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ABSTRACT OF THE DISSERTATION 

AN ANGLE-BASED STOCHASTIC GRADIENT DESCENT METHOD  

FOR MACHINE LEARNING: PRINCIPLE AND APPLICATION 

by 

Chongya Song 

Florida International University, 2021 

Miami, Florida 

Professor Kang Yen, Major Professor 

In deep learning, optimization algorithms are employed to expedite the resolution 

to accurate models through the calibrations of the current gradient and the associated 

learning rate. A major shortcoming of these existing methods is the manner in which the 

calibration terms are computed, only utilizing the previous gradients during their 

computations. Because the gradient is a time-sensitive variable computed at a specific 

moment in time, it is possible that older gradients can introduce significant deviation into 

the calibration terms. Although most algorithms alleviate this situation by combining the 

exponential moving average of the previous gradients, we found that this method is not 

very effective in practice, as it still causes undesirable accumulated impact on the 

gradients. Another shortcoming is that these existing algorithms lack the ability to 

incorporate the cost variance during the computation of the new gradient. Therefore, 

employing the same strategy in reducing the cost under all circumstances is inherently 

inaccurate. In addition, we identified that some advanced algorithms employ 

measurements that are confiscatory, resulting in erratic new gradients in practice. With 

respect to evaluation, we determined that a high error rate is more likely to result from 
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the weak ability of translating the reduction in the cost to the error rate, a circumstance 

that has not been addressed in the research to improve the accuracies of new gradients.  

In this dissertation, we propose an algorithm that employs the angle between 

consecutive gradients as a new metric to resolve all the aforementioned problems. The 

new and nine existing algorithms are implemented into a neural network and a logistic 

regression classifier for evaluation. The results show that the new method can improve 

the ability of cost/error rate reduction by 9.40%/11.11% on MNIST dataset and 

41.63%/29.58% on NSL-KDD dataset. Also, the aforementioned translating ability of the 

new method outperforms other optimizers by 33.06%. One of the main contributions of 

our work is verifying the feasibility and effectiveness of using the angle between 

consecutive gradients as a reliable metric in generating accurate new gradients. Angle-

based measurements could be incorporated into existing algorithms to enhance the cost 

reduction and translating abilities. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

In the field of machine learning (ML), there is an increasing number of applications 

(e.g., computer vision, speech recognition and natural language processing) that are 

solved using artificial neural networks (ANNs) [1.1]. The convoluted architecture enables 

an ANN to approximate functions resulting from any data pattern. This advantage largely 

improves the generalization ability upon regular ML algorithms, especially on large and 

complex datasets [1.2]. The accuracy of an ANN is determined by, but not limited to, six 

factors: 

1) Model Architecture 

The architecture of an ANN can be classified into three distinct types [1.3]: (1) 

feed-forward, (2) recurrent, and (3) symmetrically connected. Type 1 is composed of 

one input, one output and one or more hidden layers. The connections among layers 

are unidirectional from the input to the output layers. Type 2 differs from type 1 in 

allowing reversed connections (i.e., bidirectional connections). An ANN belongs to 

type 3 if the two weights associated with each bidirectional connection have the 

same value. Each type of ANNs has one or more variants and each variant has its 

unique advantages on specific aspects, such as accuracy, efficiency, and training 

method. For example, convolutional neural networks (CNNs) are a variant of type 1 

ANNs that employ pooling layers. This special layer can extract valuable 

characteristics from images and make CNNs perform better than other variants on 



 2 

object detection tasks [1.4]. Deep belief networks (DBNs) can achieve unsupervised 

learning by separately training each of its restricted Boltzmann machines (RBM) 

[1.5] in a bottom to top fashion, using the hidden layer as an input layer for the next 

RBM [1.6]. Also, multiple types of ANNs can be combined to form a hybrid model. 

For instance, the pooling layer used by CNNs can be combined with DBNs to form 

convolutional deep belief networks (CDBNs) [1.7]. 

2) Model Optimization 

Each ANN needs to be optimized regardless of its type, but the optimization 

approach applied to one type of ANN may not be applicable to other types. For 

example, the wake sleep algorithm [1.8] that is used to fine-tune a DBN is not 

applicable on ANNs of other types. Furthermore, the optimization methods can be 

classified into two types based on their usages: (1) unified algorithm (e.g., 

Momentum [1.9] and Adam [1.10]) and (2) independent technique (e.g., learning 

rate warm restarts [1.11]). A type 2 method can be applied to a type 1 method for 

alleviating the shortcomings of the latter. For instance, if a learning rate warm 

restarts scheduler is applied to Adam, then Adam is capable of periodically resetting 

its learning rate, resulting in a different cost reduction trajectory and a lower cost. 

Another key difference between the two types is the number of improved variables: 

(1) unified algorithm usually improves multiple variables based on specific theories; 

and (2) independent technique only controls one specific key variable in a precise 

manner.   
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3) Method of Gradient Descent 

There are three types of gradient descents: (1) batch, (2) mini-batch, and (3) 

stochastic. Because these methods are different in the number of samples that are 

used in computing the gradient, each one has its unique advantages in terms of 

accuracy and efficiency. A comparison among the three methods is provided in 

Chapter 2 before the review of existing optimization algorithms. 

4) Cost Function 

Cost functions are used to quantify the output deviations of ANNs during 

optimization. The quantified values are used in calculating the new gradients, so they 

indirectly determine the result of optimization. Common cost functions include, but 

are not limited to, Mean Squared Error (MSE) [1.12], Cross-Entropy [1.13], Huber 

[1.14], and Cosine-Similarity [1.15]. Because these functions are based on various 

mathematical theories, they result in different values for the same output and impact 

the accuracy of models. For instance, when MSE is employed to quantify the cost of 

an ANN that uses Sigmoid [1.16] as the activation function, a known problem called 

“learning rate slowdown” (i.e., the weights and the biases of the model stop 

changing) [1.17] would occur. However, if we replace MSE by Cross-Entropy, the 

aforementioned problem can be avoided. 

5) Parameter Tuning 

Different configurations of the employed optimization algorithms or techniques 

result in different accuracies. The parameters can be adjusted manually or 

automatically. A researcher may find the best configuration through performing 

numerous trials based on feedback (e.g., the cost variance), but this approach is only 
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applicable to algorithms with a limited number of parameters. Whereas, if there are 

many tunable parameters, a dedicated algorithm (with fewer parameters) is usually 

used to reduce the parameter searching space and find the best configuration. 

6) Data Pattern 

The goal of finding the best configurations on the aforementioned five aspects is 

to maximize their parameter matching with the data pattern, so the changes in data 

pattern usually indicate that all existing configurations need to be re-determined. As 

a result, the data pattern is the most important factor that impacts the accuracy.  

 

1.2 Research Scope 

A more generalized ANN can be applied as a regular model to solve problems in 

various fields (e.g. object detection and anomaly detection). The new optimization 

method proposed in this dissertation is applied on the most widely adopted type 1 ANNs 

that employs the traditional perceptron and backward propagation for learning data 

pattern. As a result, several datasets in different fields are employed to evaluate the 

proposed method through its applications in different ML algorithms, cost functions, and 

parameters. Type 1 ANNs is available on all mainstream deep learning libraries (e.g., 

Tensorflow [1.18], Keras [1.19], Caffe [1.20], PyTorch [1.21]), so the new algorithm can 

be easily implemented into these libraries by adding only a few lines of codes. Moreover, 

the proposed method is designed based on stochastic gradient descent, as it can accelerate 

the training process without compromising the accuracy.   
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1.3 Problem Statements and Contributions 

The biggest disadvantage of existing algorithms is that they only use the previous 

gradients (i.e. the generated or old gradients) in the computations of new gradients (refer 

to Chapter 2 for details). Due to the fact that the gradient is a time-sensitive variable that 

is computed based on the cost at a specific moment, all measurements suffer from the 

deviations that are introduced from the previous gradients. Due to the lack of reliable 

metrics (i.e., only the previous gradient is in use), the number of effective measurements 

is limited. As a result, new algorithms are often created by combining multiple existing 

measurements. Algorithms created in this manner may generate erratic gradients as the 

incorporated measurements may conflict with respect to their principles. Another 

significant shortcoming is that each existing algorithm employs fixed measurements 

during the entire optimization process (i.e., unchanged with respect to time-sensitive 

variables: the parameters of the model and the output cost), so they cannot generate the 

optimal gradients for all specific moments in time. Referring to improvements in the 

algorithms, researchers mainly misattribute any decrease in accuracy to the loss in cost 

reduction, leading them to ill-modify their measurements.  

Our contribution to the entire research community is proposing/verifying that the 

angle between consecutive gradients as/is an effective new metric for model optimization. 

In addition to the new angle-based measurements, more effective measurements can be 

achieved in using the two metrics together, that is, the previous gradient and the angle. 

With the increasing number of measurements, the creation of new optimization 

algorithms becomes easier. Most importantly, measurements that rely on different metrics 

do not result in internal conflicts, therefore generating more accurate gradients. We 
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determined that the source and cause of the losses in accuracy are due to the weak ability 

of translating the reduction in the cost to the error rate. By analyzing the experiment data, 

we found that the angle-based measurements can significantly improve the 

aforementioned translating ability compared with existing gradient-based measurements. 

With respect to the proposed algorithm, the adopted angle-based measurements can be 

introduced into existing optimization algorithms (e.g., AdaDelta [1.22]), enabling them 

with the benefits of the cost awareness enhancements. In addition, more variants can be 

easily created by following the four criteria presented in Chapter 6, which may achieve 

better results on problems in certain fields. The contributions of this dissertation are 

classified into three groups: (1) measurements, (2) evaluation, and (3) implementation, 

which are briefly presented as follows: 

1) Measurements 

a) A New Metric: the angle between consecutive gradients (Chapter 2 for 

deviations of gradients; Chapter 3 for the new metric) 

All existing optimization algorithms cited in this dissertation only use the 

current and previous gradients as metrics in generating all measurements, such as 

using the accumulation of gradients to calculate the learning rate. However, the 

information provided by gradients is not only limited, but is also deviated (refer 

to Chapter 2). Therefore, the angle between consecutive gradients is proposed as 

a new metric to provide more information for generating more accurate new 

gradients.  
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b) A New Method of Accumulating Gradients (Chapter 2 for an analysis of 

the two existing methods; Chapter 3 for the new method) 

Existing algorithms accumulate the gradients in two imperfect ways: (1) 

utilizing the exponential moving average or (2) using the simple moving average. 

A new accumulating method is proposed to possess all the advantages and avoids 

all the disadvantages of the two methods. 

c) Calibrating The Previous Gradients (Chapter 2 for deviations of 

previous gradients; Chapter 3 for the proposed measurement) 

All existing methods utilize the previous gradients to calibrate the current 

gradient in computing the new gradient. However, there are deviations on the 

previous gradients, which can negatively impact the accuracy of the new gradient. 

No method addresses this problem until the proposed method. 

d) Angle-based Learning Rate (Chapter 2 for explanations of problems; 

Chapter 3 for the proposed measurement) 

The learning rates determined by existing algorithms are either static (i.e., set 

it manually) or inversely vary with the magnitude of the accumulated gradients. 

The former is inflexible in adjusting the new gradient, and the latter suffers from 

deviations of the accumulated gradients. To resolve these problems, the learning 

rate of the proposed method is determined using the angle between consecutive 

gradients.   
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e) Cost Awareness Ability (Chapter 3 for the motivation and proposed 

measurement) 

All cited algorithms cannot infer the cost variance, so they cannot take 

effective measures to reduce the cost when the cost is increased. However, the 

proposed method is able to accurately infer the cost variance and take effective 

actions to immediately reduce the cost in the next iteration. 

f) Decoupled Measurements (Chapter 2 for explanations of problems; 

Chapter 4 for the demonstration of decoupled measurements) 

Advanced algorithms (e.g., AdaMax [1.10]) improve the gradient and the 

learning rate by incorporating the measurements from multiple simple algorithms 

(i.e., one measurement is to improve gradient and the other one is to improve the 

learning rate). However, the incorporated measurements may conflict with each 

other in their functionalities, resulting in erratic new gradients. The 

measurements adopted in the proposed algorithm are well-decoupled in their 

functionalities. 

2) Evaluation: Translation Rate (Chapter 5) 

Existing algorithms are typically evaluated by reductions in the (1) cost and (2) 

error rate. Because ML models reduce the error rate through minimizing the cost, 

losses in the error rate reduction are misattributed to the losses in cost reduction. 

However, we found that the former may not be caused by the latter, but is attributed 

to a low translation rate from the latter to the former. As part of the evaluation of the 

proposed techniques, a new method that quantifies the capability of translating 

reductions in the cost to the error rate is presented. The quantified results not only 
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reveal which algorithms have stronger translation abilities, but also demonstrate that 

the angle-based measurements are better than existing gradient-based measurements 

in improving the translation ability. 

3) Implementation (Chapter 6 for details) 

To comprehensively compare the difference in efficiency among various 

optimization algorithms, each model script has two implementations. One 

implementation runs on a CPU and the other one utilizes the power of a GPU. To 

maximize the utilizations of the available computing powers on the two kinds of 

processors, a technique of matrix-based multiplication (refer to Chapter 6 for details) 

is employed in each model script, which can only be found in serious deep learning 

libraries. Also, the model scripts are able to record the variations of 50 different 

metrics that are associated with the gradient descent. Subsequently, the information 

can be output to a file with the designated format and visualized using the plotting 

script for more in-depth analyses.  

 

1.4 Research Approach and Outline 

Figure 1.1 shows the outline of this dissertation. In Chapter 2, we first determine 

deficiencies of 9 existing optimization algorithms and common challenges in model 

optimization. Then, possible improvements are proposed to address the major problems 

on the aforementioned two aspects. In addition, we found deviations on the previous 

gradients through the analysis of stochastic gradient descent, which motivates us to 

alleviate the deviations and realize the proposed improvements using the angle between 

consecutive gradients. As a result, a new optimization algorithm composed of 2 functions 
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and 6 parameters is proposed in Chapter 3. Next, in-depth interpretations in terms of 

convergence principle and decoupled measurements are presented in Chapter 4. Then, in 

Chapter 5, the proposed and other 9 existing algorithms (analyzed in Chapter 2) are 

implemented into two ML models to compare their accuracies and efficiencies under 

various conditions (i.e., different datasets, cost functions and batch sizes). The translation 

rates of all algorithms are calculated based on the data of the aforementioned experiments 

(i.e., the cost and error rate reductions). In Chapter 6, the criteria of defining new variants 

of the proposed method and a case study of a non-linear variant (results in a faster 

convergence) are presented. This chapter also verifies the functionalities of the decoupled 

measurements and the reliability of the new metric. Because the new metric can be 

calculated in multiple methods, an in-depth analysis of each method is given before the 

verification of reliability. Although the computation of the new metric is a part of the 

principle, we placed it before the verification for a coherent demonstration. At the end of 

this chapter, the intended application of the proposed method can be found. In addition, 

we used the experiment data to show that the proposed method does not make the cost 

trapping into the saddle points in practice. In Chapter 7, two possible improvements that 

are applied on (1) the computation of the angle and (2) the employment of angle-based 

learning rate schedulers are presented before the significance of the work. 
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Figure 1.1 – Outline of dissertation (black blocks are important content) 



 12 

CHAPTER 2 

LITERATURE REVIEW 

     

2.1 Model Optimization 

2.1.1 Overview 

Model optimization intends to maximize the accuracy through searching the best 

configuration that delivers the lowest output cost. To measure the improvement, the cost 

is quantified by a cost function C(ypred, ytrue) such as MSE. Due to the fact that predictions 

ypred made by an ANN(W, B) are determined by weights (W) and biases (B) [2.1], model 

optimization is a math problem to find the best parameters to minimize C(ANN(W, B), 

ytrue) (abbreviated as C). Furthermore, the gradient (abbreviated as G) of a function is a 

vector that points to the direction of steepest slope, the cost reduction can be 

accomplished by repeatedly applying gradient descent (GD) that is composed of the 

following three procedures [2.2]: 

1) Computing G(∂C/∂w, ∂C/∂b) (w Î W and b Î B) of C  

2) Multiplying a learning rate η to G to adjust its magnitude. 

3) Updating the model parameters (abbreviated as PARAM, i.e., W or B) by 

subtracting ηG or adding its reverse –ηG (i.e., ÑG). 

Obtaining G of C needs to pre-compute the partial derivative of each weight ∂C/∂w 

and bias ∂C/∂b, so early GD method is only applicable to regular ML models with simple 

architectures, such as logistic regression (i.e., an ANN without hidden layer). More 

complex models benefit from GD until backward propagation (BP) is proposed in [2.3]. 

The new method enables us to simultaneously compute all partial derivatives using only 
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one forward propagation (FP) which is then followed by one BP. With respect to 

implementation, matrix-based multiplication [2.4] that is realized by state-of-the-art deep 

learning libraries makes the training of a deep neural network (DNN) feasible in practice. 

In recent years, the capability of parallel computation on advanced GPUs is utilized to 

create various large-scale DNNs. 

 

2.1.2 Variants of Gradient Descent  

GD has three variants that are different in the number of samples used to compute 

each G. Because a more accurate G requires more samples during its calculation, there 

exist a trade-off between G accuracy and the interval to perform a PARAM update. 

Consequently, one of the main motivations to create these variants is to reduce the 

aforementioned interval. Otherwise, the task of training a DNN on a large dataset is still 

almost unachievable even though both BP and matrix-based multiplication are employed 

[2.1]. 

 

2.1.2.1 Batch Gradient Descent 

Because Batch Gradient Descent (BGD) computes each G from a full training 

dataset, its G is more accurate than the other two variants but incurs the longest updating 

interval. Also, BGD is guaranteed to converge to one of the local minima on non-convex 

surfaces and the global minimum on convex surfaces. However, BGD is intractable for 

datasets that cannot fit in memory and not applicable for training online ML models that 

receive new data in real-time. Moreover, BGD will incur redundant computation on 
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samples that are similar in data pattern (i.e., the values of features are almost identical 

among these samples). 

 

2.1.2.2 Mini-Batch Gradient Descent 

Mini-Batch Gradient Descent (Mini-BGD) improves the updating frequency of 

PARAM upon BGD by computing each G from a subset of the training data. Due to the 

large reduction in batch size, the computation of each G can be accelerated by the matrix-

based multiplication in practice. However, G of Mini-BGD is less accurate than that of 

BGD because the data pattern of a subset is somewhat deviated from the full dataset, 

rendering a more erratic cost convergence trajectory (this problem can be effectively 

alleviated by setting larger batch sizes). Another noticeable problem is the sequence of 

mini-batches remains unchanged during the entire training process. Although a few 

researchers establish some meaningful sequences to improve the accuracy (i.e., 

Curriculum Learning) [2.5, 2.6], the ML models would overfit on the fixed sequences in 

most cases.   

 

2.1.2.3 Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is originally updating PARAM based on G of 

one sample and shuffling all samples before every epoch. This method avoids the 

redundant computation of BGD and minimizes PARAM updating interval; however, its G 

has a larger deviation than the other two variants, leading to the most unstable 

optimization process. Therefore, SGD is often combined with Mini-BGD to compute Gs 

from mini-batches that contain stochastic samples. Furthermore, ML models will not 
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overfit on specific sample sequences, resulting in a better generalization capability. 

Although SGD cannot guarantee to converge to an exact local minimum on non-convex 

surfaces due to the variance of G, its oscillated convergence trajectory could make the 

cost jumping to a lower local minimum, especially when η warm restarts method (i.e., 

aggressively decay η and reset it by certain epochs) [1.11] is employed. In addition, SGD 

would generate almost identical convergence trajectory as BGD when η annealing 

method (i.e., decay η by a certain number of epochs) [2.7–2.10] is used, making the cost 

almost certainly converge to one of the local minima on non-convex surfaces and the 

global minimum on convex surface. 

 

2.1.3 Challenges of Employing Stochastic Gradient Descent 

 According to the analysis of the three GD variants, SGD can not only accelerate 

the cost convergence using small batch sizes (instead of using a full training dataset), but 

also prevent the model from overfitting on specific sample sequences by reshuffling the 

samples in each batch before each epoch. As a result, SGD is adopted by the majority of 

ML tasks in various fields and all experiments in this dissertation. However, SGD is 

imperfect in the following aspects. 

  

2.1.3.1 Inaccurate Gradient 

As mentioned, the deviation of G is caused by the inevitable pattern variance 

between the full training dataset and its mini-batch. Although increasing the batch size 

can reduce the pattern variance, this method will incur a longer PARAM updating interval 

and slow down the cost convergence. Because the magnitude of G can be calibrated by η, 
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the deviation primarily affecting the direction of G. In terms of computation, the 

acceleration realized by the matrix-based multiplication will be gradually compromised 

with the increasing of batch size. Existing remedies can be classified into three types: (1) 

multiplying dedicated ηs to elements of each G for calibrating the magnitude and 

direction of G; (2) combining multiple recent Gs to form a more accurate G; and (3) 

combining remedies in (1) and (2).  

 

2.1.3.2 Uncertain Learning Rate 

The learning rate η correlates to many factors, so there is no consensus on the η 

adjustment strategy. From a global view, η should be gradually decreased when SGD 

proceeds to alleviate overshooting and obtain a better minimum (i.e., η annealing) [2.7-

2.10]. Also, η could be periodically reset to the initial value when it is lower than a 

specific threshold (i.e., η warm restarts) [1.11]. From a local perspective, each element of 

G is a partial derivative that is determined by the slope with respect to the corresponding 

parameter of C, so a smaller magnitude may indicate a shorter distance to the minimum 

in the corresponding dimension. Therefore, some η schedulers utilize this indication by 

increasing/decreasing η with G increases/decreases, so that the cost can converge faster 

when it is far from the minimum and approach a lower minimum in the final stage. 

However, other η schedulers that are designed for sparse data adjust η in the opposite way, 

which also deliver state-of-the-art results in some ML tasks [2.11, 2.12].  

It is reasonable to apply a certain η scheduler on a specific problem, but the 

improvement is often (far) below the expectation, as the actual cost surface is much more 

complex than the assumed scenario that is used to design the adopted η scheduler. 
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Furthermore, almost all η schedulers have to preset their parameters before executing 

SGD, so the improvement in cost reduction could be understood as a better matching 

between the parameters and the data pattern. This means η still remains highly-uncertain 

on new tasks because the experiences (i.e., the successful configurations) on the previous 

tasks could not be valuable references. Consequently, if η is too small, the convergence 

will be very slow. Whereas, if η is too large, the cost will be oscillated within a large 

range or even translate to a non-convergence failure. 

 

2.1.3.3 Weak Learning Ability on Sparse Data 

A sparse dataset contains some sparse features that are composed of a few 

possible values (i.e., values are mostly identical). As a result, the slopes of cost surfaces 

formed by these sparse features are very small. It means that Gs of the sparse features are 

distinctly smaller than that of the regular features, and the associated W and B will not be 

adequately updating during the entire training phase. Although Gs could be balanced by 

multiplying different ηs, this method has a limited application scenario (refer to 

subsection 2.4.2) and can introduce side effects that compromise the improvements in 

other aspects (e.g., slow convergence). 

 

2.1.3.4 Others 

In addition to the challenges regarding G, η and sparse data, minor problems 

remain unresolved:  
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2.1.3.4.1 Trapping into Saddle Points 

A saddle point refers to a minimum on a plateau of the cost surface, which is 

surrounded by surfaces with decreasing slopes toward it [2.13]. It is evident that 

identifying and escaping from a saddle point is a difficult problem that needs to be solved 

because it is surrounded by surfaces with decreasing slopes, and this characteristic is the 

same as the global minimum. Because η warm restarts [1.11] may reach multiple cost 

minima, we may infer a point as a saddle point if it is higher than the obtained minimum 

by a large magnitude. However, this method will fail when all minima obtained are 

saddle points. 

  

2.1.3.4.2 Qualities of Minima 

The quality of a minimum cost refers to the generalization ability of the trained 

ML model. Given a study in [2.14], the number of local minima increases exponentially 

with the number of PARAM (i.e., the complexity of the model). As a result, determining 

the qualities (i.e., generalization abilities) of all minima through testing the trained 

models on testing dataset is infeasible in practice. In addition, a complex DNN using an 

advanced architecture can achieve a very low minimum via memorizing all training 

samples, compromising the reliability of the evaluation on the testing dataset [2.15]. As a 

result, some researchers have claimed that the sharpness of the surface surrounding the 

minimum could be used to infer the quality. More specifically, they have concluded that a 

sharper minimum has a higher generalization error rate [2.16]. An intuitive explanation is 

that a sharper minimum indicates a more irregularity training cost surface, so PARAM 

that is determined by this accidental cost convergence would not perform well on the 
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testing cost surface. However, other researchers’ work suggest that the sharpness may not 

be an accurate indicator because they have identified that some well-generalized local 

minima can be surrounded by surfaces with arbitrary sharpness [2.17]. Consequently, the 

evaluation on testing dataset can be substituted, if we can find a reliable metric to 

quantify the qualities of minima obtained from the training dataset in time. This means 

that more and better generalization results can be obtained within the same period. 

 

2.2 Introduction of Existing Optimization Algorithms 

2.2.1 Overview 

The optimization algorithms or optimizers are designed to improve accuracy 

through resolving the problems associated with SGD (include but not limited to the 

aforementioned ones). Because SGD updates W and B by subtracting ηG, existing 

methods resolve the problems by improving G, η or both. More concretely, each variable 

will be calibrated by one or more terms that are dedicated to reduce its deviation based on 

a certain theory. In this sense, η is not only a target variable that needs to be improved, 

but also a calibration term for G. 

During SGD calculation, numerous Gs will be sequentially generated, constituting 

a G chain. As a result, the previous G (PG) associates with the current G (CG), as PG 

determines the current cost (i.e., the current location on the cost surface) that is used to 

compute CG. Furthermore, the new G (NG) computed by ηCG also correlates with PG, 

but with a smaller extent. Therefore, almost all mainstream optimizers utilize PG to 

improve G, η or both, so that the missing information could be compensated by PG. This 

indicates that the generated NG may benefit from PG in terms of magnitude, direction or 
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both. Finally, existing optimizers update PARAM by subtracting the calibrated NG, as 

shown by Equation 2.1.  

PARAMt+1 = PARAMt – NG             2.1 

Due to the fact that all optimizers are solely differing in their determinations of 

NGs, Equation 2.1 is omitted in the introduction of 9 existing optimizers in the following 

subsections. In addition to Vanilla SGD, the other 8 optimizers are introduced based on 

variables (i.e., G, η, or both) they intend to improve . 

 

2.2.2 Original SGD: Vanilla 

Vanilla [2.1] refers to the original SGD that realizes BP without improvement. It 

computes NG by ηCG, as defined in Equation 2.2. It is evident that η is the only 

adjustable parameter with a fixed value, so NG positively varies with CG that is 

determined by the slope of the cost surface. Because a higher slope causes a larger CG 

and indicates a longer distance to the minimum, a larger NG reduces the number of steps 

to approach the minimum. On the other hand, a smaller NG resulting from a lower slope 

will alleviate overshooting and drive the cost to more rapidly approach the minimum. In 

terms of the direction, CG will accurately point in the direction that causes the largest 

cost reduction, unless the batch size is too small (refer to subsection 2.1.2.1 for the 

correlation between accuracy and batch size).  

NG = ηCG     2.2  
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2.2.3 Improving Gradient: Momentum 

Momentum [1.9] is the earliest and most widely used improvement to G. As shown 

by Equations 2.3 and 2.4, Momentum replaces CG in Vanilla by a new variable Mt. Each 

Mt is obtained from combining the previous Mt-1 and CG. Because M0 is initialized to 0, 

Mt-1 accumulates all PGs to time t-1, and Mt is the accumulation of all generated Gs to 

time t. Two coefficients b and 1–b are weights applied to PGs (i.e., Mt-1) and CG. b is set 

to 0.9 by default, so each PG is gradually reduced by 0.1 when generating a new NG. 

Furthermore, a more recent G has a larger influence on NG and a higher b will enhance 

this tendency. As a result, NG is generated from the exponential moving average (EMA) 

of all Gs, which endows the movement of cost convergence with an inertia-like property, 

gradually increasing/decreasing the magnitude on a decreasing/increasing slope. In 

summary, Momentum is an optimizer that not only utilizes PGs to make improvement, 

but also heavily relies on PGs. 

 NG = ηMt                    2.3 

Mt = bMt-1 + (1–b)CG            2.4 

 Momentum adopts EMA to prevent the cost from being guided into a ravine that 

is formed by a surface with a much larger slope in one dimension than the others [2.18], 

as shown in Figure 2.1. More specifically, when the cost is close to a ravine, CG may 

guide the cost into the ravine. Then, one or more of the following steps will be spend on 

escaping from the ravine. Due to the fact that there may exist numerous ravines on the 

way to the minimum, the additional steps that are spent to move away from these ravines 

would largely delay the cost convergence. However, if PGs are used, they will calibrate 
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the direction of CG and generate a NG that does not point to the ravine. As a result, NG 

would guide the cost to cross the ravine directly [2.19].  

 

Figure 2.1 – A ravine on a 3-dementional cost surface 
(the slope in D3 is much larger than the slopes in D1 and D2) 

 Employing the accumulated PGs also brings some disadvantages. For example, if 

PGs guide the cost to a place that is close to a hill, then CG will point to a direction to 

bypass the hill (for reducing the cost). However, the resulted NG will still point to the hill 

and increase the cost because it is dominated by PGs (i.e., inertia-like property). In the 

worst case, the cost may climb on and cross the hill (e.g., a high cost surface), arriving to 

another route that cannot reach the global minimum. Although Momentum is not a 

perfect optimizer, it validates the advantages of employing EMA and motivates most 

optimizers created afterward to adopt EMA in generating their measurements.  
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2.2.4 Improving Learning Rate 

2.2.4.1 AdaGrad 

AdaGrad (Adaptive Gradient) [2.20] is an optimizer that adapts the parameter η, 

as defined in Equations 2.5 and 2.6. Its goal is to improve the learning ability on sparse 

data [2.21, 2.22]. As we mentioned, the cost surface in the dimension formed by a sparse 

feature would be very flat (i.e., the slope is very small), which results in a small G. 

Therefore, the cost reduction with respect to this dimension will be inadequate. If there 

are multiple sparse features in the dataset, the convergence and the overall cost reduction 

(i.e., take all dimensions into consideration) will be substantially slowed down and 

compromised, respectively. Due to the fact that the sparsity of a feature inversely 

correlates with the magnitude of the corresponding G, AdaGrad improves the learning 

ability on a sparse feature by increasing the corresponding η when detecting a small G. 

This objective is realized by dividing the root of a new variable Vt which is the 

accumulated element-based squares of all generated Gs to time t. Then, the elements of 

the new learning rate term η / Ö(Vt + ε) will be inversely varying with the corresponding 

elements of Vt. Finally, a G resulting from a sparse feature will be increased, no longer 

impeding the cost convergence. Another advantage of AdaGrad is that the learning rate 

term η / Ö(Vt + ε) is automatically adjusted according to Vt instead of maintaining a fixed 

value. With respect to computation, the elements of Vt can be allocated in the diagonal of 

a matrix, so that the computation of NG is accelerated using libraries that implement 

optimized matrix-vector production [2.23]. 

NG = (η / Ö(Vt + ε))CG                                              2.5 

Vt = Vt-1 + CG2                                                                               2.6 



 24 

There are two disadvantages with respect to η and the convergence speed. Vt is 

accumulating Gs (i.e., PGs or Vt-1 and CG) in a simple moving average (SMA) method, 

and it becomes larger with more mini-batches that are processed. As a result, the learning 

rate term will gradually approach 0 (i.e., saturated) as more mini-batches are processed, 

making AdaGrad unsuitable when applied on big data. Moreover, AdaGrad is actually 

functioning as a “gradient balancer” that not only increases Gs of sparse features, but also 

decreases Gs of regular features. However, it is not always a reasonable choice to 

improve the accuracy by carrying out the former with the cost of the latter. Due to the 

fact that the slope of the cost surface formed by a sparse feature is very small, the 

maximum cost reduction with respect to this feature is very limited. This indicates that 

the overall cost will still be very close to the optimal minimum, even if the cost in the 

aforementioned dimension (i.e., formed by the sparse feature) is far from optimal. 

Consequently, if AdaGrad is employed on a dataset with a few sparse features, it would 

not significantly improve the overall accuracy. Instead, it would slow down the cost 

convergence due to the reductions on Gs of the regular features.  

 

2.2.4.2 RMSprop 

RMSprop (Root Mean Squared Backpropagation) [2.24] improves AdaGrad by 

replacing SMA by EMA in computing Vt, as shown in Equations 2.7 and 2.8. Due to the 

adoption of EMA, the magnitude of Vt has a specific upper bound under each setting. For 

instance, if the magnitude of each G is 1 unit and the angles between all consecutive Gs 

are 0˚, Vt will infinitely approach, but never reach 1 under the default configuration (i.e., 
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b = 0.9). Therefore, the deficiency of the learning rate reduction that is caused by the 

infinite increasing of Vt can be completely avoided.  

NG = (η / Ö(Vt + ε))CG                                             2.7 

Vt = bVt-1 + (1–b)CG2                                              2.8 

However, the adoption of EMA will also weaken the learning ability on sparse 

features. For example, if the magnitude of a G of a sparse feature is 0.1 unit and all other 

settings remains the same as the previous example, the upper bound of the corresponding 

Vt  is 0.1. Because Vt  is inversely related to η, the calibrated η of this sparse feature (i.e., η 

/ 0.1 = 10η) will be stronger than a regular feature (i.e., η / 1 = η) by 9η during the entire 

training stage. Whereas, if SMA is adopted, Vt will increase when more mini-batches are 

processed. For instance, the difference in the aforementioned two calibrated ηs will be 

increased to 90η on the 100th mini-batch and 900η on the 1000th mini-batch, respectively. 

These results show that RMSprop will only increase the learning ability on sparse 

features by a certain fixed magnitude instead of repeatedly enhancing it, as done in 

AdaGrad. Furthermore, if the difference in sparsity between sparse and regular features is 

large, the increased magnitude in the learning ability determined in RMSprop may be 

inadequate. As a result, RMSprop should be applied on larger datasets due to its non-

diminishing learning ability, and AdaGrad could achieve better results on smaller datasets 

because of its stronger (i.e., increasing) learning ability on sparse features. In this sense, 

RMSprop is not an improvement, but a variant of AdaGrad.  
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2.2.4.3 AdaDelta 

AdaDelta (Adaptive Delta) [1.22] is an improvement based on RMSprop, which 

is defined in Equations 2.9–2.11. It provides another method to resolve the 

aforementioned diminished learning ability of AdaGrad. To counteract the increasing Vt 

on the denominator, the learning rate η on the numerator is replaced by a new variable D 

(i.e., Delta) which refers to the difference in PARAM before and after each update. 

Because both Dt-1 and Vt are initialized to 0 and employ EMA in accumulating the 

corresponding Gs, their values are comparable during the entire training phase. It 

indicates the entire learning rate Ö(Dt-1 + ε) / Ö(Vt + ε) will not approach 0, but oscillate 

around 1 (i.e., a stable learning rate). The adoption of EMA also makes both D and V 

dominated by their corresponding values in recent mini-batches, so the computation of 

the learning rate is confined to a fixed window size. 

NGt = (Ö(Dt-1 + ε) / Ö(Vt + ε))CG                                    2.9 

Dt-1 = bDt-2 + (1–b)NGt-1                                        2.10 

Vt = bVt-1 + (1–b)CG2                                           2.11 

When applying AdaDelta on a dataset, both Dt-1 and Vt will be 

increased/decreased on a regular/sparse feature (caused by the slope of a surface that is 

formed by a feature, refer to subsection 2.2.4.1). The ratios of Dt-1 and Vt (i.e., the 

learning rate term) on the two types of features are comparable in magnitude, indicating 

that the learning ability on a sparse feature is not enhanced compared with a regular 

feature. In this sense, AdaDelta is actually a “gradient equalizer” that applies consistent 

learning ability on all kinds of features. Although AdaDelta is proposed to resolve the 

diminished learning term of AdaGrad, it should be considered as a special Vanilla (i.e., a 
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fixed η) with a slightly fluctuated η, and nothing similar to AdaGrad and RMSprop in 

terms of practical behaviors. 

 

2.2.5 Improving Gradient and Learning Rate 

2.2.5.1 Adam 

Adam (Adaptive Moment Estimation) [1.10] combines Momentum with 

RMSprop to obtain all advantages of both optimizers. Referring to Equation 2.12, Adam 

replaces CG by a new variable Mt as Momentum, and divides η by the square of another 

new variable Vt as done in RMSprop. However, these two new variables Mt and Vt are 

respectively different from the original definitions (used in Momentum and RMSprop) in 

dividing two calibration terms 1–b1
t and 1–b2

t, as shown in Equations 2.13–2.16. As a 

result, Adam computes NG from the calibrated Mt and Vt.  

NG = (η / ÖVt + ε)Mt                                              2.12 

Mt = mt / (1–b1
t)                                                  2.13 

Vt = vt / (1–b2
t)                                                   2.14 

mt = b1mt-1 + (1–b1)CG                                            2.15 

vt = b2vt-1 + (1–b2)CG2                                             2.16 

The advantages of employing Mt and Vt are explained when we introduce 

Momentum and RMSprop. The aforementioned two calibration terms are to counteract 

the deviations caused by employing EMA in computing mt and vt. A rigorous deduction 

of the exact deviations can be found in [2.25], and an intuitive explanation is presented as 

follows. Due to the adoption of EMA, both mt and vt are always dominated by their recent 

values. Because m0 and v0 are initialized to 0, EMA will establish the early mts and vts 
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bias to 0, which are distinctly smaller than the later ones. If we calibrate mt and vt by 

Equations 2.13 and 2.14, a value generated earlier will be increased by a larger 

magnitude with the corresponding denominator approaching 0 (note: the superscripts of 

b1 and b2 refer to the power in math). As a result, the bias on each mt and vt can be 

precisely calibrated by a dedicated value, which in turn generates a more accurate NG. 

Although the biases caused by EMA persist longer if b1 and b2 are larger, it 

rapidly decays when more mini-batches are processed. More specifically, assume that the 

magnitude of each G is 1 unit and the angles between all consecutive Gs are 0˚ when b = 

0.9. Then, all b 
ts since 175th mini-batch (i.e., b175 = 0.9175 = 9.8274 ´ 10-9) are smaller 

than the threshold ε = 1 ´ 10-8 that is designed for preventing the denominator becomes 0 

during the computation (note: changing the assumed conditions such as the angle will not 

change the reduction rate of b 
t). This means that the two calibration terms (1–b1

t) and (1–

b2
t) will infinitely approach 1, and the associated calibrations to m0 and v0 will disappear 

after the 175th mini-batch. Due to the fact that the number of mini-batches in an ML task 

would reach levels of 105, 106, 107 or even a larger number, the benefits from calibrating 

the biases during the first 175 mini-batches could be negligible. Consequently, Adam 

could be considered as a simple combination of Momentum and RMSprop. 

 

2.2.5.2 AdaMax 

AdaMax (Max refers to l∞ norm) [1.10] is a variant of Adam, which is defined in 

Equations 2.17–2.20. To resolve the bias of Vt caused by EMA, AdaMax performs the 

accumulation of Gs in l∞ norm instead of l2 norm (i.e., ÖCG2 in Adam). The reason for 

choosing the l∞ norm is that it presents a very high numerical stability as the l2 norm in 
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vector quantification. Due to the adoption of l∞ norm, Vt is always determined by the 

larger value between the accumulated PGs (i.e., b2vt-1) and CG (a detailed mathematical 

deduction can be found in [1.10]). As a result, the term (i.e., b2vt-1 or CG) that biases to 0 

will never be selected as Vt. 

NG = (η / Vt)Mt                                                   2.17 

Mt = mt / (1–b1
t)                                                   2.18 

Vt = b2
∞vt-1 + (1–b2

∞)CG∞ = max(b2vt-1, CG)                           2.19 

mt = b1mt-1 + (1–b1)CG                                            2.20 

There are many shortcomings that can be found from the definition of AdaMax. 

For instance, AdaMax does not employ the l∞ norm to remove the bias on Mt or mt. One 

of the reasonable explanations is that the reliability of a G is not only determined by its 

magnitude, but also determined by its direction. Therefore, the magnitude cannot be used 

to judge the accuracy of mt. However, the same justification can be used to refute the 

employment of l∞ norm in computing Vt. Due to the fact that the accuracy of the learning 

rate η / Vt is also not correlated with magnitudes of Gs, selecting a larger value for Vt will 

not result in accurate NGs. In addition, if b2vt-1 is larger and selected as Vt, the reliable 

CG (computed based on the most-updated parameters of the model) will be abandoned, 

rendering an inaccurate NG. Furthermore, always generating Vt from the larger 

term/gradient(s) (i.e., b2vt-1 or CG) will lead to a smaller learning rate. Compared with the 

rapid disappeared bias on Vt (bias disappears after 175th mini-batch, refer to subsection 

2.2.5.1), the side-effect (i.e., slower convergence) from the countermeasure of removing 

the bias will persist during the entire training stage. Therefore, AdaMax might not be a 

successful variant of Adam. 
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2.2.5.3 Nadam 

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [2.26] makes 

improvement by incorporating NAG (Nesterov Accelerated Gradient) into Adam, which 

is defined in Equations 2.21–2.25. NAG is an independent method that enables any 

optimizer with the prescient ability to improve the accuracy of NG [2.27]. More 

specifically, Nadam computes NG from Mt(mt) and uses it to update the current PARAMt 

to a new state called PARAMproj. However, PARAMproj is not the PARAMt+1 that we want 

to obtain, but rather to compute a projected Gproj which contains the information of the 

cost surface one step ahead. As a result, mt will be calibrated by Gproj to generate a more 

accurate Mproj and NG. 

NG = (η / ÖVt + ε)Mproj                                            2.21 

Mproj = (b1mt + (1–b1)Gproj) / (1–b1
t)                                 2.22 

Vt = vt / (1–b2
t)                                                    2.23 

mt = b1mt-1 + (1–b1)CG                                            2.24 

vt = b2vt-1 + (1–b2)CG2                                            2.25 

Nadam benefits the cost reduction in two scenarios. If mt leads the cost to a 

surface with a higher cost, Gproj would point in the direction of leaving the surface. 

Therefore, Gproj will counteract mt and generate a Mproj that bypasses the high-cost 

surface. However, this advantage can be obtained only when b1 is closing 0. More 

concretely, when b1 is closing 1 (e.g., b1 = 0.9 under the default setting), mt (i.e., the 

accumulated Gs) is dominated by recent Gs that drive the cost to the high-cost surface. In 

this case, the magnitude of Gproj is not adequate to counteract mt and reduce the cost to a 

lower value.  
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In addition, when mt and Gproj roughly align with each other and point in the 

direction of a lower cost, Mproj will be a G that begins with the head of mt and ends up 

with the tail of Gproj. Nadam can reduce the cost to a lower value in only one step (i.e., 

achieved by Mproj) instead of two steps (i.e., realized by mt and Gproj) as Adam is 

employed. In terms of computation, the two steps of Adam need to execute 2 BPs which 

corresponds to 4 FPs. Whereas, Nadam needs to spend one additional FP to compute Gproj 

in addition to spend 1 BP (i.e., 2 FPs) in calculating mt (i.e., 3 FPs in total). Because 1 

step of Nadam corresponds to 2 steps of Adam (i.e., mt and Gproj can be achieved by 

Mproj), the computation cost per step for Nadam and Adam are 1.5 FPs (i.e., 3 FPs / 2 

steps = 1.5 FPs / step) and 2 FPs (i.e., 2 FPs / 1 step), respectively. Therefore, Nadam is 

more efficient than Adam by (2 – 1.5) / 2 = 25% in cost reduction. However, the 

advantage in cost reduction is obtained with a lower model testing frequency, which in 

turn renders a lower possibility of capturing lower costs. More concretely, Adam updates 

PARAMt every 1 BP = 2 FPs, but Nadam increase this interval to 1 BP + 1 FP = 2 FPs + 

1FP = 3 FPs. Meaning that Nadam is more likely to miss a lower cost than Adam by (3 – 

2) / 3  » 33% within the same period. It is worth to mention that there is no evidence to 

show that the reliability of Mproj is higher than mt (i.e., the accumulated Gs), as Gproj in 

Mproj (i.e., the projected G based on mt) is only a one-step-ahead G of mt, and there is 

nothing special in accuracy with regard to Gproj. Due to the aforementioned advantages in 

computation and disadvantage of missing lower costs, Nadam might not be an improved 

variant of Adam.   
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2.2.5.4 AMSGrad 

AMSGrad (Adam with Max Gradient) [2.28] is a variant that removes the two 

calibration terms of Adam, defined in Equations 2.26–2.29. Another modification is that 

Vt is determined by the larger value between the accumulated PGs (i.e., Vt-1) and all 

generated Gs (i.e., vt). The reason of adopting this approach is that authors found some 

mini-batches that are more valuable than others, resulting in a larger cost reduction. 

Because they believe a large cost reduction would cause a large G, they intend to reuse 

the large Gs to foster the cost convergence. As a result, NGs generated using AMSGrad 

are always composed of the most valuable Gs. 

NG = (η / ÖVt + ε)Mt                                               2.26 

Vt = max(Vt-1, vt)                                                  2.27 

Mt = b1mt-1 + (1–b1)CG                                            2.28 

vt = b2vt-1 + (1–b2)CG2                                             2.29 

It is evident that the modification in computing Vt has many critical deficiencies. 

For example, the accuracy of G is not determined by the magnitude but by its direction. 

The accuracy positively correlates with the magnitude only when the direction is pointing 

towards a lower cost, which cannot be guaranteed in practice. Conversely, even if the 

magnitude of G could be used to quantify the reliability, we can easily find the 

computation of Vt violates the principle of SGD. For example, if Vt-1 is larger than vt for 

several consecutive mini-batches (it happens especially when a learning rate decay 

scheduler is used), the outdated Gs that are accumulated in Vt-1 are repeatedly selected as 

Vt. As a result, NGs (computed from Vt) that are only generated from PGs (i.e., Vt-1) are 

inaccurate because G is a time-sensitive variable as the output cost (refer to in Chapter 1).   



 33 

2.2.6 Others 

In recent years, other methods proposed to resolve the shortcomings of the 

aforementioned optimization algorithms. For example, AdamW (W refers to weight) 

fixes the weight decay of Adam [2.29]; QHAdam (Quasi-Hyperbolic Adam) computes 

NG by averaging CG and mt in Adam [2.30]; AggMo (Aggregated Momentum) updates 

PARAMt by averaging multiple Mts in Momentum [2.31]. 

 

2.3 Classification and Hierarchy of Existing Optimization Algorithms 

A summary of existing optimization algorithms can be found in Table 2.1. Although 

we introduce these optimizers based on the components (i.e., G, η or both) which they 

intend to improve, we classify them into 4 groups according to their actual behaviors in 

cost reduction. In group 1, there are two optimizers, Vanilla and AdaDelta. Vanilla uses a 

fixed η to adjust CG that is computed from BP. AdaDelta works as a gradient equalizer 

that sets comparable ηs for all features, so it can be considered a special Vanilla with a 

slightly fluctuated η. In group 2, Momentum is the only optimizer that employs 

accumulated Gs with a fixed η. It is the only optimizer that solely improves G, so it is 

often incorporated into newer optimizers to enhance G. In group 3, the two optimizers 

AdaGrad and RMSprop improve the learning ability on sparse data by 

improving/decreasing Gs of sparse/regular features. To resolve the problem of η 

diminishing on AdaGrad, RMSprop accumulates Gs in EMA instead of SMA. In group 4, 

each optimizer is a combination of multiple optimizers. Adam and AdaMax are 

combinations of Momentum and RMSprop, but they are separately using l2 and l∞ norms 

in accumulating Gs. Nadam is the most complicated optimizer because it combines an 
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additional technique NAG onto Adam to obtain the prescience ability. AMSGrad is the 

only Adam variant that abandons the bias-correction terms, improving the accuracy by 

reusing the largest Gs. 

Table 2.1 – Summary of existing optimization algorithms 

Group Optimizer 
Improving 

EMA η µ G Summary of 
the Actual Behaviors G η 

1 

Vanilla 
[2.1]     the original SGD with 

a fixed η 
AdaDelta 
[1.22]  • • • Vanilla with 

a slightly fluctuated η 

2 Momentum 
[1.9] •  •  using Gs with a fixed η 

3 

AdaGrad 
[2.20]  • SMA • balancing Gs of features 

RMSprop 
[2.24]  • • • AdaGrad that accumulates 

Gs in EMA 

4 

Adam 
[1.10] • • • • Momentum + RMSprop 

(l2 norm) 

AdaMax 
[1.10] • • • • Adam that employs l∞ norm 

Nadam 
[2.26] • • • • Adam + NAG 

AMSGrad 
[2.28] • • • • Adam that always employs 

the largest Gs 
 

A hierarchical chart that presents the development relationship among existing 

optimizers can be found in Figure 2.2. These optimizers are divided into 4 groups as 

shown in Table 2.1. They connected through arrow lines that indicate their inherited 

relationship. Each black block with a white letter refers to the component that the 

corresponding optimizer intends to improve. When EMA is first incorporated, the key 

word “EMA” is shown on the corresponding line. For example, Adam is the combination 

of Momentum and RMSprop, which improves G/η based on the former/latter. 
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Momentum/RMSprop adopts EMA in improving G/η, and thus Adam inherits EMA in 

computing the two components. 

 

Figure 2.2 – Development relationship of existing optimization algorithms 

 

2.4 Deficiencies on Existing Measurements 

Based on Table 2.1 and Figure 2.2, we learn that the early optimizers in groups 1–3 

make improvements by incorporating innovative techniques, such as computing a 

dedicated η for each feature to increase the learning ability on sparse data (i.e., adopted 

by AdaGrad). By contrast, the newer optimizers in the group 4 are combining multiple 

existing optimizers and/or techniques with minor enhancements. For example, Adam is 

unique in quantifying and calibrating the biases on G and η. However, these biases will 

rapidly disappear after the 175th mini-batch, so Adam does not make an observable 

improvement in accuracy. An in-depth analysis on the common measurements and the 

associated deficiencies are given below. 



 36 

2.4.1 Exponential Moving Average 

According to the column under the keyword “EMA” in Table 2.1 and Figure 2.2, 

all optimizers in addition to AdaGrad adopt EMA when trying to improve G, η or both. 

Because the earliest optimization algorithm Vanilla solely employs CG, researchers 

attribute all problems (including, but not limited to high training error rate and slow 

convergence) to CG. Then, PGs are introduced in the computation of NG to calibrate the 

deviation of CG via reducing its weight. Due to the fact that an earlier PG would be less 

reliable in computing NG, EMA is adopted to use the more recently generated Gs to 

dominate NG and approximates the magnitude of NG to CG (or preventing G/η from 

becoming infinite large or small as training progresses) [1.9].  

However, recent papers show some shortcomings that challenge the adoption of 

EMA. As we mentioned, the authors of Adam found a bias in employing EMA [2.25]. 

Also, some researchers have proposed that a lower b (i.e., less weighted PGs) performs 

better in their respective experiments [2.32, 2.33]. In addition, a recent theory [2.28] 

suggests that adaptive optimizers that use EMA converge to different and less optimal 

minima than Vanilla. The authors concluded that generating NG from recent Gs is 

unreliable, a phenomenon found in (yet not limited to) the fields of object recognition, 

character-level language modeling, and constituency parsing. These results are combined 

to showcase multiple issues (including, but not limited to the bias and over-weighted PGs) 

with EMA, which should be attributed to the high deviation of PGs. Evidence suggests 

that the deviation of PGs will result in a lower accuracy. For example, multiple 

experiments in [2.34] have shown that AMSGrad consistently achieves less optimal 
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results because it will keep using PGs by abandoning CG when the value of Vt-1 is larger 

than that of vt (refer to Equation 2.27). 

Other evidences show that PGs should not dominate the computation of NG. 

Although the deviation of an earlier PG will be reduced by multiplying more bs when 

EMA is employed, the magnitude of deviation will also increase as it becomes more 

outdated. As a result, the actual deviation of each PG may not be effectively reduced by 

EMA. In this sense, the process of accumulating PGs in EMA becomes a process of 

accumulating deviations of PGs. Therefore, EMA may not result in an accurate NG, 

especially when b is closing 1 (i.e. more rely on PGs). 

2.4.2 Inverse Relationship Between Gradient and Learning Rate   

As we learn from Figure 2.2 and the column under “η µ G” in Table 2.1, any 

optimizer that is derived from AdaGrad inversely adjusts its η based on G. The goal is to 

improve η for a small G that results from a sparse feature, so that the cost in the 

corresponding dimension can be better reduced. As we mentioned, if this method is 

applied to a regular dataset with a few sparse features, it would slow down the 

convergence and not obtain a noticeable cost reduction. Whereas, if the majority of a 

dataset are sparse features, directly improving ηs of all features (e.g., setting a static large 

η for all features) is a much easier approach than the aforementioned method. Particularly, 

this method can completely avoid the mentioned problems with respect to the diminished 

η and biased Vt. Therefore, the method of inversely adjusting η based on each G is only 

suitable for datasets with a certain number of sparse features (i.e., not too less or many). 

For such a dataset, if we do not increase ηs of its sparse features, the cost in the 

corresponding dimensions will be less optimal, in turn weakening the overall cost 
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reduction. In this case, inversely adjusting η based on each G is a more fine-grained 

method than improving η of all Gs. It is evident that the improvement will be maximized 

when the regular and sparse features of this dataset are numerically comparable. However, 

we need to note that this kind of dataset is rare in practice, limiting the application scope 

of the measurement. 

2.4.3 Non-decoupled Measurements 

In recent years, some researchers have pointed out that state-of-the-art results for 

many tasks (e.g., object recognition in computer vision [2.35] and natural language 

processing in machine translation [2.36]) have been achieved using simple optimizers 

(e.g., Momentum). Also, the advanced optimizers like Adam may be susceptible to 

render a non-convergence failure in some cases [2.37]. By analyzing existing algorithms, 

we found that measurements of advanced optimizers may conflict in their functionalities, 

which could be the reason for causing the aforementioned negative results. For example, 

Adam is a combination of Momentum and RMSprop. As we mentioned, Momentum is 

designed to increase/decrease G of a cost surface with a high/low-slope. Whereas, 

RMSprop is trying to balance all Gs by increasing/decreasing G on a flat/steep cost 

surface. As a result, the two conflicted approaches are combined to generate erratic NGs, 

translating to an unstable convergence or even a non-convergence failure in practice. 

Furthermore, multiple parameters introduced by different methods may become an 

obstacle during configuration. For instance, each optimizer in group 4 has three hyper-

parameters (i.e., η, b1, b2), but most optimizers in group 1–3 have only one hyper-

parameter (i.e., η). The difficulty of finding the best configuration grows exponentially 

when a new parameter is introduced, especially when the parameters are non-decoupled 
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in their functionalities and the ML model architecture is complex. Consequently, some 

researchers rely on dedicated algorithms [2.38] to optimize parameters, apparently 

increasing the complexity of a ML task. Some algorithms employ special methods to 

intelligently reduce the parameter searching space [2.39], and others simply use brute-

force methods [2.40] which act as simple iterators that cannot save the configuration time 

in practice. 

In addition, deficiencies of incorporated methods are also imported which would 

further weaken the accuracy of NG. For instance, the shortcoming of slow convergence 

of AdaGrad will be transferred to Adam via introducing RMSprop. Moreover, if we 

intuitively understand the generation of accurate NGs is a process of searching a perfect 

parameter matching among all employed measurements, the possibility of achieving 

reliable NGs would be lower when more measurements are introduced.  

2.4.4 Strategy of Approaching Lower Minima  

It is evident that the surface slope becomes lower when the cost is closer to the 

minimum, such that the key of approaching lower minima is to reduce the magnitude of 

NG with slope decreases. Due to the fact that Vanilla solely uses the original CG as NG 

which positively changes with the slope, it is the only optimizer that can achieve this goal 

without compromise. This is also one of the main reasons for the highest accuracy in 

some ML tasks are still achievable by Vanilla [2.35, 2.36]. Whereas, AdaGrad adjusts its 

Gs by increasing/decreasing their magnitudes when the slope is low/high (i.e., in the 

opposite way as Vanilla). In addition, all other optimizers employ EMA in computing η, 

G or both, reducing the dependency (i.e., weight) on CG. Employing EMA will 

compromise the positive correlation between NG and the slope, and make the cost 
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wandering around the minimum by a larger range. As a result, almost all existing 

optimizers have a deficiency in the strategy of approaching lower minima. 

 

2.5 Summary 

The most advanced trend in improving optimization algorithms is not to focus on 

improving the simple optimizers (e.g., Vanilla), but the complex ones (e.g., Adam) as 

shown in [2.29–2.31]. According to the presented recent results, the accuracy and 

stability of an optimizer is generally weakened if more methods are incorporated. Based 

on our analysis of deficiencies on existing measurements, we believe that “less is more” 

should be the principle of designing a new optimizer. Although an optimizer with fewer 

improvements upon Vanilla may limit its application scope (e.g., AdaGrad is best for 

datasets with a certain number of sparse features), applying a dedicated algorithm to a 

specific kind of problem is a widely accepted strategy in the field of ML. In addition, 

recent experiments of language modelling demonstrate that tuning [2.41] and/or 

regulating parameters [2.42] can produce state-of-the-art results compared to employing 

more complex models. The results show that improvements result from tuning an 

optimization algorithm is comparable with or even better than improvements toward the 

architecture of ML models. Therefore, simple optimizers in groups 1–3 would be better 

options in terms of making improvements and practical usage.  
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CHAPTER 3 

DESIGN OF ANGLE-BASED STOCHASTIC GRADIENT DESCENT 

 

3.1 Motivation  

The creation of angle-based SGD (AG-SGD) is motivated by resolving the 

shortcomings of existing optimization algorithms, which are presented in Chapter 2. In 

addition, AG-SGD inherits some existing measurements that benefit its accuracy, such as 

the incorporation of PGs in its NG computation. The justifications of adopting and 

abandoning certain existing measurements are listed in Tables 3.1 and 3.2, respectively. 

All these justifications are analyzed in Chapter 2, and there are four improvements to the 

adopted measurements that need to be mentioned, they are:  

1) Referring to the third and fourth rows of Table 3.1 and the second-to-last row of 

Table 3.2, AG-SGD intends to adjust its η based on the progress of convergence. 

More specifically, the cost convergence can be accelerated by increasing η when 

the cost is approaching the minimum, and a lower cost can be obtained by 

decreasing η when the cost is wandering around the minimum. As a result, the 

strategy of adjusting η will be different from all other η schedulers (i.e., η 

annealing and η warm restarts) mentioned in Chapter 2.  

2) As shown by the first two rows in Table 3.2, both EMA and SMA are abandoned 

in computing Gs and ηs due to the listed reasons, so the approach adopted by 

AG-SGD will be unique at consistently employing the accurate gradients (i.e., 

resolving the shortcoming of EMA) without suffering from the unlimited 

gradient increasing problem (i.e., resolving the shortcoming of SMA). 
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3) Although AG-SGD abandons NAG due to its uncertainty in improvement (refer 

to the last row of Table 3.2), the idea of prescience ability that comes with NAG 

is adopted by AG-SGD (refer to second-to-last row of Table 3.1). As a result, 

AG-SGD will realize an awareness ability to prevent the cost from increasing. 

4) As shown by the last row of Table 3.1, AG-SGD also intends to improve both 

components of G and η, so the incorporated measurements can be decoupled in 

functionality, otherwise, the generated NG becomes erratic (refer to Chapter 2).    

Table 3.1 – Existing measurements adopted by AG-SGD 
Adopted Measurement Justification 

Improving G improving the ability of crossing cost ravines 

Incorporating PGs providing more information 

Improving η early/middle stage (the cost is approaching the minimum): 
faster convergence (increasing η) 

final stage (the cost is wandering around the minimum): 
stronger convergence (decreasing η) 

Dynamic η 

Prescience/Awareness 
Ability 

preventing the cost from being increased 
reducing the cost in one step when the cost is increased 

Decoupling 
Measurements 

the incorporated measurements 
should be decoupled in functionality 

 
Table 3.2 – Existing measurements abandoned by AG-SGD 

Abandoned Measurement Justification 
EMA(Gs) / EMA(ηs) dominated by outdated/unreliable gradients 

SMA(Gs) / SMA(ηs) unlimited increasing in magnitude 

Calibrating η based on Gs should be based on the progress of convergence 

η µ G narrow application scope: only targeting at sparse data 

Max (Gst-1, Gst) critical deficiency in principle 

NAG uncertain improvement 
 

In addition to the four improvements to existing measurements, the most important 

measurement that has never been adopted by all existing optimizers is the calibration of 
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outdated PG [3.1]. By alleviating the deviation of PG, all measurements using PG can be 

enhanced simultaneously, resulting in a significant improvement to the overall accuracy. 

As a result, the proposed AG-SGD uses a new metric (i.e., the angle between consecutive 

gradients) to minimize the deviation of PG, and the proposed improvements are based on 

this new metric .  

 

3.2 Principle 

3.2.1 New Metric: Angle Between Consecutive Gradients 

To calibrate the inaccurate PG, we need to quantify its deviation. To achieve this 

goal, we need to find an accurate G as a reference for quantification. In principle, CG is 

calculated based on the most-updated SGD state, so it is more reliable than PG in 

computing NG [3.2]. Some researchers have mentioned that the distortions affect PG and 

have recognized the importance of utilizing CG in NG calculation. They have proposed 

various methods to enhance PG’s compliance with CG. For example, implicit gradient 

transport (IGT) alleviates the “staleness” of PG by transforming PG into CG without 

explicitly using the Hessian technique to reduce the parameter’s variance and bias as it is 

updated over time [3.3]. In addition, various authors have indicated their results 

associated with state-of-the-art tasks such as object recognition in computer vision [3.4] 

and natural language processing in machine translation [3.5], which are relying 

exclusively on CG. In support, a recent study [3.6] suggests adaptive optimizers (utilize 

CG and PG) converge to sub-optimal minima compared to the simplistic gradient descent 

(only use CG). This phenomenon can be found in, but not limited to the fields of object 

recognition, character-level language modeling, and constituency parsing. These results 
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and the demonstrations in Chapter 2 are combined to show that CG is a qualified gradient 

reference and can be used to quantify the deviation of PG by its angle with PG. 

 

3.2.2 New Measurement: Calibrating The Deviation of The Previous Gradient 

AG-SGD technique generates NG by the following four steps: (1) determine the 

inner angle, θ between PG and CG (the method of computing θ can be found in Chapter 

6); (2) adjust the weights of PG and CG according to θ, (3) combine the weighted PG and 

CG, (4) multiply the learning rate η, accordingly based on the G combination. This is 

possible, as the gradient matches the parameters of a neural network with regard to its 

data structure (i.e., multi-dimensional matrix), the elements of gradient can be flattened 

into a vector V. As a result, the inner angle between PG and CG can be computed by the 

equation below (the detailed explanation of the computation and the associated reliability 

can be found in Chapter 6). 

θ = arccos((VPG • VCG) / (|VPG| |VCG |))(180 / p)          (1) 

Figure 3.1 shows the deviation between the two Gs, where the number at the tip of 

each arrow indicate the θ value, the angle deviation between the associated PG and CG. 

For example, PG-54 means that the angle of PG relative to that of CG is 54°. The figure 

denotes that a smaller θ renders a closer alignment, indicating a smaller deviation of PG. 

Furthermore, we can divide the range of θ into three subsets [0°, 90°), (90°, 180°], and 

[90°], in order to follow the corresponding actions: 

1) When θ < 90°, PG (blue) is roughly aligning with CG (black). In this case, PG 

= OPG will be used to compute NG without calibration. 
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2) When θ > 90°, PG (red) has a significant deviation from CG. Under this 

circumstance, PG has to be calibrated prior to NG computation. An easy way is 

to reverse the direction of PG, so that the reversed past G (RPG) will be 

roughly aligning with CG as in the previous case. For instance, RPG-18 

(yellow) is a reversal in direction of PG-162, which will be used to compute 

NG directly. 

3) When θ = 90°, PG (green) is perpendicular with CG. It indicates that the two 

Gs have no correlation (i.e., two vectors have no correlation when they are 

orthogonal). Therefore, PG should be abandoned when we compute NG. 

  
Figure 3.1 – Quantifying the deviation of PG using the inner angle between PG and CG 

(the numbers at the tip of the arrows are angles; the deviation of PG varies with the angle)  
 

To further utilize the above properties, two key points related to the accuracy of 

PG in determining NG need to be indicated. (1) As θ approaches 0˚ or 180˚, the OPG or 

RPG aligns more with CG and becomes more valuable in NG computation. (2) As θ 
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approaches 90˚, PG will have less contribution to the estimation of NG as it correlates 

less with CG.   

Due to the fact that an accurate NG must result from reliable Gs, the improvement 

can be realized by adjusting the weights between PG and CG according to θ, that is: 

1) When θ approaches 0° or 180°, we can increase the ratio wpg/wcg by a larger 

value because now the OPG or the RPG has better accuracy. 

2) When θ approaches 90°, the value of the ratio wpg/wcg will be decreased, i.e., 

CG dominates NG computation in this case.  

Moreover, it is evident that with a larger θ, the SGD trajectory becomes more 

chaotic. This occurs as the two Gs will counteract each other rendering an NG with 

higher uncertainty. To prevent the cost from being misled to a higher value, the learning 

rate should be decreased when θ approaches 180°. 

 

3.3 Specifications 

3.3.1 Parameters Overview 

To comprehend the above concepts, we implement our technique using six 

parameters and two functions as shown in Table 3.3. The parameters wpg and wcg are 

weights of PG and CG, respectively; sg controls the magnitude of the NG by limiting 

these two weights. Equation 2 (i.e., Fpg(a,sg)) is used to compute wpg; sη is the lower 

bound of the learning rate η that is determined by Equation 3 (i.e., Fη(a,sη)). The third 

column “Calculation” lists all necessary parameters required to compute the 

corresponding parameters and functions. For instance, wpg and sg are needed to compute 

wcg. 
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Table 3.3 – Angle-based Parameters and Functions 
Symbol Explanation Calculation Property 

a the normalized angle of θ 
between PG and CG PG, CG dynamic 

wpg the weight of PG Fpg(a,sg) a-based 

wcg the weight of CG wpg, sg a-based 

sg 
the sum of |wpg| and wcg 

the intercept point on vertical axis  
the slope of Fpg(a,sg) 

– user defined,  
default value 1.0 

Fpg(a,sg) the function to compute wpg a, sg – 

sη 
the minimum of Fη(a,sη) 

smaller than the intercept point  
on vertical axis by 1 

– user defined, 
default value 1.0 

η the learning rate Fη(a,sη) a-based 

Fη(a,sη) the function to calculate η a, sη – 

Fpg(a, sg) = sg(1 – 2a)             (2) 

Fη(a, sη) = –sη(a – 2)         (3) 

3.3.2 Work-through 

To commence AG-SGD, we initialize the two user-defined parameters sg and sη 

with the value 1.0. These initial values of sg and sη correspond to the two straight lines L0 

(red) in Figure 3.2, respectively (note: black lines L1 and L2 are definitions that 

correspond to a higher sg and sη). In each epoch, θ between PG and CG is normalized as a 

Î [0, 1] by dividing its value by 180°. Next, the values of a and sg are input to Fpg(a,sg) to 

compute wpg, then wcg is determined using sg–|wpg|.  η is computed according to Fη(a,sη). 

Finally, NG is formed as η(wpgPG+wcgCG). Here the functions Fpg(a,sg) and Fη(a,sη) are 

defined as sg(1-2a) and -sh(a-2), respectively. There are four different cases that arise 

given the various possible measurements of these components: 
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1) When a < 0.5 (i.e., θ < 90˚), we have wpg > 0 and OPG = PG. Since wpg 

increases as a (or θ) approaches 0 (or 0˚) and wcg inversely varies with wpg 

(because wcg = sg – |wpg| and sg is a fixed value), the OPG will have a greater 

contribution to NG generation as a (or θ) gets close to 0 (or 0˚). 

2) When a > 0.5 (i.e., θ > 90˚), we have wpg < 0, which means that the minus sign 

reverses the direction of PG. Therefore, the RPG aligns more with CG and 

gradually dominates NG computation as a (or θ) approaches 1 (or 180˚). 

3) When a = 0.5 (i.e., θ = 90˚), the contribution of PG in calculating NG will be 

zero, i.e., NG is solely determined by CG because wpg = 0. 

4) The value η is monotonically decreasing in the entire range of a (or θ) to 

mitigate the possibilities of rendering a chaotic SGD trajectory. A larger value 

of a (or θ) will mislead to a higher cost value. 

It is critical to understand that although the computation of NG is dominated by 

OPG or RPG as θ approaches 0˚ or 180˚ separately, OPG and RPG are closely aligned 

with CG. In this sense, AG-SGD behaves similar to Vanilla SGD when θ approaches 0˚, 

180˚, and 90˚ because NG is gradually dominated by CG under these circumstances. 
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Figure 3.2 – Definitions of the functions Fpg(a,sg) in (a) and Fη(a,sη) in (b) (lines L1 and 
L2 are alternative definitions that supportive; the horizontal axis is the normalized angle 
between PG and CG; two intercept points on vertical axes sg and sη are parameters of the 

proposed method) 
 

3.4 Awareness Ability: One-step Cost Reduction 

Due to the deviation of G between the mini-batch and the full dataset, the cost might 

be misguided to a higher value as SGD proceeds in time. Referring to Figure 3.3, if PG is 

not reversed, the cost reduction would follow the blue Gs. Each step in the high cost areas 

is susceptible to being misguided to a higher value by the red Gs, since they are 

influenced by the aforementioned pattern deviation. The key in resolving this problem is 

to reduce the cost as soon as possible, as indicated in the figure with the A, B, and C 

positions. If we reverse PG prior to combining it with CG, the cost reduction would 
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follow the green Gs, i.e., points 2, 5, and 7. Consequently, AG-SGD would converge 

faster and generate less obtuse angles than other optimizers, due to the one-step cost 

reduction. 

 
Figure 3.3 – SGD trajectory of AG-SGD: PG will be reversed when the cost is increased 
(green Gs 2, 5, 7 are resulting from AG-SGD; blue Gs are resulting from other optimizers, 
red Gs will result in higher costs if PG is not reversed) 
 

3.5 Pseudocode 

The pseudocode of AG-SGD is given below. 

AG-SGD 
Setting values for sg and sη, where sg ≥ 1 and sη ≥ 1 
From the second epoch: 
1. Recording PG  

Computing CG 
2. Computing θ between PG and CG 

θ = arccos((VPG • VCG) / (|VPG| |VCG |))(180 / p) 
Normalizing θ 
θ ® a Î [0,1] 

3. Computing the weights of Gs 
wpg ¬ Fpg(a,sg) = sg (1 – 2a) 
wcg ¬ sg – |wpg| 

4. Computing η ¬ Fη(a,sη) = –sη (a – 2) 
5. Computing NG ¬ η (wpgPG + wcgCG) 
until the last epoch 
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3.6 Summary 

The newly proposed metric (i.e., a) represents the difference in direction between 

PG and CG, so the weight of PG should be inversely changed with a when CG is 

assumed to be accurate (i.e., PG µ a). Also, this chapter presents the realizations of the 

three (of four) a-based improvements to existing measurements mentioned in the first 

subsection of this chapter. They are: 

1) Abandoning EMA and SMA 

After calibrating PG, the weight of CG is also determined. The calibrated weights 

are more reliable than static weights (i.e., b) adopted by EMA in improving accuracy. 

Due to the fact that AG-SGD sets the sum of weights to a fixed value (e.g., 1.0 under the 

default setting), each generated NG has a definite upper bound as EMA under all 

configurations, instead of infinitely increasing as in SMA. 

2) Inversely adjust η based on a (η µ a) 

Due to the fact that a larger a indicates the closeness of the cost to a minimum, η is 

inversely adjusted with a to both accelerate the cost reduction during the early/middle 

stage of convergence (i.e., the cost is approaching the minimum) and enhance the cost 

convergence during the final stage (i.e., the cost is wandering around the minimum). 

3) Prescience Ability (one-step cost reduction) 

With respect to the cost reduction, an obtuse angle means the cost might be guided to 

a higher value and a backward movement is needed. AG-SGD realizes this goal by 

reversing the direction (i.e., sign) of PG when q > 90˚. Most importantly, even if there is 

a misidentification to the cost variance (i.e., the cost is not increased when q > 90˚), the 
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reversed PG is also (roughly) aligning with the reliable CG, combining to form an 

accurate NG. 
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CHAPTER 4 

IN-DEPTH INTERPRETATION OF 

ANGLE-BASED STOCHASTIC GRADIENT DESCENT 

 

4.1 Introduction 

This chapter reveals the convergence principle behind AG-SGD by demonstrating 

the NG variance that is determined by the two parameters sg and sη. Then, the 

independent functionalities realized by parameters and the associated tuning strategies in 

various cases are presented. Also, the actual behavior of AG-SGD will be analyzed in a 

practical context. Finally, all improvements realized by AG-SGD are summarized. 

 

4.2 Variance Pattern of New Gradient 

The NG magnitude is determined by combining the two functions Fpg(a,sg) and 

Fη(a,sη). Figure 4.1 shows the variance pattern between θ and the corresponding NG 

magnitude when CG and PG are 1.0 unit in magnitude. For example, the NG magnitude 

will be larger/smaller than CG and PG when the angle is in [0˚, 120˚)/(120˚, 180˚) and 

will not be changed when the angle is 120˚ or 180˚ under the default setting (the green 

line). Furthermore, the NG roughly decreases as the angle increases, which stabilizes 

SGD’s trajectory. Since wpg is close to 0 as θ approaches 90˚, the most reliable CG 

gradually dominates NG computation, producing a peak at θ = 90˚. When θ is close to 0˚ 

or 180˚, CG becomes better aligned with OPG or RPG, rendering a larger wpg and forms a 

larger NG. The two troughs are achieved when OPG and RPG have larger difference 

from CG in determining an accurate NG, so these two Gs are involved in the NG 
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computation with greater comparable weights. Consequently, the smaller NGs are 

attributed to the weight assignment between wpg and wcg.  

 
Figure 4.1 – Magnitude variance of NG with the changes of sg and sη 

(the black dot indicates NG magnitude which is reduced when the angle is larger than 
120˚ under the default setting) 

 

4.3 Convergence Guarantee 

In the early and middle stages of SGD, the cost is repeatedly reduced until it 

approaches to one of the minima (phase 1). Once the cost is oscillating within a small 

range and cannot be reduced further, it means that the result has converged (phase 2). 

One of the distinct differences between these two phases is that the averaged θ between 

consecutive Gs of the phase 2 is larger than that of phase 1. As shown in Figure 4.2, the 

main reason that causes this phenomenon is that more obtuse angles are generated with 

the cost and repeatedly overshoot/wander around the minimum during the final 

converging stage. In this case, if we reduce the step length every time an obtuse angle is 

generated, the step length would gradually approach 0 and result in a lower converged 

cost.  
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Figure 4.2 – Cost variance trajectories in the final SGD stage 

(a darker color indicates a lower cost and more obtuse angles would be generated 
during the cost wandering around the minimum) 

 

This convergence principle is utilized and employed by AG-SGD, as shown in 

Figure 4.1. Under its default configuration (i.e., sg = sη = 1.0), NG magnitude is smaller 

than 1.0 unit when θ is in (120˚, 180˚), so the step length will be reduced when θ is in this 

section. A section (e.g., (120˚, 180˚)) that causes a reduction in NG magnitude and fosters 

a cost convergence is called Convergence Section (CS). If this default CS is still narrow 

and renders a non-convergence failure, we could enlarge the CS by decreasing sg or sη to 

achieve a stronger convergence. 

 

4.4 Decoupled Parameters: Gradient Weight and Learning Rate 

Figures 4.3 and 4.4 show the variance pattern between the angle and the 

corresponding NG magnitude when the two parameters (i.e., sη and sg) are varying in [0.8, 

1.2]. These two parameters are mutually complementary in their functionalities, where 

their differences are: 
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1) sg is mainly used to change the NG magnitude when θ approaches 0˚ or 180˚, as 

shown in Figure 4.3. Adjusting sg will primarily modify the upper bound of the 

CS and the associated NG strength reduction. 

2) sη is primarily used to adjust the NG magnitude when θ is close to 90˚, as shown 

in Figure 4.4.   Changing sη will mainly adjust the lower bound of the CS and the 

related NG strength reduction. 

 
Figure 4.3 – Magnitude variance of NG with the changes of sg 

(affecting the NG magnitude when the angle is close to 90˚) 
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Figure 4.4 – Magnitude variance of NG with the changes of sη 

(affecting the NG magnitude when the angle is close to 0˚ and 180˚) 

 

4.5 Configuring Strategy 

It is evident that adjusting these two parameters together will obtain all the 

aforementioned changes at once. However, if the sg and sη are changed by the same 

magnitude, they should be adjusted within the recommended configuration section (0.820, 

1.156), due to: 

1) When sg = sη ≤ 0.820, the average of NG for the entire section of θ is less than 

0.9996, which is averaged from the 181 NGs of all integral angles in [0˚, 180˚]. 

In this case, SGD will not be accelerated, violating the goal of employing 

optimizers. 

2) When sg = sη ≥ 1.156, the CS is an empty set. It means that a non-convergence 

failure is inevitable, as NG will not be reduced in the entire section of θ, which is 

verified by the experiment in Chapter 6. 
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It needs to be mentioned that this recommended configuration section applies to 

datasets in any problem field, as they are solely determined by the characteristic of AG-

SGD. Since the average of this section is 0.988 (i.e., (0.820 + 1.156) / 2), the default 

values of sg and sη are set to 1.0 for achieving an accelerated SGD that mitigates the non-

convergence failure. In addition, the averaged NG magnitude is 1.219 under the default 

configuration, so it is a conservative setting that mitigates overshooting, but it adversely 

impacts the SGD speed. Therefore, increasing the default values appropriately may 

speed-up SGD without missing the optimal result in practice. Moreover, Fη(a,sη) is also 

designed with the consideration of mitigating the non-convergence failure. Referring to 

Figure 3.2 (b), η will be increased by a smaller magnitude with a approaching 1. For 

example, if we increase η (a = 0) by 2 units (i.e., from s1 to s2), η (a = 1) is increased by 1 

unit. It is important to mention that the variance pattern of the NG magnitude will not be 

changed when both sg and sη change with the same magnitude, as shown in Figure 4.1. 

This property is advantageous and utilized during the early and middle tuning stages to 

foster faster configuration searching. For example, if we are not satisfied with the lowest 

achieved cost, we should decrease the step lengths in the entire section of θ by reducing 

both sg and sη. To make a fine adjustment, we need to separately change the values of sg 

and sη. For instance, if the cost is still randomly oscillating in a large range after many 

epochs, it indicates the cost is approaching a minimum with a large step length. Since 

more obtuse angles are generated during this process, we should first try to decrease sg to 

reduce the step lengths when θ is close to 180˚. Due to the fact that decreasing sg will also 

reduce the step lengths when θ is close to 0˚, a slower overall convergence speed is the 
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side-effect of this manipulation. Consequently, there is a trade-off between the 

convergence speed and overshooting [4.1]. 

 

4.6 Summary 

Referring to Figure 4.5, AG-SGD is different from all analyzed optimizers (i.e., 

solely using PG as the metric) in its adoption of the new metric a (or θ). With respect to 

practical behavior, AG-SGD can be considered as a special Vanilla that employs PG only 

when it is reliable. Also, AG-SGD is unique in the following two aspects (under the 

default setting): 

1) Possessing a definite range for an effective parameter tuning (i.e., sg and sη Î 

(0.820, 1.156)) 

2) Possessing a definite condition for the cost convergence (i.e., θ Î (120˚, 180˚))  

These two advantages are combined to give users a direct feedback to the cost 

movements that result from their adjustments to parameters, reducing parameter 

searching space and efforts on finding the optimal configuration. All improvements that 

are realized by AG-SGD and the associated explanations are summarized in Table 4.1. 
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Figure 4.5 – Differences between AG-SGD and other optimizers 

 
Table 4.1 – Improvements realized by AG-SGD 

Improvement Explanation 

New Metric a the angle between PG and CG 

Calibrating PGs (|PGs| µ a) a positively correlates with the deviation on PG  

a-based Gs weights of PG and CG are determined by a 

a-based η (µ a) early/middle stage: acceleration (larger η) 
final stage: stronger convergence (smaller η) 

One-step Cost Reduction reducing the cost by one NG after it is increased 

Decoupled Parameters sg: control NG when a approaches 0 or 1 

sη: control NG when a approaches 0.5 
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CHAPTER 5 

EVALUATIONS OF ACCURACY AND EFFENCIENCY 

 

5.1 Introduction 

This chapter compares (1) the cost reduction, (2) the ability of translating the 

reduction in cost to error rate, and (3) time complexities among different optimizers. 

Group-based results are also calculated for an in-depth analysis. To avoid any bias, in 

comparing the proposed technique with other optimizers, two experiments are conducted 

with the following characteristics: (1) machine learning algorithms, (2) cost functions, (3) 

batch sizes, and (4) datasets associated with different fields. In the first experiment, AG-

SGD is implemented with a fully-connected vanilla neural network and evaluated on the 

handwritten digits dataset MNIST [5.1]. The second experiment employs a logistic 

regression classifier to evaluate AG-SGD on a network-based intrusion detection dataset 

NSL-KDD [5.2]. In terms of comparison, 10 different SGD optimizers: (1) Vanilla SGD, 

(2) Momentum, (3) RMSprop, (4) Adam, (5) Nadam, (6) AdaMax, (7) AdaDelta, (8) 

AdaGrad, (9) AMSGrad, and (10) AG-SGD are evaluated under the same conditions in 

both experiments. 

 

5.2 Neural Network on Digital Recognition 

5.2.1 Scheme 

The fully-connected vanilla neural network has 4 layers. Each layer employs 

Sigmoid [1.16] as the activation function. The numbers of neurons from the input to the 

output layers are 784, 256, 112, and 10, respectively. The output cost is quantified using 
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the MSE [1.12]. For the usage of the dataset MNIST, we employ the pre-split 60,000 

samples for training and 10,000 samples for testing. To evaluate AG-SGD under the 

intended application scenario (refer to Chapter 6), the batch size and number of epochs 

are set to 8 and 50 (note: we have found that larger values for these quantities do not 

reduce the testing costs further for all compared optimizers).  As a result, there are 

375,000 gradients (i.e., 60,000 / 8 ´ 50) to be generated during SGD to minimize the 

output cost. 

A good optimization result could occur accidentally, when the data are well-

matched among the different techniques and they could generate skewed positive cost 

reduction for the proposed method [5.3]. To avoid this possibility, the classifiers 

evaluated will not employ any additional technique such as dropout [5.4], weight decay 

[5.5], learning rate decay [5.6]. Therefore, the difference in the cost reduction should be 

attributed solely to the adopted optimizer. In addition, instead of evaluating the best result, 

the best 5 results will be selected to represent the performance of each optimizer. As a 

reference, the error rate of a fully-connected vanilla neural network on the dataset 

MNIST is about 2% based on the Kaggle leaderboard scores [5.7]. 

 

5.2.2 Results 

Figures 5.1 and 5.2 show the epoch-based average of the 5 minimal costs and the 

associated error rates from the above-mentioned SGD optimizers, respectively. Each 

value in the figures is computed by averaging the corresponding 5 values on the same 

epoch. The 10 optimizers are rated into 4 levels based on the results. In level-1, Adam 

and Nadam are outperformed by all the other optimizers with relative significant 
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magnitudes in cost and error reductions. Also, they are unstable as shown with oscillated 

curves. Particularly, Nadam is considered the worst optimizer in performance due to the 

increasing cost beyond epoch no.40, which translates to a non-convergence failure. In 

level-2, AdaMax, AMSGrad, and RMSprop perform better in the cost/error rate reduction 

and stability than the optimizers in the previous level. In addition, AdaMax converges 

faster than the rest of the optimizers in the same group during the first 14 epochs. In 

level-3, the Vanilla, Momentum, AdaDelta, and AdaGrad are more stable than the 

aforementioned optimizers because their curves are fluctuating within smaller ranges. 

These optimizers achieve the lowest costs and error rates compared with all of the 

optimizers analyzed, which aligns with the results in [5.3]. In level-4, AG-SGD 

outperforms all of the other optimizers in terms of the cost and error rate reductions. 

Although its converging speed is slower than that of AdaMax in the first 14 epochs, AG-

SGD greatly increases its speed between epochs 14 to 19 and obtains a cost as low as the 

best cost achieved by the others on epoch no.18. This advantage in cost is maintained 

until the last epoch, which occupies 66% of the training time (i.e., (50 – 18 + 1) / 50). It 

can be expected that the error rate could be further reduced along with the elongation of 

the training time. Whereas, if the cost of AG-SGD is oscillating as the other optimizers, it 

would only end-up with a local optimal error rate. 
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Figure 5.1 – Epoch-based average of the 5 minimal costs 

(zoom-in, each dot represents the cost of specific optimizer on the corresponding epoch) 
 

 
Figure 5.2 – Epoch-based average of the 5 minimal error rates  

(zoom-in, each dot represents the error rate of specific optimizer on the corresponding 
epoch) 

 

The above observations can be verified by the distributions of the best 5 results in 

Figures 5.3 and 5.4, in which the data dots are the outliers of the corresponding results. 

The optimizers are rated into 3 levels based on the existence of outliers and the range of 

values (i.e., the length of boxes). In level-1, there are 6 optimizers, Vanilla, Momentum, 

RMSprop, Adam, AdaGrad, and AMSGrad, and all have at least one outlier in both 
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figures. Although the ranges of the non-outlaid values are more concentrated, it means 

that these optimizers would generate local minimal results in most cases. Employing 

them in practice would miss the optimal result by a relative higher probability. In level-2, 

we have 2 optimizers, Nadam and AdaDelta, due to their scattered results. Although their 

results do not have an outlier, the larger value ranges would make their results relative 

harder to predict compared with the optimizers in level-1. Since the optimizers in the first 

two levels have distinct characteristics in their resulting distributions, it is difficult to 

judge which level would perform better in practice. In level-3, AG-SGD and AdaMax 

both have no outliers, and are more concentrated than the other two levels. The distinct 

difference between these two optimizers is that the former could generate a lower cost 

and error rate than the latter. 

 
Figure 5.3 – Distributions of the 5 minimal costs (MNIST, black dots are outliers) 
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Figure 5.4 – Distributions of the 5 minimal error rates (MNIST, black dots are outliers) 

 

Tables 5.1 and 5.2 show the comparisons of the 5 minimal costs and the 

corresponding error rates from the 10 SGD optimizers. The data show that AG-SGD is 

the most accurate optimizer with the best stability. If we quantify the advantages by 

averaging the minimal costs (i.e., 27.36) and the variances (i.e., 0.4564) from all the other 

optimizers, AG-SGD has a better performance by 8.52% = (27.36 - 25.03) / 27.36 in the 

cost reduction and 62.80% = (0.4564 - 0.1698) / 0.4564 in stability. 
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Table 5.1 – Comparison of the 5 minimal costs (MNIST) 

GP Optimizer 
The 5 Minimal Costs 

scaled by 10,000  
listed from the highest to the lowest 

Each Group Overall 

Avg Std Var Avg Std Var Avg Std Var 

1 
Vanilla 28.59 28.08 27.73 27.00 26.79 27.64 0.74

77 
0.55
91 

27.64 0.73
04 

0.53
38 

28.09 0.61
93 

0.40
91 

AdaDelta 28.50 28.11 27.72 27.17 26.72 27.64 0.71
31 

0.50
85 

2 Momentum 28.51 28.22 28.02 27.80 27.16 27.94 0.50
93 

0.25
94 27.94 0.50

93 
0.25
94 

3 
AdaGrad 29.14 28.04 27.94 27.90 27.69 28.14 0.57

23 
0.32
75 

28.29 0.54
33 

0.29
60 

RMSprop 29.06 28.61 28.53 28.27 27.66 28.43 0.51
42 

0.26
44 

4 

Adam 30.48 29.98 29.79 29.37 27.55 29.43 1.12
61 

1.26
81 

28.49 0.69
42 

0.54
71 

AdaMax 28.18 28.01 27.60 27.08 26.71 27.52 0.61
88 

0.38
29 

Nadam 29.53 29.53 28.83 28.60 28.27 28.95 0.56
39 

0.31
80 

AMSGrad 28.61 28.50 27.83 27.66 27.65 28.05 0.46
81 

0.21
92 

– AG-SGD 25.90 25.80 25.49 25.03 25.03 25.45 0.41
21 

0.16
98 25.45 0.41

21 
0.16
98 25.45 0.41

21 
0.16
98 
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Table 5.2 – Comparison of the 5 minimal error rates (MNIST) 

GP Optimizer 

The 5 Minimal Error Rates 
percentages 

listed from the highest to the 
lowest 

Each Group Overall 

Avg Std Var Avg Std Var Avg Std Var 

1 
Vanilla 1.69 1.61 1.61 1.59 1.58 1.62 0.0434 0.0019 

1.61 0.0361 0.0014 

1.62 0.0411 0.0018 

AdaDelta 1.65 1.61 1.60 1.58 1.58 1.60 0.0288 0.0008 

2 Momentum 1.66 1.65 1.58 1.58 1.56 1.61 0.0456 0.0021 1.61 0.0456 0.0021 

3 
AdaGrad 1.67 1.66 1.66 1.64 1.54 1.63 0.0537 0.0029 

1.61 0.0451 0.0021 
RMSprop 1.65 1.61 1.58 1.57 1.56 1.59 0.0365 0.0013 

4 

Adam 1.70 1.70 1.70 1.63 1.58 1.66 0.0550 0.0030 

1.64 0.037 0.0016 
AdaMax 1.62 1.61 1.61 1.58 1.58 1.60 0.0187 0.0004 

Nadam 1.69 1.69 1.67 1.63 1.61 1.66 0.0363 0.0013 

AMSGrad 1.69 1.66 1.64 1.64 1.58 1.64 0.0402 0.0016 

– AG-SGD 1.46 1.46 1.45 1.41 1.41 1.44 0.0259 0.0007 1.44 0.0259 0.0007 1.44 0.0259 0.0007 
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5.3 Logistic Regression on Network-based Intrusion Detection 

There are 41 features and 2 classes (i.e., normal and anomaly) in the dataset NSL-

KDD. We select all 25192 instances in the file “KDDTrain+_20Percent” as the training 

samples and all 22544 instances in the file “KDDTest+” as the testing samples. To 

employ the logistic regression classifier on the data, we apply the Principle Component 

Analysis (PCA) [5.8] to convert all data to numeric. As a result, PCA generates 85 

features in the training and the testing sets. With respect to the configuration of the 

logistic regression classifier, there are 4 differences compared with the fully-connected 

vanilla neural network. These are: (1) the numbers of input and output nodes are reduced 

to 85 and 2, respectively; (2) the cost function is changed to Cross-Entropy [1.13] which 

is more suitable for quantifying the output cost of binary classification problems than the 

MSE; (3) the number of epochs is limited to 30 due to the reduction in samples and 

complexity of classifier; (4) the batch size is set to 1 to better reveal the difference in 

obtaining the optimal results among the 10 optimizers. Although a lower batch size will 

have a higher probability of making the SGD trajectory more chaotic and mislead the 

output cost to a higher value, a robust optimizer should result in a good result even 

though its batch size is 1. As a result, there are 755,760 gradients (i.e., (25,192 / 1) ´ 30) 

that will be generated to minimize the output cost in each experiment. For comparison, 

the lowest testing error rates achieved by the three neural networks [5.9-5.11] are 20.7%, 

19.87%, and 16.69%, respectively. The results of this experiment are shown in Figures 

5.5 and 5.6, and Tables 5.3 and 5.4. 
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Figure 5.5 – Distributions of the 5 minimal costs  

(NSL-KDD, black dots are outliers) 
 

 
Figure 5.6 – Distributions of the 5 minimal error rates  

(NSL-KDD, black dots are outliers) 
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Table 5.3 – Comparison of the 5 minimal costs (NSL-KDD) 

GP Optimizer 
The 5 Minimal Costs 

scaled by 10 
listed from the highest to the lowest 

Each Group Overall 

Avg Std Var Avg Std Var Avg Std Var 

1 
Vanilla 21.74 19.09 13.65 12.65 10.62 15.55 4.66

75 
21.78

55 
12.06 2.48

03 
10.93

57 

14.58 2.08
15 

7.41
58 

AdaDelta 8.84 8.77 8.70 8.43 8.13 8.57 0.29
30 

0.085
8 

2 Momentum 21.76 21.64 21.29 20.28 13.11 19.62 3.68
56 

13.58
35 19.62 3.68

56 
13.58

35 

3 
AdaGrad 12.90 12.40 11.70 11.55 11.13 11.93 0.70

66 
0.499

2 
13.75 0.59

07 
0.362

4 
RMSprop 16.24 15.66 15.64 15.29 14.96 15.56 0.47

48 
0.225

5 

4 

Adam 14.13 13.92 12.05 11.82 10.51 12.49 1.52
50 

2.325
5 

12.90 1.56
93 

4.781
6 

AdaMax 20.89 12.62 12.36 11.73 10.96 13.71 4.06
37 

16.51
34 

Nadam 12.99 12.62 12.58 12.58 12.55 12.67 0.18
49 

0.034
2 

AMSGrad 13.22 13.19 12.62 12.55 12.02 12.72 0.50
34 

0.253
4 

– AG-SGD 8.78 8.64 8.60 8.40 8.11 8.51 0.26
01 

0.067
7 8.51 0.26

01 
0.067

7 8.51 0.26
01 

0.06
77 
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Table 5.4 – Comparison of the 5 minimal error rates (NSL-KDD) 

GP Optimizer 
The 5 Minimal Error Rates 

percentages 
listed from the highest to the lowest 

Each Group Overall 

Avg Std Var Avg Std Var Avg Std Var 

1 
Vanilla 21.66 20.83 20.12 19.93 17.48 20.00 1.56

64 
2.45
35 

17.31 1.29
12 

1.74
28 

19.47 0.81
60 

0.96
76 

AdaDelta 15.37 15.37 15.00 14.43 12.94 14.62 1.01
59 

1.03
20 

2 Momentum 21.25 20.71 20.67 18.66 18.29 19.92 1.34
16 

1.80
00 19.92 1.34

16 
1.80
00 

3 
AdaGrad 24.55 24.49 24.43 24.40 23.85 24.34 0.28

21 
0.07
96 

20.91 0.18
52 

0.04
37 

RMSprop 17.58 17.57 17.47 17.41 17.39 17.48 0.08
82 

0.00
78 

4 

Adam 19.72 19.48 19.23 18.13 18.07 18.93 0.77
40 

0.59
90 

19.76 0.44
60 

0.28
38 

AdaMax 24.54 24.44 24.41 23.34 23.07 23.96 0.69
75 

0.48
65 

Nadam 18.56 18.54 18.32 18.30 18.29 18.40 0.13
57 

0.01
84 

AMSGrad 17.90 17.85 17.80 17.61 17.48 17.73 0.17
68 

0.03
13 

– AG-SGD 14.46 14.05 13.67 13.51 12.87 13.71 0.59
69 

0.35
63 13.71 0.59

69 
0.35
63 13.71 0.59

69 
0.35
63 
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5.4 Translation Rate 

The reduction in cost may not be translated to a reduction in error rate, especially 

when the former is obtained from non-critical output neurons. Assume an ANN with 10 

output neurons is employed to identify a number (i.e., 0~9) and the prediction is 

determined by the output neuron with the highest activation value. If the correct number 

is 0 but the activation of the first output neuron (for predicting 0) is lower than the second 

one (for predicting 1), reducing the overall cost from the output neurons 3 to 10 will not 

change the wrong classification. Whereas, the accuracy could be improved only when the 

cost reduction is achieved by increasing/decreasing the activation of the first/second 

output neuron. Therefore, there is a difference in the ability of translating the reduction in 

cost to the error rate among optimizers. Because there is no method to quantify this 

difference, we name it as Translation Rate (TR) and calculate it by the following steps: 

1) Obtaining multiple costs/error rates and calculating their averages (e.g., 5 or 

more) of each compared optimizer. 

2) Computing the largest differences of all costs (DCall) and error rates (DEall) of all 

optimizers. 

3) With respect to each optimizer, calculating the difference (DCeach/DEeach) 

between its averaged cost/error rate and the highest cost/error rate of all 

optimizers.  

4) Scoring the abilities in the cost (Scost) and the error rate (Serror) reductions of each 

optimizer by using DCeach / DCall and DEeach / DEall, respectively. 

5) Determining TR of an optimizer by Serror / Scost. 
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For instance, DCall and DEall in the second experiment (NSL-KDD) are 13.65 (i.e., 

21.76 – 8.11) and 11.68 (i.e., 24.55 – 12.87), respectively. With respect to Vanilla, its 

DCeach and DEeach are 6.21 (i.e., 21.76 – 15.55) and 4.55 (i.e., 24.55 – 20.00), respectively. 

Then, the corresponding Scost and Serror of Vanilla are 0.4549 (i.e., 6.21 / 13.65) and 

0.3896 (i.e., 4.55 / 11.68). Finally, TR of Vanilla is 0.8563 (i.e., 0.3896 / 0.4549). Due to 

the fact that the four variables (i.e., DCall, DEall, DCeach and DCeach) used to compute TR 

are associated with other evaluated optimizers, TR of each optimizer is not an absolute 

value but a relative one for comparing with others. As a result, if TRs of two optimizers 

are 1.0 and 1.2, the latter is stronger than the former by 20% (i.e., (1.2 – 1.0) / 1.0 = 0.2 / 

1.0) in its ability of translating the cost reduction to the error rate on specific datasets.  

Tables 5.5 and 5.6 list TRs achieved on datasets MNIST and NSL-KDD for all 

optimizers. The optimizers with lower TRs indicate that their losses in accuracy may not 

be caused by an inefficacy of reducing costs, but its incapacity of translating the 

advantages in costs to the error rates. Because the cost is quantified by a specific cost 

function, a low TR might be caused by a mis-matching between the employed optimizer 

and the cost function. In this sense, an optimizer with a lower TR means that it has less 

options in selecting cost functions. This indicates that the optimizer has a narrower 

applicability in practice, as each cost function provides its own unique advantages on 

specific problems. For example, we could infer that Momentum may not match well with 

the Sigmoid function according to its low TR = 0.6659 in Table 5.5. Whereas, 

Momentum may be extremely-well suited for working with the Cross-Entropy based on 

its high TR = 2.5285 in Table 5.6. These results indicate that changing the cost function 

from the Sigmoid to Cross-Entropy may improve the accuracy on MNIST when 
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Momentum is employed. Referring to column “Each” under “Diff” in Table 5.7, AG-

SGD and Adam present much better stability in TR than all other optimizers. However, 

two TRs of Adam are not comparable with AG-SGD, so the latter is the best optimizer in 

TR from an overall perspective.  
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Table 5.5 – Translation rates (MNIST, Sigmoid) 

GP Optimizer DCall DCeach Scost DEall DEeach Serror 
TR 

Each Group Overall 

1 
Vanilla 

5.45 
 

2.84 0.5211 

0.29 
 

0.08 0.2759 0.5294 
0.5956 

0.6503 

AdaDelta 2.84 0.5211 0.10 0.3448 0.6617 

2 Momentum 2.54 0.4661 0.09 0.3103 0.6659 0.6659 

3 
AdaGrad 2.34 0.4661 0.07 0.2414 0.5179 

0.7632 
RMSprop 2.05 0.3761 0.11 0.3793 1.0084 

4 

Adam 1.05 0.1927 0.04 0.1379 0.7159 

0.5765 
AdaMax 2.96 0.5431 0.10 0.3448 0.6349 

Nadam 1.53 0.2807 0.04 0.1379 0.4913 

AMSGrad 2.43 0.4459 0.06 0.2069 0.4640 

– AG-SGD 5.03 0.9229 0.26 0.8966 0.9714 0.9714 0.9714 
 

Table 5.6 – Translation rates (NSL-KDD, Cross-Entropy) 

GP Optimizer DCall DCeach Scost DEall DEeach Serror 
TR 

Each Group Overall 

1 
Vanilla 

13.65 

6.21 0.4549 

11.68 

4.55 0.3896 0.8563 
0.8680 

1.1842 

AdaDelta 13.19 0.9663 9.93 0.8502 0.8798 

2 Momentum 2.14 0.1568 4.63 0.3964 2.5285 2.5285 

3 
AdaGrad 9.83 0.1568 0.21 0.0180 0.1147 

0.7237 
RMSprop 6.2 0.4542 7.07 0.6053 1.3327 
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4 

Adam 9.27 0.6791 5.62 0.4812 0.7085 

0.6166 
AdaMax 8.05 0.5897 0.59 0.0505 0.0857 

Nadam 9.09 0.6659 6.15 0.5265 0.7907 

AMSGrad 9.04 0.6623 6.82 0.5839 0.8817 

– AG-SGD 13.25 0.9707 10.84 0.9281 0.9561 0.9561 0.9561 
 

Table 5.7 – Translation rates in varied categories 

GP Optimizer 

TR 

MNIST NSL-KDD 
Diff Avg 

Each Group Overall Each Group Overall 

1 
Vanilla 0.5294 0.8563 0.3269 

0.2725 

0.7043 

0.6928 
0.7318 

0.9172 

AdaDelta 0.6617 0.8798 0.2181 0.7708 

2 Momentum 0.6659 2.5285 1.8626 1.8626 1.5972 1.5972 

3 
AdaGrad 0.5179 0.1147 0.4032 

0.3637 
0.3163 

0.7434 
RMSprop 1.0084 1.3327 0.3242 1.1705 

4 

Adam 0.7159 0.7085 0.0074 

0.3184 

0.7122 

0.5966 
AdaMax 0.6349 0.0857 0.5492 0.3603 

Nadam 0.4913 0.7907 0.2994 0.6410 

AMSGrad 0.4640 0.8817 0.4176 0.6728 

– AG-SGD 0.9714 0.9561 0.0153 0.0153 0.0153 0.6928 0.9638 0.9638 
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5.5 Time Complexity  

Referring to the pseudocode presented in Chapter 3, if the simple addition and 

multiplication are assumed to be O(1), the time complexity of the proposed optimization 

algorithm is bounded and determined according to the vector dot-product (i.e., VPG • VCG) 

in Equation 1. Since the dot-product performs an element-based multiplication between 

the two gradients, then the AG-SGD computational complexity is O(n), where n 

represents the length of the two vectors.  

Since all optimizers use PGs to calibrate CGs, they are all associated with a 

minimum time complexity of O(n). This is due to the element-based addition between the 

two Gs, making the use of the big O notation unusable for comparison purposes. Instead, 

to reveal the actual differences among the 10 optimizes, we measure their respective 

computational times. Since the optimizers calculate their calibration terms sequentially, 

where the practical time cost is determined by the number of computations with time 

complexities of O(n). As a result, we measure the running or execution times for each of 

the 10 optimizers, as shown in Figure 5.7. Since the training task exhausts all available 

computation resources, the temperature of hardware (i.e., CPU/GPU) will be increased, 

which impacts optimization efficiency. Furthermore, if we orderly test (OT) the 10 

optimizers, an early-tested optimizer will take the advantage of a more powerful and 

cooler hardware. To avoid this bias impacting the results, we perform the OT for three 

times (consecutively). Then, the result of each optimizer is averaging from its three sub-

results. Particularly, if one of the sub-results deviates from the other two sub-results by 

15% or more, it is discarded (i.e., assume to be affected by the performance decreasing 

due to the high temperature) and new tests will be conducted until the deviation is less 
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than 15%. To better compare the time costs between AG-SGD and the other optimizers, 

each averaged running time is divided by the result of AG-SGD. For example, AdaGrad 

is slower than AG-SGD by 41% (i.e., (1.41 – 1.00) / 1.00 = 0.41 / 1.00 = 0.41) in practice. 

It is evident that Vanilla is always the fastest because it does not compute any calibration 

term and solely updates the mode parameters by CGs. With respect to the other 9 

optimizers, AG-SGD has a significant advantage in practical time cost. 

 
Figure 5.7 – Comparison of Practical Running Time 

(result from optimization procedure only) 
 

However, the advantage in optimization efficiency does not fully translate into an 

advantage in training efficiency, since the former is a subset of the latter. More 

specifically, since the time costs of the procedures other than optimization (e.g., 

backpropagation) are constant among all optimizers, it can be expected that the 

differences in training efficiency will be smaller than the differences in optimization 

efficiency, which is verified by the results shown in Figure 5.8. Although the advantages 

achieved by AG-SGD are less, it is still the most efficient optimizer (i.e., only slower 
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than Vanilla by 19% = (1.00 – 0.84) / 0.84). This means that a more complex artificial 

neural network can be trained employing AG-SGD, achieving higher accuracies. 

 
Figure 5.8 – Comparison of Practical Running Time 

(result from all procedures of model training) 
 

5.6 Summary 

The group-based error rates of the two experiments (refer to the columns “Avg” 

under “Group” in Tables 5.2 and 5.4) show that complex optimizers (i.e., a larger group 

number) generally perform worse than simpler ones. These conclusions agree with our 

analysis in this chapter and other reviews such as [5.3]. Furthermore, according to the 

group-based costs and TRs of the two experiments (costs: under the columns “Avg” 

under “Group” in Tables 5.1 and 5.3, TR: under the columns “Group” under “Avg” in the 

same tables), high error rates achieved by complex optimizers may not result from higher 

costs, but instead from their lower TRs. These results are combined to show that the TR 

of an optimizer is inversely changing with the number of incorporated techniques. With 

respect to AG-SGD, its stable performance in TR (i.e., small difference between two TRs) 
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could be also attributed to the aforementioned reason because it behaves like a special 

Vanilla in practice. According to the group-based TRs in Tables 5.5–5.7, no distinct 

pattern that can be detected other than erratic values. Similar observations can be found 

on all individual TRs in addition to the extreme low/high TR achieved by 

AdaGrad/RMSprop. The above results are combined to show that AG-SGD has a 

significant advantage in consistently achieving high TRs when using a greater number of 

different cost functions. The results of time complexity indicate that AG-SGD is faster 

than all other optimizers, so its accuracy can be further improved by applying more 

complex models trained within the same time period. 
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CHAPTER 6 

VERIFICATION, IMPROVEMENT, IMPLEMENTATION AND APPLICATION 

 

6.1 Introduction 

This chapter first verifies the Convergence Section (CS) that was proposed in 

Chapter 4 through the evaluation of AG-SGD on MNIST using various configurations. 

Because all measurements associated with AG-SGD rely on the new metric a, the method 

of computing a is presented with its corresponding principle. Next, the reliability of a and 

the associated principle of bypassing saddle points are verified by conducting statistical 

analysis of the MNIST experimental results that are covered in Chapter 5. These contents 

are combined to reveal the essential reasons of AG-SGD to be an effective method. Then, 

an improvement to the original AG-SGD is presented, which results from the variants of 

AG-SGD (i.e., creating alternative definitions of the two functions Fpg(a,sg) and Fη(a,sη)). 

Subsequently, two versions of ML models used in the experiments and the matrix-based 

multiplication that is implemented in the models will be briefly introduced. Finally, the 

intended application of AG-SGD and the associated approach for realizations are 

explained. 

 

6.2 Verification of Convergence Section 

To compare the lowest costs that are result from parameters within and beyond the 

recommended CS, we test AG-SGD on MNIST by 10 different combinations of sg and sη, 

starting from 1.000 and with 0.025 step-size. Table 6.1 shows that the best achieved 

results when both parameters have the same value of 1.100. Also, the cost and the error 
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rate are (roughly) decreasing in [1.000, 1.100] and increasing in [1.100, 1.200]. These 

tendencies indicate that AG-SGD outperforms on the current dataset when these two 

parameters are chosen close to 1.100. Furthermore, since the results achieved in the 

section-averaged within [1.000, 1.100] are better than the results in [1.100, 1.2000], the 

optimal parameters are found in [1.000, 1.100] with a higher probability. 

Table 6.1 – Best results with varied parameters 

sg = sη 
Minimal Section Average 

Cost 
(scaled by 10,000) 

Error Rate 
(percentage) 

Cost 
(scaled by 10,000) 

Error Rate 
(percentage) 

1.000 26.32 1.49 

25.80 1.48 
1.025 25.90 1.46 

1.050 25.31 1.48 

1.075 25.66 1.47 

1.100 25.03 1.41 – – 

1.125 25.74 1.48 

26.31 1.51 
1.150 26.28 1.52 

1.175 26.29 1.52 

1.200 26.94 1.53 
 

To further verify that the lower value parameters for the current experiment provide 

for more reliable configurations, we exam the varying trajectories of the cost and the 

error rate across all of the tested parameters. As shown in Figures 6.1 and 6.2, we observe 

that there are 3 curves that generate prominent peaks in both figures and are associated 

with an unstable convergence process. Since all 3 peaks are a result of the largest 3 

parameter values of 1.150, 1.175, and 1.200, it indicates that [1.100, 1.2000] is not a good 

section for obtaining the optimal result. Whereas, all 4 curves resulting from [1.000, 

1.100] represent a consistent stable optimization process. Therefore, there is a higher 
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probability for AG-SGD to achieve the optimal result when these two parameters are in 

[1.000, 1.100]. The experiment results verify that the cost convergence become unstable 

if the two parameters go beyond the upper bound of the recommended CS (i.e., 1.156). 

 
Figure 6.1 – The minimal costs with varied parameters (zoom-in, each dot represents the 

cost of specific configuration on the corresponding epoch) 
 

 
Figure 6.2 – The minimal error rates with varied parameters (zoom-in, each dot 
represents the error rate of specific configuration on the corresponding epoch)  
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6.3 Verification of The New Metric: Angle Between Consecutive Gradients 

6.3.1 Computation of The Angle 

Due to the fact that NG is used to update PARAM of the ML model, the former 

matches the latter in dimension, as shown in Figure 6.3 (note: when the element of 

PARAM/NG (i.e., PARAMxy/NGxy) refers to/is to update wxy (i.e., the weight of a 

connection between two neurons), the data structure of PARAMxy/NGxy is a vector instead 

of an element). 
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Figure 6.3 – Data structures of model parameters and the corresponding new gradients 

(a lighter NG indicates a higher deviation associated on it;  
a lighter PARAM/neuron means it is updated by a less accurate NG) 

As a result, the two methods shown in Figure 6.4 can be used to calculate θ, 

which are: 
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1) Flattening the entire PG and CG into a vector, respectively. Then, computing 

θ between the flattened PG and CG using the presented equation (i.e., 

Equation 1 in Chapter 3). 

2) Flattening each layer of PG and CG into a vector, separately. Then, we 

calculate each θx between the corresponding two vectors result from the xth 

layer (i.e., the same layer). Finally, θ is obtained from averaging all θxs. 

From a global view, BP computes all NGxys (NGxy is an update of a weight or a 

bias) in parallel based on features of each sample. In this sense, the first method is 

computing a sample-based θ. From the local perspective, BP generates all NGxys layer by 

layer, θ that is calculated by the second method is based on layer. The two methods are 

common in employing all Gxys in computing θ. However, they will import deviation into 

θ and are infeasible to accomplish in practice due to the follow two reasons: 

1) According to the principle of BP, the magnitude of each NGxy varies with the 

activation that is received from the previous layer [2.1]. This means that a 

PARAMxy (e.g. wxy) will not adequately be updated when the activation value 

is close to 0. This problem widely occurs on ML models that are employed on 

datasets with a great many 0 inputs. For example, when an ANN is employed 

on MNIST, its input layer would heavily suffer from this problem, as most 

input neurons receive 0 inputs (i.e., the white pixels). Furthermore, each 

neuron in later layers will receive multiple activations from the previous layer 

(instead of receiving only 1 input activation as the input neuron), and a neuron 

on a later layer is less likely to receive 0 input and this possibility decreases 

even more for later layers. As a result, the deviations of NGxys decay with the 
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corresponding layers becoming deeper, which are differentiated using 

different shades in Figures 6.3–6.5.  

2) In terms of computation, the time spent on calculating θ from all Gxys is 

unacceptable for training an ANN. For example, if we adopt the first method 

to calculate θ of the ANN that is evaluated in the previous chapter, there are 

224,788,480 (each vectorized G, i.e., VPG or VCG in Figure 6.4 contains 784 ´ 

256 ´ 112 ´ 10 elements) parameters need to be updated. Consequently, 

computing each θ needs almost 40 seconds on a 2.7 GHz Quad-Core Intel 

Core i7 CPU and each epoch needs to compute 7.5 ´ 103 θs. This computation 

time is much longer than the time required in training the model by one epoch 

if we do not calculate θ. Moreover, the computational time increases 

exponentially as the ML model becomes larger. Therefore, it can be 

anticipated that improving the computational algorithm or employing 

advanced hardware (e.g., CPU and GPU) alone may not resolve the problem. 

Due to the fact that the computation of θ is only a sub-process in BP 

computation, we need to reduce the time cost of each epoch at a level of 104 

on small or medium ANNs and even more on larger ones. 
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Figure 6.4 – Two abandoned methods of calculating a between consecutive gradients 

(a lighter PGnm/CGnm indicates a higher deviation associated on it) 
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As a result, adopting the aforementioned two methods will not only generate 

deviated θs, but are infeasible to accomplish in practice. To avoid the two shortcomings, 

we only employ Gxys of the last layer to compute θs (i.e., the third method shown in 

Figure 6.5). The characteristics of this method are listed below: 

1) During BP, Gxys of each layer are computed based on those Gxys of the 

previous layer [2.3], and all Gxys are originally deriving from Gxys of the last 

layer. Therefore, the difference between the latter at different moments (i.e., 

VPG, VCG) approximates the former (i.e., all Gxys, the reliability will be verified 

by the correlation coefficient in the next subsection). 

2) As we mentioned, Gxys before the last layer have larger deviations compared 

with Gxys of the last layer, and removing the former means removing large 

deviations from the computations of θs. 

3) The computation of θ becomes much more efficient. For example, if we adopt 

the third method to calculate θ of the ANN evaluated in the previous chapter, 

then the number of elements in VPG and VCG is reduced to only 1,120 (i.e., 112 

´ 10). Then, each θ only costs about 5 ´ 10-4 seconds on the same CPU and 

improves the efficiency by 8 ´ 104 (i.e., 40 / 5 ´ 10-4) times. As a result, the 

time of computing θ will meet the requirement of training DNNs. 
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Figure 6.5 – The adopted method of calculating a between consecutive gradients 

(a lighter PGnm/CGnm indicates a higher deviation associated on it) 
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Due to the fact that all Gnys (n represent the last layer) are computed in parallel 

during BP (i.e., layer-based computation), calculating layer-based θ between VPGn and 

VCGn aligns with the principle of BP (i.e., the third method). However, the computation of 

neuron-based θs between the corresponding Gnys (i.e., the fourth method in Figure 6.5) is 

beyond the minimum layer-based computation that is supported by BP.  

 

6.3.2 Verification of Using The Angle as A Reliable Metric  

As introduced in Chapter 3, AG-SGD attempts to reduce the cost in one step by 

reversing PG (when needed), leading to a lower number of obtuse angles among the other 

SGD optimizers. Since the lower bound of the CS is 120˚ under the default configuration, 

the PG revision will occur only when the angle is larger than 120˚. To verify the 

effectiveness of angle reduction in the default CS, we count and compare the numbers of 

angles in [120˚, 170˚) for all of the 10 optimizers (note: [170˚, 180˚] is eliminated 

because no optimizer generates angle in this section) in the experiment on MNIST. As 

the data indicate in Table 6.2, AG-SGD has the least number of obtuse angles in all of the 

sections. Particularly, it has less than the second-least optimizer (i.e., AMSGrad) by 

42.14% = (9371 - 5422) / 9371 and considering the averaged of all other optimizer by 

54.17% = (11830 - 5422) / 11830 in total. Therefore, AG-SGD spends less steps on the 

high cost areas among the 10 optimizers, and the saved steps are used to find better 

minima. 
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Table 6.2 – Number of angles in different sections 

GP Optimizer [120, 130) [130, 140) [140, 150) [150, 160) [160, 170) 
Total Reduction 

Rate Each Group Overall 

1 
Vanilla 6527 3482 1153 138 4 11304 

11831 

11830 
54.17% 

AdaDelta 5903 4423 1775 244 12 12357 

2 Momentum 5747 2884 814 70 3 9518 9518 

3 
AdaGrad 6282 5166 2026 268 21 13763 

13820 
RMSprop 6381 4886 2207 391 11 13876 

4 

Adam 7498 4951 2030 394 8 14881 

12153 
AdaMax 6083 3155 992 115 4 10349 

Nadam 7165 4551 1917 372 7 14012 

AMSGrad 5402 2912 902 134 21 9371 

– AG-SGD 3908 1289 205 18 2 5422 5422 5422 
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To check the relationship between the number of obtuse angles and the associated 

cost and error rate, we compute the correlation coefficients for all of the 10 optimizers, as 

shown in Table 6.3 Since the principle of SGD is to indirectly reduce the error rate via 

directly reducing the cost, the correlation coefficient associated with the cost reduction 

which is close to 0.8 as shown in Table 6.3 indicates a strong positive correlation 

between the two metrics. The reduction in correlation of error rate is due to the averaged 

TR that is lower than 1 among all of the optimizers presented in the previous chapter. 

Therefore, reversing PG when needed is an effective method and the angle between the 

gradients is a reliable metric in reducing the cost.  
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Table 6.3 – Correlation coefficients between obtuse angles and cost/error rate 

GP Optimizer Total 
Angle 

Average Coefficient 

Cost 
(scaled by 10,000) 

Error Rate 
(percentage) 

 Cost 
(scaled by 10,000) 

Error Rate 
(reduced by TR) 

1 
Vanilla 11304 27.64 1.62 

0.7923 0.6900 

AdaDelta 12357 27.64 1.60 

2 Momentum 9518 27.94 1.61 

3 
AdaGrad 13763 28.14 1.63 

RMSprop 13876 28.43 1.59 

4 

Adam 14881 29.43 1.66 

AdaMax 10349 27.52 1.60 

Nadam 14012 28.95 1.66 

AMSGrad 13763 28.14 1.63 

– AG-SGD 5422 25.45 1.44 
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6.4 Verification of Bypassing Saddle Points 

The proposed method may result in the cost being trapped into saddle points as 

shown in Figure 6.6. This problem occurs when the cost movement (the solid lines 

between positions 0 and 1) is aligning with (i.e., Figure 6.6(a)) or perpendicular to (i.e., 

Figure 6.6(b)) the saddle pit. As we concluded, NG is dominated by CG when a is close 

to 0˚ or 90˚ (the dashed lines are extensions of the previous gradients). As shown in both 

subfigures, CG of position 1 points to the centers of saddle pits, and the costs would 

guide the movement to position 2, finally reaching position 3 for the same reason. 

Although this problem would rarely occur in practice, it reveals a deficiency in the 

principle of the proposed optimizer. There are two methods to resolve this problem. (1) 

Conducting the experiment again may change the trajectory of the cost reduction and 

bypass the saddle pit. Even if the new trajectory is still crossing the saddle pit as in Figure 

6.6 (b), the cost movement may not closely be perpendicular to the saddle pit. In this case, 

the weights of PGs will be increased, resulting in the cost escaping from the saddle pit. 

Although this result would not occur on the saddle pit in Figure 6.6 (a), the possibility of 

bypassing the saddle pit (a) would be higher than the saddle pit (b) because the former 

has a narrower cross-section than the latter in the direction of cost movement. (2) 

Employing a η warm restarts scheduler would enable the cost to escape from the saddle 

pit by increasing the magnitudes of Gs, which is also applicable to other optimizers. 
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Figure 6.6 – Two cases of trapping into the saddle points  

(lighter colors indicate lower costs)  
 

To verify the aforementioned problem would rarely occur in practice, we recorded 

the changing trajectory of the first 1,000 angles under the default setting (results from the 

experiment on MNIST), as shown in Figure 6.7. Our findings indicate that only 24 of 

1,000 (2.4%) of the angles are larger than 120˚ and that there are no consecutive large 

angles. If these large angles result from saddle points, the data prove that the AG-SGD 

can achieve escaping from these saddle points in only one step (i.e., no consecutive larger 

angle). In line with an established principle, when a large angle (>120˚ under the default 

setting) is generated, wpg will be less than zero and makes PG point in the direction that 

deviates from the saddle points (refer to Figure 3.2(a)). Although CG may point to the 

saddle points and wcg is slightly larger than the |wpg| (i.e., only when the θ Î (120˚, 135˚)), 

the accumulated PGs will be much larger than the single CG in magnitude. As a result, 
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NG (i.e., η (wpgPG + wcgCG)) aligns in direction with PG, forcing the cost deviating from 

the saddle points (i.e., moving backward). 

 

Figure 6.7 – Trajectory of the first 1,000 angles under the default setting 
(results from the experiment on MNIST, only 24 of 1,000 are larger than 120˚) 

 
6.5 Improvement from Variant 

6.5.1 Criterion of Defining Variants 

A curve can be an effective alternative to L0 of Fpg(a,sg) and Fη(a,sη) in Figure 3.2, 

as long as it satisfies the following four requirements. They are: (1) a is limited within [0, 

1]; (2) the curve has to be continuously and monotonically decreasing within [0, 1]; (3) 

the interception point on the horizontal axis is 0.5; (4) the intercept point on the vertical 

axis is not less than 1 for Fpg(a,sg) and 2 for Fη(a,sη). Accordingly, the curves C1, C2, C3 

in Figure 6.8 are promising alternatives for L0, which may achieve better results on 

problems in certain fields. 
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Figure 6.8 – Alternatives of the functions Fpg(a,sg) in (a) and Fη(a,sη) in (b) (curves C1, 

C2 and C3 are alternative definitions that comply with the concept proposed in Chapter 3; 
the horizontal axis is the normalized angle between PG and CG; two intercept points on 

vertical axes sg and sη are parameters of the proposed method) 
 
6.5.2 Study Case: Improvement from A Non-linear Variant  

As mentioned in the previous chapter, AG-SGD does not show the best converging 

speed in the first 14 epochs. To determine the reason, we compute the averaged angles 

between the gradients of all 50 epochs. Referring to Figure 6.9, the angles during the first 

14 epochs are distinctly smaller than other epochs, which means more acute angles are 

generated during earlier epochs. Since the magnitude of the NG variance decreases 

rapidly as the angle approaches to 0˚ (refer to Figure 3.2), we expect that the convergence 
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can be accelerated if we replace the simplistic linear line L0 of Fpg(a,sg) with others which 

have higher slopes, such as the curves C1, C2, C3 in Figure 6.8. 

Figure 6.9 – Averaged angle between the consecutive gradients of each epoch 
(each dot denoted the averaged angles within each epoch) 

 
To verify the feasibility of this solution, we have tested a non-linear definition 

sgcos(a/0.3183) of Fpg(a,sg) (setting 0.3183 such that the curve crosses the x-axis at 0.5). 

The results presented in Figure 6.10 indicate that the convergence speed effects from the 

non-linear definition are consistently faster than those from the linear ones. The 

distinction begins to manifest as of epoch no.11 (except for epochs no.18 and 20), which 

conforms with our expectation.  
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Figure 6.10 – Comparison of convergence speeds between linear (simplistic) and non-
linear definitions of Fpg(a,sg) 

 
In addition, employing a non-linear definition does not increase the number of 

parameters. For example, sg is the only parameter that exist in both the non-linear (i.e., 

sgcos(a/0.3183)) and linear (i.e., sg(1-2a)) definitions, as shown in the curves and lines in 

Figure 6.11 (i.e., when sg Î [1.0, 1.2], step by 0.1). It is important to note that mainstream 

deep-learning libraries (e.g., Tensorflow [1.18], Keras [1.19], Caffe [1.20], PyTorch 

[1.21]) identify the Adam and the AdaMax as two different optimizers, even though their 

only difference consist of the norms used (Adam/AdaMax uses l2/l∞ norm). Complying 

with the same criterion, if one/two functions (i.e., Fpg(a,sg) and Fη(a,sη)) of AG-SGD 

is/are modified, a new optimizer with two parameters (i.e., sg and sη) is obtained (i.e., 

function modification should not be considered equivalent to parameter tuning). 

Compared with the Adam-family which consists of two optimizers, AG-SGD-family is 

able to generate numerous new optimizers by defining various definitions. 
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Figure 6.11 – Relationship among some representative linear and non-linear definitions 

of Fpg(a,sg) (sg Î [1.0, 1.2], step by 0.1) 
 
6.6 Implementation 

6.6.1 Matrix-based Multiplication 

The employed matrix-based multiplication is implemented based on the method in 

[6.1], benefiting the computations of BP and FP. In the traditional looping approach, BP 

and FP are orderly executed on samples of the mini-batch. Conversely, the matrix-based 

approach treats all samples as a whole (i.e., batch-based computation) and generate the all 

results in parallel. 

 

6.6.2 Two Versions: CPU and GPU 

Each evaluated model has two versions. One is using a CPU and the other is using 

the power of a GPU. The GPU version is realized using Compute Unified Device 
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Architecture (CUDA) which is a parallel computing platform and programming model 

developed by NVIDIA [6.2]. Although the GPU version would be faster, the practical 

difference in speed between two versions is affected by many other factors. For example, 

the GPU version executes each BP with a cost of copying all data from the main memory 

to the GPU memory [6.3]. The additional overhead makes the GPU version slower than 

the CPU version when the batch size and/or the ML model is relatively small and/or 

simple. To reimplement ML models and reproduce results, one needs to install Numpy 

(Numerical Python) [6.4] for the CPU version and PyCUDA (accessing CUDA from 

Python) [6.5] for the GPU version. 

 

6.7 Application 

In addition to machine learning experts, the proposed algorithm can be used by non-

professional users (e.g., programmers working for small businesses) who want to obtain 

insight from their data with minimum efforts. To better serve this group of users, AG-

SGD is specifically designed/enhanced on the following four aspects. These are: 

1) Due to the fact that non-professional users have limited ability of tuning parameters, 

AG-SGD sets the average of recommended section (i.e., (0.820, 1.156)) as the 

default configuration to better fitting data in most fields. Also, it abandons all 

measurements without finite parameter tuning spaces (e.g., the learning rate can be 

set to any magnitude in practice) because we are unable to determine a universal 

value that results in decent performances on various datasets (e.g., it is common to 

see the magnitude of learning rate change between levels of 10-1/10-2/10-3/10-4). It is 

evident that non-professional users are unable to tune these types of parameters. 
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2) To improve the accuracy using the default setting, AG-SGD intends to guide non-

professional users in training more complex models (i.e., more layers and/or more 

neurons in layers) instead of tuning various parameters. A more reasonable approach 

is that the former is not only more understandable (i.e., the larger the better), but also 

more effective than the latter because the complexity/architecture is the foundation of 

ML model. 

3) Since non-professional users usually do not have high performance computing 

systems, we assume that powerful GPUs are not available to accelerate AG-SGD. 

Therefore, to reduce the time cost in training a complex model, it is important to 

establish a very small batch size and improve the corresponding accuracy. Since the 

experiment on the dataset NSL-KDD has shown that our method is effective on the 

smallest batch size (i.e., 1), its usage has a much lower requirement than other 

optimizers which have to set much larger batch sizes (e.g., 128/256/512...) to achieve 

decent results. As such, AG-SGD can train very complex models within the same 

time period as other methods. 

4) We have shown that high accuracies can be obtained by setting the two parameters of 

AG-SGD to the same value v (i.e., sg = sη = v, where v Î (0.820, 1.156)). Since v 

determines the CS, a v that is close to 0.820/1.156 will result in a weaker/stronger 

convergence, indicating a more conservative/aggressive configuration (i.e., the 

correlation between the intensity of convergence and the magnitude of v is 

monotonous). This intuitive interpretation of the parameter tuning is completely 

understandable to non-professional users and provides sufficient guidelines to find 

the best result. For example, if a user obtains a higher accuracy by decreasing v from 
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1.1 to 1.0, the value 1.1 could be interpreted as a somewhat more aggressive 

configuration then a v that is smaller than 1.1 should be tried. Although other 

optimizers also have one parameter, these parameters have no monotonous 

correlation with the intensity of convergence. Consider, the parameter b of 

Momentum which can be difficult for non-professional to fully understand its affects. 

Particularly, the consequences of adjusting b in terms of convergence intensity are 

completely unpredictable. The usage difficulties of other optimizers (e.g., Adam) 

with multiple parameters (e.g., b, b1, b2, η, ε, etc.) are not comparable to the 

simplicity of using AG-SGD in a significant manner. 

It is evident that none of the compared optimizers meet all four requirements. For 

example, AdaGrad has one parameter (i.e., learning rate), but its value changes too 

radically (i.e., cannot define a universal value as the default setting) and is obscure to 

non-professional users. Most importantly, its error rates are far beyond AG-SGD (e.g., 

the averaged error rates: 24.34% versus 13.71% in Table 5.4). Consequently, AG-SGD 

has a significant advantage on the intended application (i.e., used by non-professional 

users), which can be implemented on platforms that provide Auto-ML solutions (i.e., 

training ML models from built-in free-tuned algorithms), such as Amazon SageMaker 

Autopilot [6.6].  

It needs to be re-emphasized that adjusting the two parameters together is the 

recommended configuration approach for non-professional users, but machine learning 

experts can achieve higher accuracies by tuning each parameter separately. However, the 

intended objective of AG-SGD is to fine tune and search for better definitions of Fpg(a,sg) 
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and Fη(a,sη), by developing a new tuning section with a better CS for non-professional 

users in an effort to improve their results. 

 

6.8 Summary 

According to the verification of the correlation coefficient between a and the 

averaged costs from all optimizers, a would be an effective metric for improving the 

accuracy of NG. Also, the actual behaviors of AG-SGD comply with our intention based 

on the verification of CS. Verifications of CS and a are combined to show that a 

computed by the third method can accurately reflect the correlation between PG and CG, 

translating to a good accuracy that is realized in the adoption of a-based measurements in 

practice. 
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CHAPTER 7 

CONCLUSIONS 

 

7.1 Possible Improvements 

7.1.1 Computation of The Angle  

Due to the limitation on computing power, the current method in computing the 

angle is solely employing the gradient difference of the last layer. However, the fact is 

that the gradient differences of other layers can provide more useful information (at least 

for datasets without a lot of 0 inputs). To resolve the computation problem, one 

promising method is to divide the layer-scaled computation to a smaller unit (e.g., half-

/quarter-layer-scaled, neuron-scaled), reducing the length/size of each variable and 

accomplishing all small-scaled computations in parallel using a GPU. However, the 

minimum calculation scale/unit of BP is layered, and we need to find supportive 

explanations for improvements that result from smaller scaled calculations. In addition, 

although we can remove 0 inputs from the dataset, the activation difference among input 

neurons remains unchanged, resulting in unbalanced updates among the neurons of 

different layers. 

7.1.2 Angle-based Learning Rate Scheduler 

As an external technique, the learning rate scheduler (e.g., annealing/decay and 

warm restarts) may be combined with AG-SGD to further reduce the cost. Based on our 

preliminary experiments on MNIST, if the researchers decay the learning rate then the 

lowest, average and stability of the cost can be improved. However, the traditional/tested 

learning rate scheduler is incompatible with AG-SGD, as it adjusts the learning rate based 
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on epoch instead of the angle. Therefore, we are testing multiple angle-based learning 

rate methods to significantly improve AG-SGD. 

 

7.2 Significant of The Work 

The proposed AG-SGD would be the first optimizer that utilizes the angle between 

consecutive gradients to improve ML models. From the perspective of the research, the 

utilization of angle largely reduces the difficulty of creating new measurements. Now, 

researchers can employ the previous gradient, angle, or both in their improvements. 

Particularly, the angle-based measurements can increase the TR of the model, which is 

unachievable by measurements that solely rely on the previous gradients. This 

improvement implies that the accuracy associated with existing optimization algorithms 

can be further improved by incorporating the proposed or designing new angle-based 

measurements. Internal conflicts that would otherwise confiscate benefits resulting from 

different measurements are nonexistent because both old and new measurements rely on 

different metrics. It is possible to design and develop new angle-based optimizers from 

scratch, and creating AG-SGD variants through defining alternative definitions of 

Fpg(a,sg), Fη(a,sη) or both is the easiest way for achieving the same goal. There is an 

unlimited number of functions that can be chosen from, and the modified AG-SGD 

would result in good performances for specific problems in a variety of fields. Most 

importantly, a new variant will inherit all advantages (e.g., cost awareness ability) that 

come with the original AG-SGD, which may be unachievable using newly-designed 

measurements. With respect to the application, the most important inheritable property is 

the CS (i.e., a limited parameter tuning section). Enabling the CS provides a contribution 
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that allows a non-professional user to find the optimal configuration with much less effort. 

Furthermore, the utilization of CS indicates new variants that use the default settings, 

providing accurate results and largely broadening the application of the model in various 

scenarios. 
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