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ABSTRACT OF THE DISSERTATION

A MULTIMODAL NEUROIMAGING APPROACH FOR CLASSIFICATION AND

PREDICTION OF ALZHEIMER’S DISEASE USING MACHINE LEARNING

by
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Florida International University, 2020

Miami, Florida

Professor Malek Adjouadi, Major Professor

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders among

the elderly population. It is progressive, irreversible in nature and is considered the

main cause of dementia. AD has become a world health problem affecting developed

and developing nations alike, with the number of diagnosed AD patients increasing rather

dramatically as both the life span of humans and the earth’s population continue to increase.

Therefore, AD diagnosis in its earliest manifestations, preferably at the presymptomatic

stage is critical for the timely planning of treatment and therapeutic interventions.

We introduce new machine learning algorithms to detect and predict the Alzheimer’s

disease in the early phase to include the presymptomatic stage where no manifestation of

cognitive decline is yet apparent. An investigation is carried out in search of optimal fea-

ture selection methods on different machine learning platforms with the intent to address

the challenging classification and regression analysis. This research endeavor introduces

three machine learning platforms that are based on (1) deep neural network, (2) support

vector machine (SVM), and (3) Gaussian-based model classifiers all optimized in order to

delineate the different stages of the disease as well as a regression framework to predict

future cognitive scores as means to gauge disease progression, which could play an impor-

tant role in pre- and post-treatment evaluations. The input data to these machine learning

architectures included magnetic resonance imaging (MRI), positron emission tomogra-
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phy (PET), the metabolic fluorodeoxyglucose (FDG)-PET, cognitive scores, cerebrospinal

fluid (CSF), and the apolipoprotein E4 (APOE4) gene. An investigation is carried out

on the transition phases of AD through regression analysis by predicting cognitive tests

including Alzheimer’s disease assessment scale cognitive subscale (ADAS-Cog), Mini-

mental state examination (MMSE), and Rey’s auditory verbal learning (RAVLT) that have

been designed and used as important criteria to evaluate cognitive status of AD patients.

We formulated the prediction of disease progression as a multimodal multitask regression

problem across six time points in a 4-year longitudinal study.

Major findings of this work reveal that for binary classification, the highest accuracy of

84% for delineating the challenging group of early mild cognitively impaired individuals

(EMCI) from the cognitively normal (CN) group is obtained. With multiclass classification

using deep neural network methodology, especially when early and late MCI (EMCI and

LMCI) groups are included, the accuracy does not exceed 70%, which clearly explains

the many nuances in the transition phases of the disease, especially in the early stages.

Moreover, the episodic tests like RVALT as used in this study were shown to be effective

for selecting the at-risk groups. MRI morphometry was found to be the most sensitive

biomarker to predict disease conversion and observed that parietal and prefrontal cortices

are also associated with episodic memory in addition to the temporal lobe. Although

adding the modalities of FDG-PET, CSF, and APOE allele gene improved the prediction

error significantly at 4 time points, multimodal neuroimaging does not statistically enhance

the prediction performance at some time points due to the inherent challenge of missing

data. It is clear that for longitudinal studies of such duration (4-year), beyond the variability

and interrelatedness of features, the missing data challenge remains the most difficult to

overcome.
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CHAPTER 1

INTRODUCTION

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders

among the elderly population. It is progressive, irreversible in nature and is considered

the main cause of dementia. Therefore, AD diagnosis in its earliest manifestations is

critical for the timely planning of treatment of this healthcare challenge. AD has become

a world health problem affecting developed and developing nations alike, and the number

of diagnosed AD patients is, unfortunately, increasing rather dramatically as both the life

span of humans and the earth’s population continue to increase. According to the 2018

report by the Alzheimer’s Association, 5.7 million Americans are living with Alzheimer’s

and by 2050 this number may reach 13.8 million [1].

Numerous studies over the recent years have confirmed that AD can be diagnosed by

clinical procedures in 90 percent of cases or higher; however, by the time that the AD

stage is diagnosed in patients, they might already lost a substantial part of their mental

function, and given the irreversible nature of the disease, the chance for early intervention

and the potential for slowing its progression become futile. Current studies confirmed that

10-15% of patients with amnestic mild cognitive impairment (MCI) progress to AD per

year [2]. However, in the early stages of the disease, the chance of slowing its progres-

sion is significantly higher. Several medications are approved by the US Food and Drug

Administration (FDA) to delay the onset of symptoms and slow down the progression of

dementia at its earliest prodromal phase; however, there is no absolute treatment for AD at

this time. Thus the potential for early curative or therapeutic intervention provides added

credence and significance to the accurate diagnosis of the early mild cognitive impairment

(EMCI) as an early stage in the prognosis of AD.
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Diagnosis of AD is mostly based on the clinical history and some neuropsycholog-

ical tests such as Mini-mental state examination (MMSE) and clinical dementia rating

(CDR). However, to understand brain pathology, modern imaging techniques, such as

magnetic resonance imaging (MRI) [3, 4], positron emission tomography (PET) [5–8],

and functional magnetic resonance imaging (fMRI) [9–12] used as complementary imag-

ing modalities to explore the functional and metabolic interactions among the different

brain regions. Moreover, researchers use other biomarkers such as apolipoprotein (APOE)

genotype [13, 14], age, sex, and clinical and cognitive test scores [15, 16]. These neu-

roimaging techniques are non-invasive and provide valuable information for both clinical

and research purposes. In addition, multimodal neuroimaging uses the combination of

biomarkers to classify and predict AD and its different conversion phases [17–21] which

is a great platform for consolidating different measures that allows us to understand the

causality of AD and its different prodromal stages.

However, the high dimensionality of these neuroimaging datasets compounded with

the low number of multimodal neuroimaging samples available makes the analysis of these

types of data quite challenging. Patterns of neuronal cell death, at least in the early stages

of the disease, may not necessarily reflect the anatomical or functional abnormalities in the

different regions of the brain. Therefore, the analysis should not only carefully scrutinize

the different brain regions, with added focus on regions that are known to be disease

prone but also look at all potential biomarkers that are best suited to be combined in an

optimal fashion to detect these subtle changes. In order to overcome such a problem,

machine learning techniques were introduced to analyze medical images data [17,22–25].

Machine learning algorithms try to find a low dimensional representation of the data which

is embedded in high dimensional space. These algorithms using discriminative features

2



as MCI or AD biomarkers provide powerful models for computer-aided diagnosis for

Alzheimer’s [26, 27].

Recently, several machine learning techniques have been proposed for the detection

of AD and its prodromal stages; among them which are viewed as the most accurate and

most applicable approaches are artificial neural network (ANN), support vector machine

(SVM), and Bayesian network (BN). SVM is one of the most popular supervised ma-

chine learning models with associated learning algorithms to analyze the data applied for

classification [28–32]. Bayesian prediction and classification models are another type of

machine learning based on the Bayes theorem with the assumption of strong independence

among the classification features [33–36]. Deep neural networks and deep learning ap-

proach are able to analyze the high dimensional data such as MRI which has been widely

used in recent decades [17, 37–43].

SVM remains the most popular supervised machine learning model with associated

learning algorithms to analyze the data applied for classification. Through a set of training

examples, the SVM algorithm makes a model that is capable of assigning new test data

to one of the predefined classes. Cui et al. used anatomical atrophy features extracted

from MRI and anisotropy values extracted from diffusion images achieved an accuracy

of 71.09% for CN vs. MCI classification by applying an SVM-based method [44]. Suk

et al. introduced a deep learning multi-kernel SVM for classification of AD and MCI

by combining MRI and PET imaging [40]. In their approach, a set of autoencoders was

trained for each imaging modality; then, the obtained high-level features were applied to

the multi-kernel SVM for the classification. They obtained 90.7% accuracy for CN vs.

MCI and 98.8% for CN vs. AD classification using semi-supervised learning. Further-

more, different techniques based on DNN have been proposed to detect AD with a focus
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placed on the MCI group. Liu et al. introduced a new DNN using PET and MRI data

and have reported the accuracy of 82.1% for MCI detection from CN group [17]. Ortiz

et al. on the other hand introduced a deep belief neural network binary classification and

achieved 83% accuracy for the CN vs. MCI converter groups and 90% accuracy for the

CN vs. AD groups [45].

Bayesian prediction and classification models are another type of machine learning

based on the Bayes theorem with the assumption of strong independence among the clas-

sification features. Using such prediction methods, Plant et al. achieved 75% prediction

accuracy of the MCI to AD conversion using a combination of voting feature intervals,

SVM, and Bayesian model statistics [36]. Through this combination of the Bayesian-based

model and the feature selection process, they obtained an accuracy of 92% in the classifica-

tion of AD and CN groups and 85.71% in the classification of CN and MCI groups. Some

other studies used Gaussian analysis which is based on Bayesian classification to perform

classification of MCI and AD [46, 47]. Fang et al. introduced Gaussian discriminative

analysis (GDA) for early detection of AD and achieved 87.43% accuracy of MCI and AD,

94.1% accuracy of CN and MCI, and 96.92% accuracy of CN and AD classifications using

MRI data [46]. In another study by Challis et al., the Bayesian Gaussian process-linear

regression model is applied on fMRI data and they report a classification accuracy of 75%

for the detection of amnestic MCI from CN and a 97% classification accuracy of aMCI

from AD group [47].

Several investigations are reported on the specific diagnosis of MCI, and high classifi-

cation accuracy of the CN control group from the MCI group. Although such approaches

are commendable and have their own merit in shedding light on the progression of the

disease, the research community understands that for a disease like AD, the disease may
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have started for over a decade prior to any noticeable physical symptoms [48–51]. The

complexity of this challenge in delineating the MCI group from the CN group is reflected

in the type of classification results, often not exceeding the lower end of the 80% range, that

several studies have endeavored to resolve. These attempts, regardless of the multimodal

imaging approach and the integration of the different biomarkers along with the use of

neuropsychological test scores not initially used at baseline could not discover any new

measures that could potentially increase these classification results.

It is thus imperative to include the EMCI group in any prediction or classification study

that is bound to assess the different progression phases of the disease with the intent to

diagnose the disease in the earliest stage possible. This demands careful examination all

types of measures, structural, functional or metabolic, neuropsychological, demographic,

and genetic to assess which measures characterize the best progression from normal con-

trol to this early stage of mild cognitive impairment. There are current research efforts

that attempt at establishing new neuropsychological tests and new imaging techniques that

could even precede the EMCI phase [52]. Since EMCI can be considered as an earlier

state of mild cognitive impairment, it is of great significance to detect this state for poten-

tial early treatment planning and for designing subject-specific early curative/therapeutic

intervention protocols. The EMCI stage has shown a milder degree of cognitive impair-

ment as compared to the MCI group, making this phase of the disease more amenable

to treatment or to a potential preventive process that will decelerate its progression and

provide a longer and better quality of life for these patients; recall the aforementioned

percentage of MCI patients that decline to AD.

So far, only a limited number of studies have considered EMCI and LMCI groups

[8, 53–59]. Prasad et al. proposed an SVM model to rank brain connectivity features
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based on their importance in the classification process [53]. Using diffusion-weighted

MRI together with connectivity metrics, an accuracy of 78.2% for CN vs. AD and of

59.2% for CN vs. EMCI classification were obtained by applying an SVM-based classi-

fication. They focused more on exploring features that are predictive of AD and used the

classification process to better assess the information attained through the connectivity

maps. Guerrero et al. reported a higher 65% accuracy for CN vs. EMCI classification

using data from the ADNI-GO dataset and making use of the sparse regression for vari-

able selection and manifold learning as a classifier [56]. They used mini-mental state

examination (MMSE) instead of disease labels to have a more continuous correlation of

the disease stage and SVM with the linear kernel as the classification model.

Singh et al. proposed a feedforward deep neural network to perform classification

on fluorodeoxyglucose positron emission tomography (FDG-PET) [8]. They used prob-

abilistic principal component analysis (PPCA) on max-pooled data from FDG-PET and

some demographic information including age, gender, APOE 𝜀1, and 𝜀2 alleles, and

functional activity questionnaire (FAQ). They achieved a maximum F1-score of 72% for

the CN vs. EMCI classification and a 98.14% accuracy for the CN vs. AD classification.

Goryawala et al. introduced a linear discriminative analysis (LDA) classifier with two-fold

cross-validation using MRI data, demographic information, and neuropsychological test

scores [54]. Using MRI features they achieved an accuracy of 61.6% for CN vs. EMCI

and 84.2% for CN vs. AD classification. Moreover [60] used MRI features combined

with MMSE to determine that the two most discriminative volumetric variables were the

right hippocampus and the left inferior lateral ventricle and when combined with MMSE

scores provided an average accuracy of 92.4% (sensitivity: 84.0%; specificity: 96.1%)

for AD vs. CN classification. Their results also show for amnestic MCI (aMCI) and

non-amnestic MCI (naMCI) that brain atrophy is almost evenly seen on both sides of the
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brain for AD subjects, which is different from right-side dominance for aMCI and left-side

dominance for naMCI. However, since the ADNI subject’s diagnosis is based on some

neuropsychological tests such as MMSE, involving this parameter trains the algorithm

based on clinical ground truth, which evidently increased the accuracy. Shakeri et al.

obtained an accuracy of 56% for the CN vs. EMCI classification on MRI data using a

multilayer perceptron (MLP) on top of a so-called deep variational autoencoder (VAE) for

feature selection and classification [59]. Guo et al. proposed an approach using functional

connectivity networks among different brain regions using fMRI data and a multi-kernel

SVM classifier that combines multiple variations of functional MRI (fMRI) data [58].

This approach resulted in an accuracy of 72.8% for the classification of the CN vs. EMCI

groups and 88.9% for the classification of the CN vs. AD groups; however, one drawback

of this study is that their results were based on a limited number of CN, EMCI, and AD

subjects (28 CN, 29 AD, and 33 EMCI). Jie et al. used multi-kernel SVM with t-test

feature selection algorithm for classification of fMRI data and obtained 66.0% accuracy

with 71.4% sensitivity for delineating the CN vs. EMCI [61].

This research endeavor develops the architecture for three machine learning platforms

that are based on (1) deep neural network (DNN), (2) support vector machine (SVM), and

(3) Gaussian process-based (GP) model classifiers all optimized in order to delineate the

different stages of the disease. Radial basis function (RBF) kernel is exploited for clas-

sifying four different groups of CN, EMCI, LMCI, and AD. For classification purposes,

a DNN approach is proposed for both binary and multiclass classification of CN, EMCI,

LMCI, and AD using multimodal neuroimaging (MRI and PET), and other measures

that include neuropsychological test scores and demographic data that includes age and

education level. In the developed algorithms, we used the Adam optimization technique

to update the DNN learning weights. To the best of our knowledge, there are but a handful
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of studies that report multiclass classification involving both EMCI and LMCI groups

included with the CN and AD groups. Our focus is on the delineation of the EMCI group

from the CN group due to the aforementioned importance of early detection, while most

studies focused on the MCI diagnosis, combining both EMCI and LMCI groups. We

propose a feature selection based on ranking the most important features to help clinicians

determine the most essential features in classifying the EMCI group using a large number

of subjects in the 4 groups (CN, EMCI, LMCI, AD) considered.

In addition to cross-sectional analysis for the classification of different groups, we

introduce a regression framework to predict the future cognitive status of individuals by

predicting their cognitive test scores using longitudinal data. Some neuropsychologi-

cal tests have been designed to assess the clinical status of patients. The Mini-Mental

State Examination (MMSE), Clinical Dementia Rating (CDR), Alzheimer’s Disease As-

sessment Scale Cognitive Total Score (ADAS-cog), and Rey’s Auditory Verbal Learning

(RAVLT) are surrogate measures that can be predicted using neuroimaging in order to

gauge cognitive decline [62,63]. We present a regression analysis on a 4-year longitudinal

study as means to predict future cognitive scores in the trajectory of the disease. This type

of regression analysis could play a significant role in pre- and post-treatment evaluations

by assessing how disease trajectories are affected to see whether the decline is slowed by

such treatment or therapeutic intervention. The focus is placed on the early prediction of

conversion from the CN group to MCI with comparatively high accuracy. The challenges

for these two groups (CN, EMCI) are the subtle differences that exist between them not

only in terms of structural (MRI) functional or metabolic (PET) but also in terms of the

small differences that exist in their cognitive scores.
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In attempt to predict the brain structural and functional alternations across AD pro-

gression, several models have been proposed by researchers. Biomarkers Cascade Model

proposed by Jack et al. to predict the abnormalities of FDG- PET at least 24 months

before the onset of AD [64] and investigate the tau PET accumulation of the brain in

cognitively normal and AD groups [65]. A probabilistic approach based on random vector

field transformations has been applied on MRI in order to detect and visualize structural

abnormalities in AD and CN groups [66, 67]. A linear regression method was proposed

to predict the progression for one year from the MR image at baseline [68]. However, the

prediction of progression of Alzheimer’s especially in early stage or presymptomatic re-

mains a challenge [69,70]. One of the main challenges of early prediction of Alzheimer’s

is in the ability to decipher the variability and interrelatedness of the multimodal measure-

ments. Moreover, there are two types of inter-subject variability related to brain changes

of the same subject in time and intra-subject variability associated with differences be-

tween subjects for the same variable. In addition, time spacing of data acquisition varies

even for the same subjects, and age of participants is not temporally aligned. Thus, the

unbalanced longitudinal data analysis, especially in multimodal approach could be most

challenging [6,68,71–74]. To overcome such challenges, a variety of approaches have been

proposed such as considering the age of participants [6], using cognitive scores [68, 74],

and creating a disease progression score [73, 75–78].

One challenge of longitudinal studies using neuroimaging data is the high dimension-

ality, which could lead to heavy computational requirements and an ineffective feature

selection process. Therefore, sparsity-inducing approaches have been proposed to better

identify the predictors by initially reducing the high dimensionality of the problem at

hand. Recently multitask learning with sparsity-inducing techniques have been exten-

sively investigated through the shared representation of different tasks with the intent to
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minimize the prediction error and identify correctly the relevant features [79–81]. Most

of the multitask approaches assume that different tasks are related and share a common

set of features [82,83] or share a common subspace [84,85], or the tasks are clustered into

groups [86,87]. Wang et al. used 𝑙1-norm regularizer to constrain the sparsity and applied

a combination of 𝑙1-norm and 𝑙2,1-norm regularization to select a subset of features [80].

In another study, they used multitask learning at different time points of a 24-month time

period and utilized the lasso regularization in order to predict the MMSE and ADAS

scores [88]. A temporally constrained group sparse learning was proposed by Jie et al.

to predict ADAS and MMSE on longitudinal data for 24 months [89]. Liu et al. pro-

posed a multi-task feature learning based on sparsity-inducing 𝑙2,1-norm to predict eleven

neuropsychological tests including MMSE based on MRI [90]. Cao et al. used 𝑙2,1-norm

penalty applied on regression weights for feature selection and a group 𝑙2,1-norm penalty

on MRI features to find the cognition-relevant brain regions in a shared subspace [91].

Later in 2018, they proposed a 𝑙2,1, 𝑙1-norm to improve the accuracy [92].

Although these single modality studies have merit in assessing the structural or func-

tional alternations in the brain, they reveal that classification and prediction accuracy

could be enhanced by consolidating the strength each modality brings in a multimodal

processing approach [43, 91, 93–103]. A multimodal multitask learning with 𝑙2,1-norm

was proposed by Zhang et al. which considered a common feature subset for related tasks

using a support vector regression to fuse the features of different modalities [79]. Xiang et

al. proposed a multisource sparse regression method focusing on missing modality issue

on cross-sectional data [104]. Zhou et al. proposed a multitask learning process which

considers the prediction of ADAS and MMSE at each time point in a task using MRI,

demographic information, and APOE genotype [105]. They used temporal group lasso

regularizer which consisted of two temporal smoothness processes and 𝑙2,1-norm penalty
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term to ensure successive small deviation between regression models and selection of

small subset of variables at each time point, respectively. However, the limitation of this

study is that convex fused sparse group lasso (cFSGL) is considering two successive tasks

or time points which may lead to loosing task dependency between tasks or time points.

There are some studies that use prior knowledge regression models for intra-group

similarity using the group information [106, 107]. Nie et al. proposed an unsupervised

multisource multitask learning technique to learn MMSE and ADAS simultaneously by

using temporal smoothness and prior knowledge of source consistency [108]. However,

these methods have some limitations as the learning process for all tasks is done simul-

taneously for a common subset of brain regions while each task could be trained more

optimally using different brain regions. On the other hand, a common limitation that

many studies face is in assuming a linear relationship between predicted neuropsycholog-

ical tests and the extracted neuroimaging measures. In addition, the majority of recent

studies were not able to address the missing data challenge, resorting instead to filling for

the missing values by interpolation techniques or removing subjects with missing data;

a process which ends up limiting the statistical meaningfulness of the study. Although

recent studies have considered MCI as the transitional stage from cognitively normal to

Alzheimer’s disease, this group remains the target of prediction in the progression to

AD. However, any treatment or therapy trials are likely to be more successful in the

earliest stage of the disease or even in the presymptomatic stage where no manifestation

of cognitive decline is yet apparent [48]. Therefore, identification of cognitively nor-

mal individuals who are likely to develop into MCI and potentially to AD could increase

the chances for intervening early with treatment or therapy and slow the progression of AD.

11



In order to overcome the aforementioned challenges, a multimodal multitask learning

framework is proposed in chapter 5 by exploiting the graph Laplacian regularization as

it pertains to sparsity and by considering the task dependency matrix based on Gaussian

kernel across all tasks for modality-specific regression. This proposed framework uses

a kernel-based regression to investigate the relationship between neuroimaging features

and the neuropsychological tests as a nonlinear function, while simultaneously handling

the missing data challenge using the decision-tree based fusion. Furthermore, conversion

from both groups of CN and MCI are investigated the prediction outcomes of cognitive

test scores of MMSE, ADAS, and RAVLT in terms of root mean square error (RMSE)

and correlation coefficient (R2).
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CHAPTER 2

A DEEP NEURAL NETWORK APPROACH FOR EARLY DETECTION OF

MILD COGNITIVE IMPAIRMENT USING MULTIPLE FEATURES

2.1 Goal

This chapter proposes a machine learning approach based on a deep neural network

(DNN) in order to detect AD in its early stage using multimodal imaging, including

magnetic resonance imaging (MRI), positron emission tomography (PET) and standard

neuropsychological test scores. The proposed approach makes use of the optimization

method of Adam to update the learning weights to improve its accuracy. The algorithm

is able to classify the cognitively normal control group from early mild cognitive im-

pairment (EMCI) with an unprecedented accuracy of 84.0%. Although the focus here is

distinguishing the two groups of CN and EMCI for early diagnosis and treatment plan-

ning, this study also shows how the proposed deep learning algorithm can be extended for

multiclass classification involving CN and all the stages of EMCI, late MCI (LMCI) and

AD. Our approach is able to diagnose EMCI with comparatively high accuracy both for

binary and multiclass modes. Based on our knowledge, this is the first time that multiclass

involving both EMCI and LMCI classification is reported. In addition, data pre-processing

is performed by extracting features from MRI and extracting standard uptake value ration

(SUVR) features from registered PET imaging.
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2.2 Materials and Methods

2.2.1 Data Acquisition

Data used in the preparation of this study are obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). 1 The ADNI was launched

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imag-

ing (MRI), positron emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD). Identification of bio-

logical markers at the early stage of AD will help researchers and clinicians to plan for

early treatment and therapeutic interventions. The EMCI subject inclusion criteria are as

follows: MMSE scores between 24-30, CDR of 0.5, objective memory loss of 0.5-1.5 SD

(standard deviation) below normal according to the education adjusted scores on delayed

recall of one paragraph from Wechsler Memory Scale Logical Memory II, memory com-

plaints, absence of the significant level of impairment in other cognitive domain, absence

of dementia, and essentially preserved activities of daily living. LMCI criteria are almost

similar to the EMCI except for the memory loss scores by Wechsler Memory Scale Logical

Memory II which is set at more than 1.5 SD below normal.

In this study, a total of 896 participants were classified into the four categories of CN

(248), AD (159), EMCI (296), and late mild cognitive impairment (LMCI) (193). All

1Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in-
vestigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in the analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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subjects had an MRI and a Florbetapir (18F-AV-45) amyloid PET scan within a 6-month

time window. Table 2.1 shows the details of the demographic information of the subjects

used in this study. In this research endeavor, we combined the neuroimaging data with

some neuropsychological test scores of the subjects, which include Rey’s auditory verbal

learning test (RAVLT) as a well-known test for episodic memory, Montreal cognitive as-

sessment (MoCA) known to be effective in the setting of mild cognitive impairment, and

everyday cognition total (ECogT) which is associated with measures of global cognition

and functional status. Table 2.2 provides the neuropsychological test information of the

participants that are used in this study.

Table 2.1: Demographic information of the participants

CN EMCI LMCI AD
Number of subjects 248 296 193 159
Female/Male 125/123 132/164 84/109 67/92
Age-PET(year)* 75.7(6.5) 71.5(7.4) 73.8(8.1) 74.9(7.8)
Age-MRI (year) 75.2(6.5) 71.3(7.4) 73.6(8.1) 74.7(7.8)
Years of Education 16.4(2.5) 15.9(2.6) 16.2(2.7) 15.7(2.7)

*Values illustrate mean (standard deviation) for all attributes

Table 2.2: Neuropsychological information of the Participants (PF: Percent-Forgetting,
Im: Immediate)

CN EMCI LMCI AD
MoCA 25.7(2.5) 24(2.8) 22.4(3.3) 17.2(4.5)
ECogT 1.2(0.3) 1.6(0.5) 1.9(0.7) 2.8(0.6)
RAVLT-PF 36.2(20.5) 47(30) 67.2(31.5) 89.4(20.5)
RAVLT-Im 45.3(10.5) 40(10.6) 33.2(11) 22.7(7)

2.2.2 MRI Processing

MRI images are 3T T1-weighted using a 3D sagittal volumetric magnetization pre-

pared rapid gradient echo (MP-RAGE) sequence. Here, the repetition time is 2,300 𝑚𝑠,
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minimum full echo time, inversion time is 900 𝑚𝑠 with a 256× 256× 170 acquisition ma-

trix providing a voxel size of 1.0× 1.0× 1.2 𝑚𝑚3. In this study, the T1-weighted standard

MNI 305 space MRI has been used to do feature extraction using FreeSurfer version 5.3.

The T1-weighted image was used as the reference image in the registration process, which

included skull-striping, segmentation, and demarcation of the different brain regions.

We extracted 3 measurements that included mean intensity, volume, and intensity

standard deviation after dividing the image into 45 subcortical regions. In addition, 9

morphological variables including gray matter volume, rectified mean curvature, folding

index, surface area, intrinsic curvature index, average thickness, rectified Gaussian curva-

ture index, white matter volume, and thickness standard deviation for 68 cortical regions

were generated. Furthermore, the estimated total intracranial volume (eTIV) is calculated,

which is used later for normalization of the volumetric measures.

2.2.3 AV-45 PET Processing

PET images used in this study were acquired of 370 MBq (10 mCi), dynamic 3D scan

of four 5-minute frames from 50 to 70 minutes post-injection, co-registered, averaged,

reoriented into a standard 160 × 160 × 96 voxel image grid with 1.5 𝑚𝑚 cube voxels, and

smoothed to a uniform isotropic resolution of 8 𝑚𝑚 full width of maximum. In order to

acquire the standard uptake value ratio (SUVR) for each participant’s amyloid accumula-

tion, first, the AV-45 PET scan was linearly registered onto the T1-weighted image using

FSL [109] with 12 degrees of freedom (DoF). The steps of feature extraction from MRI

and PET data through image processing are illustrated in the early part of Figure 2.1.
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Figure 2.1: Overall diagram of the proposed DNN Classifier.

The registration phase plays an important role to get as much information as possible

from PET scan due to the low resolution of this neuroimaging technique. This registration

process provides the same MRI parcellation and segmentation for the AV-45 PET image.

Then the mean intensity of each FreeSurfer region (ROI) for the 45 subcortical and the

68 cortical regions were assessed, which together identify the standardized uptake values

(SUVs). These values extracted from each region were obtained by volume-weighted

means as in Equation (2.1).

𝑆𝑛 =

𝑛∑
𝑗=1
𝐼 𝑗

𝑀
(2.1)

where 𝑆𝑛 is the mean SUV of region 𝑛, with 𝑀 defining the number of voxels found

in region 𝑛, and 𝐼 𝑗 is the intensity of voxel 𝑗 in the AV-45 PET. The whole cerebellum

SUV including 4 subcortical regions (right/left cerebellum and right/left white matter)
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and global uptake value consisting of 68 cortical ROIs (34 ROIs for each hemisphere)

were calculated as follows:

𝑆𝐶𝑅 =
𝑆𝑅1 ×𝑉𝑅1 + 𝑆𝑅2 ×𝑉𝑅2 + ... + 𝑆𝑅𝑘

×𝑉𝑅𝑘

𝑉𝑅1 +𝑉𝑅2 + ... +𝑉𝑅𝑘

(2.2)

where the 𝑆𝐶𝑅 represents the SUV of combined 4 cerebellum and 68 cortical regions, 𝑆𝑅𝑖

defines the SUV corresponding to region 𝑅𝑂𝐼𝑖 and𝑉𝑅𝑖 is a measure of the volume of 𝑅𝑂𝐼𝑖.

In the end, all the computed global SUVs were normalized by the whole cerebellum SUV

as the reference to compute standard uptake value ratio (SUVR) as expressed in Equation

(2.3).

𝑆𝑈𝑉𝑅 =
𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑈𝑉

𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑈𝑉
(2.3)

2.2.4 Statistical Analysis

As mentioned before, one of the challenges of neuroimaging analysis is the high di-

mensionality of data, specifically in AD and MCI diagnosis with low samples. Therefore,

feature selection plays an important role in preprocessing the data. This study is based on

10-fold cross-validation for better reliability of the system. Analysis of variance (ANOVA)

was applied to the training data to calculate the variances of groups which is followed by

Bonferroni correction to adjust the P-values (threshold of P-value is 0.05 in this study).

Then the correlation of each feature is computed and the highly correlated features were

removed for dimensionality reduction purpose. The network was thus tested using the test

data and the model achieved from the training process.
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2.2.5 Feature Normalization

In this study, we used feature-wise scaling in order to normalize the data and increase

the accuracy of classification. For this purpose, each feature linearly transformed to have

unit standard deviation and zero mean as follow:

𝑥𝑁 = ( 𝑥 − 𝑥
𝑠𝑡𝑑
) (2.4)

where 𝑠𝑡𝑑 represents the standard deviation of each feature vector, 𝑥 represents the feature

vector, 𝑥𝑁 defines each normalized feature vector, and 𝑥 represents its mean value.

2.2.6 Deep Neural Network

A deep neural network (DNN) can be obtained by increasing the number of hidden

layers. In this study, we used 3 hidden layers. In addition, to tackle the overfitting problem,

we used the so-called dropout technique [110]. The main idea in the dropout technique

is to randomly eliminate (drop out) units (along with their connections) from the DNN

during the training process to prevent units from too much co-adapting. This technique

helps to significantly reduce the burden of overfitting and yields major advantages in

terms of computational requirements and the resulting outcome in comparison with other

regularization approaches. The block diagram of the proposed classification algorithm

along with feature extraction steps are presented in Figure 2.1.

Here, we used the DNN structure using backpropagation where its learning weights

are getting updated with adaptive moment estimation. Adam is an efficient method that
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has advantages of both RMSProp and AdaGrad [111]. The weights update rules for the

iteration 𝑡 for the initial values 𝑀0 = 0, 𝑅0 = 0, 𝑀𝑏0 = 0, and 𝑅𝑏0 = 0 are as follows:

𝑀𝑡 = 𝛼1𝑀𝑡−1 + (1 − 𝛼1)𝜃𝑡

𝑀𝑏𝑡 = 𝛼1𝑀𝑏𝑡−1 + (1 − 𝛼1)𝜃𝑏𝑡

𝑅𝑡 = 𝛼2𝑅𝑡−1 + (1 − 𝛼2)𝜃2
𝑡

𝑅𝑏𝑡 = 𝛼2𝑅𝑏𝑡−1 + (1 − 𝛼2)𝜃2
𝑏𝑡

(2.5)

where 𝑀𝑡 and 𝑀𝑏𝑡 are the weights and bias for the momentum, 𝛼1 is the hyper-

parameter for the momentum, 𝑅𝑡 and 𝑅𝑏𝑡 are the weights and bias for RMSProp, and 𝛼2

is the hyper-parameter for the RMSProp. Here, 𝛼1 and 𝛼2 are equal to 0.99 and 0.999,

respectively. 𝜃𝑡 , 𝜃𝑏𝑡 are the gradients for the weight and bias. In addition, 𝜃2
𝑡 indicates

𝜃𝑡
⊙

𝜃𝑡 using the mini-batch gradient. In the next step, the corrected weights can be

computed as follows:

𝑀̂𝑡 = 𝑀𝑡/(1 − 𝛼𝑡1)

𝑀̂𝑏𝑡 = 𝑀𝑏𝑡/(1 − 𝛼𝑡1)

𝑅̂𝑡 = 𝑅𝑡/(1 − 𝛼𝑡2)

𝑅̂𝑏𝑡 = 𝑅𝑏𝑡/(1 − 𝛼𝑡2)

(2.6)

Finally, the weights and biases are getting updated as follows:

𝑣𝑡 = 𝑣𝑡−1.𝜂.
𝑀̂𝑡√︁
𝑅̂𝑡 + 𝜖

𝑏𝑡 = 𝑏𝑡−1.𝜂.
𝑀̂𝑏𝑡√︃
𝑅̂𝑏𝑡 + 𝜖

(2.7)

where 𝑣𝑡 represents the weights of the DNN, 𝑏𝑡 represents the biases, 𝜖 is a parameter to

prevent any division by zero which is considered 10−8 and 𝜂 is learning rate equal to 0.001
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in this study. One advantage of Adam is choosing the stepsize very carefully which can

be computed as

Δ𝑡 =
𝜂.𝑀̂𝑡√︁
𝑅̂𝑡 + 𝜖

(2.8)

The stepsize in Adam rule has 2 upper bounds as follows:
| Δ𝑡 |≤ 𝜂 (1 − 𝛼1) /

√
1 − 𝛼2 if (1 − 𝛼1) >

√
1 − 𝛼2

| Δ𝑡 |≤ 𝜂 otherwise

(2.9)

where Δ𝑡 is the stepsize, 𝛼1 and 𝛼2 ∈ (0, 1) are exponential decline rates in order to

estimate the moment. The activation function, 𝜎(.), used is sigmoid defined as

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (2.10)

2.3 Results and Discussion

In this study, a deep neural network classifier was applied to the multimodal MRI

and PET imaging with the focus placed on the diagnosis of EMCI from CN subjects.

The binary classification results for 6 different groups using multimodal imaging are

listed in Table 2.3. It is clear from these results that the combination of demographic

information and neuropsychological test scores (NTS) of the participants together with

MRI and PET imaging modalities enhances the accuracy of the classification significantly.

Figure 2.2 displays the ROC associated with the participants given in Table 2.3. As it

can be seen, a classification accuracy of 84.0% and sensitivity of 83.2% have been achieved

for classification of EMCI and cognitively normal subjects using all the available informa-

tion of participants, while the best accuracy of 68% for CN vs. EMCI using MRI and PET
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modalities alone. Moreover, the accuracy of 96.8% and 84.1% for CN vs. AD and CN vs.

LMCI were achieved, respectively; which are higher than most of the results obtained from

previous studies. In addition, Table 2.4 and Figure 2.3 provides the comparison between

the proposed deep neural network and neural network with one hidden layer with the

same number of all nodes in DNN. It is obvious that DNN is more successful for the clas-

sification of CN vs. EMCI, LMCI, and AD considering the accuracy and AUC of the ROC.

Table 2.3: Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe) of the DNN classifier
for different pairs of binary classification. NTS represents the Neuropsychological Test
Scores of RAVLT, ECogT, and MoCA. The values are represented as a percent)

CN vs. EMCI CN vs. LMCI CN vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

MRI 61.1 66.5 58.7 64.1 53.2 70.2 82.2 75.0 87.3
PET 58.2 66.1 48.6 66.0 54.4 76.0 88.9 85.7 90.3
MRI+PET 68.0 73.1 63.8 71.7 60.1 80.9 89.6 88.9 90.1
MRI+PET+NTS* 84.0 83.2 84.4 84.1 80.4 87.6 96.8 94.1 98.2

EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

MRI 62.6 71.3 52.5 77.1 80.2 71.1 61.5 63.6 62.0
PET 58.8 74.2 41.3 78.0 83.1 65.4 64.5 73.4 54.4
MRI+PET 68.2 78.1 57.5 83.2 80.0 86.7 68.4 74.1 68.8
MRI+PET+NTS 69.5 80.6 60.5 90.3 86.7 92.2 80.2 86.8 71.9
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EMCI (AUC: 0.76)

LMCI (AUC: 0.77)
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Figure 2.2: ROC curve and area under the curve (AUC) of CN vs. EMCI, LMCI, and AD
with and without using neuropsychological test scores for the proposed DNN.

Table 2.4: Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe) of the ANN classifier

CN vs. EMCI CN vs. LMCI CN vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

MRI 59.6 74.8 41.9 61.0 53.3 71.7 80.9 80.9 80.2
PET 61.1 69.5 50.9 65.4 56.7 71.7 86.4 81.1 90.3
MRI+PET 64.8 69.3 57.1 67.4 58.6 76.9 89.1 87.4 92.1
MRI+PET+NTS 81.1 84.4 83.1 82.3 78.4 86.5 93.4 91.5 95.1

EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

MRI 59.2 69.3 47.0 76.3 70.0 75.1 61.2 67.5 54.2
PET 62.3 78.2 40.0 74.0 66.6 84.1 64.9 68.0 57.4
MRI+PET 61.5 70.1 51.3 79.2 74.2 87.5 66.9 68.8 66.2
MRI+PET+NTS 67.1 79.4 52.1 88.6 83.8 92.5 79.1 81.9 76.1
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Figure 2.3: ROC curve and AUC values of CN vs. EMCI and CN vs. AD with and
without using neuropsychological test scores for both ANN and DNN.

Furthermore, Table 2.5 shows the accuracy resulting from multiclass classification

and the classification accuracy for delineating each group from other different groups for

ANN and DNN. Although the results for binary classification in some groups are almost

similar in ANN and DNN, the accuracy in multiclass classification is higher in the deep

neural network; besides, Figure 2.3 indicates that DNN has higher AUC values than ANN,

which proves the advantages of DNN over ANN. Here, we used 𝑜𝑛𝑒 𝑣𝑠. 𝑎𝑙𝑙 approach of

multiclass classification. Based on our own knowledge, this is the first report of multiclass

CN, EMCI, LMCI, and AD classification. Another important point in this study is the

high sensitivity in both multiclass and binary classification that were obtained in the EMCI

diagnosis. In binary mode, the EMCI was set as the positive class in all pairs.
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Table 2.5: Comparing the DNN classifier with ANN considering the overall accuracy
(Acc), accuracy of CN detection (Ac1), accuracy of EMCI detection (Ac2), accuracy of
LMCI detection (Ac3), and accuracy of AD detection (Ac4) for different groups of one
vs. all classification (all the values are in percent and rounded to the nearest integer)

CN/EMCI/LMCI CN/EMCI/AD CN/LMCI/AD
Acc Ac1 Ac2 Ac3 Ac4 Acc Ac1 Ac2 Ac3 Ac4 Acc Ac1 Ac2 Ac3 Ac4

ANN 42 39 43 40 - 60 57 55 - 75 55 69 - 33 60
DNN 51 48 57 47 - 61 58 57 - 75 59 72 - 43 59
ANN + NTS 55 69 57 43 - 65 62 58 - 81 64 77 - 48 65
DNN + NTS 60 66 62 50 - 68 66 63 - 78 70 82 - 49 74

EMCI/LMCI/AD CN/EMCI/LMCI/AD
Acc Ac1 Ac2 Ac3 Ac4 Acc Ac1 Ac2 Ac3 Ac4

ANN 51 - 65 30 53 43 47 48 25 48
DNN 54 - 66 35 55 46 52 50 31 53
ANN + NTS 57 - 65 38 69 52 68 50 28 61
DNN + NTS 59 - 73 45 68 57 61 59 39 66

Table 2.6 provided an assessment of our proposed in comparison to related studies,

where it can be clearly seen that the proposed method yielded a higher accuracy in almost

all the binary classification, and to the best of our knowledge, it is the first study of its

kind to report both binary and multiclass classification involving all the groups of CN,

EMCI, LMCI, and AD. Goryawala et al. reported the accuracy of 61.6% for CN vs.

EMCI classification based on MRI and accuracy of 85.6% for the same groups based on a

combination of the MRI data with some neuropsychological tests like MMSE using linear

discriminative analysis (LDA) [54]. However, since MMSE is one of the most impor-

tant criteria for diagnosis in ADNI, involving these parameters means that the algorithm

is trained using initially the clinical ground truth. In order to prevent circulation in our

method, we tried not to involve the diagnosis parameters of ADNI such as the MMSE score.

Figure 2.4 shows the effects of different tests on three groups of CN vs. EMCI, CN

vs. LMCI, and CN vs. AD based on changes in accuracy. We observed that using the

RAVLT, ECogT, and MoCA test scores affected the EMCI classification more than any

25



Table 2.6: Accuracy (Acc) of the DNN classifier comparing to the previous works

Modality CN vs. EMCI CN vs. LMCI CN vs. AD
Accuracy (%)

[59] MRI 56 59 84
[53] Diffusion MRI 59.2 62.8 78.2
[56] MRI 65 - 86
[54] MRI 61.6 71.4 84.2
Proposed MRI+PET 68.0 71.7 89.6
Proposed MRI+PET+NTS 84.0 84.1 96.8

Modality EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
Accuracy (%)

[59] MRI 63 81 67
[53] Diffusion MRI 63.4 - -
[56] MRI - - -
[54] MRI 68.8 81.4 59.6
Proposed MRI+PET 68.2 83.2 68.4
Proposed MRI+PET+NTS 69.5 90.3 80.2

other groups based on increasing the accuracy. However, these tests affected the LMCI

classification more than any other groups based on increasing the sensitivity as shown in

Table 2.3. Using NTS improves the classification accuracy of CN vs. EMCI by almost

16% and CN vs. LMCI by 13% but only by 5% for the CN vs. AD classifications;

however, improves the sensitivity of CN vs. LMCI by 20% and CN vs. EMCI by 10%.

It is obvious that among these neuropsychological tests, RAVLT immediate and ECogT

contributed more effectively to the EMCI diagnosis. RAVLT scores are capable of reflect-

ing the underlying pathology caused by AD very well and ECogT has contributed to the

global cognition and functional status. Therefore, RAVLT and ECogT can be considered

as effective early markers for diagnosing the prodromal stage of MCI in people who have

memory complaints. In addition, RAVLT percent-forgetting is more contributed to LMCI

diagnosis.
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Figure 2.4: Importance of different neuropsychological test scores for three groups of CN
vs. EMCI, CN vs. LMCI, and CN vs. AD classifications.
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CHAPTER 3

EARLY DIAGNOSIS OF MILD COGNITIVE IMPAIRMENT USING SUPPORT

VECTOR MACHINE

3.1 Goal

This chapter proposes a new feature selection algorithm to find the most relevant

features. The aim is to use a support vector machine (SVM) approach with radial basis

function (RBF) in order to detect AD in its early stage using multiple modalities, including

PET, MRI, and standard neuropsychological test scores. A total number of 896 participants

were considered in this study. The proposed approach is able to classify cognitively normal

control (CN) group from early mild cognitive impairment (EMCI) with an accuracy of

81.1%. In addition, the accuracy of 91.9% for CN vs. late mild cognitive impairment

(LMCI) and an accuracy of 96.2% for CN vs. AD classifications were achieved through

the proposed model.

3.2 Materials and Methods

3.2.1 Data Acquisition

In this study, we used the same pre-processed data as in Chapter 2. A total number

of 896 participants were categorized into four groups of EMCI (296), LMCI (193), CN

(248), and AD (159). The overall design architecture of the proposed method is depicted

in Figure 3.1.
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Figure 3.1: Diagram of the preprocessing step and the proposed classification.

3.2.2 Feature Selection

The main challenge in analyzing high-dimensional data is the existence of a very large

number of features or variables that may not all be associated with the disease and could be

contributing differently at any given phase of the disease. This problem is made even more

difficult when the database suffers from a low sample size. Hence, dimensionality reduc-

tion techniques or selection of prominent features can play an essential role in machine

learning when seeking optimal classification results [112, 113]. In addition, the ranking

of these prominent or most relevant features can be appraised whenever the classification

results in delineating challenging groups have been optimized, especially when the most

subtle of changes differentiate them (like in CN vs. EMCI). These features are deemed

relevant only because they do indeed reflect these subtle changes albeit at varying degrees.

An optimal decision-making process needs to be established when applying dimension

reduction techniques to guarantee that the relevant features are maintained. Although there

is a probability to remove some relevant features during feature reduction [114]; however,

feature selection techniques are successfully used especially for kernel-based techniques

such as SVM [115,116].
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In this study, first, we divided the data into 80% training and 20% testing data and

then applied the feature selection process only on training data and assessed the model

on the 20% remaining test data. Due to the fact that the random forest (RF) method

is time-consuming, we applied ANOVA on the whole training data for each pairwise

group separately to reduce the dimensionality considering a P-value of 0.05. Then, we

used the RF model to obtain the most important features. Random forest is a tree-based

approach, which facilitates multimodal imaging classification by deriving the similarity

measures [117]. The RF model combines re-sampling and random feature selection to

construct the trees for both classification and regression purposes. On the other hand,

RF methodology can provide the hierarchical importance of the different features using

statistical permutation and Gini impurity index [118]. The Gini importance score is a

measure of variable relevance based on impurity reduction. The Gini impurity, 𝐺 (𝑛), can

be calculated as follows

𝐺 ( 𝑗) = 1 − 𝑓 2
+1 − 𝑓

2
−1 (3.1)

where 𝑓𝑛 =
𝑘𝑛
𝑘

defines the ratio of the 𝑘𝑛 samples from the binary class out of the total

samples 𝑘 at the specific node of 𝑗 . Then, the reduction of Gini impurity, Δ𝐺 ( 𝑗) resulting

from splitting the samples to 𝑗𝑙 and 𝑗𝑟 sub-nodes are then calculated as in Equation (3.2)

Δ𝐺 ( 𝑗) = 𝐺 ( 𝑗) − 𝑓𝑙𝐺 ( 𝑗𝑙) − 𝑓𝑟𝐺 ( 𝑗𝑟) (3.2)

where 𝑙 and 𝑟 subscripts specify the left and right sub-nodes at each sample splitting. The

fraction of data points for the left and right subsets 𝑓𝑙 and 𝑓𝑟 are defined as 𝑓𝑙 = 𝑘𝑙
𝑘

and

𝑓𝑟 =
𝑘𝑟
𝑘

. Finally, the Gini Index as an indicator for the selection of feature 𝐹 is calculated

based on aggregating the impurity reductionΔ𝐺 ( 𝑗 ,𝑇) for the nodes 𝑗 and trees𝑇 as follow
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𝐼𝑛𝑑𝑒𝑥(𝐹) =
∑︁
𝑇

∑︁
𝑗

Δ𝐺𝐹 ( 𝑗 ,𝑇) (3.3)

The random forest feature elimination approach is implemented as in the given steps

below. First, the algorithm is applied using all variables including age, education, struc-

tural and functional variables extracted from the MRI, PET imaging modalities. If we

consider 𝑝 as a sequence of probable number of variables to retain (𝑝1 > 𝑝2 > ...), at each

iteration the variables are ranked based on the explained below process and the top-ranked

variables 𝑝 𝑗 are maintained. The performance of the model is evaluated and the number

of variables is determined. Then using the 10-fold cross-validation resampling approach,

the above process is encapsulated in one iteration of resampling. This process is repeated

for every iteration of 10-fold cross-validation. Then the subsets with the highest accuracy

for each iteration were selected and gathered in a pool. In the next step, the features were

selected based on the most votes obtained. The RF feature selection model is demonstrated

below:

Random Forest Feature Selection

1. for each iteration of 10-fold cross-validation

• Partition the train data into training and testing sets

• Train the random forest model using the training set

• Assess the performance of the model on the testing set

• Rank the variables according to their importance

• for each subset of variable numbers 𝑝 𝑗 for 𝑗 = 1, 2, ..., 𝑝

– Retain the 𝑝 𝑗 highest-ranked variables

– Train the RF model on the training set using 𝑝 𝑗 variables
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– Assess the performance of the model

– Recalculate the importance of each variable

– Repeat the process since no variables can be removed

• end

2. end

3. Choose the subsets with the highest accuracy in each iteration

4. Gather all selected subsets in a pool and select the variables based on the most votes

obtained

5. Specify the number of variables

6. Fit the model

In the end, we applied correlation versus class labels to the data in order to prevent

the algorithm from overfitting by training with too many features. The features with

the highest absolute value of correlation are selected based on the Pearson’s correlation

coefficient.

3.2.3 SVM model

The SVM-based classifier was originally introduced by Vapnik [119] and has been

widely used in classification problems due to their robust performance in the presence

of noisy data. In SVM, a set of training data defined as: (𝑦1, 𝑥1), ..., (𝑦𝑘 , 𝑥𝑘 ), can be

partitioned by the hyperplane of (𝑤0, 𝑥) + 𝑏0 = 0, where 𝑤0 =
∑𝑘
𝑚=1 𝑦𝑚𝜂

0
𝑚𝑥𝑚. By

substituting 𝑤0 into hyper plane equation, the nonlinear classifier rule can be described as

a linear combination of kernels associated with the support vectors as [120]:
𝑘∑︁

𝑚=1
𝜂0
𝑚𝑦𝑚𝐾 (𝑥, 𝑥𝑚) + 𝑏0 = 0 (3.4)
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where 𝑦𝑚 ∈ {−1,+1} is the corresponding class label, 𝑥𝑚 is the training pattern, 𝑏0 is the

offset error, 𝑘 is the number of training samples, and 𝐾 is the kernel. 𝜂 is the Lagrange

multiplier, and 𝜂0
𝑚 is the solution of the following quadratic optimization problem:

𝑊 (𝜂) =
𝑘∑︁

𝑚=1
𝜂𝑚 −

1
2

𝑘∑︁
𝑚,𝑛=1

𝜂𝑚𝜂𝑛𝑦𝑚𝑦𝑛𝐾 (𝑥𝑚, 𝑥𝑛) (3.5)

which is subjected to the following constraints:
∑𝑘
𝑚=1 𝑦𝑚𝜂𝑚 = 0, 0 ≤ 𝜂𝑚 ≤ 𝐶, (𝑚 =

1, ..., 𝑘), where 𝐶 is the parameter used to penalize the classification error. In this work,

we used Gaussian kernel also known as radial basis function (RBF) [121], that can be

computed by Equation (4.4) as follows:

[𝐾]𝑚,𝑛 = 𝑒𝑥𝑝(−
‖ (𝑥𝑚 − 𝑥𝑛) ‖2

𝜎2 ) (3.6)

3.3 Results

In this study, an SVM classifier was applied to the multimodal MRI and PET imaging

system with a focus on delineating the EMCI group from the CN group. The results for six

different binary classifications using multimodal imaging are listed in Table 3.1. It is clear

from these results that the combination of demographic information and neuropsycholog-

ical test scores (NTS) of the participants together with MRI and PET imaging modalities

enhances the accuracy of the classification significantly. As it can be seen from Table

3.1, a classification accuracy of 81.1%, a sensitivity of 82.8% and a specificity of 79.8%

have been achieved for classification of EMCI and CN subjects using all the available in-

formation of participants. For the classification of subtle changes that exist between such

groups (CN, EMCI), these results provide credence to the proposed approach. Moreover,

the accuracy of 91.9% and 96.2% for CN vs. LMCI and CN vs. AD were achieved,

respectively.
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Table 3.1: Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe) of the SVM classifier
for different pairs of binary classification (values are represented as percent)

CN vs. EMCI CN vs. LMCI CN vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

MRI 73.1 76.8 68.4 63.0 61.5 69.9 90.3 90.3 91.8
PET -* - - 73.6 69.5 83.7 82.5 79.7 83.7
Proposed 75.6 78.9 70.6 76.9 70.0 85.7 91.2 90.1 93.9
Proposed+NTS ** 81.1 82.8 79.8 91.9 82.4 97.9 96.2 93.3 97.9

EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

MRI 70.1 81.1 55.0 84.7 89.8 80.7 65.2 60.5 70.0
PET 63.9 42.1 78.0 70.8 87.6 55.6 73.2 76.4 61.3
Proposed 70.1 80.0 60.0 85.5 90.5 80.8 78.3 76.3 80.6
Proposed+NTS 71.5 81.3 63.0 93.2 98.0 80.0 80.2 76.3 86.2

*-: No data available
**NTS: Neuropsychological Test Scores of RAVLT, ECogT, and MoCA

Figure 3.2 displays the ROC and area under the curve (AUC) associated with the

classification results in Table 3.1. The AUC of 0.81, 0.80, and 0.96 are obtained for

classification of CN vs. EMCI, CN vs. LMCI, and CN vs. AD, respectively without

involving the cognitive tests as well as AUC of 0.88, 0.98, and 0.99 for classification of

CN vs. EMCI, CN vs. LMCI, and CN vs. AD, respectively with the combination of

neuroimaging features and cognitive tests.

Figure 3.3 shows the importance of every neuropsychological test scores based on

sensitivity changes for three groups of CN vs. EMCI, CN vs. LMCI, and CN vs. AD.

We observed that using the NTS including RAVLT, ECogT and MoCA affected the LMCI

classification more than any other groups. It is evident from Table 3.1, using NTS im-

proves the accuracy of CN vs. LMCI by almost 15% but only by 6% for the CN vs. EMCI

and by 5% for the CN vs. AD classifications.
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Figure 3.2: ROC curve and AUC of three classifications of CN vs. EMCI, CN vs. LMCI,
and CN vs. AD using NTS and without using NTS.
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Figure 3.3: Impact of neuropsychological test scores (NTS) used in this study for three
classifications of CN vs. EMCI, CN vs. LMCI, and CN vs. AD separately. (PF: Percent-
Forgetting, Im: Immediate)
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We found that among these neuropsychological tests, ECogT contributed more effec-

tively to the LMCI and RAVLT percent-forgetting to the EMCI diagnosis. MoCA also

enhances the classification accuracy of CN vs. LMCI significantly while, interestingly,

RAVLT immediate and RAVLT percent-forgetting have no impact on both CN vs. EMCI

and CN vs. LMCI classifications, respectively. RAVLT scores are capable of reflecting

the underlying pathology caused by AD very well. Therefore, RAVLT percent-forgetting

can be considered as an effective marker for the detection of the early stage of Alzheimer’s

disease in patients who have memory complaints. In addition, ECogT which is asso-

ciated with global cognition and functional status is also a useful clinical tool for early

and late diagnosis of MCI. It is obvious that CN vs. AD is more affected by RAVLT

percent-forgetting in comparison with the other tests. Table 3.2 provides an assessment of

our proposed approach in comparison to related studies, where it can be clearly seen that

the proposed method with and without neuropsychological test scores yielded a higher

accuracy in almost all the binary classification groups.

Table 3.2: Accuracy (Acc) of the proposed method compared to the previous studies of
EMCI and LMCI

CN vs. EMCI CN vs. LMCI CN vs. AD
[59] 56 59 84
[53] 59.2 62.8 78.2
[56] 65 - 86
[58] 72.8 78.6 88.9
Proposed 75.6 76.9 91.2
proposed+NTS 81.1 91.9 96.2

EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
[59] 63 81 67
[53] 63.4 - -
[56] - - -
[58] - - -
Proposed 70.1 85.5 78.3
proposed+NTS 71.5 93.2 80.2
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CHAPTER 4

A GAUSSIAN-BASED MODEL FOR EARLY DIAGNOSIS OF MILD

COGNITIVE IMPAIRMENT USING MULTIMODAL NEUROIMAGING

4.1 Goal

This chapter develops a random forest feature selection model with a Gaussian-based

classifier. This integrated method serves to define multivariate normal distributions in

order to classify different stages of AD, with the focus placed on detecting EMCI subjects

in the most challenging classification of CN vs. EMCI. Using 896 participants classified

into the four categories of CN, EMCI, LMCI, and AD, the results show that the EMCI

group can be delineated from the CN group with a relatively high accuracy of 78.8% and

sensitivity of 81.3%. Moreover, the performance of the feature selection model and the

Gaussian process-based classifier are compared to other state-of-the-art algorithms. The

proposed method outperformed others such as minimum redundancy maximum relevance

(MRMR) and t-test feature selection methods.

4.2 Materials and Methods

4.2.1 Data Acquisition

In this study, we used the same preprocessed data as in chapter 2. A total number

of 896 participants were categorized into four groups of EMCI (296), LMCI (193), CN

(248), and AD (159). The overall view of the proposed method is depicted in Figure

4.1. The same feature selection method as chapter 3 was applied to the data in order to

assess the performance of the proposed feature selection and classifier with other methods.
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Figure 4.1: Neuroimaging feature extraction and overall diagram of the proposed method.

4.3 Gaussian Process

Gaussian process models (GPs) are a class of supervised machine learning based

on Bayes theory for updating probabilities on the assumed hypotheses. Like SVM ap-

proaches, GPs are kernel-based, which makes them efficient for high-dimensional data

analysis. The Gaussian process as implemented here is a probabilistic approach that uses

the average predictive probability instead of a single model. This probabilistic approach

can be adapted to the classification problem by transforming the output using the ap-

propriate activation function [122]. The primary goal for training data points 𝑥𝑖 for 𝑁

samples with an associated binary class labeled as 𝑦𝑖 ∈ {−1,+1}, is to predict the class

for which the new testing data points belong. The basic aim of GP classifiers is to predict

the probabilities of 𝑝(𝑦 |𝑥) for the test input. With the following four steps described in

Equations (4.3.1) through (4.3.4), we illustrate how to calculate the GP prediction [47].
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4.3.1 GP Likelihood

The first step in GP prediction is to define a likelihood for the prediction output. Here,

for a binary classification, 𝑦 ∈ {−1, 1}, the probability can be described by a conditional

distribution as follows:

𝑝(𝑦 |𝑧) = (1 + 𝑒−𝑦𝑧)−1 = 𝜎(𝑦𝑧) (4.1)

where 𝜎(•) is the logistic sigmoid function presented in Figure 4.2. As can be seen in

this distribution, in each label, the probability can be controlled by the magnitude of the

𝑧. The GP considers 𝑧 as an unobservable variable. The data likelihood can be defined by

taking the product over all the classes in the training data as expressed in Equation (4.2)
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Figure 4.2: The logistic sigmoid function used in the proposed GP learning is plotted
based on the latent variable 𝑧 and class labels of 𝑦.

𝑝(𝑦 |𝑧) =
𝑁∏
𝑖=1

𝑝(𝑦𝑖 |𝑧𝑖) =
𝑁∏
𝑖=1

𝜎(𝑦𝑖𝑧𝑖) (4.2)

where 𝑁 is the number of training data.

39



4.3.2 GP Prior

The importance of the specification of GP prior is because of its ability to fix the

properties of the functions for the inference. In order to use the specification of GP prior,

it is assumed that the unobservable variables, [𝑧1, . . . , 𝑧𝑁 ]𝑇 = 𝑧 ∈ 𝑅𝑁 , are distributed

based on a GP prior, 𝑔(𝑧 |0,𝐾), where

𝑃(𝑧 |𝑋) = 𝑔(𝑧 |0,𝐾) =
𝑒𝑥𝑝(−1

2 𝑧
𝑇𝐾−1𝑧)

{det(2𝜋𝐾)}1/2
(4.3)

Here, 𝑋 is the training input which is the output of feature selection that may contain

any of the features of MRI, PET, age, education, with 𝑔 being the probability density

function with zero mean vector and its covariance matrix, 𝐾 ∈ 𝑅𝑁×𝑁 , is symmetric

positive-semidefinite with 𝐾−1 defining the inverse of the covariance matrix. In order to

obtain the covariance function of the GP prior, we used Gaussian kernel also known as

radial basis function (RBF) that can be computed by Equation (4.4) as follows [121]:

[𝐾]𝑚,𝑛 = 𝑘 (𝑥𝑚, 𝑥𝑛) = 𝑒𝑥𝑝(−
‖ (𝑥𝑚 − 𝑥𝑛) ‖2

2𝜎2 ) (4.4)

where [𝐾]𝑚𝑛 denotes the element belongs to row 𝑚 and column 𝑛 of the covariance

matrix 𝐾 , 𝑘 is the covariance kernel, and 𝑥𝑚 and 𝑥𝑛 are the input vectors that can be

represented by RBF kernel as feature vectors.

4.3.3 Marginal likelihood

After obtaining the GP likelihood, 𝑝(𝑦 |𝑧), and the GP prior, 𝑃(𝑧 |𝑋) = 𝑔(𝑧 |0,𝐾), the

complete data likelihood can be defined as

𝑝(𝑦, 𝑧 |𝑋) = 𝑝(𝑦 |𝑧)𝑝(𝑧 |𝑋) = 𝑔(𝑧 |0,𝐾)
𝑁∏
𝑖=1

𝜎(𝑦𝑖𝑧𝑖) (4.5)

40



Considering the fact that 𝑧 is latent, and in order to obtain the marginal likelihood,

equation 4.5 should be integrated with respect to 𝑧 as expressed below:

𝑝(𝑦 |𝑋) =
∫

𝑝(𝑦, 𝑧 |𝑋)𝑑𝑧 =
∫

𝑔(𝑧 |0,𝐾)
𝑁∏
𝑖=1

𝜎(𝑦𝑖𝑧𝑖)𝑑𝑧 (4.6)

The marginal likelihood value can thus be interpreted as the probability of observing

the behavior of the training data based on the modeling assumptions.

4.3.4 Posterior distribution

Obtaining the marginal likelihood and the GP prior were the initial steps to obtain the

posterior distribution or the predictions for the test set, 𝑋′. This distribution is computed

using the following equation

𝑝(𝑦′|𝑋′) =
∫

𝑝(𝑦′|𝑧′)𝑝(𝑧′|𝑧)𝑝(𝑧 |𝑋)𝑑𝑧𝑑𝑧′ (4.7)

where 𝑝(𝑦′|𝑧′) = 𝜎(𝑦′𝑧′) and the probabilities 𝑝(𝑧 |𝑋) and 𝑝(𝑧′|𝑧) are as defined

𝑝(𝑧 |𝑋) = 𝑝(𝑦, 𝑧 |𝑋)
𝑝(𝑦 |𝑋) (4.8)

𝑝(𝑧′|𝑧) = 𝑔(𝑧′|𝜎′𝐾−1𝑧,𝜎′′ − 𝜎′𝑇𝐾−1𝜎′) (4.9)

Here, 𝜎′′ = 𝐾 (𝑋′, 𝑋′) and 𝜎′ = 𝐾 (𝑋′, 𝑋). In order to solve for Equation (4.5) and

Equation (4.8), we used Laplace approximation for determining a Gaussian approximation

[123]. Having found the posterior distribution, 𝑝(𝑦′|𝑋′), for prediction as well to examine

the accuracy of the model. In a binary classification, Equation (4.10) is used to make
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a binary prediction. In a binary classification, to make a binary prediction 𝑦′ ∈ {−1, 1}

based on the posterior distribution as follows:

𝑦′ =


+1 if 𝑝(𝑦′ = 1|𝑋) > 𝜂,

−1 otherwise
(4.10)

where 𝜂 ∈ (0, 1) is a coefficient used to compensate the class imbalances in the training

data which is to equal to 0.5 here. For example, if we wish to make fewer false positive

or false negative misclassifications, the threshold parameter, 𝜂, can be tuned in between 0

and 1.

4.4 Results

The feature selection process and the Gaussian model were implemented using R

software [124] to classify 6 binary groups of [CN vs. EMCI, CN vs. LMCI, CN vs. AD,

EMCI vs. LMCI, EMCI vs. AD, and LMCI vs. AD]. Different metrics such as accuracy

(Acc), sensitivity (Sen), and specificity (Spe) are determined to assess the performance

of the algorithm. Table 4.1 presents the classification results using the different imaging

modalities when used separately and when combined. Here, MRI and PET features are

selected based on the proposed feature selection algorithm. As can be seen from the

results, for the most challenging CN vs. EMCI classification, an accuracy of 78.8%, a

sensitivity of 81.4% and a specificity of 76.8% have been obtained when combining MRI,

PET, and the demographic information. It should be noted that sensitivity is viewed as the

most important metric among these parameters since it reflects the accuracy of diagnosing

the true positive group in every binary classification. The EMCI (when considered) is

assumed as true positive, 𝑦 = +1, in every pairwise classification. In other pairs, except

for CN vs. AD, LMCI is considered as the true positive group.

42



Table 4.1: Performance comparison of the proposed method for 6 binary groups

Modality CN vs. EMCI CN vs. LMCI CN vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

MRI 75.9 77.9 75.5 62.1 48.1 77.5 83.6 80.6 85.7
PET -* - - 76.1 66.4 85.8 90.0 90.3 89.8
MRI+PET 75.9 77.9 75.5 78.1 69.9 87.8 92.5 92.3 93.8
MRI+PET+DI** 78.8 81.3 76.8 79.8 70.2 89.9 94.7 92.3 95.9
Modality EMCI vs. LMCI EMCI vs. AD LMCI vs. AD

Acc Sen Spe Acc Sen Spe Acc Sen Spe
MRI 72.1 80.3 61.9 85.6 88.8 87.4 62.3 55.3 73.0
PET 62.8 61.5 64.3 69.1 80.3 45.7 69.7 76.0 61.3
MRI+PET 72.5 81.2 66.9 88.1 92.8 87.4 77.1 79.9 75.9
MRI+PET+DI** 73.2 81.2 69.9 88.1 92.8 87.4 77.1 79.9 75.9

*-: No PET features were selected by the RF-RFE process
**DI: Demographic information consists of age and education

In EMCI vs. CN classification, none of the PET features were selected by the proposed

RF-RFE process, which may indicate that in this early stage SUVR measurements do not

contribute to the classification results. This last assertion indicates that given the low reso-

lution of PET, SUVR measurements are unable to extract the subtle changes that delineate

the two groups of CN and EMCI. Except for the CN vs. EMCI classification, combining

MRI and PET modalities enhanced all accuracy, sensitivity, and specificity results. Inclu-

sion of age and education level to the multimodal (MRI and PET combination) imaging

framework improved the results even further albeit slightly in some cases. Interestingly,

from these results, we see that age and education level did not play any significant role in

the classification of either EMCI and LMCI groups with AD. Based on our finding in this

study, PET features begin to contribute to the overall classification accuracy for the LMCI

group. Figure 4.3 shows classification results including Acc, Sen, Spe, the area under the

curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) for

different modalities separately and combined.
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Figure 4.3: Classification results with 95% confidence interval for different modalities for
the binary classifications of (a) CN vs. EMCI, (b) CN vs. LMCI, (c) CN vs. AD, (d)
EMCI vs. LMCI, (e) EMCI vs. AD, and (f) LMCI vs. AD based on results of Table 4.1.
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Figure 4.4 displays the ROC for the pairwise classification of all the considered groups.

The area under the plot of ROC (AUC), a plot of true positive rate versus false positive rate,

can be a useful tool to evaluate the accuracy of the classifier. An AUC value is between

0 and 1, and an ideal classifier will associate a value of 1. Here, a high AUC of 0.84

was achieved for the challenging CN vs. EMCI classification as mentioned in Figure 4.4.

Evidently, and as expected, higher AUC values of 0.98 for the CN vs. AD classification,

and of 0.95 for the EMCI vs. AD have been achieved. In addition, AUC of 0.77, 0.82,

and 0.83 have been obtained for EMCI vs. LMCI, CN vs. LMCI, and LMCI vs. AD,

respectively. An observation that can be made here is that the AUC value for the EMCI

vs. LMCI is lower than its counterpart for the CN vs. EMCI classification, which could

mean that the neuropsychological test scores used at baseline for this type of delineation

(EMCI vs. LMCI) are more relevant than what neuroimaging measures could extract.
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Figure 4.4: Receiver Operating Characteristics (ROC) curve and Area Under the Curve
(AUC).
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We also investigated what constituted the most important variables which are to be

selected for training the classifier. Table 4.2 provides the eight most important features

selected by the algorithm along with the P-value related to the analysis of variance. Table

4.2 only provides the eight most important features; however, the number of features

that have been selected by the feature selection algorithm is higher for every binary

classification group and could be different from the others. The P-values are produced

in the first step before applying random forest. It can be observed that different features

from MRI and PET data have been selected for the different binary classifications. For

example, all features selected, for the CN vs. EMCI classification belonged to the MRI

data, while most of the features for the binary classifications of CN vs. LMCI and CN vs.

AD were selected from PET data.

Table 4.2: The first eight most important features selected by the feature selection along
with the P-value. (lh: left hemisphere, rh: right hemisphere)

CN vs. EMCI P-Value CN vs. LMCI P-Value CN vs. AD P-Value
age 6.06𝑒−5 lh superior frontal SUVR 2.03𝑒−14 lh entorhinal thickness 1.3𝑒−30

lh lateral ventricle volume 3.66𝑒−6 lh cortical SUVR 1.47𝑒−14 rh superior frontal SUVR 9.49𝑒−29

lh precuneus volume 7.24𝑒−5 lh frontal pole SUVR 1.76𝑒−12 lh cortical SUVR 1.25𝑒−29

lh superior parietal volume 7.87𝑒−6 rh cortical SUVR 2.73𝑒−12 rh medial orbitofrontal SUVR 4.50𝑒−27

lh superior frontal volume 1.96𝑒−8 rh superior frontal SUVR 1.12𝑒−14 lh rostral middle frontal SUVR 6.27𝑒−32

rh lingual volume 1.46𝑒−6 lh parstraingularis SUVR 1.87𝑒−14 rh frontal pole SUVR 4.30𝑒−30

rh lateral ventricle volume 8.55𝑒−5 lh middle temporal SUVR 1.77𝑒−12 lh caudal middle frontal SUVR 1.69𝑒−29

3rd ventricle volume 2.31𝑒−6 lh inferior parietal SUVR 3.35𝑒−11 lh accumbens SUVR 1.44𝑒−29

EMCI vs. LMCI P-Value EMCI vs. AD P-Value LMCI vs. AD P-Value
lh precuneus volume 1.45𝑒−4 lh middle temporal volume 2.50𝑒−18 rh inferior temporal volume 4.05𝑒−6

lh superior frontal SUVR 9.96𝑒−6 lh middle temporal SUVR 4.49𝑒−17 rh lateral occipital SUVR 2.70𝑒−5

lh cortical SUVR 4.63𝑒−6 rh middle temporal SUVR 1.10𝑒−20 lh amyddala volume 1.28𝑒−7

lh hippocampus volume 3.90𝑒−8 lh entorhinal thickness 3.02𝑒−25 lh pericalcarine SUVR 1.58𝑒−6

lh amygdala volume 1.26𝑒−6 rh medial orbitofrontal SUVR 7.92𝑒−20 lh hippocampus volume 3.22𝑒−7

lh frontal pole SUVR 1.69𝑒−4 lh hippocampus volume 1.07𝑒−22 lh inferior temporal volume 1.69𝑒−5

lh parahippocampal volume 2.82𝑒−4 rh precauneus volume 3.16𝑒−14 rh pericalcarine SUVR 9.80𝑒−6
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We observed that using multimodal imaging enhances the accuracy differently for each

binary classification as a function of the features that were deemed important and from

which modality they were extracted from. The results of CN vs. EMCI and CN vs. LMCI

suggest that the beta-amyloid deposition in its very early stage of Alzheimer’s disease is

not as significant as in the later stage of the disease. The amyloid burden will probably

continue to increase during the transition between EMCI and LMCI. Figure 4.5 shows

the importance of the features based on the Gini importance measure which are listed in

Table 4.2 for the challenging group, CN vs. EMCI. In addition, Figure 4.6 presents box

plot of different features from CN vs. EMCI, CN vs. LMCI, and CN vs. AD classifi-

cations, indicating the significance of different features at the different stages of the disease.
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Figure 4.5: Importance of the features listed in Table 4.2 for the most challenging CN vs.
EMCI classification.
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Figure 4.6: Boxplot of different features for (a)-(d): CN vs. EMCI, (e)-(h): CN vs. LMCI,
and (i)-(l): CN vs. AD.
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To assess the performance of the proposed method, we compared our results with the

SVM classifier using the same kernel and the same features. The results as provided in Ta-

ble 4.3, indicate that GP with linear kernel does not provide higher accuracy in comparison

to the GP with RBF in most groups except for CN vs. LMCI. GP with the linear kernel is

more successful to detect LMCI in group of CN vs. LMCI; however, the computation time

for this method is significantly higher than the other methods as can be seen from Table 4.4.

Table 4.3: Performance Comparison of the Gaussian classifier with SVM using the same
kernel and the same feature including the MRI, PET, and DI. (RBF: radial basis function
kernel, and L-K: linear kernel)

CN vs. EMCI CN vs. LMCI CN vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

SVM (RBF-K) 75.6 78.9 70.6 76.9 69.3 85.7 91.2 90.1 93.9
GP (RBF-K) 78.8 81.3 76.8 79.8 70.2 89.9 94.7 92.3 95.9
SVM (L-K) 69.4 71.2 67.4 78.7 70.6 82.8 92.6 89.4 93.7
GP (L-K) 68.7 67.7 75.0 81.5 76.3 86.6 91.5 91.3 92.7

EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

SVM (RBF-K) 70.1 80.0 60.0 85.5 90.5 80.8 75.3 73.3 75.6
GP (RBF-K) 73.2 81.2 69.9 88.1 92.8 87.4 77.1 79.9 75.9
SVM (L-K) 72.1 79.1 68.3 79.2 84.8 67.8 80.2 80.1 80.7
GP (L-K) 72.0 78.3 67.9 81.4 81.0 83.1 70.7 70.9 73.8

Table 4.4: Computation time in second for SVM and GP using linear and RBF kernels
(Variables are represented in seconds)

CN vs. EMCI CN vs. LMCI CN vs. AD
SVM (RBF-K) 96.58 74.52 61.22
GP (RBF-K) 44.48 28.8 18.3
SVM (L-K) 15.21 11.21 22.08
GP (L-K) 2453.97 4963.02 915.47

EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
SVM (RBF-K) 90.12 67.69 62.88
GP (RBF-K) 38.22 27.6 25.18
SVM (L-K) 15.77 19.62 10.62
GP (L-K) 1756.32 1833.21 729.53
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In order to assess the performance of the proposed method, the classification results of

some well-established feature selection methods using SVM and GP classifiers for 3 binary

classifications of CN vs. EMCI, CN vs. LMCI, and CN vs. AD are plotted in Figure 4.7.

Combination of t-test with GP classifier and random forest recursive feature elimination

feature selection with GP and SVM classifiers have higher accuracy in comparison to the

other combination algorithms.

4.5 Discussion

In this study, we evaluated a machine learning algorithm based on the Gaussian pro-

cess for the delineation of the challenging EMCI from the CN group. The similarity of

the SVM and Gaussian process is in using the covariance kernel; however, the maximum

margin approach is distinct in the SVM approach. The classification results of GP and

SVM are not statistically significant; however, GP provides the predicted probability of

the labels which could be beneficial in the clinical investigation while SVM provides the

binary predicted labels. For example, the small predicted probability for a subject will

suggest more tests are required in a clinical setting. Moreover, temporal atrophy seems

to be more relevant for the CN vs. LMCI binary classification rather than for the more

challenging CN vs. EMCI. This indicates that memory deterioration of the medial tem-

poral lobe mostly occurs at the transition from EMCI to the LMCI stage. In addition, we

observed that the most important variables are often selected from the left hemisphere of

the brain may suggest that more deterioration has taken place on the left hemisphere than

the right hemisphere more, specifically in the transition from EMCI to LMCI although the

right/left-handed information of the participants is not available to make a strong statement.
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Figure 4.7: Classification results with 95% confidence interval for combination of different
feature selection using SVM and GP classifiers for the most important classifications of
(a) CN vs. EMCI, (b) CN vs. LMCI, and (c) CN vs. AD. (MRMR: minimum redundancy
maximum relevance, RF-RFE: random forest recursive feature elimination)
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So far, only a limited number of studies have considered EMCI and LMCI groups

[8, 53–56, 58, 59, 61]. Table 4.5 lists all the classification results from previous studies

which are compared to the proposed method. One advantage of the proposed method over

the previously reported methods is that the results offer both higher accuracy and higher

sensitivity values for most classification groups although the confidence intervals have not

been considered in those studies for full comparison purposes.

Table 4.5: Accuracy (Acc), sensitivity (Sen), and specificity (Spe) of the Gaussian clas-
sifier comparing to the previous works. (dMRI: diffusion magnetic resonance imaging,
fMRI: functional magnetic resonance imaging, and DI: demographic information)

CN vs. EMCI CN vs. LMCI CN vs. AD
Modality Acc Sen Spe Acc Sen Spe Acc Sen Spe

[59] MRI 56 52 60 59 52 64 84 73 89
[53] dMRI 59.2 - - 62.8 - - 78.2 - -
[56] MRI 65 61 69 - - - 86 86 85
[61] fMRI 66.0 71.4 64.1 - - - 93.8 92.8 95.7
[58] fMRI 72.8 78.3 67.1 78.6 82.5 72.2 88.9 91.7 85.7
proposed MRI+PET+DI 78.8 81.3 76.8 79.8 70.2 89.9 94.7 92.3 95.9

EMCI vs. LMCI EMCI vs. AD LMCI vs. AD
Modality Acc Sen Spe Acc Sen Spe Acc Sen Spe

[59] MRI 63 62 66 81 70 82 67 58 73
[53] dMRI 63.4 - - - - - - - -
[56] MRI - - - - - - - - -
[61] fMRI - - - - - - - - -
[58] fMRI - - - - - - - - -
proposed MRI+PET+DI 73.2 81.2 69.9 88.1 92.8 87.4 77.1 79.9 75.9
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CHAPTER 5

PREDICTION OF CONVERSION FROM NORMAL COGNITION AND MILD

COGNITIVE IMPAIRMENT TO ALZHEIMER’S DISEASE

5.1 Goal

This study aims to examine disease progression in the early stage using longitudinal

data. Longitudinal analysis of multimodal neuroimaging data is essential for understand-

ing Alzheimer’s disease and its progression as a function of the different risk factors.

Predication of progression from mild cognitive impairment (MCI) to AD is widely inves-

tigated; however, the conversion from cognitively normal (CN) to MCI and on to AD is

largely unexplored. Identification of individuals with normal cognition that are likely to

progress to MCI or AD over time will improve the planning and efficacy of any treatment

in clinical trials. Therefore, we investigated conversion from both groups of CN and MCI

by predicting cognitive tests including Alzheimer’s disease assessment scale cognitive

subscale (ADAS-Cog), Mini-mental state examination (MMSE), and Rey’s auditory ver-

bal learning (RAVLT) that have been designed and used as important criteria to evaluate

the cognitive status of patients. In this study, we formulated the prediction of disease pro-

gression as a multitask regression problem by considering a task as the prediction of the

cognitive score at each time point and multiple prediction tasks across all available time

points simultaneously to capture the temporal smoothness of the model through an undi-

rected dependency graph for all tasks. The proposed model learns subject’s trajectories of

Magnetic Resonance Imaging (MRI) features, Cerebrospinal fluid (CSF), Fluorodeoxyglu-

cose (FDG)-PET, and Apolipoprotein E (APOE) gene with a multitask approach for every

single modality and fuse the results to predict the aforementioned neuropsychological tests

in a longitudinal study with a 4-year duration. In addition, we investigated the association

between brain structural patterns changes in disease progression and observed that white
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matter volume of the left hippocampus, cortical thickness average of left middle temporal,

and right entorhinal play significant roles in predicting the cognitive scores. We also

observed alternations within the insula in the conversion from MCI and normal cognition

to AD.

5.2 Material and Methods

5.2.1 Participants and Data Acquisition

Data used in the preparation of this article were obtained from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database. The multimodal data in this study used

longitudinal information from 779 subjects in a 4-year time window which were cate-

gorized into 3 groups: cognitively normal (CN), mild cognitive impairment (MCI), and

Alzheimer’s disease (AD) at baseline (BL or T1). These subjects are subsequently di-

vided into 5 categories of CN stable (CNs), CN converter (CNc), MCI stable (MCIs),

MCI converter (MCIc), and AD in context to the next 5 time points (T6, T12, T24, T36,

and T48), with 6, 12, 36, and 48 being the number of months after baseline. This is

based on the conversion or stability of the subject’s cognition status within the 4-year

duration. In this study, subjects that were diagnosed as CN/MCI at baseline and the status

has not been changed during the 4 years are considered as CN/MCI stable. It should be

mentioned that the subjects are considered converter if they progressed to either MCI or

AD within the 4 years, and are considered as stable even if they eventually converted after

the 4 years. All subjects that have conversions from MCI to CN or from AD to MCI are

excluded in this study. Demographic information of the subjects is provided in Table 5.1.

Among cognitive scores, 4 neuropsychological tests of ADAS, MMSE, and RAVLT in-

cluding RAVLT immediate (RAVLT-Im) and RAVLT percent forgetting (RAVL-PF) were
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selected for predictive modeling. The demographic information of participants based on

converted groups is also provided in Table 5.2. In addition, evolution patterns of the

different groups categorized in Table 5.2 over the 6 available time points are depicted in

Figure 5.1 which shows average changes of cognitive scores in progression trajectory.

Table 5.1: Participants Demographic information at baseline. Values are represented as
mean (standard deviation)

CN MCI AD
Subjects 223 394 162
Age 74.51(5.29) 73.24(7.29) 74.03(7.91)
CDR 0.03(0.13) 1.51(0.83) 4.32(1.66)
MMSE 29.13(1.02) 27.37(1.75) 23.22(2.01)
ADAS 8.94(4.19) 17.42(6.52) 28.41(7.94)
RAVLT-Im 44.99(9.26) 32.66(10.06) 23.22(7.78)
RAVLT-PF 33.32(27.81) 64.08(32.19) 87.67(22.73)

Table 5.2: Participants Demographic information at baseline. Values are represented as
mean (standard deviation)

CNs CNc MCIs MCIc AD
Subjects 203 20 265 129 162
Age 74.32(5.12) 76.95(5.16) 73.16(7.37) 72.94(7.03) 74.03(7.91)
CDR 0.08(0.30) 0.52(1.02) 1.46(0.97) 3.36(2.23) 4.32(1.66)
MMSE 29.13(1.12) 28.47(1.56) 27.58(2.11) 24.77(3.75) 23.22(2.01)
ADAS 8.33(4.10) 12.71(6.10) 15.67(6.88) 25.28(8.76) 28.41(7.94)
RAVLT-Im 44.91(9.92) 38.29(10.10) 34.38(10.89) 24.08(7.90) 23.22(7.78)
RAVLT-PF 32.66(27.14) 47.64(31.49) 59.60(40.12) 83.74(39.21) 87.67(22.73)

5.2.2 Cognitive tests

MMSE is one of the most well-known tests that was designed to monitor the develop-

ment of overall cognitive impairment [125]. The scale of this score is 0 to 30 which 20 to

24 is considered mild dementia, 13 to 20 indicates moderate dementia, and less than 12
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Figure 5.1: Average changes of cognitive scores for the 5 different groups of CNs, CNc,
MCIs, MCIc, and AD across the 6 time points for method for (a) MMSE (b), ADAS (c),
RAVLT-Im, and (d) RAVLT-PF.

suggest severe dementia; however, in many studies, MMSE scores of 0-10, 11-20, 21-25,

26-29, and 30 have been considered as a projection of CDR of 3 or above, 2, 1, 0.5, and 0

indicating severe, moderate, questionable, and normal cognition, respectively [126].

ADAS-cog which can be considered as a gold standard in antidementia treatments was

developed originally for later stages of dementia where cognitive decline is more severe;

however, it is often used in the earlier stage of MCI [127]. The ADAS-11 score includes 11
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tasks that evaluate domains of language, ideational and constructional praxis (assembling

parts into a structure), word recognition, remembering test instructions, speaking, and

language word-finding difficulty. On the other hand, ADAS-13 was designed later with

better performance for disease progression in the early stage, which combines the 11 tasks

of ADAS-11 with a delayed word recall as well as a maze task added. Thus, for practical

purposes, only ADAS-13 was considered here as ADAS test score.

RAVLT is another powerful test to assess verbal learning and episodic memory during

the progression of Alzheimer’s disease. RAVLT procedure is based on repeated tasks of

presenting 15 words in consecutive trials for the subjects and ask them to recall as many

words as they can remember for those tasks at each trial [128].

5.2.3 Neuroimaging

In this study multimodal neuroimaging of MRI, FDG-PET, and CSF along with APOE

𝜀4 allele were used. The number of MRI measurements are 319 including 275 cortical

features (left/right white matter volume, cortical volume, surface area, cortical thickness,

and standard deviation of thickness plus total intracranial volume (ICV)) and 44 subcor-

tical features including left/right subcortical volumes of subcortical brain regions. The

FDG-PET biomarkers determine the metabolic changes in the brain. CSF biomarker

includes 3 features of phosphorylated tau protein (p-Tau), amyloid-𝛽 (A-𝛽), and total tau

protein (t-Tau). Tau plays an important role in adjusting axonal transport, microtubule

dynamics, and neurite outgrowth which lead to clinical diagnostic settings of Alzheimer’s

disease [129–131]. Finally, APOE 𝜀4 allele is responsible for carrying lipids through the

bloodstream which is considered as a major genetic risk factor for AD [132,133]. On the
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other hand, as mentioned before all subjects have measurements at the baseline or T1 but

may not have all neuroimaging measures for the next five time points of T6, T12, T24,

T36, and T48. Table 5.3 Shows the number of observations for the different modalities

at different time points. We can see from Table 5.3 the extent of missing data especially

and expectedly for the PET and CSF, which highlights the importance and necessity of

managing the missing values.

Table 5.3: Number of observations for different modalities at different time points of
T1-T48

Modality T1 T6 T12 T24 T36 T48
MRI 779 695 654 503 238 144
PET 521 209 194 286 81 46
CSF 501 4 181 143 35 50
APOE 779 695 654 503 238 144

5.2.4 Fused Gaussian Sparse Group Lasso (FGSGL)

In longitudinal study of Alzheimer’s disease, predicting the cognitive scores at any

time point is a regression problem that can be developed as a multitask regression problem

by predicting multiple tests or predicting a test at multiple time points. In this study a

multitask learning approach has been applied for the prediction of any of the considered

cognitive scores for all time points T1 through T48. Let us consider the input matrix as 𝑋𝑡 =

{𝑥1, 𝑥2, ..., 𝑥𝑁 } and target matrix or neuropsychological test score as 𝑦𝑡 = {𝑦1, 𝑦2, ..., 𝑦𝑁 },

therefore, 𝑋𝑡 ∈ 𝑅𝑁×𝐹 and 𝑦𝑡 ∈ 𝑅𝑁 where 𝑁 is the number of observations and 𝐹 is the

number of features of neuroimaging at the time of 𝑡 = 1, 2, . . . ,𝑇 . It should be noted

that all vectors are defined with lowercase letters, and matrices are defined with uppercase

letters throughout this article. If the regression parameters across all tasks are considered

as Φ ∈ 𝑅𝐹×𝑇 matrix, then 𝜑 ∈ 𝑅𝐹 denotes the column of regression parameters of the task
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at the time 𝑡. 𝑊𝑡 = {𝑤1,𝑤2, ...,𝑤𝑇 } is the weight matrix at all time points. A kernel-based

smoothing approach [134] which is used to local smoothing in order to minimize the

regression error at each time point is associated with the task 𝑡 and neighbor 𝜑𝑡 . Thus, the

approximation model can be determined as below:

𝜑𝑡 =

𝑇∑︁
𝑟=1
𝑟≠𝑡

𝑤𝑟 ,𝑡𝜑𝑟 , 𝑡 = 1, 2, ...,𝑇 (5.1)

where 𝑤𝑟 ,𝑡 =
𝐾 ( 𝑟−𝑡

𝜎
)∑𝑇

𝑟=1
𝑟≠𝑡

𝐾 ( 𝑟−𝑡
𝜎
) , 𝑟 = 1, 2, ...,𝑇 , 𝑟 ≠ 𝑡

Here 𝜎 is the bandwidth and 𝐾 is the kernel matrix using the Gaussian kernel as

𝐾 =
2
√

2𝜋
𝑒𝑥𝑝( 𝑎

2

2
) (5.2)

In Equation (5.1), the weights are defined by the Gaussian kernel where its bandwidth

needs to be determined. A small value of 𝜎 leads to quick decay of the Gaussian curve,

and vice versa the larger value is to allow for the curve to decay gradually. We determined

𝜎 = 14 as an appropriate empirical value to be used in this study.

On the other hand, the fused aspect of the model is obtained by adding sparsity on the

matrix of residuals [135]. The fused penalty or the transformation matrix as used in this

study can be defined as 𝐺 ∈ 𝑅(𝑇×𝑇) in the term of 𝑃 = Φ𝐺 as follow

[
𝜌1 𝜌2 · · · 𝜌𝑇

]
=

[
𝜑1 𝜑2 · · · 𝜑𝑇

]


𝐼 −𝑤 |𝑡−𝑟 | 𝐼 −𝑤 |𝑡−𝑟 | 𝐼
... −𝑤 |𝑡−𝑟 |

−𝑤 |𝑡−𝑟 | 𝐼 𝐼
...

... −𝑤 |𝑡−𝑟 | 𝐼
...

...
...

...
...

−𝑤 |𝑡−𝑟 | 𝐼 −𝑤 |𝑡−𝑟 | 𝐼 −𝑤 |𝑡−𝑟 | 𝐼 · · · 𝐼


(5.3)
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The matrix of 𝐺 includes the weights 𝑤𝑡,𝑟 = 𝑤 |𝑡−𝑟 | demonstrating the edges between

the nodes 𝑡 and 𝑟. Therefore, the solution for the multitask problem is to solve the following

unconstrained optimization equation:

𝑚𝑖𝑛
Φ,𝑃

𝑇∑︁
𝑡=1
| |𝑦𝑡 − 𝑋𝑡𝜑𝑡 | |2 + 𝐻𝛽1

𝛽2 (Φ) + 𝛽3 | |𝑃 | |1, 𝜌𝑡 = 𝜑𝑡 −
𝑇∑︁
𝑟=1
𝑟≠𝑡

𝑤𝑟 ,𝑡𝜑𝑟 (5.4)

where the columns of residuals 𝜌𝑡 creates the matrix of residuals 𝑃 ∈ 𝑅𝐹×𝑇 , the 𝛽1,

𝛽2, and 𝛽3 are the regularization parameters, and 𝐻𝛽1
𝛽2 (Φ) = 𝛽1 | | (Φ) | |1 + 𝛽2 | | (Φ) | |2,1

denotes the combination of penalties of the lasso and the group lasso. The group lasso

defined as | | (𝜑) | |2,1 =
∑𝐹
𝑖=1 | |𝜑𝑖 | | considers the groups across all time points for each

variable 𝑖, which allows sharing a common set of variables at each time point.

In the next step, an alternating direction method of multiplier (ADMM) is used to solve

the unconstrained optimization problem in Equation (5.4) which is difficult to be optimized

directly. To this purpose consider the formulation as a linear constrained optimization

problem as follow

𝑚𝑖𝑛
Φ,𝑃,Γ,Θ

𝑇∑︁
𝑡=1

1
2
| |𝑦𝑡 − 𝑋𝑡𝜑𝑡 | |2 + 𝐻𝛽1

𝛽2 (Θ) + 𝛽3 | |Γ| |1 (5.5)

here Θ and Γ are the feasible sets where Φ −Θ = 0, 𝑃 − Γ = 0, and the column of

residuals in the feasible set is defined as 𝜌𝑡 = 𝜑𝑡 −
∑𝑇
𝑟=1
𝑟≠𝑡

𝑤𝑟 ,𝑡𝜑𝑟 .

The augmented Lagrangian can be determined as follows:
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𝐿𝛿 (Φ, 𝑃,Θ,Γ, 𝐴,𝑀 , 𝑁) =
𝑇∑︁
𝑡=1

1
2
| |𝑦𝑡 − 𝑋𝑡𝜑𝑡 | |2 + 𝐻𝛽1

𝛽2 (Θ) + 𝛽3 | |Γ| |1 + 𝑡𝑟 (𝐴𝑇 (Φ −Θ)

+𝛿
2
| |Φ −Θ| |2 +

𝑇∑︁
𝑡=1
{𝜇𝑇𝑡 (𝜑𝑡 −

𝑇∑︁
𝑟=1
𝑟≠𝑡

𝑤 |𝑡−𝑟 |𝜑𝑟 − 𝜌𝑡) +
𝛿

2

𝑇∑︁
𝑡=1
| |𝜑𝑡 −

𝑇∑︁
𝑟=1
𝑟≠𝑡

𝑤 |𝑡−𝑟 |𝜑𝑟 − 𝜌𝑡) | |2}

+𝑡𝑟 (𝑁𝑇 (𝑃 − Γ)) + 𝛿
2
| |𝑃 − Γ| |2

(5.6)

where 𝐴,𝑀 , 𝑁 ∈ 𝑅𝐹×𝑇 are Lagrangian multipliers associated with Φ − Θ = 0,

𝜑𝑡 −
∑𝑇
𝑟=1
𝑟≠𝑡

𝑤 |𝑡−𝑟 |𝜑𝑟 − 𝜌𝑡 = 0, and 𝑃 − Γ = 0 constraints, including the vectors of 𝛼, 𝜇,

and 𝜈, respectively. In addition, 𝑡𝑟 (.) shows the trace of a matrix and 𝛿 is the penalty

parameter which is used to define the dual ascent step size in ADMM [136].

If we define Φ(𝑞) as in Equation (5.7) and considering 𝑞𝑘𝑡 as the gradient with respect

to 𝜑𝑡 , then the regression parameter matrix can be calculated through using Algorithm 1

as follow:

𝑞(Φ) = 𝛿

2

𝑇∑︁
𝑡=1
| |𝜑𝑡 −

𝑇∑︁
𝑟=1
𝑟≠𝑡

𝑤 |𝑡−𝑟 |𝜑𝑟 − 𝜌𝑡) | |2 (5.7)

Finally, the regression matrix Φ is obtained with 𝑁 number of observation at 𝑡 = 𝑇

time point samples. Therefore, 𝑀 modality-specific regression matrices generate the 𝑀

primary prediction of each cognitive score of 𝑦̂ using 𝑦̂𝑡
𝑀
= 𝑋 𝑡

𝑀
×Φ𝑡

𝑀
.
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Algorithm 1: Steps to update primal and dual variables for ADMM

• Determine the initial variables of 𝐴𝑘 , 𝑀 𝑘 , 𝑁 𝑘 , Θ𝑘 , Γ𝑘 , 𝑃𝑘 , and Φ𝑘

• Repeat the following steps until termination criterion is satisfied

– 𝜑𝑘+1𝑡 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝜑𝑡

𝛿
2 | |𝑦𝑡 − 𝑋𝑡𝜑𝑡 | |

2 + (𝛼𝑘𝑡 )𝑇𝜑𝑡 + 𝛿
2 | |𝜑𝑡 − 𝜃

𝑘
𝑡 | |2 + (𝜇𝑘𝑡 + 𝑞𝑘𝑡 )𝑇𝜑𝑡 +

𝛿1
2 | |𝜑𝑡 − 𝜑

𝑘
𝑡 | |2

– 𝜌𝑘+1𝑡 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝜌𝑡

𝛿
2 | |𝜌𝑡 − {𝛾

𝑘
𝑡 + 𝜑𝑘+1𝑡 −∑𝑇

𝑟=1
𝑟≠𝑡

𝑤 |𝑡−𝑟 |𝜑
𝑘+1
𝑟 }| |2 − (𝜇𝑘𝑡 + 𝜈𝑘𝑡 )𝑇 𝜌𝑡

– Θ𝑘+1 ← 𝑠𝑖𝑔𝑛(Φ𝑘+1 + 1
𝛿
𝐴𝑘 ) 𝑚𝑎𝑥( |Φ𝑘+1 + 1

𝛿
𝐴𝑘 | − 𝛽1

𝛿
, 0)

– Θ𝑘+1 ← 𝑚𝑎𝑥{| |Θ𝑘+1 | |2− 𝛽2
𝛿

,0}
| |Θ𝑘+1 | |2

– Γ𝑘+1 ← 𝑠𝑖𝑔𝑛(𝑃𝑘+1 + 1
𝛿
𝑁 𝑘 ) 𝑚𝑎𝑥( |𝑃𝑘+1 + 1

𝛿
𝑁 𝑘 | − 𝛽3

𝛿
, 0)

– 𝐴𝑘+1 ← 𝐴𝑘 + 𝛿(Φ𝑘+1 −Θ𝑘+1)

– 𝜇𝑘+1𝑡 ← 𝜇𝑘𝑡 + 𝛿(𝜑𝑘+1𝑡 −∑𝑇
𝑟=1
𝑟≠𝑡

𝑤 |𝑡−𝑟 |𝜑
𝑘+1
𝑟 − 𝜌𝑘+1𝑡

– 𝑁 𝑘+1 ← 𝑁 𝑘 + 𝛿(𝑃𝑘+1 − Γ𝑘+1)

– 𝐴𝑘 = 𝐴𝑘+1, 𝑁 𝑘 = 𝑁 𝑘+1

– 𝜑𝑘𝑡 = 𝜑
𝑘+1
𝑡 , 𝜇𝑘𝑡 = 𝜇𝑘+1𝑡 , 𝜃𝑘𝑡 = 𝜃𝑘+1𝑡

• Φ← Θ
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5.2.5 Fusion Algorithm

In the second step, we need to ensemble the primary predictions of specific-modalities

which was calculated using the FGSGL, as described in section 5.2.4, separately. An

ensemble technique is used to combine the predictions from multiple classification or

regression algorithms to make more accurate predictions that could be achieved from any

learning algorithm alone. Here a least-squares boosting (LS-Boost) was used to combines

multiple weak learners into one strong learner in order to fuse the specific-modalities

predictions. The algorithm uses multiple decision tree regressors to train the network

sequentially with respect to residual errors made by the previous regressor. Therefore,

missing data can be handled using the decision trees for training the network as well as

minimizing the error using sequential training. If there would be any missing data, the

algorithm selects a new split with input data which is called surrogate split, that is not to

involve the missing data in the training process.

Here the input matrix is defined as 𝑦̂𝑡 = [ 𝑦̂𝑡1, 𝑦̂𝑡2, ..., 𝑦̂𝑡
𝑀
] from the last section. For

simplicity in notation, we consider the input matrix of 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑀] ∈ 𝑅𝑁×1 where

𝑁 is the number of observations and 𝑀 is the number of modalities that are going to be

fused at each time point. Therefore, the response vector of the cognitive score can be

defined as 𝑦 ∈ 𝑅𝑁×1. We assume that 𝑋 is normalized to have zero mean and unit 𝑙2-norm

and 𝑦 has also zero mean. Therefore, the estimated response vector is calculated by 𝑋𝜆

with the residuals of 𝑘 = 𝑦 − 𝑋𝜆. The following Algorithm provides the steps to find the

regression coefficient vector of 𝜆 [137].
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Algorithm 2: The two-step algorithm for least square boosting (LS-Boost)

• Fix number of iterations 𝑡 > 1 and the learning rate of 𝛼 > 0

• Determine the initial values as 𝑘̂0 = 𝑦, 𝜆̂0 = 0, and 𝑚 = 0

• For 0 ≤ 𝑚 ≤ 𝑡 repeat the following

– Find the covariates of 𝑗𝑚 and 𝑢̃

∗ 𝑢̃ ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑢∈𝑅

(∑𝑁
𝑖=1( 𝑘̂𝑚𝑖 − 𝑥𝑖𝑟𝑢)2) 𝑓 𝑜𝑟 𝑟 = 1, 2, ...,𝑀

∗ 𝑗𝑚 ← 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑟≤𝑀

∑𝑁
𝑖=1( 𝑘̂𝑚𝑖 − 𝑥𝑖𝑟 𝑢̃)2

– Update the regression coefficients and residuals as

∗ 𝑘̂𝑚+1 ← 𝑘̂𝑚 − 𝛼𝑋 𝑗𝑚𝑢̃ 𝑗𝑚

∗ 𝜆̂𝑚+1
𝑗𝑚
← 𝜆̂𝑚

𝑗𝑚
+ 𝛼𝑋 𝑗𝑚𝑢̃ 𝑗𝑚

∗ 𝜆̂𝑚+1
𝑗
← 𝜆̂𝑚

𝑗
, 𝑗 ≠ 𝑗𝑚

The overall view of the two-step proposed framework is shown in Figure 5.2. The

empty boxes in Multitask learning step represent missing values for primary predictions

due to missing input data of PET, CSF, and APOE in comparison to MRI. Since all sub-

jects have MRI but not necessarily PET, CSF, and APOE information, predicted cognitive

scores resulted from those modalities would have missing values.
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Figure 5.2: Overall view of the proposed framework to predict neuropsychological test
scores. The portion highlighted in white in the predicted 𝑦̂ 𝑗

𝑖
vectors signify the proportion

of missing data.
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5.3 Results

In this study, a 10-fold cross-validation has been used to prevent any bias in the train-

ing and testing datasets. The hyperparameters of 𝛽1, 𝛽2, and 𝛽3 for regularization were

selected from 1 to 10. In addition, the optimal number of decision trees in boosting was

selected from 1 to 100. The data has been normalized to have zero mean and unit variance

after splitting the data into training and testing sets. The performance of predicting the

4 cognitive scores of MMSE, ADAS, RAVLT-Im, and RAVLT-PF using multimodal data

including MRI, PET, CSF, and APOE is evaluated in terms of Root Mean Square Error

(RMSE) and correlation coefficient (R2) between predicted values and actual values in

the testing phase. The mean and standard deviation of RMSE obtained from each trial are

averaged for 10-fold cross-validation. The final results in terms of RMSE are presented

in Table 5.4. The scatter plots of predicted cognitive scores of MMSE and ADAS versus

actual scores along with the correlation of R2 are shown in Figures 5.3 and 5.4. In addition,

the correlation of 0.68, 0.64, 0.66, 0.67, 0.71, and 0.73 are obtained for the prediction of

RAVLT-Im scores across the 6 time points of T1 through T48, respectively. The correla-

tion of 0.62, 0.67, 0.56, 0.69, 0.61, and 0.70 are also obtained for prediction of RAVLT-PF.

Table 5.4: Prediction performance in terms of RMSE for the 4-year time window based
on multimodal neuroimaging. Values are represented as mean (standard deviation)

Tests T1 T6 T12 T24 T36 T48
MMSE 1.69(0.15) 2.01(0.30) 1.72(0.20) 1.89(0.17) 1.94(0.29) 1.80(0.61)
ADAS 4.92(0.64) 5.56(0.53) 6.11(0.73) 5.34(0.59) 5.90(0.91) 6.69(1.13)
RAVLT-Im 7.75(0.69) 8.27(0.63) 8.16(0.87) 7.97(1.24) 8.24(0.94) 7.91(1.60)
RAVLT-PF 20.37(4.3) 24.37(5.6) 22.26(1.7) 21.29(2.5) 25.80(5.5) 23.85(4.8)
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Figure 5.3: Scatter plot of predicted MMSE score vs. actual MMSE score along with the
correlation coefficient at 6 time points. The orange line is regression line and the dotted
gray line is the reference of perfect correlation.
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Figure 5.4: Scatter plot of predicted ADAS score vs. actual ADAS score along with the
correlation coefficient at 6 time points. The orange line is regression line and the dotted
gray line is the reference of perfect correlation.
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As mentioned before, we considered 5 groups of CNs, CNc, MCIs, MCIc, and AD

for predicting the progression from CN to MCI or AD as well as MCI to AD. Subjects

were grouped as CN converter if they were diagnosed CN at baseline and then converted

to MCI or AD in the next 4 years, but not converting back to CN in that time window. In

the same procedure, subjects were grouped as MCI converter if they were diagnosed as

MCI at baseline and converted to AD but not converting back to CN or MCI within the

next 4 years. In addition, the subjects were considered CNs/MCIs if they were CN/MCI at

baseline and did not convert at any of the next 5 time points even if they convert afterward.

Table 5.5 show RMSE of these five categories separately for all time points.

Table 5.5: Prediction performance of MMSE and ADAS for the 4-year time window based
on multimodal neuroimaging for different groups of subjects separately

MMSE T1 T6 T12 T24 T36 T48
CNs 1.48(0.27) 1.38(0.18) 1.37(0.19) 1.38(0.18) 1.18(0.12) 1.24(0.32)
CNc 1.95(0.48) 1.87(0.10) 1.32(0.16) 1.33(0.15) 1.54(0.45) 1.26(0.88)
MCIs 1.79(0.46) 1.75(0.09) 1.98(0.16) 1.97(0.16) 1.73(0.15) 1.81(0.23)
MCIc 2.71(0.76) 2.47(0.09) 2.77(0.14) 2.93(0.39) 2.04(0.82) 2.76(0.76)
AD 3.10(0.63) 3.07(0.54) 3.32(0.73) 3.35(1.21) - -
ADAS T1 T6 T12 T24 T36 T48
CNs 5.12(0.88) 5.47(0.73) 5.66(0.78) 5.00(1.47) 4.63(2.18) 4.12(2.38)
CNc 6.14(1.01) 6.16(1.77) 6.07(1.51) 4.07(1.98) 4.52(1.12) 5.35(2.26)
MCIs 4.70(0.93) 5.45(1.08) 5.65(0.83) 5.67(1.33) 5.36(2.05) 4.44(1.08)
MCIc 5.87(1.04) 5.72(1.62) 6.35(1.23) 6.80(1.12) 5.85(1.85) 6.23(2.05)
AD 6.12(1.48) 7.60(1.45) 7.95(1.56) 7.54(0.87) - -

Figure 5.5 provides a box plot of the distributions of predicted cognitive scores vs.

actual scores for the 5 groups separately and combined. We obtained RMSE of 1.95 for

normal cognition groups who later converted to MCI or AD and RMSE of 2.71 for the

MCI group who converted to AD later during the 4 years.
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Figure 5.5: Box plot of prediction MMSE score vs. actual MMSE score using the test set
based on multimodal neuroimaging for all groups of subjects separately and combined
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Furthermore, Figures 5.6 and 5.7 show the delineation of CNs vs. CNc, MCIs vs.

MCIc, CN vs. MCI, and CN vs. AD using the ROC curve and the area under the curve

(AUC) for predicted cognitive scores vs. actual values at baseline. The predicted cognitive

tests were learned from all groups in the test set and then the ROC curve along with the

AUC was depicted for the selected groups. The AUC of 0.79 and 0.76 are achieved for

MCIs vs. MCIc groups using the predicted MMSE and ADAS, respectively. The AUC

of 0.69 and 0.72 are achieved for CNs vs. CNc groups using the predicted MMSE and

ADAS, respectively. In addition, the AUC of 0.74 and 0.77 are achieved for MCIs vs.

MCIc groups as well as AUC of 0.69 and 0.73 for CNs vs. CNc groups using the predicted

RAVLT-Im and RAVLT-PF, respectively. The high AUC of estimated cognitive scores for

these groups indicates the power of these tests to predict the conversion in the early stage.

It can be seen that the AUC for the predicted cognitive scores is slightly higher in

comparison to the AUC of actual values especially for the CNs vs. CNc groups for all

considered cognitive tests. These results indicate that estimated cognitive scores based on

structural and functional alternations of the brain contain valuable information for early

diagnosis of the disease which is different from the actual information. In order to test

this hypothesis, an SVM classifier with 10-fold cross-validation was used to classify the

CNs from CNc using the actual cognitive scores and combined of estimated and actual

values. We achieved an average accuracy of 0.63, 0.70, 0.69, and 0.63 for MMSE, ADAS,

RAVLT-Im, and RAVLT-PF, respectively using the actual values and the average accuracy

of 0.69, 0.73, 0.70, and 0.71 using the combined scores which are found to be statistically

significant with the null hypothesis of P-value ≤ 0.05. These results may suggest that the

actual cognitive test scores and predicted scores based on neuroimaging contain different

information which may help for early detection of AD.
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Figure 5.6: ROC curves and AUC values of group classification of CNs vs. CNc, MCIs
vs. MCIc, CN vs. MCI (includes both groups of stables and converters), and CN vs. AD
for cognitive scores of MMSE and ADAS.

73



0 0.2 0.4 0.6 0.8 1

1 - specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
se

ns
iti

vi
ty

CNs vs. CNc

Predicted RAVLT-Im (AUC=0.69)
Actual RAVLT-Im (AUC=0.62)
Predicted RAVLT-PF (AUC=0.73)
Actual RAVLT-PF (AUC=0.64)

(a)

0 0.2 0.4 0.6 0.8 1

1 - specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
ns

iti
vi

ty

MCIs vs. MCIc

Predicted RAVLT-Im (AUC=0.74)
Actual RAVLT-Im (AUC=0.73)
Predicted RAVLT-PF (AUC=0.77)
Actual RAVLT-PF (AUC=0.78)

(b)

0 0.2 0.4 0.6 0.8 1

1 - specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
ns

iti
vi

ty

CN vs. MCI

Predicted RAVLT-Im (AUC=0.76)
Actual RAVLT-Im (AUC=0.78)
Predicted RAVLT-PF (AUC=0.75)
Actual RAVLT-PF (AUC=0.80)

(c)

0 0.2 0.4 0.6 0.8 1

1 - specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
ns

iti
vi

ty

CN vs. AD

Predicted RAVLT-Im (AUC=0.93)
Actual RAVLT-Im (AUC=0.93)
Predicted RAVLT-PF (AUC=0.96)
Actual RAVLT-PF (AUC=0.97)

(d)

Figure 5.7: ROC curves and AUC values of group classification of CNs vs. CNc, MCIs
vs. MCIc, CN vs. MCI (includes both groups of stables and converters), and CN vs. AD
for cognitive scores of RAVLT-Im and RAVL-PF.
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Figure 5.8 shows the bar plot of predicted cognitive scores for a different combination

of modalities. As can be seen, the RMSE is lower using only MRI modality for prediction

of neuropsychological test scores in comparison to PET and CSF separately, and using

multimodal neuroimaging leads to lower RMSE for all 4 cognitive tests at most of the

time points. When the modalities considered (MRI, PET, CSF) are used separately, it is

observed that MRI has a consistently lower RMSE in predicting cognitive scores. Evi-

dently, the RMSE decreases when using multimodality in comparison to a single modality

for predicting the cognitive scores. For almost all cases and for most time points, the

more modalities or measures are combined (MRI, PET, CSF, APOE), the lower is the

RMSE. However, we investigated the statistical analysis of these results using ANOVA

test to check the statistical difference of RMSE and R2. The P-values of 0.0000, 0.2310,

0.0006, 0.0819, 0.1433, and 0.0002 for the prediction of MMSE and P-values of 0.0004,

0.0001, 0.0005, 0.0089, 0.0050, and 0.2123 for the prediction of ADAS were obtained

using the single modality of MRI versus multimodal neuroimaging for the 6 time points,

respectively which showed that the proposed method statistically performed best in pre-

dicting MMSE and ADAS scores only at some time points although a higher correlation

and lower RMSE were achieved at all 6 time points. The same results also were observed

for RAVLT-Im and RAVLT-PF prediction results. A large amount of missing data may

explain this outcome since we have unbalanced observations for MRI versus PET and CSF

at those time points.

The results of the proposed Gaussian-kernel-based model compared to some other

regression models such as lasso, ridge, fused group lasso (FGL), temporal group lasso

(TGL), and convex fused sparse group lasso regression are listed in Table 5.6. For a fair

comparison, the same train and test data sets have been used for all methods.
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Figure 5.8: Bar plot of RMSE for different combination of modalities at different time
points in 4-year time window for the cognitive tests of (a) MMSE, (b) ADAS, (c) RAVLT-
Im, and (d) RAVLT-PF.

It should be mentioned that the hyperparameters of all methods were optimized in

each trial with10-time repetition using 5 fold cross-validation. Therefore, only results

of MRI modality for predicting MMSE and ADAS are compared to exemplify this com-

parison while adhering to space constraints of this study, which we would exceed if we

were to include all other modalities and for all cognitive scores. The statistical analysis
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Table 5.6: Results of our proposed method compared to lasso, ridge, temporal group lasso
(TGL), fused group lasso (FGL), and convex fused sparse group lasso (cFSGL) in terms
of averaged RMSE (standard deviation) using MRI data to predict MMSE and ADAS.
Superscript symbol of ∗ indicates that the marked method significantly outperformed the
others at that time point

MMSE T1 T6 T12 T24 T36 T48
Ridge 3.18(0.39) 2.67(0.26) 3.05(0.45) 3.23(0.39) 3.23(0.44) 4.27(0.21)
Lasso 2.35(0.24) 2.37(0.21) 2.76(0.55) 2.95(0.35) 2.85(0.38) 4.00(0.30)
TGL 2.34(0.27) 2.04(0.26)∗ 2.72(0.54) 3.00(0.41) 3.02(0.36) 3.99(0.43)
FGL 3.32(3.28) 5.27(0.40) 4.21(0.41) 3.45(0.51) 2.82(0.38) 7.58(0.89)
cSFGL 2.41(0.21) 2.27(0.21) 2.75(0.44) 3.20(0.65) 2.87(0.65) 2.56(0.55)
Proposed 1.89(0.17)∗ 2.24(0.22) 2.03(0.25)∗ 1.95(0.29)∗ 2.09(0.32)∗ 2.35(0.65)
ADAS T1 T6 T12 T24 T36 T48
Ridge 8.11(0.72) 9.86(0.98) 9.56(0.81) 10.97(1.21) 12.87(1.86) 13.27(2.65)
Lasso 7.20(0.61) 8.64(0.13) 8.23(0.81) 9.95(0.95) 8.89(1.30) 9.83(1.90)
TGL 6.98(0.64) 7.83(0.24) 7.86(0.19) 8.51(0.26) 6.85(0.88)∗ 9.85(0.98)
FGL 10.19(2.3) 12.79(3.01) 11.70(4.30) 9.27(2.01) 10.32(2.12) 11.42(3.90)
cSFGL 6.48(0.57)∗ 7.39(0.92) 8.35(0.78) 7.61(0.88) 7.95(1.21) 7.35(2.30)
Proposed 6.91(0.61) 7.04(0.88) 7.60(0.69)∗ 6.66(0.81)∗ 7.15(1.08) 6.87(1.85)∗

is performed using the Analysis of variance (ANOVA) test to investigate the significant

difference (P-value ≤0.05) of results at each time point in terms of RMSE which are indi-

cated in Table 5.6. This table shows that our proposed method significantly outperforms

the other well-established methods of lasso, ridge, and FGL for all time points and TGL

and cFSGL at most of the time points for predicting MMSE and ADAS.

5.4 Discussion

In this study, the prediction of 4 important cognitive scores have been evaluated using

multimodal neuroimaging with the focus placed on identifying CN and MCI individuals

who later converted to MCI or to AD. We considered 5 groups of converter/stable normal

cognition/mild cognitive impairment and AD with a time window of 4 years including 6
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time points. A 10-fold cross-validation was used to prevent any bias in the training and

testing sets and an ensemble approach was applied to the primary predictions of separate-

modality regressions to improve the overall estimation of prediction. We proposed a

kernel-based model to capture the nonlinear associations between the separate modalities

of neuroimaging and neuropsychological test scores.

We investigated the most relevant MRI features that have the highest weights in the

training phase to predict the cognitive scores. We found that white matter volume of left

hippocampus/ left inferior parietal/ right inferior lateral ventricle, cortical thickness aver-

age of left middle temporal/ right entorhinal/ right inferior parietal/ left temporal pole, the

cortical volume of right pars opercularis/ left insula, and surface area of left supramarginal

are among the stable features to predict MMSE, ADAS, and RAVLT tests. These obser-

vations agree with previous studies in the pathological pathway of Alzheimer’s disease,

which show that the medial temporal lobe, including the entorhinal and hippocampus cor-

tices, is the first to be affected by disease progression [105,138,139]. Moreover, bilateral

hippocampal and parahippocampal regions are found among the most important features

in gauging disease progression [100, 140] as well as thickness average and volume of

inferior parietal [105,141]. Moradi et al. found the medial temporal lobe and amygdala as

the top predictors to estimate RAVL-Im and hippocampus, angular gyrus, and amygdala

as the top predictors for RAVLT-PF [128]. The medial temporal lobe especially the hip-

pocampus plays an important role in episodic memory specifically for the establishment

and keeping the memories before storing them to other areas [142,143].

Although these findings agree with other investigations to find those stable features in

disease progression, the large effect of MCI or Alzheimer’s pathology may overshadow the

cognitively normal group. Since all subjects are considered as a pool, the weight of stable
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features is more significant when subjects already progressed to MCI and AD. Therefore,

we studied the most relevant features in detecting CNs vs. CNc groups. We observed

that cortical thickness average of right precuneus/ left inferior temporal/left insula, white

matter volume of right choroid plexus/right thalamus/left ventral DC, the surface area of

left rostral anterior cingulate/ right superior parietal/ left lateral orbitofrontal/ right pars

triangularis/ left parahippocampal and cortical volume of right rostral middle frontal are

among the most important features. Previous studies found structural changes in right pre-

cuneus, superior frontal, and left thalamus [144] as well as the hippocampus, entorhinal

cortex, and ventricles [145, 146] as the most important MRI features for conversion from

CN to MCI which are in line with our observations. We also observed that transition from

CN to MCI or AD is more associated with parietal lobe and prefrontal cortex baseline

atrophy [147–150]. Recent studies also suggest that the insular cortex which is associated

with taste and non-taste recognition memory by interaction with the amygdala as part of

the default mode network was discovered to be disrupted in AD [151, 152]. Our results

demonstrate that in addition to the amygdala and well-known hippocampus, insula, and

middle temporal are also related to verbal episodic memory as reflected in the prediction

of the RVALT scores.

Previous works studied the predictive models for different neuroimaging techniques

in Alzheimer’s trajectory. Stonning et al. applied relevance vector regression on 586 sub-

jects using MRI and CSF modalities and achieved RMSE/R2 of 2.19/0.57 and 7.27/0.59

for prediction of MMSE and ADAS at baseline, respectively as well as 18.97/0.19 for

predicting RAVLT-PF [153]. Zhang and Shen obtained R2 of 0.51 for the prediction of

MMSE and 0.53 for ADAS changes in a 2-year study with a total number of 186 subjects

and using a multimodal multitask approach including the MRI, PET, and CSF [79]. Zhang

et al. achieved RMSE of 2.61 and 2.52 with a correlation of 0.73 for prediction of MMSE
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as well as RMSE of 5.18 and 5.27 with the correlation of 0.77 for prediction of ADAS

at month 12 and 48, respectively [63]. Moradi et al. used elastic net linear regression

for predicting the two tasks of RAVLT-Im and RAVLT-PF from MRI measurements and

obtained normalized RMSE (nRMSE) of 0.87 along with correlation of 0.5 and nRMSE

of 0.9 along with a correlation of 0.43 for the prediction of RAVLT-Im and RAVLT-PF

scores, respectively [128]. Jie et al. used a temporally-constrained group sparse lasso

using MRI measurements with the time window of 24 months and achieved RMSE/R2

of 2.84/0.65 for predicting MMSE and 5.85/0.67 for predicting ADAS [89]. Liu et al.

proposed a multitask sparse group lasso learning and obtained RMSE/R2 of 2.16/0.52 and

6.59/0.66 for predicting MMSE and ADAS, respectively using the baseline MRI [154]. In

another study the correlation of 0.66 and 0.7 using 𝑙2,1, 𝑙1 regularized multitask regression

applied on longitudinal data (3-year time window) of MRI, PET, APOE, age, and educa-

tion were obtained for MMSE and ADAS, respectively [92].

It is worth noting that most of the aforementioned studies excluded the CNc subjects

in their dataset, while we included the CNc group in order to identify individuals at risk

for progressing into MCI or AD. There are few studies focusing on normal cognition

conversion. Some studies investigated the conversion from CN to MCI and AD to test

for the inflection points before the diagnosis of AD [155], to investigate the probable

presymptomatic markers in healthy aging [156], and to estimate if the age of symptom

onset could be similar across generation in subjects with Alzheimer’s history in at least

one parent [157]. Zhan et al. considered a training set of 120 CN and 121 AD subjects,

as well as a test set of 20 CNs and 20 CNc subjects citezhan2015identification. They

achieved 70% accuracy for classification of CNs vs. CNc using multimodal neuroimaging

of MRI, FDG-PET, and AV45-PET in the follow-up for 24 months.
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CHAPTER 6

CONCLUSION

This study aimed to develop several machine learning algorithms to diagnose the

Alzheimer’s disease in its early stage, preferably in its presymptomatic phase where no

manifestation of cognitive decline is yet apparent. To fulfill this aim, two types of cross-

sectional and longitudinal data analyses have been performed for classifying the different

subject groups as well as for predicting their future cognitive status using the most com-

mon cognitive tests.

In the second chapter, a machine learning approach based on a deep neural network

has been proposed for binary and multiclass classifications with a focus placed on the

delineation of EMCI group from the CN controls. The proposed approach introduces the

use of the Adam algorithm to update the learning weights which improves the accuracy of

diagnosis while efficiently updating the learning weights and decrease the time of conver-

gence. We combined multimodal imaging of MRI and PET with the neuropsychological

test scores through the well-known RAVLT, MoCA, and ECogT tests. The high accuracy

of 84.0% for delineating the EMCI group from the CN group and accuracy of 96.8%

for CN and AD classification were achieved. In addition, the proposed deep learning

algorithm is successfully used for multiclass of CN, EMCI, LMCI, and AD classification

as well. During the feature selection and training processes, we found that RAVLT and

ECogT are useful neuropsychological tools for the early detection of Alzheimer’s disease.

In the third chapter, an SVM-based approach with the RBF kernel has been proposed

for binary classification with a focus placed on the delineation of the EMCI group from the

cognitively normal group. Diagnosis of this early prodromal stage of AD could result in

the planning of early treatment and therapeutic interventions to slow down the progression
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of the disease. We combined multimodal imaging of MRI and PET with the neuropsycho-

logical test scores through the well-known RAVLT, MoCA, and ECogT tests. The high

accuracy of 81.1% for delineating the EMCI group from the CN group and accuracy of

96.2% for CN and AD classification were achieved. In addition, the accuracy of 75.6%

for CN and EMCI classification has been obtained using only MRI, amyloid PET, age,

and education without using neuropsychological test scores which is higher than all of the

results obtained from previous studies.

In chapter four, a probabilistic approach for finding the most important features aug-

mented with a Gaussian-based model is designed to address the challenging classification

of the EMCI group from the CN group. This approach evaluated the merits of using

the Gaussian process and integrating the Bayesian prediction and classification model as

another direction for the application of machine learning in AD. To this end, we have used

a feature selection method based on the random forest algorithm and applied a recursive

feature elimination (RF-RFE) approach. Many of the related studies involve the MCI

group as a whole in their classification without distinction of the early and late stages of

MCI (EMCI and LMCI), which takes away the ability to detect the earliest signs of AD,

a challenge which this study has aimed to resolve. In addition, a large number of subjects

was considered, proving the ability of the proposed method to be generalized for other

classification purposes.

In chapter five, we introduced a multitask framework to model the disease progression

on a longitudinal data considering the structured sparsity of features with both coupling

across tasks and group selection for individual tasks. This framework is optimized by

the ADMM algorithm to solve for the non-smooth objective formulation. The proposed

framework includes a kernel-based approach to capture the nonlinear relationship between
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neuroimaging data and the cognitive scores along with a decision-tree ensemble to fuse the

separate modalities seeking a strong prediction performance. Our proposed method pro-

vides a unified approach to fuse heterogeneous data that cannot be directly concatenated

due to temporal sparsity of modalities as well as allowing for more flexibility in having

different weights for different modalities by specific-regression training. One advantage of

this study relates to the indication of at risk groups of normal cognition and mild cognitive

impairment to delay the onset of symptoms at clinical trials.

In addition, the most important biomarkers can be identified due to the sparsity-

inducing nature of the algorithm. Four cognitive scores of MMSE, ADAS, RAVLT-Im,

and RAVLT-PF were considered for predictive purposes using the proposed multimodal

neuroimaging platform. The episodic tests as used in this study were shown to be effec-

tive for selecting the at-risk groups. We observed that MRI morphometry was the most

sensitive biomarker to predict the conversion and we realized that parietal and prefrontal

cortices are also associated with episodic memory in addition to the temporal lobe. Al-

though adding FDG-PET, CSF, and APOE allele improved the prediction error at all 6

time points and significantly at 4 time points, we observed that using multimodal neu-

roimaging does not statistically enhance the prediction performance at some time points

due to the large size of missing data. It is clear that for longitudinal studies of this type

(4-year duration), the missing data challenge remains the most difficult to overcome for the

development of any future machine learning algorithm for predicting disease progression.

Limitations

Given the many accomplishments made through this research endeavor, there are still

some limitations to this study that need to be overcome. First, there are obviously other
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biomarkers such as functional magnetic resonance imaging (fMRI) and diffusion tensor

imaging (DTI) that may potentially augment and improve these current classification

and prediction results, especially in terms of the CN vs. EMCI classification and CN

conversion groups. In addition, the presence of noise has not been tested in our study

since the MRI and PET images considered underwent a high level of quality control. It

is essential for any study involving the acquisition of any imaging modality to undergo

quality control to ensure that no shading or aliasing is experienced and that such images

are free from the presence of impulse noise, Gaussian noise, and any other source of noise

that could affect the results of segmentation and the eventual extraction of key structural

or functional features. Moreover, in chapter 4 since finding the optimal threshold for

the Pearson’s correlation using optimization algorithms is time-consuming, we set the

threshold manually in this study. However, we contemplate to investigate using the mean

(𝜇), standard deviation (𝜎) and the upper percentile (𝑧) to determine a practical threshold

of what we assume will be normal distributions of the data under study as 𝑇 = 𝜇 + 𝑧𝜎,

a formula we discovered to work well with electroencephalography (EEG) data in epilepsy.

Furthermore, in chapter five, although 𝛽-amyloid of CSF correlates with the amyloid

level of PET neuroimaging, the two are not identical. Therefore, using the amyloid level

measured by PET as well as the CSF p-tau level using tau imaging instead of CSF may

change the results. In addition, the age-correction procedure could improve the learning

process to predict the cognitive scores, which was not added in our model. Also, one

challenge in clinical data processing is missing values. Although we handled the problem

of missing data using a decision tree-based model to fuse the separate modalities, still the

observations that had missing values in the target were excluded in this study.
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Therefore, these limitations will guide the development of new machine learning

algorithms that would improve these results and to do multiclass classification using a

more comprehensive multimodal neuroimaging platform. In addition, using unsupervised

approaches could exploit the information of unlabeled data for classifying and predicting

conversions in the presence of missing data.
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