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ABSTRACT OF THE DISSERTATION

DEVELOPMENT OF PREFRONTAL STRUCTURE AND CONNECTIVITY IN

TYPICAL CHILDREN AND CHILDREN WITH ADHD: ASSOCIATION WITH

LANGUAGE AND EXECUTIVE FUNCTION

by

Dea Garic

Florida International University, 2020

Miami, Florida

Professor Anthony Dick, Major Professor

The structure and connectivity of the prefrontal cortex has been extensively stud-

ied for its contribution to language and executive function (EF) development, but

many questions still remain whether its microstructural tissue properties can reli-

ably predict behavioral outcomes in very young typically and atypically developing

populations. In particular, the bilateral frontal aslant tract (FAT) has garnered

increasing interest with respect to its potential association with both language and

EF, but has yet to be examined in childhood attention disorders, such Attention

Deficit Hyperactivity Disorder (ADHD). At the same time, with advances in diffu-

sion weighted imaging (DWI), new diffusion models offer more nuanced characteriza-

tions of specific tissue properties, namely neurite (axonal and dendritic) density and

organization. Restricted diffusion imaging (RDI) and neurite orientation dispersion

and density diffusion imaging (NODDI) are two advanced approaches to measuring

density in vivo that have been tested in animal, infant, and adult studies, but have

been sparsely examined in regards to their association with behavioral outcomes

in young children. We can now apply these diffusion methods to the analysis of

microstructure of the frontal lobe and its association with language and EF. Thus,

across three studies, this dissertation aims to answer the following questions: Does

vii



the FAT show age-related differences during the sensitive developmental period be-

tween 4- to 7-years of age, and do age-related differences differ in children diagnosed

with ADHD? Are microstructural properties of the FAT differentially associated

with language and EF outcomes in ADHD and control samples? Are novel DWI

methods capable of reliably mapping neurite density in children and adults and ex-

panding what we currently know about brain microstructure and maturation? And

finally, is neurite density and orientation within prefrontal and subcortical brain

regions associated with behavioral outcomes in typically and atypically developing

children? To answer these questions, we used three DWI reconstruction methods

to better elucidate neural tissue development, and examined its association to a

battery of language and EF measures. We present compelling evidence that the

FAT is a potential biomarker for ADHD, differentially associated with aspects of

language and EF across these groups. Furthermore, we show that more precise

diffusion-weighted imaging methods can inform our understanding of typical and

atypical brain development as it relates to behavior in the domains of language and

EF.
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CHAPTER 1

INTRODUCTION

The prefrontal cortex and its associated connections have for decades been stud-

ied with respect to their contribution to language and executive function develop-

ment (Diamond, 2002; Fuster, 2002). In addition, prefrontal cortical structure and

connectivity are also the focus of investigation in understanding childhood disor-

ders of attention, such as Attention Deficit Hyperactivity Disorder (ADHD) (Casey

et al., 1997; Rubia, 2018), which can sometimes present with co-morbid language

disorder. Little work has investigated the development of prefrontal regional struc-

ture and connectivity in very young children (e.g., preschool and kindergarten aged

children), and the field does not generally have an understanding of how develop-

ment of these regions and connections in the brain relate to behavioral changes in

executive function and language. These abilities, nascent in very young children, are

potentially informative for early identification and for understanding the progression

of disorders of language and attention.

The present investigation of a large sample (n = 196) of children with and

without a diagnosis of ADHD, and scanned using structural and diffusion-weighted

magnetic resonance imaging (DW-MRI), represents a unique opportunity to 1) un-

derstand how early brain development in the prefrontal cortex relates to impairment

in language and executive function; 2) understand how brain and behavioral profiles

in language and executive function manifest along a continuum that crosses tradi-

tional diagnostic boundaries (e.g., for those diagnosed with and without ADHD);

and 3) understand the establishment and development of hemispheric specializa-

tion of particular connectivity profiles for these domains, executive function and

language. Understanding the early development of the prefrontal cortex and its

associated connections has direct relevance for the definition and characterization
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of childhood disorders of attention and language, with potential implications for

establishment of therapeutic interventions.

1.1 Attention Deficit Hyperactivity Disorder (ADHD)

Attention Deficit Hyperactivity Disorder is an increasingly common behavioral dis-

order in young children, frequently characterized by impulsiveness, over-activity,

and difficulty paying attention (Desikan et al., 2006; Visser et al., 2014). Children

diagnosed with ADHD face increased likelihood of mental illness and academic and

social difficulties (Biederman et al., 2006), therefore there is an urgent need for ef-

fective treatment and interventions plans to improve outcomes. Even through the

use of evidence-based treatments, numerous studies have indicated that interven-

tion programs continue to make very little impact on children’s academic and social

well-being (Molina et al., 2009, 2013; Sonuga-Barke et al., 2013). By identifying

brain regions and pathways associated with ADHD, more effective, targeted treat-

ment plans can be designed to improve outcomes and developmental trajectories for

young children diagnosed with ADHD.

Current neuroimaging research has identified a myriad of neural abnormalities

in the ADHD population, including gray matter reductions in the right inferior

frontal gyrus (Depue et al., 2010a), increased gray matter in supplementary motor

areas (Kaya et al., 2018), lower density and volume in frontal pathways (Wu et al.,

2019), and asymmetrical putamen volume (Wellington et al., 2006). There have been

mixed findings when examining directionality of water diffusion in fiber pathways in

the ADHD population, with some studies reporting decreased directional diffusivity

(Chiang et al., 2015; Hamilton et al., 2008) and some indicating increased directional

diffusivity (Silk et al., 2009; Tamm et al., 2012) when comparing ADHD samples to

2



typically developing samples. Differences might be attributed to small sample sizes

and age-range differences, and this has yet to be examined in a large, preschool-aged

sample. Furthermore, while past work has indicated abnormalities in the structure

and activation of the right inferior frontal gyrus (Depue et al., 2010a; Rubia et al.,

1999) and supplementary motor areas (Kaya et al., 2018; Suskauer et al., 2008a,b) in

individuals with ADHD, the structural connectivity between the two areas, known as

the frontal aslant tract (FAT), has yet to be studied in a clinical, ADHD-diagnosed

population.

The majority of work surrounding ADHD has primarily focused on executive

function aspects, but ADHD can also present with comorbid language disorder

(Bellani et al., 2011; Mueller and Tomblin, 2012; Sciberras et al., 2014; Westby

and Watson, 2004), which is thought to further contribute to the lower academic

performance outcomes observed in ADHD samples (Sciberras et al., 2014). In a

large sample of 6- to 8-year old children, Sciberras et al. 2014 found that 41% of

children with ADHD also displayed comorbid language problems, which was nearly

three times greater than what is seen in typically developing children. Lynam et al.

(1993) has suggested that there might be a causal relationship between ADHD and

language impairment, in which attention deficits observed in ADHD disrupt the

ability to focus on relevant linguistic stimuli required for early language learning.

It remains to be seen whether abnormalities in prefrontal regions and pathways can

predict both executive function deficits and speech and language outcomes in young

children with ADHD.

1.2 Frontal Aslant Tract (FAT)

Prefrontal connectivity studied with DW-MRI has been of increasing interest to re-

searchers interested in both adult and child neural functioning (Thiebaut de Schot-

3



ten et al., 2014). One intriguing fiber pathway of the brain, the frontal aslant tract

(FAT), has recently been evaluated in terms of its association with its development

of language and executive function (Catani et al., 2013; Dick et al., 2019; Garic et al.,

2019; Mandelli et al., 2016). The FAT fiber pathway is most commonly thought to

connect the pre-supplementary motor area (Pre-SMA) to the pars operculais (Op)

(Broce et al., 2015; Catani et al., 2012; Ford et al., 2010; Kinoshita et al., 2015; Klein

et al., 2007; Kronfeld-Duenias et al., 2016; Oishi et al., 2008; Sierpowska et al., 2015;

Vassal et al., 2014; Vergani et al., 2014) but recent research has shown the connec-

tions of the FAT could potentially be broken down into four segments involving the

connections between the pre-SMA and supplementary motor area (SMA)-proper

to the pars opercularis (IOp) and the pars triangularis (Tri) of the inferior frontal

gyrus.

1.2.1 FAT and Language

The left inferior frontal gyrus (IFG) is frequently associated with processing language

and has classically been referred to as Broca’s area in the past (Tremblay and Dick,

2016), while the left SMA and pre-SMA brain regions are associated with motor

aphasia (Ardila and Lopez, 1984) and word production and selection (Tremblay

and Gracco, 2009), respectively. Given that the FAT connects the SMA and pre-

SMA to the IFG, it comes as no surprise that most previous research has examined

the left FAT’s relation to language and speech almost exclusively. Previous findings

have shown that the FAT can cause speech arrest if electrically stimulated (Fujii

et al., 2015; Kinoshita et al., 2015; Vassal et al., 2014), is associated with impaired

verbal fluency in patients with primary progressive aphasia (Catani et al., 2013;

Mandelli et al., 2016), post-stroke aphasia symptoms (Basilakos et al., 2014), deficits

in morphological derivation (Sierpowska et al., 2015), speech initiation (Kinoshita
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et al., 2015), and with stuttering (Kemerdere et al., 2016; Kronfeld-Duenias et al.,

2016). All of the above studies examined the fiber pathway in relation to language

in adults, with only one study examining the relationship between the left FAT

and language in children. In that study, Broce et al. (2015) found that certain

white-matter properties of the tract were associated with receptive language.

While there is convincing evidence and prior work about the left FAT’s associa-

tion with language, not as much work has been done examining the right hemisphere

FAT and its possible relationship to language. We know from other major language

fiber pathways, such as the superior longitudinal fasciculus (SLF), arcuate fasciculus

(AF) and inferior longitudinal occipital fasciculus (IFOF), that the left hemisphere

of the pathway can be more involved in phonemic fluency, while the right hemisphere

is associated with category-based semantic fluency (Blecher et al., 2019; Rodriguez-

Aranda et al., 2016). Recent work has shown that hemispheric specialization for

phonemic versus semantic skills exists in the FAT as well (Blecher et al., 2019), but

it remains to be seen whether this hemispheric specialization is already present in

early childhood.

A second aspect that remains unknown about the FAT’s relation to language

during childhood is whether laterality plays a pivotal role as early as preschool age,

and whether the same associations can be found in clinical samples of children, such

as those diagnosed with ADHD. The lateralization of brain function, particularly

with the left hemisphere being attune to language functions while the right hemi-

sphere becomes increasingly specialized for visuospatial tasks (Herve et al., 2013;

Toga and Thompson, 2003), is thought to develop early in life. Recent work has

shown that the language network displays left microstructural asymmetry as early

as two years of age (Reynolds et al., 2019b). Furthermore, increased left lateraliza-

tion in language fiber pathways, such as the arcuate fasciculus, has been associated
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with improved reading and vocabulary scores in young children (Groen et al., 2012;

Reynolds et al., 2019b). Similar results are found with respect to the FAT, with

increased left laterality predicting improved lexical decision (Vallesi and Babcock,

2020) and verbal fluency (Tseng et al., 2019) in adults. However, the lateralization

of FAT function remains to be tested in young children. We hypothesize that the

left lateralization of the FAT will be associated with improved verbal fluency in our

sample of typically and atypically developing preschool-aged children.

Given the sparsity of research examining the FAT in developing samples, it

comes as no surprise that there is no current work indicating whether the FAT is

functionally or structurally different in clinical samples of children. While language

impairment is not a diagnostic criteria for ADHD, there has been a long studied co-

morbidity between ADHD and language disorders (Bellani et al., 2011; Green et al.,

2014; Sciberras et al., 2014), most likely associated with the interrelated nature of

language and executive function abilities. We set out to examine whether there

were microstructural differences in the FAT between our typically developing (TD)

sample and ADHD sample, and whether these differences could explain lower verbal

fluency performance associated with ADHD.

1.2.2 FAT and Executive Function

While the left IFG has been the primary focus since the time of Broca, research on

the right IFG has been gaining traction over the last few decades. Initially, research

focused on the right IFG’s role in inhibitory control, particularly in Go/NoGo and

StopSignal tasks in which the prepotent response (a Go process) must be overridden

when a stop-signal occurs (the Stop process) (Swann et al., 2012). More studies have

viewed inhibitory control as requiring the support of an extended neural network,

involving the dorsolateral prefrontal cortex, pre-SMA, SMA, dorsal anterior cingu-

6



late, supplementary eye field, frontal eye field, subthalamic nucleus, globus pallidus,

and thalamus (Aron, 2007; Aron et al., 2016; Aron and Poldrack, 2006; Chambers

et al., 2009; Fife et al., 2017; Garavan et al., 1999; Jahanshahi et al., 2015; Levy

and Wagner, 2011; Wiecki and Frank, 2013). The FAT, which connects the IFG and

pre-SMA nodes, is an understudied connection within this network.

Garic et al. (2019) examined the FAT and its relation to executive function and

externalizing behaviors in a developing sample and found that left laterality of the

tract was associated with higher attention problems and executive dysfunction. This

study provided initial support that the degree to which the developing brain favors a

right lateralized structural dominance of the FAT is directly associated with better

executive function. This relationship could provide a new potential biomarker for

assessing ADHD during the preschool years, but this remains to be assessed in a

sample of children with ADHD.

1.3 Measuring Neuronal Density in vivo

There has been a growing interest in identifying biomarkers for ADHD, but research

has not yet focused on specific white matter fiber pathways. Through the use of

diffusion weighted imaging (DWI) methods, previous studies have been able to es-

tablish the structural connectivity of the FAT by examining water diffusion through

tissue. By using diffusion tensor imaging (DTI) and generalized q-sampling imaging

(GQI) metrics, scientists have been able examine microstructural changes in white

matter, such as the directional diffusion of water as well as axonal and myelin in-

tegrity. What remains unknown about neuronal microstructure is how to quantify

the axonal and neurite density within in these regions in vivo. Histological studies

have shown that axonal density is related to the progression rate of multiple sclero-

sis (Tallantyre et al., 2009), hereditary spastic paraplegia (Deluca et al., 2004), as
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well as a gradual decline across the lifespan (Pannese, 2011). Being able to quantify

these density changes in vivo during development could provide essential insight

into microstructural differences within brain regions associated with language and

executive function. Two new DWI methods have been introduced in order to in-

vestigate measuring neuronal density: Neurite Orientation Dispersion and Density

Imaging (NODDI) and Restricted Diffusion Imaging (RDI).

1.3.1 Neurite Orientation Dispersion and Density Imaging (NODDI)

The first new measure, Neurite Orientation Dispersion and Density Imaging (NODDI)

ascribes the signal of water protons in tissue into three components: isotropic dif-

fusion representing free motion in areas such as ventricles, intracellular volume dif-

fusion representing restricted water in dendrites and neurons, and extracellular vol-

ume diffusion representing glial cells, cell bodies, and the extracellular environment

(Zhang et al., 2012). Furthermore, Zhang et al. (2012) have shown that NODDI

is capable of disentangling the two components contributing to FA, neurite density

and orientation dispersion, and allowing the two to be studied individually.

NODDI has the potential to identity critical biomarkers of microstructural changes

that occur during neurodegenaration (Andica et al., 2019). Furthermore, past stud-

ies have shown that NODDI’s intracellular volume function is corelated with his-

tological markers of axonal or dendritic processes (Grussu et al., 2017; Sepehrband

et al., 2015). Since its implementation, NODDI has been used in numerous adult

studies to examine disease progression. In adults with cortical dysplasia, NODDI

metrics have been helpful in localizing areas of degradation, above and beyond tra-

ditional DTI metrics (Winston et al., 2014). NODDI is also sensitive enough to

pick up of white matter abnormalities within fiber pathways in tuberous scelerosis
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patients (Taoka et al., 2020) as well as volume atrophy in patients with amyotrophic

lateral sclerosis (Broad et al., 2019).

Given the rapid change of dendridic packing and myelination during develop-

ment, NODDI could potentially be used as a tool to examine neural development

across the lifespan (Chang et al., 2015; Lynch et al., 2020), and might be more sen-

sitive to age-related differences than traditional DTI measures (Genc et al., 2017).

Infant research has shown that NODDI is capable of differentiating between myeli-

nated and non-myelinated axons (Kunz et al., 2014), mapping the development of

structural connectivity (Batalle et al., 2017), and measuring increasing cortical gray

matter across maturation (Pecheva et al., 2018). Furthermore, NODDI has shown

that that higher axon dispersion and lower density in fiber pathways is linked to

neurodevelopmental outcomes in children born pre-term (Kelly et al., 2016) and is

correlated to dyslexia symptoms (Caverzasi et al., 2018).

The explosion of NODDI implementation in human research in the last several

years has led to many exciting discoveries, but the novel DWI method still leaves

many questions unanswered. One primary drawback to the NODDI method is the

lack of direct diffusivity estimation; instead, it assumes equal intra- and extracellular

diffusivity (Jelescu and Budde, 2017), which can bias the parameters. Furthermore,

It remains unclear which microstructural characteristic NODDI is the most sensitive

to and how reproducible the results are. Chung et al. (2016) used a sample of 8

healthy adults to show that NODDI metrics are prone to more variability than DTI

metrics. Reproducibility issues are further exacerbated by the fact that the majority

of previous NODDI studies have very small sample sizes. It is still up for question

how reliable the metrics are when tested on large samples, and whether it can be

used to identify biomarkers for neurodevelopmental disorders, such as ADHD.
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1.3.2 Restricted Diffusion Imaging (RDI)

The second new measure, Restricted Diffusion Imaging (RDI), has been proposed

to measure changes in cellularity (i.e., cellular density), which affects local diffusion

of water molecules. RDI attempts to separate non-restricted diffusion of water

molecules from restricted diffusion of water molecules by focusing on the difference

in diffusion displacement of each component (Yeh et al., 2017). Unlike relying on

the apparent diffusion coefficient (ADC), RDI is calculated through the use of spin

density rather than diffusivity. This model-free approach uses q-space imaging to

estimate the density of diffusing spins to resolve fast and slow diffusion components;

a specificity that other diffusion metrics lack.

This novel metric has only been implemented in two previous studies thus far. In

2017, Yeh et al has been shown to be effective for measuring macrophage infiltration,

indicating it can measure cellular density, in rats. By being able to combine both in

vivo and ex vivo methodology, the study showed that a 0.998 correlation between

cell density and RDI, thereby providing evidence that RDI has better specificity

that traditional DTI metrics. Secondly, RDI was shown to be useful in identifying

neural reorganization around lesion sites in patients who underwent a thalamotomy

(Sammartino et al., 2019). The study in implied that RDI’s ability to correct for

free water contamination during diffusion can shed more insight to microstructrual

changes. More work needs to be done to see if this measure will be reliable in a

large sample size, as well as its utility in a developing sample.

In order to see whether these novel metrics can be reliably used in measuring

density in humans, we replicated a well-known histological corpus callosum density

pattern (Aboitiz et al., 1992) in a large sample of adults (n=842) and a developing

sample (n=129) as a proof of concept for Study 2 of this dissertation. Once these
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methods were validated with respect to their sensitivity to cellular microstructure,

we utilized them to measure neurite and axonal density in brain regions associated

with language and executive function in our sample of n = 196 pre-school/pre-

kindergarten children with and without ADHD. Study 3 examined how the mi-

crostructural density differences within prefrontal cortex regions are associated with

language and executive function behavioral outcomes in our typically developing

children and children diagnosed with ADHD.

1.4 Research Aims

Overall, the three studies compromising this dissertation examined (1) whether the

FAT shows age-related differences during the sensitive developmental period be-

tween 4- to 7-years of age, and whether the age-related differences differ in children

diagnosed with ADHD (2) laterality of the FAT is differentially associated with lan-

guage and executive function measures in typical children and children with ADHD,

(3) showed that novel density DWI models can be reliably applied to human brain

imaging, and (4) quantified neuronal density in brain regions associated with lan-

guage and executive function in typically developing and children diagnosed with

ADHD. This multimodal approach aimed to provide insight into brain lateraliza-

tion and density changes during the critical preschool years in typical and atypical

language and executive function development.
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CHAPTER 2

STUDY 1

2.1 Research Question

We investigated the age-related differences in the bilateral FAT and related its mi-

crostructural properties to behavioral measures of language and executive function

development. We expected that the left hemisphere FAT will be associated with

language ability, specifically in the phonological, semantic, and speech articulation

domains. Given the growing literature on the left FAT’s involvement in language in

adults (Basilakos et al., 2014; Catani et al., 2013; Kinoshita et al., 2015; Kronfeld-

Duenias et al., 2016), we set out to replicate these findings in a developing sample

and to elucidate how the FAT impacts language development in typically and atyp-

ically developing children.

Secondly, we examined the right hemisphere FAT and its putative relationship to

executive function, specifically in the working memory, set shifting, and inhibitory

control domains. The right IFG has been previously shown to be related to inhibition

and attentional control (Hampshire et al., 2010) and our team has found that the

right FAT, specifically, is related to inattention and executive dysfunction in 7- to 18-

year-old participants (Garic et al., 2019). Our 2019 paper served as the groundwork

for the design of Study 1, and the full publication is available in Appendix A for

more information.

Our previous work used the Behavior Rating Inventory of Executive Function

(BRIEF) parent and teacher report measures to examine executive function. How-

ever, these are rather coarse measures of executive function ability, relying on the

report of behaviors by teachers and parents. In the present study, we extended our

investigation to the use of empirically validated laboratory measures of executive
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function. Furthermore, our previous results indicated that the FAT could serve as a

biomarker for dysfunction of attention, but was only tested on a typically develop-

ing sample. In the present study, we examined a diverse sample with both typically

developing children and children with ADHD to examine the FAT’s influence on

executive dysfunction. We inspected executive dysfunction among the typical and

ADHD participants from both a transdiagnostic approach, in which executive func-

tion was viewed on a continuum without respect to diagnostic category (i.e., ADHD

or control), and a categorical diagnostic approach, with respect to diagnosis be-

tween the ADHD and TD group. The transdiagnostic approach is consistent with

the Research Domain Criteria (RDoc) (Casey et al., 2013) and allows for exami-

nation of dysfunction across traditional diagnostic categories, while the categorical

diagnosis approach allows us to compare the ADHD and TD groups based on DSM-5

classifications.

When we examined executive function from the transdiagnostic approach, we

hypothesized that greater directional diffusivity in the left hemisphere FAT will

be associated with higher scores on the phonemic subscales of the Developmental

NEuroPSYchological Assessment (NEPSY) and more accurate phoneme articulation

as measured by the Syllable Repetition Task (SRT). We also predicted that greater

directional diffusivity in the right hemisphere FAT would result in higher scores on

the semantic sub-scales of the NEPSY and higher executive function performance on

the NIH Toolbox Flanker, Card Sort and Head-Toes-Knees-Shoulders (HTKS) task.

If we find increased right laterality of the FAT is associated with improved executive

function performance, this would build on and further solidify our previous findings

with parent and teacher report measures.

When we examined our data from the categorical diagnostic approach, we ex-

pected to see that diagnosis moderates the relationships between the FAT and both
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language and executive function. For language findings, we predicted that children

with ADHD might have lower diffusivity in the FAT when compared to controls.

Chiang et al. (2016), for example, found lower directional diffusivity in language

fiber pathways in preadolescent children with ADHD. We wanted to test if this re-

sult carries over to the FAT in preschool children. Furthermore, previous studies

have shown there are significant differences in grey matter volume and activation

within the right inferior frontal gyrus in children and adults with ADHD which influ-

ence their performance on attention, executive control, and inhibition tasks (Depue

et al., 2010b; Wang et al., 2013).

Given previous findings, we expected that the relationship between the FAT

and language and executive function differs depending on ADHD diagnosis. When

contrasting the typically developing and ADHD samples, we hypothesized that the

ADHD sample would have lower scores on the language measures because of the

comorbidity between ADHD and speech-language disorders (Efron and Sciberras,

2010; McGrath et al., 2008). We also predicted that the typically developing group

will outperform the ADHD group on executive function measures as a result of

the well-documented executive dysfunction and lower attentional control symptoms

attributed to the disorder (Lambek et al., 2011; Reader et al., 1994). We hypothe-

sized that the FAT would have a larger impact on language and executive function

in typically developing children than in children diagnosed with ADHD.

To determine whether the FAT has a unique contribution to language and ex-

ecutive function, we decided to use a control pathway to compare the results to.

We chose the corticospinal tract (CST), which originates in the premotor, motor,

and primary somatosensory cortex regions of the brain (Kolb and Whishaw, 2014).

Since the primary function of the CST is voluntary motor control (Welniarz et al.,

2017), we hypothesize that it will not be related to language and executive function.

14



In sum, we predicted that the left and right FAT serve different but comple-

mentary functions within the developing brain. We hypothesized that the left FAT

would be more specialized in language-focused executive function while the right

FAT would be focused on domain general and visuospatial aspects of executive

function and that this relationship could potentially be moderated by ADHD.

2.2 Method

Participants

Recruitment and Eligibility Requirements. Children and their families

were recruited from local schools, public family events at zoos and museums, open

houses/parent workshops, mental health agencies, and social media to participate

in the ADHD Heterogeneity of Executive Function/Emotion Regulation Across De-

velopment (AHEAD) study. All children were offered free gifted intelligence testing,

while ADHD children were additionally offered a free-of-charge or price-reduced sum-

mer treatment program as a behavioral intervention for ADHD. All participants were

screened by phone for MRI contraindications and were provided informed consent

and written assent (if above the age of 7-years-old) before MRI scanning. Exclu-

sionary criteria for the chilren included not attending or being enrolled in school,

intellectual disability (IQ lower than 70 on the Wechsler Preschool and Primary

Scale of Intelligence 4th edition (WPPSI-IV), history of developmental or psychotic

disorders, and currently or previously taking psychotropic medication.

Demographics.We analyzed 196 four to seven-year-old children from the AHEAD

project for the final sample. The split between the typically developing sample and

the children diagnosed with ADHD was relatively even, with 96 typically develop-

ing children and 100 children diagnosed with ADHD. The groups were equivalent

on age (M = 5.64 years, p = 0.80) and SES (m = 5, binned variable, equates to
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$50-65,000 average parent income, p = 0.71). Because there is a higher prevalence

of ADHD diagnosis in males (i.e., Banaschewski et al. 2017), there are more males

than females in the sample (p < 0.05, df = 194). We had 136 males and 60 females

in the overall group, with the ADHD group being compromised of 76% males (76

males, 24 females), and the TD group being comprised of 62.5% males (60 males,

36 females). These results can be found in Table 1. Additionally, the Full Scale

Intelligence Quotient (FSIQ) indicated that the average IQ in the full sample was

99.90. There was a significant group difference (p < 0.001, df = 193), with TD (m

= 103.67) outperforming ADHD (m = 96.31).

The majority of our sample was Hispanic (85.2%, n = 167), which was rep-

resentative of the surrounding South Florida population. For race, parents were

allowed to select multiple options: majority of our participants self-identified as

White (89.2%, n = 176), 10% identified as African American (n = 20), 2% as Asian

(n = 4), and 0.5% as American Indian or Alaskan Native (n = 1). While all the

children in the study spoke fluent English and attended English preschools, more

than half of parents identified the child’s primary language as a mixture of English

and Spanish (55.6%, n = 109), while the remainder primarily spoke English (39%,

n = 78), Spanish (3.1%, n = 6), or other (1%, n = 2).

General Procedure

Data were collected across three visits. The first visit comprised of diagnosis and

academic testing, the second visit was behavioral data collection for the language

and executive function tasks, and the third visit was the MRI scan.
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ADHD Diagnostic Criteria

To diagnose and place children into the ADHD sample, we used a combination of

rating scales to measure the child’s parent- and teacher-rated symptomatology as

well as structured parent interviews at intake. Symptoms and impairment were

measured by the Disruptive Behavior Disorders Rating Scale (DBD; Pelham et al.

1992), Impairment Rating Scale (IRS; Fabiano et al. 2006), and a parent semi-

structured interview (DISC-IV; Shaffer et al. 2000). In order to capture the highest

level of impairment, parent and teacher ratings were combined by taking the higher

of the two ratings for each item (Garcia et al., 2020; Hartman et al., 2007; Sibley

et al., 2010). Higher ratings indicate greater impairment.

To be included in the ADHD group, children needed to have 6 or more symp-

toms of inattention or hyperactivity/impulsivity (American Psychiatric Association,

2013) or a previous diagnosis of ADHD, and impairments in social, academic, or

behavior scales on the IRS. Two licensed clinicians reviewed the results to deter-

mine diagnosis and severity, with a third clinician being called in when a disagree-

ment occurred. For the purposes of this dissertation, we examined ADHD as a

whole, without regard to specific ADHD subtypes. The majority of our sample

was diagnosed with ADHD-combined (ADHD-C) type (87%), while 7% were pri-

marily ADHD-hyperactive/impulsive (ADHD-HI) and 6% were primarily ADHD-

inattentive (ADHD-I).

Oppositional Defiant Disorder (ODD) Comorbidity

Numerous studies have indicated that there is a large degree of comorbidity between

ADHD and ODD (Connor et al., 2010; Efron and Sciberras, 2010; Mohammadi et al.,

2019; Reale et al., 2017). In our sample, 68% of children with ADHD also met
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diagnostic criteria for ODD. In order to verify whether our comparisons between

TD and ADHD groups were valid and ADHD-specific, we decided to control for

ODD comorbidity. Using the results from the DBD, the highest parent-teacher

rating for the continuous ODD subscale score for each participant was entered as a

covariate in the regression models.

Battery of Language and Executive Function Measures.

The following assessments were administered to obtain an understanding of each

child’s language skills, executive function, and demographic information.

Measurements of Speech and Language. We measured children’s abili-

ties in speech motor planning, phonemics, and semantics. Language assessments

included the phonemic and semantic subscales of the NEuroPSYchological Assess-

ment (NEPSY) and the syllable repetition task (SRT).

NEuroPSYchological Assessment (NEPSY). We analyzed the semantic and phone-

mic subscales of the NEPSY (Korkman et al., 1998). For the semantic fluency seg-

ment, children were tested with NEPSY’s Word Generation Semantic task and were

asked to list as many words as they knew in the food category and animal category

within a 60 second time limit. The children were also tested with NEPSY’s Word

Generation Initial Letter task to test phonemics, which asked them to list out all

the words starting with “s” and then “f” that they could within the time limit.

The semantic fluency and phonemic subscales have test-rest correlation coefficients

of 0.84 and 0.54 respectively (Brooks et al., 2010). While the NEPSY provides

scaled contrast scores that indicate specific language impairments, the phonological

scaled values were only available for children above the age of 7, which disqualified

the majority of our sample. Instead, individual task scores and total semantic and

phonological scores are reported and analyzed.
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Syllable Repetition Task (SRT). The SRT examined phonological working mem-

ory, language impairment, and motor planning deficits and previous work has indi-

cated that it is an accurate and stable task for measuring misarticulation (Shriberg

et al., 2009). The task asked children to repeat a list of 18 two to four syllable non-

sense words which are played over computer speakers. The task starts with simple,

two-syllable words such as ba-da, and increases in difficulty to words such as ba-

na-ma-da. The microphone recordings were transcribed by three research assistants

and scored according to the SRT scoring manual, which provides a final percent-

age score for proportion of correct syllables spoken. Syllable additions, or syllables

that the participant produced that were not a part of the target word, are tallied

and provide a validity check. If four or more responses include additions (25% of

items), that participant’s score is deemed invalid. The SRT has a Cronbach’s α

coefficient of 0.83 and a Pearson’s correlation coefficient between successive runs of

0.87 (Mahrooghi et al., 2015).

Three transcribers, all Spanish-English bilinguals, were trained by a licensed

Spanish-English bilingual speech pathologist. On the task, the three transcribers

had moderate to good inter-rater reliability score of κ = 0.587 (Cohen, 1960). In

cases of disagreement, the score for each word was determined by majority (2 out

of 3) vote. If agreement could not be reached, the recording was replayed with all

raters and a licensed Spanish-English bilingual speech pathologist present for a final

determination.

Given the large proportion of bilingual Spanish speaking children enrolled in

our study and the fact that the SRT was developed for monolingual participants,

we decided to score the SRT using both the traditional scoring manual as well as

an updated, bilingual scoring system. The bilingual scoring method allows for b/v

substitutions, which are two separate phonemes in English but are commonly both
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pronounced as ”b” in Spanish. The results from both traditional SRT scoring and

our bilingual scoring system were analyzed.

Measurements of Executive Functioning. We assessed inhibition, atten-

tional control, monitoring, working memory, and self-regulation in our sample of

typically and atypically developing young children. Executive function assessments

included NIH Toolbox’s Flanker task and Dimensional Change Card Sort Test

(DCCS), and the Head-Toes-Knees-Shoulders (HTKS) task.

NIH Toolbox. The NIH Toolbox tasks that were administered are the list sorting

working memory task, the flanker task, and the Dimensional Change Card Sort Test

(DCCS). A large proportion of our participants did not make it past the practice

sessions and into the scored trials for the working memory task, therefore this task

was not analyzed due to missing data. The following analyses will focus on the

Flanker task and DCCS.

The flanker task tested a child’s inhibition and attentional control in the face

of distracting environmental stimulation. The task asked the child to select which

direction the middle fish is pointing after being presented with a row of 5 fish. The

orientation of the flankers was congruent with the middle/target stimuli on some

trials and incongruent on others. The task contained a practice block, the fish block

mentioned above, and a more challenging block that switched the fish with arrows.

The DCCS examined the child’s ability to plan and monitor behaviors in a goal

directed manner. The tasks asked the child to match the shape and color of a target

image when given two choices and the task was comprised of practice, preswitch,

postswitch, and mixed blocks. The preswitch block asked the child to match by

color before moving onto the postswitch block which asked the child to now match

by shape instead. The shift between the first rule and the second rule caused a

conflict which leads to a switch cost, therefore we examined both reaction time
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and accuracy. If the child made it to the final block, they were asked to put their

finger on a “home base” (a dot on a piece of paper in front of the screen) while

the rules alternate between matching for color and for shape, which was referred

to the mixed block. The NIH toolbox flanker and DCCS tasks both have excellent

test-retest correlation coefficients of 0.92 (Zelazo et al., 2013).

Head-Toes-Knees-Shoulders Task (HTKS). The Head-to-Toes task was devel-

oped by Ponitz et al. (2008) to measure multiple aspects of a child’s self-regulation,

including attention, executive control, and working memory. The original task asked

children to first touch their toes and head but then examined their ability to do the

opposite of the dominant response. For example, when told to touch their head,

the child would have to touch their toes. We used the Head-Toes-Knees-Shoulders

(HTKS) task, an adapted version of the Head-to-Toes task which has been shown

to be more appropriate for kindergarten-age children and to increase difficulty and

variability in scores (Ponitz et al., 2009). The HTKS required children to perform

the opposite of a dominant response for four different oral commands, including

switching command associations in the last segment to make the task more taxing

on the child’s executive control. The HTKS task not only taxes many aspects of ex-

ecutive function, but the interaction between the child and the experimenter makes

this a more ecologically valid task compared to the iPad based NIH Toolbox tasks

(McClelland and Cameron, 2012). Ponitz has shown that the HTKS has high con-

struct validity and is significantly related to other measures of children’s attention,

inhibitory control performance, and academic performance.

Demographics and Control Variables. We used age, sex, socio-economic status

(SES), whole brain microstructure, and movement in the scanner as controls. Age,

sex, and SES were all self-reported, with SES being categorically binned. Whole-
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brain microstructure data were output directly from DSI Studio to control for any

overall neuroanatomical differences between participants. Lastly, the number of

directions kept for each DWI scan was used as a proxy for movement in the scanner.

Data Acquisition

Participants were scanned on a 3 Tesla Siemens MAGNETOM Prisma at Florida

International University’s Center for Imaging Science. All children first underwent a

simulated scan in a mock scanner in order to get familiarized with the MRI scanner,

the noises associated with the scans, and the correct laying position (no crossed legs

or arms, legs laying flat instead of raised). Data acquisition for the AHEAD project

followed the same guidelines as the Adolescent Brain Cognitive Development Study

(ABCD), which are detailed in Hagler et al. (2019). Briefly, the 1.7mm isotropic

diffusion weighted images were acquired using multiband echo-planar imaging (EPI)

with 102 directions. The multishell DWI sequence was compromised of 96 diffusion

directions and 6 b = 0 frames, with a total of 4 b-values: b = 500 s/m2 (6 directions),

b = 1000 s/m2 (15 directions), b = 2000 s/m2 (15 directions), and b = 3000 s/m2

(60 directions).

For postprocessing, we used the DTIPrep and TORTOISE DIFFPREP software.

The DWI images were processed for motion correction, to remove eddy current

artifacts, to correct for EPI B0 susceptibility deformations, to conduct B-matrix

reorientation, and to co-register the diffusion series with structural MRI. We also

used FSL’s topup tool (Andersson et al., 2003; Smith et al., 2004) to estimate and

correct susceptibility-induced distortions.

Subject movement is also an important factor to monitor and correct for when-

scanning preschool aged children. We used directions kept after the automated

kick-out method from DTIPrep as a proxy for movement. Although the ADHD
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group had significantly more movement during the DWI scan (β = -0.20, p < 0.01,

df = 194), each group provided sufficient data for accurate reconstruction. Out

of 102 possible directions, the ADHD group had an average of 84.40 directions

after motion correction, while the TD group had 88.74 directions. To control for

these differences, number of directions kept was entered as a nuisance covariate in

forthcoming analyses.

Finally, a T1w structural scan (1mm isotropic) using a 3D T1w inversion pre-

pared RF-spoiled gradient echo sequence was also collected, using prospective mo-

tion correction via Siemens vNAV protocol.

Lausanne Parcellation

We used a semi-automated approach to define regions of interest (ROIs) for trac-

tography. To prevent warping to an adult-based atlas, we created an individual

atlas for each participant from the participant’s T1-weighted scan. FreeSurfer v6.0

was used for the initial cortical parcellation and cortical segmentation (e.g., Dale

et al. 1999; Fischl et al. 1999, 2001, 2002; Reuter et al. 2010), and has been shown

to be successful at creating accurate cortical surface representations for both typi-

cally developing children (Tamnes et al., 2010) and young children diagnosed with

ADHD (Jacobson et al., 2018). Next, the Desikan-Killiany Freesurfer atlas (Desikan

et al., 2006) for each participant was modified using the procedure specified by Cam-

moun and colleagues (Cammoun et al., 2012), originally defined by Hagmann et al.

(2008). In this procedure, the larger ROIs from the Freesurfer parcellation are fur-

ther divided into smaller units (collectively these atlas modifications are called the

Lausanne atlases because they were developed in Lausanne, Switzerland). We used

the modification defining 463 total ROIs, which allowed a finer parcellation of the

23



superior frontal gyrus, allowing for a more accurate subdivision of the preSMA and

SMA.

Diffusion Metrics

We calculated and compared four Diffusion Tensor Imaging (DTI) metrics (frac-

tional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean

diffusivity (MD)) and two Generalized q-sampling Imaging (GQI) metrics (quanti-

tative anisotropy (QA) and generalized fractional anistropy (GFA). The diffusion

tensor was used to calculate the eigenvalues reflecting diffusion parallel and perpen-

dicular to each of the fibers along 3 axes (x, y, z). The resulting eigenvalues were

then used to compute indices of FA, RD, AD, and MD (Basser et al., 1994; Hasan

and Narayana, 2006). Fractional anisotropy is an index for the amount of diffusion

asymmetry within a voxel, normalized to take values from zero (isotropic diffusion)

to one (anisotropic diffusion). Fractional anistropy is sensitive to microstructural

changes in white matter, with higher FA values indicating more directional diffu-

sion of water. The FA value can be decomposed into AD, measuring the parallel

eigenvalue(λ1), and RD, measuring the average of the secondary and tertiary per-

pendicular eigenvalues ([(λ2 + λ3)]/2). The AD and RD quantifications are sensitive

to axon integrity and myelin integrity, respectively (Winston, 2012). Mean diffusiv-

ity is a summary mean of the three principal eigenvalues ([λ1 + λ2 + λ3]/3). Across

development, FA increases while RD, AD, and MD decrease with the increase of

myelination and white matter organization in the developing brain (Dimond et al.,

2020).

Two GQI metrics will also calculated— Quantitative Anistropy (QA) and General-

ized Fractional Anistropy (GFA).
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Quantitative Anisotropy (QA). ). QA is defined as the amount of anisotropic

spins that diffuse along a fiber orientation, and it is given mathematically by:

QA = Z0(ψ(â) - iso(ψ))

where ψ is the spin distribution function (SDF) estimated using the generalized

q-sampling imaging, â is the orientation of the fiber of interest, and iso(ψ) is the

isotropic background diffusion of the SDF. Z0 is a scaling constant that scales free

water diffusion to 1 so that the QA value will mean the same thing across different

participants (Yeh et al., 2010).

QA can be defined for each peak in the SDF. Because tractography follows

individual peaks across a string of voxels, researchers typically have focused on the

first peak (QA0), and have additionally normalized the QA0 metric so that it can

be compared across different participants. The normalized QA metric, nQA, will be

calculated according to the generalized q-sampling imaging method from Yeh et al.

(2010).

Generalized Fractional Anisotropy (GFA). Generalized fractional anisotropy (GFA)

represents an alternative indirect metric of white matter integrity that can be com-

puted from a HARDI diffusion acquisition. It can be thought of as a higher-order

generalization of FA (Descoteaux et al., 2007). The GFA metric thus begins with the

ODF, and proceeds to rescale it by subtracting off the baseline term. Rescaling the

ODF introduces a confound such that noise in the data, which rescales non-linearly,

can appear to be anisotropic when in fact that is not the case. The GFA corrects for

this by rescaling the min-max normalized ODF with an anisotropy measure. From

Tuch (2004), the GFA metric follows the same logic as the FA calculation. Thus:
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FA =
std(λ)

rms(λ)
(2.1)

where λ are the eigenvalues of the diffusion tensor.

GFA is given then by:

GFA(ψ) =

√√√√ std(ψ)

rms(ψ)
=
n
∑n

i=1(ψ(ui)− (ψ))2

(n− 1)
∑n

i=1 ψ(ui)2
(2.2)

where (ψ) = ( 1
n
) =

∑n
i=1 ψ(ui) = ( 1

n
) is the mean of the ODF. The output of this

transformation is a scalar measure, GFA, which functions in a similar manner as

FA to describe the anisotropic direction of water diffusion in the voxel. Like the

traditional FA metric from DTI, the values range from 0 to 1.

Fiber Track Identification

The FAT was tracked using a semi-automated method. First, an individualized

Lausanne atlas was created for each participant, as described in the Lausanne seg-

mentation section above. Next, we tracked the FAT regions of interest (pre-SMA,

SMA, pars opercularis, and pars triangularis) and visually checked each partici-

pant for neuroanatomically correct region-of-interest (ROI) positioning and tract

patterns. The FAT anatomy and locations of ROIs is shown in Figure 1.

The control pathway, CST, was tracked with DSI Studio’s built-in automated

tractography atlas (Yeh et al., 2018). The atlas was created from 842 participants

in the Human Connectome Project (HCP) and is placed on each brain through non-

linear registration of a participant’s subject data to MNI space. Since the atlas was
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created from an adult brains, left and right CST segments were visually checked for

accuracy.

2.3 Statistical Analysis

We analyzed age-related differences and the FAT’s relation to language and ex-

ecutive function using FA, MD, AD, RD, GFA, and QA DWI metrics. We used

robust linear models (R function rlm, R version 3.5.3; http://www.R-project.org)

to examine both age-related differences as well as the transdiagnostic approach to

examine FAT’s influence on our behavioral outcomes controlling for age, sex, whole

brain microstructure, socioeconomic status, and movement in the scanner. Robust

regression was chosen because it is less influenced by outlying values than tradi-

tional least-squares methods (Wilcox, 1998). The influence of outliers is reduced

using a Huber loss function that applies different weights to each observation, with

outliers being downweighed and therefore making a smaller impact on overall results

without having to be removed from the dataset. Robust regression results can be

interpreted the same was a least square regression and will remain unchanged in the

presence of no outliers.

For the categorical diagnosis approach at examining the impact of FAT mi-

crostructure in language and executive function in children with and without ADHD,

we chose to use robust multiple regression. We used the dummy-coded diagnosis

as a predictor variable in the model to investigate whether ADHD moderates the

relationship between FAT and our behavioral outcomes. For all analyses, we used

the bootstrapping method to improve the estimation of reliability of the parameter

estimate (Efron, 1987) and to calculate standard errors and 95% confidence inter-

vals. Laterality was calculated using Thiebaut de Schotten et al. (2014) formula

(left - right)/(left + right) in which positive values indicate left laterality.
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Missing Data. von Hippel (2007) advises against missing data imputation for de-

pendent variables. Therefore we used multiple imputation only for the demographic

covariates, particularly highest parental income category. Logistic regression was

used to verify whether there was a relationship between missingness and the out-

come variable. We used the Multivariate Imputation via Chained Equations (MICE)

package in R (version 3.5.1). For the following regression analyses, the missing data

were handled using Casewise deletion. The missing data were accounted for by re-

porting the degrees of freedom for each comparison. Lastly, we reported the analysis

without imputation to ensure no potential bias was introduced.

Outlier Detection and Correction. We did not remove outliers but corrected

for their influence using a conservative 97.5% Winsorization procedure (Wilcox and

Keselman, 2003). Similar to clipping in signal processing, the Winsor statistical

transformation limits extreme values in order to reduce the influence of outliers.

We report both uncorrected and Winsor-corrected results and plots whenever the

Winsor method is used.

Power Estimates. Power is most commonly defined as the probability that a

statistical test will reject a null hypothesis when it is false (Cohen, 1988). We ran

power analyses in effort to avoid Type II error when dealing with null findings.

The risk of Type II error was particularly important when we analyzed interaction

effects, since effects can be missed if power is low. Our power was 0.80 to detect a

small effect of r = 0.2 at α = .05 in the full sample, and power = 0.70 to detect a

small effect of r = 0.2 for interaction effects. For individual group analyses, power

= 0.80 to detect moderate effect of r = 0.3. All of our Cohen’s power estimates are

at α = .05 (Cohen, 1988).
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Code Availability. All software used in the present analysis is open source from

the Comprehensive R Archive Network (version 3.5.0). The R code to replicate the

analysis is available at https://github.com/deagaric/AHEAD project.

2.4 Results

All of the following results presented have been Winsor-outlier corrected. Both raw

data and Winsor corrected data were analyzed, and the Winsor method did not

significantly alter results. Secondly, all of the results below were re-analyzed with

ODD symptomatology added as a covariate to account for the comoridity between

ADHD and ODD. The addition of the ODD covariate did not significantly change

any findings reported.

Tractography Results

Using our Lausanne method, we successfully tracked at least one segment of the

bilateral FAT in 195 out of 196 children (99% of the sample). Using the individually

defined ROIs, we were able to track four subcomponents of the FAT, in the follow-

ing percentage of participants from the full sample (n = 196; averaged across the

hemispheres; preSMA < − > Op (91.5%); SMA < − > Op (88%); preSMA < − >

Tri (40%); SMA < − > Tri (19.5%).

Across both hemispheres, projections to the pars opercularis were observed in

90% of all hemispheres, while pars triangularis projections were observed in only 30%

of the hemispheres. The disparity between Op and Tri is not uncommon, and has

been seen in previous work as well (Szmuda et al., 2017). Given the small proportion

of participants with pars triangularis projections (for example, laterality analyses

within pars triangularis projections had sample sizes of 11 for some tasks), our

analyses will focus on the projections from the superior frontal gyrus (the preSMA
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and SMA) to pars opercularis from here on out. The regional contributions of the

pars triangularis for language and executive function will be re-visited in a region

analysis in Study 3.

Out of the entire sample, 100 children had ADHD, while 96 were TD. There

were no whole-brain microstructure differences between the TD and ADHD groups

in any of the diffusion metrics. The only group difference we found between the FAT

segments was that the right preSMA to Op segment had higher FA and lower RD in

the ADHD group than the TD group (β = 0.18, p < 0.01, df = 180, and β= -0.15,

p < 0.01, df = 180 for FA and RD, respectively), indicating that the ADHD group

displayed higher diffusivity and more myelination of this FAT segment compared to

the TD group while controlling for whole brain FA.

Using the tractography atlas, we were able to output data for the CST for all

196 children. We found significant group differences between the CST in TD and

ADHD samples for both the left and right CST (t = -5.09, p < 0.001, df = 193,

and t = -4.45, p < 0.001, df = 193 for left and right CST, respectively). In the TD

group, the CST has a mean FA of 0.38 and 0.36 for left and right CST, while the

mean FA for the ADHD group was 0.35 and 0.33, respectively. This indicates that

the TD sample has strong structural integrity of the CST compared to the ADHD

sample while controlling for whole brain FA.

Age-Related Differences

Using robust linear regression, we examined whether there are significant age-related

differences within the FAT during the 4- to 7-year-old age range in our sample,

controlling for sex, whole brain microstructure, and movement in the scanner. Upon

close examination of our FAT developmental plots, it became evident that we had

few but large outliers. To avoid removing them entirely, we ran our findings using
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the Winsor approach to reduce the influence of outliers. The Winsor approach had

a very minimal effect on our analyses (with the largest change in β being only 0.03),

but helped clarify the age-related development plots. We will focus on the Winsor

results below, but the non-Winsor results can also be found in Appendix B for

comparison.

Even given the narrow age range of 4 to 7, we found that both the left and

right hemisphere FAT segments undergo age-related differences that go above and

beyond whole brain development. The left preSMA to pars opercularis shows a

gradual increase in microstructural integrity as measured by FA (β = 0.14, p =

0.05, df = 171), which is further supported by very strong decreases in AD (β =

-0.29, p < 0.001, df = 171) and MD (β = -0.34, p < 0.001, df = 171). The left SMA

to pars opercularis segment had the same findings for AD (β = -0.32, p < 0.001, df

= 163) and MD (β = -0.33, p < 0.001, df = 163). No laterality differences across

time were found. On the right hemisphere, we see a similar, but less robust, change

across time. The right preSMA to Op segment showed significant tract development,

as seen by lower AD (β = -0.19, p < 0.01, df = 178) and MD (β = -0.29, p < 0.001,

df = 178). The same results were also seen in the right SMA to Op (β = -0.23, p

< 0.01, df = 171, (β = -0.31, p < 0.001, df = 171, for AD and MD respectively.)

Since the preSMA to Op segment had the largest sample sizes and was very

similar to the pattern seen in the SMA to Op, we chose these segments to plot

the developmental change, as seen in Figures 2 and 3. The large sample sizes in

these segments give it the highest probability of accurately portraying developmental

change within the FAT as it compares to whole brain development. There were no

significant differences found in development or whole brain microstructure between

the TD and ADHD samples, therefore all age-related tables and figures contain the

full sample. Lastly, we did not find significant age related change in FA for the CST,
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our control pathway. We did find significant reductions in AD (β = -0.36, p < =

0.001, df = 191) and MD (β = -0.17, p < = 0.05, df = 191) across development, as

seen in Figure 4. No age-related differences in laterality were evident in the CST.

2.4.1 Language Findings

NEPSY-II Results: Transdiagnostic Approach.

First, we analyzed our data without consideration to ADHD diagnosis, with the

purpose of examining whether the FAT was associated with fluency in the whole

sample when measured with NEPSY. We had NEPSY scores for 194 out of 196 chil-

dren. The mean of the 4 NEPSY tasks and their associated total scores are reported

in Table 3. Overall, children found the phonological tasks more difficult than the

semantic tasks, which is typical and implies that the child can produce language

adequately but does not have a good search strategy when when information is not

categorically organized.

As expected, children’s performance on NEPSY word generation increases sig-

nificantly with age across all tasks (p < 0.001 for all, df = 194), indicating children’s

vocabulary improves dramatically across 4- to 7-years of age. There were moderate

sex differences seen on the semantic food and drink and phonological s-words and

total scores, with females outperforming males (p < 0.05, df = 194). Whole brain

microstructure was associated with better performance on semantic animal words

and phonological initial letter s-words (p < 0.05, df = 194), indicating that the

more developed the whole brain is, the better performance on those tasks. As a

result of the demographic differences, age, sex, and whole-brain were entered in as

covariates for all following regression models. We are also controlling for movement

in the scanner, as is standard.
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Using robust regression models, we examined whether the Op segments of the

FAT was associated with NEPSY scores. To simplify analyses, we focused on total

phonemic and semantic scores rather than for each task. The full results for all

verbal fluency and articulation findings reported below can be found in Table 5.

The only significant result for the full sample for was that the right SMA to Op

projection was associated with higher scores in semantic fluency when examined

with AD (β = 0.16, p < 0.05, df = 168). There were no significant findings for

other segments or using other metrics.

NEPSY-II Results: Categorical Diagnosis Approach.

We compared the differences between the TD and ADHD samples, with the purpose

of examining whether the FAT’s relationship with phonemic and semantic fluency

was affected by diagnosis. We found group differences on NEPSY performance

between TD and ADHD, which are outlined on Table 4 and displayed in Figure

5. The differences we found persisted even when controlling for age, sex, and SES,

which is known to be associated with ADHD. We found that the typically developing

group outperforms the ADHD group on almost all NEPSY tasks with the exception

of food and drink words and initial letter F-words. We looked at this more closely

by examining the TD and ADHD groups individually.

NEPSY-II Main Effects for TD Sample. Upon examining the 96 TD chil-

dren, we found that the left hemisphere FAT segments were associated with phone-

mic scores while the right FAT segments were associated with semantic scores. In

particular, the GFA of the left preSMA to Op segment was associated with higher

total phonemic scores (β = 0.26, p < 0.05, df = 78), while the AD of the right

SMA to Op projection was associated with better semantics (β = 0.25, p < 0.05, df
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= 81). The plots for these relationships can be found in Figure 6. There were no

significant laterality associations seen in the TD sample.

NEPSY-II Main Effects for ADHD Sample. Upon examining the 100

children with ADHD, we found that the structural integrity of the right FAT actually

hampers semantic performance in the ADHD sample. This finding could explain the

unexpected results we found when looking at the TD and ADHD combined sample

previously. All of the NEPSY findings for the ADHD sample were in the right

hemisphere while the left hemisphere remained insignificant. Specifically, the right

preSMA to Op projection lowered semantic scores for both FA and GFA (β = -0.25,

p < 0.05, df = 83, β = -0.29, p < 0.05, df = 83, for FA and GFA respectively).

The relationship between the right preSMA to Op projection GFA and semantics

can be seen in Figure 7.

When we examined any possible laterality differences, we found that higher left

lateralization of the preSMA to Op segments were associated with higher semantic

scores were in the ADHD sample (β = 0.21, p < 0.05, df = 77, β = 0.22, p < 0.05,

df = 77, for FA and GFA respectively). The lateralization finding in the preSMA to

Op connection was also seen with the inversely-interpreted RD metric (β = -0.24, p

< 0.05, df = 77). Taken together, the degree to which the developing brain favors a

left lateralized structural dominance of the FAT is directly associated with semantic

fluency in the ADHD sample. The relationship between FAT laterality and fluency

is plotted in Figure 8.

NEPSY-II Diagnosis Interaction Effects. We found a significant interaction

effect when looking at the right preSMA to Op’s association with semantic scores

when measured with GFA (β = -0.16, p < 0.05, df = 171), with the ADHD group

showing an inverse relationship between the right FAT and semantic scores (β =

-0.29, p < 0.05, df = 83), and the TD group showing a weak upwards trend (β
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= 0.15, p = 0.19, df = 85). As seen in Figure 9, ADHD diagnosis moderates the

relationship between the right FAT and semantic scores, with higher GFA in the

ADHD group being associated with lower semantic scores while higher GFA of the

segment has a positive trending association for the TD group. The same pattern

was also seen when using FA (β = -0.14, p < 0.05, df = 171).

Furthermore, we found a significant group interaction when looking at the later-

ality of the preSMA and Op GFA segment’s association with semantic scores (β =

0.16, p < 0.05, df = 156). In the TD group, the lateralization of the preSMA to Op

segment was not significantly associated with semantic outcomes, but for the ADHD

group, higher left lateralization of the preSMA to Op segment was associated with

higher the semantics scores (see Fig. 10). A similar pattern is also seen with RD

(β = -0.16, p < 0.05, df = 156), with participants in the ADHD sample exhibiting

higher myelination in the left FAT segment while no significant laterality difference

is seen in the TD sample.

NEPSY-II Control Pathway Results. Using the bilateral CST as our control

pathway, we found no association between the control pathway and any NEPSY

fluency outcomes in the full sample (lowest p = 0.06) nor any laterality associations

(lowest p = 0.55). Furthermore, no significant results between the CST and NEPSY

were found when looking at the TD sample (lowest p = 0.16) or ADHD sample

(smallest p = 0.53) separately. The association of the corticospinal tract’s laterality

to NEPSY scores was tested for each group and was insignificant as well (smallest

p = 0.29).

SRT Results: Transdiagnostic Approach.

As a consequence of technical issues, some inaudible voice recordings in quiet chil-

dren, and some participants refusing to do the task, we had scores for 115 out of
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the 196 children. Across all 18 words, there were 50 total phonemes. Using the

traditional SRT scoring, the overall sample had 80.69% accuracy rate, while the

bilingual scoring system (which allows for common Spanish phoneme substitutions

such as b/v) had an 82.42% accuracy rate in the full sample. We examined the effect

of demographics, and while no demographics were associated with the monolingual

system scores, bilingual system scores significantly increased across age (t = 0.29, p

< 0.01, df = 111) and females outperformed the males (t = -0.22, p < 0.05, df =

111). Age, sex, whole brain microstructure, SES, and movement in the scanner were

controlled in the following analyses. Since the differences between the two scoring

methods were not significant (t = -0.74 p = 0.46), we chose to following analyses on

the the bilingual scoring system scores to accommodate our large Spanish-speaking

population.

When examining the full sample, we find that only the left FAT was associated

with phoneme production on the SRT. As Figure 11 shows, the left preSMA to Op

was strongly associated with higher accuracy on the SRT using QA (β = 0.63, p <

0.01, df = 98). The GFA metric trended in the positive direction. The left SMA to

Op was also associated with higher SRT scores, but only in AD (β = 0.22, p < 0.01,

df = 91). Favoring the left hemisphere for this task was further confirmed when we

examined laterality. We found that increased left laterality of the preSMA to Op

projection was associated with higher SRT scores with GFA (β = 0.16, p < 0.05, df

= 91). A similar pattern is seen with the SMA to Op projection for AD (β = 0.21,

p < 0.05, df = 83) and QA (β = 0.18, p < 0.05, df = 83). The laterality findings

for SRT can be found on Figure 12.
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SRT Results: Categorical Diagnosis Approach.

We compared the differences between the TD and ADHD samples, with the purpose

of examining whether the FAT’s relationship with phonemic articulation was affected

by diagnosis. We found that the TD group significantly outperforms the ADHD

group (β = -0.19, p < 0.05, df = 110). The TD sample had an 86.19% average

accuracy on the task, while ADHD had 78.98% average accuracy. The following

analyses will examine whether the FAT was differentially associated with SRT in

the TD and ADHD samples.

SRT Main Effects for TD Sample. In the TD sample, we found that the left

SMA to Op was associated with higher scores on the SRT when AD was used (β =

0.31, p < 0.05, df = 39). The same relationship was also trending when GFA was

used (β = 0.17, p= 0.07, df = 39). Further, higher left lateralization of the SMA

to Op was associated with better SRT performance for QA (β = 0.22, p < 0.05, df

= 36).

SRT Main Effects for ADHD Sample. While the FAT segments were not

directly associated with SRT scores within the ADHD sample, laterality did. Similar

to the TD sample, greater left laterality of the SMA to Op projection was associated

with higher SRT scores with both AD and QA (β = 0.47, p < 0.01, df = 40, β =

0.31, p < 0.05, df = 40, respectively).

SRT Diagnosis Interaction Effects. We examined whether an ADHD diag-

nosis might moderate the relationship between the FAT and phonemic articulation,

and there were no significant interactions effects nor laterality differences.

SRT Control Pathway Results. Using the bilateral CST as our control

pathway, no significant results between the CST and NEPSY were found when

looking at the TD sample (lowest p = 0.78) or ADHD sample (smallest p = 0.48)
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separately. CST laterality’s associated with SRT was tested for each group and

was insignificant as well (smallest p = 0.48). There were no significant associations

between the CST and SRT phonemic articulation in the full sample (lowest p =

0.82) nor any laterality associations (lowest p = 0.89).

2.4.2 Executive Function Findings.

NIH Toolbox Results: Transdiagnostic Approach.

First, we analyzed our data without consideration to ADHD diagnosis, with the

purpose of examining whether the FAT was associated with executive function in

the whole sample when measured with the NIH Toolbox Flanker and DCCS. We

had flanker data for 164 children and DCCS data for 167 out of our 196 children.

We used the age-corrected standard score NIH Toolbox results, which compare the

test-takers score to that of all other test takers at the same age. The mean score for

age-corrected standard scores on NIH Toolbox tasks is 100 with a standard deviation

of 15. Since this metric is already normed for age, we did not have to control for

age, but kept our gender, movement in the scanner, whole brain microstructure,

and parental income covariates in the model. For our full sample, the overall mean

scores on the age-corrected standard score was 97.3 on flanker and 96.7 on DCCS.

None of the covariates were significantly associated with flanker scores. SES was

negatively correlated with DCCS scores, with higher SES being associated lower

DCCS scores (r = -0.17, p < 0.05, df = 165). Table 6 displays the mean task scores

and how they relate to our control variables.

Using robust regression models we examined whether the 4 segments of the

bilateral FAT were associated with flanker and DCCS scores, controlling for sex,

movement in the scanner, whole brain microstructure, and SES. The full results for

all executive function findings reported below can be found in Table 8. As seen in
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Figure 13, we found that increased AD in the left SMA to Op segment was associ-

ated with higher flanker scores (β = 0.20, p < 0.05, df = 137), while the QA of the

left preSMA to Op segment was associated with higher DCCS scores (β = 0.55, p <

0.05, df = 145). When examining laterality, we found that higher left lateralization,

as measured by AD, in the SMA to Op segment was associated with higher flanker

scores in the full sample (β = 0.23, p < 0.01, df = 124).

NIH Toolbox Results: Categorical Diagnosis Approach.

We compared the differences between the TD and ADHD samples, with the purpose

of examining whether the FAT’s relationship with executive function was affected by

ADHD diagnosis. We found group differences on NIH toolbox tasks between TD and

ADHD, which are outlined on Table 7 and displayed in Figure 14. The differences

we found persisted even when controlling for age, sex, and SES. We found that the

typically developing group greatly outperforms the ADHD group on both flanker

(β = -0.34, p < 0.0001, df = 161) and card sort tasks (β = -0.27, p < 0.0001, df

= 163) . We looked at this more closely by examining the TD and ADHD groups

individually.

NIH Toolbox Main Effects for TD Sample. Upon examining the TD group

separately, we find no direct significant associations between the FAT and the NIH

Toolbox results. We did find that higher left laterality of the SMA to Op segment

was related to higher DCCS scores when measured with QA (β = 0.354, p < 0.05,

df = 55).

NIH Toolbox Main Effects for ADHD Sample. When we examined our

sample of 100 children with ADHD, we found that greater structural integrity of the

left and right preSMA to Op segments was linked to higher scores on the DCCS. In
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particular, a positive linear relationship was identified between the FA and GFA of

the left preSMA to Op segment’s association with better card sort scores (β = 0.226,

p < 0.05, df = 76; β = 0.275, p < 0.05, df = 76 for FA and GFA, respectively). On

a similar note, we saw a similar relationship with the RD of the right preSMA to

Op segment, with lower RD (therefore, higher myelination) being related to higher

DCCS (β = -0.326, p < 0.05, df = 76), as shown in Figure 15. There were no

laterality differences for these associations in the ADHD sample.

NIH Toolbox Diagnosis Interaction Effects. There were no significant

group interaction effects for the NIH toolbox in either direct brain-behavior associ-

ations nor laterality effects.

NIH Toolbox Control Pathway Results. Using the bilateral CST as our

control pathway, we did find an association between the left (β = 0.27, p < 0.01, df

= 159) and right (β = 0.45, p < 0.01, df = 159) CST FA in relation to higher scores

on the flanker task in the full sample. CST was not directly related to DCCS but did

indicate that higher left laterality was associated with DCCS (β = 0.17, p < 0.05,

df = 161). A possible explanation for CST’s association with NIH Toolbox scores

could be that the CST is a very large white matter pathway that makes contact

with many regions and other pathways, and the fact that the iPad NIH Toolbox

tasks do require voluntary motor control for successful completion. These findings

disappear when the TD (smallest p = 0.50 for direct relationship, smallest p = 0.10

for laterality) and ADHD (smallest p = 0.08 for direct relationship, smallest p =

0.22 for laterality) groups are examined individually.

HTKS: Transdiagnostic Approach.

First, we analyzed our data without consideration to ADHD diagnosis, with the

purpose of examining whether the FAT was related to executive function in the full
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sample when measured with the HTKS. We will use the HTKS total scores for all

three parts. The score can range from 0 to 60, depending on how accurately the

child did each pair-switch. In our full sample, 179 out of 196 children completed

the task with an average score of 32.68. We saw a highly significant correlation

with age (β = 0.45, p < 0.001, df = 177), sex (β = -0.21, p < 0.001, df = 177),

and whole brain microstructure (β = 0.26, p < 0.001, df = 177), and no significant

association with SES. Overall, older children scored higher on the task than younger

children, with female participants outperforming males, and a positive association

with overall brain microstructure integrity and HTKS performance. These results

can be seen on Table 6.

Using robust regression models, we examined whether the 4 segments of the

FAT were associated with HTKS performance controlling for age, sex, whole brain

microstructure, movement in the scanner, and SES. Going completely against our

hypothesis, our results indicated that increased structural integrity of both the right

and left FAT was associated with worse performance on the HTKS for the full

sample. In the left hemisphere, higher mean diffusivity of the preSMA and SMA to

Op projections were linked to higher HTKS scores (β = 0.21, p < 0.05, df = 154, β

= 0.21, p < 0.05, df = 138, respectively). MD is frequently interpreted in reverse,

with higher MD indicating a less developed structural connection. For the right

hemisphere, we find a similar pattern. There was a negative relationship between

structural integrity of the right preSMA to Op and HTKS scores when measured

with FA (β = -0.19, p < 0.05, df = 168). The same relationship is seen with the

right SMA to Op when measured with FA and MD (β = -0.19, p < 0.05, df = 154, β

= 0.19, p < 0.05, df = 154, respectively). The only significant laterality finding was

that higher left laterality of the SMA to Op projection was associated with better
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performance on the HTKS task when measured with axial diffusivity (β = 0.20, p

< 0.05, df = 135).

HTKS Results: Categorical Diagnosis Approach.

The scores on the HTKS task, which range from 0 to 60, showed large group differ-

ences between TD and ADHD. The differences persisted even when controlling for

age, sex, and SES. We found that the TD group (m = 38.78) greatly outperformed

the ADHD group (m = 28.17) on HTKS (β = -0.26, p < 0.0001, df = 172). We

looked at group differences more closely by examining the TD and ADHD groups

individually.

HTKS Main Effects for TD Sample. Out of the 96 children in the TD

sample, we had HTKS data for 85. Using robust linear regression, we examined the

relationships between the FAT segments and HTKS performance controlling for age,

sex, whole brain microstructure, movement in the scanner, and SES. The left SMA

to Op GFA (β = 0.25, p < 0.05, df = 66) and the right preSMA to Op segment

GFA (trending, p = 0.058) and AD (β = 0.20, p < 0.05, df = 75) were associated

with higher HTKS scores. These relationships can be seen in Figure 17.

Upon examination of FAT laterality relationships, we found that right laterality

was related to better performance on HTKS, which confirms our hypothesis that

right laterality contributes to executive function in young children. In particular,

the more left lateralized the preSMA to Op (β = -0.25, p < 0.01, df = 68; β =

-0.25, p < 0.01, df = 68 for FA and GFA, respectively), the worse scores on HTKS

were. These laterality findings provide support for the developing brain favoring the

right hemisphere for taxing, motor executive function tasks. The laterality finding

for the TD sample are displayed on Figure 18.
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HTKS Main Effects for ADHD Sample. Out of the 100 children in the

ADHD sample, we had HTKS data for 94. Using robust linear regression, we exam-

ined the relationships between the FAT segments and HTKS performance controlling

for age, sex, whole brain microstructure, movement in the scanner, and SES. The

results for the ADHD sample were the opposite of what was seen in the TD sample.

For the left hemisphere, both preSMA to Op MD (β = 0.35, p < 0.01, df = 77,

MD metric is inversely interpreted) and SMA to Op GFA (β = -0.31, p < 0.05, df

= 75, similar results seen with QA, FA, MD and RD) were associated with worse

HTKS scores. For the right hemisphere, the preSMA to Op (β = -0.38, p < 0.01, β

= -0.40, p < 0.01, β = -0.65, p < 0.05, for FA, GFA, and QA, respectively, df = 78

for all) was related to lower HTKS performance. The negative association between

the FAT and HTKS scores in the ADHD group is thought to have flipped our HTKS

findings in the transdiagnostic findings for the full sample. The full results for all

associations between the FAT segments and HTKS can be found on Table 8. The

left and right FAT associations with HTKS are plotted on Figure 19. There were

no significant associations with laterality.

HTKS Diagnosis Interaction Effects. Using diagnosis as an interaction

term, robust regression analyses revealed that there is an interaction between the left

SMA to Op and the right preSMA to Op segments’ association with HTKS scores

when examining FA, RD, and GFA. There was an interaction between diagnosis

group and the GFA of the left SMA to Op’s association with HTKS (β = -0.18,

p < 0.05, df = 146), with children in the TD sample significantly benefiting from

increased structural integrity of the segment (β = 0.25, p < 0.05, df = 66) while

the segment was associated with lower scores in the ADHD sample (β = -0.31, p <

0.05, df = 75). Similar findings were seen when FA and RD were used, with higher

myelination within the pathway being related to worse HTKS scores for the ADHD

43



group and trending upwards for the TD group. A similar interaction was exhibited

in the GFA of the right preSMA to Op segment (β = -0.24, p < 0.05, df = 158),

with the TD sample showing a trending positive association (β = 0.22, p = 0.058,

df = 75) while the ADHD group had a significant negative association between the

segment and HTKS scores (β = -0.40, p < 0.01, df = 78). The interaction effects

seen in the left and right FAT’s association with HTKS can be seen on Figure 20.

When laterality was examined, a significant interaction effect was found between

preSMA to Op and HTKS scores between the two groups. For both FA and GFA,

the analysis implicated that there is a significant group interaction effect in FAT

laterality’s association with HTKS scores (β = 0.24, p < 0.05, df = 145; β =

0.23, p < 0.05, df = 145 for FA and GFA respectively), with higher right laterality

within the segment being significantly related to improved HTKS scores in the TD

sample (β = -0.25, p < 0.01; β = -0.25, p < 0.01, both df = 66 for FA and GFA,

respectively), while there was a trending association with left laterality’s relation to

higher scores for the ADHD sample (β = 0.22, p = 0.08; β = 0.22, p = 0.06, both df

= 66, both df = 72, for FA and GFA, respectively). The group interaction between

FAT laterality, as measured by GFA, and it’s association to HTKS is plotted in

Figure 21, with an almost identical relationship when FA is used.

HTKS Control Pathway Results. Since our control pathway, CST, is respon-

sible for voluntary motor control, it was not surprising to see that it was associated

with the HTKS, which is a motor executive function task. Higher FA of both the left

(β = 0.18, p < 0.05, df = 172) and right CST (β = 0.19, p < 0.05, df = 172) were

related to higher HTKS scores, but no laterality differences were found (p = 0.66).

This finding was only found in the full sample. There was no significant association

with HTKS in the TD sample (smallest p = 0.054) and no laterality differences (p

= 0.23). There were also no significant associations between the left and right CST
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and HTKS in the ADHD sample (smallest p = 0.27) nor any laterality relationships

(p = 0.39).

2.5 Discussion

Study 1 provides unique insight into the FAT’s development and relation to language

and executive function in young typically and atypically developing preschool-aged

children. There is evidence to show that ADHD moderates the relationship between

the structural connectivity of the FAT and its association with verbal fluency and

motor executive function task performance. Increased structural integrity of the

bilateral FAT was linked to improved performance on semantic fluency and motor

executive function in the TD group, while being associated with decreased scores

for the ADHD group. All of the findings presented here persisted even when ODD

comorbidity was entered as a covariate, possibly suggesting that these findings are

ADHD-specific. Further, the group interaction effects on language and executive

function associations are unique to the FAT, and were not found when we examined

the CST control pathway. The CST, which is primarily associated with voluntary

motor function, was related to higher scores on motor executive function tasks and

NIH Toolbox, but was not able to differentiate between our TD and ADHD samples.

Study 1 provides strong evidence that the FAT can potentially serve as a unique

biomarker for ADHD diagnosis and is differentially associated with language and ex-

ecutive function in typically and atypically developing children. The development of

the FAT, and its association with language and executive function will be discussed

in detail below.

Development of the FAT. The significant age-related differences we found

in the bilateral FAT offer a novel contribution to the field of prefrontal cortex de-

velopment during early childhood. The first published study that examined the
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development of the FAT in young children (five to eight years of age) did not find

significant age-related differences (Broce et al., 2015), most likely as a result of a

small sample size (n = 19). With our much larger sample size and high-resolution

DWI data, we provide counter-evidence against the idea that the FAT does not

undergo age-related differences across childhood. Furthermore, our age-related dif-

ference findings replicated our previous study (Garic et al., 2019), which found that

the FAT rapidly develops in the first 6 years of life, above and beyond what can

be explained by whole brain microstructure. We expanded on our previous work

by offering a detailed look at the 4- to 7-year-old period of development in a large

sample of 196 children, whereas the previous paper only had 18 children within this

important age range. We did not find any significant increases in laterality across

age, which provides further support for previous work that indicated that left later-

alization of language pathways develops early and does not continue to increase in

strength (Groen et al., 2012).

Whether children with ADHD have delayed white matter maturation is a topic

of debate within the field. Initial studies (e.g., Castellanos et al. 2002) found that

ADHD patients had delayed brain development, with decreased cerebellar volumes

that remained regardless of stimulant treatment. On the contrary, more recent

work has found that in medication-naive children with ADHD, similar to our sam-

ple, there are no white matter development delays when compared to TD (Bouziane

et al., 2018, 2019). Bouziane and colleagues propose that early stimulant use might

be an underlying factor for the delayed white matter developmental trajectories

(Bouziane et al., 2019). Our work further supports the latter findings, with the

medication-naive children with ADHD showing no indication of delayed white mat-

ter development across this age span. Our study provides important, preliminary

findings that provide potential evidence that neurobiological differences in children
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with ADHD may be more in-depth than just a delay in brain development as a

whole.

FAT and Speech and Language. When we examined the data transdiagnos-

tically, we found that the right SMA to Op was related to semantics (but only with

AD), while both left FAT segments were associated with better phoneme articulation

on the SRT. Higher left laterality of the FAT was associated with higher phoneme

articulation as well. These findings support our hypothesis that the left FAT is more

involved in phonemic tasks while the right FAT is associated with semantic tasks.

This relationship is made more evident we use the categorical diagnosis approach

and examine the typically developing and ADHD samples individually.

In our typically developing sample, microstructural integrity of the left preSMA

to Op segment was associated with improved scores on the initial letter phonemic

task and the left SMA to Op segment was related to phoneme articulation. On

the right hemisphere, the SMA to Op segment was only linked to category-based

semantic scores. These findings coincide with the organization of other major lan-

guage fiber pathways, such as the SLF and AF, are associated with letter-based

fluency while the right SLF, AF, and IFOF predict category-based semantic flu-

ency (Blecher et al., 2019; Rodriguez-Aranda et al., 2016). In fact, our left and

right hemisphere FAT language findings within the typically developing sample align

with what Blecher and colleagues found in the left and right FATs of adults. Put

together, hemispheric differences in the FAT’s association with verbal fluency might

be present as early as four years of age and persist into adulthood (Blecher et al.,

2019).

In sharp contrast, the relationship between the right FAT and verbal fluency

flipped when examining the ADHD sample. In particular, higher structural integrity

in the right preSMA to Op segment was associated with lower NEPSY semantic
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scores. The left FAT was not not related to letter-based phonemic or phoneme

articulation directly like it was in the TD sample, but higher left laterality was

linked with higher articulation on the SRT task and higher semantic scores on the

NEPSY word generation task. We will discuss possible explanations for the semantic

and phonemic results individually.

For category-based semantic ability, we were surprised to see that in the ADHD

sample, the right FAT was negatively associated with the semantic word generation

scores. In fact, a significant group interaction effect was discovered when examin-

ing the right FAT’s relation to semantic fluency scores. We observed that ADHD

diagnosis moderates the relationship between the GFA of the right preSMA to Op

and semantic performance, with greater tract integrity being associated with lower

semantic scores in the ADHD sample but trending upwards in the TD sample. No

microstructural differences, measured in GFA, exist for this segment between the

two groups, indicating that structural differences between the connection might not

be able to explain the relationship.

One possible explanation is that children diagnosed with ADHD might display

atypical laterality associations. While we would expect semantic ability to be more

right lateralized from previous work on adults (Blecher et al., 2019; Thompson et al.,

2016; Rodriguez-Aranda et al., 2016), higher left laterality of the preSMA to Op

segment was related to improved semantic verbal fluency scores in the ADHD sam-

ple, while partially favoring the right hemisphere in the TD sample. Further, higher

structural integrity of the right FAT benefited semantic performance in the TD

group, but had an adverse effect for the ADHD group. No significant difference was

found in the preSMA to Op laterality between the ADHD and TD groups in our

study, but the ADHD group was slightly more right lateralized on average (p=0.08).

From these findings, it appears that children with ADHD favor the left hemisphere
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for semantic tasks, unlike what is seen in typical development, but also show greater

right laterality than the TD group, potentially causing the negative association.

It is tempting to think that the semantic scores within the ADHD group might

catch up with the TD group across development as laterality becomes further devel-

oped, but no significant age-related differences in laterality were found in our sample

of 4 to 7 year old children. Furthermore, Groen and colleagues (2012) have shown

that the strength of lateralization for language production does not significantly

increase between the ages of 6 to 16 years either, therefore making it very unlikely

that left lateralization will increase in strength during development and improve the

verbal fluency scores seen in the ADHD sample.

A third possible explanation for the group differences seen in semantic scores is

the fuzzy categorical distinction between verbal fluency and executive function more

broadly defined. While it is still a debate in the field, with some researchers finding

evidence to believe that verbal fluency is highly associated with language processing

and not significantly correlated to executive function (Whiteside et al., 2016), many

believe that executive function might be interconnected with verbal fluency ability

(Gustavson et al., 2019; Kramer et al., 2014). Moreover, semantic tasks might be

more co-dependent on executive function abilities than phonemic tasks (Aita et al.,

2019; Berberian et al., 2016), since they require more cognitive control to to inhibit

competing semantic concepts that do not fit into the semantic category at hand.

Therefore, there is a chance that the ADHD sample’s scores were heavily impacted

by their inattention and lower inhibition rather than their semantic skills. With

no further direction from the task administrator once the 60 second task starts, a

child’s lack of focus can lead to much significantly lower scores. Inattention and

cognitive control might have had a much larger effect on children in the ADHD

sample compared to the TD sample.
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The involvement of executive function in the verbal fluency tasks might also

explain why, in the ADHD sample, we did not find any significant results for the

initial letter phonemic NEPSY task but did for the SRT phoneme articulation task.

The NEPSY phonemic task might be more dependent on executive function than

the SRT. On the NEPSY task, the child has 60 seconds to list words starting with

the letter S or F, while remembering what the prompt was, staying on task, and

inhibiting words that do not belong in that segment. For example, many children in

the ADHD sample start the S words task with ”sun, sand, seashell, beach, vacation,

fun!” which shows a lack of attention and inhibition. It could also indicate a lack

of task-switching ability, since the semantic category tasks, which asked the child

to list animal and food items, had just finished prior. In comparison, the SRT tests

phoneme articulation by asking the child to repeat 18 non-sense words ranging from

2 to 4 phonemes. While words with 4 phonemes can be moderately taxing on working

memory, it can be said that the NEPSY phoneme task is still more dependent on

executive control since the SRT has no gap between the target word and the time the

child is supposed to repeat it, therefore not requiring much inhibition or attention.

The idea that executive function can explain differences in speech and language task

performance is further supported by the fact that there were no group interaction

effects with the SRT task, indicating that lower executive function present in the

ADHD sample did not cause significant differences between TD and ADHD on SRT

performance. In short, children with ADHD potentially could have had insignificant

results for the NEPSY phonemic task but not for the SRT phonemic articulation

task because the NEPSY task was more dependent on executive function, something

that the ADHD sample struggles with.

FAT and Executive Function. Across our three executive function tasks, we

saw significant group differences, with the typically developing group continuously
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outperforming the ADHD group. Using the transdiagnostic approach, we saw that

the axial diffusivity of the left SMA to pars opercularis segment was related to

flanker scores, while the left preSMA to Op quantitative anistropy was associated

with card sort scores. Further, higher left laterality of the left SMA to Op AD was

related to higher flanker scores in the full sample. Since AD and QA both decline

with age during brain development, these findings are difficult to interpret without

additional FA and GFA findings.

When the TD and ADHD samples were examined individually, we saw a positive

relationship between left laterality of the SMA to Op AD and card sort scores, while

higher myelination (as indicated by decreased RD values) in the right preSMA to

Op and higher structural integrity (indicated by higher FA and GFA) in the left

preSMA to Op were both associated with card sort performance in the ADHD

sample. It appears as if the left hemisphere FAT is primarily involved in the task

switching behaviors tested by the card sort in the TD sample, while the both the left

and right FAT is involved in the ADHD sample. No significant interaction effects

were found. The null interaction effects could most likely have been caused by the

inconsistencies in significant diffusion metrics for the findings between the groups.

The findings in the TD sample did not support our hypothesis and failed to replicate

our past work (Dick et al., 2019; Garic et al., 2019), but the findings in the ADHD

sample moderately confirmed them.

While the NIH toolbox provided interesting, but inconsistent, results, the HTKS

stood out with robust, consistent findings that were supported by multiple diffusion

metrics. The HTKS is a motor executive function task that taps into task-switching,

working memory, and inhibition all within a short 7 to 8 minute task that does not

require any additional materials except a researcher providing verbal cues. The

transdiagnostic analysis approach found that both the left and right segments of
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the FAT were related to lower scores on the task, marked by lower FA and higher

MD values. We quickly discovered that this was due to the profound differences

between the TD and ADHD groups.

In the TD sample, both the left and right FAT was related to better performance

on the HTKS, but laterality analyses revealed that the developing brain favors the

right hemisphere for the motor executive task. Higher right laterality of the preSMA

to Op projection was associated with higher scores on the HTKS for both FA and

GFA. Children with ADHD displayed a completely flipped pattern of results. For the

ADHD sample, all segments of the left and right FAT were strongly related to worse

outcomes on the HTKS tasks, which was seen with FA, MD, RD, GFA, and QA.

There were significant group interaction effects seen with the left SMA to Op and

right preSMA to Op projections. With the right SMA to Op, we find that ADHD

diagnosis moderates the relationship between the right SMA to Op’s association with

HTKS, with increased structural integrity in the segment being related to improved

HTKS performance for children in the TD sample, but worse performance for the

ADHD sample. A similar pattern is seen with the right preSMA to Op segment,

with a positive, trending (p = 0.058) association with structural integrity of the

right FAT and better scores for the TD sample, but significantly lower scores in the

ADHD sample.

The HTKS results provided compelling evidence that the FAT has a differential

association with motor executive function performance in typically and atypically

developing children. We argue that the group differences can be explained, in part,

by laterality interaction effects: right laterality was associated with better HTKS

performance in the TD sample, while there was a trending association (p = 0.06)

between left laterality and HTKS performance in the ADHD sample. Given the

strong association between the right inferior frontal gyrus and inhibition (Aron,
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2007; Aron et al., 2016; Aron and Poldrack, 2006; Fife et al., 2017), it would appear

that the right lateralization finding in the TD sample gives them a performance

advantage. Furthermore, the direct interaction effects and laterality interaction

effects seen between the TD and ADHD groups appear to be specific to motor

executive tasks such as the HTKS, because they were not seen when executive

function was tested with the NIH toolbox.

Taken together, the executive function results from Study 1 partially confirm our

hypothesis that the right FAT is involved in motor, visuospatial executive function

tasks. The FAT only was only differentially related to executive function perfor-

mance in the motor HTKS task, which revealed that right laterality of the FAT

was associated with better scores for the TD sample but not for the ADHD group.

ADHD diagnosis moderates the association between the left and right FAT and ex-

ecutive function, in which higher structural integrity of the segments were related to

higher HTKS scores for TD but worse scores for ADHD. The FAT can potentially

differentiate between TD and ADHD samples in motor executive tasks, which makes

it a potential biomarker for ADHD diagnosis in preschool-aged children. This can

be a huge benefit for future ADHD research and clinical application, especially since

the HTKS task is a quick, simple, and low-cost measure to administer.

Limitations. Two primary limitations of Study 1 were sample size and the lack

of a direct working memory task. 196 preschool children, 100 diagnosed with ADHD,

is a large sample size in the field of developmental neuroimaging, given the cost of

MRI scanning and the difficulty of getting high quality scans in young children that

struggle to stay perfectly still for 45 minutes in a loud, novel environment. Even

so, our sample size was further reduced by 10% because not every child had DWI

data for each FAT segment, missing behavioral data as a result of non-compliance,

technical issues, or not being able to pass the practice portions, and then further
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split when it came to the categorical diagnosis analysis approach which separated

the children into TD and ADHD samples. The reduced sample size for some re-

lationships we tested naturally raises the risk of encountering Type II errors. Our

power was 0.80 to detect a small effect of r = 0.2 at α = .05 in the full sample, and

power = 0.70 to detect a small effect of r = 0.2 for interaction effects, but power

= 0.80 to detect moderate effect of r = 0.3 α = .05 (Cohen, 1988). Reduced power

could lead to Type II error for smaller main effects within a group.

A second limitation was the lack of a direct working memory behavioral measure.

While the HTKS does tax working memory with multiple task switches through the

task, the NIH Toolbox provides a list sorting task that directly isolates and measures

working memory. We attempted to administer this task to our sample, but 72% of

our TD sample and 82% of our ADHD sample had missing data for the task, thus

making the task unfit for analysis. A large portion of the missing data was attributed

to the children failing out shortly after the practice rounds, making the score invalid.

In the future, we plan to administer a working memory task that will be better fit

for our sample’s age range.

Conclusions. Our study provides compelling evidence that the FAT is asso-

ciated with language and executive function development in young, preschool-aged

children. We found that even in the narrow age range of 4- to 7-years, the FAT ex-

periences age-related differences above and beyond what can be explained by whole

brain development, and the developing structural integrity of the pathway might

be differentially associated with behavioral outcomes for typically and atypically

developing children. ADHD diagnosis moderates the relationship between the right

FAT and semantic performance, with the ADHD sample performing worse with in-

creased structural integrity of the tract. A similar relationship was seen with motor

executive function as tested by the HTKS. Brain laterality appears to be related to
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behavior differently in children with ADHD: higher right laterality was associated

with higher semantic scores while higher left laterality was linked to better motor

executive function. This sharply contrasts with the standard ideology of the left

hemisphere being more associated with language and the right hemisphere with mo-

tor, visuospatial ability (Herve et al., 2013; Toga and Thompson, 2003). Overall, our

results suggest that the FAT has the potential to be used as a diagnostic biomarker

for ADHD in young children.
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CHAPTER 3

STUDY 2

3.1 Research Question

The ability to quantify microstructural properties of neural tissue is important for

the diagnosis and treatment of neurologic disease. Significant advances in the ac-

quisition and analysis of diffusion weighted magnetic resonance imaging (DW-MRI)

data have allowed researchers to target specific sources of the DW-MRI signal asso-

ciated with specific tissue properties. Recent analysis approaches, such as restricted

diffusion imaging (Yeh et al., 2017) and neurite orientation dispersion and density

imaging (Zhang et al., 2012) have provided more fine-grained metrics that augment,

and in some cases replace, the more traditional metrics that are reported in dif-

fusion tensor imaging (DTI) studies. The present investigation is an attempt to

understand whether such new metrics are sensitive to a particular microstructural

property of white matter, that of axonal density. Providing an in vivo measure of

axonal density has high potential for clinical importance. For example, histological

studies have shown that axonal density is related to the progression rate of multi-

ple sclerosis (Tallantyre et al., 2009), hereditary spastic paraplegia (Deluca et al.,

2004), and it is a sensitive measure of multiple sclerosis lesion in an animal model

(Seehusen and Baumgartner, 2010). The density of fibers of a particular diameter

is also important because neural conduction velocity scales with axonal diameter

(Ritchie, 1982), influencing the timing and rapidity of information transfer in the

nervous system. Thus, being able to quantify these density changes in vivo during

development could provide essential insight into disease progression, development,

and general nervous system structure/function relationships.
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The new metrics we investigate extend from previous algorithms used to recon-

struct DWI data. The most popular instantiation of DWI reconstruction is diffusion

tensor imaging (DTI), which obtains familiar metrics such as fractional anisotropy

(FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD),

that provide information about the directional nature of water diffusion through

tissue. AD measures the longitudinal component or eigenvalue (λ1) of the diffu-

sion tensor model, and it has been shown to be sensitive to axon integrity (Song

et al., 2003). RD is the average of the remaining eigenvalues ([λ2+ λ3]/2), which are

perpendicular to the longitudinal component, and which have been associated with

myelin integrity (Song et al., 2003, 2005). MD is the average of these three principal

eigenvalues ([λ1+ λ2 + λ3]/3). Finally, FA is the most frequently used metric. This

metric indicates how the other diffusion metrics stand in relation to one another,

providing a summary index of the directional nature of water diffusion in the voxel

(Beaulieu, 2002). It is scaled such that 0 represents unrestricted or isotropic dif-

fusion, and 1 indicates water diffusion that is anisotropic, or restricted in all but

one direction. These metrics have been useful in tracking various fiber pathways

in health and disease across the lifespan (Chan et al., 2008; Lebel and Beaulieu,

2009; Nir et al., 2013), but none of these DTI metrics are designed to isolate and

characterize the specific contributions of axonal density to the diffusion-weighted

imaging signal.

With updates in MRI hardware and software, more diffusion directions can be

acquired in a shorter amount of time, which has allowed for the use of better imag-

ing reconstruction algorithms. These High Angular Resolution Diffusion Imaging

(HARDI) algorithms improve the estimation of water diffusion in multiple direc-

tions, leading to better estimation and resolution of such crossing and kissing fibers.

For example, Generalized Q-Sampling Imaging (GQI) has been employed to effi-
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ciently reconstruct the orientation distribution function (ODF) of water diffusion

from HARDI acquisitions (Daducci et al., 2014; Yeh et al., 2010). Two metrics

can be recovered from these diffusion models: Quantitative anisotropy (QA) and

generalized fractional anisotropy (GFA). QA is defined as the amount of anisotropic

spins that diffuse along a fiber orientation, while GFA can be thought of as a higher-

order generalization of FA (Cohen-Adad et al., 2008; Tuch, 2004). Regardless of the

improvements GQI has provided for MRI, these metrics are still not optimal for

measuring axonal density differences (Zhang et al., 2012).

Other imaging reconstruction methods have focused on estimation of microstruc-

tural properties of cell body processes—dendrites and axons, i.e., neurites. For ex-

ample, Neurite Orientation Dispersion and Density Imaging (NODDI) ascribes the

signal of water protons in tissue into three components: isotropic diffusion represent-

ing free motion in areas such as ventricles, intracellular volume diffusion representing

restricted water in dendrites and neurons, and extracellular volume diffusion rep-

resenting glial cells, cell bodies, and the extracellular environment (Zhang et al.,

2012). A number of studies have compared the NODDI signal to known histological

patterns in white matter. For example, Zhang et al. 2012 have shown that NODDI

is capable of disentangling the two components of FA, neurite density and orienta-

tion dispersion, allowing the two to be studied individually. In an important study

that serves as a model for our present investigation, Genc et al. 2017 have also used

NODDI to map corpus callosum density in children and adolescents. They found

that NODDI intracellular volume fraction (ICVF) and orientation distribution func-

tion (OD) metrics were sensitive to histologic differences along the longitudinal axis

of the corpus callosum. We conducted a partial replication of this study, and will

return to the details of it in the Method.

58



Finally, Restricted Diffusion Imaging (RDI) is a recent measure that has been

proposed to measure changes in cellularity (i.e., cellular density), which affects local

diffusion of water molecules. RDI attempts to separate non-restricted diffusion of

water molecules from restricted diffusion of water molecules by focusing on the

difference in diffusion displacement of each component. As such, the model can

measure restricted diffusion while ignoring non-restricted diffusion. Yeh et al. 2017

showed that RDI was sensitive to differences in cellular density in a manufactured

phantom, and in rat cardiac tissue that sustained a lesion, which resulted in the

migration of macrophages to the lesion site. The density changes resulting from this

macrophage migration were detectable in changes in RDI. Thus, RDI seems to be

sensitive to cellular density and changes in cellular density.

What is unknown, though, from these initial studies is whether RDI metrics are

sensitive to density of axonal fibers. It is well known that axons at cross-section

differ in diameter (Aboitiz et al., 1992) and this affects the density of axons within

the fiber pathway. For example, the Aboitiz et al. (1992) histological examina-

tion of 20 post-mortem healthy adult brains showed that the density of small and

large diameter axons differs across the anterior-posterior axis of the corpus cal-

losum. This now well-established density pattern has been replicated with other

measures in more recent work (Suzuki et al., 2016; Caminiti et al., 2013; Bjornholm

et al., 2017), including the study by Genc et al. (2017) that serves as a model of

the present investigation. As we noted earlier, it would be important for a number

of reasons to establish in vivo metrics that are sensitive to differences in axonal

density. Given its high sensitivity to diffusion changes as a function of cellular

density, we expected RDI to be most sensitive to these changes relative to other

established metrics. Thus, the primary aim of this study is to address whether RDI

is a candidate metric for measuring axonal density in vivo, and further whether it
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does so better than other available diffusion metrics. To do this, we measured seg-

ments of the corpus callosum, which have been known to differ in axonal density on

the anterior-posterior axis (Aboitiz et al., 1992; Reyes-Haro et al., 2013; Riise and

Pakkenberg, 2011; Suzuki et al., 2016). We used both a healthy adult sample (n =

840) and a healthy developing sample (n = 129) to test whether previous histolog-

ical results match the segmental pattern reflected using RDI in vivo. In order to

demonstrate that RDI measures a unique characteristic in the imaging modality, we

compared the RDI measurements to that of DTI metrics (AD, RD, FA, and MD),

GQI diffusion metrics (GFA and QA), and NODDI metrics (ISO, ICVF, and OD).

We hypothesized that RDI would most reliably, relative to other measures, replicate

the Aboitiz et al. (1992) anterior-posterior density pattern established in histology.

Paradigm and Summary of Both Experiments in Study 2

Two studies were designed to investigate the sensitivity of various diffusion met-

rics to the anterior-posterior microstructural organization of the corpus callosum.

We will refer to them as Study 2.A and Study 2.B from here on out. Our study

design uses as a point of departure the study by Genc et al. (2017). We used

two publicly available datasets. In Study 2.A we analyzed 840 multi-shell adult

high angular resolution diffusion-weighted imaging (HARDI) scans from the Human

Connectome Project (http://www.humanconnectome.org). Study 2.A was designed

to replicate and match the corpus callosum density pattern found in the Aboitiz

et al. (1992) histological study. In Study 2.B, we conducted the same analysis

on a different dataset of 129 infants, children, and adolescents from the C-MIND

study (https://research.cchmc.org/c-mind/). We used the single-shell acquisition

from this study to establish whether the RDI metric could be sensitive in single-

shell data, which are also still common acquisitions, especially in clinical settings.
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Simultaneously, the use of the CMIND data allowed us to investigate whether the

density pattern can be detected in a developmental sample. For both studies we

computed DTI metrics (FA, RD, AD, MD), GQI metrics (QA, GFA, and RDI),

and (in Study 2.A only) NODDI metrics (ICVF, OD, ISO). We applied a corpus

callosum mask based on Aboitiz et al. (1992) to compute summary statistics of each

metric for each subregion. The mask was applied in an automated fashion for Study

2.A, and hand-drawn for Study 2.B (to accommodate the different brain sizes in the

developmental sample (Wilke et al., 2008).

3.2 Study 2.A: Adult Sample

3.2.1 Method

Participants

The adult sample contained 842 participants between the ages of 22- and 35-

years-old who underwent MRI scans as part of the Human Connectome Project.

Data were provided by the Human Connectome Project, WU-Minn Consortium

(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for

Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at

Washington University. The automated atlas segmentation was successfully applied

to 840 of these participants. Therefore, the summary statistics for the DTI and GQI

metrics were calculated on 840 participants. The NODDI reconstruction is a time

and resource intensive process, and therefore a random sample of 100 participants

were selected from the full sample for this reconstruction.
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Diffusion Metrics

We calculated and compared four DTI metrics (FA, RD, AD, and MD), three

GQI metrics (QA, GFA, and RDI), and three NODDI metrics (ICVF, OD, ISO).

The calculations for the four DTI metrics and for two of the GQI metrics were ex-

plained in Study 1, so we will mainly focus on explaining the novel RDI and the

NODDI metrics below.

Neurite orientation dispersion and density imaging (NODDI) Metrics.

NODDI works by combining the three-component tissue model, which distinguishes

between intracellular, extracellular, and cerebrospinal fluid, with the 2-shell HARDI

protocol:

A = (1− Viso)(VicAic + (1− Vic)Aec) + VisoAiso (3.1)

This calculates the independent, normalized signal A, comprised of the intra-cellular

normalized signal and volume fraction (Vic and Aic), the normalized signal of the

extracellular compartment (Aec), and the normalized signal and and volume fraction

of the cerebrospinal fluid (Viso and Aiso) (Zhang et al., 2012). The three tissue com-

ponents are calculated from a simplified form of the orientation-dispersed cylinder

model (Zhang et al., 2011) and the Watson distribution. Using the Watson distri-

bution provides a unique advantage due to its capability of accurately estimating

both low and high levels of dispersion across the brain, while truncated spherical

harmonic series tend to provide inexact measurements of lower levels of orientation

dispersion (Jespersen et al., 2007; Zhang et al., 2012).

NODDI supports the modelling of both gray and white matter, with white matter

showing low to moderate axonal dispersion and gray matter showing high axonal
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dispersion. Since its implementation, NODDI has been used in numerous adult

studies to examine disease progression (Taoka et al., 2020; Broad et al., 2019), and

it appears to be useful for differentiating between myelinated and non-myelinated

axons (Kunz et al., 2014) and measuring cortical gray matter maturation over de-

velopment (Pecheva et al., 2018).

The three NODDI metrics we examined were intracellular volume fraction (ICVF),

isotropic volume fraction (ISOVF), and orientation dispersion (OD). ICVF measures

neurite density, with higher values indicating greater packing of neuronal tissue.

ISOVF measures the extracellular, free water compartment of the model. OD mea-

sures dispersion of modelled sticks, with greater dispersion seen in gray matter and

lower dispersion in white matter regions such as the corpus callosum.

Restricted Diffusion Imaging (RDI). Restricted diffusion imaging (RDI) is a

novel metric that aims to measure changes in cellular density. Thus far it has been

shown to be sensitive to the inflammatory response (macrophage infiltration) in

rats (Yeh et al., 2017). It is for this reason that we expect it might be sensitive to

differences in axonal density.

RDI works through the use of q-ball imaging that estimates the density of diffus-

ing spins with respect to their diffusion displacement. RDI separates non-restricted

diffusion from restricted diffusion through the use of different diffusion sensitization

strengths, which allows RDI to be more sensitive to structural changes. The calcu-

lation for the metric is a linear combination of diffusion-weighted imaging signals

acquired by the long diffusion time (Yeh et al., 2017);

p(L) =
∑
q

Si(2πL|q|)
2π|q|

W (q) (3.2)
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In the formula, rho (L) represents the density of diffusing spins that are restricted

with the displacement distance L. Si is a sine integral, Si(x ) =
∫ x
0

sin(t)
t
dt. In the

case where q = 0, the term Si(2πL—q—)/2π—q— would be replaced by L. Over-

all restricted diffusion, ρ(L), estimates the density of diffusing spins with diffusion

displacements less than L (Yeh et al., 2017).

DWI Reconstruction

DTI (Basser et al., 1994) and GQI (Yeh et al., 2010) reconstruction were both

done using the January 2018 version of DSIStudio (http://dsi-studio.labsolver.org)

and took approximately one minute for DTI and two minutes for GQI. NODDI re-

construction took considerably longer, at about four to six hours per brain. Since the

time we conducted the NODDI reconstruction, reconstruction time has been reduced

to one hour per brain through the use of Microstructure Diffusion Toolbox (MDT;

Harms et al. 2017), which will be touched upon again in the Discussion. The NODDI

reconstruction done here used the AMICO (Daducci et al., 2015) python implemen-

tation, along with the DIPY library (Garyfallidis et al., 2014), SPArse Modeling

Software (SPAMS; Mairal et al. 2010; http://spams-devel.gforge.inria.fr/), and the

Camino toolkit as dependencies (Cook et al., 2006).

Parcellating the Corpus Callosum: Drawing the Regions of Interest (ROIs).

The corpus callosum was manually segmented into 10 ROIs in DSI Studio, fol-

lowing the segmentation scheme described by Aboitiz et al., (1992). These divisions

are shown in Figure 22A, reconstructed from the original Aboitiz et al., (1992) seg-

mentation. To conduct the segmentation, we first drew the midline slice from the

coronal view, and then we drew the ROIs from the sagittal view. We then mea-
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sured the corpus callosum divided it into three equal length sections going from the

anterior to posterior direction: the genu, the midbody, and the isthmus/splenium.

We then further divided the genu and the midbody sections into three equal parts.

Thus, the genu was divided into G1, G2, and G3, while the midbody was divided

into B1, B2, and B3.

Finally, we defined the last third of the corpus callosum as the isthmus and the

splenium. The splenium makes up the posterior fifth of the entire corpus callosum

and is subdivided into three equal sections, labelled S1, S2, and S3. The isthmus,

labelled I, is comprised of the remaining area between the midbody and the sple-

nium sections. All sections of the corpus callosum are arbitrarily divided based on

straight length by counting voxels between the parcels. Clarke (1990) showed that

whether these sections are portioned based on curvature or straight length makes

no difference. For this adult sample, the 10 ROIs were saved as an atlas which was

then applied to all participants.

Data Analysis

In the original Aboitiz et al., (1992) paper, the authors used this segmentation

to report on densities, based on histological counts, of the following fiber sizes:

>0.4 µm, >1 µm, >3 µm, and >5.0 µm. The pattern of fiber densities was nearly

identical for the >3 µm B and >5.0 µm, and thus for simplicity we ignored that

pattern for this paper (i.e., the >5.0 µm results would apply in the same way to the

>3.0 µm pattern). In order to determine which of the density patterns produced

by our two samples best replicated the Aboitiz histological model, we conducted

planned contrast analyses (Rosenthal et al., 2000). Planned contrasts allow a test

of whether the observed pattern matches an expected pattern, which in this case is

defined by the histologic results.
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The patterns we modeled are given in Figure 22. Figure 22A shows the segmen-

tation scheme used in the Aboitiz et al., (1992) paper, which we replicated here.

This scheme was also used by Genc et al. (2017). Figure 22B shows the shows den-

sity results from Aboitiz et al (1992) for three fiber sizes: >5.0 µm, >1 µm, and

>0.4 µm.

The first step in a planned contrast analysis is to establish the contrast weights.

These weights are designed to model the pattern of the Aboitiz data for the four

comparisons on which they reported (again, note that results for >3 µm are omit-

ted). Figure 3B shows the contrast weights for each of four comparisons that were

reported as significant in the Aboitiz paper. For >5.0 µm the contrast weights were:

(-5.5, -3.5, -1.5, 0.5, 2.5, 4.5, 2.5, 0.5, -0.5, 0.5). For >1 µm, Aboitiz only found

significant differences between B3 and S2 segments and S2 and S3 segments. There-

fore we created two contrasts to test those specific differences: >1 µm A: (0, 0, 0,

0, 0, -1, 0, 0, 1, 0); >1 µm B: (0, 0, 0, 0, 0, 0, 0, 0, 1, -1). Finally, for >0.4 µm the

weights were: (1, 0.5, 0.5, 0, -0.5, -1.5, -0.5, 0, 0.5, 0). As is standard, all contrast

weights sum to zero. Once contrast weights are established, the second step is to

test them in the context of the linear model, which was done using R v3.6 (R Core

Team, 2019).

Power Estimates. In cases where null effects are reported, care must be taken

to avoid Type II error. Fortunately, because of the large effect sizes seen and the

large sample sizes employed in the present study, power was universally high. In

the adult sample, a posteriori power analyses for DTI and GQI measures (n= 840)

showed that power = .95 to detect a small effect of d = .2 at α = .05. Power was

substantially lower for the NODDI measures (n= 100) and for the developing sample

(n= 129) as a consequence of the smaller sample sizes, with power = .80 to detect

a moderate effect size of d = .4 at α = .05. The power analyses presented here are

66



based on (Cohen, 1988), and provide assurance that we had adequate power to draw

accurate conclusions.

Outlier Detection and Correction

We did not remove outliers but corrected for their influence using a conserva-

tive 97.5% Winsorization procedure. Similar to clipping in signal processing, this

statistical transformation limits extreme values in order to reduce the influence of

outliers.

3.2.2 Results

Given the large sample size, even small effects are likely to be statistically significant.

Therefore, our reporting of results focuses on effect sizes, which are independent of

sample size. However, in organizing the discussion of results it is useful to establish a

cutoff on which to base the reporting of the most important results. We established

an arbitrary cutoff of > |2.5| standard deviations to organize the discussion of the

results. We still report all results in the Tables, regardless of the cutoff values.

As Table 10 and Figure 23 show, based on this cutoff, several measures were

sensitive to the longitudinal distribution of fiber sizes in the corpus callosum. From

the DTI metrics, AD most closely replicated histological density patterns for both

the smallest fiber sizes (t = -60.50, p <0.001) and the largest fiber sizes (t = 70.50,

p < 0.001). From the GQI metrics, GFA was the most sensitive to fibers greater

than 1 µm for both contrasts: B3 and S2 (t = 52.42, p < 0.001) and S2 and S3 (t

= 22.85, p < 0.001). Figure 24 shows how the effect sizes of each metric compare

to each other across differing axonal fiber size models.

As expected, the most significant NODDI metric was ICVF, which accurately

detected density patterns at the smallest fiber size (t = 25.54, p < 0.001) and at the
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largest fiber size (t = -24.66, p < 0.001). The NODDI density patterns seen in this

adult sample replicate the patterns reported by Genc et al. (2017) in a developing

sample. Across both studies, ICVF was the lowest at the isthmus and the highest at

the posterior part of the splenium. Similarly, the novel metric reported here, RDI,

accurately replicated the density pattern for the > 5 µm fiber sizes (t = 58.24, p <

0.001), and for the smallest, > 0.4 µm fiber sizes (t = -53.29, p < 0.001). These

findings indicate that both RDI and NODDI are capable of accurately measuring

axonal density for large and small fiber sizes.

3.3 Study 2.B: Developing Sample

In Study 2.B we aimed replicate the results from Study 1 in a developing sample.

The same DTI and GQI diffusion metrics and histological model were used, but with

a manually-drawn corpus callosum segmentation for each participant as previously

detailed. NODDI metrics were not able to be calculated on this sample due to

NODDI’s multi-shell requirement, not met by this sample’s single-shell MRI data.

Note that Genc et al. (2017) did examine NODDI metrics using a second acquisition

in the CMIND data set, which had different acquisition parameters and a different

shell. We focused on the single shell acquisition, as we were interested in determining

whether RDI can provide accurate results with one shell acquisition. However,

because we used the same segmentation approach as they did, we can compare our

findings to theirs in a partial replication.

3.3.1 Method

Participants

The developing sample contained 129 participants between the ages of 7-months-

old and 19-years-old (M = 8.8 years) from the Cincinnati MR Imaging of NeuroDe-
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velopment (C-MIND) database, provided by the Pediatric Functional Neuroimaging

Research Network (https://research.cchmc.org/c-mind/) and supported by a con-

tract from the Eunice Kennedy Shriver National Institute of Child Health and Hu-

man Development (HHSN275200900018C). The data are available from CMIND by

request, which facilitates validation of the results we report here. Participants in

the database are full-term gestation, healthy, right-handed, native English speakers,

without contraindication to MRI. By design, the C-MIND cohort is demographically

diverse (38% nonwhite, 55% female, median household income $42,500), intended

to reflect the US population. The summary statistics for the DTI and GQI metrics

were calculated for the full sample of 129 participants.

Parcellating the Corpus Callosum

Due to previous studies indicating the problems with applying the MNI normal-

ization to a developing sample, we manually drew the 10 ROIs for the Study 2.A

sample, following the same guidelines as were used in Study 2.A. The same data

analysis procedure was followed as in Study 2.B.

3.3.2 Results

There were notable differences when the diffusion metrics were applied to the C-

MIND developing sample. First, AD was no longer the stand-out DTI metric.

Instead, FA was the most effective DTI metric at replicating density patterns for 3

out of 4 models. It was positively related to smaller fiber sizes (t = 28.66, p < 0.001

for > 0.4 µm, t = 23.88, p < 0.001 for > 1 µm model A) and was inversely related

to the largest > 5 µm density model (t = -27.46, p < 0.001).

For the GQI metrics, GFA continued to be a reliable measure of fiber density

for all four models. RDI was also consistent for both the smallest and highest fiber

size models. In fact, RDI most closely matched the histological model for fiber sizes
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greater than 5 µm (t = 30.36, p < 0.001). The density patterns are shown in Figure

25, effect sizes in Figure 26, and full results can be found in Table 11.

3.4 Discussion

The quantification of microstructural properties of neural tissue can be informed

by advances in the modeling of diffusion-weighted imaging data. This is important

for the diagnosis and treatment of neurologic disease, especially as it relates to

properties of white matter such as axon density. In this study, we examined two

separate samples of typical adults and children. In the first sample of 840 adults from

the HCP dataset, we segmented the corpus callosum into 10 parts, and measured

the diffusion properties of each segment. These diffusion properties were modeled

using a variety of reconstruction methods based on DTI, NODDI, and GQI models.

For large fiber sizes (> 5µm), we found that the best indicators of histologically

established axonal density patterns were the DTI AD, NODDI ICVF, and RDI. For

mid-range fiber sizes (> 1µm), there were no methods that were clear standouts.

For the smallest fiber sizes (> 0.4µm), the same metrics that were sensitive to large

fiber sizes (DTI AD, NODDI ICVF, and RDI) showed the clearest differentiation.

For the developing sample of 129 children and adolescents, we generally found

the same results as in the adult sample, but there were a couple of exceptions. Unlike

the adult sample, DTI AD was not a clear differentiator. Additional measures (i.e.,

DTI FA and GQI GFA) were also sensitive measures, but this was not evident in the

adult sample. We did, however, replicate the finding for the RDI metric. As in the

adult sample, the RDI metric clearly matched the known histologic pattern of the

corpus callosum, especially for small and large fiber sizes, and indeed seemed to be

sensitive to subtle differences across the longitudinal length of the structure. These

results suggest it is possible to quantify, indirectly, differences in axonal density in
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vivo using DWI in both children and adults. Furthermore, there is clear support

that RDI is a useful metric of fiber density in both adults and children, and in

single- and multi-shell acquisition paradigms. This information has the potential

to inform researchers and clinicians about microstructural differences in a variety

of domains, for example in the examination of disease progression, of age-related

differences across typical and atypical development, and of general nervous system

structure/function relationships.

Comparison of Restricted Diffusion Imaging (RDI) to Other Metrics

in Published Literature. Our study can be conceived of as a complement to

similar investigations conducted by Genc et al. (2017) and by Raffelt et al. (2015,

2012). These authors showed that other metrics sensitive to fiber density can reliably

replicate the longitudinal pattern of axonal density in the corpus callosum. For

example, Raffelt et al. (2015, 2012) established the apparent fiber density (AFD)

measure, which they showed can be biologically interpreted as a measure of the intra-

axonal volume fraction of axons along the corresponding orientation. However, the

metric is heavily affected by the space occupied by axons, and not so much by

axonal diameter. Thus, for example, fiber bundles consisting of large axons could

have lower density than thinner axons, yet their AFD would be comparable. Despite

this, Genc et al. (2017) showed that AFD is sensitive to axonal density in larger

fiber bundles (their Figure 4), and indeed that metric best matched the histological

pattern reported by Aboitiz. But Genc et al., did not assess whether it was similarly

sensitive for smaller fiber bundles.

In our complementary investigation, we showed that, for both large and small

fiber sizes, in both adult and child samples, RDI was an excellent differentiator of

the pattern of axonal density across the longitudinal axis of the corpus callosum (see

Figure 27 for comparison with large diameter fibers). Unlike most other diffusion
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metrics, RDI does does not depend on an underlying diffusion model or numerical

optimization to estimate model parameters, making it easily applicable to a wider

range of databases and clinical scanner protocols. RDI’s sensitivity to cell density

has been useful in differentiating tissue in patients with tumors (Yeh et al., 2019;

D’Souza et al., 2019), as well as measuring therapeutic benefits of deep brain stim-

ulation (Anderson et al., 2019). In a phantom study by Yeh et al, the optimized

restricted diffusion showed an almost perfect correlation of 0.998 with cell density

(Yeh et al., 2017). Notably, that paper also showed that mean diffusivity is associ-

ated with cell density. However, we did not corroborate that here with respect to

axonal density. That is, MD is not as good as RDI at differentiating the longitudinal

pattern of fiber density in the corpus callosum. Thus, despite similar sensitivity to

cellular density in a phantom study, RDI seems to be more sensitive than MD to

fiber density in vivo. Furthermore, RDI was highly consistent across the two sam-

ples (see Figure 27). This is in contrast to other common metrics like FA, which

was not consistent across the two samples. These results suggest that RDI is a

reliable measure of fiber density across a wide age range, and it is robust to different

diffusion acquisitions. Furthermore, a main advantage of RDI is the computation

time (under a minute) which occurs as part of routine image reconstruction, thus

making it appealing in clinical settings.

Genc et al. (2017) also showed that NODDI metrics were reasonably sensitive

to the distribution of axon density in the corpus callosum. In our study, for large

fiber sizes, NODDI ICVF was the best NODDI differentiator of corpus callosum

fiber density. In other research, this measure has also been shown to be effective

at capturing axonal density across the corpus callosum (Zhang et al., 2012; Genc

et al., 2017). For example, previous studies have found that NODDI is more sen-

sitive to demyelination than DTI metrics in both human (Grussu et al., 2017) and
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mouse models (Sepehrband et al., 2015). However, despite the sensitivity, two is-

sues limit the utility of NODDI for clinical samples, especially for pediatric samples.

One is the long reconstruction times (several hours per participant in our study),

and the second is the requirement of multi-shell data acquisitions. Some software

advances have improved reconstruction times for NODDI models (to around 1 hour

per participant using Microstructure Diffusion Toolbox (MDT; Harms et al. 2017),

but RDI reconstruction times are still much shorter (around 1 minute per partici-

pant), and our data suggest that, for fiber density, RDI can provide accurate results

even for single-shell acquisitions. This does not entirely discount the effectiveness of

NODDI ICVF as a metric for assessing fiber density, but it does suggest that RDI

is another useful addition to the diffusion toolkit, and that it has important clinical

applicability.

RDI also outperformed DTI metrics. For our adult sample, our density patterns

were similar to previous investigations, with an increase in FA seen in the posterior

segments of the corpus callosum (Caminiti et al., 2013; Bjornholm et al., 2017) and

a peak of MD in the isthmus (Bjornholm et al., 2017), indicating that DTI metrics

are sensitive to structural differences in the corpus callosum. But DTI metrics were

inconsistent between the adult and child samples. Furthermore, despite being widely

utilized as measures of microstructural change, DTI metrics lack specificity when it

comes to measuring specific characteristics of microstructure (Daducci et al., 2014).

The inconsistencies we saw in our DTI metrics might have been caused by differences

in axonal density, but they might also be associated with other tissue properties,

such as lower myelination (Lebel and Deoni, 2018; Reynolds et al., 2019a), increased

orientation dispersion (Jones et al., 2013), or less mature axonal integrity within

the developing sample (Kumar et al., 2012; Qiu et al., 2008). Due to the inherent

nonspecific nature of DTI, it remains difficult to discern what caused the differences
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in quantification between samples, which highlights well-established drawbacks to

DTI metrics.

Limitations. One inherent limitation of this study is that there are many more

available diffusion-weighted imaging reconstruction algorithms than we studied here.

We restricted our comparison to the novel RDI method and compared it to DTI,

GQI, and NODDI techniques, but there are other algorithms that should also be

considered. A second limitation of our study is that we only examined one brain

region. The corpus callosum is a coherently orientated structure with no crossing

fibers. Our study does not address how accurate these metrics would be at measuring

density when crossing fibers are present, which is a known drawback of DTI in

particular, but might also affect more recently-developed metrics such as NODDI

and RDI. While our study provides strong evidence for the utility of NODDI and

RDI for measuring axonal density, investigations of other brain regions would further

expand these results and potentially elucidate different clinical applications.

Conclusions. The study provided novel evidence that RDI can be used to mea-

sure axonal density in children and adults, even for single-shell data. The histological

model of corpus callosum anterior-posterior density pattern was replicated using this

novel in-vivo metric across two independent samples. NODDI’s ICVF measure was

also sensitive to axonal density in the adult population. The encouraging findings

support the hypothesis that RDI and ICVF can be used for measurement of axonal

density as a biomarker for demyelination disorders, such as multiple sclerosis, in the

future.

Establishing reliable and effective measures of axonal density is potentially sig-

nificant for the study of early symptomatology, progression, and possible underlying

causes of disorders characterized by white matter and other neural pathologies, such

as multiple sclerosis (Grussu et al., 2017), amyotrophic lateral sclerosis (Broad et al.,
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2019), dysplasia (Winston et al., 2014), epilepsy (Winston et al., 2014), and immune

cell infiltration Andica et al. (2019). Many previous relationships between axonal

density and clinical disorders were fully dependent on histology, but through the

advancements of DWI, these disorders can be studied in vivo, which holds poten-

tial for making earlier diagnoses and may contribute to the design of more specific,

directed treatment plans.
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CHAPTER 4

STUDY 3

4.1 Research Question

Diffusion tensor imaging (DTI) has played a pivotal role in mapping brain matura-

tion, indicating increasing amounts of myelination and axonal growth and organiza-

tion throughout development (Lebel and Beaulieu, 2011; Lebel et al., 2008; Tamnes

et al., 2018). While DTI has offered many invaluable insights into the events that

occur during brain development, it lacks the specificity required to disentangle indi-

vidual factors, such as myelination, axonal growth, density, and organization, that

are occurring simultaneously. Neurite orientation dispersion and density imaging

(NODDI) is a novel, advanced three-component diffusion model that offers more

detailed quantification of microstructural changes (Zhang et al., 2012), and could

offer more detailed insights into the changes occurring during brain maturation and

associated behaviors.

In this study, we used NODDI implementation to measure axonal and dendritic

density and coherence within white and gray matter of typically and atypically

developing children. NODDI was selected as the model of choice given its ability to

measure density and orientation in both white and gray matter (Zhang et al., 2012),

therefore allowing us to examine subcortical regions, which other methods that we

tested in Study 2 are less suitable for.

The two primary metrics derived from the NODDI model that are of particular

interest to us for this study are neurite density index (NDI) and orientation disper-

sion index (ODI). Increased NDI indicates greater myelination, axonal growth, or

neurite density, while ODI measures neurite orientation dispersion, axonal fanning,

and neural coherence (Genc et al., 2017; Mah et al., 2017; Zhang et al., 2012). As a
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result of increases in myelination and synaptic formation during brain development,

we expect to see an increase of NDI across age, while ODI is expected to remain the

same.

Within a particular brain region, increased NDI can either be interpreted as

greater myelination and development (Mah et al., 2017), or as a lack of proper

synaptic pruning (Genc et al., 2018). Delayed pruning has been linked with ADHD

in the past (Oades et al., 2010), and the excess synapses could reduce network

efficiency needed for processing speed on executive function tasks (Merolla et al.,

2014). Increases in ODI typically indicate greater axonal fanning and lack of neural

coherence (Merolla et al., 2014), but lower ODI could also indicate lower complexity

of neurite branching (Morris et al., 2018; Zhang et al., 2012).

We examined whole brain microstructure differences, particularly neuronal den-

sity and orientation, between the typically developing sample and the ADHD-

diagnosed sample to examine potential neurobiological differences between the groups.

Furthermore, we investigated the microstructural differences in prefrontal cortex re-

gions, specifically the pre-SMA, SMA, pars opercularis, and pars triangularis, as

well as the caudate and putamen, and examined whether these differences were

associated with language and executive function performance.

The pre-SMA is involved in higher-order motor control (e.g., planning and se-

quencing of movements; Ikeda et al. 1999; Peck et al. 2009; Scangos et al. 2013;

Vergani et al. 2014). The left pre-SMA, in particular, is thought to be involved

in linguistic processing (Catani et al. 2013; Makuuchi et al. 2012; McNealy et al.

2010; Zentgraf et al. 2005). A recent study has suggested that the right hemisphere

pre-SMA is involved in language inhibition, especially when it comes to switching

between languages (de Bruin et al., 2014). Given the pre-SMA’s known relation

to choosing correct words, we expect to see both the left and right pre-SMA being
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related to higher verbal fluency scores, since these tasks measure one’s ability to list

out words that are either in the right category or start with the correct letter while

inhibiting incorrect responses.

Due to the SMA’s cytoarchitecture, it is most commonly thought to be involved

in motor execution, particularly in speech initiation and production (Bohland and

Guenther 2006; Connor et al. 2010; Peck et al. 2009; Vergani et al. 2014). The

SMA is also active bilaterally during silent repetition tasks, but the left SMA shows

greater activation in the left hemisphere in both the left and right-handed adult

participants, possibly as a result of its involvement in speech (Dalacorte et al.,

2012). Forster and Webster (2001) examined the role of SMA speech-motor control

in stutterers versus non-stutterers, and found that the coordination deficits seen

in adult stutterers are mediated by the SMA. Finally, in cases where the SMA is

impacted by tumor, it is known to cause what is known as “SMA syndrome”, which

leads to contralateral akinesia and mutism (Vergani et al., 2014). This highlights

its importance in both speech and motor execution. Given these previous findings,

we expect the left SMA would be linked to higher scores on phonemic articulation.

The left inferior frontal gyrus (IFG) has, in particular, been associated with

the process of “selection” among competing semantic and/or phonological repre-

sentations. Thus, the literature suggests several functions associated with the IFG,

such as resolution of semantic competition (Grindrod et al., 2008), semantic selec-

tion (Grindrod et al. 2008 ; Kan and Thompson-Schill 2004), sentence integration

(Zhu et al., 2009), and word retrieval (Gold and Buckner 2002; Smith et al. 2004).

Specifically, the pars opercularis (Op) is thought to be more involved in phonological

processing/phonological selection, while the pars triangularis (Tri) is thought to be

involved in semantic processing/semantic selection (Booth et al., 2004; Katzev et al.,
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2013; Lau et al., 2008). Therefore, we expect to see the right Op being related to

semantic fluency scores and left Tri being associated with phonemic fluency scores.

The caudate and putamen have both been linked to language, especially for

nouns, verbs, and grammatical learning for people speaking a secondary language

(Chan et al., 2008; Tagarelli et al., 2019) as well as being associated with devel-

opmental language impairment (Lee et al., 2013). Bilateral damage to these brain

regions has been shown to cause deficits in both speech production and sentence

comprehension (Pickett et al., 1998).

More specifically, the putamen is thought to be responsible for motor role in

speech while the caudate plays a role in cognitive control (Chan et al., 2008; Hervais-

Adelman et al., 2015; Robles et al., 2005). In children, the left putamen in particular

has been associated with phonological processing (Cherodath et al., 2017) and the

right caudate has been linked with specific speech impairment (SLI) (Badcock et al.,

2012) and speech motor planning, particularly in children who stutter (Foundas

et al., 2013). Therefore, we hypothesize that we expect to find associations between

the left putamen and phonemic skills, while right caudate would be associated with

semantic verbal fluency.

When it comes to executive function, Scangos et al. (2013) have shown that the

pre-SMA and SMA play a role in future action selection, which is a key component

of executive control. Similarly, in humans, a pre-SMA lesion preserves a person’s

ability to inhibit responses, but creates a specific deficit in rapid switching between

responses (Smith et al., 2004). Since previous studies suggest that pre-SMA and

SMA would be related to task switching, we hypothesized that these regions would

be related to successfully being able to adhere to rule changes presented in the Di-

mensional Change Card Sort (DCCS) task and Head-Toes-Knees-Shoulders (HTKS)

task.
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Several studies have found that the right hemisphere inferior frontal gyrus, along

with the right pre-SMA (Crone et al., 2006; de Bruin et al., 2014; Smith et al., 2004;

Scangos et al., 2013), is involved in domain general inhibition (Barber et al., 2013;

Chavan et al., 2015; de Bruin et al., 2014; Hampshire et al., 2010; Hughes et al.,

2013; Lenartowicz et al., 2011; Swann et al., 2012). Aron et al. (2004) found that a

lesion in the right IFG, but not the left, caused deficits in response inhibition, and

the severity of the deficit depends on the size of the right IFG lesion. Furthermore,

the data more strongly suggested involvement of the right Tri compared to Op. The

authors have suggested, in subsequent publications, that the right inferior frontal

cortex may act as a “brake” for executive control (Aron et al., 2014). Therefore,

we expected that higher organization within the right Op and Tri would lead to

improved executive function performance in our participants.

The caudate and putamen have been associated with executive function as well,

particularly for executive control and spatial attention (Jarbo and Verstynen, 2015).

In particular, increased connectivity of the caudate in adults has been linked with

better performance on working memory tasks (Gordon et al., 2015; Huang et al.,

2017) while caudate lesions are related to set-shifting difficulties (Svegar et al.,

2016). On the other hand, greater volume in the putamen is related to greater

performance in attention (Zimmerman et al., 2006) while right lateralization of the

putamen has been associated with higher inhibitory control (Ardila et al., 2018).

Therefore, we hypothesize that neurite microstructure in the caudate and putamen

will be associated with higher scores on our executive function measures.

Children diagnosed with ADHD have been shown to have reduced caudate and

putamen volume bilaterally (Mahone et al., 2011; Qiu et al., 2011). One study has

also found that if no volume differences between ADHD and control samples are

present, there is still a significant asymmetry seen in ADHD samples, such that

80



the left putamen is smaller than the right (Wellington et al., 2006). In adults,

ADHD-related hyperactivation was found in the right caudate and left putamen

(Cortese et al., 2016). Therefore, we hypothesize that our ADHD sample will have

microstructural differences in the caudate and putamen compared to the typically

developing group, and possibly have laterality differences, with the right putamen

being larger than the left when compared to controls.

4.2 Method

We used the same 196 4- to 7-year-old children and same language and executive

function measures detailed in the Method section of Study 1. We have established

that axonal density can be measured in vivo in children and adults using Restricted

Diffusion Imaging (RDI) and in adult samples using NODDI in Study 2, but we were

previously unable to test NODDI’s applicability to a developing sample because the

C-MIND dataset was incompatible with NODDI implementation. For Study 3, we

will use the multi-shell neuroimaging data from the AHEAD project to measure

region-based neurite microstructure in our typically and atypically developing sam-

ples using an improved NODDI method, detailed below.

Neurite orientation dispersion and density imaging (NODDI) Metrics.

As explained in Study 2, NODDI works by combining the three-component tissue

model, which distinguishes between intracellular, extracellular, and cerebrospinal

fluid (Zhang et al., 2012). Given the very long computation times (4 to 6 hours

per participant) in Study 2, we chose to use the Microstructure Diffusion Toolbox

(MDT; Harms et al. 2017), which improves both run time and robust fit, to compute

NODDI metrics for this study. We then focused on neurite density index (NDI)

and orientation dispersion index (ODI) metrics. NDI is the fraction of tissue that

contains neurites (axons or dendrites), and it is calculated:
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NDI =
win

win + wex

(4.1)

in which win represents the intracellular volume fraction and wex represents the

extracellular volume fraction. ODI is a proxy for complexity of neurite branching

and spatial configuration, and is calculated:

ODI = arctan2(1, κ× 10)× 2

π
(4.2)

where κ represents the dispersion index of the Watson distribution. Once MDT

runs the whole brain NODDI implementation, we extract the mean NDI and ODI

values for each of our 12 brain regions using the Lausanne atlas parcellation, as

described in Study 1.

Data analysis. The data analysis for Study 3 uses the same approach as Study

1, except now we will look at region-based data rather than structural connectiv-

ity. We conducted robust linear regression to examine age-related differences and to

test the association between the NDI and ODI values of brain regions to behavioral

outcomes. The brain region data was Winsor outlier-corrected to avoid having to

completely remove any outliers. Regressions were used to examine the full sample

(both TD and ADHD samples) using a transdiagnostic approach, and then a cate-

gorical diagnosis approach in which we examined the TD sample separately, ADHD

sample separately, and also tested for diagnosis interaction effects.
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4.3 Results

Region Means and Group Differences

The NDI and ODI means for each brain region are shown on Table 12. For whole

brain microstructure, we see that the ADHD group has lower NDI (β = -0.18, p

< 0.05, df = 194) and higher ODI (β = 0.15, p < 0.05, df = 194). We found

significant group differences for both left and right hemisphere using NDI and ODI

metrics. The ADHD sample had higher NDI in the left Op (β = 0.15, p < 0.05, df

= 191) and left caudate (β = 0.17, p < 0.05, df = 193) than the typically developing

group, controlling for whole brain NDI. The opposite pattern is seen with ODI, with

the ADHD group having decreased orientation dispersion in the left and right Tri

(β = -0.17, p < 0.05, df = 191; β = -0.18, p < 0.01, df = 191, respectively), left

and right caudate (β = -0.19, p < 0.01, df = 193; β = -0.15, p < 0.05, df = 193,

respectively), and left and right putamen (β = -0.21, p < 0.01, df = 193; β = -0.15,

p < 0.05, df = 193, respectively).

There were also differences in strengths of lateralization. The preSMA ODI

was left lateralized in both groups, but significantly more so in the ADHD sample

(β = 0.16, p < 0.05, df = 189, β = 0.17, p < 0.05, df = 192). Secondly, NDI

of the putamen was right lateralized in the TD sample, while showing a trending

association (p = 0.08) towards left lateralization in the ADHD sample (β = 0.19, df

= 193). Neurite density is thought to be inversely related to brain volume (Genc

et al., 2018), so this implies that the left putamen in the ADHD sample might have

less volume than the right.
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Age Related Change

We found that NDI captured age-related differences while ODI remained stable

across development in 4- to 7-year-old children. This was seen across the whole brain

with NDI increasing across age (β = 0.10, p < 0.001, df = 192), while remaining

insignificant for ODI (p = 0.92) . NDI steadily increased across development in the

right Op (β = 0.10, p < 0.05, df = 189), left and right caudate (β = 0.12, p < 0.05,

df = 191, β = 0.16, p < 0.01, df = 191, respectively), and left and right putamen

(β = 0.21, p < 0.001, df = 191, β = 0.16, p < 0.01, df = 191, respectively). The

only relationship with laterality we found was that the preSMA NDI becomes more

left lateralized across development (β = 0.08, p < 0.001, df = 188). The full results

are in Table 13, and the significant age-related are plotted in Figure 28.

Neurite density, as measured by NDI, appears to develop in a similar pattern

across development for both typically and atypically developing children. In con-

trast, ADHD moderates the change of orientation dispersion across development.

Specifically, there are interactions between ADHD diagnosis and the age-related dif-

ferences in ODI for both the right Tri and left putamen (β = -0.11, p = 0.055, 95%

CI does not cross zero; df = 187, β = -0.12, p < 0.05, df = 189, respectively). For

both regions, ODI significantly decreases across development in the ADHD sample

(β = -0.18, p < 0.05, df = 93; β = -0.17, p < 0.05, df = 95, for right Op and

left putamen, respectively), while remaining unchanged in the typically developing

sample. There were no significant laterality differences across development.
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4.3.1 Language Findings

NEPSY-II Results: Transdiagnostic Approach.

First, we analyzed our data without consideration to ADHD diagnosis, with the

purpose of examining which of our 12 brain regions are related to verbal fluency in

the full sample when measured with NEPSY. We had NEPSY scores for 194 out of

196 children. Overall, the mean of the 4 NEPSY tasks and their associated total

scores are reported in Table 3 and were explained in Study 1.

Using robust regression models, we did not find any direct associations be-

tween neurite density or orientation dispersion and verbal fluency. We did find

that greater right laterality of neurite density within the caudate is associated with

higher category-based semantic verbal fluency scores (β = -0.15, p < 0.05, df = 186),

which supports our hypothesis that the right hemisphere would be more involved in

semantic rather than phonemic tasks.

NEPSY-II Results: Categorical Diagnosis Approach.

We compared the differences between the TD and ADHD samples, with the purpose

of examining whether the relationship of neurite density and orientation dispersion

in brain regions with phonemics and semantics was affected by diagnosis. We found

group differences on NEPSY performance between TD and ADHD, which are out-

lined on Table 4 and displayed in Figure 5. The behavioral group differences were

explained in detail in the results section of Study I, but overall, the TD group

outperformed the ADHD group on phonemics and semantics.

NEPSY-II Main Effects for TD Sample. Upon examining the 96 TD chil-

dren, we found no direct associations between NDI and ODI metrics within the brain

regions in relation to verbal fluency, but did find that, in the TD sample, higher left
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laterality of SMA neurite density was associated with better semantic verbal fluency

(β = 0.29, p < 0.05, df = 84).

NEPSY-II Main Effects for ADHD Sample. Within our 100 children in the

ADHD sample, we also did not find any direct associations between NODDI metrics

and fluency, but did find laterality relationships. Left laterality of neurite density

within the SMA was related to better scores on the category-based phonemics task

(β = 0.22, p < 0.05, df = 88). Greater left laterality of orientation dispersion in

the caudate was associated with higher initial-letter phonemic scores (β = 0.19, p <

0.05, df = 92), while greater right laterality of neurite density was linked with higher

semantic scores (β = -0.23, p < 0.05, df = 93). The NDI laterality associations can

be found on Figure 29.

NEPSY-II Diagnosis Interaction Effects. There were no significant inter-

action effects of group on the relationship between the NDI and ODI of our 12 brain

regions and NEPSY-II verbal fluency scores.

SRT Results: Transdiagnostic Approach.

As a result of technical issues, some inaudible voice recordings in quiet children,

and some participants refusing to do the task, we had scores for 115 out of the 196

children. Across all 18 words, there were 50 total phonemes. The full explanation

of overall group means is detailed in the Study 1 results section and is summarized

on the bottom of Table 3.

We ran robust regression models to test the association between the ODI and

NDI of 12 brain regions and SRT phonemic articulation, controlling for age, sex,

whole brain microstructure, movement in the scanner, and SES. We found that the

right preSMA NDI was positively related to higher SRT scores (β = 0.18, p < 0.05,

df = 104), which is further supported by increased right laterality of the region
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being associated with higher SRT scores as well (β = -0.20, p < 0.05, df = 104).

Lastly, greater left laterality, as measured by ODI, in the putamen was related to

higher SRT scores (β = 0.15, p < 0.05, df = 106).

SRT Results: Categorical Diagnosis Approach.

We compared the differences between the TD and ADHD samples, with the pur-

pose of examining whether the relationships between brain regions and phonemic

articulation were affected by diagnosis. We found that the TD group significantly

outperforms the ADHD group (β = -0.19, p < 0.05, df = 110). The TD sample had

an 86.19% average accuracy on the task, while ADHD had 78.98% average accuracy.

The following analyses will examine whether the FAT was differentially related to

SRT in the TD and ADHD samples.

SRT Main Effects for TD Sample. In the typically developing sample, the

only significant association we found was that increased neurite density in the right

preSMA has a positive relationship with better phonemic articulation (β = 0.20, p

< 0.05, df = 47). No significant laterality associations were found.

SRT Main Effects for ADHD Sample. Similar to what was seen in the TD

sample, we found that higher NDI in the right preSMA was associated with higher

SRT scores in the ADHD sample, but to a greater extent (β = 0.33, p < 0.05, df =

50). Secondly, we also see higher right laterality of neurite density in the preSMA

was related to better SRT scores (β = -0.47, p < 0.05, df = 50).

SRT Diagnosis Interaction Effects. There were no significant interaction

effects of group on the relationship between the NDI and ODI of our 12 brain

regions and SRT phonemic articulation scores. All significant relationships between

brain regions and speech and language scores can be found on Table 14.
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4.3.2 Executive Function Findings

NIH Toolbox Results: Transdiagnostic Approach.

First, we analyzed our data without consideration to ADHD diagnosis, with the

purpose of examining whether the 12 brain regions were associated with executive

function in the whole sample when measured with the NIH Toolbox Flanker and

DCCS. We had flanker data for 164 children and DCCS data for 167 out of our 196

children. We have decided to use the age-corrected standard score NIH Toolbox

results, which compare the test-takers score to that of all other test takers at the

same age. Table 6 displays the mean task scores and how they relate to our control

variables.

Using robust regression models. we examined whether the neurite density and

orientation dispersion of 12 brain regions were related to flanker and DCCS scores,

controlling for sex, movement in the scanner, whole brain microstructure, and SES.

Age was controlled for within the task through the use of age-corrected values. The

full results for all executive function findings reported below can be found in Table

15. As seen in Figure 30, we found that increased left laterality of neurite density

in the SMA was positively related to higher scores on the flanker task (β = 0.20, p

< 0.05, df = 153). Higher left laterality of the orientation dispersion in SMA was

also linked with higher scores on the DCCS (β = 0.20, p < 0.05, df = 155).

NIH Toolbox Results: Categorical Diagnosis Approach.

We compared the differences between the TD and ADHD samples, with the purpose

of examining whether the association between brain regions and executive function

was affected by ADHD diagnosis. We found group differences on NIH toolbox tasks

between TD and ADHD, which are outlined on Table 7 and displayed in Figure
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14. The differences we found persisted even when controlling for age, sex, and SES.

We found that the TD group greatly outperforms the ADHD group on both flanker

(β = -0.34, p < 0.0001, df = 161) and card sort tasks (β = -0.27, p < 0.0001, df

= 163) . We looked at this more closely by examining the TD and ADHD groups

individually.

NIH Toolbox Main Effects for TD Sample. Upon examining the TD group

separately, we find that decreased neurite density in the left SMA was associated

with higher flanker scores (β = -0.27, p < 0.05, df = 67). When we examined orien-

tation dispersion, we found many brain regions associated with executive function.

Specifically, we found that the ODI of the left and right SMA (β = -0.26, p < 0.05,

df = 68; β = -0.29, p < 0.05 df = 68, respectively), left Op (β = -0.31, p < 0.05,

df = 70), and right preSMA (β = -0.27, p < 0.05, df = 69) were all negatively

associated with DCCS scores. Higher orientation dispersion was also linked with

lower flanker scores in 10 out of 12 regions that we examined, including the left

and right preSMA (β = -0.28, p < 0.05, df = 67; β = -0.24, p < 0.05, df = 68,

respectively), left and right SMA (β = -0.31, p < 0.05, df = 67; β = -0.28, p <

0.05, df = 67, respectively), the left Op (β = -0.26, p < 0.05, df = 69), the left Tri

(β = -0.30, p < 0.05, df = 69), the left and right caudate (β = -0.34, p < 0.01, df

= 69; β = -0.30, p < 0.05, df = 69, respectively), and the left and right putamen

(β = -0.23, p < 0.05, df = 69; β = -0.25, p < 0.05, df = 69, respectively). All ODI

results are plotted in Figure 31 for direct comparison.

Laterality of orientation dispersion also plays a role in executive function perfor-

mance on the NIH Toolbox tasks. Greater left laterality of the preSMA and SMA

(β = 0.27, p < 0.05, df = 68; β = 0.27, p < 0.05, df = 68, respectively) was related

to better outcomes on the DCCS task, while greater right laterality of the Op was

associated with higher scores on the same task (β = -0.30, p < 0.05, df = 70).
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Lastly, greater left laterality of the preSMA was associated with better scores on

the flanker task (β = 0.26, p < 0.05, df = 67).

NIH Toolbox Main Effects for ADHD Sample. There were no significant

associations between brain regions and NIH Toolbox scores for the ADHD sam-

ple. The direct relationships were all in the negative direction, but none reached

significance.

NIH Toolbox Diagnosis Interaction Effects. Results indicated that ADHD

directly moderated the relationship between the left SMA NDI and flanker scores

(β = 0.13, p < 0.05, df = 152). Within the TD group, lower neurite density in

the left SMA was related to better flanker scores (β = -0.26, p < 0.05, df = 67),

while it did not have a significant impact on the ADHD sample. As shown in Figure

32, both the TD and ADHD group showed a decline in scores with an increase of

left SMA NDI, but the TD group had a much stronger relationship, thus causing a

significant interaction.

We also discovered that ADHD diagnosis affected the relationships between

preSMA and Op ODI laterality and DCCS scores (β = -0.15, p < 0.05, df =

155, β = 0.15, p < 0.05, df = 156, for preSMA and Op, respectively). For the TD

sample, greater left laterality of the preSMA ODI was associated with better DCCS

scores (β = 0.27, p < 0.05, df = 68), while laterality had no significant effect within

the ADHD sample. While laterality of the preSMA was not significant within the

ADHD group, the relationship was still in the same, positive direction, just to a

much smaller extent. Lastly, we found that right laterality of the Op ODI was re-

lated to higher scores on the DCCS task in the TD sample (β = -0.30, p < 0.05, df

= 70), while having no affect in the ADHD sample. These interactions are pictured

in Figure 33.
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HTKS: Transdiagnostic Approach.

First, we analyzed our data without consideration to ADHD diagnosis, with the

purpose of examining whether brain regions were related to executive function in

the full sample when measured with the HTKS. We will use the HTKS total scores

for all 3 parts. The score can range from 0 to 60, depending on how accurately the

child did each pair-switch. 179 out of 196 children in our full sample completed the

task with an average score of 32.68. We saw a very high correlation with age (β =

0.45, p < 0.001, df = 177), sex (β = -0.21, p < 0.001, df = 177), and whole brain

microstructure (β = 0.26, p < 0.001, df = 177), and no significant association with

SES. Overall, older children performed better on the task, with female participants

outperforming males, and a positive association with overall brain microstructure

integrity and HTKS performance. The full break down can be found on Table 6.

Using robust linear models to test associations between brain regions and HTKS

performance, we found that higher neurite density in the right pars triangularis re-

gion were associated with higher scores (β = 0.16, p < 0.001, df = 170). None of the

other 11 brain regions were associated within the full sample, and no relationships

with brain laterality were found.

HTKS Main Effects for TD Sample. Out of the 96 children in the TD

sample, we had HTKS data for 85. Higher neurite density in the right Tri was related

to higher HTKS scores (β = 0.25, p < 0.05, df = 78). Orientation dispersion, much

like the NIH Toolbox results suggested, was negatively associated with executive

function on the HTKS task. In particular, higher ODI in the the left preSMA (β =

-0.21, p < 0.05, df = 76), the left and right SMA (β = -0.23, p < 0.05, df = 76; β

= -0.23, p < 0.05, df = 76, respectively), left caudate (β = -0.24, p < 0.05, df =
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78), and right putamen (β = -0.21, p < 0.05, df = 78) were all negatively related

to HTKS scores.

Right laterality of neurite density in the inferior frontal gyrus was associated

with better executive function performance. Specifically, greater right laterality of

the Op (β = -0.23, p < 0.05, df = 78) and Tri (β = -0.23, p < 0.05, df = 78) regions

were both linked to higher scores on HTKS.

HTKS Main Effects for ADHD Sample. Out of the 100 children in the

ADHD sample, we had HTKS data for 94. No significant direct or laterality asso-

ciations were found for this sample using NODDI metrics.

HTKS Diagnosis Interaction Effects. No significant moderator effect of

ADHD diagnosis was discovered for HTKS performance with any metric or brain

region.

4.4 Discussion

NODDI is a novel diffusion model that offers enormous promise for illuminating mi-

crostructural processes involved in brain development. Through the use of NODDI

metrics, our study provided further evidence of how myelination and synapse for-

mation increase across maturation in the developing brain during the formative

preschool years. We found that certain brain regions, particularly the right pars

opercularis and the bilateral caudate and putamen, show a pattern of neurite den-

sity increase that is significantly different from that of the whole brain. Further,

our findings suggest that children diagnosed with ADHD have lower NODDI neurite

density and higher orientation dispersion than typically developing children. While

this hasn’t been tested with NODDI previously to our knowledge, these findings

confirm past work (Wu et al., 2019) that has also found lower neurite density in

ADHD populations through the use of return-to-orientation probability (RTOP).
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We also showed that orientation dispersion is decreasing between the ages of 4 to 7

in the ADHD sample but not in the typical sample. Taken together, this could in-

dicate that children with ADHD have delayed myelination and synaptic formation,

as well as less coherent neural organization. Neurite density and neural coherence

differences between our TD and ADHD sample can potentially explain executive

function outcomes for children with ADHD.

Relationships between brain regions and speech and language. Our re-

sults indicated, regardless of ADHD diagnosis, higher neurite density within the right

preSMA was associated with better phoneme articulation. We expected phoneme

articulation to be dependent on the left SMA, which is frequently associated with

speech production (Bohland and Guenther, 2006; Vergani et al., 2014), rather than

the preSMA, which handles higher-order motor control and linguistic processing

(Vergani et al., 2014; Zentgraf et al., 2005). While unexpected, the association be-

tween right preSMA and SRT coincides with previous work showing that the right

preSMA is involved in speech motor control (Aron and Poldrack, 2006) and conflict

resolution between competing associations involved in speech production (Ter Mi-

nassian et al., 2014). Therefore, we stipulate that young children required the right

preSMA to be well-developed in order to inhibit off-target words within the SRT.

Besides being a speech articulation task, the more difficult target words (such as 3

and 4 syllable nonsense target words), tax working memory and motor control, so

our findings implicate that the right preSMA might contribute to improved perfor-

mance.

A second surprising finding was that higher left laterality of the SMA was as-

sociated with semantic scores in the typically developing sample. In Study 1, we

found evidence to support the right hemisphere FAT having a greater association

with semantic tasks while the left hemisphere FAT handled phonemic tasks, so we
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expected higher right laterality in the SMA to be related with semantic scores. A

potential reason for this conflicting result could be the difference between looking

at structural connectivity, such as the FAT, compared to region-based neurite den-

sity. Greater left laterality of the SMA region might be associated with improved

semantic fluency when the region is examined independently, while the structural

connection between the SMA and inferior frontal gyrus could benefit from right

lateralization for the same task.

In the ADHD sample, the laterality of the caudate confirmed our hypothesis that

left hemisphere is involved with phonemics while right is involved in semantic tasks.

We find that higher left laterality of caudate ODI and SMA NDI is associated with

better NEPSY initial-letter phonemic scores and higher right laterality of caudate

NDI is associated with NEPSY category-based semantic fluency. Interpretation of

ODI can be two-fold: higher ODI is frequently linked to a less efficient brain network

and higher neurite incoherence (Genc et al., 2018; Mah et al., 2017), but it can also

indicate higher gray matter complexity and greater connectivity (Morris et al., 2018;

Andersson et al., 2003; Zhang et al., 2012).

While we had more significant findings for the ADHD sample than the TD sam-

ple for language tasks, all directions were in the same direction and had a similar

slope. TD was trending for many of the same associations found in ADHD, and

no significant interactions were found. This indicates that differences between neu-

rite density and dispersion within the 12 brain regions we examined in the TD and

ADHD samples cannot explain the differences seen in language and speech articu-

lation seen between the groups.

Differential associations between brain regions and executive function.

When we examined the relationships between our 12 brain regions and executive

function performance, we found many consistent results within the TD sample. We
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found that lower neurite density in the left SMA was associated with higher scores

on the flanker task, possibly indicating that proper synaptic pruning in this region

caused the lower NDI and improved performance. Lower NDI’s relation to better

behavioral outcomes is not unheard of; Genc and colleagues have previously reported

that lower NDI is associated with higher IQ, processing peed, and a more efficient

neural network (Genc et al., 2018).

When orientation dispersion was observed, we found 10 brain regions were asso-

ciated with flanker task performance. Within the left and preSMA, left and right

SMA, left pars opercularis, left pars triangularis, and left and right caudate and

putamen, lower ODI values were related to better performance on the flanker task.

Since low ODI values can indicate higher neurite coherence within the area, we take

these results to mean that greater organization within these brain areas can poten-

tially be linked to executive function performance in a typically developing sample.

Majority of our findings show that both left and right hemisphere contribute to ex-

ecutive function outcomes, implicating a distributed organization of the developing

brain. Both left and right preSMA were related to flanker, but laterality analyses

showed that higher right laterality of the region was associated with better scores.

Our results suggested that the prefrontal cortex regions were related to task-

switching ability, as measured by the DCCS, in the TD sample. In particular,

lower orientation dispersion, therefore higher neural coherence, in the right preSMA,

left and right SMA, and left Op was associated with better scores on the NIH

Toolbox DCCS. This was further supported with laterality analyses. Our findings

fit into current literature which shows that the pre-SMA and SMA are related to

rapid response/rule switching and inhibitory control (Aron, 2007; Crone et al., 2006;

Gruszka et al., 2017; Nachev et al., 2007; Smith et al., 2004), which are required to

inhibit a response when the rules of the DCCS game change.
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Given the many executive function factors that the HTKS task taps into, it comes

as no surprise that many regions of the brain were associated. In the TD sample,

lower neurite orientation dispersion in the left preSMA, left and right SMA, left

caudate, and right putamen, as well as higher neurite density in the pars triangularis,

contributed to better HTKS performance. Furthermore, right laterality of neurite

density within the pars opercularis was associated with improved executive function

outcomes as well. These findings further support preSMA and SMA’s involvement

in rule switching mentioned above, and also confirm previous studies on adults that

have shown the right inferior frontal gyrus is important for inhibitory control (Aron

et al., 2014; Hampshire et al., 2010; Hughes et al., 2013; Swann et al., 2012).

The striatum’s association with executive function on the HTKS task partially

confirmed our hypotheses. In our typical sample, greater neurite organization in

the right putamen was linked to better HTKS performance, which coincides with

previous studies showing that right putamen being related to inhibitory control and

motor cancellation (Ardila et al., 2018; Guo et al., 2018). We hypothesized that

the right caudate would be associated with executive function, given its relation to

set-shifting (Svegar et al., 2016), but our results show that orientation dispersion

in the left caudate was related to better HTKS scores. This was surprising, but

not unheard of; De Simoni et al. (2018) found that the left caudate consistently

predicted switching on the Stroop inhibition task. While we expected more right

hemisphere regions to be associated with executive function tasks, both hemispheres

are involved. This could be attributed to the right hemisphere handling inhibition

while the left hemisphere is responsible for reasoning (Ardila et al., 2018).

While the relationships between the TD and ADHD samples were similar, three

significant interactions were identified. Specifically, we found that ADHD diagnosis

moderates the relationship between left SMA NDI and flanker scores, with lower
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neurite density in the region significantly improving flanker scores (β= -0.27, p

< 0.05), while having a much smaller effect within the ADHD group (β= -0.11,

p > 0.05). Similar associations were seen with orientation dispersion laterality

within the preSMA and Op in relation to rule-switching behavior in the DCCS.

We found that higher left laterality of the preSMA and higher right laterality of

the Op in the TD sample were both associated with better performance during

card sort, while laterality relationships were insignificant for the ADHD sample.

This could indicate that children with ADHD do not benefit from neurite density

and orientation in the same way that typically developing children do, indicating

differences in microstructral brain development. This will be further discussed in

the general discussion.

Limitations and future directions. It is important to note that white matter

of the brain is saturated with long-range myelinated axons, and contains significantly

fewer cell bodies than gray matter (Purves, 2008). Therefore, NODDI might be

missing important findings within our white matter prefrontal cortex regions given

the lower number of neurites. Secondly, while we examined 12 brain regions, previous

work has also implicated differences in the hippocampus and thalamus as being

associated with ADHD symptomatology (Rubia, 2018; Hoogman et al., 2017; Zepf

et al., 2019), so the neurite characteristics of these regions could be examined in the

future.

Conclusions. This study provides novel information about neurite density char-

acteristics within an ADHD sample. We found that, compared to the typically

developing group, children in the ADHD sample displayed lower neurite density

and higher neurite orientation dispersion throughout the brain, possibly indicating

delayed synapse formation and increased axonal fanning. When examining brain-

behavior associations across the full sample of typically and atypically developing
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children, we found that the neurite density within the right hemisphere preSMA di-

rectly contributed to increases in phonemic articulation, while right laterality of the

striatum was related to improved semantic fluency and articulation. Regardless of

ADHD diagnosis, the transdiagnostic approach revealed that the right pars triangu-

laris and right laterality of the SMA were associated with executive function ability.

When ADHD diagnosis was added in as an interaction variable, we found that chil-

dren diagnosed with ADHD do not benefit from neurite microstructure within the

preSMA, SMA, and pars opercularis to the same degree as those in the TD group.

Findings in this study imply that ADHD might be characterized by aberrant brain

maturation patterns that could explain differences seen in executive function ability.
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CHAPTER 5

GENERAL DISCUSSION

5.1 Summary

This current dissertation set forth to answer the following four questions: Does the

frontal aslant tract (FAT) show age-related differences during the sensitive devel-

opmental period between 4- to 7-years of age, and do age-related differences differ

in children diagnosed with ADHD? Can the microstructural properties of the FAT

explain the differences in language and executive function outcomes in children with

and without ADHD? Are novel diffusion weighted imaging (DWI) methods capa-

ble of reliably mapping neurite density in children and adults and expanding what

we currently know about brain microstructure and maturation? If so, are neurite

density and orientation within prefrontal and subcortical brain regions associated

with behavioral outcomes in typically and atypically developing children? Through

the use of multiple DWI methods and a battery of language and executive function

behavioral measures, we conducted three separate studies to answer these questions.

In Study 1, we introduced the FAT, a long association white matter pathway

that has recently been evaluated in terms of its association with the development of

language and executive function (Catani et al., 2013; Dick et al., 2019; Garic et al.,

2019; Mandelli et al., 2016). We examined 196 4- to 7-year-old children, 100 of whom

had been diagnosed with ADHD, tracked 4 bilateral segments of the pathway, and

mapped the age-related differences using the 4 most common diffusion tensor imag-

ing (DTI) metrics (fractional anistropy (FA), axial diffusivity (AD), radial diffusivity

(RD), and mean diffusivity (MD)) and three most common high angular resolution

diffusion imaging (HARDI) metrics (generalized fractional anistropy (GFA), quan-

titative anistropy (QA), and normalized quantitative imaging (nQA)) with gener-
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alized q-sampling imaging (GQI) reconstruction. We then analyzed brain-behavior

associations between FAT segments and 3 speech and language tasks (NEPSY se-

mantic fluency, NEPSY phonemic fluency, and SRT phonemic articulation) and 3

executive function measures (NIH Toolbox flanker task, NIH Toolbox dimensional

change card sort task, and Head-Toes-Knees-Shoulders task). Study 1 used DTI and

HADI metrics to measure age-related differences within the structural connectivity

of the FAT and tested whether the fiber pathway was differentially associated with

language and executive function in our TD and ADHD sample.

The 7 diffusion metrics utilized in Study 1 provide invaluable insight into the

microstructural properties of the developing brain, but lack the specificity needed

to directly measure neurite (axonal and dendridic) density. Axonal density has

been associated with many neuropathologies, such as multiple sclerosis (Tallantyre

et al., 2009), hereditary spastic paraplegia (Deluca et al., 2004), and epilepsy (Win-

ston et al., 2014), while dendridic density has been associated with neural network

efficiency and information processing (Genc et al., 2018). In Study 2, we tested

whether two advanced diffusion methodologies, restricted diffusion imaging (RDI)

and neurite orientation and dispersion density imaging (NODDI), can accurately

match established histological models of axonal density, above and beyond that of

DTI and GQI metrics, in large developing and adult samples. NODDI required

multishell neuroimaging data which our developing sample in Study 2 did not meet.

Hence, we explored this further in Study 3.

In Study 3, we applied the NODDI implementation to our multishell diffusion

dataset from Study 1 to measure age-related differences in neurite density and ori-

entation in typical and atypical development. We expand on the structural con-

nectivity findings in Study 1 by examining region-based microstructure in Study 3.

Using NODDI to quantify tissue structure offered us an opportunity to a) test the
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model in a developing sample, which we were unable to do in Study 2, b) expand our

examination of the developing brain from white matter to also include gray matter

in subcortical regions since NODDI is sensitive to both white and gray matter of

the brain (Zhang et al., 2012). Further, we examined whether neurite density and

orientation characteristics within prefrontal and subcortical bilateral brain regions

(pre-supplementary motor area (pre-SMA), SMA, pars opercularis (Op), pars trian-

gularis (Tri), caudate, and putamen) were related to verbal fluency and executive

function behavioral outcomes in young, preschool-aged children.

In this General Discussion, I review the processes that occur during typical and

atypical brain development and how the age-related findings from Study 1 and Study

3 contribute to extant literature. Next, I will detail how the FAT is differentially

associated with language and executive function behavioral outcomes in children

with and without ADHD, followed by a discussion of the reliability of mapping

neurite density in vivo in developing and adult samples and its relation to behavior.

I end with an overview of implications of the three current studies, limitations, and

future research directions.

Typical and atypical brain development. In order to fully grasp the impli-

cations of brain-behavior associations in children, it is important to first understand

typical neurodevelopment. Knowledge about the neural processes that occur during

brain maturation offers valuable insights for earlier identification of aberrant child

development and consequently, earlier clinical diagnosis where intervention can have

the greatest impact (Charach et al., 2011; Halperin et al., 2012).

Historically, it is commonly believed that the first year of life is marked by

robust myelination, the process by which a fatty-lipid myelin sheath covers the axon

to allow for faster electrical impulse transmission (Bean, 2007), which then slows

down but gradually continues for the following four decades (Brody et al., 1987;
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Yakovlev and Lecours, 1967). The plasticity seen in early development is made

possible through synaptic reorganization- a cycle of synaptic formation and synaptic

elimination/pruning (Goda and Davis, 2003). The processes of myelination, synaptic

formation, and maturational and experience-dependent pruning have long held the

interest of neuroscientists, and establishes the foundation of brain development as

we understand it.

Magnetic resonance imaging (MRI) has come a long way in expanding the classic

histological and animal model findings of brain maturation. Longitudinal MRI stud-

ies have consistently indicated increasing white matter and decreasing gray matter

from the ages of 4 to 25 (Giedd et al., 2015; Lebel and Beaulieu, 2011). Further,

DWI has indicated increasing myelin and microstructural integrity from early child-

hood to late adolescence, marked by increased FA and decreased RD and MD, with

very little change in axonal integrity as measured by AD (Lebel and Beaulieu, 2011;

Tamnes et al., 2018). Neurite density, which represents myelination and axonal

growth, has also been shown to expand from the ages of 8 to 13, with very little

change in orientation dispersion (ODI) (Chang et al., 2015; Mah et al., 2017).

Study 1 of this dissertation has matched previous work by showing significant

increases in FA, GFA and NDI, decreases in RD, and stable ODI in the whole brain

across the ages of 4 to 7. It was surprising to see MD show no age-related differences

during this time period, but the FAT did show the expected age-related pattern.

The FAT also moderately confirmed the previous age-related findings in the Garic

et al. (2019) study that examined the FAT from infancy to the age of 18. The

left FAT FA indicated an age-related increase even in the much narrower range of

4 to 7 years of age, above and beyond what could be explained by whole brain

development.

102



For region-based age-related differences, Study 3 indicated that the neurite den-

sity of the right pars opercularis and bilateral regions of the striatum show significant

increase across age. Mah et al. (2017) have found age-related increases in neurite

density in all brain regions except the caudate in their sample of 8- to 13-year old

children, but Study 3 indicates that the age-related differences in the caudate might

occur before the age of 7. Regional development of neurite density in the pars oper-

cularis has yet to be studied directly to my knowledge, but the age-related increases

shown coincide with what is known about prefrontal cortex development with DTI

(Lebel et al., 2008).

For atypical development, I will focus on what is known about ADHD, and

make references to other disorders where ADHD-specific information is not avail-

able. Study 1 was the first to examine FAT development in the ADHD population,

and results implicated that there are no significant differences on how the pathway

develops in the ADHD sample when compared to the typically developing sample.

The only difference found was that the right FAT displayed higher FA and lower

RD in the ADHD group, indicating more structural integrity and myelination when

compared to the TD group. This comes as a sharp contrast to what is seen in other

disorders, such as autism spectrum disorder, in which the FAT shows reduced struc-

tural integrity compared to TD (Chien et al., 2017; Lo et al., 2017). The results

of Study 1 could implicate that the FAT in children with ADHD could be more

developed, but still not result in increased task performance like what is seen in

the brain-behavior associations within the typically developing sample. This will be

discussed further in the next section.

Previous work has primarily implicated lower volume in the right hemisphere

caudate and putamen in children with ADHD (Frodl and Skokauskas, 2012; Lu

et al., 2019; Qiu et al., 2009; Valera et al., 2007; Wang et al., 2007), as well as
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decreased white matter volume in the left inferior frontal gyrus (Kumar et al., 2017).

There is increasing evidence to show that the left caudate (O’Dwyer et al., 2016; Wu

et al., 2019; Qiu et al., 2009) and left anterior putamen (Qiu et al., 2009) also have

reduced volume. Kaya et al. (2018) have argued that gray matter findings in an

ADHD population are not consistent, and their study indicates that there might be

an increase of gray matter volume within the supplementary motor area in children

and adolescents with ADHD, while Qiu et al. (2009) have also found an increase in

volume in the bilateral posterior putamen, but only in boys. Inconsistencies across

studies is most likely attributed to small sample size of clinical populations (n =

12 in some cases). Study 3 aimed to clarify these results by using a large sample

of 196 children, 100 of which were diagnosed with ADHD. Results suggest that

there is increased neurite density in the left pars opercularis and left caudate when

compared to the typically developing sample. Neurite density can be interpreted as

the inverse of cortical volume (Genc et al., 2018), therefore our inferior frontal gyrus,

pars opercularis, finding replicated what was seen in Kumar et al.’s work, as well

as found more evidence for left hemisphere caudate tissue differences is atypically

developing children.

Overall, the process of synaptic formation and elimination in the developing brain

sets the stage for neural efficiency. Through maturation and experience-dependent

pruning, the brain reduces unnecessary and unused synapses and dendrites in or-

der to increase processing speed and reasoning (Genc et al., 2018; Merolla et al.,

2014). In adults, lower neurite density and axonal fanning have been associated with

higher intelligence and faster information processing (Genc et al., 2018), but this

has not been tested on a clinical, ADHD developing population until this disserta-

tion. Our results indicate that neurite density increases across development for both

the ADHD and TD groups, implicating that myelination and synapse formation are
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still robustly occurring. Further, the ADHD sample displayed significantly lower

neurite density across the brain, hinting that there is delayed myelination and brain

development, along with decreased pruning and organization seen in the inferior

frontal gyrus and left caudate, regions that are known to be involved in language

and executive function. Interestingly, while we found group differences in neurite

density and orientation, the developmental slopes for TD and ADHD were not sig-

nificantly different, suggesting that the two groups have a different starting point

but share similar neurite development patterns. This might indicate that the mi-

crostructural differences are present before four years of age. The impact of regional

neurite density differences on behavioral outcomes will be discussed next.

FAT as a biomarker for ADHD. Study 1 has provided further evidence of

the FAT’s association in both language and executive function outcomes, and has

extended this to a clinical, ADHD population. For semantic fluency, results indi-

cated that increased structural integrity of the right hemisphere FAT was associated

with higher semantic performance in the typically developing group, while it was

significantly associated with lower performance in the ADHD group. This can par-

tially be explained when examining laterality; semantic fluency has been associated

with the right hemisphere in adults (Blecher et al., 2019; Thompson et al., 2016;

Rodriguez-Aranda et al., 2016), but results indicate that the ADHD group favor

the left hemisphere for improved performance on this task. Significant interactions

between the TD and ADHD groups were observed for the right FAT’s association

with semantic fluency, as well as laterality of the FAT. Results suggest ADHD specif-

ically moderates the FAT’s relation to verbal fluency and not to other speech and

language aspects, such as phonemic fluency or phonemic articulation. Put together,

Study 1 results provide novel indication that the differential association between
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both the right FAT and FAT laterality could explain the lower semantic verbal

fluency observed in children with ADHD.

Executive function has been the most consistent, core deficit found in ADHD

across decades of research, frequently persisting into adulthood (i.e., Barkley 1997;

Magnin and Maurs 2017; Pennington and Ozonoff 1996; Sergeant et al. 2002). Re-

sults from Study 1 support these findings and indicate that typically developing

children greatly surpassed children in the ADHD sample on all three executive

function tasks (all p < 0.001). Increased myelination and structural integrity of

the bilateral FAT was linked with better attentional control and planning and mon-

itoring behaviors as tested by NIH Toolbox tasks, regardless of ADHD diagnosis.

Group differences only became strikingly apparent when brain-behavior associations

between the FAT and motor executive function ability, as tested by the HTKS, were

examined. Regardless of whether FA, RD, MD, GFA, or QA diffusion metrics were

used, all indicated that the FAT was negatively associated with HTKS scores in the

ADHD sample, which was the opposite of what was seen in the TD sample as well

as other executive function tasks. We observed that ADHD diagnosis moderates

the relationship between the left and right FAT and motor executive function per-

formance, with higher integrity of the pathway being associated with higher scores

for the TD group and lower scores for the ADHD group.

We stipulate that the FAT is differentially related to HTKS performance but

not NIH Toolbox task performance because 1) the HTKS task is potentially more

ecologically valid than the iPad-based NIH Toolbox tasks and 2) this fiber pathway

might be particularly sensitive to motor inhibition. First, the HTKS has been

shown to be a very ecologically valid task for examining self-regulation because of

the real-time interaction between participant and examiner, and is strongly related

to both teacher ratings of behavior regulation in the classroom as well as academic
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performance in math and literacy (Wanless et al., 2011). Therefore, the FAT might

have been associated to HTKS but not the NIH Toolbox tasks because the HTKS is

more sensitive to self-regulation in a real-world setting. Secondly, the FAT connects

the preSMA to the inferior frontal gyrus, regions that, alongside the basal ganglia,

are thought to play critical roles in the motor in the motor inhibitory network (Aron

et al., 2007), alongside the basal ganglia. The inverse relationship between structural

integrity of the FAT and HTKS performance in the ADHD group was surprising,

but we will offer a few plausible explanations below.

Similar to the language findings discussed previously, the differing association

between FAT structural integrity and HTKS might be partially explained by dif-

ferences in brain laterality. Consistent with current literature that implicates the

right hemisphere’s association with visuospatial and inhibitory control tasks (Aron,

2007; Herve et al., 2013; Toga and Thompson, 2003), higher right laterality of the

FAT was strongly related to improved motor executive function performance in typ-

ically developing children in Study 1. ADHD diagnosis moderates the association

between FAT laterality and motor executive function, with higher left laterality of

the FAT being associated with improved scores in the ADHD sample and higher

right laterality being related to higher scores for the TD sample. Atypical tract lat-

erality association might explain why children with ADHD perform worse on motor

executive control tasks.

Alternative hypotheses for the differential relationship between the FAT and

motor executive performance could be group differences in regional microstructure

and/or differential brain-behavior associations between TD and ADHD. Upon ex-

amining regional density and neurite orientation dispersion in Study 3, we found

that participants in the ADHD sample had significantly higher neurite density in

the left Op than the TD sample. As previously mentioned, higher neurite den-
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sity could indicate delayed synaptic pruning during development, and can reduce

network efficiency and processing speed (Genc et al., 2018; Merolla et al., 2014).

Therefore, stronger structural connectivity between the Op and the superior frontal

regions (which comprise the FAT) could be hindering performance for the ADHD

sample since our results suggest that the Op might have delayed synaptic pruning

for that sample.

Secondly, there is still disagreement within the field when it comes to interpreting

the directionality of DWI findings and what it could implicate for brain-behavior

associations. It is commonly believed that higher FA values would be positively

associated with behavioral outcomes, but whether this holds true for the ADHD

population is still debatable. Neuropathology is frequently linked with a significant

reduction in FA (Alexander et al., 2007), but previous studies have found both in-

creases (Silk et al., 2009; Tamm et al., 2012) and decreases (Hamilton et al., 2008)

in FA within many white matter pathways in children with ADHD. In Study 1, we

found that the right FAT had higher FA and lower RD in the ADHD versus the

TD sample, but this was inversely related to motor EF performance for the ADHD

group and positively related in the TD group. While unexpected, this is in line

with recent findings from Bessette and Stevens (2019), who found a similar pattern

of results when they examined numerous pathways and delay aversion task perfor-

mance. Bessette and colleagues found that higher FA in many pathways, such as the

corpus callosum and inferior and superior longitudinal fasciculus, predicted better

EF outcomes for TD, while predicting lower scores for ADHD. Taken together, this

could indicate widespread alterations of brain-behavior relationships in the ADHD

population. The findings from Study 1 and Study 3 offer some evidence that differ-

ential brain-behavior associations could result from atypical development, but more

work will be needed to rule out whether children with ADHD compensate by relying
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on different brain regions and fiber pathways for these tasks (Chiang et al., 2015;

Fassbender and Schweitzer, 2006).

Lastly, it is important to note that experience has a fundamental impact on

brain-behavior associations. The studies that comprise this dissertation have fo-

cused on how brain regions and associated structural connectivity are related to

behavior, but the relationships between the brain and behavior can be bidirec-

tional. We do not wish to imply that microstructural properties of brain regions

and fiber pathways are solely responsible for behavioral outcomes, because behavior

and experience can also impact neural properties. The impact of environment on

development can begin prior to birth. In-utero risk factors, such as exposure to

cigarette smoke (Kovess et al., 2015; Langley et al., 2012; Mulligan et al., 2013)

and alcohol (Aronson et al., 1997), have been linked with later ADHD diagnosis.

Further, experience- and activity-dependent maturation can greatly contribute to

synaptic pruning (Sweatt, 2016). Therefore, the experiences and environment of

participants in our study could be impacting the relationships we observed. We

need to consider more comprehensive models, such as the dynamic developmental

theory of ADHD, proposed by Sagvolden et al. (2005), which suggests that the core

behavioral aspects of ADHD, such as inattention and impulsivity, can arise from a

hypofunctioning dopamine system if it is also present in the context of inconsistent

parenting and an unpredictable external environment.

Relationship between regional neurite density and behavioral out-

comes. In Study 2, we established that NODDI can accurately replicate a histolog-

ical corpus callosum density model in healthy adults. We expanded on this in Study

3 by applying the model to a large developing sample and testing its relationship to

behavioral outcomes. Study 3 was an exploratory investigation on whether regional
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neurite density, as measured by the NODDI model, is associated with language and

executive function outcomes in typically and atypically developing children.

Our findings suggest that higher regional neurite density, particularly in the

right preSMA, are related to higher phonemic articulation in both children with and

without ADHD. As Schmitz et al. (2019) have recently suggested, NODDI appears to

be particularly sensitive to brain laterality, therefore the majority of Study 3 brain-

behavior associations seen in Study 3 were derived from laterality analyses. Across

both TD and ADHD samples, we find that higher right laterality of neurite density

within the caudate and preSMA is associated with better semantic fluency and

phonemic articulation, respectively. Further, we found that higher right laterality

of neurite organization, as measured by reduced ODI, in the putamen is related to

better articulation. Higher right laterality relating to better semantic scores was

expected given previous adult studies (Blecher et al., 2019; Thompson et al., 2016;

Rodriguez-Aranda et al., 2016), but the association between higher right laterality

and phonemic articulation was an unexpected finding that was not indicated in

structural connectivity findings in our Study 1. This suggests that the right preSMA

and putamen, which have been associated with speech motor control (Vergani et al.,

2014; Zentgraf et al., 2005) and motor planning (Foundas et al., 2013), might also

play an important role in halting incorrect articulation during speech production.

Lastly, our findings found no significant group interactions on language tasks, likely

indicating that neurite microstructure differences within prefrontal regions did not

contribute to the FAT’s differential association with language and executive function.

Examining executive function outcomes in our typically developing sample re-

vealed that 10 out of 12 brain regions observed were associated with overall executive

function across measures. This speaks to the complex, distributed network in the

brain that contributes to executive function, in which no single region is indepen-
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dently responsible for a behavior (Bettcher et al., 2016; Cole et al., 2013; Medaglia

et al., 2018; Rabinovici et al., 2015). Overall, lower neurite density and orientation

were linked to better outcomes, implicating that synaptic pruning and more concise,

organized dendridic architecture are associated with better cognitive performance

in typically developing children.

Surprisingly, no direct brain-behavior associations reached significance when ex-

amining the ADHD sample independently. Instead, we found significant group in-

teraction effects that implied that neurite microstructure was similarly related to

behavioral outcomes between the groups, but to a lesser extent in children with

ADHD. Specifically, we found that ADHD diagnosis moderates the association be-

tween left SMA neurite density and inhibition and attention, as tested by the flanker

task. Lower neurite density within the left SMA, possibly indicating the effects of

synaptic pruning, was associated with higher flanker scores for the TD sample (β

= -0.27) but had a significantly smaller effect on the ADHD sample (β = -0.11).

Similar results were observed with laterality of the preSMA and pars opercularis

(Op) in relation to task-switching, with the TD group benefiting from higher right

laterality in the preSMA and higher left laterality in the Op, while only being weakly

associated in the ADHD sample. Differences in laterality’s relation to behavior were

also seen in Study 1 when structural connectivity of the FAT was examined. Both

structure and connectivity laterality differences might be partially resulting from a

significant increase of neurite density in the left Op in the ADHD sample, suggesting

a lower level of pruning.

It is important to note, that in the speech and language tasks, it appears that

higher regional neurite density was associated with better performance, while higher

orientation dispersion (ODI) was related to worse performance. For executive func-

tion tasks, ODI is still negatively associated with performance, but neurite density
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is now related to worse outcomes as well. This could potentially be attributed to

the idea that higher neurite density reduces processing speed (Genc et al., 2018),

a vital aspect of executive function. Study 3 provides novel evidence that the in-

terpretation of NODDI’s NDI metric in developing children could be dependent on

whether the task is probing language or executive function ability.

5.2 Implications

In this dissertation, we have provided compelling, preliminary evidence to show

that the frontal aslant tract has the potential to be used as an early biomarker for

ADHD in young, preschool-aged children. Our findings suggest that the structural

connectivity of the pathway might be differentially related to language and executive

function outcomes in children with and without ADHD, specifically for semantic

verbal fluncy and motor executive function. Further, our findings imply that one

specific region of the frontal aslant tract, left pars opercularis, displays delayed

synaptic pruning in ADHD compared to the typically developing sample.

The ability to identify consistent and reliable biomarkers for ADHD in preschool

children can have great implications for improving treatment and intervention pro-

grams. Preschool is a critical social and cognitive developmental period in which

many of the symptoms of ADHD first become apparent. Targeted interventions

that begin in preschool have been associated with improved developmental trajec-

tories for children diagnosed with ADHD (Halperin et al., 2012). In particular,

many of the adverse outcomes of ADHD, such as later emotion dysregulation and

academic difficulties, can be avoided if treatment is applied during preschool years

when the development is displaying the highest rates of neural plasticity (Halperin

and Healey, 2011; Halperin et al., 2012; Sonuga-Barke et al., 2011). Biomarkers for

ADHD can potentially be used as non-biased indicators for treatment response or as
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future targets for non-invasive brain stimulation. By identifying brain regions and

pathways associated with ADHD, this can hold clinical implications by allowing for

more effective, targeted treatment plans to be designed to improve outcomes for

young children diagnosed with ADHD.

Lastly, this is the first study to examine neurite density imaging in an ADHD

population and one of the first to associate neurite density to behavior outcomes

in young children. With increasing availability of high resolution multishell neu-

roimaging datasets for developing samples and with the use of the Microstructure

Diffusion Toolbox (Harms et al., 2017) to significantly reduce computation time,

Study 3 further implicates that the NODDI model is a promising tool for future

examination of neural tissue structure in young children. Neurite density index

(NDI) is very sensitive to age-related differences, but can be difficult to interpret

in developing samples due to robust myelination and synaptic pruning occurring

concurrently. Therefore, interpretation of neurite density in young children might

be task-dependent. Orientation dispersion index (ODI), on the other hand, was rou-

tinely negatively associated with behavioral outcomes, regardless of task or typical

or atypical participant sample. While it is not sensitive to age-related differences,

ODI could offer a more consistent measurement of brain-behavior associations within

the developing brain.

5.3 Limitations

There are a few important limitations to consider when interpreting the findings of

this dissertation. First, given the sparsity of NODDI implementation in this age

group, as well as the absence of previous work examining neurite density in children

with ADHD, our findings are all tentative and would need further replication. Sec-

ondly, we examined the caudate and putamen using a Lausanne atlas parcellation,
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which did not differentiate between head, body, or tail of the caudate or the dorsal

and ventral putamen. Neurite density and orientation characteristics could poten-

tially differ among specific regions of the caudate and putamen, and our results only

reflect the average tissue microstructure.

The ADHD sample was comprised of combined (ADHD-C), primarily inattentive

(ADHD-I), and primarily hyperactive/impulsive (ADHD-HI) subtypes. Since 87% of

our ADHD sample was diagnosed with ADHD-C, our results will most likely be less

applicable to children who fall into the ADHD-I or ADHD-HI subtypes. This limits

the applicability of our findings because previous work from Saad et al. (2017) has

suggested that ADHD subtypes might each have their own connectivity and neural

organization profiles. In particular, differing strengths of connection between the

anterior cingulate, putamen, and middle frontal gyrus were seen between ADHD-

C and ADHD-I, which could impact how our results apply to children who are

diagnosed as primarily ADHD-inattentive. Lastly, ADHD is comorbid with speech

language impairment and oppositional defiant disorder (Efron and Sciberras, 2010;

McGrath et al., 2008; Taurines et al., 2010), therefore some of our results may not

be specific to ADHD. This is particularly important to consider for speech language

impairment, which frequently preceded ADHD diagnosis in our sample and could

alter interpretations.

5.4 Future Directions

The current dissertation contributes to the overall understanding of typical and atyp-

ical brain development and suggests a novel biomarker for ADHD. While the research

benefited from large sample sizes, this came at the cost of relying on cross-sectional

rather than longitudinal neuroimaging data. In the future, longitudinal data would

allow us to observe whether the structure and connectivity of the prefrontal cortex
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shows direct developmental change across time. Furthermore, longitudinal studies

could examine the neurobiological long-term effects of medication on the developing

brain, particularly because many of our young medication-naive participants were

prescribed medication within a year of participating in our study. Lastly, ADHD is a

complex disorder with sub-types and differing levels of severity. Future studies could

examine whether the FAT is differentially associated with behavioral outcomes in

children with varying ADHD severity.
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APPENDIX A: Laterality of the frontal aslant tract (FAT) explains externalizing

behaviors through its association with executive function.
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ABSTRACT

We investigated the development of a recently-identified white matter pathway, the

frontal aslant tract (FAT) and its association to executive function and externalizing

behaviors in a sample of 129 neurotypical male and female human children ranging

in age from 7 months to 19-years. We found that the FAT could be tracked in 92% of

those children, and that the pathway showed age-related differences into adulthood.

The change in white matter microstructure was very rapid until about 6-years, and

then plateaued, only to show age-related increases again after the age of 11-years. In

a subset of those children (5-18-years; n = 70), left laterality of the microstructural

properties of the FAT was associated with greater attention problems as measured by

the Child Behavior Checklist (CBCL). However, this relationship was fully mediated

by higher executive dysfunction as measured by the Behavior Rating Inventory of

Executive Function (BRIEF). This relationship was specific to the FAT—we found

no relationship between laterality of a control pathway, or of the white matter of

the brain in general, and attention and executive function. These findings suggest

that the degree to which the developing brain favors a right lateralized structural

dominance of the FAT is directly associated with executive function and attention.

This novel finding provides a new potential structural biomarker to assess attention
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deficit hyperactivity disorder (ADHD) and associated executive dysfunction during

development.
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Laterality of the frontal aslant tract (FAT) explains externalizing behaviors

through its association with executive function.

It is critical to understand the etiology of children’s externalizing behavior problems,

including symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD) such as

inattention, hyperactivity, and impulsivity. These are the most common reason

for early childhood mental health referrals (Keenan and Wakschlag, 2000; Thomas

and Guskin, 2001) and can present early in development, occurring in 10-25% of

preschoolers (Carter et al., 2004; Furniss et al., 2006). Despite successful develop-

ment of evidence-based treatments for such problems, early interventions have little

impact on children’s long-term academic and social impairment (Jensen et al., 2007;

Molina et al., 2013, 2009; Sonuga-Barke et al., 2013). Researchers, clinicians, and

patients are thus desperate for tangible progress in identifying biomarkers for treat-

ment of mental illness in both adults and children. Identifiable biomarkers can serve

as indicators of treatment response, as indicators of heterogeneity within broadly

defined disorders, or as future targets of non-invasive brain stimulation treatments,

and are necessary for applying precision medicine approaches to mental health treat-

ment.

Here we investigate a recently-identified white matter fiber pathway, the frontal

aslant tract (FAT), and attempt to define its functional relevance to executive func-

tion and externalizing behaviors—namely, attention problems—in a sample of typi-

cally developing children. The function of the FAT remains a matter of speculation,

and its investigation in children has been minimal (Broce et al., 2015; Madsen et al.,

2010). Based on the fiber pathway’s putative connectivity joining the posterior in-

ferior frontal gyrus (IFG) with the pre-supplementary and supplementary motor

areas (Bozkurt et al., 2016; Catani et al., 2012; Kinoshita et al., 2012; Martino and

De Lucas, 2014; Szmuda et al., 2017), investigators have focused on its involvement
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in speech and language function. For example, stimulation of the left FAT during

awake surgery induces speech arrest (Fujii et al., 2015; Kinoshita et al., 2015; Vassal

et al., 2014), and the left FAT is associated with executive control of speech and

language in other tasks, such as verbal fluency and stuttering (Basilakos et al., 2014;

Broce et al., 2015; Catani et al., 2013; Kemerdere et al., 2016; Kinoshita et al., 2015;

Kronfeld-Duenias et al., 2016; Mandelli et al., 2014; Sierpowska et al., 2015).

However, given the well-known laterality of function in the brain (Herve et al.,

2013; Toga and Thompson, 2003), the possibility remains that the function of the

left FAT differs from its homologue on the right. Indeed, Aron et al. (2014) sug-

gested that the right posterior IFG, the pre-SMA, and the connections between

those regions (i.e., via the FAT) are associated with inhibitory control in executive

function tasks (Aron et al., 2007), a possibility supported by fMRI, electrocorticog-

raphy (ECoG), and diffusion-weighted imaging (DWI) data in adults (Swann et al.,

2012). It is thus possible that while the left FAT might be associated with executive

control of speech and language function (e.g., in the case of verbal fluency or speech

initiation), the right FAT might be associated with executive control of action (e.g.,

inhibitory control of action). Consistent with this proposition, functional imaging

data suggest that lateralization of these functions emerges during childhood (Everts

et al., 2009; Holland et al., 2001). Furthermore, ADHD is associated with structural

and functional abnormalities in the pre-SMA and right IFG regions connected by

the FAT (Mostofsky et al., 2002; Rubia et al., 1999; Suskauer et al., 2008b,a). How-

ever, the direct contribution of the FAT to executive function, to attention, or to

externalizing behaviors more broadly, during development has not been investigated.

We explored this issue in a DWI study of neurotypical children between the ages

of 7-months and 19-years. We tracked the left and right FAT in these participants

and related diffusion metrics of white matter microstructure to behavioral invento-
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ries of executive function, and attention. Based on the right-lateralized associations

with IFG and pre-SMA function and executive function, we predicted that deviation

from right lateralization of this pathway would be associated with poorer executive

function, and increased instances of externalizing behaviors.

Materials and Methods

Participants

In the present study, we analyzed a publicly available data set of neurotyp-

ical children from the Cincinnati MR Imaging of NeuroDevelopment (C-MIND)

database, provided by the Pediatric Functional Neuroimaging Research Network

(https://research.cchmc.org/c-mind/) and supported by a contract from the Eu-

nice Kennedy Shriver National Institute of Child Health and Human Development

(HHSN275200900018C). The data are available from CMIND by request, which fa-

cilitates validation of the results we report here. Participants in the database are

full-term gestation, healthy, right-handed, native English speakers, without con-

traindication to MRI. By design, the C-MIND cohort is demographically diverse

(38% nonwhite, 55% female, median household income $42,500), intended to reflect

the US population.

We tracked the FAT in all available participants (n = 129; 70 females). The age

range for the full sample was 7-months to 19-years (M = 8.8 years; SD = 5.0 years).

From the full sample, 70 participants had behavioral data on all of the measures of

interest, and also had the tracked fiber pathways of interest. Thus, the sample size

for the mediation analysis we report below is n = 70. In this subset, the participants

were equally split by gender (35 females), and ranged in age from 5-years to 18-years

(M = 10.9 years; SD = 3.7 years). A wide range was represented on the measure

of socioeconomic status, which was coded on a 10-point ordinal scale of household
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income (‘0’ = $0 - $5000 to ‘10’ = Greater than $150,000; M = 5.1; SD = 2.6).

In the subsample, all of the children were typically developing and the sample was

made up of 94% Non-Hispanic/Non-Latino participants. The study was approved

by the Cincinnati Children’s Hospital Medical Center Institutional Review Board.

The Florida International University Institutional Review Board approved the data

use agreement.

Experimental Design and Statistical Analysis

We employed analysis of a quasi-experimental design on a publicly available

dataset consisting of DWI MRI scans, and parent/teacher report measures of exec-

utive function (i.e., the Behavior Rating Inventory of Executive Function; BRIEF)

and externalizing behaviors (focusing on Attention Problems with the Child Behav-

ior Checklist; CBCL). We conducted High Angular Resolution Diffusion Imaging

(HARDI)-based analysis of the DWI data using a generalized q-sampling imaging

(GQI) model-free reconstruction method (Yeh et al., 2010). We manually recon-

structed the FAT in each hemisphere of each subject, defined on the original image

space of the subject. We then explored the age-related change in the pathway’s

microstructure, and calculated laterality of the pathway. Following that, we con-

ducted a simple mediation analysis in which laterality of the FAT was entered as a

predictor, executive function as measured by the BRIEF was entered as a mediator,

and CBCL Attention Problems was entered as the outcome. The same analysis was

conducted on the laterality of the whole-brain white matter, on the left and right

FAT separately, and on a control pathway (the Inferior Longitudinal Fasciculus;

ILF). The details of these steps are presented below.

MRI Scans
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Single shell, 61 direction HARDI scans were created using a spin-echo, EPI

method with intravoxel incoherent motion imaging (IVIM) gradients for diffusion

weighting of the scans. They were acquired using a 32-channel head coil (SENSE

factor of 3), which obtained 2 x 2 x 2 mm spatial resolution at b = 3000 (EPI factor =

38, 1752.6 Hz EPI bandwidth, 2 x 2.05 x 2 acquisition voxel; 2 x 2 x 2 reconstructed

voxel; 112 x 109 acquisition matrix). The scan took under 12 minutes, with an

average scan time of 11 minutes and 34 seconds. Seven b = 0 images were also

acquired at intervals of 8 images apart in the diffusion direction vector. These b0

images are used for co-registration and averaged to form the baseline for computation

of the diffusion metrics of interest.

HARDI post-processing. The image quality of the HARDI data was assessed

using DTIPrep (http://www.nitrc.org/projects/dtiprep), which discards volumes as

a result of slice dropout artifacts, slice interlace artifacts, and/or excessive motion.

The number of volumes remaining was included as a covariate in all subsequent

analyses, which is important for mitigating the effects of motion on the reported

findings (Lauzon et al., 2013; Roalf et al., 2016). All usable data were registered to

the reference image (b = 0), using a rigid body mutual information algorithm and

were eddy current corrected for distortion.

Using DSI Studio, we used the GQI model-free reconstruction method, which

quantifies the density of diffusing water at different orientations (Yeh et al., 2010)

to reconstruct the diffusion orientation distribution function (ODF), with a regular-

ization parameter equal to 0.006 (Descoteaux et al., 2007). From this, we obtained

normalized Quantitative Anisotropy (nQA). GQI reconstruction was preferred over

the simpler diffusion-tensor model because it is empirically shown to more accu-

rately resolve multiple fiber orientations within voxels (Daducci et al., 2014; Yeh

et al., 2013). In this HARDI data set we can take advantage of the large number of
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diffusion directions to conduct this reconstruction algorithm. The major advantage

of GQI, in terms of the measurement of microstructural properties of the tissue, is

the improved resolution of crossing/kissing fiber orientations. This is particularly

important for an oblique fiber pathway like the FAT, which courses through white

matter of the frontal lobe containing a number of laterally and longitudinally ori-

ented fibers of proximal pathways (e.g., the superior longitudinal fasciculus or of the

coronal radiation emanating from the rostrum of the corpus callosum).

In the GQI framework, QA is defined as the amount of anisotropic spins that

diffuse along a fiber orientation, and it is given mathematically by:

QA = Z0(ψ(â) - iso(ψ))

where ψ is the spin distribution function (SDF) estimated using the generalized

q-sampling imaging, â is the orientation of the fiber of interest, and iso(ψ) is the

isotropic background diffusion of the SDF. Z0 is a scaling constant that scales free

water diffusion to 1 (i.e., it is scaled to the maximum ODF of all voxels, typically

found in cerebral spinal fluid).

QA can be defined for each peak in the SDF. Because deterministic tractography

(which we use in this study) follows individual peaks across a streamline of voxels, we

have focused on the first peak (QA0). Unlike typical diffusion-tensor imaging (DTI)

metrics such as FA, QA must be further normalized so that it can be compared across

different participants. This normalized QA metric, nQA, was calculated according

to the generalized q-sampling imaging method described above (Yeh et al., 2010),

and essentially normalizes the maximum QA value to 1. GQI performs as well as

other HARDI metrics, such as Constrained Super-resolved Spherical Deconvolution

(CSD; Tournier et al. 2007; Yeh et al. 2013) and better than standard DTI algorithms
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(Daducci et al., 2014; Yeh et al., 2013). To facilitate comparisons with prior work,

we also reconstructed the FA metric using the standard diffusion-tensor algorithm.

In summary, we used the GQI reconstruction to map the streamlines, with de-

terministic tractography following the QA0 at each voxel. We used the nQA0 com-

ponent in our analysis of the relation of white matter microstructure to behavior.

To facilitate comparisons with prior literature, we report the DTI FA metric for as-

sessment of age-related differences, and in mediation analyses that accompany the

main analyses.

Defining the Tracks of Interest. To define the FAT, we identified eight

total regions of interest (ROIs) for each participant, four per hemisphere. In each

hemisphere, we identified ROIs for two superior frontal gyri: the pre-SMA and SMA;

and two inferior frontal gyri ROIs, the IFGOp and the IFGTr.

We systematically identified the eight ROIs for each participant following the

same sequence of steps, starting from identification of the brain’s midline slice.

From the midline slice, the anterior commissure was located, which represents the

arbitrary dividing line between the pre-SMA and SMA ROIs (Kim et al., 2010;

Vergani et al., 2014). The superior border for both ROIs is the top of the brain,

and the inferior border is the cingulate gyrus. The pre-SMA ROI’s anterior border

is the anterior tip of the cingulate gyrus while the posterior border for the SMA

is the precentral sulcus. The inferior frontal gyri ROIs—pars triangularis (IFGTr)

and pars opercularis (IFGOp)—were parcellated with reference to the Duvernoy

atlas (Duvernoy et al., 1999), and were defined by the semi-automated Freesurfer

parcellation (Desikan et al., 2006). After semi-automated parcellation, all ROIs

were visually inspected and edited to include the underlying white matter. Fiber

tracking was terminated when the relative QA for the incoming direction dropped
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below a preset threshold (0.02-0.06, depending on the subject; Yeh et al. 2010) or

exceeded a turning angle of 40◦.

We also tracked the left and right inferior longitudinal fasciculus (ILF) as a con-

trol, expecting this long association fiber pathway to have little association with

attention problems or executive function (the pathway courses through the ventral

temporal lobe as part of the ventral visual stream, has no parietal or frontal termi-

nations or origins, and is typically associated with semantic processing and reading;

Dick et al. 2014; Dick and Tremblay 2012). To track the ILF we used an auto-

mated approach available as part of the DSI studio software. This approach applies

an atlas-based ROI (from reconstruction of the Human Connectome Project group

atlas) of both the left and right ILF.

Calculation of Laterality. We calculated FAT laterality (L) following the

standard formula (Thiebaut de Schotten et al., 2014):

L =
(left− right)
(left+ right)

(5.1)

According to the laterality equation, positive values indicate greater left laterality.

The HARDI metric nQA0 was used as the main measure of interest.

Behavioral Measures

Behavior Rating Inventory of Executive Function (BRIEF). The Be-

havior Rating Inventory of Executive Function (BRIEF; Gioia et al. 2000) was used

to assess executive function. The BRIEF is a parent- and teacher-report measure

of executive function. It has eight subscales, which have been grouped, based on

factor analysis of these scales, into two indices, the Metacognitive Index (MI) and
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the Behavioral Regulation Index (BRI). The BRI is comprised of the Inhibit, Shift,

and Emotional Control subscales, and reflects the ability to set shift and control

behavior through the administration of appropriate inhibitory control. The MI is

comprised by the Initiate, Working Memory, Plan/Organize, Organization of Ma-

terials, and Monitor subscales. This index assesses the ability to initiate, plan, and

organize behavior, and to apply and sustain appropriate working memory to con-

trol behavior (Gioia et al., 2002). All eight subscales comprise a Global Executive

Composite (GEC) score. The BRIEF has clinical utility for the diagnosis of ADHD

(Isquith and Gioia, 2000). For example, McCandless and O’ Laughlin (2007) found

that the MI was sensitive to the diagnosis of ADHD, while the BRI was most sen-

sitive to dissociating among subtypes of ADHD. The MI, BRI, and GEC composite

scores were the focus of the present investigation.

Child Behavior Checklist (CBCL). The Child Behavior Checklist (CBCL;

Achenbach and Rescorla 2000, 2001, 2003) was administered using either the preschool,

school-age, or adult form (depending on the participant’s age). We focused on the

Attention Problems outcome scale, which has high reliability (r = 0.78 for the

preschool form; r = 0.92 for the school age form, with r = 0.70 and 0.60 for 12-

and 24-month follow-up, respectively; r = 0.87 for the adult form). This scale is

also highly associated with ADHD diagnosis (Biederman et al., 1993; Papachristou

et al., 2016).

Simple Mediation Analysis

We examined the relationships among the laterality of the FAT, executive func-

tion, and attention in typical individuals using a simple mediation model. This

model was statistically analyzed in SPSS v23 within the PROCESS regression frame-

work from Hayes (2013). We used Model 4 in the framework. Three mediation
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models were tested. In the first model, we tested whether the BRIEF GEC—which

includes all subtests of the BRIEF—mediates the relation between laterality of the

FAT and Attention Problems. Because some of the ratings on the BRIEF are di-

rectly related to items on the CBCL Attention Problems subscale (e.g., “Impulsive

or acts without thinking”), we re-ran the same analysis replacing GEC with MI

as a mediator, which mitigates that potential confound. Although not completely

orthogonal, we also ran the analysis with BRI as the mediator. In the mediation

analysis, the following covariates were included: gender, number of available HARDI

volumes (to index movement), age (in days), whole brain nQA (to control for general

white matter microstructure), and household income (on a 10-point scale, to control

for SES). Because these controls were included, raw scores were used for the outcome

variables. In addition, to confirm whether the results we report were specific to the

FAT, we also ran the same mediation model with laterality of the whole brain white

matter, and for laterality of the ILF, as the predictor of interest. Finally, to see if

the pattern of results differs across hemispheres, the mediation analysis was run on

the separate left and right FAT pathways.

Results

Identification of the Fiber Tracts

Using the individually defined ROIs, we were able to track four subcomponents of

the FAT, in the following percentage of participants from the full sample (n = 129;

averaged across the hemispheres; Figure 1): IFGOp < − > pre-SMA (92%); IFGTr

< − > pre-SMA (66%); IFGOp < − > SMA (76%); IFGTr < − > SMA (26%).

However, the largest component defined the connections between the IFGOp and

pre-SMA, and this was tracked in almost all participants for both hemispheres. This
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replicates the pattern of connectivity reported in adults (Bozkurt et al., 2016; Catani

et al., 2012; Kinoshita et al., 2012; Martino and De Lucas, 2014; Szmuda et al., 2017).

Furthermore, components overlap to a significant degree as they traverse the frontal

white matter, and thus analysis of these components introduces a dependency in

the results. Finally, the available literature suggests that the IFGOp and pre-SMA

are most likely to be associated with executive function (Aron, 2007; Swann et al.,

2012). Therefore, for analytic and conceptual simplicity, we focused on the IFGOp

< − > pre-SMA component for the age-related and mediation analyses described

below.

Figure 1. Illustration of the putative connectivity of the frontal aslant tract (FAT).
(a) Connectivity of the tract is bilateral between the inferior frontal gyrus (pars
opercularis (Op) and pars triangularis (Tri) and the superior frontal gyrus
(namely, pre-supplementary motor area (pre-SMA) and supplementary motor area
(SMA)). (b) The pathway can be further differentiated into four parts connecting
two parts of the IFG to the pre-SMA and SMA.

Age-related Differences in Fractional Anisotropy

In Figure 2 we show the age-related differences in FA of the left (purple) and

right FAT (in teal; IFGOp < − > pre-SMA component), and left (purple) and

right ILF (in teal). These are mapped along with the general trend of white matter

development in the whole brain (grey line). Shading represents the 95% confidence

intervals.
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Figure 2. Top: Age-related differences in FA of the left (purple) and right FAT (in
teal; IFGOp < − > pre-SMA component). Bottom: Age-related differences in FA
of the left (purple) and right ILF (in teal). These are mapped along with the
general trend of white matter development in the whole brain (grey). Shading
represents the 95% confidence intervals. Vertical hashed lines mark the first
derivative, which indicates the asymptote of the curve and at what age this occurs.

Visual inspection of the scatter plots indicated that the data might be sum-

marized by a non-linear model. To accomplish this, we fit two models for each

dependent measure. The first was a linear model of age and gender predicting FA.

The second was a generalized additive model (GAM; R 3.4.3; package gam; Wood
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2006) with the same variables. Integrated smoothness estimation was applied (of

the form gam(dv∼s(predictor)). We computed Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) values for each model. In addition, we

computed the first derivative to identify the “peak” of the curve, in cases where the

function was non-linear.

There were no effects of gender in any of the models (smallest p = 0.26), so that

variable was dropped. In addition, compared to the linear models, AIC and BIC fit

indices were smaller for the non-linear (i.e., GAM) models (Left FAT Linear: AIC =

-512.8; BIC = -504.5; Non-linear: AIC = -534.4; BIC = -517.7; Right FAT Linear:

AIC = -509.1; BIC = -500.8; Non-linear: AIC = -540.9; BIC = -524.3; Whole brain

Linear: AIC = -635.2; BIC = -626.6; Non-linear: AIC = -697.4; BIC = -680.2)

Thus, the non-linear models are reported here, and were significant for the left FAT

(F (4, 114) = 47.1, p <.001), the right FAT (F (4, 114) = 44.4, p <.001), and the

whole brain (F (4, 124) = 36.89, p <.001). We implemented the same procedure for

the ILF. Left ILF Linear: AIC = -512.8; BIC = -504.5; Non-linear: AIC = -534.4;

BIC = -517.7; Right ILF Linear: AIC = -509.1; BIC = -500.8; Non-linear: AIC =

-540.9; BIC = -524.3; Left ILF non-linear (F (4, 114) = 47.1, p <.001), right ILF

non-linear (F (4, 114) = 44.4, p <.001). We also calculated the first derivative of the

curves to determine where an asymptote was reached following the early increase

in FA in the first few years of life. For the FAT, inspection of the plot reveals that

age-related differences in white matter appear rapidly over the first 6-7-years. How-

ever, while for the whole brain the differences in white matter plateau, for the FAT

there is subsequent increase in FA after about age 11. For the ILF, a similar pattern

was found, although the left ILF appeared to evidence small age-related differences

until about age 13. In addition, unlike the FAT, the average ILF FA is less than

159



that seen in the whole-brain average.

Mediation Analysis

The age-related differences in white matter suggest that age might be a potential

“third variable” driving the association between white matter and behavior. There-

fore, we first explored whether age was associated with the behavioral scores. It was

not for BRIEF GEC or MI (r = -0.16 for BRIEF GEC, t(68) = 1.31, p = 0.20; r =

-0.14 for BRIEF MI, t(68) = 1.18, p = 0.24) or for CBCL Attention Problems (r =

-0.10, t(68) = 0.80, p = 0.42). However, there was a small correlation between age

and BRIEF BRI scores (r = -0.27, t(68) = 2.31, p = 0.03). To mitigate this possible

confound, we controlled for age and other covariates (sex, whole brain white mat-

ter, movement in the scanner, and SES) in the analysis. With the exception of the

relation between age and BRIEF BRI, no significant effects for the covariates were

found, and the findings are reported with the covariates included in the model. This

suggests that the mediation analysis speaks to individual differences in the measures

of FAT white matter correlates that predict differences in executive function and

externalizing behaviors.

Figure 3 shows the results of the mediation analysis. Specifically, the results show

that left laterality of the FAT predicted higher CBCL Attention Problems scores. It

also predicted higher BRIEF scores. Thus, when considered in a mediation model,

the relation between FAT laterality and Attention Problems was fully mediated by

executive function as measured by the BRIEF. This finding held for the full executive

function index of the BRIEF (i.e., GEC), and also for the MI and BRI considered

separately. It also held when we entered as a predictor the FA measure instead of

nQA (the 95% CI for the ab parameter covered zero for all models; B = 42.4 (10.2

to 80.5) for BRIEF GEC, B = 32.8 (6.32 to 69.7) for BRIEF MI, and B = 32.9 (7.4
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to 68.6) for BRIEF BRI). Because higher scores on each of the outcome variables

reflect greater executive function and attention problems, our analysis shows that

greater left laterality predicts more executive dysfunction, and higher reports of

attention problems, but the relation between laterality and attention is mediated

by executive function.

Figure 3. Mediation analysis showing greater left laterality of the FAT predicts
more executive dysfunction on the BRIEF, and higher reports of attention
problems on the CBCL. The statistical model is presented (top), and is tested
with BRIEF GEC as the mediator (middle), BRIEF MI as the mediator (bottom
left), and BRIEF BRI as the mediator (bottom right).
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This pattern of results was not apparent when we assessed laterality of the whole

brain white matter. Laterality of the whole brain white matter did not predict CBCL

Attention Problems (B = 18.6, t(63) = 0.34, p = 0.73, 95% CI = -89.8 to 126.9),

nor did it predict BRIEF GEC (B = 88.8, t(63) = 0.41, p = 0.68, 95% CI = -343.5

to 521.1), BRIEF MI (B = 27.1, t(63) = 0.86, p = 0.39, 95% CI = -36.0 to 90.1), or

BRIEF BRI (B = 67.4, t(63) = 0.90, p = 0.37, 95% CI = -81.6 to 216.3). There was

no mediation effect (the 95% CI for the ab parameter covered zero for all models;

B = 15.6 (-62.4 to 83.9) for BRIEF GEC, B = 25.4 (-44.2 to 78.7) for BRIEF MI,

and B = 29.8 (-38.3 to 97.6) for BRIEF BRI).

We also assessed a control long association fiber pathway, the ILF, that we pre-

dicted would not be associated with our attention and executive function measures.

Consistent with this prediction, laterality of the ILF white matter did not predict

CBCL Attention Problems (B = -2.63, t(62) = -0.20, p = 0.84, 95% CI = -28.6 to

23.4), nor did it predict BRIEF GEC (B = -46.7, t(62) = -0.91, p = 0.37, 95% CI

= -149.7 to 56.4), BRIEF MI (B = -2.0, t(62) = -0.27, p = 0.79, 95% CI = -17.1

to 13.1), or BRIEF BRI (B = -25.0, t(62) = -1.42, p = 0.16, 95% CI = -59.9 to

10.2). There was no mediation effect (the 95% CI for the ab parameter covered zero

for all models; B = -8.3 (-25.4 to 7.2) for BRIEF GEC, B = -1.9 (-17.3 to 11.5) for

BRIEF MI, and B = 11.3 (-28.9 to 3.7) for BRIEF BRI). These results suggest that

the finding we report is specific to the FAT.

Finally, we examined whether each tract—left and right FAT—separately evi-

denced any relation to attention problems and executive function. The left FAT did

not predict CBCL Attention Problems (B = -17.5, t(63) = -0.40, p = 0.69, 95% CI

= -69.7 to 104.7), nor did it predict BRIEF GEC (B = 243.1, t(63) = 1.43, p =

0.16, 95% CI = -97.9 to 584.1), BRIEF MI (B = 41.2, t(63) = 1.68, p = 0.10, 95%

CI = -8.0 to 90.3), or BRIEF BRI (B = 61.8, t(63) = 1.05, p = .30, 95% CI = -55.7
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to 179.4). There was no mediation effect (the 95% CI for the ab parameter covered

zero for all models; B = -8.3 (-25.4 to 7.2) for BRIEF GEC, B = 43.6 (-11.8 to

104.2) for BRIEF MI, and B = 27.8 (-14.0 to 84.8) for BRIEF BRI). In contrast,

the right FAT did predict CBCL Attention Problems (B = -75.6, t(63) = -2.07, p

= 0.04, 95% CI = -148.5 to -2.8), but it did not predict BRIEF GEC (B = -208.3,

t(63) = 1.42, p = 0.16, 95% CI = -502.3 to 85.8), BRIEF MI (B = -18.1, t(63) =

-.84, p = 0.40, 95% CI = -61.2 to 25.0), or BRIEF BRI (B = -58.0, t(63) = 1.14, p

= .26, 95% CI = -159.2 to 43.2). There was also no mediation effect (the 95% CI

for the ab parameter covered zero for all models; B = -8.3 (-25.4 to 7.2) for BRIEF

GEC, B = -35.4 (-101.6 to 12.4) for BRIEF MI, and B = -24.9 (-90.1 to 21.8) for

BRIEF BRI).

Discussion

We investigated the development of the FAT and its association to executive

function and externalizing behaviors in a sample of 129 children ranging in age from

7-months to 19-years. We found that the FAT could be tracked in over 90% of those

children, and that the pathway showed age-related differences into adulthood. The

change in white matter microstructure was very rapid until about 6-years, and then

plateaued, only to show age-related increases again after the age of 11-years. In a

subset of those children for whom behavioral data was available (5-18-years; n =

70), left laterality of the microstructural properties of the FAT predicted greater

attention problems as measured by the CBCL. However, this relationship was fully

mediated by higher executive dysfunction as measured by the BRIEF. This rela-

tionship was specific to the FAT—we found no relationship between laterality of the

white matter of the brain in general and attention problems, or executive function.

It was also specific to the laterality measure—although the right, but not left, FAT
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was associated with attention problems, this was not mediated by executive func-

tion. These findings suggest that the degree to which the developing brain favors a

right lateralized structural dominance of the FAT is directly associated with devel-

oping executive function and attention. This novel finding provides a new potential

structural biomarker for attention problems and associated executive dysfunction,

which would lay the foundation for future exploration as a biological indicator of

treatment response in developmental externalizing disorders, such as ADHD.

The Role of the Frontal Aslant Tract in Executive Function

Our findings are consistent with current neurobiological models of executive func-

tion in adults. For example, several authors (Aron, 2007; Aron et al., 2016, 2014;

Jahanshahi et al., 2015; Wiecki and Frank, 2013) have proposed a model for stopping

behavior—i.e., countermanding an initiated response tendency via top-down exec-

utive control, recruited during Go/NoGo and Stop-Signal experimental paradigms.

In these tasks, a prepotent response is initiated (a Go process) that must be over-

ridden when a stop-signal occurs (the Stop process). These models propose that

stopping requires the integrity of the right IFG and the pre-SMA, and that these

regions form part of a cortico-basal ganglia “network for inhibition” (Jahanshahi

et al., 2015).

In our study, we replicate the structural connection of the IFG and pre-SMA

via the fibers of the FAT, and other research confirms the functional connectivity

of these two regions (Duann et al., 2009). The establishment of this monosynaptic

connection between the IFG and pre-SMA is important for exploring the distinct

roles each region plays within this “network for inhibition” (Ridderinkhof et al.,

2004). In the Wiecki/Frank computational model (Wiecki and Frank, 2013), the
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right IFG directly activates neurons of the subthalamic nucleus, which plays an

explicit role in stopping motor behavior (Favre et al., 2013; Jahanshahi, 2013; Obeso

et al., 2014; van Wouwe et al., 2017). However, others suggest that this connection

may proceed via the pre-SMA (Aron et al., 2016). This is important to work out, and

our results suggest that the connection between IFG and pre-SMA is an important

structural component of this network. Further, it may be that the modulation of

subthalamic nucleus activity proceeds through this link. From this perspective, the

right FAT is a pathway for inhibition. Indeed, higher FA in the white matter under

the pre-SMA and right IFG is associated with better response inhibition in children

(Madsen et al., 2010) and older adults (Coxon et al., 2012).

It is also possible, though, that the pathway does not play a role in inhibition,

but rather in conflict detection. Thus, the pre-SMA may be critical for the detection

of and resolution of conflicting action representations—the “winning” representation

is reinforced, and the “losing” representation is suppressed (Nachev et al., 2007).

Indeed, Nachev and colleagues (2007) found that a patient with a focal lesion to the

right pre-SMA was significantly impaired on a task requiring the resolution of con-

flict between competing action plans. This is consistent with fMRI task paradigms

showing activation of right pre-SMA in situations in which a participant must choose

to perform a new response in favor of an established response (Garavan et al., 2003),

and in single-unit recording of a human in which pre-SMA neurons appear to play

a role in the selection and preparation of movements (Amador and Fried, 2004).

The pre-SMA and its connections with the IFG appear to be important for these

processes.
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The Role of the Frontal Aslant Tract in Externalizing Behaviors and At-

tention

We also showed that microstructural properties of the FAT, as measured by

DWI, are associated with increased reports of attention problems in children, a

finding that was particularly apparent for the right FAT. The left FAT did not show

this pattern. This is consistent with prior neuroimaging research in people with

ADHD showing activation differences compared to neurotypical people in right IFG

and pre-SMA during executive function tasks. For example, people with ADHD

show hypoactivation of the right IFG during Go/NoGo and SST tasks (Rubia et al.,

1999). Anatomic and functional differences in children with ADHD are also reported

for the pre-SMA (Mostofsky et al., 2002; Suskauer et al., 2008a,b).

Thus, one interpretation of our results is that the FAT is involved in attention per

se, and not necessarily inhibitory control or conflict detection. Indeed, one critique

of the notion that the right IFG is associated with inhibition is that the typical ex-

perimental paradigms employed are assessing attentional processes (Chatham et al.,

2012; Hampshire et al., 2010). For example, Chatham and colleagues (2012) and

Hampshire and colleagues (Erika-Florence et al., 2014; Hampshire, 2015; Hamp-

shire et al., 2010) have suggested that so-called “inhibitory control tasks” really tap

into controlled context-monitoring processes, not inhibition. The authors further

suggested that impairments in context-monitoring, supported by right IFG and as-

sociated circuits, might explain deficits seen in ADHD. They pointed to increased

reaction time variability in SST paradigms in people with ADHD as support for

such a contention (Castellanos et al., 2006), and suggest that treatments focusing

on improving context-monitoring, rather than improving inhibitory control, might

be more appropriately targeting the underlying deficit in ADHD. But these tasks
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confound context monitoring, conflict detection, and inhibitory control processes

proposed to recruit the right IFG (Castellanos et al., 2006). Although some at-

tempts have been made to tease these processes apart (Erika-Florence et al., 2014;

Hampshire, 2015), there is still debate about whether right IFG is involved in at-

tention more generally (Ridderinkhof et al., 2004), or more specifically inhibitory

control (Aron et al., 2014).

It has also been proposed that a primary deficit in ADHD is in fact one of in-

hibitory control (Barkley and Murphy, 2010; Neely et al., 2017; Schachar et al.,

2000). However, inhibitory control and more broadly defined executive function

deficits are not a universal feature of ADHD (Nigg et al., 2005), and in fact there

may be executive function subtypes of ADHD, with an inhibitory control dysfunction

profile describing only one of the subtypes (Roberts et al., 2017). These subtypes are

defined at the behavioral level, and further progress in demarcating them may re-

quire the additional of data at other levels of analysis, such as at the neurobiological

level. In this case, our findings suggest that delineation of the FAT in people with

ADHD, and exploration of its functional relationship to executive function, might

be important for understanding and dissociating ADHD subtypes. Indeed, our data

reinforce the notion that attention problems associated with the FAT are explained

by individual differences in executive function. There is a caveat here though—the

mediation only held for the laterality measure. Although the right (but not left)

FAT predicted attention, this particular association was not mediated by executive

function. This raises an interesting possibility. That is, the degree to which func-

tions best supported by a particular fiber pathway are co-opted by the contralateral

pathway may predict dysfunction. Some evidence indicates this is the case for the

FAT’s involvement in stuttering. Thus, a recent study by Neef and colleagues (Neef

et al., 2018) showed that stronger structural connectivity of the right, but not left,

167



FAT is associated with worse stuttering. They interpreted this as indication of hy-

peractivity of the network involved in global response suppression, which disrupts

fluent speech that typically relies strongly on left perisylvian networks, supported by

the left FAT and associated perisylvian pathways. This proposal requires additional

research, but it represents an interesting way of thinking about how fiber pathways

that mirror each other across hemispheres might support sometimes complimentary

and dissociable functions. A second caveat is worth noting as well. That is, our

sample is a typical sample, and does not speak to whether there are subtypes that

might be apparent in a clinical population. This would require further work in clin-

ical populations, such as people diagnosed with ADHD.

Sub-Components of the Frontal Aslant

Our analysis of the relation between the FAT and attention and executive func-

tion focused on one subcomponent of the tract, namely the component connecting

the pre-SMA with the IFGOp. On the right hemisphere, the IFGOp is associated

with inhibitory control (Aron et al., 2016; Herbet et al., 2015). However, the IFGTr

also has efferent/afferent fibers coursing as part of the FAT. On the left hemisphere,

this region is consistently associated with controlled lexical retrieval and selection,

which is dissociated from the more posterior IFGOp associated with phonological

selection and retrieval (Badre et al., 2005; Devlin et al., 2003; Gough et al., 2005).

Even on the right hemisphere, there appears to be some role for semantic selec-

tion for IFGTr. For example, transcranial magnetic stimulation (TMS) of the right

IFGTr, but not IFGOp, improves semantic retrieval in a naming task in people with

aphasia (Naeser et al., 2011).
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SMA and pre-SMA also have different functional associations. The pre-SMA is

especially thought to play a role in motor selection, as it does not make a direct

connection to the primary motor cortex, the spinal cord, or the cranial nerve motor

nuclei. Actual execution of movements is more associated with SMA and is depen-

dent on and its direct connections with motor cortex (Dum and Strick, 1991; Lu

et al., 1994; Luppino et al., 1991). The pre-SMA thus seems to be involved in higher-

order selection, and conflict monitoring and resolution (Tremblay and Gracco, 2009,

2010). Differential connectivity of these medial frontal regions with the IFGTr and

IFGOp may support somewhat complementary functions in the service of selecting

among competing thoughts and actions. In the case of connections with IFGTr, this

may be more important in situations involving semantic conflict. Connection with

IFGOp may be associated with action selection and inhibitory control of actions

more broadly. However, since the FAT is only a relatively recently identified fiber

pathway, these proposals remain somewhat speculative and await further investiga-

tion.

Limitations

One potential limitation of our study is the use of behavior report measures as

a proxy for executive function and attention. This is a legitimate criticism, and the

study should be in part viewed as a point of departure for future detailed investi-

gations using laboratory paradigms. However, the behavioral ratings we used here

have substantial construct validity and reliability (Achenbach and Rescorla 2000,

2001, 2003; Gioia et al. 2000), and provide information that cannot necessarily be

obtained from laboratory tasks. For example, Barkley and colleagues (Barkley and

Fischer, 2011; Barkley and Murphy, 2010) found that ratings of executive function
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can sometimes be a better predictor of everyday impairment than laboratory tests

of executive function. Rating scales are also effective with preschool children and

perform as well as laboratory tasks, such as continuous performance tasks, at differ-

entiating children with ADHD from typical children (Cak et al., 2017). Thus, while

future research should incorporate laboratory tasks, it does not discount the utility

of the results we report here.

Conclusions

The work we report here shows that the FAT develops in a protracted man-

ner into late adolescence/early adulthood, and that right lateralization of the fiber

pathway is significantly associated with executive function. This fits with the puta-

tive functional roles of the regions the pathway connects—the right IFG and right

pre-SMA. These results suggest that the FAT should be explored more carefully in

research on developing executive function, or dysfunction as occurs in externalizing

disorders such as ADHD.

170



APPENDIX B: Non-Winsor Age-Related Changes.
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The tables and plots included in this section show age-related change displayed

with non-Winsor corrected data points. As mentioned in the main text, the signif-

icance of findings remained almost unchanged, but the plots did become easier to

interpret since the outliers had a smaller effect.

Table 1: Age-Related Changes in the FAT: Non-Winsor

Metrics Hemi PreSMA Op SMA Op

FA Left 0.13 (171) 0.04 (163)
Right 0.11 (178) 0.13 (171)
Lat 0.004(163) -0.09 (149)

AD Left -0.28*** (171) -0.31*** (163)
Right -0.17** (178) -0.22** (171)
Lat -0.05 (163) -0.07 (149)

RD Left -0.02 (171) -0.03 (163)
Right -0.05 (178) -0.12 (171)
Lat 0.08 (163) 0.06 (149)

MD Left -0.31*** (171) -0.31*** (163)
Right -0.28*** (178) -0.29*** (171)
Lat 0.01 (163) -0.09 (149)

GFA Left 0.05 (171) -0.04 (163)
Right 0.05 (178) 0.07 (171)
Lat -0.04(163) (34) -0.09 (149)

QA Left -0.03 (171) -0.02 (163)
Right -0.01 (178) 0.01 (171)
Lat -0.09(163) -0.08 (149)

nQA Left -0.04 (171) -0.04 (163)
Right -0.01 (178) 0.005 (171)
Lat -0.09(163) -0.07 (149)

β from the robust regression coefficient is shown for each FAT segment, degrees of
freedom in parentheses. Calculations controlled for sex, whole brain microstruc-
ture, and movement in the scanner. Laterality (”Lat”) is calculated as (Left –
Right)/(Left + Right). FA = fractional anistropy, AD = axial diffusion, RD =
radial diffusion, MD = mean diffusivity, GFA = generalized fractional anistropy,
QA = quantitative anistropy, nQA = normalized quantitative anistropy. p<0.05*,
p<0.01**, p<0.001***
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Figure 1: Age-related changes in the FAT by DTI metric.

Age-related changes, as measured in DTI metrics, in the FAT compared to whole
brain microstructural development. Primary segment (preSMA to Op) selected
since it had the largest sample sizes. Significance is indicated by *s in the key.
p<0.05*, p<0.01**, p<0.001***.
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Figure 2: Age-related changes in the FAT by HARDI metric.

Age-related changes, as measured in HARDI metrics, in the FAT compared to
whole brain microstructural development. Primary segment (preSMA to Op)
selected since it had the largest sample sizes. Significance is indicated by *s in the
key. p<0.05*, p<0.01**, p<0.001***.
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TABLES

Table 1: Group Differences in Demographics

Demographics Mean (SE) ADHD Mean (SE) TD Mean (SE) Difference β

Age 5.64 (0.06) 5.62 (0.08) 5.65 (0.09) -0.02
Sex (% Males) 69.39% (3.3%) 76% (4.3%) 62.5% (5%) 0.15*
SES 5.30 (0.18) 5.23 (0.23) 5.37 (0.28) -0.03
Movement 86.53 (0.77) 84.40 (1.18) 88.74 (0.95) -0.20**
Whole Brain FA 0.33 (0.001) 0.32 (0.002) 0.33 (0.002) -0.06

Table 1 shows the mean age, sex, socioeconomic status (SES), movement in the
scanner, and whole brain microstructure for full sample and for typically developing
(TD) and ADHD group. Age is shown in years, sex is shown in percentage of males
per group, SES was a binned variable with 5 indicating $50-65,000 annual income,
and DWI directions kept was used as a proxy for movement in the scanner. No whole
brain microstructure differences were found between any DWI metrics, but fractional
anistropy (FA) is shown as an example. β values represent standardized regression
slope parameter estimates for group differences. p<0.05*, p<0.01**, p<0.001***
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Table 2: Age-Related Differences in the FAT

Metrics Hemi PreSMA Op SMA Op

FA Left 0.14* (171) 0.04 (163)
Right 0.11 (178) 0.14 (171)
Lat 0.01(163) -0.10 (149)

AD Left -0.29*** (171) -0.32*** (163)
Right -0.19** (178) -0.23** (171)
Lat -0.05 (163) -0.07 (149)

RD Left -0.04 (171) -0.04 (163)
Right -0.05 (178) -0.14 (171)
Lat 0.05 (163) 0.08 (149)

MD Left -0.34*** (171) -0.33*** (163)
Right -0.29*** (178) -0.31*** (171)
Lat 0.03 (163) -0.08 (149)

GFA Left 0.10 (171) -0.02 (163)
Right 0.07 (178) 0.09 (171)
Lat -0.02(163) -0.12 (149)

QA Left -0.03 (171) -0.02 (163)
Right -0.01 (178) 0.01 (171)
Lat -0.07(163) -0.07 (149)

nQA Left -0.04 (171) -0.04 (163)
Right -0.01 (178) 0.00 (171)
Lat -0.09 (163) -0.06 (149)

The β from the robust regression coefficient is shown for each FAT segment, degrees
of freedom in parentheses. Calculations controlled for sex, whole brain microstruc-
ture, and movement in the scanner. This table represents the Wison corrected values
for outliers. Laterality (”Lat”) is calculated as (Left – Right)/(Left + Right). FA
= fractional anistropy, AD = axial diffusivity, RD = radial diffusivity, MD = mean
diffusivity, GFA = generalized fractional anistropy, QA = quantitative anistropy,
nQA = normalized quantitative anistropy. p<0.05*, p<0.01**, p<0.001***.
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Table 3: Language Task Means and Main Effects of Demographic Variables

Task Mean (SE) Age r Sex r Whole Brain r SES r

NEPSY Semantics

Animal Words 8.72 (0.27) 0.40*** -0.05 0.16* 0.10
Food-Drink Words 8.09 (0.25) 0.39*** -0.15* 0.07 0.04
Total Score 16.82 (0.43) 0.46*** -0.12 0.13 0.08

NEPSY Phonemics

Inital Letter S-Words 4.37 (0.20) 0.43*** -0.16* 0.17* 0.10
Inital Letter F-Words 3.88 (0.20) 0.32*** -0.12 0.07 0.10
Total Score 8.22 (0.36) 0.41*** -0.16* 0.13 0.11

SRT Scores

Monolingual Scoring 80.69% (1.80%) 0.17 -0.07 -0.12 -0.04
Bilingual Scoring 82.42% (1.52%) 0.29** -0.22* -0.05 -0.02

This table shows mean scores for full sample for all NEPSY-II tasks and SRT scores.
Scaled scores for NEPSY were unavailable for children under the age of 7 for phono-
logical tasks so they are unreported. The SRT scores represent an percentage of
accurate phonemes articulated by the participant. β = Standardized regression
slope parameter estimate. SE = Standard error of the regression slope parameter
estimate. The Pearson correlation coefficients (r) are reported for age, sex, whole-
brain FA, and parental socioeconomic status (SES). For sex, males were scored as
1, so negative scores indicate advantage for females. Whole-brain is shown with FA,
but was consistent among other metrics as well. p<0.05*, p<0.01**, p<0.001***.
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Table 4: Group Differences on Language Tasks

Task ADHD Mean (SE ) TD Mean (SE) B (SE) β

Semantic Scores

Animal Words 8.14 (0.36) 9.39 (0.38) -1.20 (0.49) -0.16*
Food-Drink Words 7.69 (0.35) 8.55 (0.34) -0.70 (0.45) -0.10
Total Score 15.83 (0.62) 17.96 (0.59) -1.91 (0.77) -0.16*

Phonological Scores

Inital Letter S-Words 3.94 (0.26) 4.86 (0.29) -0.80 (0.35) -0.15*
Inital Letter F-Words 3.58 (0.29) 4.24 (0.29) -0.56 (0.39) -0.10
Total Score 7.51 A(0.49) 9.07 (0.53) -1.34 (0.65) -0.13*

SRT Scores

Bilingual Scoring 78.98% (2.3%) 86.19% (1.82%) -6.16(2.90) -0.19*

This table shows mean scores for full sample, the ADHD sample, and TD sample.
For diagnosis group, ADHD was scored as 1, so negative scores indicate advantage
for TD. β = Standardized regression slope parameter estimate. SE = Standard error
of the regression slope parameter estimate. The regressions were ran controlling for
age, gender, and SES. p<0.05*, p<0.01**, p<0.001***.
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Table 5: The FAT’s Association with Language

Predictor −− > Outcome df B (SE) β t p

FAT Predicting Language in Full Sample

Left PreSMA Op QA −− > SRT Phonemic Articulation 98 886.79 (307) 0.63 2.89 0.01
Left SMA Op AD −− > SRT Phonemic Articulation 91 118 (44.10) 0.22 2.68 0.01
PreSMA Op GFA Laterality −− > SRT Phonemic Articulation 91 77.93 (37.27) 0.16 2.09 0.04
SMA Op AD Laterality −− > SRT Phonemic Articulation 83 183.53 (73.34) 0.21 2.50 0.01
SMA Op QA Laterality −− > SRT Phonemic Articulation 83 50.85 (20.93) 0.18 2.43 0.02
Right SMA Op AD −− > NEPSY Semantics 168 31.53 (13.96) 0.16 2.26 0.03

FAT Predicting Language in TD Sample

Left SMA Op AD −− > SRT Phonemic Articulation 39 113.81 (51.33) 0.31 2.61 0.01
SMA Op QA Laterality −− > SRT Phonemic Articulation 36 53.73 (23.49) 0.22 2.29 0.03
Left PreSMA Op GFA −− > NEPSY Phonemics 78 280.85 (136.68) 0.26 2.08 0.04
Right SMA Op AD −− > NEPSY Semantics 81 47.87 (21.23) 0.25 2.26 0.03

FAT Predicting Language in ADHD Sample

SMA Op AD Laterality −− > SRT Phonemic Articulation 40 408.92 (133.35) 0.47 3.07 0.004
SMA Op QA Laterality −− > SRT Phonemic Articulation 40 91.99 (41.06) 0.31 2.24 0.03
Right PreSMA Op FA −− > NEPSY Semantics 83 -67.40 (25.07) -0.25 -2.69 0.01
Right PreSMA Op GFA −− > NEPSY Semantics 83 -325.93 (121.72) -0.29 -2.68 0.01
PreSMA Op FA Laterality −− > NEPSY Semantics 77 35.50 (16.09) 0.21 2.21 0.03
PreSMA Op RD Laterality −− > NEPSY Semantics 77 -81.64 (36.10) -0.21 -2.26 0.03
PreSMA Op GFA Laterality −− > NEPSY Semantics 77 41.51 (16.51) 0.22 2.51 0.01

FAT Group Interactions Predicting Language

Right PreSMA Op FA −− > NEPSY Semantics 171 -139.25 (48.85) -0.16 -2.13 0.03
Right PreSMA Op RD −− > NEPSY Semantics 171 -83.25 (34.54) -0.14 -2.00 0.046
Right PreSMA Op GFA −− > NEPSY Semantics 171 -375.60 (145.61) -0.16 -2.05 0.04

Continued on next page
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Table 5 – continued from previous page

Robust linear regression models were ran to test the association of the bilateral FAT and our three language measures.
Laterality is calculated as (Left – Right)/(Left + Right). B = Unstandardized regression slope parameter estimate. SE
= Standard error of the regression slope parameter estimate. β = Standardized regression slope parameter estimate. All
findings control for age, sex, whole brain microstructure, movement in the scanner, and parental SES. In order to be
concise, only findings where the confidence interval did not cross zero are reported. All p-values are two-tailed.

180



Table 6: EF Means and Main Effects of Demographic Variables

Task Mean (SE) Age r Sex r Whole Brain r SES r

NIH Toolbox Flanker 97.30 (1.04) NA -0.02 0.06 -0.08
NIH Toolbox DCCS 96.74 (1.03) NA -0.05 -0.03 -0.17*
HTKS Total 32.68 (1.37) 0.45*** -0.21*** 0.26*** 0.10

This table shows mean scores for full sample for all NIH Toolbox and HTKS scores.
B = Unstandardized regression slope parameter estimate. β = Standardized re-
gression slope parameter estimate. SE = Standard error of the regression slope
parameter estimate. The Pearson correlation coefficients (r) are reported for age,
sex, whole-brain FA, and parental socioeconomic status (SES). NA for age in NIH
Toolbox tasks is because age-corrected scores were used so age was already cal-
culated into the NIH Toolbox score output. For sex, males were scored as 1, so
negative scores indicate advantage for females. Whole-brain is shown with FA, but
was consistent among other metrics as well. p<0.05*, p<0.01**, p<0.001***.
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Table 7: Executive Functioning Group Differences.

Task ADHD Mean (SE ) TD Mean (SE) B (SE) β

NIH Toolbox Flanker 93.44 (1.50) 101.92 (1.23) -9.10 (2.05) -0.34***
NIH Toolbox DCCS 93.73 (1.39) 100.36 (1.44) -7.19 (2.03) -0.27***
HTKS Total 27.17 (1.84) 38.78 (1.85) -9.55 (2.36) -0.26***

This table shows mean scores for full sample, the ADHD sample, and TD sample.
NIH Toolbox scores are age-corrected standard scores, with 100 representing the
population mean. HTKS scores range from 0 to 60. For diagnosis group, ADHD
was scored as 1, so negative scores indicate advantage for TD. β = Standardized
regression slope parameter estimate. SE = Standard error of the regression slope
parameter estimate. The regressions were ran controlling for age, gender, and SES.
p<0.05*, p<0.01**, p<0.001***.
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Table 8: The FAT’s Association with Executive Function

Predictor −− > Outcome df B (SE) β t p

FAT Predicting Executive Function in Full Sample

Left SMA Op AD −− > Flanker Task 137 87.79 (34.36) 0.20 2.56 0.01
SMA Op AD Laterality −− > Flanker Task 124 167.65 (57.08) 0.23 2.94 0.004
Left PreSMA Op QA −− > DCCS 145 637.18 (320.12) 0.55 1.99 0.048
Left PreSMA Op MD −− > HTKS 154 160.68 (63.86) 0.21 2.52 0.01
Left SMA Op MD −− > HTKS 148 175.81 (69.21) 0.21 2.54 0.01
Right PreSMA Op FA −− > HTKS 160 -153.06 (64) -0.19 -2.39 0.02
Right SMA Op FA −− > HTKS 154 -135.16 (59.28) -0.18 -2.28 0.02
Right SMA Op MD −− > HTKS 154 169.91 (70.27) 0.19 2.42 0.02
SMA Op AD Laterality −− > HTKS 135 194.08 (79.85) 0.20 2.43 0.02

FAT Predicting Language in TD Sample

SMA Op QA Laterality −− > DCCS 55 79.32 (35.67) 0.35 2.22 0.03
Left SMA Op GFA −− > HTKS 66 733.35 (325.54) 0.25 2.25 0.03
Right PreSMA Op AD −− > HTKS 75 118.93 (55.85) 0.20 2.13 0.04
PreSMA Op FA Laterality −− > HTKS 68 -118.01 (43.84) -0.25 -2.69 0.01
PreSMA Op GFA Laterality −− > HTKS 68 -124.03 (45.53) -0.25 -2.72 0.01

FAT Predicting Language in ADHD Sample

Left PreSMA Op FA −− > DCCS 76 135.03 (65.48) 0.23 2.06 0.04
Left PreSMA Op GFA −− > DCCS 76 667.11 (287.44) 0.28 2.32 0.02
Right PreSMA Op RD −− > DCCS 76 -189.96 (90.13) -0.33 -2.11 0.04
Left PreSMA Op MD −− > HTKS 77 272.65 (86.03) 0.35 3.17 0.002
Left SMA Op FA −− > HTKS 75 -260.89 (100.3) -0.33 -2.60 0.01
Left SMA Op RD −− > HTKS 75 370.07 (126.28) 0.46 2.93 0.004
Left SMA Op MD −− > HTKS 75 238.96 (96.2) 0.28 2.48 0.02
Left SMA Op GFA −− > HTKS 75 -974.28 (411.96) -0.31 -2.36 0.02

FAT Predicting Language in ADHD Sample, continued.
Continued on next page
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Table 8 – continued from previous page
Predictor −− > Outcome df B (SE) β t p

Left SMA Op QA −− > HTKS 75 -1057.46 (528.19) -0.6 -2.00 0.049
Right PreSMA Op FA −− > HTKS 78 -289.5 (87.14) -0.38 -3.32 0.001
Right PreSMA Op GFA −− > HTKS 78 -1294.06 (411.66) -0.4 -3.14 0.002
Right PreSMA Op QA −− > HTKS 78 -1104.43 (448.54) -0.65 -2.46 0.02
Right SMA Op FA −− > HTKS 76 -171.84 (82.63) -0.25 -2.08 0.04

FAT Group Interactions Predicting Executive Function

Left SMA Op FA −− > HTKS 146 -293.42 (105.84) -0.17 -2.12 0.04
Left SMA Op RD −− > HTKS 146 239.99 (102.88) 0.15 1.98 0.049
Left SMA Op GFA −− > HTKS 146 -1137.93 (416.33) -0.18 -2.10 0.04
Right PreSMA Op FA −− > HTKS 158 -333.67 (102.47) -0.23 -2.23 0.03
Right PreSMA Op GFA −− > HTKS 158 -1526.79 (439.62) -0.24 -2.27 0.02
PreSMA Op FA Laterality −− > HTKS 145 212.52 (69.36) 0.24 2.18 0.03
PreSMA Op GFA Laterality −− > HTKS 145 237.37 (73.45) 0.23 2.22 0.03

Robust linear regression models were ran to test the association of the bilateral FAT and our three executive function
measures. Laterality is calculated as (Left – Right)/(Left + Right). B = Unstandardized regression slope parameter
estimate. SE = Standard error of the regression slope parameter estimate. β = Standardized regression slope parameter
estimate. All findings control for age, sex, whole brain microstructure, movement in the scanner, and parental SES. In
order to be concise, only findings where the confidence interval did not cross zero are reported. All p-values are two-tailed.
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Table 9: DWI Metrics in Study 2.A and 2.B

Metrics n Measure

Study 2.A: HCP Adults
multi-shell data
b values = 500, 1000, 2000
90 directions per shell

DTI Metrics

840 Radial Diffusivity (RD)
840 Axial Diffusivity (AD)
840 Mean Diffusivity (MD)
840 Fractional Anisotrpy (FA)

GQI Metrics
840 Generalized Fractional Anistropy (GFA)
840 Normalized Quantitative Anistropy (NQA)

NODDI Metrics
100 Intracellular Volume Fraction (ICVF)
100 Isotropic Volume Fraction (ISOVF)
100 Orientation Dispersion (OD)

RDI Metric
840 Restricted Diffusion Imaging (RDI)

Study 2.B: CMIND Developing
single shell data
b value = 3000
61 directions

DTI Metrics
129 Radial Diffusivity (RD)
129 Axial Diffusivity (AD)
129 Mean Diffusivity (MD)
129 Fractional Anisotrpy (FA)

GQI Metrics
129 Generalized Fractional Anistropy (GFA)
129 Normalized Quantitative Anistropy (NQA)

RDI Metric
129 Restricted Diffusion Imaging (RDI)

This summary table provides a breakdown of the metrics that were analyzed for each
study. Given the long computation time, a random sample of 100 out of 840 were
chosen for NODDI analyses in Study 2.A. Furthermore, NODDI is only available for
multi-shell acquisitions, so it could not be applied to the single-shell data in Study
2.B.
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Table 10: Contrast Analyses for Axonal Density in Adult Sample

Metric n t d p

>0.4 µm Fiber Size

Fractional Anistropy (FA) 840 9.70 0.47 <0.001***
Radial Diffusivity (RD) 840 -28.48 -1.39 <0.001***
Axial Diffusivity (AD) 840 -60.60 -2.96 <0.001***
Mean Diffusivity (MD) 840 -41.90 -2.05 <0.001***
Generalized Fractional Anistropy (GFA) 840 7.18 0.35 <0.001***
Normalized Quantitative Anistropy (NQA) 840 -19.92 -0.97 <0.001***
Intracellular Volume Fraction (ICVF) 100 25.54 3.61 <0.001***
Isotropic Volume Fraction (ISOVF) 100 -4.56 -0.65 <0.001***
Orientation Dispersion (OD) 100 -0.06 -0.01 0.95
Restricted Diffusion Imaging (RDI) 840 -53.29 -2.60 <0.001***

>1 µm (A) Fiber Size Comparing B3 and S2

Fractional Anistropy (FA) 840 48.51 2.37 <0.001***
Radial Diffusivity (RD) 840 -39.68 -1.94 <0.001***
Axial Diffusivity (AD) 840 -6.27 -0.31 <0.001***
Mean Diffusivity (MD) 840 -34.47 -1.68 <0.001***
Generalized Fractional Anistropy (GFA) 840 52.42 2.56 <0.001***
Normalized Quantitative Anistropy (NQA) 840 32.28 1.58 <0.001***
Intracellular Volume Fraction (ICVF) 100 17.35 2.45 <0.001***
Isotropic Volume Fraction (ISOVF) 100 -7.71 -1.09 <0.001***
Orientation Dispersion (OD) 100 -7.28 -1.03 <0.001***
Restricted Diffusion Imaging (RDI) 840 -22.92 -1.12 <0.001***

>1 µm (B) Fiber Size Comparing S2 and S3

Fractional Anistropy (FA) 840 17.53 0.86 <0.001***
Radial Diffusivity (RD) 840 -13.99 -0.68 <0.001***
Axial Diffusivity (AD) 840 4.29 0.21 <0.001***
Mean Diffusivity (MD) 840 -10.88 -0.53 <0.001***
Generalized Fractional Anistropy (GFA) 840 22.85 1.12 <0.001***
Normalized Quantitative Anistropy (NQA) 840 5.30 0.26 <0.001***
Intracellular Volume Fraction (ICVF) 100 -6.28 -0.89 <0.001***
Isotropic Volume Fraction (ISOVF) 100 -9.73 -1.38 <0.001***
Orientation Dispersion (OD) 100 -12.09 -1.71 <0.001***
Restricted Diffusion Imaging (RDI) 840 -6.02 -0.29 <0.001***

>5 µm Fiber Size

Fractional Anistropy (FA) 840 4.73 0.23 <0.001***
Radial Diffusivity (RD) 840 20.65 1.01 <0.001***
Axial Diffusivity (AD) 840 70.50 3.44 <0.001***
Mean Diffusivity (MD) 840 38.56 1.88 <0.001***
Generalized Fractional Anistropy (GFA) 840 7.83 0.38 <0.001***
Normalized Quantitative Anistropy (NQA) 840 35.17 1.72 <0.001***
Intracellular Volume Fraction (ICVF) 100 -24.66 -3.49 <0.001***

Continued on next page
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Table 10 – continued from previous page
Metric n t d p
Isotropic Volume Fraction (ISOVF) 100 3.14 0.44 <0.001***
Orientation Dispersion (OD) 100 -1.21 -0.17 0.23
Restricted Diffusion Imaging (RDI) 840 58.24 2.84 <0.001***

Contrast analyses for corpus callosum density patterns in the adult sample. These
values have been Winsor outlier corrected. p<0.05*, p <0.01**, p <0.001***.
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Table 11: Contrast Analyses for Axonal Density in Developing Sample

Metric n t d p

>0.4 µm Fiber Size

Fractional Anistropy (FA) 129 28.66 3.57 <0.001***
Radial Diffusivity (RD) 129 -21.23 -2.64 <0.001***
Axial Diffusivity (AD) 129 -0.10 -0.01 0.92
Mean Diffusivity (MD) 129 -15.40 -1.92 <0.001***
Generalized Fractional Anistropy (GFA) 129 27.86 3.47 <0.001***
Normalized Quantitative Anistropy (NQA) 129 4.88 0.61 <0.001***
Restricted Diffusion Imaging (RDI) 129 -24.79 -3.09 <0.001***

>1 µm (A) Fiber Size Comparing B3 and S2

Fractional Anistropy (FA) 129 23.88 2.97 <0.001***
Radial Diffusivity (RD) 129 -15.29 -1.90 <0.001***
Axial Diffusivity (AD) 129 3.67 0.46 <0.001***
Mean Diffusivity (MD) 129 -9.71 -1.21 <0.001***
Generalized Fractional Anistropy (GFA) 129 25.16 3.13 <0.001***
Normalized Quantitative Anistropy (NQA) 129 18.70 2.33 <0.001***
Restricted Diffusion Imaging (RDI) 129 -0.85 -0.11 0.40

>1 µm (B) Fiber Size Comparing S2 and S3

Fractional Anistropy (FA) 129 1.15 0.22 0.08
Radial Diffusivity (RD) 129 -1.67 -0.21 0.10
Axial Diffusivity (AD) 129 -0.02 -0.003 0.98
Mean Diffusivity (MD) 129 -1.16 -0.14 0.24
Generalized Fractional Anistropy (GFA) 129 3.64 0.45 <0.001***
Normalized Quantitative Anistropy (NQA) 129 1.17 0.17 0.24
Restricted Diffusion Imaging (RDI) 129 -2.44 -0.30 <0.05*

>5 µm Fiber Size

Fractional Anistropy (FA) 129 -27.46 -3.42 <0.001***
Radial Diffusivity (RD) 129 21.94 2.73 <0.001***
Axial Diffusivity (AD) 129 2.87 0.36 <0.01**
Mean Diffusivity (MD) 129 16.93 2.11 <0.001***
Generalized Fractional Anistropy (GFA) 129 -25.55 -3.18 <0.001***
Normalized Quantitative Anistropy (NQA) 129 1.04 0.13 0.30
Restricted Diffusion Imaging (RDI) 129 30.36 3.78 <0.001***

Contrast analyses for corpus callosum density patterns in the developing sample.
These values have been Winsor outlier corrected. p <0.05*, p <0.01**, p <0.001***.
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Table 12: NODDI Means and Group Differences

Region Hemi NDI (SE ) [Group β] ODI (SE ) [Group β]

PreSMA Left 0.28 (.004) [0.1] 0.41 (.006) [-0.12]
Right 0.27 (.005) [0.11] 0.40 (.007) [-0.12]
Lat 0.04 (.012) [-0.03] 0.04 (.011) [0.16*]

SMA Left 0.29 (.004) [0.11] 0.42 (.006) [-0.08]
Right 0.29 (.005) [0.13] 0.41 (.006) [-0.07]
Lat -0.01 (.005) [-0.09] 0.02 (.005) [-0.01]

Op Left 0.28 (.004) [0.15*] 0.45 (.005) [-0.11]
Right 0.29 (.003) [0.000] 0.45 (.004) [-0.06]
Lat -0.02 (.007) [0.1] -0.01 (.005) [-0.08]

Tri Left 0.28 (.003) [0.07] 0.43 (.006) [-0.17*]
Right 0.25 (.004) [-0.12] 0.41 (.007) [-0.18**]
Lat -0.02 (.009) [-0.01] .03 (.011) [0.03]

Caudate Left 0.37 (.004) [0.17*] 0.43 (.006) [-0.19**]
Right 0.36 (.004) [0.11] 0.43 (.005) [-0.15*]
Lat 0.002 (.005) [0.08] .004 (.007) [-0.02]

Putamen Left 0.36 (.003) [0.03] 0.45 (.004) [-0.21**]
Right 0.36 (.003) [-0.11] 0.44 (.005) [-0.15*]
Lat 0.001 (.003) [0.19**] 0.01 (.005) [0.00]

First number represents the region mean, SE in parenthesis, and group difference (β) in brackets. ADHD was dummy
coded as 1, so higher β indicates higher value for ADHD compared to TD, controlling for whole brain microstructure.
SE = Standard error of the regression slope parameter estimate. β = Standardized regression slope parameter estimate.
Laterality (”Lat”) is calculated as (Left – Right)/(Left + Right). p <0.05*, p <0.01**, p <0.001***.
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Table 13: Region-Based Age Related Change

Region Hemi NDI ODI

PreSMA Left 0.002 -0.02
Right -0.04 -0.02
Lat 0.08*** 0.01

SMA Left -0.01 -0.02
Right -0.04 0.004
Lat 0.05 -0.02

Op Left -0.03 0.04
Right 0.10* -0.05
Lat -0.05 0.03

Tri Left -0.02 -0.03
Right 0.02 -0.05
Lat -0.07 0.01

Caudate Left 0.12*** -0.01
Right 0.16*** -0.09
Lat -0.02 0.03

Putamen Left 0.21*** -0.02
Right 0.16*** -0.02
Lat -0.01 0.003

The β from the robust regression coefficient is shown for each brain region/ Calcula-
tions controlled for sex, whole brain microstructure, and movement in the scanner.
PreSMA = presupplementary motor area, SMA = supplementary motor area, Op =
pars opercularis, Tri = pars triangularis. Diffusion metrics, NDI = neurite density
imaging, ODI = orientation dispersion imaging. Laterality (”Lat”) is calculated as
(Left – Right)/(Left + Right). p<0.05*, p<0.01**, p<0.001***.
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Table 14: Neurite Density and Orientation Predicting Language Outcomes

Predictor −− > Outcome df B (SE) β t p

Brain Regions Predicting Language in Full Sample

Caudate NDI Laterality −− > NEPSY Semantics 186 -17.52 (7.59) -0.15 -2.31 0.02
Right PreSMA NDI −− > SRT Phonemic Articulation 104 46.18 (20.78) 0.18 2.22 0.03
PreSMA NDI Laterality −− > SRT Phonemic Articulation 104 -24.57 (11.53) -0.20 -2.13 0.04
Putamen ODI Laterality −− > SRT Phonemic Articulation 106 58.11 (27.66) 0.15 2.10 0.04

Brain Regions Predicting Language in TD Sample

SMA NDI Laterality −− > NEPSY Semantics 84 48.84 (20.49) 0.29 2.34 0.02
Right PreSMA NDI −− > SRT Phonemic Articulation 47 53.90 (23.77) 0.20 2.27 0.03

FAT Predicting Language in ADHD Sample

Caudate ODI Laterality −− > NEPSY Phonemics 92 12.76 (6.33) 0.19 2.02 0.05
SMA NDI Laterality −− > NEPSY Phonemics 88 22.38 (9.18) 0.22 2.44 0.02
Caudate NDI Laterality −− > NEPSY Semantics 93 -23.37 (8.48) -0.23 -2.76 0.01
Right PreSMA NDI −− > SRT Phonemic Articulation 50 77.94 (39.65) 0.33 1.97 0.05
PreSMA NDI Laterality −− > SRT Phonemic Articulation 50 -55.57 (21.81) -0.47 -2.55 0.01

Robust linear regression models were ran to test the association of the bilateral FAT and our three language measures.
Laterality is calculated as (Left – Right)/(Left + Right). B = Unstandardized regression slope parameter estimate. SE
= Standard error of the regression slope parameter estimate. β = Standardized regression slope parameter estimate. All
findings control for age, sex, whole brain microstructure, movement in the scanner, and parental SES. In order to be
concise, only findings where the confidence interval did not cross zero are reported. All p-values are two-tailed.
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Table 15: Neurite Density and Orientation Predicting Executive Function

Predictor −− > Outcome df B (SE) β t p

Brain Regions Predicting Executive Function in Full Sample

SMA NDI Laterality −− > Flanker Task 153 65.71 (25.73) 0.20 2.55 0.01
SMA ODI Laterality −− > DCCS 155 60.39 (23.98) 0.20 2.52 0.01
Right Tri NDI −− > HTKS 170 94.75 (48.47) 0.15 1.95 0.05

Brain Regions Predicting Executive Function in TD Sample

Left SMA NDI −− > Flanker Task 67 -75.44 (34.68) -0.27 2.18 0.03
Left PreSMA ODI −− > Flanker Task 67 -47.01 (18.17) -0.28 -2.59 0.01
Left SMA ODI −− > Flanker Task 67 -51.92 (19.07) -0.31 -2.72 0.01
Left Op ODI −− > Flanker Task 69 -43.99 (18.48) -0.26 -2.38 0.02
Left Tri ODI −− > Flanker Task 69 -52.18 (18.13) -0.30 -2.88 0.01
Left Caudate ODI −− > Flanker Task 69 -57.55 (19.03) -0.34 -3.02 0.004
Left Putamen ODI −− > Flanker Task 69 -46.44 (23.12) -0.23 -2.01 0.05
Right PreSMA ODI −− > Flanker Task 68 -31.06 (12.54) -0.24 -2.48 0.02
Right SMA ODI −− > Flanker Task 67 -46.40 (18.51) -0.28 -2.51 0.02
Right Caudate ODI −− > Flanker Task 69 -52.59 (22.51) -0.30 -2.34 0.02
Right Putamen ODI −− > Flanker Task 69 -44.96 (19.21) -0.25 -2.34 0.02
PreSMA ODI Laterality −− > Flanker Task 67 47.98 (19.48) 0.26 2.47 0.02

Left SMA ODI −− > DCCS 68 -51.71 (25.54) -0.26 -2.02 0.05
Left Op ODI −− > DCCS 70 -61.35 (24.87) -0.31 -2.47 0.02
Right PreSMA ODI −− > DCCS 69 -40.28 (16.71) -0.27 -2.41 0.02
Right SMA ODI −− > DCCS 68 -56.08 (24.19) -0.29 -2.32 0.02
PreSMA ODI Laterality −− > DCCS 68 56.31 (24.88) 0.27 2.26 0.03
SMA ODI Laterality −− > DCCS 68 86.82 (38) 0.26 2.28 0.03
Op ODI Laterality −− > DCCS 70 -94.85 (41.50) -0.30 -2.29 0.03

Left PreSMA ODI −− > HTKS 76 -54.55 (25.77) -0.21 -2.12 0.04
Left SMA ODI −− > HTKS 76 -60.78 (26.77) -0.23 -2.27 0.03
Left Caudate ODI −− > HTKS 78 -65.72 (29.09) -0.24 -2.26 0.03

Continued on next page
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Table 15 – continued from previous page
Predictor −− > Outcome df B (SE) β t p
Right SMA ODI −− > HTKS 76 -61.16 (26.76) -0.23 -2.29 0.03
Right Putamen ODI −− > HTKS 78 -60.17 (29.27) -0.21 -2.06 0.04
Right Tri NDI −− > HTKS 78 95.88 (35.27) 0.25 2.72 0.01
Op NDI Laterality −− > HTKS 78 -68.60 (29.12) -0.23 -2.36 0.02
Tri NDI Laterality −− > HTKS 78 -49.92 (22.82) -0.23 -2.19 0.03

FAT Group Interactions Predicting Executive Function

Left SMA NDI −− > Flanker Task 152 97.49 (42.49) 0.13 2.02 0.05
PreSMA ODI Laterality −− > DCCS 155 -56.34 (27.11) -0.15 -2.06 0.04
Op ODI Laterality −− > DCCS 156 94.75 (48.47) 0.15 1.99 0.05

Robust linear regression models were ran to test the association of 12 brain regions and executive function, as measred
by NIH Toolbox tasks (flanker and DCCS) and HTKS. Laterality is calculated as (Left – Right)/(Left + Right). B =
Unstandardized regression slope parameter estimate. SE = Standard error of the regression slope parameter estimate.
β = Standardized regression slope parameter estimate. All findings control for age, sex, whole brain microstructure,
movement in the scanner, and parental SES. In order to be concise, only findings where the confidence interval did not
cross zero are reported. All p-values are two-tailed.
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FIGURES

Figure 1: FAT Anatomy

Illustration of the putative connectivity of the frontal aslant tract (FAT). (a)
Connectivity of the tract is bilateral between the inferior frontal gyrus (pars
opercularis (Op) and pars triangularis (Tri) and the superior frontal gyrus
(namely, pre-supplementary motor area (pre-SMA) and supplementary motor area
(SMA)). (b) The pathway can be further differentiated into four parts connecting
two parts of the IFG to the pre-SMA and SMA.
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Figure 2: Age-related differences in the FAT by DTI metric: Winsor.

Age-related differences, as measured in DTI metrics, in the FAT compared to
whole brain microstructural development. These plots display the Winsor outlier
corrections. Primary segment (preSMA to Op) selected since it had the largest
sample sizes. Significance is indicated by *s in the key. p<0.05*, p<0.01**,
p<0.001***.
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Figure 3: Age-related changes in the FAT by HARDI metric: Winsor.

Age-related differences, as measured in HARDI metrics, in the FAT compared to
whole brain microstructural development. These plots display the Winsor outlier
corrections. Primary segment (preSMA to Op) selected since it had the largest
sample sizes. Significance is indicated by *s in the key. p<0.05*, p<0.01**,
p<0.001***.
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Figure 4: Significant Age-related differences in the CST: Winsor.

Age-related differences in the CST, the control pathway, compared to whole brain
microstructural development. These plots display the Winsor outlier corrections.
Only significant metrics for the control pathway are displayed. Significance is
indicated by *s in the key. p<0.05*, p<0.01**, p<0.001***.
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Figure 5: NEPSY Group Differences

This figure shows the mean scores on all NEPSY tasks, with gray representing TD
group scores and blue representing ADHD group scores. The findings also control
for age, sex, and SES. p<0.05*, p<0.01**, p<0.001***.
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Figure 6: FAT Predicting Phonemic and Semantic Scores in TD Sample

Left and right hemisphere FAT segments in the TD sample predicting NEPSY
phonemic and semantic scores in a robust linear regression, controlling for age, sex,
whole brain microstructure, movement in the scanner, and SES. p<0.05*,
p<0.01**, p<0.001***.
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Figure 7: FAT Predicting Semantic Scores in ADHD Sample

Right preSMA to Op segment in the ADHD sample negatively predicting NEPSY
semantic scores in a robust linear regression, controlling for age, sex, whole brain
GFA, movement in the scanner, and SES. p<0.05*, p<0.01**, p<0.001***.
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Figure 8: FAT Lateralization Association with Semantic Scores in ADHD Sample

This plot shows how increased left lateralization in the primary FAT segment, the
preSMA to Op, predicts higher semantic scores in the ADHD sample. Laterality
was calculated using Thiebaut de Schotten et al. (2014) formula (left - right)/(left
+ right) in which positive values indicate left laterality. p<0.05*, p<0.01**,
p<0.001***.
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Figure 9: ADHD Diagnosis Moderates Relationship Between Right FAT and Se-
mantics

Significant interaction between group diagnosis and the preSMA to Op segment
predicting NEPSY semantic scores, with higher GFA within the segment
predicting lower semantic scores in the ADHD sample while having a trending,
positive effect for the TD sample. p<0.05*, p<0.01**, p<0.001***.
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Figure 10: ADHD Diagnosis Moderates Effect of PreSMA Op Laterality’s Relation-
ship with Semantics

Significant interaction between group diagnosis and the lateralization of the
preSMA to Op segment predicting NEPSY semantic scores, with higher left
lateralization predicting higher semantic scores in the ADHD sample while having
no signficant impact for the TD sample. Laterality was calculated using
Thiebaut de Schotten et al. (2014) formula (left - right)/(left + right) in which
positive values indicate left laterality. p<0.05*, p<0.01**, p<0.001***.

203



Figure 11: Left FAT Predicting Phoneme Articulation in Full Sample

Figure 11 illustrates the association between the left PreSMA to Op projection
and phoneme articulation as measured by the SRT. In the full sample, higher QA
in this FAT segment predicted higher accuracy on the SRT task. p<0.05*,
p<0.01**, p<0.001***.
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Figure 12: Left Lateralization of the FAT Predicts SRT in Full Sample

Higher left laterality of the FAT predicts better phonemic articulation in the full
sample, controlling for age, gender, whole brain microstructure, movement in the
scanner, and SES. p<0.05*, p<0.01**, p<0.001***.
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Figure 13: Left FAT Predicting Flanker and DCCS Scores in Full Sample

The left SMA to Op projection predicted flanker scores, while the left preSMA to
Op predicted DCCS. The NIH Toolbox results represent age-correct scores,
additionally controlling for gender, whole brain microstructure, movement in the
scanner, and SES. This plot depicts the full sample of children. p<0.05*,
p<0.01**, p<0.001***.
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Figure 14: Group Differences in NIH Toolbox Tasks

This figure shows the mean scores for the flanker and DCCS tasks, with blue
representing TD group scores and green representing ADHD group scores. The
findings also control for age, sex, and SES. p<0.05*, p<0.01**, p<0.001***.
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Figure 15: Bilateral FAT Predicting NIH Toolbox in ADHD Sample

This figure shows how segments of the left and right preSMA projections predict
age-corrected standard scores on the NIH Toolbox DCCS, controlling for sex,
whole brain GFA, movement in the scanner, and SES. Lower RD represents higher
myelination, therefore the bottom plot is inversely interpreted. p<0.05*,
p<0.01**, p<0.001***.
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Figure 16: Bilateral FAT Predicting HTKS Scores in Full Sample

The left and right FAT predicted worse performance on the HTKS controlling for
age, gender, whole brain microstructure, movement in the scanner, and SES. MD
results are inversely interpreted, with higher MD indicating a less developed
pathway. These plots depict the full sample of children. p<0.05*, p<0.01**,
p<0.001***.
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Figure 17: Bilateral FAT Predicting HTKS Scores in TD Sample

The left SMA to Op GFA predicted higher HTKS scores, controlling for age,
gender, whole brain microstructure, movement in the scanner, and SES. A similar
relationship can be seen with the right preSMA to Op segment with AD. This
relationship is also trending when GFA is used. These plots depict the TD sample
of children. p<0.05*, p<0.01**, p<0.001***.
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Figure 18: FAT Laterality Predicting HTKS Scores in TD Sample

This plot indicates that the left laterality of the FAT is associated with lower
HTKS scores. In other words, the developing brain favors the right hemisphere for
executive function tasks. These plots depict the TD sample of children. Laterality
was calculated using Thiebaut de Schotten et al. (2014) formula (left - right)/(left
+ right) in which positive values indicate left laterality. p<0.05*, p<0.01**,
p<0.001***.
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Figure 19: Bilateral FAT Predicting HTKS Scores in ADHD Sample

The left and right FAT segments predicted lower HTKS scores, controlling for age,
sex, whole brain GFA, movement in the scanner, and SES. These plots depict the
ADHD sample of children. p<0.05*, p<0.01**, p<0.001***.
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Figure 20: ADHD Diagnosis Moderates Relationship Between Left and Right FAT
and HTKS

ADHD diagnosis moderates the effect of the right and left FAT on HTKS
performance, with higher GFA in the segments predicting higher semantic scores
in the TD sample and lower scores in the ADHD sample. p<0.05*, p<0.01**,
p<0.001***.
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Figure 21: ADHD Diagnosis Moderates Effect of PreSMA to Op Laterality’s Rela-
tionship with HTKS

Significant interaction between group diagnosis and the lateralization of the
preSMA to Op segment predicting HTKS, with lower left lateralization predicting
higher HTKS scores in the TD sample, while higher left laterization had a
trending association with higher HTKS scores. Laterality was calculated using
Thiebaut de Schotten et al. (2014) formula (left - right)/(left + right) in which
positive values indicate left laterality. p<0.05*, p<0.01**, p<0.001***.
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Figure 22: Corpus Callosum Segmentation

Figure 22A: Corpus callosum segmentation scheme from the Aboitiz et al (1992)
paper which we replicated for the current studies. Figure 22B: Density results
from Aboitiz et al (1992) for three fiber sizes: >5.0 µm, >1 µm, and >0.4 µm,
along with the associated contrast weights we applied.
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Figure 23: Density Patterns for Adult Sample

Anterior to posterior corpus callosum density patterns for the adult sample are
plotted for each metric and grouped by reconstruction method. The density
patterns acquired in the in vivo DWI acquistions are being compared to the
Aboitiz (1992) histological patterns, shown on the right.
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Figure 24: DWI Metric Effect Sizes for Adult Sample

This figure shows the effect size of each diffusion metric predicting the Aboitiz
model in the adult sample, based on fiber size. Fiber sizes above 1µM compared
the differences in B3 and S2 for model A, and differences between fiber sizes
greater than 1µM in S2 and S3 for model B.
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Figure 26: DWI Metric Effect Sizes for Developing Sample

This figure shows the effect size of each diffusion metric predicting the Aboitiz
model in the developing sample, based on fiber size. Fiber sizes above 1µM
compared the differences in B3 and S2 for model A, and differences between fiber
sizes greater than 1µM in S2 and S3 for model B.
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Figure 27: Comparison of in vivo Metrics to Histological Density Models

The Aboitiz (1992) histological density model for large fiber sizes is shown above.
The bottom plots illustrate the density patterns for the adult and child samples as
measured by RDI. RDI accurately captures the peaks and troughs of
histologically-established axonal density patterns along the longitudinal axis of the
corpus callosum.
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Figure 28: Age-Related Differences in Neurite Density

Figure 28 displays the significant age-related differences in neurite density within
the pars opercularis (Op), caudate, and putamen with Winsorized values in a
robust linear model, controlling for age, sex, and whole brain NDI. Significance is
indicated by *s in the key. p<0.05*, p<0.01**, p<0.001***.
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Figure 29: Laterality of Neurite Density in SMA and Caudate Predict Verbal Flu-
ency in ADHD Sample

Figure 29 shows how the laterality of the neurite density index (NDI) in the
supplementary motor area (SMA) and caudate predict phonemic and semantic
scores, controlling for age, sex, whole brain NDI, movement in the scanner, and
socioeconomic status. Laterality was calculated using Thiebaut de Schotten et al.
(2014) formula (left - right)/(left + right) in which positive values indicate left
laterality. β = Standardized regression slope parameter estimate. p<0.05*,
p<0.01**, p<0.001***.
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Figure 30: Laterality of the SMA Predicts Executive Function in Full Sample

Figure 30 shows how the laterality of the supplementary motor area (SMA)
predicts age-corrected NIH Toolbox executive function scores, controlling for sex,
whole brain microstructure, movement in the scanner, and socioeconomic status.
Laterality was calculated using Thiebaut de Schotten et al. (2014) formula (left -
right)/(left + right) in which positive values indicate left laterality. β =
Standardized regression slope parameter estimate. p<0.05*, p<0.01**,
p<0.001***.
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Figure 31: Orientation Dispersion Predicting Flanker Scores in TD Sample

Figure 31 shows how 10 out of 12 brain regions predicted flanker scores, controlling
for sex, whole brain microstructure, movement in the scanner, and socioeconomic
status. Similar results were seen with FAT regions for DCCS. β = Standardized
regression slope parameter estimate. p<0.05*, p<0.01**, p<0.001***.
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Figure 32: Neurite Density of the Left SMA Differentially Predicts Flanker Scores

Figure 32 displays the moderation effect of ADHD diagnosis, with lower neurite
density (measured with NDI) in the left supplementary motor area (SMA)
predicting higher flanker scores in the TD sample, while having no affect in the
ADHD sample. β = Standardized regression slope parameter estimate. p<0.05*,
p<0.01**, p<0.001***.
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Figure 33: Laterality of Orientation Dispersion Differentially Predicts DCCS Scores

Figure 33 displays how ADHD diagnosis moderates the association between ODI
laterality in the pre-supplementary motor area (preSMA) and pars opercularis
(Op) and DCCS scores. Laterality was calculated using Thiebaut de Schotten
et al. (2014) formula (left - right)/(left + right) in which positive values indicate
left laterality. β = Standardized regression slope parameter estimate. β =
Standardized regression slope parameter estimate. p<0.05*, p<0.01**,
p<0.001***.
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Figure 34: Neurite Density of Tri Predicts Executive Function in the TD Sample

Figure 34 shows the association of the inferior frontal gyrus and executive
function, measured by HTKS, in the typically developing sample. Laterality was
calculated using Thiebaut de Schotten et al. (2014) formula (left - right)/(left +
right) in which positive values indicate left laterality. β = Standardized regression
slope parameter estimate. β = Standardized regression slope parameter estimate.
p<0.05*, p<0.01**, p<0.001***.
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Figure 35: Orientation Dispersion of Multiple Brain. Regions Predicts Executive
Function in the TD Sample

Figure 35 shows the association of the orientation dispersion of multiple brain
regions and executive function, measured by HTKS, in the typically developing
sample. β = Standardized regression slope parameter estimate. β = Standardized
regression slope parameter estimate. p<0.05*, p<0.01**, p<0.001***.
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