in the future 

may enable a lagging trend to become evident. 

 

B. Soil Carbon Accumulation Rate 

Because of the resource-intensive nature of the 210Pb process, only four cores 

were able to be analyzed for this study. Selected for study were one core each from the 

oldest (BBCF) and youngest (ORSP) restoration sites (20 and 8 years old, respectively, at 

time of sampling), as well as one core from their respective reference sites. Soil OC 

accumulation in the restored mangroves of the present study was estimated at 123.79 g 

OC/m2/yr at BBCF_REST_1 and 457.86 g/m2/yr at ORSP_REST_3, while soil OC 

accumulation in the natural mangroves was estimated at 161.81 g/m2/yr at BBCF NAT 3 

and 242.03 g/m2/yr at ORSP NAT 3. Previous studies of soil OC accumulation vary 
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considerably. Breithaupt et al. (2012) conducted a meta-analysis of 19 primary research 

studies evaluating use of 210Pb and 137Cs in natural mangrove soils around the world to 

determine soil accumulation rate (SAR) and OC burial rate (Breithaupt et al. 2012). They 

found a global average OC burial rate of 163 g/m2/yr over 100 years (geometric mean; 

95% CI from 131.3 to 202.5), which was an intermediate value compared to 7 previously 

determined global values from other studies ranging from 100 – 226 g/m2/yr. An 

approximately contemporary estimate from Alongi (2012) reported a global mangrove 

OC burial rate of 174 g C/m2/yr. 

Looking at restored mangrove forests specifically, Lunstrum and Chen (2014) 

studied two young mangrove forests in the Futian National Natural Reserve in Shenzen, 

Guangdong, China. These two forests, consisting of a mix of mangrove species Kandela 

obovata and Sonneratia apetala, were studied every year for 6 years after the completion 

of restoration, and were found to accumulate C at a rate of 155 gC/m2/yr, which they 

compared to similar studies with 139 and 255 gC/m2/yr. Within South Florida, Osland et 

al. (2012) found a C storage rate in a South Florida mangrove restoration of 218 

gC/m2/yr.  

In the present study, sediment accretion in the restored sites was 3 mm/yr at 

BBCF_REST_1 and 13.75 mm/yr at ORSP_REST_3, while in the natural sites sediment 

accretion was 3.9 mm/yr at BBCF_NAT_3 and 4.3 mm/yr at ORSP_NAT_3. Sediment 

accretion varies widely between sites and between studies. Breithaupt et al.’s (2012) 

meta-analysis reported a median global mangrove SAR of 2.8 mm/yr (95% CI: 1.9 to 

3.9). Sasmito et al. (2016) conducted a meta-analysis of SAR in mangrove forests; for 
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forests in Florida, SAR ranged from 1 (SD not reported) to 11.5 ± 11.7 mm/yr (standard 

deviation), not including an outlier of 77 mm/yr observed following a major storm event 

(Sasmito et al. 2016). When grouped by site condition, the studies of pristine mangrove 

forests had SAR of 5.49 ± 0.49, while restored mangroves had an SAR of 4.82 ± 1.16 

mm/yr. 

Krauss et al. (2017) compared the overall surface elevation change (the net 

change in surface elevation from all factors, including SAR, root expansion, and soil 

subsidence) to the rate of sea-level rise (SLR; Krauss et al. 2017). Reporting a rate of 

relative SLR in Tampa Bay of 2.6 mm/yr, Krauss et al. (2017) found restored mangroves 

(aged 7.1 to 25.1 years) to consistently outpace SLR with vertical surface elevation 

change rates of 4.2 mm/yr to 11 mm/yr. The natural sites in Krauss et al. (2017) were 

more complicated, with some sites having surface elevation change as low as 1.5 mm/yr 

(below the rate of relative SLR) and others as high as 7.2 mm/yr. The contribution to 

surface elevation change from SAR in Krauss et al. (2017) ranged from 3.7 mm/yr to 9.1 

mm/yr across both treatments. The difference observed between the natural and restored 

sites was explained by the high root growth found in young mangroves. The authors 

noted that as the restored mangroves become more established, the subsurface vertical 

gains will decrease as some of the roots begin decomposing and the soils compress. The 

present study did not account directly for subsurface change or changes in C storage over 

the life cycle of the mangrove restorations; similar subsurface vertical gains from root 

growth could explain the extremely high vertical growth observed at the ORSP_REST 

site. If rapid growth in a young restoration explains the vertical gains recorded as the 
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ORSP_REST sediment accretion rate, the rate will slow as the restoration ages. To 

evaluate how the rates of sediment accumulation and C storage change over time, further 

study of the subject restorations is recommended as the restorations age.   

Breithaupt et al. (2014) noted that the time frame of measurement is significant 

when estimating both soil C accumulation rate and SAR, with C storage estimates over a 

short period time being more likely to overestimate C storage potential (Breithaupt et al. 

2014). In their study of South Florida mangroves along the Shark River in Everglades 

National Park, soil OC over a 10 year period was estimated at 225 ± 60 gC/m2/yr, 

whereas soil OC over a 50 and 100-year period gave estimates of 176 ± 31 and 123 ± 19 

gC/m2/yr, respectively. Similarly, in the same study, SAR was estimated at 4.8 ± 1.0 

mm/yr over a 10-year period, 3.7 ± 0.7 mm/yr over a 50-year period, and 2.7 ± 0.4 over a 

100-year period. However, a more recent exploration of the distinction between recent 

and long-term rates has proposed the increased rates over shorter timeframes may 

represent a true increase in accumulation rates, perhaps driven by sea level rise 

(Breithaupt et al. 2020). Further study will be needed to determine whether the rates 

observed in the present study decrease with time or if they represent a response to rising 

sea levels.  

 

C. Carbon Capture and Loss 

 The discussion above has implicitly considered each study site as a closed system, 

capturing C on-site that is then entirely conserved; however, mangrove ecosystems are 

known to both retain C captured elsewhere (allochthonous C) and to export C captured 
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on-site (autochthonous C) out of the ecosystem. Allochthonous C has been shown to have 

a relatively short residence time in mangroves, with mangrove roots making up 

significantly more of the soil C retained at depth (Saintilan et al 2013). The present study 

did not distinguish between allochthonous and autochthonous C, so allochthonous inputs 

remain a potential source of variation within the sites. 

 Just as much of the allochthonous C that passes through mangrove ecosystems is 

eventually flushed out of the system, a significant portion of the organic matter produced 

on-site (autochthonous C) is exported rather than retained (Ribeiro et al. 2019). Change 

in C or N after deposition is referred to as “diagenesis,” and can include physical loss of 

soil or organic matter and chemical loss through microbial processes (Brahney et al. 

2014). Within blue carbon ecosystems like mangrove forests, saturation from tidal 

submersion dramatically decreases the available oxygen, creating an anoxic environment 

that slows oxidation and conserves buried soil C (Howard et al. 2014). However, 

infrequent tidal flushing can expose mangrove soils to oxygen, allowing oxidation of the 

buried plant matter, breaking up C that is subsequently lost to the air or water. Some 

restored mangrove forests have been observed to produce nitrous oxide and methane in 

the presence of untreated wastewater (Konnerup et al. 2014). Incorporation of aquatic 

nutrients and atmospheric C flux into future study can provide insight into the total C 

balance in the restored mangrove forests in Biscayne Bay. 

 

 

 



 

 

81 

D. Disturbance by Storms 

Another area for future study is the role of disturbance by storm events in both the 

restorations and natural forests. Tropical storms are recurring disturbance events in 

mangrove forests, causing forest defoliation and downed trees (Alongi 2008). 

Morphological traits like wide, branching root systems enable mangroves to resist wind 

and wave energy from storms (McIvor et al. 2012). Regular occurrence of tropical storm 

events can, along with precipitation and temperature, is a control on the local maximum 

height observed in mangrove forests (Simard et al. 2019). In South Florida, mangroves in 

the Florida Coastal Everglades suffered low mortality from a Category 3 hurricane and 

recovered from defoliation by the storm in approximately 10 years (Rivera-Monroy et al. 

2019). Deposition of high-phosphorus marine sediment has been shown to naturally 

facilitate rapid post-storm recovery in the Florida Everglades (Castañeda-Moya et al. 

2020), but storm events on stressed mangroves can result in catastrophic losses to the 

forest as a whole (Lewis et al. 2016). 

Hurricane Irma struck South Florida, USA, during the course of data collection 

for the present study, after collecting all aboveground vegetation measurements but prior 

to initiating hydrological data collection or collecting soil cores. Hurricane Irma did not 

hit Biscayne Bay directly, hitting Florida farther south in the Florida Keys (Radabaugh et 

al. 2020). None of the tagged mangrove trees in any plot were downed by Hurricane 

Irma; however, following Hurricane Irma, the restoration at the Historic Virginia Key 

Beach Park suffered high mortality, possibly due to storm-related interruption of the tidal 
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channel, which may explain the distinctively constrained hydrograph observed in Figure 

3.  

 

5. Conclusion 

The present study sought to quantify the C storage trajectory of early growth 

mangrove restorations in Miami-Dade County, Florida, USA. The study did not show a 

linear relationship between C stock and time since restoration; however, the summed 

values in the C stock measurement mask individual trends by C pool. The C in 

aboveground biomass was approaching equivalence, with a teq = 50.4 years. The 

belowground root biomass C had already reached equivalence by the 20-year mark, with 

a teq of 13.6 years. The soil OC did not display a trend over time. Additional study sites 

may have enabled a more complex, non-linear pattern to be discerned. Alternately, 

revisiting the existing sites in the future could enrich this snapshot of the C storage 

potential of these restorations. By continuing to study and refine our understanding of the 

C storage potential of mangrove forests, the scale of benefit to be achieved by existing 

restorations can be determined, and the scale of action needed to fully mitigate the 

change in our climate can be defined. 
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