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ABSTRACT OF THE DISSERTATION 

3D ARCHITECTURAL ANALYSIS OF NEURONS, ASTROCYTES, VASCULATURE & NUCLEI IN 

THE MOTOR AND SOMATOSENSORY MURINE CORTICAL COLUMNS 

by 

Jared Leichner 

Florida International University, 2020 

Miami, Florida 

Professor Wei-Chiang Lin, Major Professor 

  Characterization of the complex cortical structure of the brain at a cellular level is a fundamental 

goal of neuroscience which can provide a better understanding of both normal function as well as disease 

state progression.  Many challenges exist however when carrying out this form of analysis.  

Immunofluorescent staining is a key technique for revealing 3-dimensional structure, but subsequent 

fluorescence microscopy is limited by the quantity of simultaneous targets that can be labeled and intrinsic 

lateral and isotropic axial point-spread function (PSF) blurring during the imaging process in a spectral and 

depth-dependent manner.  Even after successful staining, imaging and optical deconvolution, the sheer 

density of filamentous processes in the neuropil significantly complicates analysis due to the difficulty of 

separating individual cells in a highly interconnected network of tightly woven cellular arbors.            

  In order to solve these problems, a variety of methodologies were developed and validated for 

improved analysis of cortical anatomy.  An enhanced immunofluorescent staining and imaging protocol 

was utilized to precisely locate specific functional regions within brain slices at high magnification and 

collect four-channel, complete cortical columns.  A powerful deconvolution routine was established which 

collected depth variant PSFs using an optical phantom for image restoration.  Fractional volume analysis 

(FVA) was used to provide preliminary data of the proportions of each stained component in order to 

statistically characterize the variability within and between the functional regions in a depth-dependent and 

depth-independent manner.  Finally, using machine learning techniques, a supervised learning model was 

developed that could automatically classify neuronal and astrocytic nuclei within the large cortical column 

datasets based on perinuclear fluorescence.  These annotated nuclei were then used as seed points within 
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their corresponding fluorescent channel for cell individualization in a highly interconnected network. For 

astrocytes, this technique provides the first method for characterization of complex morphology in an 

automated fashion over large areas without laborious dye filling or manual tracing. 
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Chapter 1:  Introduction 

 

             A thorough understanding of the specific nature of microscopic cellular architecture and 

heterogeneity of cellular morphology in the neuropil is limited by a lack of multicellular data at the 

microscopic level.  Collection of this data is difficult due to the challenge of imaging such a dense region, 

the variety of cells involved, and the relative lack of established quantitative metrics in the scientific 

literature.  Due to recent advances in computational hardware, collection of microscopy data over large 

regions at fine spatial resolutions has become much more efficient – improving the potential of studies of 

the brain’s network architecture.  Comprehending the interwoven nature of neurons, astrocytes and 

vasculature within cortical brain tissue requires a resolution fine enough to identify detailed cell-level 

morphology and a stitched multi-panel dataset large enough to assess architectural characteristics through 

all layers of the cerebral cortex.  An enhanced understanding of network architecture can improve 

understanding of normal brain function, disease state characteristics and can provide insight as to novel 

therapeutic interventions for resolving diseases.    

  This dissertation presents a novel combination of immunofluorescent staining targets alongside an 

optimized staining and confocal imaging methodology for adult Wistar rat cortical brain tissue that 

highlights four key components simultaneously – neurons, astrocytes, vasculature and nuclei.  First, 

staining of each of these cellular targets is carried out in coronal brain slices from multiple rats.  Confocal 

microscopy is used to subsequently collect 36 cortical columns from the primary motor and somatosensory 

regions from multiple slices and both hemispheres of each slice.  Cortical column datasets encompass large 

regions [800µm x 3mm x 70µm] at an extremely fine theoretical voxel resolution [0.2µm x 0.2µm x 1µm].  

Advances are made in large-scale data acquisition and analysis techniques and a rigorous quantitative 

optimization of staining parameters is performed through a factorial design.  Second, depth-variant, 

accelerated, blind deconvolution is performed to reduce PSF-driven spherical aberration to enhance data 

quality.  Subsequently, fractional volume of each fluorescently stained component is assessed and 

statistically compared in both a depth-independent as well as a depth-dependent manner.  Third, a novel 

nuclei assignment technique provides rapid and automated categorization of astrocytic and neuronal nuclei 
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throughout the cortical column using support vector machine discrimination through perinuclear staining 

intensity.  Astrocyte nuclei classification allows rapid cellular individualization and assessment of 

morphology. 

 

Statement of Problem 

 In order to develop treatment strategies for disease states in the brain, it is critical to understand 

the specific modifications the disease induces in the complex network architecture.  Furthermore, to 

characterize the various morphological influences of the disease state, it is similarly necessary to first have 

a firm understanding of the morphology, cellular density and network interconnectivity of normal, un-

diseased tissue.  While macroscopic brain imaging techniques have made tremendous strides in 

understanding broad network connectivity, they are insufficient for understanding the microscopic 

alterations in cellular structure and architecture.  Microscopic imaging techniques can analyze at these 

scales, but each of the various approaches provides unique tradeoffs in regard to cost, spatial resolution, 

field of view and quantity of simultaneously stained targets.        

 Due to the rapidly shrinking cost of data storage coupled with continued growth in the graphical 

and computational capabilities of the typical laboratory workstation, it has only recently become feasible to 

collect extremely large datasets at fine spatial resolutions and then deconvolve them for detailed 3D 

architectural analysis using advanced software packages such as Bitplane Imaris.  Since these capabilities 

are extremely recent, there is very little presence in the scientific literature of relevant metrics.  While 

researchers have previously provided stunning visualizations of network architecture or have carried out 

detailed morphological analysis on individual cells or single-cell populations, there is a substantial gap in 

the current literature regarding how fractional volume and individual cell morphology in the dense neuropil 

are organized in a region-specific and cortical depth-specific manner. 

 To contribute to this underrepresented area, this dissertation is unique in its focus on four specific 

structural cellular markers, the underlying staining and antigen retrieval strategies, the comparison of 

different functional regions over numerous cortical column datasets in different rats and utilization of 
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depth-variant deconvolution and subsequent 3D modeling to extract pertinent quantitative architectural 

metrics and astrocyte-specific morphological metrics.        

 

Background & Theory 

  Studying the characteristics of normal brain tissue requires an approach which identifies the 

unique aspects of structural network connectivity, since the fundamental electrical and chemical signaling 

which underlies cellular communication requires a dynamic collection of cellular nodes operating at 

multiple hierarchical levels.  Furthermore, understanding the complex manifestation of various disease 

states within brain tissue requires a simultaneous macroscopic and microscopic perspective to understand 

the local and regional phenomena.  Ultimately, the networked connections between various cellular 

components are the most substantial controllers of brain functionality and are thus suitable targets for 

characterizing normal and diseased tissue.  However, due to the multi-relational interactions between 

regions on numerous hierarchical scales, any decomposition of the brain network will fundamentally offer 

an incomplete perspective of the true landscape of the brain (Pessoa, 2014).          

Brain Architectural Study at the Microscopic Level: Technologies 

 At the microscopic level, the tools and technologies for assessing the network architecture of the 

brain are vastly different than those at the macroscopic scale.  Staining of brain tissue at microscopic scales 

has been the most accessible method for centuries to provide sufficient contrast to delineate the structure of 

particular cell types from the surrounding tissue.  This practice first began with the work of Camillo Golgi 

in 1873, who utilized silver staining and their resulting impregnation into neurons and their processes to 

provide detailed tracings of dendrites (Golgi, 1873).  This and similar staining techniques that rely on 

immunohistochemistry have been instrumental in revealing the fundamental shape and structure of cell 

types in the brain.  To understand the additional complexity of a 3-dimensional analysis, it is far more 

suitable to incorporate fluorescent probes – a practice known as immunofluorescent staining.   

Early fluorescence microscopy was limited to widefield microscopy, which illuminates a sample 

and collects fluorescence from all lateral and axial components simultaneously.  While the objective used 

focuses optimally at a precise focal plane, fluorescent signals from out-of-focus regions still reach the 
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objective and reduces image clarity.  To enhance image quality, a spatial pinhole was introduced to block 

the out-of-focus light from contributing to the final image, with the resultant technology called confocal 

microscopy.  Using this confocal technique, in conjunction with optical sectioning, it becomes possible to 

capture entire 3D objects through careful manipulation of the focal volume along the axial dimension 

(Pawley, 2006).  Recently, wide field microscopes have been shown to be capable of this sectioning 

capability (Cogswell & Sheppard, 2014), but they are far more limited at this task.  While confocal 

microscopy has seen a variety of incremental improvements in recent decades, four major categories of 

confocal microscopes remain commercially available today.  The first type, used within this dissertation, is 

the confocal laser scanning microscope, which raster scans the laser along the XY axes to collect the final 

image on a point-by-point basis.  This technique has been widely used to study neuronal morphology for 

decades (Belichenko et al., 1994).  The second, spinning disc confocal microscopy, utilizes a spinning 

Nipkow-Petran disk which contains hundreds of pinholes – unlike typical confocal techniques which only 

use a single pinhole.  These numerous pinholes sample many points in parallel, enhancing image 

acquisition speed and reducing phototoxicity (Gräf et al., 2005).  Additionally, spinning disc confocal 

microscopy provides substantial customizability of resolution, brightness and contrast through selection of 

pinhole size and disc spin speed.  While this technology allowed for much faster imaging speeds, the desire 

for higher spatial resolutions and hence smaller pinholes substantially reduces collected light intensities.  

To resolve this issue, a third category emerged – dual-spinning disc confocal microscopes.  This technique 

utilizes a second spinning disc, which has a similar array of openings but each containing a micro-lens that 

is associated with a specific pinhole (Nelson et al., 2010).  These micro-lens arrays substantially improve 

the light intensity in the final image while still allowing for extremely small pinholes to maximize spatial 

resolution.  The final category of confocal microscope, called a programmable array microscope (PAM) 

utilizes a spatial light modulator to precisely control features of individual pixels, such as their opacity or 

reflectivity.  Placed within the light-path, the modulator can allow for arbitrary illumination and detection 

patterns (Verveer et al., 1998) and precise photoconversion (Fulwyler et al., 2005) within biological 

applications.  All of these techniques share in common a fundamental advantage over widefield techniques 

– precise optical sectioning.  Optical sectioning with fluorescent probes is valuable due to its compatibility 
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with thicker tissue sections than typical immunohistochemistry and its ability to preserve the complex 

features of tissue components.     

  While confocal microscopy is the most commonly available optical sectioning technology for 

most laboratories, other more expensive technologies and exotic instrumentation setups such as multi-

photon microscopy and light sheet microscopy can allow for enhanced imaging capabilities.  Multi-photon 

microscopy can achieve better tissue penetration due to the use of near-infrared excitation light and can 

utilize enhanced resolving power due to the limitation of excitation to a smaller focal volume (Konig, 

2000).  This is possible due to the use of femtosecond pulsed lasers that can generate a high local photon 

density at the desired focal point, increasing the likelihood of simultaneous excitation of a fluorophore. The 

sum of the energy of the arising photons satisfies the transition energy required to cause a fluorescent event 

for fluorophores located at the overlapped focal point of each photon packet’s path (Larson, 2011).  This 

complex process yields several important advantages.  First, limiting the elevation of the fluorophore from 

ground to excited state at the intersected focal point reduces the presence of additional excitation along the 

path, reducing out-of-focus light and minimizing photobleaching.  Second, the necessity of longer 

wavelength (lower energy) illumination sources to combine to the desired energy level typically has 

improved depth penetration.  Light sheet microscopy decouples the illumination and detection pathways, 

allowing for far higher imaging speeds and enhanced depth penetration – especially when the sample is 

optically cleared (Power & Huisken, 2017).  This is typically carried out through focusing a laser beam into 

a thin sheet using a cylindrical lens.  This sheet is then swept through the sample while a perpendicular 

objective collects the resultant fluorescence signal (Hillman et al., 2019).  As the sheet scans through the 

sample, its thin design only excites fluorescence in a small cross-section, allowing the perpendicular 

objective to collect the signal within the tissue without fluorescence contribution above or below the focal 

plane.  Within the broader goals of neuroscience research, light sheet microscopy can allow for rapid 

monitoring of dynamics (e.g. calcium) of living neurons or efficient collection of immunofluorescent data 

from large areas of fixed, cleared tissue. Through combination of light sheet and multiphoton microscopy, 

the benefits of each have been combined to allow for extremely rapid, highly penetrating multicolor 

fluorescence microscopy (Mahou et al., 2014).         
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  While all of these techniques have tradeoffs, they all share a single fundamental limitation that 

their resolution cannot exceed the diffraction limit of light.  One method to overcome this limitation is 

through the use of electron microscopy techniques due to their substantially better spatial resolution, which 

can achieve resolving powers of 1 to 2 nm in biological specimens under optimal conditions (Cooper, 

2000).  Electron microscopy techniques, while typically used to generate 2-dimensional images, can be 

used in synchrony with serial sectioning techniques to generate 3-dimensional volumetric data (Briggman 

& Denk, 2006).  Furthermore, to provide specific contrast to identify unique macromolecules, antibodies 

labeled with colloidal gold nanoparticles have been used as contrast agents, akin to how fluorescent 

secondary antibodies are utilized in fluorescent microscopy (Alberts et al., 2002).  However, the high 

resolution (along with other instrumentation-derived limitations) also serves as a substantial drawback 

when attempting to derive network architecture metrics of numerous cell types over large spatial regions.            

 Alternative optical methods of exceeding the diffraction limit of light have emerged, collectively 

known as super-resolution microscopy techniques, which can overcome typical resolution limitations.  

These are subdivided into two major classes of techniques – deterministic and stochastic (Moerner, 2015).  

Deterministic techniques take advantage of nonlinear responses to excitation light and include STED 

(Stimulated Emission Depletion Microscopy) and SSIM (Saturated Structured Illumination Microscopy).  

Stochastic techniques take advantage of temporal complexity in the resulting fluorescent signal and include 

PALM (Photoactivated Localization Microscopy) and STORM (Stochastic Optical Reconstruction 

Microscopy).  Techniques which exceed the diffraction limit are exceedingly useful for studying brain 

networks at the microscopic level, since the tight interwoven nature of cellular filaments requires a spatial 

resolution fine enough to visualize the fine gaps between them for effective segmentation.  Furthermore, 

sub-micron components such as dendritic spines can be far better represented three-dimensionally when 

using super-resolution techniques (Sawada et al., 2018).     

  Even with the widespread availability of optical sectioning, the use of 3-dimensional 

reconstruction is still rare as compared to the use of 2-dimensional analysis and the development of 

effective quantitative metrics to analyze the data is even more rarely addressed.  This is due to a variety of 

factors, including the depth dependency of the signal to noise ratio, axial stretching due to the microscope 

point spread function (which can be heterogeneous throughout the sample due to local refractive index 
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variability) and the lack of established network architecture metrics in the scientific literature.  To assess 

network architecture from 3-dimensional data cubes, it is critical to be able to identify connectivity nodes - 

where individual cellular components connect.  Furthermore, it is important that the spacing between 

separate cellular components falls below the spatial resolution of the system after PSF-induced blurring.  

While this does not necessarily need to involve cells of different types, the power of a network architecture 

study is dependent not only on the dataset size and spatial resolution, but also the number of independently 

stained components whose interactions can be reliably characterized 3-dimensionally.  Researchers have 

previously generated excitatory neural connectivity hierarchies in cortical columns of the mouse 

somatosensory cortex (Lefort et al., 2009), using a combination of electrical recording and neuronal 

staining.  Multi-channel staining of entire cortical columns has similarly been carried out examining 

neuron/interneuron density (H. S. Meyer et al., 2011), but as with all similar attempts the authors stop short 

of detailed 3D network architecture quantification, likely due to the substantial complexity and data quality 

requirements of this type of analysis scheme.  Quite possibly, the most similar research project to the 

dissertation presented here was only just recently published and used a combination of expansion 

microscopy and light-sheet microscopy to scan a thick cortical column of the primary somatosensory cortex 

of the mouse cortex at an effective resolution of 60 x 60 x 90 nm (Gao et al., 2019).  These researchers 

were able to use 3D computational modeling techniques to assess a variety of important aspects of their 

data, such as the subcellular compartment distribution, myelination, dendritic spine density/morphology 

and morphology of reconstructed neurons.      

  

Brain Architectural Study at the Microscopic Level: Applications 

  Each of these varied techniques has allowed researchers to make tremendous strides in 

understanding the inner workings of the brain.  As described previously, the work of Camillo Golgi 

elucidated the fundamental cellular nature of nervous tissue.  In our more modern era, fluorescent 

techniques have been critical to understand a variety of phenomena, including neurovascular coupling 

(Uhlirova et al., 2016), the blood-brain barrier (Villaseñor & Collin, 2017) and astrocytic gap junctions 

(Nakase et al., 2003).  One of the more striking recent developments has emerged with the development of 
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‘brainbow’ technology, where random expression of different ratios of separate fluorescent proteins within 

individual neurons has allowed for labeling individual cells in hundreds of different ‘hues,’ making the 

process of separating adjacent neurons in a dense neuropil a far simpler task – subsequently aiding further 

study of network connectivity (Weissman & Pan, 2015).  Assessing the anatomical interconnectivity of 

brain tissue has been achieved with super-resolution techniques (Tønnesen et al., 2018) as well as 

identification and quantification of synapse locations (S. Park et al., 2018).  Electron microscopy has also 

been able to provide insight as to the neuronal architecture of the normal brain (Briggman & Denk, 2006) 

and multi-labeling techniques have provided simultaneous visualization of multiple neuronal populations 

(X. Zhang et al., 2019).  Furthermore, such a high magnification has allowed for direct visualization of the 

structure of a tripartite synapse (Chung et al., 2015), a phenomenon which would be impossible due to 

PSF-driven aberrations in optical microscopy.     

       In addition to studies of normal brains, optical techniques have also proven critical to understand 

the alterations which occur due to various disease states.  For example, fluorescent techniques have helped 

illuminate the structural and functional characteristics of numerous disease states including epilepsy (Qin et 

al., 2017), ischemic stroke (Gelderblom et al., 2012), Alzheimer’s disease (Shioya et al., 2010) and 

Parkinson’s disease (H.-J. Park et al., 2016).  Furthermore, the ability to perform simultaneous staining of 

multiple targets has proven critical for assessing a variety of complex processes, such as the breakdown of 

the blood brain barrier during various disease states - including epilepsy (Saunders et al., 2015).  

Additionally, super-resolution techniques have been used to further understand a variety of disease states, 

including Huntington’s Disease (Lu et al., 2019) and Alzheimer’s (Mlodzianoski et al., 2018).  Electron 

microscopy-based techniques have also proven critical to understand disease states in the brain as well, 

including assessment of the blood brain barrier under conditions of edema (Hirano et al., 1994) and 

identification of Tau filament structures in Alzheimer’s disease (Fitzpatrick et al., 2017).      

Brain Architectural Study at the Microscopic Level: Limitations 

  Light microscopy and immunohistochemical techniques have been exceedingly useful in the early 

history of microscopy to illuminate the structure and components of brain tissue but have a fundamental 

limitation in their inability to represent complex 3-dimensional morphologies.  While immunofluorescence 
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techniques combined with confocal optical sectioning allows for 3-dimensional analysis, they exhibit 

limitations due to intrinsic optical phenomena - including the thickness of tissue sections that can be 

analyzed (due to optical absorption, spherical aberration and objective working distance) and the maximum 

number of individual fluorescent channels that can be assessed (typically at most four in current gold 

standard instrumentation).  Incorporation of multiphoton techniques reduce the impact of some of these 

limitations, but at a significant additional financial cost and risk of cell damage for live-cell studies due to 

the short, high-energy pulse durations (Tauer, 2002).  Damage to live cells is not a concern in this 

dissertation since only fixed samples are used.  Light-sheet microscopy improves the rate of data collection 

but can be far more complex to align, calibrate and collect the resulting image data (Girkin & Carvalho, 

2018).  Super-resolution techniques encompass a broad class of methodologies, each with specific 

disadvantages.  However, examples of typical disadvantages in these techniques include the additional cost 

and complexity of the imaging system, requirements of specialized fluorescent probes, enhanced 

phototoxicity due to beam strength and imaging depth / volume limitations.   

 Regardless of which optical imaging techniques are utilized, resultant network studies all suffer 

from the same fundamental obstacles.  First, heterogeneous brightness levels of different filaments 

(whether due to inhomogeneous staining, lesser epitope presence or depth-dependent absorption/scattering 

effects) will limit the accuracy of 3-dimensional reconstructions that rely on pixel threshold values for 

segmentation.  Second, heterogeneous diameter of cellular components will be reconstructed at different 

accuracies due to interaction effects of the system PSF and the filament diameter.  Finally, assessment of 

network connectivity of components from different fluorescent channels must take into account the 

channel-specific PSF-driven axial stretch, which complicates the resultant analysis.        

 Electron microscopy techniques on the other hand, while being able to provide substantial 

improvements in spatial resolution, suffer from numerous limitations which limit their utility for brain 

network studies.  First, sample thicknesses are typically limited to approximately 200 nm, due to multiple 

scattering events of the beam limiting reconstruction accuracy.  This by itself is a tremendous limitation, 

since accurate three-dimensional network modeling requires a sample thick enough to provide sufficient 

cellular information for morphological reconstruction.  While serial sectioning techniques are available that 

can provide 3-dimensional reconstruction, they are time-consuming and laborious in nature (Hoffpauir et 
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al., 2007).  Furthermore, while separate labeling of individual cell types is a well-established method in 

optical techniques, this technique is available but still in its infancy when applied to electron microscopy 

(X. Zhang et al., 2019).  Additionally, while optical techniques have the capability to be used on living 

tissue, the processing steps of typical electron microscopy coupled with the magnitude of the electron beam 

dose make the use of this technique on live tissue unlikely (de Jonge & Peckys, 2016). 

 

Research Aims & Significance  

 This dissertation was structured around four unique specific aims. 

Specific Aim 1:  Develop an optimized immunofluorescent staining and imaging protocol which is capable 

of acquiring entire cortical columns from the Primary Motor (M1) and Primary Somatosensory Barrel-Field 

(S1BF) of the Rat Brain. 

Significance: 

 Simultaneous staining of four fluorescent channels and collection of data across an entire cortical 

column are both rare, but until now have not yet been carried out simultaneously.  Furthermore, 

methodological advancements in ROI-identification, mosaic scanning and subsequent alignment is 

presented.  Additionally, the use of relatively thick (70 µm) brain slices in conjunction with a specific focus 

on neuronal, astrocytic and vascular processes allows for a unique perspective of the architecture of these 

critical cortical components.  Finally, a thorough factorial experiment is utilized to optimize the staining 

protocol through unbiased quantitative analysis of resultant image contrast.              

Specific Aim 2:  Enhance the morphological accuracy of the collected data using a deconvolution routine 

that takes into account the spatially and spectrally varying PSF, and with the resultant data carry out 

detailed analysis of fractional volume distributions of volumetrically modeled cellular components. 

Significance: 

 A novel, low-cost methodology for multi-channel experimental PSF collection at sparse depths is 

presented.  Subsequent deconvolution substantially enhances data quality by reducing axial stretch which 

results from spherical aberration – an intrinsic and unavoidable consequence of imaging deep into tissue.  

Furthermore, the volumetric density of the components of each fluorescent channel in 50 micron 
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increments along the cortical column is assessed.  Subsequent statistical analysis provides a clear indication 

of within-brain, between-brain and between-functional region differences, in both a depth-dependent and 

depth-independent manner.       

Specific Aim 3:  Create an automated routine for identifying cell nuclei which belong to astrocytes & 

neurons and optimize the underlying decision algorithm to maximize sensitivity and specificity. 

Significance: 

  In order to differentiate adjacent cells within dense interconnected networks and perform 

morphological analysis in the neuropil, it is necessary to be able to identify the nuclei of each cell of 

interest so that it can be used as a seed point for cell individualization and morphological analysis.  To 

accomplish this, a novel technique for assigning nuclei based on perinuclear staining density of 

fluorescently stained somas is generated and applied to neurons and astrocytes.  Subsequent assessment of 

sensitivity and specificity demonstrate the efficiency of the protocol, which replaces laborious manual 

tracing and dye-filling techniques.     

Specific Aim 4:  Leverage identification of astrocytic cell nuclei to automate the process of cell 

individualization and morphological extraction. 

Significance: 

  Heterogeneity of astrocyte morphology is a common theme in the literature, as well as the 

substantial knowledge gap regarding the underlying variation.  This is primarily due to the current 

techniques available to assess morphology, which require either manual tracing or dye-filling, both of 

which are tedious and poorly suited for collection of large amounts of morphological data.  Here, cell 

nuclei identification tools developed previously are leveraged to create a powerful methodology for rapid 

astrocyte morphological analysis in large multichannel fluorescent datasets.          
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Chapter 2. Acquisition of Neuronal, Astrocytic, Vascular & Nuclear Data from Murine Cortical Column 

 

Introduction 

 
Staining of brain tissue has been the most accessible method for centuries in order to provide 

sufficient contrast to delineate the structure of particular cell types from the surrounding tissue.  This 

practice first began with the work of Camillo Golgi in 1873, who utilized silver staining and their resulting 

impregnation into neurons and their processes to provide detailed tracings of dendrites (Golgi, 1873).  This 

and similar staining techniques that rely on immunohistochemistry have been instrumental in revealing the 

fundamental shape and structure of cell types in the brain but have a fundamental limitation in their 

inability to represent complex 3-dimensional morphologies.  Despite this limitation, these techniques have 

helped illuminate the structural and functional characteristics of numerous disease states, including epilepsy 

(Qin et al., 2017), ischemic stroke (Gelderblom et al., 2012), Alzheimer’s disease (Shioya et al., 2010) and 

Parkinson’s disease (H.-J. Park et al., 2016).   

To understand the additional complexity of a 3-dimensional analysis, it is far more suitable to 

utilize immunofluorescent staining.  Modern immunofluorescent techniques emerge from the foundational 

work of Dr. Albert Coons, who developed the technique of Fluorescein labeling of immunoglobulin 

preparations (Beutner, 2003). Using this technique, in accordance with optical sectioning, it becomes 

possible to capture entire 3D objects through careful manipulation of the focal volume along the axial 

dimension.  While this is typically performed using confocal microscopy methods, wide field microscopes 

are also capable of this sectioning capability (Cogswell & Sheppard, 2014).  This technique allows for the 

use of thicker tissue sections than typical immunohistochemistry and preserves the complex connectivity of 

tissue components.  The use of immunofluorescence carries limitations due to intrinsic optical phenomena, 

including the thickness of tissue sections that can be analyzed (due to optical absorption, spherical 

aberration and objective working distance) and the maximum number of individual fluorescent channels 

that can be assessed (typically at most four in current gold standard instrumentation).  Spectral signal 

analysis provides the capability to go beyond four simultaneous channels, but spectral scanning will be far 

slower, since typical confocal microscopy requires 2-8 microseconds per pixel (Brown et al., 2008) while 
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spectral scanning can take approximately 2 milliseconds per pixel (Strasser et al., 2019) – a 1000-fold 

difference in speed.  Due to this, spectral scanning would not be compatible with the large spatial regions 

scanned in this study due to the substantial increase in imaging time over the 24-48 hours the scan already 

requires.     

While confocal microscopy is the most commonly available optical sectioning technology for 

most laboratories, other more expensive technologies and exotic instrumentation setups such as multi-

photon microscopy and light sheet microscopy can allow for enhanced imaging capabilities.  Multi-photon 

microscopy is capable of achieving better tissue penetration due to near-infrared excitation light as well as 

enhanced resolving power due to the limitation of excitation to a smaller focal volume (Konig, 2000).  

Light sheet microscopy decouples the illumination and detection pathways, allowing for far higher imaging 

speeds, and enhanced depth penetration – especially when the sample is optically cleared (Power & 

Huisken, 2017).  Despite the advantages of these advanced methodologies, a 70 micron thick sample 

assessed using laser scanning confocal microscopy is more than sufficient to examine the interplay of cells 

and their filamentous processes throughout the thickness of the sample.   

Although the developed combination of immunofluorescence staining targets is novel, 

immunofluorescence with neural markers have been used to accomplish a wide variety of research 

objectives, including assessments of neurovascular coupling (McCaslin et al., 2011), Parkinson’s disease 

(Reeve et al., 2018), neuroinflammation (Kälin et al., 2015) (Cerbai et al., 2012), Alzheimer’s Disease 

(Kimbrough et al., 2015), vascular connectivity (Wu et al., 2014), tissue clearing strategies (Yang et al., 

2014) and axonal process tracing (Gong et al., 2013).  However, the use of 3-dimensional reconstruction is 

still rare as compared to the use of 2-dimensional analysis and the development of effective quantitative 

metrics to analyze the data is even more rarely addressed.  This is due to a variety of factors, including the 

depth dependency of the signal to noise ratio and axial stretching due to the microscope point spread 

function.  

Throughout this chapter, the term ‘cortical column’ is not referring to a ‘functional’ column as for 

example the ‘barrels’ in the somatosensory cortex.  Instead, it refers to the shape of the collected data cube, 

since the length of it (from cortical surface to grey/white interface) is far longer than the width of it, 

creating a data cube with a columnar shape.  In the existing literature, examples of full cortical column 
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staining are very rare and typically only stain a single cell type at a time, whether neuron (H. S. Meyer et 

al., 2011), astrocyte (Eilam et al., 2016) or vasculature (Kobat et al., 2011).  The rarity of this methodology 

is due to the inherent complexity of the multi-panel mosaic stitching techniques required, which combine 

automated-stage microscopy coupled with large-volume image stitching.  While many modern labs balance 

the capture of a large area of interest with a magnification/spatial resolution high enough to accurately 

identify the finest cellular filaments, it is still relatively uncommon.  The capability of identifying these 

individual filaments is critical for understand the network connectivity throughout the region.  Finally, 

while a single-target strategy can be useful in answering particular research questions, it fails to reveal the 

nature of the complex network architecture that connects various cell types together.    

 Compared to staining of a single target, simultaneous immunofluorescence of four separate 

structural targets is substantially superior due to its unique ability to assess multi-component connectivity.  

Four-color imaging has been reported as early as the 1990s (Ferri et al., 1997) and has been used to 

characterize respiratory diseases in single neurons (Grünewald et al., 2014), oxidative phosphorylation 

defects in muscle fibers (Rocha et al., 2015) and mitochondrial abnormalities in individual osteoblasts 

(Dobson et al., 2016).  The use of simultaneous targets allows for analysis of colocalization and proximity 

of epitopes of interest, which can yield substantial insight as to the connectivity of the markers analyzed.  

However, most existing scientific literature utilizing this technique only uses structural markers for one or 

two of the stained components, and functional markers for the remainder.  In contrast, the combination of 

structural staining targets used in this dissertation is novel and critical for understanding various aspects of 

cortical network architecture.   

 The choice of four structural markers provides an opportunity to study the simultaneous 

interrelation of cellular, neuronal, astrocytic and vascular distributions.  For example, this protocol can 

allow a better understanding of the structural coupling of these cellular components.  However, it is 

important to recognize that confocal microscopy does not provide the spatial resolution to identify tripartite 

synapses, as the intrinsic blurring due to the microscope’s point spread function prevents accurate 

discrimination of close filament proximity versus actual filament contact.  The addition of the nuclear stain 

provides critical validation that the fluorescently stained structures are individual cells and not artifacts.  

Overall, it is evident that the use of this simultaneous analysis has an important emergent property and is 
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appropriate for better understanding the spatial distributions of the dense filamentous structure of these 

critical cellular components.   It has been well established that much of the complex interconnectivity of the 

brain relies on the dynamic connections between these three components (Xue et al., 2013) (Adriani et al., 

2017) (Bélanger et al., 2011), and understanding their proximity is a valuable tool for identifying 

underlying morphological metrics (Tsai et al., 2009).  Additionally, the development of accurate brain 

models or quantitative metrics for model inputs within the field of computational neuroscience relies upon 

recreation of as much of native tissue structure as possible and the representation of these three cell types 

three-dimensionally reflect some of the most prominent features of brain tissue.     

Thus, this protocol has substantial advantages, as it captures entire cortical columns, three-

dimensionally, at fine spatial resolutions and simultaneously identifies four critical components of interest.  

By collecting cortical columns from distinct cortical zones, this protocol becomes capable of yielding both 

region-specific data as well as cortical layer-specific data.  This emerges naturally from the large regions of 

interest analyzed, which provides the potential capability of determining the fundamental ‘building block’ 

or ‘repeating unit’ that composes each functional brain region.  Furthermore, this protocol identifies a series 

of incremental methodological improvements which will be important for researchers attempting a similar 

challenge. 

 

Materials & Methods 

 
 

 Three adult male Wistar Rats (16-20 weeks) were sacrificed through carbon dioxide euthanasia 

and then rapidly decapitated.  The skull plate was carefully removed and the brain was placed into a 

solution of 10% Buffered Formalin (Fisher Scientific, SF99-20) and placed at 4 Celsius.  While intracardiac 

perfusion can provide an improved method of fixation, it was not available for this study and was not a 

substantial concern since deeper regions of the brain were not characterized.  After 48 hours of 

refrigeration, the brain underwent multiple PBS washes and was switched into a solution of PBS/0.05% 

Sodium Azide for storage at 4 degrees Celsius.  To generate coronal slices, the brain was placed into an 

acrylic mold and the cerebellum was removed.  The rear surface of the brain was then glued to the 

vibratome (Leica, VT 1000S) stage and the entire brain was cut into 70 micron slices beginning at the 
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olfactory bulb (Cutting Speed: 0.175 mm/s, Vibration: 80 Hz).  Each section was photographed and 

section-specific landmarks were used to map sections to a rat brain atlas (Paxinos & Watson, 2007).  The 

convergence or divergence of specific structural features of the brain between both hemispheres was 

utilized to identify the corresponding image of the atlas for each brain slice.  From each rat brain, three 

coronal sections located at the center of the M1 region and three coronal sections located at the center of 

the S1BF region were collected, encompassing six coronal slices per brain and eighteen in total over the 

three brains.  Subsequent imaging was performed for a cortical column on each hemisphere, providing 

thirty-six full cortical columns over the entire study.  Sections were stored in PBS/0.05% Sodium Azide in 

a multi-well plate until immunofluorescent staining occurred.         

 Immunofluorescent staining utilized Smi-311 (Pan-Neuronal Neurofilament Marker) as the marker 

for neuronal dendrites, GFAP (Glial Fibrillary Acidic Protein) as the marker for astrocytes, VWF (Von 

Willebrand Factor) as the marker for vascular endothelium and a commercial staining product called 

NucRed Dead to fluorescently stain nuclei.  Due to the use of two different animal origin secondary 

antibodies, the markers were sequentially (instead of simultaneously) stained, since simultaneous staining 

created substantial cross-reactivity between the Smi-311 pAb and VWF sAb.  The complete staining 

protocol is highlighted in Table 2.1 and a list of materials and sources is provided in Table 2.2.  

Incubation Solution Solution Composition Incubation Time 
Step One:  Staining of Von-Willebrand Factor 

Donkey Blocking Buffer 10% Donkey Serum, 2% Triton X-100, 0.1% Cold Water Fish 
Gelatin in PBS 

12 hours 

(3x) PBS Wash PBS 6 hours each 

VWF Primary Antibody 1:50 Sheep VWF, 2% Triton X-100, 1% BSA in PBS 48 hours 

(3x) PBS Wash PBS 6 hours each 

VWF Primary Antibody 1:250 Preadsorbed Donkey Anti-Sheep TRITC,  
2% Triton X-100, 1% BSA in PBS 

48 hours 

(3x) PBS Wash PBS 6 hours each 

Step Two:  Staining of Smi-311 / GFAP 

Goat Blocking Buffer 10% Goat Serum, 2% Triton X-100, 0.1% Cold Water Fish 
Gelatin in PBS 

12 hours 

(3x) PBS Wash PBS 6 hours each 

Smi-311/GFAP Primary 

Antibody 

1:100 Mouse Smi-311, 1:10 Rabbit GFAP,  

2% Triton X-100, 1% BSA in PBS  

48 hours 

(3x) PBS Wash PBS 6 hours each 

Smi-311/GFAP Secondary 

Antibody 

1:20 Goat anti-mouse BV421, 1:50 Goat anti-rabbit FITC, 2% 

Triton X-100, 1% BSA in PBS 

48 hours 

(3x) PBS Wash PBS 6 hours each 

Step Three:  Nuclear Staining 

Nuclear Stain Buffer 2 drops of NucRedDead solution in 500 uL of PBS 15 minutes 

(3x) PBS Wash PBS 5 minutes each 

Table 2.1:  Sequential Immunofluorescence Staining Procedure 
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Chemical Name Manufacturer Catalogue Number 

Antigen Retrieval Materials 

Citric Acid Sigma Aldrich C2404 

Blocking & Antibody Dilution Buffer Materials 

Tween-20 Promega H5152 

Donkey Serum Sigma Aldrich D9663 

Goat Serum Sigma Aldrich G-9023 

Triton X-100 Sigma Aldrich X100 

Bovine Serum Albumin Sigma Aldrich A7030 

Cold Water Fish Gelatin Sigma Aldrich G7041 

PBS Sigma Aldrich P5493 

Tissue Slice Mounting Materials 

Glycerol Sigma Aldrich G9012 

Nuclear Staining Materials 

NucRed Dead Life Technologies R37113 

Neuronal (Smi-311) Antibodies 

Primary Ab Mouse Smi-311 Biolegend Smi-311R 

Secondary Ab Goat anti-Mouse BV421 

(Preadsorbed) 

Biolegend 405317 

Astrocytic (GFAP) Antibodies 

Primary Ab Rabbit GFAP Life Technologies 180063 

Secondary Ab Goat anti-Rabbit FITC (Preadsorbed) AbCam AB97079 

Vascular (VWF) Antibodies 

Primary Ab Sheep Von-Willebrand Factor Cedar Lanes CL20176A-R 

Secondary Ab Donkey anti-Sheep TRITC (Preadsorbed) AbCore AC15-0277 

 Table 2.2:  Materials & Sources for Experimental Protocol 

 

 

 Immunofluorescent staining began with antigen retrieval, where the brain tissue was heated in a 

citrate buffer (10 mM Citric Acid, 0.05% Tween-20, pH 6.0).  Heating was performed while brain slices 

were maintained at mild pressure between a glass slide and coverslip, held in place by the arms of a binder 

clip.  This strategy was critical, as antigen retrieval without compression left the tissue slice fragile and 

wrinkled while this improved technique prevented the tissue from deteriorating.  A detailed diagram of this 

technique and demonstration of its improved outcomes are shown in Figure 2.1.  The temperature of the 

antigen retrieval solution was raised to 103-105 Celsius (above the typical literature standard of 100 

Celsius) and maintained for 10 minutes, after which the tissue is left to cool for 20 minutes off of the hot 

plate.  Antigen retrieval was unnecessary for the VWF and GFAP antibodies, but due to the Smi-311 

antibody being composed of larger IgM molecules it was necessary to carry out antigen retrieval to 

maximize data quality.  Antigen retrieval carries risks of destroying native epitopes, and hence should only 

be used when the benefits in staining outweigh the costs of potential tissue damage. 
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Figure 2.1:  Antigen Retrieval Design & Outcomes (a) A diagram of the antigen retrieval setup is shown.  A brain slice is lightly 
compressed between two glass surfaces and boiled within the antigen retrieval solution.  The arms of a binder clip are used to 

maintain the sandwich design.  This setup has clear improvements in maintaining tissue health and minimizing wrinkling, as shown in 

the post-antigen retrieval slice images demonstrating (b) antigen retrieval tissue appearance without compression and (c) our 
improved strategy.  Antigen retrieval was critical for improving Smi-311 staining quality.  We demonstrate this by providing 

representative images of Smi-311 stained cortical slices using our immunofluorescent staining protocol (d) without and (e) with the 

additional antigen retrieval setup.  Additionally, a 10x tiled mosaic of nuclei staining of four z-sections of the slices shown in (b) and 
(c) are provided in (f) and (g), providing further evidence that our technique ensures flatter tissue sections which provide higher 

quality data cubes.  While it may appear that the staining in (f) and (g) is ‘patchy’ the four Z-sections shown highlights that only 

partial regions of the tissue are present in a single optical section.  The wrinkly structure of (f) would not allow a cortical column to 
be easily collected, while for (g) the profile of a cortical column would be flat along its length since the flatness changes over long 

distances instead of over short distances (as in f).      

 

  All steps following antigen retrieval were carried out at 37 degrees Celsius on a low-speed shaker 

with an incubation volume of 600 uL per tissue section.  An extended staining protocol was used, 

encompassing 12 hour blocking, (3x) 6 hour PBS washes and 48 hour antibody incubations, as described in 

Table 1.1.  The staining procedure was carried within a 3-well removable silicone immunofluorescent 

chamber (Ibidi #80381).  This protocol is substantially extended from traditional IHC procedure, due to a 

combination of two factors.  First, Smi-311 primary antibodies were composed of an IgG/IgM mixture 

which diffused slower into the tissue.  Second, the thicker tissue sections require extended staining in order 

to optimize resultant image quality in the tissue center.  Traditional IHC with thinner tissue sections 

typically requires 1 hour of blocking buffer, primary antibody and secondary antibody incubation at room 

temperature, along with short 3x 10 minute PBS washes (R&D Systems, 2017) (Synaptic Systems, 2018).  

In many cases, 1 hour at room temperature is considered interchangeable with overnight at 4 Celsius.  A 
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common trend in the literature is an increase in these durations for thicker tissue sections.  One example 

using 20 and 40 micron thick sections utilized primary antibody staining overnight at room temperature and 

secondary antibody staining for two hours at room temperature (Grabinski et al., 2015) while another using 

50 micron thick tissue sections similarly used overnight room temperature primary antibody incubation 

(Vercelli et al., 2004). 

 Even thicker tissue staining has been shown to require even more extensive incubation times.  One 

protocol using vibratome sections between 50 and 200 microns in thickness utilize primary and secondary 

antibody incubation times of “2 overnights” each at 4 Celsius (K. Meyer et al., 2017).  Another protocol 

using tissue sections 500 microns thick utilized 3 days each of primary and secondary antibody incubation 

at 4 Celsius, along with 3 hour wash steps (Gonzalez-bellido, 2012).  Finally, a protocol using 1 mm thick 

coronal brain sections utilized 24 hour each incubation steps for primary and secondary antibodies at 37 

Celsius as well as a 24 hour washing step at 37 Celsius (Khoradmehr et al., 2019).  These various examples 

demonstrate that thicker tissue can commonly require more extended staining steps, which guided the 

rationale to utilize extended staining and washing durations.   

In order to demonstrate that the extended protocol is necessary to maximize data quality for Smi-

311 staining (as GFAP and VWF did not require this additional extension), an extensive factorial design 

was carried out based on three parameters, each with two levels.  These included antigen retrieval {used or 

not used}, staining duration {traditional or extended} and PBS wash duration {traditional or extended}.  

This generated a 2 x 2 x 2 factorial design, demonstrated in Figure 2.2.   The combination of ‘Traditional 

PBS Washing’ and ‘Traditional Incubation Times’ was removed from the factorial design after finding that 

‘Traditional Incubation Time’ + ‘Extended PBS Washing’ was unable to provide any signal for Smi-311 

staining in the central region of the tissue due to the short antibody incubation.  Hence, we decided not to 

waste additional antibody on a condition we knew would be insufficient for allowing antibodies to diffuse 

to the center of the tissue (due to the traditional antibody incubation time).        
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Figure 2.2: Factorial Design for Smi-311 Staining Optimization.  Demonstration of the 2 x 2 x 2 factorial design for optimizing Smi-

311 staining, along with the generalized IHC protocol and the specific levels of each factor.  The first two conditions were excluded 

(“N/A”) from the study after finding that each sample of conditions ‘1’ and ‘2’ were unable to stain the center of the tissue section due 

to the short ‘traditional’ staining duration, indicating that the two excluded conditions would have had the same outcomes.      

To carry out this study while ensuring valid comparison of the experimental conditions, the 

factorial study utilized a sequence of consecutive coronal brain sections that include the S1BF region.  For 

each of the six conditions tested, three hemispheres were independently stained and imaged, providing 18 

total hemispheric samples for this factorial study.  The hemispheres were collected by cutting brain slices in 

half along their axis of symmetry.  From each stained hemisphere, an entire cortical column of Smi-311 

staining was collected in the S1BF region from the surface of the cortex to the grey/white interface.  While 

the ‘optimal’ staining times for each step may be shorter than the extended times utilized, this was not 

further optimized within the study. 

 For the four-color staining experiments, tissue sections were carefully transferred out of 24-well 

plates following immunofluorescent staining and onto microscope slides using a fine-tipped paintbrush, 

after which they were mounted in glycerol, coverslipped and sealed with clear nail polish.  In this study, an 

Olympus FV1000 and a Nikon C2+ confocal laser-scanning microscope was used with four separate non-

overlapping fluorescent channels to generate cortical column data cubes using 70 micron thick coronal 

tissue slices.  These four channels are illuminated using a 405 nm, 488 nm, 561 nm and 640 nm laser.  

After placing the slide onto the microscope stage, the entire section is scanned at 10x in the nuclei channel 

in order to generate a high-resolution macroscopic image of the entire brain slice, as shown in Figure 2.3. 
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Figure 2.3:  Demonstration of Nuclear Staining Mosaic.  Representative image of nuclear staining of a rat brain slice composed of a 

stitched array of individual images collected at 10x magnification.  Inset zooming from (a) to (d) demonstrates the extremely high 
resolution of the original image.  This image also demonstrates the inherent difficulty of maintaining complete flatness of the brain 

slice on the slide due to the caution of avoiding excess compression of the sample.  This is not a problem for the analysis of cortical 

columns, which is done on a smaller scale.  

 The corresponding image from the brain atlas was next matched to the immunofluorescently 

stained slice using landmark analysis, as discussed previously.  This atlas image then underwent automated 

post-processing in order to highlight the various functional regions present in the particular brain slice.  

Finally, the panel-scanned brain slice was then aligned with the post-processed brain atlas image, a strategy 

developed for this protocol and illustrated in Figure 2.4.  This process allowed for a precise and quantitative 

relationship between image pixels and microscope stage coordinates (measured in microns), providing a 

convenient method to determine precisely which cortical region the microscope field of view encompasses 

even at high magnifications when it is far harder to determine where exactly in the slice the objective is 

viewing.  Once at 60x magnification, it is critical to rely on stage coordinates since the field of view 

becomes too small too accurately determine the location within the slice being viewed.  By aligning the two 

images, the stage coordinates corresponding to the ‘four corners’ of the cortical column were selected, 

which were then provided to the microscope companion software to automatically generate the individual 

stage coordinates of each image stack in the mosaic.                  
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Figure 2.4: Cortical location localization algorithm.  (a) First, the brain section is imaged through sequential imaging and stitching 

of individual 10x magnified images.  (b)  Next, landmark analysis of all sections collected through vibratome sectioning is used to 
locate the likely match from the Paxinos and Watson Atlas (Paxinos & Watson, 2007). (c)  A transparent overlay is used to align the 

two images, hence providing a convenient method of relating the microscope coordinates, image pixel locations from the stitched 

image and the functional region of the cortex.  (d)  An automated post-processing algorithm (leveraging the bwboundaries Matlab 
function) is also applied to the Paxinos and Watson atlas image to extract a pseudo-colored image that highlights all independent 

regions with random colors for better visual delineation.  The approximate size and location of the S1BF cortical column is 

highlighted in (c) and (d).     

 Once the cortical region of interest was located, a multi-panel mosaic scan was conducted with a 

60x objective of approximately 1 mm (cortical column width) by 3 mm (cortical column length) by 70 

microns (thickness of slice). A full cortical column is typically five panels wide and sixteen panels in 

length.  To capture the entire cortical column, typically 80 Z-sections are collected spaced 1-µm apart.  

Since separate raster scans of each panel are done for each of the four fluorescent channels, the number of 

individual scans is 5 x 16 x 80 x 4 = 25,600 scans per cortical column.  A full scan typically requires 

approximately 100 Gigabytes of storage space.  To manage the large datasets, we utilized an HP 

Workstation Z440 with an Intel Xeon E5-1650V4 CPU, 64 GB of ram and a Nvidia Quadro M5000 

graphics card.  This provided the desired volume of tissue to assess morphological connectivity in the 

cortical column, since within this large region was a dense interwoven network of cellular filaments with a 

maximum diameter of only 3-5 microns.  Due to the small size of the constituent cellular filaments, there 
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was more than enough volumetric space within each dataset to generate plentiful connectivity metrics for 

detailed statistical assessment.   

There was no need to perform image correction for the cortical column orientation, as the slice 

was carefully mounted on the glass slide so that the desired functional region (M1 or S1BF) would lie 

along the stage axes.  As the M1 columns were parallel on each hemisphere, the slice would be oriented so 

that its axis of symmetry was parallel to the vertical stage axis.  Since the S1BF columns were 

perpendicular to one another, as they lie on the outer curvature of the coronal section, the slice is oriented 

so that its axis of symmetry is 45 degrees off-axis to the stage axes.  This ensures that one hemisphere 

aligns with the horizontal stage axis while the other hemisphere aligns with the vertical stage axis.  This can 

be clearly seen in the orientation of the S1BF cortical columns in Figure 2.3.     

The entire scan typically took between 24 and 48 hours per cortical column, due to the fine spatial 

resolution (207 nm along the XY axis and 1 micron along the Z axis).  This extended scan may be 

unrealistic for some labs but was the only way to capture such a large cortical column over the entire Z-

depth of the cortical slice for all four fluorescent channels.  This scan proceeds panel-by-panel across the 

entire mosaic, preventing constant illumination of the entire cortical column during the scan duration.  In 

order to minimize photobleaching, our imaging strategy began with the most red-shifted fluorophores in the 

640 nm channel and concluded with the most blue-shifted fluorophores in the 405 nm channel, since the 

UV illumination laser had a higher propensity for photobleaching than the 488 nm, 561 nm or 640 nm 

lasers.  Finally, our protocol utilized a high concentration of antibody to allow us to use lower laser powers 

for illumination and a faster pixel scan rate.    The finished collection of images was then stitched together 

utilizing Terastitcher (Bria & Iannello, 2012).    

 

Results 

 

  As a result of the factorial design to optimize Smi-311 staining quality, each of the six 

experimental conditions yielded three complete cortical columns from three distinct hemispheric sections.  

In order to objectively quantify the image quality to carry out statistical comparison of each condition, a 

published methodology by Koho et al (Koho et al., 2016) was utilized.  This methodology works through 
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characterization of the spatial entropy and power spectrum of the image in order to define ‘image quality’ 

as an image with high contrast – which corresponds to brighter filaments against a darker background.  

This is believed to be a valid method of comparison as all cortical columns were imaged using the same 

microscope imaging parameters.  The author of this methodology released their code as an open-source 

Python package, which was utilized.  The package quantifies the quality of each image without the need of 

any user input, ensuring the final result is completely objective.  In order to maximize the validity of 

comparisons from the factorial designs, all cortical columns were collected from consecutive slices from a 

single brain.  The use of consecutive slices minimizes intrinsic variability between slices but due to this all 

results from the factorial study only emerge from analysis of a single rat brain.  From each cortical column, 

a 207 x 207 x 70 µm data cube [1000 x 1000 x 70 pixels] was extracted encompassing the entire tissue 

thickness (70 µm using 1 µm Z-sections) at two specific depths into the cortical columns – 600 µm and 

1200 µm.  At each of these cortical depths, within the data cube, Z-sections were extracted at five specific 

Z-positions {5 µm, 20 µm, 35 µm, 50 µm and 65 µm}.  These five 1000 x 1000 pixel images in each of the 

three cortical columns within each of the six conditions were used with the python package to objectively 

quantify the image quality.  In Figures 2.5 and 2.6 outcomes are provided at these two cortical depth 

conditions.  At both the 600 µm and 1200 µm cortical depth condition, it is clear that the developed 

protocol, combining antigen retrieval, extended Smi-311 staining and extended PBS washing provides 

statistically significant improvements in image quality over the other five conditions at the ‘center’ of the 

tissue (35 µm Z-section), although these effects become insignificant when approaching tissue edges.  

Furthermore, it is evident that ‘Traditional Staining’ does not provide enough diffusion time for the 

antibodies to reach the center of the tissue.  It is not entirely clear the mechanism by which the extended 

washing provides improved image quality, but more critical analysis of this phenomena can be left to future 

studies. 
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Figure 2.5: Factorial experiment results at 600 µm cortical depth. (a) provides a representative image of the staining quality of each 
condition at each Z-depth.  (c) provides the average and standard error bars of the image quality metric of each condition at each 

measured Z-depth.  Standard error bars are computed using standard error of the mean (SEM) and reflect the variability from three 

independently collected samples per condition per depth. (b) provides the ANOVA and post-hoc Tukey testing used to compare each of 
the six conditions at each Z-depth.  The first line of each ANOVA provides the overall p and F value, which in each case demonstrate 

a statistically significant difference between the conditions.  The grid below this line compares each condition through post-hoc Tukey 

testing, with green highlighting for statistically significant differences.    

 
Figure 2.6: Factorial experiment results at 1200 µm cortical depth.  (a) provides a representative image of the staining quality of 
each condition at each Z-depth.  Standard error bars are computed using standard error of the mean (SEM) and reflect the variability 

from three independently collected samples per condition per depth.  (c) provides the average and standard error bars of the Image 

Quality metric of each condition at each measured Z-depth.  (b) provides the ANOVA and post-hoc Tukey testing used to compare 
each of the six conditions at each Z-depth.  The first line of each ANOVA provides the overall p and F value, which in each case 

demonstrate a statistically significant difference between the conditions.  The grid below this line compares each condition through 

post-hoc Tukey testing, with green highlighting for statistically significant differences.    
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 Regarding the four-color staining and imaging scheme, various features of cellular 

interconnectivity throughout the entire tissue slice thickness can be visualized in figure 2.7, including 

astrocytic cuffing of capillaries and nuclei localization inside the unstained soma of neurons.              

 
Figure 2.7: Four-color staining and cellular architecture at various depths. Inset figure at 50 um depth demonstrates the presence of 
stained components around an astrocyte-cuffed capillary.  The yellow color on vascular surface highlights the proximity of a stained 

astrocyte and the capillary it is cuffing.  The scale bar at 5 um depth represents a distance of 50 um. 

 

 However, it is also essential to point out that the data subsets identified in the preceding 

visualization are only a small proportion of an entire cortical column.  As demonstrated in figure 2.8, the 

actual datasets are far larger than those from the preceding images.  From this macroscopic perspective 

many of the finer details are no longer visible unless extensively magnified.  
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Figure 2.8: Size and scope of a single Z-section in a typical cortical column data cube.  Color-coded inset boxes for each channel 

demonstrate two sequential magnifications to highlight the filament density and staining quality.  Each successive magnification 
includes a 90 degree rotation for ease of visibility.  The green scale bar in each set of images represents a distance of 50 microns.         
 

 One of the fundamental challenges which also arise is the decline in fluorescent intensity with 

imaging depth into the tissue, caused by a combination of photobleaching, optical absorption and antibody 

diffusion limitations.  To resolve this, a built-in plugin was utilized within ImageJ called Stack Contrast 

Adjustment (“SCA”), which is designed to maintain the brightness of an image throughout an entire stack 

by adjusting the histogram of the image slightly on a per-frame basis (Čapek et al., 2006) (Schindelin et al., 

2012) (Schneider et al., 2012).  This step is essential to maintain the brightness of cellular filaments 

throughout the image stack, ensuring that later visualization methods will equally weigh deeper filaments 

as well as shallower filaments.  An example of the outcomes of this technique is shown in Figure 2.9.   
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Figure 2.9: Smi-311 Staining Enhancements Following Stack Contrast Adjustment (SCA).  This figure highlights the improved 
stability of contrast throughout the tissue thickness.  While the differences in image contrast at the tissue center may appear minimal, 

the standardization of contrast across the entire tissue thickness is critical for later volumetric modeling, which requires a consistent 

contrast level throughout the data cube.  The yellow scale bar reflects a distance of 50 microns.   
 

 Once the image data has been corrected, the final data becomes suitable for further analysis.  Due 

to the three-dimensional structure of the datasets, they lend themselves to a unique visualization 

opportunity.  Utilizing Imaris Bitplane modeling software, a volumetric representation can be constructed 

of the assembled data to better visualize the network architecture of the cortical region.  This is 

demonstrated in Figure 2.10.  While Imaris is a valuable tool for data visualization and analysis for image 

stacks, other software that is available for researchers include Bioimage XD, FIJI, ImageSurfer, Osirix, SVI 

Huygens,Vaa3D and VisBio.   
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Figure 2.10: Volumetric Visualization of Cellular Interconnectivity.  Demonstration of the interwoven nature of all cellular 
filaments in three-dimensions, aided by the data visualization properties of Bitplane Imaris Software.  Sequential zooming and 

rotation highlight the dense filament connectivity in the neuropil.  Data has not undergone deconvolution, and hence exhibits axial 

stretching due to intrinsic PSF-driven blurring.   
 

Discussion 

 

 This methodology provides substantial improvements over existing techniques for both 

immunofluorescent staining and subsequent imaging.  Compressed antigen retrieval alongside a 

combination of immunofluorescent staining targets provides insight into network architecture of critical 

cortical components.  Specific improvements of the extended immunofluorescent protocol are 

demonstrated objectively and quantitatively through a detailed factorial design.  Utilization of a low-

resolution 10x full-slice mosaic to perform section registration to the rat brain atlas followed by ROI-

identification and high-resolution scanning of the entire cortical column provides improved localization of 

desired functional region of interest.  These accomplishments demonstrate a variety of staining and whole-

slice imaging strategies which aim to provide guidance for other research groups in two ways.  First, it may 

provide insight towards multi-component staining in combination with large scale imaging and functional-

region identification.  Second, it can assist in the development of factorial experiment design for 

quantifying and optimizing staining protocol outcomes.    
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 To maximize the homogeneity of antibody diffusion throughout the tissue slice, antigen retrieval 

played a critical role.  Optimizing staining outcomes requires the full penetration of primary and secondary 

antibodies throughout the entirety of the tissue section.  However, because of paraformaldehyde fixation, 

antibody-epitope binding is substantially reduced due to the formation of cross-linked methylene bridges 

(Scalia et al., 2017).  These methylene bridges reduce both the diffusion rate of antibodies into the tissue as 

well as their binding efficiency.  To restore binding efficiency, an antigen retrieval process is carried out 

and the tissue is boiled within a citric acid solution.  While not all antibodies required this form of 

pretreatment, the process proved critical for Smi-311.  This is attributed to the characteristics of the primary 

antibody, which was composed of a mixture of Immunoglobulin G (“IgG”) and much larger 

Immunoglobulin M (“IgM”) antibodies.  The IgM antibodies naturally diffuse slower into tissue, and thus 

especially benefit from the antigen retrieval process.  Furthermore, at the typical boiling temperature at 

atmospheric pressure, 100 degrees Celsius, the effect of antigen retrieval was found to be far less 

substantial than when boiled in a sealed beaker – which yielded an enhanced temperature of 103 Celsius.  

During earlier optimization, boiling was performed for 5, 10, 15 and 20 minutes.  However, the tissue 

became too fragile for use when boiling at 15 or 20 minutes was used, so 10 minutes was chosen for the 

study.  A separate study to identify the optimal interaction of temperature and time would prove valuable to 

further uncover the optimal conditions.  Furthermore, while quantitative assessment of image quality in the 

factorial design identified additional wash steps as enhancing image quality, a clear understanding of the 

underlying mechanism would be beneficial and requires additional study.         

 To reduce the risk of damage to the tissue section during antigen retrieval, the brain section was 

entrapped between glass surfaces.  While sample processing should leave the mechanical properties of the 

tissue slice unaltered, the antigen retrieval process carries substantial risks to tissue health.  Bubbles formed 

during the boiling process can tear thin sections of tissue due to repeated agitation of sample.  Furthermore, 

the combination of high temperatures and long heating durations can substantially wrinkle the tissue 

section and reduce its mechanical strength to the point where it will easily break into smaller pieces during 

transfer.  Even when the degree of tissue wrinkling appears minor, wrinkling prevents optimal sample 

mounting within the imaging chamber and severely distorts the final 3D-modeled data cube.  Additionally, 

wrinkles often increase the overall thickness of the sample beyond the focal length of the objective, leading 
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to compression of the tissue slice by the objective when imaging the deepest regions of the thick tissue 

slice.  As a result of the compression of these wrinkles during scanning, the final stitched data becomes 

discontinuous and can suffer from tearing artifacts.  Measurement of small areas will likely be unaffected 

by these challenges, but for large area scanning, such as in this study, maintaining the integrity of cortical 

tissue is critical.  In this study, the risk of these artifacts is substantially reduced by carrying out antigen 

retrieval while the brain slice is uniformly and lightly compressed between a glass slide and coverslip.  

Application of this pressure during the antigen retrieval process protects the tissue slice from both bubbles 

and warping/wrinkling.                 

 The four-color protocol provided has advantages as well as tradeoffs.   Simultaneous staining of 

neurons, astrocytes, vasculature and nuclei provides an important opportunity to examine cortical network 

architecture, although labelling limitations emerge with so many independently stained components.  

Despite the focus of staining structural instead of functional markers, a deeper understanding of the 

underlying ‘hardware’ of the cortex can provide insights as to the nature of the differences in cellular 

communication (Samborska et al., 2016), both in a depth-dependent and region-dependent manner.  Each 

of these staining targets, while well-established for morphological identification, carries potential 

limitations.  GFAP is only a staining agent for GFAP+ astrocytic processes, which although being a 

commonly used and accepted marker for astrocytes fails to bind to the finest peripheral astrocytic 

processes, which typically fall between 50-200 nm in diameter (Haseleu et al., 2013) (Lavialle et al., 2011).  

However, filaments this small already fall below the diffraction limit for typical optical microscopy 

techniques. Individual-cell microinjection can stain these finer filaments (Ogata & Kosaka, 2002), but this 

technique is too time-intensive (and hence nearly impossible) for large-scale analysis.  Furthermore, the 

Smi-311 stain is only for cell bodies and dendrites of neurons, hence preventing any analysis of axons or 

terminal regions.  Finally, the staining of vasculature is carried out using an endothelial cell marker, VWF, 

which does not provide any information on the outer layers of larger vessels or any indication on whether 

detected vasculature is an artery or vein.  However, for the purposes of this study this distinction is not 

necessary.  RECA-1 would likely serve as a more suitable staining target but was unavailable for use at the 

time of study due to the unavailability of a suitable antibody host species that would not interfere with other 

antibody pairings.  In order to maximize antibody penetration into the center of the tissue, 48-hour antibody 
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incubation steps were used, causing the entire staining protocol to take two weeks.  This was especially 

important for the large Immunoglobulin M antibodies utilized.  To further improve the existing staining 

protocol, it may be useful to utilize pre-conjugated primary antibodies to reduce the overall length of the 

staining protocol since primary and secondary antibodies are applied simultaneously.  Additionally, 

antibody fragments can be used in place of the whole immunoglobulin antibodies when available to 

enhance diffusion rates into the tissue (Deonarain et al., 2018) and minimize the duration of incubation 

required.   

 One of the fundamental challenges faced when working at high magnifications within tissue slices 

is remaining confident in the location of the specific region being assessed.  To resolve this problem, 

landmark analysis of the tissue sections was used in conjunction with a stereotaxic rat brain atlas to 

estimate the specific locations of functional regions of interest in each brain slice.  While this has the 

advantage of more accurately estimating the location of specific functional regions, vibratome slicing of the 

brain that is not perfectly coronal due to imperfect mounting on the vibratome stage can reduce the 

accuracy of the stereotaxic assessment.  To reduce the chance of imaging the wrong functional region, 

cortical columns were selected from the center of the regions of interest.    

 The use of 70 micron thick tissue sections is a limitation caused by the effects of optical 

absorption and scattering as well as the working distance of the confocal microscope objective.  This 

thickness limitation prevented full neuronal reconstruction.  Furthermore, due to uncertainty in in the 

vibratome sectioning angle relative to the normal vector from the brain surface, major neuronal arbors often 

appear at a sharp angle relative to the plane of sectioning, reducing the distance that a single neuron can be 

traced.  This problem can be minimized by using a thicker tissue block, high focal-length, high-

magnification objectives, tissue clearing (to minimize absorption-based degradation in image quality with 

depth) and axial PSF minimization (such as through multiphoton microscopy).  Another potential solution 

to this problem is to extract cortical sheets through flattening of the cortex, which has been performed in 

previous studies (Lauer et al., 2018).  However, while this will standardize the angle of imaging relative to 

the cortical surface, experimenters will be limited by the observation distance into the brain – a challenge 

that is not present when using the coronal sections within this study.  
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 Fluorescence microscopy with existing constraints on simultaneous labeling cannot typically 

achieve more than four channels in parallel.  Accordingly, this methodology fails to identify other cell 

types of importance within the region, such as microglia, oligodendrocytes, pericytes or schwann cells, or 

any of the plethora of functional markers that accompany typical neuroscience studies.  The fundamental 

restriction that prevents this is the limit of four simultaneous fluorescent channels that most research 

microscopes face.  To overcome this limitation and add additional fluorescent channels, spectral acquisition 

and unmixing techniques will be necessary to handle the expected spectral overlaps (Valm et al., 2016), 

which in turn will significantly reduce acquisition speed due to the need to compute spectral data for each 

voxel.            

 In order to capture the full dendritic architecture of a neuron, it may be necessary to instead pursue 

alternative imaging technologies, such as multiphoton or light sheet microscopy.  Multi-photon methods 

have distinct advantages, such as a smaller point-spread function, improved penetration depth and less 

photobleaching (Tauer, 2002).  This improved penetration depth if used in parallel with a longer working-

distance objective would allow thicker sample imaging, which would increase our chances of entire neural 

dendrite reconstruction.  Light sheet microscopy similarly provides enhanced imaging volume, more rapid 

imaging speeds and an optimized point-spread function due to decoupling of illumination and excitation 

pathways (Santi, 2011).  Both technologies provide critical advantages, but at this time they have still not 

been optimized for simultaneous assessment of four separate markers.  Multi-channel imaging with 

multiphoton microscopy has at most been able to assess three simultaneously stained markers using two 

unique excitation wavelengths, which when synchronized can undergo a non-linear sum-frequency 

generation process to provide a third excitation energy level (Mahou et al., 2012).  The same author has 

been able to extend these techniques to light sheet microscopy as well through a mixed multiphoton light 

sheet microscope, which was similarly capable of three-channel collection (Mahou et al., 2014).  While 

confocal techniques are typically inferior based on resolution and depth penetration, they are still the most 

available method for four-color simultaneous staining and imaging.             

The outcomes of this immunofluorescent staining and imaging protocol demonstrate the capability 

of identifying network architecture of neurons, astrocytes and vascular processes simultaneously within 

cortical brain tissue.  Through future volumetric and filamentous modeling, this extensive image data will 
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be used to extract quantitative morphological metrics for analysis of neurovascular coupling, 

neurometabolic coupling and network architecture.  This methodology holds promise for generating 

complex and accurate quantitative parameters to categorize the morphology of these cells and how they 

vary in different functional brain regions.  For example, the heterogeneous nature of astrocyte form and 

function in the brain has been well documented in the scientific literature  (Oberheim et al., 2012), but no 

comprehensive assessment of 3-dimensional morphology has been conducted. 

Furthermore, if this methodology is utilized to assess diseased tissue it will be possible to obtain a 

more comprehensive understanding of how disease states alter network architecture.  The totality of all data 

can be used in collaboration with computational neuroscientists to utilize actual experimental data as inputs 

for existing computational models of brain complexity, as has been previously performed in the Virtual 

Brain Project (Ritter et al., 2013).  The various applications of these comprehensive datasets are still being 

explored but hold substantial potential for better understanding patterns of connectivity in motor and 

somatosensory cortical zones. Ultimately, the largest strength of this methodology is the unique 

combination of staining targets, volume of investigation, spatial resolution and antigen retrieval strategy.  

In combination, these components provide an intriguing capability for enhanced cortical architecture 

analysis. 

 It is necessary to clearly discuss several key weaknesses of this methodology.  First, the various 

optimizations performed in this study were developed for the specific collection of antibodies utilized and 

is thus not as directly applicable in different contexts.  The focus in developing this methodology was not to 

create a universally generalizable protocol but instead to reflect on solutions to the various challenges 

faced.  The challenges faced in this protocol primarily stemmed from two sources.  First, the antibody 

pairing used for Smi-311 created a variety of issues (i.e. necessity of enhanced antigen retrieval 

temperature and extended staining protocol) in achieving optimal staining.  While other antibody targets 

can be used for a similar purpose, or potentially even a combination of a separate neuronal nuclear stain 

and neurofilament stain, the staining quality achieved following optimization was sufficient to not warrant 

additional investigation of other staining markers, despite the extensive optimization which was required.  

The second challenge faced was due to the use of the VWF vascular antibody pairing.  Earlier experiments 

utilizing RECA-1 as a staining target provided far better staining quality, but due to conflicts between 
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animal sources from antibody pairings, a different staining target was required.  VWF does a sufficient job 

of identifying vascular components, but is undoubtedly a lower-quality target due to not being expressed as 

ubiquitously in the vascular endothelium.  Due to this, vasculature is indeed more difficult to identify 

within some of the visualizations provided that highlight the density of the neuropil.  However, in many 

circumstances the sheer quantity of volumetrically modeled GFAP and Smi-311 filaments make 

visualization of any vasculature impossible since these filaments are too dense to allow examination 

beyond the most superficial layer.  While this may reduce the visibility of the vascular staining within the 

volumetric visualizations due to its relatively lower density, it still exists and can be useful for later 

quantitative analysis.   

An additional limitation emerged from the imaging process.  Due to the sheer density of 

neurofilaments, there was additional background in the Smi-311 channel due to point-spread function 

blurring from fluorophores directly above and below the optical section shown.  While confocal 

microscopy reduces this issue substantially as compared to widefield microscopy, intrinsic spherical 

aberration in the image formation process makes this an unavoidable issue.   

  Despite the challenges from these antibody pairings, the achieved contrast was sufficient to 

complete this four-color staining methodology in preparation for upcoming volumetric modeling and 

analysis.  Utilization of alternative staining markers could have similarly prevented the need for sequential 

staining and substantially reduced the immunofluorescent staining protocol duration.  However, once 

achieving satisfactory staining quality the pilot study was completed before attempting additional 

optimization. 
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Chapter 3. Depth-Variant Deconvolution & Fractional Volume Analysis 
 

Introduction 

 
 

 A clear understanding of the variation of cell density in a depth-dependent and functional region-

dependent manner in the healthy brain can allow for the development of a quantitative baseline to better 

map the progression of various disease states.  Within the dense neuropil of the cerebral cortex, however, 

this is a tremendous challenge since the density of major cellular components cannot be accurately 

characterized as their highly interconnected nature makes accurate determination of individual cells nearly 

impossible.  While dye-filling individual cells can provide cell individualization, it is extremely time-

consuming and unsuitable for analyzing cell density over large regions or many individual cells (Lai et al., 

2017).  Since cell individualization for calculation of absolute cell density is fundamentally problematic in 

the dense neuropil, fractional volume analysis (FVA) is an alternative approach to extract location-

dependent cell density information.  If individual cell volume does not change significantly through the 

cortical column, FVA can serve as a convenient index for depth or region-dependent cell distribution 

characteristics.    

 FVA has many benefits for researchers carrying out computational studies of cellular dynamics in 

the cerebral cortex.  For example, understanding volume fractions of Astrocytes in a local region has been 

identified as a key factor in understanding glutamate uptake in the area (Medvedev et al., 2014) (Lehre & 

Rusakov, 2002).  Additionally, volume fraction measurements of dendritic spines has been incorporated 

into reaction-diffusion models for studying cAMP oscillations (Ohadi & Rangamani, 2019).  Similarly, 

GABA concentration in the neocortex has been characterized based on the fractional volume of 

GABAergic neurons (Petroff et al., 2002).  As additional computational strategies leveraging fractional 

volume of these cellular components emerge, they will be able to utilize this data to better understanding 

cellular dynamics in these regions. 

 FVA is also playing an increasing role in characterization of the quantitative metrics which 

emerge from new MRI techniques.  One group (Wen et al., 2018) compared multimodality MRI data with 

gene expression data and uncovered a strong correlation between the R2t* metric of qGRE signals and the 

cellular composition of the human cortex, especially the volume fraction of neurons and glia.  These results 
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provide a potential means to assess microstructural changes in the in vivo brain during, for example, 

disease development.  Similarly, another group has been able to link the quantitative outputs (fractional 

anisotropy, apparent diffusion coefficient and kurtosis) of diffusion MRI to local volume fractions of 

neuronal and glial components (Gilani et al., 2019) with the ultimate aim of using these relationships to 

monitor progression of diseases such as Alzheimer’s and multiple sclerosis.  These examples reveal the 

growing role of fractional volume analysis in better interpreting voxel-level quantitative metrics from 

noninvasive imaging modalities for the improved tracking of disease state progression.       

 Characterization of disease states is another activity where FVA is playing a useful role.  For 

example, histological samples from patients with medial temporal lobe epilepsy undergo FVA of astrocyte 

processes in order to characterize the tissue samples as mild, moderate or severe astrogliosis (Witcher et al., 

2009).  Due to the well-established reactive Astrocyte swelling that occurs during astrogliosis (Robel et al., 

2015), it is expected that FVA can serve as a useful tool for characterizing severity.  Recent work has also 

identified FVA as a potentially critical tool for characterizing the stages of Alzheimer’s disease progression 

(Domínguez-Álvaro et al., 2018).  This study identified significant changes in the volume fractions of 

neuronal, glial and vascular components of brain sections, representing a potential future linkage with the 

MRI signal interpretation discussed previously in order to noninvasively characterize these parameters.             

 While FVA may not provide the individual-cell morphological metrics that alternative techniques 

can reveal, for characterizing regional vasculature FVA is one of the only tools available due to the 

inability to separate vasculature into discrete ‘units’.  Recent efforts to create a cerebral vascular atlas of the 

whole mouse brain utilized FVA to distinguish vascular characteristics of unique functional regions (Xiong 

et al., 2017).  Assessments of the effects of ischemia on mice brain vasculature similarly uses fractional 

volume to characterize the resultant loss in vascular density (L.-Y. Zhang et al., 2018).  Similar to this 

work, fractional vascular volume has also been characterized on a cortical depth-dependent basis from 

agranular, partly granular and granular cortex (Tsai et al., 2009).  When quantifying vascular staining, FVA 

is one of the most optimal tools for characterizing volumetric properties. 

 In order to optimize the validity of the extracted FVA metrics, it is critical that the collected 

images represent the native tissue characteristics as closely as possible.  The point-spread function (PSF) of 

the confocal fluorescent microscope is one of the most useful tools to characterize the potential aberrations 
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in the collected data and represents the three-dimensional profile that would be captured by the imaging 

system resulting from a small fluorescent point source below the diffraction limit of light (Boutet de 

Monvel et al., 2001).  Based on the understanding that a typical fluorescently stained object contains large 

quantities of these small point sources, the accuracy of volumetric measurements made on the resulting 3D 

image stack is limited by the extent of the blur created by a single fluorescent molecule.  Complicating 

factors even further, the specific shape and size of the PSF is affected by the imaging wavelength, the 

microscope objective and the refractive index characteristics of the sample being imaged.  Additionally, 

while scanning deeper into the sample, refractive index mismatches elongate the PSF with depth, a 

phenomenon known as spherical aberration, which further contributes to axial stretching of the data that 

worsens continuously the deeper into the sample being scanned.  Fortunately, if the PSF can be well-

characterized, deconvolution algorithms can be used to restore the collected imaging data to a condition 

closer to the original volumetric properties of the native tissue.   

 Numerous methodologies for deconvolution are available, all with the same fundamental objective 

of restoring blurred image data to a condition that better replicates the true characteristics of the tissue 

imaged – known as the ‘ground truth.’ One way to subdivide these methodologies is to consider three 

categories of PSF collection – (1) experimental collection of the microscope PSF, (2) generation of a 

theoretical PSF using imaging condition parameters and (3) estimation of the shape of the PSF using 

already imaged data.  Experimental collection of PSFs are challenging due to the typically low SNR and 

need for repeated imaging and averaging, but provide the most accurate estimate of the blurring induced 

during the imaging process (Pankajakshan et al., 2009).  Estimation of the theoretical PSF from 

experimental parameters (Aguet et al., 2008) (Ben Hadj et al., 2013) is a simple way to attempt 

deconvolution, but often provides less than ideal results due to substantial differences between the 

theoretical and experimental PSF.  Recent methods for PSF estimation from imaged data utilize 

convolutional neural networks (Shajkofci & Liebling, 2018) and generative adversarial networks (S. Lee et 

al., 2019), but without an a priori understanding of the imaging system aberrations these techniques are less 

than ideal.  Another way deconvolution methodologies are subdivided are through consideration of blind vs 

non-blind methodologies.  Blind methodologies attempt deconvolution by estimating the PSF from the raw 

collected image data, and then iteratively improving the estimate over multiple cycles of deconvolution.  
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Non-blind methodologies rely on a fixed PSF, which remains unchanged over multiple deconvolution 

iterations.   

Deconvolution strategies in the literature using experimental PSFs are often performed with only 

measurement of PSF from one ‘depth condition.’  However, some groups have identified a method where 

by immersing their fluorescent beads in agar gels they can identify PSFs at a range of depths to better 

characterize the precise degree to which spherical aberration impacts their image quality with depth (Boutet 

de Monvel et al., 2001).  Another  group has used measurements of a few select PSFs to interpolate PSFs at 

unique depths between the measured PSFs using fits of the PSF shape to Zernike moments (Maalouf et al., 

2011).   

In this study, we characterize FVA of neuronal, astrocytic, vascular and nuclear components in 

entire cortical columns of 70-micron thick coronal sections of murine brains, stretching from the cortical 

surface to the grey-white interface.  FVA is calculated in 50-micron depth intervals along the 2.5 mm 

cortical column length for each component.  Furthermore, we characterize FVA in two distinct functional 

regions of the cerebral cortex – the primary motor region (M1) and the primary somatosensory cortex 

barrel field (S1BF).  To maximize statistical significance of the findings, eighteen of these cortical columns 

were collected over three different rat brains for each of these two functional regions.  To optimize the 

validity of the metrics, an enhanced depth-dependent PSF collection and deconvolution scheme was 

provided which can apply independently to each fluorescent channel and throughout the depth of the thick 

tissue sections.  From this data, both cortical depth-dependent and cortical depth-independent statistics are 

calculated in order to better understand whether these two vastly different functional regions have unique 

patterns of volume density of neuronal, astrocytic, vascular and nuclear components.  Finally, individual 

nuclei density as well as estimates of astrocytic density are provided.  

 

Methods & Materials 

 

  Three adult male Wistar rats (16-20 weeks) were used to collect coronal brain slices for this study.  

Neuronal dendrites and soma were stained with Smi-311, astrocytes with GFAP, vasculature with VWF 

and nuclei with a staining kit (ThermoFisher R37113).  Immunofluorescent staining and imaging 
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techniques used have been described in Chapter 2.  Briefly, antigen retrieval of lightly compressed slices 

were used to enhance antibody penetration of the Smi-311 primary antibody.  An elongated staining 

protocol was utilized to maximize staining quality throughout the entirety of the tissue thickness.  

Alignment between a 10x mosaic scan of the entire brain slice and a brain atlas was used to identify the 

location of the specific functional regions of interest.  Within these functional regions, entire cortical 

columns were collected from the cortical surface to the grey/white interface through a mosaic scanning 

technique, encompassing data cubes 3 mm long, 800 µm wide and the entire thickness of the tissue slice, 

70 µm.  Using a 60x oil-immersion objective, these large regions were scanned at a voxel size of [0.207 µm 

(x) x 0.207 µm (y) x 1 µm (z)].  From each of the three rats, three coronal slices were selected from the 

center of the M1 region and three from the S1BF region.  From each of these slices, a cortical column was 

scanned from each hemisphere in the desired functional region.  In total, this encompasses 36 total cortical 

columns, 18 from each of the two functional regions and 12 from each of the three rat brains.        

 Deconvolving data as accurately as possible requires recognizing that the PSF that blurs the 

ground truth data changes continuously while traveling from the tissue surface to the deepest (70 µm) 

region of tissue.  To measure the PSF, sub-micron fluorescent beads 175 nm in diameter (ThermoFisher # 

P7220) were used to approximate a fluorescent point source, as they are below the resolution limit of a 

confocal fluorescence microscopy.  Beads were acquired from all four fluorescent imaging channels used in 

the study in order to establish channel specific point spread functions.  Estimating the PSF throughout this 

depth was accomplished through developing an imaging chamber to replicate the process of image 

formation through the brain slice.  A diagram of this chamber is provided in Figure 3.1b.  In short, the sub-

micron fluorescent beads are first adsorbed onto the glass slide surface.  A thin metal arbor shim disc with a 

hollow center is adhered to the slide, which creates a small well.  The well is then filled with a refractive 

index matching liquid designed to mimic the refractive index of the grey matter of the cortex.  80% ethanol 

was chosen in order to most closely match the expected refractive index variability in the rat grey matter, 

which ranges from 1.36 to 1.37 (J. Sun et al., 2012).  Finally, a coverslip is placed on top and the apparatus 

sealed with nail polish.  We acquired four different thickness of arbor shims – 25 µm, 50 µm and 75 µm.  

These three conditions were tested in combination with a fourth condition where no arbor shim was used, 

replicating a condition at the surface of the tissue.  By imaging the sub-micron beads through the RI-
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matching liquid at specific depths, it becomes possible to characterize the precise 3-dimensional point 

spread function of the confocal microscope used.  At least 20 PSFs were collected from each of these four 

depth conditions, from each of the four fluorescent channels and from both laser-scanning confocal 

microscopes used in the study – a Nikon C2+ and an Olympus FV1000. 

 Within each cycle of imaging, numerous 3D PSF profiles are extracted.  In order to extract a 

‘final’ averaged PSF from the numerous PSF collected, the five highest quality PSFs collected were 

identified and then averaged.  In order to rank the collected PSFs, two criteria were utilized – peak signal to 

noise ratio (PSNR) and photobleaching.  In order to identify the PSNR, the maximum pixel value at the 

center of the PSF was divided by the average background noise level.  If the brightest pixel value does not 

saturate the detector, a higher PSNR is desired as it provides the most substantial detail in the dimmer 

regions of the PSF.  In order to characterize photobleaching, each region with beads underwent two 

successive rounds of Z-imaging.  The ratio between the peak signal in the first and second round of 

imaging reveals the amount of photobleaching induced by the imaging process.  Lesser photobleaching is 

ideal, as it reflects that the PSF is minimally altered during the Z-scan from which it is collected.  From 

each combination of microscope, fluorescent channel and imaging chamber depth, the most ideal five PSFs 

were extracted based upon having the highest PSNR without saturation and the lowest photobleaching.  All 

five beads were aligned along all three axes prior to averaging using the maximum intensity pixel.   

 Once averaging was complete, an optimal 3-dimensional PSF was identified for each condition.  

This is demonstrated in Figure 3.1a.  In order to deconvolve the resultant data, the built-in blind 

deconvolution function within Matlab, deconvblind, was leveraged, which requires an initial guess of the 

PSF but iteratively improves its estimation over multiple cycles – hence falling in-between the typical 

‘blind’ and ‘non-blind’ methodologies (Biggs & Andrews, 1997) (Holmes et al., 1995).  This has the 

advantage of utilizing experimental PSFs while also allowing for iterative optimization of their shape 

during the deconvolution process.  Adjusting the PSF shape with each successive iteration is important 

considering the intrinsic heterogeneity of the PSF throughout the dataset (Jiang & Wang, 2003).  10 

iterations were chosen due to it being a standard cutoff point for microscopy deconvolution in the literature 

(Chen et al., 2013) (Biggs, 2010) and also due to experimental observations that additional iterations 

amplified background noise.  Additionally, ten iterations was chosen   Prior to deconvolution, a small 
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3x3x3 median filter was applied to the dataset to preserve edges while reducing the presence of shot noise, 

which would introduce artifacts to the deconvolution process due to their high-frequency components (Xu 

et al., 2006).  The PSF is filtered as well, as is typical in the literature (Hernández Candia & Gutiérrez-

Medina, 2014), in order to prevent any noise in the PSF affecting deconvolution accuracy.  In order to 

apply the four distinct depth-dependent PSFs to the continuous Z-axis of data encompassing the 70-micron 

thick coronal slice, the following strategy was used.  The ‘0 µm’ PSF which used no arbor shim was used 

to deconvolve data from 0 to 12 microns of depth.  The ‘25 µm’ PSF was used to deconvolve data from 13 

to 37 microns of depth.  The ‘50 µm’ PSF was used to deconvolve data from 38 to 62 microns of depth.  

Finally, the ‘75 µm’ PSF was used to deconvolve data from 63 to 70 microns of depth.      

 Each channel of deconvolved data was then loaded into Bitplane Imaris, an advanced microscopy 

analysis tool which provided the functionality of volumetrically rendering imaging data.  Within Imaris, the 

large cortical columns were subdivided into small volumetric objects for each fluorescent channel, each 

with a maximum size of [5 µm x 5 µm x 5 µm].  Each of these small objects has a unique centroid and is 

assigned to a unique depth bin.  Depth bins are organized from the cortical surface to the grey/white 

interface in 50 µm increments.  By calculating the overall volume of each depth bin and the total volume of 

all volumetric objects assigned to the bin, it becomes simple to calculate the volume fraction of the 

volumetrically modeled data as a percent of the total volume of each bin.  Furthermore, to account for the 

curvature of the cortical surface, each surface was approximated by a five-point profile.  This profile was 

used to adjust the ‘depth’ of each volumetric object based on its location along the width of the cortical 

column.  Correction of the cortical surface profile and the subsequent analysis of the cortical depth and 

volume of each volumetric object allows for the calculation of fractional volume as a unique percentage 

every 50 µm from the cortical surface to the grey/white interface, for each fluorescent channel.               

 Subsequent statistical analysis for each of the four fluorescently labeled components is focused on 

two specific analyses, depth-independent and depth-dependent analyses.  In the depth-independent 

analyses, a single fractional volume was extracted from each entire cortical column by dividing the total 

volume of modeled components by the total volume of the entire cortical column.  For depth-dependent 

analysis, the fractional volume is independently extracted in 50 micron increments of depth through the 

cortical column.  A normality test was performed on the data sets prior to each statistical analysis in order 
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to select the correct methodology.  A summary table of the underlying strategy is shown in Table 3.1 

below.  The first analysis used assesses whether a significant difference exists between paired hemispheres.  

This is carried out independently for each functional region, with each using 18 matched-pair slices.  The 

second analysis examines whether a significant difference exists between the three brains.  This is once 

again carried out separately for each functional region, with each contributing 6 values in each of three 

brains.  The final analysis carried out examines whether a significant difference exists between the M1 and 

S1BF functional regions.  This experiment uses the data from all 36 cortical columns, as 18 belong to each 

functional region.  Depth-dependent analyses follow the same analysis pattern, but statistical tests are run at 

each unique cortical depth increment.     

Table 3.1:  Summarized Statistical Testing Routine.  For both depth-dependent and depth-independent analysis, the same three 

categories of analysis were performed.  Normality testing determines whether the normal or non-normal test types are used.   
 

 Additionally, as nuclei were relatively well-dispersed, it became possible to characterize the actual 

density of nuclei in addition to the fractional volume assessments performed previously.  This assessment 

was carried out in order to compare the nuclei density and nuclei volume fraction profiles, as well as to 

compare the results to existing literature data.  Furthermore, using the total astrocytic volume per depth bin 

in conjunction with literature values for average Astrocyte volume, it became possible to estimate the 

density of Astrocytic cells throughout the depth of the cortical column.  However, this is simply an estimate 

as it does not take into account any variability in astrocyte volume that is dependent on cortical depth.   

 

Results 

  

 Using the depth-dependent PSF collection strategy, the PSFs from the 60x objectives of both the 

Nikon C2+ and Olympus FV1000 confocal microscopes were characterized and compared.  Furthermore, 

the degree to which these PSFs were wavelength and depth-dependent was identified, demonstrating that 

the axial (Z) length of the PSF grows due to both red-shifting the imaging wavelength as well as imaging 

deeper into the RI-controlled imaging chamber.  This is demonstrated below in Figure 3.1. 

 Normal test Non-Normal Test Sample Size 

Paired Hemisphere Comparison Paired T-Test Wilcoxon Signed-Rank 18 matched-pairs 

Brain Comparison ANOVA Kruskal-Wallis Three groups, six samples per group 

Functional Region Comparison Unpaired T-Test Mann Whitney U 18 samples per group 
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Figure 3.1:  Depth-Dependent PSF Collection and Sample Chamber Construction (a) Collected point spread functions are 

presented as both XY and XZ projections from each microscope, each fluorescent imaging channel and each specific Z-depth.  The 
pinhole is set to the smallest diameter available in the software, 0.9 Airy Units.  Displayed PSFs are an average of five collected PSFs 

for each condition.  Note the typical enlargement of PSF which accompanies a deeper imaging condition or a more red-shifted 

fluorescent channel.  (b) Measurement of these PSFs using a constructed sample chamber composes a four-step process.  After the 
fluorescent beads are adsorbed to the glass slide surface, an arbor shim of defined thickness (25, 50 or 75 µm) is placed on the glass 

slide and adhered using nail polish around the edges.  A medium emulating the refractive index of brain tissue is added, and a final 

coverslip is adhered to the top using nail polish.  Imaging of these sub-micron fluorescent beads simulates the PSF at defined depths 
within cortical brain tissue.    

 

  These collected PSFs, in conjunction with blind deconvolution, substantially reduced the Z-

stretching present in the datasets caused by spherical aberration.  This strategy was extensively tested with 

simulated data with a known ground truth and varying levels of noise in order to validate the deconvolution 

accuracy.  Figure 3.2 below highlights the impact of deconvolution on the neuronal data. 

 
Figure 3.2:  Impact of Depth-Variant Deconvolution on Data Quality.  These side-by-side images demonstrate the substantial 

impact of depth-variant deconvolution scheme on the resultant data quality.  The provided XZ projections were created through 
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volumetric modeling of the raw and deconvolved image stacks in Bitplane Imaris.  Note that deconvolution reduces the Z-stretching of 
reconstructed filaments driven by spherical aberration.   

 

 After carrying out subsequent volumetric rendering and analysis of fractional volume, the data 

underwent a thorough statistical analysis scheme.  The general scheme is shown in Table 3.2, 

encompassing both depth-independent and depth-dependent analysis.  A summary of statistically 

significant findings is also provided, highlighting that in the vast majority of cases the data was relatively 

homogeneous between hemispheres, between rats and between functional regions. 

 
Table 3.2:  Summarized Outcomes of Statistical Testing on Volume Fraction Data.  Statistical testing was performed on data from 

each fluorescent channel.  Analyses were subdivided into depth-independent and depth-dependent analyses.  Depth-independent 
analyses utilize a single ‘average fractional volume’ to represent each entire cortical column.  Depth-dependent analyses generate a 

fractional volume metric for each 50-µm increment along the entire cortical column length.  Analyses conducted compare 

hemispheres, multiple brains and both functional (Fx) regions.  Depth-dependent analyses are only labeled statistically significant if 
significance is achieved for three consecutive 50-µm increments.  All tests performed were non-parametric except for depth 

independent GFAP testing.  SD (Significant Difference), NSD (No Significant Difference).        

 

 Beginning with the neuronal marker Smi-311, comparison of both functional regions in both 

depth-independent and depth-dependent analysis reveals that S1BF region has a significantly higher 

fractional volume, with depth-dependent analysis identifying this occurring primarily from 350-600 µm 

and 1100-1300 µm.  This is highlighted in Figure 3.3 below, which identifies fractional volume of Smi-311 

throughout the cortical column. 
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Figure 3.3: Comparison of Fractional Volume between Regions using Smi-311 (Neuronal) marker.  Smi-311 fractional volume 
distribution along the cortical column in conjunction with the presented p-value distribution demonstrate not only that the S1BF has a 

typically higher density of neuronal dendritic processes, but also that statistically significant differences primarily exist in two specific 

ranges – 350-600 µm and 1100-1300 µm.  Error bars on top fractional volume plot represent standard error of each data point (n=18 
for each functional region).  The bottom plot is a log-scale representation of the p values for the depth dependent statistical 

comparison of FV of both functional regions from the top plot, with α=0.05 threshold highlighted with a bright red line.    

  

         Assessment of the astrocytic marker GFAP, reveals almost no statistically significant differences 

between the two functional regions, apart from higher GFAP fractional volume at the surface and the 

deepest grey/white interface regions.  This is highlighted below in Figure 3.4.  Furthermore, using literature 

estimates of GFAP-stained astrocyte volume (Bushong et al., 2002), an estimate of the astrocyte density per 

cubic millimeter is provided as a secondary Y scaling axis.  These authors provide the critical information 

of the average volume of a dye-filled astrocyte in conjunction with the ratio between the volume of a dye-

filled astrocyte and a GFAP-stained astrocyte (15%), allowing usage of aggregated volume information to 

estimate cell density.    
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Figure 3.4: Comparison of Fractional Volume between Regions using GFAP (Astrocyte) marker.  GFAP fractional volume 

distribution along the cortical column in conjunction with the presented p-value distribution demonstrate statistically significant 

differences in two specific ranges – 0-100 µm and 2200-2300 µm.  Error bars on top fractional volume plot represent standard error 
of each data point (n=18 for each functional region).  Furthermore, an additional y-scaling on the right side of the plot estimates the 

Astrocyte density / mm3 based on literature estimates of GFAP-stained astrocyte volume (McCaslin et al., 2011).  The bottom plot is a 

log-scale representation of the p values for the depth dependent statistical comparison of FV of both functional regions from the top 
plot, with α=0.05 threshold highlighted with a bright red line. 

 

 Analysis further reveals that the vascular marker, VWF, has no substantial difference between the 

motor and somatosensory regions.  This is highlighted below in Figure 3.5. 
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Figure 3.5: Comparison of Fractional Volume between Regions using VWF (Vascular) marker.  VWF fractional volume 
distribution along the cortical column in conjunction with the presented p-value distribution demonstrate no statistically significant 

differences between the two functional regions.  Error bars on top fractional volume plot represent standard error of each data point 

(n=18 for each functional region).  The bottom plot is a log-scale representation of the p values for the depth dependent statistical 
comparison of FV of both functional regions from the top plot, with α=0.05 threshold highlighted with a bright red line. 

 

 Finally, assessment of the nuclear marker reveals no significant differences in fractional volume 

between the M1 and S1BF regions.  This is demonstrated below in Figure 3.6.  Alternatively, examinations 

of nuclei density similarly have no difference between the M1 and S1BF region, with the density profile 

appearing the same as the volume fraction profile.  This is shown below in Figure 3.7. 
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Figure 3.6: Comparison of Fractional Volume between Regions using Nuclei marker.  Nuclei fractional volume distribution along 
the cortical column in conjunction with the presented p-value distribution demonstrate no statistically significant differences between 

the two functional regions.  Error bars on top fractional volume plot represent standard error of each data point (n=18 for each 

functional region).  The bottom plot is a log-scale representation of the p values for the depth dependent statistical comparison of FV 
of both functional regions from the top plot, with α=0.05 threshold highlighted with a bright red line. 
 

 
Figure 3.7: Nuclei Density along Cortical Column.  Nuclei cellular density along the cortical column in conjunction with the 

presented p-value distribution demonstrate no statistically significant differences between the two functional regions.  Error bars on 
top fractional volume plot represent standard error of each data point (n=18 for each functional region).  The bottom plot is a log-

scale representation of the p values for the depth dependent statistical comparison of FV of both functional regions from the top plot, 

with α=0.05 threshold highlighted with a bright red line. 
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 In order to understand the dense interconnectivity of these cell types in the neuropil, it is useful to 

have a visualization of the rendered data.  This is provided below in Figure 3.8. 

 
Figure 3.8: Visualization of Interconnectivity of Stained Cellular Markers.  Architectural interconnectivity of the neuronal dendrites 

(grey), astrocytes (green), vasculature (red) and nuclei (blue) can be best visualized through 3D modeling of the neuropil.  (A,B) Two 
perspectives of the outer surface of a small sub-cube extracted from the cortical column reveals the neuropil’s intrinsic complexity.  

(C) Within this dense data cube, an astrocyte is shown flanked by numerous dendritic processes.  (D) The underlying process of 

fractional volume analysis is provided here, demonstrating for the astrocyte channel how the data cube (and individual astrocytes) 
are subdivided into numerous smaller volumetric objects – randomly pseudocolored for ease of visualization.  Extraction of the 

positional and volumetric characteristics of each individual fragment allows for continuous measurement of volume fraction along the 
cortical column.        

 

Discussion 
 

 A variety of methodological advances and useful quantitative metrics for the motor and 

somatosensory regions of the murine brain are generated which can be leveraged by future research groups.  

Th simple methodology developed for generating depth-variant PSFs and subsequent deconvolution 

provides a valuable protocol for labs to enhance the accuracy of their 3D data cubes.  Furthermore, by 

developing depth-independent and depth-dependent fractional volume metrics for neuronal, astrocytic, 

vascular and nuclear components in healthy adult murine tissue, foundational metrics are provided which 

can be used towards computational studies, disease state characterization and better characterization of 

MRI quantitative metrics in techniques such as quantitative gradient recalled echo (qGRE) (Wen et al., 

2018) and diffusion MRI (Gilani et al., 2019).  Usage of these techniques can take advantage of well-

understood changes in fractional volume, such as increases in local vascularization due to tumor 
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angiogenesis (Pathak et al., 2001).  The applications of this work in predicting local fractional volumes of 

major cellular components using MRI is especially exciting due to its long-term potential for providing a 

noninvasive estimation of the severity of disease states that may currently require a risky biopsy of brain 

tissue.  Additionally, characterization of Astrocytic volume fraction in 50 micron increments along the 

cortical depth of the M1 and S1BF region can hence provide a useful map of depth-dependent variations of 

glutamate uptake in these regions (Medvedev et al., 2014).      

 While few direct comparisons exist in the literature for many of the analyses performed here, 

examples exist that support some key findings.  In regard to the neuronal Smi-311 marker, this study 

identified a significantly higher volume fraction in the S1BF compared to the M1 region in a specific 

region of the cortical column.  Neuron density has been established as higher in the S1BF region as 

compared to the M1 region in both primates (Young et al., 2013) and mice (Herculano-Houzel et al., 2013; 

Keller et al., 2018), although these authors are unable to identify the specific cortical depth where these 

differences become significant.  Similarly, other authors have identified that the neuron staining marker 

Rorb is expressed at a lower intensity in the motor region of mice as compared to the sensory region.  

Considering the astrocytic GFAP stain, there are very few examples for comparison in the scientific 

literature.  However, one group characterizing astrocyte density continuously through the somatosensory 

cortex of a mouse identified a similar trend of an early peak in superficial layers, a dip in intermediate 

layers and a rapid rise when approaching the grey/white interface (McCaslin et al., 2011).  This 

dissertation’s approach utilizes fractional volume while the literature example utilizes astrocyte density, but 

they both demonstrate similar depth-dependent profiles.  Another group of authors provided useful metrics 

as to the average dye-filled astrocyte volume as well as the ratio of this to a GFAP-stained astrocyte (15%) 

(Bushong et al., 2002).  Using this knowledge and the aggregated volume information collected in this 

study, the Astrocyte density curve from (McCaslin et al., 2011) was replicated in Figure 3.5 and 

surprisingly nearly perfectly matched the absolute density found in the literature - ranging from 1.104 to 

4.104 astrocytes / mm3 along the cortical column.  Assessing the VWF analysis, related work exists which 

characterizes fractional volume as a function of cortical depth in mice (Tsai et al., 2009) as well as work 

which simply summarizes an ‘average’ fractional vascular volume (L.-Y. Zhang et al., 2018).  The results 

of this study match the general shape of the literature fractional volume profile.  However, it is important to 
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mention that the absolute measurements of vascular fractional volume calculated in this study 

underestimate of the true fractional volume as the VWF stain does not provide as continuous of a vascular 

tracing as alternative staining markers such as RECA-1.  RECA-1 was not available for this study due to 

limitations on available animal antibody sources resulting from using four simultaneous fluorescent 

markers.   Finally, considering the nuclear staining fractional volume, the distinct profile seen from the 

results of this study well matches various literature representations of continuous cell density along the 

cortical depth (Wu et al., 2016) (Keller et al., 2018).  Furthermore, assessment of absolute nuclei density 

from this study has a Y-axis ranging from 1.105 - 3.105 cells / mm3, which closely matches the range seen in 

both of these literature examples.  In conclusion, these various examples from the literature provide clear 

evidence as to the validity of the findings.     

 This work also provides additional evidence towards a theory of cerebral cortex evolution that 

intertwines the wire volume minimization principle and the spine proportion economical maximization 

principle (Karbowski, 2015).  These theories encompass a general principle that axons and dendrites each 

compose 1/3 of cortical volume, astroglia compose (1/3)2 of cortical volume and capillaries compose (1/3)4 

of cortical volume.  According to this evolutionary theory, this ratio is believed to be generally conserved 

regardless of brain size or functional region.  These hypotheses generally fit the themes of the presented 

findings in relation to both the conservation of fractional volume across brain and functional region as well 

as the diminishing fractional volume when moving from neuronal to astrocytic and finally vascular 

components.           

 Furthermore, this work contributes to recent research foci examining the motor cortex as a 

potentially ‘pseudo-granular’ region instead of its traditional labeling as an agranular region.  Historically, 

the motor cortex is considered agranular due to its lack of traditional layer IV cytoarchitecture, which is 

believed to be lost postnatally (Barbas & García-Cabezas, 2015).  The unique cytoarchitecture of Layer IV 

in granular regions of the brain is typically reflected by the presence of dense granular neurons, a neuronal 

subtype characterized morphologically by a small soma and a few small claw-like dendritic projections 

(Rizzolatti & Luppino, 2001). While the motor cortex lacks this cellular component, evidence has emerged 

that Layer IV still exists in the motor cortex in a connectivity context, since it still receives input from 

primary thalamocortical axons and provides output to excitatory neurons in Layers II and III, both key 
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characteristic of Layer IV in granular tissue (Yamawaki et al., 2014)(Bopp et al., 2017).  The analysis 

presented in this study further contributes to this discussion by demonstrating no significant difference in 

nuclei staining density or fractional volume between the ‘agranular’ motor and ‘granular’ somatosensory 

regions – an unexpected event due to the expected difference in nuclei density due to the lack of a dense 

granular cell layer.  Since granular and agranular cortices have been demonstrated as having very different 

nuclei density profiles in the mouse (Tsai et al., 2009), the presented research provides additional evidence 

of the underlying cytoarchitectural similarities between the motor and somatosensory regions.  

Furthermore, a statistically significant decrease in neuronal staining volume is identified in this study in the 

region corresponding to Layer IV (500-600 microns deep) of the motor versus somatosensory cortex, which 

matches previous work in the literature examining the expression of the neuronal marker Rorb in the motor 

and somatosensory cortices (Yamawaki et al., 2014).  The identification of the Layer IV region is 

performed based on aligning the layer-specific cell density profiles provided in previous literature (Tsai et 

al., 2009) (Keller et al., 2018) (Wu et al., 2014) with the experimentally calculated cell density profile. 

 Despite the exciting applications of the developed work, there are a number of key limitations 

which must be addressed.  First, FVA does not provide metrics which can be used to understand individual 

cell morphologies nor functional activity in brain tissue.  Furthermore, while the blind deconvolution 

methodology can enhance the validity of FVA metrics by reducing axial elongation that is introduced 

during the imaging process, deconvolution carries the risks of creating additional artifacts in the final data.  

While this is minimized by limiting the number of deconvolution iterations to 10 and reducing shot noise in 

the dataset through median filtering prior to deconvolution, the risk is still present.  Finally, estimates of 

astrocyte density made using the fractional volume data does not take into account the potential 

heterogeneity of astrocyte form throughout the cortical column, which limits the accuracy of this particular 

estimation method.     
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Chapter 4. Automated Nuclei Classification & Astrocytic Individualization 
 

Introduction 
 

 Characterizing the morphological properties of individual cells is a fundamental goal within the 

broader aim of understanding the complex architecture of the cerebral cortex.  Due to the density of 

interwoven filaments in the neuropil, this can be an extremely difficult challenge.  An important starting 

point in this form of analysis is a clear identification of each cell and its nucleus, so that morphological 

analysis can utilize the cell center correctly during filament tracing.  This can be readily accomplished by 

using a combination of fluorescent structural cell-specific markers and a fluorescent generalized nuclear 

marker, since linking of a nucleus to an individual cell becomes simpler due to the unstained ‘hole’ within 

the cell soma where the nucleus lies.  On a smaller scale, this technique is appropriate, since subsequent 

manual filament tracing can effectively extract 3-dimensional cell structure.  However, for processing large 

datasets with tens of thousands of nuclei, the development of an automated approach becomes necessary.        

 While the underlying goal of automated nuclei classification has clear advantages in a variety of 

common fluorescence microscopy scenarios, its implementation has not yet been realized in the academic 

literature.  The most similar example is a project which correlated neuronal and microvascular density in 

the murine cortex through automated mapping of the location of neuronal and non-neuronal nuclei (Tsai et 

al., 2009).  This group identified neuronal (and non-neuronal) nuclei based on the colocalization of the 

neuronal nuclei marker NeuN and the generalized nuclei label DAPI – two markers whose fluorescent 

signals were well-aligned for neuronal nuclei.  Interpretation of colocalized fluorescent labeling has also 

been used to distinguish between different subtypes of neurons due to labeling of unique transcription 

factors (Sigl-Glöckner & Brecht, 2017), but this technique is even more distantly related to the concept of 

cell-specific nuclei assignment. 

 One of the closest-matching implementations of cell-specific nuclei assignment was carried out 

without fluorescence – instead using assessment of cytological features following Nissl staining (García-

Cabezas et al., 2016).  The methodology required manual assignment of each nuclei by experienced raters, 

which although lacking the benefits of automation provided a reliable identification with an inter-rater  
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reliability (Krippendorff's alpha) value of 0.92.  The cytological identification relied on the darkness of the 

nuclei stain, its shape, the presence of cytoplasm and the distribution of nuclear heterochromatin.     

 Despite the rarity of nuclei assignment techniques in the literature, they hold tremendous promise 

for the detailed morphological assessment of cortical astrocytes.  Cortical astrocytes in the dense neuropil 

connect at their peripheral end-feet, which makes their individual volumetric rendering and analysis 

extremely difficult during typical immunofluorescent staining.  The complexity of astrocyte 

individualization is highlighted in Figure 4.1.  Researchers attempting to analyze individual astrocyte 

morphology in co-cultured neuron-astrocyte networks have described that the dense entangling makes 

individual cell separation impossible (Bar El et al., 2018).  In order to independently analyze the 

morphology of a single astrocyte, researchers commonly use dye-filling (Savtchenko et al., 2018) 

(Wilhelmsson et al., 2006) (Moye et al., 2019).  While this technology serves a unique niche, it suffers 

from being extremely time-consuming and requiring expensive additional instrumentation, preventing its 

use for automated morphological analysis of large numbers of astrocytes.    

 
Figure 4.1:  Complexity of Individual Astrocyte Identification.  Astrocytes form a highly interconnected network in the dense 
neuropil and are extremely difficult to separate, which is demonstrated in green in the blended XY projection (a) and volumetric 

model (b), where filaments are pseudocolored based on Z-depth for enhanced visibility.  Nuclei are then added to (a) in (c) to 
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highlight the challenge of individual-astrocyte nuclear alignment, which is then volumetrically modeled in (d) with astrocytes in 
yellow and nuclei in randomized shades of pink/purple for ease of visibility.  When the remaining two fluorescent channels (neuronal 

dendrites & microvasculature) are added in the blend projection (e) and volumetric model (f), it becomes clear the immense challenge 

of precisely identifying individual astrocytes and their corresponding nuclei.  Figures generated using Bitplane Imaris.   
 

 Apart from dye-filling, the only other currently available method for astrocyte morphological 

individualization is manual process tracing.  Using the Fiji-ImageJ Simple Neurite Tracer (SNT) plugin, 

one group demonstrated the capability to measure process thickness, process length and carry out Sholl’s 

analysis of rodent astrocytes (Tavares et al., 2017).  Another group used the same plugin to demonstrate a 

cortical-layer specific territorial volume and orientation angle of neocortical astrocytes in the mouse 

somatosensory cortex (Lanjakornsiripan et al., 2018).  A third group used the manual tracing capability of 

the Neurolucida software package to distinguish the morphology of astrocytes in Macaques suffering from 

simian immunodeficiency virus (SIV) from a healthy control group based on Sholl’s analysis, arbor 

volume, arbor length and the presence of bifurcations (K. M. Lee et al., 2014).  Manual process tracing 

reduces the need for expensive microinjection equipment, but still requires extensive manual effort and is 

poorly suited for large-area automated morphological analysis.   

 Characterization of astrocyte morphological diversity has become a popular topic in recent years 

due to recent progress uncovering their heterogeneity and links to its unique effects on underlying neuron-

astrocyte spatiotemporal interplay (Zhou et al., 2019).  The underlying structural plasticity of astrocytes is 

believed to be critical in uncovering the molecular nature of various cognitive processes, such as learning 

and memory (Suzuki et al., 2011)(Ben Menachem-Zidon et al., 2011).  The diversity of astrocytes has been 

further supported through a variety modalities, including RNA sequencing and electron microscopy, but a 

clear definition of the diverse classes is still elusive (Khakh & Deneen, 2019).  Since the morphological 

diversity has a direct impact on their interaction with neuronal synapses, other glia and surrounding 

vasculature, further study into astrocyte morphology is critical to better understand this cell type in both 

normal and diseased tissue (Schiweck et al., 2018).     

 The most substantial contribution to aid nuclei assignment for astrocytes was the recent 

identification of a nuclear marker, Sox9, which is specific for astrocytes and glial progenitors.  Outside of 

neurogenic regions, Sox9 has been revealed to be a useful astrocyte-specific nuclear marker (W. Sun et al., 

2017).  However, it is important to recognize that due to its parallel specificity for progenitor cells, Sox9+ 
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glia have also been found to generate glutamatergic neurons, demonstrating that subsequent interpretation 

of staining patterns must proceed cautiously (Kaplan et al., 2017).  Since parallel Sox9 staining would 

require usage of an additional fluorescent channel, of which modern fluorescent microscopes typically only 

have three or four available, it is more beneficial to leverage a technique that can utilize a generalized 

nuclei fluorescent stain to identify multiple cell type categories in parallel.   

 The current work aims to resolve existing challenges of cell-specific nuclei identification and 

subsequent astrocyte morphological analysis by taking advantage of bright staining patterns in the 

perinuclear rim surrounding nuclei within cellular soma.  A unique four-channel staining and imaging 

routine separately labels astrocytes, neurons, vasculature and nonspecific nuclei.  Sequential steps of nuclei 

volumetric modeling, masking, binarization and dilation allows for unique assessment of staining density in 

the remaining three channels in the small region immediately surrounding each nucleus where the soma 

corresponding to the nuclei lies.  Extraction of the perinuclear fluorescent intensity in the astrocytic, 

neuronal and vascular channels in conjunction with the use of a state vector machine 3D discrimination 

hyperplane allows for reliable distinction of relevant cellular components – specifically astrocytic, 

neuronal, vascular and other-cell nuclei.  Parameter optimization carried out using pooled and un-pooled 

training/testing sets maximizes sensitivity and specificity of the resulting hyperplanes.  Recombination of 

selected nuclei with their cell-specific fluorescent channel allows for cell individualization and subsequent 

surface and filamentous analysis for calculating cell-specific metrics.  

 The novelty of this work rests on its use of perinuclear fluorescent staining intensity of the 

neuronal, astrocytic and vascular channels for nuclei sorting.  As a result, this methodology emerges as the 

first published technique for automated astrocyte identification and individualization for rapid 

morphological quantification.  Furthermore, this technique identifies optimal perinuclear distances from the 

nuclear boundary to maximize sensitivity and specificity for subsequent cell-type identification.  This 

research is highly impactful for researchers who aim to rapidly collect and analyze distinct astrocyte 

morphologies for subsequent assessment of their heterogenous form and function and who have a 

multichannel confocal fluorescent microscope    
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Methods & Materials 
 

 Details on brain collection, slicing and subsequent immunofluorescent staining and imaging can 

be found in Chapter 2.  Briefly, adult Wistar rats were sacrificed and coronal slices 70 µm thick were 

sectioned using a vibratome.  Landmarks were identified using a rat brain atlas to identify slices containing 

the primary motor (M1) and primary somatosensory (S1BF) regions.  From three unique rat brains, three 

slices each were collected containing the M1 and S1BF regions – encompassing 18 slices in total.  Each 

slice was immunofluorescently stained with four markers.  The first marker, Smi-311 (Pan-neuronal 

neurofilament marker), is a neuronal marker which labels dendrites and soma of all neuronal cells.  The 

second marker, GFAP (Glial Fibrillary Acidic Protein), labels Astrocytic soma and arbors.  The third 

marker, VWF (Von Willebrand Factor), labels the vascular endothelium.  The final marker, a commercial 

product called NucRed Dead, is a fluorescent generalized nuclei stain.   

 Slices were stained and entire cortical columns from the functional region of interest in each 

hemisphere were imaged at 60x magnification, spanning approximately [800 µm x 3000 µm x 70 µm] at a 

voxel size of [0.207 µm x 0.207 µm x 1 µm].  Data was collected from two fluorescent confocal 

microscopes, an Olympus FV1000 and a Nikon C2+.  The Olympus required two successive cortical 

column scans, each of two channels, while the Nikon had the intrinsic capability to collect all four channels 

during a single scan.  Unfortunately, the need for two successive scans created spatially varying offset 

between each pair of collected channels in the Olympus data, requiring usage of only the collected Nikon 

data for this particular study until improved stitching tools could be implemented to resolve the challenges 

of the Olympus datasets.  The data collected from the Nikon C2+ encompassed one slice from the M1 and 

another from the S1BF groups, providing two cortical columns from each functional region which were 

leveraged for this study. 

 To resolve issues with depth-dependent spherical aberration in each of the four channels, a unique 

PSF collection and deconvolution routine was implemented as discussed in Chapter 3.  Briefly, using an 

imaging chamber filled with a liquid chosen to match the refractive index of brain tissue, unique point 

spread functions were collected at simulated depths of 0 µm, 25 µm, 50 µm and 75 µm for each of the four 

fluorescent channels.  Blind deconvolution was utilized within Matlab to reduce the substantial axial 
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stretching that occurs as a result of spherical aberration.  Deconvolution is a necessary step to assess the 

perinuclear rim since PSF-driven blurring both laterally and axially can cause the nuclei to obscure the 

perinuclear rim – which in many cases can be only a few pixels wide at a high magnification.   

 Once the cortical column has been successfully acquired for all four channels and the resultant 

data has been stitched and deconvolved, the next step is to collect discrete metrics for each individual 

nucleus within the cortical column to facilitate later cell-category assignment.  To accomplish this 

objective, Bitplane Imaris was utilized to transform the nuclei-channel data cube into a collection of 

volumetrically modeled nuclei.  In order to ensure that nuclei with ‘touching’ boundaries were properly 

separated into distinct objects, Imaris’ built-in seed-point separation tool was leveraged, which uses the 

watershed algorithm to split clustered nuclei.  Once all nuclei were uniquely volumetrically modeled, the 

distinct characteristics of each were exported – including the centroid position, volume and sphericity.  

Furthermore, the volumetrically modeled objects were masked to generate additional image stacks – one in 

which all volumetric objects were binarized and another where each individual volumetric object was given 

a unique intensity value.     

 Identification of the perinuclear rim requires a sequence of simple steps.  First, binarized nuclei 

undergo a 3-dimensional binary fill operation in order to ensure that any ‘holes’ present within them due to 

weaker interior staining are eliminated.  Next, a binary dilation procedure is carried out, which expands the 

binarized region by a specific number of pixels from the existing boundaries of the binarized nuclei.  

Finally, the dilated and un-dilated binarized nuclei are subtracted from one another, leaving only the thin 

ring around the nuclei representing the location of the perinuclear region.  Since the binarized data has a 

perinuclear area with a value of 1 and a nuclear and background region with a value of 0, the data can then 

be directly multiplied by the image stack of the same region in the other fluorescent channels, allowing an 

effective sampling of the perinuclear region staining intensity from other fluorescently stained channels.  A 

diagram highlighting this process is shown in Figure 4.2.         
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Figure 4.2:  Demonstration of Perinuclear Parameter Extraction Technique.  First, collected nuclei (A) are binarized (B) and then 

undergo a binary fill operation (C) to ensure full representation of the nuclear volume.  For both Astrocytes (D) and Neurons (G), the 
perinuclear zone for each cell type consists of a thin ring surrounding the nucleus.  The highlighted nucleus in each case first 

undergoes a binary dilation operation of five pixels, creating two distinct binary objects – a yellow nucleus and green perinuclear 

zone (E,H).  Multiplication of the binarized perinuclear zone and the corresponding cellular channel’s grayscale image allows for 
sampling of the perinuclear zone (F,I).  Subsequently, the pixel values within the perinuclear zone of these images are extracted for 

further analysis.     
 

 In order to demonstrate that the perinuclear staining approach is valid for discriminating between 

different cell-type categories, it became necessary to annotate a subset of existing nuclei in the dataset so 

that their perinuclear staining values from each channel can be compared to the annotated cell type.  To 

accomplish this, a Matlab-based GUI was developed to facilitate nuclei selection and annotation, the details 

of which are presented in Figure 4.3.  Approximately 50 nuclei were collected from each of the four desired 

groups – ‘neuron’, ‘astrocyte’, ‘vasculature’ and ‘other cell’.  The GUI accepts as input the nuclei-specific 
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statistics from Imaris as well as the binarized and pseudo-colored nuclei image stack masks.  Within the 

interface, the data cube is navigated by hand and channel visibility and maximum intensity projection 

thickness can be managed in order to locate nuclei throughout the dataset.  Once nuclei are selected by 

hand, the corresponding nucleus within the Imaris statistics data is identified based on the distance between 

the clicked location and the array of nuclei centroids exported from Imaris.  After identifying the cell type, 

the GUI collects a variety of information from each selected nucleus.  First, it cross-references the position, 

volume and sphericity from the exported Imaris statistics.  Second, it carries out a variety of dilation 

procedures using 15 distinct dilation amounts pixels [2, 3, 4, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50].  

For each dilation, the fluorescence intensity within the perinuclear zone of a given nucleus was collected in 

the Smi-311, GFAP and VWF channels.  The mean, standard deviation and number of pixels are collected 

for each combination of dilation and channel.  Although the size of the perinuclear zone may vary with the 

nuclear size, this factor is not considered since nuclei volume remains relatively stable and the perinuclear 

area is stained regardless of variations in nuclear size.  By collecting perinuclear data at such a wide variety 

of radii around the nuclear edge, subsequent optimization practices aim to identify the optimal dilations to 

maximize sensitivity and specificity of cell-type identification.    

  
Figure 4.3:  Matlab GUI for Nuclei Annotation & Feature Extraction.  To use the GUI, the dataset is first navigated to highlight a 

suitable nucleus for annotation.  Manipulation of the (A) maximum intensity projection and Z-frame using sliders as well as the (D) 

visibility of the four fluorescently stained channels using radio buttons allows visual confirmation of the cellular origin of the nuclei of 
interest.  After clicking ‘Select Nuclei’ the user clicks the nuclei of interest.  Following this, the closest matching nucleus from the 

Imaris output is identified and relevant information is presented (B) such as the position of the centroid, volume, sphericity, and the 

distance of the centroid from the location clicked (to validate accuracy).  Following this, the chosen nuclei is (E) highlighted 
automatically and separated from surrounding nuclei as a Z-stack is panned from 7 frames below the centroid until 7 frames above 
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the centroid.  This allows clear visualization for validation of nuclei individualization.  The same Z-panning is then automatically 
displayed while the selected nuclei is superimposed onto the remaining fluorescent channels to ensure a correct selection is made.  

Finally, once completed the user can choose the identity of the selected object.  After the selection is made, perinuclear parameters 

are extracted and collected in (F) for all fifteen binary dilation parameters for the chosen nuclei.  Once this entire process has been 
carried out for each nucleus, data can then be conveniently exported within the GUI to an Excel filetype. 
 

 In order to separate cell types once the dilation parameters have been optimized, a 3D support 

vector machine with a third-order hyperplane was decided as the discrimination methodology.  To carry 

this out, perinuclear fluorescence values for all nuclei are individually normalized in each of the neuronal, 

astrocytic and vascular channels and each nucleus is plotted in a 3-dimensional array, with one axis per 

channel.  The specific dilation parameter is decided on for each of these three fluorescent channels through 

optimization experiments and are applied to each of the unknown nuclei.  Since all axes are normalized, the 

hyperplane derived for each decision boundary can be used throughout all data sets.      

 To optimize dilation parameters, annotated data was independently pooled between both 

hemispheres of the M1 dataset and both hemispheres of the S1BF dataset, with the goal of using one as a 

training set and the other as a testing set.  First, M1 data was used for training and S1BF was used for 

testing in order to assess the influence of nuclei pixel dilation on sensitivity and specificity.  Then, the 

training and testing sets were reversed, and the process was carried out again.  The two sets of results were 

averaged to identify the overall effect of dilation quantity on sensitivity and specificity.  Parameter 

optimization utilizing the previously described list of dilation amounts to maximize sensitivity and 

specificity.  Vascular channel pixel dilation was assessed separately from neuronal and astrocytic channel 

pixel dilation, which were grouped together.  Analysis was performed in this way since vascular-type cells 

(i.e. endothelial cells, pericytes) would not have typical perinuclear staining since the vascular stain was 

lumenal in nature.  On the other hand, neuronal and astrocytic cells were expected to have typical 

perinuclear staining since they are distinct cells with a soma surrounding the nucleus.  Once the optimal 

per-channel dilation parameters were chosen through this methodology, all data was pooled together to 

carry out a typical 70%/30% randomized training/testing analysis.  The process of randomization into 

training and testing sets and subsequent assessment of sensitivity and specificity was carried out 1000 times 

to understand overall algorithm ability and variability.     

 The final outcome of this process is the automated classification of all nuclei in a dataset, 

regardless of its size.  Once completed, the binary masks of chosen nuclei (such as Astrocytic nuclei) are 
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modified to have a pixel value slightly above the dataset saturation value, after which they are re-added 

back into the fluorescent channel of their specific cell type.  This process results in an image stack where 

nuclei for the cell of interest has been superimposed into the channel.  As a result of this process and the 

brighter pixel value of the nuclei, Imaris can then be leveraged to identify each nuclei as a seed point for 

subsequent volumetric and filament modeling.  With the clear identification of each cell’s soma, automated 

cell individualization and morphological extraction through volumetric and filament-based modeling can 

proceed reliably since cell boundaries in a dense network can be separated using the watershed transform.  

The flowchart in Figure 4.4 highlights the sequence of steps carried out in this methodology. 

 

 
Figure 4.4:  Flowchart of Protocol Methodology.  The first sequence of steps, highlighted in purple, include the process of raw data 

collection and 3D modeling of the nuclei channel within Imaris, after which a variety of morphological parameters (centroid, volume, 

sphericity, surface area) are collected for each individual nucleus object.  Following this, the second sequence of steps, highlighted in 
green, are used to develop the nuclei classification model, using a subset of dataset nuclei.  First, nuclei from different slices, depths 

and functional regions are manually annotated using a GUI, after which Imaris morphological parameters and perinuclear region 
pixel values from all fluorescent channels are collected for various diameters around each nucleus.  An iterative optimization process 

is then carried out, during which various combinations of perinuclear diameters are used, with each generating a new SVM 

hyperplane and resultant sensitivity/specificity value.  Once the optimal parameters are chosen, a finalized classification hyperplane 
is created, and the final step, highlighted in yellow, is carried out with all dataset nuclei.  The finalized nuclei classification 

hyperplane from step two is combined with normalized per-nuclei parameters for all dataset nuclei to allow rapid automation of vast 

quantities of nuclei within the datasets.  Following this, nuclei are 3-dimensionally recombined with the corresponding channel of the 
cell they are assigned to, allowing them to be used as seed points for cell individualization.      
 

Results 
 

  Preliminary optimization required determining the ideal perinuclear distance from the nuclei 

boundary to maximize sensitivity and specificity of the cell-type determination.  The results of this analysis 

for astrocyte cell-type identification are provided in Table 4.1.  Optimal perinuclear distance from the 



64 

 

astrocytic and neuronal channel is only a few pixels, which matches expectations due to the very thin 

perinuclear stained zone.       

 
Table 4.1:  Sensitivity/Specificity Optimization of Perinuclear Distance Assessment. Since perinuclear pixel density was collected 

from 15 unique distances from the nuclei boundary for each channel, it was critical to identify the relationship between the distance 
chosen and the resulting sensitivity/specificity of the subsequent nuclei identification.  To carry out this optimization, neuronal and 

astrocytic perinuclear distances were kept the same along one axis while the vascular perinuclear distance was separately modified.  

Neuronal and astrocytic parameters were grouped since nuclei of both cell types have similar thin perinuclear rings, while vascular 
parameters were separated since the lumen vascular staining does not have the same spatial relationship with endothelial cell nuclei 

lining vascular structures.  To generate this table, data from two cortical columns of one brain slice was used as training data while 

two cortical columns of a different brain slice was used as testing data.  Roles were then reversed, and sensitivity/specificity 
calculations were run once again.  The above tables represent the average values from both between-slice testing routines.  Pseudo-

coloring of cells is performed automatically within Excel to represent the spectrum from favorable (dark green) to unfavorable (dark 

red) performance. 
 

 Based on the results of the sensitivity/specificity testing, the chosen perinuclear distances used 

were 3 pixels for neuronal/astrocyte channel and 5 pixels for the vascular channel.  Based on these 

parameters, perinuclear staining intensity was calculated for each cell type for the neuronal, astrocytic and 

vascular channel.  Figure 4.5 demonstrates the distinct separation of each cell type along these axes as well 

as the discrimination hyperplane developed using the support vector machine. 
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Figure 4.5:  Distribution of Nuclei and Hyperplane Development. Images in the first row demonstrate the distribution of Neurons 

(Black), Astrocytes (Green), Vascular (Red) and Other nuclei (Blue) along the normalized axes of perinuclear staining density in the 

corresponding fluorescently labeled channels.  The second and third row provide the fitted support vector machine hyperplane for 
astrocytic and neuronal nuclei identification, respectively.  In the second and third row, blue dots represent the nuclei of interest while 

red dots represent all other nuclei, demonstrating the discrimination accuracy of the developed hyperplane.  Each column in all rows 

represents an iterative, synchronized rotation of the 3D plot along the XY plane to aid in visualization. 
 

 To provide a final layer of validation as to the power of the discrimination method, the sensitivity 

and specificity was determined by randomly segregating the annotated data into training (70%) and testing 

(30%) sets, with the procedure repeated 1,000 times and parameters calculated for each cycle.  The results 

of this analysis are shown in Figure 4.7, which demonstrate the ability of this method to accurately identify 

astrocytic and neuronal cells. 

 
Table 4.2:  Result of Randomized Train/Test Groupings.  Randomized separation of data into training (70%) and testing (30%) 

groups was conducted 1,000 times in order to identify average and standard deviation of resultant sensitivity and specificity metrics.   
 

 Following recombination of chosen nuclei within their corresponding fluorescent channel, 

individualization of cells in a dense network become substantially easier and no longer require manual 
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processing steps.  The three astrocytes shown in Figure 4.6 would typically be grouped as one object due to 

the contact between individual cell end-feet, but with the aid of overlaid nuclei seed points, it becomes 

simple for the watershed algorithm to identify separation points between these adjacent nuclei.  Subsequent 

analysis based on surface or filamentous rendering can then be carried out in an automated manner, 

substantially simplifying morphological analysis over large regions of tissue.       

 

 
Figure 4.6:  Astrocyte Individualization and Parameter Extraction. With the aid of nuclei sorting, astrocyte-specific nuclei are 
overlaid onto the Astrocyte channel and can be subsequently used as seed points within modeling software such as Bitplane Imaris for 

cell individualization and cell-specific morphological feature extraction. 
 

Discussion 
 

  Cell type-specific nuclei assignment based on perinuclear fluorescent values emerges as a 

powerful tool for individualizing cells within a dense network.  Furthermore, for cell types that have no 

distinct nuclear marker, this strategy serves as a blueprint for automating cell identification.  In the complex 

neuropil, resolving this problem has previously required laborious manual tracing and dye-filling.  Through 

this methodology, it is possible to instead utilize semi-automated 3D modeling and morphological analysis 

capabilities of modern modeling toolboxes to rapidly collect valuable cell-specific data.       

  Previous attempts to distinguish and individualize these cell types have been carried out in a few 

different ways.  Through assessment of cytological features, one group has attempted identification of 
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neuronal, glia and vascular endothelial cells using a decision-making tree which examines the shape of the 

nucleus, presence of cytoplasm and the distribution of nuclear heterochromatin (García-Cabezas et al., 

2016).  While an effective method, this technique required many trained raters and the underlying 

distinction characteristics were more qualitative than quantitative in nature.  This method was applied to 

fluorescent confocal data in a recent study, with the quantitative parameters of texture, intensity and 

volume used to distinguish neuronal and glial nuclei (Lin et al., 2007) through a similar train/test routine as 

proposed in this manuscript.  The use of perinuclear fluorescence proposed here may provide a more 

reliable process due to the specificity of immunofluorescently stained cell-specific markers as an 

identifying feature over parameters such as nuclear intensity or texture.    

 Prior to deciding on the parameters for separation, various nuclei morphological properties were 

assessed for their separation ability.  Specifically, nuclei volume, sphericity and surface area were 

evaluated with the annotated data to determine if they were sufficient for clustering the relevant classes of 

nuclei.  None of these parameters demonstrated a clear ability to segregate cell-types of interest, and hence 

remained unused.  Furthermore, it was realized that optimal classification accuracy required assessment of 

all three relevant staining channels.  Assessment of the vascular channel was critical to separate the very 

similar presentation of astrocytic cells and astrocytic cuffing around vascular components.  Additionally, 

inclusion of the neuronal staining channel helped define the clear cut-off of perinuclear astrocytic staining 

intensity that reflected an astrocytic vs non-astrocytic cell type.     

 Once nucleus classification is complete, this protocol provides the critical functionality of aiding 

morphological characterization.  Astrocyte morphology is difficult to study due to their inherent connection 

to nearly all other surrounding structures in the brain in their supporting role (Mohammed et al., 2018).  

When attempting to volumetrically render the astrocyte channel, all astrocytes become conjoined into one 

massive object due to their interconnected structure, and only with a clear definition of each cell’s 

individual soma can cell separation techniques accurately identify appropriate separation points between 

adjacent cells.  The conjoining of adjacent astrocytes is partially due to resolution limitations during 

imaging and partially due to intrinsic connectivity between adjacent astrocytes.  Cell individualization and 

identification of the soma in an automated fashion allows filament tracing methodologies to accurately 
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reconstruct architecture of astrocytic arbors without the need for laborious manual intervention or 

individual cell dye filling.       

 When carrying out this protocol, it is critical to ensure that all fluorescent channels are optimally 

aligned.  This is more reliable when the multichannel fluorescent acquisition is collected in a single cycle – 

which means that for each X,Y,Z position all fluorescent channels are collected at the same time before 

moving to a new position.  When attempting to implement this strategy using a collection of previously-

acquired cortical columns, these issues became apparent since of the two microscopes utilized, the first 

(Olympus FV1000)  could only collect up to three channels per cortical column scan (and thus went 

through two full scan cycles) while the second (Nikon C2+) could be programmed to run the entire cortical 

column scan in one cycle.  As a result of this, only the data from the second microscope could be easily 

utilized since data from the first microscope had spatially-varying offset between the scans due to 

independent stitching processes.  Error of even a few pixels throughout the dataset is sufficient to prevent 

optimal application of this algorithm.   

 Despite the clear advantages of this methodology, a few important limitations exist which must be 

carefully understood.  First, this protocol requires multichannel fluorescent data in order to more reliably 

distinguish the cell type of interest from others in the region.  In the case of astrocytes, this became 

especially important since the discrimination algorithm could easily mistake nuclei within vascular 

components due to the astrocytic cuffing that exists in close proximity.  Depending on the cell type that 

researchers need to identify, it is important to consider the cell types most proximal to determine the 

appropriate targets for other fluorescent channels.  Another important limitation to consider was realized in 

attempts to discriminate neuronal nuclei in addition to astrocytic nuclei.  Neuronal dendrites are densely 

interwoven throughout the cortex, with fine processes from many neurons closely weaving a path around 

nearly all nuclei present in the dataset.  As a result of this, nuclei identification becomes fundamentally less 

sensitive due to a higher ‘background’ neuronal-channel signal that surrounds nuclei of any type.  

Furthermore, subsequent neuron individualization – even with correctly identified neuronal nuclei – suffers 

from the same challenges.  While the distinct domains of adjacent astrocytes are ideal for subsequent 

individualization of astrocytes, the interwoven nature of numerous neurons with frequently sub-micron 

spacing between fine filaments makes individualization of neurons without manual tracing or dye-filling 
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nearly impossible.  Hence, this methodology is clearly ideal for cells with typically distinct 3-dimensional 

domains within interconnected networks. 
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Chapter 5. Conclusion 

 
  This PhD dissertation demonstrates numerous methodological advancements which aim to 

substantially improve the workflow of cortical immunofluorescent staining, imaging and subsequent 

quantitative analysis.  Each stage of this work brings with it both unique enhancements as well as 

limitations, but as a result of the developed techniques preliminary analyses of tissue architecture and 

cellular morphology are completed.  

 The developed immunofluorescent staining and imaging techniques provide improved strategies 

for high-resolution fluorescence imaging over large 3-dimensional regions.  Software-aided alignment of 

the cortical slice and stereotaxic atlas enhances confidence of localization of the region of interest at high 

magnification.  Tissue compression during antigen retrieval improves epitope availability at various depths 

without damaging tissue.  Finally, a comprehensive factorial design demonstrates that the extended 

immunofluorescent staining protocol provides quantitatively superior image quality to more typical staining 

methods.  Despite these advances, the most fundamental limitation of the described staining and imaging 

technique is that the thorough optimization is highly specific for the four fluorescent labels chosen.  

Researchers with similar goals but different fluorescent labels may not require the unique aspects of the 

presented methodology, but the techniques used can still prove useful in a protocol optimization workflow.  

An additional limitation was the cross-reactivity of the neuronal and vascular antibody pairings, which 

required sequential instead of simultaneous staining – substantially extending the duration of the staining 

procedure.  VWF as a vascular label is also not ubiquitously expressed in the vascular endothelium, 

reducing its value in continuous vascular tracing throughout the data cube.   

 The subsequent task of deconvolving the raw microscopy data leverages a novel, low-cost 

methodology for assessing the spectral and depth-dependent PSF (point-spread function) of the imaging 

system through the development of a set of fixed-depth optical phantoms.  Following the measurement of 

the PSF, iterative blind deconvolution reduces the presence of spherical aberration which would 

substantially harm downstream analyses.  The developed technique allows researchers to adopt a workflow 

that can ensure their data is improved in a depth-specific and wavelength-specific manner.  Despite these 

key advantages, several challenges still exist for this methodology.  First, measurements of sufficient PSFs 
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in each spectral channel and numerous depths are laborious.  Second, the relevance of this methodology 

grows with the brain slice thickness used, and hence researchers using slice thicknesses below 10 um may 

not find the technique critical.  Third, since only PSFs at discrete depths are measured, outcomes are 

dependent on the spacing between the discrete depths and the nonlinear change in spherical aberration 

between them.  Finally, since the ground truth remains unknown, the quantitative ‘improvement’ cannot be 

reliably measured in experimental data.   

    Fractional Volume Analysis (FVA) provides a simple method for calculating the density of 

cellular components in the cortical column in both a depth-dependent and depth-independent manner.  

Furthermore, the subsequent statistical analyses comparing hemispheres, brains and functional regions 

provide valuable insight as to the intrinsic variability within and between functional regions of healthy 

tissue.  The analysis carried out is novel and provided evidence that the fractional volume occupied by each 

cellular component in the motor and somatosensory regions largely does not change significantly along the 

cortical depth axis of the column, with a few relevant exceptions.  As many emerging MRI technologies 

leverage the fractional volume of major cellular components to distinguish disease states, characterizing 

region and cortical column depth specific FVA in the normal brain may play a critical role in later disease 

diagnosis.  Limitations of this strategy are predominately due to the nature of FVA, which does not provide 

any cell-specific information but instead examines aggregate filament density proportional to the volume of 

the region being assessed.  Furthermore, as a volumetric measure, FVA is very susceptible to potential error 

due to incomplete immunofluorescent staining or imaging aberrations such as spherical aberration which 

can elongate processes axially.  While in this work these errors would not affect comparisons made since 

all datasets were processed equally, other researchers will need to carefully understand these considerations 

before implementing FVA into their analysis.                

 Automated nuclei classification solves an important problem in modern neuroscience – how to 

maximize the number of cell-specific fluorescent markers used without needing a unique nuclear stain for 

each type of cell.  Furthermore, this novel methodology provides a method for cell-specific nuclei 

assignment for cells that do not yet have a cell-specific nuclear marker available.  A critical downstream 

application of this tool is the subsequent individualization of highly interconnected cells in the neuropil – a 

process that for cells such as astrocytes can only be currently done through tedious manual tracing or dye-
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filling.  Using this improved method, astrocytes can be morphologically analyzed in an automated fashion.  

Hence, this methodology provides the first published method for automated astrocyte individualization and 

morphological analysis using traditional confocal fluorescence imaging techniques.  Despite the importance 

of this method, it is important to recognize that the sensitivity and specificity of the nuclei assignment 

methodology for astrocytes is extremely high (97.7%/99.0%, respectively) but not 100%.  Due to this, a 

degree of manual user review is useful to ensure that all modeled objects are astrocytes.  Furthermore, 

subsequent astrocyte individualization in a highly interconnected network uses individual nuclei as seed 

points, and thus proper splitting of adjacent cells requires sufficient staining and post-deconvolution quality 

to ensure accurate separation.  Finally, this methodology works best with a multichannel fluorescent dataset 

and cell types that occupy unique, interconnected domains in order to separate, reducing the number of cell 

types that are appropriate with this strategy.  

 Future work utilizing the diverse tools and technologies developed in this dissertation should focus 

on the analysis of a disease state, such as focal epilepsy.  Focal epilepsy will allow hemispheric comparison 

to better extract disease-state differences in cortical architecture as the disease state will be within only one 

hemisphere.  Additional value can be extracted through comparisons of extracted metrics with those from 

the normal brain established in this dissertation.  Furthermore, it may be valuable to test alternative 

vascular markers to improve the homogeneity of vascular staining as well as neuronal markers to reduce 

the need for extended immunofluorescent staining durations.  Automated nuclei assignment can also be 

tested with other relevant cells in the cortical column, such as microglia.  Finally, a more comprehensive 

analysis of astrocyte morphology can be carried out using extracted quantitative metrics, which can be used 

to cluster astrocytes into morphological sub-types for further evaluation.  This dissertation develops a wide 

variety of novel tools and technologies to augment the existing neuroscience workflow, and thus it can be 

used to enhance a vast array of different research projects across multiple disciplines.      
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