
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-29-2020

Demystifying Search Rank Fraud Demystifying Search Rank Fraud

Nestor G. Hernandez
Florida International University, nhern121@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hernandez, Nestor G., "Demystifying Search Rank Fraud" (2020). FIU Electronic Theses and Dissertations.
4462.
https://digitalcommons.fiu.edu/etd/4462

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4462?utm_source=digitalcommons.fiu.edu%2Fetd%2F4462&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DEMYSTIFYING SEARCH RANK FRAUD

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Nestor Hernandez

2020

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Nestor Hernandez, and entitled Demystifying Search
Rank Fraud, having been approved in respect to style and intellectual content, is
referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Mark Finlayson

Naphtali Rishe

Wensong Wu

Leonardo Bobadilla

Bogdan Carbunar, Major Professor

Date of Defense: June 29, 2020

The dissertation of Nestor Hernandez is approved.

Dean John L. Volakis

College of Engineering and Computing

Andres G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2020

ii

© Copyright 2020 by Nestor Hernandez

All rights reserved.

iii

DEDICATION

To my dad Hilario Hernandez and my mom Maria Hernandez.

iv

ACKNOWLEDGMENTS

I want to start by thanking my advisor Dr. Bogdan Carbunar for all his invaluable

support, encouragement, and patience throughout my PhD studies. He introduced

me to Cyber Security and Privacy and gave me the freedom to explore different

problems within the field. He provided key insights and direction on the research

side, and taught me how to do academic research. It has been a great positive

learning experience to witness how he conducts research.

I would also like to thank my PhD fellow and co-author Ruben Recabarren who

has been an excellent collaborator and friend. I have been lucky to learn from him,

not only about Cyber Security but about all aspects of computer science and life.

He is one of the smartest individuals with whom I have worked.

I am grateful to my collaborators outside of FIU including Dr. Duen Horng Chau

(Georgia Tech), and Dr. Ishtiaque Ahmed (University of Toronto). They provided

me with the opportunity to collaborate in academia and learn from their approaches

to solve and understand problems.

Some Faculty and Staff at FIU’s School of Computing and Information Sciences

have been very helpful and nice to work with during my studies. In particular, I

want to thank Professors Mark Finlayson, Naphtali Rishe, and Leonardo Bobadilla

for being part of my dissertation committee and for their great lectures and courses.

Dr. Wensong Wu from the Statistics and Mathematics department has also been

very helpful and has provided another perspective on my dissertation. I thank

them for their insightful feedback on my dissertation. Additionally, I want to thank

Catherine Hernandez, John Flynn, and Rebeca Arocha for their professionalism as

part of the SCIS staff.

v

I want to also thank my labmates and classmates Mizanur Rahman, Mozhgan

Azimpurkivi, Sajedul Talukder, Gregory Reis, and Deya Banishaker for making the

PhD journey more enjoyable and for their insights and views on research ideas.

Finally, thanks to my dad Hilario Hernandez and my mom Maria Hernandez for

all their support. They continue to teach me about life and support me in uncount-

able ways. I thank my friends Hector Aguilera, Jose Vollmann, Pablo Karg, Miguel

Mossa, Alejandro Castillo, Farah Alarcon, Carlos Contreras, and Jose Mendoza for

incredible friendship.

vi

ABSTRACT OF THE DISSERTATION

DEMYSTIFYING SEARCH RANK FRAUD

by

Nestor Hernandez

Florida International University, 2020

Miami, Florida

Professor Bogdan Carbunar, Major Professor

Search rank fraud, i.e., the posting of large numbers of fake activities for products

hosted in commercial peer-opinion services such as those provided by Google, Ap-

ple, Amazon, seeks to give the illusion of grassroots engagement, and boost financial

gains, promote malware and even assist censorship efforts. Search rank fraud con-

tinues to be a significant problem, after years of investment from service providers

and the academic community.

In this thesis we envision that knowledge of the authentic capabilities, behaviors

and strategies employed by empirically validated workers, will enable us to develop

solutions that efficiently manage and contain search rank fraud, by detecting, classi-

fying and neutralizing its effects. We posit that to be effective, fraud detection and

classification efforts need to involve the organizations and individuals who contribute

to search rank fraud.

In this thesis we therefore engaged with professional workers to (1) collect ground

truth knowledge and evaluate defenses, (2) develop fraud detection and classifica-

tion solutions that adapt to rater strategy changes, and (3) attribute fraud to the

organizations that posted it. More specifically, we first performed qualitative and

quantitative investigations with professional workers, concerning activities they per-

formed on Google Play. We reveal findings concerning various aspects of worker

capabilities and behaviors, including novel insights into their working patterns. We

vii

confirm the existence of power workers who control many devices and user accounts,

and also the emergence of organic workers, i.e., almost-regular users who occasion-

ally promote products from the devices and accounts that they also use for personal

purposes.

In a second contribution we develop RacketStore, a framework to capture de-

tailed insights about how Google Play Store users use their devices and the apps

installed therein. We use RacketStore to develop and evaluate the first solutions that

disentangle organic from federated fraud, and from honest behaviors. Specifically,

we use data collected from installations of RacketStore on 803 devices to show that

features that model the user interaction with a device can be used to distinguish

devices controlled by organic workers from those of power workers and regular users

of the Google Play service.

In a third contribution we introduce a fraud de-anonymization approach to dis-

incentivize fraud perpetrated by power workers: attribute user accounts used to

promote apps to the human workers in crowdsourcing sites, who control them. We

model fraud de-anonymization as a maximum likelihood estimation problem and de-

velop a graph based deep learning approach to predict ownership of account pairs by

the same fraudster. We introduce the first cheating-resistant fraud de-anonymization

validation protocol, that transforms human fraud workers into ground truth, per-

formance evaluation oracles.

The success of the approach proposed in this thesis suggests that the next gen-

eration of fraud detection and prevention solutions will benefit from the integration

of validated professional workers into the problem modeling, solution design and

evaluation processes.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. THESIS VISION . 1
1.1 Introduction . 1
1.2 The Vision . 3
1.3 Challenges . 4
1.4 Contributions . 5
1.4.1 A Study of Worker Capabilities and Behaviors 5
1.4.2 RacketStore: Demystifying Device Use 6
1.4.3 De-Anonymization of Power Fraud . 6
1.5 Thesis Outline . 9

2. CONCEPTS AND BACKGROUND . 11
2.1 System and Adversary Model . 11
2.2 Basic Terminology . 15

3. RELATED WORK . 17
3.1 Author identification and cross-site identity linking 17
3.2 Sybil Community Detection . 19
3.3 Fraud and Opinion Spamming Detection 20
3.4 Fraud Data Collection and Underground Markets 24

4. THE ART AND CRAFT OF FRAUDULENT APP PROMOTION IN GOOGLE
PLAY . 29

4.1 Introduction . 29
4.2 Methods . 32
4.2.1 Qualitative Study . 32
4.2.2 Quantitative Investigation . 34
4.2.3 Ethical Considerations . 35
4.3 Findings . 36
4.3.1 Team, Location, and Organization . 36
4.3.2 Fraud Capabilities and Expertise . 39
4.3.3 Hardware: Devices . 41
4.3.4 Software . 48
4.3.5 Techniques: The Art of Evasion . 49
4.3.6 Review Burst vs. Campaign Length 54
4.3.7 Accounts Per Device Strategies . 58
4.3.8 Lockstep Behaviors . 59
4.3.9 Timing: Fraud Event Points . 62
4.3.10 Review Writing . 63
4.3.11 Ratings . 67
4.3.12 Proof of Work . 69

ix

4.3.13 Account Creation . 70
4.3.14 Credential Reuse . 72
4.3.15 External collaborations . 73
4.3.16 Account Abandonment . 73
4.3.17 Validation and Efficacy of ASO . 74
4.4 Discussion and Recommendations . 78
4.5 Limitations . 81
4.6 Discussion of Reasons to Participate . 83

5. DEMYSTIFYING DEVICE USE IN APP SEARCH OPTIMIZATION . 88
5.1 Introduction . 88
5.2 Data Collection Infrastructure . 92
5.2.1 RacketStore App . 92
5.2.2 Web Application . 96
5.3 Methods . 97
5.3.1 Deployment of RacketStore . 97
5.3.2 Interviews . 100
5.3.3 Ethical Considerations . 102
5.4 App and Device Usage Features . 103
5.5 Data . 105
5.6 Findings . 109
5.6.1 Registered Accounts . 109
5.6.2 Installed Apps . 111
5.6.3 Malware . 115
5.6.4 Stopped Apps . 118
5.6.5 App Churn: Install and Uninstall Events 119
5.6.6 Number of Apps Used Per Day . 121
5.6.7 Classifier of App Usage . 121
5.6.8 Evaluation of Device Usage . 126
5.7 Discussion and Limitations . 129

6. FRAUD DE-ANONYMIZATION FOR FUN AND PROFIT 131
6.1 Introduction . 131
6.2 Problem Definition . 133
6.3 Unconstrained Optimization Based De-Anonymization 135
6.3.1 Definitions and Approach . 135
6.3.2 UODA . 136
6.4 Proof of Lemma 6.3.2 . 140
6.5 Co-Ownership Predictor . 143
6.5.1 DeepCluster . 143
6.5.2 Features . 144
6.6 DDA: Discriminative De-Anonymization 146
6.7 PFD: Pseudonymous Fraudster Discovery 146

x

6.8 Putting It All Together . 147
6.9 Fraud De-Anonymization Oracles . 148
6.10 User Study . 151
6.10.1 UODA Parameters . 152
6.10.2 Results . 153
6.11 Empirical Evaluation . 153
6.11.1 Attributed Account Data . 153
6.11.2 DeepCluster Parameter Tuning . 154
6.11.3 Fraud De-Anonymization . 156
6.11.4 Co-Ownership Predictor . 158
6.11.5 Pseudonymous Fraudster Discovery . 162
6.11.6 DeepWalk Based Fraud Attribution Evaluation 164
6.12 Discussion and Limitations . 167

7. CONCLUSIONS . 170

APPENDIX . 172

BIBLIOGRAPHY . 185

VITA . 204

xi

LIST OF TABLES

TABLE PAGE

4.1 Number of team members, and of accounts and devices claimed by the
18 interview participants. 40

4.2 Tabulated summary of Figure 4.5: reviews by device release price and
device model. 46

4.3 Top 11 repeated reviews sorted by the geometric mean between the
number of distinct workers that wrote it and the frequency of the
review. 65

5.1 Precision, recall, and F-1 measure of app usage classifier (CV k = 10)
using Extreme Gradient Boosting (XGB), Random Forrest (RF),
Logistic Regression (LR), K-Nearest Neighbors (KNN), and Learning
Vector Quantization (LVQ). XGB performed the best. 125

5.2 Distribution of devices across clusters found using k-means with k=4.
Cluster 4 corresponds to devices controlled by power workers (yellow
cell), cluster 3 is dominated by organic worker devices, and cluster 2
is dominated by regular devices and inexperienced or novice workers. 127

6.1 Performance of UODA and DDA on ground truth data set. DDA per-
forms better. However, with only 2 features, UODA reaches an F1
of 83%. 156

6.2 Performance of our co-ownership predictor cowPred vs. ELSIEDET [ZXL+18]
on ground truth data. cowPred significantly outperforms ELSIEDET.159

6.3 DeepWalk performance with several supervised learning algorithms (d =
300, t = 100, γ = 80, and w = 5). SVM has consistently outper-
formed the other algorithms in all our subsequent experiments. . . . 165

6.4 DeepWalk performance for several t values. Best performance at t = 117.166

6.5 DeepWalk performance for several d values; Best achieved at d = 434. . 166

6.6 DeepWalk performance for several w values; Best achieved at w = 5. . . 167

xii

LIST OF FIGURES

FIGURE PAGE

1.1 (a) Per-group distribution of number of members for 16 fraudulent Face-
book groups we infiltrated. Red bars represent groups that exclu-
sively promote Google Play fraud while the rest advocate for fake
reviews in an array of services including Yelp, Amazon, and Google
Maps. (b) Number of daily posts that advertise fraudulent cam-
paigns for a group that focus exclusively on Google Play fraud. . . . 2

1.2 DETEGO de-anonymizes fraud. Fraud detection only identifies suspi-
cious user accounts on the right. Fraud de-anonymization also finds
the crowdsourcing account (left side) that controls them. Arrows
signify control. 7

2.1 Anonymized snapshots of profiles of prolific ASO workers from Upwork
and Freelancer.com. Workers control thousands of user accounts and
earn thousands of dollars through hundreds of work hours. 13

2.2 Anonymized screenshots of search rank fraud from Facebook. (Top)
Page of Facebook group dedicated to search rank fraud. (Middle)
Recruitment post from developer. (Bottom) Posts of fraud workers. 13

2.3 Number of group members for 16 fraud-centered Facebook groups we in-
filtrated. Red bars represent groups that exclusively promote Google
Play apps. The blue bars are for groups that target an array of ser-
vices, e.g., Yelp, Amazon, Google Maps, TrustPilot, and Justdial. . . 15

4.1 Map of discovered fraud workflow in Google Play. Orange ovals denote
tangible participants and assets, blue rectangles denote several inves-
tigated capabilities, behaviors or strategies. Small red ovals represent
fraud vulnerability points that we identified and discuss in § 4.4. . . 30

4.2 Venn diagram of participant categories, reveals diversity and complexity
of fraud organizations. Participants are part of teams that are either
(1) physically co-located or online, (2) hierarchical or flat, and (3)
sockpuppet account based or organic. 36

4.3 Photo taken and volunteered by participant P10, with the premises and
(anonymized) employees of his business. Photo reproduced with per-
mission from the participant. 38

4.4 Number of accounts revealed by F1,..,F39 and number of apps reviewed
from them. F18 revealed 83 accounts. 14 workers have reviewed at
least 150 apps from the revealed accounts. F35 has reviewed 927 apps! 41

4.5 Scatter plot of device release price (EUR) vs. model age (Days) at
posting time, for each of 9,942 reviews posted from 344 unique de-
vice types. Most devices are old and low-end (45.98%) or mid-end
(31.41%), or fresh and low-end (15.31%). High-end and even free
devices have been used! . 43

xiii

4.6 Per-worker distribution (violins) of the “age” of devices used to post
reviews, i.e., the time difference in days between the review date
and the release date of its posting device. Workers not shown had
insufficient known device models. F3, F7, F11, and F31 use old
devices. Most others (F1, F2, F13, F20, etc), use both newly released
and old devices. 44

4.7 (a) Number of distinct devices per ASO worker (F1 .. F39) includ-
ing unknown category. F9, F10, F14, F16, F17, and F27 have only
unknown devices; F35 used at least 84 distinct device models. (b)
Device model popularity for top 15 devices used by ASO workers
to post reviews. The 39 participants have used 344 distinct device
models. (c) Device model popularity for top 15 devices in the wild.
11,934 unique device models were used to post over 198 million re-
views in Google Play. 45

4.8 Device timeline for two accounts controlled by F13. (a) account has
used 6 distinct device models to post 183 reviews in 5 years. It
occasionally uses two devices at the same time, and changes devices
every few years. (b) account has used at least 4 distinct device types
in 4 years to write 163 reviews including 45 reviews from unknown
devices. 47

4.9 (a) Per-worker distribution of the number of reviews per day for each
targeted app. (b) Per-worker distribution of time difference in hours
between consecutive reviews posted within one day for targeted apps.
F7, F9, F10, F16, F27, F28, F31, tend to post more reviews per day,
in bursts. F1, F3, F19, F20, F23, F29, F35, F37-39 post few daily
reviews, but in bursts. Others like F6, F11, F13, F23-F26, F32, F33
post few daily reviews, but space them through the day (post one
every 8-9 hours). 56

4.10 Per-worker distribution of active intervals (in days) over apps targeted.
Each point represents the active interval of an ASO worker for an
app. We observe workers who have posted reviews for certain apps,
for more than 1 year, and up to more than 4 years. 57

4.11 Lockstep matrices for F7 (left) and F32 (right). Rank (color) indicates
the order in which an account was used to review an app. F7 exhibits
strong lockstep behaviors, having used almost all his revealed 15
accounts to review all the 40 apps (exceptions shown within black
rectangles). F32 however exhibits less obvious reviewing patterns. . . 60

xiv

4.12 (a) Relative likelihood for the time difference between launch time and
reviews by ASO workers, for 585 apps that received at least 10 fraud-
ulent reviews. Vertical dashed line is the median. (b) Per-worker
distribution of the maximum inactive interval measured in days for
each targeted app. 8 participants, e.g., F7 and F9 are intensely ac-
tive, however, F3, F24, F32 and F33 exhibit more evidence of later
rehiring. (c) Density function of number of jobs received by ASO
workers from the same developer. One worker worked on 38 apps
of the same developer. The vertical dashed line corresponds to the
median value. 61

4.13 Empirical CDF for two extreme behaviors shown by two participants.
All other workers have their corresponding CDF between these two
curves and are not displayed for better visualization. We note that
P(Length ≤ 25|F3) = 0.99 � P(Length ≤ 25|F26) = 0.46, and the
all-worker ECDF is closer to worker 7 who writes shorter reviews. . . 64

4.14 Rating distribution: workers get mostly jobs that consist in promoting
apps. 92% of reviews were either 4 or 5 stars, while 4.7% were 1 or
2 star reviews. 67

4.15 Co-review graphs built over the accounts claimed to be controlled by
(left) F13 and (right) F32. Edge width is proportional to the number
of apps reviewed in common by the endpoint accounts. 14 accounts
revealed by F13 form a clique, and on average, any two accounts
reviewed 78 apps in common. 74

4.16 Density and average weight for co-review graphs of 39 ASO workers. 12
workers have complete graphs (density=1). 30 workers have graphs
with density at least 0.75. 75

4.17 Active vs. inactive accounts controlled by the 39 quantitative study
participants. We observe diverse success in keeping accounts active
on the long term. 76

4.18 Impact of campaigns conducted by the 39 quantitative study partici-
pants, on the average rating of apps for which they campaigned. We
observe diverse success in increasing the average rating of targeted
apps. 77

5.1 App-interaction timelines for two ASO workers (top) and one regular
user (bottom). Worker timelines start with the app installation event
(type 4 on y axis), followed by several review posting events across
several days (type 3), with no interaction with the app. In contrast,
the regular user timeline shows frequent interaction with the app in
the form of placing the app in the foreground (type 2 event), but no
review even after 5 days of monitoring. 89

5.2 RacketStore architecture consists of a mobile app installed by partici-
pants and a back-end server that collects and aggregates snapshots
reported by deployed apps. 92

xv

5.3 RacketStore mobile app’s screenshots. (a) Registration screen to enter
invitation code sent to participants. (b) Main layout of the app,
showing different app categories. 93

5.4 Ad shown to audience on Instagram Feed, Explore, and Stories. Upon
clicking, users are sent to a website where the study is explained. . . 99

5.5 Screenshots of the user study web page. (a) User study landing page. (b)
Registration page shown only after user has consented to participate.
We ask users to enter their email addresses, and we then contact them
with next steps. 100

5.6 Comparison of number of e-mail accounts registered on devices con-
trolled by worker, exchange worker, and regular participants. Worker
devices tend to have more Gmail accounts, but fewer account types
and non-Gmail accounts than regular devices. 109

5.7 Number of installed apps, installed and reviewed, and total number of
reviewed apps across all device types. 111

5.8 Distribution of time between app install and app review, for regular,
exchange and worker devices. Each point is one review. Unlike
regular users, worker-controlled accounts post many more reviews
and tend to do it soon after installation. 112

5.9 Comparison of exclusive app permissions for regular, worker and ex-
changer participants. Worker devices host apps with the largest ratio
of dangerous versus total number of permissions. 114

5.10 Comparison of malware occurrence in regular versus worker devices.
Each point corresponds to a unique app apk hash, that raised at
least 7 flags in VirusTotal. Worker devices host more unique malware
which tends to be present on more devices than for regular users.
Google has removed most malicious apps from the store, however
they are still installed in worker and regular devices. 116

5.11 Number of stopped apps for regular and worker devices. Worker devices
tend to have more stopped apps, but we also observe substantial
overlap with regular devices. 118

5.12 App churn: Scatterplot of average number of daily installs vs. average
number of daily uninstalls for regular, worker and exchange worker
controlled devices. Each dot is one device. Most regular devices
install and uninstall less than 10 apps per day, while many worker
devices install or uninstall more than 10 apps per day. 119

5.13 Scatterplot of the average number of apps used per day per device and
the number of apps installed in a device, for all regular and worker
devices. We observe substantial overlap between regular and worker
devices. 120

xvi

5.14 Scatterplot of active interval vs active days for 524 devices (green for
regular devices, red for worker devices and blue for exchange worker
devices). 357 devices (237 workers, 108 regular users and 12 exchange
workers) kept RacketStore installed for more than 1 day, while 9
devices (2 workers and 7 regular users) active for 1-2 months. 122

5.15 Scatterplot of average number of snapshots captured per day vs active
days over regular (green), exchange worker (blue) and worker (red)
devices. Dot size indicates the number of overlapping devices. Most
devices report at least 100 snapshots per day. 123

5.16 Top 10 most important features, measured by mean decrease in Gini.
The number of accounts that have reviewed the app from the de-
vice and the average time between install and review are the most
important features. 125

5.17 (a) Scatterplot of 266 devices on app suspiciousness vs. number of Gmail
accounts registered on the device. Device types are shown with dif-
ferent shapes and colors. x and y axes shown in log scale. We observe
distinctive clusters of worker and regular devices. (b) Scatterplot for
all devices on their first two principal components computed from
original features, annotated with cluster information from Table 5.2. 126

5.18 Scatterplot for 266 devices that reported at least two days of snapshots:
the average number of reviews per registered account vs. number of
Gmail accounts. 127

6.1 Anonymized screenshots of 3 questionnaire pages, for accounts (left)
revealed in step 1 to be controlled by the participant, (center) syn-
thetic account not controlled by participant, and (right) detected by
UODA to be controlled by the participant. 150

6.2 Results of UODA on data validated by 16 human fraud worker partici-
pants. UODA achieves an overall precision of 91%. 151

6.3 (Top) Distribution of seed and DDA attributed accounts across the 23
fraudulent workers. DDA attributed 3,547 accounts to these fraud-
sters, 3.7 times more than the size of the seed set. (Bottom) Per
worker percentage of newly attributed accounts suspected of self-
plagiarism. Almost all (≥ 90%) of the newly attributed accounts for
13 out of 23 fraud workers have self-plagiarized reviews. 157

6.4 Relative importance (shown as sign(y)∗ log(1+abs(y))) for statistically
significant features in the co-ownership predictor using logistic re-
gression. Co-review and co-cluster have the highest positive impact,
while the mean date difference on Lij and the unique lockstep uij
have the largest negative weight. 161

xvii

6.5 Co-ownership (co-w) graph over 5,548 user accounts who reviewed 640
apps involved in fraud. Two accounts are connected if they were
predicted to be controlled by the same fraudster. Partition algorithm
identified 129 user account components, each potentially controlled
by a different fraudster. The largest cluster has 962 nodes and 54
components have more than 10 nodes. 162

6.6 Scatterplot for 71 fraudster communities (shown as dots) discovered by
PFD: the percentage of users who wrote reviews that are at least 50%
Jaccard similar to other reviews (x axis) vs. the number of review
pairs (in log scale) in each component (y axis). 15 communities have
at least 80% of their user accounts suspected of plagiarism. 163

7.1 Recruitment message sent to each identified ASO worker. 172

7.2 Introduction script read by interviewer to ASO workers who responded
to the recruitment message, and qualified for the study, before start-
ing the study. 173

xviii

CHAPTER 1

THESIS VISION

1.1 Introduction

The ubiquitous adoption of social networks and peer-opinion sites (e.g., Google

services, app markets, Facebook, Twitter) is changing how we find partners, buy

products online, access information from the news, and organize to demand polit-

ical change. However, such sites are also susceptible to abuse in the form of pri-

vate information collection and misuse, cyberbullying, political manipulation, fake

news and opinion spamming. Such service providers rely on user feedback to rank

products and content they host over the Internet, e.g., trending topics on Twitter,

popular apps on Google Play, trending YouTube videos, etc. Unfortunately, many

review-based platforms (e.g., Google Play [Rei17a], TripAdvisor [Ros17], Amazon

[Woo17], Twitter [CDHH18]) are the targets of undisclosed and deceptive marketing

practices whereby product developers engage in artificial promotion and demotion

of products. We call this attack search rank fraud.

On the other hand, black hat crowdsourcing or crowdturfing offers a viable op-

portunity for developers to hire specialized workers who spam for profit [Wam17,

YVC+17, LWG14, WWZZ14, TZX+15]. Thus, crowdsourcing websites (e.g., Fiverr,

Freelancer, Upwork) [Fiv, Upw, Fre] play an important role in the fake endorse-

ment ecosystem since they facilitate the communication between product owners

who try to engineer their products’ rankings and workers who control hundreds of

accounts to artificially alter the online sentiment of such products. Similarly, Face-

book groups have become a source of fraud workers where they advertise services

for several online platforms including Google Play, Google Maps, Yelp, Amazon,

etc. Case in point, Figure 1.1(a) shows the per-group distribution of number of

1

(a) (b)

Figure 1.1: (a) Per-group distribution of number of members for 16 fraudulent
Facebook groups we infiltrated. Red bars represent groups that exclusively promote
Google Play fraud while the rest advocate for fake reviews in an array of services
including Yelp, Amazon, and Google Maps. (b) Number of daily posts that advertise
fraudulent campaigns for a group that focus exclusively on Google Play fraud.

members for 16 fraudulent Facebook groups that we identified and infiltrated. Fig-

ure 1.1(b) displays the number of daily posts for a group that focus only on Google

Play promotion. This suggests that fraud detection is not being enough to prevent

the fake endorsement problem in online services.

This type of propaganda has a detrimental effect on the trustworthiness and

quality of online services, and users can suffer from such bait-and-switch schemes.

For this reason, most major online, peer-opinion services seek to detect and remove

fake reviews that result from hidden endorsements [NA16, SCM11, MVLG13], which

are unlawful in accordance with FTC regulations 1.

Search rank fraud continues to be a significant problem [Par18, Mah19, Fer20],

after years of investment from service providers [Cip16, Per16, Woo20] and the

academic community (see Chapter 3 for related work).

We posit that one reason for this failure stems from our misunderstanding and

underestimation of the capabilities, behaviors, and strategies of the professional

1If the endorser has been paid or given something of value to promote the product, the
connection between the marketer and endorser should be disclosed [FTC]

2

raters recruited to perform search rank fraud: existing work is built on assumptions

about professional raters, that are either extracted from small datasets of fraud,

made based on intuition, or revealed by commercial site insiders. We have recently

challenged these assumptions, in qualitative studies that we performed with profes-

sional raters that target Google services [RHR+19, HRRC18, RHCC18]. We found

raters who evolved fraud-posting strategies that circumvent and even exploit key as-

sumptions made by fraud detection work (§ 3). This makes some raters particularly

successful. For instance, 90% of 1,164 Google Play accounts that 39 professional

raters revealed to provably control, were still active one year later.

1.2 The Vision

In this thesis we envision that knowledge of the authentic capabilities, behaviors and

strategies employed by empirically validated workers, will enable us to develop solu-

tions that efficiently manage and contain search rank fraud, by detecting, classifying

and neutralizing its effects.

Our thesis is that to be effective, fraud detection and classification efforts need

to involve the organizations and individuals who contribute to search rank fraud.

Therefore, in this thesis we engage with professional workers to (1) collect ground

truth knowledge and evaluate defenses, (2) develop fraud detection and classifica-

tion solutions that adapt to rater strategy changes, and (3) attribute fraud to the

organizations that posted it.

3

1.3 Challenges

To realize the above vision we need to address several challenges:

Fraud diversity. Fraud detection and classification solutions need to flexibly target

diverse types of fraud organizations, behaviors and strategies, such as the ones that

we found in preliminary studies [RHR+19, HRRC18]. Examples include (1) federated

fraud, carried out by raters who organize in mostly static teams (see Figure 4.3 for a

photo of a team’s brick-and-mortar offices) and post fraud from hundreds of mobile

devices and tens of thousands of user accounts that they pool, and (2) organic

fraud, generated by individual operators with personal accounts and devices, who

mix fraud among genuine activities, and form ad-hoc teams.

Binary classification is not enough. The remarkable success of fraud suggests

that the current, binary classification of activities, e.g., fake vs. honest reviews,

fraudulent vs. genuine accounts, followed by the removal of detected fraud, fails

to stop prolific federated raters, who can easily create new accounts and post new

fraud. Further, the decentralized nature of organic fraud enables it to elegantly evade

status quo assumptions, e.g., that fraud produces synchronized, lockstep behaviors

or suspicious activity spikes.

Training and evaluation of developed solutions. Commercial platforms are

close-sourced, and their Terms of Service (ToS) prohibit posting fraudulent ac-

tivities. However, fraud detection and classification solutions need to be trained

using large sets of ground truth data, and, importantly, need to be evaluated in

production-like environments, under real-time fraud posting conditions.

4

1.4 Contributions

In this thesis, we (1) present empirical data from actual ASO workers through in-

terviews and quantitative analyses, understand their behaviors, capabilities, and

avoidance strategies; (2) develop a framework to collect data from, and compare

the app and device use of ASO workers and regular users; and (3) propose to dis-

courage search rank fraud instead of merely discovering it, by de-anonymizing the

organizations behind it. Note that (2) allows us to collect fraud information directly

from the perpetrators devices eliminating the possibility of false positive artifacts

and subject claims that are impossible to corroborate otherwise. In the following,

we introduce each contribution.

1.4.1 A Study of Worker Capabilities and Behaviors

We first present the design and results of a qualitative study with 18 ASO work-

ers we recruited from 5 freelancing sites, concerning activities they performed on

Google Play, along with a quantitative investigation with fraud-related data col-

lected from other 39 ASO workers. We reveal findings concerning various aspects

of ASO worker capabilities and behaviors, including novel insights into their work-

ing patterns, and supporting evidence for several existing assumptions. Further,

we found and report participant-revealed techniques to bypass Google-imposed ver-

ifications, concrete strategies to avoid detection, and even strategies that leverage

fraud detection to enhance fraud efficacy. We report a Google site vulnerability that

enabled us to infer the mobile device models used to post more than 198 million

reviews in Google Play, including 9,942 fake reviews. We discuss the deeper impli-

cations of our findings, including their potential use to develop the next generation

fraud detection and prevention systems.

5

1.4.2 RacketStore: Demystifying Device Use

In this thesis we conjecture that worker interactions with promoted apps differ from

the regular, personal use of installed apps; further, that organic workers use their

devices in a manner distinguishable from power workers dedicated to promotion

activities, and regular users. To validate these hypotheses, we develop RacketStore,

a framework to capture detailed insights about how Google Play Store users use

their devices and the apps installed therein.

We report results from a study over 943 installs of RacketStore on 803 unique

devices controlled by 580 workers and 223 regular users that we recruited online,

including the 12,341 apps installed on their devices and their 110,511,637 reviews

from Google Play. We provide novel insights into the device usage and installed-app

interaction of workers and regular users, that confirm our hypotheses. We intro-

duce features that model the use of a device and of the apps on the device. We

show that supervised algorithms distinguish between apps suspected of promotion

and personal-use apps, with an F1-measure that exceeds 99%. We show that most

of the evaluated devices are controlled by organic workers, but also report devices

controlled by power workers, and introduce a new type of exchange workers who

magnify their capabilities by exchanging fraud with peers without payment. Our

approach brings to light 217,041 reviews posted from 10,310 Gmail accounts regis-

tered on 580 ground-truth worker devices, suggesting potential benefit of integration

with existing app store defenses.

1.4.3 De-Anonymization of Power Fraud

We propose to discourage fraud instead of merely discovering it. To this end, as

illustrated in Figure 1.2, we seek to bridge the anonymity gap between existing

6

Figure 1.2: DETEGO de-anonymizes fraud. Fraud detection only identifies suspi-
cious user accounts on the right. Fraud de-anonymization also finds the crowdsourc-
ing account (left side) that controls them. Arrows signify control.

fraud detection techniques, that only uncover pseudonymous user accounts that

post fraud, and the real identities of crowdsourcing site accounts who control them.

Specifically, we leverage the observation that crowdsourcing site accounts contain

uniquely identifying payment information, e.g., bank, Paypal accounts, to take steps

toward de-anonymizing fraud, by attributing accounts uncovered by fraud detection

algorithms in online peer-opinion systems, to their human owners in crowdsourcing

sites.

We propose a general theoretical framework for the fraud de-anonymization prob-

lem via Maximum Likelihood Estimation (MLE) and assume a generative review-

posting model wherein fraudster-controlled accounts are more likely to endorse prod-

ucts in a predefined partition of the product space. We introduce UODA, an un-

constrained optimization de-anonymization approach that attributes a fraudulent

user account to the fraud worker with the highest likelihood of having generated its

review history.

7

We develop DeepCluster, a semi-supervised approach to cluster user accounts

based on deep learning features extracted from the common activities of the ac-

counts. We leverage DeepCluster to build a co-ownership predictor that determines

if two input user accounts are controlled by the same worker. We use the co-

ownership predictor to introduce (1) DDA, a discriminative de-anonymization so-

lution that trains a classifier to attribute a fraudulent user account to the worker

who controls it, and (2) PFD, a pseudonymous fraudster discovery algorithm that

clusters fraudulent accounts that cannot be attributed to known workers, such that

each cluster is likely controlled by a different, not yet discovered worker.

We introduce Detego 2, a system that combines fraud de-anonymization with

fraudster discovery to iteratively expand both knowledge of identifiable fraud work-

ers and the accounts that they control. We believe that Detego can help peer-

review sites identify the experts from among hundreds of advertised fraud workers,

who control large numbers of user accounts, and are responsible for posting sub-

stantial numbers of fake reviews. Peer-review sites can use this information to pro-

vide counter-incentives for expert fraudsters, e.g., by pursuing them through their

bank accounts (retrieved from their crowdsourcing site accounts). Peer-review sites

can also disincentivize developers from hiring such identifiable fraudsters, e.g., by

“shaming” promoted products with posts displaying information about the fraud-

sters found to promote them [Yel12].

To validate developed solutions, we introduce the first cheating-resistant, fraud

de-anonymization validation protocol, to obtain ground truth confirmation on the

performance of developed solutions. The protocol asks human fraud workers to

reveal a seed set of user accounts that they control, and subsequently confirm and

prove control of accounts that we predict that they control. We introduce multiple

2Latin for uncover, reveal.

8

verifications of participant attention and honesty, including asking confirmations for

accounts for which we already know the answer, as well as e-mail and token based

verifications.

1.5 Thesis Outline

The main topics of this this thesis are organized into 6 Chapters. Chapter 2 intro-

duces the system and adversary model, and some terminology used throughout the

rest of the chapters. Chapter 3 provides an overview of the existing literature in the

fields of author identification, cross-site identity linking, fraud and opinion spam-

ming detection, and data collection from underground markets that offer fraudulent

services. We describe previous approaches used to deal with the fake review problem

across multiple platforms and contrast them with our proposed solutions.

In Chapter 4, we present a fraud workflow map based on findings from a qual-

itative and a quantitative studies that we conducted with 18 and 39 ASO workers

respectively. We analyze empirical data from actual workers, to advance our under-

standing of their work. Specifically, we report findings on the capabilities and behav-

iors exhibited by workers including concrete strategies to avoid detection. Finally,

we disclose vulnerability points in the fraud workflow and discuss their potential use

to advance current fraud detection and prevention solutions.

Chapter 5 describes RacketStore, a framework to study the interaction of users

with their Android devices and the apps that they install, that proved compatible

with 298 device models from 28 Android manufacturers. We present empirical data

from RacketStore deployment on 803 unique devices controlled by ASO workers

and regular users, and insights from interviews with 13 participants. We develop

a supervised classifier to detect apps installed only to be promoted, and an unsu-

9

pervised classifier to differentiate between ASO-dedicated devices, organic worker

devices, and devices used solely for personal activities

Chapter 6 introduces a fraud de-anonymization approach in online peer-opinion

systems and presents two approaches to solve it. We first present an unconstrained

optimization approach (UODA) built on top of a maximum likelihood formulation

of the problem. Second, we introduce a graph based deep learning approach to

predict ownership of account pairs by the same worker. We use such predictor to

present disciminative fraud de-anonymization approach (DDA) and pseudonymous

fraudster discovery (PFD) algorithm. Further and importantly, this chapter also

introduces the first cheating-resistant protocol to conduct a live validation of fraud

detection and de-anonymization techniques. Finally, in Chapter 7, we present the

conclusions of the thesis.

10

CHAPTER 2

CONCEPTS AND BACKGROUND

In this chapter, we first describe the system and adversary model and then

define the basic terminology used throughout the thesis. We discuss how peer-

opinion systems including app markets are susceptible to abuse in the form of fake

reputation.

2.1 System and Adversary Model

We consider online peer-opinion systems, e.g., Google Play, Google Maps, Yelp,

Amazon, that host accounts for developers or product owners, users and products.

Developers use their accounts to launch and publish products while users are ex-

pected to post reviews only for products they have used or bought. The survival of

products in peer-opinion services is contingent upon their review influenced search

rank. Higher ranked products are acquired more often and thus generate higher

profits, via direct payments or ads. For example, a one star boost in rating was

shown to help restaurants increase revenue by a 5-9% margin [LZ16]. While online

systems keep their ranking algorithms secret for security reasons [SCM11], popular

belief claims that the search rank of a product is at least linear on the number of

its positive reviews and installs [Ank13].

App Search Optimization (ASO). Developers use their accounts to upload apps

and users use their accounts to search for and install apps on their Android devices.

Users can review apps after installing them. Google Play displays the account

name and profile photo of the user along with the review, but not the link to

the user’s account. Users can register multiple accounts on their Android device,

including multiple Google Mail accounts and accounts from other services, e.g.,

Facebook, Twitter. Users are then able to post reviews for an app, from all the

11

accounts registered on the device where the app was installed: The Google Play

Store application allows users to switch between accounts.

In this thesis we consider black hat app search optimization (ASO) efforts, where

developers hire specialized, online workers to perform search optimization. ASO

efforts include (1) installing the app on many devices, (2) performing retention

installs, i.e., keeping the app installed for prolonged intervals, and (3) writing reviews

with high rating values.

Fraud Origin. The pressure to succeed has created an underground economy

for search rank fraud. Specialized ASO workers (also referred to as fraud work-

ers, or fraudsters) control multiple user accounts and seek employment by prod-

uct developers to post fake reviews or activities for their products. The accounts

controlled by a fraud worker are also known as Sybils or sockpuppets [ZXL+18,

KCLS17, AQAA+17, LGWM15, YWW+14, YGKX10, DM09, YKGF08]. Fraud

workers advertise their services through crowdsourcing sites [Fiv, Upw, Fre], social

networks (e.g., Facebook groups), and specialized fraud platforms [TSM16, RL16,

AV16, AS16, AR16]. Moreover, fraudulent activities are profitable as evidenced by

their price ranges. For instance, we identified 44 fraud workers in Facebook groups,

Zeerk, Peopleperhour, Freelancer and Upwork that advertised prices ranging from

a few cents ($0.56 on average from Zeerk.com) to several dollars per review (up to

$10 in Freelancer.com) [RHCC18].

Facilitating Fraud. Crowdsourcing sites like Fiverr, Upwork and Freelancer [Fiv,

Upw, Fre] host accounts for workers and employers. These crowdsourcing accounts

have a unique identifier and require a linked bank account for depositing employer’s

escrow money or withdrawing worker’s earnings. Workers on these sites bid on

employer posted jobs while employers assign jobs to workers after successful ne-

gotiation. Thus, these crowdsourcing sites provide a comprehensive platform for

12

Figure 2.1: Anonymized snapshots of profiles of prolific ASO workers from Upwork
and Freelancer.com. Workers control thousands of user accounts and earn thousands
of dollars through hundreds of work hours.

Figure 2.2: Anonymized screenshots of search rank fraud from Facebook. (Top)
Page of Facebook group dedicated to search rank fraud. (Middle) Recruitment post
from developer. (Bottom) Posts of fraud workers.

13

performing peer-opinion system fraud. Figure 2.1 shows how fraud workers earn

thousand of dollars thru hundred of work hours in such sites.

For instance, we used Facebook’s search tools to identify groups dedicated to

the promotion of products through artificial endorsements. We concentrated on

finding groups and pages that offer their service to post fake reviews on online

marketplaces including Google Play and Amazon. We identified 11 public and 5

closed groups that matched our criteria. We became members of the public groups

and sent requests to closed groups which were all accepted. These groups had

86,718 members (Min = 354, Max = 26896, M = 2840.5, SD = 6787.96) in total.

Figure 2.1 shows the number of members for each group. While 7 groups were

focusing particularly on reviews over Google Play, the rest 9 groups also promoted

paid activities for other peer-opinion sites such as Google Maps, Yelp, Amazon,

Facebook, TripAdvisor, and TrustPilot. As a consequence, social networks like

Facebook provide high visibility to these services due to their large user base (see

Figure 2.2 for sample snapshots). Moreover, fraud workers can also create their

own service advertising pages hoping that developers discover them using keyword

search on Internet search engines [Reva, MoP, Revb].

Effective fraud. In a separate Upwork data set experiment, we collected 161

search rank fraud jobs and their 533 bidding workers. We found that jobs assigned

to a single worker occurred less frequently than jobs awarded to 2 workers. Further-

more, some developers assigned a single job to as many as 12 workers. We conjecture

that this assignment distribution occurs due to the limited ability of a single worker

to effect a significant impact over a subject’s search rank. This observation reveals

that subjects targeted by search rank fraud will usually receive fake reviews from

multiple fraud workers.

14

Figure 2.3: Number of group members for 16 fraud-centered Facebook groups we
infiltrated. Red bars represent groups that exclusively promote Google Play apps.
The blue bars are for groups that target an array of services, e.g., Yelp, Amazon,
Google Maps, TrustPilot, and Justdial.

2.2 Basic Terminology

• User. A person or entity who posts reviews about a subject on an online peer-

opinion system. Users make use of user accounts to establish their identity

online.

• Subject. A developer created object or product that receives user created

reviews on the peer-opinion system.

• Developer. A person or entity that hosts subjects on the peer-opinion sys-

tem. Developers usually have incentives to maximize their subject’s visibility

via review manipulation for which they hire workers. Thus, we also refer to

developers as employers.

• Fraud or ASO worker. A person or entity that performs review manipula-

tion about a subject on behalf of a developer. Workers often use Sybil accounts

to post fraudulent reviews on the peer-opinion system.

15

In our studies we have encountered and have recruited different types of ASO

workers, which we briefly introduce in the following:

• Regular workers, which we call workers in the following, are the actual

people who perform the ASO services, e.g., install the apps on devices that

they can access, and write reviews or post ratings for the apps.

• ASO Administrators or admins, organize and coordinate communities of

regular workers. Admins act as intermediaries between clients and regular

workers. Admins can also act as regular workers, but their main duties in-

clude price and job detail negotiation with clients, identifying regular workers,

forwarding them job details, verifying their work and paying them.

• Organic workers are a hybrid of regular users and workers, blending product

promotion with personal activities.

• Exchange workers seek to magnify their ASO capabilities, by identifying

peers to swap work: each peer helps the other with their job, e.g., by installing

and writing reviews for the app promoted by the other peer.

Fraud detection and defenses. Online systems implement a suite of fraud de-

tection and defense mechanisms [SCM11, YN18, NA16]. For Google Play, such

observable mechanisms include:

• Account validation. Request users to prove control of a mobile phone, e.g.,

by providing its calling number, then retrieving a code sent to it through SMS.

• Install-then-review. Users can review an app only if they install it first [gplb].

• Filter fake reviews. Detect and remove reviews suspected of being fake.

• Close fraudulent accounts. Identify and close user and developer accounts

suspected of behaviors that violate the site’s terms of service.

16

CHAPTER 3

RELATED WORK

In this chapter, we present related work on de-anonymization and crowdturfing

in online systems. First, we survey techniques used to de-anonymize users and to

link identities across multiple sites. Second, we present previous work on the Sybil

community detection problem in which an attacker creates multiple identities and

pretends to be distinct users in the system. We then discuss previous approaches

to deal with fraud and opinion spamming detection in online peer-opinion systems.

We emphasize the differences between previous work and our novel approach to

disincentivize fraud online. Finally, we study related work on underground markets

and ethical data collection from fraud workers.

3.1 Author identification and cross-site identity linking

The author identification problem seeks to identify the original author of a docu-

ment [NPG+12]. Narayanan et al. [NPG+12] used linguistic stylometry to perform

large scale identification of blog post authors and argue damaging implications to

anonymous bloggers and whistleblowers. Another closely related problem is that of

cross-site identity linking attacks [AGL17, BBG+16, SYBT15, ZL13, JKJ13]. Ad-

versaries were shown to be able to exploit linguistic [AT12] and location [GLP+13]

patterns to link pseudonymous identities of the same user across different sites.

Backes et al. [BBG+16] introduced relative and absolute linkability measures that

rank identities by their anonymity, and used information about matching identities

to estimate linkability risks. Andreou et al. [AGL17] further studied relationships

between anonymity and risks of linkability of Facebook and Twitter accounts.

Venkatadri et al. [VGZ+16] leveraged this attack to develop a framework to

transfer trust between sites and identify trustworthy accounts. Their key insight

17

is that although users may be new on a particular site, most honest users would

have long histories and established reputations on other sites they have been using

before. Jain et al. [JKJ13] studied different identity search methods to link Twitter

accounts to their respective Facebook accounts. These methods works mainly on the

assumption that both online services share common attributes for the profiles that

are created. Our work is different since crowdsourcing websites and peer-opinion

systems (e.g. Google Play) are very dissimilar in nature. Also, instead of finding

a one-to-one mapping, our research focuses on a many-to-one de-anonymization

strategy that seeks to attribute many fake identities to a real identity (i.e. underlying

fraud worker).

Zafarani et al. [ZL13] links accounts across different social networks by ex-

ploiting redundancy in username generation: individuals tend to select usernames

that are generally not long, not random, and are repeated. They propose MOBIUS,

a supervised learning approach that employs minimal information available on all

social media sites to derive a large number of features that can be used to connect

users across sites.

In the context of our work, de-anonymization is not an attack but a desirable

feature. Our goal is to map fraudulent accounts in one site to the underlying worker

(real identity) in another site that has substantial different functionalities. Our

solutions go beyond stylometry to extract features that model the similarity of

a wealth of activities (commonly reviewed products, times and ratings) between

Sybil accounts, and introduce and leverage a new protocol to collect ground truth

validation data.

18

3.2 Sybil Community Detection

Peer-opinion systems such as Google Play, Amazon, and Yelp are known to be par-

ticularly vulnerable to Sybil attacks. In a Sybil attack, a malicious user creates

multiple fake identities and pretends to be multiple, distinct users in the system.

The pseudonymous fraudster discovery problem that we present in this work is

equivalent to uncovering Sybil (or sockpuppet) communities. Sybil accounts dis-

connect physical from online identities, thus have a suite of malicious uses, that

include gaining control over systems [Dou02], vandalism [SHM13], or creating the

illusion of widespread support of ideas, people and products [SR07]. Early Sybil de-

tection work in online systems has focused on social networks [YGKX10, YKGF08,

TMLS09, DM09], and made the assumption that attackers can easily form social

relationships between Sybil accounts they control, but find it hard to establish links

to honest accounts. For instance, Yu et al. [YKGF08] present SybilGuard, a proto-

col that leverages the existing human-established trust relationships among users to

bound the number and size of sybil groups. Their assumption is that malicious users

can create many identities but few trust relationships. Therefore, there are weak

links between honest and sybil users. Danezis et al. [DM09] propose SybilInfer, a

Bayesian inference approach to Sybil detection that relies on a probabilistic model

of honest social networks. Their inference mechanism outputs regions of dishonest

nodes with an assigned probability that indicates its degree of certainty.

Tran et al. [TMLS09] present SumUp, a vote aggregation system that leverages

the trust network among users to defend against Sybil attacks. They use adap-

tive vote flow aggregation to limit the number of synthetic votes by adversaries to

no more than the number of atack edges in the trust network. However, Yang et

al. [YWW+14] showed that in Renren, Sybil accounts do not form dense commu-

19

nities, and are well connected with honest users. Using link creation timestamps,

they observe that most links between Sybil accounts are created accidentally. This

shows that Sybil defenses such as the ones described above are unlikely to succeed.

In peer-opinion systems that lack strong social links between user accounts, social

graphs can be replaced by co-activity graphs, such as our co-review graphs. Then,

in discussion communities, Kumar et al. [KCLS17] showed that Sybil accounts still

differ from honest accounts through social network structure, posting behavior and

linguistic traits. They leveraged the discovery that pairs of accounts controlled by

the same individual are more likely to interact on the same discussion, to build a

co-ownership predictor. They found that Sybil accounts tend to star fewer discus-

sions, write shorter posts, use more personal pronouns such as “I”, and have more

clustered ego-networks.

Zheng et al. [ZXL+18] predict Sybil links between user accounts based on the

similarity of their reviews, in terms of the products targeted, times and ratings.

They employ the Louvain method to detect communities on the generated Sybil

graphs, then classify each community as benign or Sybil using supervised learning.

3.3 Fraud and Opinion Spamming Detection

There is a large body of research on defending against online system fraud. State of

the art approaches use inference on the social graph [WGF17, RA15, ACF13, KCS18,

PCWF07] and classical machine learning based on several assumptions. These as-

sumptions include: (i) bursty activity [LFW+17, YKA16, FML+13, LCM+15], (ii)

review plagiarism [KCS18, KCA17, HTS16, MKL+13] and distinguishability of

machine vs. human generated reviews [YVC+17], (iii) extreme reviews and devia-

20

tion [RA15, XZ14, MKL+13, WXLY11], (iv) lockstep behavior [BXG+13, SMJ+15,

TZX+15], and (v) ratio of singleton accounts [YKA16, RA15, SE15].

The seminal work by Jindal and Liu [JL08] introduced the opinion spamming

problem and showed that it is different from web and email spam. Based on the anal-

ysis of 5.8 million reviews in Amazon, they found that opinion spam is widespread

and proposed a logistic regression algorithm that runs on reviewer and review cen-

tric features. Wang et al. [WXLY11] model the opinion spam problem using a

tripartite graph of reviewers, reviews, and stores; and proposed an iterative method

utilizing influences among objects in these three sets.

Akoglu et al. [ACF13] propose FraudEagle to detect both fake reviews and

reviewers in online peer-opinion sites. This approach models the system as a bi-

partite graph of products and users, and infer node labels via inference with the

Loopy Belief Propagation (LBP) algorithm. It operates in an unsupervised and

semi-supervised fashion requiring no previous labeled data, or incorporating such

information if available. To score users, they assume that (1) honest users mostly

post positive reviews to good products and negative ones to bad products, (2) honest

users could also rate negatively good products and might like bad products based

on their preferences, (3) fraudsters tend to write positive reviews to bad products

and negative reviews to good products, and (4) fraudster could also mimic honest

users to camouflage their activities. Similarly, Wang et al. [WGF17] use Loopy

Belief Propagation on the directed social graph and estimate the posterior proba-

bility for each user which is then used to predict label. Since LBP is not guaranteed

to converge, they propose GANG and derive conditions under which this algorithm

converges.

Kaghazgaran et al. [KCS18] propose TwoFace, a system to uncover crowd-

sourced review manipulators who target Amazon products. TwoFace first sample

21

actual evidence of fraud by exploiting crowdsourcing platforms. Based on this ini-

tial source of ground truth information, they then propagate suspiciousness of these

seed users to identify similar users via random walks. Finally, they map users into

a low-dimensional embedding space that captures the structure of the community

and were able to uncover distant users who serve structurally similar roles.

Li et al. [LFW+17] noticed that reviewers’ posting rates in Dianping follow

a bimodal distribution and exploit this discovery to introduce a two-mode labeled

Hidden Markov Model to model spamming using only individual reviewers’ post-

ing times. They then extend it to the Coupled Hidden Markov Model to capture

reviewer posting behaviors and co-bursting signals. Mukherjee et al. [MKL+13]

model spamcity as a latent variable. Their approach works in a Bayesian fashion

and is built on the intuition that spammers have different behavioral distributions

than non-spammers.

Xie and Zhu [XZ14] study opinion spamming on Apple’s China App Store and

present GroupTie, a graph-based approach to detect collusion of reviewers. To this

end, they build a weighted undirected graph and detect collusion by applying graph

clustering. Their key insight is that since members of a hidden collusion group have

to work together and their ratings deviate from the app’s average rating, collusive

actions will be more evident. Xie and Zhu [XZ15a] also study the underground

market of mobile app review promotion. They build AppWatcher, an automatic

data collection system to obtain ground truth data on app promotion and monitor

52 paid review service providers. They also propose an app tracer to narrow down

the list of promoted apps in this underground market.

Yang et al. [YHZ+12] have shown that “criminal” Twitter accounts tend to be

socially connected, forming a small-world network. This is confirmed by the work

of Mukherjee et al. [MLW+11, MLG12, MKL+13], who introduced features that

22

identify reviewer groups, who review many products in common, post their reviews

in bursts, and are among the first to review the product. Yang et al. [YHZ+12]

further proposed a criminal account inference algorithm that detects new criminal

accounts by propagating malicious scores from a seed set of known criminal accounts

to their followers according to the closeness of social relationships and the strength

of semantic coordination.

Fake endorsement has also been investigated on Facebook. Beutel et al. [BXG+13]

propose CopyCatch to detect lockstep Page Like patterns on Facebook by analyzing

the graph between users and pages and the times at which the Likes were created.

CopyCatch is based on one-class and subspace clustering and is built on the intuition

that spammers control a few accounts that they use to like many pages. Satya et

al. [BSLL+16] investigate the problem of fake likers on Facebook by first collecting

information from honeypot pages and then contrasting fraudulent with legit users

via supervised learning algorithms on extracted features. Cao et al. [CYYP14] also

exploit lockstep behaviors and use insider information, to cluster user accounts ac-

cording to the similarity of their actions, and uncover groups of suspicious accounts

in Facebook.

There is also significant work on different types of fraud and abuse in online

systems. For example, Stringhini et al. [SMJ+15] present EvilCohort, a service-

agnostic approach to detect accounts on online systems that are controlled by cy-

bercriminals. EvilCohort works by identifying communities of online accounts that

are all accessed from a number of shared connection points. Specifically, it builds

a bipartite graph between online accounts and IP addresses from which they build

a projected graph representation where vertices are accounts and the edge weights

represent the number of shared IP addresses. Graph clustering is then used to detect

communities of online accounts that are accessed by the same IP addresses. Tian

23

et al. [TZX+15] analyze crowd fraud spamming for internet advertising (fraud

clicks), define a synchronization similarity between click histories and transform

the problem into a non-parametric clustering problem. Li et al. [LMC+16] extend

lockstep behavior identification with semi-supervised learning based on local spec-

tral graph diffusion, to detect YouTube fraud. Nilizadeh et al. [NAG+19] proposed

OneReview, a method for locating fraudulent reviews, correlating data from multi-

ple review sites, and assuming that the reputation of a product should be similar in

several crowd-sourced websites.

Unlike most of this work, that has focused on providing binary classification of

reviews as fake or honest, and accounts as fraudulent or benign, we seek to identify

the prolific workers responsible for significant fraud. We implement a maximum like-

lihood estimation and deep learning based process to expand seed, worker-controlled

accounts, and assign them to the crowdsourcing account of the fraudster who con-

trols them.

3.4 Fraud Data Collection and Underground Markets

Collecting fraud ground truth data is a notoriously hard task. Previous work has

gathered such information by hiring spammers to target synthetic honeypot products

on different online services. For instance, De Cristofaro et al. [DCFJ+14] deployed

13 Facebook honeypot pages and promoted them using legitimate Facebook Ads

and 4 popular like farms. They monitored the “liking” activity on these pages every

two hours and then analyzed the differences between the two distributions based on

demographic, temporal and social dimensions. Some farms seemed to be operated

by bots while others mimic regular users’ behaviors.

24

In a similar way, Stringhini et al. [SWE+13] studied Twitter follower markets by

purchasing followers from different merchants and used such ground truth to discover

patterns and detect “market” accounts in the wild. To locate these markets, the

researchers use three different methods: identifying suspicious clusters of Twitter

accounts, searching for advertisement tweets, and querying search engines for terms

such as “twitter followers”, “buy services”, etc.

Thomas et al. [TGSP11] identified over 1.1 million accounts suspended by

Twitter for violating the terms of service. Accounts are suspended for (1) frequent

request to befriend users in short periods of time, (2) reposting duplicate content

across many accounts, (3) posting only URLs, and (4) posting misleading content to

trending topics. In the process, they collected 1.8 billion tweets, 80 million of which

belong to spammers. They characterized the behavior and lifetime of spam accounts,

their campaigns, and the wide-spread abuse of legitimate web servers. Thomas et al.

[TMG+13] also investigated the market for fraudulent Twitter account to monitor

prices, availability, and fraud by 27 merchants over 10 months. After placing 144

orders, they could buy a total of 120,019 accounts from merchants that operate

their own websites, are active on blackhat forums, and work on freelancing websites

such as Fiverr and Freelancer. They have further developed a classifier based on

registration signals that detects millions of fraudulent accounts that merchants sold.

Springborn et al. [SB13] studied pay-per-view networks in the context of online

fraud advertising where invalid traffic generation aims to inflate ads impressions

on websites. To this end, they purchased traffic for a set of honeypot websites

and analyze the mechanisms used for impression fraud by pay-per-view networks.

Their results showed that these networks deliver hundreds of millions of fraudulent

impressions per day.

25

Similarly, Park et al. [PJM+14] built an automated data collection system to

study fake payment scams targeting users on Craiglist. To do this, they created

1,376 magnetic honeypot advertisements that would selectively attract scammers

but not legitimate users. Additionally, they developed an automatic conversation

engine that performs linguistic analysis of emails from scammers, and engages in

communication with them. From their analysis, they found that around 10 groups

of scammers were responsible for nearly half of the over 13,000 total scams attempt

received. These groups used shipping addresses and phone numbers from Nigeria

and the U.S.

Portnoff et al. [PAD+17] proposed an automated approach based on machine

learning and natural language processing for analyzing underground forums and

better understand cybercrime. Such tools allow an analysis to determine the nature

of the post, the product being offered, and its price. Their approach achieved over

80% accuracy after being tested on posts from 8 distinct underground forums.

We also found studies on account theft or account hijacking. For example,

Bursztein et al. [BBM+14] explored manual hijacking of Google accounts from

incidents that occurred between 2011 and 2014. Using 14 proprietary data sets,

they linked manual hijacking with phishing and found that phishing requests target

victims’ email and banking institutions accounts, as well as their app stores and

social network credentials.

Mirian et al. [MDS+19] studied hack-for-hire services to understand the play-

book that attackers use to gain access to victim email accounts. Posing as buyers,

they interacted with 27 underground market services, only five of which succeeded in

attacking synthetic identities that the authors controlled. They found that despite

the ability to successfully deliver account access, the market exhibited low volume,

bad customer service, and had multiple scammers. Perhaps unsurprisingly, attackers

26

primarily relied on tailored phishing messages that bypass SMS two-factor authen-

tication. McCoy et al . [MPG+12] studied the business model of online pharma,

using ground truth data sets of transaction logs that were leaked and found on

underground forums and file-sharing sites.

Critical operational details of the fraud market have remained however mostly

unstudied. This thesis seeks to address this, by both documenting and validating

operational procedures of ASO workers who target Google Play. Unlike previous

work, we conduct an interview study to directly engage and seek insights from fraud

perpetrators, then support them through an analysis of empirical fraud data. In

our fraud study, we seek to also identify (1) Google Play vulnerabilities that fraud

workers found and exploit, (2) evolution in fraudulent behaviors to avoid detection,

and (3) their intrinsic weaknesses, to be exploited by the next generation fraud

detection solutions. In chapter 4, we provide self-reported insights from studied

ASO workers, that confirm the existence of organic workers in the wild. Organic

workers attempt to mimic the behavior of real users and use their personal devices

to post fraud.

In chapter 5, we confirm the rise of organic workers and show that they are in fact

regular Android users who use their personal devices and accounts to occasionally

post paid reviews. We collect data for the device and app usage from such workers

and conduct interviews with 5 of them. We further report a new type of exchange

workers who seek to magnify their fraud posting capacity without payment. We

leverage our finding of an abundant fraud market for Google services (i.e., review

groups with tens of thousands of members) to recruit hundreds of worker-controlled

devices, study their usage, and devise device classification solutions.

Identifying organic and exchange workers is difficult, since their behaviors evade

the above detection solutions. For instance, organic workers use their personal de-

27

vices and accounts to mix paid reviews among their everyday activities, and operate

independently thus are less likely to have synchronized behaviors. Further, exchange

workers establish ad hoc p2p-like relations to exchange reviews for the products they

promote. The spontaneous nature of exchange relations also suggests the absence

of detectable lockstep behaviors. Instead, in this thesis we collect ground truth

device usage information, and reveal that features extracted from app and device

usage can detect and differentiate between devices of organic workers and those used

exclusively to promote products.

Relevant work also includes efforts to automatically generate reviews and detect

such reviews [YVC+17, RJS17]. For instance, Yao et al. [YVC+17] identify a new

class of attacks that leverage deep learning language models to automate the gener-

ation of fake reviews, and develop novel automated defenses against these attacks.

Radford et al. [RJS17] used representation learning to generate reviews given only

a sentiment (positive vs. negative). In this thesis we focus on the orthogonal in-

vestigation of device and app usage by workers and regular users. It is conceivable

that our worker detection and classification solutions would be used in conjunction

with techniques to detect DNN-generated reviews [YVC+17].

28

CHAPTER 4

THE ART AND CRAFT OF FRAUDULENT APP PROMOTION IN

GOOGLE PLAY

4.1 Introduction

Popular online services that host products, news, social relationships and peer-

opinions, are the targets of fraudulent behaviors, that skew public opinion and bias

product reputation and popularity [Ako18, Rei17b, WF19, Kna19, CDHH18, Ste19,

HGT+17]. To reduce the effects of such behaviors, commercial peer-opinion sites

employ proprietary solutions to detect and filter fraud, e.g., [Cip16, YN18, Jan18,

Bra18, air18, Per16, MVLG13, SCM11, KS18, NLS+17]. Similarly, a substantial

body of academic research has focused on the detection aspect of the fraud problem,

and has proposed and used assumptions about the behaviors and capabilities of

fraudsters, that are based on intuition, extracted from small datasets of fraud, or

revealed by collaborators within commercial sites. While such previous efforts have

revealed important insights into the operations of fraudsters, most have not been

validated with empirical feedback from the actual perpetrators.

In an effort to address this limitation, we first performed a structured interview

study comprised of 118 questions, with 18 Black Hat App Search Optimization

(ASO) workers that we recruited from 5 freelancing sites, concerning fraud that

they post on Google Play [Rah18, RHR+19]. Second, we performed a quantitative

investigation with data that we collected from 39 other ASO workers recruited from

the same sites. The data includes 1,164 Google Play accounts that the 39 ASO

workers revealed to control, and 21,767 fake reviews posted from these accounts for

6,362 unique apps. Further, we identified, and report a Google site bug that enabled

us to infer the device models used to post 198,466,139 reviews for the 6,362 apps.

29

Figure 4.1: Map of discovered fraud workflow in Google Play. Orange ovals denote
tangible participants and assets, blue rectangles denote several investigated capa-
bilities, behaviors or strategies. Small red ovals represent fraud vulnerability points
that we identified and discuss in § 4.4.

Based on the findings of our studies, we present the fraud workflow map of

Figure 4.1, showing newly identified and previously explored fraud capabilities, be-

haviors and detection avoidance strategies. Specifically, we report multiple, novel

insights into the working patterns of ASO workers, including that they (1) pool

in physical, brick-and-mortar offices, friends-and-family organizations, and online

teams, (2) have either a well-articulated role and are salaried on a regular basis, or

are part of unstructured teams and share earnings, (3) have access to many user

accounts, of both sockpuppet (fake) and organic (controlled by real users) types, (4)

have access to large and diverse stocks of low to high-end, and new to old mobile

device models, (5) flexibly outsource work when their number of accounts or device

models are insufficient, and (6) implement interactive work verifications.

Further, our studies provide evidence that supports several observations and

assumptions made by previous fraud detection work, about, e.g., the emergence

of organic fraud [KCS18, KAC19, ZXL+18], the timing of fraud [FML+13, YKA16,

30

LNJ+10, MKL+13, MLG12, Xu13, KM16], the fake review writing process [MKL+13,

FML+13, Xu13, HTS16, LNJ+10, SE15, MVLG13, XZ15b, KCS18, LCNK17, RA15,

YA15, MLG12, KCA17] and the choice of ratings [MKL+13, ACF13, KCA17, MVLG13,

KCS18, RA15, MLG12, XZ14, XZ15a].

However, we also report and validate concrete, participant-revealed behaviors

that do not fit the mold of assumptions made in previous work, including lock-

step behaviors [SMJ+15, TZX+15, YKA16, XZ15b, JCB+14, CYYP14, SLK15,

XZ14, XZ15a, LFW+17] or posting reviews in bursts [FML+13, HTS16, LFW+17,

HSB+16a, BSLL+16, XZLW16, Xu13, GGF14, BXG+13, KCA17, LNJ+10, MVLG13,

MKL+13, KCS18, LCNK17, YKA16, FLCS15, DCFJ+14, XWLY12, CYYP14].

We also found and report participant-claimed techniques to bypass Google-

imposed verifications, e.g., user account validations and review-posting sanity checks,

and even strategies to leverage Google’s fraud detection mechanisms to improve

fraud efficacy, e.g., downvoting negative reviews to trigger their removal, or using

singleton accounts that exploit detection cold-start problems.

Finally, and importantly, we identify several vulnerability points in the fraud

workflow, and propose defenses that exploit them. In summary, we introduce the

following contributions:

• ASO worker studies. Present empirical data from actual ASO workers, to

advance our understanding of their work, through interviews and a quantita-

tive analysis of gold standard fraud data [§ 5.3].

• ASO worker capabilities, behaviors and strategies. Report new findings

on the capabilities and behaviors exhibited by ASO workers [§ 4.3]. Provide

evidence that supports several observations and assumptions made by previous

detection work. Report and validate concrete strategies to avoid detection, in-

31

cluding departures from existing assumptions. Build a first map of the Google

Play fraud workflow.

• Google Play vulnerabilities. Identify and report a bug that can be ex-

ploited to collect device model information from reviews [§ 4.2.2]. Report

Google Play verifications claimed to be ineffective by participants. [§ 4.3].

• Impacts. Identify vulnerability points in the fraud workflow and discuss their

potential to advance fraud detection and prevention work [§ 4.4].

4.2 Methods

Our study involves both a qualitative exploration of and a quantitative investigation

into various aspects of fraud production. In this section we describe both studies.

4.2.1 Qualitative Study

The qualitative study of our work is comprised of in-depth interviews with 18 ASO

workers. We recruited participants from several Facebook ASO groups, and also

Upwork [Upw], Fiverr [Fiv], Zeerk [Zee], and Peopleperhour [Peo], all popular among

ASO workers. We identified 560 such workers, and invited them to participate in

our study through the 1-on-1 communication services of the corresponding sites. We

include the recruitment message in the auxiliary document.

72 of them responded to our invitation. To select participants who are actively

involved in ASO jobs, we asked the responders, 3 questions, all for Google Play:

(1) “how many accounts do you control?”, (2) “for how long have you been actively

doing ASO?”, and (3) “on how many ASO jobs did you work, approximately?”.

We identified 25 participants who control at least 100 accounts on Google Play,

have been active for at least 1 year, and have completed at least 100 ASO tasks. Fol-

32

lowing recruitment, and before starting the interview, we read to these participants

the introductory script included in the auxiliary document. 18 of them (all male,

19-29 years old, located in Bangladesh(13), India(4) and New Zealand(1)) agreed to

participate.

In the following, we refer to the interview participants as P1, .., P18. With these

participants, we conducted a structured interview study that had 46 questions, with

additional 72 questions for clarifications, see section 7. The questions range from

demographic information to workflow, and from the devices used to the operational

methods employed. We conducted the interviews over Skype, between August and

October, 2018. Interviews lasted from 33 to 66 minutes (M = 46.38, SD = 12.34).

We paid a rate of 5 USD for every 15 minutes a participant spent in our interview.

We audio recorded the interviews with the participant permission, then transcribed

and anonymized the data.

We analyzed the anonymized data using the Grounded Theory method [CB07].

We used open coding to identify 169 unique codes, including both abstract and

concrete labels. Two members of our team independently coded the data. The

inter-coder agreement was 84.61%. In the cases where codes of the two coders did

not match, a discussion was held with a third member of our team, to decide the

final code. We used axial coding to relate the generated codes, and ended up with

22 categories grounded in the collected data. Some of the categories are: account

blending, account creation, devices, early-bird fraud, extreme reviews, strategy, etc.

We have then further refined our categories into the codes that form subsection titles

in § 4.3.

33

4.2.2 Quantitative Investigation

We performed a quantitative investigation with user accounts collected from 39 ASO

workers, different from the qualitative study participants, but recruited using the

same methods described in $ 4.2.1. In the following, we refer to the quantitative

study participants as F1, .., F39. Each of the selected workers claimed to control

up to 500 Google Play accounts (M = 211, SD = 166), and each shared the IDs of

at least 15 Google Play accounts that they control. This yielded a total of 1,164

account IDs for analysis.

We then crawled the 6,362 unique apps that the ASO workers reviewed using

those IDs, and that were available in Google Play. These apps had received 21,767

reviews from the 1,164 worker-controlled accounts, and a total of 218,167,727 re-

views. We used the AppBrain API [App] to collect the category and release date

of each app.

Device model data collection. We have collected information provided by Google

Play about the devices used to post fraudulent reviews. Google Play’s client-side

enforced functionality, allows an authenticated user to filter reviews according to

the model of her registered devices. We used this functionality to query the reviews

posted for an app, for all possible device models, and thus identify the device model

used to post any individual review. We used the list of 21,597 Google supported

devices [GP], that contains the parameters that we needed to identify the device

models used to post the above 21,767 reviews, posted from the 1,164 ASO worker-

controlled accounts, as perceived by Google’s systems. In addition, we collected the

device release date and price (in EUR) from GSM Arena [gsm] and Gadgets360 [gad].

34

4.2.3 Ethical Considerations

Some ASO work is considered unethical according to several ethical frameworks, and

many ASO workers belong to low-paid vulnerable groups. This is why our study

took utmost care to follow the best ethical practices for conducting sensitive research

with vulnerable populations [BRBMR17]. Our study had a very clear declaration

of the researchers’ identity, research objective, and potential impact on the partic-

ipants’ work without following any sort of deception. The whole study procedure

was scrutinized and approved by the institutional review board of a major North

American university (IRB-18-0077@FIU). We include our recruitment message and

introductory script in Appendix 7. We include a discussion of the process of our

recruitment, the possible reasons for our participants to respond, and other relevant

issues, in the auxiliary document.

We used GDPR [Par16] recommended pseudonymisation for data processing

and statistics, and other generally accepted good practices for privacy preserva-

tion. We were very careful to hide participant identity and to avoid risks of being

misunderstood by them. We also explained to them very clearly any risks that

their job may have through our research. After data collection, we have deleted all

device-to-identity links and only generated statistics that allowed us to validate our

assumptions. We have avoided obtaining additional information about the devices

used or the accounts involved. We have contacted Google about our discovered

device model identification issue, through Google’s vulnerability reward program

(VRP) [GVR] (issue: 119676181). Google has accepted our finding and has invited

us to join their hall of fame.

35

Figure 4.2: Venn diagram of participant categories, reveals diversity and complexity
of fraud organizations. Participants are part of teams that are either (1) physically
co-located or online, (2) hierarchical or flat, and (3) sockpuppet account based or
organic.
4.3 Findings

We organize, analyze and report findings from the interview and quantitative studies.

Figure 4.1 provides a map of the topics that we investigated.

4.3.1 Team, Location, and Organization

All the 18 interview participants claimed to be part of organizations dedicated to

posting fraud in Google Play. Our data shows that ASO workers assemble in various

organizational structures. While some of them work in a team where each person has

a well-articulated role and they are salaried on a regular basis, many of them work

in a more unstructured team and the whole team share their earnings. We classify

ASO teams into several categories, based on their location, organization type, the

36

type of fraud, and profit sharing structure. Figure 4.2 shows the Venn diagram of

the 18 participants grouped according to 4 of these categories, for readability.

Team size. The first column of Table 4.1 lists the team sizes claimed by each

participant for their organization, including both physically co-located and online

team members. 5 participants claimed to work alone. The other 13 participants

claimed to have a team with at least 10 members. Notably, P4 claimed to be part of

a big company with around 150 people in their team, who organize 15,000 organic

ASO workers through virtual (WhatsApp, Facebook) groups.

Physical co-located vs. online teams. Seven participants (Figure 4.2) claimed

to work with a physically co-located team. 5 of them claimed to have brick and

mortar offices. Figure 4.3 shows a photo taken by P10, with the premises and

employees of his fraud team. 7 others claimed to have strictly online teams. The

remaining 4 claimed to be a part of hybrid organizations that (1) are a physical

team, including working alone with their own devices and accounts, and (2) have

access to online ASO workers. Notably, P18 said (1) “I run a mobile repair shop. I

use the devices that I get to repair.” and (2) “I share the link in my group and they

review it.” P11 said “ I use two types of accounts, my friends and family, and my

own 100 accounts.”

P14 claimed to be part of a flat team of 4 physically co-located members, and

manage 30 online team members. P5 claimed to have a team of 12 and a Facebook

group with organic users, while P7 has a team of 50 people and also runs campaigns

to recruit more reviewers. P18 has access to physical devices and also a Facebook

group.

Organization structure: hierarchical vs. flat. 15 participants claimed a hier-

archical structure of their organizations (Figure 4.2). 11 of them described specific

roles in their organizations, that include job managers, who interface with the de-

37

Figure 4.3: Photo taken and volunteered by participant P10, with the premises and
(anonymized) employees of his business. Photo reproduced with permission from
the participant.

velopers and manage work from the marketplace, team admins, who organize, dis-

tribute tasks, and verify the work of review posters, and new account creators. For

instance, P3 said “I am one of the admins in our team and we have 10–12 admins.

Under each admin, we have 15–20 members. All admins work as subcontractors,

and some of our other team members work with the developers and manage work

from the marketplace.” However, 2 participants claimed to work in teams with a flat

organization. For instance, P15 said “We all work together. There is no hierarchy.”

Organic fraud. 9 participants claimed to organize or be part of online teams

of “organic” users, workers who use their personal accounts to post fake reviews

(Table 4.1). P5 said “I also have my own Facebook group where I have combined

60 real users to write reviews.” P7 did not specify the number of organic accounts

that they can access, but stated “we have 3,000 accounts. If we need more we run

CPI/CPA campaign where people get an incentive to install apps.”

Profit sharing. One participant claimed to pay team members a monthly salary,

while another one claimed an even split among members. Three of them mentioned

38

preferential cuts for the job manager (10–25%) and team lead (10–50%) and equal

split of the rest among the actual review posters. Two participants claimed a flat

rate for the review posters ($0.40 per review). The rest of the participants did not

respond to this question.

Summary. Our study thus confirms observations made by existing work, that

fraud is perpetrated by experts who control either (1) many sockpuppet user ac-

counts, e.g., [YA15, BXG+13, MKL+13, SLK15, XZLW16, LCNK17, MLG12, XZ14,

LFW+17, FLCS15, KCLS17] or (2) organic fraudsters, i.e., real account owners re-

cruited online [mic12, rap]. Our study also provides concrete numbers and extends

the existing literature by adding that (1) ASO workers can be hybrid (e.g., both

organic and sockpuppet masters) and (2) product developers can hire multiple types

of expert ASO workers to promote their products.

Participants claimed to charge between $0.5 and up to $6 per posted review (M

= 2.16, SD = 1.86), and to have between 1 and 6 years of experience in ASO jobs

(M = 3.03, SD = 1.53). During this time, they claimed to have worked on between

150 and 4,000 apps in total, and between 6 and 50–60 apps in the past month (M =

34.11, SD = 18.37). They also declared a diverse educational background, including

2 masters degrees, 11 completed bachelor degrees, 2 ongoing bachelors, and 4 high

school graduates.

4.3.2 Fraud Capabilities and Expertise

The middle columns of Table 4.1 list the number of user accounts claimed to be

controlled by or accessible to each of the 18 participants. Most participants control

a few hundred accounts, however, 8 participants can access several thousands: P13

claimed to be part of a team of 13 workers who control 80,000 accounts.

39

Accounts Devices

P Members Organic Inorganic Mobile Laptop Online

P1 40 0 15,000 300 0 0
P2 12 0 300 40 0 0
P3 195 0 1,500 200 0 0
P4 150 15,000 0 0 0 15,000
P5 12 100 0 0 0 60
P6 1 0 1,500 0 0 500
P7 50 N/A 3,000 1,000 0 0
P8 35 0 150 0 0 100
P9 15 400 0 0 0 450
P10 30 0 450 30 35 0
P11 1 200 100 45 0 200
P12 1 500 0 0 0 500
P13 13 0 80,000 13 13 0
P14 34 5,000 0 0 0 5,000
P15 10 0 300 50 0 0
P16 50 0 500 70 0 0
P17 1 1,000 0 0 0 1,000
P18 1 500 30 30 0 500

Table 4.1: Number of team members, and of accounts and devices claimed by the
18 interview participants.

7 participants, each claiming to control thousands of accounts, also claimed to be

able to write an “unlimited” number of reviews for an app, i.e., more reviews than

the developer can ask or afford (as inferred from the participant’s past experience).

The other 11 participants, with up to 3,000 accounts, claimed to be able to write

a number of reviews that was consistent (i.e., smaller or equal) to the number of

accounts they claimed to control.

To provide perspective on several of these claims, Figure 4.4 shows the number of

accounts revealed, and the number of unique apps reviewed from those accounts, by

each of the participants in our quantitative study (§ 4.2.2). In total, we have crawled

information from 1,164 accounts and the 6,362 unique apps that were reviewed from

these accounts. Even in this limited gold standard dataset, one participant (F18)

40

Figure 4.4: Number of accounts revealed by F1,..,F39 and number of apps reviewed
from them. F18 revealed 83 accounts. 14 workers have reviewed at least 150 apps
from the revealed accounts. F35 has reviewed 927 apps!

was able to reveal 83 accounts that he controls, and F35 has reviewed 927 unique

apps from his 42 accounts.

4.3.3 Hardware: Devices

All the interview participants claimed to own or have access to multiple mobile

devices. The last columns of Table 4.1 list the number of devices, organized by

types, claimed to be controlled or accessible by each participant. 9 participants

claimed to post fraud from mobile devices; 11 participants claimed this also happens

from the mobile devices of organic ASO workers that they control. 2 participants

said that they also post from emulators running in laptops, e.g., P13 claims to have

13 laptops and use the BlueStacks emulator [Blu] to install and review apps, and

also 13 smartphones.

P8 and P18 have an almost 1-to-1 account-to-device mapping. Participants such

as P2, P3, P7, P10 and P15, have a small but many-to-one mapping, e.g., up to 7

accounts per device. Others, such as P1 and P13, claim to have significantly more

accounts than devices (e.g., 15,000:300 and 80,000:30 respectively).

41

Mobile device models. Several participants claim access to communities of or-

ganic users (see Figure 4.2), thus to a diverse set of devices. 4 participants (P1,

P10, P11, P13) claimed to own only low-end, cheap devices. Others (P7, P15, P16)

claimed to own a mix of low, medium and high-end devices, dominated by low-

end devices. For instance, P7, who claimed to own more than 1,000 devices said

that (1) “we try to choose cheap devices with more features and memory,” however

(2) “we also have high-end phones like Nokia, Samsung, which we need to review

virtual/augmented reality apps”.

Device source. Most participants claimed to purchase their devices on the regular

market. However, P11 said, about his claimed 45 devices, that “I have bought them

from the black market with a very low price.” Further, as mentioned in § 4.3.1, P18

claimed to run a mobile device repair shop, and use the devices he is supposed to

repair, to write reviews.

Device storage. 6 participants claimed to store the devices on a table, readily

accessible. P1 claimed to store the devices in a separate room. P7 said that “the

department who handle reviews and installs is on a different floor, and high-end

phones are kept in the locker after use for safety.” We also asked P7 about how

they manage to charge 1,000 devices. He mentioned that they have a dedicated

team to manage all the devices, and charge a device every 2–3 days. Further, he

claimed that they keep the devices on during office time, and turn them off after

11pm–midnight.

App-device compatibility issues. 9 participants (P5, P6, P8, P10, P11, P13,

P14, P16, P17) said that they have not had compatibility problems. However, P7

said that he runs campaigns to recruit ASO workers who have compatible devices,

or even purchase such devices. P9 and P15 said that they provide as many reviews

as they can from their compatible devices, and contact the developer to explain the

42

Figure 4.5: Scatter plot of device release price (EUR) vs. model age (Days) at
posting time, for each of 9,942 reviews posted from 344 unique device types. Most
devices are old and low-end (45.98%) or mid-end (31.41%), or fresh and low-end
(15.31%). High-end and even free devices have been used!

problem.

Quantitative Investigation. We used the technique described in § 4.2.2 to find

344 unique device models, used to post 9,942 of the 21,767 reviews written from the

accounts controlled by the 39 participants. We found that 12 participants posted

reviews from at least 20 different device models; F35 used at least 84 distinct device

models. However, participants F9 (215 reviews), F10 (166), F14 (162), F16 (67), F17

(459), and F27 (197) have posted reviews only from devices of unknown models. We

confirmed that the “unknown” device category includes reviews posted from Google

Play’s website interface and certain types of emulators.

Figure 4.5 shows the relationship between the device release price (in Euros) and

the device model age at posting time, for each of 9,942 presumed fake reviews posted

from 344 unique device models. We consider that a device is low, mid, or high-end, if

its release price is in the range [0, 260), [260, 450), and [450,∞) respectively [Tri17].

We classify a device model age into Fresh (< 1 year), Middle-aged (12-18 months),

and Old (> 18 months). We found that 61.3% of reviews were posted from low-end,

38.2% from mid-end, and 0.5% from high-end devices, while 77.39% are from old

43

Figure 4.6: Per-worker distribution (violins) of the “age” of devices used to post
reviews, i.e., the time difference in days between the review date and the release
date of its posting device. Workers not shown had insufficient known device models.
F3, F7, F11, and F31 use old devices. Most others (F1, F2, F13, F20, etc), use both
newly released and old devices.

and 19.66% from new models. Further, most of these reviews were written from old

low-end devices (45.98%), old mid-end (31.41%) and fresh low-end (15.31%) devices.

A notable case is that of tablets given away (price 0EUR, leftmost points in

Figure 4.5) by the Uruguayan government to students as part of an inclusion plan

named Plan Ceibal [cei]. Participants F25 and F32 used this device model to write

159 reviews for 137 apps. In addition, 3 reviews were posted from Galaxy S9+

devices whose price exceeds 600EUR (rightmost points in Figure 4.5).

Figure 4.6 shows the per-worker distribution of the “age” of their devices: the

time difference between the review date and the device release date for all the fake

reviews posted from known devices. 13 ASO workers have each posted at least 100

reviews from devices that are over 6 months old. Additionally, F13, F24, F25, F32,

F33, and F35 have each posted at least 30 reviews from devices that are less than 6

months old. We conclude that different workers rely on stocks of either old devices,

new devices or a mix of old and new, to post fraud.

We found that 93.8% of the 9,942 fake reviews were posted from smartphones

and 6.2% from tablets. Figure 4.7(a) displays the number of unique device models

44

(a) (b)

(c)

Figure 4.7: (a) Number of distinct devices per ASO worker (F1 .. F39) including
unknown category. F9, F10, F14, F16, F17, and F27 have only unknown devices;
F35 used at least 84 distinct device models. (b) Device model popularity for top 15
devices used by ASO workers to post reviews. The 39 participants have used 344
distinct device models. (c) Device model popularity for top 15 devices in the wild.
11,934 unique device models were used to post over 198 million reviews in Google
Play.

45

Low-end Mid-end High-end Total

Fresh 15.31% 4.35% 0.16% 19.66%
Middle-aged 0.00% 2.45% 0.34% 2.45%
Old 45.98% 31.41% 0.00% 77.39%

Total 61.29% 38.21% 0.50% 100%

Table 4.2: Tabulated summary of Figure 4.5: reviews by device release price and
device model.

used by ASO workers, including the “unknown” category (i.e., not among the 21,597

officially supported device models provided by Google [GP]). While F35 has used 85

unique device models, participants F9, F10, F14, F16, F17, and F27 have posted all

their reviews from unknown devices. Figure 4.7(b) shows the popularity of device

models used by the 39 participants, over all their 9,942 reviews posted from devices

of “known” models. The top 6 most used devices by ASO workers to post these

reviews are Galaxy Note 2 (836 reviews), Nexus 5 (742), Galaxy S4 (496), S5 (447),

S2 (247) and Nexus 7 (241). Further, Figure 4.7(c) shows the popularity of the top

15 most popular devices, out of 11,934, that were used to post 198,466,139 reviews

in Google Play.

Table 4.2 shows the distribution of these reviews across categories: 45.98% of

reviews are from old low-end, 31.41 % from old mid-end, and 15.31% from new

low-end devices.

Finally, Figure 4.8 shows the review timelines of two accounts controlled by

participant F13, in terms of the device models used to post those reviews. We

observe that used device models change every few years, and that accounts can use

multiple device models to post fake reviews at the same time.

Summary. We found ASO workers who claim to have access to large number of

devices, either owned, or accessed through their communities of organic fraud. This

46

(a)

(b)

Figure 4.8: Device timeline for two accounts controlled by F13. (a) account has
used 6 distinct device models to post 183 reviews in 5 years. It occasionally uses
two devices at the same time, and changes devices every few years. (b) account has
used at least 4 distinct device types in 4 years to write 163 reviews including 45
reviews from unknown devices.

claim is partially confirmed through our gold standard fraud data. Both in our inter-

views and in the quantitative study, we found that ASO workers have a diverse stock

of low to high-end and new to old devices. Participants with many devices reported

streamlined solutions to manage them, while those with fewer devices reported ways

around cost limitations and compatibility issues, e.g., further outsourcing jobs.

47

4.3.4 Software

Team formation. 10 interview participants (P3, P5, P6, P8, P9, P11, P12, P14,

P17, P18) said that they used Facebook and/or Whatsapp to create online teams.

For instance, P6 said that I have a Facebook group of more than 500 people, from

different locations in Bangladesh, collected from various freelance groups in Face-

book.”

P8 said “I have posted invitations to Facebook groups, and I created a WhatsApp

group for those who answered”. P9 hints at eligibility criteria: “To build a team,

we first post message in Facebook groups. Then we contact those who respond,

personally, and talk to them. We then decide if each is eligible, then we include him

in our Facebook group.” P17 claimed access to multiple groups, “We have 20 groups

of real users in WhatsApp.”

Team communications. For communications, the above 10 participants claimed

to use the corresponding Facebook and Whatsapp messenger app. P6 said “I post

the app link in my Facebook group, and ask them to download and post reviews.” P8

said “When I get a job I post the link to my WhatsApp group, and they start writing

the reviews.”. P11 said “When I get a job, I send them messages in WhatsApp or I

reach them personally.”

P7 however claimed to use specialized software: “We have our own system where

we push the apps. Users who use our system get the notifications about the new task

and once they complete the task they get paid. Due to the privacy policy, I can’t

disclose the system name.”

Account maintenance. 5 interview participants (P1, P11, P13, P15, P16) said

they access their accounts frequently. 12 participants mentioned that they access

them manually. However, 3 participants (P13, P15, P16) said they have scripts and

automatic login systems to access their accounts, keep them alive, and report if any

48

are inaccessible. For instance, P13 said “We have built a system in Linux where if

we input 100 accounts, the system automatically logs into those accounts, and keeps

them alive.” The participants who organize organic users said that organic users

access their accounts regularly.

Job automation. P6 said that “We can post reviews, ratings and installs using

bots if the client has no problem. The bot names are like QZ362, YNX32, or some-

thing like these.” The rest of participants mentioned that they write their reviews

manually.

4.3.5 Techniques: The Art of Evasion

Awareness of fraud detection. All interview participants are aware of their fake

reviews being detected and deleted. All of them have reported that Google deleted

some of their reviews. Although most of them have reported deletion as a small or

negligible percentage (under 5%) of all the reviews they posted, four of our interview

participants have said that 10–20% of their reviews were deleted. P6 said that the

review deletion percentage depends on the app and ranges from 2% to 30%. Most

participants said however that it is very infrequent for their accounts to be deleted.

P2 said that “Sometimes the email might be disabled; in that case the review will

still be shown as written by a Google User.”

Perceived reasons for deletion. Participants reported diverse reasons for dele-

tion:

• Device re-use. P5 and P10 blame it on using the same device to write multiple

reviews for an app: “I always track the screenshot that my workers provide as work

proof. If I see two or more reviews from one worker have been deleted, I am pretty

49

sure that they have used the same device for those reviews.” Proof of work details

in § 4.3.12.

• Improper VPN use. P10 also blamed VPN: “One safe way is, login from normal

IP, then write review from VPN. If you login using VPN, Google will detect this as

fraud.”

• Improper app use. P12 said that Google deletes reviews if the users “do not

care to use the app and keep it installed for more days.” More details in the app

retention part of § 4.3.5.

• Extended account use. P3, P9, P18 report that using the same account to write

many reviews in a short time, may trigger redflags.

• Misfires of Google fraud detection. P6 blames it on Google: “Sometimes gen-

uine reviews get deleted and sometimes multiple reviews from same devices don’t get

deleted.”

User account validation. P2 and P3 said that they prefer to use e-mail to validate

user accounts. P3 also said that Google may force them to use phone numbers.

Only P16 claimed that “we use virtual phone numbers and Google accepts them.”

All others said that they use real phone numbers to validate accounts.

Real phone numbers require access to SIM cards, which can be expensive. How-

ever, workers mentioned some solutions to overcome these constraints. For instance,

P3, P10, P11 and P17 use friends and family: P3 said that “We use our friends and

family phone numbers. For example, I meet a friend on the road, I ask him to check

the message and I use his phone number to verify an account.” P10 said that “In

Bangladesh one person can buy as many as 20 SIM cards using his credentials. [..]

For example, for my 450 Gmail accounts I have used at least 200 phone numbers.”

P5 mentioned that he borrowed SIM cards from friends. P7 and P15 use phone

number verification services. Concretely, P7 said “we pay other people to get a one-

50

time code from their mobile SMS to verify those accounts.” , while P15 said “we

use a person who has lots of phone numbers and provides a service to verify Gmail

accounts.” P13 said that they purchase user accounts that are already validated.

Several participants reported limitations on phone number reuse. For instance,

P3 and P8 said that one number could be used for 3–5 accounts but not immediately,

while P1 said that “between two verification using the same number, we have to wait

at least 3 months.”

Review without install. When asked, P5, P10, P13 and P18 said that one can

review an app without its prior installation from a device on which the account is

logged in [gplb]: “Click on install then stop installing immediately. The app would

not be installed but it will allow us to write reviews.” We have tested this claim

and verified that it works as suggested. This vulnerability breaks Google’s intended

security design [gplb] and facilitates the creation of fake reviews by reducing the

amount of resources needed from the ASO worker.

App installation and use. 14 participants claimed to wait, open, or even use the

app before posting a review for it. P5 and P9 wait a few hours before reviewing

the app upon installation. P9 claimed to also use it for 5–10 minutes. P6 and P8

claimed to open the app 1–2 times before reviewing. P7 claimed to use the app as

a normal user. P10, P13 and P16 claimed to keep the app open for 3–15 minutes

before writing the review. P12, P14, P17 and P18 claimed to recommend to their

online and organic teams to open the app for a few minutes and even use it before

reviewing. P4 said “We try to navigate all the pages of the app before writing the

reviews.”

All the participants admitted to perform retention installs. P10 said that this

is required to prevent filtering: “Google takes 72 hours to verify the review. If you

delete the app in this period, Google will drop the review.” Most participants said

51

that they keep the app for a few days after reviewing it: 1 day (P1, P5 and P15),

2–3 days (P4, P5, P8, P10, P13, P14), 1–2 weeks (P17), and 7 days – 2 months

(P2). P4 said that his workers keep the app until they need the space.

Upvote, Downvote. 6 of the 18 participants claimed that they upvote reviews

written from other accounts controlled by members of the same team. P7 said “We

upvote the reviews put by our team and also other reviews which are positive.”

P10 said that his team downvote negative reviews of the apps they promote, in

order to trigger Google’s algorithms, thus remove such reviews. P7 said “We provide

upvote and downvote services to move positive reviews to the top and negative to

bottom.”

Singleton accounts. 6 participants said they worked on apps where they had to

create accounts just to post one review and then to abandon them. P1 and P2

said that such reviews are more expensive, $8 and $10 respectively. The reason for

this is due to the effort to create an account (phone verification), which will not

be amortized over multiple fake posting activities. Participants mentioned that the

reason to do this is that Google does not filter reviews posted by singleton accounts,

since its algorithms need more information to build a reputation for the account.

Account blending. 12 participants claimed to have seen jobs that required only

the use of old accounts. However, P1, P2, P7, P10, P11, P13, P15 said that they

have worked on jobs where they only used fresh accounts. P10 said that “We do it

because Google always keeps the reviews received from new accounts.” P1, P2, P7,

P16, P18 said that they regularly use a mix of old and new accounts. In § 4.3.13 we

report account creation and purchase strategies.

Noisy reviews. 8 participants claimed that they do not review other apps to

camouflage their fraudulent behaviors. Of the on-site co-located teams, only P1

said that they review products for which they have not been hired, which they pick

52

at random. 7 participants with online and organic team members said that their

online team members review the apps they use regularly as normal users. P4 said

“That’s why we use real users. We don’t need to follow any strategy. The real users’

behaviors serve the purpose of authenticity. We always instruct them to use other

popular apps from their accounts.”

Device reset. P10 said that before logging in to an account, they flush the virtual

device and change its MAC address. After using the account and virtual device pair

for a few days to install and review apps, they log out and repeat the process with

another account. They then leave the previous account unused for 1–1.5 months:

“after that interval, Google does not check that the new login is from the same MAC

address as the previous one.” P13 claims to stay logged in to the account for 3 days,

then they reset the device (via cccleaner) before logging in to the next account.

VPN use. P1, P3, P5, P13, P15 admitted to use VPNs, while the other 10 explicitly

claimed to not use them. P3 said “We use VPN or proxy only when it is required

in the job specification. For example, if I need to install from USA, we have to use

USA proxy server. (sic)”

Emulator use. 2 participants (P10,P13) said that their teams use virtual devices

running in laptops. The others claimed to use mobile devices or have access to real

users who have physical devices.

Summary. Several of our interview participants confirmed several observations

proposed in previous work: (1) ASO workers adjust their behaviors to avoid de-

tection [ACF13, HSB+16b, RA15, PCWF07, RA15, DCFJ+14], including using

VPNs [LCM+15, TMG+13], and mobile device emulators running on PCs [Xu13,

LCM+15, SMJ+15]. However, P10 noted that improper use of VPNs can also

trigger fraud filtering. (2) ASO workers also write genuine reviews, for products

for which they have not been hired [ACF13, FML+13, WXLY11, KCS18, RA15,

53

DCFJ+14]. However, this is only supported by participants who claimed to re-

cruit and use organic ASO workers. (3) Some participants claimed to upvote

their own reviews [PCWF07]. (4) Some participants also report using singleton

accounts [MKL+13, YKA16, RA15, SE15, XWLY12]. We however report a sur-

prising motivation for this, which is not convenience, but rather a fraud detection

strategy that exploits cold-start problems of Google’s fraud detector.

Further, we identified new black hat ASO behaviors, that include downvoting

negative reviews to promote their filtering by Google, and the unexpected bene-

fits of using singleton accounts. Participants revealed ingenious solutions to by-

pass Google-imposed verifications, and validate the user accounts that they control,

with real phone numbers. They provide circumstantial support for previous work

studying the underlying technical and financial capabilities of social network fraud-

sters [TIB+14].

Several participants mentioned to be able to bypass Google’s check of preventing

reviews without prior app installation. However, to avoid filtering, all participants

said they use a combination of app interaction, delaying of review posting, and

retention installs.

Further, we conjecture that the claimed use of a blend of older with newly created

accounts, enables ASO workers to increase their base of accounts controlled, build

the reputation of older accounts, and reduce detection of lockstep behaviors (§ 4.3.8),

and the use of singleton accounts.

4.3.6 Review Burst vs. Campaign Length

We now present findings on the timing of the review process. 16 interview partic-

ipants claimed to have seen jobs (1–45 in the past month) that specify how many

54

reviews per day the workers should post. For instance, P5 said that “Most buyers

don’t want to get all the reviews in a single day. They want a slow rate, like 2–3

reviews each day. To maintain this rate, they provide the review text on a daily

basis.” However, P6 also said that “some developers with money don’t care whether

reviews stay or not. They just need the number of reviews, quality doesn’t matter.

They just want short-time business.”

P1, P3 and P5 reported that they suggest to the hiring developers, the rate of

posting reviews. P5 said “If the developer asks for 30 reviews each day, I have to

warn him that it’s harmful to his app as Google may detect this as fake. Then I’ll

suggest to him that I will take 10 days to provide 30 reviews.” Most participants

suggest 2–3 reviews per day, but some (e.g., P11, P14, P17, P18) recommend higher

numbers, up to 30–40 reviews per day (P14).

Several participants suggested that the number of recommended daily reviews

is a function of the app’s existing review count. Concretely, P6 said, “for new apps

with less installs, it is better not to provide many reviews each day. But for popular

apps, 20–50 reviews each day would be acceptable.”

P10 revealed a different strategy: “We provide a slow rate at the beginning. Like

1 review per day, or 5 reviews in 6–7 days. After 10 reviews we start posting 2

reviews each day. After 150 reviews we can provide 3–4 reviews each day.”

All the participants except P4 mentioned that they have seen ASO jobs that

require a duration for the promotion campaign. P6 and P15 said that this is rare, and

that developers are more interested in reaching a high number of reviews. However,

P2 said almost all the jobs he has seen in the past month, mention the campaign

length. In the past month, 5 participants have seen 3–5 such jobs, 4 have seen 6–10

jobs, and 5 have seen 11–35 such jobs. 12 participants reported longest seen required

campaigns of 1–6 months, and 6 participants reported campaigns of 7–18 months.

55

Quantitative Investigation. Figure 4.9(a) shows the per-worker, violin-shaped

distribution of the number of reviews per day, posted from accounts controlled by

the 39 ASO workers, for each targeted app. Figure 4.9(b) shows the violin plots

for the distributions of the inter-review times (only those posted within the same

day). We observe several participants, e.g., F7, F9, F10, F16, F27, F28, F31, who

tend to post more reviews per day, an do so in bursts. We also see participants,

who even though write fewer reviews per day, still tend to post them in bursts (F1,

F3, F19, F20, F23, F29, F35, F37-39). However, as also reported by the interview

participants, we also found ASO workers who post only a small number of reviews

per day and space them well through the day. Notably, F6, F11, F13, F23-F26, F32,

F33 have a mean inter-review time of 8-9 hours.

(a)

(b)
Figure 4.9: (a) Per-worker distribution of the number of reviews per day for each
targeted app. (b) Per-worker distribution of time difference in hours between con-
secutive reviews posted within one day for targeted apps. F7, F9, F10, F16, F27,
F28, F31, tend to post more reviews per day, in bursts. F1, F3, F19, F20, F23,
F29, F35, F37-39 post few daily reviews, but in bursts. Others like F6, F11, F13,
F23-F26, F32, F33 post few daily reviews, but space them through the day (post
one every 8-9 hours).

56

Figure 4.10: Per-worker distribution of active intervals (in days) over apps targeted.
Each point represents the active interval of an ASO worker for an app. We observe
workers who have posted reviews for certain apps, for more than 1 year, and up to
more than 4 years.

Further, we call a worker’s active interval for an app, the time span (in days)

between the worker’s last and first review for the app from accounts that we know

he controls. Figure 4.10 shows the per-worker active interval distribution over the

316 apps that received at least 10 reviews from the 39 participants. Some ASO

workers were often active for more than 1 year for an app.

Summary. We found ASO workers who post fake reviews in rapid bursts in both

our qualitative and quantitative investigations. This is consistent with assumptions

made in previous fraud detection work, e.g., [FML+13, HTS16, LFW+17, HSB+16a,

BSLL+16, XZLW16, Xu13, GGF14, BXG+13, KCA17, LNJ+10, MVLG13, MKL+13,

KCS18, LCNK17, YKA16, FLCS15, DCFJ+14, XWLY12, CYYP14]. However, mul-

tiple interview participants have revealed both developer and ASO worker assump-

tions that Google flags review bursts. Some participants also claimed to push back

on developers who asks for many daily reviews. Our quantitative analysis reveals

ASO workers whose behavior is consistent with these statements. Interview partic-

ipants further revealed avoidance techniques that include (adaptive) rate control.

57

Rate control implies longer campaigns, as workers need more time to post their

review quota. This is further supported by statements made by several interview

participants and by evidence we extract from the quantitative investigation.

4.3.7 Accounts Per Device Strategies

Participants revealed mixed strategies for the number of accounts used on a device,

and the number of reviews that they publish from a single device. P10, P11, P13,

P18 said that they only log in to one account at a time, on any device that they

control. P18 has 30 devices and 30 accounts, and a 1-to-1 mapping between accounts

and devices. P11 said that “If we provide multiple reviews from one device, Google

will keep only one review for that device.” P5, P6, P7, P8, P9, P15 and P16 claimed

to log in to multiple accounts (2–5) from a single device and also instruct their

remote workers to do the same. However, P5 and P9 claimed to only provide one

review from one device for an app. P15 and P16 keep track of which accounts they

use to log in to any device, and once they log out from one account, they wait 7–10

days before they use it again.

P5 admitted using a fixed set of 2–3 accounts to sign in to one device simultane-

ously, then uses those accounts to review several apps. However, he also claimed to

review apps using only one account from such devices. P6 claimed that he instructs

his workers to log in to at most 2 accounts from any device at a time, from which

they can review the app using both accounts. P8 claims to login to 5 accounts on his

device, and his Whatsapp group members log in to at most 5 accounts per device.

Summary. ASO workers generally claim that it is possible to review an app from

different accounts using the same device. We have tested this claim and verified

that it works as suggested. This vulnerability facilitates the creation of fake reviews

58

4.3.8 Lockstep Behaviors

Interview participants revealed different strategies to choose which of their accounts

and devices to use for a job. Several participants revealed lockstep-indicative be-

haviors, based on a spreadsheet of accounts and devices that they maintain across

all their jobs. P5, P7, P10, P13, P18 select the devices in a sequential, round-robin

manner, while P5, P7, P13, P15, P16, P18, use their accounts in a sequential fash-

ion. For instance, P15 claimed that “We have statistics on how many times an

account was used previously. From there we try to find accounts that have been used

fewer times. We also track which device was used for which account, so next time

we use the same device for that account.”

Others however claimed non-lockstep indicative behaviors. 7 of the 18 partici-

pants (P6, P8, P9, P11, P12, P14, P17) claimed a random choice of accounts and

devices, including made by their remote online employees. P16 claimed to monitor

the reviews filtered, and choose accounts based on their filter avoidance success rate.

To investigate lockstep behaviors in the gold standard fraud data (§ 4.2.2), we

used frequent itemset mining [AS94, MLG12] to discover sets of apps that are co-

reviewed by many accounts in the same or similar order. Intuitively, a set of apps

reviewed by the same, many user accounts, is said to be “frequent”. More formally,

let A = {a1, a2, . . . , an} be a set of apps, and let U = {u1, u2, . . . , um} be a set of

users in Google Play. We say that a set A ⊆ A is s−frequent if |{u∈U ;A⊆Tu}|
|U| ≥ s

where Tu = {a ∈ A; a is reviewed by u}.

We used the A-priori algorithm [LRU14, AS94], to find per-worker maximal

frequent itemsets: frequent itemsets for which none of their immediate supersets

are frequent. 25 of the 39 participants had maximal frequent itemsets with s = 0.5.

That is, they used at least half of their accounts to review common subsets of apps.

59

Figure 4.11: Lockstep matrices for F7 (left) and F32 (right). Rank (color) indicates
the order in which an account was used to review an app. F7 exhibits strong
lockstep behaviors, having used almost all his revealed 15 accounts to review all
the 40 apps (exceptions shown within black rectangles). F32 however exhibits less
obvious reviewing patterns.

Figure 4.11 shows lockstep matrices for two of the ASO workers. In the lockstep

matrix Mij of a worker, columns are user accounts controlled by the worker and

rows are apps reviewed from those accounts. Mij ∈ [nw] denotes the chronological

order of the review posted by account j on app i. nw is the total number of reviews

posted by the worker to app i. ASO worker F7 (left) shows a nearly perfect lockstep

behavior with the same set of 15 accounts used for almost all the 40 apps, and in

the same order. We also see attempts at “variation”: F7 uses his accounts in exact

reverse order to promote app 5. Further, for several sets of apps (black rectangles

in Figure 4.11), F7 does not use the same set of accounts, and uses all his other

accounts in the same order.

However, 14 participants exhibit less pronounced lockstep behaviors, e.g., F36

(Figure 4.11 right). Out of 121 apps reviewed, in only two apps, F36 used more

than 50% of the 17 accounts he revealed.

60

(a) (b)

(c)

Figure 4.12: (a) Relative likelihood for the time difference between launch time and
reviews by ASO workers, for 585 apps that received at least 10 fraudulent reviews.
Vertical dashed line is the median. (b) Per-worker distribution of the maximum
inactive interval measured in days for each targeted app. 8 participants, e.g., F7
and F9 are intensely active, however, F3, F24, F32 and F33 exhibit more evidence
of later rehiring. (c) Density function of number of jobs received by ASO workers
from the same developer. One worker worked on 38 apps of the same developer.
The vertical dashed line corresponds to the median value.

Summary. 6 out of 18 interview participants claimed lockstep-indicative behaviors;

25 of the 39 quantitative study participants exhibit lockstep behaviors, some even

using their accounts in the same order to review multiple apps. This is consistent

with and provides evidence for assumptions made in previous work, e.g., [SMJ+15,

TZX+15, YKA16, XZ15b, JCB+14, CYYP14, SLK15, XZ14, XZ15a, LFW+17].

However, we also report claims (8 of 18 participants) and evidence (14 of 39

participants) of random account and device choice. We conjecture that ASO workers

may adopt evasion strategies, e.g., by using different sets of accounts for different

jobs, and use organic workers, less likely to be frequently active at the same time.

61

4.3.9 Timing: Fraud Event Points

First Reviewers. 14 participants claimed that they have promoted recently re-

leased apps, and either the hiring developer mentions that the app was recently

launched, or that they infer this information based on the number of installs and

reviews when starting the job. Declared numbers range from 1–2 jobs in the past

month (P1, P11) to 20–40 (P9, P10, P13). P7 said that “We even work on apps

which are going to be launched soon. A few of our clients rely on our agency from

pre-launch to launch and then post-launch.”

Re-hires. All 18 participants claimed to have been re-hired for apps that they

previously promoted (total times M = 186.1, SD = 190.7, Min = 15, Max = 600).

P1 said that “If the app is getting bad reviews, the developer will hire us again to

get good reviews. We have seen this case for minimum 30 to 40 apps per year.”

P12 said “I have around 20 regular clients. They hired me for the same app, around

40–50 times.” Further, all of the 18 participants claimed to have regular customers,

who hire them to promote multiple apps.

Quantitative Investigation. Figure 4.12(a) plots the time difference in days, be-

tween the app launch time and the posting time of each review from a fraudulent

account controlled by any of the 39 participants in the quantitative study (§ 4.2.2),

over the 585 apps that received at least 10 fraudulent reviews in total. The distri-

bution is left-skewed, with 50% of the reviews being posted after less than 3 months

after app launch. However, we observe cases where the first reviews from any of

the accounts of our 39 participants, are posted long after the app was released: the

median and 3rd quartile are 113 and 344 days respectively. Thus, about 25% of the

fake reviews were written after one year.

We call the inactive intervals of an ASO worker for an app, to be the time

differences between consecutive reviews that he posted to that app, from accounts

62

that he controls. Figure 4.12(b) shows the per-worker distribution of the maximum

inactive interval computed over each app that the worker reviewed from accounts

that he controls. We show only the workers with enough points to compute statistics.

8 workers have very short inactive intervals, thus are more intensively active for the

apps that they target. However, ASO workers such as F3, F24, F32 and F33, have

longer inactive intervals, suggesting rehiring. For instance, we found 16 cases where

the worker was inactive for more than 8 months for an app.

Figure 4.12(c) plots the density function of the number of apps uploaded by

the same developer, and reviewed by the same worker, over the 39 workers of the

quantitative investigation. We observe that the mean number of jobs assigned is

3.48, and 7 workers have been hired by the same developer more than 10 times. We

found one developer that hired 6 workers to each promote at least 10 apps.

Summary. Our qualitative and quantitative studies provide evidence confirming

observations and assumptions made in previous work, that (1) ASO workers tend to

be hired early after app launch, or even before launch, to control review sentiment,

see e.g., [FML+13, YKA16, LNJ+10, MKL+13, MLG12, Xu13, KM16] and (2) de-

velopers rehire some of these workers at later times, when honest feedback reduces

the product rating [KM16].

4.3.10 Review Writing

We asked interview participants about, and report findings on the source of review

text, plagiarism, and review length:

Review text source. 2 participants (P3, P4) claimed their reviews are original.

The other participants said that they may receive or request the review text from

the developer, and they may also write their own reviews. Several participants (P1,

63

Figure 4.13: Empirical CDF for two extreme behaviors shown by two participants.
All other workers have their corresponding CDF between these two curves and are
not displayed for better visualization. We note that P(Length ≤ 25|F3) = 0.99 �
P(Length ≤ 25|F26) = 0.46, and the all-worker ECDF is closer to worker 7 who
writes shorter reviews.

P5, P6) said that the reviews are given by the developers, but if the developer needs

many reviews, they also need to complement by writing new reviews. P11 reported

that some developers provide review samples, from which they are supposed to

create similar reviews. 3 participants (P7, P8, P15) said that they either prefer or

even ask the developer to provide the review text. P3 and P13 said that they check

and study the app before posting a review. P13 asks developers to provide the app’s

main features to create a review.

Review posting process. The participants revealed a mixed strategy of typing the

reviews directly on the device, and cut-and-pasting them from another source. 11 of

the 18 participants said that they type the reviews directly from their devices. For

instance, P5 said that they cut-and-paste reviews if given by the developer, otherwise

they type their own reviews. Several participants organize teams of remote ASO

workers, thus stated that they are not aware of their review-typing actions.

Review plagiarism: 8 participants (P1, P3, P5, P12, P13, P14, P15, P18) denied

plagiarism and self-plagiarism. 7 participants (P2, P4, P6, P9, P11, P17) however

admitted that they plagiarize reviews. P2 blamed it on developers: “Yes, sometimes

64

Review Text Geometric Mean

good 25
Good 20.83
nice 20.19
app 13.56

Love it 11.83
Awesome 10.95

Ok 10.24
Not bad. Keep it up! :-) 10.09

Great app 9.94
Excellent 9.79
Nice app 9.79

Table 4.3: Top 11 repeated reviews sorted by the geometric mean between the
number of distinct workers that wrote it and the frequency of the review.

we copy, but only if buyers mention the source, for example, apps hosted in other

sites.” P4 said that “we don’t copy-paste. But our reviews are short and sometimes

similar.” P16 said “We have a review data set, and we use those reviews for all

apps. Sometimes we change a the reviews bit for different apps.” P9 said that “Not

exact copy-paste. But sometime we copy and modify reviews from other apps that

are similar.” P12 also complained about some organic users, who are careless and

write random comments, e.g., “nice game” for a non-game app.

Review length: 11 participant claimed that their reviews exceed 10 words (10–40).

P3 and P4 admitted that their reviews are short (3–5 words). P4 motivated this

choice: “We don’t use many words or big sentences because Google may match the

pattern. We always use short messages like “Good app”, “Awesome”, “Fantastic”.

These are very common but easy to write and Google may not complain.” P6 argued

that “if you write too long reviews, they will certainly look like paid reviews, because

real users don’t have time to post a paragraph.”

65

Quantitative Investigation. Figure 4.13 shows the empirical CDF of the review

word count over all the reviews posted by the 39 participants, and also only for F7

and F26, who wrote 542 and 771 reviews respectively, and are the ASO workers

with the most distant CDFs from one another: P(Length ≤ 10|F7) = 0.88 �

P(Length ≤ 10|F26) = 0.06. The overall fake review word count CDF is closer to

F7, with the overall P(Length ≤ 10) = 0.63. This reveals that some workers write

longer reviews than others. We performed a Welch two sample t-test to compare

the differences between the average length of reviews by workers 7 and 26: (H0 :

µ7 = µ26, Ha : µ7 6= µ26), and obtained p− value < 2.2e− 16 suggesting that there

is a statistical difference between the two workers with respect to the length of their

reviews (x̄7 = 36.4, x̄26 = 170.33).

Further, we identified exact review duplicates among the 21,767 reviews posted

by the 39 participants (§ 4.2.2), and sorted them by the geometric mean between the

number of ASO workers who have written the review and its overall frequency. An

advantage of the geometric mean is that it gives a balance between two quantities

that are in different ranges. 993 reviews were empty (154.37). Table 4.3 shows

the next 10 most repeated reviews ordered by geometric mean. We note that these

reviews are short, generic, and app-agnostic. This analysis validates the survey

answers by some ASO workers, that short reviews may be preferable since long

reviews may trigger Google’s defenses and block their content.

Summary. Most interviewed participants said that the text of the reviews is pro-

vided by the developers, but also they can write their own reviews. Consistent

with previous observations, e.g. [MKL+13, FML+13, Xu13, HTS16, LNJ+10, SE15,

MVLG13, XZ15b, KCS18, LCNK17, RA15, YA15, MLG12, KCA17], several partic-

ipants admitted to reuse common linguistic patterns and copy reviews across similar

products. We also confirmed this finding in our quantitative study.

66

Figure 4.14: Rating distribution: workers get mostly jobs that consist in promoting
apps. 92% of reviews were either 4 or 5 stars, while 4.7% were 1 or 2 star reviews.

Further, most participants claimed to write short reviews, which is also reflected

in our gold standard fraud data. Previous work, e.g., [KCA17, MVLG13, JL08,

KCS18, FML+13, LCNK17], also made this observation, and attributed it to the

fraudster lack of experience with the product. However, we also present evidence of

ASO workers who post much longer reviews. We conjecture that fraud evasion can

also be a factor.

4.3.11 Ratings

Rating choice strategies. All 18 interview participants admitted writing mostly

4 or 5-star reviews unless they receive special instructions from the developers.

8 participants (P3, P7, P8, P9, P10, P11, P14, P18) claimed that they receive

guidelines from developers on how to distribute the ratings. For instance, P12 said

that “developers request us to write a few 4, 3 and even few 1 star reviews.”

Several participants claimed to maintain their own ratio. For example, P5, P16,

P17 claimed to post a 10% vs. 90% ratio of 4 to 5 star reviews, P2, P10, P18 have

67

a 20%-80% ratio, P1, P9 have a 30%-70% ratio and P13 has a 40%-60% ratio. 3

participants (P6, P11, P14) claimed that they do not maintain any ratio, while P4

and P12 post only 5-star reviews.

3 participants claimed to post low ratings, in order to avoid detection and cam-

ouflage their behaviors. For instance, P6 said that: “if the average rating goes up

to 4.3 or 4.4, I also write a few 3-star reviews.” P7 said that “when posting more

than 200 reviews, we suggest to the client to have at least 5 to 6 reviews with 3 star

ratings.” P15 claimed to post a 10%-30%-70% ratio of 3, 4, 5-star reviews.

Negative campaigns. When asked if they were ever hired to post negative (1-2

star) reviews, and how many such jobs they worked on, only two participants said

that they participated in such negative review campaigns. P3 had participated in

only one such job, but later morally objected to it, while P4 also admitted to have

worked on only a few such jobs (5-7). The other participants said that they never

participated in negative campaigns. We did not ask participants how many such

campaign jobs they have seen.

The gold standard fraud data we collected from 39 participants confirms that

95.52% of the 21,767 reviews posted from the accounts they control, were either 4

or 5 stars. Only 1.67% were 3-star and 2.81% were 1 or 2 star reviews.

Figure 4.14 shows the rating distribution over the data collected on a set of

16 other fraudsters. We can confirm what fraudster claimed during the interviews,

that is, that they are mostly hired to promote apps and in consequence give positive

reviews. We conjecture that the negative (1 and 2-star) and neutral (3-star) reviews

can not only be the result of negative campaigns, but may also be due to camouflage

strategies of fraudsters as four of the fraud workers claimed during the interview that

this may help the arriving of reviews look legit.

Summary. Both interview participants and gold standard fraud data reveal the

68

prevalence of positive ratings. This confirms observations and assumptions made in

previous fraud detection work, e.g., [MKL+13, ACF13, KCA17, MVLG13, KCS18,

RA15, MLG12, XZ14, XZ15a]. However, we found that negative review campaigns

(or negative ratings) are unpopular. Further, several interviewed participants re-

ported rating-level detection evasion strategies, e.g., the sprinkling of neutral and

negative ratings, among positive reviews.

4.3.12 Proof of Work

After ASO workers finish their jobs, it is expected that they show proof of their

work. 12 participants claimed that they take screenshots of their reviews and send

them to the developers. 5 participants said that they send the usernames of accounts

used to write the reviews. P6 claimed “I check my reviews for 2–3 days and then

send the permalinks that are direct links of the review I post, or names I used to post

the reviews.”

Team-level verification. Team members get their job verified by ASO admins.

For example, P3 mentioned that “[..] we ask everyone to post reviews in the team.

Then I track how many reviews we provide and they also send me the screenshot. If

the buyer requires the screenshots I send him those too.” P6 claimed that “If we get

a report that any review is being deleted then we check that user’s mobile and ask

him to provide a screenshot of the app installed immediately. If he fails to provide

that, I flag him as a bad user and we consider him less for the next tasks.” P9

also checks that their team does not post several reviews from the same device, by

looking at the screenshots sent.

Follow-up. P3 said that “Sometimes, the developer keeps track of the reviews we

post, and gives us 24 hours to show that the reviews are alive. If any review is

69

deleted during this time, we have to re-post the reviews.” P3 stated that ”I have to

ensure the buyer that after 24 hours they will have the required amount of reviews,

after deletion. For that I have to check and provide some reviews again if some are

deleted.” P7 claim to provide guarantees of reviews sticking for 5–7 days and refill

deleted ones for free.

In summary, developers verify that fraudsters satisfy the terms of the job, in-

cluding that posted reviews are not filtered for multiple days. Fraudsters need to

replenish deleted reviews for free. We observed claims of interactive and even team-

level, hierarchical work verifications: teams verify the work claims of their members,

and punish cheaters.

4.3.13 Account Creation

13 of the 18 interview participants, mentioned use of fake name generators, e.g., [FNG],

to name their user accounts. Some of them create account names to correspond to

specific countries and continents, since it is sometimes required by developers. P2

even claimed to send the chosen names to the employer for feedback. P11 claimed

to get random names by using Google search and P7 said that they have their own

database of names. P2 claimed they also modify the name pattern from this fake

name generator site. He said that “Sometimes we change the name format. For

example, if the fake name generator site produce ’Stephen G. Lord’, we remove the

middleinitial ’G.’ from the name to make it more realistic (e.g. ’Stephen Lord’).”

P4, P7 and P14 said that organic ASO workers use their own personal accounts

which have real user names.

7 participants said that they add pictures to the account profiles, which they

retrieve from different sources, e.g., Google search, Google Plus, pixabay.com, to

70

create the illusion of authenticity. P9 said “After we use fake name generator to

create the account name, we search the name in Google Plus and choose a profile,

then we choose a random person from the list of followers and use his image for the

account profile.” P10 however said that “We use no picture as picture defines your

demographics. Buyers do not want this now.”

Creating and Purchasing Accounts. 6 participants (P1, P3, P7, P10, P13,

P16) mentioned that they create new accounts periodically, ranging from once a

day (P10) to once a month (P16). P2 and P9 said that they create new accounts

when they don’t have enough accounts for a job, e.g., when the employer asks for

accounts from a specific city or country. P5 and P18 create new accounts when

Google deletes some of their accounts. 5 participants (P1, P5, P13, P17) admitted

to buying new accounts. P1 claimed to have purchased more than 10,000 accounts,

while P13 claimed to have purchased 47,000 accounts. Two participants (P1 and

P3) age their new accounts (1–2 months) before using them for promotion jobs.

Participants had a diverse set of strategies to create new accounts, and use

them in ASO jobs. Two participants claimed proactive strategies. One participants

claimed to create 30-50 new accounts each month, and age them for at least 2 months

before using them. The participant refered to accounts that are 2 months old to be

“new accounts” and “old accounts” to be accounts that are older than 2 months old.

This participant claimed to use a mix of 50% old vs. 50% new accounts for ASO

jobs. The second participant claimed to proactively create 5-10 new accounts at a

time, at random times, but twice a week on average, as back up. This participant

also claimed to age the accounts for 1 month before using them. One participant

claimed to create new accounts only on demand (on average 30 to 40 at a time) when

the employer asks for more more reviews than the accounts controlled can provide,

or if we don’t have accounts located in the region requested by the employer.

71

Only one participant admitted to purchase accounts from other parties, at ran-

dom times. When asked what they do when the number of reviews requested is

higher than the number of accounts that they have, the participant said that he

purchases new account. One participant said that they collaborate with other fraud

teams. Two participants said that this has never happened. One justified this

statement by saying that his company controls 1,500 user accounts. The other, the

“leader” worker, organizes an organic community of 15,000 members.

4.3.14 Credential Reuse

P1, P13, and P16 said that all their passwords are random. P8, P10 said that they

use the same passwords for all their accounts. P8 said however that he does not

know the password of his team members. P3 said that “I use the same password

for all the accounts, but I use two step verification for all my accounts to prevent

hacking.” P5 claimed that most of his passwords are the same, and for the rest

he uses a pattern based on the account, to make the password easy to remember.

P2 claimed that “we use some common strategies to make the passwords easier to

remember for us.” P11 and P14 use common passwords that are easy to remember.

P6, P12, P14 claimed that their team members (including organic ASO workers)

use their own passwords. P1, P2, P7, P13, P15, P16 said that they write down the

passwords of the user accounts that they control. P2 and P13 store their passwords

in an excel sheet. We observe that memorability seems to affect ASO worker choice

of user account names and passwords, leading to poor authentication practices. This

makes workers vulnerable to account hijack attacks.

Further, despite the importance of stolen accounts for the underground economy

argued by Onaolapo et al. in [OMS16], we found in this study that none of the par-

72

ticipants interviewed, acknowledged using stolen account credentials. We conjecture

that this could be the result of their manual operational preferences as described

above or the evolution of an evasion tactic.

4.3.15 External collaborations

5 participants mentioned that they collaborate with external fraud teams. For

instance, P2 said that his company seeks collaboration with 4-5 other companies

when they can not provide all reviews (e.g., number of reviews required is greater),

and share the profit. 2 participants said that they only tried to collaborate once,

but without success.

Two participants said that they did not see jobs that asked them to collaborate

with other workers, while 2 participants said that they never collaborate with other

workers. Only 1 participant said that he had seen such jobs. All participants had

either collaborated with other teams in fraud jobs, or had heard of other teams

collaborating. One participant said that his company collaborates with 4-5 other

companies when developers request more reviews than they can post, and share the

profit. Another participant reported having a bad first experience with collaboration

which led his company to stop collaborations. Two other participants said that they

have seen other collaborations but they do not do it.

4.3.16 Account Abandonment

9 participants claimed that they have never abandoned an account. 6 participants

mentioned that they abandoned their accounts only if Google blocked such accounts.

P17 and P18 said that they give up on an account only if its reviews are continu-

ously deleted by Google. P2 said that “I remember I used some accounts for many

73

Figure 4.15: Co-review graphs built over the accounts claimed to be controlled
by (left) F13 and (right) F32. Edge width is proportional to the number of apps
reviewed in common by the endpoint accounts. 14 accounts revealed by F13 form a
clique, and on average, any two accounts reviewed 78 apps in common.

different jobs, like YouTube review, Google Place review, app review and other ser-

vices. Google disabled those account for misuse. After that, we dedicated accounts

for app reviews.”. P3 and P9 claimed that they never abandon accounts, but use

them intermittently. P7 claimed that only 2-3% of their accounts were deleted by

Google in the past 2 years. P14 said that this never occurs to them, since they use

organic fraudsters.

4.3.17 Validation and Efficacy of ASO

Validation of quantitative study. Collecting ground truth fraud data attributed

to the workers who created it, is a difficult task. We believe that any process to

obtain such ground truth data needs to involve the workers. In addition, to gain

confidence in the correctness of the accounts claimed to be controlled by the 39

workers, we used co-review graphs built over the accounts claimed to be controlled

by each worker: nodes are user accounts, and edges have weights that denote the

74

Figure 4.16: Density and average weight for co-review graphs of 39 ASO workers.
12 workers have complete graphs (density=1). 30 workers have graphs with density
at least 0.75.

number of apps reviewed in common by the end-point accounts. Figure 4.15 shows

example co-review graphs built over the accounts revealed by F13 and F32.

Figure 4.16(top) shows the average co-review weight of the accounts claimed to

be controlled by each of the 39 ASO workers, i.e., the ratio of the sum of all edge

weights to the number of edges. Figure 4.16(bottom) shows the edge density of

the worker co-review graphs, i.e., the ratio of the number of co-review edges to the

maximum number of edges possible in that graph. The co-review graphs of 12 of

the workers are cliques, i.e., any two accounts have reviewed at least one app in

common. Further, the co-review graphs of 16 workers have an average weight of at

least 10, up to 78.61 for F13. This is in contrast to the probability of co-rating two

apps in Apple’s China App Store, of 0.163% (computed over 0.5 million random

accounts) [XZ14].

In addition, we manually investigated the accounts revealed by the 39 workers,

and found multiple instances of repeated profile photos, mostly of glamorous people,

75

Figure 4.17: Active vs. inactive accounts controlled by the 39 quantitative study
participants. We observe diverse success in keeping accounts active on the long
term.

and simple patterns in the account names.

Efficacy of ASO. To investigate the efficacy of the ASO strategies employed by the

39 workers who participated in our quantitative study, we look at (1) the number

of accounts that they control that are still active, and (2) the impact of their ASO

campaigns.

Figure 4.17 shows the number of accounts controlled by each of the 39 workers,

that are active and inactive (i.e., Google returns 404 not found error). Of the 1,164

accounts known to be controlled by the 39 workers, 120 were inactive (10.30%) in

May 2019. Qualitative study participants stated that they never abandon accounts

unless they are closed by Google or Google filters all their reviews. Thus, Figure 4.17

reveals diverse success among the 39 ASO workers, in terms of being able to keep

their accounts active long term: while a majority of the workers have all their

accounts still active, including the workers with more than 40 accounts, several

workers had a majority of their accounts closed. Notably, 36 out of the 47 accounts

controlled by F34 are closed, as are 29 out of 35 accounts of F31.

In addition, we studied the impact of a worker on each app on which he has

performed an ASO campaign. We denote the impact IA of an ASO worker W for

76

Figure 4.18: Impact of campaigns conducted by the 39 quantitative study partici-
pants, on the average rating of apps for which they campaigned. We observe diverse
success in increasing the average rating of targeted apps.

an app A to be the change in A’s rating during W ’s active interval. Specifically,

IA = Rf − Ri, where Ri is A’s “initial” average rating, i.e., before the first review

posted by the worker for A, from any of his accounts, and Rf is A’s “final” average

rating, after W ’s last review posted for A. Figure 4.18 shows the violin plots of the

distribution of impact values, over all the apps campaigned by each of the 39 ASO

workers, from all the accounts that each controls. We observe diverse abilities of

these workers. For workers like F7, F12, and F21, we observe only positive impact

on the average ratings of all the apps that they target. Most workers however have

mixed impact, with many of their targeted apps seeing up to 5 star increase in

average rating during their active interval, and a few others seeing up to a 2 star

drop. We observe however that overall, apps seem to benefit from the campaigns in

which these workers have contributed.

We conclude that different strategies have different impact on the ability of ASO

workers to avoid detection and impact the ratings of apps that they target.

Our study has several limitations. First, we do not know all the accounts con-

trolled by the 39 ASO workers. Second, we cannot pinpoint the exact strategies that

77

are responsible for the success to maintain accounts active or ensure that reviews

are not filtered. Such an analysis would require detailed experiments that explore

the impacts of altering a single feature of a fraud detection algorithms that is kept a

close secret. Third, the impact that we computed, is oblivious to simultaneous cam-

paigns being conducted by other workers on the same apps. Finally, our computed

average rating of an app is imperfect, since (1) we do not have access to ratings

posted without reviews, and (2) may not correctly model Google’s algorithm, that

e.g., may assign weights to ratings based on perceived usefulness, fraudulence or

recency [Per19]. We describe more limitations of our studies, in § 6.12.

4.4 Discussion and Recommendations

The varied capabilities, behaviors and evasion strategies claimed and exhibited by

the studied participants, suggest that fraud detection solutions should cast a wider

net. While some of our participants seem to fit the mold of assumptions made in

previous work, we present claims and evidence of evolution, perhaps fueled by the

competitive nature of the market. In this section, we propose disruption strate-

gies for each vulnerability point identified in the fraud workflow of Figure 4.1, and

discuss potential implications of our study’s findings, on future fraud detection and

prevention solutions. The opaque nature of commercial fraud detection systems pre-

vents us from establishing the costs and scalability of implementing the proposed

recommendations, or from determining if they are already implemented. However,

manual verification of statements made by ASO workers revealed several weaknesses

in Google’s defense. Some of the following defenses propose to address them.

VP1: Proactive Fraud Monitoring. Recruiting WhatsApp/Facebook groups

need to aggressively accept new collaborators. We verified that these communication

78

channels are easy to infiltrate. Thus, we recommend to proactively detect campaigns

at this point, and flag apps likely to receive fraudulent reviews, and suspicious

accounts engaged in posting fraud.

VP2: Device Fingerprinting. We observe that device models and their per-

country popularity can be used to detect reviews written from accounts claiming

to be from a country where the posting device is not popular. However, this vul-

nerability could also be used by ASO workers to blend in with normal users, by

mimicking the distribution of devices observed in Google Play.

Further, this device-model leaking bug can also be used by computer criminals

to perform reconnaissance on potential victims. Figure 4.7(c) in shows the top 15

most popular devices, out of 11,934, that were used to post 198,466,139 reviews in

Google Play. An adversary could use this bug to for instance, identify owners of

device models known to be vulnerable, e.g., [Bar18, War17]. We notified Google

about the dangers of this bug, see § 5.3.3.

VP3: 1-to-1 Review-To-Device. Our interviews and experiments revealed that

a user can download an application once, and review from all the accounts registered

on a device. We suggest enforcing that a device can be used to post only 1 review

per downloaded app.

VP4: Organic Fraud Detection. We suggest the use of account activity levels to

differentiate organic from inorganic (sockpuppet) accounts. Organic ASO workers

are likely to use their devices continuously, like the normal users that they almost

are. Sockpuppet accounts are more likely to experience inactive interludes given the

dynamic of their workflow (§ 4.3.5). Account activity includes but is not limited to

the number of apps with which the account interacts per time unit, the duration

of such interactions, and the number of other Google services (maps, gmail, drive,

music, etc) to which it is subscribed. Additionally, our data and experiments reveal

79

that some workers may even be posting only laptop-based reviews as all their reviews

were written from devices of unknown models. Our study suggests that these work-

ers are more likely to control sockpuppet accounts. This requires however future

validation.

VP5: Monitor Review Feedback. An account should be able to upvote or

downvote a review only if it has installed the respective app on at least one device.

We verified that this is not currently enforced by Google Play. Fraud attribution (see

below) can also be used to discount upvotes from accounts known to be controlled

by the same ASO worker as the one that posted the review.

VP6: Verify App Install and Retention. We recommend developing protocols

to verify that an app has been or is still installed on the device, e.g., before accepting

a user review from that device. While remote attestation inspired solutions (e.g.,

[Jak18]) will not be secure without device TPMs, defeating such solutions will require

significant investment from ASO workers.

VP7: Account Validation and Re-validation. The cellular provider used dur-

ing account validation can also be used to detect inconsistencies with the claimed

profile (e.g., location) of the user account. Further, several ASO workers mentioned

using SIM cards of others to validate their accounts. Peer-opinion sites could ask

users to re-verify their accounts at random sign-in times (e.g., veiled as “improved

authentication security”), especially if their validating SIM cards have also been

used for other accounts.

VP8: App Usage. Most ASO workers suggest that they use apps before reviewing

them, and keep them installed after review for a while, to mimic genuine behaviors.

However, we believe (but have not investigated) that features extracted from per-

app waiting times, app interaction modes and times, and post-review behaviors,

are different for honest vs. fraudulent accounts, and could be used to pinpoint

80

sockpuppet and organic fraud accounts. For instance, it is suspicious if an app

receives a good review soon after it was downloaded, has received little interaction,

and is quickly uninstalled. Coupled with VP6, mandating wait times to post reviews

will impact the number of apps that an ASO worker device can store, thus the

number of apps that a worker can target at a time.

VP9: Mislead ASO Workers Through Fraud Attribution. SIM cards can

also help attribute sockpuppet accounts to the ASO workers who control them,

see e.g., [HRRC18]. Account-to-ASO worker attribution can be used to reduce

worker ability to adjust to detection [SCM11]: to mislead ASO workers into believing

that their actions are effective, peer-opinion sites could show removed fake positive

reviews only to the accounts used to post them, the other accounts suspected of

being controlled by the same worker, and the account of the app developer. This

would force ASO workers to partition their account set into monitoring-only sets

that cannot be used to post fraudulent reviews, and regular fraud-posting accounts.

VP10: Once a Cheater, Always a Cheater. Our qualitative and quantitative

studies (§ 4.3.9) provide evidence that developers rehire ASO workers not only for

the same app, but also for other apps that they develop. We recommend to monitor

overlapping accounts that review sets of apps by the same developer, and redflag

fraud developers early on.

4.5 Limitations

Recruitment Bias. We have not performed a complete exploration of the ASO

worker universe, and cannot claim that our participants are a representative sample.

Our recruitment process is biased, since we selected only candidates who (1) we could

reach out to, (2) responded, (3) were English speakers, (4) were willing to participate

81

after approving the consent form, and (5) claimed qualifying capabilities (i.e., control

at least 100 accounts, have at least 1 year of ASO expertise and participated in at

least 100 ASO jobs, § 4.2.1).

For instance, out of the 560 contacted workers, 72 replied to our invitation, 25

qualified, and 18 agreed to finally participate. Thus, other workers will likely have

both fewer and more capabilities than the participants in our studies. However,

from the answers and data that we collected, we reveal previously unknown ASO

strategies, provide insights into previously proposed defenses that may be effective

against them, and report Google defense vulnerabilities.

We leave for future work an investigation into the ability of deception and more

substantial financial incentives, to increase the recruitment success rate and identify

novel ASO strategies. We believe that our approach is a best effort in recruiting

workers, without the use of deception.

Generalization of Results. We have used crowdsourcing sites such as Upwork,

Fiverr, Zeerk, and Peopleperhour for years, and have found them to be reliable

sources of ASO activities. In addition, we have also found and used, after being

pointed out by multiple ASO worker contacts, large groups in Facebook, that spe-

cialize in ASO. However, we do not claim that we were able to contact most of the

active ASO workers.

The participants in our studies also claimed expertise in fake reviews and ratings

in Google Maps, Apple Store, Amazon, Facebook and Twitter, fake installs in Apple

App Store, fake likes and followers in Facebook and Instagram, and influential tweets

in Twitter.

However, we did not ask participants, questions about their strategies in other

platforms. Thus, we do not claim that our findings apply to other sites or other

types of ASO work.

82

Validation of Findings. Due to the sensitivity of the topic surveyed and data

collected, we did not perform the quantitative and qualitative studies on the same

participants. Our quantitative study is also performed only on a subset of the ac-

counts controlled by 39 participants. We have corroborated multiple survey answers

with quantitative measurements, and also manual verification by the authors. In

§ 4.3.17 we describe the process we used to validate the data collected in the quanti-

tative study. However, several participant claims are difficult to validate (e.g., team

organization, size and location, capabilities, interactions with employers, number

of devices controlled, etc). The particular nature of our participants, makes any

suspicion on these topics, legitimate.

4.6 Discussion of Reasons to Participate

We now discuss possible reasons for the recruited participants to be willing to talk

about their ASO activities, given the potential for their participation to affect their

livelihood and put them at legal risk.

Participant Openness. From our interaction with many ASO workers, not only

the ones involved in these studies, we found that many report the need to frequently

discuss their work and capabilities, e.g., to convince prospective employers that they

have the expertise to do the work. While such disclosure of their strategies may only

be required to convince the potential buyers, they also discuss them more generally

with other people (often to find ways to improve them). Hence, the information

that we obtained from our participants is not a piece of hidden information that we

managed to get by any tricks; rather it is information that the participants share

with others willingly. While this information is not written anywhere in formal text

(and hence probably has not been discussed much in academia), it was clear from

83

our interaction with our participants that this information was not secret in their

social and professional sphere.

ASO Legality and Stigma. There are no direct local legal policies to criminalize

black hat app search optimization in many countries of the Global South. For exam-

ple, in Bangladesh, where most of our participants are from, there is not direct law

to prevent such activities. The law closest to this issue is a recently passed ICT Act

that prohibits the dissemination of incorrect information over the Internet [Ban18a].

However, this law has mostly been applied to control the dissemination of politically

motivated, unfounded information over social media (see [Fre18, Ban18b, AHG+17],

for example). However, ASO work has never been addressed by law enforcing agen-

cies. A similar situation is also present in many other countries in the Global South

including India, Pakistan, and Vietnam. Hence, the job of our participants was not

illegal or unethical according to their own law of the land.

Furthermore, we asked the qualitative study participants questions on the per-

ceived legality of their work, “Are there any legal challenges for you in this job?

How fair do you think are those legal challenges?”. 11 participants answered. All

participants said that they have never faced any kind of legal issues. 3 participants

(P1, P3, P5) said that the only issue they have faced is that they can not openly

advertise their black hat ASO expertise in crowdsourcing sites, since the sites would

block their accounts. Instead, they advertise white hat ASO expertise. Further, 5

participants (P1, P2, P4, P7, P14) said they are posting reviews like real users, thus

their activities are legal. For instance, P4 said “This is the art of my approach and

also what ensures my success. Since I am doing this in a proper way, there has been

no legal issue so far”. These responses confirm that our participants did not face

any legal complexities imposed by their own government.

84

Moreover, ASO work is not stigmatized in most countries in the Global South.

HCI scholars in post-colonial computing argue that many ideas that western scholars

hold around how computers are used in non-western contexts are often biased by

their own experiences in the West [IVD+10]. We argue that the stigma around ASO

is a similar case: While in many parts of the West, ASO work might occur as a crime,

a job that needs to be hidden, that is not true in countries like Bangladesh, India,

Pakistan, or Vietnam. Most local citizens do not understand the technical details

of ASO, making it hard for them to judge the work, while in fact, any work with

computers and the Internet is considered prestigious in many communities [PLT09].

These arguments further suggest that the use of deception is not required in

studies such as the ones we conducted in this work, when recruiting participants

from countries in the Global South.

Affinity and Financial Incentives. The author who recruited and interviewed the

participants, had cultural affinity with the participants, which allowed for rapport

establishment. Further, the rate of $5 for each 15 minutes of participation (i.e., $20

per hour) is consistent with hourly rates advertised by ASO workers in crowdsourcing

sites, exceeds the minimum US salary ($7.25 per hour), and significantly exceeds

the average hourly salary in e.g., Bangladesh (332 BDT ≈ $3.93 [Sal19]), India (96

INR ≈ $1.38 [Sal19]), at the time of writing.

Disclosure Despite Risks. It might be interesting to think why our participants

shared their strategies with us when they knew that our study might result in

developing counter-strategies. We did not ask them that question. However, from

the conversation that we had with our participants and from the living experiences

of two of our authors in Bangladesh, we can make the following educated guesses:

• Although we told participants that others could try to develop solutions to

counter their strategies, from the tone of their responses it was often evident

85

that they were not entirely convinced that this was a real threat for them.

Participants also often declared their teams to have substantial capabilities

including access to many devices, accounts, and hard-to-detect organic ac-

count holders. They also shared with us how their strategies changed when

the companies came up with any countermeasures. These responses made us

believe that our participants were not scared of the threat our study might

impose upon their work.

• Our participants had expertise in many other types of jobs, including fake re-

views and ratings in Google Maps, Apple Store, Amazon, Facebook and Twit-

ter, fake installs in Google Play and Apple App Store, fake likes and followers

in Facebook and Instagram, and influential tweets in Twitter. Furthermore,

these ASO workers often also offer other kinds of digital services (including:

designing a logo, responding to surveys, etc.), and their job is not entirely

dependent on ASO work. Hence, we conjecture that the participants did not

find the sharing of their ASO strategies for Google Play, to be a significant

risk.

• Several of the revealed strategies may be open-secret in Bangladesh. In fact,

while conducting this study, some of our contacts in Bangladesh who were

not involved in this business confirmed several of these strategies, which they

had heard from their social contacts. This shows that at least some of the

information that we found from our participants was not secret among the

ASO workers only, but was knowledge shared in the society. Our qualitative

study allowed us to be the first to find and share this knowledge with the

research community.

86

Understanding of Risks. While we did not explicitly test whether the participants

clearly understood the risks involved in participating in our study (which would go

beyond our study protocol), our experience of talking to our participants clearly

reflected that they understood the risks quite well. In fact, several of our interview

participants provided detailed explanations on their strategies to address such risks,

i.e., to avoid detection (§ 4.3.5). They also explained to us how they come up with

new strategies to handle new “challenges” that occur when sites change their rules.

Intentional Misleading. We have used data from a quantitative study, and also

manual validation, to confirm several statements and strategies reported by our

participants. While by association, we feel inclined to believe other participant

statements (e.g., that are hard to verify remotely), given the particular nature of

our participants, we agree that any suspicion is legitimate. Hence, we present the

hard-to-verify findings, to be taken with all possible limitations.

87

CHAPTER 5

DEMYSTIFYING DEVICE USE IN APP SEARCH OPTIMIZATION

5.1 Introduction

Understanding the behaviors and strategies employed by app search optimization

(ASO) workers to promote products in online app stores such as Google Play, is

key to develop effective and appropriate detection and response solutions. This

is because ASO workers have been shown to develop effective product promotion

and detection-avoidance strategies [ZXL+18, RHR+19]. For instance, while some

workers pool into teams and share resources (e.g., devices, accounts), others, e.g.,

organic workers, were shown to work alone using their personal devices and ac-

counts [ZXL+18, RHR+19].

While existing fraud detection solutions can be effective against dedicated ASO

workers, promotion campaigns that involve organic workers are harder to detect,

as they are difficult to differentiate from grassroots movements. More specifically,

the higher degree of independence of organic workers may help them evade stan-

dard fraud-detection signals, e.g., lockstep behaviors [SMJ+15, TZX+15, YKA16,

XZ15b, JCB+14, CYYP14, SLK15, XZ14, XZ15a, LFW+17] and posting reviews in

bursts [FML+13, HTS16, LFW+17, HSB+16a, BSLL+16, XZLW16, Xu13, GGF14,

BXG+13, KCA17, LNJ+10, MVLG13, MKL+13, KCS18, LCNK17, YKA16, FLCS15,

?, XWLY12, CYYP14].

In this thesis, we posit that, in the Google Play app market, the interaction of

ASO workers with promoted apps is distinguishable from the regular, personal use

of installed apps. For instance, we expect that promoted apps tend to be reviewed

soon after being installed, and receive little use before being uninstalled. Figure 5.1

illustrates the interaction timelines for an app promoted by two distinct workers

88

Figure 5.1: App-interaction timelines for two ASO workers (top) and one regular
user (bottom). Worker timelines start with the app installation event (type 4 on y
axis), followed by several review posting events across several days (type 3), with
no interaction with the app. In contrast, the regular user timeline shows frequent
interaction with the app in the form of placing the app in the foreground (type 2
event), but no review even after 5 days of monitoring.

(top) and a normal timeline from a regular user (bottom). Further, we posit that

organic workers differ in their use of devices, when compared to workers dedicated

to app promotion, and regular mobile device users.

To investigate these hypotheses, we need, however, the data that is only available

with the app market developers who have a default app installed on the devices of

their users, e.g., the Play Store app. To address this limitation and open access to

the research community, in this thesis, we introduce RacketStore, a framework to

collect data from, and compare the app and device use of ASO workers and regular

users. The RacketStore app periodically collects detailed snapshots of device and

89

app usage from the devices where it is installed, and reports them to a backend

server, where they are aggregated with corresponging data collected from the Google

Play app store and the VirusTotal [Vir20] site.

We have recruited participants from Facebook groups that specialize in ASO

work, and through ads shown in Instagram. RacketStore has received 943 installs

from 803 unique devices: 580 devices controlled by ASO workers and 223 devices

of regular Android users. We found that 31 of the worker-controlled devices belong

to a new category of exchange workers, who magnify their capabilities by swapping

ASO jobs with peers, without payment. We have captured 58,362,249 snapshots

from the participating devices, including the 12,341 apps installed and in-use on the

participant devices, and their 110,511,637 reviews from Google Play. We identified a

new vulnerability in the Google ecosystem that allowed us to map Gmail addresses

to Google IDs, and thus retrieve the reviews written by accounts registered on

participant devices.

Together, the 580 worker-controlled devices had 10,310 Gmail accounts registered

on them and at the time of writing Google Play was still displaying 217,041 reviews

posted from them.

Further, we have conducted interviews with 13 of the participants who installed

RacketStore, to advance our understanding of their observed behaviors, including

their perception of privacy, malware and legal challenges associated with their work.

We use extracted insights to introduce features that model the usage of an app

on a device, and train learning algorithms to distinguish suspicious from personal

patterns of app interaction. We show that supervised models distinguish between

apps suspected of promotion and apps used for personal purposes, with an F1-

measure of 99%. Such a classifier can be used to disentangle personal from suspicious

activities of organic workers and provide an appropriate response to detected fraud.

90

We further introduce features that model the general use of a device by its owner

and use semi-supervised learning to cluster devices based on the similarity of their

behaviors. Out of 166 worker devices that reported sufficient data for evaluation,

we found (1) 107 to be controlled by organic workers, (2) 19 to be controlled by

power workers, i.e., had more than 1,100 Gmail accounts registered, had written

more than 44,400 reviews, and had each used in a suspicious manner at least 89%

of their installed apps, and (3) 40 to have such low levels of promotion activities to

be mislabeled as regular devices.

In summary, we introduce the following contributions:

• RacketStore. Introduce a framework to study the interaction of users with

their Android devices and the apps that they install, that proved compatible

with 298 device models from 28 Android manufacturers [§ 5.2].

• Quantitative and Qualitative Studies. Present empirical data from Rack-

etStore deployment on 803 unique devices controlled by ASO workers and reg-

ular users [§ 5.3.1], and insights from interviews with 13 participants [§ 5.3.2].

• Fraud Detector and Classifier. Develop a supervised classifier to detect

apps installed only to be promoted, and an unsupervised classifier to differ-

entiate between ASO-dedicated devices, organic worker devices, and devices

used solely for personal activities [§ 5.4].

• App and Device Use Dataset. Build datasets of app and device usage,

integrated with Google Play reviews and VirusTotal analysis, for devices con-

trolled by regular Android device users and a variety of ASO workers, including

a newly identified exchange worker type [§ 5.5].

91

Figure 5.2: RacketStore architecture consists of a mobile app installed by partic-
ipants and a back-end server that collects and aggregates snapshots reported by
deployed apps.

5.2 Data Collection Infrastructure

We have developed RacketStore, a framework to collect information from the An-

droid devices of ASO workers and regular users. Figure 5.2 illustrates the Rack-

etStore architecture, that consists of the RacketStore mobile application, a web

application that handles different aspects of the data collection and validation pro-

cess, and the database servers where data is stored. In the following we detail each

component.

5.2.1 RacketStore App

We have developed the RacketStore app in Android to help us investigate fraudulent

and honest behaviors of Google services users. RacketStore acts as a portal to a

honeypot app market. Upon first start-up, to comply with Google anti-abuse policy

92

(a) (b)

Figure 5.3: RacketStore mobile app’s screenshots. (a) Registration screen to enter
invitation code sent to participants. (b) Main layout of the app, showing different
app categories.

[ant20], RacketStore first asks for explicit consent of our privacy policy, then shows

an in-app disclosure of the data being collected.

Sign-in Interface. RacketStore’s sign-in interface (see Figure 5.3(a)) asks the

participant to enter a unique participant ID, a 6-digit code, that we send upon

recruitment (§ 5.3.1) through an offline channel, e.g., e-mail, Facebook messenger.

This code serves the dual goal of preventing RacketStore use by non-recruited users,

and of allowing us to match data and send payments to workers and honest users.

Only after the user has accepted to participate in our study and has agreed to

the data collection process, are they given the passcode. The app does not collect

any information if the user has not entered the 6-digit passcode. Upon sign-in,

RacketStore generates the install ID, a 10-digit random identifier.

93

Initial Data Collector. The initial data collector module (Figure 5.2), prompts

the user with several questions on their review posting experience: (1) Did you ever

write a review for an app in Google Play?, (2) Have you ever been paid to write a

review in Google Play?, (3) Have you ever written paid reviews from this device?,

(4) How many user accounts do you control in Google Play?, (5) How many mobile

devices do you own or can access?, and (6) For how many days can you keep our

app installed?.

The initial data collector module retrieves the user answers, and also (1) the

list of apps installed on the device, (2) device information including Android API

version, device model, manufacturer, and a unique device identifier (Android ID)

[and17], and (3) whether the device is an emulator, using Flutter built-in methods

and legacy detection systems [flu20].

Snapshot Collector. The snapshot collector module periodically collects informa-

tion with two levels of granularity, slow and fast, described next. The slow snapshot

collector is triggered by an alarm every 2 minutes, to extract the following informa-

tion:

• Identifiers. Install ID, participant ID, and Android ID.

• Registered accounts. The accounts registered on the device across different

services.

• Stopped Apps. The list of stopped apps. Starting with Android 3.1 all

applications upon installation are placed in a stopped state: the application

will only run after a manual launch of an activity, or an explicit intent that

addresses an activity, service or broadcast. The user can also manually force

stop the application.

• Device status. Internal and external device memory, save mode status

(on/off), sim card status (on/off).

94

The “fast” snapshot collector module further captures the following data, with

a 1s granularity:

• Identifiers. Install ID and participant ID.

• Active app. The app currently running on the foreground.

• Device status. The screen status (on/off) and battery level.

• App install/uninstall events. Report deltas between the current and pre-

viously reported sets of installed apps. For each installed app we use the

PackageManager API [pma20] to report (1) install time, (2) last update time

and therefore update events, (3) required permissions. Further, we report the

MD5 hash of the APK file of the app.

RacketStore declares two broadcast receivers to detect turn-off events and to

launch the app upon reboot.

Data Buffer Module: Processing Snapshots. The data buffer module (see

Figure 5.2) processes both types of snapshots leveraging the device’s local storage.

Every time a snapshot is taken, the data is written to different accumulating files

depending on the snapshot’s type. Every time the accumulation file grows to 8 KB

and 100 KB in size for the slow and fast types of snapshots respectively, they are

compressed and a new accumulation file is created where the following snapshots

continue to be recorded. We selected these threshold values based on the observed

battery and bandwidth consumption, which we sought to minimize. Then, the alarm

that fires every 2 minutes looks for any existing compressed files in the mobile app’s

directory and sends them to our server. Upon file reception, the server returns the

md5 hash of the received data in order for the mobile app to validate the transfer

with its own hash calculation. If both hashes are equal, the app deletes the file from

disk. This transfer mechanism allows for resilient communication.

95

RacketStore requires participants to grant two permissions that we have included

in the AndroidManifest.xml file: PACKAGE USAGE STATS and GET ACCOUNTS [and].

However, declaring the first permission implies intention to use the API and the

user still needs to grant the permission through the Settings application which we

open upon sign-in. On the other hand, the GET ACCOUNTS permission is shown as a

regular Android permission with a pop up at run time and it allows access to the

list of accounts on the device.

5.2.2 Web Application

We have built a web application that supports RacketStore on the server side. We

implemented the Sign-in REST API that processes registration requests from the

client app, interacts with the Mongo database where the credentials are stored and

sends the response back to the client. The Snapshot Collector Engine receives

the compressed snapshot files from the app, decompresses, and inserts them into

the database. The Recruitment Website is an informative website where we offer

information to participants about our study, ask for consent, and collect their emails

to send instructions on how to proceed (§ 5.3.1). The Backend API is comprised

of three subsystems: (1) a review crawler that scraps reviews from Google Play

given an app name and a device model (see § 5.5), (2) a Google ID crawler that

maps Gmail accounts to a unique Google ID (see § 5.5) and (3) a usage monitor

that triggers when no activity is detected from the app installs, i.e., sends email

reminders to participants whose devices have not sent data to our servers in the last

12 hours.

Finally, we developed an internal dashboard to monitor the data collection pro-

cess, and test and validate the data sent from the app to the server. Our stack is

96

Linux-based and built on Python, PHP, JavaScript, MongoDB, and MySQL.

5.3 Methods

Our study was conducted in two steps. The first step of our study involved the

deployment of RacketStore with a group composed of both ASO workers and regular

Google Play users, and understanding their usage patterns through quantitative

analysis. In the second step, we conducted interviews with 13 ASO workers and

regular users of Google Play to further advance our understanding of their usage.

5.3.1 Deployment of RacketStore

Recruitment of ASO Admins. We recruited ASO admins from the Facebook

groups that we found to be dedicated to product promotion. Specifically, we posted

calls to recruit participants who would be able to install and provide reviews on the

7 Facebook groups dedicated to Google Play app promotion. Many group members

commented on our posts, expressed their interest, and asked us communicate with

them over the Facebook inbox for further details. We contacted 49 such members

over the Facebook inbox. We shared with them the details of the recruitment

instructions (see section 7). We asked them to reply if they were interested, and

also provide the following information: (a) whether they were ever hired to write

reviews for Google Play apps before, (b) if they were currently involved in app search

optimization jobs, (c) briefly describe the nature of those jobs, and (d) how many

accounts they had control over, and how many mobile devices they owned. A total

of 24 workers agreed to participate providing those pieces of information. We sent

them the participant ID (§ 5.2.1) alongside a YouTube video that explained how to

sign up for RacketStore. 17 workers ended up taking part in our studies. Each of

97

these 17 participants claimed to control large groups of ASO workers and to be able

to install RacketStore on at least 100 devices.

Recruitment of Exchange Workers. Nine out of the 16 Facebook groups that

we identified, offered exchange reviews across different platforms including Google

Play, Google Maps, Yelp, Amazon, and the App Store. The posters asked members

to review their products in exchange of them providing reviews for those members’

products. We responded to 97 exchange reviewers through their posts and subse-

quently over Facebook inbox, and asked them to participate in our study. A total

of 38 people agreed to participate and installed RacketStore. In exchange, we had

to provide feedback for their products. We installed the apps that they asked us to

review, used them, and provided an honest review that represented our actual expe-

riences with the apps. We also mentioned in the reviews that those were sponsored

reviews.

The 17 ASO admins are from Bangladesh (9), Pakistan (5) and India (3), and

the 38 exchange workers are from Bangladesh (19), India (8), Pakistan (8), Morocco

(2) and Tunisia (1).

Recruitment of Regular Users. Further, we have recruited regular Android de-

vice users through commercial advertisements on Instagram (see Figure 5.4). We

chose Instagram in order to avoid our ads being seen by the members of the above

Facebook groups, leading to us again recruiting ASO workers. Our ads point to a

landing page (see Figure 5.5(a)) that explained the purpose of our study. We posted

the ads intermittently between December 17, 2019 and April 15, 2020, spending a

total of 79.23 USD. Since cultural differences could affect patterns in mobile de-

vice use [WK05, cul12], we targeted regular users of similar demographic with the

recruited ASO workers. Concretely, we used Facebook’s audience creation function-

ality to ensure that our ads were shown only to mobile devices of Instagram users

98

Figure 5.4: Ad shown to audience on Instagram Feed, Explore, and Stories. Upon
clicking, users are sent to a website where the study is explained.

who are from Bangladesh (Chittagong, Dhaka, Rajshahi), India (Bangalore, Mum-

bai, New Delhi), Myanmar (Yangon), Pakistan (Islamabad), and Vietnam (Hanoi),

are between 18 and 40 years old, speak English, and show interests related to Google

Play and Android applications as specified on their Facebook profiles.

According to the Facebook Ads Manager, 61,748 users were reached by our ads

that were shown a total of 136,022 times. 2,471 of these users landed on our web

page after clicking on the Instagram ads. The landing page introduced our study,

explained the payment method (i.e., Paypal, Bitcoin or Litecoin), and provided

them with the option to either withdraw or sign up by acknowledging and agreeing

with the terms and conditions that included the consent form explaining in detail the

information that we would collect from their phones. If the user consented, we asked

them to register in the study by submitting their email address (see Figure 5.5(b)).

A total of 614 participants consented and sent us their e-mail addresses. We then

sent an automatic confirmation email along with the Google Play link to download

the RacketStore app (§ 5.2) and a six-digit unique participant ID that the participant

99

(a) (b)

Figure 5.5: Screenshots of the user study web page. (a) User study landing page.
(b) Registration page shown only after user has consented to participate. We ask
users to enter their email addresses, and we then contact them with next steps.

would need to type-in to the app. RacketStore received 233 installs from the 614

consenting participants.

Participant Payments. We paid each participant who installed RacketStore on a

per device basis: 1 USD to install the app and 0.2 USD for each day on which the

participant kept the app installed. The process of registering in the study, providing

consent and installing RacketStore takes an average of 3 minutes. Subsequently, the

participant is not required to perform any other activities, e.g., open and interact

with the app.

In summary, we recruited (1) 17 ASO administrators who provided 672 Rack-

etStore installs (M = 33.47, SD = 44.66, Max = 150), (2) 38 individual exchange

workers, and (3) 233 regular users. We note that for the 569 devices provided by

the ASO admins we do not have information about the type of worker who controls

them, e.g., organic, team-based, etc.

5.3.2 Interviews

To deepen our understanding of our findings, we conducted a small scale follow-up

interview study. We have developed semi-structured interview questionnaires for

both ASO workers and regular users (see section 7). For the workers, our goal was

100

to understand their perception of various problems that we discovered. On the other

hand, for regular users, an additional goal was to confirm the labels, i.e., to make

sure that they were indeed the kind of users who never provided paid reviews. For

this, we reached back to our participants, and asked them if they would be interested

in the follow-up interviews.

A total of five admin workers (two from Pakistan, two from Bangladesh, one

from India), five organic workers (four from India, one from Bangladesh) and three

regular users (two from India, one from Pakistan) agreed and participated in the

interview study. We note that this interview study was conducted between February,

2020 and April, 2020, when the COVID-19 pandemic was unfolding throughout the

world, and it was often difficult to publicize our call among the pandemic related

posts. Also, the pandemic might have affected the life and work of our participants.

These issues might explain the low participation in our interview study. However,

based on the rigor of qualitative studies, instead of quantity, we focus on the depth

of our data, that revealed relevant insights for our study.

The interviews took 15-30 minutes, were conducted over Whatsapp and Skype,

in English, Bengali, and partial Hindi as appropriate by the members of our research

team. The interviews were audio recorded with the permission of the participants.

The interview scripts were later anonymized, translated, and transcribed by the

members of our research team. We used Grounded Theory methods [CB07] to

develop our understanding around the perception, usage, and challenges for paid

reviews on Google Play.

Participant Payments. We paid interview participants 5 USD for each 15 min-

utes of their time. Thus, our payments are consistent with hourly rates adver-

tised by ASO workers in crowdsourcing sites, exceed the minimum US salary (7.25

USD per hour) and the average hourly salary in e.g., Bangladesh (359 BDT ≈ 4.23

101

USD [Sal19]), India (201 INR ≈ 2.66 USD [Sal19]) and Pakistan (775 PKR ≈ 4.80

USD [Sal19]) at the time of writing.

In the rest of the chapter, we use A1,..,A5 to denote the five ASO admins who

participated in our interviews, O1,..,O5 to denote the five organic workers, and R1,

R2, R3 to denote the regular users.

5.3.3 Ethical Considerations

The full study procedure was examined and approved by the Institutional Review

Board (IRB) of a major North American university. For the purpose of clarification,

we highlight here a few ethical considerations that were essential for conducing this

research:

Honesty and Consent. We did not use any deception in our study. Before

collecting data, we explained to the participants the identity of the researchers, the

research objectives, the data that we wanted to collect, and the potential impacts

on participants. Please check the recruitment message and introductory script in 7.

Participation in this study was completely voluntary.

Data Protection. We used GDPR [Par16] recommended pseudonymisation for

data processing and statistics, and other generally accepted good practices for pri-

vacy preservation. After data collection, we deleted all device-to-identity links and

only generated aggregated statistics that allowed us to validate our assumptions. We

also responsibly disclosed the Google vulnerability that allowed us to map e-mail

accounts to Google IDs, through Google’s Vulnerability Reward Program [GVR].

No PII of our participants was disclosed outside the research team.

Compensation and Professional Security. The compensation of the partici-

pants was determined according to the fair market rate. We made sure that the

102

rate is not so low that the participants were exploited, and also not so high that

they were coerced. There might also be a larger concern about the overall impact of

our research on ASO work, in general, that might impact their profession. However,

previous work by Rahman et al. [RHR+19] explains why studying the ASO work-

ers does not impact their livelihood. Nonetheless, we disclosed and explained this

possibility to our participants, and we did not hear any concern from any of them.

ASO Legality and Stigma. There are no direct local legal policies to criminalize

black hat app search optimization in many countries of the Global South. For

example, in Bangladesh, there is not direct law to prevent such activities. The law

closest to this issue is a recently passed ICT Act that prohibits the dissemination

of incorrect information over the Internet [Ban18a] and has never applied to ASO

work. A similar situation is also present in many other countries in the Global South

including India, Pakistan, and Vietnam. Hence, the job of our participants was not

illegal or unethical according to their own law of the land.

We also asked ASO admins questions on the legal aspects of their work, Do you

need to be careful about anything? What are your common fear or risks?. Partici-

pants claimed that they are not afraid, for instance, ASO admin A2 said that “What

we’re doing is a legal and right job. So no need to be afraid”.

5.4 App and Device Usage Features

We posit that the data snapshots collected by RacketStore can be used to (1) detect

apps that are installed in order to be promoted. and (2) to detect differences in

behavior between devices controlled by different types of workers.

App Usage Features. To investigate the first hypothesis, we use data collected

from a device D to extract features that define how the user uses an app A installed

103

on D. In the following, let ID = [TI , TU] denote the install interval of RacketStore

on device D, i.e., defined by the first install and last uninstall times.

• # Accounts Review. Number of accounts registered on device D from

which app A was reviewed in Google Play (1 feature). Also, the number of

accounts registered on D that reviewed app A, (1) before RacketStore was

installed, (2) while it was installed, i.e., during ID and (3) after RacketStore

was uninstalled (3 features).

• Install to Review Time (App). Length of interval between the time when

A was installed on D and when it was reviewed by an account registered on

D (3 features: mean, median and standard deviation over all the accounts on

D that reviewed A).

• Install to Review Time (User). Length of interval between the time when

an app A was installed and when it was reviewed by an account registered on

D, for all the apps installed and that have been reviewed from the device (3

features: mean, median, and standard deviation).

• Inter-review times. Time difference between all consecutive reviews posted

for app A from accounts registered on device D (3 features: mean, median,

and standard deviation).

• Opened. Whether app A was opened on multiple days on device D (1 feature,

boolean).

• Daily App Usage. Number of snapshots per day when the app was the

on-screen app (3 features: mean, median, std dev, during ID).

• Daily Snaps. Number of snapshots captured per day from device (3 features:

mean, median, std dev, over interval ID).

• Inner Retention. App A install duration (1 feature computed as percentage

of entire ID interval).

104

• Persistence Retention. Whether the app was still installed after unin-

stalling RacketStore (1 feature, boolean).

• Previously Installed. Whether the app was installed before the installation

of RacketStore (1 feature, boolean).

• Normal/Dangerous Permissions. Number of normal and dangerous per-

missions requested (2 features).

• VT Flags. Number of flags raised by VirusTotal AV tools that categorize the

app as malicious, suspicious, or undetected (3 features).

• # Installs/Uninstalls. The number of times the app was installed and

uninstalled during ID (2 features).

• Granted/Denied Permission. The number of permissions requested by the

app that have been granted and denied by the user (2 features).

• App Size. Average size of the app computed across all its versions found on

VirusTotal (1 feature).

Device Usage Features. To evaluate the second hypothesis, we introduce several

features that model the use of a device D: (1) app suspiciousness, i.e, the number of

apps on D whose usage was flagged as suspicious by the above app usage classifier,

divided by the total number of apps installed onD, (2) the number of Gmail accounts

registered on D, (3) the average number of reviews per account written from those

accounts, and (4) the total number of reviews written from accounts on D.

5.5 Data

We have collected data between October 2019 and April 2020 from 943 devices that

installed RacketStore.

105

Snapshot Fingerprinting and Coalescing. To properly analyze the data col-

lected from participating devices, we needed to map each captured device snapshot

to a single device. As mentioned in § 5.2, the first snapshot from a device includes

(1) the 10-digit install ID computed by RacketStore upon installation, (2) the 6-

digit participant ID, uniquely generated by us and assigned to each participant, and

(3) the Android ID. We expected that the combination of the participant ID, install

ID and Android ID will be enough to provide this mapping. However, we found

that the same device can be responsible for multiple install events of RacketStore,

i.e., where a different combination of install ID, participant ID and Android ID is

reported in different snapshots from the same device. For instance,we encountered

cases of different ASO admins, with different assigned participant ids, who shared

some devices. This can occur for instance if (1) the workers are employed by the

same organization, thus have access to a common set of devices, or (2) the admins

have access to sets of workers that overlap. Such workers can install RacketStore

at different times believing this to be a repeat campaign. We also observed workers

who repeatedly install and uninstall RacketStore, in order to get paid multiple times

for the installation. Further, for some installs, due to suspected incompatibilities

(there are over 24,000 types of device models), the collected snapshots did not in-

clude the Android ID and device information. We note that we did not capture

device IMEI since it requires an additional dangerous permission which we wanted

to avoid, and it only applies to cellphones.

To address this problem, we used the following process to fingerprint snapshots.

Specifically, we first grouped all captured device snapshots into n candidate devices,

based on their install ID. We then compared the
(
n
2

)
pairs of candidates to identify

and coalesce candidate devices with different install IDs that are actually the same

device. First, for each install ID x, we compute the RacketStore install interval

106

[Tf , tl] where tf and tl are the first and last timestamp recorded in our database

from snapshots that belong to x. We then declare as different devices, install pairs

(x, y) that have overlapping installation intervals. We then coalesced candidate

device pairs that do not overlap on installation intervals based on their Android ID

(if present): if the pairs have the same Android ID the two installs belong to the

same device, otherwise they are different devices.

To validate this approach, we have computed the Jaccard similarity between

candidate device pairs, i.e., (1) their sets of tuples (a, t) where a is an app and t

is the install time registered by the Android API for app a, and (2) their sets of

registered accounts. We found that candidate device pairs with different Android

IDs had a Jaccard similarity for installed apps of at most 0.5625. Candidate device

pairs with Jaccard similarity for registered accounts that exceeds 0.53, had low

similarity for installed apps.

After this process, we had 803 unique devices: 549 devices controlled by ASO

workers, 31 devices controlled by exchange reviewers, and 223 devices controlled by

regular participants recruited through Instagram ads (§ 5.3.1). At the completion

of the study, we had a total of 592,045 slow snapshots and 57,770,204 fast snap-

shots (§ 5.2.1). RacketStore was compatible with 298 unique device models from

28 Android manufacturers (top 5 most popular: Samsung, Huawei, Oppo, Xiaomi,

Vivo).

Google Play Review Dataset and Google Vulnerability. The review crawler

component of the Backend API of RacketStore’s web app (see Figure 5.2 and $ 5.2.2)

collects reviews posted for apps installed on participant devices every 12 hours. For

each of these apps, we collected the most recent reviews by querying Google Play

for reviews sorted by timestamp. The first time an app was processed, we collected

reviews until hitting a threshold of 100,000 reviews. In subsequent collection efforts,

107

we collected the most recent reviews until finding a previously collected review.

We collected a total of 110,511,637 reviews from a total of 12,341 apps. Each

review includes metadata, e.g., the user’s Google ID, the review timestamp (with

1s granularity) and star rating.

To identify the reviews written by accounts registered on participant devices, we

needed to map e-mail accounts to Google IDs. This is done in the Google ID crawler

component of the Backend API in RacketStore’s web app, see Figure 5.2 and § 5.2.2.

Google Play protects reviewer identities by not publishing direct contact information

(such as e-mail address) on its website [gpla]. We have discovered however that

the Gmail service can be exploited to reveal the IDs behind Google Play reviews.

Explicitly, we found that responses of Gmail’s email search functionality embed the

same Google ID previously found in the now defunct Google Plus. As in the case of

Google Plus, this ID is left un-rendered by the browser and thus difficult to detect

without careful inspection of the webpage code. Moreover, the removal of certain

email search parameters allowed for even more information disclosure. Specifically,

we performed email queries that removed all the requestMask.includeContainer

family of parameters. The answers to these requests resulted in additional user

sensitive information leakage such as email classification, image url, as well as the

account’s obfuscated GAIA (Google Accounts and ID Administration) ID [gai], “in-

app reachability” and age range.

VirusTotal Report Dataset. We used the VirusTotal research license reports [Tot12]

to analyze the presence of malware on the participant devices. We used the snapshot

collector module (§5.2.1) to collect 18,079 distinct hashes corresponding to 9,911

unique mobile app identifiers installed in 713 participant devices: 511 devices of

workers, 164 devices ofregular users and 38 devices ofworkers. We collected reports

for these hashes in VirusTotal; 12,431 hashes were available in VirusTotal.

108

Figure 5.6: Comparison of number of e-mail accounts registered on devices controlled
by worker, exchange worker, and regular participants. Worker devices tend to have
more Gmail accounts, but fewer account types and non-Gmail accounts than regular
devices.

5.6 Findings

We first report findings from the quantitative studies and interviews, with a focus

on providing an intuition behind the features with potential to classify the usage of

apps and devices. We then report the performance achieved by the app and device

usage classifiers.

5.6.1 Registered Accounts

ASO workers are known to control or claim to control, many sockpuppet accounts

which they use to post paid activities. Three of the five ASO admins that we

interviewed (A1, A2, A4), claimed to only have 2-4 Google accounts; they justify

it by the fact that their worker teams are responsible for posting reviews thus need

109

more accounts. A5 claimed to control 10 accounts. However, A3 claimed to control

50 Gmail accounts, which he explained by the fact that he used to be a review-

posting worker before becoming an admin. All the ASO admins claimed not to

share their accounts with their workers or other admins.

Similarly, three of the five organic workers also claimed to control 1-2 accounts.

For instance, O4 said “I have two accounts. One account is mine another is my

mom’s.” However, O3 claimed to control 30 accounts and another claimed to have

“many accounts”. In contrast, two of the regular participants (R1 and R3) claimed

to only have one Gmail account, while R2 claimed to control 3 accounts.

We asked interviewed workers if they knew of a limit on the number of accounts

that one can register on their devices. Four organic workers and two ASO admins

said that they were not aware of any such a limit. One ASO admin believed the

limit to be 15-20 accounts, while another admin mentioned that they knew people

who had logged into 50 Gmail accounts from a single device.

Figure 5.6.1 (left) compares the number of Gmail accounts registered on 145

regular, 378 worker and 12 exchange worker devices that have reported such in-

formation. Not all devices reported it, due to not receiving permissions or enough

snapshots. We observe that 13 worker devices have more than 100 Gmail accounts

registered, with a maximum of 163 accounts per device. This is in contrast to regu-

lar devices that have a maximum of 10 accounts registered. Worker devices have an

average of 28.87 accounts registered per device (M = 22, SD = 29.59, max = 163),

which is higher than for exchange devices and regular devices.

Further, regular devices have more diversity on the types of services for which

they have registered accounts, especially when compared against exchange work-

ers, see Figure 5.6.1 (center). On average, regular devices have registered accounts

for 6 services (max = 19), mostly for different social networks (Facebook, What-

110

Figure 5.7: Number of installed apps, installed and reviewed, and total number of
reviewed apps across all device types.

sApp, Telegram, etc). In contrast, worker and exchange worker devices have ac-

counts mainly for Google services and other services useful for ASO work, e.g.,

dualspace.daemon, freelancer.

5.6.2 Installed Apps

Apps Installed and Reviewed. Figure 5.6.2 compares the distribution of the

number of installed apps (left), the number of apps installed and reviewed (center),

and the total number of apps reviewed from any account registered (right) for the 143

regular, 381 worker and 19 exchange worker devices that reported these data. We

first observe that each category of participants have a comparable number of apps

currently installed. On average, we observe 65.45, 77.56 and 70.73 apps installed

on regular, worker and exchanger worker devices respectively. This observation is

111

Figure 5.8: Distribution of time between app install and app review, for regular,
exchange and worker devices. Each point is one review. Unlike regular users, worker-
controlled accounts post many more reviews and tend to do it soon after installation.

expected as the number of installations is limited by the device’s resource limita-

tions across all participant categories. However, we observe that posting reviews

does not follow this trend. On average, worker and exchange worker devices have

posted reviews for 40.51 and 15.94 of the apps that they have currently installed. In

contrast, on average, regular users only retain installation of 0.7 apps for which they

have written reviews. If we include reviews for apps that are currently un-installed,

the contrast is even more dramatic. On average, a worker and exchange worker de-

vice is responsible for a total of 208.91 and 34.26 reviews respectively. However, on

average, regular user devices have posted only 1.91 reviews. For the case of worker

devices, we have observed 11 devices responsible for more than 1000 total reviews.

In contrast, the maximum number of total reviews generated by a regular devices

is only 36.

Install-to-Review Time. Figure 5.6.2 shows the distribution of the time between

app install and app review, for regular, exchange and worker devices. Each point is

one review. An app can be reviewed from multiple accounts registered on the same

112

device; each such review is a different point. First, we observe the difference in the

number of reviews posted from accounts registered on these devices for apps that

provided an installation time: accounts on regular devices only wrote 35 reviews,

while those on worker devices posted 40,045 reviews.

Further, we observe that unlike regular users, workers (including exchange work-

ers) tend to review apps much sooner after installation. In the case of workers,

we observe an average of 10.7 days of waiting time between installation and review

(M = 5.02 days, SD = 29.92 days, max = 3015.09 days). We have observed 4

cases of reviews posted after more than 1,000 days from 2 workers and for 2 apps

(Facebook and Easypaisa), and only 25 cases with waiting times bigger than 100

days. These rare cases of prolonged waiting times are expected of apps used for

personal purposes that have been pre-installed in the device. Similarly, exchange

workers wait on average only 5.06 days to post a review (M = 466.56 sec, SD =

11.22 days, max = 54.07 days) which is consistent with expected a ASO activity.

In contrast, regular users wait for 92.1 days to post a review on average (M=26.89

days, SD=146.36 days, max=606.11 days) with only 12 users waiting less than 12

days to post a review. This longer waiting time is consistent with a review activity

that proceeds from a previous interaction to form a judgment, and inconsistent with

paid promotion services.

App Permissions.

We studied the distribution of permission requirements for unique apps found on

each participant categories. Figure 5.6.2 shows the number of dangerous permissions

versus the total number of permissions for each app found exclusively on regular,

worker and exchange worker devices. We found that while some worker devices host

apps with the largest number of dangerous permissions, most installed apps share a

similar permission profile across all device types.

113

Figure 5.9: Comparison of exclusive app permissions for regular, worker and ex-
changer participants. Worker devices host apps with the largest ratio of dangerous
versus total number of permissions.

All five organic workers and ASO admins that we interviewed, claimed to grant

all permissions requested by the apps that they install. However, A1 claimed selec-

tive granting, i.e.,

“Permissions are given based on the client request. If client does not ask, we do

not give all permissions”.

Three of the organic workers and one ASO admin said there are permissions that

they grant grudgingly, e.g., O4 who claimed “I don’t like location permission because

it violates my privacy”, while O5 (and A4) said “I don’t like the ones that are related

to personal data”. In contrast, two of the regular participants (R2 and R3) claimed

not to grant all requested permissions. R2 claimed that he avoids granting location

permissions, while R3 mentioned contact, images and phone storage permissions.

Third-Party App Stores. We observed that participant devices had apps in-

stalled that were not available in Google Play. We conjecture that either Google

has removed those apps, they were removed by their developers, or the apps were

114

installed from third-party app stores. We asked interview participants if they in-

stall apps from other app stores. All three regular participants, four of the five ASO

admins, and one organic workers said that they only install apps from Google Play.

A5 however said that they have installed apps from third-party stores, i.e.,

“The client gives us a link, we go there and install that app”.

When asked why the app was not in Google Play, A5 claimed to just follow

orders: “App owner didn’t publish there. I will do as the client says.”

Three organic workers claimed to install apps also from other app stores, and to

do it only for personal reasons, e.g., to play games (Dream11, O5), avoid subscription

fees (Netflix, Hotstar, O1). O1 and O4 conjectured that Google does not host such

apps because they violate Google’s policy, and O5 because they are not secure. For

instance, O1 said:

“I use a modded 1 version of the apps that are not in the Google Play Store.

You do not have to open an account to use these. Maybe Google Play Store’s pol-

icy prohibits the use of such apps. For instance, Netflix or Hotstar apps charge a

subscription fee every month. But I don’t have that much money so I install the

modded version. By doing this I get premium access for free. ”

5.6.3 Malware

Of the 12,431 unique hashes of apks of apps for which we collected VirusTotal reports

(§ 5.5), 177 were flagged malicious by more than one VirusTotal AV tool. We found

at least one of these flagged apps in 183 unique devices: 119 devices controlled by

workers organized by 11 admins, 61 devices of 59 regular users and 3 devices of

1A mod apk is a modified version of an original apk, not signed by the original develop-
ers. A modded app may have additional features, unlocked features, and unlimited in-app
currency, see https://www.quora.com/What-is-a-modded-APK.

115

https://www.quora.com/What-is-a-modded-APK

Figure 5.10: Comparison of malware occurrence in regular versus worker devices.
Each point corresponds to a unique app apk hash, that raised at least 7 flags in
VirusTotal. Worker devices host more unique malware which tends to be present
on more devices than for regular users. Google has removed most malicious apps
from the store, however they are still installed in worker and regular devices.

3 exchange workers. Thus, admins seem to be more likely to have at least one of

their worker devices infected: 11/12 (91.6%) vs. 59/156 (37.8%). However, we find

a 23.3% infection rate among worker devices versus a 37.2% infection rate among

regular user devices.

This seems to suggest that worker devices tend to have safer behaviors, perhaps

due to keeping apps installed for shorter intervals than regular users (see Appendix

§ 5.6.5). In contrast, regular users have been shown to be at a disadvantage when

facing and judging malicious apps [BCI+15].

To study the infection degree of each device, we compared the occurrence of

the most malicious malware samples (flagged by more than 7 VirusTotal engines) in

regular user devices versus worker devices. Figure 5.6.3 shows that malicious samples

are more likely to appear in several worker devices when compared to regular users.

Moreover, most malicious samples have also been removed from Google Play, which

further validates their malicious classification.

116

Further, we found 70 unique mobile app identifiers with at least one malicious

VirusTotal engine flag, that received at least one review from our participants: 62

of these apps were reviewed by workers, 2 apps reviewed by exchange workers, and

9 apps reviewed by regular users

Anti Virus (AV) Apps. We have identified 250 AV apps from Google Play by

doing a search on the app category in the website. We have joined these apps

against the apps installed in each of the 789 participant devices that sent at least

one snapshot. We found only 19 devices that installed 15 AV apps: 7 worker devices

working with 4 admins, 7 on regular user devices, 1 on an exchanger device and

4 unknown (i.e., either Google testing our infrastructure or some participants who

managed to bypass our invitation code).

Participant Feedback. We asked interview participants if they (1) are concerned

about installing malware apps on their devices, (2) have anti virus software installed,

and (3) are concerned about the privacy of their device data, including contacts,

login info, pictures, videos, text messages, location. Two ASO admins (A2, A3) were

not concerned about malware or privacy leaks and did not have AV apps installed.

A3 for instance said

“I am confident on the ability of my phone to prevent any mishap”.

A1, A4 and A5 and their worker teams are concerned about malware. A4 claimed

however not to use AV apps. A1 and A5 claimed to use AV apps. A5 said it

is the device’s built-in AV app. A1 said to feel safe. Among the organic worker

participants, only O4 and O5 said to be concerned about malware. O1 and O4

claimed to have an AV app installed on their devices. O1 claimed that

“I find a lot of apps like this, which contain a lot of viruses.”

However, he also claimed to not be concerned about privacy leaks because

117

Figure 5.11: Number of stopped apps for regular and worker devices. Worker devices
tend to have more stopped apps, but we also observe substantial overlap with regular
devices.

“I have 5 devices, 3 mobile devices and 2 computers. 2 out of the 3 mobiles, I

use for apps testing and review, 1 mobile I use for my personal work.”

Regular participant R1 claimed not to be concerned about installing malware or

about privacy leaks, but claimed to have an AV app installed and to have previously

installed malware apps. R2 and R3 were concerned about malware and privacy leaks,

but only R2 had an AV app installed and to have detected malware.

5.6.4 Stopped Apps

We have further studied the number of apps that are stopped on the devices of

regular and worker participants. Android devices allow users to stop apps, instead

of uninstalling them. Figure 5.6.4 shows that some worker devices have significantly

more stopped apps than regular devices. We conjecture that this occurs because

ASO workers need to keep apps installed, e.g., to provide retention installs, but

118

Figure 5.12: App churn: Scatterplot of average number of daily installs vs. average
number of daily uninstalls for regular, worker and exchange worker controlled de-
vices. Each dot is one device. Most regular devices install and uninstall less than
10 apps per day, while many worker devices install or uninstall more than 10 apps
per day.

prefer to stop apps that misbehave. Two ASO admin participants and four organic

workers claimed to never stop apps. A1 said

“Sometimes the apps get hanged due to lack of storage on my phone.”,

while O4 said

“The quality of some apps was bad, I stopped those apps.”.

5.6.5 App Churn: Install and Uninstall Events

Figure 5.6.5 shows the average number of daily install events and daily uninstall

events for 304 participant devices (203 worker, 93 regular and 9 exchanger worker

devices), computed over all the days when RacketStore was installed. Worker par-

ticipants tend to install apps more often compared to regular users. Concretely,

worker devices have an average of 14.2 daily installs (M = 4.5, SD = 28.82), ex-

change worker devices have an average of 15.38 installs (M = 6.0, SD = 42.05)

119

Figure 5.13: Scatterplot of the average number of apps used per day per device and
the number of apps installed in a device, for all regular and worker devices. We
observe substantial overlap between regular and worker devices.

and regular devices had an average 4.27 daily installs (M = 2.0, SD = 13.25). We

recorded fewer daily uninstalls, thus confirming that devices have a tendency to

retain apps: worker devices recorded an average of 9.29 daily uninstalls (M = 3.0,

SD = 14.54), exchange worker devices had an average of 21.27 daily uninstalls (M

= 2.0, SD = 58.75) and regular devices had an average of 3.69 daily uninstalls (M

= 1.0, SD = 13.67). The highest number of app installs was recorded by a worker

device (313) and the highest number of uninstalls was from an exchange worker de-

vice (198). We observe however that (1) many worker devices have a low daily app

churn, making them hard to distinguish from regular devices and (2) some regular

devices have a higher daily app churn, making it easy to confuse them for worker

devices, based on this feature alone.

120

5.6.6 Number of Apps Used Per Day

Figure 5.6.6 shows for each of the 141 regular, 380 worker and 19 exchange worker

device in our studies (total of 540), the average number of apps opened per day

on the device vs. the total number of apps installed on that device. Only 5 of

the 38 exchange worker devices granted the permission that allows RacketStore to

access the foreground app thus we cannot draw substantial conclusions about these

devices. However, we observe that several worker devices have many more apps

installed than regular devices, and also have more apps used per day. Nevertheless,

we also observe substantial overlap in these features between regular and worker

devices, perhaps due to the fact that several of the worker devices are organic. This

leads us to believe that the daily number of used apps cannot accurately distinguish

between worker and regular devices.

5.6.7 Classifier of App Usage

We found that 247 devices sent less than one day of snapshot data to our servers.

We conjecture that these may be due to early uninstalls or incompatibilities. We

focus the following analysis on only the remaining 524 devices: 355 controlled by

workers, 19 by exchange workers and 150 controlled by regular users.

For each such device, we have computed (1) the active interval that measures

the time difference between the last and first snapshot, and (2) the number of

active days that captures the number of days for which the device sent data to our

servers. Figure 5.6.7 shows the scatterplot of the 524 devices: each point shows the

active interval and active days of one device. On average, workers kept RacketStore

installed and active (active interval) for 7.22 days (M = 2.31 days, SD = 11.48 days,

max = 92.17 days), exchange workers for 1.88 days (M = 0.98, SD = 2.45, max =

121

Figure 5.14: Scatterplot of active interval vs active days for 524 devices (green for
regular devices, red for worker devices and blue for exchange worker devices). 357
devices (237 workers, 108 regular users and 12 exchange workers) kept RacketStore
installed for more than 1 day, while 9 devices (2 workers and 7 regular users) active
for 1-2 months.

9.63) while regular users for 9.32 days (M = 3.07 days, SD = 15.46 days, max =

86.55 days). Further, workers have kept the app installed, on average, for 4.6 days

(M = 3 days, SD = 5.7 days, max = 56 days), exchange workers for 2.6 days (M =

2, SD = 2.19, max = 10) while regular users for 7.96 days (M = 3 days, SD = 11.09

days, max = 68 days).

Figure 5.15 is the scatterplot of the average number of snapshots per day vs.

the number of active days over the 771 devices. Larger dots correspond to multiple

devices. The average number of daily snapshots captured from regular devices is

9430.71 (M = 3,097.67, SD = 12,789.14, max = 63,452) and from worker devices is

8,208.10 (M = 3,669, SD = 10,303.42, max = 55,281.38). The maximum number of

snapshots per day is 55,281.38. We observe that 529 devices have reported at least

100 snapshots per day.

In the following experiments we only consider devices from which we have re-

ceived at least two days of fast snapshots and slow snapshots. This dataset includes

122

Figure 5.15: Scatterplot of average number of snapshots captured per day vs active
days over regular (green), exchange worker (blue) and worker (red) devices. Dot
size indicates the number of overlapping devices. Most devices report at least 100
snapshots per day.

166 worker, 88 regular and 12 exchange worker devices for a total of 266 devices. For

the other devices we lack enough representative data to be able to make a reasonable

decision.

We have randomly selected 20% of the devices controlled by the workers of each

of the 17 participating ASO admins, and that have reported at least 2 days of

RacketStore snapshots. In total, 38 worker-controlled devices. Further, we have

selected 37 regular devices, that account for 42% of our set of regular devices that

have reported at least 2 days of RacketStore snapshots.

We used these 38 worker-controlled and 37 regular devices to extract a set of

train-and-validate apps for the app usage classifier (§ 5.4). Specifically, we have built

a dataset of apps with “suspicious” and “regular” usage. We say that an app has

suspicious usage if (1) it was installed on at least 5 of the worker-controlled devices,

(2) it was not installed on any of the regular devices, and (3) it has received at most

10,000 reviews. That is, popular apps that are also installed by regular users, are

123

not considered to be suspicious. Further, we say that an app has regular usage if it

was not installed on any worker-controlled device but was installed in at least one

regular device, and has received at least 15,000 reviews.

We have selected 1,041 suspicious usage apps from the ones installed on the 38

worker-controlled devices from the above device training set. We have selected 474

regular usage apps from the apps installed on the above 37 training regular devices.

The train-and-validate dataset for the app usage classifier consists then of 2,994

suspicious instances and 345 regular instances. An instance in the dataset is a tuple

that contains (1) an app and a device on which the app has been installed, (2)

features extracted from the use of the app on the device (§ 5.4), and (3) a label, i.e.,

1 for suspicious usage app and 0 for regular usage app.

Performance of App Usage Classifier. We have used the above train-and-

validate dataset of app usage to evaluate the performance of supervised learning

algorithms trained with the features introduced in § 5.4. For this, we have used 10-

fold cross-validation over the 2,994 suspicious app usage instances and 345 regular

instances. Table 5.1 shows the precision, recall and F1-measure of several algo-

rithms. Extreme Gradient Boosting outperform the other algorithms, achieving an

F1-measure of 99.72%. Figure 5.16 shows the top 10 most important features in

classifying app usage (§ 5.4) as measured by the mean decrease in Gini [Bre01]. A

higher decrease in Gini indicates higher variable importance. We observe the impact

of the number of accounts registered on the device that have reviewed the app and

the average time between install and review.

124

ML Algorithm Precision Recall F1

XGB 99.78% 99.67% 99.72%
RF 99.33% 99.23% 99.27%
LR 99.22% 99.00% 99.11%

KNN 96.88% 96.88% 96.88%
LVQ 90.99% 94.54% 92.73%

Table 5.1: Precision, recall, and F-1 measure of app usage classifier (CV k = 10)
using Extreme Gradient Boosting (XGB), Random Forrest (RF), Logistic Regression
(LR), K-Nearest Neighbors (KNN), and Learning Vector Quantization (LVQ). XGB
performed the best.

Figure 5.16: Top 10 most important features, measured by mean decrease in Gini.
The number of accounts that have reviewed the app from the device and the average
time between install and review are the most important features.

125

(a)

(b)
Figure 5.17: (a) Scatterplot of 266 devices on app suspiciousness vs. number of
Gmail accounts registered on the device. Device types are shown with different
shapes and colors. x and y axes shown in log scale. We observe distinctive clusters of
worker and regular devices. (b) Scatterplot for all devices on their first two principal
components computed from original features, annotated with cluster information
from Table 5.2.

5.6.8 Evaluation of Device Usage

We explore the ability of the device usage features (§ 5.4) to differentiate between the

166 ASO worker, 12 exchange worker and 88 regular devices (total of 266 devices)

that have reported snapshots over at least 2 days.

Figure 5.17(a) shows the scatterplot of app suspiciousness vs. number of regis-

tered Gmail accounts, and Figure 5.6.8 shows the scatterplot of average number of

reviews written from an account vs. total number of accounts.

126

Figure 5.18: Scatterplot for 266 devices that reported at least two days of snapshots:
the average number of reviews per registered account vs. number of Gmail accounts.

Participant/Cluster 1 2 3 4

Regular 0 83 5 0

Exchange 1 4 7 0

Worker 0 40 107 19

Table 5.2: Distribution of devices across clusters found using k-means with k=4.
Cluster 4 corresponds to devices controlled by power workers (yellow cell), cluster
3 is dominated by organic worker devices, and cluster 2 is dominated by regular
devices and inexperienced or novice workers.

We used k-means to cluster these devices. Table 5.2 shows the resulting clusters

for k = 4. Figure 5.17(b) shows the scatterplot over these devices on the first two

principal components that explain 72.16% of variability in the data set. We annotate

the figure with the cluster information from Table 5.2.

Cluster 4 consists only of 19 power worker devices, with a high number of

registered Gmail accounts (Mean = 60.47, M = 44, SD = 41.04) and high Gmail to

total accounts ratio (Mean = 0.92, M = 0.94, SD = 0.06), that record many daily

installs (Mean = 55.24, M = 46.33, SD = 44.64), are each responsible for posting

an average of 2,341 reviews (M = 2,356, SD = 1,437.05, max = 5,962) and also used

suspiciously an average of 412.2 apps (M = 376.0, SD = 149.82).

127

Cluster 3 most likely contains the organic worker devices. The 107 worker devices

had each posted 583.88 reviews on average (M = 220.50, SD = 829.68, max =

583.88) and had registered 28.87 Gmail accounts on average (M = 27, SD = 23.85).

Similarly, the 7 exchange workers in cluster 3 are each responsible for 83.57 reviews

(M=70, SD=47.28, max=163) and had registered 44.29 Gmail accounts on average

(M = 43, SD = 27). While these numbers suggest ASO worker activity (see § 5.6.2)

we also observe that these devices mix in a decent amount of personal use of apps:

the worker devices had used an average of 21.11% of their apps for personal tasks,

and the exchange workers used 19.72% of their apps for personal purposes. The 5

miss-classified regular users in cluster 3 only posted an average of 6 reviews (M =

2, SD = 1), however, they present an unusual ratio of suspicious to total number of

apps, i.e., 77% (M = 73%, SD = 14%).

Cluster 2 is likely the “regular” device cluster. It contains most of the regular

devices but also includes 40 worker and 4 exchange worker devices. The regular

devices have only 2.638 Gmail accounts registered on average (M = 2, SD = 2.70,

max = 10) and have a low ratio of suspiciously used apps (Mean = 0.08, SD = 0.14,

max = 0.08). Similarly, the 44 worker devices have very low levels of activity: on

average, they have only posted 25.68 reviews in Google Play (M = 3, SD = 61.67,

max = 388), have a low number of registered Google accounts: (Mean = 15.04, M

= 5.5, SD = 19.12, max = 78) and use very few apps suspiciously (Mean = 16%,

M = 9%, SD = 18%, max = 65%). Such “novice” worker devices thus have a small

impact on the app store. We conjecture that once they gain more expertise they

will move to the organic or power worker clusters.

128

5.7 Discussion and Limitations

Relevance of Proposed Work. Distinguishing devices of organic workers from

those used exclusively for app promotion can help app stores implement appropriate

responses to detected fraud. For instance, while the accounts registered on devices

dedicated to app promotion could be closed, app stores could only filter or demote

reviews posted from accounts registered on organic devices, and only for the apps

they are suspected to have promoted.

Recruitment Bias. We performed our studies with a limited set of devices con-

trolled by ASO workers and regular users. We have selected participants from a

subset of countries and cities. Our worker recruitment process is further biased,

since we contacted participants through a subset of Facebook groups dedicated to

product promotion, and recruited only those who responded, were English speak-

ers, and were willing to participate after approving the consent form. Similarly,

our Instagram recruitment process reached 61,748 Instagram users from select loca-

tions but who speak English, are of restricted age, show interests related to Google

Play and Android applications, and were willing to participate after approving the

consent form.

Thus, while we have identified ASO admins, team workers, organic workers and

exchange workers, we may be missing other types of professional app promoters. A

larger scale recruitment process could help us identify more fraud worker types and

more diverse regular users. However, the data that we collected reveals the potential

to classify and differentiate the behaviors of various worker types even from regular

users of similar location and age.

Generalization of Results. While several of the workers that we recruited claimed

promotion expertise in multiple sites, e.g., Google Maps, Yelp, Amazon, TrustPilot,

129

and Justdial, we have not evaluated their activities in such platforms. Thus, we do

not claim that our findings apply to other sites or other types of ASO work.

Universal Adoption and Worker Defenses. Our approach can be effective if

the RacketStore app is installed on the devices of all app market users. We envision

however workers attempting to develop strategies to avoid detection by the fraud

detection and classification techniques that we developed in this thesis. RacketStore

may capture changes in worker strategies, however, our solutions may require ad-

justments to handle them. We note however that attempting to convert their app

usage patterns to mimic those of personal usage apps will require substantial effort

from workers. For instance, we expect that workers will have to keep apps installed

for long intervals, use them regularly and review them after a long install inter-

val. We also expect that workers will need to reduce the number of reviews written

from multiple accounts registered on the same device. Thus, such efforts will reduce

the amount of fraud that can be posted from a single device. We also expect that

other features will further restrict worker options. For instance, the number of apps

opened per day will experience observable increase if the worker needs to promote

and periodically interact with many apps.

Data Size Limitations. The relatively small size of our datasets of suspicious and

regular app and device usage may impact the accuracy of our classifiers. One ap-

proach to address this limitation is to use generative adversarial networks [GPAM+14]

to synthesize realistic training datasets. Further, Jan et al. [JHH+20] have intro-

duced solutions to synthesize even unseen and future data in order to identify bots

with updated strategies.

130

CHAPTER 6

FRAUD DE-ANONYMIZATION FOR FUN AND PROFIT

6.1 Introduction

The persistence of search rank fraud in online, peer-opinion systems, made pos-

sible by crowdsourcing sites and specialized fraud workers, shows that the cur-

rent approach of detecting and filtering fraud is inefficient. We introduce a fraud

de-anonymization approach to disincentivize search rank fraud: attribute user ac-

counts flagged by fraud detection algorithms in online peer-opinion systems, to the

human workers in crowdsourcing sites, who control them. We model fraud de-

anonymization as a maximum likelihood estimation problem, and introduce UODA,

an unconstrained optimization solution. We develop a graph based deep learning

approach to predict ownership of account pairs by the same fraudster and use it to

build discriminative fraud de-anonymization (DDA) and pseudonymous fraudster

discovery algorithms (PFD).

To address the lack of ground truth fraud data and its pernicious impacts on

online systems that employ fraud detection, we propose the first cheating-resistant

fraud de-anonymization validation protocol, that transforms human fraud workers

into ground truth, performance evaluation oracles. In a user study with 16 human

fraud workers, UODA achieved a precision of 91%. On ground truth data that

we collected starting from other 23 fraud workers, our co-ownership predictor sig-

nificantly outperformed a state-of-the-art competitor, and enabled DDA and PFD

to discover tens of new fraud workers, and attribute thousands of suspicious user

accounts to existing and newly discovered fraudsters.

Results. We conducted the fraud de-anonymization validation protocol, through

a user study with 16 human fraud workers, who revealed control of a total of 230

131

Google Play accounts. The participants confirmed control of 91% of the user ac-

counts newly discovered by UODA. Further, on 942 ground truth attributed user

accounts that we collected from other 23 fraud workers, both DDA and UODA

achieved precision and recall that exceed 90%, and attributed thousands of new

accounts to these fraudsters.

We introduce intuition, and empirically evaluate the impact of features used by

our co-ownership predictor. Our predictor outperformed the F1-measure of state-of-

the-art, Elsiedet’s Sybil social link builder [ZXL+18] by more than 12 percentage

points, on ground truth attributed data. Further, the PFD algorithm identified

thousands of accounts not previously known to be fraudulent, grouped into commu-

nities according to common ownership by fraudsters. We analyzed 1.1 billion pairs

of reviews from these communities and report orthogonal evidence of fraud, includ-

ing communities with more than 80% of accounts involved in review text plagiarism.

In summary, our contributions are the following:

• Fraud de-anonymization. Model fraud de-anonymization as a maximum

likelihood estimation problem. Develop UODA, an unconstrained optimiza-

tion fraud de-anonymization algorithm [§ 6.3].

• Co-ownership predictor. Introduce a graph based deep learning approach

to predict ownership of account pairs by the same fraudster [§ 6.5]. Leverage

the predictor to build DDA, a discriminative fraud de-anonymization [§ 6.6]

and PFD, a pseudonymous fraudster discovery algorithm [§ 6.7].

• Human fraud de-anonymization oracles. Develop the first protocol to

provide human-fraud-worker-based performance evaluation of fraud de-anonymization

algorithms [§ 6.9]. Evaluate proposed solutions using data collected through

this protocol [§ 6.11].

132

6.2 Problem Definition

The insight that multiple fraud workers usually target a single subject suggests that

a binary classification of fraud, e.g., fake vs. honest reviews, fraudulent vs. genuine

accounts [XZLW16, FLCS15, MKL+13, FML+13, HTS16, LFW+17], is insufficient

to understand and model fraud. Instead, we study the fraud de-anonymization

problem which deals with attributing fraudulent accounts and fake reviews to the

crowdsourcing accounts of the fraud workers who control and post them, respec-

tively.

Formally, let U be the set of all user accounts, and let S be the set of all subjects

hosted in the online peer-opinion system. We say that a user account is fraudulent

or fraudster-controlled if it was opened by a fraudster to mainly perform fraudulent

activities in the online system, i.e., to target subjects from S.

Moreover, let U∗ ⊆ U be the set of all fraudster-controlled accounts in an online

system, and let W be the set of all fraud worker accounts in crowdsourcing sites.

In addition, let W ∗ = {(Wl, Ul, Sl)| Wl ∈ W , Ul ⊆ U∗, Sl ⊆ S, l = 1 . . . f} ⊂ V be

a known set of f search rank fraud worker profiles where V is the universe of all

worker profiles. A profile consists of a crowdsourcing account id (Wl), an incomplete

set of user accounts (Ul) known to be controlled by Wl in the peer-opinion system,

and the incomplete set of subjects (Sl) known to have been fraudulently reviewed

by Wl. Section 6.9 describes a protocol to identify crowdsourced fraud workers and

build seed profiles for them.

Ideally, we want to attribute each account in U∗ to the fraudster who controls

it. However, some accounts in U∗ may not be controlled by any of the known

fraudsters in W ∗. To address this issue, we formulate two distinct problems: fraud

de-anonymization and pseudonymous fraudster discovery:

133

Fraud De-Anonymization. Build a function FDA : U∗ \ ∪fl=1Ul 7→ W ∗, that,

given a user account u ∈ U∗ suspected of participation in search rank fraud, returns

the fraud worker in W ∗ most likely to control u. In Section 6.3.1 we expand this

definition in a maximum likelihood estimation (MLE) based framing of the problem.

Pseudonymous Fraudster Discovery. Build a function PFD : U∗ \ ∪f
l=1Ul 7→

V \W ∗ that, given a set of fraudster-controlled accounts that were not assigned to

one of the known fraudsters by the FDA function, returns a new set of fraudster

profiles from V \W ∗ that control these accounts.

Unlike standard de-anonymization, the adversarial process of identifying users

from data where their Personally Identifiable Information (PII) has been removed [NS08],

the fraud de-anonymization problem seeks to attribute detected search rank fraud

to the humans who posted it. A solution to this problem will enable peer-review

services to identify the impactful crowdsourcing fraudsters who target them, and

provide appealing fraud feedback proof to customers, e.g., links to the crowdsourcing

accounts responsible for boosting a product’s rating. Furthermore, accurate fraud

de-anonymization will allow online services and law enforcement to retrieve banking

information and real identities of fraudsters. Thus, fraud de-anonymization may

provide counter-incentives for crowdsourcing workers to participate in fraud jobs,

and for product developers to recruit them.

In Section 6.3 and 6.6, we introduce unconstrained optimization and discrimina-

tive fraud de-anonymization algorithms, respectively, while in Section 6.7 we propose

a pseudonymous fraudster discovery algorithm. In Section 6.8, we show how De-

tego iteratively invokes a pseudonymous fraudster discovery algorithm followed by

a fraudster de-anonymization algorithm, to expand knowledge of fraud workers and

the accounts they control.

134

6.3 Unconstrained Optimization Based De-Anonymization

We first propose a maximum likelihood based de-anonymization approach motivated

by a realistic generative model of review posting behavior. Next, we compute the

likelihood of each worker having generated a given suspicious fraudulent review

history. We then find the worker who maximizes such likelihood.

6.3.1 Definitions and Approach

We postulate a probabilistic review-posting model from accounts controlled by

fraudsters, inspired by Su et al. [SSGN17]. Specifically, we assume that a fraud-

ulent account u controlled by a fraudster profile (W,U, S) ∈ W ∗ is likely to re-

view subjects in a pairwise-disjoint family of sets over S, FW = {Ω1,Ω2, . . . ,Ωm}

(Ωi∩Ωj = ∅ ∀ i 6= j) with different multiplicative factors r1, r2, . . . , rm describing u’s

responsiveness to each Ωi. Further, we assume that the review history of a user ac-

count is described by a sequence of independent and identically distributed random

variables R1, R2, . . . , Rn where Rk ∈ S represents the k-th subject reviewed from the

account. Therefore, a fraudulent account’s review posting behavior is characterized

by FWand ri for all i = 1 . . .m.

Let {pj} be a probability measure over the sample space S, related to the popu-

larity of the subjects: pj ≥ 0,
∑|S|

j=1 pj = 1. For any fraudster profile (W,U, S) ∈ W ∗,

we define random variable Rk(FW, r) with values in S and with the probability dis-

tribution:

135

P(Rk = sj) =

r1pj
c

if sj ∈ Ω1

...

rmpj
c

if sj ∈ Ωm

pj
c

if sj ∈
m⋂
i=1

ΩC
i

(6.1)

where c =
m∑
i=1

ri
∑
sj∈Ωi

pj +
∑

sj∈
m⋂
i=1

ΩC
i

pj and r = [r1, . . . , rm]ᵀ is the vector of multiplicative

factors. Specifically, the probability that the k-th review targets subject sj is pro-

portional to factor rm if subject sj satisfies Ωm’s membership properties. Otherwise,

this probability is simply given by the ratio pj/c.

Let R1(FW, r), R2(FW, r), . . ., Rn(FW, r), be a review history suspected to be

fraudulent. Given a set of candidate workers, each described by a family of sets FW,

the fraudster de-anonymization problem derives the maximum likelihood estimates

r̂ and F̂W of the function:

L(FW, r) =

(
m∏
i=1

∏
Rk∈Ωi

P(Rk | FW, r)

)∏
Rk∈

m⋂
i=1

ΩC
i

P(Rk | FW, r) (6.2)

where F̂W is the family of sets associated with the worker most likely linked with

the given review history.

6.3.2 UODA

We introduce UODA, an unconstrained optimization based de-anonymization ap-

proach that maximizes the function in Equation 6.2 without any constraints on the

multiplicative values r1, . . . , rm. Theorem 6.3.1 characterizes the solution for the

fraudster de-anonymization problem under this unconstrained setting.

136

Theorem 6.3.1. Let S be the set of subjects hosted by the online service, and {pj}

be a probability measure on S (pj ≥ 0,
∑|S|

j=1 pj = 1). Let C = {FW1 , . . . ,FWf
} be a

collection of family sets for each fraud worker, where FWl
={Ωl1, Ωl2, . . ., Ωlm}. For

any FW ∈ C, define a random variable Rk(FW, r) taking values in S and obeying

the probability distribution in Equation (6.1). Given a review history R1(FW, r),

R2(FW, r), . . ., Rn(FW, r) suspected to be fraudulent, the maximum likelihood esti-

mates r̂ and F̂W are:

r̂t =
qt (1−

∑m
i=1 Pi)

Pt (1−
∑m

i=1 qi)
for t = 1, . . . ,m (6.3)

and

F̂W = argmax
FW∈C

[
m∑
i=1

qi ln

(
qi
Pi

)
−

(
1−

m∑
i=1

qi

)
ln

(
1−

∑m
i=1 Pi

1−
∑m

i=1 qi

)]
(6.4)

where qi = |{k | Rk ∈ Ωi}|/n and Pi =
∑
sj∈Ωi

pj for i = 1, . . . ,m

Intuition. Equation (6.4) from Theorem 6.3.1 attributes a user account to

the worker profile in W ∗ most likely responsible for the account’s review history

R1(FW, r), R2(FW, r), . . ., Rn(FW, r). The Ω sets partition worker’s reviews into

groups of subjects that have different characteristics (features). qi is the fraction of

subjects in the account’s review history that are in the investigated worker’s Ωi. Pi is

the total popularity of all the subjects in the set Ωi. The first term of Equation (6.4)

reveals that the F̂W associated worker most likely to control the suspect account

has a family of Ω sets for which most of qi are large and Pi are small; that is, many

of the subjects in the account’s review history appear in the worker’s sets Ωi that

are neither too big or popular.

137

Proof. Setting Rk = sk, we rewrite Equation (6.2) as:

L(FW, r) =
n∏

k=1

(
m∑
i=1

ripk
c
XΩi

(sk) +
pk
c
X m⋂

i=1
ΩC

i

(sk)

)

when using indicator functions XΩi
(s) for i = 1, . . . ,m, i.e. XΩi

(s) = 1 if s ∈ Ωi,

and XΩi
(s) = 0 otherwise. We can then write the log-likelihood function as follows:

lnL(FW, r) =
n∑

k=1

ln

(
m∑
i=1

ripk
c
XΩi

(sk) +
pk
c
X m⋂

i=1
ΩC

i

(sk)

)

=
n∑

k=1

(
m∑
i=1

XΩi
(sk) ln

(ripk
c

)
+X m⋂

i=1
ΩC

i

(sk) ln
(pk
c

))

= n

(
m∑
i=1

qi ln(ri) + ln(pk)− ln(c)

)
We can further rewrite c:

c =
m∑
i=1

ri
∑
sj∈Ωi

pj +
∑

sj∈
m⋂
i=1

ΩC
i

pj

=
m∑
i=1

ri
∑
sj∈Ωi

pj +

∑
sj∈S

pj −
m∑
i=1

∑
sj∈Ωi

pj

=

m∑
i=1

Pi(ri − 1) + 1

Therefore,

lnL(FW, r) = n

(
m∑
i=1

qi ln(ri) + ln(pk)− ln

(
m∑
i=1

Pi(ri − 1) + 1

))

The first-order necessary conditions are:

∂ lnL(FW, r)

∂ri
=

−nPi∑m
i=1 Pi(ri − 1) + 1

+
nqi
ri

= 0 for i ∈ [m] (6.5)

138

We can also write (6.5) as them×m non-homogeneous system of linear equations:

[Pi(1− qi)]ri − qi
∑
d6=i

Pdrd = qi

(
1−

m∑
i=1

Pi

)
for i ∈ [m] (6.6)

To solve the system of equations (6.6), we introduce the following lemma, whose

proof we present at...

Lemma 6.3.2. The system of linear equations

[Pi(1− qi)]ri − qi
∑
d6=i

Pdrd = qi

(
1−

m∑
i=1

Pi

)
for i ∈ [m]

has solutions given by rt =
qt(1−

∑m
i=1 Pi)

Pt(1−
∑m

i=1 qi)

This enables us to write c as:

c =
m∑
i=1

Pi(ri − 1) + 1

=
m∑
i=1

Pi

(
qi
Pi

(1−
∑m

i=1 Pi)

(1−
∑m

i=1 qi)
− 1

)
+ 1

=

∑m
i=1 qi(1−

∑m
i=1 Pi) + (1−

∑m
i=1 qi)(1−

∑m
i=1 Pi)

1−
∑m

i=1 qi

=
1−

∑m
i=1 Pi

1−
∑m

i=1 qi

139

Thus, the value of r at which lnL(FW, r) reaches its maximum must also maxi-

mize the function L(FW, r) defined as:

L(FW, r) =
m∑
i=1

qi ln(ri)− ln(c)

=
m∑
i=1

qi ln(ri)− ln

(
1−

∑m
i=1 Pi

1−
∑m

i=1 qi

)

=
m∑
i=1

qi ln

(
qi
Pi

)
−

(
1−

m∑
i=1

qi

)
ln

(
1−

∑m
i=1 Pi

1−
∑m

i=1 qi

)

In Section 6.11.2 we instantiate UODA for two features that define the Ω sets.

6.4 Proof of Lemma 6.3.2

Proof. We note that (6.6) can be expressed in matrix form as:

(diag(p)− qpᵀ)r =

(
1−

m∑
i=1

Pi

)
q (6.7)

where p = [P1, . . . , Pm]ᵀ, q = [q1, . . . , qm]ᵀ, r = [r1, . . . , rm]ᵀ and diag(p) is the

m×m diagonal matrix with diag(p)ii = Pi.

We also note that:

A = diag(p)− qpᵀ

= diag(p)− q1ᵀ diag(p)

= (I− q1ᵀ) diag(p)

and therefore:

140

det(A) = det((I− q1ᵀ) diag(p))

= det(I− q1ᵀ)
m∏
i=1

Pi

=

(
1−

m∑
i=1

qi

)
m∏
i=1

Pi

where 1 = [1, . . . , 1]ᵀ and the last equality follows from Sylvester’s determinant

theorem.

Let At be the matrix formed by replacing the t-th column of A by the column

vector (1−
∑m

i=1 Pi) q. Thus,

At =

[
a1, . . . ,

(
1−

m∑
i=1

Pi

)
q, . . . , am

]

where at represents the t−th column of matrix A. We also note that

at = Ptet − Ptq

q = et −
1

Pt

at

where et denotes the vector with a 1 in the t-th coordinate and 0’s elsewhere.

By properties of the determinant, it is plain that:

141

det(At) =(
1−

m∑
i=1

Pi

)
det([a1, . . . ,q, . . . , am])

= −(1−
∑m

i=1 Pi)

Pt

det([a1, . . . , at − Ptet, . . . , am])

= −(1−
∑m

i=1 Pi)

Pt

(det(A)− Pt det([a1, . . . , et, . . . , am]))

= −(1−
∑m

i=1 Pi)

Pt

(det(A)− Pt(−1)t+tMinor(A)tt)

= −(1−
∑m

i=1 Pi)

Pt

[(
1−

m∑
i=1

qi

)
m∏
i=1

Pi − Pt

(
1−

∑
i 6=t

qi

)∏
i 6=t

Pi

]

= −(1−
∑m

i=1 Pi)

Pt

[(
1−

m∑
i=1

qi − 1 +
∑
i 6=t

qi

)
m∏
i=1

Pi

]

=
qt(1−

∑m
i=1 Pi)

∏m
i=1 Pi

Pt

By Cramer’s rule it follows that:

rt =
det(At)

det(A)
=
qt (1−

∑m
i=1 Pi)

Pt (1−
∑m

i=1 qi)

We are left to prove that Minor(A)tt =
(

1−
∑

i 6=t qi

)∏
i 6=t Pi, but this follows from

the construction of A. Take

p−t = [P1, . . . , Pt−1, Pt+1, . . . , Pm]ᵀ and

q−t = [q1, . . . , qt−1, qt+1, . . . , qm]ᵀ, we then have:

det(A−t,−t) = det(diag(p−t)− q−tp
ᵀ
−t)

=

(
1−

∑
i 6=t

qi

)∏
i 6=t

Pi = Minor(A)tt

142

6.5 Co-Ownership Predictor

We develop a co-ownership predictor function cowPred : U × U 7→ {0, 1} that de-

termines if two user accounts are controlled by the same fraud worker. Specifically,

given two user accounts ui and uj, cowPred(ui, uj) = 1 if ui and uj are controlled

by the same fraudster. cowPred uses several features, that model similarity of be-

haviors between the input accounts. One such feature is extracted by DeepCluster,

a semi supervised learning approach that we propose to cluster user accounts.

6.5.1 DeepCluster

DeepCluster leverages DeepWalk features [PARS14] extracted from co-review graphs.

Given a subject s and its reviewer set Us ⊂ U (i.e., accounts who reviewed it), we

define its co-review graph to be a weighted graph Gs = (Vs, Es), where Vs = Us

and (ui, uj) ∈ Es iff users ui, uj have reviewed the same w(ui, uj) subjects other than

s itself. Further, given a set of co-review graphs G = {G1, . . . , Gk}, Gi = (Vi, Ei),

we define their union fraud graph to be the union of all the individual co-review

graphs, viz., V = ∪Vi and E = ∪Ei for 1 ≤ i ≤ m.

DeepCluster, see Algorithm 1, clusters co-review graph nodes (user accounts)

based on their DeepWalk features [PARS14], that go beyond their 1-hop neighbors

and are based on random walks in the union fraud graph. DeepCluster precom-

putes the DeepWalk features of each account in the union fraud graph (line 1). We

discuss the choice of DeepWalk parameters in § 6.11. For each subject si, i ∈ [k],

DeepCluster extracts all its users’ features (line 3), and uses any fraud account de-

tection algorithm, e.g. [RRCL17, ACF13] to filter out the subject’s honest reviewers

and their accounts (line 4). DeepCluster then uses a clustering algorithm (e.g.,

K-means) to group the fraudulent candidate accounts of subject si, i ∈ [k] (line 5).

143

Algorithm 1: DeepCluster identifies communities of fraudulent accounts who
targeted input subjects s1, .., sk, based on the similarity of their DeepWalk features
extracted from the union fraud graph of the subjects.

Input : CoR[1 . . . k]; # Co-review graphs of reviewers of subjects
s1, . . . , sk;
DWParams; # Best DeepWalk parameters;
UFG; # Union Fraud Graph over CoR[];

Output: clusters[1 . . . k][]; # Best clusters for s1, . . . , sk
1 UFeatures[][] = UFG.DWFeatures(DWParams)
2 for i = 1 to k do
3 candidates[][] = CoR[i].V n UFeatures
4 candidates[][] = FilterHonest(candidates[][])
5 clusters[i] = getBestClusters(candidates)

6 end
7 return clusters[][]

6.5.2 Features

DeepCluster returns k cluster sets, one set for each of the k subjects si (line 7).

We use these clusters to extract cowPred’s first feature, Co-cluster weight: The

number of times that ui and uj have appeared in the same cluster identified by

DeepCluster. We further introduce several other features:

• Co-review weight. The co-review weight of two accounts is computed over

their commonly reviewed subjects. Specifically, if Sk is the set of subjects reviewed

by uk, we define the co-review weight of ui and uj as |Si ∩ Sj|.

• Inter-review times. We define the date difference attribute for a subject

sk ∈ Si ∩ Sj, i 6= j as ∆T ij(sk) = |dt(ui, sk) − dt(uj, sk)|, where dt(u, s) denotes

the date on which user u performed an activity on subject s. Let the multiset

Lij = {∆T ij(sk)}|Si ∩ Sj |k=1 . Lij is a multiset, thus can contain duplicate elements. We

compute the minimum, mean, median, maximum, mode, and standard deviation

over Lij, and obtain a vector of review-time related features in R6. Further, we

define the unique lockstep feature, uL ∈ N, to be the number of unique ways (with

144

respect to review-posting time) in which two accounts were used across subjects,

i.e., the number of unique elements in the multiset Lij.

• Rating difference. We define the rating difference predictor as ∆Rij(sk) =

|R(ui, sk) − R(uj, sk)|, where R(u, s) is the rating assigned by user u to subject s.

We use the multiset LRij = {∆Rij(sk)}|Si ∩ Sj |k=1 to derive minimum, mean, median,

maximum, mode, and standard deviation for this feature over all the subjects in the

intersection and obtain a vector of rating features in R6. Further, we also extract

its number of unique elements uR ∈ N.

Intuition. Accounts with high co-review and co-cluster weights are more likely to

be controlled by the same fraudster. They have not only reviewed many subjects

in common, but they also have similar neighbors (as identified by DeepWalk and

DeepCluster) in the individual co-review graphs of those subjects.

For the inter-review features, the statistics computed over Lij leverage the ob-

servation that fraudsters synchronize the activities of the accounts that they con-

trol, e.g., in a “lockstep” behavior [BXG+13, SMJ+15, TZX+15]. Since fraud-

sters need to meet tight deadlines [SLK15], we expect ∆T ij(sk) to be lower for

user accounts controlled by the same worker (fake review “burstiness” assump-

tion [MKL+13, FML+13, HTS16, LFW+17, HSB+16a, BSLL+16]). Further, we

expect the unique lockstep uL to be lower for pair of accounts governed by the same

fraudster.

For the rating difference features, we expect uR to be lower for pair of accounts

controlled by the same worker, which would imply that both accounts tend to post

the same rating for their common subjects. In Section 6.11.4 we use regularized

logistic regression to provide further insights into the impact of these features. We

train the co-ownership predictor on the 16 features above and use it to devise a

fraud de-anonymization and a pseudonymous fraudster discovery algorithm.

145

6.6 DDA: Discriminative De-Anonymization

We introduce a discriminative de-anonymization solution (DDA), a classifier that

approximates the function FDA : U∗ \ ∪f
l=1Ul 7→ W ∗ defined in Section 6.2. We

exploit the intuition that in DeepCluster, accounts in a union fraud graph that are

controlled by the same fraudster, form a densely connected subgraph, or cluster.

Knowledge that some accounts in such a cluster are controlled by a fraud worker,

would allow one to attribute the other accounts in that cluster, to the same worker.

However, our experiments revealed that clusters often contain accounts controlled

by different fraudsters, as fraudsters tend to collaborate in search rank fraud jobs.

To disambiguate this fraud attribution problem, we leverage the co-ownership

predictor, of Section 6.5. Specifically, DDA analyzes the clusters returned by Deep-

Cluster (see Section 6.5.1). Some of the clusters may consist of both un-attributed

accounts and user accounts known to be controlled by a fraud worker profile in

W ∗. DDA separately processes each un-attributed account u in such clusters. First,

it creates links (u, uw), for each account uw controlled by a worker w in u’s clus-

ter. Then, it uses cowPred(u, uw) to determine if u and uw share the same owner.

Note that u may appear in multiple clusters, computed by DeepCluster for multiple

subjects. DDA extracts |W ∗| features for u: for each fraudster profile in W ∗, the

feature consists of the number of nodes controlled by that fraudster, to whom u has

a link according to cowPred(u, uw). DDA uses these features to train a supervised

learning algorithm.

6.7 PFD: Pseudonymous Fraudster Discovery

Following the fraud attribution process (e.g., UODA or DDA), we are left with sus-

pected fraudulent user accounts that have not been attributed to any of the known

146

Algorithm 2: Detego system iteratively attributes new fraud to known fraud-
sters and discovers new fraudsters.

Input : W ∗[][]; # seed worker profiles
Output: W ∗[][]; # extended worker profiles

1 S = W ∗.getProducts(); f = W ∗.size();
2 while (S.notEmpty()) do
3 U = S.getReviewerAccounts();
4 < W ∗[1..f], UN >= FDA.(U, S,W ∗);
5 W ∗[f + 1, ..f + k] = PFD(UN);
6 S = W ∗.getFreshProducts(); f = W ∗.size();

7 end
8 return

fraudsters. We introduce now the pseudonymous fraudster discovery (PFD) algo-

rithm that groups these un-attributed accounts into communities likely controlled

by the same, albeit not yet discovered, fraudster.

PFD uses the co-ownership predictor of Section 6.5 to build a co-ownership

graph Gc = (Vc, Ec) over the unknown accounts. Nodes Vc are fraudster-controlled

but un-attributed user accounts, while an edge in Ec exists between two nodes if

the accounts are controlled by the same worker as predicted by cowPred. PFD

then recursively applies a Karger [Kar93], weighted min-cut inspired algorithm to

partition the co-ownership graph into two subgraphs. These subgraphs are more

densely connected than the original graph and connected through links of minimal

total weight. We use triangle density ρ(G) = t(V)

(|V |
3)

for an un-weighted graph G =

(V,E), where t(V) is the number of triangles formed by the edges in E.

6.8 Putting It All Together

We introduce Detego, a fraud attribution and fraudster discovery system (see Al-

gorithm 2). Detego takes as input a seed set W ∗ of f known fraudster profiles,

which include user accounts known to be controlled by each fraudster. Detego ex-

147

pands this seed data, iteratively attributing more accounts to the known fraudsters,

and identifying new fraudsters.

Detego identifies the subjects S reviewed by the accounts controlled by the

seed fraudsters (Algorithm 2, line 1), then retrieves all the user accounts U who

reviewed these subjects (line 3). The accounts in U include accounts controlled by

the f fraudster profiles in W ∗, as well as accounts controlled by other, not yet iden-

tified fraudsters, and also honest accounts. Detego uses a fraud de-anonymization

(FDA) algorithm, e.g., either UODA or DDA to (1) attribute accounts from U to the

fraudster profiles in W ∗ (line 4), and (2) identify the other, non-attributed accounts

from U , denoted by UN . Detego uses the PFD algorithm (line 5) to group the

accounts from UN into communities belonging to k new fraudsters. It then continues

to iterate over newly discovered subjects, reviewed by these new fraudsters or by

the previously known fraudsters (line 6), and over newly identified fraudsters, e.g.,

using the techniques described in Section 6.9.

6.9 Fraud De-Anonymization Oracles

We observe that ASO workers know the user accounts that they control, and intro-

duce a novel approach to validate fraud de-anonymization solutions, that converts

human workers into FDA oracles. In Section 6.10 we use this approach to evaluate

UODA.

Algorithm 3 outlines our validation protocol, where m, n, q are integer param-

eters. The protocol consists of 2 main interaction steps. In the first step, we ask

each participant, i.e., recruited human fraud worker, to reveal m user accounts that

they control in Google Play, by sending their Google e-mail addresses associated

with these accounts (Algorithm 3, line 1). We then use a depth-2 breath first search

148

Algorithm 3: Interaction protocol with human fraud workers, to provide ground
truth performance evaluation for fraud de-anonymization algorithms.

Input : P ; # User study participant;
m, n, q ; # Numbers of accounts

Output: A[]; # Accounts attributed to P ;
1 A = P .revealAccounts(m);
2 Data[] = BFS(A, 2);
3 newAccounts[n] = FDA(A, Data);
4 ACAccounts[q] = genAttentionCheckAccounts();
5 Q = genQuestionnaire(newAccounts, ACAccounts);
6 Answers = send(A.randomAccount(), Q);
7 if Answers.passAttentionCheck() then
8 if newAccounts.getConfirmed().verifyOwnership() then
9 A.add(newAccounts.getConfirmed());

10 end

11 end
12 return A

approach to collect (1) all the apps reviewed by the m accounts and (2) all the

reviewers of these apps (line 2). We apply a fraud de-anonymization solution (see

next section) to identify n new, candidate accounts, i.e., other Google Play accounts

suspected to be controlled by the same participant (line 3).

For the second interaction step, we have designed a questionnaire that asks

the participant to confirm if they control each of these n candidate accounts, see

Figure 6.1. Specifically, for each account, we show the account’s profile photo and

name, and ask the participant if they control the account. We provide 3 options,

“Yes”, “No” and “I don’t remember”.

Participant validation. We have proposed the following tests to validate attention

and honesty:

• Attention check. In addition to the n candidate accounts, we add to the

questionnaire q other test accounts (line 4), for which we know the answer: (1)

accounts that we know that the participant controls, i.e., picked randomly from

149

Figure 6.1: Anonymized screenshots of 3 questionnaire pages, for accounts (left)
revealed in step 1 to be controlled by the participant, (center) synthetic account not
controlled by participant, and (right) detected by UODA to be controlled by the
participant.

among the m accounts revealed in the first step, and (2) synthetic accounts that

we know that the participant does not control, i.e., accounts that we either created

or extracted from Google Play and that has significant activities in Google Play

(photos, videos, followers). We then present the questions for the n + q candidate

and test accounts, in randomized order (line 5).

• E-mail knowledge. Each Google Play account A has an associated e-mail

address E. Given E, one can easily retrieve the account A. However, E is not public,

and, given only knowledge of A, one cannot find E. We leverage this observation

to ask each participant to reveal the e-mail address E of each Google Play account

A that they claim to control. We use E to find the corresponding account A′. The

participant fails this test if A′ does not exist or A′ 6= A.

• E-mail based validation. To certify that participants control the accounts

that they claimed to control, we pick a random account from among the m accounts

revealed in the first step, and send the questionnaire (line 6).

• Token and e-mail based validation. To verify ownership of accounts con-

firmed in the questionnaire (line 8), we choose randomly one of the n accounts

150

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Participant

N
u
m

b
e
r

o
f
a
c
c
o
u
n
ts

Test − Correct Test − Don’t Remember Candidate − Yes
Candidate − No Candidate − Don’t Remember

Figure 6.2: Results of UODA on data validated by 16 human fraud worker partici-
pants. UODA achieves an overall precision of 91%.

confirmed, and send to its corresponding e-mail address, a random, 6 character

code. The accounts verify if and only if the participant can retrieve the code.

6.10 User Study

We have recruited 16 ASO workers from India (4), Bangladesh (4), UK (2), Egypt

(2), USA (1), Pakistan (1), Indonesia (1), and Morocco (1), 12 male and 4 female,

who claimed to control between 40 to 500 accounts (M=211, SD=166). We have

used these participants to evaluate the performance of UODA. We have set m=10,

n=5 and q=5, thus each participant reveals 10 accounts controlled in Google Play,

then further confirms or denies control of 5 other UODA detected accounts, and

5 test accounts. To run UODA, we have used the 10 accounts revealed by each

participant in the first step, to collect (via BFS) 718 apps, 265,724 reviewers and

341,993 reviews in total. We collected up to 175 apps, 37,056 reviews and 22,848

reviewers from a single worker. We pay $10 to each participant.

Ethical considerations. We have developed IRB-approved protocols to ethically

interact with participants and collect data. We have not asked the participants to

151

post fraud on Google services. We restricted the volatile handling of emails and

photos of accounts revealed by participants, to the validation process. We have im-

mediately discarded them after validation. We believe that this information cannot

be used to personally identify fraudsters: recruited fraudsters control between 40-

500 accounts each (M=211, SD=166) thus any such account is unlikely to contain

PII. Further, since we do not preserve these emails and photos, their handling does

not fall within the PII definition of NIST SP 800-122. Under GDPR, the use of

emails and photos without context, e.g., name or personal identification number, is

not considered to be “personal information”.

In the following we first detail the instantiation of UODA that we evaluated,

then describe the results of the user study.

6.10.1 UODA Parameters

We evaluate UODA (see § 6.3) using two features, defined by the sets (1) Cl≥ =

{(s, s′) ∈ Sl | cr(s, s′) ≥ b1}, where cr(s, s′) is the number of reviewers shared by

subjects s and s′ and (2) Ul≥ = {s ∈ Sl | ul(s) ≥ b2},where ul(s) is the number

of accounts controlled by worker Wl who has reviewed subject s. Specifically, these

features define the family of sets FWl
with m=4:

Ωl1 = {s ∈ Sl | s ∈ Cl≥ \ Ul≥}

Ωl2 = {s ∈ Sl | s ∈ Ul≥ \ Cl≥} (6.8)

Ωl3 = {s ∈ Sl | s ∈ Cl≥ ∩ Ul≥}

Ωl4 = {s ∈ Sl | s ∈ (Cl≥ ∪ Ul≥)C}

The rationale behind this selection of Ω sets is that fraudsters are hired to pro-

vide large number of reviews for different subjects. Thus, a fraudulent account u

152

controlled by a fraudster profile (W,U, S) ∈ W ∗ is more likely to post reviews for

subjects that were reviewed by other accounts under its control, see e.g. [JL08,

MLG12, TMG+13, ZXL+18].

6.10.2 Results

Figure 6.2 shows that 15 of the 16 participants have provided correct responses to

all 5 test accounts. The remaining participant answered “I don’t remember” for a

single test account, known not to be controlled by the participant. We have thus

decided to keep the data from all participants. Further, for participants 2 and 4,

UODA found less than 5 suspected accounts (i.e., 4 and 3 respectively).

We observe that 10 out of 16 participants have confirmed control (and passed

our verification) of all UODA proposed accounts. 5 participants confirmed control

of 4 out of 5 UODA recommended accounts and 1 participant confirmed control of

only 3 accounts out of 5 UODA recommended accounts. UODA’s precision (TP
TP+FP

,

where TP is the number of true positives and FP is the number of false positives) is

thus 91%, i.e., 7 unconfirmed accounts among 77 predicted. We note that for 3 out

of the 7 unconfirmed accounts, the participants did not remember if they control

them or not.

6.11 Empirical Evaluation

6.11.1 Attributed Account Data

We have recruited an additional set of 23 fraud workers and performed only the

first step of the fraud de-anonymization validation protocol of § 6.9, where we asked

each participant to reveal at least 15 accounts that they control in Google Play.

153

Figure 6.3 shows the number of accounts (bottom, red segments) revealed by each

of the 23 workers, between 22 and 86 accounts revealed per worker, for a total of

942 attributed fraud accounts.

We have selected the top 640 fraud apps, that received the highest percentage

of reviews from accounts controlled by the 23 fraudsters, and crawled their reviews

once every 2 days, over a 6 month period. The 640 apps had between 7 to 3,889

reviews. Half of these apps had at least 51% of their reviews written from accounts

controlled by the 23 fraudsters. On the whole, the 640 apps have received 159,469

reviews, of which 17,575 were written from the above 942 attributed fraud accounts.

In the following, we use this data to evaluate the ability of developed solutions

to (1) attribute unknown accounts to existing seed workers and (2) reveal hidden

relationships among reviewers towards uncovering previously unknown fraudulent

workers.

6.11.2 DeepCluster Parameter Tuning

We have built the union fraud graph over the user accounts who reviewed the 640

fraud apps. To run DeepWalk, we transform this union fraud graph into a non-

weighted graph, where we replace an edge between nodes ui and uj with weight

wij = w(ui, uj), by wij non-weighted edges between ui and uj. This ensures that

the probability of DeepWalk choosing node uj as next hop while at node ui is pro-

portional to wij. The resulting union fraud graph has 56,950 nodes and 34,742,730

edges (5,858,940 unique edges) and consists of 202 disconnected components.

Algorithm 4 shows the pseudocode for the grid search process that we used

to identify the best performing DeepWalk parameters on the union fraud graph:

d = 300, t = 100, γ = 80, w = 5, see § 6.11.6. d is the number of dimensions when

154

Algorithm 4: DeepWalk parameter tuning. For each parameter set, compute
Deepwalk embeddings on the union fraud graph and run stratified cross validation
(SCV) using a learning algorithm Alg and only seed accounts as part of the training
and validation set (lines 3-5). We save the best performing configuration (lines
6-8).

Input : CRG # Co-review Graph
S # seed accounts
Alg # learning algorithm

Output: DWParams # Best DeepWalk parameters
1 Fmax = 0, DWParams = ∅
2 ParamSet = Generate.Grid({t, d, γ, w})
3 for p ∈ ParamSet do
4 D = S n CRG.DWFeatures(p)
5 F = SCV(D,Alg)
6 if F > Fmax then
7 DWParams = p
8 end
9 Fmax = max{F, Fmax}

10 end
11 return DWParams

representing nodes in the graph, t is the maximum length of a random walk, γ is

the number of random walks started from each node, and w is the the number of

neighbors used as the context in each iteration of its SkipGram component.

We have used K-means as clustering algorithm in DeepCluster (see § 1) consid-

ering that we have prior knowledge about the number of workers who targeted each

subject. We identified the optimum K value required by K-means for each subject

si experimentally, as follows. Iterate for values of K ranging from 2 to |Wi| where

|Wi| is the number of distinct workers known to have targeted subject si. Since

K-means is susceptible to local optima, we run it 100 times on the embeddings of

the co-review graph of subject si, and assess the quality of the returned clusters.

We use a quasi-F1 score that gages how good a cluster configuration is with regards

to our ground truth. We also adjust for the number of accounts in each cluster and

155

Approach Algorithm Precision Recall F1

Top 1 85.11% 82.59% 83.83%
UODA Top 2 92.05% 90.32% 91.11%

Top 3 94.23% 92.91% 93.57%

KNN 94.28% 93.35% 93.81%
DDA MLP 94.90% 94.10% 94.50%

RF 94.37% 93.31% 93.84%

Table 6.1: Performance of UODA and DDA on ground truth data set. DDA performs
better. However, with only 2 features, UODA reaches an F1 of 83%.

compute the weighted average across all clusters in one cluster configuration.

6.11.3 Fraud De-Anonymization

We compare the ability of the UODA and DDA algorithms to de-anonymize the

ground truth attributed account dataset of § 6.11.1. For this, we first set randomly

aside 75% of the seed accounts from each worker into a set GT (Ground Truth) and

let the remaining 25% accounts be the TT (Testing Truth) set. For DDA, we train

the co-ownership predictor using accounts in GT , then apply the predictor to all

accounts in TT and extract as features the number of nodes in each class (known

fraudster) to whom the account has a link according to the co-ownership predictor.

Finally, we train a classifier on these features using stratified 10-fold cross validation.

For UODA, following the GT/TT split, we compute the Ω sets as described

in (6.8) using accounts in GT and test the algorithm on the review histories of

all accounts in TT . We fix the same b1 = 10 and b2 = 15 (obtained through a

grid search) across all the workers. Then, given an account u in TT , we select as

candidate the worker whose partition maximizes the function in Equation 6.4, i.e., we

evaluate such function 23 times (one for each worker) and attribute u to the worker

that maximizes it. Note that to evaluate the function, we need Pi: the popularity

156

0

300

600

900

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

Worker index

N
u
m

b
e
r

o
f
A

c
c
o
u
n
ts

%
 S

im
il
a
r

A
c
c
o
u
n
ts

Attributed

Seed

Figure 6.3: (Top) Distribution of seed and DDA attributed accounts across the
23 fraudulent workers. DDA attributed 3,547 accounts to these fraudsters, 3.7
times more than the size of the seed set. (Bottom) Per worker percentage of newly
attributed accounts suspected of self-plagiarism. Almost all (≥ 90%) of the newly
attributed accounts for 13 out of 23 fraud workers have self-plagiarized reviews.

volume of all the subjects in each Ωi. We approximate Pi = ε
∑

sj∈Ωi
R(sj) where

R(sj) is the number of reviews that subject sj received from fraudster accounts in

the GT set and ε was set to mimic a probability distribution on S. In practice, we

have evaluated multiple values for ε, and chose ε = 10−6 as best performer.

Table 6.1 compares UODA and DDA results after 10 different random GT/TT

splits. We observe that DDA achieves an F1 measure of 94.5%, outperforming

UODA’s top 1 choice. UODA’s performance, however, significantly increases when

allowed to make mistakes. Specifically, Top 2 UODA achieves an average F1 of

91.11% while Top 3 UODA achieves an average F1 of 93.57%.

Fraud Attribution in the Wild. We have further trained DDA on all the ground

truth information (both GT and TT sets). We then applied the trained DDA to

3,681 accounts that appeared in at least one seed cluster but never appeared in an

157

unknown cluster of the 640 suspicious apps (§ 6.11.1). Figure 6.3 (top) shows the

distribution of 3,547 of these accounts attributed to the 23 fraud workers. Only

134 accounts were not assigned to any fraud worker. To validate this result, we

computed the review’s Jaccard similarity between each newly attributed Ûl account

and all seed Ul accounts, using the review’s k−shingle representation as defined

in [Bro97].

Figure 6.3 (bottom) shows the proportion of newly assigned accounts u ∈ Ûl

that have at least one review similar (J(Rû, Ru) ≥ 0.5) to those of accounts in its

respective seed set. We have set k = 3 and considered only reviews with at least

10 characters in length. We observe that 13 out of 23 fraud workers have around

90% of their new attributed accounts with similar reviews to the ones written by its

seed accounts. Likewise, 22 out of 23 fraudsters have at least 50% of their accounts

with similar reviews. These results confirm DDA’s outcome and previous work on

crowdsourced review manipulation, e.g., [KCA17].

6.11.4 Co-Ownership Predictor

We evaluate the performance of the co-ownership predictor cowPred of Section 6.5,

and compare it against Elsiedet’s state-of-the-art solution [ZXL+18]. For this,

we build training data as follows. First, create complete graphs from among seed

attributed accounts found in clusters across all the product space, i.e., create a link

(u, v) for u, v ∈ Cj where Cj is a cluster in product j. Then, using the 942 accounts

of § 6.11.1, generate “positive” links (class 1) when both accounts in the link are

known to be controlled by the same fraudster and “negative” links (class 0) when

controlled by different fraudsters. Finally, for each link (u, v), extract the 16 features

described in Section 6.6 and append its class. Our training set consists of 17,695

158

Solution ML Algo. Precision Recall F1

GBM 96.40% 96.94% 96.67%
RF 96.30% 97.01% 96.65%

cowPred SVM 93.75% 95.34% 94.54%
RLR 93.72% 94.42% 94.07%
NB 88.44% 95.66% 91.91%

Elsiedet Grid search 82.41% 85.92% 84.13%

Table 6.2: Performance of our co-ownership predictor cowPred vs.
ELSIEDET [ZXL+18] on ground truth data. cowPred significantly outper-
forms ELSIEDET.

pairs of user accounts, 79.5% of which are controlled by the same fraudster.

We use this data to train several supervised learning algorithms and select the

top performer as the co-ownership predictor. Specifically, we used several sampling

strategies and supervised learning algorithms that train on the features of the co-

ownership predictor: Gradient Boosting Machine (GBM), Random Forests (RF),

Support Vector Machine (SVM), Regularized Logistic Regression (RLR), and Naive

Bayes (NB). We also set aside 20% of the 17,695 links as a test set to assess the qual-

ity of the co-ownership predictor after training with 10-fold CV. Further, to evaluate

the impact of class imbalance, we compared the no sampling strategy against strate-

gies of undersampling and oversampling. For the undersampling strategy, we created

a 50-50 training set with 2,901 links for each class. For the oversampling strategy,

we used the SMOTE algorithm [CBHK02] and created synthetic data along the

line segments joining any or all of the k minority class nearest neighbors.

cowPred’s results were very similar for the no sampling and oversampling strate-

gies, outperforming the undersampling strategy. Thus, in the following we present

results only for the no sampling strategy.

The ELSIEDET co-ownership predictor. We compare cowPred against the

state-of-the-art Elsiedet’s Sybil social link builder [ZXL+18]. Elsiedet builds

159

social links between Sybil user accounts based on their similarity: (i) whether their

reviews were posted for the same app, (ii) within a fixed time window ∆T , and (iii)

were either 1-star or 5-star. Accounts u and v are considered to form a Sybil social

link iff sim(u, v) ≥ β, where β and ∆T are parameters. Zheng et al. [ZXL+18]

manually tuned these parameters, as they observed that several supervised learning

techniques were not sensitive to different thresholds employed. We have improved

on this manual tuning process, by implementing a grid search to obtain the best

parameters ∆T ∗, β∗, using the same training set used for our cowPred predictor.

We compute performance for Elsiedet based on whether links (u, v) were predicted

to be controlled by the same worker.

Comparison results. Table 6.11.4 compares cowPred’s performance on the test

set, for the best performing supervised learning algorithms evaluated, against Elsiedet’s

Sybil social link builder, with best parameters ∆T ∗ = 30 and β∗ = 0.01. For

cowPred, GBM and RF achieved the best overall results. cowPred significantly out-

performed Elsiedet, with an F1-measure of 96.67% vs. 84.13%. While Elsiedet

was designed for a different type of social network (i.e., Dianping, Yelp), and a dif-

ferent adversary type (elite reviewer), we believe that cowPred’s advantage stems

from its use of features extracted from common review behaviors exhibited by Sybil

accounts. We note that we were not able to compare cowPred against other re-

lated solutions, e.g., Kumar et al.’s sockpuppet pair detection approach [KCLS17],

as they leverage features not available in Google Play, such as community features

(downvotes and upvotes).

Feature Insights via Regularized Logistic Regression. In order to under-

stand the impact of and confirm the intuition behind the cowPred features (see

§ 6.5.2), we train cowPred on the entire data set (17,695 links) using a regularized

logistic regression model [FHT10]. Figure 6.4 shows the relative importance of the

160

−1

0

1

2

m
e
a
n

(L
ij) u
L

m
e
a
n

(L
R

ij)

m
a
x
(L

R
ij)

m
in

(L
R

ij)

S
D

(L
ij)

m
o
d
e

(L
ij)

m
in

(L
ij)

c
o
c
lu

s
te

r

c
o
re

v
ie

w

Features

R
e
la

ti
ve

 I
m

p
o
rt

a
n
c
e

Figure 6.4: Relative importance (shown as sign(y)∗ log(1+abs(y))) for statistically
significant features in the co-ownership predictor using logistic regression. Co-review
and co-cluster have the highest positive impact, while the mean date difference on
Lij and the unique lockstep uij have the largest negative weight.

statistically significant variables after applying Wald Chi-Squared test. We measure

importance as the value of the coefficients corresponding to the trained model.

We observe that the co-review and co-cluster features have a strong positive

effect on the probability of two accounts being controlled by the same worker. The

higher their values the more likely it is that two accounts are owned by the same

underlying worker. Similarly, a positive weight for mode(Lij) and min(Lij) (see

§ 6.5.2) suggests that if a long period of time between reviews is repeated across

most of the commonly reviewed apps then it is more likely that the two accounts

are handled by the same worker. However, the unique lockstep feature uL shows

a negative effect, i.e., the larger its value, the less likely it is that both accounts

belong to the same worker. Equivalently, contrary to the burstiness assumption,

the time difference for all reviews in common are rarely similar. The sign effects

of mean(Lij) and SD(Lij) are less intuitive. We conjecture these sign effects are

161

Figure 6.5: Co-ownership (co-w) graph over 5,548 user accounts who reviewed 640
apps involved in fraud. Two accounts are connected if they were predicted to be
controlled by the same fraudster. Partition algorithm identified 129 user account
components, each potentially controlled by a different fraudster. The largest cluster
has 962 nodes and 54 components have more than 10 nodes.

the result of existing correlation across all variables. Further, mean(LRij
) impacts

negatively the probability of co-ownership. Hence, accounts controlled by the same

worker tend to award similar star rating to their commonly reviewed apps. However,

we notice that rating features have the least significant effect. This observation

implies that most workers post either positive or negative reviews.

6.11.5 Pseudonymous Fraudster Discovery

We applied the cowPred predictor with no sampling strategy and GBM with Bernoulli

loss function. We used 279,431 links from 5,690 unknown (un-attributed) user ac-

counts that reviewed 640 suspicious apps. These accounts occurred in clusters with-

out seed accounts (unknown clusters). The resulting co-ownership graph consists

162

10
2

10
4

10
6

10
8

0.0 0.2 0.4 0.6 0.8 1.0

Ratio

N
u
m

b
e
r

o
f
P

a
ir
s

250

500

750

Accounts

Figure 6.6: Scatterplot for 71 fraudster communities (shown as dots) discovered
by PFD: the percentage of users who wrote reviews that are at least 50% Jaccard
similar to other reviews (x axis) vs. the number of review pairs (in log scale) in
each component (y axis). 15 communities have at least 80% of their user accounts
suspected of plagiarism.

of 5,548 user accounts and 97,448 edges. Figure 6.5 shows 129 components identi-

fied by PFD. We conjecture that each of these dense components is controlled by a

different fraudster. In the following, we validate this conjecture.

Result Validation. We use orthogonal evidence of fraud to validate the dense

components of Figure 6.5. Specifically, we inspect reviews’ text written by accounts

in each cluster. Upon manual investigation, we found many suspicious behaviors,

including singular coincidence: The review “this game is Really cute and awe-

some. I think this is so addicting cause when my kid play this game; i can’t resist her

to playing it.” was posted from three different accounts in the same component for

three different apps on the same date; the enthusiastic reviewer: A user account

posted the review: “Try it guys for who never use this app.. I’m enjoy and love

app...thanks very much.. because i really enjoy with this app...” for 40 apps in two

days; and the lazy high-level editors: We found 12 accounts in one component

that used the review “[App Name] It is very exciting. I like it Nice app! Beautiful

163

screenshot. Very interesting It is useful. I like it so much” as a template to post

reviews for 8 apps. The fraudster would tailor this template by adding the name of

the app as a prefix.

In addition, similar to the validation in § 6.11.3, we have computed the Jaccard

similarity for every pair of reviews using their text’s k-shingle representation with

k = 3. We performed this calculation over each of the 71 detected components

with at least 6 accounts. This experiment generated a total of 1.1 billion Jaccard

pairs from 118,281 reviews belonging to 5,364 accounts. Moreover, we evaluate the

possibility that accounts responsible for reviews with low similarity are generated by

accounts not engaged in review manipulation. Specifically, we first computed, a, the

number of user accounts in a component that posted reviews with Jaccard similarity

at least 0.5 to other reviews in that component. Next, we computed, b, the total

number of accounts for each of the selected components. Finally, we computed the

ratio a/b. Figure 6.6 highlights fifteen components (1967 users) with ratio greater

than 0.8. Very few components have a ratio below 0.3. This result suggests that,

even for large components, users that generated very dissimilar reviews are in fact

also engaged in review manipulation that reuse high amounts of text.

6.11.6 DeepWalk Based Fraud Attribution Evaluation

We evaluate the fraud attribution capabilities of DeepWalk [PARS14] on the union

fraud graph described in section § 6.11.2. In the following, we describe the process

we used to identify the parameters that achieve its best performance.

We have run DeepWalk starting from each of the 942 accounts controlled by the

23 workers (that are part of the union fraud graph). Thus, for each such account we

extract d DeepWalk features. We then used stratified 10-fold cross validation (each

164

Algo Precision Recall F-measure

RF 88.3% 85.8% 87.1%
SVM 90.0% 88.7% 89.3%
k-NN 88.0% 86.1% 87.1%
MLP 89.4% 88.3% 88.8%

Table 6.3: DeepWalk performance with several supervised learning algorithms (d =
300, t = 100, γ = 80, and w = 5). SVM has consistently outperformed the other
algorithms in all our subsequent experiments.

fold contains one tenth of the accounts controlled by each worker) to evaluate the

ability of standard supervised learning algorithms to use these features to attribute

accounts to the workers who control them.

We note that our experiments with different number of random walks per node,

showed no significant difference performance changes when γ ranged from 12 to 137.

In the following experiments we set γ=80.

Supervised learning algorithm selection. We conducted a random search on

the DeepWalk’s parameters (walk length t, embedding size d and window size w)

and SVM consistently achieved the best performance. DeepWalk and the polynomial

SVM combination achieved the best performance for d = 300, t = 100, γ = 80, and

w = 5 (see next paragraphs). Table 6.3 shows the performance of several supervised

learning algorithms in attributing fake accounts to the fraudsters who control them,

when using DeepWalk extracted features. Thus, in the following we only use SVM

for the DeepWalk features.

Random walk length (t). We have evaluated DeepWalk’s fraud attribution per-

formance under randomly chosen values for the walk length, ranging from 33 to 175.

We have set d=64, γ=10 and w=5. Table 6.4 shows the mean precision, recall and

F-Measure under different values, over the 23 workers. It shows that a longer walk

length does not imply better performance: the F-measure peaks at t = 117. We

165

t Precision Recall F-meas.

33 72.7% 71.3% 71.9%
45 74.2% 73.3% 73.7%
71 79.7% 77.9% 78.8%
117 81.9% 80.3% 81.1%
126 81.0% 79.5% 80.2%
143 80.9% 79.5% 80.2%
175 82.0% 80.1% 81.1%

Table 6.4: DeepWalk performance for several t values. Best performance at t = 117.

d Precision Recall F-meas.

100 83.3% 82.3% 82.8%
104 83.0% 81.6% 82.3%
108 84.3% 82.8% 83.5%
180 87.0% 85.8% 86.4%
198 87.1% 85.5% 86.3%
298 88.7% 87.5% 88.1%
434 90.7% 89.3% 90.0%

Table 6.5: DeepWalk performance for several d values; Best achieved at d = 434.

conjecture that as fraudster controlled accounts are close in the co-review graph,

longer walks stray from the community controlled by the fraudster and capture in-

formation also from other communities. Thus, in the subsequent experiments we

set t = 117.

Representation size (d). We have evaluated DeepWalk when setting its output

representation size (the number of feature) to random values ranging from 100 to

450. Table 6.5 shows the mean precision, recall and F-measure over the 23 workers

for various values of d. It shows that a longer representation size is beneficial. Thus,

in the following experiments we set d to the maximum we evaluated, 434.

Window size (w). We have also evaluated DeepWalk for several window size

values, ranging from 5 to 100. Table 6.6 shows that larger window sizes lead to

lower performance. We conjecture that this occurs since a larger context includes

166

w Precision Recall F-meas.

5 90.7% 89.3% 90.0%
10 89.3% 88.0% 88.7%
15 88.3% 87.1% 87.7%
20 87.0% 85.5% 86.2%
25 85.6% 83.9% 84.7%
50 78.7% 76.4% 77.5%
100 69.0% 66.5% 67.7%

Table 6.6: DeepWalk performance for several w values; Best achieved at w = 5.

also information about nodes controlled by other users, either honest or fraudulent.

Thus we set w = 5 as best performing window size.

6.12 Discussion and Limitations

Underground fraud markets. If successful, the fraud de-anonymization ap-

proach proposed in this thesis may drive fraudsters to underground markets. This

is however compatible with our objectives, to degrade fraudster capabilities and

real-life impact. Further, we observe that Detego’s ground truth collection and

solution validation approach, identifies and leverages intrinsic vulnerabilities in the

developer-to-fraudster interactions, i.e., developers need to verify claimed fraudster

expertise and fraudsters need to make a profit. Even underground markets need

to provide basic functionality that includes worker expertise and developer repu-

tation verifications, and payment mechanisms. When underground fraud markets

become accessible to regular developers, they will also be accessible to researchers,

who can exploit the same vulnerabilities for ground truth collection and fraud de-

anonymization validation purposes.

Evasion strategies. Fraudsters can try to game the Detego system. For instance,

a fraudster can use multiple sets of disjoint accounts and never use them while

167

reviewing the same app. We observe however that Detego introduces a tradeoff

between the fraud operation’s efficiency and its detectability. Decreasing account

reuse decreases profits, as reputable accounts are often preferred in search rank fraud

jobs [ZXL+18, SWE+13, CDHH18]. Increasing account reuse exposes the fraud

operation to Detego detection and attribution. Thus, Detego forces fraudsters

to minimize account reuse and reduces review fraud incentives.

Further, an adversarial developer who wants to boost the average rating of her

app, needs to commision a number of fake reviews that is linear in the number of

the app’s honest reviews [RCB+14]. Such behavior however affects the temporal

distribution of the app’s reviews [RCB+14], which makes it detectable, i.e., through

the inter-review-time and rating-difference features of Detego.

Importance of seed fraud data. Detego can effectively provide fraud de-

anonymization only in the presence of seed ground truth information about accounts

controlled by known fraudsters. Future work may explore the ability of cross-site

identity linking attacks [AGL17, BBG+16, SYBT15, ZL13, JKJ13] (see § 3) to e.g.,

link reviews of detected Sybil communities to public profiles of crowdsourcing ac-

counts.

Informed consent. To recruit 16 participants for the user study of Section 6.10, we

have contacted 320 fraud workers. This small turnout may be due to a combination

of factors, that include deserted accounts, lack of interest, and the online consent

form used as part of our IRB approved validation process. We note that the 16

participants were honest (a single “I don’t remember” among 80 test accounts).

Future work may investigate the use of IRB approved deception to evaluate the

impact of the consent form on the number of participants, their honesty, and the

precision of fraud de-anonymization algorithms.

168

We believe that realization of consequences will not be a major factor in the

recruitment process. Our results suggest that reward driven participation is enough

for certain fraudsters. Proofs of expertise are normal in crowdsourcing sites, where

they enable developers gain confidence when hiring workers. Thus, Detego’s data

collection (or variations) can blend in with regular recruitment of fraud. Further,

the use of deception may increase the probability of successful recruiting.

Fraud account memorability. Search rank fraud workers can control hundreds

of accounts in the online system, which can impact memorability. However, in our

study, participants were able to correctly detect ground truth controlled and non-

controlled accounts. The caveat is that we only presented participants with 5 test

accounts. Future work should determine the maximum number of questions that we

can ask participants, before factors like fatigue and boredom impact their honesty

and accuracy.

I.i.d. assumption. UODA assumes that the review history of a fraudulent user

account is independent and identically distributed, i.e., that an element in the se-

quence of reviews is independent of the element that came before it. A possible

future work is to explore UODA assuming a Markovian review-posting model.

169

CHAPTER 7

CONCLUSIONS

Detecting search rank fraud in services like Google Play and Google Maps, is

essential for building and relaying an accurate image of user perception of product

quality. While Google employs a variety of techniques to detect and obstruct the

creation of fraud, communities that specialize in search rank fraud continue to strive

and successfully post, e.g., fake reviews. In this thesis, we posit that to be effec-

tive, fraud detection and classification efforts need to involve the organizations and

individuals who contribute to search rank fraud.

In this thesis we present results from the first structured interview study of 18

ASO workers we recruited from 5 sites, concerning their fraud posting work in Google

Play, and also a quantitative investigation with data that we collected from 39 other

ASO workers recruited from the same sites. We report Google Play vulnerabilities,

and new findings about the capabilities, behaviors and detection avoidance strategies

claimed and exhibited by ASO workers.

Taken together, our study in chapter 4 is limited by the difficulty to recruit

participants and the sensitivity of the data. The presented findings are hence needed

to be understood as situated information and not as generalized facts. Since the

nature of fraud detection research involves elimination of risks and vulnerabilities,

the presented findings, even with all their limitations, provide new suggestions for

future research. Further, given the observed ASO worker ability to adapt, we believe

that future research should focus on collecting more such information from diverse

sources, to extend and ensure the continued relevance of our findings.

In chapter 5 we have developed RacketStore, the first framework to collect de-

tailed app and device usage information from the devices of app search optimization

workers and regular users of Google Play services. We have presented empirical data

170

from RacketStore installs on 803 devices and from interviews with some of their own-

ers. We have developed a classifier to identify apps installed solely to be promoted

and we have shown that on our data, it achieves an F1-measure that exceeds 99%.

We have shown that features that model the user interaction with a device can be

used to distinguish ASO workers and the more organic exchange workers from regu-

lar users of the Google Play service. Our techniques are resilient to worker strategy

modifications, that would impose high overhead on the operation of their devices

and the usage of the apps that they promote.

In chapter 6 we study the search rank fraud de-anonymization problem and

show that it is different from the well studied fraud or spammer detection problem.

We model fraud de-anonymization as a maximum likelihood estimation problem

and develop an unconstrained optimization fraud de-anonymization algorithm. We

introduce a graph based deep learning approach to predict co-ownership of fraud-

ulent account pairs, and use it to build discriminative fraud de-anonymization and

pseudonymous fraudster discovery algorithms. Further, we introduce the first pro-

tocol to involve human fraud workers in the task of evaluating the performance of

fraud de-anonymization algorithms. We show that our solutions achieve high pre-

cision and recall on ground truth data, significantly outperform a state-of-the-art

approach and are able to attribute thousands of new accounts to known crowd-

sourced fraudsters.

171

APPENDIX

Recruitment Material (Chapter 4)

We are researchers from FIU, a university in the US, looking for freelancers with
provable App Search Optimization (ASO) expertise in Google Play, willing to
participate in a survey. We will ask you questions about your experience working
as an app search optimization (ASO) freelancer. We are conducting this survey
part of an effort to increase our understanding of how the ASO process optimizes
mobile apps.
Your participation in this study is confidential. We will never reveal to anyone any
information that may be linked to you, including the fact that you participated in
our study.
Your participation is completely voluntary and you may choose to withdraw at
any time or not answer questions that you do not feel comfortable answering. If
you agree to participate, please send me an e-mail at mrahm031@fiu.edu.

Figure 7.1: Recruitment message sent to each identified ASO worker.

Figure 7.1 shows the recruitment message that we sent to each ASO worker that

we identified. Figure 7.2 shows the script that we read to each ASO worker who

replied to the recruitment message and qualified for our study.

172

Thank you for agreeing to participate in this study. My name is Mizanur Rahman,
and I am a student at FIU.
In this study, I would like to ask you questions about your experience working as
an app search optimization, or ASO, freelancer. The questions will explore your
perspectives on ASO strategies in Google Play. The study should take up to 1
hour.
If you decide to participate, you will be one of up to 100 people in this study. We
will pay you $5 for every 15 minutes of your time, that is, $20 if we talk for 1
hour.

The benefits of your participation include receiving feedback on vulnerabili-
ties that your strategies may have, and also helping us better understand and
model the app search optimization process in Google Play.
Please note that some of the questions that we will ask you, may be upsetting.
You can skip any questions you don’t want to answer, or stop the study entirely,
at any time. Your participation in this study is voluntary. You are free to
participate in the study or withdraw your consent at any time during the study.
Your withdrawal or lack of participation will not affect any benefits to which you
are otherwise entitled.
In addition, once we publish our results, other parties, including Google, may
use them to try to develop techniques to detect your activities. We note that
you already run this risk, even if you do not participate in our study. This is
because other developers who hire you, may work for Google, and could use
data that they collect from you, to directly impact your activities, e.g., block
your accounts or remove the reviews that you write. However, we will never do this.

Please be assured that your participation in this study is confidential. We
will keep the records of this study private and protected to the fullest extent
provided by law. In any sort of report we might publish, we will not include
any information that will make it possible to identify you. We will store records
securely, and only the researcher team will have access to the records. However,
your records may be reviewed for audit purposes by authorized University or
other agents who will be bound by the same provisions of confidentiality.
Now, please read the consent form at the following link, https:

//fiu.qualtrics.com/jfe/form/SV_8wYphZYyVQ4lTz7, and tell me if you
want to participate in the study. If you want to participate, please click on the
button at the end of the form, that says ”I consent”. Before we begin, do you
have any questions?

Figure 7.2: Introduction script read by interviewer to ASO workers who responded
to the recruitment message, and qualified for the study, before starting the study.

173

https://fiu.qualtrics.com/jfe/form/SV_8wYphZYyVQ4lTz7
https://fiu.qualtrics.com/jfe/form/SV_8wYphZYyVQ4lTz7

Survey Questionnaire (Chapter 4)

Screening Questions.

1. How many user accounts do you control in Google Play?

2. For how long have you been active doing App Store Optimization for Google

Play?

3. How many jobs have you worked on Google Play review approximately?

4. How much do you charge for a review?

5. How much do you charge for an app install?

6. Are you hired to only provide ratings without reviews? Is this cheaper?

7. Can you tell me what types of ASO services do you provide in Google Play?

ASO Work Process.

1. Assume that I hire you to post several reviews for an app. Can you walk me

through your procedure, that is, how do you approach the task?

2. How do you select the devices that you will use?

3. How do you select the user accounts that you will use?

4. Are you already logged in on an account on each device, or do you have to

login for this task?

5. Do you log into multiple accounts using the same device? Do you have a

fixed list of accounts that you use from each device?

6. Is there a limit on how many accounts you can login from in a single device?

7. Do you need to install the app multiple times, once from each account, or if

you install it once you can review it from all the accounts from that device?

174

8. Do you type each review directly from the device, or do you write first all

the reviews in a file and then you copy-and-paste them to each device?

9. Do you have a routine (or procedure) to make sure that you use all these

devices when writing reviews? For instance, do you go through the devices in

a certain order?

1. Assume now that tomorrow I will hire you to post reviews for another app.

2. Will you pick the same devices and accounts as in the first job? Will you

post the reviews in the same order, from the same devices and user accounts,

as in the first job?

3. How else do you make sure that you don’t write reviews from the same

account twice, or that you don’t forget to use one of your accounts and devices

in the process?

Job Requirement.

1. Have you seen jobs that tell you for how long to post reviews, that is, for how

many days? If the answer is yes:

2. How many such jobs have you seen in the past month?

3. What is the longest such time interval that you have seen in a job?

4. What do you think is the largest number of reviews that a freelancer could

write for a single app?

5. Have you seen jobs that ask you to post a certain number of reviews per day?

If the answer is yes:

6. How many such jobs have you seen in the past month?

175

7. What is the average number of reviews that you think is better to post in a

day for a single app?

8. Do you post them all at the same time, or at different times during the day?

9. Can you tell if an app that you are reviewing has been recently launched?

10. Have you seen jobs where developers/employers ask freelancers to post re-

views for recently launched apps?

11. How many such jobs have you seen in the past month?

12. Were you ever re-hired by the same developer to review the same app at a

later time? For instance, 2 weeks or 6 months after the first job?

13. How many times?

14. Were you ever hired by a developer to review more than one app?

15. Do you provide services that ensure that the rating of the app will stay above

a threshold, for instance, above 3.5 or 4 stars?

16. Have you seen such jobs? How many in the past month?

17. How many such jobs have you worked on in the past month?

18. How much do you charge for this service?

Devices.

1. What devices do you use frequently?

2. Do you ever/do you prefer to use a browser to write reviews? or do you use

emulator? What about virtual machines?

3. How many mobile devices do you have?

4. How do you get these devices? Are they old and cheap or new and expensive,

or a mix of old and new?

176

5. How many brands of devices do you have?

6. Given that you control so many devices, how do you manage them so that

you can easily access them physically? Do you keep all of them in a box, or

on your desk, or on a rack?

7. Can you access them remotely, or do you need to manually access each of

these devices?

8. Device compatibility: Did it ever happen that you were unable to install an

app on the devices that you have - what did you do then?

User Accounts.

1. What do you do when the number of reviews requested is higher than the

number of accounts you have?

2. Do you outsource?

3. Do you create new user accounts?

4. Do you purchase accounts?

5. Some people think it is important to create new user accounts when they start

a new job. How many new accounts would you create on average per job?

6. How often do you our you team create new accounts?

7. Is there any effective way to pick a good name for a user account?

8. Are the names that you choose very different from each other?

9. Do you ever use a random name generator?

10. How do you get the pictures for the accounts you create?

11. One participant mentioned that they have purchased user accounts from a

third party. Have you ever done that?

177

12. Do you purchase such accounts when you start a new job?

13. Do you purchase such accounts at random times?

14. How many new accounts do you think you have purchased in total?

15. Do you access your Google Play accounts regularly? How do you do that?

16. Do you access them manually?

17. Do you use any script to access and maintain their accounts?

18. Is it necessary to use proxy or VPN services to access accounts?

19. Since freelancers have so many user accounts in Google Play, what are common

strategies to remember passwords for these accounts?

20. Do you write the passwords down?

21. Do you use the same password for multiple accounts?

22. Do you use passwords that are easy to remember?

23. For how long do you usually use a Google Play account on average? Do you

ever abandon a user account that you use in Google Play?

24. Do you ever create an account just to post one review and then you abandon

the account?

Validation.

1. Do you ever need to verify newly created Google Play accounts?

2. What is the preferred way to verify those accounts? Email or Phone?

3. Do you buy and use virtual phone numbers, like Twilio or Google Voice?

4. Do you activate the accounts’ google plus profiles?

5. Why sometimes the account’s name is ”A Google User”?

178

6. Do you upvote reviews written by you or your team from other accounts?

7. Did any employer ask you to prove that you posted the reviews? How do you

provide such proof?

Avoidance Strategies.

1. Did you ever have a Google Play account that was deleted by Google?

2. How many times did this happen to you in the past two weeks?

3. Has Google Play ever erased reviews that you posted?

4. Do you remember how many times this happened in the past 2 weeks? From

your experience, how long does it take for other people to see your reviews?

5. Do you write reviews for apps that you were not hired to review?

6. How do you select those apps?

7. Do you write reviews for apps that you personally like?

8. Do you write reviews for apps that you pick at random?

9. Do you ever use only new accounts to post reviews for an app in a job?

10. Do you use a mix of old and new accounts to post reviews for an app in a job?

11. How often did you do this in your past 5 jobs?

12. Have you seen jobs that explicitly request to use only old accounts that have

a good reputation?

13. How many such jobs did you noticed in the past 1-3 month(s)?

App Installation.

1. Do you recommend using the app before reviewing it, or is it fine if you review

it right after you install it?

179

2. Do you wait sometime between installing the app and reviewing the app?

For how long?

3. Do you open the app before writing the review? Have you worked on jobs

that asked you to interact with the app, before writing the review? For how

long? How many such jobs did you get?

4. How long do you keep the app after posting the review?

Review Writing.

1. Do you write the text of the reviews yourself?

2. Do you ever get the review text from the developer? How many times in the

past 2-3 weeks?

3. Have you ever seen jobs that ask you how long the review text should be?

Do you remember that value?

4. Have you seen people copy parts of reviews that they posted for other apps?

5. Have you seen people copy parts of reviews written by others?

6. How long is an average review that you write, in terms of the number of

words or characters?

7. Have you seen people copying reviews that they wrote in an old job to a new

job?

8. Do you write reviews in first or third person?

9. Can you give me some example of review text that you write usually?

10. Were you ever hired to write bad reviews, with 1 or 2 star ratings? Do you

remember how many such jobs you did?

11. What percentage of your reviews had 4 or 5 stars?

180

12. Do you ask someone else to post the reviews that you wrote?

13. Do you ask someone else to post the reviews that you wrote?

14. Do you ever use a script to post the reviews?

15. Do you know how to post a review for an app without installing the app?

Collaboration.

1. Do you work individually or are you a part of a team or business?

2. If part of a team, how large is your team or business?

3. How do people in the team communicate?

4. How do they distribute the profit?

5. Do you maintain any work hierarchical levels in your team? For example, do

you have dedicated employees who find clients, write reviews, post reviews,

validate accounts, get mobile devices, create accounts?

6. Do you know freelancers who communicate with each other to post reviews

for the same job?

7. Do you know if freelancers communicate among them about when they will

post their reviews?

General Questions.

1. What is your age?

2. What is the highest degree or level of education you have completed?

3. Do you have another job besides freelancing? Can you tell me what it is?

181

Recruitment Material (Chapter 5)

We have used the following recruitment message:

“We are researchers from a US university, looking for people who write paid

reviews in Google Play, and are willing to participate in a user study. We are

conducting this study as part of an effort to increase our understanding of how app

search optimization workers interact with Google Play apps.

If you agree to participate in the study, we will ask you to install an app from

Google Play and keep it installed for at most four weeks. We will pay you $1 when

you install the app. We will then pay you 20 cents for each day when you keep the

app installed, on a weekly basis. That is, we will pay you $1.40 per week, for just

keeping the app installed. We may also ask you to use the app to write reviews. If

this happens, we will pay you additional money, at a rate that we will negotiate.

Please note that we will guard the information that you provide and that we collect,

with the utmost secrecy. We will never reveal to anyone any information that may

be linked to you, including the fact that you participated in our study

Your participation is completely voluntary and you may choose to withdraw at any

time. If you agree to participate, please reply to this message. Also, please send us

answers to the following questions:

1. Have you ever written paid reviews in Google Play?

2. How many user accounts do you control in Google Play?

3. How many mobile devices do you own or can access?

4. On how many devices can you install our app?

5. For how many days can you keep our app installed?

6. Are you an administrator or do you post reviews yourself?

7. How many ASO jobs are you currently working on?”

182

Survey Questionnaire (Chapter 5)

1. What is your age?

2. Where do you live?

3. How long have you been working on this type of job?

4. Are you the sole user of the device where you installed RacketStore?

5. If he shares with others: What applications do the other people use on the

phone?

6. Do you use this device for personal reasons? For instance, do you check your

e-mail on it?

7. Do you use this device to log into multiple accounts?

8. Do you use those accounts to post reviews? In which sites, Google Play, Google

Maps?

9. How do you manage the id and passwords for many accounts?

10. Is there a limit on how many google accounts you can login from in a single

device?

11. What made you uninstall the RacketStore app?

12. Have you ever stopped any apps that you installed, via the device settings?

13. If the answer is yes: Why do you do this - for instance, are you concerned that

such apps are malware? Why would you not uninstall and just deactivate/stop

this particular suspicious app?

14. If the app is stopped does Google still consider this app to be installed? That

is, does this still count as a “retention install”?

15. Do you give all permissions requested by the apps that you install?

183

16. Are there any permissions that you don’t like to grant?

17. Can you give examples of such permissions?

18. Are you concerned about installing malware apps on this device?

19. Do you have an anti-virus installed on it?

20. If the answer is yes: Have you ever found that an app that you installed was

detected to be malware?

21. Are you concerned about the privacy of your data (contacts, login info, pic-

tures, videos, text messages, location) that is on your phone?

22. Have you installed apps from Android app markets other than Google Play?

Which app markets?

23. Can you give examples of apps that you download from such app markets?

24. Do you know why those apps are not on Google Play?

25. If they give example: Why did you install this app? (personal use vs review)

184

BIBLIOGRAPHY

[ACF13] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion Fraud
Detection in Online Reviews by Network Effects. In Proceedings of
AAAI ICWSM, 2013.

[AGL17] Athanasios Andreou, Oana Goga, and Patrick Loiseau. Identity vs.
attribute disclosure risks for users with multiple social profiles. In
Proceedings of the IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pages 163–170, 2017.

[AHG+17] Syed Ishtiaque Ahmed, Md. Romael Haque, Shion Guha, Md. Rashidu-
jjaman Rifat, and Nicola Dell. Privacy, Security, and Surveillance in
the Global South: A Study of Biometric Mobile SIM Registration in
Bangladesh. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, CHI ’17, pages 906–918, 2017.

[air18] How artificial intelligence detects fake reviews. Scitech Europa, https:
//tinyurl.com/ycjwtmfw, 2018.

[Ako18] Tasneem Akolawala. Google Play Store Removes Millions of Fake
Reviews and Bad Apps With New Anti-Spam System. Gadgets360,
https://tinyurl.com/ya6g2v9n, 2018.

[and] Permissions overview. https://bit.ly/2x4HKiW.

[and17] Changes to device identifiers in android o. Android Develop-
ers Blog, https://android-developers.googleblog.com/2017/04/
changes-to-device-identifiers-in.html, 2017.

[Ank13] Google I/O 2013 - Getting Discovered on Google Play. www.youtube.
com/watch?v=5Od2SuL2igA, 2013.

[ant20] Privacy, security, and deception. Developer Policy Center,
https://play.google.com/about/privacy-security-deception/

user-data/, 2020.

[App] Appbrain. https://www.appbrain.com/info/about.

[AQAA+17] Muhammad AL-Qurishi, Mabrook Alrakhami, Atif Alamri, Majed Al-
rubaian, Sk Md Mizanur Rahman, and M Hossain. Sybil defense tech-
niques in online social networks: A survey. PP:1–1, 01 2017.

185

https://tinyurl.com/ycjwtmfw
https://tinyurl.com/ycjwtmfw
https://tinyurl.com/ya6g2v9n
https://bit.ly/2x4HKiW
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
www.youtube.com/watch?v=5Od2SuL2igA
www.youtube.com/watch?v=5Od2SuL2igA
https://play.google.com/about/privacy-security-deception/user-data/
https://play.google.com/about/privacy-security-deception/user-data/
https://www.appbrain.com/info/about

[AR16] App Reviews. http://www.app-reviews.org, Last accessed Novem-
ber 2016.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for min-
ing association rules in large databases. In Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB ’94, pages
487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers
Inc.

[AS16] App Such. http://www.appsuch.com, Last accessed November 2016.

[AT12] Mishari Almishari and Gene Tsudik. Exploring linkability of user re-
views. In European Symposium on Research in Computer Security,
pages 307–324. Springer, 2012.

[AV16] Apps Viral. http://www.appsviral.com/, Last accessed November
2016.

[Ban18a] Journalists, activists in Bangladesh arrested under ICT Act for post-
ing on social media. AccessNow, https://www.accessnow.org/

bangladesh-ict-act/, August 2018.

[Ban18b] No Place for Criticism. Bangladesh Crackdown
on Social Media Commentary. https://www.

hrw.org/report/2018/05/09/no-place-criticism/

bangladesh-crackdown-social-media-commentary, May 2018.

[Bar18] Brian Barrett. Millions of Android Devices are Vulnerable
Right Out of the Box. Wired, https://www.wired.com/story/

android-smartphones-vulnerable-out-of-the-box/, 2018.

[BBG+16] Michael Backes, Pascal Berrang, Oana Goga, Krishna P Gummadi,
and Praveen Manoharan. On profile linkability despite anonymity in
social media systems. In Proceedings of the 2016 ACM on Workshop
on Privacy in the Electronic Society, pages 25–35, 2016.

[BBM+14] Elie Bursztein, Borbala Benko, Daniel Margolis, Tadek Pietraszek,
Andy Archer, Allan Aquino, Andreas Pitsillidis, and Stefan Savage.
Handcrafted fraud and extortion: Manual account hijacking in the
wild. In Proceedings of the 2014 Conference on Internet Measurement
Conference, IMC ’14, pages 347–358, New York, NY, USA, 2014. ACM.

186

http://www.app-reviews.org
http://www.appsuch.com
http://www.appsviral.com/
https://www.accessnow.org/bangladesh-ict-act/
https://www.accessnow.org/bangladesh-ict-act/
https://www.hrw.org/report/2018/05/09/no-place-criticism/bangladesh-crackdown-social-media-commentary
https://www.hrw.org/report/2018/05/09/no-place-criticism/bangladesh-crackdown-social-media-commentary
https://www.hrw.org/report/2018/05/09/no-place-criticism/bangladesh-crackdown-social-media-commentary
https://www.wired.com/story/android-smartphones-vulnerable-out-of-the-box/
https://www.wired.com/story/android-smartphones-vulnerable-out-of-the-box/

[BCI+15] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratanto-
nio, Christopher Kruegel, and Giovanni Vigna. What the app is that?
deception and countermeasures in the android user interface. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 931–948. IEEE Computer Society, 2015.

[Blu] Bluestacks. https://www.bluestacks.com/.

[Bra18] Kyle Bradshaw. Play store’s machine learning based anti-spam system
removes millions of reviews per week. 9To5Google, https://tinyurl.
com/ya3b6xjg, 2018.

[BRBMR17] Dearbhail Bracken-Roche, Emily Bell, Mary Ellen Macdonald, and
Eric Racine. The concept of “vulnerability” in research ethics: an in-
depth analysis of policies and guidelines. Health research policy and
systems, 15(1):8, 2017.

[Bre01] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[Bro97] A. Broder. On the resemblance and containment of documents. In
Proceedings of the Compression and Complexity of Sequences 1997, SE-
QUENCES ’97, pages 21–, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[BSLL+16] Prudhvi Ratna Badri Satya, Kyumin Lee, Dongwon Lee, Thanh Tran,
and Jason (Jiasheng) Zhang. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management,
CIKM ’16, pages 2365–2370, New York, NY, USA, 2016. ACM.

[BXG+13] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher
Palow, and Christos Faloutsos. CopyCatch: Stopping Group Attacks
by Spotting Lockstep Behavior in Social Networks. In Proceedings of
the WWW, 2013.

[CB07] Kathy Charmaz and Linda Liska Belgrave. Grounded theory. The
Blackwell Encyclopedia of Sociology, 2007.

[CBHK02] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. J.
Artif. Int. Res., 16(1):321–357, June 2002.

187

https://www.bluestacks.com/
https://tinyurl.com/ya3b6xjg
https://tinyurl.com/ya3b6xjg

[CDHH18] Nicholas Confessore, Gabriel Dance, Richard Harris, and Mark Hansen.
The follower factory. The New York Times, Jan 2018.

[cei] Plan ceibal. https://www.ceibal.edu.uy/en/institucional.

[Cip16] Jason Cipriani. Google starts filtering fraudulent app reviews from
Play Store. ZDNet, https://tinyurl.com/hklb5tk, 2016.

[cul12] Cell phone culture: How cultural differences affect mobile
use. CNN Business, https://www.cnn.com/2012/09/27/tech/

mobile-culture-usage/, 2012.

[CYYP14] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. Uncover-
ing large groups of active malicious accounts in online social networks.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, pages 477–488, New York,
NY, USA, 2014. ACM.

[DCFJ+14] Emiliano De Cristofaro, Arik Friedman, Guillaume Jourjon, Mo-
hamed Ali Kaafar, and M. Zubair Shafiq. Paying for likes?: Under-
standing facebook like fraud using honeypots. In Proceedings of the
2014 Conference on Internet Measurement Conference, IMC ’14, pages
129–136, 2014.

[DM09] George Danezis and Prateek Mittal. Sybilinfer: Detecting sybil nodes
using social networks. In NDSS, 2009.

[Dou02] John R. Douceur. The Sybil Attack. In International workshop on
peer-to-peer systems, pages 251–260, 2002.

[Fer20] Nick Fernandez. It’s 2020 and the Google Play Store
still has a major fake review problem. Android Authority,
=https://tinyurl.com/rgnh9wz, 2020.

[FHT10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regulariza-
tion paths for generalized linear models via coordinate descent. Journal
of Statistical Software, 33(1):1–22, 2010.

[Fiv] Fiverr. https://www.fiverr.com/.

188

https://www.ceibal.edu.uy/en/institucional
https://tinyurl.com/hklb5tk
https://www.cnn.com/2012/09/27/tech/mobile-culture-usage/
https://www.cnn.com/2012/09/27/tech/mobile-culture-usage/
=
https://www.fiverr.com/

[FLCS15] Amir Fayazi, Kyumin Lee, James Caverlee, and Anna Squicciarini.
Uncovering crowdsourced manipulation of online reviews. In Proceed-
ings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’15, pages 233–242,
New York, NY, USA, 2015. ACM.

[flu20] Flutter. Flutter, https://flutter.dev/, 2020.

[FML+13] Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos,
and Riddhiman Ghosh. Exploiting Burstiness in Reviews for Review
Spammer Detection. In Proceedings of AAAI ICWSM, 2013.

[FNG] Fake Name Generator. Your Randomly Generated Identity. https:

//www.fakenamegenerator.com/.

[Fre] Freelancer. http://www.freelancer.com.

[Fre18] Freedom on the Net, Bangladesh. Freedom House, https://

freedomhouse.org/report/freedom-net/2018/bangladesh, 2018.

[FTC] The FTC’s Endorsement Guides: What People Are Asking. https:

//tinyurl.com/p7hk9uz.

[gad] Gadgets 360. https://gadgets.ndtv.com/.

[gai] Access control. https://developers.google.com/issue-tracker/

concepts/access-control.

[GGF14] Stephan Günnemann, Nikou Günnemann, and Christos Faloutsos. De-
tecting anomalies in dynamic rating data: A robust probabilistic model
for rating evolution. In Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’14, pages 841–850, New York, NY, USA, 2014. ACM.

[GLP+13] Oana Goga, Howard Lei, Sree Hari Krishnan Parthasarathi, Gerald
Friedland, Robin Sommer, and Renata Teixeira. Exploiting innocuous
activity for correlating users across sites. In Proceedings of the 22nd
international conference on World Wide Web, pages 447–458, 2013.

[GP] Google Play Help – Supported Devices. https://support.google.

com/googleplay/answer/1727131?hl=en.

189

https://flutter.dev/
https://www.fakenamegenerator.com/
https://www.fakenamegenerator.com/
http://www.freelancer.com
https://freedomhouse.org/report/freedom-net/2018/bangladesh
https://freedomhouse.org/report/freedom-net/2018/bangladesh
https://tinyurl.com/p7hk9uz
https://tinyurl.com/p7hk9uz
https://gadgets.ndtv.com/
https://developers.google.com/issue-tracker/concepts/access-control
https://developers.google.com/issue-tracker/concepts/access-control
https://support.google.com/googleplay/answer/1727131?hl=en
https://support.google.com/googleplay/answer/1727131?hl=en

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 2672–2680. 2014.

[gpla] View & analyze your app’s ratings & reviews. https:

//support.google.com/googleplay/android-developer/answer/

138230?hl=en.

[gplb] Write a review on google play. Google Play Help, https://tinyurl.
com/yc9stfy3.

[gsm] Gsmarena. https://www.gsmarena.com/.

[GVR] Google Vulnerability Reward Program. https://www.google.com/

about/appsecurity/reward-program/.

[HGT+17] Danny Yuxing Huang, Doug Grundman, Kurt Thomas, Abhishek Ku-
mar, Elie Bursztein, Kirill Levchenko, and Alex C. Snoeren. Pinning
down abuse on google maps. In Proceedings of the 26th International
Conference on World Wide Web, WWW ’17, pages 1471–1479, Re-
public and Canton of Geneva, Switzerland, 2017. International World
Wide Web Conferences Steering Committee.

[HRRC18] Nestor Hernandez, Mizanur Rahman, Ruben Recabarren, and Bogdan
Carbunar. Fraud de-anonymization for fun and profit. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 115–130, New York, NY, USA, 2018. ACM.

[HSB+16a] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Le-
man Akoglu, Mohit Kumar, Disha Makhija, and Christos Faloutsos.
BIRDNEST: bayesian inference for ratings-fraud detection. In Pro-
ceedings of the 2016 SIAM International Conference on Data Mining,
Miami, Florida, USA, May 5-7, 2016, pages 495–503, 2016.

[HSB+16b] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin,
and Christos Faloutsos. Fraudar: Bounding graph fraud in the face of
camouflage. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
895–904, New York, NY, USA, 2016. ACM.

190

https://support.google.com/googleplay/android-developer/answer/138230?hl=en
https://support.google.com/googleplay/android-developer/answer/138230?hl=en
https://support.google.com/googleplay/android-developer/answer/138230?hl=en
https://tinyurl.com/yc9stfy3
https://tinyurl.com/yc9stfy3
https://www.gsmarena.com/
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/

[HTS16] Atefeh Heydari, Mohammadali Tavakoli, and Naomie Salim. Detection
of fake opinions using time series. Expert Syst. Appl., 58(C):83–92,
October 2016.

[IVD+10] Lilly Irani, Janet Vertesi, Paul Dourish, Kavita Philip, and Rebecca E.
Grinter. Postcolonial computing: A lens on design and development.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’10, pages 1311–1320, 2010.

[Jak18] Markus Jakobsson. Secure remote attestation. IACR Cryptology ePrint
Archive, 2018:31, 2018.

[Jan18] Mark Jansen. Here’s how the google play store detects fake ratings and
reviews. Digital Trends, https://tinyurl.com/yc5hvyq5, 2018.

[JCB+14] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang
Yang. Inferring strange behavior from connectivity pattern in social
networks. In Vincent S. Tseng, Tu Bao Ho, Zhi-Hua Zhou, Arbee L. P.
Chen, and Hung-Yu Kao, editors, Advances in Knowledge Discovery
and Data Mining, pages 126–138, Cham, 2014. Springer International
Publishing.

[JHH+20] S. K. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath.
Throwing darts in the dark? detecting bots with limited data using
neural data augmentation. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1729–1745, Los Alamitos, CA, USA, may 2020.
IEEE Computer Society.

[JKJ13] Paridhi Jain, Ponnurangam Kumaraguru, and Anupam Joshi. @ i
seek’fb. me’: Identifying users across multiple online social networks.
In Proceedings of the 22nd international conference on World Wide
Web, pages 1259–1268. ACM, 2013.

[JL08] Nitin Jindal and Bing Liu. Opinion spam and analysis. In Proceedings
of the 2008 International Conference on Web Search and Data Mining,
WSDM ’08, page 219–230, New York, NY, USA, 2008. Association for
Computing Machinery.

[KAC19] Parisa Kaghazgaran, Majid Alfifi, and James Caverlee. Tomcat:
Target-oriented crowd review attacks and countermeasures. In Inter-
national AAAI Conference on Web and Social Media, ICWSM, 2019.

191

https://tinyurl.com/yc5hvyq5

[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a
simple min-cut algorithm. In SODA, volume 93, 1993.

[KCA17] Parisa Kaghazgaran, James Caverlee, and Majid Alfifi. Behavioral
analysis of review fraud: Linking malicious crowdsourcing to amazon
and beyond. In Proceedings of ICWSM, 2017.

[KCLS17] Srijan Kumar, Justin Cheng, Jure Leskovec, and V.S. Subrahmanian.
An army of me: Sockpuppets in online discussion communities. In
Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, pages 857–866, Republic and Canton of Geneva, Switzer-
land, 2017. International World Wide Web Conferences Steering Com-
mittee.

[KCS18] Parisa Kaghazgaran, James Caverlee, and Anna Squicciarini. Com-
bating crowdsourced review manipulators: A neighborhood-based ap-
proach. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM ’18, pages 306–314, New
York, NY, USA, 2018. ACM.

[KM16] Santosh KC and Arjun Mukherjee. On the temporal dynamics of opin-
ion spamming: Case studies on yelp. In Proceedings of the 25th Inter-
national Conference on World Wide Web, pages 369–379. International
World Wide Web Conferences Steering Committee, 2016.

[Kna19] Helen Knapman. Fake five-star review farms are flooding amazon with
positive comments, says which? The Sun, https://tinyurl.com/

yafthxdd, 2019.

[KS18] Srijan Kumar and Neil Shah. False information on web and social
media: A survey. CoRR, abs/1804.08559, 2018.

[LCM+15] Huayi Li, Zhiyuan Chen, Arjun Mukherjee, Bing Liu, and Jidong Shao.
Analyzing and detecting opinion spam on a large-scale dataset via tem-
poral and spatial patterns. In Proceedings of ICWSM, pages 634–637.
AAAI Press, 2015.

[LCNK17] Shanshan Li, James Caverlee, Wei Niu, and Parisa Kaghazgaran.
Crowdsourced app review manipulation. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, pages 1137–1140, New York, NY,
USA, 2017. ACM.

192

https://tinyurl.com/yafthxdd
https://tinyurl.com/yafthxdd

[LFW+17] Huayi Li, Geli Fei, Shuai Wang, Bing Liu, Weixiang Shao, Arjun
Mukherjee, and Jidong Shao. Bimodal distribution and co-bursting
in review spam detection. In Proceedings of the 26th International
Conference on World Wide Web, WWW ’17, pages 1063–1072, Re-
public and Canton of Geneva, Switzerland, 2017. International World
Wide Web Conferences Steering Committee.

[LGWM15] Changchang Liu, Peng Gao, Matthew Wright, and Prateek Mittal.
Exploiting temporal dynamics in sybil defenses. In Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 805–816, New York, NY, USA, 2015. ACM.

[LMC+16] Yixuan Li, Oscar Martinez, Xing Chen, Yi Li, and John E Hopcroft. In
a world that counts: Clustering and detecting fake social engagement
at scale. In Proceedings of the 25th International Conference on World
Wide Web, pages 111–120, 2016.

[LNJ+10] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and
Hady Wirawan Lauw. Detecting product review spammers using rat-
ing behaviors. In Proceedings of the 19th ACM international conference
on Information and knowledge management, CIKM ’10, pages 939–948,
New York, NY, USA, 2010. ACM.

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining
of Massive Datasets. Cambridge University Press, New York, NY,
USA, 2nd edition, 2014.

[LWG14] Kyumin Lee, Steve Webb, and Hancheng Ge. The dark side of micro-
task marketplaces: Characterizing fiverr and automatically detecting
crowdturfing, 2014.

[LZ16] Michael Luca and Georgios Zervas. Fake it till you make it: Reputation,
competition, and yelp review fraud. In Management Sciences, pages
3412–3427, 01 2016.

[Mah19] Sapna Maheshwari. When Is a Star Not Always a Star? When It’s an
Online Review. The New York Times, =https://tinyurl.com/snwjmdd,
2019.

[MDS+19] Ariana Mirian, Joe DeBlasio, Stefan Savage, Geoffrey M. Voelker, and
Kurt Thomas. Hack for hire: Exploring the emerging market for ac-
count hijacking. In The World Wide Web Conference, WWW ’19, page

193

=

1279–1289, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[mic12] microWorkers. work & earn or offer a microjob. http://www.

microworkers.com/, Retrieved on Nov. 2, 2012.

[MKL+13] Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Meichun
Hsu, Malu Castellanos, and Riddhiman Ghosh. Spotting Opinion
Spammers Using Behavioral Footprints. In Proceedings of ACM KDD,
2013.

[MLG12] Arjun Mukherjee, Bing Liu, and Natalie Glance. Spotting fake reviewer
groups in consumer reviews. In Proceedings of ACM WWW, 2012.

[MLW+11] Arjun Mukherjee, Bing Liu, Junhui Wang, Natalie Glance, and Nitin
Jindal. Detecting group review spam. In Proceedings of the 20th inter-
national conference companion on World wide web, pages 93–94. ACM,
2011.

[MoP] MoPeak. https://mopeak.com/buy-android-reviews/.

[MPG+12] Damon McCoy, Andreas Pitsillidis, Jordan Grant, Nicholas Weaver,
Christian Kreibich, Brian Krebs, Geoffrey Voelker, Stefan Savage, and
Kirill Levchenko. Pharmaleaks: Understanding the business of on-
line pharmaceutical affiliate programs. In Presented as part of the
21st USENIX Security Symposium (USENIX Security 12), pages 1–16,
Bellevue, WA, 2012. USENIX.

[MVLG13] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie Glance.
What Yelp Fake Review Filter Might Be Doing. In Proceedings of the
International Conference on Weblogs and Social Media, 2013.

[NA16] Kazushi Nagayama and Andrew Ahn. Keeping the Play Store
trusted: fighting fraud and spam installs. Android Develop-
ers Blog, https://android-developers.googleblog.com/2016/10/
keeping-the-play-store-trusted-fighting-fraud-and-spam-installs.

html, 2016.

[NAG+19] Shirin Nilizadeh, Hojjat Aghakhani, Eric Gustafson, Christopher
Kruegel, and Giovanni Vigna. Think outside the dataset: Finding
fraudulent reviews using cross-dataset analysis. In The World Wide

194

http://www.microworkers.com/
http://www.microworkers.com/
https://mopeak.com/buy-android-reviews/
https://android-developers.googleblog.com/2016/10/keeping-the-play-store-trusted-fighting-fraud-and-spam-installs.html
https://android-developers.googleblog.com/2016/10/keeping-the-play-store-trusted-fighting-fraud-and-spam-installs.html
https://android-developers.googleblog.com/2016/10/keeping-the-play-store-trusted-fighting-fraud-and-spam-installs.html

Web Conference, WWW ’19, page 3108–3115, New York, NY, USA,
2019. Association for Computing Machinery.

[NLS+17] Shirin Nilizadeh, Francois Labrèche, Alireza Sedighian, Ali Zand, José
Fernandez, Christopher Kruegel, Gianluca Stringhini, and Giovanni Vi-
gna. Poised: Spotting twitter spam off the beaten paths. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’17, pages 1159–1174, New York, NY, USA, 2017.
ACM.

[NPG+12] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethen-
court, Emil Stefanov, Eui Chul Richard Shin, and Dawn Song. On the
feasibility of internet-scale author identification. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 300–314, 2012.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of
large sparse datasets. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy, SP ’08, pages 111–125, Washington, DC, USA,
2008. IEEE Computer Society.

[OMS16] Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. What
happens after you are pwnd: Understanding the use of leaked webmail
credentials in the wild. In Proceedings of the 2016 Internet Measure-
ment Conference, IMC ’16, pages 65–79, New York, NY, USA, 2016.
ACM.

[PAD+17] Rebecca S. Portnoff, Sadia Afroz, Greg Durrett, Jonathan K. Kummer-
feld, Taylor Berg-Kirkpatrick, Damon McCoy, Kirill Levchenko, and
Vern Paxson. Tools for automated analysis of cybercriminal markets.
In Proceedings of the 26th International Conference on World Wide
Web, WWW ’17, page 657–666, Republic and Canton of Geneva, CHE,
2017. International World Wide Web Conferences Steering Committee.

[Par16] TE Parliament. Regulation (eu) 2016/679 of the european parliament
and of the council. Official Journal of the European Union, 2016.

[Par18] Simon Parkin. The Never-Ending War on Fake Reviews. The New
Yorker, =https://tinyurl.com/y84hhrea, 2018.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM

195

=

SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, page 701–710, New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[PCWF07] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos
Faloutsos. Netprobe: A fast and scalable system for fraud detection
in online auction networks. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages 201–210, 2007.

[Peo] PeoplePerHour. https://www.peopleperhour.com.

[Per16] Sarah Perez. Amazon bans incentivized reviews tied to free or dis-
counted products. Tech Crunch, https://tinyurl.com/zgn9sq3,
2016.

[Per19] Sarah Perez. Google Play is changing how app ratings
work. Tech Crunch https://techcrunch.com/2019/05/08/

google-play-is-changing-how-app-ratings-work/, 2019.

[PJM+14] Youngsam Park, Jackie Jones, Damon McCoy, Elaine Shi, and Markus
Jakobsson. Scambaiter: Understanding targeted nigerian scams on
craigslist. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-
26, 2014, 2014.

[PLT09] Joyojeet Pal, Meera Lakshmanan, and Kentaro Toyama. “My child
will be respected”: Parental perspectives on computers and education
in Rural India. Information Systems Frontiers, 11(2):129–144, 2009.

[pma20] Packagemanager. , https://developer.android.com/reference/

android/content/pm/PackageManager, 2020.

[RA15] Shebuti Rayana and Leman Akoglu. Collective opinion spam detection:
Bridging review networks and metadata. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’15, pages 985–994, New York, NY, USA, 2015.
ACM.

[Rah18] Md Mizanur Rahman. Search Rank Fraud Prevention in Online
Systems. FIU Electronic Theses and Dissertations. 3909. https:

//digitalcommons.fiu.edu/etd/3909, 2018.

196

https://www.peopleperhour.com
https://tinyurl.com/zgn9sq3
https://techcrunch.com/2019/05/08/google-play-is-changing-how-app-ratings-work/
https://techcrunch.com/2019/05/08/google-play-is-changing-how-app-ratings-work/
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager
https://digitalcommons.fiu.edu/etd/3909
https://digitalcommons.fiu.edu/etd/3909

[rap] Rapidworkers. https://rapidworkers.com/.

[RCB+14] Mahmudur Rahman, Bogdan Carbunar, Jaime Ballesteros, George
Burri, and Duen Horng (Polo) Chau. Turning the Tide: Curbing
Deceptive Yelp Behaviors. In Proceedings of the SIAM International
Conference on Data Mining (SDM), 2014.

[Rei17a] Brian Reigh. Fake reviews on the Play store reportedly growing and
getting smarter. Android Authority, April 2017.

[Rei17b] Brian Reigh. Fake reviews on the Play Store reportedly growing
and getting smarter. Android Authority, https://tinyurl.com/

yc4fo9dk, 2017.

[Reva] ReviewApp.Mobi. https://reviewapp.mobi/.

[Revb] Reviews-Up. https://reviews-up.com/android-app-reviews/.

[RHCC18] Mizanur Rahman, Nestor Hernandez, Bogdan Carbunar, and
Duen Horng Chau. Search rank fraud de-anonymization in online sys-
tems. In Proceedings of the ACM Conference on Hypertext and Social
Media, 2018.

[RHR+19] Mizanur Rahman, Nestor Hernandez, Ruben Recabarren, Syed Ishti-
aque Ahmed, and Bogdan Carbunar. The art and craft of fraudulent
app promotion in google play. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page
2437–2454, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[RJS17] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning
to generate reviews and discovering sentiment. arXiv preprint
arXiv:1704.01444, 2017.

[RL16] Rank Likes. http://www.ranklikes.com/, Last accessed November
2016.

[Ros17] Eli Rosenberg. The Shed at Dulwich’ was London’s top-rated restau-
rant. Just one problem: It didn’t exist. The Washington Post, Dec
2017.

197

https://rapidworkers.com/
https://tinyurl.com/yc4fo9dk
https://tinyurl.com/yc4fo9dk
https://reviewapp.mobi/
https://reviews-up.com/android-app-reviews/
http://www.ranklikes.com/

[RRCL17] Mizanur Rahman, Ruben Recabarren, Bogdan Carbunar, and Dong-
won Lee. Stateless puzzles for real time online fraud preemption. In
Proceedings of the ACM Web Science Conference (WebSci), 2017.

[Sal19] Salary explorer. http://www.salaryexplorer.com/, 2019.

[SB13] Kevin Springborn and Paul Barford. Impression fraud in on-line ad-
vertising via pay-per-view networks. In Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13), pages 211–226,
Washington, D.C., 2013. USENIX.

[SCM11] Tao Stein, Erdong Chen, and Karan Mangla. Facebook Immune Sys-
tem. In Proceedings of the 4th Workshop on Social Network Systems,
pages 8:1–8:8, 2011.

[SE15] Vlad Sandulescu and Martin Ester. Detecting singleton review spam-
mers using semantic similarity. In Proceedings of the 24th International
Conference on World Wide Web, WWW ’15 Companion, pages 971–
976, New York, NY, USA, 2015. ACM.

[SHM13] Thamar Solorio, Ragib Hasan, and Mainul Mizan. A case study of
sockpuppet detection in wikipedia. In Proceedings of the Workshop on
Language Analysis in Social Media, pages 59–68, 2013.

[SLK15] Jonghyuk Song, Sangho Lee, and Jong Kim. Crowdtarget: Target-
based detection of crowdturfing in online social networks. In Proceed-
ings of the 22Nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, pages 793–804, New York, NY, USA,
2015. ACM.

[SMJ+15] Gianluca Stringhini, Pierre Mourlanne, Gregoire Jacob, Manuel Egele,
Christopher Kruegel, and Giovanni Vigna. EVILCOHORT: Detecting
communities of malicious accounts on online services. In 24th USENIX
Security Symposium (USENIX Security 15), pages 563–578, Washing-
ton, D.C., 2015. USENIX Association.

[SR07] Brad Stone and Matt Richtel. The Hand That Controls the Sock Pup-
pet Could Get Slapped. The New York Times, https://www.nytimes.
com/2007/07/16/technology/16blog.html, 2007.

[SSGN17] Jessica Su, Ansh Shukla, Sharad Goel, and Arvind Narayanan. De-
anonymizing web browsing data with social networks. In Proceedings

198

http://www.salaryexplorer.com/
https://www.nytimes.com/2007/07/16/technology/16blog.html
https://www.nytimes.com/2007/07/16/technology/16blog.html

of the 26th International Conference on World Wide Web, WWW ’17,
pages 1261–1269, Republic and Canton of Geneva, Switzerland, 2017.
International World Wide Web Conferences Steering Committee.

[Ste19] Rebecca Stewart. Instagram’s fake follower purge has had ’little ef-
fect’ on fraudulent influencers. The Drum, https://tinyurl.com/

y7ja52h5, 2019.

[SWE+13] Gianluca Stringhini, Gang Wang, Manuel Egele, Christopher Kruegel,
Giovanni Vigna, Haitao Zheng, and Ben Y. Zhao. Follow the green:
Growth and dynamics in twitter follower markets. In Proceedings of
the 2013 Conference on Internet Measurement Conference, IMC ’13,
pages 163–176, New York, NY, USA, 2013. ACM.

[SYBT15] Giuseppe Silvestri, Jie Yang, Alessandro Bozzon, and Andrea Tagarelli.
Linking accounts across social networks: the case of stackoverflow,
github and twitter. In KDWeb, pages 41–52, 2015.

[TGSP11] Kurt Thomas, Chris Grier, Dawn Song, and Vern Paxson. Suspended
accounts in retrospect: An analysis of twitter spam. In Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference, IMC ’11, page 243–258, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

[TIB+14] Kurt Thomas, Dmytro Iatskiv, Elie Bursztein, Tadek Pietraszek, Chris
Grier, and Damon McCoy. Dialing back abuse on phone verified ac-
counts. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’14, page 465–476, New
York, NY, USA, 2014. Association for Computing Machinery.

[TMG+13] Kurt Thomas, Damon McCoy, Chris Grier, Alek Kolcz, and Vern Pax-
son. Trafficking fraudulent accounts: The role of the underground mar-
ket in twitter spam and abuse. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, pages 195–210, Berkeley, CA, USA,
2013. USENIX Association.

[TMLS09] Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan Subra-
manian. Sybil-resilient online content voting. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI’09, pages 15–28, Berkeley, CA, USA, 2009. USENIX Asso-
ciation.

199

https://tinyurl.com/y7ja52h5
https://tinyurl.com/y7ja52h5

[Tot12] Virus Total. Virustotal-free online virus, malware and url scanner.
Online: https://www. virustotal. com/en, 2012.

[Tri17] Robert Triggs. Flagship? mid-range? budget? find the best phone
for you. AndroidAuthority, https://www.androidauthority.com/

flagship-mid-range-budget-best-phone-815330/, 2017.

[TSM16] The Social Marketeers. http://www.thesocialmarketeers.org/,
Last accessed November 2016.

[TZX+15] Tian Tian, Jun Zhu, Fen Xia, Xin Zhuang, and Tong Zhang. Crowd
fraud detection in internet advertising. In Proceedings of the 24th In-
ternational Conference on World Wide Web, WWW ’15, pages 1100–
1110, Republic and Canton of Geneva, Switzerland, 2015. International
World Wide Web Conferences Steering Committee.

[Upw] Upwork Inc. https://www.upwork.com.

[VGZ+16] Giridhari Venkatadri, Oana Goga, Changtao Zhong, Bimal Viswanath,
Krishna P. Gummadi, and Nishanth Sastry. Strengthening weak iden-
tities through inter-domain trust transfer. In Proceedings of the 25th
International Conference on World Wide Web, WWW ’16, pages 1249–
1259, 2016.

[Vir20] Virustotal. , https://developers.virustotal.com/reference#

getting-started, 2020.

[Wam17] Colleen Wamback. WPI Research Detects When Online Reviews and
News Are a Paid-for Pack of Lies. Worcester Polytechnic Institute,
November 2017.

[War17] Tom Warren. 41 percent of Android phones are vulnerable to ’devastat-
ing’ Wi-Fi attack . The Verge, https://www.theverge.com/2017/10/
16/16481252/wi-fi-hack-attack-android-wpa-2-details, 2017.

[WF19] Rolfe Winkler and Andrea Fuller. How companies secretly boost their
glassdoor ratings. The Wall Street Journal, https://tinyurl.com/
yc7t2nk4, 2019.

[WGF17] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. GANG: Detecting
Fraudulent Users in Online Social Networks via Guilt-by-Association
on Directed Graphs. In Proceedings of ICDM, 2017.

200

https://www.androidauthority.com/flagship-mid-range-budget-best-phone-815330/
https://www.androidauthority.com/flagship-mid-range-budget-best-phone-815330/
http://www.thesocialmarketeers.org/
https://www.upwork.com
https://developers.virustotal.com/reference#getting-started
https://developers.virustotal.com/reference#getting-started
https://www.theverge.com/2017/10/16/16481252/wi-fi-hack-attack-android-wpa-2-details
https://www.theverge.com/2017/10/16/16481252/wi-fi-hack-attack-android-wpa-2-details
https://tinyurl.com/yc7t2nk4
https://tinyurl.com/yc7t2nk4

[WK05] C. Wei and B. E. Kolko. Studying mobile phone use in context: cul-
tural, political, and economic dimensions of mobile phone use. In IPCC
2005. Proceedings. International Professional Communication Confer-
ence, 2005., pages 205–212, July 2005.

[Woo17] Emma Woollacott. Amazon’s Fake Review Problem Is Now Worse
Than Ever, Study Suggests. Forbes, September 2017.

[Woo20] Emma Woollacott. Facebook And EBay Promise Crackdown On Fake
Reviews. Forbes, =https://tinyurl.com/yb83nowr, 2020.

[WWZZ14] Gang Wang, Tianyi Wang, Haitao Zhang, and Ben Y. Zhao. Man vs.
machine: Practical adversarial detection of malicious crowdsourcing
workers. In Proceedings of the 23rd USENIX Conference on Security
Symposium, pages 239–254, 2014.

[WXLY11] Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. Review Graph
Based Online Store Review Spammer Detection. IEEE ICDM, 2011.

[Xu13] Chang Xu. Detecting collusive spammers in online review communities.
In Proceedings of the Sixth Workshop on Ph.D. Students in Information
and Knowledge Management, PIKM ’13, pages 33–40, New York, NY,
USA, 2013. ACM.

[XWLY12] Sihong Xie, Guan Wang, Shuyang Lin, and Philip S. Yu. Review spam
detection via temporal pattern discovery. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’12, pages 823–831, New York, NY, USA, 2012.
ACM.

[XZ14] Zhen Xie and Sencun Zhu. Grouptie: Toward hidden collusion group
discovery in app stores. In Proceedings of the 2014 ACM Conference
on Security and Privacy in Wireless & Mobile Networks, WiSec
’14, pages 153–164, New York, NY, USA, 2014. ACM.

[XZ15a] Zhen Xie and Sencun Zhu. Appwatcher: Unveiling the underground
market of trading mobile app reviews. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec ’15, pages 10:1–10:11, New York, NY, USA, 2015. ACM.

[XZ15b] Chang Xu and Jie Zhang. Combating product review spam campaigns
via multiple heterogeneous pairwise features. In Proceedings of the

201

=

2015 SIAM International Conference on Data Mining, pages 172–180.
SIAM, 2015.

[XZLW16] Zhen Xie, Sencun Zhu, Qing Li, and Wenjing Wang. You can pro-
mote, but you can’t hide: Large-scale abused app detection in mobile
app stores. In Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, ACSAC ’16, pages 374–385, New York,
NY, USA, 2016. ACM.

[YA15] Junting Ye and Leman Akoglu. Discovering opinion spammer groups
by network footprints. In Proceedings of the 2015 ACM on Conference
on Online Social Networks, COSN ’15, pages 97–97, New York, NY,
USA, 2015. ACM.

[Yel12] Yelp tries public shaming to discourage businesses from gaming re-
views and ratings. Digital Trends, https://www.digitaltrends.com/
social-media/yelp-cracking-down-on-fake-reviews/, 2012.

[YGKX10] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao.
Sybillimit: A near-optimal social network defense against sybil attacks.
IEEE/ACM Trans. Netw., 18(3):885–898, June 2010.

[YHZ+12] Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and
Guofei Gu. Analyzing spammers’ social networks for fun and profit: a
case study of cyber criminal ecosystem on Twitter. In Proceedings of
the World Wide Web (WWW), pages 71–80. ACM, 2012.

[YKA16] Junting Ye, Santhosh Kumar, and Leman Akoglu. Temporal opinion
spam detection by multivariate indicative signals. In Proceedings of
ICWSM, pages 743–746. AAAI Press, 2016.

[YKGF08] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham D.
Flaxman. Sybilguard: Defending against sybil attacks via social net-
works. IEEE/ACM Trans. Netw., 16(3):576–589, June 2008.

[YN18] Fei Ye and Kazushi Nagayama. In reviews we trust, making google
play ratings and reviews more trustworthy. Android Developers Blog,
https://tinyurl.com/yb67uy73, 2018.

[YVC+17] Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao Zheng, and
Ben Y. Zhao. Automated Crowdturfing Attacks and Defenses in Online

202

https://www.digitaltrends.com/social-media/yelp-cracking-down-on-fake-reviews/
https://www.digitaltrends.com/social-media/yelp-cracking-down-on-fake-reviews/
https://tinyurl.com/yb67uy73

Review Systems. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 1143–1158, 2017.

[YWW+14] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y Zhao, and
Yafei Dai. Uncovering social network sybils in the wild. ACM Trans-
actions on Knowledge Discovery from Data (TKDD), 8(1):2, 2014.

[Zee] Zeerk. https://zeerk.com/.

[ZL13] Reza Zafarani and Huan Liu. Connecting users across social media
sites: a behavioral-modeling approach. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 41–49, 2013.

[ZXL+18] Haizhong Zheng, Minhui Xue, Hao Lu, Shuang Hao, Haojin Zhu, Xi-
aohui Liang, and Keith Ross. Smoke Screener or Straight Shooter:
Detecting Elite Sybil Attacks in User-Review Social Networks. In Pro-
ceedings of the Network and Distributed System Security Symposium
(NDSS), 2018.

203

https://zeerk.com/

VITA

NESTOR HERNANDEZ

2014 - Present Ph.D., Computer Science
Florida International University
Miami, Florida

2019 M.S., Computer Science
Florida International University
Miami, Florida

2012 - 2014 Data Scientist
Wunderman Buenos Aires
Buenos Aires, Argentina

2011 B.Sc., Applied Mathematics
Universidad Simon Bolivar
Caracas, Venezuela

PUBLICATIONS AND PRESENTATIONS

M. Rahman, N. Hernandez, B. Carbunar, D. Chau. Towards De-Anonymization of
Google Play Search Rank Fraud. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 2020

N. Hernandez, M. Rahman, R. Recabarren, S.I. Ahmed, B. Carbunar. The Art and
Craft of Fraudulent App Promotion in Google Play. The 26th ACM Conference on
Computer and Communications Security (CCS), London, UK, November 2019.

N. Hernandez, M. Rahman, R. Recabarren, B. Carbunar. Fraud De-Anonymization
for Fun and Profit . The 25th ACM Conference on Computer and Communications
Security (CCS), Toronto, Canada, October 2018.

M. Rahman, N. Hernandez, B. Carbunar, D. Chau. Search Rank Fraud De-Anonymization
in Online Systems. The 29th ACM Conference on Hypertext and Social Media (HT),
Baltimore, July 2018.

204

	Demystifying Search Rank Fraud
	Recommended Citation

	THESIS VISION
	Introduction
	The Vision
	Challenges
	Contributions
	A Study of Worker Capabilities and Behaviors
	RacketStore: Demystifying Device Use
	De-Anonymization of Power Fraud

	Thesis Outline

	CONCEPTS AND BACKGROUND
	System and Adversary Model
	Basic Terminology

	RELATED WORK
	Author identification and cross-site identity linking
	Sybil Community Detection
	Fraud and Opinion Spamming Detection
	Fraud Data Collection and Underground Markets

	THE ART AND CRAFT OF FRAUDULENT APP PROMOTION IN GOOGLE PLAY
	Introduction
	Methods
	Qualitative Study
	Quantitative Investigation
	Ethical Considerations

	Findings
	Team, Location, and Organization
	Fraud Capabilities and Expertise
	Hardware: Devices
	Software
	Techniques: The Art of Evasion
	Review Burst vs. Campaign Length
	Accounts Per Device Strategies
	Lockstep Behaviors
	Timing: Fraud Event Points
	Review Writing
	Ratings
	Proof of Work
	Account Creation
	Credential Reuse
	External collaborations
	Account Abandonment
	Validation and Efficacy of ASO

	Discussion and Recommendations
	Limitations
	Discussion of Reasons to Participate

	DEMYSTIFYING DEVICE USE IN APP SEARCH OPTIMIZATION
	Introduction
	Data Collection Infrastructure
	RacketStore App
	Web Application

	Methods
	Deployment of RacketStore
	Interviews
	Ethical Considerations

	App and Device Usage Features
	Data
	Findings
	Registered Accounts
	Installed Apps
	Malware
	Stopped Apps
	App Churn: Install and Uninstall Events
	Number of Apps Used Per Day
	Classifier of App Usage
	Evaluation of Device Usage

	Discussion and Limitations

	FRAUD DE-ANONYMIZATION FOR FUN AND PROFIT
	Introduction
	Problem Definition
	Unconstrained Optimization Based De-Anonymization
	Definitions and Approach
	UODA

	Proof of Lemma 6.3.2
	Co-Ownership Predictor
	DeepCluster
	Features

	DDA: Discriminative De-Anonymization
	PFD: Pseudonymous Fraudster Discovery
	Putting It All Together
	Fraud De-Anonymization Oracles
	User Study
	UODA Parameters
	Results

	Empirical Evaluation
	Attributed Account Data
	DeepCluster Parameter Tuning
	Fraud De-Anonymization
	Co-Ownership Predictor
	Pseudonymous Fraudster Discovery
	DeepWalk Based Fraud Attribution Evaluation

	Discussion and Limitations

	CONCLUSIONS
	APPENDIX
	BIBLIOGRAPHY
	VITA

