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 The goal of this thesis is to study two barriers of efficient road network restoration, 

namely, the lack of debris information and the lack of coordination among the restoration 

operations. We develop an integrative online optimization model with a model-based data 

diffusion component to coordinate three restoration-interdependent operations in the 

disaster response phases such as damage assessment, road recovery, and relief distribution. 

The model developed for the damage assessment operation controls the debris data 

diffusion speed in the integrative framework. This data is periodically shared with an online 

model developed to prioritize the recovery process for blocked roads. Road prioritization 

is done in a way to make the highest acceleration in the relief distribution operation. The 

integrative framework is tested on the road network of Miami-Dade and its performance is 

compared with an online heuristic benchmark mimicking the performance of the Federal 

Emergency Management Agency. 
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Chapter 1 

1. INTRODUCTION 

One of the most important factors that impede response operations in disasters is a 

disruption in road infrastructure. Blocked and damaged roads reduce accessibility to 

critical facilities such as stocks of emergency supplies, hospitals, and shelters. They slow 

down relief transportation (of emergency goods, casualties, rescue teams, etc.) between a 

set of supply nodes (such as stocks of prepositioned goods and airports) and demand nodes 

(such as affected sites and hospitals). In the 2015 Nepal Earthquake, some roads close to 

the epicenter were severely damaged and several villages became inaccessible for days. 

Similarly, in the 2011 Japan tsunami, debris accumulation blocked several roads in the 

downtown of Kamaishi City and deterred rescue operations for the affected population 

(Kasaei & Salman 2016). In disaster-prone countries such as Japan, contracts with 

construction companies are made to dispatch recovery teams (equipped with heavy 

machinery such as bulldozers, draining pump vehicles and skilled personnel) within a short 

time after disasters to restore primary road infrastructure and accelerate response 

operations (Akbari & Salman 2017).  

In the US, FEMA released the National Disaster Recovery Framework (NDRF) in 

2011 to better coordinate the flow of resources (money, material, and manpower) after 

disasters (FEMA 2018). NDRF establishes six different Recovery Support Functions 

(RSFs): community planning and capacity building; economic recovery; health and social 

services; housing; infrastructure systems; and natural and cultural resources. The mission 



2 

 

of the health and social services RSF is to support locally-led recovery efforts to address 

public needs and health according to the timeline shown in Figure 1. 

Clearing/repairing primary transportation roads, the problem investigated in this 

study, and providing shelter to displaced households are categorized as short-term 

recovery. Intermediate recovery includes providing accessible housing solutions and 

developing a comprehensive restoration plan for the affected area. The most important 

examples of long-term recovery are developing permanent housing and facilitating funding 

for business rebuilding. In this study, the focus is on the short-term recovery of the primary 

transportation roads. After disasters, to accelerate the relief transportation in the response 

phase, fast and efficient recovery of primary roads is crucial. Scarcity of recovery teams 

complicates the clearing/repairing process that includes several decisions (Oruc & Kara 

2018): 

1) Damage Assessment: Damage assessment is necessary to accurately estimate the 

damage/debris levels and required recovery times for blocked roads. The damage 

information can be obtained using satellite images or pictures taken from the affected 

area using helicopters and unmanned aerial vehicles (UAVs) (Akbari & Salman 2017; 

Coleman et al. 2009). Helicopter and satellite inspection at the stand-off range is fast 

Figure 1. Disaster recovery timeline (FEMA 2018). 
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but does not produce high-quality information. In contrast, UAVs are piloted remotely 

and can get closer to damaged infrastructure for precise scanning. High-resolution 

images of UAVs offer a complete aerial view gathered at a safe distance. These images 

can be processed to estimate the required resource and time for the recovery of damaged 

roads. Besides, using UAVs for damage assessment is more cost-effective. One of the 

important applications of UAVs is the damage assessment of agricultural areas. 

According to the report of the Food and Agriculture Organization of the United Nations 

(FAO 2017), the application of UAV technology has several advantages compared to 

satellite imagery: (i) It can minimize errors arising from water vapor and aerosols 

(atmospheric effects); and (ii) It can be deployed even under the cloud cover. That is 

why UAV inspection is becoming a common method for damage assessment (Lim et 

al. 2018). UAVs gradually scan road networks in a close distance and transit pictures 

to a ground control center to analyze and determine the damage levels. This information 

is sent to recovery teams for network restoration. The number, locations, and scan 

routes of the UAVs are critical decisions that determine the damage assessment speed 

and control the data diffusion speed in the restoration process.      

2) Road Selection: After receiving damage/debris data, the most appropriate subset of 

blocked and scanned roads should be selected for recovery (Celik et al. 2016). These 

roads can only be selected from the set of roads that are already scanned by the UAVs 

and their damage/debris levels are known (this set is updated over the time). The 

selection priority of the blocked roads is determined by the reductions that their 

recovery can make in the transportation times between supply and demand nodes. 
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Recovery teams are dispatched to the selected roads to clear/repair the roads and revive 

them in the road network.       

3) Team Allocation: team allocation deals with assigning recovery teams to the selected 

roads. The number of teams assigned to each road determines its recovery time. 

Assigning more recovery teams to a road reduces its recovery time proportionally.   

The focus of this study is on the optimization of these three decisions in the 

restoration process of the primary transportation roads. For this purpose, three models are 

developed (Figure 2): 

 Model 1 - prepositioning UAVs: This model prepositions damage assessment facilities, 

UAVs, and their charging stations in the road network of the area that is predicted to 

be affected by a disaster (in the pre-disaster preparedness phase). The model is a multi-

objective and multi-period mixed-integer programming that minimizes the total 

preparedness cost of employing UAVs and establishing the charging stations. These 

facilities will be used after the disaster to scan the network and assess the 

damage/debris levels of the blocked roads. The prepositioning decisions made by 

Model 1 determine when each road segment will be scanned and its damage/debris 

information (if there is any) will be available for recovery teams.  

 Model 2 - road recovery: This model uses the damage/debris information periodically 

provided by Model 1 to make the best recovery decisions (road selection and team 

allocation decisions) for the road network (directional interdependency between Model 

1 and Model 2). The decisions of this model are online and updated based on the new 

data periodically provided by Model 1. When the recovery process for a selected subset 
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of blocked roads ends, the set of the scanned roads with known damage/debris levels 

is updated and new recovery decisions are made. The recovery decisions in Model 2 

are made in a way to maximize the demand fulfillment speed in the relief distribution 

(in the forthcoming Model 3).   

 Model 3 - relief transportation: This online and multi-period model uses the recovery 

information (set of recovered roads) provided periodically by Model 2 to make the best 

transportation decisions for relief needs. This model tries to fulfill relief demands in 

the fastest way. The set of available roads for transportation is updated periodically 

according to the decisions made by Model 2. There is a mutual interdependency 

between Model 2 and Model 3. The selection criterion used in Model 2 depends on the 

demand fulfillment acceleration that can be made in Model 3. Also, the acceleration 

that can be made in Model 3 is affected by the recovery decisions made by Model 2. 

 Figure 2. The interdependencies between the 

models. 
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The lack of coordination among response operations is stated by many 

administrators. Altntaş and Delooz (2004) state “… coordination between operations was 

a major concern ...” in the aftermath of severe disasters such as the Marmara earthquake in 

Turkey. The information flow between these models is represented in Figure 2. The 

modeling framework used in this study for network restoration is online optimization with 

model-based data diffusion. Having a model-based data diffusion component is a new 

paradigm in online optimization. Online optimization is a type of optimization under 

incomplete information or uncertainty (Dunke & Nickel 2016; Ghiani et al. 2004). In 

contrast to the stochastic or robust optimizations that rely on historical data to quantify 

distribution functions or variation ranges for uncertain parts (Bertsimas et al. 2011), online 

optimization is more compatible with chaotic circumstances after disasters that do not 

include any explicitly related historical records. Online optimization is focused on the 

realizations of input elements for which no stochastic principles are known to hold. Our 

framework will be a time-stamp (not sequential) online optimization in which multi-size 

batches of input elements (damage/debris levels) with assigned acquisition times are 

provided by Model 1 and automatically form a set of unprocessed input elements for Model 

2. We call this modeling framework “Online Optimization with Model-based Data 

Diffusion (OOMDD)”. Figure 3 shows the structure of this framework. The execution is 

carried out cyclically according to the sets of input elements.  
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These three operations (damage assessment, road recovery, and relief distribution) 

are handled by separate organizations and there is not a single decision-maker for them. 

Damage assessment is performed by the Damage Assessment Team (DAT) working under 

the Homeland Security Department. Municipalities are usually in charge of immediate 

clearing/repairing of roads in urban areas. Relief distribution operation is performed by 

humanitarian agencies such as FEMA in the U.S. Decentralization of the operations 

strengthens the importance of coordination and online data exchange between the 

operations. Also, the timeline of these three operations is different. For example, damage 

assessment by UAVs is done faster than road recovery. The daily relief distribution starts 

immediately after the disaster and does not wait for road recovery that may last longer. 

Figure 4 shows that the first (damage assessment) and third (relief distribution) operations 

are started immediately after the disaster. The second operation (road recovery) starts when 

the first set of damage information is provided by the first operation. After recovering the 

first subset of damaged roads, the new road recovery decisions are made based on new 

damage information that is provided by the first operation. At the same time, the 

Figure 3. The structure of the integrative 

framework. 
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transportation paths of the third operations are updated according to the availability of the 

recently recovered roads. 

  

Figure 4. The timelines of the operations. 
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Chapter 2 

2. LITERATURE REVIEW 

Humanitarian logistics have rich literature in operations management and 

management science. Recent reviews, conducted by Gupta et al. (2016), Apte (2009) and 

Altay and Green (2006), classify the clean/repair of primary roads as one of the major 

response/recovery operations and highlight it as an important future research direction. The 

problem discussed in the study is related to three research streams in the humanitarian 

logistics: damage assessment using UAVs; road recovery (cleaning or repairing); and relief 

distributions. The most relevant studies in each stream and our contributions are discussed 

in the rest of this section.    

  

2.1. Damage assessment using UAVs 

The first applications of UAVs go back to the military for inspection and mapping 

areas. Recently, UAVs are used in commercials (Carlsson & Song 2017; Agatz et al. 2016), 

healthcare (Scott & Scott 2017) and humanitarian logistics. Companies such as Amazon 

(Amazon 2016), DHL (DHL 2014) and Google (Google 2014) use UAVs for last-mile 

package delivery in urban areas.   

Applications of UAVs in humanitarian logistics involve damage assessment 

(Huang et al. 2017), locating casualties (Molina et al. 2012; Choi-Fitzpatrick et al. 2016; 

Zheng et al. 2019), and transporting emergency/medical supplies to affected sites (Nedjati 

et al. 2016; Chowdhury et al. 2017). According to the 2014 report of the United Nations 

Office for the Coordination of Humanitarian Affairs (OCHA 2014), UAVs were used for 

the first time in the 2010 Port-au-Prince Earthquake in Haiti, 2012 Hurricane Sandy in 
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Haiti, and 2013 Typhoon Haiyan in the Philippines for real-time data collection and 

situation monitoring. In the Typhoon Haiyan, UAVs were used to set up a base of 

operations. This base checked the availability of roads using images that were taken by 

UAVs. The report clearly mentions that more research is needed to identify the 

comparative advantages of using UAVs and integrating UAV data collection into the needs 

of other humanitarian functions. In 2012 Hurricane Sandy in Haiti, International 

Organization for Migration (IOM) made several flights within a few days over the affected 

area to assess the destroyed buildings. They compared the real-time processed images with 

the previously taken ones and cross-checked them to count the collapsed buildings. Those 

high-definition images enabled them to map the dumps, standing water, road conditions, 

and areas prone to flood. Otto et al. (2018) provide a comprehensive literature survey on 

the emerging applications of UAVs. They discuss the UAV applications in the agriculture 

(e.g., assessing crop health, soil properties, and monitoring livestock), transportation (e.g., 

package delivery), and disaster management (e.g. recording films and taking pictures of 

affected sites). They categorize UAVs based on their characteristics (e.g., motion specifics, 

flight range, and information processing features). They also review some UAV-related 

optimization papers according to their objective functions, UAV characteristics, and their 

applications.  

The applications of UAVs in humanitarian logistics are mainly studied from 

technical rather than managerial perspectives. This application is new and has very sparse 

literature in operations management. Recently, Chowdhury et al. (2017) propose a model 

to supply emergency commodities to a disaster-affected region via trucks and UAVs as 

two different transportation modes. In this problem, UAVs are used for the relief 
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distribution, not damage assessment. Oruc & Kara (2018) develop a bi-objective model for 

routing UAVs and motorcycles in an affected area to provide damage information about 

its population centers (nodes) and road segments (links). To obtain solutions as fast as 

possible, a heuristic approach is developed to solve the model. The model and its solution 

approach are tested for a district in Istanbul city. In contrast to our first model, they do not 

make any prepositioning decisions in their model. They assume that all UAVs and 

motorcycles are located at a known depot and UAVs should return to the depot before 

getting out-of-charge. Also, their problem does not include road recovery and relief 

distribution components. Balcik (2017) studies a problem similar to Oruc & Kara (2018) 

but the focus is on monitoring disaster impacts on population centers (nodes) not roads 

(links). Similarly, Lim et al. (2018) use UAVs for power network damage assessment. The 

impact of damage information in the recovery process of the power network and its 

ultimate performance in servicing customers are not studied in their work.  

To the best of our knowledge, this is the first study that develops a comprehensive 

model for prepositioning and routing of UAVs in the pre-disaster preparedness and 

investigates its impact on the post-disaster road recovery and relief distribution.  

 

2.2. Road recovery  

There are some qualitative case studies about road recovery (clearing/repairing) in 

previous disasters such as Hurricane Katrina (Luther 2008; Mendonca & Hu 2006). Fetter 

& Falasca (2011) point out that there are few quantitative and decision support studies in 

this domain. Recently, several studies have been done on road recovery and improving 

accessibility after disasters. The road recovery in our problem includes road selection and 
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team allocation in the presence of incomplete information. However, most of the existing 

studies in road recovery only focus on road selection (do not study the impact of team 

allocation) in the presence of complete information (Yan & Shih 2009; Liberatore et al. 

2014; Aksu & Ozdamar 2014; Ozdamar et al. 2014; Sahin et al. 2016). For example, Aksu 

& Ozdamar (2014) propose an off-line and deterministic mixed-integer model to select the 

best-blocked paths that should be recovered by a set of recovery teams. The objective 

function is to minimize the weighted time needed for reconnecting the network. Their 

model only selects at most 𝑘 blocked links at each time step for recovery. They are not 

concerned with the lengths and recovery times of selected links and team allocation. Sahin 

et al. (2016) develop a deterministic model to provide relief supplies for a set of critical 

nodes along a moving path. This path may include blocked links that should be cleaned by 

a single team. There are only one path and one recovery team in their problem. So, there is 

no need for team allocation. The problem is off-line with complete information and the 

objective function is minimizing the total time needed for debris removal. Yan & Shih 

(2009) develop a deterministic model with complete information for integrated road 

recovery and relief distribution. They assume that there are at most two repair points in 

each blocked road with known locations and repair times. Only one recovery team can be 

assigned to repair each repair point.  

Also, there is another group of researchers in the disaster literature in which all 

roads have preassigned priorities such as Perrier et al. (2008) and Sahin et al. (2013). Perrier 

et al. (2008) study the problem of cleaning roads in an urban area with snow plowing 

equipment and Sahin et al. (2013) consider debris cleaning of a road network in the 
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response phase. Our problem differs from these studies because the cleaning priorities of 

roads are determined by the model and are not exogenously given inputs.  

The closest studies to ours are Celik et al. (2016), Kasaei & Salman (2016) and 

Akbari & Salman (2017). Celik et al. (2016) develop a multi-period model for cleaning 

debris and recovering a road network. Similar to our problem, they assume that there is 

limited information about the recovery time of the roads. This information is updated over 

time before making decisions. The main decision is to select the best sequence of roads to 

clear in each period in a way to make the highest connectivity among demand and supply 

nodes. They formulate the problem as a partially observable Markov decision process and 

develop a heuristic approach to find a solution for large-scale road networks. There are 

several differences between this study and our road recovery model. They did not consider 

the fact that the cleaning/repair time of each road depends on the number of teams assigned 

to that road. The objective function at each decision-making time step is making the highest 

connectivity between the demand and supply nodes. However, the impact of recovery 

decisions on speeding up the relief transportations between demand and supply nodes is 

not investigated in their model. We believe that their objective is necessary but not 

sufficient for disaster response operations. This objective function only creates a 

connection between demand and supply nodes but does not consider the travel time 

between these nodes. Minimizing travel/response time is one of the most critical and life-

saving objectives in post-disaster operations. These gaps are covered in our problem. In 

contrast to ours, their model includes sequential, not time-stamp, data acquisition. 

Kasaei & Salman (2016) propose two deterministic mixed-integer models to 

determine the moving walk for a recovery team in a road network that is disconnected after 
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a disaster. In the first model, the team recovers a subset of blocked roads to reconnect the 

network in the minimum time. While the second model maximizes the total benefit 

obtained by reconnecting a subset of network components within a time limit. They show 

both models are NP-hard and propose a heuristic approach based on variable neighborhood 

search to obtain near-optimal solutions for large-scale networks in rational computational 

times. In contrast to our model, they assume that recovery times of blocked links are known 

in advance (complete information). Also, the models are restricted to a single team and the 

interdependency between road recovery and relief distribution is ignored in their models. 

Akbari & Salman (2017) extend the problem of Kasaei & Salman (2016) by considering 

several recovery teams. They develop a deterministic mixed-integer model with complete 

information to select the best moving walks for each recovery team in a way to reconnect 

the road network in the least possible time. They simplify the problem by assuming that 

several teams cannot work simultaneously on a single link to recover it faster. This 

assumption is relaxed in our model. We assume that several teams can work concurrently 

on a single link. In this case, the recovery time of the link reduces proportionally.  

Our multi-period road recovery model has some features that differentiate it from 

existing studies: 1) the model is online and the required information (damage/debris levels 

of blocked roads) is acquired over the time through a model-based approach; 2) there are 

more than one recovery teams and they are free to work concurrently on the blocked roads 

if it is necessary. So, the impact of team allocation on the road selection decisions is 

investigated; and 3) the impact of the road recovery decisions on speeding up the relief 

distribution operation is investigated. To the best of our knowledge, there is no model with 

these features in the road recovery literature.      
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2.3. Relief distribution    

The relief distribution has very rich literature in humanitarian logistics. Several 

researchers review existing models from different perspectives. Luis et al. (2012) classify 

the disaster relief routing papers according to the characteristics (e.g., vehicle fleet type, 

allocation policy, and the number of depots) of developed models. Celik (2016) classify 

the network restoration papers by problem type (e.g., debris collection and disposal, 

Infrastructure restoration, and network reconstruction) and their solution methods (e.g., 

exact, heuristic, metaheuristic, and simulation methods). Ozdamar & Ertem (2015) 

categorize humanitarian logistics papers in terms of their modeling features and 

formulation structures (e.g., objective functions, constraints, and solution methods) as well 

as the utilized technologies to facilitate the implementation of the models. This problem 

aims to distribute prepositioned relief items to affected people in a fast (Campbell et al. 

2008), fair (Tzeng et al. 2007) and least costly (Camacho-Vallejo et al. 2015) way. For 

example, Salmeron & Apte (2010) develop a two-stage optimization model for relief 

distribution in disasters. The first stage of the model determines strategic resources 

(warehouses, medical facilities, shelters, etc.) expansion decisions in the pre-disaster 

situation. The second stage deals with the logistics of response operations (delivery of relief 

commodities and transportation of casualties) in the post-disaster situation. Vanajakumari 

et al. (2016) develop a bi-objective model to simultaneously 1) locate relief stocks; 2) 

determine their inventory levels; 3) select size and number of trucks; and 4) route the trucks 

from stocks to demand points. The objective functions are reducing the response time and 

minimizing the logistics cost. Most of these studies either ignore the road disruption in 

transportation networks or they assume that a subset of roads is disrupted and cannot be 
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used in the relief distribution. They ignore the recovery possibility of these roads during 

the response operation.  

Some studies consider the relief distribution and road recovery simultaneously 

(Yan & Shih 2009; Kibar & Salman 2013; Nurre & Sharkey 2014). Yan & Shih (2009) 

propose a multi-objective and multi-commodity network flow model on a time-space 

network to schedule road recovery and relief distribution. The road recovery part of the 

model only makes road selection decisions and recovery times of all roads are known in 

advance and equal. In contrast to our model, only one team can be assigned to each road 

and the objective function is maximizing the connectivity between demand and supply 

nodes. They consider two types of blocked roads in their problem. Prioritized roads should 

be recovered before a specific time due to their importance. Similarly, Kibar & Salman 

(2013) and Nurre & Sharkey (2014) assume that the precise recovery times of all blocked 

roads are known at the beginning. In contrast to ours, their models are not online. These 

features differentiate their problems from ours.  

The main contributions of this study to the short-term road recovery literature are 

four-fold: 

 Developing an integrative framework: To the best of our knowledge, our study is 

the first one that simultaneously considers 1) damage assessment, 2) road recovery, 

and 3) relief distribution. This integration makes it possible to analyze how the 

decisions of each model affect the outcomes of the others.  

 Handling incomplete information: This is the first study that handles incomplete 

information in road restoration operations using a novel model-based data diffusion 

approach.   
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 Considering pre-disaster UAVs preparedness for damage assessment: In this study, 

we develop a comprehensive model for prepositioning UAVs in the pre-disaster 

preparedness and investigate its impact on the post-disaster response (road recovery 

and relief distribution) operations.  

 Optimizing the recovery team allocation in the road recovery operation: There are 

several     recovery teams in our problem, and they are free to work concurrently on 

blocked roads if it is necessary. We investigate the impact of team allocation on the 

road selection decisions.  
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Chapter 3 

3. MODEL FORMULATION AND SOLUTION APPROACH 

Consider an urban area predicted to be stricken by a disaster in the near future. The 

road infrastructure of the area is represented by an undirected network. In the preparedness 

phase, some UAVs are prepositioned over the network (at nodes or links) to facilitate road 

inspection and damage assessment after the disaster. The following questions should be 

answered in the preparedness phase: 1) how many UAVs should be prepositioned in the 

network? 2) where are the best places to locate UAVs? 3) how many charging stations are 

needed to recharge the UAVs during the assessment process? 4) where are the best places 

to locate charging stations? and 5) what are the best moving walks for located UAVs? 

These decisions are made in a way to minimize the total preparedness cost (the deployment 

cost of UAVs, the locating cost of charging stations and the operational cost of scanning 

roads) and the scan completion time of the whole network.  

After the disaster and in the response phase, the located UAVs scan the road 

network according to the walks determined in the preparedness phase. They gradually scan 

the network and send pictures to a ground control center for damage assessment. The UAVs 

are remotely piloted and are able to take close pictures of the blocked roads. These pictures 

provide precise estimations of damage/debris levels and required recovery (repair or 

cleaning) times. The damage/debris information of the blocked roads is periodically sent 

to recovery teams that are retrieving the road network. The prepositioning decisions of 

UAVs determine how much damage/debris information is available to be sent to the 

recovery teams at each period (multi-size and time stamp data diffusion).    
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After receiving the first data batch, the recovery teams make the following 

decisions: 1) which subset of scanned and blocked roads should be selected for recovery? 

and 2) how many recovery teams should be assigned to each selected road? After 

implementing the first set of recovery decisions, the data of scanned roads are updated, and 

the next set of recovery decisions is made. This means that road recovery is online and 

updated based on the damage assessment information. Recovery decisions are made in a 

way to accelerate the distribution of relief supplies (commodities, casualties, and services) 

between demand and supply nodes.  

The model of prepositioning UAVs in the preparedness phase to diffuse 

damage/debris data in the response phase is discussed in next two sections addresses the 

problems of relief distribution and road recovery in the response phase. The notation used 

in this study is summarized in Table 1A (see Appendix A).   

 

3.1. Model for prepositioning damage assessment facilities  

Some disasters (such as floods, hurricanes, and tornados) have an advance warning 

and initial reports issued by the National Weather Center contain an accurate prediction of 

the disaster’s projected trajectory and its target region (NHC 2018). In the preparedness 

phase that we want to preposition UAVs, we know that the disaster may hit somewhere 

inside the predicted target region. However, the exact location of the stricken area is 

unknown. In no-warning disasters (such as earthquakes), the target region is the whole 

disaster-prone area that should always be prepared against disasters. Following covering 

models that are broadly used to locate emergency service facilities (Farahani et al. 2012), 

we preposition UAVs and their charging stations in a way to cover the whole target region. 
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Covering the whole target region makes preparedness against all scenarios that can be 

defined for the location of the stricken parts inside the target region. 

Let 𝐺 = (𝑁, 𝐿) be an undirected network representing the road network of the 

target region threatened by a disaster. To get prepared for the disaster, some UAVs and 

their charging stations are prepositioned to cover the whole network. These facilities will 

be used after the disaster to scan the road network and diffuse the damage/debris data. The 

following decisions should be made for prepositioning UAVs: how many charging stations 

should be prepositioned in the network? Where are the best places to locate the charging 

stations? How many UAVs should be kept at each station? What is the moving walk for 

each UAV (a walk starts from the original charging station of that UAV, passes through 

several connected roads to scan them, goes through some intermediate stations for 

recharging and ends at a charging station)? Some constraints should be considered in the 

decision-making process. The fly distance of the UAVs depends on their battery capacity 

and is limited. So, during their walks, the UAVs should reach a charging station before 

becoming discharged. The scan completion time is the moment in which the scan process 

of the road network terminates. All roads of the network should be scanned by at least one 

UAV before the scan completion time. Scanning a road happens when the first UAV passes 

through that road. The decisions are made in a way to minimize the scan completion time 

and minimize the total preparedness cost for scanning the road network. The preparedness 

cost includes the locating cost of charging stations, the deployment cost of UAVs, and the 

operational cost of moving UAVs through the roads.  

To control the moving distance of UAVs in the network, we suggest a simple 

network reformation: First, a new distance unit, called NDU hereafter, is defined. NDU is 
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the longest distance that the length of all roads and the fly distance of UAVs can be 

estimated as coefficients of NDU. Then, the length of all roads in the network is unified by 

adding some auxiliary nodes. After adding auxiliary nodes, the length of all roads would 

be one NDU. After unification, it would be much easier to control the travel distance of 

UAVs in the network (there is no need to define binary variables to determine the travel 

sequence of roads in the walks). Figure 5a shows a sample road network. The lengths of 

links (𝑛1, 𝑛2), (𝑛3, 𝑛4), and (𝑛4, 𝑛5) are one NDU. So, there is no need to add auxiliary 

nodes to these links. The lengths of links (𝑛1, 𝑛5), (𝑛2, 𝑛3), and (𝑛3, 𝑛5) are two NDUs. 

Therefore, an auxiliary node should be inserted to the middle of these links (nodes 𝑛6, 𝑛7 

and 𝑛8). Similarly, the length of the link (𝑛2, 𝑛5) is three NDUs. So, two auxiliary nodes 

should be located over the link in a way to make sure that the lengths of three newly 

generated links would be one NDU (nodes 𝑛9 and 𝑛10). Figure 5b shows the unified   

network resulted after the network reformation, 𝐺́ = (𝑁́, 𝐿́) (|𝑁́| ≥ |𝑁| and |𝐿́| ≥ |𝐿|).  

 

Figure 5. Network reformation for a sample road network. (a) The original network. (b) The Unified 

Network. 
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Considering that UAVs move through the network with the speed of 𝜈 (𝑁𝐷𝑈 per 

time unit), the time needed to travel a link in the unified network would be 1 𝜈⁄ . So, road 

selection decisions are made at discrete times with the subsequent difference of 1 𝜈⁄  which 

is shown by set 𝑇 = {𝑡} (|𝑇| ≥ |𝐿́|). Model P1 optimizes prepositioning decisions for 

UAVs in a unified road network: 

P1:   MIN     𝑍1 = ∑ 𝑓𝑛. 𝑧𝑛
|𝑁́|
𝑛=1 + ∑ 𝑝𝑛. 𝑥𝑛

|𝑁́|
𝑛=1 + ∑ ∑ ∑ 𝑜. 𝑦

(
𝑛,𝑚
→  )

𝑡|𝑁́|
𝑚=1
𝑚≠𝑛

|𝑁́|
𝑛=1

|𝑇|
𝑡=1                      (1) 

         MIN    𝑍2 = Ψ                                                                                                          (2) 

         S.T.     𝑥𝑛 ≤ 𝑀. 𝑧𝑛                                                (∀𝑛 ∈ 𝑁́)                                    (3)           

                   ∑ 𝑦
(
𝑛,𝑚
→  )

1|𝑁́|
𝑚=1 ≤ 𝑥𝑛                                       (∀𝑛 ∈ 𝑁́)                                    (4) 

                   ∑ 𝑦
(
𝑛,𝑚
→  )

𝑡|𝑁́|
𝑛=1 = ∑ 𝑦

(
𝑚,𝑘
→  )

𝑡+1|𝑁́|
𝑘=1                     (∀𝑡 = 1, 2, … , |𝑇| − 1) (∀𝑚 ∈ 𝑁́) (5) 

                   ∑ 𝑦
(
𝑛,𝑚
→  )

𝑡|𝑁́|
𝑛=1 ≤ 𝑀. 𝑧𝑚                              (∀𝑡 = 𝑑, 2𝑑, 3𝑑, … , 𝜁𝑑) (∀𝑚 ∈ 𝑁́)(6) 

                   𝑦
(
𝑛,𝑚
→  )

𝑡 ≤ 𝑀. (∑ 𝑤
(
𝑛,𝑚
→  )

𝑡́ + 𝑤
(
𝑚,𝑛
→  )

𝑡́𝑡
𝑡́=1 )        (∀𝑡 ∈ 𝑇)(∀𝑛,𝑚 ∈ 𝑁́)                  (7) 

                   𝑤
(
𝑛,𝑚
→  )

𝑡 ≤ 𝑦
(
𝑛,𝑚
→  )

𝑡                                           (∀𝑡 ∈ 𝑇)(∀𝑛,𝑚 ∈ 𝑁́)                 (8) 

                   ∑ 𝑤
(
𝑛,𝑚
→  )

𝑡 + 𝑤
(
𝑚,𝑛
→  )

𝑡|𝑇|
𝑡=1 = 𝑎(𝑛,𝑚)                                 (∀𝑛,𝑚 ∈ 𝑁́)                 (9) 

                   𝑦
(
𝑛,𝑚
→  )

𝑡 ≤ 𝑀. 𝑎(𝑛,𝑚)                                     (∀𝑡 ∈ 𝑇)(∀𝑛,𝑚 ∈ 𝑁́)               (10) 

                   Ψ ≥ ∑ 𝑡.𝑤
(
𝑛,𝑚
→  )

𝑡|𝑇|
𝑡=1                                           (∀𝑛,𝑚 ∈ 𝑁́)                    (11) 

                    𝑧𝑛 and 𝑤
(
𝑛,𝑚
→  )

𝑡 ∈ {0,1}                               (∀𝑡 ∈ 𝑇)(∀𝑛,𝑚 ∈ 𝑁́)               (12) 

                    𝑥𝑛 and 𝑦
(
𝑛,𝑚
→  )

𝑡 ≥ 0                                     (∀𝑡 ∈ 𝑇)(∀𝑛,𝑚 ∈ 𝑁́)               (13) 

 

The objective function (1) minimizes the total preparedness cost for scanning the 

road network. The first, second and third terms in (1) represent the locating cost of charging 

stations, the deployment cost of UAVs, and the operational cost of moving UAVs through 

the roads. The objective function (2) minimizes the scan completion time of the whole 
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network. Constraint (3) ensures that UAVs are initially located at nodes where there is a 

station. Based on the constraint (4), the total number of UAVs leaving a station in the first 

time unit is less than or equal to the number of UAVs prepositioned at that station. At other 

intermediate times, the total number of UAVs entering into a node should be equal to the 

number of UAVs leaving or staying at that node (constraint (5)). The UAVs have limited 

flying time and should be recharged after traversing 𝑑 (NDU). According to the constraint 

(6), the UAVs should pass through a charging station before becoming out-of-charge (𝜁 

represents the largest integer value that 𝜁𝑑 ≤ |𝑇|). The necessity of recharging may make 

UAVs traverse a road (link) more than one time. Constraints (7) and (8) ensure that a road 

will be scanned for the first time a UAV passes through that road. Constraint (9) determines 

the nodes of the network that are connected by a road and should be scanned by a UAV in 

either direction. Similarly, constraint (10) ensures that the UAVs can move between a pair 

of nodes if they are connected by a road. Constraint (11) makes sure that the scan 

completion time of the network is greater than or equal to the scan times of all roads. Model 

P1 is a combination of a node- and arc-based formulations. While UAVs and their charging 

stations are located at nodes, UAVs are moving through the links/roads for scanning and 

should cover all of them before the scan competition time. 

The decisions made in this operation (Model 1) determine when each road will be 

scanned by the UAVs and its damage/debris information will be available. This model 

controls the data diffusion speed in the integrative framework and constitutes its model-

based data diffusion part. The damage/debris data of the scanned roads will be gathered 

and periodically shared with Model 2.    
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3.2. Solution approach 

Model P1 is mixed-integer linear programming with |𝑁́| + |𝑁́|
2
. |𝑇| binary 

variables. This high computational complexity makes Model P1 very time-consuming or 

even unsolvable for large real-size road networks. In this section, a heuristic approach is 

developed to solve the model and find close-to-optimal solutions for large-scale networks. 

Detailed investigation of Model P1 reveals some characteristics for the optimal solution 

that will be used in developing the heuristic approach (refer to Appendix B for proofs).  

Proposition 1: For a given number of UAVs (∑ 𝑥𝑛
|𝑁́|
𝑛=1 = 𝑛𝑈), the minimum 𝛹 needed to 

scan the whole network, 𝛹𝑀𝑖𝑛(𝑛𝑈), is ⌈
|𝐿́|

𝑛𝑈
⌉.  

This proposition determines the relationship between the number of UAVs and the 

scan completion time in the network. The next proposition shows the relationship between 

nU, ΨMin(nU) and the number of charging stations (∑ zn
|Ń|

n=1 = nS).       

Proposition 2: For a given number of UAVs (𝑛𝑈) and its minimum scan completion time 

(𝛹𝑀𝑖𝑛(𝑛𝑈)), the number of charging stations that should be located in the network is 𝑛𝑆 ≤

⌈
|𝐿́|

𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈),𝑑}
⌉. Finding a close form equation for 𝑛𝑆 is impossible because it 

completely depends on the topology of the network. Model P2 determines the minimum 𝑛𝑆 

for the network:  

P2:   MIN     𝑍3 (𝑛
𝑈, 𝛹𝑀𝑖𝑛(𝑛𝑈)) = ∑ 𝑧𝑛

|𝑁́|
𝑛=1                                                                   (14) 

 S.T.    ∑ 𝑥𝑛
|𝑁́|
𝑛=1 ≤ 𝑛𝑈                                                                                                       (15) 

𝑥𝑛 ≤ 𝑀. 𝑧𝑛                                                                               (∀𝑛 ∈ 𝑁́)           (16) 
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∑ 𝑦
(
𝑛,𝑚
→  )

1|𝑁́|
𝑚=1 ≤ 𝑥𝑛                                                                     (∀𝑛 ∈ 𝑁́)           (17)    

∑ 𝑦
(
𝑛,𝑚
→  )

𝑡|𝑁́|
𝑛=1 =  ∑ 𝑦

(
𝑚,𝑘
→  )

𝑡+1|𝑁́|
𝑘=1    (∀𝑡 = 1, 2, … ,𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈), 𝑑} − 1) (∀𝑚 ∈ 𝑁́) (18) 

∑ 𝑦
(
𝑛,𝑚
→  )

𝑡|𝑁́|
𝑛=1 ≤ 𝑀. 𝑧𝑚                   (𝑡 = 𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈), 𝑑}) (∀𝑚 ∈ 𝑁́)          (19) 

𝑦
(
𝑛,𝑚
→  )

𝑡 ≤ 𝑎(𝑛,𝑚)             (∀𝑡 = 1, 2, … ,𝑀𝑖𝑛 {2𝛹
𝑀𝑖𝑛(𝑛𝑈), 𝑑}) (∀𝑛,𝑚 ∈ 𝑁́)      (20) 

∑ 𝑦
(
𝑛,𝑚
→  )

𝑡 + 𝑦
(
𝑚,𝑛
→  )

𝑡𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈),𝑑}

𝑡=1 ≥ 𝑎(𝑛,𝑚)                              (∀𝑛,𝑚 ∈ 𝑁́)     (21) 

            𝑧𝑛 ∈ {0,1}                                                                                  (∀𝑛 ∈ 𝑁́)          (22) 

            𝑥𝑛 and 𝑦
(
𝑛,𝑚
→  )

𝑡 ≥ 0                                                       (∀𝑡 ∈ 𝑇)(∀𝑛,𝑚 ∈ 𝑁́)     (23) 

 

The value of ∑ zn
∗|Ń|

n=1  represents the minimum number of charging stations that should 

be located in the road network with nU UAVs to scan the whole network in the minimum 

possible Ψ (ΨMin(nU)). The computational complexity of Model P2 is much less than 

Model P1.  

These results are used to develop a heuristic approach. This approach first locates 

the minimum number of charging stations, then prepositions the minimum number of 

UAVs and finally determines their moving walks throughout the network. The steps of the 

heuristic approach are as follows:   

Step 1: For a predetermined 𝛹̇, Model P2 with 𝑛𝑈 = 𝑀 (𝑀 is a very large constant value) 

and 𝛹𝑀𝑖𝑛(𝑛𝑈) = 𝛹̇ is used to determine the locations of charging stations in the unified 

network. After locating the charging stations, the rest of the nodes that do not encompass 

a charging station and their connecting links are removed from the network. Any pair of 

the remaining nodes can be connected by a new link if a moving path with the length of 

less than or equal to 𝑀𝑖𝑛 {2𝛹̇, 𝑑} exists between them in the unified network. Enough new 
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links should be defined in a way to cover all the links in the unified network. The number 

of nodes and links in the newly constructed network, called super-network hereafter (𝐺′′ =

(𝑁′′, 𝐿′′)), is much less than the unified network (𝐺́). This significantly reduces the 

computational complexity of the model developed in the next step. A sample unified 

network and its corresponding super-network are shown in Figure 6. Parameters 𝑎́(𝑛,𝑚) and 

𝑑̅(𝑛,𝑚) show the number of links and the average distance between nodes 𝑛 and 𝑚 in the 

super-network, respectively.  

     

 
Figure 6. The super-network constructed for a sample unified network with d=4 (NDU) and Ψ ̇=12 (NDU). 

(a) A sample unified network (|N'|=35). (b) The constructed super-network (|N''|=8). 

 

Step 2: Based on the super-network developed in Step 1, we use Model P3 to preposition 

UAVs and determine their moving walks through the network:      

P3:   MIN    𝑍4(𝛹̇) = ∑ 𝑝𝑛. 𝑥𝑛
|𝑁′′|

𝑛=1 + ∑ ∑ ∑ 𝑜. 𝑑̅(𝑛,𝑚). 𝑦(
𝑛,𝑚
→  )

𝑡|𝑁′′|
𝑚=1
𝑚≠𝑛

|𝑁′′|

𝑛=1

⌊
𝛹̇

𝑀𝑖𝑛 {2𝛹̇,𝑑}
⌋

𝑡=1              (24) 

      S.T.    ∑ 𝑦
(
𝑛,𝑚
→  )

1|𝑁′′|

𝑚=1 ≤ 𝑥𝑛                                      (∀𝑛 ∈ 𝑁′′)                                   (25) 

                 ∑ 𝑦
(
𝑛,𝑚
→  )

𝑡|𝑁′′|

𝑛=1 = ∑ 𝑦
(
𝑚,𝑘
→  )

𝑡+1|𝑁′′|

𝑘=1   (∀𝑡 = 1, 2, … , ⌊
𝛹̇

𝑀𝑖𝑛 {2𝛹̇,𝑑}
⌋ − 1) (∀𝑚 ∈ 𝑁′′)  (26) 

                 ∑ 𝑦
(
𝑛,𝑚
→  )

𝑡 + 𝑦
(
𝑚,𝑛
→  )

𝑡
⌊

𝛹̇

𝑀𝑖𝑛 {2𝛹̇,𝑑}
⌋

𝑡=1 = 𝑎́(𝑛,𝑚)         (∀𝑛,𝑚 ∈ 𝑁
′′)                              (27) 
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                 𝑦
(
𝑛,𝑚
→  )

𝑡 ≤ 𝑎́(𝑛,𝑚)                    (∀𝑡 = 1, 2, … , ⌊
𝛹̇

𝑀𝑖𝑛 {2𝛹̇,𝑑}
⌋) (∀𝑛,𝑚 ∈ 𝑁′′)        (28) 

                 𝑦
(
𝑛,𝑚
→  )

𝑡 ∈ {0,1}                      (∀𝑡 = 1, 2, … , ⌊
𝛹̇

𝑀𝑖𝑛 {2𝛹̇,𝑑}
⌋) (∀𝑛,𝑚 ∈ 𝑁′′)       (29) 

                 𝑥𝑛 ≥ 0                                                (∀𝑛 ∈ 𝑁′′)                                          (30) 

 

The objective function (24) minimizes the sum of the prepositioned UAVs’ 

deployment cost (the first term) and the operational cost of moving UAVs through the 

roads (the second term). Since the scan completion time is 𝛹̇,  the maximum number of 

links that can be traversed by a UAV is ⌊
𝛹̇

𝑀𝑖𝑛 {2𝛹̇,𝑑}
⌋. At each time unit, one link is traversed 

by a UAV. According to the constraint (25), the total number of UAVs leaving a station in 

the first time unit should be less than or equal to the number of UAVs prepositioned at that 

station. At the intermediate times, the total number of UAVs entering a station should be 

equal to the total number of UAVs leaving or staying at that station (constraint 26). 

Constraint (27) ensures that all the links of the super-network (and consequently all the 

links of the original network) would be scanned by the UAVs. Based on the constraint (28), 

the UAVs can only move from node 𝑛 (∀𝑛 ∈ 𝑁′′) to node 𝑚 (∀𝑚 ∈ 𝑁′′|𝑛 ≠ 𝑚) if a link 

exists between these nodes.  

Solving Models P2 (with 𝑛𝑈 = 𝑀 and, 𝛹𝑀𝑖𝑛(𝑛𝑈) = 𝛹̇) and P3 for the unified and 

super networks determines the number of charging stations, number of UAVs and their 

walks (and the associated total preparedness cost) for the road network with the 

predetermined 𝛹̇. Repeating these steps for different values of 𝛹̇ provides all the Pareto 

optimal solutions for Model P1. In this model, all the roads of the network have similar 

priorities for damage assessment. Sometimes, some roads of the network are more prone 

to be damaged in disasters. Roads located beside oceans, seas, rivers, or epicenters or roads 
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ending at the population centers located in highly disaster-prone regions have higher 

probabilities to be damaged by disasters. In Appendix C, we propose a new model for 

prepositioning damage assessment facilities in a network with prioritized roads.     

    

3.3. Performance of the heuristic approach   

Without loss of generality, we focus on hurricanes in our case problem as weather-

related, rapid-onset natural disasters threatening major parts of coastal regions in the US. 

Suppose that a hurricane has formed in the Atlantic Ocean and is moving toward the 

southeast coast of the US according to the forecast cone of the National Weather Service. 

The southeast coast is the most hurricane-prone part of the US. According to the statistics 

of the National Oceanic and Atmospheric Administration (NOAA), 2.2 major hurricanes 

hit this area on average each year (NHC 2012). The hurricane’s forecast cone that consists 

of several target circles represents its probable track. Suppose that the area inside the 

dashed circle in Figure 7a is located inside the hurricane’s forecast cone and should be 

prepared for the disaster by prepositioning UAVs and their charging stations. This area 

includes the whole Miami-Dade County and the southern part of Broward County 

(Miramar, Davie, Weston, Hollywood, Pembroke Pines, and Fort Lauderdale suburban). 

The road network of this area is represented in Figure 7b. Only highways and main roads 

that have critical roles in relief distribution are considered in the road network. The length 

of the roads/links in the network is equal to the driving distance determined by Google 

Maps. The NDU that is used to unify the road network is 1 mi. Federal Aviation 

Administration (FAA) authorized all commercial and humanitarian UAVs to be flown 

below 200 ft. A UAV flying in 200 ft. can monitor a circle of at most 130 ft. radius (Oruc 
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& Kara, 2018).  Since the distance between roads in our network is at least 1 mi., it is not 

possible that more than one road segment can be scanned by each UAV. The deployment 

cost of a UAV and its operational cost per NDU is $500 and $5, respectively. The cost of 

locating a charging station is $2000. Considering the average performance of UAVs exist 

in the market, we assume that the UAVs scan the road network with an average speed of 

20 mi per hr. A fully-charged UAV can travel 6 NDU throughout the network before 

becoming out of charge. Considering the time needed to recharge UAVs, they can scan the 

road network for at most 8 hr. per day. We solved Model P1 and the heuristic approach for 

6 sub-networks of the case network for the scan completion time of 𝛹 = 12 (Model P1 

could not find the optimal solution for the case network in 72 hours).  

 

Figure 7. The case problem. (a) The target area. (b) The road network of the target area. 
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The computational time of the heuristic approach for the case network and its sub-

networks was less than a minute, much lower than the computation times of Model P1. 

Model P1 was solved using CPLEX software on a Dell computer with Windows 10, an 

Intel i7 processor, and 125 GB of installed RAM. Table 1 shows that the performance of 

the heuristic approach is acceptably high and the optimality gap between the solution of 

the heuristic approach and the optimal solution of Model P1 has never been more than 

3.8%.  

Table 1. The accuracy of the solutions provided by the heuristic approach.  

Sub-networks 

No. of nodes 

in the original 

sub-network 

No. of nodes 

in the unified 

sub-network 

The cost of 

Model P1 

The cost of 

the heuristic  

Solution 

time for 

Model P1  

difference 

Sub-network 

1 
11 65 $23,865 $24,440 00:13:45 2.4% 

Sub-network 

2 
20 116 $41,205 $42,800 00:55:17 3.8% 

Sub-network 

3 
25 143 $50,405 $51,463 01:17:56 2.1% 

Sub-network 

4 
36 195 $66,700 $69,057 05:26:10 3.5% 

Sub-network 

5 
42 233 $79,360 $81,502 10:11:48 2.7% 

Sub-network 

6 
53 265 $91,170 $93,530 25:07:33 2.5% 

 

The heuristic approach was used to preposition UAVs in the case network. Figure 

8 shows the tradeoff between 𝛹 and the pre-disaster preparedness cost in the case network. 

As seen in the figure, reducing 𝛹 makes a concave-up increment in the cost. This means 

that accelerating the data acquisition in the post-disaster response phase increasingly boosts 

the preparedness cost of locating monitoring facilities in the pre-disaster preparedness 

phase.        
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3.4. Models for relief distribution and road recovery 

The moving walks determined for UAVs determine when each road of the network 

will be scanned, and its damage/debris information will be available for road recovery (in 

Model 2). In this study, we assume that UAVs scan the area according to the moving walks 

determined before the disaster. In the chaotic post-disaster circumstances and under time 

pressure, it is not easy to run another model and adjust moving walks for UAVs. Also, the 

fixed locations of charging stations that are located before the disaster significantly limit 

the adjustability of moving walks for UAVs after the disaster.  

Locating more UAVs in Model 1 augments the preparedness cost, but it reduces 

the scan completion time and increases the damage/debris data diffusion speed to Model 

2.  In the next section, we explain the relief distribution operation when no road recovery 

happens during the disaster response phase. Then, we consider the road recovery possibility 

in its following Section. We explain how road recovery operations should be scheduled to 

make the highest acceleration in the relief distribution.   

 

Figure 8. The tradeoff between Ψ and the pre-disaster cost in the case network. 
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3.5. Relief distribution without road recovery    

After disasters, there is an urgent need for relief distribution (goods, casualties, 

rescue teams, medical personnel, etc.) between a set of supply nodes (such as stocks of 

prepositioned goods and airports) and demand nodes (such as affected sites and hospitals). 

Set 𝑃 = {𝑝 = (𝑛,𝑚)|𝑛,𝑚 ∈ 𝑁} includes all pairs of demand and supply nodes that appear 

after the disaster. The total amount of shipment between the nodes of pair 𝑝 ∈ 𝑃 is Θ𝑝 and 

the capacity of the transportation fleet assigned to pair 𝑝 is ϑ𝑝. Usually ϑ𝑝 < Θ𝑝 due to 

resource scarcity after disasters and the shipments are accomplished through several 

deliveries. The cost of fulfilling a unit of demand at the demand node of pair 𝑝 at time 𝑡 is 

𝑐𝑝(𝑡). 𝑐𝑝(𝑡) includes the transportation cost and the delay penalty of fulfilling the demand 

that is materialized at time 0 (the occurrence moment of the disaster). Thus, 𝑐𝑝(𝑡) is an 

increasing function of t. Binary parameters of 𝛾𝑛
𝑝
 and 𝛾́𝑛

𝑝
 are 1 for node 𝑛 ∈ 𝑁 if it is the 

supply and demand node of pair 𝑝, and 0 otherwise. According to the undisrupted links 

available in the network right after the disaster (determined immediately using satellite 

images), the shortest transportation time between the nodes of pair 𝑝, 𝜃𝑝, is determined by 

Model P4. In Model P4, binary parameter 𝛾(𝑛,𝑚) is 1 if the link (𝑛,𝑚) is undisrupted and 

can be used by the transportation fleet, and 0 otherwise. 

 

   P4:   MIN      𝑍6(𝑝) = 𝜃
𝑝                                                                                            (31) 

   S.T.      ∑ 𝑦́
(
𝑛,𝑚
→  )

1|𝑁́|
𝑚=1 ≤ 𝑥́𝑛                                   (∀𝑛 ∈ 𝑁́)                                          (32) 

               ∑ 𝑦́
(
𝑛,𝑚
→  )

𝑡|𝑁́|
𝑛=1 = ∑ 𝑦́

(
𝑚,𝑘
→  )

𝑡+1|𝑁́|
𝑘=1                     (∀𝑡 = 1,… , |𝑇́| − 1) (∀𝑚 ∈ 𝑁́)       (33) 

               ∑ 𝑦́
(
𝑛,𝑚
→  )

𝑡|𝑁́|
𝑛=1 = 𝛾́𝑚

𝑝 . ϑ𝑝                             (𝑡 = |𝑇́|) (∀𝑚 ∈ 𝑁́)                         (34) 

                𝑥́𝑛 ≤ 𝛾𝑛
𝑝. ϑ𝑝                                           (∀𝑛 ∈ 𝑁́)                                          (35) 
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                   𝑦́
(
𝑛,𝑚
→  )

𝑡 ≤ 𝑀. 𝑎(𝑛,𝑚). 𝛾(𝑛,𝑚)                       (∀𝑡 ∈ 𝑇́) (∀𝑛,𝑚 ∈ 𝑁́)                 (36) 

                   𝑦́
(
𝑛,𝑚
→  )

𝑡 ≤ 𝑀. 𝑤́
(
𝑛,𝑚
→  )

𝑡                                   (∀𝑡 ∈ 𝑇́) (∀𝑛,𝑚 ∈ 𝑁́)                 (37) 

                   𝜃𝑝 ≥ 𝑡. 𝑤́
(
𝑛,𝑚
→  )|𝑛≠𝑚

𝑡                                  (∀𝑡 ∈ 𝑇́) (∀𝑛,𝑚 ∈ 𝑁́)                 (38) 

                   𝑥́𝑛 and 𝑦́
(
𝑛,𝑚
→  )

𝑡 ≥ 0                                   (∀𝑡 ∈ 𝑇́) (∀𝑛,𝑚 ∈ 𝑁́)                 (39) 

                   𝑤́
(
𝑛,𝑚
→  )

𝑡 ∈ {0.1}                                         (∀𝑡 ∈ 𝑇́) (∀𝑛,𝑚 ∈ 𝑁́)                 (40) 

 

The objective function (31) minimizes the total transportation time needed to 

accomplish a delivery between the nodes of pair 𝑝 (∀𝑝 ∈ 𝑃). Constraints (32) and (34) 

ensure that the relief flow only originates from the supply node of pair 𝑝 and ends at its 

demand node, respectively. At the intermediate nodes, the total inflow should be equal to 

the total outflow (constraint (33)). The outflow from the supply node cannot be more than 

the transportation capacity (constraint (35)). According to the constraint (36), only 

undisrupted roads can be used in the delivery process. Constraints (37) and (38) preserve 

that the completion time of the delivery is greater than or equal to the times at which the 

vehicles traverse the links of the movement path selected between the supply and demand 

nodes. Using the shortest transportation time,  𝜃𝑝∗ (∀𝑝 ∈ 𝑃), determined for each pair by 

solving Model P4, the total response cost of satisfying demands in the network would be 

as follows: 

Proposition 3:  If disrupted roads of the network will not be recovered during the response 

phase of the disaster, the total response cost in the relief distribution operation would be 

∑ ∑ 𝜗𝑝. 𝑐𝑝(𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1))
⌈
𝛩𝑝

𝜗𝑝
⌉

𝑖=1𝑝∈𝑃 .  
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3.6. Relief distribution with road recovery    

After the disaster (occurs at time 0), the prepositioned UAVs start scanning the road 

network according to their walks. They provide precise pictures of disrupted roads located 

on their walks. The pictures are used to accurately estimate the damage/debris level and 

the required recovery time of roads. The damage/debris data is accumulated and 

periodically sent to the recovery teams. Suppose that the first round of data is provided at 

time 𝑡 for the recovery teams. Set 𝐿(𝑡) includes the disrupted roads that are scanned by the 

UAVs up to time t. The required recovery time for link 𝑙 ∈ 𝐿(𝑡) if it is recovered by a single 

team is 𝑟𝑙 (by increasing the number of recovery teams assigned to this link, its recovery 

time reduces proportionally). A subset of 𝐿(𝑡) is selected by teams for recovery and the 

recovery teams that are available at time 𝑡, Λ(𝑡), should be allocated appropriately to the 

selected links. Variable 𝑢𝑙 shows the number of teams assigned to link 𝑙 ∈ 𝐿(𝑡). We assume 

that the teams will not relocate among the selected links during their recovery processes 

and the next recovery decisions will be made when all the selected links are recovered. 

These assumptions are widely used in the literature. For example, Celik (2016) divide the 

planning horizon into equal time periods and recovery decisions are made at the beginning 

of each period. Averbakh (2012) also defines and applies a specific unit time for the 

restoration speed of the resources in a destroyed network. Tzeng et al. (2007) also define 

discrete time slots for the distribution of the relief supplies in post-disaster circumstances. 

Under these assumptions, we can show that: 

Proposition 4: Sequential recovery of n roads makes higher acceleration in the relief 

distribution than their simultaneous recovery.      
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Therefore, one link should be selected from the set 𝐿(𝑡) for recovery at each 

decision-making moment and all recovery teams should be assigned to that link. Selection 

of link 𝑙 from set 𝐿(𝑡) for recovery depends on two factors: 1) How much 𝜃𝑝∗ (∀𝑝 ∈ 𝑃) 

values are affected by the recovery of link 𝑙? and 2) How long does it take to recover link 

𝑙? The latter one depends on Λ(𝑡). Set 𝐸(𝑡) includes the links of 𝐿(𝑡) that can be selected for 

recovery at time 𝑡 and their recovery can affect at least one of 𝜃𝑝∗ (∀𝑝 ∈ 𝑃) values. For 

each 𝑙 ∈ 𝐸(𝑡), the total improvement that the recovery of this link can make in the response 

cost of relief distribution would be as follows: 

Proposition 5: If the link of 𝑙 ∈ 𝐸(𝑡) is selected for recovery at time t, and 𝜃𝑝∗ values would 

improve to 𝜃́𝑝∗(𝑙) after the recovery of this link, the total reduction in the response cost 

would be: 

∑ ∑ 𝜗𝑝. 𝑐𝑝(𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1))
⌈
𝛩𝑝

𝜗𝑝
⌉

𝑖=𝜂𝑝,𝑡
′(𝑙)+1

𝑝∈𝑃 − ∑ ∑ 𝜗𝑝. 𝑐𝑝 (𝜃𝑝∗ +
⌈
𝛩𝑝

𝜗𝑝
⌉

𝑖=𝜂𝑝,𝑡
′(𝑙)+1

𝑝∈𝑃

2𝜃𝑝∗. (𝜂𝑝,𝑡
′
(𝑙) − 1) + 2𝜃́𝑝∗(𝑙). (𝑖 − 𝜂𝑝,𝑡

′
(𝑙)))                                                              (41)  

 

where t′(l) = t +
rl

Λ(t)
  and ηp,t

′
(l) = ⌈

t′(l)+θp∗

2θp∗
⌉ show the recovery completion time for link 

l and the number of deliveries accomplished for pair p ∈ P before the recovery completion 

time.        

Following Averbakh (2012) and Celik et al. (2016), it is assumed that the 

transportation time of teams from their current location to the selected disrupted link is 

ignorable in comparison to its recovery time. To optimize the recovery decision made at 

time 𝑡, we select the best link from 𝐸(𝑡) in a way to maximize the total reduction in the 

response cost: 
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 MAX
∀𝑙∈𝐸(𝑡) 

(∑ ∑ ϑ𝑝. 𝑐𝑝(𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1))
⌈
Θ𝑝

ϑ𝑝
⌉

𝑖=𝜂𝑝,𝑡
′(𝑙)+1

𝑝∈𝑃 − ∑ ∑ ϑ𝑝. 𝑐𝑝 (𝜃𝑝∗ +
⌈
Θ𝑝

ϑ𝑝
⌉

𝑖=𝜂𝑝,𝑡
′(𝑙)+1

𝑝∈𝑃

                  2𝜃𝑝∗. (𝜂𝑝,𝑡
′
(𝑙) − 1) + 2𝜃́𝑝∗(𝑙). (𝑖 − 𝜂𝑝,𝑡

′
(𝑙))))                                                          (42) 

 

At time 𝑡′(𝑙∗), the recovery process for the selected link will end and new 

transportation paths will be used for relief deliveries. Then, set 𝐿(𝑡) will be updated by the 

new data collected by the UAVs (called 𝐿(𝑡
′)) and a new recovery decision (selecting a 

new link from the set L(t
′) and assigning recovery teams to that link) will be made similarly. 

This procedure will continue up to the moment that there are no unrecovered links in the 

network.   
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Chapter 4 

4. COMPUTATIONAL RESULT 

The goals of this section are threefold: (i) we analyze and quantify the impact of 

the decisions made in Model 1 (prepositioning damage assessment facilities) on the 

performance of Model 2 (road recovery); (ii) we analyze and quantify the impact of 

considering Model 3 (relief distribution) in the decision making the process of Model 2 

(road recovery); (iii) we compare the performance of our integrative method with an 

intuition-oriented benchmark that runs faster and finds good quality solutions. Current road 

recovery operations that are used in practice assume a pre-determined road prioritization. 

In practice, there is no systematic approach to prioritize roads (Celik et al. 2016). The 

benchmark heuristic is designed in a way to mimic current practice.       

 

4.1. Case Problem: Hurricane Scenarios  

We use the same case problem that was introduced in previous chapter. We define 

some scenarios representing the possible impacts of the hurricane on the target circle. On 

average, ten tropical storms are developed in the Atlantic Ocean, Gulf of Mexico and the 

Caribbean Sea per year. According to a 3-year average, six of the storms become hurricanes 

and five of them strike the US coastline from Texas to Maine. Two of these hurricanes are 

major. The size, intensity, speed, and direction of hurricanes vary considerably. The center 

of a hurricane is called the eye and the dense wall of thunderstorms surrounding the eye, 

approximately 20-25 miles across, is called the eyewall. The eyewalls have the strongest 

and most destructive winds within hurricanes (NHC 2012). 
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In Figure 9a, solid red lines show the track of the hurricane’s cone that is predicted 

by the NHC. This cone includes our investigated area. The accuracy of predicting the cone 

track has improved a lot over time and its error has been reduced to 5.3 miles (NHC 2018). 

The dashed red lines show the track of the cone including its prediction errors on both 

sides.  Red circles in Figure 9a represent the 5 scenarios defined for the movement track of 

the hurricane’s eye and its surrounding eyewalls (with a diameter of 25 miles). We consider 

five levels of severity for the hurricane: In severity levels 1, 2, 3, 4, and 5, the number of 

randomly stricken nodes within the circles is 10-15, 15-20, 20-30, 30-40 and 40-50, 

respectively (three repetitions). For the severity levels, the number of randomly disrupted 

roads is 20-30, 30-40, 40-50, 50-60 and 60-70 (two repetitions). 

 

 

The stricken nodes constitute the supply nodes in the network. As demand nodes, 

we consider two major hospitals in the area: Jackson Memorial Hospital and Memorial 

Regional Hospitals. These hospitals with respectively 1550 and 1022 beds are the biggest 

Figure 9. The zones of disrupted nodes and roads in the case problem. (a) The movement tracks for the eye. 

(b) The zones of block levels for roads. 
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in the area. Following Celik et al. (2016), the supply quantity of each suburban region is 

estimated proportional to its population. Then, the aggregate supply is distributed to the 

nodes in proportion to the total length of the roads originating from the nodes. As shown 

in Figure 9b, the probability of disruption for the roads located in a distance of 12.5 (mile) 

from the eye is 60%. For roads in distance 12.5-20.5 (mile) and >20.5 (mile), the disruption 

probability is 30% and 10%, respectively. We also consider 3 debris levels for roads. In 

low, medium and high debris levels, the total time needed to traverse and recover a road is 

60, 120, and 180 times of its travel time (that depends on its length) in unblocked 

conditions. In severity levels 1, 2, 3, 4 and 5, the blocked roads with debris levels of low, 

medium and high constitute (80%, 15% and 5%), (70%, 20% and 10%), (50%, 30% and 

20%), (20%, 30% and 50%) and (10%, 20% and 70%) of all blocked roads. Each problem 

instance is solved for three different numbers of recovery teams (3, 5, and 7 recovery 

teams) and three different scan completion times for the road network (1.5, 2.5 and 3.5 

days). The scan completion time depends on the number of UAVs located in Model 1. In 

total, 1350 problem instances are solved. 

 

4.2. Interaction between Model 1 and Model 2 

To analyze the interaction between Model 1 and Model 2, all of the problem 

instances generated are solved for three scan completion times: 1.5, 2.5 and 3.5 days. In 

the first case, enough UAVs are located in Model 1 to scan the whole network and provide 

the debris data of all blocked roads in 1.5 days after the landfall. In the second case, there 

are fewer located UAVs, and scan completion time is 2.5 days. The number of UAVs in 

the third case is less than the second one. So, the completion time increases to 3.5 days. 
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The results are summarized in Table 2. Each cell of this table shows the average response 

cost for the 30 problem instances generated for the scan completion time, the number of 

recovery teams, and the disaster severity that correspond to that cell (5 scenarios for the 

eye’s movement track × 3 repetitions for stricken nodes selection × 2 repetitions for 

blocked roads selection).  

Table 2. The results for the problem instances.  

Disaster 

severity 

Scan completion = 1.5 days Scan completion = 2.5 days Scan completion = 3.5 days 

3 

recovery 

teams 

5 

recovery 

teams 

7 

recovery 

teams 

3 

recovery 

teams 

5 

recovery 

teams 

7 

recovery 

teams 

3 

recovery 

teams 

5 

recovery 

teams 

7 

recovery 

teams 

* 608584 597004 595432 609004 599880 599256 619728 614848 613084 

** 897262 887198 877386 897578 888578 882890 900870 891298 890674 

*** 1334441 1304515 1296979 1337965 1318605 1312769 1340029 1321339 1319467 

**** 1417870 1394304 1385976 1422750 1403342 1392346 1436110 1411850 1408018 

***** 1909112 1884056 1847876 1921324 1895544 1884124 1935904 1898468 1889688 

*         Instances with severity level 1                                        **       Instances with severity level 2                              

***     Instances with severity level 3                                        ****   Instances with severity level 4                           

***** Instances with severity level 5 

 

As expected, the total response cost is an increasing function of scan completion 

time. Figure 10a shows the increment rate in the average response cost with respect to the 

scan completion time for different numbers of recovery teams. As seen in Figure 10a, 

increasing the scan completion time augments the increment rate of the response cost 

almost linearly for any number of recovery teams. On average, a unit increase in the 

completion time leads to 0.7 percent augmentation in the response cost. However, the 

increase in the increment rate is significantly higher when there are more recovery teams. 

Figure 10b shows how the increment rate for a unit increase in the completion time 

augments with respect to the number of recovery teams.  
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This result shows that fast data diffusion (in Model 1) results in a better recovery 

operation (in Model 2) when there are a higher number of recovery teams. When more 

recovery teams are available for restoration, the interaction between Model 1 and Model 2 

is more significant.        

Figure 11a shows the tradeoff between the pre-disaster preparedness cost (cost of 

Model 1) and post-disaster response cost (cost of Models 2 and 3). Prepositioning more 

UAVs in the preparedness phase increases the pre-disaster preparedness cost and also 

speeds up the data diffusion after the disaster. High data diffusion after the disaster 

augments the efficiency of road recovery and relief distribution operations. This leads to 

lower post-disaster response costs. This tradeoff demonstrates that the total cost is a convex 

function of scan completion time (see Figure 11b). The total cost has a minimum value at 

the intersection of these two functions, representing the pre-disaster preparedness cost and 

the post-disaster response cost. This is the best scan completion time minimizes the total 

cost by balancing the costs of preparedness and response operations. 

Figure 10. Variations in the total response cost. (a) Increment rate of the cost with respect to the scan 

completion time. (b) Increment rate of the cost with respect to number of recovery teams. 
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4.3. Interaction between Model 2 and Model 3 

In our approach, roads are selected for recovery (in Model 2) based on the impact 

they make in the relief distribution (Model 3). To highlight the importance of this 

integration, we change the selection criterion to another one that has been widely used in 

the literature. This new criterion is making reconnection in the network (among nodes or 

components) in the least possible time (Kasaei & Salman 2016; Akbari & Salman 2017; 

Celik et al. 2016). In this approach, at each decision-making time, road selection is done in 

a way to make the highest number of reconnections between the nodes in the network up 

to the next decision-making moment. Then the total response cost is calculated for this 

non-integrative approach and compared with the integrative approach proposed in previous 

chapter. The results are summarized in Table 3 and visualized in Figure 12.  

Figure 11. Increment rates of costs with respect to the scan completion time. (a) The increment rates of pre- 

and post-disaster costs with respect to the scan completion time. (b) The increment rate of the total cost 

with respect to the scan completion time. 
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As seen in Figure 12, the integration between Models 2 and 3 results in a higher 

reduction in the response cost when there is a smaller number of recovery teams and the 

damage/debris data is acquired quickly. While the scarcity of the recovery resources 

amplifies the importance of this integration, the benefit of the integration is mitigated by 

slow data diffusion. The improvement that is made by this integration increasingly boosts 

by the reduction in the number of recovery teams. In reducing the number of recovery 

teams from 7 to 5 and from 5 to 3, the average increase in the improvement (cost reduction 

ratio) that is caused by a team reduction is 35% and 46%, respectively. The improvement 

that is made by this integration decreasingly boosts by the reduction in the scan completion 

time (or the increment in the data diffusion speed). The average reduction in the response 

cost by reducing the scan completion time from 3.5 to 2.5 and from 2.5 to 1.5 is 34% and 

18% respectively for any number of recovery teams. The number of recovery teams does 

not influence the impact of data diffusion speed on the response cost and vice versa.   

Figure 12. The improvement in the response cost. 
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Table 3. The results for integrative and non-integrative approaches. 

Disaster 

severity 

Solution 

approach 

Scan completion = 1.5 days Scan completion = 2.5 days Scan completion = 3.5 days 

3 teams 5 teams 7 teams 3 teams 5 teams 7 teams 3 teams 5 teams 7 teams 

* IN 608584 597004 595432 609004 599880 599256 619728 614848 613084 

* non-IN 645768 612768 606832 639672 612028 608324 639588 624104 614244 

Improvement  6.1% 2.6% 1.9% 5.0% 2.0% 1.5% 3.2% 1.5% 0.2% 

** IN 897262 887198 877386 897578 888578 882890 900870 891298 890674 

** non-IN 956158 915446 900682 947762 906702 895726 933566 909606 899638 

Improvement  6.5% 3.1% 2.6% 5.5% 2.0% 1.4% 3.6% 2.0% 1.0% 

*** IN 1334441 1304515 1296979 1337965 1318605 1312769 1340029 1321339 1319467 

*** non-IN 1420785 1360025 1333171 1415425 1366105 1332313 1404467 1335015 1339447 

Improvement  6.4% 4.2% 2.7% 5.7% 3.6% 1.4% 4.8% 1.0% 1.5% 

**** IN 1417870 1394304 1385976 1422750 1403342 1392346 1436110 1411850 1408018 

**** non-IN 1539352 1473160 1436676 1541596 1472808 1431280 1541656 1452484 1427434 

Improvement  8.5% 5.6% 3.6% 8.3% 4.9% 2.7% 7.3% 2.8% 1.3% 

***** IN 1909112 1884056 1847876 1921324 1895544 1884124 1935904 1898468 1889688 

***** non-IN 2084498 1987446 1939900 2087938 1994762 1937480 2102680 1989242 1923928 

Improvement  9.1% 5.4% 3.4% 8.6% 5.2% 2.8% 8.6% 4.7% 1.8% 

IN: Integrative approach; non-IN: Non-integrative approach 

            

 

4.4. Benchmark approach  

To evaluate if and when the proposed approach is beneficial, we compare it with a 

simpler online benchmark approach. This benchmark mimics the current approach used by 

FEMA (FEMA 2018). The FEMA guideline suggests prioritizing the recovery of roads of 

higher convenience with regard to disaster response (roads for health centers and hospitals, 

main highways, etc.). Roads with less importance are recovered later. Mimicking the 

FEMA suggestions, we develop a benchmark approach that determines the recovery 

sequence at each decision-making moment according to three factors: Distance, Supply, 

and Debris. The distance factor represents the closeness of the road to the supply nodes. 

Since there is usually more than one supply node, this factor is calculated based on the 
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distance between the road and the closest supply node to that road. The supply factor shows 

the expected supply from the closest supply node. The debris shows the road’s debris level 

data provided by the UAVs. At each decision-making moment, the benchmark approach 

determines the recovery schedule for roads with known debris data according to 

𝑠𝑢𝑝𝑝𝑙𝑦

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ×𝑑𝑒𝑏𝑟𝑖𝑠
 ratio. The roads with higher ratios are scheduled to be recovered first. 

Figure 13 shows the differences between the post-disaster response costs of the integrative 

and benchmark approaches for different numbers of recovery teams and scan completion 

times. Table 4 summarizes the results obtained using the integrative and benchmark 

approaches for all the problem instances. The total improvement of the integrative 

approach over the benchmark is calculated as 

(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘−𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑣𝑒 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ)

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑣𝑒 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
. 

Figure 13. The differences between the post-disaster response costs. 
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Table 4. The results for the integrative and benchmark approaches.       

Disaster 

severity 

Solution 

approach 

Scan completion = 1.5 

days 

Scan completion = 2.5 

days 

Scan completion = 3.5 

days 

3 

teams 

5 

teams 

7 

teams 

3 

teams 

5 

teams 

7 

teams 

3 

teams 

5 

teams 

7 

teams 

* 

I 608584 597004 595432 609004 599880 599256 619728 614848 613084 

B 652456 626352 614888 655876 626484 608468 652692 629336 615732 

improveme

nt 
7.2% 4.9% 3.3% 7.7% 4.4% 1.5% 5.3% 2.3% 0.43% 

** 

I 897262 887198 877386 897578 888578 882890 900870 891298 890674 

B 988706 925238 909586 956306 927554 907638 956306 922718 901558 

improveme

nt 
10.2% 4.3% 3.7% 6.5% 4.4% 2.8% 6.1% 3.5% 1.2% 

*** 

I 1334441 1304515 1296979 1337965 1318605 1312769 1340029 1321339 1319467 

B 1411749 1360961 1344297 1419093 1365313 1342281 1420765 1363201 1342685 

improveme

nt 
5.8% 4.3% 3.6% 6.1% 3.5% 2.2% 6.1% 3.2% 1.8% 

**** 

I 1417870 1394304 1385976 1422750 1403342 1392346 1436110 1411850 1408018 

B 1517674 1465758 1438052 1520638 1468178 1441256 1524294 1467530 1436246 

improveme

nt 
7% 5.1% 3.8% 6.9% 4.6% 3.5% 6.1% 3.9% 2% 

***** 

I 1909112 1884056 1847876 1921324 1895544 1884124 1935904 1898468 1889688 

B 2043156 1967122 1936356 2054240 1975290 1945432 2056472 1987306 1946920 

improveme

nt 
7% 4.4% 4.8% 6.9% 4.2% 3.2% 6.2% 4.7% 3% 

I: Integrative approach; B: Benchmark approach.  

 

The improvement trends in the results demonstrate in what situations the proposed 

approach is more effective. We investigate the trends with respect to the number of 

recovery teams and the scan completion time. Figure 14a shows the trend of improvements 

with respect to the number of recovery teams. The improvement made by the integrative 

approach is higher when there is a smaller number of recovery teams. The average 

improvement for the problem instances with 3, 5 and 7 recovery teams is 6.75%, 4.13%, 

and 2.97%, respectively. This result shows that the efficiency of the integrative approach 

is more significant when there is a recovery resource scarcity. Increasing the recovery 
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resource reduces the efficiency of the integrative approach in comparison with the 

benchmark approach, mimicking the FEMA approach. This reduction trend is concave-up; 

the reduction for a unit increase in the number of the recovery teams is high when there is 

a small number of recovery teams and becomes smaller by increasing the number of 

recovery teams.     

Figure 14b shows the sensitivity of the improvement with respect to the scan 

completion time determined in Model 1 (another interaction between Models 1 and 2). The 

average improvement made by the integrative approach is higher in short scan completion 

time. In the case problem, the average improvement for the problem instances with 1.5, 2.5 

and 3.5 scan completion time is 5.30%, 4.82%, and 3.73%, respectively. The proposed 

approach makes more improvement when a higher number of roads is available for 

selection at each decision-making moment. This demonstrates the sensitivity of the 

integrative method with respect to the data diffusion speed. Fast data diffusion in post-

disaster circumstances augments the efficiency of the proposed approach with respect to 

the benchmark mimicking the FEMA approach. The reduction trend is concave-down. The 

reduction for a unit increase in the scan completion time is low at small values of scan 

completion time and the reduction becomes higher by increasing the scan time.     
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Figure 14. The improvement trends. (a) Improvement with respect to the number of recovery teams. (b) 

Improvement with respect to the scan completion time. 
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Chapter 5 

5. CONCLUSION 

In this study, we develop an integrative online optimization model with a model-

based data diffusion component to coordinate three restoration-interdependent operations 

in the disaster response phase such as “damage assessment”, “road recovery” and “relief 

distribution”. An optimization model is developed for the damage assessment operation. 

This model prepositions UAVs and their charging stations over the network and determines 

their moving walks to scan the network and diffuse the damage/debris data. This data is  

periodically transferred to the second model developed for road recovery (a directional 

interdependency between two operations). An online optimization model is developed for 

road recovery. This model prioritizes the recovery process of roads with known 

damage/debris data in a way to make the highest acceleration in relief distribution operation 

(a mutual interdependency between two operations). We use the integrative framework to 

determine the importance of interactions between these three operations. Results show that: 

 Interaction between the damage assessment & road recovery: Fast data diffusion in the 

damage assessment operation results in a better road recovery operation when there is 

a higher number of recovery teams. The scarcity of the recovery resources neutralizes 

the impact of fast data diffusion. There is an optimal data diffusion speed (or scan 

completion time) that balances the pre-disaster preparedness and the post-disaster 

response costs.  

 Interaction between the road recovery & relief distribution: The scarcity of the 

recovery resources amplifies the importance of integration between road recovery and 
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relief distribution operations. However, the benefit of this integration is mitigated by 

slow data diffusion. 

 

The performance of the proposed approach is compared with an online heuristic 

benchmark mimicking the performance of FEMA. The results show that the integrative 

approach makes more significant improvements when the recovery resource is scarce, and 

the data diffusion is fast. Increasing the recovery resource and slowing down the data 

diffusion speed makes concave-up and concave-down reductions in the improvement made 

by the integrative approach, respectively. Figure 15 demonstrates the conditions under 

which the proposed integrative approach is more effective.     

In this study, we assume that damage assessment facilities, UAVs, are 

prepositioned before the disaster and their moving walks are not adjusted after the disaster. 

Post-disaster adjustments of the walks may lead to fast data diffusion and higher 

improvements and are suggested as a future research direction for the investigated problem 

of this study.      

Figure 15. The conditions under which the integrative approach is more effective. 
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APPENDIX A 

 

Table 1A includes the list of notations used in the paper. 

 
Table 1A. Notation. 

Set definition 

N Set of nodes in the original road network 

L Set of links in the original road network 

𝑁́ Set of nodes in the unified network (including the original and auxiliary nodes) 

𝐿́ Set of links in the unified network 

𝑇 Set of decision-making time steps for road selection 

𝑁′′ Set of nodes in the super-network 

𝐿′′ Set of links in the super-network 

𝐿́𝑃 Set of prioritized roads (𝐿́𝑃 ⊂ 𝐿́) 

𝐿́𝑈 Set of non-prioritized roads (𝐿́𝑈 = 𝐿́ − 𝐿́𝑃) 

P The set of all pairs of demand and supply nodes that appear after the disaster 𝑃 =
{𝑝 = (𝑛,𝑚)|𝑛,𝑚 ∈ 𝑁} 

𝐿(𝑡) The set of disrupted roads that are scanned by the UAVs up to time t 

𝐸(𝑡) The subset of links of 𝐿(𝑡) that can be selected for recovery at time 𝑡 and their 

recovery can affect at least one of 𝜃𝑝∗ (∀𝑝 ∈ 𝑃) values. 

Variable definition 

𝑧𝑛 1 if a charging station is located at node 𝑛; and 0 otherwise 

𝑥𝑛 The number of UAVs prepositioned at node 𝑛 

𝑦
(
𝑛,𝑚
→  )

𝑡  The number of UAVs flying through link (𝑛,𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ) at time step 𝑡 

𝛹 The scan completion time  

𝑤
(
𝑚,𝑛
→  )

𝑡  1 if a UAV fly through link (𝑛,𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ) at time step 𝑡, and 0 otherwise 

𝜂 
The number of times that the links of the network are traversed more than once by 

the UAVs 

𝛹𝑀𝑖𝑛(𝑛𝑈) The minimum 𝛹 to scan the whole network with 𝑛𝑈 number of UAVs  

Ω The scan completion time for the prioritized roads 

𝑥́𝑛 The total amount of relief flow originating from node 𝑛 in each delivery 

𝑦́
(
𝑛,𝑚
→  )

𝑡  The total amount of relief flows through the link (𝑛,𝑚) at time t; and 0 otherwise 

𝑤́
(
𝑛,𝑚
→  )

𝑡  1 if the relief flows through the link (𝑛,𝑚) at time t; and 0 otherwise 

𝜃𝑝 The shortest transportation time between the nodes of pair 𝑝 ∈ 𝑃 

𝑢𝑙 The number of teams assigned to link 𝑙 ∈ 𝐿(𝑡) 
𝑡′(𝑙) The recovery completion time for link 𝑙 

𝜂𝑝,𝑡
′
(𝑙) The number of deliveries accomplished for pair 𝑝 ∈ 𝑃 before the recovery 

completion time of link 𝑙 

𝜃́𝑝∗(𝑙) The shortest transportation time between the nodes of pair 𝑝 ∈ 𝑃 after recovering link 

𝑙  

Parameter definition 

v The velocity of the UAVs 

NDU 
The largest distance that the length of all roads and the fly distance of the UAVs can 

be estimated as a coefficient of it 
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d The highest number of NDU that a fully-charged UAV can fly  

𝑓𝑛 The cost of establishing a charging station at node 𝑛 

𝑝𝑛 The cost of deploying a UAV at node 𝑛 

𝑜 The operational cost of moving a UAV over a road per NDU 

𝑎(𝑛,𝑚) 1 if there is a link between nodes 𝑛 and 𝑚; and 0 otherwise 

𝑎́(𝑛,𝑚) The number of links between nodes 𝑛 and 𝑚 in the super-network 

𝑑̅(𝑛,𝑚) The average distance between nodes 𝑛 and 𝑚 in the super-network 

𝛽(𝑛,𝑚) 1 if link (𝑛,𝑚) ∈ 𝐿́𝑃; and 0 otherwise 

𝜁 This parameter represents the largest integer value that 𝜁𝑑 ≤ |𝑇| 

𝑛𝑈 A fixed number of UAVs 

𝑛𝑆 A fixed number of charging stations 

𝑀 A very large constant value 

𝛹̇ A fixed predetermined value for variable 𝛹 

𝛩𝑝 The total amount of shipment between the nodes of pair 𝑝 ∈ 𝑃 

𝜗𝑝 The capacity of the transportation fleet assigned to pair 𝑝 ∈ 𝑃 

𝑐𝑝(𝑡) The cost of fulfilling a unit of demand at the demand node of pair 𝑝 at time 𝑡 

𝛾(𝑛,𝑚) 1 if link (𝑛,𝑚) is undisrupted and can be used by the transportation fleet, and 0 

otherwise 

𝛾𝑛
𝑝
 1 for node 𝑛 ∈ 𝑁 if it is the supply node of pair 𝑝; and 0 otherwise 

𝛾́𝑛
𝑝
 1 for node 𝑛 ∈ 𝑁 if it is the supply node of pair 𝑝; and 0 otherwise 

𝑟𝑙  The required recovery time for link 𝑙 ∈ 𝐿(𝑡) if it is recovered by a single team 

𝛬(𝑡) The number of recovery teams available at time 𝑡 

 

APPENDIX B 

Proof of Proposition 1: If we assume that the scan completion time is Ψ, the maximum number of 

NDU that can be traversed by nU number of UAV is 𝛹𝑛𝑈.  On the other side, the travel distance 

of UAVs should be more than or equal to |𝐿́| to ensure that all roads of the network are scanned. 

This necessitates that 𝛹𝑛𝑈 = |𝐿́| + 𝜂. 𝜂 is a non-negative integer value representing the number of 

times the links of the network, 𝐺́, are traversed more than one time by the UAVs. For efficient 

UAV prepositioning, the model forces the extra distance traversed by UAVs, 𝜂, to zero. So, even 

in the optimal prepositioning, the scan completion time cannot be less than ⌈
|𝐿́|

𝑛𝑈
⌉.         

Proof of Proposition 2: The distance between two adjacent charging stations (two charging stations 

are called adjacent if there is no other charging station in their shortest path) cannot be more than 

d. Otherwise, a UAV leaving one of these stations will become out-of-charge before reaching the 

other one. When Ψ is less than 𝑑, one UAV from one of the stations cannot scan the whole links 
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between two adjacent stations within 𝛹. So, two UAVs from the two stations will concurrently 

scan the links in opposite directions. Therefore, the distance between the two stations should be 

2𝛹. Considering the two cases (𝛹 ≥ 𝑑 & 𝛹 < 𝑑), the distance between two adjacent stations in a 

network with 𝑛𝑈 number of UAVs and scan completion time of 𝛹𝑀𝑖𝑛(𝑛𝑈) should be 

𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈), 𝑑}. There are |𝐿́| links and the highest number of stations is needed when all 

links are sequentially connected and form a loop which is equal to ⌈
|𝐿́|

𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈),𝑑}
⌉. So, in general 

networks  𝑛𝑆 ≤ ⌈
|𝐿́|

𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈),𝑑}
⌉. Finding the exact value for 𝑛𝑆 without a model is impossible 

because it completely depends on the topology of the network. Model P2 locates charging stations 

in a network in a way that the distance between any pair of stations is less than or equal to 

𝑀𝑖𝑛 {2𝛹𝑀𝑖𝑛(𝑛𝑈), 𝑑} (Constraints 17-19). Constraints (20-21) ensures that all the links of the 

network should be covered by the paths considered between the stations.  

Proof of Proposition 3: Since ϑp units of the product can be shipped in each delivery, the total 

number of delivery frequency between supply and demand nodes of pair 𝑝 (∀𝑝 ∈ 𝑃) would be ⌈
Θ𝑝

ϑ𝑝
⌉. 

The first delivery is materialized at the time 𝜃𝑝∗. Then, 2𝜃𝑝∗ time units are needed for the vehicle 

to return the supply node, load and move toward the demand node. So, 𝑖th delivery happens at the 

time 𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1). The response cost for the 𝑖th delivery of pair 𝑝 that includes ϑ𝑝 product 

units would be ϑ𝑝. 𝑐𝑝(𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1)). So, the total response cost for all demand and supply 

pairs in the network would be  

∑ ∑ ϑ𝑝. 𝑐𝑝(𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1))
⌈
Θ𝑝

ϑ𝑝
⌉

𝑖=1𝑝∈𝑃 . 

Proof of Proposition 4: Assume that there are n links with the recovery times of r1, r2, …, rn and 

the total number of recovery teams that can be assigned to the links is Λ(t). If we decide to 

simultaneously recover all of these links, the recovery teams should be distributed among the links 
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as u1, u2, …, un (Λ(t) = ∑ 𝑢𝑖𝑛
𝑖=1  and ∀𝑢𝑖 > 0).  In this case, the recovery will end at 

𝑀𝑎𝑥 {
𝑟1

𝑢1
,
𝑟2

𝑢2
 , … ,

𝑟𝑛

𝑢𝑛
}. However, if we decide to recover the links sequentially, the recovery will end 

at 
𝑟1+𝑟2+⋯+𝑟𝑛

𝑢1+𝑢2+⋯+𝑢𝑛
. Following the fact that 𝑀𝑎𝑥 {

𝑟1

𝑢1
,
𝑟2

𝑢2
 , … ,

𝑟𝑛

𝑢𝑛
} ≥

𝑟1+𝑟2+⋯+𝑟𝑛

𝑢1+𝑢2+⋯+𝑢𝑛
 , we can conclude that 

sequential recovery is always better than simultaneous recovery.   

Proof of Proposition 5: rl shows the recovery time of link l ∈ L(t) if it is recovered by a single team. 

Since Λ(t) teams are available at time 𝑡, the recovery of link 𝑙 will last 
𝑟𝑙

Λ(𝑡)
. This means that if we 

select link 𝑙 for recovery at time 𝑡, the recovery process of this link will end at the time 𝑡′(𝑙) = 𝑡 +

𝑟𝑙

Λ(𝑡)
. So, the number of deliveries that their transportation will start before retrieving road 𝑙 is 

𝜂𝑝,𝑡
′
(𝑙).  𝜂𝑝,𝑡

′
(𝑙) is the lowest integer value that satisfies the following inequality: 𝜃𝑝∗ +

2𝜃𝑝∗(𝜂𝑝,𝑡
′
(𝑙) − 1) ≥ 𝑡′(𝑙). Simplifying this inequality shows that 𝜂𝑝,𝑡

′
(𝑙) = ⌈

𝑡′(𝑙)+𝜃𝑝∗

2𝜃𝑝∗
⌉. If link 𝑙 

will not be recovered, the response cost of 𝜂𝑝,𝑡
′
(𝑙) + 1th to ⌈

Θ𝑝

ϑ𝑝
⌉th deliveries would be 

∑ ∑ ϑ𝑝. 𝑐𝑝(𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1))
⌈
Θ𝑝

ϑ𝑝
⌉

𝑖=𝜂𝑝,𝑡
′
(𝑙)+1

𝑝∈𝑃 . If link 𝑙 will be recovered, the transportation time 

for 𝜂𝑝,𝑡
′
(𝑙) + 1th to ⌈

Θ𝑝

ϑ𝑝
⌉th deliveries will decrease and the delivery time for the ith delivery 

(𝜂𝑝,𝑡
′
(𝑙) + 1 ≤ 𝑖 ≤ ⌈

Θ𝑝

ϑ𝑝
⌉) will be 𝜃𝑝∗ + 2𝜃𝑝∗. (𝜂𝑝,𝑡

′
(𝑙) − 1) + 2𝜃́𝑝∗(𝑙). (𝑖 − 𝜂𝑝,𝑡

′
(𝑙)). Thus, the 

response cost of 𝜂𝑝,𝑡
′
(𝑙) + 1th to ⌈

Θ𝑝

ϑ𝑝
⌉th deliveries would be ∑ ∑ ϑ𝑝. 𝑐𝑝 (𝜃𝑝∗ +

⌈
Θ𝑝

ϑ𝑝
⌉

𝑖=𝜂𝑝,𝑡
′
(𝑙)+1

𝑝∈𝑃

2𝜃𝑝∗. (𝜂𝑝,𝑡
′
(𝑙) − 1) + 2𝜃́𝑝∗(𝑙). (𝑖 − 𝜂𝑝,𝑡

′
(𝑙))). This means that recovering link 𝑙 will make 

∑ ∑ ϑ𝑝. 𝑐𝑝(𝜃𝑝∗ + 2𝜃𝑝∗(𝑖 − 1))
⌈
Θ𝑝

ϑ𝑝
⌉

𝑖=𝜂𝑝,𝑡
′
(𝑙)+1

𝑝∈𝑃 − ∑ ∑ ϑ𝑝. 𝑐𝑝 (𝜃𝑝∗ +
⌈
Θ𝑝

ϑ𝑝
⌉

𝑖=𝜂𝑝,𝑡
′
(𝑙)+1

𝑝∈𝑃

2𝜃𝑝∗. (𝜂𝑝,𝑡
′
(𝑙) − 1) + 2𝜃́𝑝∗(𝑙). (𝑖 − 𝜂𝑝,𝑡

′
(𝑙)))  reduction in the total response cost.  
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APPENDIX C  

In Model P1, all the roads of the network have similar priorities for damage assessment. 

Sometimes, some roads of the network are more prone to be damaged in disasters. Roads located 

beside oceans, seas, rivers, or epicenters or roads ending at the population centers located in highly 

disaster-prone regions have higher probabilities to be damaged by disasters. In this case, there are 

two groups of roads in the network: the set of prioritized roads (𝐿́𝑃 ⊂ 𝐿́) and the set of non-

prioritized roads (𝐿́𝑈 = 𝐿́ − 𝐿́𝑃). Binary parameter 𝛽(𝑛,𝑚) (∀𝑛,𝑚 ∈ 𝑁́) is equal to 1 if the link 

(𝑛,𝑚) ∈ 𝐿́𝑃; and 0 otherwise ((𝑛,𝑚) ∈ 𝐿́𝑈). While Ψ determines the scan completion time for the 

whole network, a new variable such as Ω is defined to determine the scan completion time for the 

prioritized roads: 

Ω ≥ 𝛽(𝑛,𝑚). ∑ 𝑡. 𝑤
(
𝑛,𝑚
→  )

𝑡|𝑇|
𝑡=1                                                   (∀𝑛,𝑚 ∈ 𝑁́)                                     (1C) 

To minimize the scan completion time for the prioritized roads, the objective function (2C) 

should be added to Model P1: 

  MIN    𝑍5 = Ω                                                                                                                      (2C) 

Giving a higher weight to the third objective function compared to the second objective 

function makes Model P1 + objective function (2C) + constraint (1C) scan the prioritized roads 

prior to the non-prioritized roads. In the case with two scan completion times (𝛹 and Ω), the 

distance of the shortest path between a pair of adjacent charging stations would be less than or 

equal to 𝑀𝑖𝑛 {2Ω, 𝑑} if a prioritized road is located in the path and would be less than or equal to 

𝑀𝑖𝑛 {2𝛹, 𝑑} if a prioritized road does not exist in the path. This issue complicates locating charging 

stations in Proposition 2 and the UAV walks determination by the heuristic approach. To make the 

results usable for road networks with prioritized roads, we suggest a second reformation in the 

unified network 𝐺́. Based on this reformation, 𝛹 − Ω number of dummy nodes should be added to 
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the unified links included in the prioritized roads. Assuming that roads (𝑛4, 𝑛5) and (𝑛1, 𝑛5) are the 

prioritized roads in the sample road network of Figure 5 and 𝛹 −Ω = 1, the structure of the 

network after the second reformation would be as Figure 1C.                 

 

Figure 1C. The structure of the sample network after the second reformation. 

Note that charging stations cannot be located at dummy nodes. These nodes are added to 

make sure that there are at most 𝑀𝑖𝑛 {2𝛹, 𝑑} links between any pair of adjacent charging stations. 

Using this approach, we can neutralize the impact of prioritized roads and having two different 

completion times on Model P2 in Proposition 2.  
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