
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

2-23-2021

An Angle-based Stochastic Gradient Descent Method for Machine An Angle-based Stochastic Gradient Descent Method for Machine

Learning: Principle and Application Learning: Principle and Application

Chongya Song
Florida International University, ysong024@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, and the Theory and

Algorithms Commons

Recommended Citation Recommended Citation
Song, Chongya, "An Angle-based Stochastic Gradient Descent Method for Machine Learning: Principle and
Application" (2021). FIU Electronic Theses and Dissertations. 4699.
https://digitalcommons.fiu.edu/etd/4699

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.fiu.edu%2Fetd%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.fiu.edu%2Fetd%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4699?utm_source=digitalcommons.fiu.edu%2Fetd%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

AN ANGLE-BASED STOCHASTIC GRADIENT DESCENT METHOD

FOR MACHINE LEARNING: PRINCIPLE AND APPLICATION

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL AND COMPUTER ENGINEERING

by

Chongya Song

2021

 ii

To: Dean John L. Volakis
 College of Engineering and Computing

This dissertation, written by Chongya Song, and entitled An Angle-based Stochastic
Gradient Descent Method for Machine Learning: Principle and Application, having been
approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Jean Andrian

Nezih Pala

Deng Pan

Alexander Pons

Kang Yen, Major Professor

Date of Defense: February 23, 2021

The dissertation of Chongya Song is approved.

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2021

 iii

© Copyright 2021 by Chongya Song

All rights reserved.

 iv

DEDICATION

I dedicate this dissertation to my parents. Without their patience, understanding,

support, and most of all love, the completion of this work would not have been possible.

 v

ACKNOWLEDGMENTS

I wish to thank the members of my committee for their support and patience. Also, I

would like to thank my co-major professor Dr. Kang Yen in improving my critical

thinking and writing skills. Finally, I would like to particularly appreciate my co-major

professor Dr. Alexander Pons who guided me into my current research field. All my

published papers and issued/filed patents are under his gentle but firm directions.

 vi

ABSTRACT OF THE DISSERTATION

AN ANGLE-BASED STOCHASTIC GRADIENT DESCENT METHOD

FOR MACHINE LEARNING: PRINCIPLE AND APPLICATION

by

Chongya Song

Florida International University, 2021

Miami, Florida

Professor Kang Yen, Major Professor

In deep learning, optimization algorithms are employed to expedite the resolution

to accurate models through the calibrations of the current gradient and the associated

learning rate. A major shortcoming of these existing methods is the manner in which the

calibration terms are computed, only utilizing the previous gradients during their

computations. Because the gradient is a time-sensitive variable computed at a specific

moment in time, it is possible that older gradients can introduce significant deviation into

the calibration terms. Although most algorithms alleviate this situation by combining the

exponential moving average of the previous gradients, we found that this method is not

very effective in practice, as it still causes undesirable accumulated impact on the

gradients. Another shortcoming is that these existing algorithms lack the ability to

incorporate the cost variance during the computation of the new gradient. Therefore,

employing the same strategy in reducing the cost under all circumstances is inherently

inaccurate. In addition, we identified that some advanced algorithms employ

measurements that are confiscatory, resulting in erratic new gradients in practice. With

respect to evaluation, we determined that a high error rate is more likely to result from

 vii

the weak ability of translating the reduction in the cost to the error rate, a circumstance

that has not been addressed in the research to improve the accuracies of new gradients.

In this dissertation, we propose an algorithm that employs the angle between

consecutive gradients as a new metric to resolve all the aforementioned problems. The

new and nine existing algorithms are implemented into a neural network and a logistic

regression classifier for evaluation. The results show that the new method can improve

the ability of cost/error rate reduction by 9.40%/11.11% on MNIST dataset and

41.63%/29.58% on NSL-KDD dataset. Also, the aforementioned translating ability of the

new method outperforms other optimizers by 33.06%. One of the main contributions of

our work is verifying the feasibility and effectiveness of using the angle between

consecutive gradients as a reliable metric in generating accurate new gradients. Angle-

based measurements could be incorporated into existing algorithms to enhance the cost

reduction and translating abilities.

 viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ... 1

1.1 Background .. 1
1.2 Research Scope .. 4
1.3 Problem Statements and Contributions ... 5
1.4 Research Approach and Outline ... 9

2. LITERATURE REVIEW .. 12

2.1 Model Optimization ... 12
2.1.1 Overview ... 12
2.1.2 Variants of Gradient Descent .. 13

2.1.2.1 Batch Gradient Descent ... 13
2.1.2.2 Mini-Batch Gradient Descent .. 14
2.1.2.3 Stochastic Gradient Descent .. 14

2.1.3 Challenges of Employing Stochastic Gradient Descent 15
2.1.3.1 Inaccurate Gradient ... 15
2.1.3.2 Uncertain Learning Rate .. 16
2.1.3.3 Weak Learning Ability on Sparse Data 17
2.1.3.4 Others ... 17

2.1.3.4.1 Trapping into Saddle Points 18
2.1.3.4.2 Qualities of Minima ... 18

2.2 Introduction of Existing Optimization Algorithms .. 19
2.2.1 Overview ... 19
2.2.2 Original SGD: Vanilla .. 20
2.2.3 Improving Gradient: Momentum .. 21
2.2.4 Improving Learning Rate.. 23

2.2.4.1 AdaGrad.. 23
2.2.4.2 RMSprop .. 24
2.2.4.3 AdaDelta ... 26

2.2.5 Improving Gradient and Learning Rate ... 27
2.2.5.1 Adam .. 27
2.2.5.2 AdaMax .. 28
2.2.5.3 Nadam... 30
2.2.5.4 AMSGrad .. 32

2.2.6 Others .. 33
2.3 Classification and Hierarchy of Existing Optimization Algorithms 33
2.4 Deficiencies on Existing Measurements.. 35

2.4.1 Exponential Moving Average ... 36
2.4.2 Inverse Relationship Between Gradient and Learning Rate 37
2.4.3 Non-decoupled Measurements .. 38
2.4.4 Strategy of Approaching Lower Minima ... 39

2.5 Summary .. 40

 ix

3. DESIGN OF ANGLE-BASED STOCHASTIC GRADIENT DESCENT 41
3.1 Motivation .. 41
3.2 Principle ... 43

3.2.1 New Metric: Angle Between Consecutive Gradients 43
3.2.2 New Measurement: Calibrating The Deviation of The Previous Gradient44

3.3 Specifications ... 46
3.3.1 Parameters Overview ... 46
3.3.2 Work-through ... 47

3.4 Awareness Ability: One-step Cost Reduction ... 49
3.5 Pseudocode .. 50
3.6 Summary .. 51

4. IN-DEPTH INTERPRETATION OF ANGLE-BASED

STOCHASTIC GRADIENT DESCENT ... 53
4.1 Introduction .. 53
4.2 Variance Pattern of New Gradient .. 53
4.3 Convergence Guarantee .. 54
4.4 Decoupled Parameters: Gradient Weight and Learning Rate 55
4.5 Configuring Strategy .. 57
4.6 Summary .. 59

5. EVALUATIONS OF ACCURACY AND EFFENCIENCY 61

5.1 Introduction .. 61
5.2 Neural Network on Digital Recognition .. 61

5.2.1 Scheme .. 61
5.2.2 Results ... 62

5.3 Logistic Regression on Network-based Intrusion Detection 69
5.4 Translation Rate ... 73
5.5 Time Complexity ... 78
5.6 Summary .. 80

6. VERIFICATION, IMPROVEMENT, IMPLEMENTATION AND APPLICATION 82

6.1 Introduction .. 82
6.2 Verification of Convergence Section .. 82
6.3 Verification of The New Metric: Angle Between Consecutive Gradients 85

6.3.1 Computation of The Angle ... 85
6.3.2 Verification of Using The Angle as A Reliable Metric............................ 92

6.4 Verification of Bypassing Saddle Points ... 96
6.5 Improvement from Variant ... 98

6.5.1 Criterion of Defining Variants .. 98
6.5.2 Study Case: Improvement from A Non-linear Variant 99

6.6 Implementation .. 102
6.6.1 Matrix-based Multiplication ... 102
6.6.2 Two Versions: CPU and GPU .. 102

6.7 Application... 103
6.8 Summary .. 106

 x

7. CONCLUSIONS ... 107

7.1 Possible Improvements ... 107
7.1.1 Computation of The Angle ... 107
7.1.2 Angle-based Learning Rate Scheduler .. 107

7.2 Significant of The Work ... 108

LIST OF REFERENCES ... 110

VITA... 117

 xi

LIST OF TABLES

TABLE PAGE

2.1 Summary of existing optimization algorithms ... 34

3.1 Existing measurements adopted by AG-SGD .. 42

3.2 Existing measurements abandoned by AG-SGD ... 42

3.3 Angle-based Parameters and Functions ... 47

4.1 Improvements realized by AG-SGD ... 60

5.1 Comparison of the 5 minimal costs (MNIST).. 67

5.2 Comparison of the 5 minimal error rates (MNIST).. 68

5.3 Comparison of the 5 minimal costs (NSL-KDD) ... 71

5.4 Comparison of the 5 minimal error rates (NSL-KDD) ... 72

5.5 Translation rates (MNIST, Sigmoid) ... 76

5.6 Translation rates (NSL-KDD, Cross-Entropy)... 76

5.7 Translation rates in varied categories .. 77

6.1 Best results with varied parameters ... 83

6.2 Number of angles in different sections .. 93

6.3 Correlation coefficients between obtuse angles and cost/error rate 95

 xii

LIST OF FIGURES

FIGURE PAGE

1.1 Outline of dissertation (black blocks are important content) 11

2.1 A ravine on a 3-dementional cost surface

(the slope in D3 is much larger than the slopes in D1 and D2) 22

2.2 Development relationship of existing optimization algorithms 35

3.1 Quantifying the deviation of PG using the inner angle between PG and CG

(the numbers at the tip of the arrows are angles;
the deviation of PG varies with the angle) ... 45

3.2 Definitions of the functions Fpg(a,sg) in (a) and Fη(a,sη) in (b)

(lines L1 and L2 are alternative definitions that supportive;
the horizontal axis is the normalized angle between PG and CG;
two intercept points on vertical axes sg and sη are parameters
of the proposed method) ... 49

3.3 SGD trajectory of AG-SGD: PG will be reversed when the cost is increased

(green Gs 2, 5, 7 are resulting from AG-SGD; blue Gs are resulting from
other optimizers, red Gs will result in higher costs if PG is not reversed) 50

4.1 Magnitude variance of NG with the changes of sg and sη

(the black dot indicates NG magnitude which is reduced
when the angle is larger than 120˚ under the default setting) 54

4.2 Cost variance trajectories in the final SGD stage

(a darker color indicates a lower cost and more obtuse angles
would be generated during the cost wandering around the minimum) 55

4.3 Magnitude variance of NG with the changes of sg

(affecting the NG magnitude when the angle is close to 90˚) 56

4.4 Magnitude variance of NG with the changes of sη

(affecting the NG magnitude when the angle is close to 0˚ and 180˚) 57

4.5 Differences between AG-SGD and other optimizers ... 60

5.1 Epoch-based average of the 5 minimal costs

(zoom-in, each dot represents the cost of specific optimizer
on the corresponding epoch) ... 64

5.2 Epoch-based average of the 5 minimal error rates

 xiii

(zoom-in, each dot represents the error rate of specific optimizer
on the corresponding epoch) ... 64

5.3 Distributions of the 5 minimal costs (MNIST, black dots are outliers)................... 65

5.4 Distributions of the 5 minimal error rates (MNIST, black dots are outliers)........... 66

5.5 Distributions of the 5 minimal costs (NSL-KDD, black dots are outliers) 70

5.6 Distributions of the 5 minimal error rates (NSL-KDD, black dots are outliers) 70

5.7 Comparison of Practical Running Time (result from optimization procedure only) 79

5.8 Comparison of Practical Running Time

(result from all procedures of model training) ... 80

6.1 The minimal costs with varied parameters

(zoom-in, each dot represents the cost of specific configuration
on the corresponding epoch) ... 84

6.2 The minimal error rates with varied parameters

(zoom-in, each dot represents the error rate of specific configuration
on the corresponding epoch) ... 84

6.3 Data structures of model parameters and the corresponding new gradients

(a lighter NG indicates a higher deviation associated on it;
a lighter PARAM/neuron means it is updated by a less accurate NG) 86

6.4 Two abandoned methods of calculating a between consecutive gradients

(a lighter PG/CG indicates a higher deviation associated on it) 89

6.5 The adopted method of calculating a between consecutive gradients

(a lighter PG/CG indicates a higher deviation associated on it) 91

6.6 Two cases of trapping into the saddle points (lighter colors indicate lower costs) .. 97

6.7 Trajectory of the first 1,000 angles under the default setting

(results from the experiment on MNIST, only 24 of 1,000 are larger than 120˚) 98

6.8 Alternatives of the functions Fpg(a,sg) in (a) and Fη(a,sη) in (b)

(curves C1, C2 and C3 are alternative definitions that comply with
the concept proposed in Chapter 3; the horizontal axis is the normalized angle
between PG and CG; two intercept points on vertical axes sg and sη
are parameters of the proposed method) .. 99

6.9 Averaged angle between the consecutive gradients of each epoch

 xiv

(each dot denoted the averaged angles within each epoch) 100

6.10 Comparison of convergence speeds

between linear (simplistic) and non-linear definitions of Fpg(a,sg) 101

6.11 Relationship among some representative linear

and non-linear definitions of Fpg(a,sg) (sg Î [1.0, 1.2], step by 0.1) 102

 xv

LIST OF SYMBOLS

C cost function

ytrue labels

ypred predictions

W weights

w weight

B biases

b bias

G gradient

η learning rate

PARAM model parameters

PG previous gradient

CG current gradient

NG new gradient

Gproj projected gradient

θ angle between PG and CG

a the normalized θ

VPG flattened PG

VCG flattened CG

wpg the weight of PG

wcg the weight of CG

sg the sum of |wpg| and wcg
the slope of Fpg(a,sg)

sη the slope and the minimum of Fη(a,sη)

 xvi

Fpg(a,sg) the function to compute wpg

Fη(a,sη) the function to calculate η

DCall largest differences of all costs

DEall largest differences of all error rates

Scost score of cost reduction

Serror score of error rate reduction

O big O notation

 xvii

ABBREVIATIONS AND ACRONYMS

Adadelta Adaptive Delta

Adagrad Adaptive Gradient

Adam Adaptive Moment Estimation

Adamax Adam With L∞ Norm

Aggmo Aggregated Momentum

AG-SGD Angle-Based SGD

Amsgrad Adam With Max Gradient

ANN Artificial Neural Network

BGD Batch Gradient Descent

BP Backward Propagation

CDBN Convolutional Deep Belief Network

CNN Convolutional Neural Network

CS Convergence Section

CUDA Compute Unified Device Architecture

DBN Deep Belief Network

DNN Deep Neural Network

EMA Exponential Moving Average

FP Forward Propagation

IGT Implicit Gradient Transport

Mini-BGD Mini-Batch Gradient Descent

ML Machine Learning

MSE Mean Squared Error

 xviii

Nadam Adam with NAG

NAG Nesterov Accelerated Gradient

OPG Original Previous Gradient

OT Order Test

PCA Principle Component Analysis

Qhadam Quasi-Hyperbolic Adam

RBM Restricted Boltzmann Machine

Rmsprop Root Mean Squared Backpropagation

RPG Reversed Previous Gradient

SGD Stochastic Gradient Descent

SMA Simple Moving Average

TR Translation Rate

Vanilla Original BP

 1

CHAPTER 1

INTRODUCTION

1.1 Background

In the field of machine learning (ML), there is an increasing number of applications

(e.g., computer vision, speech recognition and natural language processing) that are

solved using artificial neural networks (ANNs) [1.1]. The convoluted architecture enables

an ANN to approximate functions resulting from any data pattern. This advantage largely

improves the generalization ability upon regular ML algorithms, especially on large and

complex datasets [1.2]. The accuracy of an ANN is determined by, but not limited to, six

factors:

1) Model Architecture

The architecture of an ANN can be classified into three distinct types [1.3]: (1)

feed-forward, (2) recurrent, and (3) symmetrically connected. Type 1 is composed of

one input, one output and one or more hidden layers. The connections among layers

are unidirectional from the input to the output layers. Type 2 differs from type 1 in

allowing reversed connections (i.e., bidirectional connections). An ANN belongs to

type 3 if the two weights associated with each bidirectional connection have the

same value. Each type of ANNs has one or more variants and each variant has its

unique advantages on specific aspects, such as accuracy, efficiency, and training

method. For example, convolutional neural networks (CNNs) are a variant of type 1

ANNs that employ pooling layers. This special layer can extract valuable

characteristics from images and make CNNs perform better than other variants on

 2

object detection tasks [1.4]. Deep belief networks (DBNs) can achieve unsupervised

learning by separately training each of its restricted Boltzmann machines (RBM)

[1.5] in a bottom to top fashion, using the hidden layer as an input layer for the next

RBM [1.6]. Also, multiple types of ANNs can be combined to form a hybrid model.

For instance, the pooling layer used by CNNs can be combined with DBNs to form

convolutional deep belief networks (CDBNs) [1.7].

2) Model Optimization

Each ANN needs to be optimized regardless of its type, but the optimization

approach applied to one type of ANN may not be applicable to other types. For

example, the wake sleep algorithm [1.8] that is used to fine-tune a DBN is not

applicable on ANNs of other types. Furthermore, the optimization methods can be

classified into two types based on their usages: (1) unified algorithm (e.g.,

Momentum [1.9] and Adam [1.10]) and (2) independent technique (e.g., learning

rate warm restarts [1.11]). A type 2 method can be applied to a type 1 method for

alleviating the shortcomings of the latter. For instance, if a learning rate warm

restarts scheduler is applied to Adam, then Adam is capable of periodically resetting

its learning rate, resulting in a different cost reduction trajectory and a lower cost.

Another key difference between the two types is the number of improved variables:

(1) unified algorithm usually improves multiple variables based on specific theories;

and (2) independent technique only controls one specific key variable in a precise

manner.

 3

3) Method of Gradient Descent

There are three types of gradient descents: (1) batch, (2) mini-batch, and (3)

stochastic. Because these methods are different in the number of samples that are

used in computing the gradient, each one has its unique advantages in terms of

accuracy and efficiency. A comparison among the three methods is provided in

Chapter 2 before the review of existing optimization algorithms.

4) Cost Function

Cost functions are used to quantify the output deviations of ANNs during

optimization. The quantified values are used in calculating the new gradients, so they

indirectly determine the result of optimization. Common cost functions include, but

are not limited to, Mean Squared Error (MSE) [1.12], Cross-Entropy [1.13], Huber

[1.14], and Cosine-Similarity [1.15]. Because these functions are based on various

mathematical theories, they result in different values for the same output and impact

the accuracy of models. For instance, when MSE is employed to quantify the cost of

an ANN that uses Sigmoid [1.16] as the activation function, a known problem called

“learning rate slowdown” (i.e., the weights and the biases of the model stop

changing) [1.17] would occur. However, if we replace MSE by Cross-Entropy, the

aforementioned problem can be avoided.

5) Parameter Tuning

Different configurations of the employed optimization algorithms or techniques

result in different accuracies. The parameters can be adjusted manually or

automatically. A researcher may find the best configuration through performing

numerous trials based on feedback (e.g., the cost variance), but this approach is only

 4

applicable to algorithms with a limited number of parameters. Whereas, if there are

many tunable parameters, a dedicated algorithm (with fewer parameters) is usually

used to reduce the parameter searching space and find the best configuration.

6) Data Pattern

The goal of finding the best configurations on the aforementioned five aspects is

to maximize their parameter matching with the data pattern, so the changes in data

pattern usually indicate that all existing configurations need to be re-determined. As

a result, the data pattern is the most important factor that impacts the accuracy.

1.2 Research Scope

A more generalized ANN can be applied as a regular model to solve problems in

various fields (e.g. object detection and anomaly detection). The new optimization

method proposed in this dissertation is applied on the most widely adopted type 1 ANNs

that employs the traditional perceptron and backward propagation for learning data

pattern. As a result, several datasets in different fields are employed to evaluate the

proposed method through its applications in different ML algorithms, cost functions, and

parameters. Type 1 ANNs is available on all mainstream deep learning libraries (e.g.,

Tensorflow [1.18], Keras [1.19], Caffe [1.20], PyTorch [1.21]), so the new algorithm can

be easily implemented into these libraries by adding only a few lines of codes. Moreover,

the proposed method is designed based on stochastic gradient descent, as it can accelerate

the training process without compromising the accuracy.

 5

1.3 Problem Statements and Contributions

The biggest disadvantage of existing algorithms is that they only use the previous

gradients (i.e. the generated or old gradients) in the computations of new gradients (refer

to Chapter 2 for details). Due to the fact that the gradient is a time-sensitive variable that

is computed based on the cost at a specific moment, all measurements suffer from the

deviations that are introduced from the previous gradients. Due to the lack of reliable

metrics (i.e., only the previous gradient is in use), the number of effective measurements

is limited. As a result, new algorithms are often created by combining multiple existing

measurements. Algorithms created in this manner may generate erratic gradients as the

incorporated measurements may conflict with respect to their principles. Another

significant shortcoming is that each existing algorithm employs fixed measurements

during the entire optimization process (i.e., unchanged with respect to time-sensitive

variables: the parameters of the model and the output cost), so they cannot generate the

optimal gradients for all specific moments in time. Referring to improvements in the

algorithms, researchers mainly misattribute any decrease in accuracy to the loss in cost

reduction, leading them to ill-modify their measurements.

Our contribution to the entire research community is proposing/verifying that the

angle between consecutive gradients as/is an effective new metric for model optimization.

In addition to the new angle-based measurements, more effective measurements can be

achieved in using the two metrics together, that is, the previous gradient and the angle.

With the increasing number of measurements, the creation of new optimization

algorithms becomes easier. Most importantly, measurements that rely on different metrics

do not result in internal conflicts, therefore generating more accurate gradients. We

 6

determined that the source and cause of the losses in accuracy are due to the weak ability

of translating the reduction in the cost to the error rate. By analyzing the experiment data,

we found that the angle-based measurements can significantly improve the

aforementioned translating ability compared with existing gradient-based measurements.

With respect to the proposed algorithm, the adopted angle-based measurements can be

introduced into existing optimization algorithms (e.g., AdaDelta [1.22]), enabling them

with the benefits of the cost awareness enhancements. In addition, more variants can be

easily created by following the four criteria presented in Chapter 6, which may achieve

better results on problems in certain fields. The contributions of this dissertation are

classified into three groups: (1) measurements, (2) evaluation, and (3) implementation,

which are briefly presented as follows:

1) Measurements

a) A New Metric: the angle between consecutive gradients (Chapter 2 for

deviations of gradients; Chapter 3 for the new metric)

All existing optimization algorithms cited in this dissertation only use the

current and previous gradients as metrics in generating all measurements, such as

using the accumulation of gradients to calculate the learning rate. However, the

information provided by gradients is not only limited, but is also deviated (refer

to Chapter 2). Therefore, the angle between consecutive gradients is proposed as

a new metric to provide more information for generating more accurate new

gradients.

 7

b) A New Method of Accumulating Gradients (Chapter 2 for an analysis of

the two existing methods; Chapter 3 for the new method)

Existing algorithms accumulate the gradients in two imperfect ways: (1)

utilizing the exponential moving average or (2) using the simple moving average.

A new accumulating method is proposed to possess all the advantages and avoids

all the disadvantages of the two methods.

c) Calibrating The Previous Gradients (Chapter 2 for deviations of

previous gradients; Chapter 3 for the proposed measurement)

All existing methods utilize the previous gradients to calibrate the current

gradient in computing the new gradient. However, there are deviations on the

previous gradients, which can negatively impact the accuracy of the new gradient.

No method addresses this problem until the proposed method.

d) Angle-based Learning Rate (Chapter 2 for explanations of problems;

Chapter 3 for the proposed measurement)

The learning rates determined by existing algorithms are either static (i.e., set

it manually) or inversely vary with the magnitude of the accumulated gradients.

The former is inflexible in adjusting the new gradient, and the latter suffers from

deviations of the accumulated gradients. To resolve these problems, the learning

rate of the proposed method is determined using the angle between consecutive

gradients.

 8

e) Cost Awareness Ability (Chapter 3 for the motivation and proposed

measurement)

All cited algorithms cannot infer the cost variance, so they cannot take

effective measures to reduce the cost when the cost is increased. However, the

proposed method is able to accurately infer the cost variance and take effective

actions to immediately reduce the cost in the next iteration.

f) Decoupled Measurements (Chapter 2 for explanations of problems;

Chapter 4 for the demonstration of decoupled measurements)

Advanced algorithms (e.g., AdaMax [1.10]) improve the gradient and the

learning rate by incorporating the measurements from multiple simple algorithms

(i.e., one measurement is to improve gradient and the other one is to improve the

learning rate). However, the incorporated measurements may conflict with each

other in their functionalities, resulting in erratic new gradients. The

measurements adopted in the proposed algorithm are well-decoupled in their

functionalities.

2) Evaluation: Translation Rate (Chapter 5)

Existing algorithms are typically evaluated by reductions in the (1) cost and (2)

error rate. Because ML models reduce the error rate through minimizing the cost,

losses in the error rate reduction are misattributed to the losses in cost reduction.

However, we found that the former may not be caused by the latter, but is attributed

to a low translation rate from the latter to the former. As part of the evaluation of the

proposed techniques, a new method that quantifies the capability of translating

reductions in the cost to the error rate is presented. The quantified results not only

 9

reveal which algorithms have stronger translation abilities, but also demonstrate that

the angle-based measurements are better than existing gradient-based measurements

in improving the translation ability.

3) Implementation (Chapter 6 for details)

To comprehensively compare the difference in efficiency among various

optimization algorithms, each model script has two implementations. One

implementation runs on a CPU and the other one utilizes the power of a GPU. To

maximize the utilizations of the available computing powers on the two kinds of

processors, a technique of matrix-based multiplication (refer to Chapter 6 for details)

is employed in each model script, which can only be found in serious deep learning

libraries. Also, the model scripts are able to record the variations of 50 different

metrics that are associated with the gradient descent. Subsequently, the information

can be output to a file with the designated format and visualized using the plotting

script for more in-depth analyses.

1.4 Research Approach and Outline

Figure 1.1 shows the outline of this dissertation. In Chapter 2, we first determine

deficiencies of 9 existing optimization algorithms and common challenges in model

optimization. Then, possible improvements are proposed to address the major problems

on the aforementioned two aspects. In addition, we found deviations on the previous

gradients through the analysis of stochastic gradient descent, which motivates us to

alleviate the deviations and realize the proposed improvements using the angle between

consecutive gradients. As a result, a new optimization algorithm composed of 2 functions

 10

and 6 parameters is proposed in Chapter 3. Next, in-depth interpretations in terms of

convergence principle and decoupled measurements are presented in Chapter 4. Then, in

Chapter 5, the proposed and other 9 existing algorithms (analyzed in Chapter 2) are

implemented into two ML models to compare their accuracies and efficiencies under

various conditions (i.e., different datasets, cost functions and batch sizes). The translation

rates of all algorithms are calculated based on the data of the aforementioned experiments

(i.e., the cost and error rate reductions). In Chapter 6, the criteria of defining new variants

of the proposed method and a case study of a non-linear variant (results in a faster

convergence) are presented. This chapter also verifies the functionalities of the decoupled

measurements and the reliability of the new metric. Because the new metric can be

calculated in multiple methods, an in-depth analysis of each method is given before the

verification of reliability. Although the computation of the new metric is a part of the

principle, we placed it before the verification for a coherent demonstration. At the end of

this chapter, the intended application of the proposed method can be found. In addition,

we used the experiment data to show that the proposed method does not make the cost

trapping into the saddle points in practice. In Chapter 7, two possible improvements that

are applied on (1) the computation of the angle and (2) the employment of angle-based

learning rate schedulers are presented before the significance of the work.

 11

Figure 1.1 – Outline of dissertation (black blocks are important content)

 12

CHAPTER 2

LITERATURE REVIEW

2.1 Model Optimization

2.1.1 Overview

Model optimization intends to maximize the accuracy through searching the best

configuration that delivers the lowest output cost. To measure the improvement, the cost

is quantified by a cost function C(ypred, ytrue) such as MSE. Due to the fact that predictions

ypred made by an ANN(W, B) are determined by weights (W) and biases (B) [2.1], model

optimization is a math problem to find the best parameters to minimize C(ANN(W, B),

ytrue) (abbreviated as C). Furthermore, the gradient (abbreviated as G) of a function is a

vector that points to the direction of steepest slope, the cost reduction can be

accomplished by repeatedly applying gradient descent (GD) that is composed of the

following three procedures [2.2]:

1) Computing G(∂C/∂w, ∂C/∂b) (w Î W and b Î B) of C

2) Multiplying a learning rate η to G to adjust its magnitude.

3) Updating the model parameters (abbreviated as PARAM, i.e., W or B) by

subtracting ηG or adding its reverse –ηG (i.e., ÑG).

Obtaining G of C needs to pre-compute the partial derivative of each weight ∂C/∂w

and bias ∂C/∂b, so early GD method is only applicable to regular ML models with simple

architectures, such as logistic regression (i.e., an ANN without hidden layer). More

complex models benefit from GD until backward propagation (BP) is proposed in [2.3].

The new method enables us to simultaneously compute all partial derivatives using only

 13

one forward propagation (FP) which is then followed by one BP. With respect to

implementation, matrix-based multiplication [2.4] that is realized by state-of-the-art deep

learning libraries makes the training of a deep neural network (DNN) feasible in practice.

In recent years, the capability of parallel computation on advanced GPUs is utilized to

create various large-scale DNNs.

2.1.2 Variants of Gradient Descent

GD has three variants that are different in the number of samples used to compute

each G. Because a more accurate G requires more samples during its calculation, there

exist a trade-off between G accuracy and the interval to perform a PARAM update.

Consequently, one of the main motivations to create these variants is to reduce the

aforementioned interval. Otherwise, the task of training a DNN on a large dataset is still

almost unachievable even though both BP and matrix-based multiplication are employed

[2.1].

2.1.2.1 Batch Gradient Descent

Because Batch Gradient Descent (BGD) computes each G from a full training

dataset, its G is more accurate than the other two variants but incurs the longest updating

interval. Also, BGD is guaranteed to converge to one of the local minima on non-convex

surfaces and the global minimum on convex surfaces. However, BGD is intractable for

datasets that cannot fit in memory and not applicable for training online ML models that

receive new data in real-time. Moreover, BGD will incur redundant computation on

 14

samples that are similar in data pattern (i.e., the values of features are almost identical

among these samples).

2.1.2.2 Mini-Batch Gradient Descent

Mini-Batch Gradient Descent (Mini-BGD) improves the updating frequency of

PARAM upon BGD by computing each G from a subset of the training data. Due to the

large reduction in batch size, the computation of each G can be accelerated by the matrix-

based multiplication in practice. However, G of Mini-BGD is less accurate than that of

BGD because the data pattern of a subset is somewhat deviated from the full dataset,

rendering a more erratic cost convergence trajectory (this problem can be effectively

alleviated by setting larger batch sizes). Another noticeable problem is the sequence of

mini-batches remains unchanged during the entire training process. Although a few

researchers establish some meaningful sequences to improve the accuracy (i.e.,

Curriculum Learning) [2.5, 2.6], the ML models would overfit on the fixed sequences in

most cases.

2.1.2.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is originally updating PARAM based on G of

one sample and shuffling all samples before every epoch. This method avoids the

redundant computation of BGD and minimizes PARAM updating interval; however, its G

has a larger deviation than the other two variants, leading to the most unstable

optimization process. Therefore, SGD is often combined with Mini-BGD to compute Gs

from mini-batches that contain stochastic samples. Furthermore, ML models will not

 15

overfit on specific sample sequences, resulting in a better generalization capability.

Although SGD cannot guarantee to converge to an exact local minimum on non-convex

surfaces due to the variance of G, its oscillated convergence trajectory could make the

cost jumping to a lower local minimum, especially when η warm restarts method (i.e.,

aggressively decay η and reset it by certain epochs) [1.11] is employed. In addition, SGD

would generate almost identical convergence trajectory as BGD when η annealing

method (i.e., decay η by a certain number of epochs) [2.7–2.10] is used, making the cost

almost certainly converge to one of the local minima on non-convex surfaces and the

global minimum on convex surface.

2.1.3 Challenges of Employing Stochastic Gradient Descent

 According to the analysis of the three GD variants, SGD can not only accelerate

the cost convergence using small batch sizes (instead of using a full training dataset), but

also prevent the model from overfitting on specific sample sequences by reshuffling the

samples in each batch before each epoch. As a result, SGD is adopted by the majority of

ML tasks in various fields and all experiments in this dissertation. However, SGD is

imperfect in the following aspects.

2.1.3.1 Inaccurate Gradient

As mentioned, the deviation of G is caused by the inevitable pattern variance

between the full training dataset and its mini-batch. Although increasing the batch size

can reduce the pattern variance, this method will incur a longer PARAM updating interval

and slow down the cost convergence. Because the magnitude of G can be calibrated by η,

 16

the deviation primarily affecting the direction of G. In terms of computation, the

acceleration realized by the matrix-based multiplication will be gradually compromised

with the increasing of batch size. Existing remedies can be classified into three types: (1)

multiplying dedicated ηs to elements of each G for calibrating the magnitude and

direction of G; (2) combining multiple recent Gs to form a more accurate G; and (3)

combining remedies in (1) and (2).

2.1.3.2 Uncertain Learning Rate

The learning rate η correlates to many factors, so there is no consensus on the η

adjustment strategy. From a global view, η should be gradually decreased when SGD

proceeds to alleviate overshooting and obtain a better minimum (i.e., η annealing) [2.7-

2.10]. Also, η could be periodically reset to the initial value when it is lower than a

specific threshold (i.e., η warm restarts) [1.11]. From a local perspective, each element of

G is a partial derivative that is determined by the slope with respect to the corresponding

parameter of C, so a smaller magnitude may indicate a shorter distance to the minimum

in the corresponding dimension. Therefore, some η schedulers utilize this indication by

increasing/decreasing η with G increases/decreases, so that the cost can converge faster

when it is far from the minimum and approach a lower minimum in the final stage.

However, other η schedulers that are designed for sparse data adjust η in the opposite way,

which also deliver state-of-the-art results in some ML tasks [2.11, 2.12].

It is reasonable to apply a certain η scheduler on a specific problem, but the

improvement is often (far) below the expectation, as the actual cost surface is much more

complex than the assumed scenario that is used to design the adopted η scheduler.

 17

Furthermore, almost all η schedulers have to preset their parameters before executing

SGD, so the improvement in cost reduction could be understood as a better matching

between the parameters and the data pattern. This means η still remains highly-uncertain

on new tasks because the experiences (i.e., the successful configurations) on the previous

tasks could not be valuable references. Consequently, if η is too small, the convergence

will be very slow. Whereas, if η is too large, the cost will be oscillated within a large

range or even translate to a non-convergence failure.

2.1.3.3 Weak Learning Ability on Sparse Data

A sparse dataset contains some sparse features that are composed of a few

possible values (i.e., values are mostly identical). As a result, the slopes of cost surfaces

formed by these sparse features are very small. It means that Gs of the sparse features are

distinctly smaller than that of the regular features, and the associated W and B will not be

adequately updating during the entire training phase. Although Gs could be balanced by

multiplying different ηs, this method has a limited application scenario (refer to

subsection 2.4.2) and can introduce side effects that compromise the improvements in

other aspects (e.g., slow convergence).

2.1.3.4 Others

In addition to the challenges regarding G, η and sparse data, minor problems

remain unresolved:

 18

2.1.3.4.1 Trapping into Saddle Points

A saddle point refers to a minimum on a plateau of the cost surface, which is

surrounded by surfaces with decreasing slopes toward it [2.13]. It is evident that

identifying and escaping from a saddle point is a difficult problem that needs to be solved

because it is surrounded by surfaces with decreasing slopes, and this characteristic is the

same as the global minimum. Because η warm restarts [1.11] may reach multiple cost

minima, we may infer a point as a saddle point if it is higher than the obtained minimum

by a large magnitude. However, this method will fail when all minima obtained are

saddle points.

2.1.3.4.2 Qualities of Minima

The quality of a minimum cost refers to the generalization ability of the trained

ML model. Given a study in [2.14], the number of local minima increases exponentially

with the number of PARAM (i.e., the complexity of the model). As a result, determining

the qualities (i.e., generalization abilities) of all minima through testing the trained

models on testing dataset is infeasible in practice. In addition, a complex DNN using an

advanced architecture can achieve a very low minimum via memorizing all training

samples, compromising the reliability of the evaluation on the testing dataset [2.15]. As a

result, some researchers have claimed that the sharpness of the surface surrounding the

minimum could be used to infer the quality. More specifically, they have concluded that a

sharper minimum has a higher generalization error rate [2.16]. An intuitive explanation is

that a sharper minimum indicates a more irregularity training cost surface, so PARAM

that is determined by this accidental cost convergence would not perform well on the

 19

testing cost surface. However, other researchers’ work suggest that the sharpness may not

be an accurate indicator because they have identified that some well-generalized local

minima can be surrounded by surfaces with arbitrary sharpness [2.17]. Consequently, the

evaluation on testing dataset can be substituted, if we can find a reliable metric to

quantify the qualities of minima obtained from the training dataset in time. This means

that more and better generalization results can be obtained within the same period.

2.2 Introduction of Existing Optimization Algorithms

2.2.1 Overview

The optimization algorithms or optimizers are designed to improve accuracy

through resolving the problems associated with SGD (include but not limited to the

aforementioned ones). Because SGD updates W and B by subtracting ηG, existing

methods resolve the problems by improving G, η or both. More concretely, each variable

will be calibrated by one or more terms that are dedicated to reduce its deviation based on

a certain theory. In this sense, η is not only a target variable that needs to be improved,

but also a calibration term for G.

During SGD calculation, numerous Gs will be sequentially generated, constituting

a G chain. As a result, the previous G (PG) associates with the current G (CG), as PG

determines the current cost (i.e., the current location on the cost surface) that is used to

compute CG. Furthermore, the new G (NG) computed by ηCG also correlates with PG,

but with a smaller extent. Therefore, almost all mainstream optimizers utilize PG to

improve G, η or both, so that the missing information could be compensated by PG. This

indicates that the generated NG may benefit from PG in terms of magnitude, direction or

 20

both. Finally, existing optimizers update PARAM by subtracting the calibrated NG, as

shown by Equation 2.1.

PARAMt+1 = PARAMt – NG 2.1

Due to the fact that all optimizers are solely differing in their determinations of

NGs, Equation 2.1 is omitted in the introduction of 9 existing optimizers in the following

subsections. In addition to Vanilla SGD, the other 8 optimizers are introduced based on

variables (i.e., G, η, or both) they intend to improve .

2.2.2 Original SGD: Vanilla

Vanilla [2.1] refers to the original SGD that realizes BP without improvement. It

computes NG by ηCG, as defined in Equation 2.2. It is evident that η is the only

adjustable parameter with a fixed value, so NG positively varies with CG that is

determined by the slope of the cost surface. Because a higher slope causes a larger CG

and indicates a longer distance to the minimum, a larger NG reduces the number of steps

to approach the minimum. On the other hand, a smaller NG resulting from a lower slope

will alleviate overshooting and drive the cost to more rapidly approach the minimum. In

terms of the direction, CG will accurately point in the direction that causes the largest

cost reduction, unless the batch size is too small (refer to subsection 2.1.2.1 for the

correlation between accuracy and batch size).

NG = ηCG 2.2

 21

2.2.3 Improving Gradient: Momentum

Momentum [1.9] is the earliest and most widely used improvement to G. As shown

by Equations 2.3 and 2.4, Momentum replaces CG in Vanilla by a new variable Mt. Each

Mt is obtained from combining the previous Mt-1 and CG. Because M0 is initialized to 0,

Mt-1 accumulates all PGs to time t-1, and Mt is the accumulation of all generated Gs to

time t. Two coefficients b and 1–b are weights applied to PGs (i.e., Mt-1) and CG. b is set

to 0.9 by default, so each PG is gradually reduced by 0.1 when generating a new NG.

Furthermore, a more recent G has a larger influence on NG and a higher b will enhance

this tendency. As a result, NG is generated from the exponential moving average (EMA)

of all Gs, which endows the movement of cost convergence with an inertia-like property,

gradually increasing/decreasing the magnitude on a decreasing/increasing slope. In

summary, Momentum is an optimizer that not only utilizes PGs to make improvement,

but also heavily relies on PGs.

 NG = ηMt 2.3

Mt = bMt-1 + (1–b)CG 2.4

 Momentum adopts EMA to prevent the cost from being guided into a ravine that

is formed by a surface with a much larger slope in one dimension than the others [2.18],

as shown in Figure 2.1. More specifically, when the cost is close to a ravine, CG may

guide the cost into the ravine. Then, one or more of the following steps will be spend on

escaping from the ravine. Due to the fact that there may exist numerous ravines on the

way to the minimum, the additional steps that are spent to move away from these ravines

would largely delay the cost convergence. However, if PGs are used, they will calibrate

 22

the direction of CG and generate a NG that does not point to the ravine. As a result, NG

would guide the cost to cross the ravine directly [2.19].

Figure 2.1 – A ravine on a 3-dementional cost surface
(the slope in D3 is much larger than the slopes in D1 and D2)

 Employing the accumulated PGs also brings some disadvantages. For example, if

PGs guide the cost to a place that is close to a hill, then CG will point to a direction to

bypass the hill (for reducing the cost). However, the resulted NG will still point to the hill

and increase the cost because it is dominated by PGs (i.e., inertia-like property). In the

worst case, the cost may climb on and cross the hill (e.g., a high cost surface), arriving to

another route that cannot reach the global minimum. Although Momentum is not a

perfect optimizer, it validates the advantages of employing EMA and motivates most

optimizers created afterward to adopt EMA in generating their measurements.

 23

2.2.4 Improving Learning Rate

2.2.4.1 AdaGrad

AdaGrad (Adaptive Gradient) [2.20] is an optimizer that adapts the parameter η,

as defined in Equations 2.5 and 2.6. Its goal is to improve the learning ability on sparse

data [2.21, 2.22]. As we mentioned, the cost surface in the dimension formed by a sparse

feature would be very flat (i.e., the slope is very small), which results in a small G.

Therefore, the cost reduction with respect to this dimension will be inadequate. If there

are multiple sparse features in the dataset, the convergence and the overall cost reduction

(i.e., take all dimensions into consideration) will be substantially slowed down and

compromised, respectively. Due to the fact that the sparsity of a feature inversely

correlates with the magnitude of the corresponding G, AdaGrad improves the learning

ability on a sparse feature by increasing the corresponding η when detecting a small G.

This objective is realized by dividing the root of a new variable Vt which is the

accumulated element-based squares of all generated Gs to time t. Then, the elements of

the new learning rate term η / Ö(Vt + ε) will be inversely varying with the corresponding

elements of Vt. Finally, a G resulting from a sparse feature will be increased, no longer

impeding the cost convergence. Another advantage of AdaGrad is that the learning rate

term η / Ö(Vt + ε) is automatically adjusted according to Vt instead of maintaining a fixed

value. With respect to computation, the elements of Vt can be allocated in the diagonal of

a matrix, so that the computation of NG is accelerated using libraries that implement

optimized matrix-vector production [2.23].

NG = (η / Ö(Vt + ε))CG 2.5

Vt = Vt-1 + CG2 2.6

 24

There are two disadvantages with respect to η and the convergence speed. Vt is

accumulating Gs (i.e., PGs or Vt-1 and CG) in a simple moving average (SMA) method,

and it becomes larger with more mini-batches that are processed. As a result, the learning

rate term will gradually approach 0 (i.e., saturated) as more mini-batches are processed,

making AdaGrad unsuitable when applied on big data. Moreover, AdaGrad is actually

functioning as a “gradient balancer” that not only increases Gs of sparse features, but also

decreases Gs of regular features. However, it is not always a reasonable choice to

improve the accuracy by carrying out the former with the cost of the latter. Due to the

fact that the slope of the cost surface formed by a sparse feature is very small, the

maximum cost reduction with respect to this feature is very limited. This indicates that

the overall cost will still be very close to the optimal minimum, even if the cost in the

aforementioned dimension (i.e., formed by the sparse feature) is far from optimal.

Consequently, if AdaGrad is employed on a dataset with a few sparse features, it would

not significantly improve the overall accuracy. Instead, it would slow down the cost

convergence due to the reductions on Gs of the regular features.

2.2.4.2 RMSprop

RMSprop (Root Mean Squared Backpropagation) [2.24] improves AdaGrad by

replacing SMA by EMA in computing Vt, as shown in Equations 2.7 and 2.8. Due to the

adoption of EMA, the magnitude of Vt has a specific upper bound under each setting. For

instance, if the magnitude of each G is 1 unit and the angles between all consecutive Gs

are 0˚, Vt will infinitely approach, but never reach 1 under the default configuration (i.e.,

 25

b = 0.9). Therefore, the deficiency of the learning rate reduction that is caused by the

infinite increasing of Vt can be completely avoided.

NG = (η / Ö(Vt + ε))CG 2.7

Vt = bVt-1 + (1–b)CG2 2.8

However, the adoption of EMA will also weaken the learning ability on sparse

features. For example, if the magnitude of a G of a sparse feature is 0.1 unit and all other

settings remains the same as the previous example, the upper bound of the corresponding

Vt is 0.1. Because Vt is inversely related to η, the calibrated η of this sparse feature (i.e., η

/ 0.1 = 10η) will be stronger than a regular feature (i.e., η / 1 = η) by 9η during the entire

training stage. Whereas, if SMA is adopted, Vt will increase when more mini-batches are

processed. For instance, the difference in the aforementioned two calibrated ηs will be

increased to 90η on the 100th mini-batch and 900η on the 1000th mini-batch, respectively.

These results show that RMSprop will only increase the learning ability on sparse

features by a certain fixed magnitude instead of repeatedly enhancing it, as done in

AdaGrad. Furthermore, if the difference in sparsity between sparse and regular features is

large, the increased magnitude in the learning ability determined in RMSprop may be

inadequate. As a result, RMSprop should be applied on larger datasets due to its non-

diminishing learning ability, and AdaGrad could achieve better results on smaller datasets

because of its stronger (i.e., increasing) learning ability on sparse features. In this sense,

RMSprop is not an improvement, but a variant of AdaGrad.

 26

2.2.4.3 AdaDelta

AdaDelta (Adaptive Delta) [1.22] is an improvement based on RMSprop, which

is defined in Equations 2.9–2.11. It provides another method to resolve the

aforementioned diminished learning ability of AdaGrad. To counteract the increasing Vt

on the denominator, the learning rate η on the numerator is replaced by a new variable D

(i.e., Delta) which refers to the difference in PARAM before and after each update.

Because both Dt-1 and Vt are initialized to 0 and employ EMA in accumulating the

corresponding Gs, their values are comparable during the entire training phase. It

indicates the entire learning rate Ö(Dt-1 + ε) / Ö(Vt + ε) will not approach 0, but oscillate

around 1 (i.e., a stable learning rate). The adoption of EMA also makes both D and V

dominated by their corresponding values in recent mini-batches, so the computation of

the learning rate is confined to a fixed window size.

NGt = (Ö(Dt-1 + ε) / Ö(Vt + ε))CG 2.9

Dt-1 = bDt-2 + (1–b)NGt-1 2.10

Vt = bVt-1 + (1–b)CG2 2.11

When applying AdaDelta on a dataset, both Dt-1 and Vt will be

increased/decreased on a regular/sparse feature (caused by the slope of a surface that is

formed by a feature, refer to subsection 2.2.4.1). The ratios of Dt-1 and Vt (i.e., the

learning rate term) on the two types of features are comparable in magnitude, indicating

that the learning ability on a sparse feature is not enhanced compared with a regular

feature. In this sense, AdaDelta is actually a “gradient equalizer” that applies consistent

learning ability on all kinds of features. Although AdaDelta is proposed to resolve the

diminished learning term of AdaGrad, it should be considered as a special Vanilla (i.e., a

 27

fixed η) with a slightly fluctuated η, and nothing similar to AdaGrad and RMSprop in

terms of practical behaviors.

2.2.5 Improving Gradient and Learning Rate

2.2.5.1 Adam

Adam (Adaptive Moment Estimation) [1.10] combines Momentum with

RMSprop to obtain all advantages of both optimizers. Referring to Equation 2.12, Adam

replaces CG by a new variable Mt as Momentum, and divides η by the square of another

new variable Vt as done in RMSprop. However, these two new variables Mt and Vt are

respectively different from the original definitions (used in Momentum and RMSprop) in

dividing two calibration terms 1–b1
t and 1–b2

t, as shown in Equations 2.13–2.16. As a

result, Adam computes NG from the calibrated Mt and Vt.

NG = (η / ÖVt + ε)Mt 2.12

Mt = mt / (1–b1
t) 2.13

Vt = vt / (1–b2
t) 2.14

mt = b1mt-1 + (1–b1)CG 2.15

vt = b2vt-1 + (1–b2)CG2 2.16

The advantages of employing Mt and Vt are explained when we introduce

Momentum and RMSprop. The aforementioned two calibration terms are to counteract

the deviations caused by employing EMA in computing mt and vt. A rigorous deduction

of the exact deviations can be found in [2.25], and an intuitive explanation is presented as

follows. Due to the adoption of EMA, both mt and vt are always dominated by their recent

values. Because m0 and v0 are initialized to 0, EMA will establish the early mts and vts

 28

bias to 0, which are distinctly smaller than the later ones. If we calibrate mt and vt by

Equations 2.13 and 2.14, a value generated earlier will be increased by a larger

magnitude with the corresponding denominator approaching 0 (note: the superscripts of

b1 and b2 refer to the power in math). As a result, the bias on each mt and vt can be

precisely calibrated by a dedicated value, which in turn generates a more accurate NG.

Although the biases caused by EMA persist longer if b1 and b2 are larger, it

rapidly decays when more mini-batches are processed. More specifically, assume that the

magnitude of each G is 1 unit and the angles between all consecutive Gs are 0˚ when b =

0.9. Then, all b
ts since 175th mini-batch (i.e., b175 = 0.9175 = 9.8274 ´ 10-9) are smaller

than the threshold ε = 1 ´ 10-8 that is designed for preventing the denominator becomes 0

during the computation (note: changing the assumed conditions such as the angle will not

change the reduction rate of b
t). This means that the two calibration terms (1–b1

t) and (1–

b2
t) will infinitely approach 1, and the associated calibrations to m0 and v0 will disappear

after the 175th mini-batch. Due to the fact that the number of mini-batches in an ML task

would reach levels of 105, 106, 107 or even a larger number, the benefits from calibrating

the biases during the first 175 mini-batches could be negligible. Consequently, Adam

could be considered as a simple combination of Momentum and RMSprop.

2.2.5.2 AdaMax

AdaMax (Max refers to l∞ norm) [1.10] is a variant of Adam, which is defined in

Equations 2.17–2.20. To resolve the bias of Vt caused by EMA, AdaMax performs the

accumulation of Gs in l∞ norm instead of l2 norm (i.e., ÖCG2 in Adam). The reason for

choosing the l∞ norm is that it presents a very high numerical stability as the l2 norm in

 29

vector quantification. Due to the adoption of l∞ norm, Vt is always determined by the

larger value between the accumulated PGs (i.e., b2vt-1) and CG (a detailed mathematical

deduction can be found in [1.10]). As a result, the term (i.e., b2vt-1 or CG) that biases to 0

will never be selected as Vt.

NG = (η / Vt)Mt 2.17

Mt = mt / (1–b1
t) 2.18

Vt = b2
∞vt-1 + (1–b2

∞)CG∞ = max(b2vt-1, CG) 2.19

mt = b1mt-1 + (1–b1)CG 2.20

There are many shortcomings that can be found from the definition of AdaMax.

For instance, AdaMax does not employ the l∞ norm to remove the bias on Mt or mt. One

of the reasonable explanations is that the reliability of a G is not only determined by its

magnitude, but also determined by its direction. Therefore, the magnitude cannot be used

to judge the accuracy of mt. However, the same justification can be used to refute the

employment of l∞ norm in computing Vt. Due to the fact that the accuracy of the learning

rate η / Vt is also not correlated with magnitudes of Gs, selecting a larger value for Vt will

not result in accurate NGs. In addition, if b2vt-1 is larger and selected as Vt, the reliable

CG (computed based on the most-updated parameters of the model) will be abandoned,

rendering an inaccurate NG. Furthermore, always generating Vt from the larger

term/gradient(s) (i.e., b2vt-1 or CG) will lead to a smaller learning rate. Compared with the

rapid disappeared bias on Vt (bias disappears after 175th mini-batch, refer to subsection

2.2.5.1), the side-effect (i.e., slower convergence) from the countermeasure of removing

the bias will persist during the entire training stage. Therefore, AdaMax might not be a

successful variant of Adam.

 30

2.2.5.3 Nadam

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [2.26] makes

improvement by incorporating NAG (Nesterov Accelerated Gradient) into Adam, which

is defined in Equations 2.21–2.25. NAG is an independent method that enables any

optimizer with the prescient ability to improve the accuracy of NG [2.27]. More

specifically, Nadam computes NG from Mt(mt) and uses it to update the current PARAMt

to a new state called PARAMproj. However, PARAMproj is not the PARAMt+1 that we want

to obtain, but rather to compute a projected Gproj which contains the information of the

cost surface one step ahead. As a result, mt will be calibrated by Gproj to generate a more

accurate Mproj and NG.

NG = (η / ÖVt + ε)Mproj 2.21

Mproj = (b1mt + (1–b1)Gproj) / (1–b1
t) 2.22

Vt = vt / (1–b2
t) 2.23

mt = b1mt-1 + (1–b1)CG 2.24

vt = b2vt-1 + (1–b2)CG2 2.25

Nadam benefits the cost reduction in two scenarios. If mt leads the cost to a

surface with a higher cost, Gproj would point in the direction of leaving the surface.

Therefore, Gproj will counteract mt and generate a Mproj that bypasses the high-cost

surface. However, this advantage can be obtained only when b1 is closing 0. More

concretely, when b1 is closing 1 (e.g., b1 = 0.9 under the default setting), mt (i.e., the

accumulated Gs) is dominated by recent Gs that drive the cost to the high-cost surface. In

this case, the magnitude of Gproj is not adequate to counteract mt and reduce the cost to a

lower value.

 31

In addition, when mt and Gproj roughly align with each other and point in the

direction of a lower cost, Mproj will be a G that begins with the head of mt and ends up

with the tail of Gproj. Nadam can reduce the cost to a lower value in only one step (i.e.,

achieved by Mproj) instead of two steps (i.e., realized by mt and Gproj) as Adam is

employed. In terms of computation, the two steps of Adam need to execute 2 BPs which

corresponds to 4 FPs. Whereas, Nadam needs to spend one additional FP to compute Gproj

in addition to spend 1 BP (i.e., 2 FPs) in calculating mt (i.e., 3 FPs in total). Because 1

step of Nadam corresponds to 2 steps of Adam (i.e., mt and Gproj can be achieved by

Mproj), the computation cost per step for Nadam and Adam are 1.5 FPs (i.e., 3 FPs / 2

steps = 1.5 FPs / step) and 2 FPs (i.e., 2 FPs / 1 step), respectively. Therefore, Nadam is

more efficient than Adam by (2 – 1.5) / 2 = 25% in cost reduction. However, the

advantage in cost reduction is obtained with a lower model testing frequency, which in

turn renders a lower possibility of capturing lower costs. More concretely, Adam updates

PARAMt every 1 BP = 2 FPs, but Nadam increase this interval to 1 BP + 1 FP = 2 FPs +

1FP = 3 FPs. Meaning that Nadam is more likely to miss a lower cost than Adam by (3 –

2) / 3 » 33% within the same period. It is worth to mention that there is no evidence to

show that the reliability of Mproj is higher than mt (i.e., the accumulated Gs), as Gproj in

Mproj (i.e., the projected G based on mt) is only a one-step-ahead G of mt, and there is

nothing special in accuracy with regard to Gproj. Due to the aforementioned advantages in

computation and disadvantage of missing lower costs, Nadam might not be an improved

variant of Adam.

 32

2.2.5.4 AMSGrad

AMSGrad (Adam with Max Gradient) [2.28] is a variant that removes the two

calibration terms of Adam, defined in Equations 2.26–2.29. Another modification is that

Vt is determined by the larger value between the accumulated PGs (i.e., Vt-1) and all

generated Gs (i.e., vt). The reason of adopting this approach is that authors found some

mini-batches that are more valuable than others, resulting in a larger cost reduction.

Because they believe a large cost reduction would cause a large G, they intend to reuse

the large Gs to foster the cost convergence. As a result, NGs generated using AMSGrad

are always composed of the most valuable Gs.

NG = (η / ÖVt + ε)Mt 2.26

Vt = max(Vt-1, vt) 2.27

Mt = b1mt-1 + (1–b1)CG 2.28

vt = b2vt-1 + (1–b2)CG2 2.29

It is evident that the modification in computing Vt has many critical deficiencies.

For example, the accuracy of G is not determined by the magnitude but by its direction.

The accuracy positively correlates with the magnitude only when the direction is pointing

towards a lower cost, which cannot be guaranteed in practice. Conversely, even if the

magnitude of G could be used to quantify the reliability, we can easily find the

computation of Vt violates the principle of SGD. For example, if Vt-1 is larger than vt for

several consecutive mini-batches (it happens especially when a learning rate decay

scheduler is used), the outdated Gs that are accumulated in Vt-1 are repeatedly selected as

Vt. As a result, NGs (computed from Vt) that are only generated from PGs (i.e., Vt-1) are

inaccurate because G is a time-sensitive variable as the output cost (refer to in Chapter 1).

 33

2.2.6 Others

In recent years, other methods proposed to resolve the shortcomings of the

aforementioned optimization algorithms. For example, AdamW (W refers to weight)

fixes the weight decay of Adam [2.29]; QHAdam (Quasi-Hyperbolic Adam) computes

NG by averaging CG and mt in Adam [2.30]; AggMo (Aggregated Momentum) updates

PARAMt by averaging multiple Mts in Momentum [2.31].

2.3 Classification and Hierarchy of Existing Optimization Algorithms

A summary of existing optimization algorithms can be found in Table 2.1. Although

we introduce these optimizers based on the components (i.e., G, η or both) which they

intend to improve, we classify them into 4 groups according to their actual behaviors in

cost reduction. In group 1, there are two optimizers, Vanilla and AdaDelta. Vanilla uses a

fixed η to adjust CG that is computed from BP. AdaDelta works as a gradient equalizer

that sets comparable ηs for all features, so it can be considered a special Vanilla with a

slightly fluctuated η. In group 2, Momentum is the only optimizer that employs

accumulated Gs with a fixed η. It is the only optimizer that solely improves G, so it is

often incorporated into newer optimizers to enhance G. In group 3, the two optimizers

AdaGrad and RMSprop improve the learning ability on sparse data by

improving/decreasing Gs of sparse/regular features. To resolve the problem of η

diminishing on AdaGrad, RMSprop accumulates Gs in EMA instead of SMA. In group 4,

each optimizer is a combination of multiple optimizers. Adam and AdaMax are

combinations of Momentum and RMSprop, but they are separately using l2 and l∞ norms

in accumulating Gs. Nadam is the most complicated optimizer because it combines an

 34

additional technique NAG onto Adam to obtain the prescience ability. AMSGrad is the

only Adam variant that abandons the bias-correction terms, improving the accuracy by

reusing the largest Gs.

Table 2.1 – Summary of existing optimization algorithms

Group Optimizer
Improving

EMA η µ G Summary of
the Actual Behaviors G η

1

Vanilla
[2.1] the original SGD with

a fixed η
AdaDelta
[1.22] • • • Vanilla with

a slightly fluctuated η

2 Momentum
[1.9] • • using Gs with a fixed η

3

AdaGrad
[2.20] • SMA • balancing Gs of features

RMSprop
[2.24] • • • AdaGrad that accumulates

Gs in EMA

4

Adam
[1.10] • • • • Momentum + RMSprop

(l2 norm)

AdaMax
[1.10] • • • • Adam that employs l∞ norm

Nadam
[2.26] • • • • Adam + NAG

AMSGrad
[2.28] • • • • Adam that always employs

the largest Gs

A hierarchical chart that presents the development relationship among existing

optimizers can be found in Figure 2.2. These optimizers are divided into 4 groups as

shown in Table 2.1. They connected through arrow lines that indicate their inherited

relationship. Each black block with a white letter refers to the component that the

corresponding optimizer intends to improve. When EMA is first incorporated, the key

word “EMA” is shown on the corresponding line. For example, Adam is the combination

of Momentum and RMSprop, which improves G/η based on the former/latter.

 35

Momentum/RMSprop adopts EMA in improving G/η, and thus Adam inherits EMA in

computing the two components.

Figure 2.2 – Development relationship of existing optimization algorithms

2.4 Deficiencies on Existing Measurements

Based on Table 2.1 and Figure 2.2, we learn that the early optimizers in groups 1–3

make improvements by incorporating innovative techniques, such as computing a

dedicated η for each feature to increase the learning ability on sparse data (i.e., adopted

by AdaGrad). By contrast, the newer optimizers in the group 4 are combining multiple

existing optimizers and/or techniques with minor enhancements. For example, Adam is

unique in quantifying and calibrating the biases on G and η. However, these biases will

rapidly disappear after the 175th mini-batch, so Adam does not make an observable

improvement in accuracy. An in-depth analysis on the common measurements and the

associated deficiencies are given below.

 36

2.4.1 Exponential Moving Average

According to the column under the keyword “EMA” in Table 2.1 and Figure 2.2,

all optimizers in addition to AdaGrad adopt EMA when trying to improve G, η or both.

Because the earliest optimization algorithm Vanilla solely employs CG, researchers

attribute all problems (including, but not limited to high training error rate and slow

convergence) to CG. Then, PGs are introduced in the computation of NG to calibrate the

deviation of CG via reducing its weight. Due to the fact that an earlier PG would be less

reliable in computing NG, EMA is adopted to use the more recently generated Gs to

dominate NG and approximates the magnitude of NG to CG (or preventing G/η from

becoming infinite large or small as training progresses) [1.9].

However, recent papers show some shortcomings that challenge the adoption of

EMA. As we mentioned, the authors of Adam found a bias in employing EMA [2.25].

Also, some researchers have proposed that a lower b (i.e., less weighted PGs) performs

better in their respective experiments [2.32, 2.33]. In addition, a recent theory [2.28]

suggests that adaptive optimizers that use EMA converge to different and less optimal

minima than Vanilla. The authors concluded that generating NG from recent Gs is

unreliable, a phenomenon found in (yet not limited to) the fields of object recognition,

character-level language modeling, and constituency parsing. These results are combined

to showcase multiple issues (including, but not limited to the bias and over-weighted PGs)

with EMA, which should be attributed to the high deviation of PGs. Evidence suggests

that the deviation of PGs will result in a lower accuracy. For example, multiple

experiments in [2.34] have shown that AMSGrad consistently achieves less optimal

 37

results because it will keep using PGs by abandoning CG when the value of Vt-1 is larger

than that of vt (refer to Equation 2.27).

Other evidences show that PGs should not dominate the computation of NG.

Although the deviation of an earlier PG will be reduced by multiplying more bs when

EMA is employed, the magnitude of deviation will also increase as it becomes more

outdated. As a result, the actual deviation of each PG may not be effectively reduced by

EMA. In this sense, the process of accumulating PGs in EMA becomes a process of

accumulating deviations of PGs. Therefore, EMA may not result in an accurate NG,

especially when b is closing 1 (i.e. more rely on PGs).

2.4.2 Inverse Relationship Between Gradient and Learning Rate

As we learn from Figure 2.2 and the column under “η µ G” in Table 2.1, any

optimizer that is derived from AdaGrad inversely adjusts its η based on G. The goal is to

improve η for a small G that results from a sparse feature, so that the cost in the

corresponding dimension can be better reduced. As we mentioned, if this method is

applied to a regular dataset with a few sparse features, it would slow down the

convergence and not obtain a noticeable cost reduction. Whereas, if the majority of a

dataset are sparse features, directly improving ηs of all features (e.g., setting a static large

η for all features) is a much easier approach than the aforementioned method. Particularly,

this method can completely avoid the mentioned problems with respect to the diminished

η and biased Vt. Therefore, the method of inversely adjusting η based on each G is only

suitable for datasets with a certain number of sparse features (i.e., not too less or many).

For such a dataset, if we do not increase ηs of its sparse features, the cost in the

corresponding dimensions will be less optimal, in turn weakening the overall cost

 38

reduction. In this case, inversely adjusting η based on each G is a more fine-grained

method than improving η of all Gs. It is evident that the improvement will be maximized

when the regular and sparse features of this dataset are numerically comparable. However,

we need to note that this kind of dataset is rare in practice, limiting the application scope

of the measurement.

2.4.3 Non-decoupled Measurements

In recent years, some researchers have pointed out that state-of-the-art results for

many tasks (e.g., object recognition in computer vision [2.35] and natural language

processing in machine translation [2.36]) have been achieved using simple optimizers

(e.g., Momentum). Also, the advanced optimizers like Adam may be susceptible to

render a non-convergence failure in some cases [2.37]. By analyzing existing algorithms,

we found that measurements of advanced optimizers may conflict in their functionalities,

which could be the reason for causing the aforementioned negative results. For example,

Adam is a combination of Momentum and RMSprop. As we mentioned, Momentum is

designed to increase/decrease G of a cost surface with a high/low-slope. Whereas,

RMSprop is trying to balance all Gs by increasing/decreasing G on a flat/steep cost

surface. As a result, the two conflicted approaches are combined to generate erratic NGs,

translating to an unstable convergence or even a non-convergence failure in practice.

Furthermore, multiple parameters introduced by different methods may become an

obstacle during configuration. For instance, each optimizer in group 4 has three hyper-

parameters (i.e., η, b1, b2), but most optimizers in group 1–3 have only one hyper-

parameter (i.e., η). The difficulty of finding the best configuration grows exponentially

when a new parameter is introduced, especially when the parameters are non-decoupled

 39

in their functionalities and the ML model architecture is complex. Consequently, some

researchers rely on dedicated algorithms [2.38] to optimize parameters, apparently

increasing the complexity of a ML task. Some algorithms employ special methods to

intelligently reduce the parameter searching space [2.39], and others simply use brute-

force methods [2.40] which act as simple iterators that cannot save the configuration time

in practice.

In addition, deficiencies of incorporated methods are also imported which would

further weaken the accuracy of NG. For instance, the shortcoming of slow convergence

of AdaGrad will be transferred to Adam via introducing RMSprop. Moreover, if we

intuitively understand the generation of accurate NGs is a process of searching a perfect

parameter matching among all employed measurements, the possibility of achieving

reliable NGs would be lower when more measurements are introduced.

2.4.4 Strategy of Approaching Lower Minima

It is evident that the surface slope becomes lower when the cost is closer to the

minimum, such that the key of approaching lower minima is to reduce the magnitude of

NG with slope decreases. Due to the fact that Vanilla solely uses the original CG as NG

which positively changes with the slope, it is the only optimizer that can achieve this goal

without compromise. This is also one of the main reasons for the highest accuracy in

some ML tasks are still achievable by Vanilla [2.35, 2.36]. Whereas, AdaGrad adjusts its

Gs by increasing/decreasing their magnitudes when the slope is low/high (i.e., in the

opposite way as Vanilla). In addition, all other optimizers employ EMA in computing η,

G or both, reducing the dependency (i.e., weight) on CG. Employing EMA will

compromise the positive correlation between NG and the slope, and make the cost

 40

wandering around the minimum by a larger range. As a result, almost all existing

optimizers have a deficiency in the strategy of approaching lower minima.

2.5 Summary

The most advanced trend in improving optimization algorithms is not to focus on

improving the simple optimizers (e.g., Vanilla), but the complex ones (e.g., Adam) as

shown in [2.29–2.31]. According to the presented recent results, the accuracy and

stability of an optimizer is generally weakened if more methods are incorporated. Based

on our analysis of deficiencies on existing measurements, we believe that “less is more”

should be the principle of designing a new optimizer. Although an optimizer with fewer

improvements upon Vanilla may limit its application scope (e.g., AdaGrad is best for

datasets with a certain number of sparse features), applying a dedicated algorithm to a

specific kind of problem is a widely accepted strategy in the field of ML. In addition,

recent experiments of language modelling demonstrate that tuning [2.41] and/or

regulating parameters [2.42] can produce state-of-the-art results compared to employing

more complex models. The results show that improvements result from tuning an

optimization algorithm is comparable with or even better than improvements toward the

architecture of ML models. Therefore, simple optimizers in groups 1–3 would be better

options in terms of making improvements and practical usage.

 41

CHAPTER 3

DESIGN OF ANGLE-BASED STOCHASTIC GRADIENT DESCENT

3.1 Motivation

The creation of angle-based SGD (AG-SGD) is motivated by resolving the

shortcomings of existing optimization algorithms, which are presented in Chapter 2. In

addition, AG-SGD inherits some existing measurements that benefit its accuracy, such as

the incorporation of PGs in its NG computation. The justifications of adopting and

abandoning certain existing measurements are listed in Tables 3.1 and 3.2, respectively.

All these justifications are analyzed in Chapter 2, and there are four improvements to the

adopted measurements that need to be mentioned, they are:

1) Referring to the third and fourth rows of Table 3.1 and the second-to-last row of

Table 3.2, AG-SGD intends to adjust its η based on the progress of convergence.

More specifically, the cost convergence can be accelerated by increasing η when

the cost is approaching the minimum, and a lower cost can be obtained by

decreasing η when the cost is wandering around the minimum. As a result, the

strategy of adjusting η will be different from all other η schedulers (i.e., η

annealing and η warm restarts) mentioned in Chapter 2.

2) As shown by the first two rows in Table 3.2, both EMA and SMA are abandoned

in computing Gs and ηs due to the listed reasons, so the approach adopted by

AG-SGD will be unique at consistently employing the accurate gradients (i.e.,

resolving the shortcoming of EMA) without suffering from the unlimited

gradient increasing problem (i.e., resolving the shortcoming of SMA).

 42

3) Although AG-SGD abandons NAG due to its uncertainty in improvement (refer

to the last row of Table 3.2), the idea of prescience ability that comes with NAG

is adopted by AG-SGD (refer to second-to-last row of Table 3.1). As a result,

AG-SGD will realize an awareness ability to prevent the cost from increasing.

4) As shown by the last row of Table 3.1, AG-SGD also intends to improve both

components of G and η, so the incorporated measurements can be decoupled in

functionality, otherwise, the generated NG becomes erratic (refer to Chapter 2).

Table 3.1 – Existing measurements adopted by AG-SGD
Adopted Measurement Justification

Improving G improving the ability of crossing cost ravines

Incorporating PGs providing more information

Improving η early/middle stage (the cost is approaching the minimum):
faster convergence (increasing η)

final stage (the cost is wandering around the minimum):
stronger convergence (decreasing η)

Dynamic η

Prescience/Awareness
Ability

preventing the cost from being increased
reducing the cost in one step when the cost is increased

Decoupling
Measurements

the incorporated measurements
should be decoupled in functionality

Table 3.2 – Existing measurements abandoned by AG-SGD

Abandoned Measurement Justification
EMA(Gs) / EMA(ηs) dominated by outdated/unreliable gradients

SMA(Gs) / SMA(ηs) unlimited increasing in magnitude

Calibrating η based on Gs should be based on the progress of convergence

η µ G narrow application scope: only targeting at sparse data

Max (Gst-1, Gst) critical deficiency in principle

NAG uncertain improvement

In addition to the four improvements to existing measurements, the most important

measurement that has never been adopted by all existing optimizers is the calibration of

 43

outdated PG [3.1]. By alleviating the deviation of PG, all measurements using PG can be

enhanced simultaneously, resulting in a significant improvement to the overall accuracy.

As a result, the proposed AG-SGD uses a new metric (i.e., the angle between consecutive

gradients) to minimize the deviation of PG, and the proposed improvements are based on

this new metric .

3.2 Principle

3.2.1 New Metric: Angle Between Consecutive Gradients

To calibrate the inaccurate PG, we need to quantify its deviation. To achieve this

goal, we need to find an accurate G as a reference for quantification. In principle, CG is

calculated based on the most-updated SGD state, so it is more reliable than PG in

computing NG [3.2]. Some researchers have mentioned that the distortions affect PG and

have recognized the importance of utilizing CG in NG calculation. They have proposed

various methods to enhance PG’s compliance with CG. For example, implicit gradient

transport (IGT) alleviates the “staleness” of PG by transforming PG into CG without

explicitly using the Hessian technique to reduce the parameter’s variance and bias as it is

updated over time [3.3]. In addition, various authors have indicated their results

associated with state-of-the-art tasks such as object recognition in computer vision [3.4]

and natural language processing in machine translation [3.5], which are relying

exclusively on CG. In support, a recent study [3.6] suggests adaptive optimizers (utilize

CG and PG) converge to sub-optimal minima compared to the simplistic gradient descent

(only use CG). This phenomenon can be found in, but not limited to the fields of object

recognition, character-level language modeling, and constituency parsing. These results

 44

and the demonstrations in Chapter 2 are combined to show that CG is a qualified gradient

reference and can be used to quantify the deviation of PG by its angle with PG.

3.2.2 New Measurement: Calibrating The Deviation of The Previous Gradient

AG-SGD technique generates NG by the following four steps: (1) determine the

inner angle, θ between PG and CG (the method of computing θ can be found in Chapter

6); (2) adjust the weights of PG and CG according to θ, (3) combine the weighted PG and

CG, (4) multiply the learning rate η, accordingly based on the G combination. This is

possible, as the gradient matches the parameters of a neural network with regard to its

data structure (i.e., multi-dimensional matrix), the elements of gradient can be flattened

into a vector V. As a result, the inner angle between PG and CG can be computed by the

equation below (the detailed explanation of the computation and the associated reliability

can be found in Chapter 6).

θ = arccos((VPG • VCG) / (|VPG| |VCG |))(180 / p) (1)

Figure 3.1 shows the deviation between the two Gs, where the number at the tip of

each arrow indicate the θ value, the angle deviation between the associated PG and CG.

For example, PG-54 means that the angle of PG relative to that of CG is 54°. The figure

denotes that a smaller θ renders a closer alignment, indicating a smaller deviation of PG.

Furthermore, we can divide the range of θ into three subsets [0°, 90°), (90°, 180°], and

[90°], in order to follow the corresponding actions:

1) When θ < 90°, PG (blue) is roughly aligning with CG (black). In this case, PG

= OPG will be used to compute NG without calibration.

 45

2) When θ > 90°, PG (red) has a significant deviation from CG. Under this

circumstance, PG has to be calibrated prior to NG computation. An easy way is

to reverse the direction of PG, so that the reversed past G (RPG) will be

roughly aligning with CG as in the previous case. For instance, RPG-18

(yellow) is a reversal in direction of PG-162, which will be used to compute

NG directly.

3) When θ = 90°, PG (green) is perpendicular with CG. It indicates that the two

Gs have no correlation (i.e., two vectors have no correlation when they are

orthogonal). Therefore, PG should be abandoned when we compute NG.

Figure 3.1 – Quantifying the deviation of PG using the inner angle between PG and CG

(the numbers at the tip of the arrows are angles; the deviation of PG varies with the angle)

To further utilize the above properties, two key points related to the accuracy of

PG in determining NG need to be indicated. (1) As θ approaches 0˚ or 180˚, the OPG or

RPG aligns more with CG and becomes more valuable in NG computation. (2) As θ

 46

approaches 90˚, PG will have less contribution to the estimation of NG as it correlates

less with CG.

Due to the fact that an accurate NG must result from reliable Gs, the improvement

can be realized by adjusting the weights between PG and CG according to θ, that is:

1) When θ approaches 0° or 180°, we can increase the ratio wpg/wcg by a larger

value because now the OPG or the RPG has better accuracy.

2) When θ approaches 90°, the value of the ratio wpg/wcg will be decreased, i.e.,

CG dominates NG computation in this case.

Moreover, it is evident that with a larger θ, the SGD trajectory becomes more

chaotic. This occurs as the two Gs will counteract each other rendering an NG with

higher uncertainty. To prevent the cost from being misled to a higher value, the learning

rate should be decreased when θ approaches 180°.

3.3 Specifications

3.3.1 Parameters Overview

To comprehend the above concepts, we implement our technique using six

parameters and two functions as shown in Table 3.3. The parameters wpg and wcg are

weights of PG and CG, respectively; sg controls the magnitude of the NG by limiting

these two weights. Equation 2 (i.e., Fpg(a,sg)) is used to compute wpg; sη is the lower

bound of the learning rate η that is determined by Equation 3 (i.e., Fη(a,sη)). The third

column “Calculation” lists all necessary parameters required to compute the

corresponding parameters and functions. For instance, wpg and sg are needed to compute

wcg.

 47

Table 3.3 – Angle-based Parameters and Functions
Symbol Explanation Calculation Property

a the normalized angle of θ
between PG and CG PG, CG dynamic

wpg the weight of PG Fpg(a,sg) a-based

wcg the weight of CG wpg, sg a-based

sg
the sum of |wpg| and wcg

the intercept point on vertical axis
the slope of Fpg(a,sg)

– user defined,
default value 1.0

Fpg(a,sg) the function to compute wpg a, sg –

sη
the minimum of Fη(a,sη)

smaller than the intercept point
on vertical axis by 1

– user defined,
default value 1.0

η the learning rate Fη(a,sη) a-based

Fη(a,sη) the function to calculate η a, sη –

Fpg(a, sg) = sg(1 – 2a) (2)

Fη(a, sη) = –sη(a – 2) (3)

3.3.2 Work-through

To commence AG-SGD, we initialize the two user-defined parameters sg and sη

with the value 1.0. These initial values of sg and sη correspond to the two straight lines L0

(red) in Figure 3.2, respectively (note: black lines L1 and L2 are definitions that

correspond to a higher sg and sη). In each epoch, θ between PG and CG is normalized as a

Î [0, 1] by dividing its value by 180°. Next, the values of a and sg are input to Fpg(a,sg) to

compute wpg, then wcg is determined using sg–|wpg|. η is computed according to Fη(a,sη).

Finally, NG is formed as η(wpgPG+wcgCG). Here the functions Fpg(a,sg) and Fη(a,sη) are

defined as sg(1-2a) and -sh(a-2), respectively. There are four different cases that arise

given the various possible measurements of these components:

 48

1) When a < 0.5 (i.e., θ < 90˚), we have wpg > 0 and OPG = PG. Since wpg

increases as a (or θ) approaches 0 (or 0˚) and wcg inversely varies with wpg

(because wcg = sg – |wpg| and sg is a fixed value), the OPG will have a greater

contribution to NG generation as a (or θ) gets close to 0 (or 0˚).

2) When a > 0.5 (i.e., θ > 90˚), we have wpg < 0, which means that the minus sign

reverses the direction of PG. Therefore, the RPG aligns more with CG and

gradually dominates NG computation as a (or θ) approaches 1 (or 180˚).

3) When a = 0.5 (i.e., θ = 90˚), the contribution of PG in calculating NG will be

zero, i.e., NG is solely determined by CG because wpg = 0.

4) The value η is monotonically decreasing in the entire range of a (or θ) to

mitigate the possibilities of rendering a chaotic SGD trajectory. A larger value

of a (or θ) will mislead to a higher cost value.

It is critical to understand that although the computation of NG is dominated by

OPG or RPG as θ approaches 0˚ or 180˚ separately, OPG and RPG are closely aligned

with CG. In this sense, AG-SGD behaves similar to Vanilla SGD when θ approaches 0˚,

180˚, and 90˚ because NG is gradually dominated by CG under these circumstances.

 49

Figure 3.2 – Definitions of the functions Fpg(a,sg) in (a) and Fη(a,sη) in (b) (lines L1 and
L2 are alternative definitions that supportive; the horizontal axis is the normalized angle
between PG and CG; two intercept points on vertical axes sg and sη are parameters of the

proposed method)

3.4 Awareness Ability: One-step Cost Reduction

Due to the deviation of G between the mini-batch and the full dataset, the cost might

be misguided to a higher value as SGD proceeds in time. Referring to Figure 3.3, if PG is

not reversed, the cost reduction would follow the blue Gs. Each step in the high cost areas

is susceptible to being misguided to a higher value by the red Gs, since they are

influenced by the aforementioned pattern deviation. The key in resolving this problem is

to reduce the cost as soon as possible, as indicated in the figure with the A, B, and C

positions. If we reverse PG prior to combining it with CG, the cost reduction would

 50

follow the green Gs, i.e., points 2, 5, and 7. Consequently, AG-SGD would converge

faster and generate less obtuse angles than other optimizers, due to the one-step cost

reduction.

Figure 3.3 – SGD trajectory of AG-SGD: PG will be reversed when the cost is increased
(green Gs 2, 5, 7 are resulting from AG-SGD; blue Gs are resulting from other optimizers,
red Gs will result in higher costs if PG is not reversed)

3.5 Pseudocode

The pseudocode of AG-SGD is given below.

AG-SGD
Setting values for sg and sη, where sg ≥ 1 and sη ≥ 1
From the second epoch:
1. Recording PG

Computing CG
2. Computing θ between PG and CG

θ = arccos((VPG • VCG) / (|VPG| |VCG |))(180 / p)
Normalizing θ
θ ® a Î [0,1]

3. Computing the weights of Gs
wpg ¬ Fpg(a,sg) = sg (1 – 2a)
wcg ¬ sg – |wpg|

4. Computing η ¬ Fη(a,sη) = –sη (a – 2)
5. Computing NG ¬ η (wpgPG + wcgCG)
until the last epoch

 51

3.6 Summary

The newly proposed metric (i.e., a) represents the difference in direction between

PG and CG, so the weight of PG should be inversely changed with a when CG is

assumed to be accurate (i.e., PG µ a). Also, this chapter presents the realizations of the

three (of four) a-based improvements to existing measurements mentioned in the first

subsection of this chapter. They are:

1) Abandoning EMA and SMA

After calibrating PG, the weight of CG is also determined. The calibrated weights

are more reliable than static weights (i.e., b) adopted by EMA in improving accuracy.

Due to the fact that AG-SGD sets the sum of weights to a fixed value (e.g., 1.0 under the

default setting), each generated NG has a definite upper bound as EMA under all

configurations, instead of infinitely increasing as in SMA.

2) Inversely adjust η based on a (η µ a)

Due to the fact that a larger a indicates the closeness of the cost to a minimum, η is

inversely adjusted with a to both accelerate the cost reduction during the early/middle

stage of convergence (i.e., the cost is approaching the minimum) and enhance the cost

convergence during the final stage (i.e., the cost is wandering around the minimum).

3) Prescience Ability (one-step cost reduction)

With respect to the cost reduction, an obtuse angle means the cost might be guided to

a higher value and a backward movement is needed. AG-SGD realizes this goal by

reversing the direction (i.e., sign) of PG when q > 90˚. Most importantly, even if there is

a misidentification to the cost variance (i.e., the cost is not increased when q > 90˚), the

 52

reversed PG is also (roughly) aligning with the reliable CG, combining to form an

accurate NG.

 53

CHAPTER 4

IN-DEPTH INTERPRETATION OF

ANGLE-BASED STOCHASTIC GRADIENT DESCENT

4.1 Introduction

This chapter reveals the convergence principle behind AG-SGD by demonstrating

the NG variance that is determined by the two parameters sg and sη. Then, the

independent functionalities realized by parameters and the associated tuning strategies in

various cases are presented. Also, the actual behavior of AG-SGD will be analyzed in a

practical context. Finally, all improvements realized by AG-SGD are summarized.

4.2 Variance Pattern of New Gradient

The NG magnitude is determined by combining the two functions Fpg(a,sg) and

Fη(a,sη). Figure 4.1 shows the variance pattern between θ and the corresponding NG

magnitude when CG and PG are 1.0 unit in magnitude. For example, the NG magnitude

will be larger/smaller than CG and PG when the angle is in [0˚, 120˚)/(120˚, 180˚) and

will not be changed when the angle is 120˚ or 180˚ under the default setting (the green

line). Furthermore, the NG roughly decreases as the angle increases, which stabilizes

SGD’s trajectory. Since wpg is close to 0 as θ approaches 90˚, the most reliable CG

gradually dominates NG computation, producing a peak at θ = 90˚. When θ is close to 0˚

or 180˚, CG becomes better aligned with OPG or RPG, rendering a larger wpg and forms a

larger NG. The two troughs are achieved when OPG and RPG have larger difference

from CG in determining an accurate NG, so these two Gs are involved in the NG

 54

computation with greater comparable weights. Consequently, the smaller NGs are

attributed to the weight assignment between wpg and wcg.

Figure 4.1 – Magnitude variance of NG with the changes of sg and sη

(the black dot indicates NG magnitude which is reduced when the angle is larger than
120˚ under the default setting)

4.3 Convergence Guarantee

In the early and middle stages of SGD, the cost is repeatedly reduced until it

approaches to one of the minima (phase 1). Once the cost is oscillating within a small

range and cannot be reduced further, it means that the result has converged (phase 2).

One of the distinct differences between these two phases is that the averaged θ between

consecutive Gs of the phase 2 is larger than that of phase 1. As shown in Figure 4.2, the

main reason that causes this phenomenon is that more obtuse angles are generated with

the cost and repeatedly overshoot/wander around the minimum during the final

converging stage. In this case, if we reduce the step length every time an obtuse angle is

generated, the step length would gradually approach 0 and result in a lower converged

cost.

 55

Figure 4.2 – Cost variance trajectories in the final SGD stage

(a darker color indicates a lower cost and more obtuse angles would be generated
during the cost wandering around the minimum)

This convergence principle is utilized and employed by AG-SGD, as shown in

Figure 4.1. Under its default configuration (i.e., sg = sη = 1.0), NG magnitude is smaller

than 1.0 unit when θ is in (120˚, 180˚), so the step length will be reduced when θ is in this

section. A section (e.g., (120˚, 180˚)) that causes a reduction in NG magnitude and fosters

a cost convergence is called Convergence Section (CS). If this default CS is still narrow

and renders a non-convergence failure, we could enlarge the CS by decreasing sg or sη to

achieve a stronger convergence.

4.4 Decoupled Parameters: Gradient Weight and Learning Rate

Figures 4.3 and 4.4 show the variance pattern between the angle and the

corresponding NG magnitude when the two parameters (i.e., sη and sg) are varying in [0.8,

1.2]. These two parameters are mutually complementary in their functionalities, where

their differences are:

 56

1) sg is mainly used to change the NG magnitude when θ approaches 0˚ or 180˚, as

shown in Figure 4.3. Adjusting sg will primarily modify the upper bound of the

CS and the associated NG strength reduction.

2) sη is primarily used to adjust the NG magnitude when θ is close to 90˚, as shown

in Figure 4.4. Changing sη will mainly adjust the lower bound of the CS and the

related NG strength reduction.

Figure 4.3 – Magnitude variance of NG with the changes of sg

(affecting the NG magnitude when the angle is close to 90˚)

 57

Figure 4.4 – Magnitude variance of NG with the changes of sη

(affecting the NG magnitude when the angle is close to 0˚ and 180˚)

4.5 Configuring Strategy

It is evident that adjusting these two parameters together will obtain all the

aforementioned changes at once. However, if the sg and sη are changed by the same

magnitude, they should be adjusted within the recommended configuration section (0.820,

1.156), due to:

1) When sg = sη ≤ 0.820, the average of NG for the entire section of θ is less than

0.9996, which is averaged from the 181 NGs of all integral angles in [0˚, 180˚].

In this case, SGD will not be accelerated, violating the goal of employing

optimizers.

2) When sg = sη ≥ 1.156, the CS is an empty set. It means that a non-convergence

failure is inevitable, as NG will not be reduced in the entire section of θ, which is

verified by the experiment in Chapter 6.

 58

It needs to be mentioned that this recommended configuration section applies to

datasets in any problem field, as they are solely determined by the characteristic of AG-

SGD. Since the average of this section is 0.988 (i.e., (0.820 + 1.156) / 2), the default

values of sg and sη are set to 1.0 for achieving an accelerated SGD that mitigates the non-

convergence failure. In addition, the averaged NG magnitude is 1.219 under the default

configuration, so it is a conservative setting that mitigates overshooting, but it adversely

impacts the SGD speed. Therefore, increasing the default values appropriately may

speed-up SGD without missing the optimal result in practice. Moreover, Fη(a,sη) is also

designed with the consideration of mitigating the non-convergence failure. Referring to

Figure 3.2 (b), η will be increased by a smaller magnitude with a approaching 1. For

example, if we increase η (a = 0) by 2 units (i.e., from s1 to s2), η (a = 1) is increased by 1

unit. It is important to mention that the variance pattern of the NG magnitude will not be

changed when both sg and sη change with the same magnitude, as shown in Figure 4.1.

This property is advantageous and utilized during the early and middle tuning stages to

foster faster configuration searching. For example, if we are not satisfied with the lowest

achieved cost, we should decrease the step lengths in the entire section of θ by reducing

both sg and sη. To make a fine adjustment, we need to separately change the values of sg

and sη. For instance, if the cost is still randomly oscillating in a large range after many

epochs, it indicates the cost is approaching a minimum with a large step length. Since

more obtuse angles are generated during this process, we should first try to decrease sg to

reduce the step lengths when θ is close to 180˚. Due to the fact that decreasing sg will also

reduce the step lengths when θ is close to 0˚, a slower overall convergence speed is the

 59

side-effect of this manipulation. Consequently, there is a trade-off between the

convergence speed and overshooting [4.1].

4.6 Summary

Referring to Figure 4.5, AG-SGD is different from all analyzed optimizers (i.e.,

solely using PG as the metric) in its adoption of the new metric a (or θ). With respect to

practical behavior, AG-SGD can be considered as a special Vanilla that employs PG only

when it is reliable. Also, AG-SGD is unique in the following two aspects (under the

default setting):

1) Possessing a definite range for an effective parameter tuning (i.e., sg and sη Î

(0.820, 1.156))

2) Possessing a definite condition for the cost convergence (i.e., θ Î (120˚, 180˚))

These two advantages are combined to give users a direct feedback to the cost

movements that result from their adjustments to parameters, reducing parameter

searching space and efforts on finding the optimal configuration. All improvements that

are realized by AG-SGD and the associated explanations are summarized in Table 4.1.

 60

Figure 4.5 – Differences between AG-SGD and other optimizers

Table 4.1 – Improvements realized by AG-SGD

Improvement Explanation

New Metric a the angle between PG and CG

Calibrating PGs (|PGs| µ a) a positively correlates with the deviation on PG

a-based Gs weights of PG and CG are determined by a

a-based η (µ a) early/middle stage: acceleration (larger η)
final stage: stronger convergence (smaller η)

One-step Cost Reduction reducing the cost by one NG after it is increased

Decoupled Parameters sg: control NG when a approaches 0 or 1

sη: control NG when a approaches 0.5

 61

CHAPTER 5

EVALUATIONS OF ACCURACY AND EFFENCIENCY

5.1 Introduction

This chapter compares (1) the cost reduction, (2) the ability of translating the

reduction in cost to error rate, and (3) time complexities among different optimizers.

Group-based results are also calculated for an in-depth analysis. To avoid any bias, in

comparing the proposed technique with other optimizers, two experiments are conducted

with the following characteristics: (1) machine learning algorithms, (2) cost functions, (3)

batch sizes, and (4) datasets associated with different fields. In the first experiment, AG-

SGD is implemented with a fully-connected vanilla neural network and evaluated on the

handwritten digits dataset MNIST [5.1]. The second experiment employs a logistic

regression classifier to evaluate AG-SGD on a network-based intrusion detection dataset

NSL-KDD [5.2]. In terms of comparison, 10 different SGD optimizers: (1) Vanilla SGD,

(2) Momentum, (3) RMSprop, (4) Adam, (5) Nadam, (6) AdaMax, (7) AdaDelta, (8)

AdaGrad, (9) AMSGrad, and (10) AG-SGD are evaluated under the same conditions in

both experiments.

5.2 Neural Network on Digital Recognition

5.2.1 Scheme

The fully-connected vanilla neural network has 4 layers. Each layer employs

Sigmoid [1.16] as the activation function. The numbers of neurons from the input to the

output layers are 784, 256, 112, and 10, respectively. The output cost is quantified using

 62

the MSE [1.12]. For the usage of the dataset MNIST, we employ the pre-split 60,000

samples for training and 10,000 samples for testing. To evaluate AG-SGD under the

intended application scenario (refer to Chapter 6), the batch size and number of epochs

are set to 8 and 50 (note: we have found that larger values for these quantities do not

reduce the testing costs further for all compared optimizers). As a result, there are

375,000 gradients (i.e., 60,000 / 8 ´ 50) to be generated during SGD to minimize the

output cost.

A good optimization result could occur accidentally, when the data are well-

matched among the different techniques and they could generate skewed positive cost

reduction for the proposed method [5.3]. To avoid this possibility, the classifiers

evaluated will not employ any additional technique such as dropout [5.4], weight decay

[5.5], learning rate decay [5.6]. Therefore, the difference in the cost reduction should be

attributed solely to the adopted optimizer. In addition, instead of evaluating the best result,

the best 5 results will be selected to represent the performance of each optimizer. As a

reference, the error rate of a fully-connected vanilla neural network on the dataset

MNIST is about 2% based on the Kaggle leaderboard scores [5.7].

5.2.2 Results

Figures 5.1 and 5.2 show the epoch-based average of the 5 minimal costs and the

associated error rates from the above-mentioned SGD optimizers, respectively. Each

value in the figures is computed by averaging the corresponding 5 values on the same

epoch. The 10 optimizers are rated into 4 levels based on the results. In level-1, Adam

and Nadam are outperformed by all the other optimizers with relative significant

 63

magnitudes in cost and error reductions. Also, they are unstable as shown with oscillated

curves. Particularly, Nadam is considered the worst optimizer in performance due to the

increasing cost beyond epoch no.40, which translates to a non-convergence failure. In

level-2, AdaMax, AMSGrad, and RMSprop perform better in the cost/error rate reduction

and stability than the optimizers in the previous level. In addition, AdaMax converges

faster than the rest of the optimizers in the same group during the first 14 epochs. In

level-3, the Vanilla, Momentum, AdaDelta, and AdaGrad are more stable than the

aforementioned optimizers because their curves are fluctuating within smaller ranges.

These optimizers achieve the lowest costs and error rates compared with all of the

optimizers analyzed, which aligns with the results in [5.3]. In level-4, AG-SGD

outperforms all of the other optimizers in terms of the cost and error rate reductions.

Although its converging speed is slower than that of AdaMax in the first 14 epochs, AG-

SGD greatly increases its speed between epochs 14 to 19 and obtains a cost as low as the

best cost achieved by the others on epoch no.18. This advantage in cost is maintained

until the last epoch, which occupies 66% of the training time (i.e., (50 – 18 + 1) / 50). It

can be expected that the error rate could be further reduced along with the elongation of

the training time. Whereas, if the cost of AG-SGD is oscillating as the other optimizers, it

would only end-up with a local optimal error rate.

 64

Figure 5.1 – Epoch-based average of the 5 minimal costs

(zoom-in, each dot represents the cost of specific optimizer on the corresponding epoch)

Figure 5.2 – Epoch-based average of the 5 minimal error rates

(zoom-in, each dot represents the error rate of specific optimizer on the corresponding
epoch)

The above observations can be verified by the distributions of the best 5 results in

Figures 5.3 and 5.4, in which the data dots are the outliers of the corresponding results.

The optimizers are rated into 3 levels based on the existence of outliers and the range of

values (i.e., the length of boxes). In level-1, there are 6 optimizers, Vanilla, Momentum,

RMSprop, Adam, AdaGrad, and AMSGrad, and all have at least one outlier in both

 65

figures. Although the ranges of the non-outlaid values are more concentrated, it means

that these optimizers would generate local minimal results in most cases. Employing

them in practice would miss the optimal result by a relative higher probability. In level-2,

we have 2 optimizers, Nadam and AdaDelta, due to their scattered results. Although their

results do not have an outlier, the larger value ranges would make their results relative

harder to predict compared with the optimizers in level-1. Since the optimizers in the first

two levels have distinct characteristics in their resulting distributions, it is difficult to

judge which level would perform better in practice. In level-3, AG-SGD and AdaMax

both have no outliers, and are more concentrated than the other two levels. The distinct

difference between these two optimizers is that the former could generate a lower cost

and error rate than the latter.

Figure 5.3 – Distributions of the 5 minimal costs (MNIST, black dots are outliers)

 66

Figure 5.4 – Distributions of the 5 minimal error rates (MNIST, black dots are outliers)

Tables 5.1 and 5.2 show the comparisons of the 5 minimal costs and the

corresponding error rates from the 10 SGD optimizers. The data show that AG-SGD is

the most accurate optimizer with the best stability. If we quantify the advantages by

averaging the minimal costs (i.e., 27.36) and the variances (i.e., 0.4564) from all the other

optimizers, AG-SGD has a better performance by 8.52% = (27.36 - 25.03) / 27.36 in the

cost reduction and 62.80% = (0.4564 - 0.1698) / 0.4564 in stability.

 67

Table 5.1 – Comparison of the 5 minimal costs (MNIST)

GP Optimizer
The 5 Minimal Costs

scaled by 10,000
listed from the highest to the lowest

Each Group Overall

Avg Std Var Avg Std Var Avg Std Var

1
Vanilla 28.59 28.08 27.73 27.00 26.79 27.64 0.74

77
0.55
91

27.64 0.73
04

0.53
38

28.09 0.61
93

0.40
91

AdaDelta 28.50 28.11 27.72 27.17 26.72 27.64 0.71
31

0.50
85

2 Momentum 28.51 28.22 28.02 27.80 27.16 27.94 0.50
93

0.25
94 27.94 0.50

93
0.25
94

3
AdaGrad 29.14 28.04 27.94 27.90 27.69 28.14 0.57

23
0.32
75

28.29 0.54
33

0.29
60

RMSprop 29.06 28.61 28.53 28.27 27.66 28.43 0.51
42

0.26
44

4

Adam 30.48 29.98 29.79 29.37 27.55 29.43 1.12
61

1.26
81

28.49 0.69
42

0.54
71

AdaMax 28.18 28.01 27.60 27.08 26.71 27.52 0.61
88

0.38
29

Nadam 29.53 29.53 28.83 28.60 28.27 28.95 0.56
39

0.31
80

AMSGrad 28.61 28.50 27.83 27.66 27.65 28.05 0.46
81

0.21
92

– AG-SGD 25.90 25.80 25.49 25.03 25.03 25.45 0.41
21

0.16
98 25.45 0.41

21
0.16
98 25.45 0.41

21
0.16
98

 68

Table 5.2 – Comparison of the 5 minimal error rates (MNIST)

GP Optimizer

The 5 Minimal Error Rates
percentages

listed from the highest to the
lowest

Each Group Overall

Avg Std Var Avg Std Var Avg Std Var

1
Vanilla 1.69 1.61 1.61 1.59 1.58 1.62 0.0434 0.0019

1.61 0.0361 0.0014

1.62 0.0411 0.0018

AdaDelta 1.65 1.61 1.60 1.58 1.58 1.60 0.0288 0.0008

2 Momentum 1.66 1.65 1.58 1.58 1.56 1.61 0.0456 0.0021 1.61 0.0456 0.0021

3
AdaGrad 1.67 1.66 1.66 1.64 1.54 1.63 0.0537 0.0029

1.61 0.0451 0.0021
RMSprop 1.65 1.61 1.58 1.57 1.56 1.59 0.0365 0.0013

4

Adam 1.70 1.70 1.70 1.63 1.58 1.66 0.0550 0.0030

1.64 0.037 0.0016
AdaMax 1.62 1.61 1.61 1.58 1.58 1.60 0.0187 0.0004

Nadam 1.69 1.69 1.67 1.63 1.61 1.66 0.0363 0.0013

AMSGrad 1.69 1.66 1.64 1.64 1.58 1.64 0.0402 0.0016

– AG-SGD 1.46 1.46 1.45 1.41 1.41 1.44 0.0259 0.0007 1.44 0.0259 0.0007 1.44 0.0259 0.0007

 69

5.3 Logistic Regression on Network-based Intrusion Detection

There are 41 features and 2 classes (i.e., normal and anomaly) in the dataset NSL-

KDD. We select all 25192 instances in the file “KDDTrain+_20Percent” as the training

samples and all 22544 instances in the file “KDDTest+” as the testing samples. To

employ the logistic regression classifier on the data, we apply the Principle Component

Analysis (PCA) [5.8] to convert all data to numeric. As a result, PCA generates 85

features in the training and the testing sets. With respect to the configuration of the

logistic regression classifier, there are 4 differences compared with the fully-connected

vanilla neural network. These are: (1) the numbers of input and output nodes are reduced

to 85 and 2, respectively; (2) the cost function is changed to Cross-Entropy [1.13] which

is more suitable for quantifying the output cost of binary classification problems than the

MSE; (3) the number of epochs is limited to 30 due to the reduction in samples and

complexity of classifier; (4) the batch size is set to 1 to better reveal the difference in

obtaining the optimal results among the 10 optimizers. Although a lower batch size will

have a higher probability of making the SGD trajectory more chaotic and mislead the

output cost to a higher value, a robust optimizer should result in a good result even

though its batch size is 1. As a result, there are 755,760 gradients (i.e., (25,192 / 1) ´ 30)

that will be generated to minimize the output cost in each experiment. For comparison,

the lowest testing error rates achieved by the three neural networks [5.9-5.11] are 20.7%,

19.87%, and 16.69%, respectively. The results of this experiment are shown in Figures

5.5 and 5.6, and Tables 5.3 and 5.4.

 70

Figure 5.5 – Distributions of the 5 minimal costs

(NSL-KDD, black dots are outliers)

Figure 5.6 – Distributions of the 5 minimal error rates

(NSL-KDD, black dots are outliers)

 71

Table 5.3 – Comparison of the 5 minimal costs (NSL-KDD)

GP Optimizer
The 5 Minimal Costs

scaled by 10
listed from the highest to the lowest

Each Group Overall

Avg Std Var Avg Std Var Avg Std Var

1
Vanilla 21.74 19.09 13.65 12.65 10.62 15.55 4.66

75
21.78

55
12.06 2.48

03
10.93

57

14.58 2.08
15

7.41
58

AdaDelta 8.84 8.77 8.70 8.43 8.13 8.57 0.29
30

0.085
8

2 Momentum 21.76 21.64 21.29 20.28 13.11 19.62 3.68
56

13.58
35 19.62 3.68

56
13.58

35

3
AdaGrad 12.90 12.40 11.70 11.55 11.13 11.93 0.70

66
0.499

2
13.75 0.59

07
0.362

4
RMSprop 16.24 15.66 15.64 15.29 14.96 15.56 0.47

48
0.225

5

4

Adam 14.13 13.92 12.05 11.82 10.51 12.49 1.52
50

2.325
5

12.90 1.56
93

4.781
6

AdaMax 20.89 12.62 12.36 11.73 10.96 13.71 4.06
37

16.51
34

Nadam 12.99 12.62 12.58 12.58 12.55 12.67 0.18
49

0.034
2

AMSGrad 13.22 13.19 12.62 12.55 12.02 12.72 0.50
34

0.253
4

– AG-SGD 8.78 8.64 8.60 8.40 8.11 8.51 0.26
01

0.067
7 8.51 0.26

01
0.067

7 8.51 0.26
01

0.06
77

 72

Table 5.4 – Comparison of the 5 minimal error rates (NSL-KDD)

GP Optimizer
The 5 Minimal Error Rates

percentages
listed from the highest to the lowest

Each Group Overall

Avg Std Var Avg Std Var Avg Std Var

1
Vanilla 21.66 20.83 20.12 19.93 17.48 20.00 1.56

64
2.45
35

17.31 1.29
12

1.74
28

19.47 0.81
60

0.96
76

AdaDelta 15.37 15.37 15.00 14.43 12.94 14.62 1.01
59

1.03
20

2 Momentum 21.25 20.71 20.67 18.66 18.29 19.92 1.34
16

1.80
00 19.92 1.34

16
1.80
00

3
AdaGrad 24.55 24.49 24.43 24.40 23.85 24.34 0.28

21
0.07
96

20.91 0.18
52

0.04
37

RMSprop 17.58 17.57 17.47 17.41 17.39 17.48 0.08
82

0.00
78

4

Adam 19.72 19.48 19.23 18.13 18.07 18.93 0.77
40

0.59
90

19.76 0.44
60

0.28
38

AdaMax 24.54 24.44 24.41 23.34 23.07 23.96 0.69
75

0.48
65

Nadam 18.56 18.54 18.32 18.30 18.29 18.40 0.13
57

0.01
84

AMSGrad 17.90 17.85 17.80 17.61 17.48 17.73 0.17
68

0.03
13

– AG-SGD 14.46 14.05 13.67 13.51 12.87 13.71 0.59
69

0.35
63 13.71 0.59

69
0.35
63 13.71 0.59

69
0.35
63

 73

5.4 Translation Rate

The reduction in cost may not be translated to a reduction in error rate, especially

when the former is obtained from non-critical output neurons. Assume an ANN with 10

output neurons is employed to identify a number (i.e., 0~9) and the prediction is

determined by the output neuron with the highest activation value. If the correct number

is 0 but the activation of the first output neuron (for predicting 0) is lower than the second

one (for predicting 1), reducing the overall cost from the output neurons 3 to 10 will not

change the wrong classification. Whereas, the accuracy could be improved only when the

cost reduction is achieved by increasing/decreasing the activation of the first/second

output neuron. Therefore, there is a difference in the ability of translating the reduction in

cost to the error rate among optimizers. Because there is no method to quantify this

difference, we name it as Translation Rate (TR) and calculate it by the following steps:

1) Obtaining multiple costs/error rates and calculating their averages (e.g., 5 or

more) of each compared optimizer.

2) Computing the largest differences of all costs (DCall) and error rates (DEall) of all

optimizers.

3) With respect to each optimizer, calculating the difference (DCeach/DEeach)

between its averaged cost/error rate and the highest cost/error rate of all

optimizers.

4) Scoring the abilities in the cost (Scost) and the error rate (Serror) reductions of each

optimizer by using DCeach / DCall and DEeach / DEall, respectively.

5) Determining TR of an optimizer by Serror / Scost.

 74

For instance, DCall and DEall in the second experiment (NSL-KDD) are 13.65 (i.e.,

21.76 – 8.11) and 11.68 (i.e., 24.55 – 12.87), respectively. With respect to Vanilla, its

DCeach and DEeach are 6.21 (i.e., 21.76 – 15.55) and 4.55 (i.e., 24.55 – 20.00), respectively.

Then, the corresponding Scost and Serror of Vanilla are 0.4549 (i.e., 6.21 / 13.65) and

0.3896 (i.e., 4.55 / 11.68). Finally, TR of Vanilla is 0.8563 (i.e., 0.3896 / 0.4549). Due to

the fact that the four variables (i.e., DCall, DEall, DCeach and DCeach) used to compute TR

are associated with other evaluated optimizers, TR of each optimizer is not an absolute

value but a relative one for comparing with others. As a result, if TRs of two optimizers

are 1.0 and 1.2, the latter is stronger than the former by 20% (i.e., (1.2 – 1.0) / 1.0 = 0.2 /

1.0) in its ability of translating the cost reduction to the error rate on specific datasets.

Tables 5.5 and 5.6 list TRs achieved on datasets MNIST and NSL-KDD for all

optimizers. The optimizers with lower TRs indicate that their losses in accuracy may not

be caused by an inefficacy of reducing costs, but its incapacity of translating the

advantages in costs to the error rates. Because the cost is quantified by a specific cost

function, a low TR might be caused by a mis-matching between the employed optimizer

and the cost function. In this sense, an optimizer with a lower TR means that it has less

options in selecting cost functions. This indicates that the optimizer has a narrower

applicability in practice, as each cost function provides its own unique advantages on

specific problems. For example, we could infer that Momentum may not match well with

the Sigmoid function according to its low TR = 0.6659 in Table 5.5. Whereas,

Momentum may be extremely-well suited for working with the Cross-Entropy based on

its high TR = 2.5285 in Table 5.6. These results indicate that changing the cost function

from the Sigmoid to Cross-Entropy may improve the accuracy on MNIST when

 75

Momentum is employed. Referring to column “Each” under “Diff” in Table 5.7, AG-

SGD and Adam present much better stability in TR than all other optimizers. However,

two TRs of Adam are not comparable with AG-SGD, so the latter is the best optimizer in

TR from an overall perspective.

 76

Table 5.5 – Translation rates (MNIST, Sigmoid)

GP Optimizer DCall DCeach Scost DEall DEeach Serror
TR

Each Group Overall

1
Vanilla

5.45

2.84 0.5211

0.29

0.08 0.2759 0.5294
0.5956

0.6503

AdaDelta 2.84 0.5211 0.10 0.3448 0.6617

2 Momentum 2.54 0.4661 0.09 0.3103 0.6659 0.6659

3
AdaGrad 2.34 0.4661 0.07 0.2414 0.5179

0.7632
RMSprop 2.05 0.3761 0.11 0.3793 1.0084

4

Adam 1.05 0.1927 0.04 0.1379 0.7159

0.5765
AdaMax 2.96 0.5431 0.10 0.3448 0.6349

Nadam 1.53 0.2807 0.04 0.1379 0.4913

AMSGrad 2.43 0.4459 0.06 0.2069 0.4640

– AG-SGD 5.03 0.9229 0.26 0.8966 0.9714 0.9714 0.9714

Table 5.6 – Translation rates (NSL-KDD, Cross-Entropy)

GP Optimizer DCall DCeach Scost DEall DEeach Serror
TR

Each Group Overall

1
Vanilla

13.65

6.21 0.4549

11.68

4.55 0.3896 0.8563
0.8680

1.1842

AdaDelta 13.19 0.9663 9.93 0.8502 0.8798

2 Momentum 2.14 0.1568 4.63 0.3964 2.5285 2.5285

3
AdaGrad 9.83 0.1568 0.21 0.0180 0.1147

0.7237
RMSprop 6.2 0.4542 7.07 0.6053 1.3327

 77

4

Adam 9.27 0.6791 5.62 0.4812 0.7085

0.6166
AdaMax 8.05 0.5897 0.59 0.0505 0.0857

Nadam 9.09 0.6659 6.15 0.5265 0.7907

AMSGrad 9.04 0.6623 6.82 0.5839 0.8817

– AG-SGD 13.25 0.9707 10.84 0.9281 0.9561 0.9561 0.9561

Table 5.7 – Translation rates in varied categories

GP Optimizer

TR

MNIST NSL-KDD
Diff Avg

Each Group Overall Each Group Overall

1
Vanilla 0.5294 0.8563 0.3269

0.2725

0.7043

0.6928
0.7318

0.9172

AdaDelta 0.6617 0.8798 0.2181 0.7708

2 Momentum 0.6659 2.5285 1.8626 1.8626 1.5972 1.5972

3
AdaGrad 0.5179 0.1147 0.4032

0.3637
0.3163

0.7434
RMSprop 1.0084 1.3327 0.3242 1.1705

4

Adam 0.7159 0.7085 0.0074

0.3184

0.7122

0.5966
AdaMax 0.6349 0.0857 0.5492 0.3603

Nadam 0.4913 0.7907 0.2994 0.6410

AMSGrad 0.4640 0.8817 0.4176 0.6728

– AG-SGD 0.9714 0.9561 0.0153 0.0153 0.0153 0.6928 0.9638 0.9638

 78

5.5 Time Complexity

Referring to the pseudocode presented in Chapter 3, if the simple addition and

multiplication are assumed to be O(1), the time complexity of the proposed optimization

algorithm is bounded and determined according to the vector dot-product (i.e., VPG • VCG)

in Equation 1. Since the dot-product performs an element-based multiplication between

the two gradients, then the AG-SGD computational complexity is O(n), where n

represents the length of the two vectors.

Since all optimizers use PGs to calibrate CGs, they are all associated with a

minimum time complexity of O(n). This is due to the element-based addition between the

two Gs, making the use of the big O notation unusable for comparison purposes. Instead,

to reveal the actual differences among the 10 optimizes, we measure their respective

computational times. Since the optimizers calculate their calibration terms sequentially,

where the practical time cost is determined by the number of computations with time

complexities of O(n). As a result, we measure the running or execution times for each of

the 10 optimizers, as shown in Figure 5.7. Since the training task exhausts all available

computation resources, the temperature of hardware (i.e., CPU/GPU) will be increased,

which impacts optimization efficiency. Furthermore, if we orderly test (OT) the 10

optimizers, an early-tested optimizer will take the advantage of a more powerful and

cooler hardware. To avoid this bias impacting the results, we perform the OT for three

times (consecutively). Then, the result of each optimizer is averaging from its three sub-

results. Particularly, if one of the sub-results deviates from the other two sub-results by

15% or more, it is discarded (i.e., assume to be affected by the performance decreasing

due to the high temperature) and new tests will be conducted until the deviation is less

 79

than 15%. To better compare the time costs between AG-SGD and the other optimizers,

each averaged running time is divided by the result of AG-SGD. For example, AdaGrad

is slower than AG-SGD by 41% (i.e., (1.41 – 1.00) / 1.00 = 0.41 / 1.00 = 0.41) in practice.

It is evident that Vanilla is always the fastest because it does not compute any calibration

term and solely updates the mode parameters by CGs. With respect to the other 9

optimizers, AG-SGD has a significant advantage in practical time cost.

Figure 5.7 – Comparison of Practical Running Time

(result from optimization procedure only)

However, the advantage in optimization efficiency does not fully translate into an

advantage in training efficiency, since the former is a subset of the latter. More

specifically, since the time costs of the procedures other than optimization (e.g.,

backpropagation) are constant among all optimizers, it can be expected that the

differences in training efficiency will be smaller than the differences in optimization

efficiency, which is verified by the results shown in Figure 5.8. Although the advantages

achieved by AG-SGD are less, it is still the most efficient optimizer (i.e., only slower

 80

than Vanilla by 19% = (1.00 – 0.84) / 0.84). This means that a more complex artificial

neural network can be trained employing AG-SGD, achieving higher accuracies.

Figure 5.8 – Comparison of Practical Running Time

(result from all procedures of model training)

5.6 Summary

The group-based error rates of the two experiments (refer to the columns “Avg”

under “Group” in Tables 5.2 and 5.4) show that complex optimizers (i.e., a larger group

number) generally perform worse than simpler ones. These conclusions agree with our

analysis in this chapter and other reviews such as [5.3]. Furthermore, according to the

group-based costs and TRs of the two experiments (costs: under the columns “Avg”

under “Group” in Tables 5.1 and 5.3, TR: under the columns “Group” under “Avg” in the

same tables), high error rates achieved by complex optimizers may not result from higher

costs, but instead from their lower TRs. These results are combined to show that the TR

of an optimizer is inversely changing with the number of incorporated techniques. With

respect to AG-SGD, its stable performance in TR (i.e., small difference between two TRs)

 81

could be also attributed to the aforementioned reason because it behaves like a special

Vanilla in practice. According to the group-based TRs in Tables 5.5–5.7, no distinct

pattern that can be detected other than erratic values. Similar observations can be found

on all individual TRs in addition to the extreme low/high TR achieved by

AdaGrad/RMSprop. The above results are combined to show that AG-SGD has a

significant advantage in consistently achieving high TRs when using a greater number of

different cost functions. The results of time complexity indicate that AG-SGD is faster

than all other optimizers, so its accuracy can be further improved by applying more

complex models trained within the same time period.

 82

CHAPTER 6

VERIFICATION, IMPROVEMENT, IMPLEMENTATION AND APPLICATION

6.1 Introduction

This chapter first verifies the Convergence Section (CS) that was proposed in

Chapter 4 through the evaluation of AG-SGD on MNIST using various configurations.

Because all measurements associated with AG-SGD rely on the new metric a, the method

of computing a is presented with its corresponding principle. Next, the reliability of a and

the associated principle of bypassing saddle points are verified by conducting statistical

analysis of the MNIST experimental results that are covered in Chapter 5. These contents

are combined to reveal the essential reasons of AG-SGD to be an effective method. Then,

an improvement to the original AG-SGD is presented, which results from the variants of

AG-SGD (i.e., creating alternative definitions of the two functions Fpg(a,sg) and Fη(a,sη)).

Subsequently, two versions of ML models used in the experiments and the matrix-based

multiplication that is implemented in the models will be briefly introduced. Finally, the

intended application of AG-SGD and the associated approach for realizations are

explained.

6.2 Verification of Convergence Section

To compare the lowest costs that are result from parameters within and beyond the

recommended CS, we test AG-SGD on MNIST by 10 different combinations of sg and sη,

starting from 1.000 and with 0.025 step-size. Table 6.1 shows that the best achieved

results when both parameters have the same value of 1.100. Also, the cost and the error

 83

rate are (roughly) decreasing in [1.000, 1.100] and increasing in [1.100, 1.200]. These

tendencies indicate that AG-SGD outperforms on the current dataset when these two

parameters are chosen close to 1.100. Furthermore, since the results achieved in the

section-averaged within [1.000, 1.100] are better than the results in [1.100, 1.2000], the

optimal parameters are found in [1.000, 1.100] with a higher probability.

Table 6.1 – Best results with varied parameters

sg = sη
Minimal Section Average

Cost
(scaled by 10,000)

Error Rate
(percentage)

Cost
(scaled by 10,000)

Error Rate
(percentage)

1.000 26.32 1.49

25.80 1.48
1.025 25.90 1.46

1.050 25.31 1.48

1.075 25.66 1.47

1.100 25.03 1.41 – –

1.125 25.74 1.48

26.31 1.51
1.150 26.28 1.52

1.175 26.29 1.52

1.200 26.94 1.53

To further verify that the lower value parameters for the current experiment provide

for more reliable configurations, we exam the varying trajectories of the cost and the

error rate across all of the tested parameters. As shown in Figures 6.1 and 6.2, we observe

that there are 3 curves that generate prominent peaks in both figures and are associated

with an unstable convergence process. Since all 3 peaks are a result of the largest 3

parameter values of 1.150, 1.175, and 1.200, it indicates that [1.100, 1.2000] is not a good

section for obtaining the optimal result. Whereas, all 4 curves resulting from [1.000,

1.100] represent a consistent stable optimization process. Therefore, there is a higher

 84

probability for AG-SGD to achieve the optimal result when these two parameters are in

[1.000, 1.100]. The experiment results verify that the cost convergence become unstable

if the two parameters go beyond the upper bound of the recommended CS (i.e., 1.156).

Figure 6.1 – The minimal costs with varied parameters (zoom-in, each dot represents the

cost of specific configuration on the corresponding epoch)

Figure 6.2 – The minimal error rates with varied parameters (zoom-in, each dot
represents the error rate of specific configuration on the corresponding epoch)

 85

6.3 Verification of The New Metric: Angle Between Consecutive Gradients

6.3.1 Computation of The Angle

Due to the fact that NG is used to update PARAM of the ML model, the former

matches the latter in dimension, as shown in Figure 6.3 (note: when the element of

PARAM/NG (i.e., PARAMxy/NGxy) refers to/is to update wxy (i.e., the weight of a

connection between two neurons), the data structure of PARAMxy/NGxy is a vector instead

of an element).

 86

Figure 6.3 – Data structures of model parameters and the corresponding new gradients

(a lighter NG indicates a higher deviation associated on it;
a lighter PARAM/neuron means it is updated by a less accurate NG)

As a result, the two methods shown in Figure 6.4 can be used to calculate θ,

which are:

 87

1) Flattening the entire PG and CG into a vector, respectively. Then, computing

θ between the flattened PG and CG using the presented equation (i.e.,

Equation 1 in Chapter 3).

2) Flattening each layer of PG and CG into a vector, separately. Then, we

calculate each θx between the corresponding two vectors result from the xth

layer (i.e., the same layer). Finally, θ is obtained from averaging all θxs.

From a global view, BP computes all NGxys (NGxy is an update of a weight or a

bias) in parallel based on features of each sample. In this sense, the first method is

computing a sample-based θ. From the local perspective, BP generates all NGxys layer by

layer, θ that is calculated by the second method is based on layer. The two methods are

common in employing all Gxys in computing θ. However, they will import deviation into

θ and are infeasible to accomplish in practice due to the follow two reasons:

1) According to the principle of BP, the magnitude of each NGxy varies with the

activation that is received from the previous layer [2.1]. This means that a

PARAMxy (e.g. wxy) will not adequately be updated when the activation value

is close to 0. This problem widely occurs on ML models that are employed on

datasets with a great many 0 inputs. For example, when an ANN is employed

on MNIST, its input layer would heavily suffer from this problem, as most

input neurons receive 0 inputs (i.e., the white pixels). Furthermore, each

neuron in later layers will receive multiple activations from the previous layer

(instead of receiving only 1 input activation as the input neuron), and a neuron

on a later layer is less likely to receive 0 input and this possibility decreases

even more for later layers. As a result, the deviations of NGxys decay with the

 88

corresponding layers becoming deeper, which are differentiated using

different shades in Figures 6.3–6.5.

2) In terms of computation, the time spent on calculating θ from all Gxys is

unacceptable for training an ANN. For example, if we adopt the first method

to calculate θ of the ANN that is evaluated in the previous chapter, there are

224,788,480 (each vectorized G, i.e., VPG or VCG in Figure 6.4 contains 784 ´

256 ´ 112 ´ 10 elements) parameters need to be updated. Consequently,

computing each θ needs almost 40 seconds on a 2.7 GHz Quad-Core Intel

Core i7 CPU and each epoch needs to compute 7.5 ´ 103 θs. This computation

time is much longer than the time required in training the model by one epoch

if we do not calculate θ. Moreover, the computational time increases

exponentially as the ML model becomes larger. Therefore, it can be

anticipated that improving the computational algorithm or employing

advanced hardware (e.g., CPU and GPU) alone may not resolve the problem.

Due to the fact that the computation of θ is only a sub-process in BP

computation, we need to reduce the time cost of each epoch at a level of 104

on small or medium ANNs and even more on larger ones.

 89

Figure 6.4 – Two abandoned methods of calculating a between consecutive gradients

(a lighter PGnm/CGnm indicates a higher deviation associated on it)

 90

As a result, adopting the aforementioned two methods will not only generate

deviated θs, but are infeasible to accomplish in practice. To avoid the two shortcomings,

we only employ Gxys of the last layer to compute θs (i.e., the third method shown in

Figure 6.5). The characteristics of this method are listed below:

1) During BP, Gxys of each layer are computed based on those Gxys of the

previous layer [2.3], and all Gxys are originally deriving from Gxys of the last

layer. Therefore, the difference between the latter at different moments (i.e.,

VPG, VCG) approximates the former (i.e., all Gxys, the reliability will be verified

by the correlation coefficient in the next subsection).

2) As we mentioned, Gxys before the last layer have larger deviations compared

with Gxys of the last layer, and removing the former means removing large

deviations from the computations of θs.

3) The computation of θ becomes much more efficient. For example, if we adopt

the third method to calculate θ of the ANN evaluated in the previous chapter,

then the number of elements in VPG and VCG is reduced to only 1,120 (i.e., 112

´ 10). Then, each θ only costs about 5 ´ 10-4 seconds on the same CPU and

improves the efficiency by 8 ´ 104 (i.e., 40 / 5 ´ 10-4) times. As a result, the

time of computing θ will meet the requirement of training DNNs.

 91

Figure 6.5 – The adopted method of calculating a between consecutive gradients

(a lighter PGnm/CGnm indicates a higher deviation associated on it)

 92

Due to the fact that all Gnys (n represent the last layer) are computed in parallel

during BP (i.e., layer-based computation), calculating layer-based θ between VPGn and

VCGn aligns with the principle of BP (i.e., the third method). However, the computation of

neuron-based θs between the corresponding Gnys (i.e., the fourth method in Figure 6.5) is

beyond the minimum layer-based computation that is supported by BP.

6.3.2 Verification of Using The Angle as A Reliable Metric

As introduced in Chapter 3, AG-SGD attempts to reduce the cost in one step by

reversing PG (when needed), leading to a lower number of obtuse angles among the other

SGD optimizers. Since the lower bound of the CS is 120˚ under the default configuration,

the PG revision will occur only when the angle is larger than 120˚. To verify the

effectiveness of angle reduction in the default CS, we count and compare the numbers of

angles in [120˚, 170˚) for all of the 10 optimizers (note: [170˚, 180˚] is eliminated

because no optimizer generates angle in this section) in the experiment on MNIST. As

the data indicate in Table 6.2, AG-SGD has the least number of obtuse angles in all of the

sections. Particularly, it has less than the second-least optimizer (i.e., AMSGrad) by

42.14% = (9371 - 5422) / 9371 and considering the averaged of all other optimizer by

54.17% = (11830 - 5422) / 11830 in total. Therefore, AG-SGD spends less steps on the

high cost areas among the 10 optimizers, and the saved steps are used to find better

minima.

 93

Table 6.2 – Number of angles in different sections

GP Optimizer [120, 130) [130, 140) [140, 150) [150, 160) [160, 170)
Total Reduction

Rate Each Group Overall

1
Vanilla 6527 3482 1153 138 4 11304

11831

11830
54.17%

AdaDelta 5903 4423 1775 244 12 12357

2 Momentum 5747 2884 814 70 3 9518 9518

3
AdaGrad 6282 5166 2026 268 21 13763

13820
RMSprop 6381 4886 2207 391 11 13876

4

Adam 7498 4951 2030 394 8 14881

12153
AdaMax 6083 3155 992 115 4 10349

Nadam 7165 4551 1917 372 7 14012

AMSGrad 5402 2912 902 134 21 9371

– AG-SGD 3908 1289 205 18 2 5422 5422 5422

 94

To check the relationship between the number of obtuse angles and the associated

cost and error rate, we compute the correlation coefficients for all of the 10 optimizers, as

shown in Table 6.3 Since the principle of SGD is to indirectly reduce the error rate via

directly reducing the cost, the correlation coefficient associated with the cost reduction

which is close to 0.8 as shown in Table 6.3 indicates a strong positive correlation

between the two metrics. The reduction in correlation of error rate is due to the averaged

TR that is lower than 1 among all of the optimizers presented in the previous chapter.

Therefore, reversing PG when needed is an effective method and the angle between the

gradients is a reliable metric in reducing the cost.

 95

Table 6.3 – Correlation coefficients between obtuse angles and cost/error rate

GP Optimizer Total
Angle

Average Coefficient

Cost
(scaled by 10,000)

Error Rate
(percentage)

 Cost
(scaled by 10,000)

Error Rate
(reduced by TR)

1
Vanilla 11304 27.64 1.62

0.7923 0.6900

AdaDelta 12357 27.64 1.60

2 Momentum 9518 27.94 1.61

3
AdaGrad 13763 28.14 1.63

RMSprop 13876 28.43 1.59

4

Adam 14881 29.43 1.66

AdaMax 10349 27.52 1.60

Nadam 14012 28.95 1.66

AMSGrad 13763 28.14 1.63

– AG-SGD 5422 25.45 1.44

 96

6.4 Verification of Bypassing Saddle Points

The proposed method may result in the cost being trapped into saddle points as

shown in Figure 6.6. This problem occurs when the cost movement (the solid lines

between positions 0 and 1) is aligning with (i.e., Figure 6.6(a)) or perpendicular to (i.e.,

Figure 6.6(b)) the saddle pit. As we concluded, NG is dominated by CG when a is close

to 0˚ or 90˚ (the dashed lines are extensions of the previous gradients). As shown in both

subfigures, CG of position 1 points to the centers of saddle pits, and the costs would

guide the movement to position 2, finally reaching position 3 for the same reason.

Although this problem would rarely occur in practice, it reveals a deficiency in the

principle of the proposed optimizer. There are two methods to resolve this problem. (1)

Conducting the experiment again may change the trajectory of the cost reduction and

bypass the saddle pit. Even if the new trajectory is still crossing the saddle pit as in Figure

6.6 (b), the cost movement may not closely be perpendicular to the saddle pit. In this case,

the weights of PGs will be increased, resulting in the cost escaping from the saddle pit.

Although this result would not occur on the saddle pit in Figure 6.6 (a), the possibility of

bypassing the saddle pit (a) would be higher than the saddle pit (b) because the former

has a narrower cross-section than the latter in the direction of cost movement. (2)

Employing a η warm restarts scheduler would enable the cost to escape from the saddle

pit by increasing the magnitudes of Gs, which is also applicable to other optimizers.

 97

Figure 6.6 – Two cases of trapping into the saddle points

(lighter colors indicate lower costs)

To verify the aforementioned problem would rarely occur in practice, we recorded

the changing trajectory of the first 1,000 angles under the default setting (results from the

experiment on MNIST), as shown in Figure 6.7. Our findings indicate that only 24 of

1,000 (2.4%) of the angles are larger than 120˚ and that there are no consecutive large

angles. If these large angles result from saddle points, the data prove that the AG-SGD

can achieve escaping from these saddle points in only one step (i.e., no consecutive larger

angle). In line with an established principle, when a large angle (>120˚ under the default

setting) is generated, wpg will be less than zero and makes PG point in the direction that

deviates from the saddle points (refer to Figure 3.2(a)). Although CG may point to the

saddle points and wcg is slightly larger than the |wpg| (i.e., only when the θ Î (120˚, 135˚)),

the accumulated PGs will be much larger than the single CG in magnitude. As a result,

 98

NG (i.e., η (wpgPG + wcgCG)) aligns in direction with PG, forcing the cost deviating from

the saddle points (i.e., moving backward).

Figure 6.7 – Trajectory of the first 1,000 angles under the default setting
(results from the experiment on MNIST, only 24 of 1,000 are larger than 120˚)

6.5 Improvement from Variant

6.5.1 Criterion of Defining Variants

A curve can be an effective alternative to L0 of Fpg(a,sg) and Fη(a,sη) in Figure 3.2,

as long as it satisfies the following four requirements. They are: (1) a is limited within [0,

1]; (2) the curve has to be continuously and monotonically decreasing within [0, 1]; (3)

the interception point on the horizontal axis is 0.5; (4) the intercept point on the vertical

axis is not less than 1 for Fpg(a,sg) and 2 for Fη(a,sη). Accordingly, the curves C1, C2, C3

in Figure 6.8 are promising alternatives for L0, which may achieve better results on

problems in certain fields.

 99

Figure 6.8 – Alternatives of the functions Fpg(a,sg) in (a) and Fη(a,sη) in (b) (curves C1,

C2 and C3 are alternative definitions that comply with the concept proposed in Chapter 3;
the horizontal axis is the normalized angle between PG and CG; two intercept points on

vertical axes sg and sη are parameters of the proposed method)

6.5.2 Study Case: Improvement from A Non-linear Variant

As mentioned in the previous chapter, AG-SGD does not show the best converging

speed in the first 14 epochs. To determine the reason, we compute the averaged angles

between the gradients of all 50 epochs. Referring to Figure 6.9, the angles during the first

14 epochs are distinctly smaller than other epochs, which means more acute angles are

generated during earlier epochs. Since the magnitude of the NG variance decreases

rapidly as the angle approaches to 0˚ (refer to Figure 3.2), we expect that the convergence

 100

can be accelerated if we replace the simplistic linear line L0 of Fpg(a,sg) with others which

have higher slopes, such as the curves C1, C2, C3 in Figure 6.8.

Figure 6.9 – Averaged angle between the consecutive gradients of each epoch
(each dot denoted the averaged angles within each epoch)

To verify the feasibility of this solution, we have tested a non-linear definition

sgcos(a/0.3183) of Fpg(a,sg) (setting 0.3183 such that the curve crosses the x-axis at 0.5).

The results presented in Figure 6.10 indicate that the convergence speed effects from the

non-linear definition are consistently faster than those from the linear ones. The

distinction begins to manifest as of epoch no.11 (except for epochs no.18 and 20), which

conforms with our expectation.

 101

Figure 6.10 – Comparison of convergence speeds between linear (simplistic) and non-
linear definitions of Fpg(a,sg)

In addition, employing a non-linear definition does not increase the number of

parameters. For example, sg is the only parameter that exist in both the non-linear (i.e.,

sgcos(a/0.3183)) and linear (i.e., sg(1-2a)) definitions, as shown in the curves and lines in

Figure 6.11 (i.e., when sg Î [1.0, 1.2], step by 0.1). It is important to note that mainstream

deep-learning libraries (e.g., Tensorflow [1.18], Keras [1.19], Caffe [1.20], PyTorch

[1.21]) identify the Adam and the AdaMax as two different optimizers, even though their

only difference consist of the norms used (Adam/AdaMax uses l2/l∞ norm). Complying

with the same criterion, if one/two functions (i.e., Fpg(a,sg) and Fη(a,sη)) of AG-SGD

is/are modified, a new optimizer with two parameters (i.e., sg and sη) is obtained (i.e.,

function modification should not be considered equivalent to parameter tuning).

Compared with the Adam-family which consists of two optimizers, AG-SGD-family is

able to generate numerous new optimizers by defining various definitions.

 102

Figure 6.11 – Relationship among some representative linear and non-linear definitions

of Fpg(a,sg) (sg Î [1.0, 1.2], step by 0.1)

6.6 Implementation

6.6.1 Matrix-based Multiplication

The employed matrix-based multiplication is implemented based on the method in

[6.1], benefiting the computations of BP and FP. In the traditional looping approach, BP

and FP are orderly executed on samples of the mini-batch. Conversely, the matrix-based

approach treats all samples as a whole (i.e., batch-based computation) and generate the all

results in parallel.

6.6.2 Two Versions: CPU and GPU

Each evaluated model has two versions. One is using a CPU and the other is using

the power of a GPU. The GPU version is realized using Compute Unified Device

 103

Architecture (CUDA) which is a parallel computing platform and programming model

developed by NVIDIA [6.2]. Although the GPU version would be faster, the practical

difference in speed between two versions is affected by many other factors. For example,

the GPU version executes each BP with a cost of copying all data from the main memory

to the GPU memory [6.3]. The additional overhead makes the GPU version slower than

the CPU version when the batch size and/or the ML model is relatively small and/or

simple. To reimplement ML models and reproduce results, one needs to install Numpy

(Numerical Python) [6.4] for the CPU version and PyCUDA (accessing CUDA from

Python) [6.5] for the GPU version.

6.7 Application

In addition to machine learning experts, the proposed algorithm can be used by non-

professional users (e.g., programmers working for small businesses) who want to obtain

insight from their data with minimum efforts. To better serve this group of users, AG-

SGD is specifically designed/enhanced on the following four aspects. These are:

1) Due to the fact that non-professional users have limited ability of tuning parameters,

AG-SGD sets the average of recommended section (i.e., (0.820, 1.156)) as the

default configuration to better fitting data in most fields. Also, it abandons all

measurements without finite parameter tuning spaces (e.g., the learning rate can be

set to any magnitude in practice) because we are unable to determine a universal

value that results in decent performances on various datasets (e.g., it is common to

see the magnitude of learning rate change between levels of 10-1/10-2/10-3/10-4). It is

evident that non-professional users are unable to tune these types of parameters.

 104

2) To improve the accuracy using the default setting, AG-SGD intends to guide non-

professional users in training more complex models (i.e., more layers and/or more

neurons in layers) instead of tuning various parameters. A more reasonable approach

is that the former is not only more understandable (i.e., the larger the better), but also

more effective than the latter because the complexity/architecture is the foundation of

ML model.

3) Since non-professional users usually do not have high performance computing

systems, we assume that powerful GPUs are not available to accelerate AG-SGD.

Therefore, to reduce the time cost in training a complex model, it is important to

establish a very small batch size and improve the corresponding accuracy. Since the

experiment on the dataset NSL-KDD has shown that our method is effective on the

smallest batch size (i.e., 1), its usage has a much lower requirement than other

optimizers which have to set much larger batch sizes (e.g., 128/256/512...) to achieve

decent results. As such, AG-SGD can train very complex models within the same

time period as other methods.

4) We have shown that high accuracies can be obtained by setting the two parameters of

AG-SGD to the same value v (i.e., sg = sη = v, where v Î (0.820, 1.156)). Since v

determines the CS, a v that is close to 0.820/1.156 will result in a weaker/stronger

convergence, indicating a more conservative/aggressive configuration (i.e., the

correlation between the intensity of convergence and the magnitude of v is

monotonous). This intuitive interpretation of the parameter tuning is completely

understandable to non-professional users and provides sufficient guidelines to find

the best result. For example, if a user obtains a higher accuracy by decreasing v from

 105

1.1 to 1.0, the value 1.1 could be interpreted as a somewhat more aggressive

configuration then a v that is smaller than 1.1 should be tried. Although other

optimizers also have one parameter, these parameters have no monotonous

correlation with the intensity of convergence. Consider, the parameter b of

Momentum which can be difficult for non-professional to fully understand its affects.

Particularly, the consequences of adjusting b in terms of convergence intensity are

completely unpredictable. The usage difficulties of other optimizers (e.g., Adam)

with multiple parameters (e.g., b, b1, b2, η, ε, etc.) are not comparable to the

simplicity of using AG-SGD in a significant manner.

It is evident that none of the compared optimizers meet all four requirements. For

example, AdaGrad has one parameter (i.e., learning rate), but its value changes too

radically (i.e., cannot define a universal value as the default setting) and is obscure to

non-professional users. Most importantly, its error rates are far beyond AG-SGD (e.g.,

the averaged error rates: 24.34% versus 13.71% in Table 5.4). Consequently, AG-SGD

has a significant advantage on the intended application (i.e., used by non-professional

users), which can be implemented on platforms that provide Auto-ML solutions (i.e.,

training ML models from built-in free-tuned algorithms), such as Amazon SageMaker

Autopilot [6.6].

It needs to be re-emphasized that adjusting the two parameters together is the

recommended configuration approach for non-professional users, but machine learning

experts can achieve higher accuracies by tuning each parameter separately. However, the

intended objective of AG-SGD is to fine tune and search for better definitions of Fpg(a,sg)

 106

and Fη(a,sη), by developing a new tuning section with a better CS for non-professional

users in an effort to improve their results.

6.8 Summary

According to the verification of the correlation coefficient between a and the

averaged costs from all optimizers, a would be an effective metric for improving the

accuracy of NG. Also, the actual behaviors of AG-SGD comply with our intention based

on the verification of CS. Verifications of CS and a are combined to show that a

computed by the third method can accurately reflect the correlation between PG and CG,

translating to a good accuracy that is realized in the adoption of a-based measurements in

practice.

 107

CHAPTER 7

CONCLUSIONS

7.1 Possible Improvements

7.1.1 Computation of The Angle

Due to the limitation on computing power, the current method in computing the

angle is solely employing the gradient difference of the last layer. However, the fact is

that the gradient differences of other layers can provide more useful information (at least

for datasets without a lot of 0 inputs). To resolve the computation problem, one

promising method is to divide the layer-scaled computation to a smaller unit (e.g., half-

/quarter-layer-scaled, neuron-scaled), reducing the length/size of each variable and

accomplishing all small-scaled computations in parallel using a GPU. However, the

minimum calculation scale/unit of BP is layered, and we need to find supportive

explanations for improvements that result from smaller scaled calculations. In addition,

although we can remove 0 inputs from the dataset, the activation difference among input

neurons remains unchanged, resulting in unbalanced updates among the neurons of

different layers.

7.1.2 Angle-based Learning Rate Scheduler

As an external technique, the learning rate scheduler (e.g., annealing/decay and

warm restarts) may be combined with AG-SGD to further reduce the cost. Based on our

preliminary experiments on MNIST, if the researchers decay the learning rate then the

lowest, average and stability of the cost can be improved. However, the traditional/tested

learning rate scheduler is incompatible with AG-SGD, as it adjusts the learning rate based

 108

on epoch instead of the angle. Therefore, we are testing multiple angle-based learning

rate methods to significantly improve AG-SGD.

7.2 Significant of The Work

The proposed AG-SGD would be the first optimizer that utilizes the angle between

consecutive gradients to improve ML models. From the perspective of the research, the

utilization of angle largely reduces the difficulty of creating new measurements. Now,

researchers can employ the previous gradient, angle, or both in their improvements.

Particularly, the angle-based measurements can increase the TR of the model, which is

unachievable by measurements that solely rely on the previous gradients. This

improvement implies that the accuracy associated with existing optimization algorithms

can be further improved by incorporating the proposed or designing new angle-based

measurements. Internal conflicts that would otherwise confiscate benefits resulting from

different measurements are nonexistent because both old and new measurements rely on

different metrics. It is possible to design and develop new angle-based optimizers from

scratch, and creating AG-SGD variants through defining alternative definitions of

Fpg(a,sg), Fη(a,sη) or both is the easiest way for achieving the same goal. There is an

unlimited number of functions that can be chosen from, and the modified AG-SGD

would result in good performances for specific problems in a variety of fields. Most

importantly, a new variant will inherit all advantages (e.g., cost awareness ability) that

come with the original AG-SGD, which may be unachievable using newly-designed

measurements. With respect to the application, the most important inheritable property is

the CS (i.e., a limited parameter tuning section). Enabling the CS provides a contribution

 109

that allows a non-professional user to find the optimal configuration with much less effort.

Furthermore, the utilization of CS indicates new variants that use the default settings,

providing accurate results and largely broadening the application of the model in various

scenarios.

 110

LIST OF REFERENCES

[1.1] O. I. Abiodunab, A. Jantana, A. E. Omolarac, K. V. Dadad, N.A. Mohamede, H.
Arshadf, “State-of-the-art in artificial neural network applications: A survey,”
Heliyon, vol. 4, 2018.

[1.2] L. F. Guilhoto, “An overview of artificial neural networks for mathematicians,”

2018. Available: http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf.

[1.3] KDnuggets, “The 8 neural network architectures machine learning researchers need
to learn,” Available: https://www.kdnuggets.com/2018/02/8-neural-network-
architectures-machine-learning-researchers-need-learn.html.

[1.4] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Conference on Neural Information Processing
Systems, Lake Tahoe, United States, December 2012.

[1.5] R. Salakhutdinov, G. Hinton, “Deep Boltzmann Machines,” 25th International
Conference on Artificial Intelligence and Statistics, Florida USA, April 2009.

[1.6] K. K. Al-jabery, T. Obafemi-Ajayi, G. R. Olbricht, D. C. Wunsch II, “Deep

Learning for Power System Data Analysis” in Computational Learning Approaches
to Data Analytics in Biomedical Applications, 1st ed. Elsevier, 2020.

[1.7] H, Lee, R, Grosse, R. Ranganath, A. Y. Ng, “Convolutional deep belief networks for

scalable unsupervised learning of hierarchical representations,” In Proceedings of the
26th International Conference on Machine Learning, Montreal, Canada, 2009.

[1.8] G. Hinton, “Deep Belief Nets,” 2007. [Online]. Available:
https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf.

[1.9] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Computational Mathematics and Mathematical Physics, vol. 4, pp. 1–17,
1964.

[1.10] D. P. Kingma, J. Ba, “Adam: a method for stochastic optimization,” 3rd

International Conference on Learning Representations, San Diego, May 2015.

[1.11] I. Loshchilov, F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” In
Proceedings of International Conference on Learning Representations, Toulon,
France, April 2017.

[1.12] Keras, “Regression losses.” [Online]. Available:
https://keras.io/api/losses/regression_losses/#meansquarederror-class.

 111

[1.13] Keras, “CategoricalCrossentropy.” [Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy.

[1.14] Keras, “Regression losses: huber,” [Online]. Available:

https://keras.io/api/losses/regression_losses/#huber-class.

[1.15] Keras, “Regression losses: cosinesimilarity,” [Online]. Available:
https://keras.io/api/losses/regression_losses/#cosinesimilarity-class.

[1.16] Keras, “Layer activation functions.” [Online]. Available:
https://keras.io/api/layers/activations/.

[1.17] P. Golik, P. Doetsch, H. Ney, “Cross-entropy vs. squared error training: a theoretical

and experimental comparison,” Interspeech, 2013.

[1.18] Tensorflow, [Online]. Available: https://www.tensorflow.org.

[1.19] Keras, [Online]. Available: https://keras.io.

[1.20] Caffe, [Online]. Available: https://caffe.berkeleyvision.org.

[1.21] PyTorch, [Online]. Available: https://pytorch.org.

[1.22] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” 2012. [Online].
Available: arXiv: https://arxiv.org/abs/1212.5701.

[2.1] M. Nielsen, Neural Networks and Deep Learning, 2015. [Online]. Available:

http://neuralnetworksanddeeplearning.com/index.html.

[2.2] H. Robbins, S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, vol. 22, pp. 400–407, September 1951.

[2.3] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning representations by back-

propagating errors,” Nature, pp. 533–536, 1986.

[2.4] Z Wang, X Xu, W Zhao, Y Zhang, S He, “Optimizing sparse matrix-vector
multiplication on CUDA,” International Conference on Education Technology and
Computer, Shanghai, China, 2010.

[2.5] Y. Bengio, J. Louradour, R. Collobert, “Curriculum learning”. Proceedings of the

26th Annual International Conference on Machine Learning, pp. 41–48, 2009.

[2.6] W. Zaremba, I. Sutskever, “Learning to Execute,” 2014. [Online]. Available: arXiv:
1410.4615.

 112

[2.7] J. Zhang, I. Mitliagkas, C. Ré, “YellowFin and the art of Momentum tuning,” 2017.
[Online]. Available: arXiv: 1706.03471.

[2.8] M. Denkowski, G. Neubig, “Stronger baselines for trustable results in neural

machine translation,” 2017. [Online]. Available: arXiv: 1706.09733.

[2.9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, N. A. Gomez, I.
Polosukhin, “Attention is all you need,” In Advances in Neural Information
Processing Systems, CA, USA, May 2017.

[2.10] L. S. Smith, J. P. Kindermans, V. Q. Le, “Don’t decay the learning rate, increase the

batch size,” 2017. [Online]. Available: arXiv: 1711.00489.

[2.11] J. Dean, S. G. Corrado, R. Monga, K. Chen, M. Devin, V. Q. Le, Y. A. Ng, “Large
scale distributed deep networks,” Neural Information Processing Systems, pp. 1–11,
2012.

[2.12] J. Pennington, R. Socher, D. C. Manning, “Glove: global vectors for word

representation,” Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, pp. 1532–1543, 2014.

[2.13] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, “Identifying
and attacking the saddle point problem in high-dimensional non-convex
optimization,” 2014. [Online]. Available: arXiv: 1406.2572

[2.14] K. Kawaguchi, “Deep learning without poor local minima,” In Advances in Neural
Information Processing Systems, Barcelona, Spain, December 2016.

[2.15] C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, “Understanding deep learning

requires rethinking generalization,” In Proceedings of International Conference on
Learning Representations, Toulon, France, April 2017.

[2.16] S. N. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang, “On large-

batch training for deep learning: generalization gap and sharp minima,” In
Proceedings of International Conference on Learning Representations, Toulon,
France, April 2017.

[2.17] L. Dinh, R. Pascanu, S. Bengio, Y. Bengio, “Sharp minima can generalize for deep

nets,” In Proceedings of the 34th International Conference on Machine Learning,
Sydney, Australia, August 2017.

[2.18] S. R. Sutton, “Two problems with backpropagation and other steepest-descent

learning procedures for networks.” In Proceedings of 8th Annual Conference on
Cognitive Science Society, London, UK, 1986.

 113

[2.19] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
Networks : The Official Journal of the International Neural Network Society, vol. 12,
pp. 145–151, 1999.

[2.20] J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning

and stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp.
2121–2159, 2011.

[2.21] John C. Duchi, Michael I. Jordan, H. Brendan McMahan, “Estimation, optimization,

and parallelism when data is sparse,” Neural Information Processing Systems,
Nevada, United States, December 2013.

[2.22] Z. Chen, Y. Xu, E. Chen, T. Yang, “SADAGRAD: strongly adaptive stochastic

gradient methods,” Proceedings of the 35th International Conference on Machine
Learning, vol. 80, pp. 913-921, 2018.

[2.23] X. Liu, E. Chow, M. Smelyanskiy, P. Dubey, “Efficient Sparse Matrix-Vector

Multiplication on x86-Based Many-Core Processors,” Proceedings of the 27th
international ACM conference on International conference on supercomputing, pp.
273–282, June 2013.

[2.24] G. Hinton, N. Srivastava, K. Swersky. [Online]. Available:

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[2.25] V. Bushaev, “Adam–latest trends in deep learning optimization,” 2018. [Online].
Available: https://towardsdatascience.com/adam-latest-trends-in-deep-learning-
optimization-6be9a291375c

[2.26] T. Dozat, “Incorporating Nesterov Momentum into Adam,” International Conference

on Learning Representations (ICLR) Workshop, Puerto, Rico, 2016.

[2.27] Y. Nesterov, “A method for unconstrained convex minimization problem with the
rate of convergence o(1/k2),” Soviet Math Docl, vol. 269, pp. 543– 547, 1983.

[2.28] S. J. Reddi, S. Kale, S. Kumar, “On the convergence of Adam and beyond,”

Conference on Learning Representations (ICLR), Vancouver, Canada, 2018.

[2.29] I. Loshchilov, F. Hutter, “Decoupled weight decay regularization,” In Proceedings of
International Conference on Learning Representations, LA, USA, May 2019.

[2.30] J. Ma, D. Yarats, “Quasi-hyperbolic momentum and Adam for deep learning,” In

Proceedings of International Conference on Learning Representations, LA, USA,
May 2019.

 114

[2.31] J. Lucas, S. Sun, R. Zemel, R. Grosse, “Aggregated Momentum: Stability through
passive damping,” In Proceedings of International Conference on Learning
Representations, LA, USA, May 2019.

[2.32] T. Dozat, D. C. Manning, C. D, “Deep biaffine attention for neural dependency

parsing,” In Proceedings of International Conference on Learning Representations,
Toulon, France, April 2017.

[2.33] S. Laine, T. Aila, “Temporal ensembling for semi-supervised learning,” In

Proceedings of International Conference on Learning Representations, Toulon,
France, April 2017.

[2.34] F. Korzeniowski, “Experiments with AMSGrad,” 2018. [Online]. Available:

https://fdlm.github.io/post/amsgrad/

[2.35] G. Huang, Z. Liu, Q. K. Weinberger, L. Maaten, “Densely connected convolutional
networks,” In Proceedings of Conference on Computer Vision and Pattern
Recognition, Hawaii, United States, July, 2017.

[2.36] Y. Wu, M. Schuster, Z. Chen, V. Q. Le, M. Norouzi, W. Macherey, J. Dean,

“Google’s neural machine translation system: bridging the gap between human and
machine translation,” 2016. [Online]. Available: arXiv:
https://arxiv.org/abs/1609.08144.

[2.37] X. Chen, S. Liu, R. Sun, M. Hong, “On the convergence of a class of adam-type

algorithms for non-convex optimization,” In Proceedings of International
Conference on Learning Representations, LA, USA, May 2019.

[2.38] L. N. Smith, “A disciplined approach to neural network hyper-parameters: part 1 –

learning rate, batch size, momentum, and weight decay,” 2018. [Online]. Available:
arXiv :https://arxiv.org/abs/1803.09820

[2.39] L. N. Smith, “Cyclical learning rates for training neural networks,” 2017. [Online].

Available: arXiv: https://arxiv.org/abs/1506.01186

[2.40] J. Bergstra, Y. Bengio, “Random search for hyper-parameter optimization,” Journal
of Machine Learning Research, vol. 13, pp. 281–305, 2012.

[2.41] G. Melis, C. Dyer, P. Blunsom, 2017. [Online]. “On the state of the art of evaluation

in neural language models,” Available: arXiv: https://arxiv.org/abs/1707.05589.

[2.42] S. Merity, N. K. Shirish, R. Socher, 2017. [Online]. “Regularizing and Optimizing
LSTM Language Models,” Available: arXiv: https://arxiv.org/abs/1708.02182

[3.1] S. Ruder, “An overview of G descent optimization algorithms,” 2017. [Online].

Available: arXiv: 1609.04747.

 115

[3.2] M. Nielsen, Neural Networks and Deep Learning, 2015. [Online]. Available:

http://neuralnetworksanddeeplearning.com/index.html.

[3.3] S. M. R. Arnold, P. A. Manzagol, R. Babanezhad, I. Mitliagkas, N. L. Roux,
“Reducing the variance in online optimization by transporting past gradients,” 2019.
[Online]. Available: https://arxiv.org/abs/1906.03532.

[3.4] M. Hardt, B. Recht, Y. Singer, “Train faster, generalize better: stability of stochastic
gradient descent,” International Machine Learning Conference (ICML), New York
City, NY, USA, 2016.

[3.5] Y. Wu, M. Schuster, Z. Chen, et al, “Google's neural machine translation system:
bridging the gap between human and machine translation,” 2016. [Online].
Available: https://arxiv.org/abs/1609.08144.

[3.6] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, G. E. Dahl, “On empirical

comparisons of optimizers for deep learning,” 2020. [Online]. Available:
https://arxiv.org/abs/1910.05446.

[4.1] R. Gylberth, R. Adnan, S. Yazid, T. Basaruddin, “Differentially private optimization

algorithms for deep neural networks,” 9th International Conference on Advanced
Computer Science and Information Systems (ICACSIS), Bali, Indonesia, 2017.

[5.1] Y. LeCun, C. Cortes, C. J.C. Burges, “The Mnist Database of handwritten digits.”

[Online]. Available: http://yann.lecun.com/exdb/mnist/.

[5.2] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, “A Detailed Analysis of the KDD
CUP 99 Data Set,” 2nd IEEE Symposium on Computational Intelligence for
Security and Defense Applications (CISDA), Ottawa, ON, Canada, 2009.

[5.3] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, B. Recht, “The Marginal Value of

Adaptive Gradient Methods in Machine Learning,” 2018. [Online]. Available: arXiv:
1910.05446.

[5.4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout:

A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine
Learning Research, vol. 15, pp. 1929–1958, 2014.

[5.5] A. Krogh, J. A. Hertz, “A Simple Weight Decay Can Improve Generalization,”

Conference on Neural Information Processing Systems (NeurIPS), Denver, Colorado,
USA, 1991.

[5.6] R. Ge, S. M. Kakade, R. Kidambi, P. Netrapalli, “The Step Decay Schedule: A Near

Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares,”

 116

Conference on Neural Information Processing Systems (NeurIPS), Vancouver,
Canada, 2019.

[5.7] Kaggle, “Learn computer vision fundamentals with the famous MNIST data.”

[Online]. Available: https://www.kaggle.com/c/digit-recognizer/discussion/61480.

[5.8] Y. Pei, “Linear Principal Component Discriminant Analysis,” IEEE International
Conference on Systems, Man, and Cybernetics, Budapest, Hungary, January 2016.

[5.9] S. Rawat, A. Srinivasan, V. R, “Intrusion detection systems using classical machine
learning techniques versus integrated unsupervised feature learning and deep neural
network.” [Online]. Available: arXiv:1910.01114.

[5.10] Y. Ding, Y. Zhai, “Intrusion Detection System for NSL-KDD Dataset Using

Convolutional Neural Networks,” Proceedings of the 2018 2nd International
Conference on Computer Science and Artificial Intelligence, Shenzhen, China, 2018,
pp. 81–85.

[5.11] X. Zhang, J. Ran; J. Mi, “An Intrusion Detection System Based on Convolutional

Neural Network for Imbalanced Network Traffic,” IEEE 7th International
Conference on Computer Science and Network Technology (ICCSNT), Dalian,
China, 2020.

[6.1] H. Sellouk, “Matrix based back-propagation.” [Online]. Available:

https://medium.com/@hindsellouk13/matrix-based-back-propagation-fe143ce2b2df

[6.2] D. B. Davidson, “EM programmer's notebook,” IEEE Antennas and Propagation
Magazine, vol. 52, June 2010.

[6.3] J. Ghorpade, J. Parande, M. Kulkarni, A. Bawaskar, “GPGPU processing in CUDA

architecture,” 2012. [Online]. Available: arXiv: 1202.4347.

[6.4] Numpy. [Online]. Available: https://numpy.org.

[6.5] PyCUDA. [Online]. Available: https://documen.tician.de/pycuda/.

[6.6] Amazon SageMaker Autopilot, [Online]. Available:
https://aws.amazon.com/sagemaker/autopilot/.

 117

VITA

CHONGYA SONG

2015-2017 Master Student

College of Engineering
Florida International University
Miami, Florida

2017 M.S., Computer Engineering

Florida International University
Miami, Florida

2017-2019 Research Assistant
 College of Engineering

Florida International University
Miami, Florida

2019-2021 Doctoral Candidate

College of Engineering
Florida International University
Miami, Florida

Teaching Assistant

 College of Engineering
Florida International University
Miami, Florida

PATENTS, PUBLICATIONS AND PRESENTATIONS

Song, C., Pons, A. (2021), Systems and Methods for Network-Based Intrusion Detection
(US Patent Issued: Serial No. US 10, 911, 471 B1).

Song, C., Pons, A, Yen, K. (2021), AG-SGD: Angle-based Stochastic Gradient Descent.
IEEE Access.

Song, C., Pons, A, Yen, K. (2020), Optimizing Stochastic Gradient Descent Using the
Angle Between Gradients. IEEE International Conference on Big Data.

Song, C., Pons, A, Yen, K. (2020), Sieve: An Ensemble Algorithm Using Global
Consensus for Binary Classification. AI, 1(2), 242-262.

Song, C., Yen, K. Pons, A, Liu, J. (2020), Rank-Based Chain-Mode Ensemble for Binary
Classification. International Conference on Machine Learning and Applications

 118

Song, C., Pons, A, Yen, K. (2018), AA-HMM: An Anti-Adversarial Hidden Markov
Model for Network-Based Intrusion Detection. Applied Science, 8, 2421.

Song, C., Pons, A, Yen, K. (2016). Building a Platform for Software-Defined Networking
Cybersecurity Applications, IEEE International Conference on Machine Learning and
Applications.

Song, C., Li, A (2012). QT Software Development. New Construction Version of Modern
Property Management.

Song, C., (April, 2018). Cybersecurity Protection for Software-defined Networking
Applying Machine Learning. Presented at Florida Center for Cybersecurity Research
Symposium, Tampa, Florida.

Song, C., (December, 2016). Building a Platform for SDN-based NIDS. Paper presented
at IEEE International Conference on Machine Learning and Applications, Anaheim,
California.

	An Angle-based Stochastic Gradient Descent Method for Machine Learning: Principle and Application
	Recommended Citation

	An Angle-based Stochastic Gradient Descent Method for Machine Learning: Principle and Application

