
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-1-2020

Modeling and Analyzing Cyber-Physical Systems Using Hybrid Modeling and Analyzing Cyber-Physical Systems Using Hybrid

Predicate Transition Nets Predicate Transition Nets

Dewan Mohammad Moksedul Alam
Florida International University, dalam004@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computational Engineering Commons

Recommended Citation Recommended Citation
Alam, Dewan Mohammad Moksedul, "Modeling and Analyzing Cyber-Physical Systems Using Hybrid
Predicate Transition Nets" (2020). FIU Electronic Theses and Dissertations. 4465.
https://digitalcommons.fiu.edu/etd/4465

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.fiu.edu%2Fetd%2F4465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4465?utm_source=digitalcommons.fiu.edu%2Fetd%2F4465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MODELING AND ANALYZING CYBER-PHYSICAL SYSTEMS USING

HYBRID PREDICATE TRANSITION NETS

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Dewan Mohammad Moksedul Alam

2020

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Dewan Mohammad Moksedul Alam, and entitled Mod-
eling and Analyzing Cyber-Physical Systems Using Hybrid Predicate Transition
Nets, having been approved in respect to style and intellectual content, is referred
to you for judgment.

We have read this dissertation and recommend that it be approved.

Jason Liu

Peter J. Clarke

Armando Barreto

Leonardo Bobadilla

Xudong He, Major Professor

Date of Defense: July 1, 2020

The dissertation of Dewan Mohammad Moksedul Alam is approved.

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2020

ii

c© Copyright 2020 by Dewan Mohammad Moksedul Alam

All rights reserved.

iii

DEDICATION

To my family members for their supports and sacrifices

iv

ACKNOWLEDGMENTS

I would like to thank each and everyone I have shared my research ideas.

Whatever small the discussions were, some of them were eye-opening. Many ideas,

solutions to little problems stemmed from them.

I would like to reserve special thanks to my committee members Dr. Armando

Barreto, Dr. Jason Liu, Dr. Leonardo Bobadilla, and Dr. Peter J. Clarke. Every

communication to them gave me a feeling that I am being cared which inspired me

to be positive. Also, their suggestions and guidelines helped me to be on track.

This work was partially supported by AFRL under FA8750-15-2-0106. I also

received TAship from the SCIS department at FIU. Many thanks to both AFRL

and the SCIS department for providing me financial support.

I am grateful to my family members, my son Aymaan, daughter Amaya, and wife

Shamsia. They suffered and sacrificed a lot due to my pursuit of this degree.

Without their consideration, it would not be possible for me to come to this end.

Last but not the least, I have no word to express my gratitude to my major

professor Xudong He. He was always there for me, all the time. He endured my

ignorance, negligence, and stubbornness. Above all, he was patient enough to

discuss anything with enthusiasm and brought me in the right direction whenever I

needed it. Without his support, it would be very difficult for me to complete this.

v

ABSTRACT OF THE DISSERTATION

MODELING AND ANALYZING CYBER-PHYSICAL SYSTEMS USING

HYBRID PREDICATE TRANSITION NETS

by

Dewan Mohammad Moksedul Alam

Florida International University, 2020

Miami, Florida

Professor Xudong He, Major Professor

Cyber-Physical Systems (CPSs) are software controlled physical devices that are

being used everywhere from utility features in household devices to safety-critical

features in cars, trains, aircraft, robots, smart healthcare devices. CPSs have com-

plex hybrid behaviors combining discrete states and continuous states capturing

physical laws. Developing reliable CPSs are extremely difficult. Formal modeling

methods are especially useful for abstracting and understanding complex systems

and detecting and preventing early system design problems. To ensure the de-

pendability of formal models, various analysis techniques, including simulation and

reachability analysis, have been proposed in recent decades. This thesis aims to

provide a unified formal modeling and analysis methodology for studying CPSs.

Firstly, this thesis contributes to the modeling and analysis of discrete, con-

tinuous, and hybrid systems. This work enhances modeling of discrete systems

using predicate transition nets (PrTNs) by fully realizing the underlying specifica-

tion through incorporating the first-order logic with set theory, improving the type

system, and providing incremental model composition. This work enhances the

technique of analyzing discrete systems using PrTN by improving the simulation

algorithm and its efficient implementation. This work also improves the analysis

vi

of discrete systems using SPIN model checker by providing a complete and more

accurate translation method.

Secondly, this work contributes to the modeling and analysis of hybrid systems

by proposing an extension of PrTNs, hybrid predicate transition nets (HPrTNs).

The proposed method incorporates a novel concept of token evolution, which nicely

addresses the continuous state evolution and the conflicts present in other related

works. This work presents a powerful simulation capability that can handle linear,

non-linear dynamics, transcendental functions through differential equations. This

work also provides a complementary technique for reachability analysis through the

translation of HPrTN models for analysis using SpaceEx.

Finally, several well-known CPSs are modeled and analyzed to demonstrate the

effectiveness and applicability of the proposed methodology, which include a sys-

tem with complex dynamics defined using the second-order differential equation, a

system with multiple non-linear dynamics, and a system composed of hybrid compo-

nents. All the improvements and proposed methods are fully realized in the PIPE+

tool environment.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1

2. MODELING DISCRETE EVENT SYSTEMS 11
2.1 Overview . 11
2.2 Predicate Transition Nets (PrTNs) . 12
2.2.1 Formal Definition . 13
2.2.2 Dynamic Semantics . 14
2.3 Model Development . 17
2.3.1 Modeling States . 17
2.3.2 Modeling Transitions . 17
2.3.3 Modeling Time . 20
2.3.4 Model Composition . 20
2.4 Case Study . 21
2.5 New Features in PIPE+ . 25
2.5.1 New Type . 25
2.5.2 New Mathematical Expressions . 27
2.5.3 Deterministic Choices . 30
2.5.4 Model Composition . 30
2.5.5 Logical Clock . 32
2.6 Related Work . 34
2.7 Summary . 35

3. ANALYZING DISCRETE EVENT SYSTEMS 36
3.1 Simulation . 36
3.1.1 Simulation Strategy . 36
3.1.2 Simulation Modes . 38
3.1.3 Simulation Results . 40
3.2 Model Checking . 41
3.2.1 SPIN Model Checker . 42
3.2.2 Promela . 42
3.2.3 Translation of PrTNs to Promela . 44
3.2.4 Translation Correctness . 63
3.2.5 Experiment Results . 63
3.2.6 Related Work . 67
3.3 Summary . 69

4. MODELING HYBRID SYSTEMS . 71
4.1 Overview . 71
4.1.1 Characteristics of CPSs . 71
4.1.2 Scope . 72

viii

4.2 Hybrid Predicate Transition Nets (HPrTNs) 73
4.2.1 Formal Definition . 74
4.2.2 Dynamic Semantics . 75
4.3 Model Development . 77
4.3.1 Modeling States . 77
4.3.2 Modeling Evolution . 78
4.3.3 Modeling Feedback Loop . 82
4.4 Case Studies . 83
4.4.1 Air Traffic Collision Avoidance . 83
4.4.2 Pendulum . 87
4.5 Related Work . 88
4.5.1 Modeling Hybrid Systems . 88
4.5.2 Hybrid Petri Net Tools . 89
4.6 Summary . 90

5. ANALYZING HYBRID SYSTEMS . 91
5.1 Overview . 91
5.2 Simulation . 93
5.2.1 Simulation Strategy . 93
5.2.2 Analyzing Results . 93
5.2.3 Technical Challenges . 94
5.2.4 Case Studies . 95
5.3 Reachability Analysis . 95
5.3.1 SpaceEx Format . 97
5.3.2 Translation Strategies . 101
5.3.3 Translation Methods . 105
5.3.4 Translation Correctness . 114
5.3.5 Case Study . 116
5.4 Related Work . 125
5.5 Summary . 126

6. REDESGNING PIPE+ . 127
6.1 Limitations of PIPE+ . 127
6.1.1 Legacy Systems . 127
6.1.2 Quantitative Analysis . 128
6.1.3 Qualitative Analysis . 132
6.2 Redesign . 134
6.2.1 Architecture . 134
6.2.2 Implementation . 137
6.2.3 Build/Release Process . 138

7. CONCLUSION . 139

ix

BIBLIOGRAPHY . 141

VITA . 150

x

LIST OF TABLES

TABLE PAGE

2.1 Supported operations in PIPE+ and mapping symbols 19

2.2 Data type definitions of the places . 23

2.3 Initial marking of the net . 23

2.4 Transition Constraints . 24

2.5 Equivalent forms of quantifiers with two variables 28

2.6 Example of specifying set operations in PIPE+ 29

3.1 Examples of control constructs . 44

3.2 The mapping of sorts and data type definitions 52

3.3 Operators in PIPE+ and their correspondence in Promela 54

3.4 Formats of generating postconditions . 58

3.5 Model checking results of property (1) using passive scheme. 66

3.6 Model checking results of property (1) using active process based scheme. 66

3.7 Model checking results of property (1) using agent-based scheme. 67

3.8 Checking results of property (4) with parameter (4, 5, 2) 67

5.1 Attributes of fields and params . 111

5.2 Example translation of bounds . 113

5.3 Inscription of HPrTN model of the bouncing ball 117

5.4 Statistics of runtime summary of bouncing ball 119

5.5 Statistics of the analysis summary of the synchronous model 124

6.1 PIPE+ source code static analysis result 129

6.2 PIPE+ circular dependency test result 130

xi

LIST OF FIGURES

FIGURE PAGE

1.1 A unified modeling and analysis methodology supported in PIPE+ . . . 4

2.1 PrTN model of Five Dining Philosophers problem 15

2.2 Pictorial diagram of a PrTN model of the Bridge system 23

2.3 Incremental modeling of the Bridge system. (a) Model of a controller;
(b) A controller is connected to a switch, and (c) Two controllers are
connected to a switch . 31

3.1 (a) The model of a controller; (b) A controller connected to a Switch
and (c) Two controllers are connected to one switch. 64

4.1 A simplest CPS workflow . 72

4.2 Thermostat system: An HPrTN model 77

4.3 Protocol cycle (a) and construction (b) of FTRM [1] 84

4.4 A pictorial diagram of the HPrTN model of the FTRM maneuver in-
volving three airplanes . 85

4.5 (a) Free body diagram of a Pendulum; (b) HPrTN model diagram of the
Pendulum; and (c) Inscription of the HPrTN model of the Pendulum 86

5.1 Simulation result of the model in Figure 4.4 96

5.2 Trajectory of the dynamics of the Pendulum 96

5.3 Phase plane plot of the trajectory of the Pendulum 97

5.4 Hypothetical model showing example components and their composition 108

5.5 Pictorial diagram of the bouncing ball 117

5.6 Trajectory of height of the bouncing ball 118

5.7 Bouncing ball state-space . 119

5.8 State spaces captured in SpaceEx. (a) Original model with LGG, (b)
original model with STC, (c) translated model with LGG, and (d)
translated model with STC. 120

5.9 The RailGate system. a. The train subsystem, b. The controller sub-
system, and c. The gate subsystem 122

5.10 The composition of the railgate subsystems. a. Asynchronous, and b.
Synchronous . 122

xii

5.11 The simulation result of the railgate system in PIPE+. a. Trajectory of
the Gate against time, and b. Trajectory of the Train against time . 123

5.12 Analysis results of translated synchronous model in SpaceEx a. Simu-
lation, b. LGG Scenerio, c. STC scenerio 123

5.13 Analysis results of translated asynchronous model in SpaceEx a. Simu-
lation, b. LGG Scenerio, c. STC scenerio 124

6.1 PIPE+ package-level dependency graph 130

6.2 PIPE+ packages distance indices . 131

6.3 High-level overview of the architecture of PIPE+ Redesigned 134

xiii

CHAPTER 1

INTRODUCTION

A Cyber-Physical System (CPS) is an ecosystem that combines and integrates

heterogeneous components providing cyber features (communication, computing,

and control) with physical devices, which work together to accomplish specific goals.

For instance, many safety features in modern cars like the anti-lock braking system

(ABS), cruise control, vehicle stability assist (VSA), electronic brake distribution

(EBD) are some examples of cyber-physical systems. With the technological break-

throughs in recent years, these computing devices have become more sophisticated,

powerful, and embeddable. With this advancement, these computing devices have

become the most acceptable choice to be used as controllers, and mechanical con-

trollers are being replaced with digital controllers everywhere. From utility features

in household devices, like smart refrigerator, smart air-conditioning to safety-critical

features in cars, trains, aircraft, robotics, smart healthcare devices, smart grids,

manufacturing process control, collision avoidance in avionics they are being used.

With the proliferation of CPS powered systems, the reliance on these systems for

safe operations is ever-growing. So is the expectation of reliability and correctness.

Especially for systems performing safety-critical tasks, it is imperative to ensure

that these systems are working correctly. Fulfilling this expectation is extremely

difficult due to the involvement of complex, multi-modal, multi-domain, and physical

components. This difficulty is magnified when different components exhibit different

fundamental behavior. A typical strategy to verify the safe behavior is to analyze

and predict the components’ behavior to see whether they always remain in the

defined safe zones when started within a safe state. Finally, it is also analyzed how

the behavior of one component affects the behavior of the other.

1

The first step to analyze a system is to model its behavior. However, it is

impractical to carry out the analyses on the actual systems. Instead, we need a

representation or model of the system that depicts the high-level description of

the essential system behavior. These models are then analyzed to decide whether

they are guaranteed to meet the requirements. Several different models have been

proposed in the literature to capture the behavior of varying nature of different

systems. Among other models, Hybrid Systems [2] have been the focus of intense

research in the past few decades. Hybrid systems are a mathematical model that

combines discrete dynamics with continuous dynamics. In essence, these are one

particular case of CPSs, where only the nature of the dynamics is focused, and all

other subtleties are abstracted away.

One early prominent work is the hybrid automata [3] that provides a concrete

mathematical framework for the analysis and verification of hybrid systems. Hybrid

automata integrate diverse models such as differential equations and state machines

in a single formalism with a uniform mathematical semantics and novel algorithms

for multi-modal control synthesis and safety and real-time performance analysis [2].

However, despite providing powerful methods to analyze hybrid systems, the major

inconvenience of hybrid automata is the dramatic increase of model dimensions

for complex systems due to the intrinsic global state configurations and sequential

behaviors of hybrid automata.

Petri nets (also known as low-level Petri nets), a concurrent and distributed for-

mal method, provide great flexibility to model complex discrete reactive systems. To

model continuous dynamical systems, Petri nets have been evolved towards continu-

ous Petri nets [4]. Continuous Petri nets have been extended to hybrid Petri nets [5]

for modeling hybrid systems. Hybrid Petri nets inherit the advantages of the Petri

net model, such as capturing distributed behaviors, concurrency, synchronization,

2

and conflicts. However, similar hybrid automata, modeling complex systems using

low-level Petri nets, is extremely difficult. Also, low-level Petri nets suffer from the

state explosion problem. To solve this problem, several extensions to low-level Petri

nets are introduced. These are commonly known as high-level Petri nets.

High-level Petri nets (HLPNs) are powerful formal methods for modeling concur-

rent and distributed systems. HLPNs provides a graphical representation of systems

to make them easier to understand. They offer strong expressive power through rich

data abstraction, algebraic expressions, and logic formulas to define system function-

ality—furthermore, their dynamic semantics support model level simulation. As a

result, they are being used widely in system modeling in many application domains.

They are also being studied extensively. Numerous extensions to these formalisms

are available to model different types of systems. Predicate transition nets [6], Col-

ored Petri nets [7], algebraic Petri nets [8] are widely used classes of high-level Petri

nets. HLPNs are further extended towards hybrid high-level Petri nets to model

hybrid systems [9, 10, 11].

Despite providing great flexibility to model hybrid systems, hybrid high-level

Petri nets, similar to all class of high-level Petri nets, are very hard to analyze.

Also, there is no effective tool available to verify the correctness of hybrid high-level

Petri nets models mathematically. However, many sophisticated tools are available

to analyze and verify the safety properties of hybrid system models build using

hybrid automata. In recent years, SpaceEx [12] has gained great success in providing

reachability analysis for hybrid system models.

The Problem. In the previous paragraphs, two fundamentally different tech-

niques are mentioned that are the focus of extensive research during the last few

decades. One of them, hybrid automata, provides numerous efficient analysis tech-

niques but modeling with it is challenging. On the other hand, high-level Petri nets

3

Figure 1.1: A unified modeling and analysis methodology supported in PIPE+

are well suited for modeling concurrent and distributed system control and support-

ing synchronous and asynchronous communication; however them lack of efficient

analysis techniques except simulation. In this settings, under this thesis, we seek

to find out - (1) how to develop a unified modeling methodology that allows us to

model a wide range of CPSs, and (2) how to provide effective analysis techniques,

within the same methodology, to ensure the dependability of these systems.

Preliminary Results. In previous works along this line [13, 14, 15] a class of

predicate transition nets (PrTN) is realized in the PIPE+ [13] tool environment.

The adopted class of PrTN is slightly different than what originally defined in [6].

Rather it adopts the concepts of hierarchical predicate transition net [16], algebraic

Petri nets [8], and uses first-order logic formulas to model the behavior. These

provide a powerful technique to model a wide range of discrete systems. For anal-

ysis, it provides simulation and translation-based model checking techniques where

the PrTN models are translated into the input language of some well-known model

checkers for discrete systems. However, the realization of PrTN in PIPE+ and some

translation methods have many limitations and severe flaws. Under this study, those

limitations are resolved. The modeling capability in PIPE+ is enhanced in many

ways. Also, several new methods of translation of PrTN are introduced [17, 18].

Thus, a unified methodology is developed that brings powerful modeling methods

4

and sophisticated analysis techniques for discrete systems within the same method-

ology. Figure 1.1 shows an overview of the workflow of this methodology.

New Contributions. The methodology resulted from the preliminary works

provides a sophisticated method to model and analyze discrete systems. Under this

study, the concepts of this methodology are further extended for hybrid systems.

Here, the concepts of PrTN, as realized in PIPE+, are extended to make it capable

of modeling hybrid systems and introduced as Hybrid Predicate Transition Nets

(HPrTN) [19, 20]. For analysis, along with simulation, a translation-based technique

is developed. These works made the following major contributions:

1. An improved modeling method for discrete event systems using PrTN by fully

realizing the underlying algebraic specification and providing new capabilities

2. An enhanced analysis techniques for discrete systems by improving the sim-

ulator and providing a more accurate translation method for model checking

using SPIN model checker

3. A new definition of hybrid predicate transition nets (HPrTNs) to model cyber-

physical systems

4. An effective analysis technique for cyber-physical systems model using HPrTNs

leveraging the state of the art model checker SpaceEx [12] for hybrid systems

through model translation

5. The redesign and enhancement of the tool PIPE+ to support the modeling

and analysis of CPSs using HPrTNs.

The following subsections provide some overview of these contributions.

Modeling discrete systems. While in theory, PrTNs support all the data

types and functionality provided by an underlying algebraic specification. In prac-

5

tice, only a limited algebraic specification was realized. This dissertation generalizes

PrTN definition used in PIPE+ [21] with several new features, which include:

• Improved type system by introducing more generic type to model the numer-

ical attributes.

• New mathematical expressions that increased the expressiveness of PrTN

• Full First-Order Logic formulas with quantifiers, and set-operations.

• Incremental modeling through model composition.

• A logical clock to model time-dependent behaviors.

Analyzing discrete systems. The method to analyze PrTN models is im-

proved by providing an enhanced simulation environment and implementing more

robust and complete translation techniques from PrTN to Promela, the underlying

modeling language for model checker SPIN. The simulation environment for PrTN

in the PIPE+ tool is enhanced to provide better performance. Some of the key

enhancements are - a new syntax tree designed to reduce the depth of the syntax

tree for any formula by half, run-time efficiency of the evaluation of the transition

constraints is improved through memoization of the intermediate results during sim-

ulation, and so on. For model checking with SPIN, a complete translation scheme

is implemented where each element in PrTN is translated to equivalent form in

Promela. The transition constraint evaluation is emulated the same as the simula-

tor in PIPE+. Apart from these, additional translation schemes are implemented

to capture agent-oriented models. These improvements, along with other minor

modifications, are discussed further in chapter 3.

Modeling Hybrid Systems. To model CPSs, hybrid predicate transition nets

(HPrTNs), a new class of hybrid high-level Petri nets is introduced. HPrTN is

6

an extension to PrTN with additional new functionalities to incorporate models

of components containing continuous dynamics with discrete components and new

semantics to define the evolution of continuous components and resolving conflicts

between the discrete and continuous components. Important features of HPrTNs in-

clude continuous places, token evolution through differential equations, logical time,

and net composition. Some preliminary results in incorporating some continuous

features into predicate transition nets (PrTNs) for modeling and analyzing hybrid

systems are presented in [19]. In [20] these concepts are extended and refined fur-

ther to (1) provide a complete formal definition of hybrid predicate transition nets

(HPrTNs), (2) show the formal relationships between HPrTNs and hybrid automata,

(3) eliminate the conflicts between continuous and discrete components by remov-

ing the continuous transitions and associating differential equations to continuous

places to more accurately reflect the token evolution, and (4) model and analyze

several new benchmark hybrid systems using HPrTNs. Chapter 4 discusses these

concepts in detail.

Analyzing Hybrid Systems. The support for analyzing the hybrid systems

are two-fold - simulation and reachability analysis using state of the art model

checker. The simulation of HPrTN models needs simulation of both discrete and

continuous components. Although the discrete and continuous components share

much of the structural features of the HPrTN, they have completely different dy-

namic semantics requiring different simulation mechanisms. To facilitate the simu-

lation of the continuous components, several new concepts are introduced. Some of

the important aspects are summarized here.

• New scheduling mechanisms. The connected components are thought to

be evolving at all times. To simulate this behavior, a new scheduler is in-

7

troduced, which periodically evaluates the connected components’ constraints

and computes the evolution of the connected components.

• Differential equation solver. Incorporation of differential equation solvers.

The computation of the evolution of the continuous components depends on

solving the differential equations specifying the behavior. To solve these equa-

tions, a well-known and community accepted Python library is used. To com-

municate between Java and Python process, a light-weight inter-process com-

municator is introduced. This communicator, takes the commands and inputs

to Python process, pythons process execute the input, and returns the result.

• Token evolution. The evolution rules (differential equations) of the contin-

uous components are associated either with the continuous places or with the

tokens within those. The evolution of these components is computed by solv-

ing those equations and updating the corresponding tokens. This is termed a

token evolution. It is similar to transition firing but fundamentally different.

• Visualization of evolution. To help understand the evolution, a result

visualizer is introduced, which provides a chart-based visualization mecha-

nism. The user can configure charts against different continuous attributes.

During the simulation, the results are plotted according to the chart config-

urations. The results also are visualized using a third-party tool that can be

performed—the result exporter help doing it. The result exporter exports the

results to the configured medium.

• Translation of HPrTN. To support the analysis of HPrTN, a translation

based method is developed. Here, the HPrTN models can be translated into

the input language of SpaceEx. SpaceEx is one of the states of the art reacha-

8

bility analysis tools. The translated models can be directly used with the tool

to perform analysis.

Redesigning of PIPE+. The tool PIPE+ provides full support of the con-

cepts of both PrTN and HPrTN definitions. Furthermore, PIPE+ had undergone a

significant redesign and rebuilt. The previous version of PIPE+ has several flaws.

Some of these are as follows

• PIPE+ was built on top of another app PIPE [22], which was built using an

older version of Java and related libraries based on that version. Many of the

used functionalities are either obsolete or deprecated.

• PIPE focused on modeling and analysis of low-level Petri nets. In PIPE+, all

the existing functionalities of PIPE were preserved alongside with the features

modified for PrTN. This caused a lot of confusion about choosing the right

functionalities for PrTN.

• The design of PIPE+ was not transparent. Different components were in-

terconnected to one another. As a result, modification to one functionality

requires a lot of changes.

• All the operations were performed on the main thread. As a result, the UI used

to become frozen if the current task takes a long time to finish. One example

of such a task is the multi-step simulation. Once a multi-step simulation is

started, the UI becomes available again to interact with only when all the

steps are performed.

The redesigned PIPE+ addresses and eliminates the identified flaws. This new

design makes use of the latest java libraries adopts layered component-based ar-

chitecture with independent modules for the data model, core functionalities, and

9

presentation. This new design offers an API layer intended to be used as the inte-

gration point of the core modules and the application layers. This new design also

provides means for the developers to extend the tool’s functionalities along with the

inclusion of new features.

The rest of this thesis is organized as follows. Chapter 2 discusses some back-

ground on PrTN (the base modeling formalism used in this thesis), the improve-

ments made to the modeling formalism regarding discrete event systems. Chapter

3 provides a comprehensive discussion on the analysis techniques for discrete event

systems. Chapter 4 presents a new definitions of hybrid predicate transition nets

for modeling hybrid systems in which, the continuous place is introduced to model

continuous states and the evolution is defined using differential equations. Chapter 5

presents techniques to analyze hybrid systems, in which simulation technique based

on the dynamic semantics of HPrTNs is used to analyze systems with non-linear

hybrid behaviors and a complementary reachability analysis technique is used to

analyze systems with piece-wise linear hybrid behaviors. Chapter 6 discusses moti-

vations to redesign PIPE+ and the new proposed architecture. Chapter 7 concludes

the thesis and guidelines for future development.

10

CHAPTER 2

MODELING DISCRETE EVENT SYSTEMS

This chapter focuses on modeling of discrete event systems (DES) using predicate

transition nets (PrTNs). First, it provides an overview on DES and Petri nets in

general. The later part is organized as - section 2.2 gives formal definition of PrTN

and its dynamic semantics; section 2.3 discusses some methods to model DESs using

PrTNs; some DESs are modeled in section 2.4; and in section 2.5, some significant

improvements and new features incorporated in PIPE+ are discussed. This chapter

is partially based on the publications [17], and [18].

2.1 Overview

In discrete event systems (DES), the state remains unchanged until an event occurs.

A DES evolves from event to event. Events are chronological and autonomous.

Some events trigger some others, but it is uncertain at what time. Furthermore,

any event can block, freeze, delay, enable/disable future events. Therefore, discrete

event systems are stochastic, dynamic, and asynchronous. Modeling of DES, thus,

requires a formalism that can capture all the events of the system and the causal

relationship among them to describe the whole system behavior [23].

Petri nets are very effective in describing distributed and concurrent systems.

They also provide powerful tools in describing systems in terms of events and activ-

ities. Models of discrete event systems are mostly based on the concepts of events

and activities. Therefore, Petri nets are the modeling formalism that enables us to

represent a DES naturally. The following paragraph provides an informal description

of Petri net.

Graphically, a Petri net is represented as a directed and weighted bipartite graph

with two kinds of nodes, namely places and transitions. Places can connect to

11

only transitions or vice verse via edges called arcs. Places contain a positive integer

number of tokens. The tokens in places are collectively called marking of the

net and constitute the state of the system. On the other hand, transitions are

associated with the events of the system. The behavior of the system is generated by

firing of the enabled transitions, i.e., the occurrence of the actions when associated

event happens. A transition can fire when it is enabled. Non-conflicting enabled

transitions can fire at the same time.

The locality of determining the enabledness of transitions and the firing of con-

current transitions make Petri nets a well suited tool for studying distributed and

concurrent systems. However, the simplicity of Petri nets makes it difficult for them

to model systems with complex data structures and functional processing. To solve

these problems, several extensions to Petri net formalism are introduced. These are

commonly known as high-level Petri nets. Predicate Transition Nets (PrTNs) are

a class of high-level Petri nets.

This chapter focuses on modeling discrete event systems using PrTNs. First

it provides a formal definition of PrTNs to describe the structure and dynamic

semantic of PrTN. Then a modeling methodology is provided for modeling discrete

events systems using PrTN. Then the major contributions to enhance the modeling

capability are discussed.

2.2 Predicate Transition Nets (PrTNs)

Predicate Transition Nets [24, 6, 25] are a class of high-level Petri nets where places

are viewed as logical predicates instead of propositions. Places can be associated

with a data type to define complex structured type data the places can hold. Transi-

tions are specified using first order logic formulas that further constrain the enabling

12

conditions. Specifically, the enabledness of a transition is now determined by (1) the

availability of the appropriate tokens in its input places, and (2) the tokens in the

input places must satisfy its constraints. The dynamic behavior of PrTNs consists

of all execution sequences where each execution may contain firings of multiple tran-

sitions. Formal definition of the structure and the behavior of PrTNs are discussed

in the following subsections.

2.2.1 Formal Definition

Definition 2.2.1 (PrTN). A PrTN is a tuple N = (P, T, F, α, β, γ,M0), where,

1. P is a non-empty finite set of places.

2. T is a non-empty finite set of transitions, which disjoins P , i.e., P ∩ T = ∅;

3. F ⊆ (P × T ∪ T × P) is a flow relation (the arcs of N);

4. α : P → Type associates each place p in P with a type in Type. Type defines

the structure of the data the places can hold. It consists of basic types such

as String, Integer, and Real Numbers, and composite types defined using

Cartesian product and power set;

5. β : T → Constraint associates each transition t in T with a constraint.

Each constraint is a disjunction
∨
i di for i ≥ 1, where each disjunct di is

a conjunction prei ∧ posti that define the enabling condition (precondition)

and the processing result (post-condition) of a case of t respectively. The

precondition contains only the variables appearing in the labels of incoming

arcs, and the post-condition contains the variables appearing in the labels of

outgoing arcs. The post-condition associated with continuous transitions may

contain differential equations indicating the change rates;

13

6. γ : F → Label associates each arc f in F with a label in the form of a simple

variable x or a set element {x}. An arc label denotes the data flow of a relevant

transition, where the variable is instantiated with concrete token(s) during the

transition firing;

7. M0 : P → Token, the initial marking, associates each place p in P with a set

of tokens. Tokens in M0(p) are values respecting the type of p.

2.2.2 Dynamic Semantics

The dynamic semantics of HPrTNs are defined using the concept of markings

(states) M : P → Token that are mappings from places to tokens.

Definition 2.2.2 (Enabledness of a tansition). A transition t in T is enabled in

a marking M if one of its precondition is true. Formally, ∀p ∈ P.(γ(p, t) : θ ⊆

M(p)∧∃i.β(t).prei : θ), where γ(p, t) is a generalization of γ such that (p, t) /∈ F ⇒

γ(p, t) = ∅. e : θ is the result of instantiating all arc variables with tokens in p

according to substitution θ.

Definition 2.2.3 (Firing of a transition). An enabled transition t in marking M

with substitution θ satisfying β(t) is firable if it is not in conflict with another firable

transition. The firing of a firable transition results in a new marking M ′ defined by:

∀p ∈ P.(M ′(p) = M(p) ∪ γ(t, p) : θ − γ(p, t) : θ). We denote this firing as M
t/θ−→M ′

Definition 2.2.4 (Conflict and Conflict Resolution). Two enabled transitions are

in conflict if the firing of one of them disables the other. This conflict is resolved by

selecting one randomly to fire.

Definition 2.2.5. Let Ti be a set of concurrently enabled non-conflict transitions

with corresponding substitutions θi in marking Mi, and Mi+1 is the resulting new

14

Figure 2.1: PrTN model of Five Dining Philosophers problem

marking after firing transitions concurrently. This transition step is denoted as

Mi
Ti/θi−→Mi+1. The behavior of a net N consists of the set of all the firing sequences

M0
T0/θ0−→M1...Mi

Ti/θi−→Mi+1.... The set of all reachable markings is denoted as [M0 >.

Here, an instance of a PrTN model is illustrated using the well-known five dining

philosopher problem. Figure 2.1 shows model along with its inscriptions. The

model has three places Thinking, Fork, and Eating and two transitions Pickup

and Putdown. The places Thinking and Eating store the states of philosophers

respectively, and place Forks store available forks. The data for this problem are

philosophers and forks. The philosopher are assigned unique identifiers, the numbers

from 0–4 in this example. The forks are also modeled similarly. All the places have

the same datatype definition (α) power set of one-element token. This way they are

designed to hold multiple tokens. Each token consists of a number. The number

represents the identifier of a philosopher, thus each number models a philosopher.

Two transitions PickUp and PutDown model the possible actions of philoso-

15

phers, (1) acquire left and right forks, and (2) put down the forks respectively. The

transition Pickup has two input variables (arc labels γ) x and y. It is constrained

by relational expression y = (x + 1)%5. It enforces that for a philosopher x in the

place Thinking, the two forks x (left) and (x + 1)%5 (right) must be available in

the place Forks. If this condition matches for some x, then the transition PickUp

will be enabled and ready to fire. If it fires then the token representing the philoso-

pher x is transfered from Thinking to Eating. The tokens representing the forks x

and (x + 1)%5 are removed from Forks to make those unavailable. The transition

PutDown has one input variable x and two output variables x and y. Firing of this

transition means that philosopher x finished eating, thus it should be removed from

the place Eating and put to Thinking. At the same time, the forks x and (x+1)%5

should be made available by putting those back to the place Forks.

A careful reader might find that both PickUp and PutDown have same con-

straint but different outcome is expected. This is because the operator = (equals)

has dual interpretations. In preconditions it is used as a relational operator and in

postconditions it is used as an assignment operator. In β(PickUp), both x and y

are input variables. Their assigned values are known beforehand. In this case the

operator = is interpreted as a relational operator and used to test the equality of

the both sides. On the other hand, β(PutDown) is a postcondition, since y is an

output variable and is unknown until the transition fires. In this case, the operator

= is used as an assignment operator and sets y with the value as computed by the

expression on the other side.

In the initial marking M0, all the tokens representing philosophers are in the

place Thinking and all the tokens representing forks are in the place Forks. The

place Eating does not have any token.

16

2.3 Model Development

2.3.1 Modeling States

PrTNs are well suited for modeling traditional concurrent and distributed systems

with discrete behaviors. Discrete places constitute the discrete states. Each place

represents a certain type of object or entity of the system. The attributes of an

entity are modeled using datatypes. A datatype specifies the structure of the data

the assigned places can have. The data structure is modeled using a multi-set of

the sorts of basic data types, like string, boolean, int, short, real. PIPE+ supports

only two types of sorts - string and number. The sort string represents string

literals or text type data. The sort number is used to represent the numeric valued

attributes, including both real numbers and integers. Previously, PIPE+ supported

only integer numbers. Under this study, its capability is enhanced. This enhance-

ment is discussed elaborately in section 2.5.1. If the entity has more than one

attributes a multi-set of these two sorts is used. Finally, to model the scenario

where there are more than one instances of the same entity may be present at the

same time, the datatype of the corresponding place is marked as powerset. This

allows that place to have any number tokens. An upper bound can be set to restrict

number of allowed tokens for such places by setting the capacity.

2.3.2 Modeling Transitions

The discrete behavior of a system is modeled using the causal relationship between

events and actions, and the flow relations. The events and actions are specified as

the preconditions and post-conditions of the discrete transitions. The flow relations

are specified by the connection among the places and the transitions via arcs. Both

17

preconditions and post-conditions are specified using first-order logic formulas. The

tool PIPE+ supports full first-order logic formula, including all the logical and rela-

tional operations, quantifiers, basic arithmetic, and set operations. Table 2.1 shows

the supported operators. All the operators preserve their original mathematical se-

mantics. Apart from these basic operations, the inline function construct is also

supported in PIPE+. The function construct allows the modeler to compute any

arithmetic operations that cannot be constructed otherwise. The tool comes with a

default function interpreter that supports some frequently used arithmetic, trigono-

metric, string operations, and random number generators. It can also be extended

to support other user-defined functions.

The preconditions and post-conditions are first-order logic formulas. These for-

mulas can use constant terms or variable terms. The variables are derived from the

arc labels. The variables derived from the labels of the incoming arcs are termed as

input variables, and the variables derived from the labels of the outgoing arcs are

called output variables. Some variables are not derived from arc labels. These are

called user variables and are usually part of the quantifiers and set operations. The

variables can be either input or output or both. The clauses in preconditions are

mostly comparisons and contain only the input variables. Post-conditions define the

values of output variables through the input variables and the relational equations

in the first-order logic formulas. New values are generated by evaluating the expres-

sions with the values held by input variables. If a variable represents a structured

token with multiple fields, each field is accessed through indexing. For example, a

variable x with a structured type 〈string, string, number, number〉 is accessed as

x[1] for its first field and so on.

Variables can be - (1) single-valued, or (2) multi-valued. Single valued variables

can hold only one token. Multi-valued variables, on the other hand, hold a set of

18

Category Operations Symbols

Connective (Logical)

And ∧
Or ∨
Not 6
Implication →
Equivalence ↔

Relational

Equals =
Not Equals 6=
Greater >
Less <
Greater or Equal ≥
Less or Equal ≤

Algebraic (number)

Addition +
Subtraction −
Multiplication ∗
Division /
Remainder %
Powers â s

Differential
Differential δ
Difference ∆
Time Symbol τ

Predicate Logic

For All ∀
Exists ∃
Dot ·

Parentheses) (} {] [〈 〉

Table 2.1: Supported operations in PIPE+ and mapping symbols

tokens. If the data type of a variable, i.e., the datatype of the place associated

with the variable, is not powerset, then the variable is by default single-valued.

Otherwise, the variable can be either multi-valued or single-valued. A variable is

specified inside a bracket, {x}, to be marked as single-valued. During execution, all

the available tokens are assigned to a variable if it is multi-valued. Otherwise, one

of the available tokens is assigned to the variable.

19

2.3.3 Modeling Time

The evolution of discrete systems depends on events rather than time. In real-time

systems, events may be time-bound. Time-bound events can be modeled using

timestamp carrying tokens and transition constraints for checking and updating

token time stamps. The tool PIPE+ provides a simple means to access time. A

special logical clock variable τ is used to define timing-related constraint in a first-

order logic formula. PIPE+ initializes and maintains τ for each simulation run. By

default, the logic clock starts with the timestamp 0 and increases by one unit after

each execution step. Time increment frequency (probability) and the increment sizes

are configurable. No specific time unit is assumed with the step size. It is modelers’

responsibility to use τ consistently in all transition constraint definitions. Using

this global logic clock variable τ greatly simplifies the resulting model structure for

representing timing features.

2.3.4 Model Composition

For modeling complex systems, PIPE+ facilitates an incremental modeling ap-

proach. Here the whole system can be decomposed into smaller components. Each

component can be modeled separately, and then can be merged to get the complete

system model. Both synchronous and asynchronous composition is implemented.

Synchronous composition of two PrTN models N1 and N2 is achieved by merging a

place in N1 with another in N2. The asynchronous composition is achieved by merg-

ing a transition from N1 with another in N2. It can also be achieved by connecting

a Place in N1 and a transition in N2 or vice verse.

20

2.4 Case Study

Several classic and benchmark discrete systems from the annual Petri net model

checking contest 2015 [26] have been modeled in PIPE+ using the syntax and se-

mantics of the PrTN. This section demonstrates the modeling of one of these sys-

tems. The Bridge and Vehicles system from the annual Petri net model checking

contest 2015 is chosen for this purpose. In the contest, this system was modeled us-

ing Colored Petri net [7], a widely used high-level Petri net. The system is redefined

using PrTN in PIPE+.

The Bridge and Vehicles system represents a single lane automated bridge that

some motorized vehicles try to pass from both directions. The bridge has a limited

capacity for a certain number of vehicles. The number of vehicles on the bridge

can never be more than that capacity. A controller supervises the movement of

the vehicles on the bridge. The controller ensures the safe passage of the vehicles

and fair share of the bridge. The fair share of the bridge is ensured by limiting the

number of vehicles from each side that can cross the bridge in a row. Here these

constraints are discussed in terms of the tuple (V, P,N), where V is the number of

vehicles on each side of the bridge trying to get to the other side, P is the maximum

number of vehicles allowed on the bridge, and N is the maximum number of vehicles

from the same side permitted to pass in a row. Here, P and N are the constraints of

the system. P supports the capacity, and N ensures fairness of sharing the bridge.

There are several ways to model the system. In this case study, a bottom-up

approach is used where each of the vehicles is identified separately. The flow is

organized around the movement of the vehicles. The movement of the vehicles is

categorized into several stages. As a vehicle approach the bridge, it needs to register

with the system and then wait for its turn to get onto the bridge. When a vehicle

21

registers with the system, it can encounter one of the three situations - (1) there

are other vehicles registered before it and waiting, (2) the bridge may be occupied

with the vehicles from the opposite side, and (3) N is reached, and the direction is

about to change. The waiting queue is maintained to accommodate these situations.

When the system allows, the vehicle moves onto the bridge. Then at some point, it

leaves the bridge. Thus, this model assumes four distinct phases of a vehicle - (1)

available, (2) waiting, (3) on the bridge, and (4) exited.

These phases are modeled using separate places. The change of phases is defined

using separate transitions. The traffic movement from both sides is modeled using

two different sets of such places and transitions. The controller also consists of a

place and a transition. The place keeps track of the phase information, and the

transition makes the switching between the sides. A pictorial diagram of the PrTN

model of the system is shown in Figure 2.2. The places RouteA and RouteB hold

the pool of vehicles that want to cross the bridge. WaitA and WaitB carry the

tokens representing the vehicles registered with the system and waiting to move on

the bridge. OnBridgeA and OnBridgeB hold the tokens representing the vehicles

currently on the bridge. ExitA and ExitB hold the tokens for the vehicles that

already crossed the bridge.

In this model, each vehicle is identified by a string literal. Thus the token

representing a vehicle needs only one field. Again these places need to hold more

than one tokens. Therefore, the datatypes of these places are a powerset of one

element field of type string, as shown in Table 2.2. The places NumberA and

NumberB hold the number of vehicles on the respective side waiting to move to

the bridge. The place Controller has the control information such as, vehicles from

which side are currently on the bridge, how many are on the bridge now, how many

vehicles crossed during this pass, and whether a switch is needed.

22

Figure 2.2: Pictorial diagram of a PrTN model of the Bridge system

α(RouteA) = α(WaitA) = P(string)
α(ExitA) = α(OnBridgeA) = P(string)
α(RouteB) = α(WaitB) = P(string)
α(ExitB) = α(OnBridgeB) = P(string)
α(NumberA) = α(NumberB) = (number)
α(Controller) = (string, number, number, string)

Table 2.2: Data type definitions of the places

M0(RouteA) = {〈“Wa”〉, 〈“Xa”〉, 〈“Y a”〉, 〈“Za”〉}
M0(RouteB) = {〈“Wb”〉, 〈“Xb”〉, 〈“Y b”〉, 〈“Zb”〉}
M0(NumberA) = 〈0〉
M0(NumberB) = 〈0〉
M0(Controller) = 〈“A”, 0, 0, “N”〉

Table 2.3: Initial marking of the net

23

β(RegisterA) = (n1 = n+ 1)

β(RegisterB) = (n1 = n+ 1)

β(AllowA) = (n > 0 ∧ s[1] = “A” ∧ s[2] < 5 ∧ s[3] < 2 ∧ s[4] 6= “Y ”)
∧(n1 = n− 1 ∧ s1 = 〈“A”, s[2] + 1, s[3] + 1, s[4]〉)

β(AllowB) = (n > 0 ∧ s[1] = “B” ∧ s[2] < 5 ∧ s[3] < 2 ∧ s[4] 6= “Y ”)
∧(n1 = n− 1 ∧ s1 = 〈“B”, s[2] + 1, s[3] + 1, s[4]〉)

β(LeaveA) = (s[1] = “A” ∧ s1 = 〈“A”, s[2]− 1, s[3], s[4]〉)

β(LeaveB) = (s[1] = “B” ∧ s1 = 〈“B”, s[2]− 1, s[3], s[4]〉)

β(TimeoutA) = (s[1] = “A” ∧ ((na = 0 ∧ nb > 0) ∨ s[3] = 2) ∧ s[4] 6= “Y ”)
∧ s1 = 〈“A”, s[2], s[3], “Y ”〉)

β(TimeoutB) = (s[1] = “B” ∧ ((na = 0 ∧ nb > 0) ∨ s[3] = 2) ∧ s[4] 6= “Y ”)
∧ s1 = 〈“B”, s[2], s[3], “Y ”〉)

β(Switch) = (s[2] = 0 ∧ s[4] = “Y ” ∧ s[1] = “A” ∧ s1 = 〈“B”, 0, 0, “N”〉)
∨(s[2] = 0 ∧ s[4] = “Y ” ∧ s[1] = “B” ∧ s1 = 〈“A”, 0, 0, “N”〉)

Table 2.4: Transition Constraints

The transitions RegisterA and RegisterB move the vehicles from the pool of

available vehicles to the waiting phase. While doing so, these transitions increase

the number of vehicles held by the places NumberA , NumberB. This is specified

using the β(RegisterA) and β(RegisterB) in table 2.4. Similarly, the transitions

AllowA and AllowB are used to move the vehicles from waiting to onBridge state

and decrease the number of waiting for vehicles on the respective sides. Finally,

the transitions LeaveA and LeaveB are used to move vehicles to exited phase. On

the other hand, the transitions TimeoutA and TimeoutB are used to inform the

controller that a switching may be needed. The need for switching is determined

when one of the following conditions happens - (1) no vehicle is waiting on the

currently active side, but the other side has some waiting vehicle; (2) the allowed

24

number of crossed vehicles (N) on the current side is reached.

The modeling approach mentioned here is just one way of modeling the system.

There are several other ways of doing this. For example, instead of considering

each vehicle’s movement individually, the movement can be captured collectively by

considering the number of vehicles on each phase.

2.5 New Features in PIPE+

2.5.1 New Type

There is no restriction in PrTN on the sort of data to use in the datatypes. But

the realization of PrTN in the tool PIPE+ is limited to only strings and integers.

Therefore, modeling using PIPE+ was limited to modeling systems with particular

dynamics only. In reality, most of the systems, whether DES or not, deal with some

attributes of some entities of the system having fractional numbers. For instance,

consider that a modeler is interested in modeling a simple academic result calculator

system for students. Here the modeler would like to keep track of the scores the

students achieve on some courses. Then, eventually, the numerical and letter grades

need to be computed. If a real-world problem is mapped with this hypothetical

problem, then it would be clear to see that it is natural to model the attributes

score, numerical grade, and GPA using fractions.

To resolve this limitation, a more generic term number is introduced, replacing

integer. The sort number can be used to represent real numbers (R). If a field is

typed as number, it may hold a fractional number or an integer. From the modeling

point of view, such distinction is redundant. It should suffice as long as the cor-

25

rect representation is achieved. However, realizing fractional numbers introduced

technical challenges from the mathematical point of view. These challenges include,

• Precision of Numerical Value. When arithmetic expressions containing

floating-point numbers are evaluated, the result’s precision may differ depend-

ing on the runtime system. Uneven precision may produce an incorrect result

or may lead to undesired circumstances. As a partial solution to this problem,

the modeler can use the round function to round up the values directly in the

transition constraints following the technique described in section 2.5.2.

• Comparison of Numbers. Arithmetic operations involving floating-point

numbers is still inconsistent. The evaluation of two arithmetic expressions

involving floating-point numbers may result in slightly different results whereas

exact same values are expected. This may result in unexpected behavior when

their equality is checked. A partial solution is provided in the simulation

environment of PIPE+. Instead of comparing two numbers for equality, the

difference is computed and if the difference is within a predefined tolerance

value, the numbers are considered equal. Also, the modeler can utilize the

round function before comparing for euality.

• Suitable Arithmetic Operations. The inclusion of number datatype urged

on the addition of specialized mathematical operations suitable for fractional

numbers. For example, exponentials, operations to work with precision - ceil-

ing, floor, rounding, etc. To provide better utilization of numbers, several

new arithmetic operators and mathematical expressions are introduced as de-

scribed in section 2.5.2.

Apart from these, there aroused another problem from the model checking per-

spective. Some model checkers, e.g., SPIN, do not support floating-point numbers.

26

Figure 5.11: The simulation result of the railgate system in PIPE+. a. Trajectory
of the Gate against time, and b. Trajectory of the Train against time

Figure 5.12: Analysis results of translated synchronous model in SpaceEx a. Simu-
lation, b. LGG Scenerio, c. STC scenerio

eventually keeps open. The simulation results are similar for both of these two

approaches of composition. These show that the models appear correct. Figure

5.11(a) shows that the train was in the crossing during the time between 35 and

50. At that time, the gate was closed entirely. Also, when the train is outside of

the crossing, the gate was open. These models are translated to the sx format for

reachability analysis with the tool SpaceEx.

Figure 5.12 shows the reachability analysis results of the synchronously com-

posed model. Figure 5.12(b) and Figure 5.12(c) show the reachable states. The

123

Symbolic State Time Condition Reachable

−100 < x < 100&w > 0.01 0.102 Unsafe No

x > 1000&w < 1.56 0.095 Unsafe No

x = 1000&w < 1.56 0.107 Unsafe No

x < −1000&w >= 1.56 0.102 Safe Yes

130 < x < 1000&w <= 1.56 0.076 Safe Yes

Table 5.5: Statistics of the analysis summary of the synchronous model

Figure 5.13: Analysis results of translated asynchronous model in SpaceEx a. Sim-
ulation, b. LGG Scenerio, c. STC scenerio

computed states are as expected since these states are safe. No unsafe states are

reachable. Table 5.5 summarizes the results of reachability analysis of the syn-

chronous model. Here, the analysis is done to see if some specific safe and unsafe

states are reachable or not. The results show that unsafe states are not reachable.

The reachable stats of the asynchronously composed model are shown in Figure

5.13. It clearly shows that the unsafe states could be reachable even when the

system starts from safe states.

124

5.4 Related Work

Being infinite-state systems, explicit state model checking is not an appropriate

method to verify hybrid systems. Reachability Analysis (also termed as symbolic

reachability analysis) is one of the few techniques to verify hybrid systems. In this

approach, the main goal is to decide whether a set of states reachable from the initial

states of the system via all possible execution paths is safe. The set of safe states

are pre-defined. The set of reachable states is computed iteratively from the initial

states, and in each step, the reachable set is compared with the safe states. The

key challenge in this approach is the appropriate representation of the states for the

iterative reachability algorithm. There are several tools available for this approach.

HyTech [81] was the first model checker to apply this technique with a specific rep-

resentation of reachable set named n-dimensional polyhedra. Here, n is the number

of the system’s real-valued attributes, and each polyhedron is represented using a

conjunction of linear inequalities over these variables. However, this approach is

restricted to the class of Linear Hybrid Automata and, thus, is not scalable. It

is not easy too. To deal with this problem, a strategy, over-approximation of the

reachable set over polyhedral representation, was introduced by tool Checkmate[82]

and refined later by d/dt [83]. Later several other approximation-based approaches,

like flowpipe approximation, convergent approximation, etc. were proposed. These

methods use over-approximative geometric and/or symbolic representations of states

set, e.g., convex polytopes, zonotopes, ellipsoids, support functions, or Taylor mod-

els. The complexity of these methods is typically exponential in the number of

dimensions. There are several other studies to deal with complexity and replacing

polyhedral with alternative representations. So far, most scalable representation

utilizes zonotopes and support functions in tool SpaceEx [12].

125

However, another prominent problem with the reachability analysis techniques

is that they are limited to linear hybrid systems since those need to calculate the

reachable sets. Deductive verification, on the other hand, does not exhibit this

limitation. Here theorem proving is used to generate proofs of correctness of the

systems. The tool KeYmaera X [84] provides support for deductive verification.

5.5 Summary

Simulation and reachability analysis are two established methods to analyze hybrid

systems. In this chapter, both these two techniques to analyze hybrid systems

modeled using HPrTN are discussed. The tool PIPE+ provides built-in support for

simulating HPrTN models. For this, a new simulation algorithm is incorporated.

New techniques are introduced to simulate the evolution of continuous states. New

techniques are also introduced to visualize the results. As part of the support for

reachability analysis, HPrTN models are translated to models suitable for use in the

tool SpaceEx. A brief overview of the SpaceEx models and the available analysis

techniques are discussed in this chapter. Then a complete step by step translation

method is discussed. This translation method considers all the elements of HPrTN

definition. During translation, all the elements in an HPrTN model are translated

to the equivalent form. This chapter also discussed some techniques to automatic

discovery of components in an HPrTN model and their composition in the translated

model. In the end, analysis results of the translated models of two hybrid systems

are discussed.

126

CHAPTER 6

REDESGNING PIPE+

PIPE+ is a Java-based desktop application for modeling and simulation using PrTN.

It is built on top another application Platform Independent Petri net Editor (PIPE)

[22]. PIPE is an open-source tool developed by Imperial College of London in 2003

for modeling and analyzing low-level Petri nets. Although PIPE is intended to

manipulate low-level Petri nets, it provides some generic functionalities, which can

be adapted for high-level Petri nets. PIPE+ utilizes those functionalities as a base

and gradually introduced new functionalities for modeling and analyzing PrTNs.

Despite having excellent potential, PIPE has design and implementation flaws.

PIPE+ automatically inherited those flaws. PIPE+ itself also introduced several

technical debts, which urges on to a complete redesign and rebuild. In the following

subsections, the limitations of the existing PIPE+ tools are discussed. Later an

overview of the adopted architecture and some benefits of the redesigned PIPE+

are presented.

6.1 Limitations of PIPE+

The fundamental flaw with PIPE+ is its dependency on a system that is built using

old technology and no upgrading with the latest development of that dependency.

In this section, some of the identified flaws are elaborated.

6.1.1 Legacy Systems

PIPE+ uses several third party libraries. Many of these libraries are discontinued.

The adaptation of PIPE into PIPE+ did not utilize appropriate design patterns

127

available for the base technology. Also, PIPE+ lacks proper documentation. This

made it very difficult to upgrade. In the following subsections, these are elaborated

from the viewpoint of the underlying technologies and dependencies

6.1.1.1 Technologies

PIPE+ adapted the version 2.0 of PIPE. This version was built using Java 1.4. Java

itself has a considerable evolution from that version. Most of the Java API used

in the implementation of PIPE+ has become obsolete, and there are better and

improved replacements. However, due to the dependency on ancient technology,

PIPE+ can not leverage those improvements.

6.1.1.2 Dependencies

Both PIPE and PIPE+ depend on other third-party libraries. Many of those li-

braries have reached their end of life (EOL). Many of these libraries are discontin-

ued due to the availability of better and modern replacements. However, due to the

fundamental limitations, it is complicated to utilize the latest development.

6.1.2 Quantitative Analysis

Several freely available profiling tools are used to measure the code quality of PIPE+

source code quantitatively. In the following subsection, some of these are catego-

rized, and the analysis results are presented.

6.1.2.1 Static Analysis

Static analysis of the PIPE+ code was performed using an IntelliJ Idea plugin -

QAPlug with FindBugs and CheckStyle. Running static analysis with default set-

128

tings revealed nearly 7000 violations of standards. Some of these violations are very

critical and prone to cause bugs. Table 6.1 summarizes the result of the analyses.

Category Issue Violations

Efficiency (183)
Performance 160

Others 23

Maintainability (1210)

Bad Practice 23

Cyclometric Complexity 102

Boolean Expression Complexity 87

Inappropriate Modifier Usage 831

Others 167

Reliability (3720)

Correctness 48

Malicious Code Vulnaribility 72

Others 3600

Usability (1862)

Dodgy 136

Constants 105

Naming 1097

Hidden Field 208

Others 316

Table 6.1: PIPE+ source code static analysis result

6.1.2.2 Circular Dependencies

When one module of a software system becomes dependent on another for function-

ing correctly, a dependency relation arises. When there are cycles in a dependency

chain of two or more modules, then it is called circular dependency. It is quite

harmful from the software engineering perspective. It creates tight coupling among

components, are prone to cause bugs, and it has many more negative effects [85, 86].

129

Figure 6.1: PIPE+ package-level dependency graph

Static analysis was performed using Stan4J on the PIPE+ source code to identify

the standard package-level circular dependency. It reports the level of cyclic depen-

dency in terms of Tangledness and Average Component Dependency. A higher value

of these metrics indicates higher coupling among the components. Table 6.2 sum-

marizes some of these metrics. Figure 6.2 and 6.1 shows the distance metrics among

the packages of PIPE+ and the dependency graph. All of these metrics confirm the

high circular dependency among PIPE+ packages.

Metric Index

Tangled 24.39%

Average Component Dependency - Package 58.43%

Average Component Dependency - Unit 32.30%

Table 6.2: PIPE+ circular dependency test result

130

Figure 6.2: PIPE+ packages distance indices

6.1.2.3 Usability Issues

As reported in Table 6.1, the QAPlug bug finding tool, found 1862 usability issues

including inconsistent naming, repeated usage of duplicated constant values, care-

lessly choosing local variable names hiding the member variables. Apart from these,

there are 136 issues as categorized as Dodgy that must be avoided. Some of the

most appeared issues under this category are declaring never used local variables,

redundant null checks where the variables are non-null, exact floating point number

equality checks, modifying static variables from instance method.

6.1.2.4 Portability Issues

There are several portability issues, including usage of thread safety classes where

the objects are not shared between threads. For example, usage of Vector instead

of other collection classes, usage of StringBuffer instead of StringBuilder, etc. Also,

131

primitive objects are instantiated by explicitly using the new keyword, whereas it

is the best practice to use the appropriate utility methods.

6.1.2.5 Maintainability Issues

Table 6.1 also shows several severe maintainability issues. These include many bad

practices, like having specialized methods without implementing the appropriate

interface. For example, defining the clone method in a class without implementing

Cloneable interface. Other violated maintainability issues are breaking the contract

between equals and hashCode methods, Serializable class without serialVersionID,

comparing string literals using ’==’ operator, invoking System.exit method, suspi-

cious reference checks.

6.1.3 Qualitative Analysis

6.1.3.1 Functional Ambiguity

The PIPE tool was developed primarily for low-level Petri nets. While adapting it,

PIPE+ deliberately inserted its required functionalities. As a result, functionalities

for both low-level and high-level Petri nets co-exist without appropriate distinc-

tion. This confuses even to experienced users. Sometimes, it becomes tough to

differentiate between high-level and low-level Petri net functionalities.

6.1.3.2 Usability Issues

The tool is not very intuitive. A user needs to follow some specific steps to model

a system and analyze it properly. Moreover, there is no proper documentation

describing these steps, which makes it very hard for the new users.

132

6.1.3.3 Performance Issues

Several functionalities are implemented in an unnecessarily complicated way. In

many cases, proper measures are not taken to simplify implementation for improved

performances. For example, the formula parser used to parse the transition con-

straints creates very tall syntax trees. If the grammar or the parser generator is

optimized correctly, then the depth of the new syntax tree would be the half. In

that case, the evaluation of the formula would take half of the time as it required

earlier. The simulator has another severe performance issue related to formula pars-

ing. The formula associated with a transition was parsed each time the transition

is selected for evaluation. However, a formula is immutable during the lifetime of a

simulation run. So technically, a formula could be parsed only once in a simulation

run using memoization. This can be further optimized with proper caching and

cache invalidation techniques. There are many other issues where optimation could

be possible.

6.1.3.4 Lack of Concurrency

Another severe flaw with the implementation of PIPE+ is that it does not offer

concurrently. Since the tool’s usage is highly interactive, in most cases, the user

does not experience any difficulty in using it. But this problem becomes apparent

during the multi-step simulation. In a multi-step simulation, the user configures

the simulator to run for a given number of steps. The user then expects to observe

gradual evolution in the chart at the end of each step. The current implementation

cannot do that. It just runs all the steps at once in the foreground and shows

the charts after all the steps are done. During the whole period of time, the UI is

unavailable to the user. So, if the user wants to cancel in the middle, he cannot do

that as well.

133

Figure 6.3: High-level overview of the architecture of PIPE+ Redesigned

6.2 Redesign

6.2.1 Architecture

PIPE+ Redesigned is a Java-based desktop application implemented following a

multi-layered architecture. Figure 6.3 shows a high-level overview of the architecture

of the redesigned tool. The core layer of this tool consists of three modules - the

data access module, the controller module, and the presentation module. The data

access module and the controller module are built using JavaSE and some third-

party open-source libraries. The presentation module is built using JavaFX. A

comprehensive API layer is built on top of the core layer and provides user-facing

features and functionalities implemented in the application layer. Figure 6.3 shows

two partitions of the application layer for two broad categories of functionalities

provided by the tool - modeling and analysis. These layers are designed to be highly

configurable and extendable.

134

6.2.1.1 Data Access Module

The Petri net data model is the necessary data structure to represent a Petri net

model. This module provides functionalities to create, list, modify and delete the

Petri net model elements. This module also provides the serialization techniques

and transformation to other forms, such as file storing and retrieving methods. This

module is designed to provide a generic way to represent Petri net models and

provides a concrete implementation of HPrTN.

Configurations provide parameters to customize the environment for model anal-

ysis. For example, the simulation environment needs an initial seed for random

number generation, initial logical timestamp, step size, number of steps. This in-

formation is stored when the simulation mode is chosen. The user does not need

to provide the same information multiple times. These configurations are also con-

sidered as a part of the domain of the tool. The data access module facilitates

manipulations of these configurations.

6.2.1.2 Controller Module

This module works as a mediator between the data access module and the presenta-

tion module and serves as a base for other layers. This module provides application-

wide generic functionalities such as managing and handling system-generated events,

as well as (a) domain objects manipulation, (b) structural and semantic consistency

assurance, (c) static analysis and insights generation for result visualization, and

(d) concurrency management.

6.2.1.3 Presentation Module

This module provides the foundation to build the GUI of the tool. The function-

alities provided by this module include (a) the overall layouts of the application

135

windows, (b) application-wide components like menus and menu bars, tools and

toolbars, status bar, etc, (c) composite and generic UI elements for manipulating

Petri net elements and displaying analysis results, (d) UI related events definition,

(e) uniform methods to publish and register events, and (f) the coherent way of

event propagation.

6.2.1.4 API Layer

The API layer provides uniform high-level access to the functionalities provided by

the core layer. This layer helps reduce the learning curve for other developers to

adapt and extend PIPE+ Redesigned.

6.2.1.5 Application Layer

The application layer contains components to implement the user-facing features

of the tool. This layer makes use of the API layer’s functionalities to provide the

solutions to the user requirements. The application layer captures the user action

and delegates to the appropriate function in the API. To provide the invocation

point, a GUI can be implemented utilizing the presentation module’s functionalities

via the API-Presentation component of the API layer.

PIPE+ Re-designed implements several components in the application layer to

create and analyze HPrTN models, as shown in Fig.6.3. Graphical Editor and For-

mula Editor provide functionalities to create and modify hybrid predicate transition

net models. The Simulator, Translator, and Result Publisher are components to

support model analysis.

The component-based layer architecture, along with the publisher-consumer pat-

tern of communication among the components, gives us the flexibility to reduce the

136

coupling among the components. This encourages the independent evolution of

different components.

6.2.2 Implementation

6.2.2.1 Latest Technology Stack

The redesigned PIPE+ uses Java 8 as the base technology. All the dependent

libraries are upgraded as well to make them compatible with Java 8. Also, some

libraries are replaced with different ones as suggested by the developer community,

to comply with the state of the norm.

6.2.2.2 Code Quality

To maintain the code quality, the static analyzers are run frequently to observe

that the number of violations is in control. Mainly it is ensured that there are no

critical violations. Apart from the rigorous checking during implementation, some

guidelines and code styles are identified. These will be published with the codebase

when it will be made available for others to collaborate on.

6.2.2.3 Functional Quality

All the identified performance bottlenecks in the previous version of PIPE+ are

addressed in the redesigned PIPE+. Several new strategies are incorporated, and

new algorithms are introduced for the simulation engine. Some of them are already

discussed in chapter 3.

137

6.2.3 Build/Release Process

Previously, the only way to distribute the tool was by sharing the source code. As

part of the redesigning process, a proper build and release process is also established.

Along with source code, generated binary also will be distributed for others to try.

The new tool uses the Maven build tool. Maven is one of the most used build

process orchestration tools for Java projects. Almost 80% of all Java projects in the

world are being built using Maven. The source code is hosted on GitHub. GitHub

GitFlow will be followed to generate the releases. Maven will produce the release

build, and GitHub will host and announce the releases. The source code of this

project can be found at https://github.com/dalam004/pipeplus.

138

CHAPTER 7

CONCLUSION

This thesis focuses on a specific approach to model and analyze discrete event

systems, continuous systems, hybrid systems, and to provide a basis for modeling

and analyzing cyber-physical systems.

The first contribution is enhancing the modeling capability of discrete event sys-

tems using PrTNs. The algebraic specification of PrTNs are fully realized in PIPE+

tool, which supports many new functionalities including full-first order logic formulas

with quantifiers and set operations, the new type of real numbers, new mathematical

functions, and a new clock variable. Model composition is also supported in PIPE+

to build larger systems by reusing existing models.

The second contribution is providing a more robust translation-based model

checking technique. A significant contribution is to make the model translation

more functionally complete. Several other alternative ways of model translation

are also provided. Additionally, the simulation environment in PIPE+ tool is im-

proved significantly, including different modes of stimulation, internal simulation

result visualization, and exporting results for external analysis.

The third contribution is a new definition of HPrTNs, where continuous places

are introduced to capture continuous states. Tokens in continuous places represent

continuous states, and their evolution is defined by differential equations. Bounds

are introduced to specify the invariant of continuous variables. Discrete transitions

are used to change modes of continuous variables. HPrTNs are fully realized in

PIPE+, including support for utilizing both static (syntactic) and dynamic seman-

tics to model a wide range of dynamical systems.

The final contribution is providing analysis techniques for hybrid systems. Two

complementary analysis methods are provided. Simulation based on the dynamic

139

semantics of HPrTNs is used to analyze non-linear hybrid systems, and is imple-

mented in PIPE+. Reachability analysis is used to analyze piece-wise linear hybrid

systems and is implemented through a translator in PIPE+ and leveraging the state

of the art external tool SpaceEx.

Additional improvements can be done, including a better scheduler to handle

discrete state transitions and continuous state evolution seamlessly, more options

for model translation, and the completion of all the functionality in the proposed

redesign of PIPE+.

140

BIBLIOGRAPHY

[1] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Heidelberg, Berlin: Springer-Verlag, 2010.

[2] P. J. Antsaklis, “Special issue on hybrid systems: theory and applications a brief
introduction to the theory and applications of hybrid systems,” Proceedings of
the IEEE, vol. 88, pp. 879–887, July 2000.

[3] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, July 27-30, 1996, pp. 278–292, 1996.

[4] Hassane Alla and René David, “A modelling and analysis tool for discrete
events systems: continuous petri net,” Performance Evaluation, vol. 33, no. 3,
pp. 175 – 199, 1998.

[5] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets. Springer
Berlin Heidelberg, Springer, 2010.

[6] H. J. Genrich and K. Lautenbach, “System modelling with high-level petri
nets,” Theor. Comput. Sci., vol. 13, pp. 109–136, 1981.

[7] K. Jensen, “Coloured petri nets: A high level language for system design and
analysis,” in Advances in Petri Nets 1990 [10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, June 1989, Proceed-
ings] (G. Rozenberg, ed.), vol. 483 of Lecture Notes in Computer Science,
pp. 342–416, Springer, 1989.

[8] W. Reisig, “Petri nets and algebraic specifications,” Theor. Comput. Sci.,
vol. 80, no. 1, pp. 1–34, 1991.

[9] M. Herajy, F. Liu, and C. Rohr, “Coloured hybrid petri nets for systems biol-
ogy,” in Proceedings of the 5th International Workshop on Biological Processes
& Petri Nets, pp. 60–76, 2014.

[10] D. Bera, K. M. van Hee, and H. Nijmeijer, “Modeling hybrid systems with petri
nets,” in Simulation and Modeling Methodologies, Technologies and Applica-
tions - International Conference, SIMULTECH 2014 Vienna, Austria, August
28-30, 2014 Revisaled Selected Papers, pp. 17–42, 2014.

141

[11] R. Wieting, “Modeling and simulation of hybrid systems using hybrid high-
level nets,” in Proceedings of the 8th European Simulation Symposium (ESS’96),
vol. II, (Genoa, Italy), pp. 158–162, October 1996.

[12] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid
systems,” in CAV, vol. 6806 of Lecture Notes in Computer Science, pp. 379–395,
Springer, 2011.

[13] S. Liu, R. Zeng, and X. He, “Pipe+ – a modeling tool for high level petri nets,”
in Proc. of International Conference on Software Engineering and Knowledge
Engineering (SEKE11), (Miami), pp. 115–121, 2011.

[14] S. Liu, Z. Sun, R. Zeng, and X. He, “Samat - a tool for software architecture
modeling and analysis,” in Proc. of the 24th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE12), (San Francisco, CA),
pp. 352–358, 2012.

[15] L. Chang and X. He, “A methodology to analyze multi-agent systems modeled
in high level petri nets,” International Journal of Software Engineering and
Knowledge Engineering, vol. 25, no. 7, pp. 1199–1235, 2015.

[16] X. He, “A formal definition of hierarchical predicate transition nets,” in Ap-
plication and Theory of Petri Nets 1996, 17th International Conference, Os-
aka, Japan, June 24-28, 1996, Proceedings (J. Billington and W. Reisig, eds.),
vol. 1091 of Lecture Notes in Computer Science, pp. 212–229, Springer, 1996.

[17] D. M. M. Alam and X. He, “A method to analyze high level petri nets using
SPIN model checker,” in The 29th International Conference on Software Engi-
neering and Knowledge Engineering, Wyndham Pittsburgh University Center,
Pittsburgh, PA, USA, July 5-7, 2017 (X. He, ed.), pp. 161–166, KSI Research
Inc. and Knowledge Systems Institute Graduate School, 2017.

[18] D. M. M. Alam and X. He, “A method to analyze predicate transition nets
using SPIN model checker,” International Journal of Software Engineering and
Knowledge Engineering, vol. 27, no. 9-10, pp. 1455–1482, 2017.

[19] D. M. M. Alam, X. He, and W. C. Chu, “Modeling and analyzing hybrid sys-
tems using hybrid predicate transition nets (S),” in The 30th International
Conference on Software Engineering and Knowledge Engineering, Hotel Pull-
man, Redwood City, California, USA, July 1-3, 2018 (Ó. M. Pereira, ed.),

142

pp. 397–396, KSI Research Inc. and Knowledge Systems Institute Graduate
School, 2018.

[20] X. He and D. M. M. Alam, “Hybrid predicate transition nets - A formal method
for modeling and analyzing cyber-physical systems,” in 19th IEEE International
Conference on Software Quality, Reliability and Security, QRS 2019, Sofia,
Bulgaria, July 22-26, 2019, pp. 216–227, IEEE, 2019.

[21] S. Liu and X. He, “Pipe+verifier - A tool for analyzing high level petri nets,”
in The 27th International Conference on Software Engineering and Knowledge
Engineering, SEKE 2015, Wyndham Pittsburgh University Center, Pittsburgh,
PA, USA, July 6-8, 2015 (H. Xu, ed.), pp. 575–580, KSI Research Inc. and
Knowledge Systems Institute Graduate School, 2015.

[22] P. Bonet, C. M. Llado, and R. Puigjaner, “Pipe v2.5: a petri net tool for per-
formance modeling,” in Proc. 23rd Latin American Conference on Informatics
(CLEI 2007), (San Jose, Costa Rica), October 2007.

[23] I. F. D. L. Mota, A. Guasch, M. M. Mota, and M. A. Piera, Robust Modelling
and Simulation. Springer, Cham, 2017.

[24] H. J. Genrich and K. Lautenbach, “The analysis of distributed systems by
means of predicate ? transition-nets,” in Semantics of Concurrent Compu-
tation, Proceedings of the International Symposium, Evian, France, July 2-4,
1979 (G. Kahn, ed.), vol. 70 of Lecture Notes in Computer Science, pp. 123–147,
Springer, 1979.

[25] H. J. Genrich, “Predicate/transition nets,” in Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986, Part I, Proceedings of an
Advanced Course, Bad Honnef, Germany, 8-19 September 1986 (W. Brauer,
W. Reisig, and G. Rozenberg, eds.), vol. 254 of Lecture Notes in Computer
Science, pp. 207–247, Springer, 1986.

[26] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, A. Linard, M. Bec-
cuti, A. Hamez, E. Lopez-Bobeda, L. Jezequel, J. Meijer, E. Paviot-
Adet, C. Rodriguez, C. Rohr, J. Srba, Y. Thierry-Mieg, and K. Wolf,
“Complete Results for the 2015 Edition of the Model Checking Contest.”
http://mcc.lip6.fr/2015/results.php, 2015.

[27] P. M. Merlin and D. J. Farber, “Recoverability of communication protocols,”
IEEE Trans. Communications, vol. 24, no. 4, pp. 1036–1043, 1976.

143

[28] S. M. C. Ghezzi, D. Mandrioli and M. Pezzi, “A unified high-level petri net for-
malism for time-critical systems,” IEEE Trans. Software Engineering, vol. 17,
no. 2, pp. 160–172, 1991.

[29] X. He, “Modeling and analyzing cyber physical systems using high level petri
nets,” in Proc. 18th IEEE International Conference on Software Quality, Reli-
ability, and Security, (Lisbon, Portugal), July 2018.

[30] K. Jensen and L. M. Kristensen, Coloured Petri Nets - Modelling and Validation
of Concurrent Systems. Springer, 2009.

[31] X. He, “A comprehensive survey of petri net modeling in software engineer-
ing,” International Journal of Software Engineering and Knowledge Engineer-
ing, vol. 23, no. 5, pp. 589–626, 2013.

[32] CPNTool, 2020 (accessed July 14, 2020). http://cpntools.org/.

[33] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceed-
ings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, (Berlin, Heidelberg), pp. 337–340, Springer-Verlag,
2008.

[34] S. Liu, R. Zeng, Z. Sun, and X. He, “Bounded model checking high level petri
nets in pipe+verifier,” in Proc. of International Conference on Formal Engi-
neering Methods (ICFEM 14), vol. 8829 of LNCS, (Luxembourg), pp. 348–363,
2014.

[35] G. J. Holzmann, The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

[36] G. Argote-Garcia, P. J. Clarke, X. He, Y. Fu, and L. Shi, “A formal approach for
translating a SAM architecture to PROMELA,” in Proceedings of the Twentieth
International Conference on Software Engineering & Knowledge Engineering
(SEKE’2008), San Francisco, CA, USA, July 3, 2008, pp. 440–447, 2008.

[37] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott, All About Maude - a High-performance Logical Framework: How to
Specify, Program and Verify Systems in Rewriting Logic. Berlin, Heidelberg:
Springer-Verlag, 2007.

144

[38] X. He, R. Zeng, S. Liu, Z. Sun, and K. Bae, “A term rewriting approach
to analyze high level petri nets,” in Proc. of the 10th Theoretical Aspects of
Software Engineering Conference (TASE 16), (Shanghai, China), July 2016.

[39] R. Gerth, Concise Promela Reference, 1997 (accessed July 14, 2020). http:

//spinroot.com/spin/Man/Quick.html.

[40] “SPIN – Success Stories.” http://spinroot.com/spin/what.html, 2013.

[41] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977, pp. 46–57, IEEE Computer Society, 1977.

[42] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, “Formally analyzing software archi-
tectural specifications using SAM,” Journal of Systems and Software, vol. 71,
no. 1-2, pp. 11–29, 2004.

[43] S. Rajan, N. Shankar, and M. K. Srivas, “An integration of model checking
with automated proof checking,” in Computer Aided Verification, 7th Inter-
national Conference, Liège, Belgium, July, 3-5, 1995, Proceedings (P. Wolper,
ed.), vol. 939 of Lecture Notes in Computer Science, pp. 84–97, Springer, 1995.

[44] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification sys-
tem,” in Automated Deduction - CADE-11, 11th International Conference on
Automated Deduction, Saratoga Springs, NY, USA, June 15-18, 1992, Proceed-
ings (D. Kapur, ed.), vol. 607 of Lecture Notes in Computer Science, pp. 748–
752, Springer, 1992.

[45] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–1542, 1994.

[46] K. L. McMillan, Symbolic model checking. Kluwer, 1993.

[47] M. Baldamus and J. Schröder-Babo, “p2b: A translation utility for linking
promela and symbolic model checking (tool paper),” in Model Checking Soft-
ware, 8th International SPIN Workshop, Toronto, Canada, May 19-20, 2001,
Proceedings (M. B. Dwyer, ed.), vol. 2057 of Lecture Notes in Computer Science,
pp. 183–191, Springer, 2001.

[48] O. Grumberg and S. Katz, “Veritech: a framework for translating among model
description notations,” Int. J. Softw. Tools Technol. Transf., vol. 9, no. 2,
pp. 119–132, 2007.

145

[49] C. Schröter, S. Schwoon, and J. Esparza, “The model-checking kit,” in Applica-
tions and Theory of Petri Nets 2003, 24th International Conference, ICATPN
2003, Eindhoven, The Netherlands, June 23-27, 2003, Proceedings (W. M. P.
van der Aalst and E. Best, eds.), vol. 2679 of Lecture Notes in Computer Sci-
ence, pp. 463–472, Springer, 2003.

[50] C. N. Ip and D. L. Dill, “Better verification through symmetry,” Formal Meth-
ods Syst. Des., vol. 9, no. 1/2, pp. 41–75, 1996.

[51] Z. Manna, N. Bjørner, A. Browne, E. Y. Chang, M. Colón, L. de Alfaro, H. De-
varajan, A. Kapur, J. Lee, H. Sipma, and T. E. Uribe, “Step: The stanford tem-
poral prover,” in TAPSOFT’95: Theory and Practice of Software Development,
6th International Joint Conference CAAP/FASE, Aarhus, Denmark, May 22-
26, 1995, Proceedings (P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, eds.),
vol. 915 of Lecture Notes in Computer Science, pp. 793–794, Springer, 1995.

[52] K. Havelund, “Java pathfinder, A translator from java to promela,” in Theoret-
ical and Practical Aspects of SPIN Model Checking, 5th and 6th International
SPIN Workshops, Trento, Italy, July 5, 1999, Toulouse, France, September 21
and 24 1999, Proceedings (D. Dams, R. Gerth, S. Leue, and M. Massink, eds.),
vol. 1680 of Lecture Notes in Computer Science, p. 152, Springer, 1999.

[53] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby,
and H. Zheng, “Bandera: extracting finite-state models from java source code,”
in Proceedings of the 22nd International Conference on on Software Engineer-
ing, ICSE 2000, Limerick Ireland, June 4-11, 2000 (C. Ghezzi, M. Jazayeri,
and A. L. Wolf, eds.), pp. 439–448, ACM, 2000.

[54] K. Jiang and B. Jonsson, “Using spin to model check concurrent algorithms,
using a translation from c to promela,” in 2nd Swedish Workshop on Multi-Core
Computing, Uppsala, Sweden: Department of Information Technology, Uppsala
University, pp. 67–60, 2009.

[55] G. J. Holzmann, “Logic verification of ANSI-C code with SPIN,” in SPIN
Model Checking and Software Verification, 7th International SPIN Workshop,
Stanford, CA, USA, August 30 - September 1, 2000, Proceedings (K. Havelund,
J. Penix, and W. Visser, eds.), vol. 1885 of Lecture Notes in Computer Science,
pp. 131–147, Springer, 2000.

[56] A. Zaks and R. Joshi, “Verifying multi-threaded C programs with SPIN,” in
Model Checking Software, 15th International SPIN Workshop, Los Angeles,
CA, USA, August 10-12, 2008, Proceedings (K. Havelund, R. Majumdar, and

146

J. Palsberg, eds.), vol. 5156 of Lecture Notes in Computer Science, pp. 325–342,
Springer, 2008.

[57] G. C. Gannod and S. Gupta, “An automated tool for analyzing petri nets
using SPIN,” in 16th IEEE International Conference on Automated Software
Engineering (ASE 2001), 26-29 November 2001, Coronado Island, San Diego,
CA, USA, pp. 404–407, IEEE Computer Society, 2001.

[58] P. Derler, E. A. Lee, and A. L. Sangiovanni-Vincentelli, “Modeling cyber-
physical systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[59] C. L. Talcott, “Cyber-physical systems and events,” in Software-Intensive Sys-
tems and New Computing Paradigms - Challenges and Visions (M. Wirsing,
J. Banâtre, M. M. Hölzl, and A. Rauschmayer, eds.), vol. 5380 of Lecture Notes
in Computer Science, pp. 101–115, Springer, 2008.

[60] S. K. Khaitan and J. D. McCalley, “Design techniques and applications of
cyberphysical systems: A survey,” IEEE Systems Journal, vol. 9, no. 2, pp. 350–
365, 2015.

[61] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets. Berlin,
Heidelberg: Springer, 2010.

[62] A. Platzer, Logical Foundations of Cyber-Physical Systems. Springer, 2018.

[63] R. Alur, Principles of Cyber-Physical Systems. The MIT Press, 2015.

[64] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho, “Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems,”
in Hybrid Systems, pp. 209–229, 1992.

[65] J. Eker, J. W. Janneck, E. A. Lee, J. Ludvig, S. Neuendorffer, and S. Sachs,
“Taming heterogeneity - the ptolemy approach,” Proceedings of the IEEE,
vol. 91, pp. 127–144, Jan 2003.

[66] A. Fehnker, F. W. Vaandrager, and M. Zhang, “Modeling and verifying a lego
car using hybrid I/O automata,” in 3rd International Conference on Quality
Software (QSIC 2003), 6-7 November 2003, Dallas, TX, USA, pp. 280–289,
2003.

147

[67] A. Platzer, “Differential dynamic logic for hybrid systems,” J. Autom. Reason-
ing, vol. 41, no. 2, pp. 143–189, 2008.

[68] R. David and H. Alla, “Continuous petri nets,” in 8th European Workshop on
Application and Theory of Petri Nets, (Zaragoza, Spain), 1987.

[69] R. David and H. Alla, “On hybrid petri nets,” Discrete Event Dynamic Systems,
vol. 11, no. 1-2, pp. 9–40, 2001.

[70] I. Demongodin and N. T. Koussoulas, “Differential petri nets: representing con-
tinuous systems in a discrete-event world,” IEEE Transactions on Automatic
Control, vol. 43, pp. 573–579, April 1998.

[71] K. S. Trivedi and V. G. Kulkarni, “Fspns: Fluid stochastic petri nets,” in
Application and Theory of Petri Nets, vol. 691 of Lecture Notes in Computer
Science, pp. 24–31, Springer, 1993.

[72] M. Heiner, M. Herajy, F. Liu, C. Rohr, and M. Schwarick, “Snoopy - A unifying
petri net tool,” in Petri Nets, vol. 7347 of Lecture Notes in Computer Science,
pp. 398–407, Springer, 2012.

[73] F. Sessego, A. Giua, and C. Seatzu, “Simulation and analysis of hybrid petri
nets using the matlab tool hypens,” IEEE Int. Conf. on Systems, Man, and
Cybernetics, October 2008.

[74] J. Júlvez, C. Mahulea, and C. R. Vázquez, “Simhpn: A matlab toolbox for
simulation, analysis, and design with hybrid petri nets,” Nonlinear Analysis:
Hybrid Systems, vol. 6, pp. 806–817, March 2012.

[75] A. Amengual, “A specification of a hybrid petri net semantics for the hisim sim-
ulator.” http://www.icsi.berkeley.edu/pubs/techreports/TR-09-003.pdf, 2009.

[76] M. Herajy, F. Liu, C. Rohr, and M. Heiner, “Snoopy’s hybrid simulator: a tool
to construct and simulate hybrid biological models,” BMC Systems Biology,
vol. 11, July 2017.

[77] T. A. Henzinger, “The theory of hybrid automata,” in Verification of Digital
and Hybrid Systems. (I. M.K. and K. R.P., eds.), vol. 170 of NATO ASI Series
(Series F: Computer and Systems Sciences), (Berlin, Heidelberg), Springer,
2000.

148

[78] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd Edition. MIT Press, 2009.

[79] C. L. Guernic and A. Girard, “Reachability analysis of hybrid systems using
support functions,” in Computer Aided Verification, 21st International Con-
ference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings
(A. Bouajjani and O. Maler, eds.), vol. 5643 of Lecture Notes in Computer
Science, pp. 540–554, Springer, 2009.

[80] G. Frehse, “Phaver: Algorithmic verification of hybrid systems past hytech,”
in Hybrid Systems: Computation and Control, 8th International Workshop,
HSCC 2005, Zurich, Switzerland, March 9-11, 2005, Proceedings (M. Morari
and L. Thiele, eds.), vol. 3414 of Lecture Notes in Computer Science, pp. 258–
273, Springer, 2005.

[81] T. A. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: A model checker for
hybrid systems,” in Computer Aided Verification, 9th International Conference,
CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, pp. 460–463, 1997.

[82] A. Chutinan and B. H. Krogh, “Verification of polyhedral-invariant hybrid au-
tomata using polygonal flow pipe approximations,” in HSCC, vol. 1569 of Lec-
ture Notes in Computer Science, pp. 76–90, Springer, 1999.

[83] E. Asarin, T. Dang, O. Maler, and O. Bournez, “Approximate reachability
analysis of piecewise-linear dynamical systems,” in HSCC, vol. 1790 of Lecture
Notes in Computer Science, pp. 20–31, Springer, 2000.

[84] N. Fulton, S. Mitsch, J. Quesel, M. Völp, and A. Platzer, “Keymaera X: an
axiomatic tactical theorem prover for hybrid systems,” in CADE, vol. 9195 of
Lecture Notes in Computer Science, pp. 527–538, Springer, 2015.

[85] “Circular dependency - Wikipedia.” https://en.wikipedia.org/wiki/Circular dependency,
2020.

[86] “ Why are circular references considered harmful? - Stack Overflow.”
https://stackoverflow.com/questions/1897537/why-are-circular-references-
considered-harmful, 2018.

149

VITA

DEWAN MOHAMMAD MOKSEDUL ALAM

2003-2008 B.S. in Computer Science

Bangladesh University of Technology

Dhaka, Bangladesh

2008-2009 Software Engineer

AftiGIS Bangladesh

Dhaka, Bangladesh

2009-2014 Senior Software Engineer

Escenic AS

Dhaka, Bangladesh

2014-2015 Senior Software Engineer

Cefalo AS

Dhaka, Bangladesh

2015-2017 Research Assistant

Florida International University

Miami, Florida

2018-2019 Teaching Assistant

Florida International University

Miami, Florida

2018-2020 Doctoral Candidate

Florida International University

Miami, Florida

150

PUBLICATIONS

D. M. M. Alam and X. He, “A method to analyze high level Petri nets using spin
model checker,” in Proceedings of the 29th International Conference on Software
Engineering & Knowledge Engineering, pp. 161-–166, July 2017.

D. M. M. Alam and X. He, “A method to analyze predicate transition nets using
SPIN model checker,” International Journal of Software Engineering and Knowledge
Engineering, vol. 27, no. 9–10, pp. 1455-–1482, 2017.

D. M. M. Alam, X. He, and W. C. Chu, “Modeling and analyzing hybridsystems
using hybrid predicate transition nets (S),” in The 30th International Conference
on Software Engineering and Knowledge Engineering, (Redwood City, California,
USA.), pp. 397—396, July 2018.

X. He and D. M. M. Alam, “Hybrid predicate transition nets - A formal methodfor
modeling and analyzing cyber-physical systems,” in 19th IEEE International Confer-
ence on Software Quality, Reliability and Security, QRS 2019, Sofia, Bulgaria, July
22–26, 2019, pp. 216—227, 2019.

151

