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ABSTRACT OF THE DISSERTATION 

STRATEGIES TO IDENTIFY AND MITIGATE SECONDARY CRASHES 

IN REAL-TIME 

by 

Angela E. Kitali 

Florida International University, 2020 

Miami, Florida 

Professor Priyanka Alluri, Major Professor 

Traffic incidents are the primary source of non-recurring congestion. In addition to 

affecting roadway operations, traffic congestion resulting from an incident exposes other 

vehicles to the risk of being involved in additional incidents, typically referred to as 

secondary crashes. Secondary crashes adversely affect traffic operations and impose risk 

on the safety of both road users and incident responders. Transportation agencies have been 

looking for ways to mitigate secondary crashes. However, secondary crash mitigation has 

several challenges. The length of the queue caused by an initial incident and the amount of 

time this queue lasts on the road varies, depending on the characteristics of the respective 

incident. Since identifying potential secondary crashes is difficult, investigating the factors 

that may influence these crashes becomes even more challenging. Moreover, the limited 

knowledge of what constitutes a secondary crash and its contributing factors largely 

impede mitigation strategies. 

The goal of this research was to investigate approaches to mitigate secondary 

crashes on freeways. To achieve this goal, a readily implementable data-driven approach 

to identify secondary crashes in real-time was developed. This approach is more accurate 
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in identifying secondary crashes since it better reflects the changes in traffic characteristics 

caused by the primary incident. Following the identification of secondary crashes, the next 

step involved developing a secondary crash likelihood model. This model established the 

relationship between the likelihood of secondary crashes and influential factors, i.e., 

incident characteristics, traffic flow attributes, temporal attributes, presence of work zone, 

and other geometric attributes. The model results indicate that the presence of work zones 

significantly influenced the occurrence of secondary crashes. Overall, as expected, 

roadway geometric, temporal, traffic flow, incident, and weather attributes were found to 

influence secondary crashes.  

The probabilistic relationship between factors that influence the risk of cascading 

crashes was also explored. Crashes are termed as “cascading” when the subsequent secondary 

crashes occur within the impact area of the prior secondary crashes and the primary incident. 

Cascading crashes were found to be most likely to occur when traffic is in the transition state, 

i.e., when there is a platoon of vehicles traveling at high differential speeds.  

Once an incident has occurred, traffic conditions upstream of the incident change 

with time, and so does the likelihood of secondary crashes. The likelihood model was 

implemented to dynamically predict the risk of a secondary crash in real-time. The 

proposed model accounts for the temporal variation of prevailing conditions that influence 

the likelihood of secondary crashes. This model could be used to develop an Advanced 

Traffic Management System (ATMS) to proactively prevent secondary crashes. Through 

this system, first responders will be more vigilant and better prepared in case secondary 

crashes occur. In addition, motorists upstream of the primary incident could be warned 

about the potential for secondary crashes.  



ix 

 

TABLE OF CONTENTS 

 

CHAPTER           PAGE 

 

CHAPTER 1 INTRODUCTION .........................................................................................1 

1.1 Background ....................................................................................................................1 

1.2 Problem Statement .........................................................................................................4 

1.2.1 Identify Secondary Crashes ....................................................................................4 

1.2.2 Mitigate the Risk of Secondary Crashes ................................................................7 

1.3 Research Goal and Objectives .......................................................................................8 

1.4 Dissertation Organization ..............................................................................................9 

 

CHAPTER 2 LITERATURE SYNTHESIS ......................................................................11 

2.1 Existing Methods to Identify Secondary Crashes ........................................................11 

2.1.1 Manual Method ....................................................................................................12 

2.1.2 Static Method .......................................................................................................13 

2.1.3 Dynamic Method ..................................................................................................15 

2.2 Prediction of Probability of Secondary Crashes ..........................................................22 

2.2.1 Secondary Crash Risk Prediction Models ............................................................22 

2.2.2 Issues Accompanying Modeling of Secondary Crash Risk .................................32 

2.3 Strategies to Mitigate Secondary Crashes....................................................................39 

2.3.1 Dynamic Message Signs ......................................................................................42 

2.3.2 Advanced Traveler Information Systems .............................................................43 

2.4 Summary ......................................................................................................................45 

2.4.1 Challenges in the Identification of Secondary Crashes ........................................46 

2.4.2 Challenges in the Identification of Secondary Crash Influential Factors .............47 

2.4.3 Challenges with Deploying Secondary Crash Mitigation Strategies ...................47 

 

CHAPTER 3 DATA NEEDS ............................................................................................48 

3.1 Data Requirements .......................................................................................................48 

3.1.1 SunGuide® ............................................................................................................48 

3.1.2 HERE Technologies .............................................................................................49 

3.1.3 Roadway Geometric Characteristics and Work Zone Data Sources ....................50 

3.1.4 NOAA Database ...................................................................................................53 

3.2 Study Area ...................................................................................................................56 

3.2.1 Study Corridors for Secondary Crash Identification ............................................57 

3.2.2 Study Corridors for Secondary Crash Likelihood Model ....................................60 

3.2.3 Study Corridors for Secondary Crash Risk Prediction Model .............................61 

3.3 Summary ......................................................................................................................61 

 

CHAPTER 4 METHODOLOGY ......................................................................................63 

4.1 Identify Secondary Crashes .........................................................................................63 

4.1.1 Extract and Process Speed Data from HERE Technologies ................................63 

4.1.2 Match Incidents to a Traffic Message Channel ....................................................65 

4.1.3 Estimate Incident Impact Area and Identify Secondary Crashes .........................66 



x 

 

4.2 Identify Factors Influencing the Occurrence of Secondary Crashes ...........................67 

4.2.1 Identify Factors Influencing the Likelihood of Secondary Crashes .....................69 

4.2.2 Identify Factors that Influence the Likelihood of Cascading Crashes .................73 

4.3 Predict the Probability of Secondary Crashes in Real-time .........................................77 

4.3.1 Define Prior Distribution ......................................................................................79 

4.3.2 Extract Prevailing Explanatory Variables ............................................................80 

4.3.3 Data Preprocessing ...............................................................................................81 

4.3.4 Fit Bayesian Model ..............................................................................................81 

4.3.5 Generate Posterior Distributions ..........................................................................83 

4.4 Summary ......................................................................................................................83 

 

CHAPTER 5 RESULTS AND DISCUSSION ..................................................................85 

5.1 Secondary Crash Identification ....................................................................................85 

5.1.1 Spatiotemporal Distribution of Secondary Crashes .............................................86 

5.1.2 Time of Day and Day of Week Distribution ........................................................87 

5.1.3 Incident Characteristics ........................................................................................90 

5.1.4 Environmental Conditions ....................................................................................96 

5.2 Secondary Crash Influential Factors ............................................................................97 

5.2.1 Descriptive Statistics ............................................................................................97 

5.2.2 Secondary Crash Likelihood ..............................................................................102 

5.3 Leading Causes of Cascading Crashes ......................................................................112 

5.3.1 Descriptive Statistics ..........................................................................................112 

5.3.2 Important Variables that Influence the Likelihood of Cascading Crashes .........114 

5.3.3 Discrete Bayesian Network results.....................................................................119 

5.4 Secondary Crash Risk Prediction...............................................................................122 

5.4.1 Descriptive Statistics ..........................................................................................122 

5.4.2 Cloglog Model Results .......................................................................................124 

5.5 Summary ....................................................................................................................132 

 

CHAPTER 6 SUMMARY AND CONCLUSIONS ........................................................135 

6.1 Summary and Conclusions ........................................................................................135 

6.1.1 Secondary Crash Identification ..........................................................................135 

6.1.2 Factors Influencing the Occurrence of Secondary Crashes ................................139 

6.1.3 Impact of Concurrent Factors on Cascading Crash Likelihood .........................140 

6.1.4 Dynamic Prediction of Secondary Crashes in Real-time ...................................142 

6.2 Research Contributions ..............................................................................................144 

6.3 Future Work ...............................................................................................................146 

 

REFERENCES ................................................................................................................147 

 

VITA ................................................................................................................................156 

 



xi 

 

LIST OF TABLES 

TABLE                                                                                                                                                     PAGE 

 

Table 2-1: Methods Used to Identify Secondary Crashes ................................................ 12 

 

Table 2-2: Summary of Literature on Parametric Secondary Crash Risk Models ........... 24 

 

Table 2-3: Summary of Literature on Non-Parametric Secondary Crash Risk Models ... 31 

 

Table 3-1: Sample Rainfall Data from NEXRAD ............................................................ 56 

 

Table 3-2: Distribution of HERE Traffic Message Channels along the Study 

Corridors ......................................................................................................... 59 

 

Table 3-3: Data Needs for Predicting Secondary Crashes in Real-time ........................... 62 

 

Table 5-1: Secondary Crashes Identified Using the Improved Approach ........................ 85 

 

Table 5-2: Distribution of Traffic Incidents by Time of Day ........................................... 89 

 

Table 5-3: Incident Distribution Based on Responders’ Characteristics .......................... 93 

 

Table 5-4: Incident Characteristics ................................................................................... 93 

 

Table 5-5: Environmental Conditions ............................................................................... 97 

 

Table 5-6: Descriptive Statistics of Continuous Variables ............................................... 99 

 

Table 5-7: Descriptive Statistics of Categorical Variables ............................................. 100 

 

Table 5-8: Results of the Penalized Logistic Regression Fitted Using Bootstrap 

Samples ......................................................................................................... 104 

 

Table 5-9: Descriptive Statistics of Potential Variables Influencing the Occurrence of 

Cascading Crashes ........................................................................................ 113 

 

Table 5-10: Results of the Penalized Logistic Regression Fitted Using Bootstrap 

Samples ......................................................................................................... 116 

 

Table 5-11: Predicted Probability of Cascading Crashes ............................................... 120 

 

Table 5-12: Distribution of Primary Incident and Normal Incidents used in the 

Dynamic Model ............................................................................................ 123 

 

Table 5-13: Posterior Summary of Cloglog Model Results ............................................ 125  



xii 

 

LIST OF FIGURES 

 

FIGURE                      PAGE 

 

Figure 1-1: Definition of a Secondary Crash ...................................................................... 2 

 

Figure 1-2: Illustration of the Occurrence of Cascading Crashes ....................................... 6 

 

Figure 1-3: Development of Real-time Secondary Crash Risk Prediction Model.............. 8 

 

Figure 2-1: Studies that used Static Method to Identify Secondary Crashes in the 

Upstream Direction ....................................................................................... 13 

 

Figure 2-2: Studies that used Static Method to Identify Secondary Crashes in the 

Opposite Direction......................................................................................... 14 

 

Figure 2-3: Existing Literature on Dynamic Methods ...................................................... 17 

 

Figure 2-4: Definition of Spatiotemporal Impact Area Using Shockwave 

Principles ....................................................................................................... 19 

 

Figure 2-5: Illustration of Difference Between Cascading Crashes and Multiple 

Secondary Crashes......................................................................................... 28 

 

Figure 2-6: Factors Contributing to Secondary Crash Occurrence ................................... 34 

 

Figure 2-7: Impact of Dynamic Message Sign Messages on Secondary Crash 

Occurrence ..................................................................................................... 43 

 

Figure 2-8: Application of Advanced Traveler Information System in Mitigating 

Secondary Crashes......................................................................................... 44 

 

Figure 3-1: Definition of Merge and Diverge Influence Areas ........................................ 52 

 

Figure 3-2: Location of Radar used to Collect Rainfall Data ........................................... 54 

 

Figure 3-3: Workflow for Collecting and Processing Reflectivity Data .......................... 55 

 

Figure 3-4: Florida’s Turnpike Mainline .......................................................................... 57 

 

Figure 3-5: Selected Roadway Sections along Turnpike Mainline .................................. 59 

 

Figure 3-6: Corridors with High Incidents along Florida’s Turnpike ............................... 61 

 

Figure 4-1: Sample Speed Profile for Estimating Normal Traffic Conditions ................. 64 



xiii 

 

Figure 4-2: Approach to Estimate Incident Impact Area .................................................. 67 

 

Figure 4-3: Methodology Workflow for Cascading Crash Likelihood Model ................. 75 

 

Figure 4-4: Methodology Workflow for Secondary Crash Risk Prediction Model.......... 79 

 

Figure 5-1: Spatial Distribution of Secondary Crashes in Relation to Primary 

Incidents ........................................................................................................ 86 

 

Figure 5-2: Temporal Distribution of Secondary Crashes in Relation to Primary 

Incidents ........................................................................................................ 87 

 

Figure 5-3: Distribution of Traffic Incidents by Time of Day .......................................... 88 

 

Figure 5-4: Distribution of Normal Incidents and Secondary Crashes by Day of 

Week .............................................................................................................. 90 

 

Figure 5-5: Distribution of Incident Clearance Duration for Towing-Involved and 

No-Towing Involved Incidents...................................................................... 91 

 

Figure 5-6: Distribution of Incident Clearance Duration for EMS-Involved and 

No-EMS Involved Incidents .......................................................................... 92 

 

Figure 5-7: Distribution of Incidents by Incident Type .................................................... 94 

 

Figure 5-8: Distribution of Incident Clearance Duration for Normal and Primary 

Incidents ........................................................................................................ 95 

 

Figure 5-9: Distribution of Incident Clearance Duration for Primary Incidents and 

Secondary Crashes......................................................................................... 96 

 

Figure 5-10: Selection of the Important Variables for the Secondary Crash 

Likelihood Model ........................................................................................ 102 

 

Figure 5-11: Cascading and Non-Cascading Crashes Identified in The Study .............. 112 

 

Figure 5-12: Selection of the Important Variables for Cascading Crash Likelihood 

Model ........................................................................................................... 115 

 

Figure 5-13: Optimal Bayesian Network Structure ........................................................ 120 

 

Figure 5-14: Combined Evidence Sensitivity Analysis .................................................. 121 

 

Figure 5-15: Estimated Coefficients for the Series of Fifty Cloglog Models ..................127 

  



xiv 

 

LIST OF ACRONYMS 

 

AADT Annual Average Daily Traffic 

API Application Programming Interface 

AUC Area Under the Curve 

AMS American Meteorological Society 

ATDM Active Transportation and Demand Management 

ATIS Advanced Traveler Information System 

ATMS Advanced Traffic Management System 

BCI Bayesian Credible Interval 

BDeu  Bayesian Dirichlet equivalent uniform 

CCTV  Closed-Circuit Television 

CI Confidence Interval 

Cloglog Complementary log-log 

CV Connected Vehicle 

dBZ Decibel relative to Z (Reflectivity) 

DMS Dynamic Message Sign 

DSRC Dedicated Short-Range Communication 

FB Full Bayes 

FDOT Florida Department of Transportation 

FHWA Federal Highway Administration 

GHC Greedy Hill Climbing 

GIS Geographic Information System 

GPS Global Positioning System 



xv 

 

HCM Highway Capacity Manual 

HEFT Homestead Extension of Florida’s Turnpike 

HMC Hamiltonian Markov Chain 

ID Identification 

ITS Intelligent Transportation System 

MAC Media Access Control 

MCMC Markov Chain Monte Carlo 

MM Mile Marker 

MCS Mainline Central Section 

MSS Mainline South Section 

NCHRP National Cooperative Highway Research Program 

NEXRAD Next Generation Weather Radar 

NB Negative Binomial 

NOAA National Oceanic and Atmospheric Administration 

NUTS No U-Turn Sampling 

OR Odds Ratio 

LASSO Least Absolute Shrinkage and Selection Operator 

USDOT United States Department of Transportation 

RCI Roadway Characteristics Inventory 

ROC Receiver Operating Characteristics 

RSU Roadside Units 

SCDOT South Carolina Department of Transportation 

SR State Road 



xvi 

 

TIM  Traffic Incident Management 

TMC  Transportation Management Center 

TRB Transportation Research Board 

TSM&O Transportation Systems Management and Operations 

V2I Vehicle-to-Infrastructure 

V2V Vehicle-to-Vehicle 

WCT Weather Climatic Toolkit 



 

1 

 

CHAPTER 1 

INTRODUCTION  

 

1.1 Background 

 

Transportation agencies strive for an efficient transportation system that is safe and 

has minimal delays. Nevertheless, congestion and traffic incidents have continuously been 

deterring the performance of the transportation network. The cost of traffic congestion to 

Americans in 2019 was estimated to be approximately $88 billion, an average of $1,377 

per driver (INRIX, 2019). This congestion is partly caused by an increased traffic volume, 

particularly during peak hours, and is commonly termed as recurrent congestion. Traffic 

incidents, which include traffic crashes, disabled vehicles, debris on roadways, etc., are 

also a significant cause of congestion, generally referred to as non-recurrent congestion. 

Traffic incidents often lead to capacity reduction and deterioration of the level of service. 

They account for more than half of all urban traffic delays and almost all rural traffic delays 

(Baykal-Gürsoy et al., 2009). 

Traffic incidents also expose other vehicles to the risk of being involved in 

additional crashes called secondary crashes (Owens et al., 2010). Figure 1-1 explains 

secondary crashes using a hypothetical example. In this example, a prior traffic incident (a 

crash in this scenario) occurred on the northbound lanes at 8:33 AM. This crash, 

categorized as a primary crash, resulted in a queue backup upstream of the crash location. 

Two crashes, one near the primary crash location and the other further upstream of the 

primary crash location, occurred at 8:35 AM and 8:38 AM, respectively. Another crash 

also occurred in the opposite direction (i.e., on the southbound lanes) at 8:55 AM. While 

the first crash that occurred at 8:33 AM is considered the primary crash, the remaining 
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three crashes are considered secondary crashes which occurred as a result of the primary 

crash. 

 
Figure 1-1: Definition of a Secondary Crash 

In summary, crashes are considered as secondary crashes if they occur: (a) at the 

scene of the primary incident (Zhang and Khattak, 2010; Moore et al., 2004); or (b) within 

the queue upstream of the primary incident (Zhang and Khattak, 2010); or (c) within the 

queue in the opposite direction of the primary incident caused by driver distraction, i.e., 

onlookers effect (Yang et al., 2014a). 
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Secondary crashes have progressively been perceived as a significant issue, 

particularly on freeways (Hirunyatiwattana and Mattingly, 2006). As such, there has been 

a growing interest in addressing secondary crash occurrence. Secondary crashes are non-

recurring, leading to reduced capacity, additional traffic delays, and increased fuel 

consumption and emissions. These crashes also affect the safety of both road users and 

incident responders. The United States Department of Transportation (USDOT) estimated 

that secondary crashes alone are responsible for approximately 18 percent of all freeway 

traffic fatalities and 20 percent of all crashes (Owens et al., 2010). Further, compared to 

primary incidents, secondary crashes have a significant impact on traffic management 

resource allocation (Vlahogianni et al., 2012; Karlaftis et al., 1999). 

Prevention of secondary crashes has, therefore, been highlighted as a high-priority 

task for traffic incident managers (O’Laughlin and Smith, 2002) and Transportation 

Management Centers (TMCs) (Owens et al., 2010). The Federal Highway Administration 

(FHWA) uses the reduction of secondary crashes as one of the performance measures for 

state incident management systems (National Cooperative Highway Research Program 

[NCHRP], 2014). The Florida Department of Transportation (FDOT) included secondary 

crashes as a Safety performance measure in its Transportation Systems Management and 

Operations (TSM&O) Strategic Plan (Florida Department of Transportation [FDOT], 

2017). Specifically, to reduce the risk to responders, secondary crashes, and delays 

associated with incidents, FDOT has an Open Roads Policy of clearing all travel lanes 

within 90 minutes. Several states also consider secondary crash mitigation strategies in 

allocating funding for the development of Traffic Incident Management (TIM) programs 
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and on-road help services, such as FDOT’s Road Ranger freeway service patrol (Lou et al., 

2011). 

1.2 Problem Statement 

 

Secondary crashes adversely affect the operational and safety performance of the 

transportation network. As such, agencies are looking for ways to mitigate secondary 

crashes to reduce non-recurrent delays and the adverse safety impacts associated with these 

crashes. However, some hurdles limit the implementation of approaches to reduce 

secondary crashes. First and foremost, the process of identifying secondary crashes is itself 

a challenge since there is no universal definition of a secondary crash. The inconsistency 

in defining secondary crashes limits the possibility of exploring the underlying relationship 

between secondary crash occurrences and influential factors. This limitation, in turn, 

hinders the mitigation efforts. The following subsections provide a detailed discussion on 

the challenges facing the identification and prediction of secondary crashes. A thorough 

exploration of these challenges will assist in developing effective policies and 

countermeasures to mitigate the risk of secondary crashes. 

 

1.2.1 Identify Secondary Crashes 

 

Not all incidents lead to secondary crashes. The likelihood of secondary crashes 

depends on several factors, including traffic flow characteristics, incident characteristics, 

weather conditions, roadway geometric conditions, etc. An in-depth understanding of these 

factors will help agencies on several fronts. First, it will assist in proactively preventing 

secondary crashes. Second, first responders will be more vigilant and better prepared in 
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case secondary crashes occur. And finally, motorists upstream of the primary incident 

could be warned about potential secondary crashes. 

From a statistical learning perspective, secondary crash risk modeling can be 

viewed as a dichotomous classification problem, where 1 indicates that the secondary crash 

occurred, and 0 indicates that no secondary crash occurred. Secondary crashes are 

generally infrequent (Kitali et al., 2018; Yang et al., 2018; Xu et al., 2016; Owens et al., 

2010). This means that the proportion of incidents that result in secondary crashes (i.e., 

primary incidents) is much less than the proportion of incidents that do not cause secondary 

crashes, referred to in this research as normal incidents. This asymmetric nature of the 

binary response variable makes the modeling of the likelihood of secondary crashes an 

imbalanced classification problem. Neglecting this imbalance characteristic can lead to 

serious consequences, both in the model’s estimates and prediction accuracy (Kitali et al., 

2019b). 

Previous studies have considered several incident-related, traffic-related, 

geometric-related, and weather-related factors when developing secondary crash risk 

models. However, simply incorporating all variables in the model may lead to biased 

results, considering the possible significant correlation among the variables. Only a few 

studies have considered identifying the most important variables before developing 

secondary crash risk models. Variable subset selection methods, such as a stepwise 

technique, have been used to add one best-fit variable at a time during model fitting (Mishra 

et al., 2016; Xu et al., 2016; Zhan et al., 2009). Nevertheless, this criterion has several 

drawbacks, including the result that each addition of a new feature may render one or more 

of the already included variables non-significant. Also, because the stepwise variable 
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selection process is discrete, it often exhibits high variance and may not reduce the 

prediction error of the full model. In other words, small changes in the data can result in 

different variables being selected, and this can potentially reduce the model’s prediction 

accuracy (Menard and Torelli 2014; Tibshirani 1996). 

In general, three major challenges are encountered when modeling the risk of 

secondary crashes: (1) infrequent nature of secondary crashes, (2) selection of the most 

important variables, and (3) identification of variable correlation. Therefore, any candidate 

model needs to account for these issues. 

Occasionally, as indicated in Figure 1-2, some primary incidents result in a series 

of cascading crashes. Crashes are termed as “cascading” when the subsequent secondary 

crashes occur within the impact area of the prior secondary crashes and the primary 

incident. Events consisting of cascading crashes are expected to have longer impact 

duration and hence larger impacts on traffic. This situation presents additional impedance 

and increases interference among vehicles, particularly in upstream traffic (Zhang and 

Khattak, 2010). 

 

Figure 1-2: Illustration of the Occurrence of Cascading Crashes 
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1.2.2 Mitigate the Risk of Secondary Crashes 

 

In an earlier study by Karlaftis et al. (1999), the likelihood of secondary crashes 

was observed to increase by 2.8 percent for each additional minute required to clear the 

initial crash. Other recent studies also associated an increase in incident clearance duration 

with a higher likelihood of secondary crashes (Goodall, 2017; Kitali et al., 2019b, 2018; 

Sando et al., 2018). In this case, managing secondary crashes requires a proactive approach, 

i.e., an ability to alleviate the risk of secondary crashes before they occur. Only a few 

studies have focused on drafting and deploying specific countermeasures to mitigate the 

risk of secondary crashes (Park et al., 2018; Park and Haghani 2016b; Yang et al., 2017; 

Kopitch and Saphores 2011; Karlaftis et al., 1999). 

A proactive approach requires the proposed strategy to accurately identify whether 

the current traffic incident has a probability of resulting in additional incidents (i.e., 

probable primary incident). Upon confirming that the present incident has a likelihood of 

becoming a primary incident, the next steps involve estimating its impact (in terms of time 

and distance) and timely disseminate safety messages to affected traffic. Recent studies 

have, therefore, relied on the use of real-time traffic data to identify and predict the 

likelihood of secondary crashes using different modeling approaches. However, the 

proposed models were developed and calibrated with static parameters, which do not 

account for the temporal variation in traffic characteristics influenced by the incident. The 

prevailing traffic conditions before the occurrence and those following the incident's 

occurrence may have a significant and varying impact on the likelihood of secondary 

crashes. Furthermore, the magnitude of the impact of the traffic flow characteristics on the 

likelihood of secondary crashes is expected to vary with time. 
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1.3 Research Goal and Objectives 

 

The goal of this research was to investigate approaches to mitigate secondary 

crashes on freeways. The specific objectives of this research include: 

1. Identify potential factors that influence the risk of secondary crashes. 

2. Predict the probability of secondary crashes in real-time. 

Figure 1-3 presents the main steps used to implement the two objectives. The first 

step involved identifying secondary crashes using high-resolution traffic data. Specifically, 

the high-resolution traffic data were used to automatically determine the spatiotemporal 

impact areas of primary incidents, and hence, detect secondary crashes that occurred within 

the affected area. This research focused only on secondary crashes that occurred in the 

upstream direction of the primary incident. This is because secondary crashes in the 

opposite direction of the primary incident are affected by other factors, such as the visibility 

of drivers in the opposing direction. In this case, visibility is influenced by several 

attributes, including median width, median type, and type of median barrier. 

 

Figure 1-3: Development of Real-time Secondary Crash Risk Prediction Model 

After identifying secondary crashes, the second step involved identifying factors 

influencing the likelihood of secondary crashes. A penalized logistic regression model, 
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fitted using a bootstrap approach, was used to link the likelihood of secondary crashes with 

potential factors, including roadway geometric, temporal, traffic flow, incident, and 

weather attributes. 

Following the occurrence of an incident, some of the influential attributes of a 

potential secondary crash, e.g., traffic flow characteristics and weather conditions, may 

vary with time. It is hypothesized that the temporal variation in these attributes will be 

accompanied by the changes in the likelihood of secondary crashes. Thus, this research 

developed a dynamic model that predicts the likelihood of secondary crashes in real-time. 

That is the proposed model accounts for the temporal variation of prevailing conditions 

that influence the likelihood of secondary crashes. 

 

1.4 Dissertation Organization 

 

The remaining chapters of this dissertation are organized as follows: 

• Chapter 2 entails a comprehensive synthesis of the literature on the main approaches 

used to identify secondary crashes. The chapter discusses the methods used to predict 

the probability of secondary crashes and presents the approaches being adopted to 

mitigate secondary crashes. Also presented is a summary of the research areas that 

require further investigation relating to the identification of secondary crashes, 

understanding of factors influencing the occurrence of secondary crashes, and the 

prediction of secondary crashes in real-time. 

• Chapter 3 focuses on discussing the data used to achieve the research goal. Specifically, 

the chapter discusses, in detail, the types of data used, data sources, data collection 

strategy, and data processing steps. 
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• Chapter 4 discusses the methodologies used to achieve the research objectives. 

• Chapter 5 presents the analyses and discusses the results. The secondary crash 

identification results are first discussed, followed by the results of the likelihood model 

on the influence of work zones on secondary crashes. Finally, the results of the dynamic 

real-time secondary crash risk prediction model are discussed. 

• Chapter 6 concludes this dissertation by providing a summary of this research, 

contributions, and recommendations for future research. 
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CHAPTER 2 

LITERATURE SYNTHESIS 

 

This chapter presents a synthesis of previous studies that focused on identifying 

secondary crashes and analyzing the risk factors influencing the occurrence of these 

crashes. Section 2.3 of this chapter presents previous literature that explored strategies to 

mitigate secondary crashes. The areas of research that need further investigation associated 

with the identification, prediction, and prevention of secondary crashes are discussed in the 

last section. 

 

2.1 Existing Methods to Identify Secondary Crashes 

 

Secondary crashes are traffic incidents that occur within the spatial and temporal 

impact area of the primary incidents (Zhang and Khattak, 2010; Moore et al., 2004; Yang 

et al., 2014a; Karlaftis et al., 1999). Unlike other traffic incidents that are easily identified 

by incident responders, detection of secondary crashes is not straightforward since the 

definition itself is subjective. It is difficult to determine visually, either directly at the crash 

site or through closed-circuit television (CCTV) cameras, if the crash is a result of the 

backup caused by another incident, especially since the backup may also be due to recurrent 

congestion. Thus, the first step in identifying secondary crashes is to define the impact area 

of the prior incident, i.e., its spatiotemporal boundaries.  

As summarized in Table 2-1, three major approaches have been used to define the 

spatiotemporal impact area of primary incidents: (1) manual method, where personnel 

visually estimate the queue of the primary incident; (2) static method that uses predefined 

spatiotemporal thresholds; and (3) dynamic approach that estimates the primary incident 

influence area as a function of its impact on traffic flow characteristics, e.g., speed, volume, 
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and/or density. An extensive literature review revealed that tremendous efforts have been 

made to identify secondary crashes. The following subsections provide more details about 

these three methods. 

Table 2-1: Methods Used to Identify Secondary Crashes 
Method Approach Advantages Challenges 

Manual 

Personnel visually identify secondary 

crashes: 

• On-site approach using incident 

responders, e.g., Highway Patrol, 

etc. 

• Off-site approach using CCTV, 

etc. 

• Simple 

• Does not require 

any data processing 

• Subjective 

• Unreliable 

• Inconsistent 

• Random 

Static 

Identify secondary crashes based on 

predefined distance and time 

thresholds for each primary incident 

(e.g., 2 miles upstream and 2 hours 

after the primary incident) 

• More reliable than 

the manual method 

• Relatively easy to 

implement 

• Less reliable 

compared to the 

dynamic method 

Dynamic* 

Identify secondary crashes based on 

the queue length of the primary 

incident, estimated based on 

prevailing traffic conditions  

• Most reliable 

• Accurate 

• Resource intensive 

• Limited by data 

availability  

Note: *Can be reliably implemented in real-time; CCTV = Closed Circuit Television. 

 

2.1.1 Manual Method 

 

As the term “manual” indicates, in this method, secondary crashes are manually 

identified by either TMC personnel or incident responders (Kitali et al., 2019a). In this 

case, the impact area of primary incidents is estimated visually based on the judgment of 

the observer. Identifying secondary crashes on a CCTV camera is considered an off-site 

approach, while identifying secondary crashes on-site by incident responders, including 

police, on-road service patrols (e.g., FDOT’s Road Rangers), etc., is considered an on-site 

approach (NCHRP, 2014). The manual method has traditionally been used by agencies to 

identify secondary crashes. It is simple and does not require any data processing. However, 

despite being the most used method, it is subjective, unreliable, inconsistent, and random. 
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2.1.2 Static Method 

The static method identifies secondary crashes based on some fixed spatial and 

temporal thresholds, i.e., the primary incident impact area is pre-determined. Crashes that 

occur within the spatial and temporal impact range of a primary incident are identified as 

secondary crashes. Figures 2-1 and 2-2 graphically summarize previous studies that 

identified secondary crashes based on fixed spatial and temporal thresholds (Chang and 

Rochon, 2011; Green et al., 2020; Hirunyatiwattana and Mattingly, 2006; Jalayer et al., 

2015; Karlaftis et al., 1999; Kopitch and Saphores, 2011; Latoski et al., 1999; Moore et al., 

2004; Raub, 1997; Tian et al., 2016; Zhan et al., 2008).  

 

Figure 2-1: Studies that used Static Method to Identify Secondary Crashes in the 

Upstream Direction 
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As indicated in Figure 2-1, the spatial and temporal thresholds adopted by these studies 

range between 1 to 3 miles and 15 minutes to 2 hours, respectively. 

Similarly, secondary crashes that occurred in the opposite direction of the primary 

incident – because of the onlooker effect – were also commonly identified using some 

different predefined thresholds. Figure 2-2 summarizes the studies that used the static 

method to identify secondary crashes in the opposite direction of the primary incident 

(Chang and Rochon, 2011; Green et al., 2012; Kopitch and Saphores, 2011; Moore et al., 

2004). 

 

Figure 2-2: Studies that used Static Method to Identify Secondary Crashes in the 

Opposite Direction 

 

For example, Chang and Rochon (2011) identified secondary crashes using a 30-minute 

and 0.5-mile threshold in the opposite direction of the primary incident. Meanwhile, Green 
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et al. (2012) used a spatial threshold of 1,000 feet and a temporal threshold of 80 minutes. 

Other studies used similar thresholds to identify secondary crashes both on the upstream 

and opposite directions of the primary incident (Kopitch and Saphores, 2011; Moore et al., 

2004). 

Unlike the manual method, the static method is more reliable simply because it is a 

function of predefined spatiotemporal parameters and not based on human judgment. 

However, the static method’s one-size-fits-all approach of using fixed spatiotemporal 

thresholds do not yield reliable results (Kitali et al., 2019a). In other words, the fixed 

spatiotemporal thresholds do not effectively reflect the dynamic impact of incidents with 

varying characteristics, and therefore, may under- or overestimate the impact area (Ou, 

Xia, Wang, Wang, and Lu, 2020). To accurately identify secondary crashes, the impact 

area of the primary incidents should be defined based on its impact on traffic flow 

characteristics. 

 

2.1.3 Dynamic Method 

 

To overcome the limitations associated with the static approach, some studies have 

focused on identifying secondary crashes based on prevailing traffic flow conditions at the 

time of the primary incident. In this case, spatiotemporal thresholds are flexibly selected 

based on the impact of the primary incident on traffic flow parameters, hence the term 

dynamic. The dynamic methods used in previous studies to identify secondary crashes can 

generally be grouped into three categories: queuing model-based, shockwave-based, and 

traffic data-based. 
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Figure 2-3 graphically summarizes the previous studies that explored the use of 

dynamic models to estimate the impact area of the primary incident (Chung, 2013; Dougald 

et al., 2016; Goodall, 2017; Imprialou et al., 2014; Kitali et al., 2019a, 2019b, 2018; Mishra 

et al., 2016; Park and Haghani, 2016a, 2016b; Sando et al., 2019; Sarker et al., 2017; Sun 

and Chilukuri, 2010, 2006; Vlahogianni et al., 2010, 2012; Wang et al., 2016, 2018; Xu et 

al., 2016; Yang et al., 2014a, 2014b, 2014c; Zhan et al., 2009; Zhang and Khattak, 2010; 

Zheng et al., 2014). Sun and Chilukuri (2006) proposed the use of an incident progression 

curve, a method that relies on incident duration to estimate the queue length, and hence, 

identify secondary crashes that occurred within the queue. The incident progression curve 

method indicated a 30% improvement in secondary crash identification accuracy compared 

to the static method. Zhan et al. (2009) used the cumulative arrival and departure rate 

approach to estimate the spatiotemporal impact area of incidents with lane blockages. 

Crashes that occurred within the estimated primary crash incident impact area were marked 

as secondary crashes (Zhan et al., 2009). Zhang and Khattak (2010) estimated the primary 

incident impact area based on deterministic queueing models. 
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Figure 2-3: Existing Literature on Dynamic Methods
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Although queuing methods provide a more realistic representation of incident 

impact areas, compared to the static approach, they generally rely upon the number and 

nature of the accessible variables, such as assumed roadway capacities, arrival rates, etc. 

Different roadway segments are subject to different queuing formation processes because 

of their unique traffic, geometry, and incident characteristics, as well as prevailing weather 

conditions. 

Apart from queuing approaches, other studies have used shockwave principles to 

dynamically identify secondary crashes, as shown in Figure 2-3 (Mishra et al., 2016; Sarker 

et al., 2017; Wang et al., 2019). In this case, the incident impact area is triangular. The 

spatiotemporal thresholds comprise the backward forming and discharging shockwaves 

linked with the occurrence and clearance of the incident (H. Yang et al., 2018). The 

backward-forming shockwave impacts the growth rate of the queue generated by the 

incident. When the incident is cleared, a forward-recovery shockwave initiates and 

ultimately reaches the backward-forming shockwave resulting in queue dissipation. 

Figure 2-4 demonstrates the use of shockwave principles to identify secondary 

crashes. In Figure 2-4, the primary incident was assumed to generate three shockwaves, 

two upstream forming shockwaves, and one upstream dispersing shockwave (Wang et al., 

2019). The first shockwave was assumed to be generated when an incident occurs resulting 

in reduced speeds and increasing density, a situation that creates a bottleneck until the 

treatment reaction commences. The second shockwave was assumed to be generated after 

incident responders, such as police and/or tow trucks, arrive at the incident scene causing 

more deterioration to traffic flow conditions. These first two shockwaves were further 

assumed to continue until dispersal. The last shockwave occurs after the bottleneck is eased 
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and the traffic congestion starts to clear (Wang et al., 2019). A crash that falls within the 

gray area represented in Figure 2-4 is considered as a secondary crash. 

 

Figure 2-4: Definition of Spatiotemporal Impact Area Using Shockwave Principles  

(Wang et al., 2019) 

 

Several issues limit the application of the shockwave approach for identifying 

secondary crashes. The simplified assumption on the prevailing traffic conditions and 

modeling of the shockwave propagation remains to be an issue since they cannot accurately 

depict the dynamic progression of traffic states (H. Yang et al., 2018). Non-constant 

discharge and arrival rates make it difficult to model the complicated shockwaves with the 

assumption of a constant speed. Overall, both the queuing and shockwave dynamic 

methods use prior assumptions to simplify the complex characteristics of the traffic 

conditions, resulting in an incorrect estimation of the incident impact areas. Further, both 

methods cannot accurately distinguish the recurrent congestion from the non-recurrent 

congestion caused by the incident (Ou et al., 2020). 
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To overcome the limitations of the queuing and shockwave methods, recent efforts 

in identifying secondary crashes have been shifted towards the use of data-driven 

approaches. Empowered by the advancements in traffic data collection technologies, 

several studies have explored the use of data-driven approaches to identify secondary 

crashes. These approaches take advantage of the readily available traffic data retrieved 

from infrastructure-based traffic sensors, probe vehicles, crowdsourced traffic data from 

third-party vendors, and connected vehicle (CV) technologies. 

The key premise of the data-driven approach is to use prevailing traffic conditions 

data to accurately estimate the incident impact area. Vehicle speed was the main traffic 

flow characteristic used by previous studies that identified secondary crashes using a data-

driven approach (Sando et al., 2019; Kitali et al., 2019a; 2018; Goodall, 2017; Park et al., 

2018, 2017; Dougald et al., 2016; Park and Haghani 2016a; 2016ab; Yang et al., 2014; 

Chung, 2013). The foundation of data-driven approaches is the determination of a reference 

speed, and to accomplish this, different methodologies have been proposed. These 

approaches mostly rely on the use of historical speed data. 

Yang et al. (2014a) identified the incident-induced impact area by comparing the 

prevailing speed data from microwave detectors with the pre-defined percentile speed of 

historical speed data. That is, the speed is stated to be affected by the incident if it drops 

below the 50th percentile of the historical speed measurement. This information was used 

to develop speed contour plots which were then used to identify the pairs of primary crashes 

and secondary crashes. Other previous studies used a similar approach to define the 

reference speed (Xu et al., 2016; Yang et al., 2014b, 2014c; Chung, 2013). Nonetheless, 
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estimating the congestion and non-congestion thresholds empirically may be time-

consuming and hinder the transferability of the results to other locations. 

Dougald et al. (2016) and Goodall (2017) extended the approach proposed by Yang 

et al. (2014) by adjusting the assumption used to establish the binary contour plots. 

Meanwhile, other studies (Park et al., 2018, 2017; Park and Haghan, 2016a, 2016b) used a 

Bayesian structure equation to estimate the impact area of a primary incident. Kitali et al. 

(2019a, 2019b; 2018) used a 95% confidence interval to define the upper and lower bounds 

of the speed profile. 

By synthesizing the real-time traffic data and traffic incident data to identify the 

prevailing traffic conditions, the data-driven approach greatly improved the process of 

identifying the impact area of the primary incident (Yang et al., 2018). Reference speed is 

a foundational component of the data-driven methods used to identify secondary crashes, 

and accurate estimation of reference speeds depends on the completeness of the available 

traffic data. Similar to other dynamic methods, another issue to be considered while 

developing data-driven approaches to identify secondary crashes is the approach used to 

classify congestion and non-congestion patterns. Further consideration must be made to 

mimic how congestion builds up and dissipates along the segments impacted by the 

primary incident. This is an important step towards the accurate identification of secondary 

crashes. Failure to properly estimate the incident impact area may lead to over or 

underestimation of the impact area, and hence, the number of secondary crashes caused by 

the respective incident. 

Results from previous studies indicate that the proposed dynamic methods provide 

better accuracy in identifying secondary crashes than conventional static methods (H. Yang 
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et al., 2018). Compared to the static or manual method, dynamic methods are more 

advanced and reliable since they identify secondary crashes based on prevailing traffic flow 

characteristics. It is worth noting, however, that the implementation of dynamic approaches 

depends on the availability of reliable traffic data. 

 

2.2 Prediction of Probability of Secondary Crashes 

 

Following the identification of secondary crashes, the next step towards developing 

strategies to mitigate secondary crashes is to explore the causal relationship between 

secondary crashes and potential explanatory variables. Identifying risk factors that 

influence the likelihood of secondary crashes is critical to the development and 

implementation of efficient and resilient traffic management strategies. An effective 

strategy will assist in proactively preventing secondary crashes and allow first responders 

to be more aware of potential secondary crashes and be better prepared should they occur. 

In addition, motorists upstream of the primary incident could be warned about potential 

secondary crashes. The following subsection presents the methods used to identify factors 

contributing to the occurrence of secondary crashes. The last subsection discusses the 

issues that arise when developing secondary crash risk models and ways to address them. 

 

2.2.1 Secondary Crash Risk Prediction Models 

 

A comprehensive literature review revealed that only a few studies have explored 

secondary crash risk models. Both parametric and non-parametric models have been used 

to analyze the likelihood of secondary crashes. Most of these studies adopted the respective 

models following the binary nature of secondary crash occurrence given the presence of a 

primary incident or normal incident. Primary incidents refer to incidents that resulted in a 
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secondary crash, while normal incidents refer to incidents that did not result in a secondary 

crash. In these studies, geometric, weather, traffic conditions, and incident characteristics 

associated with primary incidents were compared with those of normal incidents. 

2.2.1.1 Parametric Models 

 

Most of the studies that developed parametric models used binary regression 

models, such as logit, probit, or complementary log-log models, to analyze the likelihood 

of secondary crashes (Goodall 2017; Wang et al., 2016; Karlaftis et al., 1999; Kopitch and 

Saphores 2011; Zhan et al., 2008, 2009). In these studies, the response variable was 

dichotomous, with a “yes” category representing incidents that resulted in a secondary 

crash and a “no” category representing incidents that did not result in a secondary crash. 

As mentioned earlier, these two categories of incidents are generally referred to as primary 

incidents and normal incidents, respectively. 

In secondary crash risk models, the independent variables include a list of potential 

factors that may contribute to the likelihood of secondary crashes. The coefficients 

obtained by estimating the relationship between the probability of a secondary crash 

following a primary incident, based on a set of explanatory variables, can hence be used to 

quantify the impact of each contributing factor on the secondary crash risk. Table 2-2 

presents a summary of studies that used parametric modeling approaches to explore risk 

factors that influence the likelihood of secondary crashes. Included in Table 2-2 are 

secondary crash identification methodologies, secondary crash risk prediction models, and 

significant variables in each study. 
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Table 2-2: Summary of Literature on Parametric Secondary Crash Risk Models 

Reference  
Secondary crash 

identification method 
Method  

No. of 

var. 

Variable selection 

method 
Significant variables 

Karlaftis et 

al., 1999 

Static (1 mile and 15 

min)  
LR 18 Not Applicable 

Season, clearance time, type of vehicle involved, 

and lateral location 

Zhan et al., 

2008 

Static (2 miles and 15 

min + clearance) 
LR 18 Not Applicable 

Number of lanes, primary incident duration, 

time-of-day, number of vehicles, and vehicle 

rollover. 

Zhan et al., 

2009 

Cumulative arrival and 

departure 
LR 19 

Forward conditional 

criterion 

Primary incidents type and lane-blockage 

duration, time of day, and direction where the 

incident occurred 

Kopitch and 

Saphores 

2011 

Static (2 miles and 2 h) LR 9 Not Applicable 
Number of vehicles, number of trucks, 

changeable message sign, and road work project 

Khattak et 

al., 2012 

Static (1 mile and 

duration of primary 

incident (+15 min if lane 

blocked)) 

LR 13 Not Applicable 
Incident duration, crashes, peak hours, number of 

vehicles, and AADT 

Yang et al., 

2014b Data-driven approach 
LR (rare 

events) 
10 

Statistically significance 

level (0.1) 

Daytime off-peak hours, daytime peak hours, 

duration, rear-end crashes, lane closure, and 

winter season 

Wang et al., 

2016 
Shockwave principles LR 12 Not Applicable 

Shockwave originating in the wake of a primary 

incident, duration, unsafe speed, and weather 

Mishra et al., 

2016 
Shockwave principle 

Linear 

probability 

model, LR, 

and MNL  

16 
VIF correlation factor and 

significance level 

Average speed of upstream traffic, upstream 

flow, AADT, incident type, number of vehicles, 

weather condition, and functional class 

Wang et al., 

2019 
Shockwave principle LR 13 Not Applicable 

Shockwave speed that occurred at the time of the 

primary incident, shockwave speed generated 

when incident responders arrive at the scene to 

control traffic, shockwave speed during 

dissipation, incident processing duration, unsafe 

speed, and rain. 

Note: AADT = Annual Average Daily Traffic; Cloglog = complementary log-log, LASSO = Least Absolute Shrinkage and Selection Operator, LR = Logistic 

Regression, MNL = Multinomial Logistic Regression, No. of var. = Number of variables, VIF = Variance Inflation Factor. 
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Table 2-2: Summary of Literature on Parametric Secondary Crash Risk Models (continued) 

Reference  
Secondary crash 

identification method 
Method  

No. of 

var. 

Variable selection 

method 
Significant variables 

Xu et al., 

2016 
Data-driven approach 

Bayesian 

LR 
24 

Pearson correlation and 

stepwise logit 

Average speed, traffic volume, standard deviation 

of detector occupancy, volume difference 

between adjacent lanes, crash severity, crash 

type, day of the week, road surface condition, and 

number of lanes 

Goodall, 

2017 Data-driven approach LR 3 Not Applicable Congestion and incident duration 

Sarker et al., 

2017 Shockwave principle 

Generalized 

ordered 

response 

probit 

15 Not Applicable 

AADT, traffic composition, land use, number of 

lanes, right side shoulder width, posted speed 

limits, and ramp indicator 

Kitali et al., 

2018 
Data-driven approach 

Bayesian 

cloglog 
21 Random Forest 

Average occupancy, incident severity, percent of 

lanes closed, incident type, incident clearance 

duration, incident impact duration, and incident 

occurrence time. 

Kitali et al., 

2019b 
Data-driven approach 

Penalized 

LR (with 

resampling) 

23 LASSO 

Mean of detector occupancy, coefficient of 

variation of equivalent hourly volume, mean of 

speed, incident type, percent lane closed, incident 

occurrence time, shoulder blocked, number of 

responding agencies, incident impact duration, 

incident clearance duration, and roadway 

alignment 

Note: AADT = Annual Average Daily Traffic; Cloglog = complementary log-log, LASSO = Least Absolute Shrinkage and Selection Operator, LR = Logistic 

Regression, MNL = Multinomial Logistic Regression, No. of var. = Number of variables, VIF = Variance Inflation Factor.  
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Using five years of incident data from the Borman Expressway in Northwest 

Indiana, Karlaftis et al. (1999) developed logistic regression models to explore the 

influence of primary incident characteristics on the likelihood of a secondary crash. The 

study found that a number of factors can significantly influence the likelihood of secondary 

crash occurrence, including clearance time of the primary incident, season, type of vehicle 

involved, day of the week, and lateral location of the primary incident.  

Zhan et al. (2009) reported the time of day, the primary incident type, and primary 

incident lane-blockage duration as the most influential factors that affect the occurrence of 

secondary crashes. The study results further indicated that the incident duration had the 

greatest influence on secondary crash occurrence. Kopitch and Saphores (2011) observed 

that for each additional vehicle involved in a primary incident event, the odds of having a 

secondary crash increase by a factor of 1.161. In addition to the number of vehicles 

involved in a primary incident, Kopitch and Saphores (2011) found that primary incident 

injury type and severity also significantly influence the risk of a secondary crash. 

Specifically, compared to other primary incident types such as road hazards, crashes were 

observed to increase the likelihood of secondary crashes by 1.936. Compared to other 

severity levels, fatal and severe injury incidents were found to increase the odds of a 

secondary crash by a factor of 3.177 (Kopitch and Saphores, 2011).  

Similarly, Goodall (2017) and Wang et al. (2016) used a logistic regression model 

to predict the likelihood of a secondary crash. Shockwaves that originated in the wake of a 

primary incident were observed to significantly impact the probability of a secondary crash 

occurrence than traffic volume (Wang et al., 2016). Based on this observation, the study 

suggested that incident responders that arrive at the scene of an incident to control traffic 
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should not suddenly block, decrease, or release the traffic flow, but rather to control traffic 

in a smooth and controlled manner (Wang et al., 2016). 

Khattak et al. (2012; 2009) extended the conventional logistic regression model to 

account for the interdependence between primary incidents and secondary crashes. 

Secondary crashes were observed to be more likely to occur if the duration of the primary 

incident was long; accordingly, the duration is expected to be longer if secondary crashes 

occur. The interrelationship between incident durations and the occurrence of secondary 

crashes was modeled using a two-level hierarchical prediction approach. First, the incident 

duration was estimated using an ordinary least square regression model. Next, a logistic 

regression model was fitted using estimated duration time and other factors, such as 

weather, road information, and Annual Average Daily Traffic (AADT), to analyze the 

occurrence of secondary crashes. 

Using the proportional test, Hirunyanitiwattana and Mattingly (2006) assessed the 

significant differences in the characteristics of secondary crashes and primary crashes with 

respect to time of day, area type (urban or rural), collision type, primary collision factor 

(e.g., speeding, failure to yield, alcohol, etc.), road classification (freeways, multi-lane, and 

two-lane), and crash severity. A primary crash that occurred during the peak period was 

found to be more likely to result in secondary crashes than during other periods. On the 

other hand, the probability of secondary crashes in urban districts was observed to be higher 

than in rural districts. Urban freeways with more than four lanes were reported as the type 

of roadway with the highest number of primary and secondary crashes. Speeding was 

identified as the highest collision factor for primary and secondary crashes 

(Hirunyanitiwattana and Mattingly, 2006). Khattak et al. (2009) estimated the likelihood 
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of secondary crash occurrence using a binary probit model. The study results indicated that 

the primary incident duration, number of involved vehicles, and AADT had a significant 

positive impact on the likelihood of secondary crashes (Khattak et al., 2009). 

While most primary incidents result in one secondary crash, some primary incidents 

result in multiple secondary crashes, and others result in cascading crashes. As mentioned 

earlier, crashes are termed as “cascading” when the subsequent secondary crashes occur 

within the impact area of the prior secondary crashes and the primary incident. As 

illustrated in Figure 2-5, crashes are identified as “multiple secondary crashes” (and not as 

“cascading crashes”) when two or more secondary crashes caused by the same primary 

incident are not necessarily within the impact area of either of the secondary crashes. A 

few studies have modeled the risk of multiple secondary crashes (Xu et al., 2019; Sarker 

et al., 2017; Mishra et al., 2016; Zhang and Khattak, 2010). The ordered logit model, 

multinomial logit model, and zero-inflated ordered probit regression model are some of the 

models used to model multiple secondary crashes caused by a single primary incident. 

 

Figure 2-5: Illustration of Difference Between Cascading Crashes and Multiple 

Secondary Crashes 
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Zhang and Khattak (2010) used ordered logit model to investigate the factors 

contributing to multiple secondary crashes. Incidents were categorized using a three-point 

ordinal scale: (1) a normal incident; (2) one primary incident-secondary crash pair; and (3) 

one primary incident with two or more secondary crashes. This scale was created to capture 

event adversity from a traffic management perspective, with the last category capturing 

multiple secondary crashes (Zhang and Khattak, 2010). The results suggested that the 

probability of multiple secondary crashes increased with an increase in the number of 

involved vehicles and lane blockage.  

Sarker et al. (2017) developed a Poisson model, negative binomial (NB) model, NB 

model with heterogeneous dispersion, and NB model with heterogeneous dispersion and 

unobserved heterogeneity to predict the frequency of secondary crashes. The following 

factors were reported to significantly affect secondary crash occurrence: posted speed limit 

higher than 55 miles per hour, AADT, urban land use, number of lanes, right shoulder 

width, and presence of ramp. 

Xu et al. (2019) used a zero-inflated ordered probit regression model to study the 

effects of prevailing traffic characteristics on the likelihood of multiple secondary crashes 

caused by a single primary incident. Other potential factors considered include incident 

characteristics, weather conditions, and roadway geometric attributes. Two states were 

considered in modeling the frequency of secondary crashes. The first state, the secondary-

crash-free state, predicted whether the initial incident will lead to secondary crashes, and 

the second state, referred to in the study as the secondary-crash-prone state, determined 

the frequency of secondary crashes caused by one primary incident. The following factors 

were found to be influential in the secondary-crash-free state: average traffic volume, 
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average speed, and the difference between the number of on-ramps and off-ramps in a 

segment. In the secondary-crash-prone state, the significant factors that were found to 

influence the likelihood of multiple secondary crashes included hit-and-run primary 

crashes, average detector occupancy, rainy weather, and primary crash severity. 

2.2.1.2 Non-parametric Models 

 

Non-parametric models, such as Bayesian neural networks and decision trees, have 

also been used to model secondary crash risk (Vlahogianni et al., 2010, 2012). A 

fundamental difference between non-parametric models and parametric models is that the 

non-parametric models lack an inherent mechanism for explicitly describing the 

significance of input variables, and hence, considered to be a black box (H. Yang et al., 

2018). The need for developing non-parametric models with explanatory power is related 

to the decision-making process in transportation. Instinctively, any decision in 

transportation and traffic operations ought to be founded on a strong comprehension of the 

mechanism by which various variables interface with and impact transportation 

phenomena (Vlahogianni et al., 2012). 

Vlahogianni et al. (2010) used a Bayesian network approach to identify 

characteristics of primary incidents that affect the likelihood of secondary crashes. The 

observed traffic conditions at the time of an incident and the time required to respond to 

and clear the incident was identified as the most significant determinants in defining the 

upstream impact area of an incident (Vlahogianni et al., 2010). 

Vlahogianni et al. (2012) developed a multi-layer perceptron neural network model 

to identify potential risk factors that may influence the occurrence of secondary crashes. 

As shown in Table 2-3, traffic-related, primary-incident-related, geometric-related, and 
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weather-related attributes were found to significantly impact the likelihood of secondary 

crashes. Contrary to other studies, Vlahogianni et al. (2012) found a negative relation 

between secondary crash likelihood and the number of lanes blocked due to the primary 

incident, severity of the primary incident, existence of a curved section at the location of 

the primary incident, and involvement of heavy vehicles. 

Table 2-3: Summary of Literature on Non-Parametric Secondary Crash Risk Models 

Reference  

Secondary crash 

identification 

method 

Method  
Explanatory 

function  

No. 

of 

var. 

Significant 

variables 

Vlahogianni 

et al., 2010 

Method based on 

spatiotemporal 

impact area of 

primary crash 

Bayesian Neural  

Network 

Mutual 

information 
8 

Maximum queue 

length, queue 

duration, and 

primary crash 

duration 

Vlahogianni 

et al., 2012 

Automatic 

tracking of 

moving traffic 

jams 

Bayesian Neural 

Network 

Mutual 

information 

and partial 

derivatives 

11 

Traffic speed, 

changes in traffic 

speed and volume, 

duration of the 

primary crash, 

hourly volume, 

rainfall intensity, 

number of vehicles 

involved, blocked 

lanes, percentage 

of trucks, and 

upstream geometry 

Park and 

Haghani, 

2016  

Data driven 

approach based 

on Gaussian 

Mixture Model 

and Bayesian 

structure equation 

model 

A principles Bayesian 

learning approach to 

Neural Network and 

Logit model 

Multilayer 

perceptron 
13 

Location area, 

incident type, and 

time of day 

Park et al., 

2017; 2018 

Data driven 

approach based 

on Gaussian 

Mixture Model 

and Bayesian 

structure equation 

model 

A principles Bayesian 

learning approach to 

Neural Network and 

Stochastic Gradient 

Boosted Decision 

Trees 

A 

pedagogical 

rule 

extraction 

13 

Unexpected traffic 

congestion caused 

by a primary 

incident and 

onlooker factors 

Note: No. of var. = Number of variables 
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Instead of using the conventional neural network models, Park and Haghani 

(2016a) proposed a principled Bayesian learning approach to neural networks to predict 

secondary crashes more accurately and robustly. A pedagogical rule extraction approach 

was used to improve the understanding of secondary crashes by extracting comprehensible 

rules from the neural networks. Unlike the neural network risk model proposed by 

Vlahogianni et al. (2012), Park and Haghani (2016a) used a sequentially predicted 

clearance duration to predict the probability of having a secondary crash. In addition to the 

Bayesian neural network approach, Park et al. (2018; 2017) used a Stochastic Gradient 

Boosted Decision Trees method to predict the probability of secondary crashes in real-

time. 

In general, regarding the prediction of secondary crashes, both parametric and non-

parametric models were used to link the secondary crash risks with geometric, primary 

incident, weather, and traffic characteristics. In these studies, the features of geometric, 

weather, traffic conditions, and incident characteristics associated with primary incidents 

were compared with those of normal incidents. Understanding factors contributing to the 

occurrence of secondary crashes will provide some useful managerial tools for alleviating 

the effects of primary incidents, and thus, reduce the likelihood of secondary crashes. 

 

2.2.2 Issues Accompanying Modeling of Secondary Crash Risk 

 

Modeling the risk of secondary crashes is accompanied by several challenges. The 

infrequent nature of secondary crashes is one of the significant issues that needs to be 

addressed when modeling the risk of secondary crashes. Selection of the most important 

variable, detection of variable correlation, use of more representative traffic variables, and 
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missing information are among the issues encountered with explanatory variables used in 

secondary crash risk models. The following subsections discuss these issues in detail. 

2.2.2.1 Imbalanced Data 

 

As indicated earlier, secondary crashes are infrequent in nature. A majority of 

secondary crash risk models developed using either logit or probit link functions are 

symmetrical, i.e., the likelihood of secondary crash occurrence is presumed to rise to a 

probability of 0.5, then decrease toward the asymptote at one (1). In other words, in 

secondary crash likelihood prediction, symmetric models, such as logit or probit models, 

yield more reliable results when the proportion of normal incidents (~50%) is equal to the 

proportion of primary incidents (~50%). However, secondary crashes account for less than 

20% (Owens et al., 2010; Sando et al., 2019) of total incidents, meaning that the proportion 

of primary incidents is much less than the proportion of normal incidents (i.e., primary 

incidents and normal incidents are asymmetrically distributed). 

To account for the imbalanced nature of the response variable in a secondary crash 

risk model, Yang et al. (2014b) introduced the rare-event logistic regression model, and 

Kitali et al. (2019b) used a Synthetic Minority Over-sampling TEchnique-Nominal 

Continuous (SMOTE-NC) technique. Kitali et al. (2018) used a complementary log-log 

model (cloglog) as an alternative prediction model over the conventional logit and probit 

models. Unlike the logit and probit models, the cloglog model is asymmetrical with a fat 

tail as it departs from zero (0) and sharply approaches one (1) (Kitali et al., 2017; Martin 

and Wu, 2017). 
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2.2.2.2 Variables Selection 

 

As indicated in Figure 2-6, researchers have considered several incident-related, 

traffic-related, temporal-related, geometric-related, and weather-related factors when 

developing secondary crash risk models. In actuality, it may not be possible to include all 

variables in the model due to the possible significant correlation among the factors. 

Moreover, the use of less important variables will introduce noise in the model and hence, 

reduce its accuracy. 

 

Figure 2-6: Factors Contributing to Secondary Crash Occurrence 

One way to address this issue is to select and include only the most important 

variables. Variable subset selection methods, such as a stepwise technique, were used in 
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several studies to add one best-fit variable at a time during model fitting (Mishra et al., 

2016; Xu et al., 2016; Zhan et al., 2009). Nevertheless, this criterion has several drawbacks, 

including the result that each addition of a new variable may render one or more of the 

already included variables non-significant. Also, because the stepwise variable selection 

process is discrete, it often exhibits high variance and may not reduce the full model's 

prediction error. In other words, small changes in the data can result in different variables 

being selected, and this can potentially reduce the model’s prediction accuracy (Menard 

and Torelli, 2014; Tibshirani, 1996). 

As an alternative to stepwise variable selection, Kitali et al. (2018) used random 

forests, a non-parametric approach, to select the most important variables for inclusion in 

the secondary crash risk prediction model. In a later study, Kitali et al. (2019b) applied the 

Least Absolute Shrinkage and Selection Operator (LASSO) penalized likelihood, a 

regression analysis method that performs both variable selection and regularization. The 

LASSO method enhances the prediction accuracy and interpretability of the statistical 

model (Tibshirani, 1996). LASSO shrinks some coefficients of a regression model, in this 

case, logistic regression, and sets others to zero (0) to obtain variables with a substantial 

effect on the outcome (Tibshirani, 1996). LASSO also performs important variable 

selection and variable correlation simultaneously. That is, between a pair of highly 

correlated variables, LASSO tends to pick the most important variable and discard the other 

by shrinking them towards zero. 

Because the LASSO method performs variable selection through a continuous 

process, it does not suffer as much from high variability, i.e., it simultaneously does both 

continuous shrinkage and automatic variable selection. The penalty term introduced by 
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LASSO during the variable selection process ensures better estimation of the prediction 

error while avoiding overfitting. Selecting an optimal subset of explanatory variables is 

expected to improve the classification accuracy and make the model’s interpretation easier. 

Since some of the variables will be minimized to zero, model thriftiness is achieved as 

well. 

2.2.2.3 Use of Aggregated Traffic Flow and Weather Characteristics 

 

Traditional traffic data, such as AADT and speed limit, have often been included 

as explanatory variables in secondary crash risk models (Chimba and Kutela, 2014; 

Khattak et al., 2012; Mishra et al., 2016; Zhang and Khattak, 2010). These data limit the 

reliability of results simply because they are aggregated values and do not reflect the 

prevailing traffic conditions at the time of an incident. With the availability of large-scale 

high-resolution traffic flow data in recent years, high-resolution traffic data, instead of 

AADT and speed limit, have been increasingly used in developing secondary crash risk 

prediction models (Kitali et al., 2018, 2019b; Park and Haghani, 2016a, 2016b; Sando et 

al., 2019; Vlahogianni et al., 2012; Xu et al., 2016). The high-resolution traffic flow data 

provides a more accurate measurement of traffic flow conditions before the occurrence of 

primary incidents and secondary crashes, compared with the traditional aggregated static 

traffic data, such as AADT and speed limit. 

Xu et al. (2016) used the random-effect logistic regression to develop a secondary 

crash risk prediction model using the high-resolution traffic flow data before the 

occurrence of primary incidents. The results suggested that the inclusion of high-resolution 

traffic variables significantly increases the model’s predictive performance. Traffic 
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volume, average speed, occupancy variation, and volume difference between adjacent 

lanes are the main traffic variables contributing to the increased risk of secondary crashes. 

Inclement weather conditions, particularly rainfall, is one factor that could 

potentially exacerbate the occurrence of secondary crashes. Rainfall decreases the driver’s 

sight distances and increases the vehicle’s stopping distance (Haule et al., 2020; Kidando 

et al., 2019a). During rainy conditions, approaching vehicles may not have an adequate 

opportunity to make emergency maneuvers, leading to an increased possibility of 

secondary crashes (Li et al., 2014). It is imperative to incorporate weather conditions as 

one of the potential variables in the secondary crash likelihood model. 

Previous research that included rainfall as one of the secondary crash influential 

factors obtained the data either from an incident database (Wang et al., 2016; Khattak et 

al., 2012, 2009; Xu et al., 2016; Zhan et al., 2008) or rain gauges (Kopitch and Saphores, 

2011; Vlahogianni et al., 2012). Incident report-based rainfall data is qualitatively recorded 

by incident responders only once and mostly at the incident notification time. As such, this 

value of rainfall information may not reflect the prevailing rainfall intensity, especially in 

locations that experience short duration rainfall, when the incident impact duration is 

relatively long (Andrew, 2019). Gauge-based rainfall data are retrieved from weather 

stations that are usually sparsely distributed (Andrew, 2019). Similar to traffic flow 

characteristics, rainfall intensity varies both spatially and temporally. However, both 

incident-based and gauge-based rainfall data do not account for the spatiotemporal nature 

of rainfall. 
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2.2.2.4 Missing Potential Variables 

 

While previous studies have considered numerous variables in secondary crash 

likelihood models, some variables have rarely been considered. Some of these variables 

include the presence of work zone, vertical curves, merging, and diverging ramps within 

the incident impact area. Work zone areas are associated with unexpected congestion due 

to a combination of factors, including daily changes in traffic patterns, narrowed rights-of-

way, and complex arrangements of traffic control devices and signs (Federal Highway 

Administration [FHWA], 2007). These situations may influence the likelihood of 

secondary crashes. However, work zones were rarely considered in previous studies as one 

of the sources of the explained variation in the likelihood or severity of secondary crashes 

(Balke, 2009; Kopitch and Saphores, 2011; Yang et al., 2014b). 

Unlike other roadway sections, merge and diverge influence areas are accompanied 

by more lane changes and high speed differentials by drivers attempting to enter or exit the 

freeway. This situation may increase the risk of secondary crashes. Thus, it is essential to 

incorporate merge and diverge influence areas in secondary crash risk models. Few studies 

have considered ramps as a potential variable that may influence the likelihood of 

secondary crashes (Karlaftis et al., 1999; Khattak et al., 2012, 2009; Park and Haghani, 

2016b). Of those studies, the influence of ramps on secondary crash occurrence was not 

found significant. 

In summary, researchers have used both parametric and non-parametric models to 

link secondary crash risks with geometric, incident, weather, and traffic characteristics. 

Understanding factors that contribute to the occurrence of secondary crashes will help 
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devise effective strategies to alleviate the effects of primary incidents, and thus, reducing 

the likelihood of a secondary crash. 

 

2.3 Strategies to Mitigate Secondary Crashes 

 

Mitigating the risk of secondary crashes is a crucial goal for effective traffic 

incident management. Deploying strategies that focus on clearing incidents as quickly as 

possible will have a significant impact on reducing the risk of secondary crashes. However, 

mitigation strategies may be challenging to deploy, due to limited available resources, e.g., 

patrol vehicles, personnel, traffic surveillance systems, etc. Moreover, each primary 

incident may occur during different conditions, resulting in various impacts. For example, 

an incident responder may be hindered by a long queue, thus delaying the process of 

incident clearance (H. Yang et al., 2018). 

The variable speed limit control strategy is one of the countermeasures that has 

been explored by previous studies as an alternative to reduce the risk of secondary crashes. 

A variable speed limit is a mainline traffic control strategy that has been increasingly used 

for improving traffic safety on roadways (Zhao et al., 2019; Li et al., 2014). Introducing a 

variable speed limit when the risk of a secondary crash is high can help achieve the desired 

speed reduction to minimize hard-braking and high deceleration conditions that can lead 

to secondary crashes. Li et al. (2014) proposed using variable speed limits to reduce the 

risks of secondary crashes during inclement weather conditions. By analyzing the risk of 

secondary crashes, the variable speed limit strategy can adjust the speed limits according 

to the prevailing traffic and weather conditions. Based on safety surrogate measures, the 
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proposed variable speed limit system was found to reduce the risk of secondary crashes by 

40-50 percent (Li et al., 2014). 

Numerous studies have indicated incident duration as the most significant factor 

influencing the occurrence of secondary crashes (Kitali et al., 2018; Goodall, 2017; Wang 

et al., 2016; Zhan et al., 2009). Khattak et al. (2012) observed a significant correlation 

between incident duration, the likelihood of a secondary crash, and the primary incident 

characteristics. A 10-minute increase in the primary incident duration was found to be 

associated with a 0.2 percent increase in the likelihood of secondary crashes (Khattak et 

al., 2009). 

Similarly, Goodall (2017) found the probability of a secondary crash occurrence to 

increase by approximately one (1) percentage point for each additional two to three minutes 

spent on the scene under congested traffic. Compared with other traffic incidents whose 

occurrences are quite stochastic, the occurrence of secondary crashes is more deterministic 

as they are mostly caused by either turbulent traffic conditions initiated by the primary 

incident or the onlooker effect (Xu et al., 2019). The impact of incident duration on the risk 

of secondary crashes was found to increase even further when traffic transitioned from a 

free-flow state to a congested state (Park and Haghani, 2016). 

It is essential to prevent secondary crashes in advance with an effective prevention 

strategy (Park et al., 2018). A proactive secondary crash mitigation strategy can be 

implemented by disseminating advanced warning messages to inform upstream drivers of 

the potential secondary crash risk. The disseminated information will provide motorists 

with an opportunity to take necessary precautions to avoid being involved in a secondary 

crash, such as slowing down, changing lanes in advance, and/or diverting to alternate 
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routes. The upstream communication approach often consists of an incident warning, in 

addition to the speed advisory, which may increase the likelihood of driver compliance and 

minimize secondary crashes. 

Before implementing an advanced warning strategy, the occurrence of secondary 

crashes has to be predicted in real-time. Recent studies, therefore, have relied on the use of 

high-resolution traffic data to identify and predict the likelihood of secondary crashes using 

different modeling approaches. However, the proposed models were developed and 

calibrated with fixed model parameters, which cannot account for the different traffic 

patterns with spatial and temporal variability. For instance, the prevailing traffic conditions 

before and following the occurrence of the incident may have a significant and varying 

impact on the likelihood of secondary crashes. Furthermore, the magnitude of the impact 

of the traffic flow characteristics on the likelihood of secondary crashes is expected to vary 

with time and space. Prediction of the risk of secondary crashes as a function of time and 

distance will increase the accuracy and efficiency of advanced warning strategies. 

Several methods that can be used to broadcast warning messages to upstream 

motorists include: Dynamic Message Signs (DMSs) (Kopitch and Saphores, 2011); 

Advanced Traveler Information Systems (ATIS), such as Florida’s FL511 service; 

navigation applications, such as Waze; and emerging technologies, such as Connected 

Vehicles (CVs) (Soloka 2019; Yang et al., 2017). The following subsections discuss these 

communication avenues to inform drivers upstream of a primary incident that may help to 

mitigate potential secondary crashes. 
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2.3.1 Dynamic Message Signs 

 

DMSs are programmable devices that can display any combination of letters and/or 

symbols/graphics to deliver messages to motorists. They can provide real-time information 

and are used for traffic warnings, regulations, routing, and traffic management (Montes et 

al., 2008). Some messages provided by DMSs suggest a course of action to motorists, such 

as change travel speed, change lanes, or divert to a different route. Other messages may 

serve to inform motorists of changes in current or future traffic conditions (e.g., Congestion 

Ahead), or state regulations (e.g., Buckle Up It’s the Law, Click It or Ticket, etc.). 

DMS messages may reduce potential secondary crashes and downstream speed 

differentials by informing motorists of downstream traffic conditions (e.g., congestion 

caused by a crash) and encouraging safer driving (Chatterjee et al., 2002; Mounce et al., 

2007). Kopitch and Saphores (2011) used the distance from the primary incident location 

to the nearest upstream DMS as a proxy to quantify the impacts of DMS messaging on 

secondary crash prevention. Specifically, this variable was included in the form of a 

quadratic function of the distance from the primary incident to the nearest upstream DMS. 

The DMS location was assumed to be at least two miles away from the primary incident 

for it to be effective (Kopitch and Saphores, 2011). The authors estimated the probability 

of secondary crash reduction within the DMS influence area at the 85% confidence interval 

(see Equation 2-1). The function in Equation 2-1 is negative between two miles and 22.3 

miles, and it becomes increasingly negative from two miles to 11.5 miles, where it reaches 

its minimum. The function then increases between 11.15 miles and 22.3 miles, as shown 

in Figure 2-7. In other words, the effect of the incident information decreases with the 

increase in its propagation range. Although DMSs were found to influence the probability 
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of secondary crashes, this finding was not statistically significant (Kopitch and Saphores, 

2011). 

𝑓(𝐷𝑀𝑆) =  −001002 × 𝐷𝑀𝑆 + 0.0045 × 𝐷𝑀𝑆2                      (2-1) 

 
Figure 2-7: Impact of Dynamic Message Sign Messages on Secondary Crash 

Occurrence  (Kopitch and Saphores, 2011) 

 

2.3.2 Advanced Traveler Information Systems 

 

In addition to DMSs, other platforms that could be used to disseminate proactive 

safety messages to upstream drivers include ATISs, such as Florida’s FL511 service, 

navigation applications, especially those that leverage crowdsourced user reports for 

providing service, such as Waze, and CV technology. As illustrated in Figure 2-8, an ATIS 

can allow users to create and send highway advisory messages from their smartphone at 

the incident scene. The utilization of this correspondence innovation enables drivers to 

know what is happening on the road, alerts them in a split second about traffic conditions, 

incidents, police presence, construction, and even route change suggestions to save time 
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(Imani, 2019). The Waze platform has already been integrated into the SunGuide® software 

used by many TMCs for traffic management (Glotzbach, 2014). The incidents reported on 

Waze are linked directly to SunGuide® in real-time. Likewise, the Waze database collects 

the incidents reported in the SunGuide® system (Glotzbach, 2014). 

 

Figure 2-8: Application of Advanced Traveler Information System in Mitigating 

Secondary Crashes 

  

A study by Amin-Naseri et al. (2017) evaluated the reliability, coverage, and added 

value of crowdsourced traffic incident reports from Waze in Iowa. The study concluded 

that the crowdsourced data stream from Waze is an invaluable source of information for 

broad coverage of traffic monitoring systems, covering 43.2% of Iowa’s Advanced Traffic 

Management System (ATMS) crash and congestion reports. The Waze application also 

provided timely reporting, 9.8 minutes earlier than the probe-based alternative, on average, 

and with reasonable geographic accuracy. The Waze reports currently make significant 

contributions to incident detection and further complement the ATMS coverage of traffic 

conditions. 
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Given the emerging CV technologies, it is likely that many vehicles will soon 

connect with the surrounding infrastructure. CVs are equipped with certain technologies 

that help them communicate with their environment. This connected environment allows 

the CVs to communicate (i.e., send and receive messages) with other vehicles, known as 

V2V communication, as well as communicate with the surrounding infrastructure, known 

as vehicle-to-infrastructure (V2I) communication (Harding et al., 2014). Yang et al. (2017) 

explored the possibility of using CV technology for preventing secondary crashes by 

improving the situational awareness of drivers. A simulation-based modeling framework 

that enabled V2V communication was developed to assess connectivity's impact on the risk 

of secondary crashes. The results indicated that CVs could be a viable way to reduce the 

risk of secondary crashes. Secondary crash risk, measured by the number of simulated 

conflicts, was found to be significantly reduced if the market penetration rate of CVs on a 

highway was relatively high (e.g., 15%) in dense traffic conditions. 

 

2.4 Summary 

 

FHWA has established the reduction of secondary crashes as one of the 

performance measures for incident management programs. Proper identification of 

secondary crashes is pivotal to accurate reporting of the effectiveness of the programs 

deployed to mitigate secondary crashes. However, the limited knowledge of secondary 

crashes' nature and characteristics has largely impeded their mitigation strategies. The 

following subsections discuss the research gap pertaining to the identification of secondary 

crashes, understanding factors influencing the likelihood of secondary crashes, and the 

prediction of secondary crashes. 
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2.4.1 Challenges in the Identification of Secondary Crashes 

 

Primarily three methods have been used to identify secondary crashes: (1) manual 

method; (2) static method; and (3) dynamic method. In the “manual” method, secondary 

crashes are manually identified by either TMC personnel or incident responders. In this 

case, the impact area of primary incidents is estimated visually based on the observer's 

judgment. However, it is subjective, unreliable, inconsistent, and random despite being the 

most used method. 

Instead of relying on the manual method to identify secondary crashes, some studies 

defined the primary incident's impact area based on fixed spatiotemporal thresholds and 

detected secondary crashes within the predefined area. Although the static method is better 

than the manual method, the one-size-fits-all approach of using fixed spatiotemporal 

thresholds does not yield reliable results. This is because the primary incident's impact area 

heavily depends on the prevailing traffic conditions, i.e., uncongested or congested 

conditions. To overcome the limitations of the manual and static methods, recent studies 

have adopted a dynamic method. This method identifies the spatiotemporal thresholds 

flexibly based on the impact of the primary incident on traffic flow parameters. Although 

the dynamic method is proven to yield accurate and reliable results, applying it requires 

traffic data, which are only available at limited locations. To better identify secondary 

crashes, this approach needs to be able to distinguish non-congestion patterns from 

congestion patterns. Further consideration must be made to emulate how congestion 

conditions develop and disseminate. 
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2.4.2 Challenges in the Identification of Secondary Crash Influential Factors 

 

After identifying secondary crashes, understanding the contributing factors is 

crucial to developing strategies to mitigate them. Both parametric and non-parametric 

models have been adopted for estimating the secondary crash likelihood. The response 

variable, which is the probability of a secondary crash, is modeled as a binary variable, 

given a primary incident or normal incident. Traffic flow characteristics, primary incident 

characteristics, weather conditions, and geometric characteristics have been considered as 

possible contributing factors. Primary incident characteristics and traffic flow characteristics 

have been observed to have a significant impact on the likelihood of secondary crashes. 

Modeling the risk of secondary crashes has the following challenges: (1) accounting 

for the infrequent nature of secondary crashes; (2) selecting the most important variables 

with minimal correlation; (3) considering prevailing traffic conditions; and (4) including 

other potential variables that are rarely considered in the literature, e.g., presence of work 

zones, vertical curves, merging ramps, and diverging ramps within the incident impact area. 

 

2.4.3 Challenges with Deploying Secondary Crash Mitigation Strategies 

 

It is important to devise proactive strategies to promptly reduce the risk of 

secondary crashes because their occurrence is largely influenced by the severity of the 

primary incident and how quickly the incident is cleared. Previous research that explored 

strategies to mitigate secondary crashes used traffic data to identify and predict the 

likelihood of secondary crashes in real-time (Kitali et al., 2018; Xu et al., 2016). However, 

these studies neglected the influence of prevailing traffic conditions on the likelihood of a 

secondary crash following the occurrence of the initial incident.  
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CHAPTER 3 

DATA NEEDS 

 

This chapter discusses the data required to achieve the research goal. The first 

section provides a detailed discussion of the data used to accomplish the research goal. The 

second section describes the study location and the criteria used to select the study 

corridors. Finally, the third section summarizes the data needs. 

 

3.1 Data Requirements 

 

Four main types of data were required to achieve the research goal: (1) incident 

data; (2) high-resolution traffic data; (3) roadway geometric data, including work zone 

information; and (4) high-resolution rainfall data. Incident data were obtained from the 

SunGuide® database. High-resolution traffic data were retrieved from HERE 

Technologies, and work zone data were obtained from the FDOT Open Data Hub. Other 

roadway geometric characteristics were extracted from the Roadway Characteristics 

Information (RCI) database, Google Earth Pro, and Google Maps. High-resolution rainfall 

data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) 

database. These data were collected for 5.5 years, from January 2014 to June 2019. The 

following subsections discuss each of these data sources. 

 

3.1.1 SunGuide® 

 

SunGuide® is an ATMS software used by the FDOT to process and archive incident 

data on freeways. The database stores incident attributes including incident identification 

(ID), roadway name, latitude and longitude of the incident location, incident notification 
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time, incident type, number and categories of responding agencies, lane closure 

information, incident severity, weather condition, and road surface condition. 

The categories of incident events included in the SunGuide® database are crash, 

disabled vehicles, debris on roadway, emergency vehicles, police activity, vehicle fire, 

flooding, pedestrian, abandoned vehicles, construction, wrong-way driver, etc. For this 

study, these categories were further summarized into four groups: crashes, vehicle 

problems, hazards, and other events. Accordingly, the crashes group contained crash 

events. Vehicle problems included all events that were not crashes, but were vehicle-

related, e.g., disabled vehicles, abandoned vehicles, etc. Hazards included all objects on 

the roadway with the potential of causing crashes, e.g., debris on roadway, wildlife, etc. 

Other events encompassed all events that do not fit in the three aforementioned event 

categories, e.g., other, bridge work, amber alert, wrong-way driver, etc. These event types 

were excluded from the analysis. 

Incidents that occurred on ramps also were not included in the analysis. Compared 

to mainline segments, ramps have a complex geometry that significantly affects the traffic 

transition states, i.e., from free-flow to breakdown, congested, recovery, and eventually 

back to free-flow. For this reason, incidents occurring on ramps require a separate analysis 

approach (Sando et al., 2019). 

 

3.1.2 HERE Technologies 

 

HERE Technologies record the space mean speed for roadways by dividing them 

into segments referred to as Traffic Message Channels. As discussed in detail in Chapter 

4, the 5-minute speed data from HERE Technologies were first used to identify secondary 
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crashes. Next, speed data (i.e., mean and standard deviation (SD)) in the Traffic Message 

Channel where the incident occurred and within 10 minutes before the occurrence of the 

incident were collected to capture the traffic conditions before the occurrence of the 

incident. To determine the prevailing traffic conditions, speed data within the Traffic 

Message Channels impacted by the incident, from the time the incident was detected to the 

time when the traffic flow returned to normal, were used. Since the incident impact 

duration along different Traffic Message Channels may differ, the incident impact area was 

individually defined for each Traffic Message Channel. 

 

3.1.3 Roadway Geometric Characteristics and Work Zone Data Sources 

 

Roadway geometric characteristics that may significantly impact traffic flow 

characteristics were considered potential variables that may influence the risk of secondary 

crashes. The following geometric variables were considered: shoulder width, horizontal 

curves, vertical curves, merging segment, and diverging segment. Other potential 

geometric variables that were considered in this study include service plazas and toll 

plazas. Since there are few service plazas and toll plazas within the study area, these 

variables were excluded from the analysis. 

Shoulder width, horizontal curve, and vertical curves variables were collected from 

the RCI database for the years 2014 through 2019. The shoulder width variable was derived 

for the outside shoulder located adjacent to the outside travel lane. Outside shoulders 

provide for the accommodation of stopped vehicles, emergency use, and lateral support of 

the roadbed (FDOT, 2016). Since the entire roadway section considered in this study has a 

median, the shoulder width variable was collected from two roadsides. The final shoulder 
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width corresponding with each incident was calculated as a weighted value of all the 

shoulder widths within the incident impact area: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ =  
∑ 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑖×𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑖

𝑛
𝑖

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑒𝑎
                         (3-1) 

where, 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑖 is the shoulder width within the incident impact area and 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑖 is the portion of the incident impact area with 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑖. 

The subscript 𝑖 represents the different shoulder width values within the incident impact 

area. 

The horizontal curve variable was aggregated into two categories: incidents with a 

horizontal curve within their impact area and incidents without a horizontal curve within 

their impact area. Similarly, the vertical curve variable was aggregated in the same manner 

as the horizontal curve. 

The merge and diverge influence areas were derived from Google Earth Pro and 

Google Maps using the Historical Imagery and the Street View tools. The Historical 

Imagery tool was used to verify the location of the identified ramps during the study period. 

The merge and diverge influence areas were defined based on the Highway Capacity 

Manual (HCM) (Transportation Research Board [TRB], 2016). A merge influence area 

spans from the point where the edges of the travel lanes of the merging roadways meet to 

a point 1,500 feet downstream of that point. Similarly, a diverge influence area spans from 

the point where the edges of the travel lanes of the merging roadways meet to a point 1,500 

feet upstream of that point. While the HCM defines the ramp influence area as one that 

includes only lanes 1 and 2, in this research, both merge and diverge influence areas cover 
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the entire roadway section (i.e., all travel lanes) since they are measured within the impact 

area of an incident (see Figure 3-1). 

 
(a) Southbound Merge Influence Area 

 
(b) Southbound Diverge Influence Area 

 
(c) Northbound Merge Influence Area 

 
(d) Northbound Diverge Influence Area 

  

Figure 3-1: Definition of Merge and Diverge Influence Areas 

The final merge/diverge influence area considered in this research was also a 

dichotomous variable, like the horizontal curve variable. That is, incidents with a 

merge/diverge influence area within their impact area were grouped into the “yes” category 

and incidents without merge/diverge influence area within their impact area were 

categorized as “no”. Note that the “presence of merge influence area” and the “presence of 

diverge influence area” were treated as separate variables. 

The work zone activities data were retrieved from the Active Construction Project 

database service that is updated nightly in the FDOT Open Data Hub. The database 

provides the work zone construction location and duration. The Google Map Historical 

Tool was used to verify the direction where the construction activity was reported. Using 

this information, the work zone variable was aggregated into two categories: incidents with 

work zone activity within their impact area (i.e., the “yes” category), and those without 

work zone activity within their impact area (i.e., the “no” category). 
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3.1.4 NOAA Database 

 

The NOAA database preserves, monitors, and assesses climate and historical 

weather data. One of the systems maintained by NOAA is the Next Generation Weather 

Radar (NEXRAD). NEXRAD is a network of 160 high-resolution Doppler radar sites that 

detect precipitation and atmospheric movement and disseminate near real-time data in 

approximately 5-minute intervals from each site (Barr, 2018). With these high-resolution 

data, it is possible to obtain the actual rainfall intensity over the road network in short time 

intervals.  

Original data from NEXRAD, referred to as NEXRAD Level-II data, were used in 

this research. These data included reflectivity, one of the meteorological base data 

quantities. Radar measures rainfall intensity using radiations reflected on a target surface, 

in this case, a roadway network. The proportion of a target's productivity in capturing and 

returning radiofrequency energy is alluded to as reflectivity. Reflectivity can simply be 

defined as a measure of fractions of radiations reflected by a given surface. It is expressed 

as the ratio of the radiant energy reflected and the total amount of energy incident upon 

that surface (Andrew, 2019). 

As indicated in Figure 3-2, in this research, reflectivity data were downloaded from 

the radar located in Miami, Florida (KAMX – Miami, FL). This radar is positioned at 

latitude: 25.61056, longitude: -80.41306, and has been operational since April 20, 1995. 

Specifically, the NEXRAD Level-II data were accessed from Amazon S3 through the 

following link https://noaa-nexrad-level2.s3.amazonaws.com. Similar to other high-

resolution Doppler radars under NEXRAD, the KAMX radar covers a 248.5-mile radius. 

https://noaa-nexrad-level2.s3.amazonaws.com/


 

54 

 
Figure 3-2: Location of Radar used to Collect Rainfall Data  (NOAA, n.d.) 

Figure 3-3 describes the approach used to retrieve rainfall data from NEXRAD. 

Reflectivity data were obtained for incidents that occurred during inclement weather 

conditions, as indicated in the incident database. The data were retrieved at 5-minute 

intervals, from the time when the incident began impacting traffic to the time when (1) a 

secondary crash occurred for primary incidents, and (2) when the traffic flow returned to 

normal for normal incidents. The downloaded radar data from Amazon S3 are in a unique 

digital binary format. Thus, as indicated in Figure 3-3 (Step 2), the NOAA Weather 

Climatic Toolkit (WCT) was used to visualize and convert data into a conventional 

scientific format, a shapefile in this case. ArcGIS software was then used to merge the 

downloaded radar data with the Traffic Message Channels impacted at time interval (t). 
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Figure 3-3: Workflow for Collecting and Processing Reflectivity Data 

The recorded reflectivity values were converted to rainfall intensity using the 

following reflectivity-rainfall intensity relationship (Andrew, 2019): 

𝑅 =
10

𝑑𝐵𝑍
1
2

10

250
               (3-2) 

where, 𝑅 is the rainfall intensity expressed in millimeters per hour (mm/hr), and 𝑑𝐵𝑍 is an 

abbreviation for decibel relative to reflectivity (𝑍). The dBZ is used to compare the 

reflectivity of a target surface in mm6 per m3 to the return of a droplet of rain with a 

diameter of 1 mm. In other words, it measures the strength of the energy reflected to the 

radar by the target surface, in this case, the roadway segment. Finally, the rainfall intensity 

data were grouped into three categories according to the American Meteorological Society 

(AMS) rainfall intensity classification (American Meteorological Society [AMS], n.d.). 

The three groups include light rainfall (Trace – 0.10 in/hr), moderate rainfall (0.10 – 0.30 
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in/hr), and heavy rainfall (> 0.30 in/hr). Table 3-1 shows a sample of rainfall data retrieved 

from KAMX radar in June 2019. The near- high-resolution rainfall data were obtained from 

the NOAA database. 

Table 3-1: Sample Rainfall Data from NEXRAD 

Sweep Time Rainfall (mm/hr) Rainfall (in/hr) Rain Category 

10:30:14 AM 0.010043937 0.000395431 Heavy 

10:35:54 AM 0.034947831 0.0013759 Heavy 

10:41:24 AM 0.01003853 0.000395218 Moderate 

10:46:55 AM 0.002384304 9.38703E-05 Moderate 

10:52:50 AM 0.011050536 0.000435061 Heavy 

10:58:28 AM 0.010038571 0.00039522 Light 

11:04:35 AM 0.007661987 0.000301653 Heavy 

 

3.2 Study Area 

 

The study corridors were selected from the Florida’s Turnpike System Mainline. 

As shown in Figure 3-4, the Turnpike Mainline is a 312-mile corridor consisting of two 

main roadways: the Florida Turnpike Mainline (or SR-91), and the Homestead Extension 

of Florida’s Turnpike (HEFT) (or SR 821). The two roadways are 265 mile and 48 miles, 

respectively. The following subsections discuss the criteria considered while selecting the 

study corridors. 
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Figure 3-4: Florida’s Turnpike Mainline 

3.2.1 Study Corridors for Secondary Crash Identification 

 

Two main data sources are required to estimate an incident impact area: (1) traffic 

incidents; and (2) high-resolution traffic data. The HERE Technologies record the speed 

for roadways by dividing them into Traffic Message Channels. Traffic Message Channels 

generally span a stretch from one exit or entrance ramp to the next.  

There are a total of 406 Traffic Message Channels along the Florida’s Turnpike 

Mainline, with 284 along the Mainline, and 122 along the HEFT. On average, Traffic 
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Message Channels along the study corridor span a distance of 1.9 miles and 0.7 miles on 

the Mainline and HEFT, respectively. About 65% of the Traffic Message Channels along 

the Mainline are shorter than 1.4 miles. On the other hand, 88% of Traffic Message 

Channels along the HEFT are shorter than 1.5 miles. Only 7% of the Traffic Message 

Channels along the HEFT are longer than 2 miles. 

Since the longest Traffic Message Channel along the HEFT is approximately 4 

miles, and the longest Traffic Message Channel along the Mainline is 15 miles, a minimum 

4-mile length was considered as a criterion to include a Traffic Message Channel in the 

analysis. Notably, only 15% of the Mainline Traffic Message Channels are longer than 4 

miles. The use of traffic data from overly long Traffic Message Channels may result in an 

inaccurate estimation of traffic flow changes caused by the incident. 

The final study area included the full 48-mile length of the HEFT and a 97-mile 

section along Florida’s Turnpike Mainline. The 97-mile section included a 69-mile section 

of the Mainline Central Section (MCS), and 28 miles of the Mainline South Section (MSS).  

Figure 3-5(a) shows the location of the study area. The HEFT section is from mile 

marker (MM) 0 to MM 48 (see Figure 3-5(b)). The MSS is located from MM 0 through 

MM 4, which is the Turnpike Mainline Spur, and from MM 48 through MM 72, which is 

the junction between SR-91 and SR-869 (Sawgrass Expressway) (see Figure 3-5(c)). The 

MCS is located from MM 240 through MM 309 (see Figure3-5(d)). Table 3-2 summarizes 

the HERE Traffic Message Channels along the selected study corridors. 
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HEFT 

 
Mainline South Section (MSS) 

 
Mainline Central Section (MCS) 

 

 

Figure 3-5: Selected Roadway Sections along Turnpike Mainline 

 

Table 3-2: Distribution of HERE Traffic Message Channels along the Study Corridors 

Roadway 
Number of Traffic Message Channels Length of Corridor 

(miles) Northbound Southbound Total 

Mainline Central Section 46 47 93 69 

Mainline South Section 34 35 69 28 

HEFT 61 61 122 48 

 

 

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong 

Kong), Esri Korea, Esri (Thailand), NGCC, OpenStreetMap contributors, and the GIS User Community. 

(a) 

(b) (c) (d) 

(a) 
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3.2.2 Study Corridors for Secondary Crash Likelihood Model 

 

Of the three corridors used to identify secondary crashes, only the HEFT and the 

MSS were used to develop the secondary crash likelihood models. These corridors are 

located within the same jurisdiction (Miami, Florida) and serve traffic with comparable 

driving behaviors, patterns, and volume. Also, the group of incident responders that attend 

to incidents on the two corridors is similar. 

The two corridors, HEFT and MSS, were selected based on the availability of speed 

data from HERE Technologies, incident hotspots, and major construction activities, such 

as lane widening, bridge maintenance, etc. The Kernel Density function in ArcGIS was 

used to identify high incident segments within the Florida Turnpike System. The hotspot 

analysis was conducted based on traffic incidents that occurred along the study corridors 

during the study period. As indicated in Figure 3-6, both the incidents hotpot analysis and 

crash hotspot analysis identified the HEFT and MSS as corridors that experienced the 

highest number of traffic incidents and crashes. 
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(a) Incident hotspot 

 

(b) Crash hotspot 

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China 

(Hong Kong), Esri Korea, Esri (Thailand), NGCC, OpenStreetMap contributors, and the GIS User 

Community. 

Figure 3-6: Corridors with High Incidents along Florida’s Turnpike 

 

3.2.3 Study Corridors for Secondary Crash Risk Prediction Model 

 

Of the two corridors used in the likelihood model, only MSS was used to implement 

the prediction model. The exploratory analysis of the Active Construction Projects 

shapefile indicated that lane widening construction activities took place along the HEFT 

during the study period. Alternatively, on the MSS, there were no such activities during 

the study period. 

3.3 Summary 

 

The goal of this research was to investigate approaches to mitigate secondary 

crashes on freeways. This goal was implemented using the following three main steps: 

1. identify secondary crashes; 
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2. identify significant factors contributing to the occurrence of secondary crashes; and 

3. predict the probability of secondary crashes in real-time.  

Table 3-3 summarizes the data needs for each of the tasks required to achieve the goal of 

this research. 

Table 3-3: Data Needs for Predicting Secondary Crashes in Real-time 

Data Source Data Type 
Identify 

SC 

SC Likelihood 

Model 

SC Prediction 

Model 

SunGuide® Incident    

HERE 

Technologies 
Speed       

RCI 
Shoulder width, horizontal curve, 

and vertical curve 
   

Google Maps 
Merge ramps, diverge ramps, and 

work zone data 
   

Google Earth 

Pro 

Merge ramps, diverge ramps, and 

work zone data 
   

FDOT Open 

Data Hub 
Work zone data    

NOAA Rainfall intensity       

Note: FDOT = Florida Department of Transportation; RCI = Roadway Characteristics Information; NOAA 

= National Oceanic and Atmospheric Administration; SC = Secondary Crash
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CHAPTER 4 

METHODOLOGY 

 

This research explored approaches to mitigate secondary crashes on freeways. This 

goal was achieved using the following three components: (1) identify secondary crashes 

using a dynamic approach, (2) identify factors influencing the likelihood of secondary 

crashes, and (3) develop a real-time dynamic secondary crash risk prediction model. This 

chapter discusses the methodology and data preparation efforts used to achieve the research 

goal and objectives. 

 

4.1 Identify Secondary Crashes 

 

A data-driven approach was used to identify secondary crashes in this research. 

This method accurately estimates the impact area of the primary incident using speed data 

from HERE Technologies and identifying secondary crashes occurring within the impact 

area of the primary incident. The proposed approach aims to capture better traffic flow 

characteristics, such as speed, that change over space and time and affect the queue 

formation caused by the primary incident. As discussed in Section 3.2, the study area 

included the HEFT corridor, a 48-mile extension of the Florida Turnpike, and a 97-mile 

section on Florida’s Turnpike System Mainline, i.e., a 69-mile Mainline Central Section 

(MCS) and a 28-mile Mainline South Section (MSS). This research used three major steps 

to identify secondary crashes using the proposed data-driven approach. 

 

4.1.1 Extract and Process Speed Data from HERE Technologies 

 

The 5-minute speed data from HERE Technologies were retrieved from the 284 

Traffic Message Channels along the study corridor from January 2014 through June 2019. 
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These data were used to establish the recurrent speed profile of the section under normal 

traffic conditions. The average speed in each 5-minute interval was used to establish the 

recurrent speed profile. Additionally, a confidence interval of two standard deviations was 

established to define the speed profile's lower and upper bounds (i.e., speed bandwidth) to 

account for the variation in speeds on a roadway segment. For each Traffic Message 

Channel, seven speed profiles were generated, one for each day of the week. Independent 

speed profiles for different days of the week and times of the day were established to 

account for the recurrent traffic congestion. Figure 4-1 shows a typical speed profile for a 

24-hour period on a weekday. As expected, there is a significant drop in speed during the 

morning peak hours, while the average speeds were the highest between midnight and 5:00 

AM. 

 
Figure 4-1: Sample Speed Profile for Estimating Normal Traffic Conditions 
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4.1.2 Match Incidents to a Traffic Message Channel 

 

The geographic location of both the incidents and the Traffic Message Channels is 

the most critical information required for matching an incident to the Traffic Message 

Channel. In this research, the mile markers (MMs) of incidents and Traffic Message 

Channels (start and end) were used instead of the geographic coordinates, i.e., longitudes 

and latitudes. Through the ArcGIS tool, the Toll Roads polyline shapefiles extracted from 

the FDOT Transportation Data and Analytics Office website were used to assign MMs to 

the incidents and the start and end of the Traffic Message Channels. This approach ensures 

that roadway alignment characteristics, especially on curved segments, do not affect the 

accurate computation of the spatial relationship between incidents and Traffic Message 

Channels. 

Using the assigned MMs, each incident was matched to a Traffic Message Channel 

at the incident location. For northbound incidents, since MMs increase in the northbound 

direction, the MM of the northbound incident must be greater than or equal to the MM of 

the start of the Traffic Message Channel and less than or equal to the MM of the end of the 

Traffic Message Channel. Similarly, for southbound incidents, since MMs decrease in the 

southbound direction, the MM of the incident must be greater than or equal to the MM of 

the start of the Traffic Message Channel and less than or equal to the end of the Traffic 

Message Channel. In other words, the start and end of each Traffic Message Channel is 

direction dependent. The date, day, and reported time of incidents that were successfully 

matched with the Traffic Message Channels were extracted and used in the next steps. 
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4.1.3 Estimate Incident Impact Area and Identify Secondary Crashes 

 

Traffic incidents and real-time traffic data were required to estimate the incident 

impact area. The impact area was computed for incidents that were successfully matched 

to the Traffic Message Channels, as elaborated in the previous step. This process was 

achieved by tracking the reported speeds at the segment where the incident occurred, from 

the time the incident was detected to the time when the traffic flow returned to normal. An 

incident was considered to have affected the traffic flow characteristics of the segment 

when the average speed along the segment was less than the lower boundary of the speed 

profile. The same procedure was repeated for all the upstream Traffic Message Channels 

affected by the incident. Next, the time taken for the traffic to return to normal, following 

the occurrence of an incident, was recorded for each affected Traffic Message Channel. 

Since the incident impact duration along different Traffic Message Channels may differ, 

the incident impact area was defined for each Traffic Message Channel individually. 

In summary, this process enabled the accurate estimation of the spatiotemporal 

impact area of the incident. That is, for each impacted Traffic Message Channel, the 

temporal thresholds were defined by the incident impact duration, i.e., from the time the 

incident was first detected to the time traffic returned to normal. 

Figure 4-3 shows an example of the impact area caused by an incident I-1, where 

the x- and y-axes represent the time and length of the affected roadway segments, 

respectively. Note that each cell in Figure 4-3 represents a speed measurement by the 

Traffic Message Channel at the tth time interval, i.e., 5 minutes in this case. As indicated in 

Figure 4-2, the impact duration and impact length vary across the different Traffic Message 

Channels impacted by the incident. While the segment where the incident occurred, i.e., 
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Traffic Message Channel 0, has the most extended impact duration, the farthest segment 

impacted by incident I-1, i.e., Traffic Message Channel 6, has the shortest impact duration. 

 

Figure 4-2: Approach to Estimate Incident Impact Area 

Following the establishment of the area impacted by each incident, the last step was to 

identify secondary crashes. A traffic incident was considered a secondary crash if it 

occurred within the prior incident's spatiotemporal impact area. Referring to Figure 4-2, 

since incident I-1 occurred earlier than incidents I-2, I-3, and I-4, the main task was to 

determine whether these three incidents occurred because of incident I-1. Considering the 

impact area in Figure 4-3, incident I-3 was considered a secondary crash to incident I-1 

since it occurred within the impact area of incident I-1. 

 

4.2 Identify Factors Influencing the Occurrence of Secondary Crashes 

 

Not all incidents lead to secondary crashes. The likelihood of secondary crashes 

depends on several factors, including characteristics of primary incidents, weather 

conditions, geometric conditions, traffic flow characteristics, etc. Besides these factors, 

work zones have the potential of causing secondary crashes (Kitali, 2019b). However, 
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simply incorporating all variables in the model may lead to biased results, considering the 

possible significant correlation that exists among the variables. The proportion of primary 

incidents is normally lower than the proportion of normal incidents, a situation that makes 

the response variable in the likelihood model imbalanced. Thus, a modeling approach that 

accounts for the response variable's imbalanced nature, identifies the most important 

variables, and detects variable correlation was considered an ideal model for this case. In 

addition to addressing these issues, this research explored the influence of variables that 

were rarely considered in previous studies on the risk of secondary crashes. The explored 

variables include the presence of work zone, merge influence area, diverge influence area, 

and vertical curves within the incident impact area. 

Occasionally, secondary crashes tend to become primary incidents for other 

crashes, conventionally referred to as cascading crashes. In other words, some primary 

incidents result in a series of cascading crashes. Although generally uncommon, cascading 

crashes present a significant challenge to transportation agencies. They are expected to be 

attended by multiple responding agencies at different time stamps and locations. Moreover, 

incidents attended to by multiple incident responders may require lane closures, a situation 

that further reduces the capacity of the roadway resulting in more congestion. Identifying 

factors associated with the likelihood of cascading crashes is the first step towards devising 

strategies to mitigate them. The following subsections discuss the methodologies used to 

identify factors influencing the likelihood of secondary crashes and cascading crashes. 
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4.2.1 Identify Factors Influencing the Likelihood of Secondary Crashes 

 

As indicated earlier in this dissertation, the research was based on data collected for 

two corridors, the HEFT and the MSS. Unlike the MSS corridor, lane widening activities 

were occurring along the HEFT during the study period. Considering the scarcity of studies 

that evaluated the impact of work zones on the occurrence of secondary crashes, this 

research extends the previous research on secondary crash likelihood models by evaluating 

the impact of work zones on the occurrence of secondary crashes. 

Instead of using a conventional logistic regression, the adaptive LASSO penalized 

logistic regression, fitted using the bootstrap resampling approach, was used to model the 

likelihood of secondary crashes in work zones. Specifically, the adaptive LASSO penalized 

estimator was used to extract the most important variables, with minimal correlation. Since 

the proportion of primary incidents was smaller than the proportion of normal incidents, 

the bootstrap resampling method was used to fit the penalized logistic regression. The 

following subsections describe in detail the penalized logistic regression and the bootstrap 

resampling approach. 

4.2.1.1 Penalized Logistic Regression 

 

Secondary crash risk models estimate the probability that a secondary crash will 

occur given a prior incident. From a statistical point of view, secondary crash risk modeling 

can be viewed as a binary classification problem. Suppose that the dataset for incidents has 

n observations (𝑿𝑖 , 𝑦𝑖), 𝑖𝜖1,2, … , 𝑛, with p explanatory variables, then 𝑿𝑖 =

𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 = 𝑥𝑖
𝑇. Let 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 becomes the response variable, which is binary 

in nature, i.e., 𝑦𝑖 represents the secondary crash indicator (1 indicates a secondary crash is 

caused by a primary incident (𝑖), and 0 indicates that no secondary crash occurred). 
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Researchers have used several methods to identify factors influencing the risk of a 

secondary crash. Of the previously adopted methods, logistic regression has an exceptional 

advantage since it provides a direct estimate of class probability and does not require a 

tuning parameter. As shown in Equation 4-1, the logistic regression model presents the 

class-conditional probabilities through a linear function of the predictors.  

𝑙𝑜𝑔
Pr(𝑦𝑖=1|𝑥𝑖)

Pr(𝑦𝑖=0|𝑥𝑖)
= 𝛽0 + 𝑥𝑖

𝑇𝛽             (4-1) 

where 𝛽 = (𝛽1, … , 𝛽𝑝)
𝑇
 is the vector of coefficients of the 𝑝 predictors to be estimated, 

excluding the intercept 𝛽0, and Pr(𝑦𝑖 = 1|𝑥𝑖)  and Pr(𝑦𝑖 = 0|𝑥𝑖) denote the conditional 

probabilities of the class labels 1 and 0, respectively. A maximum likelihood approach is 

commonly used in calculating the coefficients, and the log-likelihood can be written as: 

𝑙(𝛽0, 𝛽) = ∑ {𝑦𝑖𝑙𝑜𝑔𝑃𝑟𝑜𝑏(𝑌 = 1; 𝛽) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑙𝑜𝑔𝑃𝑟𝑜𝑏(𝑌 = 1; 𝛽))}𝑁
𝑖=1   

= ∑ {𝑦𝑖(𝛽0 + 𝑥𝑖
𝑇𝛽) − 𝑙𝑜𝑔 (1 + 𝑒(𝛽0+𝑥𝑖

𝑇𝛽))}𝑁
𝑖=1            (4-2) 

LASSO penalized logistic regression is a regression analysis method that performs 

both variable selection and regularization to enhance the statistical model's prediction 

accuracy and interpretability (Tibshirani, 1996). The LASSO penalized estimator shrinks 

some coefficients of a regression model and sets others to zero (0) to obtain variables with 

a substantial effect on the outcome (Tibshirani, 1996). LASSO performs important variable 

selection and variable correlation simultaneously. That is, between a pair of highly 

correlated variables, LASSO tends to pick the most important variable and discard the other 

by shrinking it toward zero. 

Because the LASSO method performs variable selection through a continuous 

process, it does not suffer as much from high variability, i.e., it simultaneously does both 
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continuous shrinkage and automatic variable selection. The penalty term introduced by 

LASSO during the variable selection process ensures better estimation of the prediction 

error while avoiding overfitting. Selecting an optimal subset of explanatory variables is 

expected to improve the classification accuracy and make the model interpretation easier. 

Since some of the variables will be shrunk to zero, model thriftiness is also achieved.  

The logistic regression model in Equation 4-1 can further be extended into the 

LASSO logistic regression model by adding the 𝐿1 constraint on 𝛽 parameters (Equation 

4-3). The  𝐿1 constraint is added to minimize the negative log-likelihood function with the 

penalty term. The generated coefficients can be expressed as a sparse linear combination 

of 𝑝 number of predictor variables when solving the following optimization problem: 

𝑚𝑖𝑛
(𝛽0, 𝛽) {∑ −

1

𝑛
[𝑦𝑖(𝛽0 + 𝑥𝑖

𝑇𝛽) − 𝑙𝑜𝑔 (1 + 𝑒(𝛽0+𝑥𝑖
𝑇𝛽))]𝑁

𝑖=1 + 𝑃𝜆(𝛽)}                             (4-3) 

where 𝑃𝜆(𝛽) is the penalty term that depends on 𝜆, a vector of non-negative regularization 

parameters, commonly referred to as a tuning parameter. The tuning parameter 𝜆 controls 

the strength of shrinkage in the explanatory variables, i.e., when 𝜆 takes larger values, more 

weight will be given to the penalty term and vice versa (Tibshirani, 1996). In this way, both 

shrinkage and variable selection are done simultaneously, and it is also this property that 

makes LASSO generally easier to interpret. Depending on the LASSO penalty's property, 

some coefficients in 𝛽 will be exactly equal to zero. Further, it is also because of the penalty 

term 𝜆 that a LASSO model can include any number of variables. 

While there are numerous penalty terms, a good penalty produces an estimator that 

is not biased or over-penalize large parameters (Algamal and Lee, 2015a). Thus, the 

adaptive LASSO penalty was selected in this research because it applies adaptive weights 
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when penalizing parameters (Zou, 2006). The adaptive LASSO imposes a higher weight 

to the small coefficients and a lower weight to the large coefficients to reduce the selection 

bias and fit the model consistently (Algamal and Lee, 2015b). Thus, this approach is said 

to have an oracle property. It is the main advantage of adaptive LASSO, compared to other 

penalty terms, such as the conventional LASSO, ridge penalty, and elastic net (Algamal 

and Lee, 2015a). Thus, the estimation of the vector βj is obtained by minimizing Equation 

4-4, where wj is a vector of data-driven weights. Although various methods have been used 

to estimate the weights (e.g., LASSO estimates), this research used ridge regression to 

estimate initial weights (SAS Institute Inc., 2019) because of the limitations of LASSO, as 

pointed out by Algamal and Lee (2015b). 

�̂� = arg min 𝛽 [−𝐿(𝛽|𝑌) + 𝜆 ∑ 𝑤𝑗|𝛽𝑗|𝑝
𝑗=1 ]                                              (4-4) 

4.2.1.2 Bootstrap Resampling 

 

The bootstrap resampling method was used to estimate the logistic regression 

parameters to resolve the data imbalance caused by a disproportionally high percentage of 

normal incidents compared to primary incidents. Bootstrap resampling involves estimating 

parameters by repeatedly and randomly sampling subsets of data, and hence, providing 

more accurate estimates (Hastie et al., 2009; Kassambara, 2017; Pei et al., 2016). The 

conventional bootstrapping approach involves drawing a sample randomly and evenly with 

replacement. The resampling focused on neutralizing the effect of a significantly low 

percentage of primary incidents.  

A three-step resampling approach was applied to the dataset. First, the incident 

dataset was divided into two groups: normal incidents and primary incidents. Then, k 

samples (where k equals the number of primary incidents) were randomly drawn from all 
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groups in each bootstrap replication. The resulting subset of data contained an equal 

number of normal incidents and primary incidents. The new dataset was then used to fit 

the penalized logistic regression. Finally, the procedure of drawing samples of k 

observations and fitting the model was repeated 5,000 times (arbitrarily selected as a trade-

off between prediction accuracy and computation time), and the standard errors and 

confidence intervals of the estimates were calculated based on these 5,000 estimates. 

The model coefficients were obtained by calculating the mean of all the estimates 

of the bootstrap samples. The odds ratio (OR), which represents how the dependent 

variable varies with the predictor variable, was computed relative to the base category. The 

odds ratio was calculated as: 

𝑂𝑅 = 𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡                                                        (4-5) 

 

4.2.2 Identify Factors that Influence the Likelihood of Cascading Crashes 

 

This research used a Bayesian network to understand the probabilistic relationship 

among variables influencing the likelihood of cascading crashes. Before fitting the 

Bayesian network, a data-driven approach was first adopted to identify incidents that did 

not result in cascading events, referred to in this research as non-cascading crashes, and 

incidents that resulted in cascading events, referred herein as cascading crashes. 

Figure 4-3 summarizes the approach used to investigate the probabilistic 

relationship between factors contributing to the occurrence of cascading crashes. 

Specifically, the methodology presented in Figure 4-3 is divided into three main steps: (a) 

fitting the penalized logistic regression model, (b) building the Bayesian network structure, 
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and (c) predicting the probabilities of combined evidence. The following subsections 

discuss each of the three steps in detail. 

4.2.2.1 Penalized Logistic Regression 

 

The penalized logistic regression was considered in this approach for the same 

reasons it was used to model the likelihood of secondary crashes. This approach has the 

advantage of simultaneously estimating the model coefficients, performing variable 

selection, and accounting for multi-collinearity (James et al., 2013). Since the proportion 

of cascading crashes was smaller than the proportion of non-cascading crashes, a bootstrap 

resampling method was used to fit the penalized logistic regression. For the cascading crash 

likelihood model, Pr(𝑦𝑖 = 1|𝑥𝑖)  and Pr(𝑦𝑖 = 0|𝑥𝑖) denote the conditional probabilities 

of the cascading crashes and non-cascading crashes, respectively. 

4.2.2.2 Bayesian Network 

 

A Bayesian network was used to understand the probabilistic relationship among 

variables influencing the likelihood of cascading crashes. The Bayesian network model's 

choice was based on the interpretability of the Bayesian network, which explicitly presents 

the probabilistic relationships among variables in the model (Kidando et al., 2019b; Kutela 

and Teng 2019). 
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Note: Evidence = A condition that has been observed, e.g., incident type; Hypothesis variable = A variable 

that has a direct probabilistic relationship with the occurrence of cascading crashes. 

 

Figure 4-3: Methodology Workflow for Cascading Crash Likelihood Model 

 

To integrate subjectivity and reveal hidden probabilistic relationships among 

variables, the structure learning of the Bayesian network was conducted using an algorithm 

and expert knowledge. The Bayesian network structure was trained, using the Bayesian 

Dirichlet equivalent uniform (BDeu) as the search algorithm. After the Bayesian network 

structure was developed, the expert knowledge and findings from previous studies were 
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applied to refine the trained Bayesian network structure by only changing some of the 

arrow directions, such as the cause-effect direction. A similar approach was adopted in 

several previous studies (Cong et al., 2018; Stylianou and Dimitriou, 2018; Xie and Waller, 

2010). 

The greedy hill-climbing (GHC) algorithm was adopted as the search strategy to 

retrieve the optimal network structure from the data. The GHC algorithm iteratively adds, 

removes, and reverses edges to find a network with the highest score (Kidando et al., 

2019b). The best network structure is obtained once the score cannot be improved further 

in the search process. Assume dataset T is used to train the network structure B, the 

Bayesian network structure then obtains the best network structure B by maximizing the 

scoring value, BDeu(𝐵, 𝑇). The BDeu metric can be expressed as: 

BDeu(𝐵, 𝑇) = log(𝑃(𝐵)) + ∑ ∑ (𝑙𝑜𝑔 (
Γ(

𝑁′

𝑞𝑖
)

Γ(𝑁𝑖𝑗+ 
𝑁′

𝑞𝑖
)
) +  ∑ 𝑙𝑜𝑔

𝑟𝑖
𝑘=1 (

Γ(𝑁𝑖𝑗𝑘+
𝑁′

𝑟𝑖𝑞𝑖
)

Γ(
𝑁′

𝑟𝑖𝑞𝑖
)

))
𝑞𝑖
𝑗=1

𝑛
𝑖=1   

(4-6) 

where, 

𝑁′  = equivalent sample size, 

𝑁𝑖𝑗                                 = 

number of instances in the data T, where variable 
∏ takes𝑿𝑖

 their  j-th configuration, such that 

∑ 𝑁𝑖𝑗𝑘
𝑟𝑖
𝑘=1 = 𝑁𝑖𝑗  , 

𝑁𝑖𝑗𝑘  = number of instances in the data T, 

𝑟𝑖   = number of states of the finite random variable, 𝑿𝑖, 

𝑞𝑖 =  ∏ 𝑟𝑖𝑿𝑖∈𝑿𝑖
          = 

number of possible configurations of the parent set 
∏ of 𝑿𝑖𝑿𝑖

, and 

n = number of observations. 

 

Given the estimated optimal Bayesian network structure, and the evidence associated with 

the hypothesis variables, the model parameters, which are the discrete probability values 
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in the conditional probability tables, were estimated using the maximum likelihood 

estimation method. 

4.2.2.3 Combined Evidence Prediction Inference 

 

Using the optimal network retrieved in the analysis, the probabilistic inference was 

conducted through combined evidence prediction reasoning. The combined evidence 

predictive inference involves valuing the probability of an event's occurrence, e.g., 

cascading crash given some evidence. This process attempts to answer questions, such as 

what is the probability of a cascading crash occurring during peak hours when the road 

surface is wet? 

The predicted probability of an incident resulting in cascading crashes, based on 

the combined evidence, was estimated as: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = 𝑃(𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝑖|𝑒𝑥1
= 𝑥1, 𝑒𝑥2

= 𝑥2 , … 𝑒𝑥ℎ
= 𝑋ℎ)           (4-6) 

where, 𝑒𝑥 is the evidence of a hypothesis variable 𝑥, and 𝑥ℎ is the observed evidence of 

hypothesis variables 𝑋. Similar to individual hypothesis variable analyses, for the 

combined evidence, each observed evidence was assigned a certainty value of 1, i.e., 

𝑃(𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝑖|𝑒𝑥1
= 𝑥1, 𝑒𝑥2

= 𝑥2 = 1). The conditional probability distributions of the 

trained Bayesian network structure were estimated using the maximum likelihood 

approach. Both the Bayesian network structure training and inferences were implemented 

using the pyAgrum 0.15.2 program, a Python open-source package (Wuillemin, 2019). 

 

4.3 Predict the Probability of Secondary Crashes in Real-time 

 

When an incident occurs, traffic conditions upstream of the incident vary with time, 

and so does the probability of secondary crashes. This research developed a real-time 
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dynamic prediction model to account for the temporal variation of secondary crash 

likelihood. Dynamic updating refers to the continuous updating of the secondary crash 

likelihood model over time. As a result, the model coefficients are continuously updated 

with time. 

This research proposed a dynamic binary classifier which dynamically accounts for 

model uncertainty and allows within-model parameters to change over time. In contrast to 

the frequentist approach, the Bayesian approach takes the probability of a binary event as 

a random variable instead of a fixed value. This approach allows the incorporation of 

uncertainty in parameter estimates, which is particularly useful when forecasting. 

A 5-minute time interval was used when the primary incident started impacting 

traffic to when the secondary crash occurred and when the normal incident started affecting 

traffic to the time the traffic returned to normal. To illustrate this, consider a normal 

incident and a primary incident that started impacting traffic from 8:00 AM to 9:00 AM. A 

secondary crash occurred at 8:30 AM within the queue caused by the primary incident. In 

this example, the first model will include information on both normal and primary incidents 

from 8:00 AM to 8:05 AM. Subsequent models will include information from 8:05 AM to 

8:10 AM, 8:10 AM to 8:15 AM, etc. The last model for the normal incident will be from 

8:55 AM to 9:00. Meanwhile, the last model for the primary incident will be from 8:25 

AM to 8:30 AM, the time when the secondary crash occurred. 

Before developing the prediction model, the following steps were first 

implemented: (a) define prior distributions, (b) extract prevailing explanatory variables, (c) 

impute the missing data points in the explanatory variables, (d) fit the Bayesian model, and 
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(e) generate posterior distributions. These steps are illustrated in Figure 4-4 and discussed 

in the following subsections. 

 

Figure 4-4: Methodology Workflow for Secondary Crash Risk Prediction Model 

 

4.3.1 Define Prior Distribution 

 

In Bayesian inference, the distributions of parameters are estimated using a 

maximum a posteriori probability method for which the prior distribution for all unknown 

parameters has to be defined (Kitali et al., 2017). Normally, two categories of priors are 

used in the Bayesian approach: informative and non-informative. Informative priors are 

based on the literature, expert knowledge, or information retrieved explicitly from previous 

data analysis (Kitali et al., 2018). On the other hand, non-informative priors, also called 

“vague” priors, are often used in the absence of reliable prior information regarding model 
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parameters. Assigning the non-informative priors to model parameters is common in 

Bayesian modeling, especially in the absence of informative priors (Kruschke, 2013). The 

non-informative priors impose minimal influence over the estimates and allow the data 

characteristics to dominate instead (Ntzoufras, 2009). 

Non-informative priors were specified only in the first model since no previous 

information was available to generate the informative prior distributions. In particular, the 

normal distributions with a mean of zero and a standard deviation of 10 were assigned as 

the non-informative priors in the first model. For the subsequent models, the prior 

distributions were estimated using the posterior distributions of the immediately previous 

model. This process was implemented to improve the model output's robustness by 

accounting for the spatial and temporal variation of the secondary crash likelihood. 

 

4.3.2 Extract Prevailing Explanatory Variables 

 

Several factors may affect the likelihood of secondary crashes. Some of these 

factors are constant to the specific prior incident and do not vary with time. An excellent 

example of these factors includes pre-incident variables, which are variables that can be 

measured before the occurrence of the incident, e.g., traffic flow characteristics, incident 

type, incident occurrence time, incident severity, etc. Other variables that influence the 

likelihood of secondary crashes vary with time. These may include traffic flow 

characteristics upstream of the incident and rainfall. Thus, in this step, the prevailing traffic 

flow characteristics and rainfall data are prepared. 
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4.3.3 Data Preprocessing 

 

 Few incidents, i.e., less than 0.05%, were missing some prevailing traffic flow 

characteristics. In this case, the K-nearest neighbor method was used to replace the missing 

information with substituted values. K-nearest neighbor imputation is carried out by 

finding the 𝑘 closest samples (Euclidian distance) in the data (Kuhn, 2019). The missing 

value of the predictor is computed by averaging the respective k-nearest samples. The value 

of 𝑘 was chosen to be five (5). In this step, the data were also centered and scaled to ensure 

the robustness of the models. 

 

4.3.4 Fit Bayesian Model 

 

The response variable is binary, representing a secondary crash likelihood 

indicator, where 0 indicates that no secondary crash occurred (normal incident) and 1 

signifies a secondary crash occurred (primary incident). Since the response variable is 

binary and asymmetric, the cloglog model was used to predict the probability of secondary 

crashes. Unlike other conventional classification regression models, such as logistic and 

probit models, the cloglog model is asymmetrical around the inflection point, a situation 

that favors the prediction of rare events (secondary crashes in this case) (Kitali et al., 2017). 

In dynamic Bayesian cloglog regression, recursive estimation allows for sequential 

processing and is done in two steps: updating and predicting (McCormick et al., 2012; K. 

Yang et al., 2018). Consider a secondary crash occurrence as a binary response, 𝑦𝑡, and a 

set of predictors 𝑋𝑡 = {𝑥1,𝑡, 𝑥2,𝑡, 𝑥3,𝑡, … , 𝑥𝑘,𝑡}. The predicted secondary crash occurrence at 

time 𝑡, denoted by 𝑦𝑡, is estimated with a vector of explanatory variables 𝑿𝑡 using the 

cloglog regression, which is expressed as: 
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𝑦𝑡 = {1 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑠 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
0            𝑒𝑙𝑠𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡              

         (4-8) 

𝑦𝑡~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑡)             (4-9) 

𝑐𝑙𝑜𝑔𝑙𝑜𝑔 (𝑝𝑡) = log(−log (1 − 𝑝𝑡)) = ( 𝑿𝑡)𝑇𝜃𝑡       (4-10) 

where, 𝜃𝑡 is a 𝑘-dimensional vector of regression coefficients, including intercept and 

explanatory variables, at time 𝑡, i.e., 𝜃𝑡 = {𝑥1,𝑡, 𝑥2,𝑡, 𝑥3,𝑡, … , 𝑥𝑘,𝑡}. At a given time, 𝑡, the 

procedure takes the posterior mode of 𝜃 from time 𝑡 − 1 and uses it to construct the prior 

for time 𝑡. This is implemented by first using the information up to time 𝑡 − 1 to construct 

an estimate of the parameters for time 𝑡, yielding the prediction equation. This equation 

predicts the value of the observations at time 𝑡 based on the estimated parameter using data 

up to time 𝑡 − 1. The prediction equation is then combined with the observed data at time 

𝑡, and the new information factors into updated parameter estimates via the updating 

equation (K. Yang et al., 2018). As shown in Equation 4-11, the updating equation is 

proportional to the product of a Binomial density (Likelihood) and the prediction equation 

(Prior), so that the entire procedure has a Bayesian interpretation.  

𝑝(𝜃𝑡|𝑌𝑡) ∝ 𝑝(𝑦𝑡|𝜃𝑡)𝑝(𝜃𝑡|𝑌𝑡−1) ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟       (4-11) 

To calibrate the model's parameters presented in Equation 4-10, a full Bayes (FB) 

approach, based on Markov Chain Monte Carlo (MCMC) simulations, was used. The No 

U-Turn Sampling (NUTS) technique was adopted in the analysis. NUTS is based on the 

Hamiltonian Monte Carlo (HMC) that avoids the random walk behavior, which has a 

greater advantage over convergence during sampling than other sampling techniques, such 

as Metropolis. More information regarding the comparison of NUTS and other techniques 

for sampling the posterior distribution can be found in Hoffman and Gelman (2014) study. 
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As with the Bayesian estimation, the convergence of the MCMC simulations was 

assessed using the Gelman-Rubin Diagnostic statistic. Also, a visual diagnostics approach 

was used to assess the convergence of the chains, including the use of the autocorrelation 

plot and the trace plot of each parameter. A total of 80,000 iterations, including 40,000 for 

warmup and 40,000 for inference, were sufficient to produce the desirable Gelman-Rubin 

statistic, which shows that the convergence has been reached. 

 

4.3.5 Generate Posterior Distributions 

 

As described in Section 4.3.4, the posterior distributions of the model parameters 

were obtained by combining the prior information with the likelihood function following 

the Bayes rule. These distributions were used to extract the model coefficients. In addition, 

the posterior distributions can be used to update the next model. This was achieved by 

using posterior distributions as priors. The posterior distribution for each explanatory 

variable was plotted in a histogram, also using the Kernel density. From these two plots, a 

parametric distribution, e.g., normal distribution, t-distribution, etc. that closely follows the 

posterior distribution was assumed.  

 

4.4 Summary 

 

This chapter described the approach used to identify secondary crashes, identify 

factors influencing the likelihood of secondary crashes, and dynamically predict the risk of 

secondary crashes in real-time. This research proposed a data-driven approach to better 

estimate the primary incident impact area, and hence, identify secondary crashes that 

occurred within the impacted area. To accomplish this, traffic incidents from the 

SunGuide® database and high-resolution speed data from HERE Technologies were used. 
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Following the identification of secondary crashes, the next step involved 

identifying factors influencing the likelihood of secondary crashes. A penalized logistic 

regression fitted using the bootstrap resampling approach was used to identify risk factors 

that influence the occurrence of secondary crashes. The proposed model is considered to 

improve the secondary crash risk model's predictive accuracy because it accounts for the 

asymmetric nature of secondary crashes, performs variable selection, and removes 

correlated variables. This research extends the previous research on secondary crash 

likelihood models by evaluating the impact of work zones on the occurrence of secondary 

crashes. The Bayesian network model used to explore the concurrent factors that influence 

the probability of cascading crashes was also discussed in detail. After identifying 

secondary crash influential factors, the final task involved dynamically predicting the risk 

of secondary crashes in real-time. The dynamic Bayesian cloglog model was proposed to 

accomplish this task and is described in detail in this chapter. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

This chapter is divided into five major sections. The first section presents the results 

and discusses the secondary crash identification process. The second section discusses the 

results of the secondary crash likelihood models. The third section presents the leading 

causes of cascading crashes. The fourth section presents the results of the real-time 

secondary crash risk prediction model. The final section provides a summary of the 

research findings. 

 

5.1 Secondary Crash Identification 

 

To identify secondary crashes, 322,259 incidents from the SunGuide® database and 

high-resolution speed data from HERE Technologies were evaluated. Table 5-1 provides 

a summary of the secondary crashes identified along the study corridors. As indicated in 

Table 5-1, a total of 4,549 secondary crashes were identified from 3,977 primary incidents. 

This is an equivalent of 5.7 secondary crashes per mile per year along the 148-mile study 

corridor. In other words, about six secondary crashes per mile occurred annually along the 

study corridors. 

Table 5-1: Secondary Crashes Identified Using the Improved Approach 

Seg. 

Seg. 

Len. 

(miles) 

NI PI SC All Inc. 
All 

Crash 

SC/ 

mile/year 

Prop. of 

SC/Inc. 

(%) 

Prop. of 

SCs/Crash  

(%) 

HEFT 48 111,274 2,516 2,964 116,521 19,369 11.2 2.5 15.3 

MSS 28 93,709 932 1,008 95,583 9,020 6.5 1.1 11.2 

MCS 69 109,090 529 577 110,155 8,818 1.5 0.5 6.5 

Overall  145 314,073 3,977 4,549 322,259 37,207 5.7 1.4 12.2 

Note: HEFT = Homestead Extension of Florida’s Turnpike; MSS = Mainline South Section; MCS = Mainline 

Central Section; Seg. Len. = Segment Length; NI = Normal Incident; PI = Primary Incident; SC = Secondary 

Crash; Inc. = Incident. 

 

The identified secondary crashes account for 1.4% of all traffic incidents. While 

the proportion of secondary crashes, when compared to all incidents, may not seem 
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alarming at first glance, secondary crashes account for 12.2% of all crashes included in the 

analysis. As indicated in Table 5-1, the highest proportion of secondary crashes were 

identified along the HEFT corridor, followed by the MSS, and finally, the MCS. 

 

5.1.1 Spatiotemporal Distribution of Secondary Crashes 

 

Figures 5-1 and 5-2 show the spatial and temporal characteristics of secondary 

crashes in relation to primary incidents. The median distance between primary incidents 

and secondary crashes was found to be 2.5 miles. About half of secondary crashes occurred 

within 40 minutes after the primary incident. Almost half of the secondary crashes (47%) 

occurred within 2 miles upstream of the primary incident. Meanwhile, more than three-

quarters of secondary crashes (93%) occurred within two hours. 

 
Figure 5-1: Spatial Distribution of Secondary Crashes in Relation to Primary 

Incidents 

0%

20%

40%

60%

80%

100%

120%

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
9

2
0

2
1

2
2

2
3

2
4

F
re

q
u

en
cy

 o
f 

 I
n

ci
d

en
ts

Distance to Primary Incidents (Miles)

Distance to primary incidents (miles) Cumulative %



 

87 

 

Overall, 40% of secondary crashes occurred within two hours of the onset of a primary 

incident and two miles upstream of the primary incident, the most commonly considered 

static spatiotemporal threshold. 

 
Figure 5-2: Temporal Distribution of Secondary Crashes in Relation to Primary 

Incidents 

 

5.1.2 Time of Day and Day of Week Distribution  

 

Figure 5-3 shows the distribution of the 4,549 secondary crashes, 3,977 primary 

incidents, and 314,073 normal incidents by different periods. More than three-quarters of 

secondary crashes (85%) occurred during peak hours, i.e., morning peak, 6:00 AM to 10:00 

AM, and evening peak, 3:00 PM to 8:00 PM. Specifically, 33% of secondary crashes 

occurred during the morning peak, while the remaining 52% occurred during the evening 

peak. The highest proportion of secondary crashes during morning peak hours occurred 
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from 8:00 AM to 9:00 AM (11%), while the highest proportion of secondary crashes during 

the evening peak period (13%) occurred between 5:00 PM and 6:00 PM, summing to a 

total of 24% of all secondary crashes that occurred along the study corridors. In total, the 

proportion of secondary crashes that occurred during peak hours accounted for 85% of total 

secondary crashes that occurred on the study corridors. 

 
Figure 5-3: Distribution of Traffic Incidents by Time of Day 

The highest proportion of primary incidents was observed during the evening peak 

period between the hours of 2:00 PM and 8:00 PM, accounting for 50% of all primary 

incidents. As can be inferred from Figure 5-3, the peaks of primary incidents and secondary 

crashes are one hour apart. Unlike primary incidents and secondary crashes, there is no 

significant distinction in the distribution of normal incidents during peak hours. More than 
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three-quarters of normal incidents (94%) occurred between the hours of 6:00 AM and 8:00 

PM. As can be observed from Table 5-2, approximately half of normal incidents occurred 

during peak hours (53%), while the remaining half occurred during off-peak hours. 

Table 5-2: Distribution of Traffic Incidents by Time of Day 

Temporal  

Characteristic 
Category 

Incident Category (%) 

Normal  

Incidents 

Primary  

Incidents 

Secondary  

Crashes 

Time of Day  
Peak hours 68 84 85 

Off-peak hours 32 16 15 

 

More than three-quarters of both primary incidents (84%) and secondary crashes 

(85%) occurred during peak hours. Compared to off-peak hours, peak-hour traffic flow 

characteristics were found to contribute more to the occurrence of secondary crashes. 

Smaller gaps between vehicles characterize congested traffic, providing less maneuvering 

room for drivers to avoid a crash (Mishra et al., 2016; Kitali et al., 2019b). 

Figure 5-4 presents the distribution of incidents by day of the week. It can be 

inferred from Figure 5-4 that the proportion of normal incidents, primary incidents, and 

secondary crashes is much higher on weekdays than on weekends. Compared to other days 

of the week, Friday was found to experience the highest proportion of secondary crashes 

(20%). Only 13% of secondary crashes were found to occur on weekends. 
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Figure 5-4: Distribution of Normal Incidents and Secondary Crashes by Day of 

Week 

 

5.1.3 Incident Characteristics  

 

Figure 5-5 provides the distribution of the incident clearance duration for towing-

involved and no-towing-involved incidents. From Figure 5-5, it can be inferred that 94% 

of traffic incidents that did not involve towing were cleared within 95 minutes, while only 

64% of traffic incidents that involved towing were cleared within 90 minutes, a value 

adopted from the FDOT’s Open Road Policy.  
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Figure 5-5: Distribution of Incident Clearance Duration for Towing-Involved and 

No-Towing Involved Incidents 

 

In addition to towing, the Emergency Medical Services (EMS) presence at the 

incident scene was also identified as one of the factors that increase the incident clearance 

duration. This observation is evident in Figure 5-6, where 95% of traffic incidents that did 

not involve EMS were cleared within 90 minutes, while only 64% of traffic incidents that 

involved EMS were cleared within 90 minutes. 
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Figure 5-6: Distribution of Incident Clearance Duration for EMS-Involved and No-

EMS Involved Incidents 

 

As expected, traffic incidents involving towing and EMS resulted in longer incident 

clearance durations as they tend to require more time to be cleared. As indicated in previous 

studies, the likelihood of secondary crashes increases with an increase in incident clearance 

duration (Xu et al., 2016; Kitali et al., 2018). This is evident from the data, as 13% of 

primary incidents required towing, while only 3% of normal incidents required towing (see 

Table 5-3). Similarly, a higher percentage of incidents involving EMS resulted in 

secondary crashes (11%). Furthermore, while only 28% of normal incidents involved more 

than one responding agency, 51% of primary incidents and 55% of secondary crashes 

involved multiple responding agencies. These statistics suggest that incidents involving a 

greater number of responding agencies increase the likelihood of secondary crashes. 
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Table 5-3: Incident Distribution Based on Responders’ Characteristics 

Incident Characteristics Category 

Incident Category (%) 

Normal 

Incidents 

Primary 

Incidents 

Secondary 

Crashes 

Towing Involved 
No 97.0 86.6 85.2 

Yes 3.0 13.4 14.8 

Emergency Involved 
No 98.2 89.4 89.1 

Yes 1.8 10.6 10.9 

Number of Responding 

Agencies 

1 71.9 49.0 45.2 

2 24.3 31.7 33.8 

3 1.8 7.0 9.0 

4 0.9 4.7 5.3 

5 0.8 4.9 5.0 

6+ 0.3 2.6 1.7 

 

 

As can be observed from Table 5-4, 97% of normal incidents did not result in a lane 

closure, while 21% of primary incidents resulted in a lane closure. The percentage of lanes 

closed is an indicator of the severity of the primary incident, as severe incidents tend to 

result in an increased number of lanes closed (Kitali et al., 2018). About 9% of primary 

incidents resulted in moderate to severe impacts on traffic, while only 1% of normal 

incidents were moderate to severe. 

Table 5-4: Incident Characteristics 

Incident Characteristics Category 

Incident Category (%) 

Normal 

Incidents 

Primary 

Incidents 

Secondary 

Crashes 

Percentage of Lanes 

Closed 

0 97.0 79.3 99.7 

0-50 0.4 2.7 0.2 

50-100 2.6 18.0 0.1 

Incident Severity* 

Minor 98.9 90.6 93.4 

Moderate 0.7 5.9 4.9 

Severe 0.4 3.5 1.7 

Note: *Incident severity refers to the extent to which the incident impacted the traffic. 

 

As indicated in Figure 5-7, only 10% of normal incidents were crashes, a proportion 

similar to all incidents (12%), while approximately half of the primary incidents were 

crashes (47%). In other words, the probability of secondary crashes was found to be higher 
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when primary incidents were crashes. Note that the category “Other” in Figure 5-7 includes 

emergency vehicles, vehicle fire, and police activity. All incidents include normal 

incidents, primary incidents, and secondary crashes. 

 

Figure 5-7: Distribution of Incidents by Incident Type 

Figure 5-8 shows the distribution of the incident clearance duration for normal 

incidents and primary incidents. Overall, normal incidents were cleared more quickly than 

primary incidents; approximately 94% of the normal incidents were cleared within 90 

minutes, while only 82% of the primary incidents were cleared within 90 minutes. The 

longer clearance time of the primary incidents could be considered one of the factors that 

may have contributed to the occurrence of secondary crashes. 
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Figure 5-8: Distribution of Incident Clearance Duration for Normal and Primary 

Incidents 

 

Figure 5-9 presents the distribution of the incident clearance duration for the 

identified primary incidents and secondary crashes. Approximately 77% of the secondary 

crashes were cleared within 90 minutes, while 82% of the primary incidents were cleared 

within 90 minutes. This observation implies that primary incidents were cleared somewhat 

faster than secondary crashes. 
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Figure 5-9: Distribution of Incident Clearance Duration for Primary Incidents and 

Secondary Crashes 

 

5.1.4 Environmental Conditions 

 

Environmental conditions (i.e., weather, roadway surface, and lighting) have been 

identified as some of the factors that influence the likelihood of secondary crashes 

(Vlahogianni et al., 2012). Table 5-5 summarizes the variation of weather condition, 

roadway surface condition, and lighting condition by incident category, i.e., normal 

incident, primary incident, and secondary crash. Regarding weather condition, as indicated 

in Table 5-5, more than three-quarters of all the three incident categories occurred under 

clear weather condition. Compared to normal incidents (2%), a higher proportion of 

primary incidents (13%) occurred during cloudy/fog/rainy conditions. Similarly, a higher 

percentage of primary incidents (11%) and secondary crashes (18%) occurred on wet 
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surface conditions. These statistics imply that inclement weather conditions and adverse 

road surface conditions are among the factors that increase the probability of secondary 

crashes. 

Table 5-5: Environmental Conditions 

Environmental 

Condition 
Category 

Incident Category (%) 

Normal 

Incidents 

Primary 

Incidents 

Secondary 

Crashes 

Weather 
Clear 97.9 87.3 79.9 

Cloudy/Fog/Rain 2.1 12.7 20.1 

Roadway Surface 

Condition 

Dry 98.7 88.7 81.6 

Wet 1.3 11.3 18.4 

Lighting Condition 
Daylight 71.3 80.2 77.5 

Dark/Dusk/Down 28.7 19.8 22.5 

 

 

5.2 Secondary Crash Influential Factors 

 

5.2.1 Descriptive Statistics 

 

A total of 116,521 incidents on the HEFT corridor and 95,583 incidents on the MSS 

were used to identify secondary crashes. Altogether, 2,964 secondary crashes were 

identified on the HEFT corridor, accounting for 3% of the 116,521 HEFT incidents that 

were included in the analysis. A total of 1,008 secondary crashes were identified from the 

95,583 MSS evaluated. These secondary crashes account for 1% of all MSS incidents. 

Descriptive statistics indicated that more secondary crashes occurred on the HEFT than on 

the MSS. Although the proportion of secondary crashes to all incidents on both corridors 

may not seem initially alarming, proportionally, roughly 11 secondary crashes/mile/year 

and seven secondary crashes/mile/year occurred on the HEFT and the MSS, respectively. 

Secondary crashes also accounted for 15.3% and 11.2% of all HEFT and MSS crashes, 

respectively. 
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Following a careful review, the only factor that was different along the two 

corridors was the presence of work zones. The HEFT had lane widening activities 

throughout the study period, while the MSS had very little construction activity during the 

study period. Furthermore, similar incident response procedures are in place for the two 

corridors. The same incident responders attend to incidents and report to the same agency 

(Florida’s Turnpike), and the same TMC is responsible for managing incidents for both 

sections. Thus, the higher proportion of secondary crashes on the HEFT may be attributed 

to the presence of major construction activities. 

The likelihood model response variable is dichotomous, consisting of normal 

incidents and primary incidents. Note that normal incidents are those that did not lead to 

any secondary crashes, and primary incidents are those that led to secondary crashes. After 

removing secondary crashes and incidents that were missing information for some of the 

attributes, the final number of incidents included in the likelihood model consisted of 

105,479 and 88,340 incidents for the HEFT and the MSS, respectively. 

Tables 5-6 and 5-7 summarize the data and the variables used in the analysis. The 

variables were categorized into the incident, temporal, weather, traffic flow, and roadway 

geometric characteristics. For the normal incidents, the mean speed before they occurred 

and the mean prevailing speed were comparatively similar; while for the primary incidents, 

the mean prevailing speed was relatively lower than the mean speed before the incidents 

occurred. As expected, the variation in speed for primary incidents was higher than that of 

normal incidents. 

Most normal incidents were vehicle-related (see Table 5-6). The proportion of 

primary incidents that were crashes was higher than that of normal incidents that were 
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crashes. The proportion of primary-crash incidents on the HEFT was higher than that of 

the MSS. Many normal incidents were responded to by one agency, while the proportion 

of primary incidents attended to by one or more than one agency were almost equal for 

both study corridors. Compared to normal incidents, a higher proportion of primary 

incidents had emergency medical services (EMS) as one of the responding agencies. A 

similar observation can be made for incidents where towing was involved and on moderate 

to severe incidents. While an equal proportion of normal incidents occurred during peak 

and off-peak hours, more than two-thirds of primary incidents occurred during peak hours. 

Compared to normal incidents, a higher proportion of primary incidents occurred during 

adverse weather conditions and on wet road surfaces. 

Table 5-6: Descriptive Statistics of Continuous Variables 

Variable 
Incident 

Category 

HEFT MSS 

Min Mean Med SD Max Min Mean Med SD Max 

Shoulder 

width 

(feet) 

All incident 6.0 11.3 10.0 2.9 25.0 0.9 10.7 10.4 2.7 32.0 

Normal 

Incident 
6.0 11.2 10.0 2.9 23.0 0.9 10.7 10.4 2.7 32.0 

Primary 

Incident 
8.0 11.3 11.0 2.3 25.0 4.0 10.3 10.5 1.6 19.0 

Mean 

speed 

before the 

incident 

(mph) 

All incident 1.9 59.5 63.4 13.2 80.3 1.0 64.1 66.3 9.5 80.7 

Normal 

Incident 
1.9 60.1 63.6 12.6 80.3 2.3 64.3 66.3 9.3 80.7 

Primary 

Incident 
2.0 40.1 43.8 19.0 75.8 1.0 50.0 57.9 18.1 77.0 

SD of 

speed 

before the 

incident 

(mph) 

All incident 0.0 2.5 1.9 2.5 32.7 0.0 2.1 1.6 2.0 34.0 

Normal 

Incident 
0.0 2.5 1.9 2.5 32.7 0.0 2.1 1.6 2.0 31.2 

Primary 

Incident 
0.0 3.7 2.4 3.8 29.1 0.0 3.6 1.9 4.5 34.0 

Mean 

prevailing 

speed 

(mph) 

All incident 2.0 59.3 63.0 12.4 85.5 4.4 63.9 66.2 9.1 80.9 

Normal 

Incident 
8.0 60.0 63.2 11.5 85.5 7.5 64.1 66.2 8.7 80.9 

Primary 

Incident 
2.0 33.5 29.5 15.3 69.9 4.4 43.3 44.6 17.0 67.6 

SD of 

prevailing 

speed 

(mph) 

All incident 0.0 4.0 2.5 4.3 37.8 0.0 3.1 1.9 3.7 30.9 

Normal 

Incident 
0.0 3.8 2.4 4.1 37.8 0.0 3.0 1.9 3.6 30.9 

Primary 

Incident 
0.0 10.4 10.6 5.2 28.4 0.0 9.0 8.5 6.2 26.1 

Note: Min = Minimum; Med = Median; SD = Standard deviation; Max = Maximum 
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Table 5-7: Descriptive Statistics of Categorical Variables 

Attribute Attribute Category 

HEFT MSS 

Secondary Crash Likelihood 

Total 

Secondary Crash Likelihood 

Total No Yes No Yes 

Count % Count % Count % Count % 

Incident Attributes 

Incident type 

Vehicle problem 67,917 66 1,182 42 69,099 62,309 71 457 49 62,766 

Hazard 20,133 20 230 8 20,363 17,704 20 125 13 17,829 

Crash 14,629 14 1,388 50 16,017 7,392 8 349 37 7,741 

Number of responding agencies 
1 70,476 69 1,392 50 71,868 63,158 72 482 52 63,640 

2+ 32,203 31 1,408 50 33,611 24,247 28 449 48 24,696 

EMS involvement 
No 100,591 98 2,562 92 103,153 85,944 98 813 87 86,757 

Yes 2,088 2 238 9 2,326 1,461 2 118 13 1,579 

Towing involvement 
No 99,608 97 2,496 89 102,104 85,257 98 805 86 86,062 

Yes 3,071 3 304 11 3,375 2,148 2 126 14 2,274 

Lane closure 
No 98,543 96 2,245 80 100,788 85,048 97 745 80 85,793 

Yes 4,136 4 555 20 4,691 2,357 3 186 20 2,543 

Incident severity* 
Minor 101,289 99 2,572 92 103,861 86,574 99 831 89 87,405 

Moderate/severe 1,390 1 228 8 1,618 831 1 100 11 931 

Temporal Attributes 

Day of week 
Weekday 75,815 74 2,499 89 78,314 65,901 75 811 87 66,712 

Weekend 26,864 26 301 11 27,165 21,504 25 120 13 21,624 

Time of day 

Off-peak 59,435 58 639 23 60,074 46,505 53 263 28 46,768 

Morning peak 17,735 17 894 32 18,629 17,507 20 302 32 17,809 

Evening peak 25,509 25 1,267 45 26,776 23,393 27 366 39 23,759 

Note: *Incident severity refers to the extent to which the incident impacted the traffic; EMS is Emergency Medical Service; N/A = Not Applicable. 
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Table 5-7: Descriptive Statistics of Categorical Variables (continued) 

Attribute Attribute Category 

HEFT MSS 

Secondary Crash Likelihood 

Total 

Secondary Crash Likelihood 

Total No Yes No Yes 

Count % Count % Count % Count % 

Weather Attributes 

Weather condition 
Clear 100,519 98 2,439 87 102,958 86,303 99 843 91 87,146 

Adverse 2,160 2 361 13 2,521 1,102 1 88 9 1,190 

Road surface condition 
Dry 101,074 98 2,472 88 103,546 86,575 99 851 91 87,426 

Wet 1,605 2 328 12 1,933 830 1 80 9 910 

Roadway Geometric Attributes 

Presence of horizontal curve 

within IIA  

No 48,980 48 655 23 49,635 35,628 41 239 26 35,867 

Yes 53,699 52 2,145 77 55,844 51,777 59 692 74 52,469 

Presence of vertical curve 

within IIA  

No 67,913 66 1,675 60 69,588 43,301 50 276 30 43,577 

Yes 34,766 34 1,125 40 35,891 44,104 50 655 70 44,759 

Presence of diverge influence 

area within IIA  

No 49,102 48 616 22 49,718 46,958 54 294 32 47,252 

Yes 53,577 52 2,184 78 55,761 40,447 46 637 68 41,084 

Presence of merge influence 

area within IIA  

No 45,019 44 540 19 45,559 26,351 30 264 28 26,615 

Yes 57,660 56 2,260 81 59,920 61,054 70 667 72 61,721 

Proportion of major work zone 

within IIA 
No 63,801 62 1,085 39 64,886      

Yes 38,878 38 1,715 61 40,593 N/A N/A N/A N/A N/A 

Response variable 
Secondary crash 

likelihood 
102,679 97 2,800 3 105,479 87,405 99 931 1 88,336 

Note: IIA is Incident Impact Area; N/A = Not Applicable.
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5.2.2 Secondary Crash Likelihood 

 

The penalized logistic regression was used to investigate the impact of work zones 

on the likelihood of secondary crashes. Variable importance, based on the percentage of 

times selected, is illustrated in Figure 5-10. The top 90% of selected variables when fitting 

the penalized logistic regression on the bootstrapped samples were considered the most 

important variables. 

 
        Note: EMS = Emergency Medical Service; SD = Standard Deviation. 

Figure 5-10: Selection of the Important Variables for the Secondary Crash 
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Most variables (17 of 20 variables) included in the likelihood model for the HEFT 

corridor were found to be important. These variables include the presence of work zone 

within the incident impact area, presence of diverge influence area within the incident 

impact area, incident type, mean prevailing speed, shoulder width, presence of horizontal 

curve within the incident impact area, presence of vertical curve within the incident impact 

area, road surface condition, lane closure, number of responding agencies, standard 

deviation of speed before the incident, standard deviation of prevailing speed, weather 

condition, time of day, incident severity, presence of merge influence area, and EMS 

involvement. 

Of the 19 variables included in the likelihood model for the MSS, the following 13 

variable were selected as the most important: presence of diverge influence area within the 

incident impact area, presence of merge influence area within the incident impact area, 

incident type, mean prevailing speed, shoulder width, presence of horizontal curve within 

the incident impact area, presence of vertical curve within the incident impact area, road 

surface conditions, lane closure, number of responding agencies, standard deviation of 

speed before the incident, standard deviation of prevailing speed, and weather condition. 

Table 5-8 shows the penalized logistic regression results for the two study corridors 

and the number of times each variable was selected as an important variable in the model. 

The model coefficients were obtained by calculating the mean of all estimates from the 

bootstrap samples. The following subsections discuss the results from Table 5-8 in detail. 

Note that only the most important variables, significant at the 95% Bootstrap confidence 

interval (CI), are discussed. 
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Table 5-8: Results of the Penalized Logistic Regression Fitted Using Bootstrap Samples 

Variable Category 

HEFT   MSS 

Mean OR Med SD 
CI (%) 

Count %b Mean OR Med SD 
CI (%) 

Count %b 
2.5 97.5 2.5 97.5 

Intercept N/A 1.61 N/A 1.61 0.23 1.17 2.08 5,000 100 6.06 N/A 6.05 0.72 4.66 7.48 5,000 100 

Traffic Flow Attributes 

Mean speed 

before the 

incident (mph) 

N/A 0.01 1.01 0.01 0.00 0.01 0.02 4,874 97 0.02 1.02 0.02 0.01 0.01 0.03 2,167 43 

SD of speed 

before the 

incident (mph) 

N/A -0.01 0.99 -0.01 0.01 -0.04 0.01 1,112 22 -0.07 0.93 -0.07 0.02 -0.12 -0.04 4,756 95 

Mean  

prevailing 

speed (mph) 

N/A -0.11 0.90 -0.11 0.00 -0.11 -0.10 5,000 100 -0.12 0.89 -0.12 0.01 -0.15 -0.10 5,000 100 

SD of 

prevailing 

speed (mph) 

N/A 0.04 1.04 0.04 0.01 0.02 0.05 5,000 100 0.02 1.02 0.02 0.02 -0.02 0.05 3,871 77 

Incident Attributes 

Incident type 

Vehicle problem                         

Hazard 0.00 1.00 0.00 0.08 -0.13 0.17 3,124 62 0.26 1.29 0.25 0.10 0.06 0.45 4,836 97 

Crash 0.55 1.74 0.55 0.08 0.39 0.71 5,000 100 0.53 1.70 0.53 0.19 0.17 0.91 4,996 100 

Lane closure 
No                                

Yes 0.13 1.14 0.12 0.16 -0.17 0.46 4,746 95 -0.03 0.97 -0.03 0.34 -0.75 0.65 3,752 75 

Number of 

responding 

agencies 

1                                

2+ 0.12 1.13 0.12 0.06 0.01 0.24 4,864 97 0.25 1.28 0.25 0.10 0.07 0.44 4,914 98 

EMS 

involvement 

No                                

Yes 0.05 1.05 0.07 0.24 -0.43 0.50 3,794 76 0.20 1.23 0.20 0.40 -0.62 1.02 3,816 76 

Towing 

involvement 

No                                

Yes -0.17 0.84 -0.15 0.19 -0.54 0.18 4,312 86 0.00 1.00 0.01 0.35 -0.72 0.67 3,713 74 

Incident 

severitya 

Minor                                

Moderate/severe 0.15 1.16 0.14 0.26 -0.34 0.69 4,657 93 0.90 2.46 0.85 0.56 0.00 2.11 4,814 96 

Note: aIncident severity refers to the extent to which the incident impacted the traffic; bPercent of time the variable was selected; CI = Bootstrap Confidence 

Interval; IIA = Incident Impact Area; Med = Median; N/A = Not Applicable; OR = Odds Ratio; SD = Standard Deviation; Variables in bold are important and 

significant at the 95% CI.  
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Table 5-8: Results of the Penalized Logistic Regression Fitted Using Bootstrap Samples (continued) 

Variable Category 

HEFT   MSS 

Mean OR Med SD 
CI (%) 

Count %b Mean OR Med SD 
CI (%) 

Count %b 
2.5 97.5 2.5 97.5 

Intercept N/A 1.61 N/A 1.61 0.23 1.17 2.08 5,000 100 6.06 N/A 6.05 0.72 4.66 7.48 5,000 100 

Temporal Attributes 

Day of week 
Weekday                         

Weekend 0.20 1.22 0.21 0.08 0.03 0.34 4,666 93 -0.04 0.96 -0.04 0.11 -0.26 0.20 3,357 67 

Time of day 

Off-peak                                

Morning peak 0.01 1.01 0.01 0.08 -0.14 0.17 4,765 95 0.24 1.27 0.23 0.12 0.01 0.47 4,936 99 

Evening peak -0.18 0.83 -0.18 0.07 -0.30 -0.04 4,989 100 -0.26 0.77 -0.26 0.13 -0.53 -0.02 4,121 82 

Weather Attributes 

Weather 

condition 

Clear                 

Adverse 0.34 1.40 0.34 0.27 -0.18 0.89 4,936 99 0.53 1.70 0.51 0.55 -0.45 1.66 4,545 91 

Road surface 

condition 

Dry                                

Wet 1.24 3.47 1.24 0.30 0.66 1.84 5,000 100 1.08 2.96 1.07 0.59 0.02 2.29 4,868 97 

Roadway Geometric Attributes 

Shoulder width 

(feet) 
N/A 0.10 1.11 0.10 0.01 0.08 0.12 5,000 100 -0.07 0.93 -0.07 0.02 -0.11 -0.03 4,981 100 

Presence of 

horizontal curve 

within IIA 

No                               

Yes 0.57 1.77 0.57 0.07 0.45 0.70 5,000 100 0.50 1.66 0.50 0.10 0.31 0.69 5,000 100 

Presence of 

vertical curve 

within IIA 

No                         

Yes 0.13 1.14 0.13 0.06 0.01 0.26 4,696 94 0.82 2.27 0.82 0.10 0.63 1.00 5,000 100 

Presence of 

diverge 

influence area 

within IIA 

No                                

Yes 0.61 1.84 0.61 0.06 0.49 0.74 5,000 100 0.29 1.34 0.29 0.10 0.09 0.49 4,995 100 

Presence of 

merge influence 

area within IIA 

No                                

Yes 0.23 1.26 0.23 0.06 0.12 0.35 5,000 100 -0.34 0.71 -0.34 0.09 -0.52 -0.16 4,995 100 

Presence of 

major work zone 

within IIA 

No                         

Yes 0.33 1.39 0.33 0.06 0.21 0.46 5,000 100 N/A N/A N/A N/A N/A N/A N/A N/A 

Note: bPercent of time the variable was selected; CI = Bootstrap Confidence Interval; IIA = Incident Impact Area; Med = Median; N/A = Not Applicable; OR 

= Odds Ratio; SD = Standard Deviation; Variables in bold are important and significant at the 95% CI. 
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5.2.2.1 Roadway Geometric Attributes 

 

The following geometric variables along the HEFT section were found to be most 

important and significant at the 95% CI: diverge influence area, merge influence area, 

horizontal curve, vertical curve, shoulder width, and presence of work zone. The following 

five variables along the MSS were found to be most important and credible at the 95% CI: 

diverge influence area, merge influence area, shoulder width, horizontal curve, and vertical 

curve. The work zone variable is applicable only for the HEFT study corridor. The positive 

coefficient for the presence of work zone variable indicates that incidents with impact areas 

within a work zone are 36% more likely to result in a secondary crash. Work zones are 

associated with unexpected congestion due to a combination of factors, including daily 

changes in traffic patterns, narrowed rights-of-way, and complex arrangements of traffic 

control devices and signs (FHWA, 2007). This situation may explain the reason for the 

increased risk of secondary crashes in work zone areas. 

Incidents with diverge influence areas within their impact areas are more likely to 

result in secondary crashes. Diverge influence areas are accompanied by more lane changes 

and high speed differentials because of drivers who are attempting to exit the freeway. This 

situation increases the risk of secondary crashes, and hence, may serve as a possible 

explanation for this observation. Conversely, the estimated parameter of the merge 

influence area in the MSS is negative, implying that incidents with a merge influence area 

within the impact area are less likely to cause secondary crashes. This observation suggests 

that unlike diverge influence areas, merge influence areas have a lesser impact on traffic, 

and hence, a lower likelihood of secondary crashes. Drivers who are merging onto the 

mainline usually enter at a relatively slower speed than the vehicles traveling on the 
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mainline. Meanwhile, drivers exiting the freeway usually make several lane changes and 

slow down to get off the freeway. Previous research indicated that a higher proportion of 

crashes occur at diverging ramps than at merging ramps, where speeding was reported as 

a major factor for crashes at diverging ramps (McCartt et al., 2004). Nonetheless, HEFT 

incidents with merge influence areas within their impact areas are 26% more likely to cause 

secondary crashes. While the presence of work zone may be a possible explanation for this 

finding, further research is needed to provide a greater insight into work zone-related 

crashes. 

As indicated in Table 5-8, incidents whose impact area involves a horizontal curve, 

compared to a tangent section, are more likely to result in secondary crashes. This is 

expected as the queue along a curved section may not be quickly visible to the upstream 

drivers. This finding is consistent with previous research findings (Kitali et al., 2019b). A 

similar observation was found on incidents with a vertical curve within the incident impact 

area. That is, incidents with elevated sections within the impact area are more likely to 

cause secondary crashes than those on level sections. The presence of vertical curves may 

reduce the sight distance, a condition that makes it difficult for upstream drivers to easily 

recognize the queue built by the initial incident. 

The estimated parameter of the MSS shoulder width is negative, implying that a 

unit increase in shoulder width is accompanied by a 7% decrease in the likelihood of a 

secondary crash. One possible explanation is that shoulders provide room for veering away 

from a potential collision. Furthermore, when a platoon of vehicles is suddenly forced to 

slow down, some drivers in the middle of the platoon who are unaware of the congestion 

ahead tend to use shoulders for completing the deceleration maneuver. On the other hand, 
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the estimated parameter of the HEFT shoulder width is positive, implying that a unit 

increase in shoulder width is accompanied by an 11% increase in the likelihood of a 

secondary crash. This finding is counterintuitive, and the presence of construction activities 

on the HEFT corridor may be one possible reason for this observation. 

5.2.2.2 Temporal Attributes 

 

Temporal attributes serve as a proxy for traffic flow parameters, such as volume, 

occupancy, speed, and vehicle mix, as well as driver attitudes and familiarity (Karlaftis et 

al., 1999). The results in Table 5-8 show that the time of day variable is among the most 

important variables in the MSS model. Compared to off-peak hours, incidents that occur 

during morning peak hours are 25% more likely to result in secondary crashes. This finding 

indicates that secondary crashes are more likely to occur during congested periods. This is 

because drivers have less space for moving to avoid a collision in congested traffic. Similar 

findings were observed by previous studies (Kitali et al., 2019b, 2018). 

Both the day of the week and time of day variables are among the most important 

variables in the HEFT model. The results for the day of the week variable indicate that 

HEFT incidents that occur on weekends, rather than weekdays, have a 9% likelihood of 

resulting in secondary crashes. On the other hand, compared to off-peak hours, incidents 

that occur during evening peak hours are 17% less likely to result in secondary crashes. 

Both findings are inconsistent with previous research findings by Kopitch and Saphores 

(2011), Xu et al. (2016), and Zhan et al. (2009). The presence of work zone activities on 

the HEFT may serve as a possible explanation for these findings. 
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5.2.2.3 Traffic Flow Attributes 

 

The following variables in the HEFT model were identified as the most important 

and are significant at the 95% CI: mean speed before the incident, mean prevailing speed, 

and standard deviation of prevailing speed. For the MSS model, the mean prevailing speed 

and the standard deviation of speed before the incident were among the most important 

variables. All of these important traffic-related variables are significant at the 95% CI. 

As shown in Table 5-8, the negative parameter of the mean prevailing speed 

indicates that the risk of secondary crashes decreases as the average prevailing speed 

increases. The decreasing speed represents an increase in traffic density and queue 

formation. Disturbances caused by the primary incident more easily propagate these 

queuing traffic formations, leading to an increased risk of secondary crashes. This finding 

is consistent with the previous studies which reported that the risk of secondary crashes 

increases with the decrease in average speed (Kitali et al., 2019b; Xu et al., 2016). 

The standard deviation of prevailing speed is positively associated with the 

occurrence of secondary crashes. This result was expected, as a high variation in speed is 

associated with volatile interactions among vehicles that accelerate and brake frequently 

(Khattak and Wali, 2017). This situation increases the risk of a secondary crash. 

Interestingly, the mean speed before the incident in the HEFT model is positively 

associated with the likelihood of secondary crashes, meaning that the risk of a secondary 

crash increases with speed before the incident. The standard deviation of speed before the 

incident on the MSS corridor is negatively associated with the risk of a secondary crash. A 

high standard deviation indicates higher variability, and vice versa. This metric was 

included to assist in capturing the effect of rapid changes in traffic conditions (e.g., 
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shockwaves and braking maneuvers) associated with pre-incident conditions. It is worth 

noting that high and low traffic speeds were associated with low and high variations 

(standard deviation) in speeds, respectively. That is, if the incident occurred during high 

traffic speed conditions, then more significant variability in speed is likely to occur as 

traffic is transitioning from the free-flow state to the congested state, a situation that 

increases the likelihood of secondary crashes. On the other hand, if the incident occurred 

during low traffic speed variation (in other words, the average speed is low) the likelihood 

of a secondary crash was expected to be low because traffic is already in a congested state. 

5.2.2.4 Incident Attributes 

 

The most important incident-related variables in the HEFT model include incident 

severity, lane closure, number of responding agencies, and incident type. Only the number 

of responding agencies and incident type variables are significant at the 95% CI. Three of 

the most important incident-related variables in the HEFT model (incident type, number of 

responding agencies, and lane closure) are also among the most important variables in the 

MSS model. Compared with vehicle problem-related incidents, hazard-related and crash 

incidents are more likely to result in a secondary crash. From this finding, it can be inferred 

that the risk of crash incidents resulting in secondary crashes is two times greater than 

hazard-related incidents. A similar observation was made in previous research (Kitali et 

al., 2019b, 2018). A possible explanation for this observation may be related to the extent 

of impact that different incident types may have on traffic. In general, crashes are expected 

to have a higher likelihood of resulting in congestion than other incident types, such as 

hazards and vehicle problems. 
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As expected, the number of responding agencies was also identified as one of the 

significant predictor variables that influence the risk of secondary crash occurrence on both 

the HEFT and MSS corridors. The number of responding agencies is an indicator of the 

severity of the incident because severe incidents tend to require more responding agencies 

than less severe incidents. Moreover, incidents attended to by multiple incident responders 

may require lane closures, a situation that further reduces the capacity of the roadway, 

resulting in more congestion, and hence, increases the likelihood of a secondary crash. This 

fact is proven by the positive coefficient of the lane closure variable, which indicates that 

incidents on the MSS that resulted in lane closure are twice as likely to result in a secondary 

crash, compared to incidents that did not result in lane closure. Previous research reported 

a similar finding (Kitali et al., 2019b, 2018). 

5.2.2.5 Weather Attributes 

 

The results in Table 5-8 show that wet road surface conditions are positively 

associated with the risk of secondary crashes on both study corridors, indicating that 

incidents that occurred on wet road surfaces are two times more likely to result in secondary 

crashes than those that occurred during dry surface conditions. A similar observation was 

found in previous research (Xu et al., 2016). This finding is intuitive, as drivers tend to 

drive more slowly during wet surface conditions than during dry surface conditions, a 

situation which reduces highway capacity, and hence, increases congestion. 

 

 

 

 

 

 



 

112 

 

5.3 Leading Causes of Cascading Crashes 

 

5.3.1 Descriptive Statistics 

 

To identify leading causes of cascading crashes, 95,583 incidents from the 

SunGuide® database and high-resolution speed data from the HERE Technologies were 

evaluated. A total of 1,008 secondary crashes were identified from 932 primary incidents. 

This means, 76 primary incidents resulted in more than one secondary crashes. As indicated 

in Figure 5-11, out of 1,008 incidents that were identified as secondary crashes, 70 occurred 

within the impact area of 66 secondary crashes and their respective primary incident impact 

areas. In other words, 6% of primary incidents resulted in a series of cascading crashes. 

 

Figure 5-11: Cascading and Non-Cascading Crashes Identified in The Study 

Table 5-9 summarizes the list of potential variables that may influence the 

occurrence of cascading crashes. The following 18 independent variables were included in 

the analysis:  

• traffic flow attributes: mean speed before the incident, standard deviation of speed 

before the incident, mean prevailing speed, and standard deviation of prevailing speed; 

• temporal-related variables: time of day and day of the week; 

• weather-related variables: rainfall; 
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• incident-related attributes: incident type, number of responding agencies, EMS 

involvement, towing involvement, lane closure, and incident severity; and 

• geometric attributes: shoulder width, presence of horizontal curve within the incident 

impact area, presence of vertical curve within the incident impact area, presence of 

diverge influence area within the incident impact area, and presence of merge influence 

area within the incident impact area. 

Table 5-9: Descriptive Statistics of Potential Variables Influencing the Occurrence of 

Cascading Crashes 

Attribute Attribute Category Count Percentage (%) 

Traffic Flow Attributes 

Mean speed before the incident (mph)  

Low: ≤ 30 166 18 

Moderate: 30-55 245 26 

High: > 55 520 56 

SD of speed before the incident (mph)  

Low: ≤ 1 241 26 

Moderate: 1-4 463 50 

High: > 4 227 24 

Mean prevailing speed (mph)  

Low: ≤ 25 171 18 

Moderate: 25-45 300 32 

High: >45 460 49 

SD of prevailing speed (mph) 

Low: ≤ 7 413 44 

Moderate: 7-13 242 26 

High: > 13 276 30 

Incident Attributes 

Incident type 

Vehicle problem 457 49 

Hazard 125 13 

Crash 349 37 

Number of responding agencies 
1 482 52 

2+ 449 48 

EMS involvement 
No 813 87 

Yes 118 13 

Towing involvement 
No 805 86 

Yes 126 14 

Lane closure 
No 745 80 

Yes 186 20 

Incident severity 
Minor 831 89 

Moderate/severe 100 11 

Temporal Attributes 

Day of week 
Weekday 811 87 

Weekend 120 13 

Time of day 

Off-peak 263 28 

Morning peak 302 32 

Evening peak 366 39 
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Table 5-9: Descriptive Statistics of Potential Variables Influencing the Occurrence of 

Cascading Crashes (continued) 

Attribute Attribute Category Count Percentage (%) 

Weather Attributes 

Rainfall Intensity 
No/light 843 91 

Medium/heavy 88 9 

Roadway Geometric Attributes 

Shoulder width (feet) 
≤ 10 315 34 

> 10 616 66 

Presence of horizontal curve within the 

incident impact area 

No 239 26 

Yes 692 74 

Presence of vertical curve within the incident 

impact area 

No 276 30 

Yes 655 70 

Presence of diverge influence area within the 

incident impact area 

No 294 32 

Yes 637 68 

Presence of merge influence area within the 

incident impact area 

No 264 28 

Yes 667 72 

Likelihood of cascading crashes 
No 871 94 

Yes 60 6 

 

5.3.2 Important Variables that Influence the Likelihood of Cascading Crashes 

 

Penalized logistic regression was used to identify the most important variables. The 

coefficient was obtained by calculating the mean of all estimates of the models fitted in the 

bootstrap samples. The odds ratio (OR), which represents how the dependent variable 

varies with the predictor variable, was also calculated as the exponent of the predictor 

coefficient. Table 5-10 shows the results of the penalized logistic regression model and the 

number of times the variable was selected in the model as an important variable. Figure 5-

12 shows the results of the variable importance ranking based on the percentage of times a 

variable was selected. The bolded bars represent variables that were among the top 20% of 

the most important variables. These variables include incident type, presence of merge 

influence area within incident impact area, incident severity, standard deviation of 

prevailing speed, rainfall, EMS involvement, time of day, and day of the week. 
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  Note: EMS = Emergency Medical Service; SD = Standard Deviation. 

Figure 5-12: Selection of the Important Variables for Cascading Crash Likelihood 

Model 

 

5.3.2.1 Traffic Flow Attributes 

 

Results indicate that the standard deviation of the prevailing speed variable was one 

of the most important variables. The coefficient in Table 5-10 shows a 67% higher 

likelihood of a cascading crash to occur when the variation in prevailing speed is moderate 

rather than low. This finding was expected, as the greater the speed variance, the greater 

the number of interactions among vehicles that accelerate and brake frequently. This 

situation exacerbates the risk of an incident resulting in a series of cascading crashes. 
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Conversely, the risk of a cascading crash occurring when the variation in prevailing 

speed is higher decreases by 30% compared to when the variation is low.  

Table 5-10: Results of the Penalized Logistic Regression Fitted Using Bootstrap 

Samples 

Variable Category Mean OR Median SD 

CI (%) 

Count %* 

5.0 95.0 

Intercept N/A -0.02 0.98 -0.04 0.34 -0.53 0.56 5000 100.0 

Traffic Flow Attributes 

Mean speed 

before the 

incident (mph)  

Moderate: 30-55         

Low: ≤ 30 0.33 1.40 0.31 0.26 0.02 0.76 458 9.2 

High: > 55 0.29 1.33 0.33 0.37 -0.34 0.83 157 3.1 

SD of speed 

before the 

incident (mph)  

Moderate: 1-4               

Low: ≤ 1 0.25 1.29 0.29 0.31 -0.32 0.69 199 4.0 

High: > 4 0.29 1.33 0.28 0.29 -0.23 0.77 348 7.0 

Mean prevailing 

speed (mph) 

Moderate: 25-45               

Low: ≤ 25 0.46 1.59 0.44 0.28 0.05 0.96 747 14.9 

High: > 45 -0.28 0.75 -0.26 0.20 -0.65 -0.02 618 12.4 

SD of prevailing 

speed (mph) 

Moderate: 7-13          

Low: ≤ 7 0.51 1.67 0.48 0.27 0.09 0.99 2104 42.1 

High: > 13 -0.36 0.70 -0.34 0.28 -0.85 -0.01 397 7.9 

Incident Attributes 

Incident type 

Vehicle problem         

Hazard -0.24 0.79 -0.25 0.37 -0.77 0.46 583 11.7 

Crash 0.54 1.72 0.51 0.30 0.10 1.08 3344 66.9 

Lane closure 
No             

Yes 0.44 1.55 0.39 0.36 0.03 1.10 547 10.9 

Number of 

responding 

agencies 

1              

2+ 
-0.55 0.58 -0.54 0.28 -1.04 -0.08 381 

7.6 

EMS 

involvement 

No             

Yes 0.53 1.70 0.48 0.39 0.04 1.23 1219 24.4 

Towing 

involvement 

No             

Yes 0.41 1.50 0.39 0.51 -0.55 1.18 391 7.8 

Incident 

severity 

Minor            

Moderate/severe 0.68 1.97 0.61 0.46 0.07 1.52 2241 44.8 

Note: *Percent of times a variable is selected as an important variable; Variables in bold are important and 

significant at the 90% credible interval; IIA = Incident Impact Area; OR = Odds ratio; Med = Median; CI = 

Credible Interval. 
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Table 5-10: Results of the Penalized Logistic Regression Fitted Using Bootstrap 

Samples (continued) 

Variable Category Mean OR Median SD 

CI (%) 

Count %* 

5.0 95.0 

Temporal Attributes 

Day of week 
Weekday                

Weekend -0.47 0.63 -0.46 0.33 -1.01 -0.03 1027 20.5 

Time of day 

Off-peak                

Morning peak 0.50 1.64 0.46 0.27 0.09 1.00 1496 29.9 

Evening peak -0.02 0.98 -0.04 0.39 -0.65 0.72 104 2.1 

Weather Attributes 

Rainfall 
No/light                 

Medium/heavy 0.68 1.97 0.61 0.49 0.08 1.52 1569 31.4 

Roadway Geometric Attributes 

Shoulder width 

(feet) 

≤ 10         

> 10 -0.10 0.90 -0.17 0.41 -0.69 0.60 215 4.3 

Presence of 

horizontal curve 

within IIA 

No                

Yes -0.39 0.68 -0.35 0.31 -0.94 -0.01 662 13.2 

Presence of 

vertical curve 

within IIA 

No                

Yes 
-0.11 0.90 -0.17 0.40 -0.67 0.63 266 

5.3 

Presence of 

diverge influence 

area within IIA 

No                

Yes 
-0.33 0.72 -0.31 0.27 -0.78 0.00 486 

9.7 

Presence of 

merge influence 

area within IIA 

No                

Yes 
-0.57 0.57 -0.55 0.29 -1.08 -0.13 3184 63.7 

Note: *Percent of times a variable is selected as an important variable; Variables in bold are important and 

significant at the 90% credible interval; IIA = Incident Impact Area; OR = Odds ratio; Med = Median; CI = 

Credible Interval. 

 

A high standard deviation indicates a higher variability, and vice versa. This metric was 

included to assist in capturing the effect of rapid changes in traffic conditions (e.g., 

shockwaves and braking maneuvers) associated with pre-incident conditions. 

It is worth noting that high traffic speeds are associated with low standard 

deviations, whereas low traffic speeds have high speed variations. That is, if an incident 

occurred when traffic speeds were high, higher variability in speed was likely to occur as 

traffic transitioned from a free-flow state to a congested state, a situation that increases the 



 

118 

 

likelihood of secondary crashes. On the other hand, if an incident occurred when the 

variation of the traffic speed estimates was high (in other words, the average speed was 

low), the likelihood of additional crashes to occur is expected to be low since traffic is 

already in a congested state, and a significant variation in speed is not expected. 

5.3.2.2 Incident Attributes 

 

Important incident-related variables included incident type, EMS involvement, and 

incident severity. Results suggest that compared to vehicle problems, crashes are 72% more 

likely to result in cascading crashes. A possible explanation for this observation may be 

related to the extent of impact different incident types may have on traffic. In general, 

crashes are expected to have a higher likelihood of resulting in congestion than other 

incident types, such as hazards and vehicle problems. 

The probability of incidents with EMS involvement resulting in cascading crashes 

is 70% higher than those that did not have EMS as one of the responding agencies. The 

presence of EMS as one of the responding agencies may serve as an indicator of the severity 

of an incident. EMS responses often result in lane closures, further reducing the capacity 

of the roadway and resulting in more congestion, which increases the likelihood of 

cascading crashes. This fact is proven by the positive coefficient of the incident severity 

variable, which indicates that incidents with moderate/high severity are 97% more likely 

to result in cascading crashes. 

5.3.2.3 Temporal Attributes 

 

All temporal characteristics were selected as important variables. It was observed 

that cascading crashes are 37% less likely to occur on weekends than on weekdays. Results 

also indicate that cascading crashes are 64% more likely to occur during morning peak 
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hours than off-peak hours. This observation implies that incidents occurring during 

congested periods are more likely to cause cascading crashes. Congested traffic is 

characterized by smaller gaps between vehicles, providing drivers with less room for 

maneuvering to avoid a crash. While previous studies on the likelihood of secondary 

crashes indicated that secondary crashes are more likely to occur on weekdays and during 

peak hours, it can be inferred from findings from this research that, compared to secondary 

crashes, cascading crashes are even more likely to occur under these conditions. 

5.3.2.4 Weather Attributes 

 

Rainfall increases the likelihood of cascading crashes by 97%. This is intuitive, as 

drivers tend to drive more slowly when it is raining, a situation that reduces highway 

capacity, and hence, increases congestion. Previous research indicated that rain increases 

the traffic breakdown process, a situation that exacerbates the occurrence of additional 

crashes (Kidando et al., 2019a). 

5.3.2.5 Roadway Geometric Attributes 

 

Incidents where merge influence is within the incident impact area are 45% less 

likely to result in a series of cascading crashes. There was no possible explanation for this 

observation. Further research can assist in providing insight into this finding. 

 

5.3.3 Discrete Bayesian Network results 

 

Figure 5-13 illustrates the optimal Bayesian network structure that was developed 

from the analyses. The hybrid approach revealed that four nodes were directly associated 

(dependence relationship) with cascading crash likelihood. These factors are also referred 

to as hypothesis variables. As can be inferred from Figure 5-13, the four variables that were 
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found to have a direct probabilistic relationship with the likelihood of cascading crashes 

are the standard deviation of prevailing speed, incident severity, rainfall, and day of the 

week. 

 
Figure 5-13: Optimal Bayesian Network Structure 

Based on the optimal Bayesian network structure shown in Figure 5-13, the impact 

of concurrent evidence on the likelihood of cascading crashes was assessed. The analysis 

focused on variables that have a direct association with cascading crash likelihood. Of the 

24 combinations, Table 5-11 provides the results of the top 20% combinations that had a 

higher predicted probability of cascading crashes than all other combinations. 

Table 5-11: Predicted Probability of Cascading Crashes 

Cascading Crash Likelihood 

Predictor Variable Predicted 

Probability Incident Severity Rainfall Intensity Day of Week SD of Prevailing Speed 

Moderate/severe Moderate/heavy Weekday Low 50.00 

Moderate/severe Moderate/heavy Weekend High 50.00 

Moderate/severe No/light Weekend Low 28.57 

Minor Moderate/heavy Weekend Moderate 25.00 

Moderate/severe No/light Weekend Moderate 25.00 

Moderate/severe Moderate/heavy Weekday High 25.00 

Moderate/severe No/light Weekday Moderate 23.08 
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Figure 5-14 shows the Bayesian network structure with the combination of 

evidence that resulted in the highest likelihood of cascading crashes. 

 
(a) First combination 

 

 
(b) Second combination 

Figure 5-14: Combined Evidence Sensitivity Analysis 

From Figure 5-14, it can be inferred that cascading crashes are more likely to occur 

when the prior incident occurs on a weekday, when it is moderately or heavily raining, 

there is low variation in prevailing speed, and the incident resulted in a moderate/severe 
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impact on traffic. Similarly, cascading crashes are more likely to be caused by a 

moderate/severe incident that occurs when it is raining, on a weekend, and when the 

variation in prevailing speed is high. From these two findings, it may be concluded that 

cascading crashes are more likely to occur when traffic is in the transition state, i.e., when 

there is a platoon of vehicles traveling at high differential speeds. However, once the traffic 

is in a congested state, i.e., the variation in speed reduces significantly, then the likelihood 

of cascading crashes also decreases. 

 

5.4 Secondary Crash Risk Prediction 

 

5.4.1 Descriptive Statistics 

 

A dynamic Bayesian cloglog model was developed to predict the likelihood of 

secondary crashes. Once an incident has occurred, traffic conditions upstream of the 

incident change with time, and so does the likelihood of secondary crashes. A 5-minute 

time interval was used from the time when the primary incident occurred to when the 

secondary crash occurred and from the time when the normal incident started impacting 

traffic to the time the traffic returned to normal. A total of 50 models were fitted. 

Incident data from the MSS corridor were used to predict the likelihood of 

secondary crashes. About 66% of these incidents did not have an impact on traffic. For 

these incidents, the speed data and rainfall data for the first 10 minutes following the 

occurrence of the incidents were used. Thus, the models for the first two timestamps may 

be different from the models for the rest of the timestamps. Table 5-12 shows the 

distribution of the primary incidents and normal incidents used to fit the 50 models. 
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Table 5-12: Distribution of Primary Incident and Normal Incidents used in the 

Dynamic Model 

Model 
Time interval 

(minutes) 

Normal 

incidents 

Primary 

incidents 
Total incidents 

Proportion of primary 

incidents 

m1 0-5 92,851 971 93,822 1% 

m2 5-10 86,245 934 87,179 1% 

m3 10-15 21,400 899 22,299 4% 

m4 15-20 18,845 867 19,712 4% 

m5 20-25 16,990 836 17,826 5% 

m6 25-30 15,564 809 16,373 5% 

m7 30-35 14,406 784 15,190 5% 

m8 35-40 13,417 759 14,176 5% 

m9 40-45 12,590 736 13,326 6% 

m10 45-50 11,854 707 12,561 6% 

m11 50-55 11,242 687 11,929 6% 

m12 55-60 10,720 662 11,382 6% 

m13 60-65 10,197 635 10,832 6% 

m14 65-70 9,733 614 10,347 6% 

m15 70-75 9,302 586 9,888 6% 

m16 75-80 8,918 563 9,481 6% 

m17 80-85 8,568 533 9,101 6% 

m18 85-90 8,228 513 8,741 6% 

m19 90-95 7,898 480 8,378 6% 

m20 95-100 7,598 459 8,057 6% 

m21 100-105 7,346 445 7,791 6% 

m22 105-110 7,089 423 7,512 6% 

m23 110-115 6,897 404 7,301 6% 

m24 115-120 6,689 389 7,078 5% 

m25 120-125 6,517 367 6,884 5% 

m26 125-130 6,354 351 6,705 5% 

m27 130-135 6,190 333 6,523 5% 

m28 135-140 6,028 320 6,348 5% 

m29 140-145 5,894 307 6,201 5% 

m30 145-150 5,756 293 6,049 5% 

m31 150-155 5,633 285 5,918 5% 

m32 155-160 5,527 265 5,792 5% 

m33 160-165 5,425 250 5,675 4% 

m34 165-170 5,317 241 5,558 4% 

m35 170-175 5,221 232 5,453 4% 

m36 175-180 5,129 221 5,350 4% 

m37 180-185 5,041 215 5,256 4% 

m38 185-190 4,935 208 5,143 4% 

m39 190-195 4,871 205 5,076 4% 

m40 195-200 4,794 197 4,991 4% 

m41 200-205 4,706 189 4,895 4% 

m42 205-210 4,640 182 4,822 4% 

m43 210-215 4,564 174 4,738 4% 

m44 215-220 4,493 168 4,661 4% 

m45 220-225 4,423 161 4,584 4% 

m46 225-230 4,342 156 4,498 3% 

m47 230-235 4,277 149 4,426 3% 

m48 235-240 4,214 147 4,361 3% 

m49 240-245 4,167 142 4,309 3% 

m50 245-250 4,117 139 4,256 3% 

Note: For the first 10 minutes, all the normal incidents that did not have an impact on traffic were included 

– and hence the numbers are high; m = Model. 
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The following 13 explanatory variables were used in the model: (1) mean speed 

before the incident, (2) standard deviation of speed before the incident, (3) mean prevailing 

speed, (4) standard deviation of prevailing speed, (5) incident type, (6) day of week, (7) 

time of day, (8) rainfall, (9) shoulder width, (10) presence of horizontal curve within the 

incident impact area, (11) presence of vertical curve within the incident impact area, (12) 

presence of diverge influence area within the incident impact area, and (13) presence of 

merge influence area within the incident impact area. Note that, other than incident type, 

the incident-related attributes that were identified as the most important variables in 

Section 5.2 (i.e., lane closure and number of responding agencies), are not included in this 

model since it was not clear at what time these variables were reported after the incident 

occurred. Since these two variables, i.e., lane closure and number of responding agencies, 

can be considered a surrogate measure of congestion, the temporal attributes (time of day 

and day of the week) were used instead. 

 

5.4.2 Cloglog Model Results 

 

To build the model, the first step involved defining the prior distribution. Non-

informative priors were specified only in the first model since there was no previous 

information to generate the informative prior distributions from. For the subsequent 

models, the prior distributions were estimated using the posterior distributions of the 

immediate previous model. In this way, the coefficients of the subsequent models will be 

influenced by both prior information and present information. 

Table 5-13 provides a posterior summary of the model. In Table 5-13, the 

descriptive statistics, i.e., mean, median, and standard deviation of the variable coefficients, 
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were derived from the 50 fitted models. The percentage of times these coefficients were 

significant at the 95% Bayesian Credible Interval (BCI) is also presented. 

Table 5-13: Posterior Summary of Cloglog Model Results 

Variable Category Mean Median SD 
Percent of time it 

was significant 

Intercept  N/A -1.91 -1.69 0.83 100% 

Traffic Flow Attributes 

Mean speed before the incident 

(mph) 

N/A 
-0.12 -0.15 0.08 88% 

SD of speed before the incident 

(mph) 

N/A 
0.14 0.17 0.05 82% 

Mean prevailing speed (mph) N/A -0.23 -0.16 0.17 74% 

SD of prevailing speed (mph) N/A 0.06 0.06 0.05 36% 

Incident Attributes 

Incident type 

Vehicle problem     

Hazard 0.07 0.11 0.09 0% 

Crash 0.53 0.53 0.08 94% 

Temporal Attributes 

Day of week 
Weekday     

Weekend -0.01 0.01 0.10 0% 

Time of day 

Off-peak     

Morning peak 0.66 0.67 0.12 100% 

Evening peak 0.21 0.22 0.08 18% 

Weather Attributes 

Rainfall 
No/light     

Moderate/heavy 0.71 0.72 0.15 76% 

Roadway Geometric Attributes 

Shoulder width (feet) N/A 0.34 0.39 0.16 98% 

Presence of horizontal curve 

within IIA 

No     

Yes 1.25 1.20 0.23 100% 

Presence of vertical curve 

within IIA 

No     

Yes -0.01 -0.03 0.21 6% 

Presence of diverge influence 

area within IIA 

No     

Yes -1.24 -1.27 0.41 96% 

Presence of merge influence 

area within IIA 

No     

Yes -2.03 -2.06 0.23 100% 

Note: Variables in bold were significant more than 90% of the times the models were fitted * Represents 

95% Bayesian Credible Interval; IIA = Incident Impact Area; N/A = Not Applicable; SD = Standard 

Deviation. 

 

Coefficients of the following 10 variables were found to be significant more than 

70% of the time the models were fitted: mean speed before the incident, standard deviation 
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of speed before the incident, mean prevailing speed, incident type (crash), time of day 

(morning peak hours), rainfall, shoulder width, presence of horizontal curve within the 

incident impact area, presence of merge influence area within the incident impact area, and 

presence of diverge influence area within the incident impact area. 

The signs of some of the coefficients are comparable to those presented in Section 

5.2. These include the mean prevailing speed, incident type (crash), time of day (morning 

peak hours), rainfall (i.e., similar to weather condition and road surface condition), 

presence of horizontal curve within the incident impact area, and presence of merge 

influence area. The signs of the coefficients for the remaining four variables, i.e., mean 

speed before the incident, standard deviation of speed before the incident, shoulder width, 

and presence of diverge influence area within the incident impact area, are opposite of 

those presented in Section 5.2. 

Figure 5-15 presents the plots of estimated coefficients. The best-fitted curve, along 

with the equation and the R-squared value of the fitted curves, are also presented in Figure 

5-15. Most of the fitted curves are polynomials of different degrees, and one curve is 

exponential (Figure 5-15(a)). The R-squared values of the fitted curves range between 

0.177 and 0.966. Note that the coefficients of the first two models (models fitted with 

variables collected within ten minutes since incidents started impacting traffic) were found 

to be distinctively different from the remaining model coefficients, and hence, excluded 

from the plots. This difference could be attributed to incidents without impacts, and whose 

prevailing traffic and rainfall intensity were collected for 10 minutes after the occurrence 

of the incident. 
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(a) Mean speed before the incident 

 

(b) SD of speed before the incident 

 

(c) Mean prevailing speed 

 

(d) Incident type (crash) 

 

(e) Time of day (Morning peak hours) 

 

(f) Rainfall (moderate/heavy) 

Figure 5-15: Estimated Coefficients for the Series of Fifty Cloglog Models 
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(g) Shoulder width 

 

(h) Presence of horizontal curve 

 

(i) Presence of merge influence area 

 

(j) Presence of diverge influence area 

Figure 5-15: Estimated Coefficients for the Series of Fifty Cloglog Models 

(continued) 

 

The coefficients of the mean speed before the incident for the first five models (25 

minutes from when incidents started impacting traffic) are positive, while the coefficients 

of the remaining subsequent models are negative. The positive coefficients indicate that 

secondary crashes are more likely to occur when the mean speed before the incident is 

high. In other words, the negative coefficients indicate that secondary crashes are more 

likely to occur when the mean speed before the incident is low. It is worth noting that the 

magnitude of the coefficients of the mean speed before the incident sharply decreases from 

the first five minutes the incidents started impacting traffic (see Figure 5-15(a)). The 
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magnitude of the negative coefficients sharply increases from the 30th minute from when 

the incidents started impacting traffic until 2.5 hours had passed, where the slope of the 

magnitude of the coefficients becomes flatter. This implies that incidents that occur in a 

free-flow traffic state are less likely to result in secondary crashes if they are cleared 

quickly. On the other hand, incidents that occur in less congested traffic and are not cleared 

in a timely manner are more likely to result in congestion over time, and hence, increase 

the likelihood of secondary crashes. 

The coefficients for the standard deviation of speed before the incident is positive 

for all the 50 fitted models. This finding implies that secondary crashes are more likely to 

occur when the standard deviation of the speed before the incident is high. Overall, the 

magnitude of the impact of variation of speed before the incident on secondary crash 

likelihood is observed to increase with time. This was expected, as a high variation in speed 

is associated with volatile interactions among vehicles that accelerate and brake frequently 

(Khattak and Wali, 2017). This situation exacerbates the risk of a secondary crash. As 

indicated in Figure 5-15(b) the magnitude of the coefficients increased sharply within the 

first 75 minutes after incidents started impacting traffic. From the 75th minute (model 15), 

the slope becomes flatter, and eventually, the magnitude of the coefficients started 

decreasing from the 100th minute (model 20). This observation may be an indication of the 

relationship between the likelihood of secondary crashes and the evolution of the traffic 

flow states.  

The coefficients of the mean prevailing speed were found to be negative in all of 

the fitted models. As mentioned earlier, a negative parameter for the mean prevailing speed 

indicates that the risk of secondary crashes decreases as the mean prevailing speed 
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increases. As shown in Figure 5-15(c), the magnitude of these coefficients decreases 

sharply with time until the 125th minute (model 25) from when the incidents started 

impacting traffic, where the slope becomes flatter. The decreasing speed represents an 

increase in traffic density and queue formation, and hence, may explain the pattern 

observed in Figure 5-15(c). 

Figure 5-15(d) shows the plots of the coefficients of crash incidents. The positive 

sign of these coefficients indicates that, compared to vehicle problems, crash incidents are 

more likely to cause secondary crashes. It is interesting to observe a continuous decrease 

in the magnitude of the coefficients up to the 65th minute from when incidents started 

impacting traffic, where the magnitude of the coefficients started to increase again. The 

magnitude of the coefficients increased until the 130th minute and started to decrease once 

more. An explanation for this finding could not be determined. However, further research 

can assist in providing insight into this finding. 

As expected, the sign of the coefficients for the time of day is positive, indicating 

that incidents that occur during morning peak hours are more likely to cause secondary 

crashes. Overall, the magnitude of these coefficients increased with time and eventually 

start to decrease after 200 hours from when the incidents started impacting traffic. This 

observation implies that incidents occurring during congested periods are more likely to 

induce traffic. Similar findings were also found in previous studies (Kitali et al., 2019b, 

2018; Mishra et al., 2016). However, when the traffic becomes overly congested, e.g., there 

is little significant variation in traffic, the likelihood of secondary crashes eventually 

decreases. 
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The results in Figure 5-15(f) show that the coefficients for the rainfall variable are 

positive for all of the models, indicating an increased likelihood of secondary crashes 

during moderate/heavy rainfall. This finding was expected since rainfall tends to increase 

traffic breakdown and reduce roadway capacity. Specifically, when it rains, traffic slows 

down because of hydroplaning, a condition that occurs when a layer of water builds 

between the tires and the road surface leading to friction loss between the two surfaces, 

and reduced visibility caused by rain on the windshields and water spray from other 

vehicles (Kidando et al., 2019a). The increased traffic congestion caused by rainfall results 

in a higher likelihood of secondary crashes. 

The estimated coefficients for the shoulder width are presented in Figure 5-15(g). 

While the sign of the coefficients for the first two models (i.e., models fitted with variables 

collected within ten minutes since incidents started impacting traffic) is negative, the 

coefficients for the remaining models are positive. Overall, the impact of shoulder width 

on secondary crash risk increased with time. This observation is counterintuitive to the 

findings presented in Section 5.2. 

The signs of coefficients for the presence of horizontal curves within the incident 

impact area are positive. This implies that there is a higher likelihood of secondary crashes 

when a curved segment (rather than a straight segment) is within the incident impact area. 

As shown in Figure 5-15(h), this impact is observed to increase with time. This was 

expected as the queue along a curved section may not be quickly visible to the upstream 

drivers. A similar finding was observed in previous research (Kitali et al., 2019). 

The signs of the coefficients for the presence of merge influence areas within the 

incident impact area are negative, although the magnitude of the first two models (i.e., 
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models fitted with variables collected within ten minutes since incidents started impacting 

traffic) is exceptionally higher than the remaining models. Meanwhile, the signs of the 

coefficients for the presence of diverge influence area for the first two models are positive 

and negative for the remaining models. Overall, the magnitude of both merge and diverge 

influence area coefficients increases with time. This implies that the influence of these 

variables on secondary crash occurrence decreases with time. Both merge and diverge 

influence areas are accompanied by more lane changes and high speed differentials because 

of drivers attempting to enter and exit the freeway, respectively. However, as congestion 

increases, speed variation decreases simultaneously. When vehicles are moving at an 

approximately similar speed, the likelihood of secondary crashes decreases. 

 

5.5 Summary 

 

This research investigated approaches to mitigate secondary crashes on freeways. 

To implement this goal, approaches were proposed to identify, analyze, and predict 

secondary crashes in real-time. A data-driven approach was used to identify secondary 

crashes. To improve the accuracy of the detected secondary crashes, the proposed method 

considered the fact that the queue built by the primary incident grows and dissipates at a 

different rate along the roadway segment impacted by the incident. The analysis was based 

on 322,259 traffic incidents that occurred along the study corridors between January 2014 

and June 2019. Overall, 4,549 secondary crashes in the upstream direction of the primary 

incident were identified from 3,977 primary incidents. The identified secondary crashes on 

the upstream direction of the primary incident accounted for 1.4% of the 322,259 incidents. 

This is an equivalent of 5.7 secondary crashes per mile per year. 
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Next, the LASSO penalized estimator was used to extract the most important 

explanatory variables, with minimal correlation, influencing the risk of secondary crashes. 

Because the proportion of primary incidents is smaller than the proportion of normal 

incidents, the bootstrap resampling method was used to fit the penalized logistic regression. 

The proposed model is considered to improve the predictive accuracy of the secondary 

crash risk model because it accounts for the asymmetric nature of secondary crashes, 

performs variable selection, and removes highly correlated variables. 

The influence of potential variables that were rarely considered in previous studies, 

i.e., work zone, vertical curve, merge influence area, and diverge influence area, were 

explored. The model results indicate that the presence of work zones significantly influence 

the likelihood of secondary crashes. Overall, as expected, roadway geometric, temporal, 

traffic flow, incident, and weather attributes were found to influence the occurrence of 

secondary crashes. 

Using the Bayesian network, the influence of concurrent factors in the likelihood 

of cascading crashes was investigated. The prediction inference using the optimal Bayesian 

network indicated the following four variables have a direct probabilistic relationship with 

the likelihood of cascading crashes: standard deviation of prevailing speed, incident 

severity, rainfall, and day of the week. Cascading crashes were found to be most likely to 

occur when the prior incident occurs during moderate/rainy conditions, on a weekday, 

under low variation in prevailing speed, and if the incident resulted in a moderate/severe 

impact on traffic. Also, cascading crashes were more likely to occur on a weekend, during 

moderate or heavy rainfall, under high variation in prevailing speed, and the primary 

incident resulted in a moderate/severe impact on traffic. 
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The identified secondary crash influential factors were used in the prediction 

model. The dynamic Bayesian cloglog model was used to predict the risk of secondary 

crashes every five minutes following the occurrence of the incident. The coefficients of the 

following eight variables were found to be significant more than 70% of the time the 

models were fitted: standard deviation of speed before the incident, mean prevailing speed, 

incident type (crash), time of day (morning peak hours), rainfall (moderate/heavy), 

shoulder width, presence of horizontal curve within the incident impact area, presence of 

merge influence area within the incident impact area, and presence of diverge influence 

area within the incident impact area.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

The goal of this research was to investigate approaches to mitigate secondary 

crashes on freeways. This goal was achieved using the following three components: (1) 

identify secondary crashes using a dynamic approach, (2) link the probability of secondary 

crashes with influential factors, and (3) develop a real-time dynamic secondary crash risk 

prediction model. This chapter provides a summary of this effort, research contributions, 

and potential future research. 

 

6.1 Summary and Conclusions 

 

6.1.1 Secondary Crash Identification 

 

Accurate identification of secondary crashes is the first and the most crucial step in 

devising strategies to mitigate their occurrence. The primary task involved in the 

identification of secondary crashes focuses on defining the impact area of the primary 

incident. The extent of the impact area is characterized by the primary incident duration 

and the length of the queue initiated by the incident. This research proposed a data-driven 

approach to better estimate the primary incident impact area and identify secondary crashes 

that occurred within the impacted area. The proposed approach considered how the queue, 

initiated by the incident, grows and dissipates along each roadway segment upstream of 

the incident. This approach is able to estimate the spatial and temporal impact ranges of 

primary incidents while accounting for the effects of traffic flow conditions. 

Traffic incidents from the SunGuide® database and high-resolution speed data from 

HERE Technologies were used to estimate the impact area of a primary incident. These 

data were collected from January 2014 to June 2019. The study area, which is located in 
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Florida, included a 97-mile section of Florida’s Turnpike System Mainline, and the 

Homestead Extension of Florida Turnpike (HEFT), a 48-mile adjoining corridor. The 

Mainline study corridor consisted of a 69-mile Mainline Central Section (MCS) and a 28-

mile Mainline South Section (MSS). 

The analysis was based on 322,259 traffic incidents that occurred along the study 

corridors between January 2014 and June 2019. Overall, 4,549 secondary crashes in the 

upstream direction of the primary incident were identified from 3,977 primary incidents. 

The identified secondary crashes on the upstream direction of the primary incident 

accounted for 1.4% of the 322,259 incidents. This is an equivalent of 5.7 secondary crashes 

per mile per year. 

Descriptive statistics of the secondary crashes indicated that 93% of the secondary 

crashes occurred within two hours after the occurrence of the primary incidents. Spatially, 

47% of the secondary crashes occurred within two miles from the primary incident. 

Overall, 40% of secondary crashes occurred within two hours of the onset of a primary 

incident and within two miles upstream of the primary incident, the most considered 

spatiotemporal threshold. The following are some of the key characteristics of the primary 

incidents and secondary crashes: 

• Only 3% of secondary crashes occurred between midnight and 5:00 AM, whereas 85% 

occurred during morning and evening peak hours. Specifically, 33% of secondary 

crashes occurred during the morning peak (i.e., 6:00 AM - 10:00 AM) while the 

remaining 52% occurred during the evening peak (i.e., 2:00 PM - 8:00 PM). The 

highest proportion of primary incidents (13%) occurred between 4:00 PM and 5:00 
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PM, while the highest proportion of secondary crashes (13%) occurred an hour after 

the primary incident, i.e., between 5:00 PM and 6:00 PM. 

• The proportion of normal incidents and secondary crashes was much higher on 

weekdays than on weekends. Compared to other days of the week, Friday was found 

to experience the highest proportion of secondary crashes (20%). 

• While secondary crashes were found to occur on Mondays and Fridays, normal 

incidents were found to occur primarily on weekdays (i.e., Monday through Friday). 

Only 13% of secondary crashes were found to occur on weekends.  

• As expected, traffic incidents involving towing and/or EMS resulted in longer incident 

clearance durations, as they tend to require more time to be cleared. Approximately 

94% of normal incidents were cleared within 90 minutes, while 82% of primary 

incidents were cleared within 90 minutes. Likewise, 94% of traffic incidents that did 

not involve EMS were cleared within 90 minutes, while only 64% of traffic incidents 

that involved EMS were cleared within 90 minutes. The longer clearance time of the 

primary incidents could be considered as one factor that may have contributed to the 

occurrence of secondary crashes.  

• The severity of primary incidents was found to be one of the factors that influence the 

occurrence of secondary crashes. About 9% of primary incidents were moderate/severe 

while only 1% of normal incidents were moderate/severe. Besides the severity of 

primary incidents, the number of responding agencies, percentage of lanes closed, 

incident type, and incidents that required towing and/or EMS were also considered to 

be good indicators of incident severity. About 99% of normal incidents did not result 

in lane closure, while 21% of primary incidents resulted in a lane closure. Only 10% of 
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normal incidents were identified as crashes, while 47% of primary incidents were 

crashes. About 13% of primary incidents required towing, while only 3% of normal 

incidents required towing. Similarly, a higher percentage of incidents involving EMS 

resulted in secondary crashes (11%). While only 28% of normal incidents involved 

more than one responding agency, 51% of primary incidents and 55% of secondary 

crashes involved more than one responding agency. These statistics indicate that the 

severity of primary incidents influences the occurrence of secondary crashes. 

• Compared to normal incidents (2%), a higher proportion of primary incidents (13%) 

occurred during cloudy/foggy/rainy conditions. Similarly, a higher percentage of 

primary incidents (11%) and secondary crashes (18%) occurred on wet surface 

conditions. These statistics imply that inclement weather conditions and adverse road 

surface conditions are among the factors that increase the probability of secondary 

crashes. 

In practice, the proposed approach can be easily implemented considering that its 

algorithm does not require much computational effort except for establishing the speed 

profiles for normal traffic conditions. Notably, these profiles are established once and can 

be used for a prolonged time (up to a year). The proposed method can be used by the 

incident management officials while generating standard reports on a month to month, 

quarterly, and yearly basis. With additional programming work and the availability of 

access to real-time traffic and incident data, the proposed method could be utilized to 

accurately identify potential secondary crashes in real-time. 
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6.1.2 Factors Influencing the Occurrence of Secondary Crashes 

 

This research extends the previous research on secondary crash likelihood models 

by proposing a method that simultaneously extracts the most important explanatory 

variables, with minimal correlation, influencing the risk of secondary crashes while 

addressing the imbalanced nature of the response variable. Specifically, the present 

research used the Least Absolute Shrinkage and Selection Operator (LASSO) penalized 

logistic regression, fitted using the bootstrap resampling approach, to identify risk factors 

that influence the likelihood of secondary crashes. Traffic flow, incident, temporal, 

weather, and roadway geometric attributes were considered as potential factors that may 

influence the likelihood of secondary crashes. 

The influence of potential variables that were rarely utilized in previous studies, 

i.e., work zone, vertical curve, merge influence area, and diverge influence area, were 

explored. For this task, the study area included the 48-mile HEFT corridor and the 28-mile 

MSS corridor, both of which are a part of the Florida’s Turnpike Systems in Miami, 

Florida. 

As a first step toward achieving the research objective, potential secondary crashes 

were identified using high-resolution speed data and traffic incident data. The results 

indicated that 11.2 secondary crashes/mile/year occurred on the HEFT, while 6.5 

secondary crashes/mile/year occurred on the MSS. The presence of construction activities 

may have contributed to the higher proportion of secondary crashes on the HEFT corridor. 

Next, the LASSO penalized estimator was used to extract the most important 

explanatory variables, with minimal correlation, influencing the risk of secondary crashes. 

Because the proportion of primary incidents is smaller than the proportion of normal 
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incidents, the bootstrap resampling method was used to fit the penalized logistic regression. 

The proposed model is considered to improve the predictive accuracy of the secondary 

crash risk model because it accounts for the asymmetric nature of secondary crashes, 

performs variable selection, and removes correlated variables. 

The presence of work zones was found to significantly increase the likelihood of 

secondary crashes. In addition, the likelihood model results indicate that roadway 

geometric, temporal, traffic flow, incident, and weather attributes influence the occurrence 

of secondary crashes. While the sign of most of these attributes is consistent with previous 

studies, the influence of shoulder width and day of the week on secondary crash occurrence 

was found to be inconsistent. 

In summary, work zones were found to significantly increase the likelihood of 

secondary crashes, a conclusion that was derived from both the descriptive statistics and 

the model results. This finding warrants the inclusion of work zone presence in future 

secondary crash research. The results of the research will help agencies on several fronts. 

First, it will assist in proactively preventing secondary crashes in work zones. Second, first 

responders can be more vigilant and better prepared for potential secondary crashes. And 

finally, motorists upstream of the primary incident and the work zone could be warned 

about potential secondary crashes. 

 

6.1.3 Impact of Concurrent Factors on Cascading Crash Likelihood 

 

This research also explored the impact of concurrent factors on the probability of 

cascading crashes. Considering the work zone activities taking place on the HEFT during 

the study period, only data from the MSS were used in developing the cascading crash 
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model. A Bayesian network approach was used to estimate concurrent factors, i.e., related 

to traffic-flow, incident, temporal, weather, and roadway geometric attributes, that 

influence the risk of cascading crashes. Before establishing a Bayesian network, the 

penalized logistic regression fitted using a bootstrap resampling approach was used to 

select the most important variables. 

About 6% of primary incidents resulted in cascading crashes. The results showed 

that the following attributes significantly affect the likelihood of cascading crashes: 

incident type, presence of merge influence area within incident impact area, incident 

severity, standard deviation of prevailing speed, rainfall, EMS involvement, time of day, 

and day of the week. The prediction inference using the optimal Bayesian network 

indicated the following four variables have a direct probabilistic relationship with the 

likelihood of cascading crashes: standard deviation of prevailing speed, incident severity, 

rainfall, and day of the week. Cascading crashes were found to most likely occur when the 

prior incident occurs during moderate/heavy rainfall condition, weekday, low variation in 

prevailing speed, and the incident resulted in a moderate/severe impact on traffic. 

Cascading crashes were also found to be more likely to occur when prior incident occurred 

on weekend, high variation in prevailing speed, moderate/heavy rainfall, and the incident 

resulted in a moderate/severe impact on traffic. 

It is important to note that the Bayesian network model was utilized to give a 

superior comprehension of the perplexing reliance that exists among influential factors and 

cascading crash probability. Also, as shown in this exploration, the Bayesian network 

model can be utilized to assess factors that have a strong influence on cascading crash 

probability, and accordingly, improve the determination of fitting countermeasures. 
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Additionally, it is conceivable to utilize the Bayesian network method to anticipate the 

probability of cascading crashes after the countermeasures have been applied. This type of 

analysis is also referred to as intervention analysis in the Bayesian network s model. 

 

6.1.4 Dynamic Prediction of Secondary Crashes in Real-time 

 

The risk of secondary crashes is not static but varies with time, a situation 

contributed to by the changes in prevailing traffic conditions after an incident occurs. The 

dynamic Bayesian cloglog model was used to predict the risk of secondary crashes every 

five minutes following the occurrence of the incident. The coefficients of the following 10 

variables were found to be significant more than 70% of the time the models were fitted: 

mean speed before the incident, standard deviation of speed before the incident, mean 

prevailing speed, incident type (crash), time of day (morning peak hours), rainfall, shoulder 

width, presence of horizontal curve within the incident impact area, presence of merge 

influence area within the incident impact area, and presence of diverge influence area 

within the incident impact area. The following are some of the key findings on the influence 

of these factors on the likelihood of secondary crashes: 

• The mean speed before the incident was found to increase the risk of secondary crashes 

within 25 minutes from when the incidents started impacting traffic. Afterward, the 

magnitude of the coefficients became negative and increased sharply up to the 150th 

minutes (model 30), where the slope of the magnitude of the coefficients became flatter. 

• The standard deviation of the speed before the incident was found to increase the risk 

of secondary crashes. The magnitude of the impact of variation of speed before the 
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incident on secondary crash likelihood was found to increase with time until the 100th 

minute where it started to decrease. 

• The coefficients of the mean prevailing speed were found to be negative indicating that 

the risk of secondary crashes decreases as the mean prevailing speed increases. The 

magnitude of these coefficients was found to decrease sharply with time until the 125th 

(model 25) minute, where the slope became flatter. 

• In all 50 fitted models, crashes were found to be more likely to cause secondary crashes 

compared to hazards and vehicle problems.  

• The sign of the coefficients of the time of day was found to be positive, indicating that 

incidents that occur during morning peak hours are more likely to cause secondary 

crashes. Overall, the magnitude of these coefficients was observed to increase with 

time. 

• Moderate or heavy rainfall was associated with an increased likelihood of secondary 

crashes in all of the fitted models. 

• Overall, the impact of shoulder width on secondary crash risk was observed to increase 

with time until the 200th minute, where it started to decrease. 

• A higher likelihood of secondary crashes was observed when a horizontal curve (rather 

than the tangent) was within the incident impact area. 

• The signs of the coefficients of the merge and diverge influence areas were found to be 

positive, and their magnitude was found to increase with time. This implies that the 

influence of these variables on secondary crash occurrence decreases with time.  

As can be inferred from the research findings, the occurrence of secondary crashes 

is influenced by incident severity and how quickly the incident is cleared. Furthermore, the 
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likelihood of secondary crashes is closely related to the changes in the traffic flow states. 

That is, secondary crashes are more likely to occur when the traffic is transitioning from a 

free-flow state to a congested state. Once the traffic is congested and there is no more 

significant variation in traffic, the risk of secondary crashes also decreases. 

To prevent the risk of secondary crash occurrence, traffic management strategies 

should be developed to accelerate the dissipation of the queue upstream of the potential 

primary incident. Warnings could be sent to drivers approaching a primary crash scene in 

real-time through various means, including dynamic message signs (DMSs), Advanced 

Traveler Information Systems (ATIS), such as the Waze application, and emerging 

technologies, such as connected vehicles, allowing them to take necessary precautions, 

such as detour or drive with caution, to avoid being involved in a secondary crash. 

Furthermore, when the conditions associated with a high likelihood of secondary crashes 

prevail, responding agencies, such as highway patrols, emergency medical services, towing 

agencies, etc., could be better prepared to respond to secondary crashes if they were to 

occur. These strategies will help to potentially reduce the frequency and severity of 

secondary crashes. 

 

6.2 Research Contributions 

 

Incident management agencies have been investing a substantial amount of 

resources to devise strategies to mitigate secondary crashes. Agencies have been struggling 

since identifying secondary crashes is not a straightforward process. The definition itself 

is subjective, and identifying secondary crashes depends on how the impact area of the 

primary incident is defined. The queue caused by the incident forms and dissipates at 
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different rates along each of the upstream segments impacted by the incident. As such, the 

approach employed to estimate the incident impact area has to consider this principle. 

Failure to properly estimate the incident impact area may lead to under- or overestimation 

of the impact area, and hence, the number of secondary crashes caused by the respective 

incident. 

This research discussed the shortcomings of the existing approaches used to 

identify secondary crashes and proposed an improved data-driven approach. To improve 

the accuracy of the identified secondary crashes, the proposed method considered the fact 

that the queue built by the primary incident grows and dissipates at a different rate upstream 

of the incident.  

For the first time, this research extended the previous efforts on secondary crash 

likelihood models by evaluating the impact of work zones on the occurrence of secondary 

crashes. Other potential variables that were rarely considered in previous studies, i.e., 

vertical curve, merge influence area, and diverge influence area, were also explored. Also 

for the first time, high-resolution and location-specific rainfall data were included as 

influential variables in modeling the risk of secondary crashes. 

In addition, for the first time, this research used a Bayesian network to provide a 

better understanding of the complex dependence that exists among relationships between 

explanatory variables and cascading crash likelihood. This research also presented a binary 

classification approach that dynamically predicts the likelihood of secondary crashes every 

five minutes from when the initial incident started impacting traffic. 
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6.3 Future Work 

 

Accurate estimation of the primary incident impact area depends on the availability 

and reliability of relevant data for traffic state estimation. High-resolution speed data 

extracted from the HERE Technologies was used to estimate the spatiotemporal impact 

area of primary incidents. However, these data are not available along all corridors. 

Furthermore, the use of these data is also limited by the length of the Traffic Message 

Channels, which are segments used by HERE to record vehicle speeds. The use of data 

from overly long Traffic Message Channels may not be able to precisely capture the speed 

changes over space. 

As probe vehicle traffic data from sources, such as HERE, Bluetooth devices, Wi-

Fi sensors, etc., become more prevalent, and as crowdsourced travel speed data become 

more readily available, future studies could incorporate virtual detectors that use data from 

multiple sources to obtain more disaggregated traffic data. Moreover, with the use of 

crowdsourced traffic data, the study locations do not have to be limited to the corridors 

with Traffic Message Channels. Future research could also explore the influence of Traffic 

Message Channel length on the accuracy of the estimated incident impact areas. 

The dynamic secondary crash risk prediction model incorporates only the incident 

type as the most important incident-related variable. Other most important incident-related 

variables (lane closure and number of responding agencies) were excluded since it was not 

clear at what time these variables were reported after the incident occurred. An attempt 

could be made in the future to record the timeline of these variables, and hence, include 

them in the dynamic model. 



 

147 

 

REFERENCES 

 

Algamal, Z.Y., & Lee, M.H. (2015a). Regularized logistic regression with adjusted 

adaptive elastic net for gene selection in high dimensional cancer classification. 

Computers in Biology and Medicine, 67, 136–145. 

      doi:10.1016/j.compbiomed.2015.10.008  

 

Algamal, Z.Y., & Lee, M.H. (2015b). Penalized logistic regression with the adaptive 

LASSO for gene selection in high-dimensional cancer classification. Expert Systems 

with Applications, 42(23), 9326–9332. doi:10.1016/j.eswa.2015.08.016 

 

American Meteorological Society [AMS]. (n.d.). Glossary of meteorology. Retrieved June 

17, 2019 from https://glossary.ametsoc.org/wiki/Rain 

 

Andrew, L. (2019). Investigating the effects of rainfall on traffic operations on Florida 

freeways. University of North Florida. 

 

Balke, K. (2009). Traffic incident management in construction and maintenance work 

zones (FHWA-HOP-08-056). Washington, D.C.: Federal Highway Administration. 

 

Barr, J. (2018). New AWS public data set – real-time and archived NEXRAD weather data 

| Amazon Web Services. Amazon, Amazon. Retrieved May 15, 2019 from 

aws.amazon.com/blogs/aws/new-aws-public-data-set-real-time-and-archived-nexrad-

weather-data/. 

 

Baykal-Gürsy, M., Xiao, W., & Ozbay, K. (2009). Modeling traffic flow interrupted by 

incidents. European Journal of Operational Research, 195(1), 127-138. 

 

Chang, G. L., & Rochon, S. (2011). Performance evaluation and benefit analysis for 

CHART. Hanover, Maryland: Maryland Department of Transportation. 

 

Chatterjee, K., Hounsell, N. B., Firmin, P. E., & Bonsall, P. W. (2002). “Driver response 

to variable message sign information in London.” Transportation Research Part C: 

Emerging Technologies 10(2), 149–69. 

 

Chimba, D., & Kutela, B. (2014). Scanning secondary derived crashes from disabled and 

abandoned vehicle incidents on uninterrupted flow highways. Journal of Safety 

Research, 50, 109–116. https://doi.org/10.1016/j.jsr.2014.05.004 

 

Chung, Y. (2013). Identifying primary and secondary crashes from spatiotemporal crash 

impact analysis. Transportation Research Record: Journal of the Transportation 

Research Board, 2386, 62–71. 

 

https://glossary.ametsoc.org/wiki/Rain
https://doi.org/10.1016/j.jsr.2014.05.004


 

148 

 

Cong, H., Chen, C., Lin, P.-S., Zhang, G., Milton, J., & Zhi, Y. (2018). Traffic incident 

duration estimation based on a dual-learning Bayesian network model. Transportation 

Research Record: Journal of the Transportation Research Board 2672(45), 196–209. 

 

Dougald, L.E., Goodall, N.J., & Venkatanarayana, R. (2016). Traffic incident management 

quick clearance guidance and implications (FHWA/VTRC 16-R9). Virginia: 

Transportation Research Council. 

 

Federal Highway Administration [FHWA]. (2007). Utility work zone safety guidelines and 

training gap study and needs assessment. Washington, D.C: Federal Highway 

Administration. 

 

Florida Department of Transportation [FDOT]. (2016). Roadway characteristic inventory 

(RCI): features and characteristics handbook. Tallahassee, Florida: Florida 

Department of Transportation. 

 

Florida Department of Transportation [FDOT]. (2017). TSM&O 2017 Strategic Plan. 

Tallahassee, Florida: Florida Department of Transportation. 

 

Glotzbach, G. (2014). The Waze connection. Tallahassee, Florida. 

 

Goodall, N. J. (2017). Probability of secondary crash occurrence on freeways with the use 

of private-sector speed data. Transportation Research Record: Journal of the 

Transportation Research Board, 2635, 11–18. 

 

Green, E. R., Pigman, J. G., Walton, J. R., & McCormack, S. (2012). Identification of 

secondary crashes and recommended countermeasures to ensure more accurate 

documentation. Proceedings of the 91th Annual Meeting of the Transportation 

Research Board, January 22-26, 2012. Transportation Research Board, Washington, 

D.C. 

 

Harding, J., Powell, G., Yoon, R., Fikentscher, J., Doyle, C., Sade, D., Lukuc, M., Simons, 

J., & Wang, J. (2014). Vehicle-to-Vehicle Communications : Readiness of V2V 

Technology for Application (DOT HS 812 014). Washington, D.C.: National Highway 

Traffic Safety Administration. 

 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data 

mining, inference, and prediction, New York: Springer. doi:10.1198/jasa.2004.s339 

 

Haule, H. J., Alluri, P., Sando, T.,  & Raihan, M. A. (2020). Investigating the impact of 

rain on crash-clearance duration. Journal of Transportation Engineering Part A 

System, 146(11), 04020130. 

 

Hirunyanitiwattana, W., & Mattingly, S. P. (2006). Identifying secondary crash 

characteristics for California highway system. Proceedings of the 85th Annual Meeting 



 

149 

 

of the Transportation Research Board, January 22-26, 2006. Transportation Research 

Board, Washington, D.C. 

 

Hoffman, M. D., & Gelman, A. (2014). The no-U-turn sampler: adaptively setting path 

lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 

15(2008), 1593–1623. 

 

Imani, H. N. (2019). The use of real-time connected vehicles and HERE data in developing 

an automated freeway incident detection algorithm. University of North Florida. 

 

Imprialou, M. I. M., Orfanou, F. P., Vlahogianni, E. I., & Karlaftis, M. G. (2014). Methods 

for defining spatiotemporal influence areas and secondary incident detection in 

freeways. Journal of Transportation Engineering, 140(1), 70-80. 

 

INRIX. (2019). INRIX: Congestion costs each American 97 hours, $1,348 A Year. 

Retrieved July 11, 2019 from http://inrix.com/press-releases/scorecard-2018-us/ 

 

Jalayer, M., Baratian-Ghorghi, F., & Zhou, H. (2015). Identifying and characterizing 

secondary crashes on the alabama state highway systems. Advances in Transportation 

Studies, 37, 129–140. 

 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical 

Learning. New York: springer. 

 

Karlaftis, M. G., Latoski, S. P., Richards, N. J., & Sinha, K. C. (1999). ITS impacts on 

safety and traffic management: an investigation of secondary crash causes. Journal of 

Intelligent Transportation Systems, 5(1), 39-52. 

 

Kassambara, A. (2017). Machine Learning Essentials: Practical Guide in R, First Edit. ed. 

STHDA. 

 

Khattak, A., Wang, X., & Zhang, H. (2009). Are incident durations and secondary incidents 

interdependent? Transportation Research Record: Journal of the Transportation 

Research Board, 2099, 39-49. 

 

Khattak, A., Wang, X., Zhang, H., X, W., & Zhang, H. (2012). Incident management 

integration tool: dynamically predicting incident durations, secondary incident 

occurrence and incident delays. IET Intelligent Transport Systems, 6(2), 204–214. 

 

Khattak, A.J., & Wali, B. (2017). Analysis of volatility in driving regimes extracted from 

basic safety messages transmitted between connected vehicles. Transportation 

Research Part C: Emerging Technologies, 84, 48-73. 

 

Kidando, E., Kitali, A.E., Lyimo, S.M., Sando, T., Moses, R., Kwigizile, V., & Chimba, 

D. (2019a). Applying probabilistic model to quantify influence of rainy weather on 

http://inrix.com/press-releases/scorecard-2018-us/


 

150 

 

stochastic and dynamic transition of traffic conditions. Journal of Transportation 

Engineering Part A System, 145(5), 04019017. 

 

Kidando, E., Moses, R., Sando, T., & Ozguven, E. E. (2019b). Assessment of factors 

associated with travel time reliability and prediction: an empirical analysis using 

probabilistic reasoning approach. Transportation Planning and Technology, 42(4), 

309–323. 

 

Kitali, A. E., Alluri, P., Sando, T., Haule, H., Kidando, E., & Lentz, R. (2018). Likelihood 

estimation of secondary crashes using bayesian complementary log-log model. 

Accident Analysis and Prevention 119: 58–67. doi:10.1016/J.AAP.2018.07.003 

 

Kitali, A. E., Kidando, E., Sando, T., Moses, R., & Ozguven, E. E. (2017). Evaluating 

aging pedestrian crash severity with bayesian complementary log–log model for 

improved prediction accuracy. Transportation Research Record: Journal of the 

Transportation Research Board, 2659, 155-163. 

 

Kitali, A. E., Alluri, P., Sando, T., & Lentz, R. (2019a). Impact of primary incident 

spatiotemporal influence thresholds on the detection of secondary crashes. 

Transportation Research Record: Journal of the Transportation Research Board, 

2673(10), 271–283. 

 

Kitali, A. E., Alluri, P., Sando, T., & Wu, W. (2019b). Identification of secondary crash 

risk factors using penalized logistic regression model. Transportation Research 

Record: Journal of the Transportation Research Board, 2673(11): 901-914. 

 

Kopitch, L., & Saphores, J. D. M. (2011). Assessing effectiveness of changeable message 

signs on secondary crashes. Proceedings of the 90th Annual Meeting of the 

Transportation Research Board, January 23-27, 2011. Transportation Research Board, 

Washington, D.C. 

 

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental 

Psychology: General, 142(2), 573-603. 

 

Kuhn, M. (2019). The caret Package. 

 

Kutela, B., & Teng, H. (2019). Prediction of drivers and pedestrians’ behaviors at 

signalized mid-block Danish offset crosswalks using Bayesian networks. Journal of 

Safety Research, 69, 75–83. https://doi.org/10.1016/J.JSR.2019.02.008 

 

Latoski, S. P., Pal, R., & Sinha, K. C. (1999). Cost-effectiveness evaluation of Hoosier 

Helper freeway service patrol. Journal of Transportation Engineering, 125(5), 429-

438. 

 

https://doi.org/10.1016/J.JSR.2019.02.008


 

151 

 

Li, Z., Li, Y., Liu, P., Wang, W., &Xu, C. (2014). Development of a variable speed limit 

strategy to reduce secondary collision risks during inclement weathers. Accident 

Analysis and Prevention 72, 134–145. doi:10.1016/J.AAP.2014.06.018 

 

Lou, Y., Yin, Y., & Lawphongpanich, S. (2011). Freeway service patrol deployment 

planning for incident management and congestion mitigation. Transportation Research 

Part C: Emerging Technologies, 19(2), 283–295. 

 

McCartt, A.T., Northrup, V.S., & Retting, R.A. (2004). Types and characteristics of ramp-

related motor vehicle crashes on urban interstate roadways in Northern Virginia. 

Journal of Safety Research, 35(1), 107–114. 

 

McCormick, T.H., Raftery, A. E., Madigan, D., & Burd, R. S. (2012). Dynamic logistic 

regression and dynamic model averaging for binary classification. Biometrics 68, 23–

30. 

 

 Menard, G., & Torelli, N. (2014). Training and assessing classification rules with 

imbalanced data. Data Mining and Knowledge Discovery, 28, 92–122. 

 

Mishra, S., Golias, M., Sarker, A., & Naimi, A. (2016). Effect of primary and secondary 

crashes: identification, visualization, and prediction research report (CFIRE 09-05). 

Madison, Wisconsin: Wisconsin Department of Transportation. 

 

Montes, Ca., Faquir, T., Hapney, TJ., & Birriel, E. (2008). Guidelines for the use of 

dynamic message signs on the Florida state highway system. Tallahassee, Florida: 

Florida Department of Transportation. 

 

Moore, J. E., Giuliano, G., & Cho, S. (2004). Secondary accident rates on Los Angeles 

freeways. Journal of Transportation Engineering, 130(3), 280-285. 

 

Mounce, J. M., Ullman, G., Pesti, G., & Pezoldt, V. (2007). Guidelines for the evaluation 

of dynamic message sign performance (FHWA/TX-07/0-4772-1). Austin, TX: Texas 

Department of Transportation. 

 

National Cooperative Highway Research Program [NCHRP]. (2014). Guidance for 

implementation of traffic incident management performance measurement/ 

performance measurement for traffic incident management programs/ Florida 

(webpage). 

       Retrieved February 12, 2018, from http://nchrptimpm.timnetwork.org/?page_id=79 

 

National Oceanic and Atmospheric Administration [NOAA]. (n.d.). National Doppler 

radar sites. Retrieved April 29, 2019 from 

https://www.ncdc.noaa.gov/nexradinv/map.jsp 

 

http://nchrptimpm.timnetwork.org/?page_id=79
https://www.ncdc.noaa.gov/nexradinv/map.jsp


 

152 

 

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. John Wiley and Sons, Inc., 

Hoboken, New Jersey. 

 

O'laughlin, J., & Smith, A. (2002). Operational issues discussion paper on “incident 

management operations: Top five issues. Proceedings of the National Conference on 

TrafficIncident Management: A Road Map to the Future, March 11-13, 2002. 

American Association of State Highway and Transportation Officials, Washington, 

D.C. 

 

Ou, J., Xia, J., Wang, Y., Wang, C., & Lu, Z. (2020). A data-driven approach to 

determining freeway incident impact areas with fuzzy and graph theory-based 

clustering. Computer-Aided Civil and Infrastructure Engineering, 35, 178–199. 

 

Owens, N., Armstrong, A., Sullivan, P., Mitchell, C., Newton, D., Brewster, R., & Trego, 

T. (2010). Traffic incident management handbook (FHWA-HOP-10-013). 

Washington, D.C.: Federal Highway Administration, Office of Transportation 

Operations. 

 

Park, H., & Haghani, A. (2016b). Real-time prediction of secondary incident occurrences 

using vehicle probe data. Transportation Research Part C: Emerging 

Technologies, 70, 69-85. 

 

Park, H., Gao, S., Haghani, A., Samuel, S., & Knodler, M. A. (2017). Sequential 

intepretation and prediction of secondary incident probability in real time. Proceedings 

of the 96th Annual Meeting of the Transportation Research Board, January 8-12, 2017. 

Transportation Research Board, Washington, D.C. 

 

Park, H., & Haghani, A. (2016a). Use of clustering model and adjusted boxplot model for 

identification of secondary incidents. Proceedings of the 95th Annual Meeting of the 

Transportation Research Board, January 10-14, 2016. Transportation Research Board, 

Washington, D.C. 

 

Park, H., Haghani, A., & Samuel, S. (2018). Real-time prediction and avoidance of 

secondary crashes under unexpected traffic congestion. Accident Analysis and 

Prevention, 112, 39–49. 

 

Pei, X., Sze, N.N., Wong, S.C., & Yao, D. (2016). Bootstrap resampling approach to 

disaggregate analysis of road crashes in Hong Kong. Accident Analysis and Prevention 

95, 512–520. doi:10.1016/j.aap.2015.06.007 

 

Raub, R. (1997). Occurrence of secondary crashes on urban arterial 

roadways. Transportation Research Record: Journal of the Transportation Research 

Board, 1581, 53-58. 

 

Sando, T., Alluri, P., Chuan, C., Haule, H., Kitali, A., Lentz, R., & Huq, A. (2018). 



 

153 

 

Evaluation of incident response improvements for statewide application: learning from 

the new regional traffic management center in Jacksonville, Florida. Tallahassee, 

Florida: Florida Department of Transportation. 

 

Sarker, A. A., Paleti, R., Mishra, S., Golias, M. M., & Freeze, P. B. (2017). Prediction of 

secondary crash frequency on highway networks. Accident Analysis and 

Prevention, 98, 108-117. 

 

SAS Institute Inc. (2019). SAS Visual Statistics 8.5 Procedures. Cary, North Carolina. 

 

Stylianou, K., & Dimitriou, L. (2018). Analysis of rear-end conflicts in urban networks 

using Bayesian networks. Transportation Research Record: Journal of the 

Transportation Research Board, 2672(38), 302–312. doi:10.1177/0361198118790843 

 

Sun, C. C., & Chilukuri, V. (2010). Dynamic incident progression curve for classifying 

secondary traffic crashes. Journal of Transportation Engineering, 136(12), 1153-1158. 

 

Sun, C., & Chilukuri, V. (2006). The use of dynamic incident progression curve for 

classifying secondary accidents. Proceedings of the 85th Annual Meeting of the 

Transportation Research Board, January 22-26, 2006. Transportation Research Board, 

Washington, D.C. 

 

Tian, Y., Chen, H., & Truong, D. (2016). A case study to identify secondary crashes on 

Interstate Highways in Florida by using Geographic Information Systems 

(GIS). Advances in Transportation Studies, 2, 103-112. 

 

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the 

Royal Statistical Society. Series B (Methodological), 58(1), 267–288. 

 

Transportation Research Board [TRB]. (2016). Highway capacity manual 6th edition: a 

guide for multimodal mobility analysis. Washington D.C. 

 

Vlahogianni, E. I., Karlaftis, M. G., & Orfanou, F. P. (2012). Modeling the effects of 

weather and traffic on the risk of secondary incidents. Journal of Intelligent 

Transportation Systems, 16(3), 109-117. 

 

Vlahogianni, E. I., Karlaftis, M. G., Golias, J. C., & Halkias, B. M. (2010). Freeway 

operations, spatiotemporal-incident characteristics, and secondary-crash 

occurrence. Transportation Research Record: Journal of the Transportation Research 

Board, 2178, 1-9. 

 

Wang, J., Boya, L., Lanfang, Z., & Ragland, D. R. (2016). Modeling secondary accidents 

identified by traffic shock waves. Accident Analysis and Prevention, 87, 141-147. 

 



 

154 

 

Wang, J., Liu, B., Fu, T., Liu, S., & Stipancic, J. (2019). Modeling when and where a 

secondary accident occurs”. Accident Analysis and Prevention, 130, 160-166. 

 

Wuillemin, P.-H. (2019). pyAgrum documentation: release 0.15.2. 

 

Xie, C., &Waller, S. (201)0. Estimation and application of a Bayesian network model for 

discrete travel choice analysis. Transportation Letters, 2(2), 125–144. 

doi:10.3328/TL.2010.02.02.125-144 

 

Xu, C., Liu, P., Yang, B., & Wang, W. (2016). Real-time estimation of secondary crash 

likelihood on freeways using high-resolution loop detector data. Transportation 

Research Part C: Emerging Technologies, 71, 406-418. 

 

Xu, C., Xu, S., Wang, C., & Li, J. (2019). Investigating the factors affecting secondary 

crash frequency caused by one primary crash using zero-inflated ordered probit 

regression. Physica A: Statistical Mechanics and Its Applications, 524, 121–129.  

 

Yang, H., Bartin, B., & Ozbay, K. (2014a). Mining the characteristics of secondary crashes 

on highways. Journal of Transportation Engineering, 140(4), 04013024. 

 

Yang, H., Ozbay, K., & Xie, K. (2014b). Assessing the risk of secondary crashes on 

highways. Journal of Safety Research, 49, 143.e1-149. 

 

Yang, H., Ozbay, K., Morgul, E., Bartin, B., & Xie, K. (2014c). Development of online 

scalable approach for identifying secondary crashes. Transportation Research Record: 

Journal of the Transportation Research Board, 2470, 24-33. 

 

Yang, H., Wang, Z., & Xie, K. (2017). Impact of connected vehicles on mitigating 

secondary crash risk. International Journal of Transportation Science and Technology, 

6(3), 196–207. 

 

Yang, H., Wang, Z., Xie, K., Ozbay, K., & Imprialou, M. (2018). Methodological evolution 

and frontiers of identifying, modeling and preventing secondary crashes on highways. 

Accident Analysis and Prevention, 117, 40–54. doi:10.1016/J.AAP.2018.04.001 

 

Yang, K., Wang, X., & Yu, R. (2018). A Bayesian dynamic updating approach for urban 

expressway real-time crash risk evaluation. Transportation Research Part C: Emerging 

Technologies, 96, 192–207. doi:10.1016/J.TRC.2018.09.020 

 

Zhan, C., Gan, A., & Hadi, M. (2009). Identifying secondary crashes and their contributing 

factors. Transportation Research Record: Journal of the Transportation Research 

Board, 2102, 68-75. 

 

Zhan, C., Shen, L., Hadi, M. A., & Gan, A. (2008). Understanding the characteristics of 

secondary crashes on freeways. Proceedings of the 87th Annual Meeting of the 



 

155 

 

Transportation Research Board, January 13-17, 2008. Transportation Research Board, 

Washington, D.C. 

 

Zhang, H., & Khattak, A. (2010). What is the role of multiple secondary incidents in traffic 

operations?. Journal of Transportation Engineering, 136(11), 986-997. 

 

Zhao, X., Xu, W., Ma, J., Li, H., Chen, Y., and Rong, J. (2019). Effects of connected 

vehicle-based variable speed limit under different foggy conditions based on simulated 

driving. Accident Analysis and Prevention, 128, 206–216. 

 

Zheng, D., Chitturi, M. V., Bill, A.R., & Noyce, D. A. (2014). Secondary crash 

identification on a large-scale highway system. Proceedings of the 93rd Annual Meeting 

of the Transportation Research Board, January 12-16, 2014. Transportation Research 

Board, Washington, D.C. 

 

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American 

Statistical Association, 101(476), 1418–1429. doi:10.1198/016214506000000735 

 

 



 

156 

 

VITA 

ANGELA EDES KITALI 

 

EDUCATION 

 

2011 – 2015 B.S., Civil Engineering 

  University of Dar es Salaam, Dar es Salaam, Tanzania 

 

2015 – 2017 M.S., Civil Engineering (Transportation) 

  University of North Florida, Jacksonville, Florida 

 

2017 – 2020 Graduate Research Assistant 

  Department of Civil and Environmental Engineering 

Florida International University, Miami, Florida 

 

2018 – 2020 Doctoral Candidate 

  Department of Civil and Environmental Engineering 

Florida International University, Miami, Florida 

 

PUBLICATIONS 

 

1. Kitali, A. E., Mokhtarimousavi, S., Kadeha, C., and Alluri, P. (2020). “Severity 

analysis of crashes on express lane facilities using support vector machine model 

trained by firefly algorithm.” Traffic Injury Prevention, 1–6. 

 

2. Kidando, E., Karaer, A., Kutela, B., Kitali, A., Moses, R., Ozguven, E., and Sando, T. 

(2020). “A Novel Approach for Calibrating Freeway Highway Multi-Regimes 

Fundamental Diagram,” Transportation Research Record: Journal of the 

Transportation Research Board, 0361198120930221. 

 

3. Salum, J. H., Sando, T., Alluri, P., and Kitali, A. (2020). “Operational Evaluation of 

Freeway Service Patrols: A Case Study of Florida’s Road Rangers,” Journal of 

Transportation Engineering, Part A, 146 (9), 04020094. 

 

4. Kidando, E., Kitali, A., Moses, R., and Ozguven, E. (2020). “Real-Time Visualization 

of Operational Performance Measures of Arterial Highway Using Open Crowdsourced 

Data,” Advances in Transportation Studies, 51, 47–62. 

 

5. Kitali, A., Kidando, E., Alluri, P., Sando, T., and Salum, J.  (2020). “Modeling Severity 

of Motorcycle Crashes with Dirichlet Process Priors,” Journal of Transportation Safety 

and Security 10.1080/19439962.2020.1738613. 

 

6. Kitali, A., Alluri, P., Sando, T., and Wu, W. (2019). “Identification of Secondary Crash 

Risk Factors using Penalized Logistic Regression Model,” Transportation Research 

Record: Journal of the Transportation Research Board, 2673(11), 901–914. 



 

157 

 

 

7. Kitali, A., Alluri, P., and Sando, T. (2019). “Impact of Primary Incident Spatiotemporal 

Influence Thresholds on the Detection of Secondary Crashes,” Transportation 

Research Record: Journal of the Transportation Research Board, 2673(10), 271–283. 

 

8. Salum, J., Kitali, A., Bwire, H., Sando, T., and Alluri, P. (2019) “Severity of Motorcycle 

Crashes in Dar es Salaam, Tanzania,” Traffic Injury Prevention, 20(2), 189–195. 

 

9. Kidando, E., Kitali, A., Moses, R., Lyimo, S., Kwigizile, V., Sando, T., and Chimba, 

D. (2019). “Applying a Probabilistic Model to Quantify the Influence of Rainy Weather 

on a Stochastic and Dynamic Transition of Traffic Conditions,” Journal of 

Transportation Engineering, Part A, 145 (5): 04019017. 

 

10. Haule, H., Sando, T., Kitali, A., and Richardson, R. (2018). “Investigating Proximity 

of Crash Locations to Aging Pedestrian Residences,” Accident Analysis and 

Prevention. 122, 215–225. 

 

11. Kitali, A., Alluri, P., Sando, T., Haule, H., Kidando, E., and Lentz, R. (2018). 

“Likelihood Estimation of Secondary Crashes Using Bayesian Complementary Log-

Log Model,” Accident Analysis and Prevention, 119, 58–67. 

 

12. Kitali, A., Kidando, E., Martz, P., Alluri, P., Sando, T., Moses, R., and Lentz, R. (2018). 

“Evaluating Factors Influencing the Severity of Three-plus Multiple-vehicle Crashes 

Using Real-Time Traffic Data,” Transportation Research Record: Journal of the 

Transportation Research Board, 2672(38), 128–137. 

 

13. Kitali, A., Sando, T, Castro, A., Kobelo, D., and Mwakalonge, J. (2017). “Appraisal of 

Safety Effects of Pedestrian Countdown Signals to Drivers using Crash Modification 

Factors,” Journal of Transportation Engineering, Part A, 144 (5): 04018011. 

 

14. Kitali, A., Kidando, E., Sando, T., Moses, R., and Ozguven, E. (2017). “Evaluating 

Aging Pedestrian Crash Severity with Bayesian Complementary Log–Log Model for 

Improved Prediction Accuracy,” Transportation Research Record: Journal of the 

Transportation Research Board, 2659, 155-163. 

 

15. Kitali, A., and Sando, T. (2017). “A Full Bayesian Approach to Appraise the Safety 

Effects of Pedestrian Countdown Signals to Drivers,” Accident Analysis and 

Prevention, 106, 327-335. 

 

16. Kitali, A., Sando, T., Moses, R., and Ozguven, E. (2017). “Understanding Factors 

Associated with Severity of Aging Population-Involved Pedestrian Crashes in Florida,” 

Advances in Transportation Studies, 42 (3), 85-98. 


	Strategies to Identify and Mitigate Secondary Crashes in Real-time
	Recommended Citation

	Strategies to Identify and Mitigate Secondary Crashes in Real-time

