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ABSTRACT OF THE THESIS 

STATISTICAL MODELING OF PRIVATE SECTOR PARTICIPATION IN 

DISASTER RISK REDUCTION DATA 

by 

Wupeng Yin 

Florida International University, 2020 

Miami, Florida 

Professor Wensong Wu, Major Professor 

 The impacts of disaster on the private sector are inevitable, but their risks can be 

managed and reduced by preventively evaluative measures. Disaster risk reduction index 

(DRRI) and Disaster Experience (DE) variables were investigated in a survey study in six 

Western Hemisphere cities within the private sector of various business sizes. Our thesis 

built and evaluated 16 predictive models of DRRI with 36 categorical predictors and N = 

1162 observations. Four statistical methods for linear regression and five for 

classification as well as seven machine learning methods were utilized. We also used 

stepwise selection and regulation methods for variable selection. They improved the 

performance of some models. To evaluate and compare the prediction performance 

among all models, we used resampling 5-fold cross-validation (CV) to estimate the true 

mean squared error (MSE) and classification accuracy. The results indicated that the 

neural network was outperformed among all the predictive models with the highest 

classification accuracy.
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CHAPTER I. INTRODUCTION 

1.1 Background 

All types of businesses can be impacted significantly by disasters (Asgary et al., 2012). 

Such disaster is “a serious disruption of the functioning of a community or a society at 

any scale due to hazardous events interacting with conditions of exposure, vulnerability 

and capacity, leading to one or more of the following: human, material, economic and 

environmental losses and impacts” (United Nations, 2016: 13). As a result of the 

COVID-19 pandemic, 41.3% of businesses were temporarily closed and 1.8% of 

businesses were permanently closed considering the sample draws from US-based 

business (Bartik et al., 2020). As many unprecedented disasters are becoming frequent, 

businesses have no choice but to confront disaster- induced direct and indirect losses and 

consequently try to find the appropriate business continuity plans (Asgary, 2016). To get 

a better understanding how well the private sector is going to get ready for the future 

impact of disasters, a survey study on private sector participation in Disaster Risk 

Reduction was conducted in six Western Hemisphere cities in 2012 (Sarmiento et al., 

2012). A secondary data analysis (Sarmiento et al., 2019) investigated the relationship 

between disaster experiences and business readiness capabilities.  

Many statistical methods are being constantly developed to control for the variables 

aiming at improving the better understanding of the model relationships and widely used 

for prediction purposes under certain criteria of optimal fit (Dawes, 2001). Statistical 

methods use mathematical models and techniques to help improve the estimates of 
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uncertainty analysis. The application of statistical methods is using different models to 

extract information from the predictors in the high dimensional data set and provides 

access to the model robustness and prediction accuracy of the targeted responses (Datta-

Gupta & Mishra, 2017). 

Descriptive statistics is still a valuable and substantial method to summarize and overall 

describe the data set. Sarmiento et al. (2012) provided descriptive statistics analysis in 

detail on the disaster risk reduction data set and later, they adopt the classical linear 

regression to the same data set with the purpose of developing the relationship between 

business’ disaster experience and the disaster risk reduction (Sarmiento et al., 2019). 

Through the reported result of using descriptive statistics along with typical linear 

methods for regression on such a high dimensional data set, we assumed that in addition 

to linear regression, the logistic regression approaches might be applicable to this data set 

and bring enhancements on the model performance and accuracy under different model 

selection and regulation methods. We explored the complex relationships between the 

predictors and the response in the data by evaluating different statistical models. On the 

other hand, we put our efforts on the performance of the different statistical modeling 

approaches and showed that whether they serve the data set well or outperform the 

classical linear regression in that way by comparing their prediction accuracy.    

The data used in this study were generously provided and originally developed by Dr. 

Sarmiento and his team in the Extreme Event Institute of Florida International University. 
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1.2 Literature Review 

Risk management has gradually been understood and the way disaster risk has been 

approached has significantly evolved over the past half-century. According to the 

researches of Sarmiento et al. (2012, 2019), they focused on which and how much impact 

disaster experiences may impose on the readiness capabilities, considering different 

business sizes and various city locations of the private sectors. 

The original study of private sector participation in Disaster Risk Reduction was 

conducted from June to November of 2012 in six Western Hemisphere cities: Bogotá, 

Colombia; Kingston, Jamaica; Miami, Florida, USA; San José, Costa Rica; Santiago, 

Chile; and Vancouver, British Columbia, Canada (Sarmiento et al., 2012). The survey 

interviewed senior managers, personnel, or directors of private sector companies with the 

questionnaire involved in three main sectors, and it resulted in 1197 responses on 210 

question items.  

In a secondary study (Sarmiento et al., 2019), seventeen disasters experienced (DE) by 

businesses and three disaster readiness indexes had been extracted and measured from the 

raw data of the survey. The DEs include supply chain disruption, power outage, damaged 

facilities/ equipment/ inventories, etc. The three disaster readiness indexes are defined as 

DRRI (Disaster Risk Reduction Index), BCI (Business Continuity Index), and CSRI 

(Corporate Social Responsibility Index), respectively. The DRRI corresponds to the value 

of measures taken to control risks and reduce potential damage and losses as a result. The 

BCI values the measures taken to ensure business safety and continuity of time-sensitive 
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operations. The CSRI corresponds to the value business commitment to contribute to 

economic development, quality of life of the workforce, their families, and the local 

community. The descriptive statistics, multivariable linear regression, and stepwise 

model selection were applied to the data set with six predictors and disaster readiness 

index (DRRI) as the dependent variable. It concluded that business size played an 

important role in the models and disaster experience has a positive effect on the response. 

The evaluation of the original linear regression approach in the study of Sarmiento et al. 

(2019) is valuable for providing an overall inspection of the data set. Accordingly, from 

the aspect of statistics, we believed that more information could be explored and 

extracted from the data set by using various statistical methods. As a matter of fact, we 

consider all DEs as a whole along with the interaction terms as the predictors instead of 

choosing six of DEs before fitting them to the linear model. In addition, some statistical 

modeling approaches and machine learning methods were utilized to achieve the integral 

comprehension of the data set. 

1.3 Data Preparation and Research Aims 

Data Preparation 

We used the seventeen induced DE variables as well as business size and city location as 

predictors while DRRI is used as the response. In the previous study (Sarmiento et al., 

2019) has revealed that business size has an impact on the relationship between disaster 

experiences and the responses. Cox (1984) noted that “Large component main effects are 

more likely to lead to appreciable interactions than small components. Also, the 
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interactions corresponding to larger main effects may be in some sense of more practical 

importance.” In consequence, we have a compelling reason to include the interactions 

between seventeen DE variables and business size as predictors as well. 

Therefore, the overall organization of our data set composed of 36 predictors, 1 

independent response, and 1197 observations in the raw data set. All predictors are 

categorical: DE variables are of 0/1 scale, business size is of three levels (small, medium 

and large), and city locations are of six levels. The response variable was calculated by 

four items extracting from the survey with equal increment in 0.25 each, taking values of 

0, 0.25, 0.5, 0.75, and 1. Although the response DRRI is quantitative, it can also be 

categorized as a factor with five levels because the previous study did not justify the 

equal increments. It is noticed that there were a few missing values in DRRI, which are 

0.7% in city location and 2.9% in business size. Since the percentage of the missing 

values is relatively small, we deleted the corresponding observations of any missing 

values listwise and prepared the data set with 1162 complete observations. 

The abbreviation of the 17 DEs’, business size, and city were defined in the thesis: 

* LI: Loss of IT 

* SCD: Supply chain disruption 

* Dea: Deaths 

* LAS: Loss of access to site 

* EC: Extreme conditions (high/low temperatures, flood/high winds) 

* DC: Damage to corporate image/reputation/brand 
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* LTC: Loss of telecommunications 

* PG: Pressure groups 

* PO: Power outage 

* IA: Industrial action 

* WO: Water outage 

* EI: Environmental incident 

* CH: Customer health/product safety issue/incident 

* LKSP: Loss of key skills and personnel 

* NP: Negative publicity/coverage 

* DF: Damaged facilities/equipment/inventories 

* OT: Other 

* City: City locations 

* BS: Business size 

Research Aims and Objectives 

In this age of information, people have an intensified desire to use readily available 

information to make decisions for future events such as “Do I need the umbrella today?” 

“When is a good time to invest in real estate?” or “Who should get the COVID-19 

vaccine first?” Predictive modeling is a process that uses statistical methods to generate, 

process, and validate a model that helps us to make the best decisions by forecasting 

future outcomes. Prediction accuracy is usually used to guide the decisions. Comparisons 
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of predictive accuracy provide an understanding of the robustness among the competing 

predictive models.  

As we look into the dependent variables of the data set, they can be treated as quantitative 

or categorical. Therefore, both regression and classification models can be applied. 

Effective and widely used traditional statistical methods applied for prediction include 

Multiple Linear Regression (Efroymson, 1960; Garside, 1965; Andrews, 1974); 

Multinomial Logistic Regression (Engel, 1988; Böhning, 1992), Ordinal Logistic 

regression (McCullagh, 1980; Winship et al., 1984), and Linear Discriminant Analysis 

(Fisher, 1936; Friedman, 1989) for classification. In addition to the aforementioned linear 

methods for regression and classification, machine learning methods such as Random 

Forest (Ho, 1995), Support Vector Machine (SVM) (Cortes & Vapnik, 1995), Neural 

Networks (NN) (Hopfield, 1982, 1984), See5/C5.0 (Quinlan, 1993), Stochastic Gradient 

Boosting (SGB) (Friedman, 2002) and k-Nearest Neighbors algorithm (k-NN) (Altman, 

1992) can be applied to this dataset for the predictive purposes. Random forest is an 

algorithm that combines bagging with random feature selection and focuses on ensembles 

of decision trees. The support vector machine uses multidimensional surfaces to define 

the relationship between predictors and responses. The neural network’s concepts are 

borrowed from an understanding of human brains to model arbitrary functions (Lantz, 

2013). The See5/C5.0 is a more advanced version of C4.5 algorithm which is used to 

generate decision trees by using the concept of information entropy (Quinlan, 1993). The 

stochastic gradient boosting is a variation of the boosting approach to regularization of 

boosting models based on decision trees with random sampling at each iteration 
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(Friedman, 2002). The k-NN is a non-parametric approach consists of the k-closest 

samples from the training set (Kuhn & Johnson, 2013). All these methods result in 

nonlinear predictive functions. 

The 36 predictors may or may not contribute to the predictive models. Excluding or 

minimizing the effects of the variables which are less contributed to the model may 

improve the prediction accuracy and model interpretability (James et al., 2013). Within 

the framework of linear regression modeling, some approaches can perform variable 

selection among high dimensional predictors, such as stepwise selection (Efroymson, 

1960), the Lasso (Santosa & Symes, 1986; Tibshirani, 1996) as a shrinkage method, 

cross-validation (Allen, 1974; Stone, 1974; Stone, 1977), and principal component 

regression (Kendall, 1957; Spurrell, 1963; Massy, 1965) as a dimension reduction 

method. After important variables were selected, all statistical models were finalized, 

fitted, and interpreted using the entire dataset. 

The performance of the predictive models could be assessed in cross-validation, where is 

a resampling approach involves randomly dividing the observations into k folds of 

approximately equal size with k-times repetitions. Each time the procedure uses a diverse 

fold and treat it as a validation set, then computes the mean squared error on the k-1 

folds. The prediction error could be calculated via mean squared error and percent of 

incorrect predictions. The cross-validated prediction error and its standard error for all 

models were estimated and compared numerically. We also used stacking (Wolpert, 

1992), an ensemble machine learning algorithm that is used to combine the predictions 

from the bottom layer models with the purpose of enhancing the predictive performance. 
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In summary, the research objectives of the thesis are: 

* Objective 1: Build predictive models by statistical methods and machine learning 

methods. 

* Objective 2: Apply model selection and regulation for better prediction accuracy and 

easier interpretation. 

* Objective 3: Assess the performance of the predictive models with the resampling 

approach of k-fold cross-validation. 

All data analyses in the thesis were implemented with RStudio (version 1.3.1073) for 

Mac (RStudio Team, 2020). 

The organization of the rest of the thesis was as follows: Chapter II provides the 

mathematical descriptions of the statistical models and machine learning methods. 

Chapter III focuses on analyzing the real data by using the models and methods we 

illustrate in Chapter II. Chapter IV explains and interprets the models and the results we 

obtain from the data analysis in Chapter III. Finally, we summarize our work in the thesis 

and point out the future works in Chapter V.  
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CHAPTER II. STATISTICAL METHODOLOGIES 

In Chapter II, we will offer an overview of all the methods or approaches we are going to 

use in the thesis. There are four main sections in Chapter II. The first section illustrates 

the statistical approaches for the classical linear regression, followed by the statistical 

methods for classification in the second section. The statistical methods list in these two 

sections are linear approaches. On the other hand, machine learning methods have 

flourished impressively over the past decades, so we decide to implement and compare 

them to the statistical methods. As the preference of the thesis is to put the emphasis on 

the statistical methods instead of the machine learning methods, we briefly enumerate 

seven machine learning methods in section three. Model comparison methods take part in 

the last section corresponding to the purpose of understanding the model performance.   

2.1 Linear Methods for Regression 

Linear regression is a simple approach for supervised learning and a useful tool for 

predicting a numeric response. A linear regression model assumes that the relationship 

between the predictors and the mean of the response is linear. For prediction purposes, 

though it might be considered less complex than some of the contemporarily nonlinear 

models, linear regression is still a widely used statistical method providing an efficient 

and interpretable description of how the predictors affect the response/responses (Hastie 

et al., 2001). 

There are four principal assumptions associated with a linear regression model (Tamhane 

& Dunlop, 2000): 
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a. Linearity: The mean of the response is a linear combination of the predictors. 

b. Normality: The errors are normally distributed. 

c. Statistical independence: The errors are uncorrelated with each other. 

d. Homoscedasticity: constant variance of the errors. 

In this section, we will discuss the multiple linear regression, the principal components 

regression as a dimension reduction method, AIC-based forward-stepwise variable 

selection, and the Lasso as a regularization method. These methods serve the purpose of 

the data analysis in Section 3.1, where the dependent variable under the consideration of 

quantitative output. Among the four methods, AIC-based forward-stepwise variable 

selection and the Lasso can select important variables as in Objective 2.  

2.1.1 Multiple Linear Regression 

Multiple linear regression is a statistical method that attempts to determine the linear 

relationship between more than one predictor and a quantitative response. Given a 𝑛 × 𝑝 

matrix 𝐗 and quantitative response 𝑌, in general, the multiple linear regression model 

takes the form (Hastie et al., 2001):  

 𝑓(𝑋) 	= 	𝛦(𝑌|𝑋) 	= 	𝛽! + 𝛽"𝑋" +⋯+ 𝛽#𝑋# =	𝛽! +9𝑋$

#

$%"

𝛽$  (2.1) 

Where the input vector 𝑋& = :𝑋", 𝑋', … , 𝑋#=. The regression coefficients  𝛽!, 𝛽", …, 𝛽# 

in (2.1) are unknown parameters and must be estimated. The 𝑗th predictor 𝑋$ can be 

various forms obtained from different sources (Hastie et al., 2001). Although 𝑋$ must be 
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the quantitative inputs, transformations of the quantitative input, basis expansion of the 

quantitative inputs and interaction terms between the quantitative inputs are all 

welcomed. 

As reviewed in Chapter I, the study of Sarmiento et al. (2019) revealed that business size 

seemed to be associated with disaster experiences. To include the interaction effect of 

business size on disaster experiences in our predictive model, we added the interaction 

between business size and 17 DEs (introduced in Chapter I) to extend the model. In 

general, consider a multiple linear regression model with only two predictors: 

 𝑌 = 	𝛽! + 𝛽"𝑋" + 𝛽'𝑋' + 𝜀 (2.2) 

Where 𝜀	~	𝑁(0, 𝜎') is a random error term. The model with the inclusion of the 

interaction term, which is the product of 𝑋" and 𝑋', is still linear (James et al., 2013): 

 𝑌 = 	𝛽! + 𝛽"𝑋" + 𝛽'𝑋' + 𝛽(𝑋"𝑋' + 𝜀 (2.3) 

Typically, the estimation method of least square approach is used to estimate the 

parameters. Hence, 𝛽C!, 𝛽C", …, 𝛽C# are chosen to minimize the residual sum of squares 

(Hastie et al., 2001): 

 𝑅𝑆𝑆(𝛽) = 	9:𝑦) − 𝑓(𝑥))=
' =

*

)%"

9I𝑦) − 𝛽) −9𝑥)$𝛽$

#

$%"

J

'*

)%"

 

 

 

(2.4) 

 
Where 𝑦) denotes the 𝑖th observation of 𝑌, 𝑥)$ denotes the (𝑖, 𝑗)th element in 𝐗. We can 

rewrite the	𝑅𝑆𝑆(𝛽) in the vector form: 

 𝑅𝑆𝑆(𝛽) = 	 (𝐲 − 𝐗𝛽)&(𝐲 − 𝐗𝛽) (2.5) 
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The 𝐗 denotes the 𝑛 × (𝑝 + 1) matrix with additional columns added to the input matrix 

as the first column with all 1s. Here 𝐲 denotes the 𝑛-vector of outputs. The least square 

estimator of 𝛽 that minimizes 𝑅𝑆𝑆(𝛽) is: 

 𝛽C = 	 (𝐗&𝐗)+"𝐗&𝐲 (2.6) 

Predicted values in vector form, where 𝐇 is the hat matrix, 𝐇 = 𝐗(𝐗&𝐗)+"𝐗&: 

 𝐲N = 𝐗𝛽C 	= 𝐗(𝐗&𝐗)+"𝐗&𝐲 = 𝐇𝐲 (2.7) 

Now we can make the interpretation using the formula: 

 𝑦N = 𝛽C! + 𝛽C"𝑥" + 𝛽C'𝑥' +⋯+ 𝛽C#𝑥# (2.8) 

Each 𝛽C) is an unbiased estimator of 𝛽): 𝐸P	𝛽C)Q = 𝛽). The fitted output vector 𝑦N is a linear 

combination of the column vector 𝑥)’s. 

In interpreting this model to describe the 𝑖th row coefficient for the predictor 𝑥), we 

would say “A one-unit increase in the predictor 𝑥) would yield a R𝛽C)R-unit 

increase/decrease in the predicted 𝑦N. The increase or decrease is based on the 

positive/negative sign of the coefficient 𝛽C). 

2.1.2 Stepwise Variable Selection 

In statistics, the process of determining which predictors contribute most to the model 

and then selecting a subset of relevant variables is becoming more critical to serve the 

high-dimensional data analysis. A classic example is stepwise selection (Efroymson, 

1960) for linear regression. The direction of stepwise selection can be forward, backward, 

or both. Since it requires finding the least square estimates of all candidate models, the 
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forward-stepwise selection, which consider the relatively simpler models, is the least 

computational expansive. Therefore, we will focus on forward-stepwise selection. Each 

step of predictor evaluating in the forward-stepwise selection procedure is using the 

preassigned base model. The detailed iterations of the forward selection are: 

1. Create a null model contains only the interception term; 

2. Add the predictors one-at-a-time until all candidate predictors are included in the 

model and evaluate these sub-optimal models with the smallest residual sum of 

squares (RSS) or the highest R-squared; 

3. Choose the final optimal model using AIC score, BIC score or other criteria. 

The Akaike information criterion (AIC) is a commonly used criterion. It was first 

formulated by Hirotugu Akaike. The Akaike information criterion (AIC) is a penalized 

version of the maximized log likelihood function of the residual sum of squares (RSS) 

(Kuhn & Johnson, 2013): 

 AIC = 𝑛 log Y9(𝑦) − 𝑦N))'
,

)%"

Z + 2𝑑 (2.9) 

Where 𝑑 is a measure of model complexity. The Akaike information criterion (AIC) 

becomes large when training error is large, or the model is overfitting and too complex. 

Hence, we want to choose the final optimal model with the smallest AIC score. We will 

adopt AIC based forward-stepwise selection in the data analysis in Chapter III. Forward-

stepwise selection is fast computationally and no limitation on the dimension of the data 

set, and have lower variance, but may increase the risk of getting more bias. 
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2.1.3 The Lasso 

In statistics, the lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) 

is a regression analysis method that could shrink the regression coefficients towards 

exactly zero by using the 𝐿" penalty. In this case, the lasso performs the variable selection 

just like the forward-stepwise selection we introduced above.  

The lasso minimizes RSS with the 𝐿" penalty: 

 9(𝑦) − 𝑦N))'
,

)%"

+ 𝜆9R𝛽$R
-

$%"

= 𝑅𝑆𝑆 + 𝜆9R𝛽$R
-

$%"

 (2.10) 

Where ∑ R𝛽$R-
$%"  is the 𝐿" lasso penalty and 𝜆 ≥ 0. The standardized tuning parameters of 

the lasso coefficients are 𝑠 = 	𝑡/∑ R𝛽C$R
#
" . There is one-to-one mapping between parameter 

𝜆 and 𝑡. When 𝑠 = 1, the lasso coefficients are the same with the least squares estimates 

(Hastie et al., 2001). 

In order to choose the optimal tuning parameter , we adopt k-fold cross-validation (CV) 

and one-standard-error rule. We would introduce details of CV as a resampling method 

for model comparison in Section 2.4. We focus on the selection process for now: 

1. Split the whole data set into training and test set.  

2. Calculate the CV’s mean squared error of the test set for each candidate of 𝑠.  

3. Plot the CV’s mean square error (MSE) of the test set versus all the candidates of 

𝑠 and find the smallest MSE (blue line, Fig.1) on the curve. 
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4. Select the optimal tuning parameter 𝑠 (green line, Fig.1) using the CV’s MSE on 

the curve within one standard error (red line, Fig.1) on the left of the smallest one. 

 
The lasso approach usually provides relatively less prediction error with less 

computationally cost.  

2.1.4 Principal Components Regression 

When doing predictions on the big, real‐world data, by looking at the dictionary defining 

what the predictors are, we notice that the predictors sometimes could be correlated with 

each other over the redundant information collecting. The impact of the multicollinearity 

issue could increase the variability and vitiate the stability of the performance on the 

ordinary least square solution for the multiple linear regression (Kuhn & Johnson, 2013). 

One widely applied approach to this problem is principal component regression (PCR) 

(Massy, 1965), which is using the principal component analysis (PCA) first for pre-

processing in order to obtain the uncorrelated combinations of the original predictors and 

then use them as the predictors to perform regression. 

Figure 1: CV MSE vs. Tuning Parameter in Lasso. 
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Principal components regression (PCR) is a two-stage dimension reduction method 

(Kuhn & Johnson, 2013). The first stage is using PCA, an unsupervised approach to 

extract the low-dimensional representation of the data set, that is, fewer principal 

components, that capture as much as possible the of the variation in the predictors. In this 

stage, the response does not have any influence on PCA, and the principal components 

are orthogonal to each other. Stage two is to select enough principal components as 

independent predictors and perform the regression analysis. 

The variables in the data set should be centered and scaled beforehand. Assume we have 

a data matrix 𝑋 with 𝑛 observations and 𝑝 features, then the first principal component of 

𝑋 is the linear combination of the predictors: 

 𝑧)" = 𝜙""𝑥)" + 𝜙'"𝑥)' +⋯+ 𝜙#"𝑥)# (2.11) 

That maximized the sample variance: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
.!!,…,."!

h
1
𝑛9I9𝜙$"𝑥)$

#

$%"

J

',

)%"

i	 (2.12) 

subject to ∑ 𝜙$"'
#
$%" = 1, where the elements 𝜙"",…, 𝜙#" are the loadings and 𝑧"",…, 

𝑧," are the scores of the first principal component (James et al., 2013).  Then the 𝑘th 

principal component can be defined and uncorrelated to all previous ones. 

 𝑧)1 = 𝜙"1𝑥)" + 𝜙'1𝑥)' +⋯+ 𝜙#1𝑥)# (2.13) 
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That to maximize the sample variance of the 𝑛 values of 𝑧)1: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
.!#,…,."#

h
1
𝑛9I9𝜙$1𝑥)$

#

$%"

J

',

)%"

i	 (2.14) 

The problem in Equation (2.12) can be solved by the eigen decomposition in linear 

algebra, but we do not discuss the details in the thesis. 

We can interpret PCA with the above linear relationship and plot the principal component 

scores for better visualization. Moreover, the proportion of variance explained by the 𝑘th 

principal component is defined (James et al., 2013): 

 
∑ :∑ 𝜙$1𝑥)$

#
$%" =',

)%"

∑ ∑ 𝑥)$',
)%"

#
$%"

 (2.15) 

We usually look into the cumulative proportion of variance explained by the principal 

components to decide how many components we would like to use for the regression. 

The basic idea is to choose the less amount of the principal components which can 

explain a desirable amount of variation. So, PCR provides a dimension reduction solution 

to high dimensional linear regression, but it does not select variables. 

As illustrated above, the response of the data set is absent in PCA approach, so the PCR 

may have difficulties to detect a predictive relationship related to the response variability 

(Kuhn & Johnson, 2013). 
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2.2 Linear Methods for Classification 

When we deal with the real-world data, we notice that the responses (or dependent 

variables in a classical way) are usually in different types, and the common types of 

responses are typically presented in quantitative or qualitative measurements.   

In the above section, we have illustrated the linear regression for the quantitative 

response. An alternative way to regress the data set is to represent the response 

numerically by codes and assign them to K classes or categories (Hastie et al., 2001). 

Although it would be fine if we convert a binary response into quantitative and mapping 

the output back to the 0-1 categories after the regression, this regression approach may 

not be able to find the correct boundaries for more than two classes response.   

In this context, we decided to convert the quantitative response of the data set into 

qualitative variable because it was a discrete variable with the values of 0, 0.25, 0.5, 0.75 

and 1, and we believe there is an ordering between these values. For these reasons, it is 

preferable to use the classification approach on our data set such as multinomial logistic 

regression, ordered logistic regression and Linear Discriminant Analysis (LDA). Also, 

we use the subset selection and shrinkage fitting methods for better prediction accuracy 

and model performance as in Objective 2. 

2.2.1 Multinomial Logistic Regression 

Multinomial logistic regression is considered as the multiple-class extension of binomial 

logistic regression that the model contains K-1 terms that provide the posterior 
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probabilities of each K class by using the linear relationship with the predictors. We have 

the model (Hastie et al., 2001): 

 
log

𝑃𝑟(𝐺 = 1|𝑋 = 𝑥)
𝑃𝑟(𝐺 = 𝐾|𝑋 = 𝑥) = 𝛽"! + 𝛽"

&𝑥 
 

 
log

𝑃𝑟(𝐺 = 2|𝑋 = 𝑥)
𝑃𝑟(𝐺 = 𝐾|𝑋 = 𝑥) = 𝛽'! + 𝛽'

&𝑥 
 

 
⋮ 

 

 
log

𝑃𝑟(𝐺 = 𝐾 − 1|𝑋 = 𝑥)
𝑃𝑟(𝐺 = 𝐾|𝑋 = 𝑥) = 𝛽(3+")! + 𝛽(3+")

&𝑥 
(2.16) 

Where G denotes the qualitative outputs. We show the model in K-1 log-odds terms with 

the probabilities sum to exactly one and fit the model by maximizing the likelihood 

function under the 0-1 loss (Hastie et al., 2001): 

 ℓ(𝜃) =9log 𝑝5$(𝑥); 𝜃)
*

)%"

 (2.17) 

Where 𝑝1(𝑥); 𝜃) = 𝑃𝑟(𝐺 = 𝑘|𝑋 = 𝑥); 𝜃) and 𝜃 = s𝛽"!, 𝛽"
& , … , 𝛽(3+")!, 𝛽(3+")

&t, and 𝑔) 

denotes the 𝑖th observation of G. The 𝑥) is the 𝑖th observed value of the input variables 

that is defined as a scalar or vector with 𝑖 = 1,2, … , 𝑁, given the 𝑁 × 𝑝 input matrix. The 

coefficients are unbiased and estimated by maximizing the likelihood function which is 

optimized by an algorithm called iteratively reweighted least squares (IRLS). 

By using the multinomial logistic regression, we assumed that our dependent variable is 

categorical without any order. In the next section, we will introduce the ordinal logistic 

regression because the dependent variable in our data set shows that there is an ordering 

among the values. 
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2.2.2 Stepwise Variable Selection  

As we mentioned in Section 2.1.3, we want to use the alternative fitting procedure to 

yield better prediction accuracy and model interpretability than the multinomial logistic 

regression. We have stated the steps of the stepwise selection in Section 2.1.3 for linear 

regression. For classification, we choose to use the same AIC statistic for model selection 

(Hastie et al., 2001): 

 AIC = −
2
𝑁 ∙ loglik + 2 ∙

𝑑
𝑁 (2.18) 

Where the “loglik” refers to the maximized log-likelihood: 

 
loglik =9log𝑃𝑟67(𝑦))

*

)%"

 (2.19) 

We choose the optimal model with the minimum AIC over the candidate models. 

2.2.3 Elastic Net 

Zou and Hastie (2005) introduced the elastic-net penalty, a regularized regression method 

that compromises between the 𝐿" of the lasso and 𝐿' of ridge. The elastic-net penalty can 

be used for regression or classification model. 

For the multinomial problem, the elastic-net penalty has the form (Hastie et al., 2001): 

 

𝑚𝑎𝑥
{9%#,9#∈ℝ"}!&

y9𝑙𝑜𝑔 𝑃𝑟(𝑔)|𝑥)) − 𝜆99:𝛼R𝛽1$R + (1 − 𝛼)𝛽1$
'=

#

$%"

3

1%"

*

)%"

} (2.20) 
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Where 𝛽1$ denotes the (𝑘, 𝑗)th element in the coefficients set. The advantage of elastic 

net model is that the 𝐿" penalty (Lasso) enable the effect of carriable selection while the 

𝐿' (ridge) penalty shrinks the coefficients towards 0. The value of the parameter 𝛼 

enables effective regularization bridges between the pure lasso penalty (when 𝛼 = 1) and 

a pure ridge-type penalty (when 𝛼 = 0) (Kuhn & Johnson, 2013).  The total amount of 

penalization has been controlled by another tuning parameter 𝜆. When 𝜆 = 0, then there 

is no regularization in the model. 

2.2.4 Ordinal Logistic Regression 

In statistics, the ordinal logistic regression (also known as ordered logistic regression or 

ordered logit model) is a sub-type of the logistic regression for an ordinal dependent 

variable. Ordinal logistic regression model has been first considered since the 1980s 

(McCullagh & Nelder, 1989) but becomes popular recently in many fields. 

In the model, the observed ordinal response 𝑌 is a function of another continuous laten 

variable 𝑌∗ with various threshold values 𝜇$, that is, 𝑌∗ is observed in a discrete form of 

𝑌 through a censoring mechanism (Echaniz et al., 2019): 

 𝑌) = 0		𝑖𝑓		𝑌)∗ ≤	𝜇!  

 𝑌) = 1		𝑖𝑓		𝜇! <	𝑌)∗ ≤	𝜇"  

 ⋮  

 𝑌) = 𝐽		𝑖𝑓		𝜇>+" <	𝑌)∗ ≤	𝜇> (2.21) 
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The model estimates  𝑍) = ∑ 𝛽1
&𝑋1)3

1%" = 𝐸(𝑌)∗). 

Under the assumption of parallel slopes (Borooah, 2001), the ordinal logistic regression 

model can be written as: 

 

𝑃(𝑌) > 𝑗	|	𝑋)) =
exp:𝛽&𝑋) − 𝜇$=

1 + sexp:𝛽&𝑋) − 𝜇$=t
	，𝑗 = 1,2… , 𝐽 − 1 (2.22) 

Estimate the above model by maximizing the log-likelihood function under the 0-1 loss 

(Echaniz et al., 2019): 

 

log 𝐿 =99𝑚)$ logs𝐹:𝜇$ − 𝛽1
&𝑥1)= − 𝐹:𝜇$+" − 𝛽1

&𝑥1)=t
>

$%!

*

)%!

 (2.23) 

Where 𝑚)$ is a binary variable, 𝑚)$ = 1	𝑖𝑓	𝑌) = 𝑗 and 𝑚)$ = 0 otherwise. 

The ordinal logistic regression has been widely used and has been developed in many 

statistical software packages. However, the fitting progress may encounter problems with 

the large numbers of the predictors because too many parameters is needed to evaluate 

and set as the initial parameters beforehand.  

2.2.5 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a statistical approach to model each class density 

as multivariate Gaussian and assumes that the classes have a common covariance matrix 

Sigma. When we compare LDA to logistic regression, the LDA is more stable than the 

latter if the sample size is small and the distributions of the independent variables are 
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approximately normal. Moreover, the LDA has been popularly used for the multi-class 

classification. 

As mentioned above, the LDA assumes 𝛴1 = 𝛴 for all 𝑘 = 1,… , 𝐾. Variances and 

correlations are the same across all classes with only the center locations are different, 

that is, the class Gaussian distributions are shifted versions of each other. We have the 

linear discriminant function (Hastie et al., 2001): 

 
𝛿1(𝑥) = 𝑥&𝛴+"𝜇1 −

1
2𝜇1

&𝛴+"𝜇1 + log(𝜋1) (2.24) 

Estimated the model: 

 𝐺�(𝑥) = argmax1 𝛿1(𝑥) (2.25) 

The LDA methods approximates the Bayes classifier by estimating the following 

parameters with the training data set (Hastie et al., 2001): 

* 𝜋N1 =	𝑁1 𝑁⁄ , where 𝑁1 is the number of class-k samples. 

* �̂�1 = ∑ 𝑥) 𝑁1⁄5$%1 , the sample mean vector of class-k samples, where 𝑥) denotes 

the 𝑖th training sample. 

* Σ� = ∑ ∑ (𝑥) − �̂�1)(𝑥) − �̂�1)&/(𝑁 − 𝐾)5$%1
3
1%" , the pooled covariance matrix. 

For two-class problem, LDA is the same as linear regression of indicator response matrix 

but the intercept may be different. For more than two-class the solutions are different.   
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Linear Discriminant Analysis (LDA) could be powerful when the data set has met the 

assumption. However, it seems like the LDA makes unrealistic assumptions about the 

real-world data (multivariate Gaussian of the set of independent variables, 

homoscedasticity) and is also very sensitive to outliers. 

2.3 Machine Learning Methods and Ensemble Learning 

As information and computational capacity have become more easily available in 

decades, we are more desirable to use tools to find the patterns and make decisions using 

big data. The process of study interested in the development of these tools is known as 

machine learning (Kuhn & Johnson, 2013). Here, we introduce a few machine learning 

methods that we choose to use for our data. These methods are C5.0, gradient boosting 

machines (GBM), K-Nearest Neighbors (KNN), neural network (NN), random forest, and 

support vector machines (SVM). It is a practical way to process the data set with these 

non-linear methods and compare their output with the linear methods we considered in 

the previous sections. However, we only intend to focus on the result of using these 

methods instead of the algorithms themselves, so the theoretical mathematics of the 

machine learning methods is beyond the scope of the thesis. Moreover, we explicate 

ensemble learning which is an approach to improve the prediction performance of the 

machine learning methods. 

All the machine learning approaches we illustrate in the thesis can be used for regression 

as well as for classification problems. 
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2.3.1 C5.0 

The C5.0 algorithm is an improved version of C4.5 algorithm (Quinlan, 1993) that 

provides a tree-based and rule-based model. It performs well for most problems and is 

easy to understand and use.  To build decision trees, C5.0 uses the concept of entropy or 

information gain as the splitting criterion. Then C5.0 post-prunes the decision tree. The 

process is to grow a tree large enough to overfit the training data and then remove the 

nodes and branches that have little effect on the classification errors to reduce the size of 

the decision tree to a more appropriate level (Lantz, 2013). 

2.3.2 Gradient Boosting Machines (GBM) 

Gradient boosting machines (GBM) was first called by Friedman (Friedman 2001), a 

typically tree-based boosting method. The principal idea of GBM is to seek an additive 

model to minimize the loss function, given a loss function and a weak learner.  

The GBM algorithm usually initialized the response with the mean of the response in 

regression or the sample log-odds for classification. After the opposite of the gradient of 

the fitting error has been calculated, a model is used to fit the pseudo-residuals as the 

outcome in order to minimize the loss function. Finally, the current model is added to the 

previous model weighted by the optimal step size with repetitive iterations. The simple 

GBM has two tuning parameters (tree depth and a number of iterations) when trees are 

used as the base learner (Kuhn & Johnson, 2013). 
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2.3.3 K-Nearest Neighbors (KNN) 

The k-nearest neighbors algorithm (KNN) is one of the simplest supervised machine 

learning algorithms proposed by Thomas Cover (Altman, 1992). As a model-free method, 

the KNN uses the k-closest training samples to predict a new sample by measuring the 

distance between two samples. Euclidean distance and Minkowski distance are the most 

commonly used metrics. In KNN regression, the predicted response assigned to the new 

sample is the mean or median of the values of k neighbors' response. In KNN 

classification, the predicted response is classified by the majority vote of its k-nearest 

neighbors (Kuhn & Johnson, 2013). 

Generally, the standardized predictors are required because the performance of KNN 

approach relies on the distance between samples. The resampling methods can be used to 

determine the tuning parameter k. Like the procedure to find the optimal tuning parameter 

for the lasso, the optimal k can be achieved across the candidate values with the minimum 

MSE. 

2.3.4 Neural Networks (NN) 

Neural networks (NN) (Bishop 1995) are one of the most popular machine learning 

methods that use the multi-layer networks of neurons to mimic how the human brain 

works. The hidden layer of the NN is the intermediate layer between the predictors and 

output. The hidden layer consists of one or multiple hidden units, and their variables are 

unobserved. Usually, the relationship between the hidden unit and partial or all set of the 

predictors is non-linear because a non-linear function such as logistic (i.e., sigmoidal) is 
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used to transform the original linear relationship. Once we set the numbers of the hidden 

unit, a linear combination is used to connect each unit to the outcome when the NN is for 

regression. For classification, another non-linear function, sigmoidal, is used for the 

combination. 

Over-fitting usually occurs during NN training the data set due to the overly complex 

model with a large number of the parameters. Weight decay, an additional term in the 

weight, is a penalized approach for NN to avoid this problem. Also, model averaging is 

generally used on NN for a more stable prediction (Kuhn & Johnson, 2013). 

2.3.5 Random Forest 

Random forest (Breiman, 2001), an ensemble learning method that provides improved 

performance of bagged trees by reducing the correlation among trees. In the ensemble, 

each model uses the random sample extracted from the original data to generate a 

prediction for a new sample during training, and then use the average of these m 

predictions for regression or the majority votes for classification to give the forest’s final 

prediction. 

At each split, the algorithm randomly selects m predictors as split candidates instead of 

including the full set of the original predictors in the bagged trees method. The value of 

m is typically a prerequisite for the model (Kuhn & Johnson, 2013):  

* For regression, the recommended setting of m value is one-third of the predictors 

and suggested to start with at least five values to tune m. 
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* For classification, the recommended setting of m value is the square root of the 

number of predictors and suggested to start with at least five values to tune m. 

As a starting point, at least 1000 trees are suggested. 

2.3.6 Support Vector Machines (SVM) 

In machine learning, SVM is a supervised learning model first developed by Vladimir 

Vapnik (Kuhn & Johnson, 2013). The principle of SVM is to amplify the feature space 

by using kernel function (James et al., 2013). The SVM can perform either linear or non-

linear regression/classification with the implement of different types of kernel function, 

such as polynomial, radial basis function and hyperbolic tangent. 

In SVM, the cost value and the parameters of the kernel function should be tuned 

accordingly to avoid over-fitting and under-fitting. Usually, the model may under-fit the 

data when the cost value is low, and vice versa. The resampling approach for SVM to 

find the optimal parameters is commonly used for a balance between over-fitting and 

under-fitting of the data (Kuhn & Johnson, 2013). 

2.3.7 Ensemble Learning 

In statistics and machine learning, ensemble learning is used to train the multiple models 

(often called "weak learners" or "base models") for the same problem and combine the 

strength of them to get better results. The first step of ensemble learning is to develop the 

base models as the building blocks. Mostly, these base models may not perform well by 

themself and usually have large prediction error as a result of high variance or bias. 
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Therefore, the second step of ensemble learning is to make an effort to reduce the 

variance and/or the bias by combining weak learners to form a composite learner 

(ensemble model) for better performance. There are three commonly used approaches to 

combine weak learners: bagging (bootstrap aggregating), boosting, and stacking (Hastie 

et al., 2001). 

The bagging method often generates same base learners and train them parallelly with the 

bootstrap resampling data that extract from the original dataset, and then combines base 

learners’ predictions either using averaging for regression or casting a vote for 

classification. In this way, bagging methods can obtain an ensemble model with lower 

variance. For example, the random forest method we introduced in the above sub-section, 

is a bagging method that generates single trees as the base learners to independently fit on 

bootstrap samples, then combines their predictions to produce an output with lower 

variance. 

The boosting approach generates the same base learners but trains them sequentially, that 

is, for each iteration, train the current ensemble model focused on the weakness of the 

previous one and then aggregate the current one weighted by its performance to the 

previous one to form a strong learner. The iterative strategy of the boosting method 

allows the ensemble model to get a lower bias. For example, the GBM method we 

introduced in the above sub-section is a boosting method. At each iteration, we fit a weak 

learner is to the pseudo-residuals and calculate the value of its weight by following the 

one-dimensional optimization process to, then update the ensemble model by adding the 

new weak learner multiplied by its weight. 
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Stacking is a relatively new approach compares with bagging and boosting. First, 

stacking considers various types of learning algorithms for base learners. Second, another 

algorithm or model is utilized to combine the predictions. In Chapter 3, we are going to 

use stacking as the ensemble learning approach to aggregate several machine learning 

algorithms to find out if it could help to enhance the model accuracy. 

2.4 Model Comparison Methods 

Now we have illustrated all the statistical learning methods and machine learning 

methods that we are going to use for our data set in Chapter III. The sequential task of 

deciding which method may outperform the others for this particular data set is important 

and necessary. By comparing the results of these models, we would have a better 

understanding of each learning method applied to our data set. 

In this section, we discuss the way that we choose to separate the whole data set and the 

approach that we use to compare the prediction performance among the models. 

2.4.1 Data Splitting and Cross-Validation 

In the previous sections, we have seen that in the stepwise selection and the lasso, we 

need to select the variables or to choose the optimal tuning parameter by comparing the 

performance among the candidates. Moreover, after the appropriate level of flexibility of 

the model has been selected, what we really interested in is the accuracy of the predicted 

response that we obtain from our final model, that is, the evaluation of the model 

performance. Hence, there are two tasks we consider in here: 
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1. Model selection and regulation: the process of choosing the optimal model by 

estimating the performance of the candidates. 

2. Model assessment: evaluating a model’s performance by estimation its prediction 

error.  

As our data set large with more than a thousand observations, the best approach to fulfill 

the above two tasks is to randomly separate the dataset into three parts: a training set, a 

validation set, and a test set. The training set is used to train the models; the validation set 

is used for model selection and regulation; the test set is set aside for the final model 

assessment (Hastie et al., 2001). The k-fold cross-validation (CV) is one of the 

resampling techniques that can ensure the samples are randomly separate into k sets with 

the same size, and researches showed that the repeating process of the k-fold cross-

validation can effectively increase the accuracy of the prediction (Kuhn & Johnson, 

2013). Therefore, we consider the reiterative k-fold CV as the resampling approach to 

randomly separate the whole data set into three subsamples in order to estimate the true 

prediction error.  

Take the lasso as an example, suppose we first use 5-fold CV to split the whole data set 

into a modeling set and a test set and set the test set aside. Second, we use 3-fold CV 

again to re-split the modeling set into training and validation set, train the model with a 

grid of tuning parameter on the training set and predict the validation set to get the CV 

MSE. The optimal tuning parameter has been selected with the minimum CV MSE, as is 

the final model. Third, the final model is used to predict the test set and test error is 
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calculated. The external 5-fold CV provides 5 test errors. Finally, we can estimate the 

true prediction error by averaging the five test errors. 

 

In Chapter III, we use a 5-fold CV to evaluate the true prediction error for the multiple 

linear regression and the multinomial logistic regression approaches. The procedure of 

repeated CV, that is, the approach of an external 5-fold CV comes with an internal 5-fold 

CV as we illustrate in Figure. 2 is carried out for the rest of the models. 

Figure 2: The Process of External 5-Fold CV and Internal 3-Fold CV. 
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2.4.2 Prediction Performance Measures 

1. Mean Square Error (MSE) 

We have mentioned MSE a few times in the previous sections, now we would like to 

introduce it formally. In the regression, MSE is one of the most commonly used ways to 

measure how well the model fits the data, that is to say, a qualified estimator to measure 

the average squared difference between the prediction values and the actual value. For 

classification, we simply convert both prediction classes and observation classes into 

quantitative values to allow us to compute MSE for the classification approach as well. 

Moreover, for regression, we convert the quantitative response to the qualitative response 

by mapping a numeric range onto each class and then convert them back to numeric for 

calculating the MSE. Hence, the MSE for regression and classification is comparable in 

that way. We have the MSE formula (James et al., 2013): 

 
MSE =

2
𝑛9�𝑦) − 𝑓C(𝑥))�

'
,

)%"

 (2.26) 

Where 𝑓C(𝑥)) is the prediction of the 𝑖th observation.  

Generally speaking, we are more interested in the test MSE instead of the training MSE 

because we would like to know the accuracy of the prediction. Suppose that we have 

trained and fitted our model on the training data set and obtained the estimate 𝑓C, and we 

define (𝑥!, 𝑦!) is an observation in the test data which we have set aside from the very 
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beginning. The expected test MSE can tell us whether 𝑓C(𝑥!) is approximately equal to 

𝑦!. That is (James et al., 2013): 

 
𝐸 �𝑦! − 𝑓C(𝑥!)�

'
= 𝑉𝑎𝑟 �𝑓C(𝑥!)� + �𝐵𝑖𝑎𝑠 �𝑓C(𝑥!)��

'
+ 𝑉𝑎𝑟(𝜀) (2.27) 

We use k-fold CV approach to estimate the overall test MSE (true prediction error) by 

computing the average of 𝐸 �𝑦! − 𝑓C(𝑥!)�
'
. 

In Equation (2.27), we see the relationship between bias, variances, and test MSE. Our 

goal is to select the final model with the test MSE as small as possible. However, this 

bias-variance trade-off can explain that when the model is with the high bias then there is 

probably an over-fitting, on the contrary, when the model is with the high variance then 

an under-fitting may occur. Hence, the test MSE is a necessary estimator when we 

compare flexible methods with classical but simpler methods. 

2. Classification Accuracy Rate 

Calculating the proportion of how many prediction outcomes match the true response of 

the observation is a common and direct approach to evaluate the prediction performance. 

We define the accuracy rate with a simple indicator function: 

 1
𝑛9𝐼(𝑦) = 𝑦N))

,

)%"

 (2.28) 

The accuracy rate shows the proportion of how many observations are classified correctly 

by our model.  
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Although the prediction outcomes are numeric of the regression approaches illustrated in 

Section 2.1, we convert the quantitative response to qualitative response by mapping a 

numeric range onto class. This mapping approach can ensure that every model we used in 

the thesis are compared under the same criteria. 

We have explained the approaches along with the concepts that we are going to utilize to 

explore the private sector participation in disaster risk reduction data. The computational 

application on the data set will be shown in Chapter III. 
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CHAPTER III. APPLICATION 

In Chapter III, our goal is to apply the statistical methods and machine learning 

approaches described in Chapter II to analyze our data set and present the outputs. The 

related results are shown in tables and figures. The comparison and discussion on the 

models’ performance and variable selection will be provide in Chapter IV. 

We use the RStudio environment, version 1.3.1073, for statistical computing. The R 

function and the package we used will be illustrated under each analysis approach. 

3.1 Descriptive Statistics 

The raw data contain 36 predictors, 3 response, and 1197 observations. All predictors are 

categorical: DE variables are of 0/1 scale, business size is of three levels (small, median 

and large), and city locations are of six levels. The response variables are calculated by 

four items extracting from the survey with equal increment in 0.25 each, taking values of 

0, 0.25, 0.5, 0.75, and 1. We are only interested in the response of DRRI in the thesis. 

Although the response DRRI is quantitative, it can also be categorized as a factor with 

five levels because the previous study did not justify the equal increments. It is noticed 

that the predictor of the data set has a small number of missing values, which are 0.7% in 

city location and 2.9% in business size. Since the percentage of the missing cases is 

small, we consider these missing values can be ignored. After deleting the corresponding 

observations of any missing values listwise, we prepare the data set with 1162 complete 

observations, 36 predictors and 1 response of DRRI. 
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We give the abbreviation of each of the variables for more succinct outputs. The 

abbreviation of the 17 disaster experiences (DE), business size, city, and the response are: 

* LI: Loss of IT 

* SCD: Supply chain disruption 

* Dea: Deaths 

* LAS: Loss of access to site 

* EC: Extreme conditions (high/low temperatures, flood/high winds) 

* DC: Damage to corporate image/reputation/brand 

* LTC: Loss of telecommunications 

* PG: Pressure groups 

* PO: Power outage 

* IA: Industrial action 

* WO: Water outage 

* EI: Environmental incident 

* CH: Customer health/product safety issue/incident 

* LKSP: Loss of key skills and personnel 

* NP: Negative publicity/coverage 

* DF: Damaged facilities/equipment/inventories 

* OT: Other 

* City: City locations 

* BS: Business size 

* DRRI: Disaster Risk Reduction Index 
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Let us take a look at the between-predictor correlations: 

 

The interaction term between each DE and business size is indicated as DE*BS. For 

example, LI*BS indicates the interaction between LI and BS. Clearly, there is a highly 

positive correlation between the interaction term and the main effect terms, the DE. The 

correlation between each of the interaction terms and its corresponding main effect is 

within a range of (0.8749, 0.9358). Other than these, the rest of the paired correlations 

which are bigger than 0.3 are as follows: 

Table 1: The Pair of Variables with Correlation ≥ 0.3, Sorted from the Least to the Greatest. 

Var1 Var2 Correlation 

SCD*BS PO*BS 0.3098 
SCD*BS LTC*BS 0.3140 

Dea LKSP*BS 0.3175 

Figure 3: A Mixed Visualization of the Correlation Matrix. The Correlation Coefficients are 
Colored According to the Value. The Size and Shade of Each Circle Represent the Strength of 
Each Relationship, While the Color Represents the Direction, Either Negative or Positive. 
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BS DF*BS 0.3255 
SCD*BS DC*BS 0.3256 

LTC PO*BS 0.3350 
PO LTC*BS 0.3354 

SCD*BS LAS*BS 0.3375 
IA EI 0.3440 

LI*BS LTC*BS 0.3486 
Dea*BS EI*BS 0.3603 
LAS*BS EC*BS 0.3615 

LTC PO 0.3653 
Dea*BS LKSP*BS 0.3741 

EI IA*BS 0.3746 
PO WO*BS 0.3775 
IA EI*BS 0.3986 

WO PO*BS 0.4040 
PO WO 0.4265 

LTC*BS PO*BS 0.4269 
IA*BS EI*BS 0.4859 
PO*BS WO*BS 0.4936 

   

There is no considerably high correlation showed in the table for the rest of the paired 

variables. 

The distribution of the response is given as the frequency and relative frequency of each 

level. 

Table 2: Distribution of DRRI. 

DRRI 

Value 0 0.25 0.5 0.75 1 
Frequency 209 326 351 237 39 
Relative Frequency 0.1799 0.2806 0.3021 0.2040 0.0336 
      

We notice that the frequency of value “1” is much less than the frequency of the other 

values. To avoid absence of value “1” in the test set, we chose the 5-fold external CV and 

5-fold internal CV for the resampling, not higher fold. 
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All the 17 DEs are binary, City has 6 levels, BS has 5 levels, interaction term has 4 

levels. We take SCD and its interaction as the example: 

Table 3: Frequency Distribution of Selected Predictors. 

SCD 

Value 0 1 
Frequency 1025 137 
Relative Frequency 0.8821 0.1179 
   
SCD*BS 

Value 0 1 2 3 
Frequency 1025 93 33 11 
Relative Frequency 0.8821 0.0800 0.0284 0.0095 
     
BS 

Value 1 2 3 
Frequency 915 201 46 
Relative Frequency 0.7874 0.1730 0.0396 
    
City 

Value 1 2 3 4 5 6 
Frequency 146 261 263 191 183 118 
Relative Frequency 0.1256 0.2246 0.2263 0.1644 0.1575 0.1015 
       

To illustrate the sample relationship between response and DE, the frequency table of 

DRRI with one of the predictors SCD is given as an example. 

Table 4: Contingency Table of Variable DRRI and SCD. 

  SCD  

  0 1 Total 

DRRI 

0 196 13 209 
0.25 299 27 326 
0.5 306 45 351 
0.75 196 41 237 
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1 28 11 39 
 Total 1025 137 1162 
     

3.2 Linear Methods for Regression 

In this section, we consider the independent variables and the dependent variable all as 

numeric. The independent variables are scaled, that is, having zero mean and unit 

variance.  

Although the outcome is assumed to be continuously distributed for linear regression, we 

map a range of the quantitative output into the corresponding discrete value in order to 

compare with the original observation value. The mapping criteria: 

 𝑦N ≤ 0.125 → "0"  

 0.125 < 𝑦N ≤ 0.375 → "0.25"  

 0.375 < 𝑦N ≤ 0.625 → "0.5"  

 0.625 < 𝑦N ≤ 0.875 → "0.75"  

 𝑦N > 0.875 → "1" (3.1) 

We use this criterion to achieve the “mapping MSE”. In this way, we could fairly 

compare the prediction performance for both regression and classification approach later 

by the test set MSE.  

3.2.1 Multiple Linear Regression 

In order to fit a multiple linear regression model, we use function lm() that is available in 

the stats package. There is no tuning process for the multiple linear regression itself. 
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Therefore, we only use external 5-fold CV alone, and we obtain five folds from five 

external CV iterations. For example, the estimated coefficients for the fifth fold are as 

follows: 

Table 5: Estimated Coefficients of the Multiple Linear Regression. 

Estimated Coefficients 

(Intercept) 0.4122    
LI -0.0178  BS 0.0348 
SCD 0.0261  LI*BS 0.0162 
Dea -0.0294  SCD*BS -0.0136 
LAS 0.0179  Dea*BS 0.0507 
EC 0.0006  LAS*BS -0.0094 
DC -0.0206  EC*BS 0.0178 
LTC 0.0381  DC*BS 0.0287 
PG 0.0028  LTC*BS -0.0012 
PO 0.0081  PG*BS 0.0097 
IA -0.0131  PO*BS 0.0171 
WO -0.0238  IA*BS 0.0162 
EI 0.0020  WO*BS 0.0186 
CH 0.0070  EI*BS 0.0149 
LKSP -0.0062  CH*BS -0.0156 
NP -0.0502  LKSP*BS -0.0153 
DF 0.0126  NP*BS 0.0509 
OT -0.0364  DF*BS -0.0016 
City -0.0285  OT*BS 0.0376 
     

The R-squared of the multiple linear regression model is 0.1422. The estimated model 

can be written as:  

f (x) = 0.4122 - 0.0178×LI + 0.0261×SCD - 0.0294×Dea + 0.0179×LAS + 0.0006×EC - 

0.0206×DC + 0.0381×LTC + 0.0028×PG + 0.0081×PO - 0.0131×IA - 0.0238×WO + 

0.0020×EI + 0.0070×CH - 0.0062×LKSP - 0.0502×NP + 0.0126×DF - 0.0364×OT - 

0.0285×City + 0.0384×BS + 0.0162×(LI*BS) - 0.0136×(SCD*BS) + 0.0507×(Dea*BS) - 
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0.0094×(LAS*BS) + 0.0178×(EC*BS) + 0.0287×DC*BS - 0.0012×(LTC*BS) + 

0.0097×(PG*BS) + 0.0171×(PO*BS) + 0.0162×(IA*BS) + 0.0186×(WO*BS) + 

0.0149×(EI*BS) - 0.0156×(CH*BS) - 0.0153×(LKSP*BS) + 0.0509×(NP*BS) - 

0.0016×(DF*BS) + 0.0376×(OT*BS)                                                                            (3.2) 

The variables with the p-value coefficients ≤ 0.1 for each fold: 

Table 6: Significant Coefficients of the Independent Variables for Multiple Linear Regression. 

P-Values of The Significant Variables 

Fold 1 

(Intercept) LI LTC NP City BS LI*BS NP*BS 
0.0000 0.0454 0.0347  0.0048  0.0007  0.0006  0.0985  0.0120 
        
Fold 2 

(Intercept) LTC NP City BS NP*BS 
0.0000  0.0234 0.0630  0.0048 0.0101 0.0572 
      
Fold 3 

(Intercept) LAS LTC NP City BS LTC*BS WO*BS 
0.0000 0.0774 0.0009 0.0394  0.0003 0.0008  0.0471  0.0844 
        
NP*BS 
0.0254 
 
Fold 4 

(Intercept) CH NP City BS NP*BS 
0.0000 0.0611 0.0161 0.0003 0.0004  0.0169 
      
Fold 5 

(Intercept) NP City BS NP*BS  
0.0000 0.0616 0.0018 0.0135  0.0853  
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It shows that different splitting of the entire data influences on the significance of the 

coefficients. The coefficients of the variables NP, City, BS, and NP*BS are significant 

for all folds. The coefficients of the main effect variables are not necessarily significant 

for both when the coefficients of their interaction term are significant.  

The MSE of the training set, test set and after mapping: 

Table 7: The MSE of the Multiple Linear Regression. 

 MSE of Training 

sSetSet 

MSE of Test Set MSE of Mapping 

Fold 1 0.0663 0.0587 0.0644 
Fold 2 0.0645 0.0662 0.0695 
Fold 3 0.0624 0.0768 0.0855 
Fold 4 0.0628 0.0761 0.0792 
Fold 5 0.0633 0.0750 0.0811 
Mean 0.0638 0.0705 0.0760 
SD 0.0016 0.0079 0.0087 
    

The rate of accuracy of each fold: 

Table 8: The Rate of Accuracy of the Multiple Linear Regression. 

Rate of Accuracy 

Fold 1 0.4204 
Fold 2 0.2870 
Fold 3 0.3117 
Fold 4 0.2895 
Fold 5 0.3193 
Mean 0.3256 
SD 0.0548 
  

Across five folds, the rate of accuracy varies from the smallest 0.2870 to the largest 

0.4204. Fold 1 has the smallest MSE of mapping and the highest accuracy at the same 
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time. Although fold 3 has the largest MSE of mapping, its rate of accuracy is not the 

lowest among the five folds.  

3.2.2 Stepwise Variable Selection 

We use the stepAIC() function in MASS package to perform stepwise selection with 5-

fold external CV and 5-fold internal CV. The training set is used for the modeling, 

validation set is used to find the optimal model with the minimal CV MSE and the test set 

is used to evaluate the prediction performance. 

For example, the estimated coefficients for the selected predictors in the fifth fold: 

Table 9: Estimated Coefficients of the Stepwise Selection for Linear Regression. 

Estimated Coefficients 

(Intercept) 0.4124 
LTC 0.0363 
DF 0.0160 
OT -0.0394 
City -0.0265 
BS 0.0445 
EC*BS 0.0231 
PO*BS 0.0349 
OT*BS 0.0388 
  

The variables that have been selected in each fold: 

Table 10: Selected Variables of the Stepwise Selection for Linear Regression. 

Fold 1 

EC      LTC     NP      OT      City    BS      PG*BS NP*BS 
DF*BS OT*BS 
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Fold 2 

LI       EC       LTC      PO       WO       NP       DF       City     
BS       LI*BS  SCD*BS Dea*BS LTC*BS WO*BS  NP*BS  
        
Fold 3 

SCD      Dea      LAS      LTC      PO       CH       NP       City     
BS       Dea*BS EI*BS  NP*BS  
        
Fold 4 

SCD       Dea       LTC       WO        NP        City      BS        SCD*BS  
EC*BS   WO*BS   LKSP*BS NP*BS   DF*BS   
        
Fold 5 

LTC     DF      OT      City    BS      EC*BS PO*BS OT*BS 
        

We calculate the frequency of the variables that have shown up on the above table: 

Table 11: The Frequency of Selected Variables of the Stepwise Selection for Linear Regression. 

 Variable Frequency Relative Frequency 

1 BS 5 1 
2 City 5 1 
3 LTC 5 1 
4 NP*BS 4 0.8 
5 NP 4 0.8 
6 Dea*BS 2 0.4 
7 DF*BS 2 0.4 
8 EC*BS 2 0.4 
9 OT*BS 2 0.4 
10 SCD*BS 2 0.4 
11 WO*BS 2 0.4 
12 Dea 2 0.4 
13 DF 2 0.4 
14 EC 2 0.4 
15 OT 2 0.4 
16 PO 2 0.4 
17 SCD 2 0.4 
18 WO 2 0.4 
19 EI*BS 1 0.2 
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20 LI*BS 1 0.2 
21 LKSP*BS 1 0.2 
22 LTC*BS 1 0.2 
23 PG*BS 1 0.2 
24 PO*BS 1 0.2 
25 CH 1 0.2 
26 LAS 1 0.2 
27 LI 1 0.2 
    

The number of selected variables varies with the different folds. The 27 out of 36 

variables have been selected through the stepwise selection. Fold 2 selects the largest 

number of fifteen variables and fold 5 selects the minimal numbers of eight variables. All 

five folds select the variables of BS, City and LTC. 

The MSE of the training set, test set and the mapping: 

Table 12: The MSE of the Stepwise Selection for Linear Regression. 

 MSE of Training  MSE of Test Set MSE of Mapping 

Fold 1 0.0629 0.0748 0.0783  
Fold 2 0.0657  0.0809  0.0913 
Fold 3 0.0649 0.0755  0.0784 
Fold 4 0.0646 0.0710  0.0768  
Fold 5 0.0649 0.0588  0.0676 
Mean 0.0646 0.0722 0.0785 
SD 0.0011 0.0083 0.0084 
    

The rate of accuracy of each fold: 

Table 13: The Rate of Accuracy of the Stepwise Selection for Linear Regression. 

Rate of Accuracy 

Fold 1 0.3188  
Fold 2 0.2881 
Fold 3 0.3333 
Fold 4 0.3568  
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Fold 5 0.3273  
Mean 0.3249 
SD 0.0250 
  

Among five folds, the rate of accuracy varies from the smallest 0.2881 to the largest 

0.3568. Although Fold 5 has the smallest MSE of mapping, Fold 4 has the highest 

accuracy. Fold 2 has the largest MSE of mapping and lowest rate of accuracy at the same 

time. 

3.2.3 The Lasso 

In order to fit a lasso model, we use the cv.lars() and lars() function in lars package. The 

training set is used for the modeling, validation set is used to find the optimal tuning 

parameter by applying the one-standard-error rule on the minimal CV MSE. The test set 

is then used to evaluate the prediction performance for the selected model. 

For example, the lasso coefficients for the predictors with the tuning parameter s = 

0.0808 in the fifth fold: 

Table 14: Estimated Coefficients of the Lasso for Linear Regression. 

Lasso Coefficients 

(Intercept) 0.4103   
BS 0.0241 CH 0.0000 
LTC*BS 0.0166 EI 0.0000 
SCD*BS 0.0091 LKS 0.0000 
PO*BS   0.0052 OT 0.0000 
DF*BS 0.0023 NP 0.0000 
EI*BS 0.0002 City   0.0000 
DF 0.0000 LI*BS 0.0000 
LI 0.0000 Dea*BS 0.0000 
SCD 0.0000 LAS*BS 0.0000 
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Dea 0.0000 EC*BS  0.0000 
LAS 0.0000 DC*BS  0.0000 
EC 0.0000 PG*BS  0.0000 
DC 0.0000 IA*BS  0.0000 
LTC 0.0000 WO*BS  0.0000 
PG 0.0000 CH*BS  0.0000 
PO 0.0000 LKSP*BS 0.0000 
IA 0.0000 NP*BS 0.0000 
WO 0.0000 OT*BS 0.0000 
    

Here we see that 30 of the 36 coefficient estimates are exactly zero, that is, this lasso 

model with tuning parameter 0.0808 chosen by CV only contains six variables. 

The variables with non-zero estimated coefficient of each fold are: 

Table 15: Selected Variables of the Lasso for Linear Regression. 

Fold 1 with s = 0.0505 

BS SCD*BS LTC*BS PO*BS 
    
Fold 2 with s = 0.1010 

BS SCD*BS LTC*BS PO*BS DF*BS 
       
Fold 3 with s = 0.0707 

BS LTC LTC*BS PO*BS DF*BS 
     
Fold 4 with s = 0.0707 

BS SCD*BS LTC*BS PO*BS DF*BS 
   
Fold 5 with s = 0.0808 

BS SCD*BS LTC*BS PO*BS EI*BS DF*BS 
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We calculate the frequency of the variables that have shown up on the above table: 

Table 16: The Frequency of the Lasso for Linear Regression. 

Variable Frequency Relative Frequency 

BS 5 1 
LTC*BS 5 1 
PO*BS

  

5 1 
DF*BS 4 0.8 
SCD*BS 4 0.8 
EI*BS 1 0.2 
LTC 1 0.2 
   

Although Fold 3 and Fold 4 have the same optimal tuning parameter 0.0707, the variables 

that have non-zero estimated coefficient of the two folds are not the same. In contrast, 

Fold 2 and Fold 4 have the exact same variables with the non-zero estimated coefficient 

but with different optimal tunning parameters. All five folds select the variables of BS, 

LTC*BS, and PO*BS and. The lasso shrinkage approach has the tendency of the 

preference of the interaction term compared to the stepwise selection. 

The MSE of the training set, test set and the mapping: 

Table 17: The MSE of the Lasso for Linear Regression. 

 MSE of Training  MSE of Test Set MSE of Mapping 

Fold 1 0.0729  0.0632          0.0747 
Fold 2 0.0686  0.0706          0.0687 
Fold 3 0.0689  0.0707          0.0810 
Fold 4 0.0682  0.0741          0.0789 
Fold 5 0.0692  0.0722          0.0872 
Mean 0.0695  0.0702          0.0781 
SD 0.0019 0.0041  0.0069 
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The rate of accuracy of each fold: 

Table 18: The Rate of Accuracy of the Lasso for Linear Regression. 

Rate of Accuracy 

Fold 1 0.4027 
Fold 2 0.3274 
Fold 3 0.3158 
Fold 4 0.2807 
Fold 5 0.2605 
Mean 0.3174 
SD 0.0547 
  

Among five folds, Fold 1 has the smallest MSE and the highest accuracy at the same 

time. Although Fold 4 has the largest MSE of the test set, Fold 5 has lowest rate of 

accuracy. 

3.2.4 Principal Components Regression 

We use the pcr() function in package pls and printcomp() function, part of the stats 

package, to perform PCR with 5-fold external CV and 5-fold internal CV. The training 

set is used for the modeling, validation set is used to find the optimal principal 

components with the minimal CV MSE, and the test set is used to evaluate the prediction 

performance for each fold. 

For example, for Fold 5, we find the optimal principal components with the minimal CV 

MSE shown in Figure 4. The selected numbers of principal components for each fold are: 
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Table 19: Selected PCs of the PCA. 

Number of PCs 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 
20 comps 18 comps 19 comps 19 comps 18 comps 

     

We have the estimated coefficients of Fold 5 with 18 principal components: 

Table 20: Estimated Coefficients of the PCR. 

PCR Coefficients 

(Intercept) 0.3145    
LI -0.0048  BS 0.0390 
SCD 0.0027  LI*BS 0.0034 
Dea 0.0065  SCD*BS 0.0117 
LAS -0.0011  Dea*BS 0.0102 
EC 0.0054  LAS*BS 0.0061 
DC 0.0033  EC*BS 0.0112 
LTC 0.0157  DC*BS 0.0047 
PG 0.0051  LTC*BS 0.0239 
PO 0.0049  PG*BS 0.0092 
IA 0.0010  PO*BS 0.0176 
WO -0.0051  IA*BS 0.0043 
EI 0.0059  WO*BS 0.0020 
CH -0.0059  EI*BS 0.0106 
LKSP -0.0140  CH*BS -0.0024 

Figure 4: The CV Plot for Optimal Principal Components. 
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NP -0.0034  LKSP*BS -0.0054 
DF 0.0021  NP*BS 0.0009 
OT -0.0033  DF*BS 0.0107 
City -0.0277  OT*BS 0.0045 
     

The percentage of the cumulated variance explained by the principal components: 

Table 21: Cumulative Proportion of Variance Explained by Principal Components. 

Cumulative Proportion of Variance Explained 

1 comp 2 comps 3 comps 4 comps 5 comps 6 comps 

0.1714 0.2670 0.3356 0.3997 0.4580 0.5130 
 

 

 

     
7 comps 8 comps 9 comps 10 comps 11comps 12comps 

0.5648 0.6128 0.6553 0.6969 0.7353 0.7711 
      

13 comps 14 comps 15 comps 16 comps 17 comps 18comps 

0.8056 0.8375 0.8689 0.8978 0.9233 0.9457 
      

19 comps 20 comps 21 comps 22 comps 23 comps 24 comps 

0.9669 0.9724 0.9760 0.9787 0.9811 0.9834 
      

25 comps 26 comps 27 comps 28 comps 29 comps 30 comps 

0.9856 0.9876 0.9894 0.9911 0.9927 0.9941 
      

31 comps 32 comps 33 comps 34 comps 35 comps 36 comps 

0.9953 0.9965 0.9975 0.9985 0.9994 1.0000 

 

The selected numbers of 18, 19 and 20 components approximately explain 95% to 97% 

variance of the input space. And the first two components explain 27% of variance of the 

input data. The plot of the scores for the first and second components provides a visual 
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understanding. In Figure 5, each color of the circles represents each group. There is no 

distinct boundary to separate the five groups. 

 

 

The MSE of the training set, test set and the mapping: 

Table 22: The MSE of the PCR. 

 MSE of Training  MSE of Test Set MSE of Mapping 

Fold 1 0.0678  0.0563  0.0595  
Fold 2 0.0655  0.0662  0.0706  
Fold 3 0.0640  0.0726  0.0822  
Fold 4 0.0643  0.0702  0.0740  
Fold 5 0.0642  0.0733  0.0785 
Mean 0.0652  0.0677  0.0730 
SD 0.0016 0.0070 0.0087 
    

 

 

Figure 5: Visualization on the First Two Principal Components. 
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The rate of accuracy of each fold: 

Table 23: The Rate of Accuracy of the PCR. 

Rate of Accuracy 

Fold 1 0.4336 
Fold 2 0.3229 
Fold 3 0.2996 
Fold 4 0.2982 
Fold 5 0.3361 
Mean 0.3381 
SD 0.0558 
  

Among five folds, Fold 1 has the smallest MSE of the test set and the highest accuracy at 

the same time. Although Fold 3 has the largest MSE of mapping, Fold 4 has the lowest 

rate of accuracy. 

3.3 Linear Methods for Classification 

In this section, we consider the dependent variable DRRI as a quantitative variable. The 

approaches of multinomial logistic regression, stepwise selection, elastic net, ordinal 

logistic regression and linear discriminant analysis are utilized for classification. The 

relative coefficients, optimal tuning parameter, selected variables, MSE of the training 

and test set and the accuracy rate of the model will be shown accordingly with each 

approach. 

We prepare the data set as follows: 

* The response DRRI is a five-level categorical variable: 0, 0.25, 0.5, 0.75 and 1. 

* The 17 DEs are the two-level categorical variables: 0 and 1. 
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* The predictor City is a six-level categorical variable: 1,2,3,4,5 and 6. 

* The predictor BS is a three-level categorical variable: 1,2 and 3. 

* The 17 interaction terms are four-level categorical variables: 0,1,2,3 and 4. 

3.3.1 Multinomial Logistic Regression  

In order to fit a multinomial logistic model, we use function multinom() that is available 

in the nnet package. There is no tuning process for the multinomial logistic itself. 

Therefore, we only use external 5-fold CV alone, and we obtain five folds from five 

external CV iterations.  

For example, the estimated coefficients of the fifth fold, where class 0 is considered as 

reference level: 

Table 24: Estimated Coefficients of the Multinomial Logistic Regression. 

Estimated Coefficients 

 Class 0.25 Class 0.5 Class 0.75 Class 1 

(Intercept) 0.6812 0.0743 -0.1834 -2.1937 
LI1 -2.4338 -3.3057 6.4398 6.1830 
SCD1 1.3971 2.4685 8.5076 4.5480 
Dea1 0.2872 -4.0990 9.2415 4.5228 
LAS1 0.1315 9.5837 -6.9741 1.7212 
EC1 6.7975 4.3674 10.0002 6.4230 
DC1 -3.9296 -7.5764 9.3893 -1.9918 
LTC1 0.0353 -6.8168 1.3392 2.3355 
PG1 -4.9977 8.3083 3.0806 2.9030 
PO1 -4.3958 -0.9838 3.1050 3.0197 
IA1 2.8530 5.8893 2.0339 6.5903 
WO1 0.9735 -2.4385 -10.5801 -7.2146 
EI1 2.0687 7.4865 2.6091 -0.6959 
CH1 1.1676 0.5221 -8.5010 -10.5880 
LKSP1 9.4290 8.9958 7.1961 4.3391 
NP1 -4.6865 2.8491 7.6923 2.2269 
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DF1 -3.6247 1.9110 1.8806 1.4851 
OT1 7.3147 6.9134 7.2630 8.0895 
City2 0.2961 0.9696 0.2260 1.0395 
City3 -0.6886 0.0941 -0.3297 -2.3065 
City4 0.3081 0.1607 0.0115 -0.3026 
City5 -0.2521 0.5970 0.4670 -2.2169 
City6 -1.4814 -1.3280 -1.9984 -1.1054 
BS2 -0.1731 0.5446 0.9286 -1.7076 
BS3 -0.9134 -0.3381 -2.2824 0.8692 
LI*BS1 2.7324 3.4979 -5.9690 -6.7099 
LI*BS2 0.1879 -0.1582 -9.2921 -7.5206 
LI*BS3 -5.3542 -6.6454 21.7009 20.4135 
SCD*BS1 -1.3794 -1.8390 -8.3377 -3.2089 
SCD*BS2 13.8563 13.2825 7.9545 8.4918 
SCD*BS3 -11.0797 -8.9750 8.8908 -0.7349 
Dea*BS1 -1.7768 3.6374 -9.5618 -11.3104 
Dea*BS2 6.5757 13.5115 -0.0476 5.0023 
Dea*BS3 -4.5117 -21.2480 18.8509 10.8308 
LAS*BS1 -0.1438 -9.9556 7.7800 -1.4800 
LAS*BS2 0.2771 -10.3995 7.6313 -3.9005 
LAS*BS3 -0.0017 29.9388 -22.3854 7.1017 
EC*BS1 -6.7089 -4.2511 -9.4024 -4.9463 
EC*BS2 13.1274 16.6552 9.9521 13.7281 
EC*BS3 0.3791 -8.0367 9.4504 -2.3588 
DC*BS1 4.6603 7.3616 -9.2097 -16.5015 
DC*BS2 -8.7910 -13.7086 4.7333 19.0187 
DC*BS3 0.2011 -1.2293 13.8657 -4.5090 
LTC*BS1 0.4414 7.5683 -0.3666 -1.4304 
LTC*BS2 -0.3370 6.0731 -1.1701 -0.5962 
LTC*BS3 -0.0691 -20.4582 2.8759 4.3621 
PG*BS1 4.8394 -7.8976 -2.8737 -15.0047 
PG*BS2 -9.3600 8.5331 12.1832 18.0831 
PG*BS3 -0.4771 7.6727 -6.2289 -0.1754 
PO*BS1 4.3385 1.1376 -2.8494 -3.0905 
PO*BS2 5.4053 2.4713 -1.5032 -1.0423 
PO*BS3 -14.1396 -4.5926 7.4577 7.1525 
IA*BS1 -4.1557 -5.9692 -2.4222 -14.7098 
IA*BS2 11.5387 9.4919 12.1613 7.1588 
IA*BS3 -4.5300 2.3666 -7.7053 14.1412 
WO*BS1 -1.3409 2.1377 9.9289 6.6314 
WO*BS2 0.1573 2.1467 10.8104 10.1820 
WO*BS3 2.1571 -6.7229 -31.3194 -24.0280 
EI*BS1 -2.2044 -6.7582 -2.4047 -16.8448 
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EI*BS2 9.0565 1.5129 8.0291 15.0851 
EI*BS3 -4.7834 12.7318 -3.0153 1.0637 
CH*BS1 -3.0290 -1.4446 8.2573 -9.5827 
CH*BS2 4.4127 6.5597 14.7440 16.6630 
CH*BS3 -0.2161 -4.5929 -31.5022 -17.6684 
LKSP*BS1 -10.4022 -9.9924 -8.0060 -4.7795 
LKSP*BS2 5.3016 4.7561 5.7852 8.4672 
LKSP*BS3 14.5295 14.2320 9.4169 0.6514 
NP*BS1 5.4211 -2.7662 -8.7125 -2.3943 
NP*BS2 -10.3086 6.8447 2.5392 9.1302 
NP*BS3 0.2011 -1.2293 13.8657 -4.5090 
DF*BS1 4.1217 -1.4462 -1.6922 -0.9204 
DF*BS2 2.8297 -2.6224 -2.0854 -1.9478 
DF*BS3 -10.5761 5.9796 5.6582 4.3533 
OT*BS1 -6.9700 -6.8704 -8.2619 -8.0419 
OT*BS2 -7.1015 -6.5944 -7.8516 -7.2677 
OT*BS3 21.3863 20.3782 23.3765 23.3990 
     

We consider DRRI = “0” as the baseline, therefore K-1 estimated models are presented: 

ln (Pr (DRRI=0.25) / Pr(DRRI=0)) = 0.6812 - 2.4338(LI=1) - 1.3971(SCD=1) - 

0.2872(Dea=1) + 0.1315(LAS=1) + 6.7975(EC=1) - 3.9296(DC=1) + 0.0353(LTC=1) - 

4.9977(PG=1) -4.3958(PO=1) + 2.8530(IA=1) + 0.9735(WO=1) + 2.0687(EI=1) +  

1.1676(CH=1) + 9.4290(LKSP=1) - 4.6865(NP=1) - 3.6247(DF=1) + 7.3147(OT=1) +  

0.2961(City=2) - 0.6886(City=3) + 0.3081(City=4) - 0.2521(City=5) - 1.4814(City=6) - 

0.1731(BS=2) - 0.9134(BS=3) + 2.7324(LI*BS=1) + 0.1879(LI*BS=2) - 

5.3542(LI*BS=3) - 1.3794(SCD*BS=1) + 13.8563(SCD*BS=2) - 11.0797(SCD*BS=3) - 

1.7768(Dea*BS=1) + 6.5757(Dea*BS=2) - 4.5117(Dea*BS=3) - 0.1438(LAS*BS=1) + 

0.2771(LAS*BS=2) - 0.0017(LAS*BS=3) - 6.7089(EC*BS=1) + 13.1274(EC*BS=2) + 

0.3791(EC*BS=3) + 4.6603(DC*BS=1) - 8.7910(DC*BS=2) + 0.2011(DC*BS=3) + 

0.4414(LTC*BS=1) - 0.3370(LTC*BS=2) - 0.0691(LTC*BS=3) + 4.8394(PG*BS=1) - 
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9.3600(PG*BS=2) - 0.4771(PG*BS=3) + 4.3385(PO*BS=1) + 5.4053(PO*BS=2) -

14.1396(PO*BS=3) - 4.1557(IA*BS=1) + 11.5387(IA*BS=2) - 4.5300(IA*BS=3) - 

1.3409(WO*BS=1) + 0.1573(WO*BS=2) + 2.1571(WO*BS=3) - 2.2044(EI*BS=1) + 

9.0565(EI*BS=2) - 4.7834(EI*BS=3) - 3.0290(CH*BS=1) + 4.4127(CH*BS=2) - 

0.2161(CH*BS=3) - 10.4022(LKSP*BS=1) + 5.3016(LKSP*BS=2) + 

14.5295(LKSP*BS=3) + 5.4211(NP*BS=1) - 10.3086(NP*BS=2) + 0.2011(NP*BS=3) + 

4.1217(DF*BS=1) + 2.8297(DF*BS=2) - 10.5761(DF*BS=3) - 6.9700(OT*BS=1) - 

7.1015(OT*BS=2) + 21.3863(OT*BS=3)                                                                     (3.3) 

ln (Pr(DRRI=0.5) / Pr(DRRI=0)) = 0.0743 - 3.3057(LI=1) + 2.4685(SCD=1) - 

4.0990(Dea=1) + 9.5837(LAS=1) + 4.3674(EC=1) - 7.5764(DC=1) - 6.8168(LTC=1) + 

8.3083(PG=1) - 0.9838(PO=1) + 5.8893(IA=1) - 2.4385(WO=1) + 7.4865(EI=1) + 

0.5221(CH=1) + 8.9958(LKSP=1) + 2.8491(NP=1) + 1.9110(DF=1) + 6.9134(OT=1) + 

0.9696(City=2) + 0.0941(City=3) + 0.1607(City=4) + 0.5970(City=5) - 1.3280(City=6) + 

0.5446(BS=2) - 0.3381(BS=3) + 3.4979(LI*BS=1) - 0.1582(LI*BS=2) - 

6.6454(LI*BS=3) - 1.8390(SCD*BS=1) + 13.2825(SCD*BS=2) - 8.9750(SCD*BS=3) + 

3.6374(Dea*BS=1) + 13.5115(Dea*BS=2) - 21.2480(Dea*BS=3) - 9.9556(LAS*BS=1) -

10.3995(LAS*BS=2) + 29.9388(LAS*BS=3) - 4.2511(EC*BS=1) + 16.6552(EC*BS=2) 

- 8.0367(EC*BS=3) + 7.3616(DC*BS=1) - 13.7086(DC*BS=2) - 1.2293(DC*BS=3) + 

7.5683(LTC*BS=1) + 6.0731(LTC*BS=2) - 20.4582(LTC*BS=3) - 7.8976(PG*BS=1) + 

8.5331(PG*BS=2) + 7.6727(PG*BS=3) + 1.1376(PO*BS=1) + 2.4713(PO*BS=2) - 

4.5926(PO*BS=3) - 5.9692(IA*BS=1) + 9.4919(IA*BS=2)+ 2.3666(IA*BS=3) + 

2.1377(WO*BS=1) + 2.1467(WO*BS=2) - 6.7229(WO*BS=3) - 6.7582(EI*BS=1) + 
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1.5129(EI*BS=2) + 12.7318(EI*BS=3) - 1.4446(CH*BS=1) + 6.5597(CH*BS=2) - 

4.5929(CH*BS=3) - 9.9924(LKSP*BS=1) + 4.7561(LKSP*BS=2) + 

14.2320(LKSP*BS=3) - 2.7662(NP*BS=1) + 6.8447(NP*BS=2) - 1.2293(NP*BS=3) - 

1.4462(DF*BS=1) - 2.6224(DF*BS=2) + 5.9796(DF*BS=3) - 6.8704(OT*BS=1) - 

6.5944(OT*BS=2) + 20.3782(OT*BS=3)                                                                     (3.4) 

ln (Pr (DRRI=0.75) / Pr(DRRI=0)) = - 0.1834 + 6.4398(LI=1) + 8.5076(SCD=1) + 

9.2415(Dea=1) - 6.9741(LAS=1) + 10.0002(EC=1) + 9.3893(DC=1) + 1.3392(LTC=1) + 

3.0806(PG=1) + 3.1050(PO=1) + 2.0339(IA=1) - 10.5801(WO=1) + 2.6091(EI=1) - 

8.5010(CH=1) + 7.1961(LKSP=1) + 7.6923(NP=1) + 1.8806(DF=1) + 7.2630(OT=1) + 

0.2260(City=2) - 0.3297(City=3) + 0.0115(City=4) + 0.4670(City=5) - 1.9984(City=6) + 

0.9286(BS=2) - 2.2824(BS=3) - 5.9690(LI*BS=1) - 9.2921(LI*BS=2) + 

21.7009(LI*BS=3) - 8.3377(SCD*BS=1) + 7.9545(SCD*BS=2) + 8.8908(SCD*BS=3) - 

9.5618(Dea*BS=1) - 0.0476(Dea*BS=2) + 18.8509(Dea*BS=3) + 7.7800(LAS*BS=1) + 

7.6313(LAS*BS=2) - 22.3854(LAS*BS=3) - 9.4024(EC*BS=1) + 9.9521(EC*BS=2) + 

9.4504(EC*BS=3) - 9.2097(DC*BS=1) + 4.7333(DC*BS=2) + 13.8657(DC*BS=3) - 

0.3666(LTC*BS=1) - 1.1701(LTC*BS=2) + 2.8759(LTC*BS=3) - 2.8737(PG*BS=1) + 

12.1832(PG*BS=2) - 6.2289(PG*BS=3) - 2.8494(PO*BS=1) - 1.5032(PO*BS=2) + 

7.4577(PO*BS=3) - 2.4222(IA*BS=1) + 12.1613(IA*BS=2) - 7.7053(IA*BS=3) + 

9.9289(WO*BS=1) + 10.8104(WO*BS=2) - 31.3194(WO*BS=3) - 2.4047(EI*BS=1) + 

8.0291(EI*BS=2) - 3.0153(EI*BS=3) + 8.2573(CH*BS=1) + 14.7440(CH*BS=2) - 

31.5022(CH*BS=3) - 8.0060(LKSP*BS=1) + 5.7852(LKSP*BS=2) + 

9.4169(LKSP*BS=3) - 8.7125(NP*BS=1) + 2.5392(NP*BS=2) + 13.8657(NP*BS=3) - 
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1.6922(DF*BS=1) - 2.0854(DF*BS=2) + 5.6582(DF*BS=3) - 8.2619(OT*BS=1) - 

7.8516(OT*BS=2) + 23.3765(OT*BS=3)                                                                     (3.5) 

ln (Pr (DRRI=1) / Pr(DRRI=0)) = - 2.1937 + 6.1830(LI=1) + 4.5480(SCD=1) + 

4.5228(Dea=1) + 1.7212(LAS=1) + 6.4230(EC=1) - 1.9918(DC=1) + 2.3355(LTC=1) + 

2.9030(PG=1) + 3.0197(PO=1) + 6.5903(IA=1) - 7.2146(WO=1) - 0.6959(EI=1) - 

10.5880(CH=1) + 4.3391(LKSP=1) + 2.2269(NP=1) + 1.4851(DF=1) + 8.0895(OT=1) + 

1.0395(City=2) - 2.3065(City=3) - 0.3026(City=4) - 2.2169(City=5) - 1.1054(City=6) - 

1.7076(BS=2) + 0.8692(BS=3) - 6.7099(LI*BS=1) - 7.5206(LI*BS=2) + 

20.4135(LI*BS=3) - 3.2089(SCD*BS=1) + 8.4918(SCD*BS=2) - 0.7349(SCD*BS=3) - 

11.3104(Dea*BS=1) + 5.0023(Dea*BS=2) + 10.8308(Dea*BS=3) - 1.4800(LAS*BS=1) 

- 3.9005(LAS*BS=2) + 7.1017(LAS*BS=3) - 4.9463(EC*BS=1) + 13.7281(EC*BS=2) - 

2.3588(EC*BS=3) - 16.5015(DC*BS=1) + 19.0187(DC*BS=2) - 4.5090(DC*BS=3) - 

1.4304(LTC*BS=1) - 0.5962(LTC*BS=2) + 4.3621(LTC*BS=3) - 15.0047(PG*BS=1) + 

18.0831(PG*BS=2) - 0.1754(PG*BS=3) - 3.0905(PO*BS=1) - 1.0423(PO*BS=2) + 

7.1525(PO*BS=3) - 14.7098(IA*BS=1) + 7.1588(IA*BS=2) + 14.1412(IA*BS=3) + 

6.6314(WO*BS=1) + 10.1820(WO*BS=2) - 24.0280(WO*BS=3) - 16.8448(EI*BS=1)  

+ 15.0851(EI*BS=2) + 1.0637(EI*BS=3) - 9.5827(CH*BS=1) + 16.6630(CH*BS=2) - 

17.6684(CH*BS=3) - 4.7795(LKSP*BS=1) + 8.4672(LKSP*BS=2) + 

0.6514(LKSP*BS=3) - 2.3943(NP*BS=1) + 9.1302(NP*BS=2) - 4.5090(NP*BS=3) - 

0.9204(DF*BS=1) - 1.9478(DF*BS=2) + 4.3533(DF*BS=3) - 8.0419(OT*BS=1) - 

7.2677(OT*BS=2) + 23.3990(OT*BS=3)                                                                     (3.6) 
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The MSE of the training set and the test set: 

Table 25: The MSE of the Multinomial Logistic Regression. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.1009  0.1289 
Fold 2 0.0766  0.0956 
Fold 3 0.0929  0.1217 
Fold 4 0.0764  0.0962 
Fold 5 0.0764  0.1132 
Mean 0.0846  0.1111 
SD 0.0115 0.0150 
   

The rate of accuracy of each fold on the test set: 

Table 26: The Rate of Accuracy of the Multinomial Logistic Regression. 

Rate of Accuracy 

Fold 1 0.2920 
Fold 2 0.3094 
Fold 3 0.3239 
Fold 4 0.3465 
Fold 5 0.2983 
Mean 0.3140 
SD 0.0218 
  

Among five folds, the rate of accuracy varies from the smallest 0.2920 to the largest 

0.3465. Although Fold 2 has the smallest test MSE, Fold 4 has the highest accuracy. Fold 

1 has the largest MSE and smallest rate of accuracy at the same time. The multinomial 

logistic regression mildly over-fit the data as the mean MSE of the training data is 

smaller than the mean MSE of the test data of 0.0265. 
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3.3.2 Stepwise Variable Selection 

We use stepAIC() function, part of the MASS package, to perform stepwise selection 

with 5-fold external CV and 5-fold internal CV. Training set is used for the modeling, 

validation set is used to find the optimal model and test set is used to evaluate the 

prediction performance. 

For example, the estimated coefficients of the selected predictors in the fifth fold: 

Table 27: Estimated Coefficients of the Stepwise Selection for Classification. 

Estimated Coefficients 

 Class 0.25 Class 0.5 Class 0.75 Class 1 

(Intercept) 0.6770 0.0741 -0.1866 -2.1904 
LI1 -2.3559 -3.3963 6.4177 6.1530 
SCD1 1.4573 2.8178 8.3719 4.6101 
Dea1 0.3145 -3.8326 9.0788 4.1281 
LAS1 0.0990 9.3856 -7.0093 1.9041 
EC1 6.8263 4.5264 10.1261 6.6512 
DC1 -3.6256 -7.0916 9.1537 -2.0353 
LTC1 -0.0409 -6.7134 1.4078 2.4075 
PG1 -4.7394 8.2863 3.1591 3.1089 
PO1 -4.3604 -1.0130 2.9554 2.8824 
IA1 2.7704 6.0032 2.1528 6.7084 
WO1 1.1144 -2.2240 -10.0244 -6.8646 
EI1 2.1362 7.4517 2.6038 -0.4991 
CH1 1.2925 0.5368 -8.4955 -9.8655 
LKSP1 9.0764 8.6386 6.9248 4.4174 
NP1 -4.3397 2.9352 7.7294 2.5360 
DF1 -3.6604 1.7883 1.7584 1.3497 
City2 0.3009 0.9691 0.2284 1.0324 
City3 -0.6855 0.0924 -0.3287 -2.3134 
City4 0.3102 0.1576 0.0107 -0.3085 
City5 -0.2502 0.5942 0.4661 -2.2187 
City6 -1.4788 -1.3315 -1.9998 -1.1092 
BS2 -0.1701 0.5501 0.9318 -1.6881 
BS3 -0.9145 -0.3277 -2.2718 0.8737 



 65 

LI*BS1 2.6582 3.5927 -5.9425 -6.6764 
LI*BS2 0.0964 -0.0875 -9.2891 -7.5233 
LI*BS3 -5.1105 -6.9016 21.6494 20.3527 
SCD*BS1 -1.4401 -2.1879 -8.1975 -3.2714 
SCD*BS2 13.0766 12.2097 7.3587 7.7348 
SCD*BS3 -10.1792 -7.2040 9.2108 0.1468 
Dea*BS1 -1.8043 3.3685 -9.3997 -11.6883 
Dea*BS2 6.5204 13.2104 0.0873 5.3296 
Dea*BS3 -4.4016 -20.4115 18.3913 10.4868 
LAS*BS1 -0.1176 -9.7626 7.8098 -1.6660 
LAS*BS2 0.2955 -10.2231 7.6494 -4.0610 
LAS*BS3 -0.0789 29.3713 -22.4684 7.6312 
EC*BS1 -6.7342 -4.4053 -9.5244 -5.1790 
EC*BS2 13.3402 16.7373 10.0718 13.7513 
EC*BS3 0.2203 -7.8057 9.5786 -1.9211 
DC*BS1 4.3638 6.8838 -8.9675 -16.6235 
DC*BS2 -8.1596 -12.6897 4.4525 18.4891 
DC*BS3 0.1702 -1.2858 13.6687 -3.9009 
LTC*BS1 0.5168 7.4642 -0.4365 -1.5019 
LTC*BS2 -0.2634 5.9643 -1.2396 -0.6918 
LTC*BS3 -0.2943 -20.1420 3.0839 4.6013 
PG*BS1 4.5728 -7.8792 -2.9535 -14.6656 
PG*BS2 -8.8460 8.6444 12.1966 17.9187 
PG*BS3 -0.4662 7.5211 -6.0840 -0.1442 
PO*BS1 4.3058 1.1708 -2.6946 -2.9451 
PO*BS2 5.3817 2.5205 -1.3410 -0.8695 
PO*BS3 -14.0478 -4.7044 6.9909 6.6970 
IA*BS1 -4.0707 -6.0836 -2.5443 -14.9571 
IA*BS2 11.6548 9.4060 12.0629 7.0675 
IA*BS3 -4.8136 2.6808 -7.3658 14.5980 
WO*BS1 -1.4864 1.9197 9.3658 6.2840 
WO*BS2 0.0297 1.9355 10.2727 9.8228 
WO*BS3 2.5711 -6.0792 -29.6629 -22.9714 
EI*BS1 -2.2729 -6.7193 -2.3956 -16.1688 
EI*BS2 9.0229 1.5751 8.0648 14.9218 
EI*BS3 -4.6138 12.5958 -3.0655 0.7478 
CH*BS1 -3.1542 -1.4625 8.2442 -9.3174 
CH*BS2 4.6908 6.9379 15.1297 16.3334 
CH*BS3 -0.2441 -4.9386 -31.8693 -16.8816 
LKSP*BS1 -10.0443 -9.6325 -7.7345 -4.8625 
LKSP*BS2 5.4769 4.9451 5.8818 8.2618 
LKSP*BS3 13.6438 13.3259 8.7775 1.0181 
NP*BS1 5.0723 -2.8521 -8.7564 -2.6961 
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NP*BS2 -9.5822 7.0731 2.8171 9.1329 
NP*BS3 0.1702 -1.2858 13.6687 -3.9009 
DF*BS1 4.1613 -1.3205 -1.5669 -0.7848 
DF*BS2 2.8704 -2.4980 -1.9575 -1.8246 
DF*BS3 -10.6921 5.6068 5.2828 3.9591 
OT*BS1 0.3448 0.0423 -0.9968 0.0370 
OT*BS2 0.2121 0.3184 -0.5816 0.8058 
OT*BS3 25.9374 24.4940 27.8453 28.7170 

The variables that are selected in each fold: 

Table 28: Selected Variables of the Stepwise Selection for Classification. 

 Selected Variables 

Fold 1 

LI       SCD      Dea      LAS      EC       DC       LTC      
PG       PO       IA       WO       EI       LKSP     NP     
DF       OT       City     BS       LI*BS  SCD*BS Dea*BS 
LAS*BS EC*BS  DC*BS  LTC*BS PG*BS  PO*BS  IA*BS  
WO*BS  EI*BS  CH*BS      
       
Fold 2 

LI        SCD       Dea       LAS       EC        DC        LTC       
PG        PO        IA        WO        EI        CH        LKSP      
NP        DF        OT        City      BS        LI*BS   SCD*BS  
Dea*BS  LAS*BS  EC*BS   DC*BS   LTC*BS  PG*BS   PO*BS   
IA*BS   WO*BS   EI*BS   CH*BS   LKSP*BS DF*BS    
       
Fold 3 

LI        SCD       Dea       LAS       EC        DC        LTC       
PG        PO        IA        WO        EI        CH        LKSP      
NP        OT        City      BS        LI*BS   SCD*BS  Dea*BS  
LAS*BS  EC*BS   DC*BS   LTC*BS  PG*BS   PO*BS   IA*BS   
WO*BS   EI*BS   CH*BS   LKSP*BS NP*BS   DF*BS    
       
Fold 4 

LI       SCD      Dea      LAS      EC       DC       LTC      
PO       IA       WO       LKSP     NP       OT       City     
BS       LI*BS  SCD*BS Dea*BS LAS*BS EC*BS  DC*BS  
LTC*BS PG*BS  EI*BS  CH*BS     
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Fold 5 

LI        SCD       Dea       LAS       EC        DC        LTC       
PG        PO        IA        WO        EI        CH        LKSP      
NP        DF        City      BS        LI*BS   SCD*BS  Dea*BS  
LAS*BS  EC*BS   DC*BS   LTC*BS  PG*BS   PO*BS   IA*BS   
WO*BS   EI*BS   CH*BS   LKSP*BS NP*BS   DF*BS   OT*BS   
       

The frequency and the relative frequency of the variables that have shown up on the 

above table: 

Table 29: The Frequency of Selected Variables of the Stepwise Selection for Classification. 

 Selected Variable Frequency Relative Frequency 

1 CH*BS 5 1 
2 DC*BS 5 1 
3 Dea*BS 5 1 
4 EC*BS 5 1 
5 EI*BS 5 1 
6 LAS*BS 5 1 
7 LI*BS 5 1 
8 LTC*BS 5 1 
9 PG*BS 5 1 
10 SCD*BS 5 1 
11 BS 5 1 
12 City 5 1 
13 DC 5 1 
14 Dea 5 1 
15 EC 5 1 
16 IA 5 1 
17 LAS 5 1 
18 LI 5 1 
19 LKSP 5 1 
20 LTC 5 1 
21 NP 5 1 
22 PO 5 1 
23 SCD 5 1 
24 WO 5 1 
25 IA*BS 4 0.8 
26 PO*BS 4 0.8 
27 WO*BS 4 0.8 
28 EI 4 0.8 
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29 OT 4 0.8 
30 PG 4 0.8 
31 DF*BS 3 0.6 
32 LKSP*BS 3 0.6 
33 CH 3 0.6 
34 DF 3 0.6 
35 NP*BS 2 0.4 
36 OT*BS 1 0.2 

Fold 4 selects the least numbers of predictors and Fold 5 selects the largest numbers of 

predictors. That is to say, 69% of variables are selected by Fold 4, 86% of variables are 

selected by Fold 1, 94 % of variables are selected by Fold 2 and Fold 3, and 97% of 

variables are selected by Fold 5. Although Fold 2 and 3 both select 34 out of 36 variables, 

variable NP*BS is not selected by Fold 2 and variable DF is not selected by Fold 3. 

The MSE of the training set and test set for each fold: 

Table 30: The MSE of the Stepwise Selection for Classification. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0995 0.1137 
Fold 2 0.0776 0.0928 
Fold 3 0.0926 0.1194 
Fold 4 0.0778 0.0916 
Fold 5 0.0763 0.1132 
Mean 0.0847 0.1061 
SD 0.0106 0.0130 
   

The rate of accuracy of each fold on the test set: 

Table 31: The Rate of Accuracy of the Stepwise Selection for Classification. 

Rate of Accuracy 

Fold 1 0.3363 
Fold 2 0.2960 
Fold 3 0.3239 
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Fold 4 0.3377 
Fold 5 0.2983 
Mean 0.3184 
SD 0.0202 
  

Among five folds, the rate of accuracy varies from the smallest 0.2983 to the largest 

0.3377. Fold 4 has the smallest test MSE and the highest accuracy at the same time. 

Although Fold 3 has the largest MSE, Fold 2 has the smallest rate of accuracy. 

Each MSE of training set is smaller than the MSE of the test. The mean MSE of the 

training data is smaller than the one of the test set of 0.0214. Hence, the stepwise 

selection model has a mild problem of over-fitting. 

3.3.3 Elastic Net 

We use the glmnet() and cv.glmnet() function, part of the glmnet package, to perform 

elastic net logistic regression with 5-fold external CV and 5-fold internal CV. The elastic 

net mixing parameter 𝛼 is within the range [0,1], so we conduct 𝛼 as the set 

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} beforehand. Training set is used for the 

modeling for each 𝛼, validation set is used to find the optimal tuning parameter 𝜆 by 

using the minimal MSE CV in one-standard-error rule, and the test set is used to evaluate 

the prediction performance for each	𝛼 and 𝜆 in each fold. 

For example, the estimated coefficients of the fifth fold with 𝛼 = 0 and it is optimal 

parameter 𝜆 = 2.1899: 
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Table 32: Estimated Coefficients of the Elastic Net Regularization for Classification. 

Estimated Coefficients 

 Class 0 Class 0.25 Class 0.5 Class 0.75 Class 1 

(Intercept) 0.8265 1.2165 0.7663 -0.4623 -2.3470 
LI -0.0037 0.0012 -0.0255 0.0158 0.0122 
SCD -0.0317 -0.0291 0.0140 0.0256 0.0212 
Dea -0.0083 -0.0654 -0.0271 0.0550 0.0459 
LAS -0.0291 -0.0052 -0.0235 0.0455 0.0123 
EC -0.0114 -0.0304 -0.0087 0.0209 0.0296 
DC -0.0216 -0.0134 -0.0580 0.0460 0.0469 
LTC -0.0374 -0.0256 0.0102 0.0466 0.0062 
PG -0.0163 -0.0332 0.0184 0.0090 0.0221 
PO -0.0315 -0.0064 0.0108 0.0224 0.0047 
IA -0.0103 -0.0185 0.0146 -0.0141 0.0283 
WO -0.0283 0.0116 0.0049 -0.0012 0.0131 
EI -0.0329 -0.0283 0.0060 0.0114 0.0439 
CH -0.0032 -0.0507 0.0253 0.0196 0.0090 
LKSP 0.0153 -0.0165 -0.0172 0.0090 0.0093 
NP -0.0213 0.0272 -0.0060 -0.0272 0.0274 
DF -0.0374 -0.0211 0.0204 0.0280 0.0101 
OT -0.0166 0.0306 0.0195 -0.0425 0.0090 
City 0.0136 -0.0056 -0.0065 0.0013 0.0029 
BS -0.0263 -0.0392 -0.0025 0.0374 0.0306 
LI*BS -0.0056 -0.0072 -0.0260 0.0162 0.0226 
SCD*BS -0.0215 -0.0215 -0.0081 0.0308 0.0203 
Dea*BS -0.0136 -0.0279 -0.0176 0.0299 0.0291 
LAS*BS -0.0223 -0.0094 -0.0146 0.0315 0.0149 
EC*BS -0.0146 -0.0199 -0.0084 0.0176 0.0253 
DC*BS -0.0110 -0.0214 -0.0415 0.0437 0.0303 
LTC*BS -0.0256 -0.0220 -0.0050 0.0394 0.0131 
PG*BS -0.0133 -0.0308 0.0163 0.0038 0.0241 
PO*BS -0.0249 -0.0131 -0.0013 0.0262 0.0132 
IA*BS -0.0172 -0.0091 0.0105 -0.0062 0.0220 
WO*BS -0.0220 -0.0002 -0.0085 0.0115 0.0193 
EI*BS -0.0238 -0.0186 -0.0022 0.0108 0.0338 
CH*BS -0.0073 -0.0279 0.0119 0.0164 0.0069 
LKSP*BS -0.0079 -0.0129 0.0008 0.0105 0.0095 
NP*BS -0.0204 -0.0030 -0.0109 0.0059 0.0283 
DF*BS -0.0247 -0.0240 0.0098 0.0257 0.0132 
OT*BS -0.0157 0.0080 0.0121 -0.0165 0.0121 
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The optimal tuning parameter 𝜆 is selected corresponding to each 𝛼 by choosing the 

minimal CV MSE with one-standard-error rule for each fold: 

Table 33: The Optimal Tuning Parameter λ of the Elastic Net Regularization for Classification. 

Optimal Tuning Parameter 𝝀 

 𝜶 = 0 𝜶 = 0.1 𝜶 = 0.2 𝜶 = 0.3 𝜶 = 0.4 𝜶 = 0.5 

Fold 1 1.6183 0.2895 0.1095 0.1059 0.0872 0.0840 
Fold 2 2.7733 0.3115 0.1558 0.1373 0.0855 0.0568 
Fold 3 1.7046 0.2306 0.1266 0.1115 0.0762 0.0556 
Fold 4 2.8630 0.2433 0.1335 0.0977 0.0882 0.0706 
Fold 5 1.9902 0.2955 0.1622 0.0985 0.0811 0.0858 
Mean 2.1899 0.2741 0.1375 0.1102 0.0836 0.0705 

SD 0.5283 0.0314 0.0193 0.0145 0.0044 0.0129 
       
 𝜶 = 0.6 𝜶 = 0.7 𝜶 = 0.8 𝜶 = 0.9 𝜶 = 1 

Fold 1 0.0581 0.0498 0.0478 0.0353 0.0349 
Fold 2 0.0431 0.0488 0.0565 0.0605 0.0496 
Fold 3 0.0558 0.0478 0.0381 0.0281 0.0305 
Fold 4 0.0709 0.0459 0.0402 0.0357 0.0322 
Fold 5 0.0593 0.0463 0.0488 0.0476 0.0391 
Mean 0.0574 0.0477 0.0463 0.0415 0.0372 

SD 0.0089 0.0015 0.0066 0.0114 0.0068 
      

The MSE of the training set and test set of the paired 𝛼 and 𝜆 in each fold: 

Table 34: The MSE of the Elastic Net Regularization for Classification. 

MSE 

 𝜶 = 𝟎 

Training Set 

𝜶 = 𝟎 

Test Set 

𝜶 = 𝟎. 𝟏 

Training Set 

𝜶 = 𝟎. 𝟏 

Test Set 

Fold 1 0.0843 0.0741 0.0857 0.0741 
Fold 2 0.0817 0.0849 0.0828 0.0858 
Fold 3 0.0749 0.0805 0.0721 0.0843 
Fold 4 0.0816 0.0880 0.0819 0.0883 
Fold 5 0.0825 0.0888 0.0820 0.0890 
Mean 0.0810 0.0833 0.0809 0.0843 

SD 0.0036 0.0061 0.0052 0.0060 
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 𝜶 = 𝟎. 𝟐 

Training Set 

𝜶 = 𝟎. 𝟐 

Test Set 

𝜶 = 𝟎. 𝟑 

Training Set 

𝜶 = 𝟎. 𝟑 

Test Set 

Fold 1 0.0850 0.0752 0.0849 0.0755 
Fold 2 0.0831 0.0852 0.0821 0.0858 
Fold 3 0.0717 0.0843 0.0843 0.0815 
Fold 4 0.0823 0.0880 0.0828 0.0880 
Fold 5 0.0820 0.0893 0.0816 0.0898 
Mean 0.0808 0.0844 0.0832 0.0841 

SD 0.0053 0.0055 0.0014 0.0057 
     
 𝜶 = 𝟎. 𝟒 

Training Set 

𝜶 = 𝟎. 𝟒 

Test Set 

𝜶 = 𝟎. 𝟓 

Training Set 

𝜶 = 𝟎. 𝟓 

Test Set 

Fold 1 0.0853 0.0722 0.0853 0.0719 
Fold 2 0.0831 0.0852 0.0834 0.0886 
Fold 3 0.0715 0.0840 0.0715 0.0840 
Fold 4 0.0830 0.0883 0.0830 0.0883 
Fold 5 0.0820 0.0893 0.0820 0.0893 
Mean 0.0810 0.0838 0.0811 0.0844 

SD 0.0054 0.0068 0.0055 0.0073 
     
 𝜶 = 𝟎. 𝟔 

Training Set 

𝜶 = 𝟎. 𝟔 

Test Set 

𝜶 = 𝟎. 𝟕 

Training Set 

𝜶 = 𝟎. 𝟕 

Test Set 

Fold 1 0.0852 0.0725 0.0852 0.0725 
Fold 2 0.0796 0.0852 0.0830 0.0866 
Fold 3 0.0785 0.0820 0.0785 0.0820 
Fold 4 0.0822 0.0883 0.0829 0.0880 
Fold 5 0.0820 0.0893 0.0821 0.0911 
Mean 0.0815 0.0834 0.0823 0.0840 

SD 0.0026 0.0068 0.0024 0.0073 
     
 𝜶 = 𝟎. 𝟖 

Training Set 

𝜶 = 𝟎. 𝟖 

Test Set 

𝜶 = 𝟎. 𝟗 

Training Set 

𝜶 = 𝟎. 𝟗 

Test Set 

Fold 1 0.0852 0.0725 0.0849 0.0758 
Fold 2 0.0831 0.0866 0.0827 0.0858 
Fold 3 0.0785 0.0820 0.0721 0.0883 
Fold 4 0.0829 0.0880 0.0829 0.0880 
Fold 5 0.0820 0.0893 0.0820 0.0893 
Mean 0.0823 0.0837 0.0809 0.0854 

SD 0.0024 0.0068 0.0051 0.0055 
     
 𝜶 = 𝟏 

Training Set 

𝜶 = 𝟏 

Test Set 

  

Fold 1 0.0852 0.0725   
Fold 2 0.0831 0.0866   
Fold 3 0.0785 0.0820   
Fold 4 0.0829 0.0880   
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Fold 5 0.0820 0.0893   
Mean 0.0823 0.0837   

SD 0.0024 0.0068   
     

The rate of accuracy for each fold regularized by elastic net: 

Table 35: The Rate of Accuracy of the Elastic Net Regularization for Classification. 

Rate of Accuracy 

 𝜶 = 𝟎 

 

𝜶 = 𝟎. 𝟏 

 

𝜶 = 𝟎. 𝟐 

 

𝜶 = 𝟎. 𝟑 

 

Fold 1 0.3142 0.3319 0.3009 0.3230 
Fold 2 0.2870 0.2870 0.2960 0.2870 
Fold 3 0.3320 0.3158 0.3158 0.3279 
Fold 4 0.2632 0.2675 0.2719 0.2719 
Fold 5 0.2689 0.2563 0.2521 0.2563 
Mean 0.2930 0.2917 0.2873 0.2932 
SD 0.0295 0.0318 0.0252 0.0314 
     
 𝜶 = 𝟎. 𝟒 

 

𝜶 = 𝟎. 𝟓 

 

𝜶 = 𝟎. 𝟔 

 

𝜶 = 𝟎. 𝟕 

 

Fold 1 0.3274 0.3319 0.3230 0.3230 
Fold 2 0.2960 0.2780 0.2780 0.2960 
Fold 3 0.3198 0.3198 0.3279 0.3279 
Fold 4 0.2675 0.2675 0.2675 0.2719 
Fold 5 0.2521 0.2521 0.2521 0.2563 
Mean 0.2926 0.2899 0.2897 0.2950 
SD 0.0325 0.0344 0.0340 0.0312 
     

 𝜶 = 𝟎. 𝟖 

 

𝜶 = 𝟎. 𝟗 

 

𝜶 = 𝟏 

 

Fold 1 0.3230 0.3186 0.3230 
Fold 2 0.2960 0.2870 0.2960 
Fold 3 0.3279 0.3320 0.3279 
Fold 4 0.2719 0.2719 0.2719 
Fold 5 0.2521 0.2521 0.2521 
Mean 0.2942 0.2923 0.2942 
SD 0.0326 0.0329 0.0326 
    

The smallest mean among the test MSE is 0.0833 with 𝛼 = 0 (ridge) and the largest is 

0.0854 with 𝛼 = 0.9. For the accuracy, the highest mean of the rate is 0.2950 with 𝛼 =
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0.7 and the lowest mean rate is 0.2873 with 𝛼 = 0.2. The Elastic net approach does not 

have serious problems of over-fitting. The mean of the MSE and the mean of the 

accuracy rate do not change much among the elastic net models with the different tuning 

parameters.  

3.3.4 Ordinal Logistic Regression 

In this section, we use polr() function, part of the MASS package, to fit the ordinal 

logistic regression. We use the variables with non-zero coefficients selected by lasso 

from the above elastic net section to fit the model, that is, the average of the optimal 

tuning parameter 𝜆 = 0.0372 when 𝛼 = 1.  As was the case with the multinomial logistic 

regression, there is no tuning process for the ordinal logistic itself. Therefore, we only use 

external 5-fold CV alone, and we obtain five folds from five external CV iterations. All 

the predictors and the response are not only categorized but also ordered. 

The estimated coefficients of the elastic net regression with 𝛼 = 1 (lasso) and the average 

of the optimal parameter 𝜆 = 0.0372: 

Table 36: Estimated Coefficients of the Elastic Net Regularization with 𝛼 = 1 and 𝜆 = 0.0372. 

Estimated Coefficients 

 Class 0 Class 0.25 Class 0.5 Class 0.75 Class 1 

(Intercept) 0.1496 0.8063 0.7139 -0.1729 -1.4970 
LI          0 0 0 0 0 
SCD         0 0 0 0 0 
Dea         0 0 0 0 0 
LAS         0 0 0 0 0 
EC          0 0 0 0 0 
DC          0 0 0 0 0 
LTC         -0.0020 0 0 0 0 
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PG          0 0 0 0 0 
PO          0 0 0 0 0 
IA          0 0 0 0 0 
WO          0 0 0 0 0 
EI          0 0 0 0 0 
CH          0 0 0 0 0 
LKSP        0 0 0 0 0 
NP          0 0 0 0 0 
DF          0 0 0 0 0 
OT          0 0 0 -0.0614 0 
City        0.0582 0 0 0 0 
BS          0 -0.1338 0 0.0965 0.0108 
LI*BS       0 0 0 0 0 
SCD*BS      0 0 0 0.0197 0 
Dea*BS      0 0 0 0 0 
LAS*BS      0 0 0 0.0254 0 
EC*BS       0 0 0 0 0 
DC*BS       0 0 0 0 0 
LTC*BS      0 0 0 0.2835 0 
PG*BS       0 0 0 0 0 
PO*BS       -0.0838 0 0 0.0085 0 
IA*BS       0 0 0 0 0 
WO*BS       0 0 0 0 0 
EI*BS       0 0 0 0 0 
CH*BS       0 0 0 0 0 
LKSP*BS     0 0 0 0 0 
NP*BS       0 0 0 0 0 
DF*BS       -0.0115 -0.0008 0 0 0 
OT*BS       0 0 0 0 0 
      

There are nine variables with non-zero coefficient: LTC, PT, City, BS, SCD*BS, 

LAS*BS, LTC*BS, PO*BS and DF*BS. We use these variables as the predictors to fit 

the ordinal logistic regression model. 

For example, the estimated coefficients of the fifth fold:  
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Table 37: Estimated Coefficients of the Ordinal Logistic Regression with Nine Predictors. 

Estimated Coefficients 

(Intercepts) 
0|0.25 0.25|0.5 0.5|0.75 0.75|1 

-2.8619263 -1.3758656 0.1751465 2.6842740 
BS.L 1.40769 1.40769 1.40769 1.40769 
BS.Q -0.33938 -0.33938 -0.33938 -0.33938 
OT.L -0.15998 -0.15998 -0.15998 -0.15998 
LTC.L 0.39519 0.39519 0.39519 0.39519 
City.L -0.61533 -0.61533 -0.61533 -0.61533 
City.Q -0.58349 -0.58349 -0.58349 -0.58349 
City.C -0.44241 -0.44241 -0.44241 -0.44241 
City^4 -0.49469 -0.49469 -0.49469 -0.49469 
City^5 -0.14903 -0.14903 -0.14903 -0.14903 
BS1:SCD.L 0.11565 0.11565 0.11565 0.11565 
BS2:SCD.L 0.73199 0.73199 0.73199 0.73199 
BS3:SCD.L 0.62274 0.62274 0.62274 0.62274 
BS1:LAS.L 0.18897 0.18897 0.18897 0.18897 
BS2:LAS.L 0.04373 0.04373 0.04373 0.04373 
BS3:LAS.L 0.29222 0.29222 0.29222 0.29222 
BS.L:LTC.L 0.11064 0.11064 0.11064 0.11064 
BS.Q:LTC.L 0.47386 0.47386 0.47386 0.47386 
BS1:DF.L 0.06806 0.06806 0.06806 0.06806 
BS2:DF.L 0.63018 0.63018 0.63018 0.63018 
BS3:DF.L 0.68357 0.68357 0.68357 0.68357 
BS1:PO.L 0.16998 0.16998 0.16998 0.16998 
BS2:PO.L 0.29146 0.29146 0.29146 0.29146 
BS3:PO.L 1.11456 1.11456 1.11456 1.11456 
     

The MSE of the training set and test set for each fold: 

Table 38: The MSE of the Ordinal Logistic Regression. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0731  0.0829 
Fold 2 0.0754  0.0699 
Fold 3 0.0725  0.0870 
Fold 4 0.0784  0.0804 
Fold 5 0.0733  0.0792 
Mean 0.0745  0.0799 
SD 0.0024 0.0063 
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The rate of accuracy of each fold on the test set: 

Table 39: The Rate of Accuracy of the Ordinal Logistic Regression. 

Rate of Accuracy 

Fold 1 0.3392 
Fold 2 0.3347 
Fold 3 0.2952 
Fold 4 0.3722 
Fold 5 0.3833 
Mean 0.3449 
SD 0.0348 
  

Although Fold 2 has a significant small test MSE, Fold 5 has the highest accuracy rate 

among five folds. Fold 3 has the largest test MSE and lowest accuracy rate at the same 

time.  

 

 

3.3.5 Linear Discriminant Analysis (LDA) 

In this section, we use lda() function, part of the MASS package, to fit the LDA model. 

As in multinomial logistic regression and ordinal logistic regression, there is no tuning 

process for the LDA itself. Therefore, we only use external 5-fold CV alone, and we 

obtain five folds from five external CV iterations  

The estimated coefficients of linear discriminants for the fifth fold: 
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Table 40: Estimated Coefficients of the LDA. 

Estimated Coefficients 

 LD1 LD2 LD3 LD4 

LI          -0.8645 -0.8570 0.0522 -1.0168 
SCD         0.2544 0.5773 0.6185 0.7205 
Dea         -0.2489 -0.7644 -0.2229 0.1503 
LAS         0.0923 -0.0390 -0.2422 -0.4587 
EC          0.2482 -0.1095 0.1354 0.7525 
DC          -0.0759 0.1389 -0.0803 -0.3009 
LTC         0.4304 -0.3732 1.2065 1.0667 
PG          -0.2090 -0.4372 -0.1349 -0.3491 
PO          -0.0325 -0.5482 -0.1967 -0.6300 
IA          -0.0684 -0.0328 -0.3766 0.1708 
WO          -0.3591 0.3294 0.4905 0.6619 
EI          -0.2211 0.0048 0.5995 0.3123 
CH          0.0418 -0.0662 -0.2530 -0.2092 
LKSP        0.2451 0.2124 -0.7976 0.1620 
NP          -0.4223 0.4638 0.3422 -0.0482 
DF          0.0162 0.1751 0.1229 -0.2584 
OT          -0.1721 0.4487 0.3583 -0.5929 
City        -0.2206 0.1420 -0.5108 0.4042 
BS          0.1851 -0.1600 0.1363 0.1095 
LI*BS       1.0440 1.1597 -0.1478 0.8571 
SCD*BS      -0.1772 -0.7659 -0.6140 -0.6022 
Dea*BS      0.4930 0.8345 0.0468 -0.0179 
LAS*BS      -0.0995 -0.1144 0.2499 0.1415 
EC*BS       -0.0648 0.1358 -0.0848 -0.7563 
DC*BS       0.1363 -0.0923 -0.1351 0.1658 
LTC*BS      -0.2319 -0.0934 -1.0805 -1.2341 
PG*BS       0.3548 0.4746 0.1662 0.5901 
PO*BS       0.1885 0.4053 0.4839 0.5758 
IA*BS       -0.0209 0.1828 0.6085 -0.2734 
WO*BS       0.4641 -0.3098 -0.6177 -0.7801 
EI*BS       0.4599 0.1142 -0.5859 -0.1821 
CH*BS       -0.1184 0.0573 0.3915 0.4907 
LKSP*BS     -0.4034 -0.2911 0.8353 -0.2863 
NP*BS       0.5777 -0.1860 -0.3366 -0.0701 
DF*BS       0.0500 -0.3895 0.0370 0.5507 
OT*BS       0.2892 0.0247 -0.1126 0.4055 
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The proportion of the between-class variation explained by each discriminant function in 

the fifth fold: 

Table 41: Proportion of Trace of the LDA. 

Proportion of Trace 

LD1 LD2 LD3 LD4 

0.5197 0.2535 0.1477 0.0791 

Thus, the first and the second linear discriminant achieve about 52% and 25% of the 

separation respectively. 

We can obtain a scatterplot of the best two discriminant functions: 

 

Although the class overlap is quite considerable from the plot, the separation of class 0.75 

(blue dot) and class 0 (red dot) is less ambiguous than the separation of class 0 and class 

Figure 6: Scatterplot of the First Two Discriminant Functions. 
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0.25 (yellow dot). Class 1 (pink dot) and Class 0.75 are more scattered compared to the 

rest of three classes. 

The MSE of the training set and test set for each fold: 

Table 42: The MSE of the LDA. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0833  0.0976 
Fold 2 0.0825  0.0939 
Fold 3 0.0811  0.0967 
Fold 4 0.0797  0.0938 
Fold 5 0.0809  0.1095 
Mean 0.0815  0.0983 
SD 0.0014  0.0065 
   

The rate of accuracy of each fold on the test set: 

Table 43: The Rate of Accuracy of the LDA. 

Rate of Accuracy 

Fold 1 0.3363 
Fold 2 0.3094 
Fold 3 0.3603 
Fold 4 0.3465 
Fold 5 0.3109 
Mean 0.3327 
SD 0.0223 
  

Although Fold 4 has the smallest MSE of the test set, Fold 3 has the highest rate of 

accuracy. Although Fold 5 has the largest MSE of the test set, Fold 2 has the lowest rate 

of accuracy. As we compare the MSE of the training set to the MSE of the test set, LDA 

has a mild over-fitting problem.   
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3.4 Machine Learning Methods and Ensemble Learning 

Contrary to popular belief, the machine learning approach has been around for many 

decades and has become a very rapidly moving field. The machine learning methods are 

favored and famous because they are designed to make the maximized accuracy possible 

instead of making the prediction model more interpretable.  

In this section, we would like to know if the machine learning method can outperform the 

statistical methods and how much the machine learning method could boost the 

predictive performance on our data set. Hence, our purpose in this section is to focus on 

predictive performance. We will provide the output of the selected parameters, the MSE, 

and the rate of accuracy for each machine-learning algorithm. 

The machine-learning algorithm of C5.0, GBM, KNN, NN, random forest and SVM are 

used to fit the data. We use stacking, an ensemble learning approach to find out if it can 

yield better performance than using a single model. The output DRRI is considered as the 

categorical output. Therefore, in this section, the machine learning approaches are 

utilized for classification.  

The R package we use is a highly functional package called “caret”. We can fit the 

models by specifying the name of the methods using the train() function that is contained 

in caret package. 
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3.4.1 C5.0 

We assign the argument of the method to “C5.0” in function train() to fit the C5.0 model. 

The internal 5-fold CV is used to choose the optimal parameters by evaluating the highest 

rate of accuracy in each validation set. The external 5-fold CV plays a role in the 

prediction of each chosen model in order to achieve the model performance. 

The optimal parameters selected by interval CV for each fold: 

Table 44: The Optimal Parameters of the C5.0. 

Parameters 

 trials model winnow 

Fold 1 1 tree TRUE 
Fold 2 1 rules FALSE 
Fold 3 1 rules FALSE 
Fold 4 1 tree FALSE 
Fold 5 1 rules TRUE 

    

The “trails” is the boosting iterations, the “model” stands for the model type and 

“winnow” refers to the mechanism by analogy with the process for separating the wheat 

from the chaff. 

The MSE of the training set and the test set: 

Table 45: The MSE of the C5.0. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0795  0.0843 
Fold 2 0.0771  0.1009 
Fold 3 0.0814  0.1053 
Fold 4 0.0775  0.0984 
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Fold 5 0.0762  0.0932 
Mean 0.0783  0.0964 
SD 0.0021  0.0080 
   

The rate of accuracy of each fold on the test set: 

Table 46: The Rate of Accuracy of the C5.0. 

Rate of Accuracy 

Fold 1 0.3186 
Fold 2 0.3677 
Fold 3 0.3563 
Fold 4 0.3509 
Fold 5 0.3613 
Mean 0.3510 
SD 0.0191 
  

Fold 2 has the highest rate of accuracy with trails = 1, rule-based model and winnow of 

false. By comparison, the MSE of the training set is obviously lower than the MSE of the 

test set, the models are apparently over-fitting the data. 

3.4.2 Gradient Boosting Machines (GBM) 

We assign the argument of the method to “gbm” in function train() to fit the GBM model. 

The internal 5-fold CV is used to choose the optimal parameters by evaluating the highest 

rate of accuracy in each validation set. The external 5-fold CV plays a role in the 

prediction of each chosen model in order to achieve the model performance. 

The optimal parameters selected by interval CV for each fold: 
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Table 47: The Optimal Parameters of the GBM. 

Parameters 

 n.trees interaction.depth shrinkage n.minobsinnode 

Fold 1 100 3 0.1 10 
Fold 2 150 3 0.1 10 
Fold 3 150 3 0.1 10 
Fold 4 150 3 0.1 10 
Fold 5 150 3 0.1 10 

     

The “n.trees” indicates the number of gradient boosting iteration, “interaction.depth” is 

the number of splits of a tree, “shrinkage” is considered as a learning rate and 

“n.minobsinnode” stands for the minimum size of trees’ terminal nodes. 

The MSE of the training set and the test set: 

Table 48: The MSE of the GBM. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0802  0.0882  
Fold 2 0.0749  0.0902  
Fold 3 0.0714  0.1002  
Fold 4 0.0701  0.0855  
Fold 5 0.0671  0.0922  
Mean 0.0727  0.0913  
SD 0.0050 0.0056 
   

The rate of accuracy of each fold on the test set: 

Table 49: The Rate of Accuracy of the GBM. 

Rate of Accuracy 

Fold 1 0.3761  
Fold 2 0.3857  
Fold 3 0.3522  
Fold 4 0.3553  
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Fold 5 0.3403  
Mean 0.3619 
SD 0.0185 
  

Again, Fold 2 has the highest rate of accuracy with parameters of n.trees = 100, 

interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10. By comparison, the 

MSE of the training set is obviously lower than the MSE of the test set, the models have a 

seriously over-fitting problem. 

3.4.3 K-Nearest Neighbors (KNN) 

We assign the argument of the method to “knn” in function train() to fit the KNN model. 

The internal 5-fold CV is used to choose the optimal parameter by evaluating the highest 

rate of accuracy in each validation set. The external 5-fold CV plays a role in the 

prediction of each chosen model in order to achieve the model performance. The 

computation time of KNN is less than the above two approaches. 

The optimal parameter selected by interval CV for each fold: 

Table 50: The Optimal Parameter of the KNN. 

Parameter k 

Fold 1 5 
Fold 2 9 
Fold 3 5 
Fold 4 5 
Fold 5 9 

  

The “k” is the number of nearest neighbors. 
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The MSE of the training set and the test set: 

Table 51: The MSE of the KNN. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0921  0.0794  
Fold 2 0.0886  0.0883  
Fold 3 0.0842  0.1182  
Fold 4 0.0849  0.1105  
Fold 5 0.0824  0.0961  
Mean 0.0864  0.0985  
SD 0.0039 0.0159 
   

The rate of accuracy of each fold on the test set: 

Table 52: The Rate of Accuracy of the KNN. 

Rate of Accuracy 

Fold 1 0.3938  
Fold 2 0.3318  
Fold 3 0.3198  
Fold 4 0.3289  
Fold 5 0.3361  
Mean 0.3421 
SD 0.0295 
  

Fold 1 has the highest rate of accuracy with k = 5. By comparison, the MSE of the 

training set is lower than the MSE of the test set and there is a concern of the model over-

fitting. 

3.4.4 Neural Networks (NN) 

We assign the argument of the method to “nnet” in function train() to fit the NN model. 

The internal 5-fold CV is used to choose the optimal parameters by evaluating the highest 
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rate of accuracy in each validation set. The external 5-fold CV plays a role in the 

prediction of each chosen model in order to achieve the model performance. The highest 

computational cost incurs for implementing the NN model among all used machine 

learning methods. 

The optimal parameters selected by interval CV for each fold: 

Table 53: The Optimal Parameters of the NN. 

Parameters 

 size decay 

Fold 1 9 0.6 
Fold 2 9 0.6 
Fold 3 9 0.6 
Fold 4 9 0.6 
Fold 5 9 0.6 

   

The “size” is the number of hidden units and “decay” means the weights of the 

regularization. All five folds select the same parameters by the internal CV. 

The MSE of the training set and the test set: 

Table 54: The MSE of the NN. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0805  0.0669  
Fold 2 0.0789  0.0732  
Fold 3 0.0770  0.0810  
Fold 4 0.0779  0.0776  
Fold 5 0.0748  0.0895  
Mean 0.0778  0.0776  
SD 0.0021 0.0085 
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The rate of accuracy of each fold on the test set: 

Table 55: The Rate of Accuracy of the NN. 

Rate of Accuracy 

Fold 1 0.5531  
Fold 2 0.5112  
Fold 3 0.5061  
Fold 4 0.4912  
Fold 5 0.4202  
Mean 0.4964 
SD 0.0483 
  

Fold 1 has the smallest MSE of the test set and the highest rate of accuracy at the same 

time with parameters of size = 9 and decay = 0.6. Although NN model provides the 

surprisingly high rate of accuracy among all the approaches so far, there is no indications 

of over-fitting or under-fitting by comparing the mean of the training MSE with the mean 

of the test MSE. 

 

3.4.5 Random Forest 

We assign the argument of the method to “rf” in function train() to fit the random forest 

model. The internal 5-fold CV is used to choose the optimal parameter by evaluating the 

highest rate of accuracy in each validation set. The external 5-fold CV plays a role in the 

prediction of each chosen model in order to achieve the model performance.  

The optimal parameter selected by interval CV for each fold: 
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Table 56: The Optimal Parameter of the Random Forest. 

Parameter mtry 

Fold 1 2 
Fold 2 19 
Fold 3 19 
Fold 4 2 
Fold 5 19 

  

The “mtry” defines the number of randomly selected predictors that are available at each 

split. 

The MSE of the training set and the test set: 

Table 57: The MSE of the Random Forest. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0712  0.0702  
Fold 2 0.0542  0.1006  
Fold 3 0.0538  0.1154  
Fold 4 0.0640  0.0844  
Fold 5 0.0490  0.0924  
Mean 0.0585  0.0926  
SD 0.0090 0.0170 
   

The rate of accuracy of each fold on the test set: 

Table 58: The Rate of Accuracy of the Random Forest. 

Rate of Accuracy 

Fold 1 0.3407  
Fold 2 0.3274  
Fold 3 0.3522  
Fold 4 0.3377  
Fold 5 0.3067  
Mean 0.3329 
SD 0.0171 
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Fold 3 has the largest test MSE, however, it also has the highest rate of accuracy. From 

the MSE table, we can see that random forest models seriously over-fit the training set. 

The test MSE in Fold 3 is more than the double of the training MSE.  

3.4.6 Support Vector Machines (SVM) 

We assign the argument of the method to “svmRadial” in function train() to fit the SVM  

model, that is, the SVM with radial basis function kernel. The internal 5-fold CV is used 

to choose the optimal parameter by evaluating the highest rate of accuracy in each 

validation set. The external 5-fold CV plays a role in the prediction of each chosen model 

in order to achieve the model performance. 

The optimal parameters selected by interval CV for each fold: 

Table 59: The Optimal Parameters of the SVM. 

Parameters 

 sigma C 

Fold 1 0.0523 1.0 
Fold 2 0.0539 1.0 
Fold 3 0.0530 1.0 
Fold 4 0.0548 0.5 
Fold 5 0.0530 1.0 

   

The "sigma" is the parameter in the radial basis function (RBF) kernel determines the 

SVM decision boundary. The "C" refers to the cost function, which controls the training 

errors and margins. 

The MSE of the training set and the test set: 



 91 

Table 60: The MSE of the SVM. 

 MSE of Training 

sSetSet 

MSE of Test Set 

Fold 1 0.0693  0.0821  
Fold 2 0.0668  0.0869  
Fold 3 0.0572  0.0987  
Fold 4 0.0697  0.0803  
Fold 5 0.0592  0.0927  
Mean 0.0644  0.0881  
SD 0.0059 0.0076 
   

 

The rate of accuracy of each fold on the test set: 

Table 61: The Rate of Accuracy of the SVM. 

Rate of Accuracy 

Fold 1 0.3363  
Fold 2 0.3587  
Fold 3 0.3198  
Fold 4 0.3465  
Fold 5 0.3193  
Mean 0.3361 
SD 0.0171 
  

Although Fold 4 has the smallest test MSE, Fold 2 has the highest rate of accuracy. There 

is an over-fitting of the SVM model. 
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3.4.7 Stacking 

In Chapter II, we introduced the ensemble learning of bagging, boosting, and stacking. 

For example, the machine learning method of random forest is a bagging algorithm and 

C5.0 and GBM are the boosting algorithms.  

Our purpose of using ensemble learning is for a better prediction performance and 

indeed, several machine learning models have shown better performance in the above 

section. Moreover, we will utilize the stacking to combine multiple models in order to 

have better performance than any single model in the ensemble. 

To carry out the stacking algorithm, we choose KNN and GBM approaches as the bottom 

layer models and the multinomial logistic regression approach as the top layer model. 

The external 5-fold CV splits the whole data set into a modeling set and test set and then 

the internal 5-fold CV splits the modeling set into a training set and validation set. Each 

bottom layer model is trained with the training set, and the optimal bottom layer model is 

chosen by the highest prediction accuracy in the validation set. The predicted outputs of 

these two optimal models (KNN and GBM) in the modeling set become the two 

predictors for the top layer model (multinomial logistic regression). Finally, the standby 

test set is used to evaluate the performance of the stacking ensemble. 

The MSE of the training set and the test set for the bottom layer models and the top layer 

model: 
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Table 62: The MSE of the Bottom and Top Layer Models of the Stacking Ensemble. 

 MSE of KNN MSE of GBM 

 Training Set Test Set Training Set Test Set 

Fold 1 0.0921 0.0794 0.0802 0.0882 
Fold 2 0.0886 0.0883 0.0749 0.0902 
Fold 3 0.0842 0.1182 0.0714 0.1002 
Fold 4 0.0849 0.1105 0.0701 0.0855 
Fold 5 0.0824 0.0961 0.0671 0.0922 
Mean 0.0864 0.0985 0.0727 0.0913 
SD 0.0039 0.0159 0.005 0.0056 
     
 MSE of Stacking   

 Training Set Test Set   

Fold 1 0.0863 0.0902   
Fold 2 0.0778 0.0959   
Fold 3 0.0737 0.1063   
Fold 4 0.0712 0.0951   
Fold 5 0.0708 0.0956   
Mean 0.0759 0.0966   
SD 0.0064 0.0059   
     

The rate of accuracy of each fold on the test set: 

Table 63: The Rate of Accuracy of the Bottom and Top Layer Models of the Stacking Ensemble. 

Rate of Accuracy 

"Accuracy_knn" 

"Accuracy_gbm" 

"Accuracy_mul" 

 KNN GBM Stacking 
Fold 1 0.3938 0.3761 0.4027 
Fold 2 0.3318 0.3857 0.3946 
Fold 3 0.3198 0.3522 0.3441 
Fold 4 0.3289 0.3553 0.3509 
Fold 5 0.3361 0.3403 0.3487 
Mean 0.3421 0.3619 0.3682 
SD 0.0295    

0.0185   ,    

0.0280 

0.0185 0.0280   

0.0185   ,    

0.0280 

    

As we compare the MSE of the training set to the MSE of the test set, the bottom layer 

model of GBM has over-fitted the data and the multinomial logistic regression, the top 
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layer model’s over-fitting is ever worse. As we compare the accuracy rate for each 

layer’s fold, even though the accuracy rate of stacking cannot be guaranteed as the 

highest among the three folds, it is not the lowest, either. Overall, the stacking ensemble 

improves the prediction performance of our data as it has the highest mean of the 

accuracy rate compared to the single bottom layer models.



 95 

CHAPTER IV. DISCUSSION 

So far, all the proposed approaches were regressed onto the private sector participation 

data set for the analysis, and the outputs were illustrated in the above section for each 

model. Although there is no "best" model for the data, we are able to understand how 

much difference between the true response and the predicted output of our models by the 

evaluation of prediction performance. Other than that, with variable selection, we can 

explain the data in the simplest way by reducing the redundant predictors since they may 

add noise to the estimation that we are interested in. 

We have two aims in this section. First, we compare the MSE and the rate of accuracy 

among all the models for an overall understanding of the prediction performance. Second, 

we analyze the significant variables of the multiple linear regression model and 

multinomial logistic model, the selected variables of the stepwise selection model, and 

the variables with non-zero estimated coefficients of the lasso model for a better 

understanding of the variables that are relatively important for the model. 

4.1 Comparison on Prediction Performance 

1. Mean Square Error (MSE)  

We calculated the test MSE for each prediction model in Chapter III. To be specific, we 

used the MSE of mapping in linear regression which was used to simulate the predicted 

classes in order to compare the MSE of the test in classification approaches and machine 

learning methods. There were five MSE for each approach since there were five folds 
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yielded from 5-fold CV resampling. The mean of all five MSE was considered as the true 

prediction MSE of the approach.   

Table 64: The MSE of 16 Prediction Models. 

MSE 

 
Multiple 
Linear 

Regression 

Stepwise 
Linear 

Regression 

Lasso 
Linear 

Regression 

PCR 
Linear 

Regression 
Fold 1 0.0644 0.0783   0.0747  0.0595  
Fold 2 0.0695 0.0913   0.0687  0.0706  
Fold 3 0.0855 0.0784   0.0810  0.0822  
Fold 4 0.0792 0.0768   0.0789  0.0740  
Fold 5 0.0811 0.0676   0.0872  0.0785  
Mean 0.0760 0.0785   0.0781  0.0730  
SD 0.0087 0.0084   0.0069  0.0087  
     

 Multinomial 
Classification 

Stepwise 
Classification 

Lasso 
Classification 

Ordinal 
Classification 

Fold 1 0.1289 0.1137  0.0725 0.0829  
Fold 2 0.0956 0.0928  0.0866 0.0699  
Fold 3 0.1217 0.1194  0.0820 0.0870  
Fold 4 0.0962 0.0916  0.0880 0.0804  
Fold 5 0.1132 0.1132  0.0893 0.0792  
Mean 0.1111 0.1061  0.0837 0.0799  
SD 0.0150 0.0130  0.0068 0.0063  
     

 LDA 
Classification 

C5.0 
Machine 
Learning 

GBM 
Machine 
Learning 

KNN 
Machine 
Learning 

Fold 1 0.0976 0.0843 0.0882 0.0794  
Fold 2 0.0939 0.1009 0.0902 0.0883  
Fold 3 0.0967 0.1053 0.1002 0.1182  
Fold 4 0.0938 0.0984 0.0855 0.1105  
Fold 5 0.1095 0.0932 0.0922 0.0961  
Mean 0.0983 0.0964 0.0913 0.0985  
SD 0.0065 0.0080 0.0056 0.0159  
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NN 

Machine 
Learning 

RF 
Machine 
Learning 

SVM 
Machine 
Learning 

Stacking 
Machine 
Learning 

Fold 1 0.0669  0.0702  0.0821       0.0902 
Fold 2 0.0732  0.1006  0.0869       0.0959 
Fold 3 0.0810  0.1154  0.0987       0.1063 
Fold 4 0.0776  0.0844  0.0803       0.0951 
Fold 5 0.0895  0.0924  0.0927       0.0956 
Mean 0.0776  0.0926  0.0881       0.0966 
SD 0.0085  0.0170  0.0076       0.0059 
     

From the above table, we have MSE of four linear regression models, five classification 

models, and seven machine learning models. For the linear regression models, the lasso 

has the smallest standard deviation of 0.0069, in contrast, the multiple linear regression 

and the PCR have the largest standard deviation of 0.0087 at the same time. On the other 

hand, the PCR also has the smallest mean MSE of 0.0730 and stepwise regression has the 

largest mean MSE of 0.0785.  For the statistical approaches of classification, the ordinal 

logistic regression with variables selected by lasso has the smallest standard deviation of 

0.0063 and the multinomial logistic regression has the largest standard deviation of 

0.0150. Other than that, the ordinal logistic regression with variables selected by lasso 

has the smallest mean MSE of 0.0799 and the multinomial logistic regression has the 

largest mean MSE of 0.1111. For the machine learning approaches, the GBM model 

gives the smallest standard deviation of 0.0056 and the random forest model provides the 

largest standard deviation of 0.0170. Moreover, the NN model has the smallest mean 

MSE of 0.0776 and the largest mean MSE is from the KNN model. 

Among all sixteen models, the GBM is with the smallest standard deviation of 0.0056 

and the PCR provides the smallest mean MSE of 0.0730. In contrast, the random forest 



 98 

model obtains the largest standard deviation of 0.0170 and the largest mean MSE of 

0.1111 is from the multinomial logistic regression. 

A boxplot graph can summarize the MSE data and show its interval scale and variability: 

 

The boxplots of the MSE of the linear regression models, the classification regression 

models, and the machine learning models are showed in orange, green, and blue 

respectively. The red dots indicate the mean of the MSE for each approach. The mean of 

the MSE in the linear regression models is lower than the classification models and 

machine learning models. We noticed that the multinomial logistic regression, the 

Figure 7: The Boxplots of the MSE. The Linear Regression Models, the Classification Regression 
Models and the Machine Learning Models are Showed in Orange, Green, and Blue.  
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stepwise regression for classification, the random forest, and the KNN indicate a wider 

range of MSE than the rest of the models do. The range of the stacking model is quite 

small.  

The stepwise selection enhances the mean MSE for the linear regression and decreases 

the mean MSE for the classification, however, the range of the MSE does not change 

much. The lasso shrinkage approach decreases the mean MSE and the range of the MSE 

compares to the multinomial logistic regression, but it increases the mean MSE for the 

linear regression.  

2. Classification Accuracy Rate 

We calculated the rate of accuracy of the test set in Chapter III to provide another way of 

understanding the model performance for each prediction model. As in MSE, there were 

five accuracy rates for each approach since there were five folds yielded from 5-fold CV 

resampling. The mean of all five rates was considered as the true prediction accuracy rate 

of each approach. 

Table 65: The Rates of Accuracy of 16 Prediction Models. 

Accuracy Rate 

 
Multiple 
Linear 

Regression 

Stepwise 
Linear 

Regression 

Lasso  
Linear 

Regression 

PCR  
Linear 

Regression 
Fold 1 0.4204      0.3188   0.4027  0.4336      
Fold 2 0.2870      0.2881   0.3274  0.3229      
Fold 3 0.3117      0.3333   0.3158  0.2996      
Fold 4 0.2895      0.3568   0.2807  0.2982      
Fold 5 0.3193      0.3273   0.2605  0.3361      
Mean 0.3256      0.3249   0.3174  0.3381      
SD 0.0548      0.0250   0.0547  0.0558      
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 Multinomial 
Classification 

Stepwise 
Classification 

Lasso 
Classification 

Ordinal 
Classification 

Fold 1 0.2920      0.3363      0.3230     0.3392  
Fold 2 0.3094      0.2960      0.2960     0.3347  
Fold 3 0.3239      0.3239      0.3279     0.2952  
Fold 4 0.3465      0.3377      0.2719     0.3722  
Fold 5 0.2983      0.2983      0.2521     0.3833  
Mean 0.3140      0.3184      0.2942     0.3449  
SD 0.0218      0.0202      0.0326     0.0348  
     

 LDA 
Classification 

C5.0 
Machine 
Learning 

GBM 
Machine 
Learning 

KNN 
Machine 
Learning 

Fold 1 0.3363   0.3186 0.3761  0.3938  
Fold 2 0.3094   0.3677 0.3857  0.3318  
Fold 3 0.3603   0.3563 0.3522  0.3198  
Fold 4 0.3465   0.3509 0.3553  0.3289  
Fold 5 0.3109   0.3613 0.3403  0.3361  
Mean 0.3327   0.3510 0.3619  0.3421  
SD 0.0223   0.0191 0.0185  0.0295  
     

 
NN 

Machine 
Learning 

RF 
Machine 
Learning 

SVM 
Machine 
Learning 

Stacking 
Machine 
Learning 

Fold 1 0.5531  0.3407  0.3363       0.4027 
Fold 2 0.5112  0.3274  0.3587       0.3946 
Fold 3 0.5061  0.3522  0.3198       0.3441 
Fold 4 0.4912  0.3377  0.3465       0.3509 
Fold 5 0.4202  0.3067  0.3193       0.3487 
Mean 0.4964  0.3329  0.3361       0.3682 
SD 0.0483  0.0171  0.0171       0.0280 
     

From the above table, we have accuracy rates of four linear regression models, five 

classification models, and seven machine learning models. For the linear regression 

models, stepwise regression yields the smallest standard deviation of 0.0250 and the PCR 

has the largest standard deviation of 0.0558. The lasso performs the lowest mean rate of 
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accuracy of 0.3174 and the PCR shows the highest mean rate of 0.3381. For the 

classification, again, stepwise regression has the smallest standard deviation of 0.0202, 

and the ordinal logistic regression with variables selected by lasso has the largest 

standard deviation of 0.0348. On the other hand, the lasso donates the lowest mean rate of 

0.2942, just like it does for the linear regression. However, the ordinal logistic regression 

has the highest mean rate of 0.3449 among all classification models. For the machine 

learning approaches, the random forest and the SVM have the equivalently smallest 

standard deviation of 0.0171 while the NN models are in the largest standard deviation of 

0.0483. Also, the random forest model contributes to the lowest mean rate of 0.3329, but 

the NN model provides a significantly high rate with a mean of 0.4963. 

Among all sixteen models, the random forest and the SVM are both in the smallest 

standard deviation of 0.0171 while the PCR has the largest of 0.0558. The NN model 

shows a significantly high mean rate of 0.4964 while the lasso approach for classification 

is in the lowest mean rate of 0.2942. 

Figure 8 shows the scale and variability of the accuracy rates. The boxplots of the 

accuracy rates of the linear regression models, the classification regression models, and 

the machine learning models are showed in orange, green, and blue respectively. The red 

dots indicate the mean of the rates for each approach. Although the linear regression 

methods show a distinctly low MSE, the rates of accuracy are pretty much at the same 

level as the classification approaches but with a wider range. The machine learning 

methods of the C5.0, the GBM, the NN, and the stacking ensemble contribute a higher 

mean rate compared to the linear regression and classification methods. Although the NN 
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model has the highest prediction rate of 0.4964, it means our "best" model is only capable 

of accurately predicting half of the outcomes. The stacking ensemble method has the 

second-highest mean rate of accuracy by combining the bottom layer models of the KNN 

and the GBM with the top layer model of multinomial logistic regression. 

 

3. Discussion    

We now have a comprehensive understanding of how our models perform on the private 

sector participation data. The predicted accuracy varies from 30% to 50%, and the 

estimated prediction error varies from 0.0730 to 0.1111. Given that the R-squared of the 

Figure 8: The Boxplot of the Rate of Accuracy. The Linear Regression Models, the Classification 
Regression Models and the Machine Learning Models are Showed in Orange, Green, and Blue 
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multiple linear regression model is 0.1422 on a 0-1 scale, we do not expect high 

prediction accuracy and indeed, none of the models deliver good predictions. The 

relatively low R-squared value indicates that there is a lot of noise in the data. 

Also, the high accuracy rate does not guarantee the lowest prediction error because the 

accuracy rate indicates how many predictions are matched the original response, and the 

prediction error tells how far away between the predicted value and the response. All 

linear regression models have low MSE but low accuracy. For example, although the 

PCR model has the smallest prediction error, its rate of accuracy is relatively low among 

the sixteen models. That is to say, the PCR has a large amount of the misclassifications 

with the estimated values that are very close to the true response, say, misclassified "1" 

by "0.75”, or misclassified "0.25" by "0.5" or to "0", etc. 

We are not surprised that the PCR has outperformed among the linear regression models. 

In the data set the 17 interactions are highly correlated to the main effects of the DEs, 

whereas the PCA is capable of reducing the dimensions for correlated variables and 

carrying out a set of components that are uncorrelated. 

For the ordinal logistic regression, we used the predictors that are selected by the lasso 

approach. The smallest mean MSE and the highest rate of accuracy have been carried out 

from the ordinal logistic regression among all five classification regression models 

suggested that it is more justifiable to regard the response DRRI as an ordinal output. 

Recall that the original data set contains three outcome variables of DRRI, BCI, and 

SCRI. The DRRI (Disaster Risk Reduction Index) corresponds to the value of measures 
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taken to control risks and reduce potential damage and losses as a result, the BCI 

(Business Continuity Index) values the measures taken to ensure business safety and 

continuity of time-sensitive operations, and the CSRI (Corporate Social Responsibility 

Index) is considered as the overlap of DRRI and BCI. We used the same models to 

predict the BCI as well but there is not enough time or space for us to discuss the detail in 

the thesis. Here we briefly illustrate the results of the model performance of the multiple 

linear regression, the multinomial logistic regression, and the NN approach where the 

BCI is the response for the models. 

Table 66: Prediction Performance of the Response BCI. 

 Multiple Linear 
Regression 

Multinomial 
Classification 

NN 
Machine Learning 

MSE 0.0413 0.0504 0.0400 
Rate of Accuracy 0.6857 0.7240 0.7648 

    

These three models yield significantly lower mean MSE and higher mean rates of 

accuracy by using the same 36 variables to predict BCI, and there are more than a 

thousand observations in the data set that is sufficient enough to train the models. By 

comparison with the prediction performance of response BCI, we have the reason to 

believe that the variables of the input data may not qualified or efficient to explain and 

predict the response DRRI very well, but the performance is way much better when they 

are used to regress on the response BCI. 



 105 

4.2 Comparison on Variable Selection 

The second aim in this section is to select important variables from the 36 predictors of 

the data set. For the stepwise selection method, we choose the variables selected by the 

smallest AIC. For the lasso shrinkage method, the variables are selected by the 

corresponding non-zero coefficients with the tuning parameter 0.0707 for linear 

regression and 0.0372 for the classification. The entire data set is used for each model to 

perform and the checkmark symbol indicates whether the variable is selected or not. 

Although there is no model selection mechanism for the multiple linear regression 

approach and the multinomial logistic regression approach, we use the variables in which 

the p-value is smaller than 0.1 as the results for comparison.  

The multiple linear regression, the multinomial logistic regression, stepwise selection for 

linear regression and classification, and the lasso shrinkage approach for linear regression 

and classification are abbreviated as MP, MN, SSL, SSC, LaL, and LaC respectively in 

the above table. 

Table 67: Selected Variable of Six Models. 

Model 

Var 

MP MN SSL SSC LaL LaC 

LI  Ö  Ö   
SCD    Ö   
Dea    Ö   
LAS   Ö Ö   
EC    Ö   
DC    Ö   
LTC Ö  Ö Ö  Ö 
PG  Ö  Ö   
PO   Ö Ö   
IA    Ö   
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WO   Ö    
EI    Ö   
CH    Ö   
LKSP    Ö   
NP Ö  Ö Ö   
DF    Ö   
OT    Ö  Ö 
City Ö Ö Ö Ö  Ö 
BS Ö Ö Ö Ö Ö Ö 
LI*BS  Ö  Ö   
SCD*BS    Ö Ö Ö 
Dea*BS    Ö   
LAS*BS    Ö  Ö 
EC*BS  Ö Ö Ö   
DC*BS  Ö  Ö   
LTC*BS     Ö Ö 
PG*BS  Ö  Ö   
PO*BS    Ö Ö Ö 
IA*BS    Ö   
WO*BS   Ö Ö   
EI*BS   Ö    
CH*BS  Ö     
LKSP*BS       
NP*BS Ö Ö Ö    
DF*BS   Ö  Ö Ö 
OT*BS  Ö     
       

Among the six models, the stepwise selection for classification selects the most amount 

of the variables of 28 while the lasso for linear regression selects the less amount of the 

variables of 5 and the multiple linear regression has the less amount of the significant 

variables of 5 as well. Even though the number of variables selected by the stepwise 

selection for classification is many times more than the number of variables selected by 

the lasso for linear regression, there is no compelling difference in the model 

performance between these two models. 
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The multinomial logistic regression and the lasso shrinkage methods consider the 

interaction terms more important than the main effects in the model, however, the 

multiple linear regression and stepwise selection approaches value interaction term less 

important than the main effect.  On one hand, the interaction term can be included or 

selected without its main effect of DE. On the other hand, another main effect of the 

interaction term, the variable of BS, is important for all six models. In Chapter III, we 

showed the high correlation between the interaction term and its main effect of DE. The 

appropriate variable selection methods were supposed to choose either the DE or its 

interaction term to avoid the high correlations between the predictors. However, the 

stepwise selection for classification has selected too many interaction terms and their 

main effect of DEs at the same time. This may cause the consequence for poor prediction 

performance. 

The above table shows that the variable BS has the maximum six checkmarks, following 

by the variable City with five checkmarks. The LTC has four checkmarks, and the NP, 

the SCD*BS, the EC*BS, the PO*BS, the NP*BS and the DF*BS have three 

checkmarks. The variable of business size (BS) is chosen to be the most important 

predictors of DRRI since it has been selected 100% of the time using six different 

models. Our methods also identify other important predictors such as:  

* City location (City) 

* Loss of telecommunications (LTC)  

* Negative publicity (NP) 

* Interaction of negative publicity (NP) and business size 
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* Interaction of supply chain disruption (SCD) and business size   

* Interaction of extreme conditions (EC) and business size   

* Interaction of power outage (PO) and business size   

* Interaction of damaged facilities (DF) and business size   

The previous study (Sarmiento et al., 2019) has revealed that business size has an impact 

on the relationship between disaster experiences and the responses. From our result, it 

shows that five out of nine important variables are the interaction terms. As the 

considerations of the previous study, the interaction terms have necessarily contributed to 

the predictive ability of the regression models.
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CHAPTER V. CONCLUSION 

The thesis is to study a high dimensional data of the private sector participation in 

disaster risk reduction by using statistical models. According to the previous study 

(Sarmiento et al., 2012; 2019), the researchers utilized a linear regression approach to 

regress five out of seventeen disaster experiences (DE) and the business size as the input 

data set on the output of the disaster risk reduction index (DRRI). Other than that, the 

researches revealed that business size may have an impact on the relationship between 

DE and the response. Moreover, the descriptive statistical analysis showed that the DRRI 

can be considered not only as the numeric output but also as the categorical one. 

Therefore, we performed four linear regression models on the numeric response, five 

classification regression models, and seven machine learning approaches on the 

categorical response. The input data set included all seventeen DEs, business size (BS), 

city locations (City), and seventeen interactions between DE and business size.     

The first aim of the thesis is to use different models to predict outcomes. For the linear 

regression, the multiple linear regression predicted the response with all 36 predictors. 

The stepwise selection and the lasso approach were using different ways to find the 

important variables among 36 predictors for the model. The PCR was another approach 

to combine the variables into principal components and then predict the response with the 

optimal numbers of the components. For the classification regression, the multinomial 

logistic regression used all 36 variables to predict the response. The stepwise selection 

and elastic net regularization approach were used to help choosing the important 

variables and used them to fit the model. The ordinal logistic regression considered the 
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response as the ordered outcome and used the variables that were selected by lasso. The 

LDA was another approach to separate the classes and predict on the response. All the 

machine learning methods that were utilized in the thesis are non-linear regression.  We 

used seven machine learning methods to compare the prediction performance with the 

statistical approaches. 

Our second aim is to access the prediction performance of the prediction models. In order 

to avoid over-fitting, ideally, we would like to train our model and test the effectiveness 

of the model with two separate data sets to estimate the true prediction error. The cross-

validation (CV) technique is a useful tool to allow us to utilize our data better. The 

external 5-fold CV separated the whole data set into the modeling set and the test set. The 

modeling set was for training purpose and the test set was for prediction purpose. The 

internal CV was embedded whenever we needed to investigate the optimal tuning 

parameter for the model. The modeling was separated further into a training set and a 

validation set by the internal CV, and the final model would be decided if it came with 

the minimum MSE or the highest rate of accuracy of the validation set. Finally, the 

prediction performance was evaluated by the mean MSE and the mean rate of accuracy 

for each fold. 

The last aim of the thesis is to understand which variables are more important for the 

prediction models. There are 36 variables in the input data set. Excluding or minimizing 

the effects of the variables which are less contributed to the model can yield better 

prediction accuracy and model interpretability. The variable selection approach, the 

shrinkage regularization methods were used to serve this aim.   
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Our results showed that the rate of accuracy varied from 29% to 50% among all the 

models. Regarding the prediction performance, the neural network approach contributed 

to the highest rate of accuracy. In contrast, the stepwise selection, the lasso shrinkage 

approach, and the elastic net regularization were not able to enhance the prediction 

performance as much as the machine learning approaches did. The ordinal logistic 

regression with the variables selected by the lasso shrinkage method outperformed other 

competitions of the statistical models. This result indicated that it would be more 

appropriate to consider the DRRI as the ordered and qualitative output. Also, the linear 

techniques for the dimension reduction approach, the PCA and the LDA, were provided a 

visualization of the data with the scatter plots. The plots are presented that there were 

neither clear boundaries for the classes nor separated clusters for the groups. Although we 

did not have enough space and time to show our work for the prediction of another 

response BCI, we did notice that when we used the same input data and the same 

statistical models to regress on the BCI instead of the DRRI, the prediction rate of 

accuracy was doubled and the MSE was halved. Therefore, we conclude that none of the 

proposed methods have yielded a satisfactory prediction performance for the outcome of 

the DRRI due to the high noise in the data, and the input data might not appropriate to 

predict the future output of the DRRI if we aim to achieve a desirable predicted accuracy. 

Some of the results of the variable selection were expected to enhance the prediction 

performance and reduced model complexity. For instance, the ordinal logistic regression 

with nine variables selected by lasso provided higher prediction accuracy. However, the 

low consistency of the variable selection was shown under different criteria among the 
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models. Also, there was no significant difference in the prediction performance between 

the two models which were with distinctively different variables and different numbers of 

variables. Although there were variations of the selected variables, some interaction 

effects had been repeatedly chosen while their main effect was absent. The interaction 

term indeed had a different effect on the outcome of DRRI. Hence, it was reasonable to 

include the interaction term among some disaster experiences and business size in the 

predicted model.  Another discovery of the variable selection was that in fact, both the 

business size and the city location had substantial effects on predicting the disaster risk 

reduction index, and there was no reason to exclude the variable of city location from the 

model beforehand. 

In general, machine learning methods are usually more powerful on the prediction. From 

the perspective of prediction performance, some results of the machine learning 

algorithm were more desirable than the result of the traditional linear statistical 

approaches. In contrast, machine learning models were less interpretable than the 

statistical models. A more remarkable outcome was that we used the stacking ensemble 

technique to successfully enhance the prediction performance of three weak learners. 

This technique helped us to improve the model performance with no limitation on the 

type of learning algorithms to combine with.      

Due to the restrictions of time and space, there were some limitations to this study. As a 

matter of fact, there were three indexes in the original data set, and the previous study 

explained that the relationship among these indexes was correlated. To study on only one 

index might not sufficiently reveal the relationship between the input data set and the 
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output data. Also, the thesis did not go further to explore how much the interaction term 

could affect the predicted output as we concluded that the interaction was needed for the 

prediction. 

As future research, it should be first considered to use a multivariate regression model for 

the analysis. Additionally, the exploration of the variable selection is still necessary for 

better understanding and interpreting the prediction model. It is also important to analyze 

the interaction effects which could have more contributions to the model performance 

than their main effect could.
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