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Until recently, Zika virus (ZIKV) was an obscure virus that rarely caused 

infections and was unknown to most. In 2015 and 2016, ZIKV came into the public 

spotlight as Brazil and other countries began to report large increases in infections with 

ZIKV and reported potential complications with developing fetuses and neurologic 

manifestations. In 2016, the state of Florida identified and responded to an outbreak of 

locally acquired ZIKV infections in Miami-Dade County. This dramatic increase in 

infections demonstrated both its importance as an emerging infectious disease and the 

paucity of knowledge surrounding ZIKV. This study seeks to utilize the data collected 

during the ZIKV pandemic to further characterize the virus and examine the efficacy of 

current diagnostic algorithms.  

First, a systematic review was conducted to pool data from the literature on 

existing cases of ZIKV infections. Markov chain Monte Carlo modeling was used to 

determine a median incubation time of 6.5 days for infections with ZIKV. Median time to 

viral RNA clearance varied significantly by specimen type. Vaginal specimens 
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demonstrated the shortest time to viral RNA clearance (9.9 days); whereas blood 

specimens exhibited the longest (49.2 days).  

Second, specimens from 934 symptomatic, non-congenitally acquired cases of 

ZIKV infection were analyzed to identify factors that contribute to the progression of 

viral load, as represented by the detection of ZIKV RNA. ZIKV RNA was detected most 

often in urine specimens and also was found to have higher viral loads than serum and 

whole blood specimens. Viral load was observed to be lower in non-pregnant women 

than pregnant women.  

Last, an evaluation of the Centers for Disease Control and Prevention’s (CDC) 

2017 and 2019 ZIKV testing algorithms was conducted using data from all confirmed 

and probable cases identified in Florida between 2016 and 2018 (n = 1,522). ZIKV RNA 

was detected most frequently in urine specimens. When testing required plaque reduction 

neutralization test (PRNT) to discern between ZIKV and dengue virus, the PRNT assay 

was only able to discriminate between viruses about half of the time. Reducing the 

specimen collection window in the 2019 CDC algorithm resulted in fewer conclusive 

results. 
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Chapter 1 

Introduction 

Background 

 The Zika virus (ZIKV) is an RNA virus that belongs to the Flaviviridae family, 

Flavivirus genus (1). Most Flavivirus species, including ZIKV, are transmitted through 

mosquito or tick vectors. Of note, several other clinically important species of viruses, 

including yellow fever virus (YFV), dengue virus (DENV), West Nile virus (WNV), and 

St. Louis encephalitis virus, share the same genus. The ZIKV was first isolated in 1947 in 

Uganda (2) and has since spread globally, causing an international outbreak in 2015 and 

2016. 

 Between its discovery in 1947 and 2007, only 14 cases of ZIKV infection in 

humans were reported (3). Several serosurveys that indicated the potential for endemicity 

of ZIKV in many African and Asian countries were conducted in the latter half of the 20th 

century. However, results of these surveys must be interpreted with caution due to 

incomplete data, variation in laboratory methods, and the high rate of cross-reactivity 

among the different species of the Flavivirus genus (4).  

 In 2007, an outbreak of ZIKV was detected on Yap Island in the Federated States 

of Micronesia. Forty-nine confirmed and 59 probable ZIKV infections were identified 

during the investigation (5). Results of a serosurvey indicated that approximately 73% of 

residents of the island had been infected with the virus, potentially indicating the ability 

of ZIKV to spread easily. In 2015, ZIKV was identified in Brazil (6). By the end of the 

year, an estimated 440,000 to 1,300,000 cases of ZIKV infection were projected to occur 

in the country (7). Because of the observed increase in microcephaly and neurological 
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disorders, such as Guillain-Barré syndrome, the World Health Organization (WHO) 

declared a Public Health Emergency of International Concern (PHEIC) on February 1, 

2016 (8). In 2016, Florida experienced a large increase of travel-associated ZIKV 

infections (9). Later that summer, local transmission was detected in Miami-Dade 

County, resulting in 285 cases of ZIKV infection (10). By the summer of 2017, the Pan 

American Health Organization (PAHO) had reported a total of 794,053 suspected, 

confirmed, and imported cases of the disease in the Americas (11). Congenital 

abnormalities associated with these infections were confirmed in 3,539 of these cases. By 

2019, ZIKV transmission had been reported in almost every country in the Americas. 

Although the outbreak has since slowed, the transmission of ZIKV is ongoing and 

continues to impact countries. During 2019, 33,896 ZIKV cases were reported to PAHO, 

6,640 of which were confirmed cases (12). 

The outbreak of ZIKV across the globe has elevated a once obscure disease to the 

forefront of medicine and public health. In the last four years (2016 through 2019), 6,707 

citations were indexed in PubMed containing “Zika” in the article title or abstract as 

compared to only 141 before 2016 (13). Despite the increased opportunity and 

availability of data, many questions are left unanswered.  

Original estimates of the incubation period of ZIKV infection and viral clearance 

are rooted in a single systematic review performed in 2016 shortly following the PHEIC 

announcement by the WHO (14). Twenty publications, with case data from only 25 

individuals, were included. Notably, this review focused only on blood specimens (whole 

blood, serum, and plasma), as the objective of the study was to estimate risk of 

transfusion-transmitted infections through blood donation. Since the PHEIC declaration, 
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many more case reports, case series, and observational studies have been published. 

These reports not only offer an expanded body of work from which to draw conclusions, 

but often utilize a wider breadth of clinical specimens to detect the virus, including whole 

blood, serum/plasma, urine, saliva, semen, and others. Recent case reports indicate that 

the time to clearance within whole blood specimens may significantly differ than 

clearance rates in serum or plasma. In a prospective observational study conducted by 

Joguet and colleagues, ZIKV RNA was detected in 3 of 15 patients at 120 days post-

symptom onset (15). Froeschl and colleagues also report a case exhibiting detection of 

ZIKV RNA longer than 100 days (16). In a point-to-point comparison of whole blood 

and plasma specimens, 23 whole blood specimens were positive as compared to 9 

corresponding plasma specimens (17). Despite prolonged detection observed in some 

specimen types, viral culture is not widely performed. This is partly due to the difficulty 

of the procedure and also because of the observed low viral load observed in these 

specimens (18). These low viral loads may indicate the detection of RNA by rRT-PCR 

does not reflect infectious virus. 

An update to this systematic review to include the most recent reports and 

covering a greater variety of specimen types is needed to refresh the current 

understanding of the virus. Understanding the detection profiles of different specimen 

types can assist healthcare providers and epidemiologists in better detecting infections. 

Further, detection of the virus in different specimen types may indicate the potential for 

other methods of transmission, such as via person-to-person contact. 

Several studies offer a glimpse into the course of viral load associated with ZIKV. 

Most reports and studies rely on very small sample sizes and unstandardized specimen 
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sampling (19-24). These reports provide limited evidence for the duration of positivity by 

rRT-PCR, but due to unstandardized testing methods, sporadic nature of specimen 

collection, and the limited sample sizes, they can only offer broad generalizations of the 

viremia and viruria caused by ZIKV. Differences in viral shedding amongst different 

groups have been observed. Prolonged viremia has been observed in case reports of 

pregnant women (25, 26), indicating a potential relationship between pregnancy status 

and ability to clear the virus. Increased viral loads in pregnant cases would provide 

further evidence for this potential relationship. Because YFV and DENV are closely 

related to ZIKV, those previously vaccinated or infected may exhibit the ability to clear 

the virus more rapidly. 

Understanding the complete course of viral load is especially important for 

developing and refining laboratory methodologies for the detection of ZIKV in clinical 

specimens. This knowledge can also aid epidemiologists in interpreting laboratory values 

and performing public health interventions. A more complete picture of the course of 

viral load can also assist investigators in understanding the viral kinetics of ZIKV when 

antiviral interventions are used as well as understanding the potential implications of 

viremia on pregnancy outcomes. 

Given the nondescript nature of symptoms, laboratory diagnosis is critical for the 

identification of ZIKV infections. Several diagnostic methods were used to identify and 

confirm ZIKV infection in patients (18, 27). Viral RNA was detected by rRT-PCR assays 

and generally considered confirmatory when positive. Urine has been observed to last 

longer following infection and at higher levels than serum (24, 28), potentially making 

urine an ideal specimen type. Antibody response to ZIKV was detected by virus-specific 
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IgM and plaque reduction neutralization test (PRNT) assays. Because the IgM assay for 

ZIKV can produce false-positive results due to antigenic similarities with other 

flaviviruses, positive or equivocal IgM results were considered presumptive positive until 

confirmed by ZIKV- and DENV-specific PRNT (29). The PRNT was generally 

considered the “gold standard” for differentiation and confirmation of arbovirus 

infections. However, it has been demonstrated that significant immunological cross-

reactivity between ZIKV and DENV exists (30-33), creating a significant challenge for 

diagnostic laboratories. These issues with the cross-reactivity may be exacerbated when 

considering populations with an increased proportion of exposure to DENV or pregnant 

cases. 

Effective use of laboratory assays is critical in the diagnosis of arboviral 

infections. The CDC publishes its recommended testing guidance and algorithms (34, 

35), revising them periodically as needed. Testing for ZIKV is grouped by clinical 

presentation (symptomatic or asymptomatic) and pregnancy status, due to the increased 

risk presented to developing fetuses. Significant changes were made between 2017 and 

2019, including changing the specimen collection window for rRT-PCR testing and 

including DENV testing due to the cross-reactivity between both viruses. 

 

Study Purpose and Significance 

 This study examines the natural history of viral load in ZIKV and its role in 

clinical diagnosis and outbreak detection. This is first accomplished through systematic 

review and analysis of published reports of symptomatic ZIKV infections. Viral load is 

further examined using epidemiological and laboratory data collected by the Florida 
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DOH from 2016 to 2017 during the ZIKV outbreak. Finally, the utility of testing 

guidelines recommended by the Centers for Disease Control and Prevention (CDC) in an 

outbreak setting are evaluated using the data from the Florida DOH. 

 The results of this study will help clinical and public health practitioners interpret 

the results from current diagnostic assays for ZIKV and potentially guide the 

development of future assays and testing guidelines. Additionally, increased knowledge 

of the characteristics of such tests will allow practitioners to target and adapt current 

screening programs to the appropriate populations. These results will also inform and 

guide public health actions in future endeavors to control the virus. 

 

Specific Aims and Hypotheses 

Aim 1: Using a systematic review, estimate the incubation period, infectious period 

(based on viral isolation results), and time to viral clearance in individuals infected with 

ZIKV in whole blood, serum/plasma, urine, saliva, and semen. 

Hypothesis 1a: Detectable viral RNA in whole blood decreases over time slowest 

compared to the other specimen types.  

Hypothesis 1b: The ability to isolate the virus in culture is very small, averaging no 

more than two weeks post-symptom onset. 

 

Aim 2: Using Florida DOH laboratory and surveillance data, estimate the progression of 

viremia/viruria and viral clearance in individuals infected with ZIKV in whole blood, 

serum, and urine.  
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Hypothesis 2a: Detectable viremia/viruria in non-pregnant individuals, demonstrated 

by the presence of ZIKV RNA, decreases over time slower in whole blood specimens 

than in urine or serum specimens. 

Hypothesis 2b: Detectable viral RNA in all three specimen types decreases over time 

more slowly in pregnant women than in non-pregnant individuals.  

Hypothesis 2c: Detectable viral RNA in all three specimen types decreases faster over 

time in individuals previously infected with another flavivirus or vaccinated with the 

yellow fever vaccine than in those with no previous infection or vaccine history. 

 

Aim 3: Using Florida DOH laboratory and surveillance data, evaluate the use and timing 

of molecular and serological testing to detect and differentiate ZIKV infections in an 

outbreak setting. 

Hypothesis 3a: In specimens collected within two weeks of symptom onset, reverse-

transcriptase polymerase chain reaction (RT-PCR) will detect a greater number of 

cases than IgM. 

Hypothesis 3b: Among RT-PCR positive cases, urine will detect the greatest number 

of cases as compared to serum and whole blood.  

Hypothesis 3c: Positive or equivocal DENV IgM and IgG results are more likely to 

be seen in cases born in countries endemic with dengue fever than those born in the 

United States. 

Hypothesis 3d: Inconclusive plaque reduction neutralization test (PRNT) results are 

more likely to be seen in cases born in countries endemic with dengue fever than 

those born in the United States. 
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Hypothesis 3e: Inconclusive PRNT results are more likely to be seen in pregnant 

cases than those non-pregnant cases. 

Hypothesis 3f: A diagnostic algorithm including DENV IgM and IgG testing would 

decrease the number of specimens required to be referred for PRNT testing. 
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Chapter 2 

Literature Review 

Identification 

The ZIKV belongs to the Flaviviridae family and is a member of the Flavivirus 

genus. Members of the Flavivirus genus are single-stranded, positive-sense RNA viruses, 

characterized by a type I cap at the 5’ end and one open reading frame (ORF) that 

encodes for three structural proteins and seven nonstructural proteins (1, 2). The 

structural proteins, the capsid, membrane (M protein), and envelope (E protein), are 

critical to the formation of the viral particle. These nonstructural proteins are integral in 

the replication of the virus within the host cell. Each virion is approximately 50 nm in 

diameter and spherical in shape. The surface of the virus is composed of E and M 

proteins arranged symmetrically as an icosahedron (3). Several other clinically important 

species of viruses, including YFV, DENV, WNV, and St. Louis encephalitis virus, share 

the same genus as ZIKV. 

The ZIKV was first isolated from a sentinel rhesus monkey in the April of 1947 

(4). Researchers placed platforms of rhesus monkeys in the Zika Forest in Uganda, taking 

their temperatures daily. When a monkey exhibited a fever, blood specimens were taken 

and injected into both mice and other Rhesus monkeys to demonstrate infectivity. The 

following year, the virus was again isolated from Aedes africanus mosquitoes from the 

same forest. These isolates were characterized serologically by using antiserum to other 

viruses, such as YFV, DENV, WNV, and others, to neutralize activity of the virus before 

infecting mice. Through these preliminary studies, it was determined that the virus was a 
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distinct, previously undiscovered virus, and was named for the forest where it was first 

discovered. ZIKV was later isolated from a pool of Ae. aegypti in Malaysia in 1966 (5) 

where it was thought to be circulating amongst wild monkeys. 

 

Emergence and Spread as a Human Pathogen 

The first human infections with ZIKV reported in literature were from Nigeria in 

1952 (6), although these were later thought to be ascribed to the incorrect virus (5, 7). It 

is now thought that a laboratory-acquired infection in a researcher residing in Uganda in 

1962 is the first reported infection with ZIKV in a human (8). Numerous serosurveys 

have been conducted in Africa, Asia, and the Pacific islands in an attempt to determine 

the extent of spread and prevalence of the virus  (9, 10). These studies, however, tend to 

suffer from complications arising from the serological cross-reactivity between ZIKV and 

other closely related viruses, and differences in testing methodologies, making their 

findings difficult to interpret.  

The first documented outbreak of ZIKV infections occurred in 2007 in Yap State 

in the Federated States of Micronesia, located in the western Pacific Ocean. Before this 

outbreak, only 14 human infections had been previously reported (2). Of the 158 patients 

tested, 49 were confirmed to be infected with the virus, and 59 were considered probable 

infections (11). A household serosurvey of residents indicated that 73% of island 

residents aged 3 years and older had been infected with the virus, demonstrating the 

ability of the virus to establish itself in a community. This outbreak also provided 
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valuable clinical and epidemiological information on the symptoms and clinical 

progression of the disease (11).  

In October of 2013, the first cases of ZIKV infections were recorded in the French 

Polynesia, located in the southern Pacific Ocean; by the end of the year, almost 6,000 

suspect cases had been identified through public health surveillance systems, indicating 

up to 19,000 infections could be present (12). Approximately 11% of the country’s 

population is estimated to have sought treatment for ZIKV during the outbreak, which 

ended in April 2014 (13). Phylogenetic analysis of virus from this outbreak demonstrated 

the strain to be closely related to an isolate from the Yap State outbreak as well as an 

isolate identified in Cambodia in 2010 (11). A serosurvey conducted 18 months later 

indicated that 49% (95% CI 42% to 57%) of study participants exhibited IgG antibodies 

to ZIKV (14). By the beginning of 2014 and into 2015, outbreaks of ZIKV infections 

began to appear in neighboring islands in the south Pacific Ocean, including New 

Caledonia, the Cook Islands, Easter Island, Vanuatu, the Solomon Islands, and others (13, 

15-18). 

Molecular evidence suggests that ZIKV may have been introduced into Brazil 

between May and December of 2013 (19, 20). However, the first reports of cases of mild 

illness presenting with rash did not begin appearing until early 2015. Between February 

and April 2015, almost 7,000 such cases had been reported (18). In March of 2015, seven 

sera from the state of Bahia, Brazil tested positive for ZIKV by reverse-transcriptase PCR 

(RT-PCR); phylogenetic analysis indicated that these isolates were most closely related 

to an isolate from the French Polynesia in 2013 (21). During the same month, a cluster of 

cases in the state of Rio Grande do Norte, Brazil was tested and identified as the first 
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report of autochthonous transmission of ZIKV in the country (22). Unfortunately, ZIKV 

infections did not become a reportable condition until 2016, making it challenging to 

ascertain the true extent of the outbreak in Brazil in 2015. In September, the Brazilian 

Ministry of Health (MOH) estimated that the country would experience between 443,502 

and 1,301,140 cases of ZIKV infections by the end of 2015 (23). By 2016, the outbreak 

in Brazil had expanded to most of the country’s states (24). By the end of 2016, 130,701 

confirmed and 84,618 probable cases had been reported to the MOH (25). A survey in the 

state of Bahia conducted between 2015 and 2016, indicated a seroprevalence of 63.3% 

(95% CI 59.4% to 66.8%) (26).  

Cases of ZIKV infection began appearing in neighboring countries towards the 

end of 2015 (27). The first cases of ZIKV infections acquired in Colombia were reported 

in October of 2015 (28). Suriname, El Salvador, Guatemala, Paraguay, Venezuela and 

Mexico reported locally acquired ZIKV infections in November of 2015 (27). On 

February 1, 2016, the Director-General of the WHO declared a PHEIC (29). By the end 

of 2016, 48 countries in the Americas region had reported autochthonous transmission of 

ZIKV (30). The Pan American Health Organization (PAHO) reported 534,553 probable 

and 177,614 confirmed cases of ZIKV infection in the Americas in 2016. Multiple 

phylogenetic analyses indicate that the introduction of ZIKV in the Americas originated 

in Brazil (20, 31). Further, molecular clock analyses are fairly consistent in estimating 

that the introductions into a country typically occurred months before public health 

surveillance systems identified these infections, indicating sustained transmission was 

ongoing during this time.  
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Between January 2015 and February 2016, 116 cases of ZIKV infection were 

reported in the United States (32), but none of these cases were acquired within its 

borders. By the end of July 2016, 383 travel-associated cases had been detected in the 

state of Florida (33). On August 1, 2016, in response to the identification of four locally 

acquired cases of ZIKV infections, the CDC issued travel guidance through the Health 

Alert Network, recommending pregnant women avoid unnecessary travel to the 

Wynwood area in Miami-Dade County, Florida (34). On August 16, 2016, the Florida 

Department of Health (DOH) announced another area of local transmission in Miami 

Beach, and on October 13, 2016, local transmission in the Little River neighborhood. As 

with other introductions, genetic analysis of 39 genomes associated with the outbreak in 

Miami-Dade County indicated that the virus was introduced at least two months before 

the initial cases were detected in July (35). At the conclusion of 2016, 285 locally 

acquired and 1,122 travel-associated cases of ZIKV infection had been identified in 

Florida. In 2017, the total number of ZIKV infections reported in the United States 

dropped more than 10-fold from 5,168 in 2016 to 452; only seven of these cases in 2017 

were determined to be acquired locally (36, 37).  

Although the magnitude of the ZIKV infection outbreak has decreased since its 

peak in 2016, and the PHEIC was announced over less than a year from its declaration, 

ZIKV still remains a concern in the Americas. As of July 2019, the WHO reported that at 

least 87 countries or territories had evidence of local transmission of ZIKV (38). Between 

2017 and 2019, 123,009 total cases (30,019 confirmed) were reported in the Americas to 

PAHO with the majority of these cases coming from Brazil (39). By 2019, only three 
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countries in the Americas (mainland Chile, Uruguay, and Canada) had not reported ZIKV 

transmission (38). 

 

Transmission and Vectors 

 The primary mode of transmission of ZIKV is via the bite of infected mosquitoes 

(40). There are two main transmission cycles associated with ZIKV transmission: sylvatic 

and urban. The sylvatic cycle refers to transmission between non-human primates and 

zoophilic mosquito species. Once transmission is established within a human population, 

transmission is primarily via the urban cycle, between human hosts and anthrophilic 

mosquito species. The species thought to be responsible for most vector borne 

transmission is the Ae. aegypti mosquito (40). This species has been implicated both 

through field collections and experimental transmission studies (9, 40). Other Aedes 

species, such as Ae. albopictus and Ae. hensilii, have also demonstrated the ability to 

transmit the virus. The current geographical distribution of Ae. aegypti closely resembles 

the spread of the ZIKV infections during the 2016-2018 outbreak. Modeling of vector 

distribution, indicated that, out of the 188 countries or territories suitable for Ae. aegypti, 

85 (45%) had reported autochthonous transmission of ZIKV (41). 

 There are three other primary mechanisms of transmission for ZIKV: maternal-

fetal transmission, blood product transfusions, and sexual transmission. Maternal-fetal 

transmission occurs when the virus passes from an infected mother to her infant. 

Congenital infection can occur if the virus crosses through the placenta and infects the 

unborn child (42). In a prospective cohort study of 291 pregnancies in French Guiana 

during the ZIKV infection outbreak, infection of the mother resulted in maternal-fetal 
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transmission in 26% of cases; no differences were observed between those that resulted 

in congenital infections and those that did not (43). The ZIKV has also been detected and 

cultured from breast milk (44, 45), representing another possible route of maternal-fetal 

transmission.  

Probable transfusion-transmitted infections have also been reported in the 

literature (46, 47), although it is often difficult to completely rule out vector-borne 

transmission in these cases. During the 2013 outbreak in the French Polynesia, nucleic 

acid testing of blood donors identified 42 asymptomatic infections in a four-month period 

(48). In February 2016, the Food and Drug Administration issued guidance on donor 

deferral and testing for areas with and without local transmission in the United States 

(49). Between April and June 2016, ZIKV RNA was identified in 68 blood donors in 

Puerto Rico using newly implemented screening procedures for the virus (50), 

demonstrating the potential for transmission through the blood supply.  

The first case of sexual transmission of ZIKV was likely a case report from 2008 

(51). In this case, a male researcher that had recently returned to the United States from 

Senegal fell ill with ZIKV disease shortly after his return. Five days following the onset 

of his symptoms, his wife, having not recently traveled, also developed similar 

symptoms. Although it is impossible to rule out isolated vector-borne transmission or 

transmission via direct contact, the couple reported having sexual intercourse prior to the 

onset of symptoms. Several other reports of putative male-to-female sexual transmission 

have been published (52-54), as well as female-to-male (55), and male-to-male (56) 

sexual transmission. The ZIKV has been found in both seminal fluids (57-59) and vaginal 

secretions (60, 61). Both the WHO and CDC recommend that males practice safe sex for 
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at least three months and females practice safe sex for at least two months following 

possible exposure to ZIKV; women that are pregnant should practice safe sex with their 

partner for the duration of their pregnancy following possible exposure to the virus (62, 

63). 

 

Clinical Presentation 

 The first report of symptoms associated with ZIKV disease was in a volunteer 

experimentally infected with the virus (64). The patient experienced a slight headache, a 

short period of mild fever, and malaise approximately 82 hours following inoculation. On 

the fifth day of illness, the patient’s headache increased in severity, fever rose slightly, 

and he experienced nausea and vertigo. The illness resolved on the morning of the 7th day 

with no other sequelae. Infection with ZIKV was confirmed by culturing the virus from 

the volunteer and observation of an increase in antibodies to the virus. A cohort of 31 

patients from the Yap Island outbreak in 2007 provide the first sizeable sample of people 

with ZIKV infection symptoms (11). The most common symptom experienced by the 

cohort was a maculopapular or papular rash (90% of patients), followed by fever (65%), 

arthritis or arthralgia (65%), nonpurulent conjunctivitis (55%), myalgia (48%), headache 

(45%), retro-orbital pain (39%), edema (19%), and vomiting (10%). Rash duration was 

approximately 6 days (with a range of 2 to 14 days), and arthralgia lasted for 

approximately 3.5 days (1 to 14 days). Symptoms were generally mild with no 

hospitalizations or deaths. A systematic review of 52 additional articles and reports 

conducted in 2016 found that the most frequently reported symptoms were the same as 

those described in the Yap Island outbreak (65).  



 20 

 Another key finding of the Yap Island outbreak was the ratio of symptomatic 

illness to those presenting without symptoms. The authors estimated that approximately 

919 residents (18%) infected with ZIKV presented with clinical symptoms (11). This 

indicates that approximately 80% of ZIKV infections present with no symptoms. A 

systematic review conducted in 2018 identified 23 studies describing the prevalence of 

asymptomatic infections (66). The authors observed a large amount of variation in the 

prevalence of asymptomatic infections, ranging from 29% to 82%, depending on the 

study population. The pooled prevalence of asymptomatic infections was 61.8% (95% CI 

33.0% to 87.1%), but the authors note that this estimate may not be robust. Other 

arboviruses demonstrate varying prevalence of asymptomatic infections. Approximately 

75 to 80% of infections with WNV and DENV are thought to be asymptomatic (67, 

68);whereas only about 55% of infections with YFV are thought to be asymptomatic 

(69). However, because most infections with ZIKV that do present with symptoms are 

mild in nature (9, 11), these estimates could be too high. 

 With the introduction and dramatic transmission of ZIKV in Brazil, a marked 

increase in the number of cases of microcephaly, a birth defect where a newborn’s head 

circumference is smaller than normal, was also observed (70). Between 2000 and 2014, 

the average annual number of reported cases of microcephaly in Brazil was 157.3; in 

2015, 574 cases of microcephaly were reported. A similar increase in microcephaly was 

observed in Columbia in 2016; 476 cases of microcephaly were reported between 

epidemiologic weeks 5 and 45 as compared to 110 cases during the same time period the 

year prior (71). Retrospective analysis of cases during the 2013–2015 French Polynesia 

outbreak indicated a similar trend (72). This correlation, in part, led the WHO to declare 



 21 

the PHEIC in February 2016 (29). A pattern of other birth defects and anomalies emerged 

beyond microcephaly. In addition to severe microcephaly, characteristics of congenital 

Zika syndrome (CZS) include brain anomalies, ocular anomalies, congenital contractures, 

and neurological complications (73). In a study of 1,450 children aged ≥1 year born to 

mothers with ZIKV infection in the United States or its territories, 203 (14%) had at least 

one ZIKV-related birth defect or neurodevelopmental abnormality (74). 

 A similar correlation was seen with ZIKV and Guillain-Barré syndrome (GBS), a 

disorder where the patient’s immune system damages the nervous system, causing 

weakness or paralysis. During the ZIKV disease outbreak in the French Polynesia, the 

incidence rate of GBS was approximately 20 times higher than expected (13). A case-

control study of 42 French Polynesian patients diagnosed with GBS, 41 (98%) were 

positive for IgM or IgG against ZIKV compared with only 35 (36%) of the controls (OR 

59.7, 95% CI 10.4 to ∞) (75). ZIKV was detected in two patients who were diagnosed 

with GBS in Martinique (76). Out of 56 patients diagnosed with GBS in Puerto Rico 

during the first seven months of 2016, 34 (37%) had evidence of ZIKV or flavivirus 

infection (77). As of October 2016, the WHO reported that 13 countries had observed an 

increase in the incidence of GBS cases; an additional six countries had reported GBS in 

patients diagnosed with ZIKV infection (78). A systematic review conducted in 2018 

indicated that the incidence rate for Latin American and Caribbean nations increased 2.6 

times (95% CI 2.3 to 2.9) during the ZIKV disease outbreak (79). 
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Laboratory Methods 

 Three types of diagnostic assays are predominantly used to identify infections 

with ZIKV (80, 81). The first group are those tests that detect the virus’ RNA, or nucleic 

acid amplification tests (NAATs). Although there are many variations of these tests, 

NAATs detect a genetic sequence (or multiple sequences) of viral RNA specific to ZIKV 

and amplify the sequence for detection. These assays are both sensitive and specific, 

allowing for the identification of very minute quantities of RNA. Because these assays 

detect the virus directly, a positive result in a patient typically indicates an acute infection 

with the virus (81, 82).The most common type of NAAT is the real-time reverse-

transcriptase polymerase chain reaction (rRT-PCR) test. Briefly, these assays mimic the 

natural process of DNA replication by first producing complementary DNA (cDNA) 

from the virus’ RNA, binding ZIKV-specific primers to the cDNA, and replicating using 

a thermostable polymerase (83). Detection is facilitated in “real-time” with fluorescently 

labeled probes or other detection chemistries. Reactions can also be multiplexed, 

meaning multiple targets (e.g., multiple viruses) can be detected simultaneously (84). 

Common genetic targets of current ZIKV NAATs include the envelope, membrane, and 

several of the nonstructural proteins (81, 85). Even though rRT-PCR assays are able to 

detect very small quantities of virus, the viral load associated with ZIKV infections has 

been reported to be substantially lower than other flavivirus infections (86, 87) and may 

differ between specimen types (88). 

 Another common assay type for the diagnosis of ZIKV infection is the enzyme-

linked immunosorbent assay (ELISA). These assays most frequently look for the 

presence of IgM or IgG antibodies against the virus produced by the patient. IgM 
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antibodies are typically produced in response to the first time the immune system 

encounters a new pathogen and are typically present shortly after infection until a few 

months. As the quantity of IgM antibodies wanes, the amount of IgG antibodies, which 

typically provide long lasting immunity, increases and often lasts for years. Generally, 

the presence of IgM antibodies indicates that the infection was recent (within the last few 

weeks or months); whereas the presence of IgG indicates a previous infection (82). Of the 

five assays currently approved for use in the United States, all of them detect only IgM 

(89, 90); ZIKV IgG assays exist but are not widely used. IgM ELISAs work by coating a 

test well with anti-IgM antibodies that will capture the patient’s IgM antibodies from 

serum. These bound antibodies are then exposed to a known ZIKV antigen. This process 

is detected by adding a fluorescently labeled antibody that will bind to the antigen and 

produce a color change. The antigen used for these assays vary, but usually consist of a 

non-infectious ZIKV-like particle, the ZIKV envelope, or the ZIKV NS1 protein (85). 

The presence of IgM antibodies would indicate that the patient has previously been 

infected by the virus, although the timing of such infection is often difficult to intuit. A 

recent study demonstrated that 76% of patients with symptomatic ZIKV infection 

(confirmed by rRT-PCR) had detectable IgM against ZIKV 25 months following the 

initial illness (91), limiting the utility of this test as an indicator of recent infection. 

Another complication of these assays is the cross-reactivity observed with other 

flaviviruses, especially DENV (81, 85, 92, 93). Under current diagnostic guidance from 

the CDC, specimens that test positive for ZIKV IgM should be tested further (82). 

 The plaque reduction neutralization test (PRNT) is considered the “gold standard” 

for serological testing of ZIKV (85). This assay determines if patient antibodies are 
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effective at neutralizing live virus to keep it from replicating. The assay can be conducted 

with ZIKV, DENV, and other flaviviruses. Patient sera is serially diluted and incubated 

with a standard amount of virus (81). This mixture is then inoculated onto a monolayer of 

cultured cells on a semisolid medium and incubated. Viral plaques are then counted, and 

the dilution resulting in a reduction in 90% of the plaques is considered the endpoint of 

the assay. This process is both time- and labor-intensive and typically only available in 

select public health laboratories. Because of the cross-reactivity observed in the ZIKV 

IgM ELISA, PRNT for both ZIKV and DENV is recommended for positive or equivocal 

results (82). However, recent experiences with the PRNT assay have indicated that the 

assay is also prone to cross-reactivity with DENV (11, 93), causing difficulty in 

interpretation in populations previously exposed to DENV and limiting its utility.  
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Chapter 3 

Persistence of Zika Virus in Clinical Specimens: A Systematic Review 

Background 

 First isolated in 1947 (1), only 14 cases of human ZIKV infection had been 

reported between the discovery of the virus and 2007 (2). However, with the recent 

global spread of the virus, a dramatic increase in the number of confirmed and 

presumptive cases has been reported (3-6). Despite this impressive surge in cases, little is 

known about the time course of viremia and viruria. As the literature expands to include 

case reports and observational studies, it is important to coalesce these data to have an 

accurate and updated understanding of viral persistence in those infected with the virus. 

 Understanding the natural history of viral persistence is especially important for 

healthcare providers and epidemiologists in interpreting laboratory values and performing 

public health interventions. This knowledge can also help in developing laboratory 

methodologies for the detection of the virus and refining testing algorithms. A more 

complete picture of when ZIKV RNA can be detected in various clinical specimens can 

also assist researchers in understanding the kinetics of the virus when antiviral 

interventions are used as well as interpreting the potential implications of viral load on 

pregnancy outcomes. To this end, a systematic search and review of available literature 

was performed to identify published articles and other materials describing the 

progression of the virus in various body fluids in uncomplicated, symptomatic ZIKV 

infections. 
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Methods 

 Protocol. This systematic review was conducted according to the 2009 Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (7) and the 

registered protocol (CRD42018092049) can be found on PROSPERO (8). 

 Eligibility. Original case reports of symptomatic ZIKV infection in humans were 

included. Cases without symptom onset or those where infection was putatively acquired 

in utero were excluded as the timing of viremia could not be reliably determined. Cases 

presented along with significant medical comorbidities (such as simultaneous co-

infections, chronic health conditions, or compromised immune status) or as part of an 

intervention were excluded in an attempt to limit confounding. Case data from the 

validation of laboratory methods were also excluded as to not potentially count cases 

more than once. 

 Outcomes. Two primary outcome measures were examined: exposure and viral 

clearance intervals. The exposure interval was defined as the first to the last potential date 

of exposure, as determined by the authors presenting the case(s). Where possible, the 

viral clearance interval was defined as the date of last positive RT-PCR result to the first 

negative RT-PCR result. When no negative result was reported, the last positive RT-PCR 

result was utilized as the start of the viral clearance interval and left unbounded during 

statistical analysis. Intervals were calculated on whole days only.  

 Search methodology. A literature search of the CINAHL, EMBASE, LILACS, 

and Medline electronic databases was conducted independently by two authors (SLW and 

MC) on March 22, 2018. The following generic search phrase was used in each database, 

modified to include MeSH terms and subject headings where appropriate: Zika OR ZIKV 
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AND viremia OR viraemia OR viruria OR kinetic* OR dynamic* OR progress* OR 

“time course” OR clearance OR ((viral OR virus) AND (load OR isolation OR culture)) 

OR PCR. No limitations were included in the search; all records included up to the date 

of the search were included. Covidence Systematic Review Software (Veritas Health 

Innovation, Melbourne, Australia) was used to import and screen references. Reviews 

were completed independently by two of the authors (SLW and MC). Titles and abstracts 

were evaluated for preliminary inclusion in the study by both reviewers. If either 

reviewer selected a study for inclusion, the full text was evaluated to ensure applicability 

to the review.  
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Table 1. Database search phrases 

Database Search Phrase 

CINAHL 
Current Nursing and Allied 
Health Literature 

(Zika OR ZIKV OR (MH "Zika Virus Infections") OR 
(MH "Zika Virus")) AND (viremia OR viraemia OR 
viruria OR kinetic* OR dynamic* OR progress* OR 
"time course" OR clearance OR ((viral OR virus) 
AND (load OR isolation OR culture)) OR PCR OR 
(MH "Viremia") OR (MH "Kinetics") OR (MH 
"Disease Progression") OR (MH "Viral Load") OR 
(MH "Microbial Culture and Sensitivity Tests") OR 
(MH "Polymerase Chain Reaction")) 

EMBASE 
Excerpta Medica dataBASE 

(Zika OR ZIKV OR 'Zika fever'/de OR 'Zika virus'/de) 
AND (viremia OR viraemia OR viruria OR kinetic* 
OR dynamic* OR progress* OR "time course" OR 
clearance OR ((viral OR virus) AND (load OR 
isolation OR culture)) OR PCR OR 'viremia'/de OR 
'viruria'/de OR 'kinetics'/de OR 'viral clearance'/de OR 
'disease exacerbation'/de OR 'virus load'/de OR 'virus 
isolation'/de OR 'virus culture'/de OR 'pcr'/de OR 
'polymerase chain reaction'/exp) 

LILACS 
Literatura Latino-Americana 
e do Caribe em Ciências de 
Saúde 

(Zika OR ZIKV) AND (viremia OR viraemia OR 
viruria OR kinetic* OR dynamic* OR progress* OR 
"time course" OR clearance OR ((viral OR virus) 
AND (load OR isolation OR culture)) OR PCR) 

MEDLINE 
Medical Literature Analysis 
and Retrieval System Online 

(Zika OR ZIKV OR MESH.EXACT("Zika Virus 
Infection") OR MESH.EXACT("Zika Virus")) AND 
(viremia OR viraemia OR MESH.EXACT("Viremia") 
OR kinetic* OR MESH.EXACT("Kinetics") OR 
dynamic* OR progress* OR MESH.EXACT("Disease 
Progression") OR "time course" OR ((viral OR virus) 
AND (load OR isolation OR culture)) OR 
MESH.EXACT("Viral Load") OR 
MESH.EXACT("Virus Cultivation") OR PCR OR 
MESH.EXACT.EXPLODE("Polymerase Chain 
Reaction")) 

 
 Data collection. Each record was assigned a reference number and each case 

presented within that record was given a unique subject ID number. For each case, the 

following information was extracted when presented: gender, age, special population 
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characteristics (e.g. pregnancy status, flavivirus vaccinations, neurological involvement), 

number of symptoms, putative country of infection, specimen type, first and last day of 

potential exposure, first and last day of symptom onset, date of symptom resolution, 

specimen type, RT-PCR test results, cell line, timing of specimen collection, incubation 

timing, and detection methodology. Specimen types were simplified into the following 

categories: blood, cerebrospinal fluid (CSF), saliva, semen, serum, urine, vaginal, 

unknown, and other. Testing data were separated by specimen type. In other words, each 

line in the complete dataset represents a single patient and a single specimen type. For 

example, if one patient had three specimen types collected and tested, there would be 

three separate entries for that patient. Data were extracted by a single author (SLW) and 

reviewed for accuracy by a second author (MC); discrepancies were resolved by 

consensus. 

 Quality assessment. To evaluate the quality of each record and the risk of bias, the 

National Institute of Health’s Study Quality Assessment Tools for case series studies was 

adapted. This tool evaluates studies on elements of the study population, description of 

the cases, uniformity of results, methods, and presentation (Figure 1).  
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Figure 1. Record quality assessment criteria. 

 
Criteria 

Maximum 
Score 

1 

Does the patient(s) represent(s) the whole experience of the investigator 
(center)? 

2   1 point for a single case report 

  1 point for poorly described case series 

  2 points for case series with described selection method 

2 
Was the exposure adequately ascertained? 

1 
  1 point for well-described case history 

3 

Was the outcome adequately ascertained? 

2 
  

0 points for poorly described primary outcomes or if outcomes are 
unclear 

  
1 point if primary outcomes are not systematically described 
amongst cases 

  
2 points if primary outcomes are thoroughly and systematically 
described amongst all cases 

4 

Were other alternative causes that may explain the observation ruled 
out? 

1   0 points if medical history not provided 

  
1 point if medical history is provided or if additional lab testing 
provided 

5 
Was follow-up long enough for outcomes to occur? 

2   0 points if testing is only conducted at one time point per specimen 

  2 points if serial testing performed 

6 

Is the case(s) described with sufficient details to allow other 
investigators to replicate the research or allow practitioners to make 
inferences related to their own practice? 

2   0 points if case details are not provided 

  1 point if case details are unclear or incomplete 

  
2 points if details are systematically collected and complete for all 
cases 

7 
Was a more advanced study design, such as a cohort design, utilized? 

2   0 points if only a case study or case series 

  2 points if cohort study conducted 
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 Statistical analysis. Descriptive statistics were calculated using SAS software 

version 9.4 (Cary, NC, USA). Incubation period and viral clearance rates were estimated 

using methods similar to those described by Lessler and colleagues (9). Briefly, upper 

and lower bounds were extracted from case data for the time of exposure, time of 

symptom onset, first and last positive RT-PCR results, and first negative RT-PCR result. 

Using Markov chain Monte Carlo (MCMC) modeling, these bounds were used to 

estimate the incubation period of ZIKV disease (time from exposure to symptom onset) 

and the time to viral clearance (from symptom onset). MCMC modeling was conducted 

using R statistical language (Vienna, Austria) with the JAGS package, version 4.10.  

 

Results 

Search Results 

 4,803 references (Figure 2) were identified from CINAHL (n = 600), EMBASE (n 

= 1,879), LILACS (n = 1,122), and MEDLINE (n = 1,202). Of these, 2,051 were 

identified as duplicate references and removed. The titles and abstracts of the remaining 

2,750 references were screened for inclusion. 2,324 were excluded, leaving 426 full-text 

articles to be evaluated. Of these 426 articles, 289 were excluded, leaving 137 citations 

for inclusion into the study. One of these citations was a follow-up report on a previously 

included article. 
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Figure 2. Record selection flow chart. 

 
 

Record Quality 

 Of the 137 records included in the study, 136 were reviewed for quality; the 

remaining record was an update to another study already included. The possible range of 

CINAHL
n = 600

EMBASE
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Records Imported
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Full-text Records 
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Records Included

2,051 Duplicate Records 
Removed

2,324 Records Excluded
• 1,366 wrong population
• 594 secondary data
• 221 wrong publication type
• 143 wrong outcome

289 Records Excluded:
• 183 wrong outcome
• 53 wrong population
• 33 secondary data

1 Record Excluded:
• Duplicate case
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scores was from 0 to 12, higher scores indicating a higher quality. The median score was 

7 with a range of 0 to 12 (Table 2). 

 

Table 2. Frequency of record quality scores. 

Possible 
Score 

No. 
Records 

0 2 
1 0 
2 0 
3 1 
4 11 
5 17 
6 21 
7 26 
8 28 
9 15 
10 7 
11 6 
12 2 

 
 

Patient Results 

 Data were abstracted from 792 patients from the 136 records. A median of 2 

specimen types were reported for each patient (range: 1 to 6), resulting in 1,571 total 

entries. Availability of data varied greatly amongst the records. Amongst the patient-level 

data, gender was missing from 180 patients (22.7%), and age was available for only 

65.2% of patients (Table 3). Complete exposure data was available for only 93 (11.7%) 

cases. Data on symptom presentation were available on less than half of all cases. 

Notably, the putative source of infection was presented in the majority of cases (77.8%). 

Specimen type was available in 99.2% (1,559) of specimen-level data. Unsurprisingly, 
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the availability of testing data varied. The earliest positive result was available in 67.9% 

of specimens (1,067), but the last positive result was presented in only 15.7% of records. 

A negative result, however, was available in about half of the specimens (53.2%). 

 

Table 3. Availability of patient- and specimen-level data available. 

 
Female 
n (%) 

Male 
n (%) 

Unknown 
n (%) 

Total 
n (%) 

Total 285 327 180 792 

Age* 256 (89.8) 260 (79.5) 0 (0.0) 516 (65.2) 

Symptoms* 122 (42.8) 147 (45.0) 50 (27.8) 319 (40.3) 

Source of 
infection* 

255 (89.5) 283 (86.5) 78 (43.3) 616 (77.8) 

Exposure period* 48 (16.8) 75 (22.9) 0 (0.0) 123 (15.5) 

Symptom 
duration* 

35 (12.3) 53 (18.6) 0 (0.0) 88 (11.1) 

Exposure period 
and symptom 
onset* 

41 (14.4) 52 (14.1) 0 (0.0) 93 (11.7) 

Specimen type 526 (99.6) 684 (98.6) 349 (100.0) 1559 (99.2) 

Earliest positive 
result 

357 (67.6) 444 (84.1) 266 (50.4) 1067 (67.9) 

Last positive result 75 (14.2) 149 (28.2) 23 (4.4) 247 (15.7) 

First negative 
result 279 (52.8) 430 (81.4) 126 (23.9) 835 (53.2) 

All three 53 (10.0) 114 (16.4) 20 (5.7) 187 (11.9) 

PCR assay type 495 (93.8) 638 (91.9) 328 (94.0) 1461 (93.0) 

 
*Age, symptoms, source of infection, exposure period, and symptom duration are derived 
from patient-level data (n = 792); all others derived from specimen-level data (n = 1,571). 
  
 

 285 (36.0%) of the patients were female and 327 (41.3%) were male; the gender 

of 180 (22.7%) patients was not described (Table 4). Thirty-six (12.3%) of the female 
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patients were pregnant. Thirty-five (4.4%) of the cases exhibited neurological 

complications, such as GBS or encephalitis.  

 

Table 4. Case characteristics. 

  
Female 
n (%) 

Male 
n (%) 

Unknown 
n (%) 

Total 
n (%) 

Total 285 (36.0) 327 (41.3) 180 (22.7) 792 
Age (years)     
 Mean 32.8 34.7 - 33.7 
 Range 0 to 80 1 to 80 - 0 to 80 
 0-4 10 (3.5) 5 (1.5) 0 (0.0) 15 (1.9) 
 5-9 16 (5.6) 18 (5.5) 0 (0.0) 34 (4.3) 
 10-19 31 (10.9) 28 (8.6) 0 (0.0) 59 (7.5) 
 20-29 53 (18.6) 41 (12.5) 0 (0.0) 94 (11.9) 
 30-39 58 (20.4) 62 (19.0) 0 (0.0) 120 (15.2) 
 40-49 42 (14.7) 66 (20.2) 0 (0.0) 108 (13.6) 
 50-59 27 (9.5) 22 (6.7) 0 (0.0) 49 (6.2) 
 ≥60 19 (6.7) 18 (5.5) 0 (0.0) 37 (4.7) 
  Not described 29 (10.2) 67 (20.5) 180 (100.0) 276 (34.9) 
Special 
population     
 Pregnant 36 (12.3) - - 36 (4.6) 

  
Neurological 
complications 14 (4.9) 21 (6.4) 0 (0.0) 35 (4.4) 

Number of key 
symptoms     
 Zero 2 (0.7) 1 (0.3) 2 (1.1) 5 (0.6) 
 One 18 (6.3) 19 (5.8) 7 (3.9) 44 (5.6) 
 Two 30 (10.5) 41 (12.5) 15 (8.3) 86 (10.9) 
 Three 26 (9.1) 37 (11.3) 16 (8.9) 79 (10.0) 
 Four 34 (11.9) 35 (10.7) 9 (5.0) 78 (9.8) 
 Five 12 (4.2) 12 (3.7) 0 (0.0) 24 (3.0) 
 Six 0 (0.0) 2 (0.6) 1 (0.6) 3 (0.4) 
 Not described 163 (57.2) 180 (55.0) 130 (72.2) 473 (59.7) 

 
 

Serum specimens were collected most often, representing approximately half of 

the dataset (46.0%); urine specimens represented 27.1% of the dataset (Table 5). Notably, 



 44 

semen specimens represent 14.6% (101) of the specimens tested for male patients; 

whereas vaginal specimens only accounted for 5.3% (28) of those collected on female 

patients. Interestingly, given the heightened attention on neurological involvement, CSF 

specimens only represented 1.7% (27) of the dataset. 

 

Table 5. Specimen types by gender. 

Specimen type 

Female 
n (%) 
528 

Male 
n (%) 
694 

Unknown 
n (%) 
349 

Total 
n (%) 
1,571 

Blood 31 (5.9) 35 (5.0) 15 (4.3) 81 (5.6) 

Cerebrospinal fluid 10 (1.9) 17 (2.5) 0 (0.0%) 27 (1.7) 

Saliva 35 (6.6) 56 (8.1) 56 (16.1) 147 (9.4) 

Semen - 101 (14.6) 0 (0.0%) 101 (6.4) 

Serum 257 (48.67) 287 (41.4) 179 (51.3) 723 (46.0) 

Urine 150 (28.4) 177 (25.5) 99 (28.4) 426 (27.1) 

Vaginal 28 (5.3) - 0 (0.0%) 28 (1.8) 

Other 15 (2.84) 11 (1.6) 0 (0.0%) 26 (1.7) 

Unknown 2 (0.4) 10 (1.4) 0 (0.0%) 12 (0.8) 
 
 

 The exposure period and date of symptom onset (necessary to estimate the 

incubation period) was only abstracted from 93 (11.7%) cases. The median exposure 

period was 14 days with a range of 0 to 547 days (Table 6). The median time from the 

last exposure to symptom onset was 2 days with a range of -10 to 59 days. Using MCMC 

modeling, the median incubation period was determined to be 6.5 days (95% credible 

interval [CrI]: 5.5 to 7.7 days) with a dispersion 1.7 days (95% CrI: 1.5 to 2.7 days) 

(Figure 3). The median duration of symptoms was 7 days with a range of 1 to 60 days. 
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No significant differences were observed between genders. The median time to earliest 

positive result post-symptom onset for all specimen types was 4 days with a range of -2 

to 98 days. The median time to latest positive and first negative result for all specimen 

types was 15.5 (range 2 to 188) and 11.0 (range 0 to 256), respectively. Significant 

differences were observed between males and females for the timing of the first positive 

result and first negative result, but not the latest positive result. 

Figure 3. Estimated incubation period for symptomatic Zika virus disease. 

 
Solid line indicates estimated proportion of cases developing symptoms at days post-
infection. Shaded areas indicate 95% CrI. 
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Table 6. Primary outcomes by gender. 

Variable n (%) Median 
Interquartile 
Range Range p-value 

Exposure 
period     0.467 

 Female 48 (39.0) 14.5 16.5 2 to 547  
 Male 75 (60.1) 12.0 19.0 0 to 365 
  Total 123 (100.0) 14.0 17.0 0 to 547  
Symptom 
onset     0.883 

 Female 96 (45.7) 2.0 4.0 -8 to 6  
 Male 114 (54.3) 1.0 5.0 -10 to 59 
  Total 210 (100.0) 2.0 5.0 -10 to 59  
Symptom 
duration     0.185 

 Female 35 (39.8) 8.0 8.0 2 to 60  
 Male 53 (60.2) 7.0 6.0 1 to 33 
  Total 88 (100.0) 7.0 6.5 1 to 60  
DCPSO*  
earliest positive    <0.001 

 Female 357 (44.6) 3.0 3.0 -2 to 98  
 Male 444 (55.4) 5.0 4.0 -2 to 91 
  Total 801 (100.0) 4.0 5.0 -2 to 98  
DCPSO*  
latest positive    0.134 

 Female 75 (33.5) 14.0 24.0 2 to 120  
 Male 149 (66.5) 18.0 36.0 2 to 188 
  Total 224 (100.0) 15.5 34.5 2 to 188  
DCPSO* first negative    0.006 

 Female 279 (39.4) 9.0 17.0 0 to 198  
 Male 430 (60.6) 13.0 25.0 0 to 256 
  Total 709 (100.0) 11.0 20.0 0 to 256  

*days collected post-symptom onset 
 
 

 Differences were also observed when examining the timing of results for different 

specimen types (Table 7). For earliest positive results, blood, saliva, serum, urine, and 

vaginal specimens all had a similar median time to first detection (3 to 5 days). CSF 
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appeared to have a slightly longer time to become positive (median 8 days), although this 

was observed within a fairly small sample size. Semen specimens, however, did not 

become positive until a median of 15 days. There also appeared to be variation amongst 

specimen types for the first negative result. Serum specimens were negative within a 

median of 6 days post-symptom onset (range 0 to 256); whereas urine specimens were 

negative within a median of 20 days (range 0 to 134) and semen 42 days (range 4 to 201).  

 Similarly, viral clearance estimates varied significantly by specimen type (Table 

8, Figure 4). Blood specimens had the longest mean time to viral clearance, 49.2 days 

(95% CrI: 33.9 to 80.8 days). Vaginal specimens had the shortest mean time to viral 

clearance (9.9 days, 95% CrI: 6.6 to 17.9 days). The time to viral clearance for urine was 

determined to be almost twice as long as that of serum (20.5 versus 10.8 days). 

 
  



 48 

Table 7. Median times to first and last positive and first negative rRT-PCR results. 

  Blood CSF Saliva Semen Serum Urine Vaginal Other Unknown p-value 
DCPSO Earliest Positive 
n 69 10 108 65 432 348 21 31 2 

< 0.001 Median 5 8 4 15 3 4 4 3 6 
IQR 5 3 3 20 3 5 5 2 8 
Range 0 to 98 6 to 16 -2 to 39 3 to 91 -2 to 46 -1 to 91 0 to 37 1 to 8 2 to 10 
DCPSO Latest Positive 
n 39 0 25 37 53 84 5 12 1 

< 0.001 Median 8 - 13 50 11 13.5 12 7 12 
IQR 83 - 22 50 24 10.5 1 2.5 0 
Range 1 to 140 - 3 to 91 11 to 188 1 to 120 2 to 80 11 to 14 2 to 18 12 
DCPSO First Negative 
n 61 18 68 82 404 162 25 27 0 

< 0.001 Median 20 14 13 42 6 20 15 5 - 
IQR 84 9 15.5 67 9 21 13 5 - 
Range 1 to 140 4 to 27 0 to 134 4 to 201 0 to 256 0 to 134 7 to 197 0 to 198 - 

CSF: cerebrospinal fluid; IQR: interquartile ratio 
* Kruskal-Wallis Test 
 
Table 8. Time in days from symptom onset to viral clearance by specimen type. 

  Blood CSF Saliva Semen Serum Urine Vaginal 
n 169 28 186 159 889 559 45 
Median 49.2 19.5 18.9 47.7 10.8 20.5 9.9 
95% CrI 33.9 to 80.8 5.9 to 663.6 13.9 to 28.9 35.9 to 69.4 9.2 to 13.1 17.6 to 24.3 6.6 to 17.9 
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Figure 4. Estimated percentage of patients with virus detectable by rRT-PCR by 

specimen type. 

 
A: blood, B: CSF, C: saliva, D: semen, E: serum, F: urine, G: vaginal.  
Shaded areas indicate 95% CrI. 
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 Viral isolation data were available for 119 cases and 417 individual specimens. 

Serum was the specimen type most commonly cultured, followed by both semen and 

urine (Table 9). Overall, only 38 (13.9%) viral isolation attempts were successful. Semen, 

serum, and urine all exhibited similar recovery rates (15.8% to 19.8%). Notably, the 

recovery rate of blood and saliva was quite low. Vero (African monkey kidney) cell lines 

were utilized most often, followed by C6/36 (Ae. albopictus) cell lines; both had similar 

isolation recovery rates (14.9% and 16.7%, respectively). The timing of specimen 

collection for isolation attempts ranged from 0 to 201 days post-symptom onset. 

Interestingly, there was no significant difference observed in the ability to successfully 

culture ZIKV over time; recovery rates are fairly similar through first four weeks 

following symptom onset but decreases thereafter. 
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Table 9. Viral culture attempts. 

  Successful Unsuccessful Total  
  n (%) n (%) n (%)  
Total 58 (13.9) 359 (86.1) 417 (100.0) p-value 
Specimen type    0.033 
 Blood 0 (0.0) 33 (100.0) 33 (7.9)  
 CSF 0 (0.0) 2 (100.0) 2 (0.5)  
 Saliva 3 (5.4) 53 (94.6) 56 (13.4)  
 Semen 18 (19.8) 73 (80.2) 91 (21.8)  
 Serum 19 (15.8) 101 (84.2) 120 (28.8)  
 Urine 16 (17.6) 75 (82.4) 91 (21.8)  
 Other 2 (8.3) 22 (91.7) 24 (5.8)  
Cell line    0.017 
 BALB/c 3 (10.3) 26 (89.7) 29 (7.0)  
 C6/36 17 (16.7) 85 (83.3) 102 (24.5)  
 LLC-MK2 0 (0.0) 17 (100.0) 17 (4.1)  
 Vero* 35 (14.9) 200 (85.1) 235 (56.4)  
 Unknown 1 (3.2) 30 (96.8) 31 (7.4)  
 Other 2 (66.7) 1 (33.3) 3 (0.7)  
DCPSO†    0.221 
 ≤7 23 (16.3) 118 (83.7) 141 (33.8)  
 8-14 7 (20.6) 27 (79.4) 34 (8.2)  
 15-21 6 (15.8) 32 (84.2) 38 (9.1)  
 22-28 4 (19.0) 17 (81.0) 21 (5.0)  
 ≥29 7 (6.7) 97 (93.3) 104 (24.9)  
 Unknown 11 (13.9) 68 (86.1) 79 (18.9)  
*Vero lines included Vero, Vero-E6, and Vero-B4  
† Days collected post symptom onset   

 
 
Discussion 

 The incubation period of ZIKV infection in symptomatic patients was estimated 

to be 6.5 days. This is very similar to the estimate of 5.9 days by Lessler and colleagues 

(9). This estimate is also similar to a study published in 2017 that found the median 

incubation period to be 5.8 days (10) and another that calculated the median incubation 

period to be 6.8 days (11).  



 52 

In the Lessler study, the time to viral clearance in serum specimens was found to 

be 9.9 days. The current study found the time to viral clearance in serum to be 10.8 days. 

The current study adapted Lessler’s methods and increased the sample size through 

conducting an updated systematic review following the ZIKV pandemic. It should also be 

noted that Lessler’s analysis evaluated viral clearance from infection as opposed to date 

of symptom onset, as in the current study. These results differ slightly with viral 

clearance estimates calculated in a prospective cohort followed for six months (12). In 

that cohort, serum had a median time to viral clearance of 15 days, and the median 

clearance time in urine specimens was 11 days. This is nearly half as long as the estimate 

of 20.5 days derived from this systematic review. The estimates for median viral 

clearance in semen, however, were similar (42 days in the prospective cohort versus 47.7 

days in this study). The present study’s results for blood, serum, and urine also closely 

matched those of another prospective cohort conducted after this systematic review (13). 

In that cohort study, whole blood specimens were observed to be positive in 89% of 

specimens collected through 79 days post-symptom onset. Urine positivity dropped from 

75% in specimens collected between 12 and 19 DCPSO to 14% in those collected 

between 20 and 36 DCPSO. Although all specimens in that cohort were collected starting 

at day six post-symptom onset, none of the 116 serum specimens were positive, 

indicating rapid viral clearance from serum. 

The availability and quality of viral isolation data varied significantly amongst 

records making analysis challenging. The substantial variability of isolation 

methodologies, from chosen cell line to number of passages and detection methods, 

makes comparability of results difficult as these can have a significant effect on recovery. 
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Most notably, the virus was unable to be isolated from any blood specimens and only 

5.4% of saliva specimens. The lack of success in isolating the virus from blood is 

interesting given the extended detection of viral RNA in blood specimens. As all 33 

attempts using blood were cultured with Vero or C6/36 cells, the difficulty in isolating 

the virus from blood does not appear to be related to cell line. This could indicate that 

molecular methods are only detecting remnants of the virus as opposed to viable RNA. 

There could also be a potential inhibitor in whole blood that makes viral isolation 

difficult. 

Some of the difference between viral clearance estimates may be due to 

differences in analytical methodologies. These differences may also be due to limitations 

in utilizing data derived from a systematic review of the literature. Although this 

systematic review builds upon the earlier work conducted by Lessler and colleagues, the 

data presented across the wide variety of records reviewed was highly variable in its 

presentation and quality. For example, data were only available in 11.7% of the 792 cases 

to be able to determine the incubation period, potentially indicating a bias that could 

influence the resulting estimate. Similarly, availability of rRT-PCR results was often 

unavailable, likely due to lack of routine serial testing, potentially limiting the accuracy 

of viral clearance estimates. These inconsistencies indicate a need for a uniform method 

for reporting pertinent and complete data for case reports and case series of infectious 

with infectious diseases. Sample size was also limited for certain specimen types, 

especially CSF and vaginal specimens. The uneven distribution of specimen types also 

reflects the use of serum in serological testing and, potentially, the paradigm that serum is 

the specimen of choice for diagnosing ZIKV infection. This study is also limited by the 
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variability in diagnostic testing methodologies; the varying sensitivities of rRT-PCR 

assays could potentially impact their ability to detect viral RNA, especially as viral load 

decreases. These estimates can only be applied to symptomatic cases of ZIKV disease as 

asymptomatic cases were not included. Lastly, these viral clearance estimates must be 

interpreted cautiously, as they were measured using rRT-PCR methods and do not 

necessarily reflect viability of the virus to infect other cells. This is helpful for 

establishing diagnostic criteria, but not necessarily in determining if a patient is still 

infectious. 

 Understanding the natural history of infections with ZIKV is critical to controlling 

its spread in communities. Knowing the virus’ incubation period allows clinicians and 

public health practitioners to better assess potential exposure to the virus. Insight into the 

rate of viral clearance in various specimen types also aids in the correct application and 

interpretation of test results. Testing algorithms, especially for molecular assays, should 

take into account the variability observed in different specimen type to maximize 

detection of infections with ZIKV. This is especially important given the poor ability of 

current serological assays to discriminate between different Flaviviridae infections. The 

different rate of viral clearance between serum and blood specimens may also have 

implications for the donation of different blood components.  
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Chapter 4 

Characterization of Viral Load 

Background 

 The worldwide outbreak of ZIKV disease beginning in 2015 was challenging for 

both clinicians and public health agencies because the nonspecific and often absent 

symptoms associated with the virus made detecting infections particularly difficult. Up to 

80% of infections are thought to be asymptomatic (1, 2), and even when symptoms 

present, they are not pathognomonic and usually mild in nature (3). This makes the initial 

detection of the disease difficult and potentially allows the virus to establish itself in a 

community prior to detection (4-6). Further compounding the issue is the low viral load 

observed in routine clinical specimens, such as serum and urine (7-11). Serological 

methods, including the detection of IgM against ZIKV or PRNT for ZIKV, are also 

complicated by the cross-reactivity of the virus with other flaviviruses, especially DENV 

(1, 12). This makes diagnosis by serological methods challenging and, often, results in an 

inconclusive or unconfirmed diagnosis (12, 13). Given the emergence of ZIKV as a 

public health threat, diagnostic assays that can fully overcome these obstacles have not 

yet been developed (14). Understanding the viral load in easily obtainable clinical 

specimens can help optimize the development and utilization of such assays.  

 Viral load can be quantitated using rRT-PCR assays. These assays directly detect 

the genetic material of the pathogen in the patient’s specimen. For true quantitation of 

viral load with these tests, an internal control or standard must be added to the specimen 

and amplified alongside the pathogen’s DNA or RNA. Viral load testing has become a 

standard of practice for monitoring the progression of and providing treatment for both 
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human immunodeficiency virus and hepatitis C virus. When an internal standard is not 

used, the rRT-PCR test is generally referred to as a semi-quantitative assay. The resulting 

cycle threshold (Ct) value is an indication of the amount of virus in the specimen. Ct 

values have recently been used to monitor the progression of Ebola virus disease in 

patients and predict patient outcomes (15-18) . Semi-quantitative rRT-PCR has also been 

used in the recent outbreak of the severe acute respiratory syndrome coronavirus 2 in 

China to monitor the progression of the virus (19) . 

 The dramatic increase in the number of cases of Zika virus disease seen since 

2015 has given researchers an opportunity to learn more about this once rare virus and 

the disease it causes. As part of its routine surveillance activities, the Florida DOH 

investigates reports of potential cases of ZIKV infection in Florida. From 2016 to 2017, 

the Florida DOH identified 1,733 cases of ZIKV infection (20), including those that were 

travel-associated and those that were locally acquired. As part of these investigations, 

epidemiological data were gathered and diagnostic specimens tested, providing valuable, 

high fidelity data that can provide insight into the course of the disease. Herein, we utilize 

these data to estimate the progression of viremia and the time to viral clearance in in 

whole blood, serum, and urine specimens. 

Methods 

 Confirmed and probable cases of non-congenital ZIKV infection identified from 

2016 to 2017 through testing performed at one of the three locations of the Florida 

DOH’s Bureau of Public Health Laboratories (BPHL), were included in this study. 

Although the case definition for ZIKV infection changed over the course of the response, 
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the case definition typically included some variation of clinically compatible disease, 

complication of pregnancy, or neurologic symptoms, and laboratory evidence supporting 

the diagnosis of ZIKV infections (21). Confirmed cases were those meeting general 

epidemiological criteria with either unambiguous serological results (positive IgM 

ELISA, positive neutralizing antibody titers against ZIKV, and negative neutralizing 

antibodies against DENV) or RNA detected by rRT-PCR. Probable cases were those 

meeting epidemiological criteria with no positive rRT-PCR result and ambiguous 

serological results (22). In this analysis, both travel-associated and locally acquired cases 

were included. Asymptomatic and congenitally acquired cases were excluded as no 

symptom onset date could be determined. This study was reviewed and approved by both 

the Florida DOH and Florida International University (FIU) Institutional Review Boards. 

 Clinical and epidemiological data were obtained from Merlin, the Florida DOH’s 

surveillance database. The data utilized in this study included gender, age, pregnancy 

status, YFV vaccination status, case status (confirmed or probable), and symptoms, 

including fever, rash, headache, joint pain, conjunctivitis, and muscle pain. Clinical and 

epidemiological data were typically self-reported to investigators. Corresponding 

laboratory results were obtained from the BPHL’s laboratory information system (LIS) 

and assay run reports. Laboratory variables included specimen type; days collected post-

symptom onset (DCPSO, calculated by subtracting the date of symptom onset from the 

date of specimen collection); type of rRT-PCR assay; and Ct value. Both sets of data 

were linked by matching Merlin and LIS identifiers and then de-identified for analysis. 

 Specimens were tested according to the testing algorithm in place at the time of 

collection. Molecular detection of ZIKV was accomplished through one of two rRT-PCR 
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assays, a laboratory-developed test (LDT) previously described (7) and the CDC’s 

Trioplex rRT-PCR Assay (23). The former was primarily used at two of the BPHL 

locations during 2016 before transitioning to the Trioplex Assay in 2017; the third BPHL 

location used the Trioplex Assay exclusively. Although three primer and probe sets for 

three separate RNA targets were utilized with the LDT, only one target was utilized when 

comparing Ct values as it matched the target of the Trioplex Assay. Further, the LDT was 

always performed in duplicate; whereas the Trioplex Assay was performed in singlicate. 

When two Ct values were reported, the mean of the two values was utilized for this study; 

if only one of the replicates demonstrated amplification, the single value was used. In 

practice, each rRT-PCR assay has an established cutoff value and is typically reported as 

detected, not detected, or equivocal. In this study, however, Ct values were analyzed 

without regard to these cutoff values as this represents amplification of the viral target. 

 Descriptive analysis of the study population and laboratory results was conducted. 

Dataset characteristics were compared using the Chi-square Test or Fisher’s Exact Test, 

where appropriate, using a significance level of 0.05. A logistic regression model was 

created to predict the detection of ZIKV RNA by rRT-PCR (any specimen with a Ct 

value without regard to the cutoff value), the dependent variable, and identify factors 

associated with the clearance of viral RNA. The independent variables included specimen 

type, DCPSO, age, gender, and number of key symptoms. Pregnancy status was assessed 

through a second logistic model that only included females. Independent variables with 

an adjusted odds ratio (aOR) 95% confidence interval (95% CI) including 1.00 were 

excluded from the final model. In order to account for repeated measures due to repeated 

sampling (multiple specimens collected on multiple days post-symptom onset) on some, 
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but not all, cases, PROC GENMOD with the logit link function and Bonferonni 

correction for multiple comparisons were utilized for this analysis. Statistical analyses 

were performed using software using SAS software version 9.4 (Cary, NC, USA). 

Results 

 A total of 2,044 specimens tested by rRT-PCR, representing 934 cases, were 

included in this study. ZIKV RNA was detected in 75.7% (707) of these cases (Table 1). 

ZIKV RNA was detected in at least one urine specimen in 61.6% (575) of cases, in at 

least one serum specimen in 44.4% (415) of cases, and in at least one whole blood 

specimen in 3.3% (31) of cases (data not shown). As expected, given the importance of 

rRT-PCR in the case definition ZIKV, the majority of included cases (824, 88.2%) were 

confirmed as ZIKV infections (Table 1). Of the 934 cases, 535 (57.3%) were identified in 

females. The mean ages of females and males were 40.1 and 41.3 years, respectively. Of 

the 535 women included in this study, 32 (6.0%) were pregnant at the time of detection 

(Table 1). The most commonly reported symptom was rash (93.6%; 874). Of cases, 74 

(7.0%) reported being vaccinated against YFV, and 282 (30.2%) were unaware of their 

vaccination status. The median DCPSO for females was 5 days versus 4 days for males.  
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Table 1. Demographic and clinical characteristics of patients with confirmed and 

probable ZIKV infection. 

 Female 
n (%) 

Male 
n (%) 

Total 
n (%) 

 

Total 535 (57.3) 399 (42.7) 934 (100.0) p-value* 
Case status 0.024 
   Confirmed 461 (86.2) 363 (91.0) 824 (88.2)     Probable 74 (13.8) 36 (9.0) 110 (11.8) 
RNA detected in at least 
one specimen 

    
0.091 

   Yes 394 (73.6) 313 (78.4) 707 (75.7)     No 141 (26.4) 86 (21.6) 227 (24.3) 
Specimen detection†    0.312 
   Serum 232 (41.1) 183 (40.1) 415 (58.7) 

    Urine 320 (56.6) 255 (55.9) 575 (81.3) 
   Whole blood 13 (2.3) 18 (3.9) 31 (4.4) 
Pregnancy status  
   Pregnant 32 (6.0) - 32 (6.0)     Not pregnant 503 (94.0) - 503 (94.0) 
Age (years) 0.266 
   Mean 40.1 41.3 40.6  
   Range 1-81 1-86 1-86  
   0-4 3 (0.6) 1 (0.3) 4 (0.4) 

 

   5-9 7 (1.3) 5 (1.3) 12 (1.3) 
   10-19 32 (6.0) 31 (7.8) 63 (6.8) 
   20-29 107 (20.0) 56 (14.0) 163 (17.5) 
   30-39 131 (24.5) 94 (23.6) 225 (24.1) 
   40-49 101 (18.9) 84 (21.1) 185 (19.8) 
   50-59 88 (16.5) 81 (20.3) 169 (18.1) 
   ≥60 66 (12.3) 47 (11.8) 113 (12.1) 
Symptoms‡  
   Rash 509 (95.1) 365 (91.5) 874 (93.6) 0.024 
   Fever 342 (63.9) 309 (77.4) 651 (69.7) <0.001 
   Arthralgia 345 (64.5) 252 (63.2) 597 (63.9) 0.676 
   Conjunctivitis 234 (43.7) 163 (40.9) 397 (32.2) 0.377 
   Myalgia 167 (31.2) 134 (33.6) 301 (32.2) 0.444 
   Headache 163 (30.5) 124 (31.1) 287 (30.7) 0.842 
Number of key 
symptoms 

    
0.098 

   Zero 1 (0.2) 0 (0.0) 1 (0.1) 

 
   One 30 (5.61) 16 (4.0) 46 (4.9) 
   Two 91 (17.0) 79 (19.8) 170 (18.2) 
   Three 202 (37.7) 120 (30.1) 322 (34.5) 
   Four 130 (24.3) 117 (29.3) 247 (26.5) 
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   Five 64 (12.0) 57 (14.3) 121 (13.0) 
   Six 17 (3.2) 10 (2.5) 27 (2.9) 
YFV§ vaccination ever 0.035 
   Vaccinated 38 (7.1) 36 (9.0) 74 (7.9) 

    Not vaccinated 350 (65.4) 228 (57.1) 578 (61.9) 
   Unknown 147 (27.5) 135 (33.8) 282 (30.2) 
Days collected post-
symptom onset 

    
<0.001 

   Total specimens 1,208 (59.1) 836 (40.9) 2,044 (100.0)  
   Range -4 to 300 -4 to 267 -4 to 300  
   Mean 20.1 10.2 16.1  
   Median 5 4 5  
   <0 2 (0.2) 6 (0.7) 8 (0.4)  
   0-3 425 (35.2) 325 (38.9) 750 (36.7)  
   4-7 307 (25.4) 252 (30.1) 559 (27.4)  
   8-11 95 (7.9) 63 (7.5) 158 (7.7)  
   12-15 57 (4.7) 51 (6.1) 108 (5.3)  
   16-19 41 (3.4) 25 (3.0) 66 (3.2)  
   20-23 37 (3.1) 29 (3.5) 66 (3.2)  
   24-27 37 (3.1) 18 (2.2) 55 (2.7)  
   ≥28 207 (17.1) 67 (8.0) 274 (13.4)  

*Chi-square test for all comparisons except number of key symptoms and days collected 
post-symptom onset (Fisher’s Exact Test); significance level of 0.05. 
†by rRT-PCR  
‡ Cases may have more than one symptom; percentages will not add up to 100 
§Yellow fever virus 

 

 Of the 2,044 collected specimens, 1,208 (59.1%) were collected from females 

(Table 2). Serum was the specimen collected most frequently (1,052; 51.5%), followed 

by urine (904; 44.2%) and whole blood (88; 4.3%) (Table 2). Specimens were collected 

between -4 and 300 days with almost two-thirds of specimens (1,317; 64.4%) collected 

within a week of symptom onset (Table 1). 
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Table 2. rRT-PCR results by specimen type and gender. 

 Female Male Total p-value* 
Serum    0.197 
   Detected 262 (41.5) 191 

(45.5) 
453 (43.1) 

    Not detected 370 (58.5) 229 
(54.5) 

599 (56.9) 

   Total 632 (60.1) 420 
(39.9) 

1,052 (100.0)  

Urine    0.003 
   Detected 333 (62.4) 266 

(71.9) 
599 (66.3) 

    Not detected 201 (37.6) 104 
(28.1) 

305 (33.7) 

   Total 534 (59.1) 370 
(40.1) 

904 (100.0)  

Whole blood    0.573 
   Detected 14 (33.3) 18 (39.1) 32 (36.4)     Not detected 28 (66.7) 28 (60.9) 56 (63.6) 
   Total 42 (47.7) 46 (52.3) 88 (100.0)  
Total    0.004 
   Detected 609 (50.4) 475 

(56.8) 
1,084 (53.0) 

    Not detected 599 (49.6) 361 
(43.2) 

960 (47.0) 

   Total 1,208 (59.1) 836 
(40.9) 

2,044 (100.0)  

*p-values determined conducting univariate regression between gender and detection 
outcome stratifying by specimen type 
 
 ZIKV RNA was detected in 53.0% of all specimens (Table 3) with ZIKV RNA 

being detected most often in urine specimens (66.3%), followed by serum (43.1%), and 

whole blood (36.4%). ZIKV RNA was detected in 71.9% of male urine specimens as 

compared to 62.4% of female urine specimens (p = 0.003) (Table 2). Of those cases 

where both serum and urine were collected on the same day (n = 708), ZIKV RNA was 

detected in both serum and urine in 277 (39.1%) cases; in only urine in 257 (36.3%) 

cases; in only serum in 47 (6.6%) cases and not detected in either specimen type in 127 
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(17.9%) cases (Table 4). For each DCPSO group except <0, ZIKV was detected in urine 

at a higher frequency than in serum.  
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Table 3. ZIKV RNA detected by specimen type and days collected post-symptom onset. 

Days collected 
post-symptom 
onset Serum Urine Whole blood Total 

Tested Detected % Tested Detected % Tested Detected % Tested Detected % 
   <0 4 3 75.0 3 0 0.0 1 1 100.0 8 4 50.0 
   0-3 395 247 62.5 349 280 80.2 6 3 50.0 750 530 70.7 
   4-7 302 126 41.7 249 221 88.8 8 3 37.5 559 350 62.6 
   8-11 76 28 36.8 71 42 59.2 11 3 27.3 158 73 46.2 
   12-15 47 7 14.9 45 22 48.9 16 7 43.8 108 36 33.3 
   16-19 30 6 20.0 30 11 36.7 6 1 16.7 66 18 27.3 
   20-23 30 6 20.0 31 9 29.0 5 2 40.0 66 17 25.8 
   24-27 26 1 3.8 22 4 18.2 7 2 28.6 55 7 12.7 
   ≥28 142 29 20.4 104 10 9.6 28 10 35.7 274 49 17.9 
Total 1,052 453 43.1 904 599 66.3 88 32 36.4 2,044 1,084 53.0 
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Table 4. Comparison of ZIKV RNA detection amongst 708 paired serum and urine specimens collected on the same day post-

symptom onset. 

Day 
collected 
post 
symptom 
onset 

Pairs 
tested n 

 

Serum 
detected 

n (%) 
Urine detected 

n (%) 

Serum only 
detected 

n (%) 

Urine only 
detected 

n (%) 

Neither 
detected 

n (%) 

Both 
detected 

n (%) 
   <0 2  2 (100.0) 0 (0.0) 2 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 
   0-3 303  186 (61.4) 265 (87.5) 27 (8.9) 106 (35.0) 11 (3.6) 159 (52.5) 
   4-7 231  100 (43.3) 205 (88.7) 7 (3.0) 112 (48.5) 19 (8.2) 93 (40.3) 
   8-11 45  13 (28.9) 32 (71.1) 2 (4.4) 21 (46.7) 11 (24.4) 11 (24.4) 
   12-15 27  5 (18.5) 13 (48.1) 1 (3.7) 9 (33.3) 13 (48.1) 4 (14.8) 
   16-19 17  3 (17.6) 5 (29.4) 1 (5.9) 3 (17.6) 11 (64.7) 2 (11.8) 
   20-23 16  5 (31.3) 6 (37.5) 1 (6.3) 2 (12.5) 9 (56.3) 4 (25.0) 
   24-27 10  0 (0.0) 1 (10.0) 0 (0.0) 1 (10.0) 9 (90.0) 0 (0.0) 
   ≥28 57  2 (3.5) 7 (12.3) 6 (10.5) 3 (5.3) 44 (77.2) 4 (7.0) 
Total 708  314 (44.4) 534 (75.4) 47 (6.6) 257 (36.3) 127 (17.9) 277 (39.1) 
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Almost half (48.9%) of all positive specimens were collected within three days of 

symptom onset (Table 3). Among specimens collected at 4 weeks or greater, 49 (17.9%) 

had detectable ZIKV RNA. At the extreme, ZIKV RNA was detected in a serum 

specimen at 127 DCPSO, urine at 64 DCPSO, and whole blood at 94 DCPSO. The 

detection of ZIKV RNA within serum appears to peak before or near the onset of 

symptoms and declines thereafter; whereas the detection of ZIKV RNA within urine 

appears to peak near the end of the first week after symptom onset and then steadily 

declines. Although the sample size is much smaller, the detection of ZIKV RNA within 

whole blood appears to remain relatively steady over most of the DCPSO groups (Figure 

1). Of the positive whole blood specimens, 10 (31.3%) were collected ≥28 days post-

symptom onset. Boxplots of Ct values by each DCPSO group also indicate the decreasing 

trend of viral load over time (Figure 2).  

 
Figure 1. Proportion of specimens with ZIKV RNA detected* over time. 

 
*Detection is defined as any amplification above the threshold 
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Figure 2. Boxplot of Ct values* by days collected post-symptom onset group 

 

 
*Ct values are inversely proportional to viral load. 
DCPSO: days collected post-symptom onset 
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Of the 1,084 specimens with detectable ZIKV RNA, 1,082 had Ct values 

available, allowing viral load to be assessed by proxy. Visualization and normality testing 

of Ct values indicated that the distribution of Ct values is not normal (Figure 3), 

necessitating the use of non-parametric tests. The median Ct values of serum, urine, and 

whole blood were 35.3 (IQR = 3.8), 32.9 (IQR = 5.0), and 35.6 (IQR = 2.6), respectively 

(Table 5). The highest and lowest Ct values observed were 15.9 and 40.0, respectively, 

both in serum. Notably, the lowest Ct value observed in whole blood was 27.5, collected 

the day before symptom onset. The range of urine Ct values appears to be similar to that 

of serum. 

 

Figure 3. Distribution of Ct values from A) all 1,082 specimens with detectable ZIKV 

RNA, B) serum specimens only, C) urine specimens only, and D) whole blood specimens 

only. 

 
 
  

A B 

C D 
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Table 5. Comparison of median Ct values of specimens with detectable RNA. 

 
n 

Median 
Ct value 

Interquartile 
Range Range 

Total     
Gender     
   Female 608 34.2 5.2 20.5 to 38.6 
   Male 474 34.0 4.9 15.9 to 40.0 
Age group     
  ≤ 18 years 74 34.5 3.8 26.2 to 39.0 
   >18 years 1,008 34.1 5.2 15.9 to 40.0 
Specimen type     
   Serum 453 35.3 3.8 15.9 to 40.0 
   Urine 597 32.9 5.0 18.9 to 39.7 
   Whole blood 32 35.6 2.6 27.5 to 38.4 
Pregnancy status     
   Pregnant 72 35.2 3.8 27.4 to 38.6 
   Not pregnant 536 33.9 5.3 20.5 to 38.6 
YFV* vaccination status     
   Vaccinated 93 34.2 4.7 22.4 to 38.2 
   Not vaccinated 668 34.2 5.1 20.5 to 39.7 
   Unknown 321 33.8 5.4 15.9 to 40.0 
Symptoms     
   Rash present 1,037 34.1 5.1 15.9 to 40.0 
   Rash absent 45 34.2 6.3 21.2 to 37.8 
   Fever present 782 34.2 5.2 15.9 to 39.7 
   Fever absent 300 34.0 4.9 25.2 to 40.0 
   Arthralgia present 675 33.9 5.3 20.5 to 39.7 
   Arthralgia absent 407 34.4 4.9 15.9 to 40.0 
   Conjunctivitis present 486 33.9 5.3 18.9 to 40.0 
   Conjunctivitis absent 596 34.3 4.9 15.9 to 39.7 
   Myalgia present 364 34.1 5.2 18.9 to 39.7 
   Myalgia absent 718 34.1 5.1 15.9 to 39.7 
   Headache present 341 33.9 5.0 20.5 to 39.7 
   Headache absent 741 34.2 5.2 15.9 to 40.0 
Number of key symptoms     
   One 35 34.5 4.5 25.4 to 37.4 
   Two 185 33.7 5.4 15.9 to 40.0 
   Three 381 34.5 4.6 24.5 to 38.6 
   Four 293 34.0 5.3 18.9 to 39.1 
   Five 151 33.5 5.8 21.1 to 39.7 
   Six 35 33.7 5.2 20.5 to 38.1 

*Yellow Fever Virus 
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There does not appear to be a difference in median Ct value between specimens 

collected from females and males or between specimens collected from those 18 years 

old or younger and those older than 18 (Table 5). Median Ct values of the specimens 

from pregnant (n = 72) and non-pregnant (n = 536) women appear to be lower among 

nonpregnant women (35.2 versus 33.9). This appears to be due to the extended sampling 

conducted on pregnant women. When only specimens collected within three weeks were 

compared, there was no significant difference (p = 0.704). Conversely, the median Ct 

values of specimens from those that were previously vaccinated against YFV (n = 93), 

those that were not vaccinated (n = 668), and those with an unknown vaccination status 

(n = 321) did not appear to be different. Median Ct values by symptom presentation all 

appear to be fairly similar, showing no more than 0.5 Ct difference amongst any of the 

groups. Similarly, no differences were observed based on the total number of symptoms 

reported. 

The logistic regression model confirmed the significance of specimen type on the 

detection of ZIKV RNA (Table 6). The final model included specimen type (whole 

blood, serum, and urine), DCPSO, age, and an interaction effect between specimen type 

and DCPSO. The adjusted odds of detection in urine was significantly greater than in 

whole blood (aOR = 8.04, 95% CI 4.34 to 14.87). The adjusted odds of detection was 

slightly greater in serum than in whole blood (OR = 1.51, 95% CI 0.84 to 2.72), but was 

not statistically significant. Age, gender, and key symptoms were found to be 

insignificant and not included in the final model (data not shown). Within the females 

only model, pregnancy was also found to be a significant indicator for the detection of 

ZIKV RNA (aOR = 3.29, 95% CI 1.89 to 5.74). To assess for a bias caused by extended 



 72 

sampling of pregnant women with respect to DCPSO, the analysis was limited to 

specimens collected at three weeks or less (as noted above), and similar results were 

observed (aOR = 3.33, 95% CI 1.62 to 6.81; data not shown). DCPSO and the interaction 

effect between DCPSO and specimen types were included in the final model as the Type 

3 analysis of effects showed significance. The interaction between urine and DCPSO was 

significant (aOR = 0.91, 95% CI 0.88 to 0.94), indicating that the odds of detection in 

urine decrease as DCPSO increases. To confirm the effect of DCPSO on specimen type, 

logistic regression was conducted to predict detection using DCPSO alone on each 

individual specimen type. Urine (OR = 0.90, 95% CI 0.88 to 0.93) and serum (OR = 0.97, 

95% CI 0.95 to 0.99) were found to be significant but whole blood (OR = 0.99, 95% CI 

0.98 to 1.00) was not. In other words, the rate of viral clearance in urine and serum 

appear to occur more rapidly than in whole blood.  
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Table 6. Adjusted odds ratios for the final logistic regression model (including specimen 

type, DCPSO, pregnancy status†, and the interaction between DCPSO and specimen 

type) for the detection of ZIKV RNA by rRT-PCR. 

 
Variable aOR 95% Confidence 

Interval 
p-value* 

Specimen type   <0.001 
   Whole blood Referent Referent Referent 
   Serum 1.51 0.84 to 2.72 0.165 
   Urine 8.04 4.34 to 14.97 < 0.001 
DCPSO† 0.99 0.98 to 1.00 0.220 
Age 1.01 1.00 to 1.02 0.029 
Pregnant‡ 3.29 1.89 to 5.74 < 0.001 
Interaction with DCPSO   0.001 
   Whole blood Referent Referent Referent 
   Serum 0.98 0.96 to 1.00 0.075 
   Urine 0.91 0.88 to 0.94 < 0.001 

*Bonferroni-adjusted alpha level = 0.017 
†Days collected post-symptom onset 
‡Pregnancy determined from females-only model 
 

Discussion 

 Detection of viral RNA is the ideal method to conclusively identify acute 

infection with ZIKV. Specimen selection and timing of collection is critical to maximize 

success in detecting ZIKV RNA. In our dataset, ZIKV RNA was most frequently 

detected in urine specimens (66.3%). ZIKV RNA was detected in urine at the highest 

frequency of all three specimen types through 19 days post-symptom onset, allowing for 

the detection of infection well after the onset of symptoms. ZIKV RNA was detected in 

serum in almost two-thirds of specimens collected within 3 days of symptom onset, but 

the frequency of detection decreased rapidly thereafter. This is comparable to what has 

been reported in New York State (10, 24). However, ZIKV RNA was detected at a lower 

rate in serum alone than in New York (6.6% versus 26.2%). In fact, within paired 
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specimens, ZIKV RNA was detected in urine alone at nearly six times the frequency as 

serum alone in our dataset. This difference may be due in part to expanded testing of 

pregnant women, leading to a wider specimen collection window, and the utilization of 

systematic surveys, resulting in a potential bias towards urine specimens as 

corresponding sera were not collected.  

 The timing of specimen collection is also critical to maximize the likelihood of 

detection of ZIKV. Within the first 4 weeks post-symptom onset, the frequency of 

detection of ZIKV RNA in serum was always lower than that of urine. By the beginning 

of the second week post-symptom onset, the frequency of detection within serum 

specimens decreased by almost half. ZIKV RNA was detected most frequently in urine 

specimens. Overall, however, it appears that ZIKV RNA may remain detectable in whole 

blood longer over time. Almost a third of positive whole blood specimens were collected 

≥28 days post-symptom onset. These observations concur with previous studies (25-27) 

and highlight the importance of specimen selection to maximize the detection of ZIKV 

RNA in relation to the timing of specimen collection. 

 Urine specimens demonstrated the highest viral load overall, as indicated by 

median Ct value. This coincides with the increased detection of ZIKV RNA in urine 

specimens as compared to other specimen types. In a previous study, the viral loads of 

urine specimens were observed to be a log higher than those of serum specimens (10) but 

were observed to be lower in a separate pediatric cohort (28). A study by Judice and 

colleagues (29) compared viral loads between urine and whole blood specimens, finding 

that the viral load in urine was higher than that of whole blood specimens. No correlation 

was seen between any of the six key symptoms and the viral load of specimens, 
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corresponding with a report from Musso and colleagues (11). These estimates, as in our 

study, were determined using rRT-PCR methods and may not truly reflect intact virus. 

 These findings are important when considering appropriate testing strategies for 

ZIKV. Current guidance for rRT-PCR requires paired specimens when testing any 

specimen type other than serum, meaning serum must always be collected at the same 

time as urine or other specimens, if they are to be tested. Although this is due in part to 

the importance of serological diagnosis of ZIKV, it also contributes to a paradigm that 

serum is the single most important specimen type for rRT-PCR and potentially prohibits 

testing when serum is not collected along with urine, whole blood, or other specimen 

types. In fact, all 11 rRT-PCR assays currently approved for emergency use in the United 

States and able to test specimens other than serum or plasma require matched specimens 

(30). The experiences of the FDOH also challenge the testing algorithms currently 

recommended by the CDC. These guidelines suggest that rRT-PCR testing should be 

limited to specimens collected within 7 days of symptom onset(31). As demonstrated in 

this study, ZIKV RNA can be detected in approximately a quarter of all specimens 

collected in the first three or so weeks following symptom onset. Although low, this 

could potentially provide unambiguous evidence for ZIKV that may be missed due to 

limitations of serological testing. This, of course, must be balanced with the number of 

negative results that may be encountered as a result of a wider specimen collection 

window. 

 This study is limited to symptomatic infections with ZIKV. Therefore, it is 

impossible to assess complete performance of the assay or the implications of widening 

the specimen collection window. Symptom onset date was self-reported, and due to the 
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generally mild nature of ZIKV infection, it is possible that patients could not accurately 

recall the onset date, which would affect the accuracy of the DCPSO calculation as well 

as viral load estimates and characterization of ZIKV detection frequency. However, 

patient were was systematically collected by trained interviewers. The small number of 

whole blood specimens tested (only 4.3% of all specimens in this dataset) limits the 

ability to draw conclusions on the detection and viral load of those specimens. Viral load 

was estimated using Ct values produced by rRT-PCR testing and detects viral RNA, not 

intact virus. These values serve as a proxy for viral load as they were not quantified using 

a true standard curve and internal control and are therefore prone to variation. This 

variation can come from operator training and error, degradation in reagents, pipetting 

error, and other sources. Further studies should assess viral load through standardized 

quantitative rRT-PCR or other accepted methods. Any method relying on rRT-PCR is 

limited in that it does not necessarily indicate if the detected virus is viable or not since it 

only detects viral RNA. 

 With the finite amount of laboratory resources to test these specimens, optimizing 

specimen collection and testing algorithms is necessary. Understanding the progression 

of virus and viral load in various specimen types is critical to refining testing strategies 

for ZIKV. Effective utilization of rRT-PCR can assist in limiting the number of 

specimens requiring IgM or PRNT for confirmation, both of which require increased time 

and resources, are not as readily available as rRT-PCR, and often do not provide 

confirmation as intended. Increased reliance on rRT-PCR should allow providers, 

patients, and investigators to receive results quicker and potentially provide for fewer 

unambiguous results.  
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Chapter 5 

Evaluation of Testing Guidelines 

Background 

 In the summer of 2016, the Florida DOH detected the first cases of mosquito-

borne, locally transmitted ZIKV infections in the continental United States in Miami-

Dade and Broward Counties (1, 2). This discovery prompted the mobilization of public 

health and mosquito control resources in an effort to rapidly contain the outbreak and 

protect the health of the state’s residents and visitors (3). As part of this response, the 

Florida DOH’s Bureau of Epidemiology (BOE) and BPHL, along with county health 

departments, were responsible for investigating suspected cases and testing specimens. 

 Because of the nonspecific, often absent, symptoms of ZIKV infections (4), 

laboratory testing plays a critical role in identifying cases of infections caused by ZIKV. 

The most commonly available assays for ZIKV are rRT-PCR tests, which detect the 

nucleic acid of the virus directly, and IgM ELISA tests, which identify the host’s 

antibody response to a recent infection. A third test, the PRNT, is used to measure the 

titer of neutralizing antibodies against the virus (5). Because of the clinical similarities 

between infections, DENV testing is often ordered along with ZIKV tests. However, 

interpretation of serological assay (IgM and PRNT) results can be complicated by the 

cross-reactivity with different flaviviruses (5-8). Similarly, the viral load associated with 

ZIKV infections has been reported to be substantially lower than that associated with 

other flaviviruses (6, 9) and has been observed to be lower in serum than urine (10). Both 

of these factors impact how and when these assays should be used to maximize the 

probability of detection while limiting the opportunity for discrepant or unreliable results. 
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 The CDC provides extensive guidance for testing patients for ZIKV (11) and 

updated these guidelines in 2019 to incorporate testing for DENV (12). The intent of this 

guidance is to maximize the likelihood of detecting cases while ensuring resources are 

not needlessly expended. This is further complicated by the high proportion of 

asymptomatic cases and the risk presented to the fetuses of pregnant women (13, 14). 

Three separate algorithms are recommended by the CDC for individuals with possible 

exposure: non-pregnant symptomatic individuals, pregnant symptomatic women, and 

pregnant asymptomatic women. Exposures can include living in or traveling to an area 

with risk of ZIKV or unprotected sexual contact with someone at risk of exposure. These 

algorithms have been refined as more is learned about the course of infection. Two 

significant updates included in the 2019 algorithms include narrowing the specimen 

collection window for rRT-PCR to ≤7 days and including testing for IgM against DENV. 

The latter significantly increases the number of potential results given by the algorithm. 

The 2019 update also includes testing specimens by DENV rRT-PCR, but this is not 

addressed here. 

 Testing during the ZIKV outbreak in Florida was primarily provided by 

commercial laboratories, BPHL, and the CDC (15). Positive specimens from commercial 

laboratories were referred to BPHL for confirmation. The BPHL is composed of three 

public health laboratories located in Jacksonville, Miami, and Tampa. The CDC initially 

performed all PRNT testing and provided surge capacity for rRT-PCR and ZIKV IgM 

testing during periods of increased volume. The Florida DOH generally relies on the 

CDC’s guidance, but also significantly expanded the availability of free testing to 

pregnant women following the identification of autochthonous transmission within the 



 82 

state (3). Testing conducted by BPHL was also generally expanded to include serological 

testing for DENV (both IgM and IgG) due to the large population of foreign-born 

residents that may have been exposed to other arboviruses, such as DENV in their 

country of birth or during travel. Although testing for DENV IgM is suggested in the 

2019 CDC ZIKV testing guidance, this was not generally recommended during the 

outbreak. According to the 2016 American Community Survey, an estimated 19.9% of 

Florida’s population was born outside of the United States (16). In Miami-Dade County, 

where local transmission of ZIKV occurred, approximately 52.2% of the population was 

foreign-born. This additional testing for DENV provides critical data on the effectiveness 

of the serological assays and allows for retrospective testing of the 2019 updated 

guidance. 

 Understanding how these assays perform is also important when investigating 

potential cases of the disease and determining whether cases were acquired locally, as a 

result of travel to an endemic area, or acquired through sexual contact. In addition to 

these concerns, all three assay types have different demands in terms of complexity, cost, 

availability, and turnaround time, requiring laboratories and epidemiologists to optimize 

testing algorithms. Using the assay results and epidemiological data from the Florida 

DOH, we retrospectively compare the efficacy of the CDC’s 2017 and 2019 testing 

strategies for ZIKV in the context of locally acquired and travel-associated cases of the 

virus from 2016 and 2017. With the shortening of the specimen collection period, we 

expect that laboratory testing is able to confirm significantly fewer infections. 
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Methods 

 Dataset. Cases were identified through both active and passive surveillance 

previously described (1, 3, 17). All confirmed and probable cases of ZIKV infection 

identified between 2016 and 2017 by the Florida DOH were included in this study except 

those acquired congenitally. Generally, confirmed cases are those meeting general 

epidemiological criteria, such as residing in or having recent travel to an area with known 

ZIKV transmission, and confirmatory laboratory evidence, such as direct detection of 

viral RNA or both a positive PRNT (titer ≥ 10) against ZIKV and a negative PRNT (titer 

<10) against DENV. Generally, probable cases are those meeting epidemiological criteria 

with presumptive laboratory evidence, such as a positive ZIKV IgM result with an 

ambiguous PRNT result (18). Both symptomatic and asymptomatic cases were included. 

Qualitative molecular and serological laboratory results included in this analysis were 

performed by either the BPHL or the CDC; no results from commercial laboratories are 

included as they were repeated at the BPHL. Ten specimens were excluded as they were 

collected before symptom onset; two specimens collected greater than a year post-

symptom onset were excluded. Clinical and epidemiological data were collected through 

epidemiological investigations, chart review, and laboratory requisitions. All data were 

collected as part of routine public health investigations and were stored in the Florida 

DOH’s disease surveillance system. Data on country of birth were not collected and, 

therefore, not included in the analysis. Laboratory data were matched to case data by 

matching case and specimen identifiers to collection dates. Where discordant results for a 

single specimen and collection dates were reported (e.g., if a specimen test was repeated), 

the more conclusive result was included. For example, if both an indeterminate and 
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positive result were available for the same specimen, the positive result was used in the 

analysis as the assay would have been repeated to resolve the indeterminate result. For 

algorithm evaluation, equivocal, indeterminate, and inconclusive results were treated as 

negative results as these specimens would be further tested in an actual investigation. 

Both case-level determinations (e.g., acute infection with ZIKV or infection with 

flavivirus) and individual laboratory results are presented. In the context of algorithm 

evaluation, cases are adjudicated by meeting particular testing criteria outlined by the 

appropriate testing algorithm. Cases were de-duplicated according to hierarchical value 

of the algorithm result. Broadly, this hierarchy was prioritized from acute infections, 

infections of undetermined timing, presumptive infections, no evidence of infection, and 

those with no algorithm result. Protocol approval was granted by both the Florida DOH 

and FIU Institutional Review Boards. 

 Analysis. Descriptive analysis of the dataset was conducted with SAS 9.4. Case- 

and specimen-level data were used to compare the 2017 and 2019 CDC testing 

recommendations (11, 12). Specimens were first categorized according to symptom 

presentation (symptomatic or asymptomatic) and pregnancy status to determine with 

which CDC algorithm (non-pregnant symptomatic, pregnant symptomatic, or pregnant 

asymptomatic) the specimen should be evaluated. Once classified to an algorithm, 

specimens were then evaluated per the algorithm based on specimen type and the days 

collected post-symptom onset (see Figures 1 through 6). Key differences in algorithms 

include decreasing the collection window for rRT-PCR for direct detection of the virus, 

incorporating serological analyses for DENV to aid in discriminating infection type and 

timing, and expanding algorithm results to include presumptive infections (where PRNT 
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results are unavailable). Differences between the performance of the algorithms was 

assessed using the test of marginal homogeneity with a significance level of 0.05. 

Results 

 A total of 1,522 cases, encompassing 3,321 individual specimens and 6,841 test 

results, were identified and included in this study. As expected, due to the focus of 

surveillance on pregnant women, most cases, 1,016 (66.8%), were identified in women 

(Table 1). Similarly, most identified cases (72.1%) were symptomatic. Of the 1,016 

female cases with identified ZIKV, 37 (3.6%) were pregnant at the time of infection. The 

average age of symptomatic and asymptomatic patients was 40.7 and 31.1 years, 

respectively. Of note, no asymptomatic cases were identified in children aged 0 to 9. 

Most cases (n=1,201; 78.8%) indicated travel to at least one dengue-endemic country.  

Table 1. Summary of case characteristics of cases with ZIKV infections in Florida, 2016-

2017. 

 
 Symptomatic Asymptomatic Unknown Total 
Gender     
   Female 627 (57.1) 379 (92.2) 10 (76.9) 1,016 (66.8) 
   Male 471 (42.9) 32 (7.8) 3 (23.1) 506 (33.3) 
   Total 1,098 (72.1) 411 (27.0) 13 (0.9) 1,522 (100.0) 
Diagnosis status     
   Confirmed 964 (87.8) 56 (13.6) 4 (30.8) 1,024 (67.3) 
   Probable 134 (12.2) 355 (86.4) 9 (69.2) 498 (32.7) 
Pregnancy status     
   Pregnant 32 (2.9) 5 (1.2) 0 (0.0) 37 (2.4) 
   Not pregnant 595 (54.2) 374 (91.0) 10 (76.9) 979 (64.3) 
   Not applicable (male) 471 (42.9) 32 (7.8) 3 (23.1) 506 (33.3) 
Age (years)     
   Mean 40.7 31.1 32.4 38.1 
   Range 1-86 15-89 18-59 1-89 
   0-4 4 (0.4) 0 (0.0) 0 (0.0) 4 (0.3) 
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   5-9 14 (1.3) 0 (0.0) 0 (0.0) 14 (0.9) 
   10-19 74 (6.7) 25 (6.1) 1 (7.7) 100 (6.6) 
   20-29 185 (16.9) 163 (39.7) 3 (23.1) 351 (23.1) 
   30-39 265 (24.1) 183 (44.5) 8 (61.5) 456 (30.0) 
   40-49 220 (20.0) 24 (5.8) 0 (0.0) 244 (16.0) 
   50-59 202 (18.4) 7 (1.7) 1 (7.7) 210 (13.8) 
   ≥60 134 (12.2) 9 (2.2) 0 (0.0) 143 (9.4) 
Travel to dengue-
endemic countries* 

    

   Endemic country 845 (77.0) 349 (84.9) 7 (53.9) 1,201 (78.9) 
   Sporadic or uncertain 19 (1.7) 7 (1.7) 0 (0.0) 26 (1.7) 
   Florida only† 228 (20.8) 51 (12.4) 6 (46.2) 285 (18.7) 
   Sexually acquired‡ 6 (0.6) 0 (0.0) 0 (0.0) 6 (0.4) 
   Unknown 0 (0.0) 4 (1.0) 0 (0.0) 4 (0.3) 

 
*CDC Yellow Book 2020 (19) used for determining DENV endemicity. 
†Florida only cases had no recent travel. 
‡Sexually acquired cases had no recent history of travel or known exposure to local 
transmission area, or had laboratory evidence of supporting sexual transmission. 

 Of the 3,321 specimens, 2,926 (88.1%) were tested by rRT-PCR for ZIKV; 1,423 

(42.8%) by ZIKV IgM; 1,071 (32.2%) by DENV IgM; 699 (21.0%) by ZIKV PRNT; and 

722 (21.7%) by DENV PRNT (Table 2). The most commonly tested specimen type was 

serum (1,954; 58.8%), followed by urine (1,259; 37.9%) and whole blood (108; 3.3%). 

Of those specimens tested by rRT-PCR, 45.3% (1,326) were reported as detected, 

indicating presence of the virus. ZIKV was detected most frequently in urine specimens 

(729 out of 1,259; 57.9%), followed by serum (568 out of 1,559; 36.4%) and whole blood 

(29 out 108; 26.9%). Notably, only 4.1% (24) of asymptomatic cases tested positive for 

ZIKV by rRT-PCR as compared to 56.1% (1,300) of symptomatic cases. Conversely, 

72.6% (365) of asymptomatic cases were positive for ZIKV IgM as compared to 67.6% 

(612) of symptomatic cases. Of the 1,112 sera that were tested by both ZIKV rRT-PCR 

and IgM, only 10.7% (119) were positive in both tests.  
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Table 2. Summary of laboratory results for 3,321 specimens from 1,522 cases with ZIKV 

infections in Florida, 2016-2017. 

 Symptomatic Asymptomatic Unknown Total 
ZIKV RT-PCR, n 
(%) 

    

   Detected 1,300 (56.1) 24 (4.1) 2 (14.3) 1,326 (45.3) 
   Equivocal 78 (3.4) 2 (0.3) 0 (0.0) 80 (2.7) 
   Not detected 941 (40.6) 567 (95.6) 12 (85.7) 1,520 (2.0) 
   Total 2,319 (79.3) 593 (20.3) 14 (0.5) 2,926(100.0) 
ZIKV IgM, n (%)     
   Positive 612 (67.6) 365 (72.6) 11 (78.6) 988 (69.4) 
   Equivocal 38 (4.2) 74 (14.7) 1 (7.1) 113 (7.9) 
   Negative 245 (27.0) 39 (7.8) 2 (14.3) 286 (20.1) 
   Inconclusive 1 (0.1) 1 (0.2) 0 (0.0) 2 (0.1) 
   Indeterminate 10 (1.1) 24 (4.8) 0 (0.0) 34 (2.4) 
   Total 906 (63.7) 503 (35.4) 14 (1.0) 1,423 (100.0) 
DENV IgM, n 
(%) 

    

   Positive 109 (15.1) 32 (9.4) 2 (25.0) 143 (13.4) 
   Equivocal 9 (1.2) 5 (1.5) 0 (0.0) 14 (1.3) 
   Negative 604 (83.5) 300 (88.2) 6 (75.0) 910 (85.0) 
   Inconclusive 0 (0.0) 2 (0.6) 0 (0.0) 2 (0.2) 
   Indeterminate 1 (0.1) 1 (0.3) 0 (0.0) 2 (0.2) 
   Total 723 (67.5) 340 (31.8) 8 (0.8) 1,071 (100.0) 
ZIKV PRNT, n 
(%) 

    

   Positive 261 (98.5) 423 (99.8) 10 (100.0) 694 (99.3) 
   Negative 4 (1.5) 1 (0.2) 0 (0.0) 5 (0.7) 
   Total 265 (37.9) 424 (60.7) 10 (1.4) 699 (100.0) 
DENV PRNT, n 
(%) 

    

   Positive 155 (56.4) 395 (90.6) 9 (81.8) 559 (77.4) 
   Negative 120 (43.6) 41 (9.4) 2 (18.2) 163 (22.6) 
   Total 275 (38.1) 436 (60.4) 11 (1.5) 722 (100.0) 

 

 1,423 specimens (72.8% of serum specimens collected) were tested for IgM 

against ZIKV; 988 (69.4%) were positive. 1,071 specimens (54.7% of serum specimens 

collected) were tested for IgM against DENV. DENV IgM was positive in 13.4% (143) 

of these specimens. Of those specimens that were tested by both DENV IgM and ZIKV 
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IgM (n=982), 12.9% (127) of those that tested positive for IgM against ZIKV also tested 

positive for DENV IgM. In specimens that tested positive by rRT-PCR for ZIKV and 

were tested for IgM against DENV, 9.0% (19) were positive for both. 

 Six hundred ninety-nine and 722 sera were tested for ZIKV and DENV by PRNT, 

respectively. Of these, 99.3% (694) were positive for ZIKV, and 77.4% (559) were 

positive for DENV. Both test results were available for 691 sera, and 420 of these 

specimens were associated with asymptomatic cases, only 4 of which were from pregnant 

cases. Of the 691 sera tested by both ZIKV and DENV PRNT, 531 (76.8%) were positive 

for both ZIKV and DENV, 155 (22.4%) were positive for ZIKV alone, and 5 (0.7%) 

were negative for both viruses. 

 Using the CDC 2017 testing guidelines, 1,105 cases would have been eligible for 

testing: 1,066 cases would have been tested using the symptomatic non-pregnant 

algorithm, 32 cases with the symptomatic pregnant algorithm, and 5 with the 

asymptomatic pregnant algorithm. Four hundred nineteen cases were identified by the 

Florida DOH that would not have been tested according to these recommendations (Table 

3). Figures 1-6 depict the number of specimens and cases in each of the 3 algorithms for 

2017 and 3 algorithms for 2019. After accounting for duplicate cases, the 2017 algorithm 

identified 820 cases (74.3%) that would have been adjudicated as acute infections with 

ZIKV, 75 (6.8%) as infections with ZIKV with undetermined timing, 102 (9.2%) as 

flavivirus infections with undetermined timing, 39 (3.5%) as no evidence of ZIKV 

infection, 32 (2.9%) with no algorithm result, and 35 (3.2%) that would have been 

excluded due to collection timing. The 2019 algorithm identified 761 (69.0%) acute 

infections, 140 (12.7%) recent or presumptive ZIKV infections, 112 (10.2%) recent or 
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presumptive flavivirus infections, 1 (0.1%) presumptive DENV infection, 19 (1.7%) with 

no evidence of ZIKV or DENV infection, 26 (2.4%) with no algorithm result, and 44 

(4.0%) that were excluded for testing due to collection timing.  
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Table 3. Theoretical comparison of 2017 and 2019 Centers for Disease Control and Prevention Algorithms’ performance---Results 

that would have been seen had each of the algorithms been used. 

 2017 Algorithms 2019 Algorithms 

 NPS* PS PA Total NPS PS PA Total 
Total specimens in category 2,288 179 34 2,501 2,288 179 34 2,501 

Patients represented in category 1,066 32 5 1,103 1,066 32 5 1,103 

Specimens collected ≤13 or 7 
days post-symptom onset‡ 1,817 54 - 1,871 1,581 41 - 1,622 

Specimens collected >13 or 7 
days post-symptom onset‡ 254 125 - 379 256 107 - 363 

Specimens tested by ZIKV 
NAAT 1,753 171 30 1,954 1,531 141 30 1,702 

Positive (%) 
1,153 
(65.8) 

74 
(43.3) 

6 
(20.0) 

1,233 
(63.1) 

1,064 
(69.5) 

70 
(49.7) 

6 
(20.0) 

1,140 
(67.0) 

Negative or equivocal (%) 
597 
(34.1) 

97 
(56.7) 

24 
(80.0) 

718 
(36.7) 

467 
(30.5) 

71 
(50.4) 

24 
(80.0) 

562 
(33.0) 

Specimens tested by ZIKV and/or 
DENV IgM 591 95 - 686 596 78 - 674 

Non-negative (%) 
502 
(84.9) 

84 
(88.4) - 

586 
(85.4) 

565 
(94.8) 

69 
(88.5) - 

634 
(94.1) 

Negative (%) 
89 
(15.1) 

11 
(11.6) - 

100 
(14.6) 

31 
(5.2) 

9 
(11.5) - 

40 
(5.9) 
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Tested by ZIKV and DENV 
PRNT 235 13 - 248 207 11 - 218 
ZIKV ≥10 
DENV <10 

107 
(45.5) 

4 
(30.8) - 

111 
(44.8) 

105 
(50.7) 

3 
(27.3) - 

108 
(49.5) 

ZIKV ≥10 
DENV ≥10 

126 
(53.6) 

9 
(69.2) - 

135 
(54.4) 

99 
(47.8) 

8 
(72.7) - 

107 
(49.1) 

ZIKV <10 
(DENV <10) 

2 
(0.9) 

0 
(0.0) - 

2 
(0.8) 

3 
(1.4) 

0 
(0.0) - 

3 
(1.4) 

Case determination         

Acute ZIKV infection 
783 
(73.5) 

32 
(100.0) 

5 
(100.0) 

820 
(74.3) 

726 
(68.1) 

30 
(93.8) 

5 
(100.0) 

761 
(69.0) 

Recent or presumptive ZIKV 
infection 

75 
(7.0) 

0 
(0.0) 

0 
(0.0) 

75 
(6.8) 

140 
(13.1) 

0 
(0.0) 

0 
(0.0) 

140 
(12.7) 

Recent or presumptive flavivirus 
infection 

102 
(9.6) 

0 
(0.0) 

0 
(0.0) 

102 
(9.2) 

111 
(10.4) 

1 
(3.1) 

0 
(0.0) 

112 
(10.2) 

Recent or presumptive DENV 
infection 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

1 
(0.1) 

0 
(0.0) 

0 
(0.0) 

1 
(0.1) 

No evidence of ZIKV or DENV 
infection 

39 
(3.7) 

0 
(0.0) 

0 
(0.0) 

39 
(3.5) 

19 
(1.8) 

0 
(0.0) 

0 
(0.0) 

19 
(1.7) 

No algorithm result 
32 
(3.0) 

0 
(0.0) 

0 
(0.0) 

32 
(2.9) 

26 
(2.4) 

0 
(0.0) 

0 
(0.0) 

26 
(2.4) 

Excluded from testing 
35 
(3.3) 

0 
(0.0) 

0 
(0.0) 

35 
(3.2) 

43 
(4.0) 

1 
(3.1) 

0 
(0.0) 

44 
(4.0) 

*NPS: non-pregnant symptomatic cases; PS: pregnant symptomatic cases; PA: pregnant asymptomatic cases 
† p-value from two sample proportions test (two-tailed) between algorithm totals; results significant at p<0.05. 
‡Specimens collected ≤13 and 7 days post-symptom onset for the 2017 and 2019 algorithms, respectively. 
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Figure 1. 2017 CDC recommended testing algorithm for non-pregnant, asymptomatic 

cases. 
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ZIKV PRNT <10
2 serum   2 cases
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No Evidence Of 
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Results Available
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35 post-deduplication
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Needs PRNT
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No Algorithm 
Interpretation
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32 post-deduplication

Not Tested Further
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Figure 2. 2017 CDC recommended testing algorithm for pregnant, symptomatic cases. 
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Figure 3. 2017 CDC recommended testing algorithm for pregnant, asymptomatic cases. 
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Figure 4. 2019 CDC recommended testing algorithm for non-pregnant, asymptomatic cases. 
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Figure 5. 2019 CDC recommended testing algorithm for pregnant, symptomatic cases. 
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Figure 6. 2019 CDC recommended testing algorithm for pregnant, asymptomatic cases. 
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Discussion 

 Retrospective analysis of the 2017 and 2019 testing algorithms demonstrates the 

challenging task of diagnosing ZIKV infections. The CDC strategy relies upon separating 

potential cases by presentation of symptoms and further focusing testing efforts on 

pregnant women due to the increased risks associated with ZIKV. This strategy focuses 

resources on the population most severely affected by ZIKV and attempts to limit false-

positive results that could result in anxiety in pregnant mothers and unnecessary 

abortions. However, a major limitation to this approach is that there is no allowance for 

testing of non-pregnant, asymptomatic patients. Between 2016 and 2017, the Florida 

DOH identified 419 confirmed and probable cases of ZIKV infection in non-pregnant, 

asymptomatic patients. This accounted for 27.5% of all cases in the dataset. With both 

the 2017 and 2019 testing algorithms, these patients would not have been tested. This 

group must be accounted for when investigating potential cases or outbreaks and setting 

up surveillance systems as asymptomatic cases are thought to account for approximately 

80% of all cases (4) and can serve as a source of infection (20). 

 Evidence suggests that the viral load observed in patients infected with ZIKV is 

generally low (6, 9, 10), limiting the utility of rRT-PCR. The 2019 algorithm limits the 

specimen collection window to ≤7 days compared to ≤13 days in the 2017 algorithm. Of 

the 1,326 PCR-positive specimens with associated collection dates, 1,097 (82.7%) 

specimens were collected ≤7 days. Extending the collection window to ≤13 days 

increases the number of positive results to 1,202 (90.6%) specimens. If the collection 

window was expanded to ≤28 days, 95.2% (1,262) of the specimens that tested positive 

by rRT-PCR would be included in the algorithm. Part of the increase in recent or 
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presumptive ZIKV infections observed in the 2019 algorithm as compared to the 2017 

algorithm can be attributed to the shortening of the specimen collection window for rRT-

PCR testing. Of these additional 68 cases, 23.5% (16 cases) would have been adjudicated 

as acute cases with a collection window ≤13 days; this increases to 30.9% (21 cases) with 

a specimen collection window of ≤28 days. A larger testing window, for ZIKV may be 

indicated as detection of viral RNA allows investigators to unequivocally determine the 

timing of infection as compared to serological testing. Because ZIKV RNA was detected 

in far fewer asymptomatic cases (4.1%), testing of non-pregnant, asymptomatic patients 

could potentially be limited to further optimize future algorithms while expanding 

specimen collection windows. However, even a small increase in the number of cases 

adjudicated by rRT-PCR could potentially save time and resources in performing 

extraneous serological testing due to the high specificity of the assay. Further, rRT-PCR 

generally has a much quicker turnaround time and is much more readily available in 

laboratories as compared to IgM and PRNT testing. Real-time RT-PCR capacity is also 

much easier to quickly expand in the event of an outbreak (21, 22). 

 Of specimens tested for IgM antibodies against both ZIKV and DENV, 12.9% 

were positive for both, demonstrating the potential for cross-reactivity. This concurs with 

other studies that have assessed the cross-reactivity of the two viruses (7). In a cohort of 

61 patients diagnosed with acute ZIKV infection from Brazil, Felix and colleagues 

evaluated the cross-reactivity with several DENV IgM assays, finding up to 16.4% and 

37.7% cross-reactivity, depending on the assay and date of collection (23). This level of 

cross-reactivity and the potential for false-positive results make relying upon ZIKV IgM 

assays challenging, especially when patient treatment and other decision-making is 
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dictated by the outcome. This is further complicated in locations where DENV is 

prevalent or populations with increased prior exposure to DENV.  

 The performance and resulting utility of the PRNT assay for the determination of 

disease etiology is limited. About half of the cases with both ZIKV and DENV PRNT 

results were able to distinguish ZIKV as the etiology according to the 2017 and 2019 

algorithms, 44.8% and 49.5% respectively. The percentage was even lower in pregnant 

cases, although the sample size for this group is relatively small. The inability of the 

PRNT assay to identify the specific etiology for such a large percentage of cases may be, 

in part, due to the exposure of patients to other flaviviruses, such as DENV, through 

travel. The large number of foreign-born residents in Florida, and in Miami-Dade County 

in particular, may also influence the performance of this assay (8). With the amount of 

effort, time, and resources that goes into performing these tests, the resulting outcome 

needs to be considered. Additionally, the PRNT assay is a very specialized test, relying 

on time-consuming cell culture methods, and is not readily available in most laboratories. 

In Florida, the PRNT assay is only performed in one laboratory in the state, BPHL-

Tampa, creating potential delays in testing due to shipping requirements. As in other 

locations, the inclusion of the PRNT assay must be considered within the context of 

geography and the outbreak itself (11, 12, 24). 

The CDC recently revised its testing guidance for ZIKV given the decreased risk 

of transmission world-wide and the prolonged persistence of IgM antibodies to ZIKV 

(25, 26). This update only recommends serologic testing in cases consistent with 

congenital ZIKV infection and residence or travel to an area at risk of ZIKV; ZIKV IgM 
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testing is not recommended for symptomatic or asymptomatic pregnant patients. This will 

place more reliance on rRT-PCR testing to identify outbreaks of ZIKV in the future.  

 These analyses are subject to several limitations. This study utilizes laboratory 

and epidemiological data collected during the ZIKV outbreak from 2016 to 2017 to 

retrospectively test these algorithms. This approach treats specimens from the same 

patient collected on different dates and analyzes them independently. In a practical 

setting, multiple laboratory results from multiple specimens would be analyzed together, 

along with other available data, to determine the etiology and nature of infection. De-

duplicating cases hierarchically attempts to account for this.  However, this approach also 

clearly demonstrates the variability of results across time and the difficulty of diagnosing 

ZIKV infections with currently available laboratory tests. Using only confirmed and 

probable cases also limits the utility of this analysis to evaluating the efficacy in terms of 

presumably true cases. To comprehensively evaluate testing guidance and assays, the 

inclusion of non-case data is also important. This additional data would allow for 

evaluation of non-ZIKV infections in the testing algorithms, such as those caused by 

DENV. 

Epidemiologists and health care providers need to be cognizant of the limitations 

of testing for ZIKV. Current guidance for testing is limited in that it potentially does not 

account for approximately 80% of cases as testing of asymptomatic patients is limited to 

pregnant patients. This guidance focuses on patient diagnosis for those most at risk and 

does not account for critical public health surveillance activities. Public health agencies 

will need to adapt these recommendations in order to effectively detect and identify 

future transmission of ZIKV. In the context of an outbreak, asymptomatic people must be 
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included on the basis of epidemiological factors in an attempt to balance disease 

detection and laboratory resources. Expansion of the specimen collection window for 

rRT-PCR testing, especially in response to an outbreak, can potentially maximize the 

availability of laboratory resources by limiting the need for serological testing. This can 

also include use of the PRNT assay, which, in some populations, may be of limited 

utility. 
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Chapter 6 

Conclusion and Recommendations 

Conclusion 

 The unprecedented worldwide spread of ZIKV offered a unique opportunity to 

study a once rare infection. Because of the significant increase in infections, 

complications with fetal development and an increased risk of neurologic complications 

were identified as being associated with ZIKV infections. The surge in cases also brought 

the development and implementation of new diagnostic assays, providing a wealth of 

both clinical and laboratory data. The studies presented herein sought to capitalize on this 

increase in evidence to investigate the natural history of the virus.  

The first study, a systematic review of published cases, estimated the median 

incubation period of ZIKV disease to be 6.5 days from exposure. Abstracted data were 

also used to calculate median viral RNA clearance time from symptom onset from 

various clinical specimens. Vaginal and serum specimens were observed to have the 

quickest time to viral clearance, 9.9 and 10.8 days, respectively; whereas, semen and 

whole blood specimens had the longest time to viral clearance, 47.7 and 49.2 days, 

respectively. Saliva and urine had similar times to viral clearance, 18.9 and 20.5 days, 

respectively. These estimates can be used to adapt testing methodologies and algorithms 

to optimize the detection of infections with ZIKV. This can be especially important given 

the challenges of identifying acute infections using serological methods, such as IgM or 

PRNT.  

As an extension of viral clearance time, available viral isolation data were 

examined as a proxy for infectivity. Due to both the tremendous variability in viral 
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isolation methods and the inconsistency in reporting these methods, it was difficult to 

make direct comparisons and analyze these variables in aggregate. Overall, only 13.9% 

of viral isolation attempts resulted in recovery of the virus. Semen, serum, and urine all 

exhibited similar recovery rates. However, virus was not recovered from whole blood in 

any of the 33 attempts, indicating it is a poor specimen choice for viral isolation attempts. 

This indicates that, although ZIKV can be detected longest in whole blood specimens by 

rRT-PCR, these specimens may not actually be infectious for the entire duration that in 

which ZIKV can be detected by rRT-PCR. 

The second study built upon this systematic review by utilizing data collected by 

the Florida DOH on confirmed and probable symptomatic cases between 2016 and 2017. 

Of the 2,044 specimens included in the study, ZIKV was detected most often in urine 

specimens, and, when collected alongside serum specimens, were detected in 75.4% of 

specimens as compared to 44.4% of serum specimens. Within the first four weeks 

following symptom onset, ZIKV RNA was detected at higher rates in urine specimens as 

compared to serum specimens. Urine also had the lowest median Ct value, indicating a 

significantly higher viral load than whole blood or serum. These findings indicate that 

urine may be the ideal specimen for detecting ZIKV RNA by rRT-PCR. However, almost 

a third of positive whole blood specimens were detected ³28 days post-symptom onset, 

indicating the potential utility of using whole blood to diagnose older infections.  

The final study examined case data from the ZIKV outbreak in Florida from 2016 

to 2017 in the context of diagnostic algorithms. Epidemiological and laboratory data were 

utilized to retrospectively assess the efficacy of the CDC’s recommend algorithms for 

diagnosing Zika virus disease. The transition to a shorter recommended collection time 
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for molecular testing led to fewer determinations of acute ZIKV infection and a 

corresponding increase in the identification of recent or presumptive cases of ZIKV 

infection. Both algorithms exclude testing of specimens from asymptomatic people who 

are not pregnant. In the experience of Florida, strict application of this recommendation 

would have resulted in the potential failure to detect 419 cases.  

Within this dataset, 12.9% of specimens tested for IgM antibodies against both 

ZIKV and DENV were positive for both. Of the 691 specimens tested by both ZIKV and 

DENV PRNT, 531 (76.8%) were positive for both viruses. Nine percent of specimens 

that were positive for ZIKV by rRT-PCR and tested for IgM antibodies against DENV 

were also positive by DENV IgM. This adds to the body of evidence that serological 

methods for flaviviruses are non-specific, causing difficulties in interpreting their results. 

Increased reliance on molecular detection and a larger specimen collection window could 

potentially alleviate the reliance upon serological methods while still identifying the 

majority of cases. 

 

Recommendations 

 These findings underscore the importance that laboratory testing plays when 

responding to public health emergencies. Especially with an infection where a large 

proportion of cases are asymptomatic or symptoms are mild or non-pathognomonic, 

appropriate utilization and interpretation of laboratory testing is critical. When resources 

are limited, these factors become even more important. With regard to ZIKV, these 

studies add to the mounting evidence that urine may be the optimal specimen to utilize as 

a diagnostic specimen. Given the higher viral load, the ability to detect ZIKV RNA 
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within the first three weeks of infection with urine, and the relative ease of specimen 

collection, prioritizing urine collection may aid in identifying more acute cases. 

Additionally, urine is a relatively simple and non-invasive specimen to collect, making it 

ideal for surveillance studies.  

 Utilization of urine alone, however, may not be the optimum strategy. Given the 

lengthened time to viral clearance for whole blood specimens, there is a place for whole 

blood in the diagnostic algorithm as well. Whole blood could potentially be used in cases 

where infection with ZIKV is highly suspected and other etiologies are ruled out. These 

studies suggest that ZIKV RNA could be detected in whole blood for upwards of two 

months following symptom onset. If serological testing is inconclusive in such cases, 

testing whole blood can be considered. 

 Further review of the window for specimen collection for routine molecular 

testing needs to be reexamined. Current CDC guidelines recommend limiting molecular 

testing to specimens collected within 7 days from symptom onset. These studies 

demonstrate that ZIKV RNA can be regularly detected in urine specimens for at least two 

weeks, if not three. As mentioned previously, further analyses must be conducted to 

determine if the additional testing volume would be offset by the ability to identify these 

additional cases. Given the challenges with serological testing and widespread ability to 

implement molecular testing, it appears this additional testing may be worthwhile.  

 Lastly, current testing algorithms do not account for asymptomatic cases in non-

pregnant individuals. Given that up to 80% of all infections with ZIKV are asymptomatic 

and that most infections are mild, consideration for testing asymptomatic patients must be 

given. Strategies must be devised to account for this population without overloading the 
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laboratory system. Pooling specimens from asymptomatic patients may be an effective 

approach that can strike a balance with the volume of testing and the benefit for public 

health surveillance.  

 The unprecedented emergence of ZIKV illuminated many of the deficiencies 

within our global health system. The pandemic, however, taught the lesson of flexibility. 

With the increased number of cases, came an increase in our knowledge of the virus and 

its effects on its host. Leveraging this lesson and newfound knowledge will be critical in 

responding and controlling the next outbreak of ZIKV and other emerging illnesses.  
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