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ABSTRACT OF THE DISSERTATION

MITIGATING STEALTHY LINK FLOODING DDOS ATTACKS USING

SDN-BASED MOVING TARGET DEFENSE

by

Abdullah Aydeger

Florida International University, 2020

Miami, Florida

Professor Kemal Akkaya, Major Professor

With the increasing diversity and complication of Distributed Denial-of-Service

(DDoS) attacks, it has become extremely challenging to design a fully protected

network. For instance, recently, a new type of attack called Stealthy Link Flooding

Attack (SLFA) has been shown to cause critical network disconnection problems,

where the attacker targets the communication links in the surrounding area of a

server. The existing defense mechanisms for this type of attack are based on the

detection of some unusual traffic patterns; however, this might be too late as some

severe damage might already be done. These mechanisms also do not consider

countermeasures during the reconnaissance phase of these attacks. Over the last

few years, moving target defense (MTD) has received increasing attention from

the research community. The idea is based on frequently changing the network

configurations to make it much more difficult for the attackers to attack the network.

In this dissertation, we investigate several novel frameworks based on MTD to

defend against contemporary DDoS attacks. Specifically, we first introduce MTD

against the data phase of SLFA, where the bots are sending data packets to target

links. In this framework, we mitigate the traffic if the bandwidth of communication

links exceeds the given threshold, and experimentally show that our method signif-

icantly alleviates the congestion. As a second work, we propose a framework that

vii



considers the reconnaissance phase of SLFA, where the attacker strives to discover

critical communication links. We create virtual networks to deceive the attacker

and provide forensic features. In our third work, we consider the legitimate net-

work reconnaissance requests while keeping the attacker confused. To this end, we

integrate cloud technologies as overlay networks to our system. We demonstrate

that the developed mechanism preserves the security of the network information

with negligible delays. Finally, we address the problem of identifying and poten-

tially engaging with the attacker. We model the interaction between attackers and

defenders into a game and derive a defense mechanism based on the equilibria of

the game. We show that game-based mechanisms could provide similar protection

against SLFAs like the extensive periodic MTD solution with significantly reduced

overhead.

The frameworks in this dissertation were verified with extensive experiments as

well as with the theoretical analysis. The research in this dissertation has yielded

several novel defense mechanisms that provide comprehensive protection against

SLFA. Besides, we have shown that they can be integrated conveniently and effi-

ciently to the current network infrastructure.
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CHAPTER 1

INTRODUCTION

With the proliferation of online services, social media, and smart devices, every-

thing became connected with each other more than ever, forming huge cyberspace.

While such a connected world brings a lot of advantages to our lives in terms of

convenience, cost, safety, and efficiency, it also turned the attention of attackers to

cyberspace, creating new vulnerabilities and attack surfaces for them. Attackers

can get control of a large number of devices by exploiting their vulnerabilities, while

these devices may not be aware of the attacker’s manipulation [ESA12]. The at-

tacker can launch a Distributed Denial of Service (DDoS) attack by manipulating a

large number of devices under his control, which may result in substantial financial

and information loss.

It has been reported that cyberattacks, more specifically DDoS attack activities

in terms of type and quantity, continue to increase in the year of 2014 and represent

more than 20 percent of all attacks [Net14]. A recent report in 2018 by Netscout

states that DDoS attacks will continue to grow [Net]. According to the report in

the year 2018, 1.35 Terabits per second (Tbps) DDoS traffic hit Github, and just

after five days of that incident, 1.7 Tbps DDoS traffic launched against an unnamed

US-based service provider. These attacks may cause a lot of revenue loss for the

companies [Sym]. Indeed, the DDoS attacks caused the downtime of Internet service

outages, which cost $221,836 on average in 2018 [Net]. Each company is only able to

protect itself to a certain degree since the attacks have become more sophisticated

and massive, while the companies’ abilities and resources to mitigate such attacks

are limited [Rod15]. Furthermore, with improved sophistication employed in DDoS

attacks, it is becoming very challenging to design a defense mechanism against these

attacks.
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Even though many DDoS defense mechanisms are available [ZJT13], they are

not capable of competing with some recent types of attacks, and most of these mech-

anisms became obsolete due to the recent shift of the attacked targets. For instance,

SLFA is one of them where the attacker does not attack the target network/servers

directly [SP09, KLG13]. The Crossfire attack is an exemplary kind of SLFAs, and

it is primarily performed by congesting the communication links surrounding the

network of the target servers by sending low-volume traffic over them from many

bots in distributed locations. Since the packets the bots send are legitimate, and

it does not attack the servers directly, it is very challenging to detect such attacks

using traditional mechanisms. The consequence of this attack is the blockage of ex-

ternal access to the servers while they are still active/running without any problem

within the network. Such attacks often cause a more significant DDoS impact than

direct attacks since, by flooding the targeted links, not only a certain target area

can be isolated but also other time critical traffic to or from different regions that

may need to pass through the targeted links, will be delayed. Hence, it is critical

to propose proactive defense mechanisms against such attacks. Furthermore, the

reconnaissance phase of DDoS attacks is underexplored in literature, which is the

first step of the DDoS attack chain. Thus, it is important to investigate and develop

defense mechanisms against the reconnaissance phase of DDoS attacks.

Over the last few years, Moving Target Defense (MTD), originated from the idea

of dynamic networks, has received increasing attention from the research commu-

nity [NIT09]. The concept of MTD, in which the defense is done dynamically, often

proactively, by introducing agility to the network behavior. This agility brings

protection to the system by providing resistance, as it complicates the tasks of

an attacker by adding inconsistency or confusion in the knowledge of the system.

These features can be implemented in various ways, including but not limited to

2



changing IP addresses of network devices, the operating system of servers, and rout-

ing information. Extensive research has been conducted on the implementation of

this paradigm with minimum or no disruption introduced to the network services

[JASD12, KPB14, JASD15, CSP15, MS15]. The main idea behind MTD is to dy-

namically change the configuration and behavior of the network in order to deceive

adversaries and make it harder for them to launch successful attacks to the networks

[CCFB14]. The changes are typically controlled by an automated but centralized

system.

The Software Defined Networking (SDN) infrastructure has been shown as a

great candidate that can be integrated with MTD for efficient and cost-effective

operations to address the problem of network management. SDN decouples the

network control and data forwarding functions and provides the ability to have a

global overview of the network as well as the capability of zooming in specific net-

work portions to collect further information [HHB14]. It also allows administrators

to dynamically adjust network-wide traffic flow to meet changing needs. Addition-

ally, SDN makes network/resource management very convenient and cost-efficient

by providing remote configuration and software/security upgrades on the network

devices. All these features provide significant motivation for the deployment of SDN

in MTD operations for efficiency and convenience. Network Function Virtualization

(NFV) proposes virtualization in network components. Thus, NFV enables us to

have virtual network nodes that can be easily controlled by SDN [HGJL15], making

the networks more agile and reducing the hardware costs. Consequently, MTD can

highly benefit from both SDN and NFV technologies.

In this dissertation, we consider the SLFA as our threat model and develop

several defense mechanisms against it, utilizing SDN and NFV technologies while

employing MTD techniques. In Section 1.1, we present the current challenges of

3



designing defense mechanisms, and in Section 1.2, we explain our main solutions

against given problems.

1.1 Research Problems

In this section, we list the specific research problems we considered in this disserta-

tion and explain each of them as follows:

• Even though there are a few proposed solutions in literature for the SLFA de-

fense mechanisms [WLJW16, WXZ+17, WWL+18], they are based on attack

detection, and they mitigate the attack after some problems in the network

communication occur. There is a lack of work that can efficiently and effec-

tively mitigate the attack before some harm is made.

• The existing MTD approaches in the literature that strives to obfuscate the

network attributes [CSP15][DASJ13] [FTSB15][WW16] typically operate on

the real network topologies. This issue raises a problem with the limited

available alternate attribute values. For instance, if route mutation is em-

ployed, attackers can get the network map since every hop information can be

collected each time MTD changes the routes. With limited node size and path

alternatives, this is inevitable. Therefore, there is a need for a cost-efficient

solution to employ MTD for a higher level of deception.

• The attacker’s impact on the service disruption critically depends on the recon-

naissance phase, which is usually considered as the first step of DDoS attacks

[ARZMT06]. In this phase, the attackers gather information about their tar-

get, find out the IP addresses of the target machines, the network topology,

and most used links. In particular, the Crossfire attack utilizes this phase to

find out commonly used links in network topology and then aims to congest
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these links through DDoS attack. Unfortunately, defense against the recon-

naissance of DDoS attacks is often underexplored compared to DDoS attack

detection and mitigation. Hence, there is a gap in the literature to be filled.

• The forensic components within the current network infrastructures usually

have a high cost, and they are not integrated with security features [PJN10a].

Therefore, there is a need for a framework that stores critical information for

postmortem forensic investigation while still operating other functionalities

timely.

• MTD papers in literature create a dynamic environment by changing some of

the features in the network [CSA+20]. However, none of these works consider

legitimate users’ impact whenever they change the attack surface. Therefore,

there is a need for a framework where legitimate users can still troubleshoot

the network, while malicious users cannot collect beneficial information.

• MTD brings a high cost to the system in many ways [ASAR16]. There is not

any work in literature that considers an optimum strategy to employ MTD

for defense purposes. Thus, there is an open question to be investigated, that

is how frequently changes should be applied in the network.

1.2 Major Contributions

In this section, we list our major contributions that are proposed within this disser-

tation.

• In Chapter 4, we designed an SDN-based MTD mechanism to defend against

the data phase of the Crossfire attack. We analyze the Crossfire attack recon-

naissance phase and utilize the analyzed results to develop the defense mech-

anism, which in turn reorganizes the routes in such a way that the congested
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links are avoided during packet forwarding. The detection and mitigation tech-

niques are implemented using the Mininet emulator [Tea] and the Floodlight

SDN controller [Pro]. The evaluation results show that the route mutation

can effectively reduce the congestion in the targeted links without making any

major disruption on network services.

• In Chapter 5, various network forensics mechanisms are introduced to help in

locating the source and types of attacks as a reactive defense mechanism. This

chapter considers MTD in the context of an Internet Service Provider (ISP)

network and proposes an architectural framework that will enable it even at

the reconnaissance phase while facilitating forensics investigations. We pro-

pose various virtual shadow networks through NFV to be used when imple-

menting MTD mechanisms via route mutation. NFV proposes virtualization

in network components. Thus, NFV enables us to have virtual network nodes

that can be easily controlled by SDN [HGJL15], making the networks more

agile and reducing the hardware costs. The idea is to dynamically change

the routes for specific reconnaissance packets so that attackers will not be

able to easily identify the actual network topologies for the Crossfire attack

while enabling the defender to store potential attacker’s information through

a forensics feature. We present an integrated framework that encompasses

these features. The proposed framework is implemented in Mininet to test

its effectiveness and overheads. The results demonstrated the effectiveness in

terms of failing the attackers at the expense of slightly increased path lengths,

end-to-end delay, and storage for forensic purposes.

• In Chapter 6, we propose a cloud-based deception framework which aims to

confuse the attacker with reconnaissance replies while allowing legitimate uses

such as the debugging of network elements. The deception is based on forward-
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ing the reconnaissance packets to a cloud infrastructure through tunneling so

that the returned IP addresses to the attacker will not be genuine. For han-

dling legitimate requests, we create a reflected virtual topology in the cloud

to match any changes in the original physical network to the cloud topology

using SDN. Through realistic experimentation on GENI platform [DRS+12],

we show that our framework can provide reconnaissance responses with negli-

gible delays to the network clients while also reducing the management costs

significantly.

• In Chapter 7, we address the challenge of obtaining the optimal MTD strategy

that effectively mitigates SLFA, while incurs a minimal overhead. We design

the problem as a signaling game considering the network defender and the

attacker as players. A belief function is established throughout the engagement

of the attacker and the defender during the Crossfire attack campaign, which is

utilized to pick the best response/action for each player. We analyze the game

model and derive a defense mechanism based on the equilibria of the game.

We evaluate the technique on a Mininet-based network environment where an

attacker is performing SLFA, and a defender applies MTD based on equilibria

of the game. The results show that our signaling game-based dynamic defense

mechanism can provide a similar level of protection against SLFA like the

extensive MTD solution, however, causing a significantly reduced overhead.

1.3 Organization of the Dissertation

The dissertation is organized as follows: In Chapter 2, background information

about the concepts used in this dissertation is given. The literature review is listed

in Chapter 3. In Chapter 4, we investigate how we can utilize MTD in order to de-
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fend against the Crossfire attack. In Chapter 5, we present a comprehensive frame-

work for ISPs that provides deception against the Crossfire attackers and forensics

capabilities. In Chapter 6, we propose a cloud-based deception framework where

we move the management of network deception tasks to cloud providers. We con-

sider an interaction between the attacker and the defender by utilizing the signaling

game in Chapter 7. Finally, we conclude the dissertation and present some potential

future work in Chapter 8.
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CHAPTER 2

PRELIMINARIES

In this chapter, we give a background information related to the technologies used

throughout the dissertation. We specifically explain what SDN and NFV are and

why they were selected in our projects. Then, we present DDoS attacks and LFAs,

and talk about their differences. Finally, we introduce MTD concept.

2.1 Software Defined Networking

Software Defined Networking (SDN) is an emerging technology that proposes a

separation of data and control planes, and that is the main difference from the

traditional network environment, as shown in Fig. 2.1. On the one hand, the data

plane consists of switches that are not capable of any routing/blocking decisions by

themselves. On the other hand, the control plane (also known as SDN Controller) is

the brain of the network and is responsible for all critical operations in the network.

SDN provides a flexible and cost-effective solution for network management by

enriching network devices with programmability feature, and a centralized controller

can be used by the network admin in order to configure the network devices. Even

though network programming has been investigated for a long time, SDN has been

developed and named for a couple of years now [FRZ14]. With the introduction of

SDN, it is made possible to do dynamic traffic engineering, drop packets, reconfig-

ure the network routing paths in case of failures and enforce certain policies that

make network management convenient and more flexible. Thus, we leverage SDN

capabilities to implement our network defense frameworks.

Traditional network devices (switch, router, etc.) require all the software on the

hardware in order to run protocols before it can be installed in the network. Mean-
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Figure 2.1: Traditional network switches vs SDN-based switches

while, SDN-based switches are basic devices and can be updated easily even after

the installation. However, there is a need for a new communication protocol in order

for SDN Controller to communicate to SDN switches. Even though there is not a

standardized protocol yet, OpenFlow is the widely-used protocol by both researchers

and industry [MAB+08]. SDN-based switches are also called OpenFlow switches,

and these switches have flow tables that will provide the knowledge of the rules on

what to do with each packet. Flow table, OpenFlow Protocol and secure channel

between SDN Controller to switches are the main parts of OpenFlow switches. In

addition to the mentioned OpenFlow switches and the protocol requirements, there

is also a need to run an SDN Controller which network administrators can use to

access the network devices remotely. For example, FloodLight [Pro], OpenDayLight

[Ope] are publicly available SDN Controller.
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The SDN Controller typically runs on a different machine in a centralized loca-

tion, and only network administrator(s) should have permission to access it. The

SDN Controller is able to do many operations, including but not limited to enforce

security rules (block some packets, etc.) and decide forwarding tables. By exposing

SDN-based solutions to networks, the high cost of network devices and complexities

of maintenance of such devices can be minimized. The network administrator can

configure and update some parts of the SDN Controller in order to manipulate the

network or s/he can implement some applications on top of the SDN Controller

to apply his/her own rules. The latter is more common and requires less knowl-

edge of the SDN Controller’s source code. Northbound API of SDN Controller is

required to be used for this purpose and mostly used protocol is Representational

State Transfer (REST) interfaces [Mas11]. The application layer can access network

devices through these interfaces. These applications send REST inquiries to get

information about the current situation or to update some flow tables. They can

contain network functions, including but not limited to Intrusion Detection System

(IDS), firewall. The detailed SDN network infrastructure is shown in Fig. 2.2.

2.2 Network Function Virtualization

Nowadays, computer networks consist of many different functionalities, such as fire-

walls and network load balancing [YWL+18]. These functionalities usually come

with the hardware and software parts integrated, which are also called middle-boxes

[BCAB15]. These hardware devices are usually costly and do not have much scala-

bility. They are also vendor-specific and need professional labor who have expertise

on these specific device set. Therefore, researchers proposed the idea of separation

of software functionalities from the hardware devices, which establishes the main
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idea of Network Function Virtualization (NFV) [HB16]. The software can be imple-

mented on standard servers, and the resources can be shared in these servers. The

virtualization of network functions brings high scalability and low operating costs

to the network infrastructures [YWL+18]. NFV and SDN are usually considered

under the same umbrella since they enhance each other in many ways [MGT+15].

2.3 Denial-of-Service and Distributed Denial-of-Service At-

tacks

Denial-of-Service (DoS) attacks are a critical threat to current networks [DM04].

The aim of these attacks is to disrupt the services in the targeted server. DDoS

attacks have the same goal as DoS, while a high number of coordinated Internet

hosts are engaged in these attacks, differently [MR04]. DDoS attacks exploit the

current network structure and communication protocols. These attacks can be in
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many forms, including but not limited to flooding attacks [WZS02], amplification

attacks [KHRH14], protocol exploit attacks [KK06] and malformed packet attacks

[DM04]. Even though there are many DDoS attack types and mitigation techniques,

our main focus in this dissertation is Link Flooding DDoS attacks.

2.4 Link Flooding DDoS Attacks

Direct DDoS attacks attempt to attack the target host specifically while indirect

attacks attempt to isolate the area surrounding the target host and make the target

host services unavailable. Link Flooding attacks (LFA) are one type of indirect

DDoS attacks. Even though the concept of LFA has a long history, the two very

recent LFAs, the Coremelt attack [SP09] and the Crossfire attack [KLG13], showed

the significance and potential impact of these attacks. Hence, we proposed different

mitigation techniques specifically against the Crossfire attack, which is explained in

detail in Section 2.4.1.

2.4.1 The Crossfire Attack

The crossfire attack is an indirect attack where an attacker tries to isolate a specific

area by performing link-flooding DDoS attacks to some targeted links so that the

servers within that area are unable to provide their services. Fig. 2.3 illustrates an

example of the Crossfire attack to a specific area. By flooding all targeted links, the

targeted area becomes isolated from the rest of the network.

Basically, the Crossfire attack uses different pairs of the source and destination

for reconnaissance and attacks. For reconnaissance, it picks a target server, while

for the attack, it picks at least one decoy server that are located around the same

target area. A sheer number of attack agents (i.e., bots), which are widely available
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on the Internet, is used during the reconnaissance phase for creating the link-map of

the network. These attack agents can be inside the ISP network or from outside the

ISP network. All chosen attack agents will send traceroute messages to this target

server to build the link-map of the network. After collecting adequate information

to build the link-map, the attacker determines the target links. He/she will then try

to find other pairs of attack-agents and decoy server(s) by ordering attack-agents

to send traceroutes to the decoy server(s). The pairs of attack-agents and decoy

server(s) whose path also passes through the selected target links will be used to

launch the link-flooding attacks to the target links.

This type of attack is difficult to detect since the source-destination pairs that

are used at the reconnaissance phase, and those are used at the attack phase can be

different. Moreover, in order to avoid any detections at the attack phase, a plethora

of coordinated bots send a low-rate flow to exhaust the available bandwidth on the

selected links.
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2.5 Moving Target Defense

In 2009, five new game-changing directions have been introduced to address some

intractable problems in the digital infrastructures [NIT09]. These directions strive

to solve these problems from a different perspective instead of the typical traditional

approaches that tackle them directly. One of these directions called Moving Target

Defense (MTD), was driven by the fact that the digital infrastructure settings are

relatively static for a long period of time. For example, once the computer that we

use every day has been installed with an operating system (OS) and assigned an IP

address, these settings are barely changed. These conditions enable attackers to have

unlimited time to perform any stage of the five-phase attack kill chain [OHBS14].

MTD enables defenders to build proactive self-defense mechanisms that dynamically

change the digital system attributes while still ensuring the system accessibility for

legitimate users [Man13]. These self-defense mechanisms introduce the redundancy

and diversity in the system to make the attack surface unpredictable for attackers.

For instance, instead of using a single OS platform all the time, a computer can

dynamically rotate its OS to a different OS platform at a random time interval.

This way, it will make it harder for attackers to perform their attacks since their

insight of the digital system from their previous attack attempt may become obsolete

since the OS platform has changed.
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CHAPTER 3

LITERATURE REVIEW

In this chapter, we examine the related work of the studies presented in this dis-

sertation. We first explain research papers proposing defense mechanisms against

SLFAs, and later we discuss signaling games paper for cybersecurity.

3.1 Defense Mechanisms Against DDoS Attacks

DDoS attacks can come in various forms, and many defense mechanisms against

these attacks have been proposed [ZJT13], including the use of emerging technologies

such as NFV [JYR+16, FTSB15] and SDN [FTSB15]. For example, Jakaria et

al. [JYR+16] proposed a defense mechanism against DDoS attack called VFence,

which leverages the capability of dynamically allocated virtualized network functions

(VNFs) on the commodity servers for defense when the system is potentially under

SYN Flood attacks. Similarly, Bohatei [FTSB15], a flexible and elastic DDoS defense

system, utilizes both NFV and SDN for defense against DDoS attacks such as UDP

flood [TCB17], DNS amplification [AKK+13], SYN flood [BSR13], and Elephant

flow [CY15]. However, these approaches are not effective for an indirect attack

which is the main focus in the dissertation.

3.2 Defense Mechanisms Against Link Flooding Attacks

A number of defense mechanisms exist in the literature for the link-flooding DDoS

attacks. They differ in a number of ways such as when they perform the detection

and mitigation (e.g., proactive or reactive), how they detect the target links, and

how they identify the attack agents. Most existing defense mechanisms are reactive
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approaches that strive to detect and mitigate during the attacks (i.e., when a link

congestion occurs) [LKG13, Gko14, GKLD16, XLCZ14, LKD16, XML+18].

The target links during the attacks can be identified by the anomalies of path

performance metrics such as packet loss rate, round-trip time (RTT), jitter, con-

nection failure rate, and available bandwidth. These anomalies are then correlated

with the traceroute data to infer the target links or area [XLCZ14]. The defense

mechanisms identify the attack agents by enforcing them to behave suspiciously by

not complying to certain actions such as rerouting requests to follow the preferred

paths or rate control requests [LKG13]. In [LKG13], even though collaboration be-

tween ASes is shown helpful whenever an SLFA hits, it is not clear how to manage

different ASes to work together.

Meanwhile, authors in [GKLD16] propose Traffic Engineering (TE) as a solution

to mitigate an SLFA. In their solution, the defender forces the attacker to use the

improbable path (i.e., very unlikely to be used) so that the attacker ends up being

identified. Similarly, observing traffic patterns while attack happens is applied to

detect and defer an SLFA in [XML+18]. The main problem with these solutions

is that they are reactive and some critical harm could have been done before the

attack is mitigated. Traffic engineering based solution is also used by authors in

[WLJW16]. The authors suggest upgrading switches to SDN-based switches in

order to detect and mitigate an SLFA. However, it is not specified how to upgrade

switches in run-time and how SDN switches are capable of detecting such attacks.

[WXZ+17] observes link-probers by checking the packets at the ingress port. If a

sender is found as link-prober, then Linkbait applies MTD to confuse its route.

They suggest matrix-based feature extraction in order to detect which link-prober

is a bot. In [WWL+18], authors propose utilizing SDN capabilities to detect the
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attacker’s activities and block the malicious activity. Yet, it may not be possible to

detect which are the malicious activities.

While our solution is similar to [WXZ+17] and [WWL+18], we do not rely on

identifying bots which could not be possible with an intelligent adversary model.

3.3 Defense Mechanisms Against Network Reconnaissance

Attacks

While there are lots of proposed defense mechanisms against DDoS attacks [SGT+11],

most of them do not consider defending at the first phase (i.e., the reconnaissance

phase) of the DDoS attack kill chain [HKP13]. Typically, the DDoS defense mech-

anisms that take into account the first phase of attacks are based on MTD ap-

proaches such as port hopping [LWC14], address shuffling [CCFB14, JASD15], and

path mutation [KPB14], which are used to obfuscate the attackers’ views of the

attack surface. Furthermore, the authors in [WW16] suggest applying MTD for

network reconnaissance attacks using SDN. They have reflector machine in their

framework and utilize Snort Intrusion Detection [R+99] system in order to detect

possible network reconnaissance packets and forward them to the shadow network.

However, our focus within this dissertation is the LFA. Only a few of the pro-

posed defense mechanisms consider defending against reconnaissance phase of the

attack [HTS15] [MTL+18] which is the first phase of Link Flooding Attack kill

chain [KLG13]. Authors in [HTS15] claim traceroute packets are increased before

an SLFA occurs and they design a detection mechanism for the attacker based on

that assumption. Even though we also have a similar belief that traceroute pack-

ets will increase before the attack, we do not rely on this feature individually and

our attack mitigation technique is different. Meier et al. obfuscates the attacker’s
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reconnaissance by replying with some virtual hops that is consistent with the net-

work topology [MTL+18]. While this solution aims to prevent the attacker to gain

critical information, it gives wrong information to legitimate users. We argue that

this approach is not the best practice since a legitimate user needs to get the right

information in order to utilize the network facilities in the most efficient way. Other-

wise, he might use longer path, and suffer higher transmission delays. In [AMR05]

automated ICMP packet recognition by using SNORT Network Intrusion Detec-

tion System (NIDS) is introduced. We also use the similar idea but utilizing SDN

capabilities to have NIDS feature integrated with forensics framework.

We utilize the idea of shadow networks but differently, in our work, we do this

through NFV to eliminate any costs. In addition, we do not utilize a scan net-

work. Instead, we assign rules to the network switches to forward scan traffic (ping,

traceroute, etc.) to either shadow network (mirror or overlay) or just do the route

mutation on those scan traffic packets. Therefore, our goals, targeted attacks and

methods are different from these works.

In our earlier work [ASA18], we proposed to utilize VNFs in the commodity

servers to increase route variability of the route mutation to obfuscate the attacker’s

view of the attack surface when they perform reconnaissance attempts before they

launch any DDoS link flooding attacks. Our work differs from these studies in two

major ways: First, we rely on the cloud as a service to launch our MTD defense,

which was not used before. Second, we consider network troubleshooting capabilities

and allow them to be pursued when MTD is applied.

In our latest work, we propose to use the NFV-based cloud instead of using

the commodity servers in order to reduce the cost of the defender in terms of the

commodity servers investment, increase the route variability, and increase flexibility

due to the ease of deployment to various cloud locations. Furthermore, we also
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provide network troubleshooting to work correctly, which has been missing in earlier

works.

3.4 MTD Against Network Attacks

MTD research has been around for a while [CCFB14] [JSS13] and there are several

MTD approaches that have been proposed against DDoS attacks [CSP15, DASJ13,

RGAS+16, JASD13a]. The main purpose of these approaches is usually to increase

the attacker’s costs of collecting the network information by dynamically updating

the network attributes (e.g., IP addresses, port numbers, and routing information).

A number of network path mutation techniques to defend against network at-

tacks (e.g., reconnaissance, eavesdropping, and DDoS attacks) can be found in the

literature [DASJ13, JASD13a, CSP15, RGAS+16]. These techniques are mainly dif-

fered based on the number of constraints and how they select a pool of multiple

paths between two communicating nodes. A path is randomly selected if more than

one eligible paths are available in the pool.

Duan et al. [DASJ13] proposed a proactive random route mutation (RRM) tech-

nique that considers the route selection as a constraint satisfaction problem and uses

the Satisfiability Modulo Theory (SMT) [BSST09] solver to find all eligible paths

that: (1) should not include any already overloaded nodes or links (i.e., capacity

constraint), (2) minimize the reuse of any links or nodes from the recently used

paths (i.e., overlap constraint), and (3) maintain the required quality (i.e., quality

of service constraint). The proposed RRM technique can be implemented on both

traditional and SDN-based networks as well as on an overlay network. Jafarian et al.

[JASD13a] incorporated game theory in the RRM technique for RRM-aware attack-

ers and added a security constraint, which takes into account any previously used
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access control policies, in the selection of the new eligible paths. The interaction

between an RRM-aware attacker that selects and attacks a route at each attacker

mutation interval and an RRM defender is modeled as a static game of complete

information. Rauf et al. [RGAS+16] proposed an efficient and decentralized End

Point Route Mutation (EPRM) to protect against infrastructure level attacks with-

out reconfiguring the infrastructure devices. EPRM operates on the presence of

peers (i.e., end-hosts with virtual router capability), which are geographically dis-

tributed across the network, as the intermediate nodes in a virtual path between

a source-destination pair. The aim of EPRM is to ensure the end-to-end resilient

reachability of a source-destination pair by finding the mutation set (i.e., the poten-

tial set of virtual paths) and the mutation sequence that meet the QoS constraint

(e.g., the number of intermediate hops, the available link bandwidth, and the inter-

mediate peer load) and the resilience constraint (e.g., minimum link overlap). While

our work also takes into account the infrastructure level attacks, it is different from

this work since we proposed a mixed route mutation strategy that considers an

overlay network as one of the route mutation strategies instead of only mutating

virtual paths as in this work. Moreover, we also exploit virtualization and network

simulator to provide a simulated network environment running on a virtual machine

to increase the route variability.

Due to the importance of the network reconnaissance toward successfully staging

attacks later, a number of MTD approaches that strive to harden this attempt has

been proposed recently. The aim is to obfuscate an attacker’s efforts to collect

the states of an attacker’s potential targets by dynamically changing the network

attributes over time such as the network addresses, TCP/UDP port numbers, and

network paths [CSP15]. Chaves et al. [CSP15] use a breadth first search algorithm

to find all possible paths between two communicating devices and then select a
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path randomly among these paths. While these works can be classified as a route

mutation from a single source to a single destination, our work is different since we

propose a single source to multiple destinations route mutation approach due to the

use of multiple (virtual) shadow networks. Moreover, these works are intended for

direct DDoS attacks towards enterprise network while our work focuses on indirect

DDoS attacks to enterprise networks that strive to isolate the surrounding area of

the target enterprise networks.

MTD’s use with SDN has only started to receive attention recently [JASD12,

KPB14, JASD15, CSP15, MS15]. These works focused on the change of different

settings in the considered network.

For instance, [JASD12, JASD15] investigates changing the hosts IP address by

involving the DNS interactions. A similar problem was studied in [MS15]. A host-

based SDN approach is followed in [MS15] to allows defenders to distinguish between

trustworthy and untrustworthy clients. Another recent work in [CSP15] considers

the mutations on both the IP addresses and hosts and investigates their impact on

the network operation. However, none of these works focus on defending against

reconnaissance attempts.

3.5 SDN-based Forensics

For forensics analysis, there are only a few works in the literature that are related

to SDN framework. For instance, the motivations of pursuing forensics by using

SDN has been mentioned in [KGW+16]. Authors in this work propose an SDN

Controller as a potential location for forensics operation in SDN. They also talk

about using application or infrastructure level forensics alternatively. Our solution

differs from this work by adding a middle-box level as forensics location into the
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system while also comparing our solution to Controller-based forensics. Bates et

al. [BBH+14], propose an SDN-based forensics system for byzantine attack for the

data center network. This system employs secure network provenance that can

operate in untrusted environments. The system uses Provenance Verification Point,

an SDN middlebox, to collect forensics information from a group of switches. While

our approach also uses a similar idea by using VCP for collecting network traffic,

our work extends this collection point for traffic filtering and the suspected traffic

detection that will subsequently trigger the MTD application.

3.6 Signaling Games for Network Defense

In many cybersecurity scenarios, the defender cannot clearly detect whether the

received messages are coming from a benign user or they are a part of the attack

scenario and are initiated by attackers. Signaling game is a two-player incomplete

information game that has been used to model different cybersecurity problems,

such as intrusion detection [SLXC11] or deception [ZBA10]. Furthermore, the au-

thors model cybersecurity in terms of signaling games in [CMN+14] and W. Casey

et al. model deception with signaling game in [CKM+18]. They present how sig-

naling games provide a formal mathematical method to analyze the way of identity

and deception coupling in cyber-social systems. The game-theoretic framework can

be extended to reason about dynamical system properties and behavior traces. In

[MMMZ16], the authors formulate a deception with signaling game in networks in

which the defender deploys a fake avatar for identification of the compromised in-

ternal user. In [RMAS13], the authors propose a selective and dynamic mechanism

for counter-fingerprinting. They model and analyze the interaction between a fin-

gerprinter and a target as a signaling game. Following this work in [ZLG17], the
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authors suggest changing attack surface (e.g., port numbers) depending on a belief

that is observed in the signaling game. In [MMZ15], the authors investigate the

interactions between a service provider and a client by signaling game, where the

client does not have complete information about the security conditions of the ser-

vice provider. In [AMMR17], the authors propose a moving target-based deceptive

defense mechanism using a signaling game for the frequency of migrations of the

virtual machines in clouds. While we also apply signaling game for network defense,

we propose using RRM which has not been studied under a signaling game. Fur-

thermore, our framework is applied not only to reconnaissance attacks but also real

data phase of the attacks. The reason behind choosing and applying the signaling

game approach specifically for SLFA is that we believe the dynamic and unnoticeable

behavior of SLFA can be modeled into a signaling game accurately.
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CHAPTER 4

SDN BASED MTD AGAINST THE DATA PHASE OF SLFA

In this chapter, we propose an SDN-based MTD for proactive (i.e., before the

attacks) and reactive (i.e., during the attacks) defense against crossfire attacks to

a certain area. Before the attack, our approach strives to obfuscate the link-map

construction at the reconnaissance stage of the crossfire attacks. At this stage,

an attacker tries to construct the link-map of the network using a route tracing

utility for computer network diagnostic, such as the traceroute utility program. This

program shows the route taken by packets from source to destination. This link map

is then used to determine the targeted links. Typically, an attacker will try to find

stable routes by issuing multiple traceroutes to the same destination to determine

the route stability and multiplicity in order to select effective target link(s) [KLG13].

Obviously, when the routes are always changing in response to multiple traceroutes,

it will be difficult for the attacker to find stable routes and determine the targeted

links.

Our proposed approach will first perform dynamic traceroute profiling by collect-

ing the time series of traceroute activities in the network. When excessive number of

traceroutes are detected, based on the collected traceroute profiles, the potential tar-

gets of crossfire attack as well as source-destination pairs for traceroute generation

can be identified. During the attack, when a link is heavily congested, the source and

destination pairs from the existing traffic that pass through the congested link(s),

will be compared with the collected traceroute profiles by the SDN controller. For

the traffic that passes through the congested links and the sources have the history

of sending traceroute, such traffic will be diverted to different routes. The new routes

can easily be generated at the SDN controller by excluding the congested links.
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We implemented the proposed approaches in a Mininet [LHM10] environment

using Floodlight controller [Pro]. We generated ICMP packets for traceroute op-

erations and then launched the attacks on a set of selected links. The evaluation

results indicated that changing the routes as soon as the attack is detected provides

significant relief for the congested links and enables service to the target server, par-

ticularly when TCP is used. The data delay for the transmitted packets increases

slightly due to the use of different and perhaps non-shortest routes.

This chapter is organized as follows. In Section 4.1, describes the background

information as well as the problem definition. In Section 4.2, we introduce the pro-

posed MTD approaches and how we perform route mutation. Detailed performance

evaluation of the proposed work is given in Section 4.3. We conclude the chapter in

Section 4.4.

4.1 Preliminaries

In this section, we explain how Traceroute works and define our problem that is

targeted within the chapter.

4.1.1 Traceroute Operation

Basically, traceroute uses Time To Live (TTL) information in the IP datagram to

trace a route from source to destination [Koz05]. Multiple packets with increasing

TTL value are sent to a legitimate destination but with a bogus port number.

By default, three packets are sent for each TTL value, as illustrated in Fig. 4.1.

These packets can be UDP packets, TCP packets, or ICMP packets. The number

of packets also can be adjusted by users. Initially, three packets with a TTL value

of 1 are sent to the destination. When these packets arrive at the first router, the
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TTL = 1

Source Router 1 Router 2 Destination

ICMP Time Exceeded

TTL = 1TTL = 1

ICMP Time ExceededICMP Time Exceeded

TTL = 1TTL = 1TTL = 2
TTL = 1TTL = 1TTL = 1

TTL = 1TTL = 1TTL = 1
TTL = 1TTL = 1TTL = 2

TTL = 1TTL = 1TTL = 3

ICMP Time ExceededICMP Time ExceededICMP Time Exceeded

ICMP Time ExceededICMP Time ExceededICMP Dest. Unreachable

Figure 4.1: Example of traceroute operations when there are two intermediate
routers between the source and destination.
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router will decrement the TTL value. Since the new TTL value is now equal to

zero, the packets are dropped, and three ICMP Time Exceeded reply messages are

sent to the source. Besides knowing the router information, the source will also

know three elapsed times from source to the first router. Subsequently, the source

sends three more packets with a TTL value of 2. The first router will decrement

the TTL value and forwards them to the next router. At the second router, the

TTL value becomes zero when the router decrements it, and thus the packets are

dropped, and three ICMP Time Exceeded reply messages are sent to source through

the first router. The source will send three packets with a TTL value of 3 again,

and so on until finally, they reach the destination. The destination will reply with

ICMP Destination Uncreachable message since the port number of the destination

in the UDP packet is a bogus port number. Thus the destination is unable to find

this port. Note that one or more packets may be lost during the transmission, and

thus, either the sender or receiver (intermediate router or final destination) will not

receive all three packets.

4.1.2 Problem Definition

The problem definition can be divided into two parts: (1) the prevention problem for

the link-map construction and (2) the detection and mitigation problem during the

attack. During the link-map construction, an attacker strives to find the persistent

links which become the candidate for the targeted link-flooding DDoS attacks. The

persistent links of a route from a source to a destination are links that always present

each time a pair of attack agents perform reconnaissance, while transient links of a

route are links that may not always present. Typically, the transient links happen

because of the implemented routing protocol operations, such as load-balancing
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routing, which may cause a route from source to destination to change every time.

Therefore, at the prevention stage, the problem that needs to be addressed is how to

identify and obfuscate the link map construction effort so that the cost of attacking

the targeted links is high and makes it less attractive for an attacker.

Link flooding DDoS attack is difficult to detect since an attacker uses a huge

amount of bots that send low-rate persistent small traffic through the targeted

links. This way, the targeted links will be flooded with a huge amount of low-rate

small traffic from a plethora of bots. To identify the bots that are sending these

traffic, typically, the defender will request sources to confront a certain request, and

when the act is suspicious (i.e., not following the request), these sources can be

considered as bots and further actions can be performed for these suspects. Instead

of bots detection, our goal is to use the same traceroute profiles that are collected

in the prevention stage, for the detection and mitigation during the link-flooding

DDoS attack stage. Hence the problem definition would be how to do detection and

mitigation against the Crossfire attacks using SDN by utilizing the traceroute profiles

collected from the network.

4.2 Proposed SDN-based MTD Approaches

Our proposed approaches consist of two defense mechanisms: (1) obfuscating the

links during the potential link-map creation of the attackers to make it harder to

launch the attacks (i.e., proactive stage), and (2) detection and mitigation during

the attacks (reactive stage). To perform these defense mechanisms, we relied on the

abilities of SDN controller and OpenFlow protocol. Specifically, four inter-related

SDN application modules are designed and deployed, as depicted in Fig. 4.2: (1)

ICMP monitoring, (2) traceroute profiling, (3) route mutation, and (4) Congestion-
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Figure 4.2: The proposed SDN-based MTD modules

Link monitoring. The first three modules are required for the proactive stage, while

the last three modules are needed for the reactive stage. The detail of each module

is explained next.

4.2.1 ICMP Monitoring Application

ICMP Monitoring continuously monitors the presence of ICMP packets by request-

ing every ICMP packet to be sent to the controller through packet-in messages of

OpenFlow. On receiving these ICMP packets, the ICMP Monitoring application

tries to determine whether the traceroute operations are present in the network by

looking at the following patterns: (1) there are multiple ICMP echo packets with an

increasing number of TTLs from a source to a certain destination, and (2) there are

multiple ICMPs with TTL exceeded information packets to a specific destination

followed by ICMP with destination unreachable to the same destination. When

these patterns are detected, ICMP monitoring application sends the traceroute in-

formation to traceroute profiling application.
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4.2.2 Traceroute Profiling Application

On receiving traceroute information, the proposed application builds the traceroute

profile database that consists of the following information: source IP address, des-

tination IP address, timestamp, the closest SDN switch to the source IP address,

the closest SDN switch to the destination IP address, and all intermediate SDN

switches between source and destination where this traceroute is detected. Note

that the traffic may be generated from outside the AS, and thus the closest devices

here can be switches at the boundary of the network.

Since the ICMP packets can continuously arrive at the SDN controller and the

database can be updated anytime, this application will try to identify the potential

target links within a T time interval when an excessive number of traceroute at-

tempts are detected. Traceroute profiling module uses the traceroute profile database

to identify the potential target links that can be attacked based on the number of

traceroute that may pass through the common links within that T time interval.

When such common links exist, the traceroute profiling module informs the route

mutation module to find all alternate routes that will not pass through these po-

tential target links and then sets rules of the SDN switches to randomize the routes

for ICMP packets from suspected sources.

When the route mutation operations are active at the SDN switches, the SDN

controller can decide to terminate the route mutation on the switches when the SDN

controller detects that the number of traceroute attempts have dropped significantly

within the T time interval.
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4.2.3 Route Mutation Module

From the traceroute profiling module, the potential target links and suspected

sources can be identified. Route mutation module strives to find all possible routes

from suspected hosts to the destination by using the Algorithms 1 and 3. These

algorithms are implemented at FloodLight SDN Controller. Algorithm 1 takes to

start and end hosts, and the potential target links that should be avoided. By us-

ing these input parameters, it finds all possible routes available. Essentially, this is

providing link-disjoint routes from a source to destination.

Algorithm 1 Find All Routes From start to end: GetAllRoutes(start, end,
dontUse)

Require: start: Start of the route
Require: end: End of the route
Require: dontUse: List of routes not to be used
Ensure: routes: List of found routes
1: rights← getLinks(start)
2: if rights != null then
3: while right in rights do
4: if dontUse not include right then
5: route← start {add switch to route}
6: route← end
7: Chain(routes, route, right, end, dontUse)
8: end if
9: end while

10: end if
11: return routes

As an example of these algorithms, by considering our experiment topology in

Fig. 4.3, let us assume there is congestion at the link between switches S3 and S5.

First, the most source-destination packet transmission of this link will be figured

out. Let it be H1 to H4. Then Algorithm 1 will be called with H1 as start node,

H4 as the end node, and dontUse list is just the link between S3 and S5. In this

algorithm, all possible links that can be followed just after H1 will be considered
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Algorithm 2 Recursive function to find all possible route from given rightMost to
end): Chain(routes, route,rightMost, end,noUse)

Require: routes: List of all routes
Require: route: Current route
Require: rightMost: The last switch added to the list
Require: end: End of the route
Require: noUse: List of routes not to be used
1: if rightMost = end then
2: routes← route {add route to the list}
3: return
4: end if
5: rights← getLinks(rightMost)
6: if rights! = null then
7: while right in rights do
8: if !route.contains(right) AND dontUse not include right then
9: newRoute← right

10: Chain(routes,newRoute,right,end,noUse)
11: end if
12: end while
13: end if

Algorithm 3 Find All Possible Links From Given Switch, Return all outport links
given switchToLook has: GetAllLinks(switchToLook)

Require: switchToLook: Switch to find all links
Ensure: allLinks: List of all links from given switch
1: while there is switch not checked do
2: if currentSwitch == switchToLook then
3: while until there is a link do
4: allLinks← currentLink
5: end while
6: end if
7: end while
8: return allLinks {all possible links from switch}
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as potential routes and recursive function Algorithm 2 will be called to see whether

they can go until the destination host or not. In Algorithm 2, if a route is found, it

will be added to the list by verifying that it does not include any links from dontUse

list of links, link S3-S5 in our case. After running the Algorithm 1, it will return all

possible routes, which are H1 - S1 - S2 - S4 - S6 - S9 - H4 and H1 - S7 - S8 - S9 -

H4 in our example.

4.2.4 Congested-Link Monitoring

Concurrently with ICMP monitoring, Congested Link Monitoring is basically per-

formed at the SDN Controller. Whenever the SDN Controller detects a congested

link, the source-destination pair that is using this link will trigger route mutation

for itself. The controller will consult the traceroute profiling and see whether there

is the previous history of the pair of source-destination that also sent traceroute. If

there are, then the controller will set new rules to all switches for the route picked

randomly among all possible ones.

4.3 Experimental Evaluation

This section describes the experiment setup, performance metrics, and baselines and

discusses the performance results.

4.3.1 Environmental Setup

We evaluated the effectiveness of our proposed MTD mechanisms through an em-

ulator. As the SDN and OpenFlow emulation, we used Mininet [LHM10], which is

widely used in SDN research. For the SDN Controller, we used FloodLight [Pro] con-
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Figure 4.3: Our network topology

troller. For our experiments, a module is implemented at the FloodLight controller.

The packet-in handling and route mitigation is performed by using this module.

The packet-in feature of SDN enables directing the packets to the controller so that

some processing can be done.

We created a small network topology to be used for our tests. The topology has

9 Mininet switches and 4 hosts where we considered 2 clients (H1 and H2) and 2

servers (H3 and H4) talking to each other, as shown in Fig. 4.3. That topology

is chosen to show our alternative routes and route mitigation between clients and

servers easily. We defined the routes before the transmission starts as follows:

• From H1 to H4: H1 - S1 - S3 - S5 - S9 - H4

• From H2 to H3: H2 - S4 - S5 - S3 - S8 - S7 - H3

In each experiment, this topology is created first on Mininet. For the traceroute

profiling phase, all the switches are set the rule to drop all TCP/UDP packets so

that we can initially only allow ICMP packets. The switches are set with the rule for
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ICMP packets with output to FLoodlight Controller as OpenFlow packet-in message

and to an output to port, which is defined manually, before actual data simulation

starts. In this experiment, ICMP packets are generated and transferred between

hosts for one minute. While ICMP transfer is going on, we set the time duration to

10 seconds for the Floodlight Controller to check the total number of ICMP packets

each link is receiving.

After this phase, real data transfers are started and maintained for 5 minutes.

At the beginning of this phase, the Floodlight Controller set a rule for each switch

so that whenever it receives a TCP/UDP packet, it will forward it to both the

Floodlight Controller as packet-in and to the next hop according to route that is

defined at the beginning of the simulation. Two of the hosts, H1 and H2, generated

data packets of size 16 bytes every 100ms. We implemented a client-server Python

application for this end-to-end data transfer. Again FloodLight Controller checks

the link usage every 10 seconds. Link usage will be calculated based on the number

of packet-in messages received at the Controller. The threshold for route mitigation

is set to 100 packets since this is the total bandwidth that can be provided for the

links defined in Mininet.

4.3.2 Performance Metrics

As the baseline approach, we consider the case where we do not apply MTD and

continue with the initial network configuration. In our case, routes between the

hosts are set at the beginning of the experiment and are not being changed until

the end of data transmissions. For the MTD case, as explained before, there will be

route updates when there is a risk for crossfire attacks. We represent these cases as

MTD and No-MTD in the graphs.
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We consider the following metrics to assess the performance of the above ap-

proaches:

• Average Link Usage: This is defined as the average of all the link usages in the

topology. The link usage is measured by the total number of packets passing

on a link. This includes both the sent and received packets. Our goal is to

minimize or balance the link usage so that certain links will not be congested.

• Average end-to-end Delay : This is the packet delay from a source to destina-

tion considered in our topology. The delay includes everything from packet

generation at the source to packet arrival at the destination server. Our goal

is to assess if applying MTD is dramatically affecting the packet delays in the

network.

4.3.3 Experimental Results

We analyzed our experimental results in three different categories as TCP experi-

ments, UDP experiments, and impact of the frequencies that we used to run MTD.

TCP Experiments

We first conducted experiments by using TCP. When MTD takes place, there is a

significant reduction in average link usage in the network, as can be seen from Fig.

4.4. In some cases, this reduction is six times compared to that of the Non-MTD

traffic. In all cases, there some reduction, which indicates the effectiveness of the

route mitigation approach. In addition, the route mutation approach provides some

load balancing among the link usages of different links. The usage in the first three

cases are almost similar, and only in the case of S5.P2 and S5.P3, there is a slight

increase, which is normal.
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Figure 4.4: Average Link Usage with and without MTD for TCP Transmission.
S3.P1 means port 1 at switch id 3, S5.P2 means port 2 at switch id 5 and so on.

We then looked at the average delay performance to see if the proposed MTD

approach made any significant impact on this metric. The results are shown in

Fig. 4.5. We can see that there is an increase in delay for the packets arriving

at both servers. There are two reasons behind this: First, whenever SDN-based

MTD is used, and route mitigation is done, the routes are changed. As TCP is a

connection-oriented protocol, such route changes will force TCP to re-establish the

connections with the servers. This will introduce an additional delay for some of

the packets at the time of route changes. Specifically, we observed that some of

the packets needed to wait for significantly increased times (e.g., the delay is about

900ms while the average is about 1.5ms). This actually causes the average delay

of MTD to be more than that of the Non-MTD case. Second, since the routes are

changed during the process, the new routes may not always be the shortest path

routes in terms of packet delay. An increased number of hops, for instance, may
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Figure 4.5: Average Delay with and without MTD for TCP Transmission for Server
3 (H3) and Server 4 (H4)

increase the end-to-end packet delay. Thus, if the packets do not have hard QoS

constraints, such a minor increase in end-to-end delay would be tolerable.

UDP Experiments

We also run the same experiments by creating and transmitting UDP data at our

network. Our goal was to investigate whether the MTD approach would have a

similar impact as in the case of TCP.

The MTD approach also does a great job of balancing the load of links, as can

be seen in Fig. 4.6, . However, it does not always provide a reduced load for each

link compared to the No-MTD case. This is different from the TCP case, where we

have seen significant reductions. The reason behind this can be explained as follows:

In the case of UDP, there is less data transmission compared to TCP within the

given amount of time in the network since there is no connection establishment and

ACK messages received by the switches. Note that in the TCP experiments, we

have considered both the transmitted and received packets, and thus ACK packets
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were also part of the computations. Due to less amount of data, there will be fewer

congestion cases (i.e., since the same threshold is used as in the case of TCP), and

thus UDP case will trigger fewer route updates. As a result, the re-organization of

the routes and re-distribution of the load is done at a slower pace, which causes to

make less impact on the network. While the process is still helpful in load balancing

compared to the No-MTD case, as seen in Fig. 4.6, it is not as significant as the

TCP case.
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Figure 4.6: Average Link Usage with and without MTD for UDP Transmission

For the average delay between sources to servers, again whenever MTD is used,

the delay is increased slightly, as seen in Fig. 4.7. However, this increase is not as

much as the TCP case since UDP does not have a re-establishment phase. Whenever

a route is changed, there is no waiting time due to connection re-establishment.

Nevertheless, since the routes are changed to potentially to non-shortest ones, the

packet delay still increases.
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Figure 4.7: Average Delay with and without MTD for UDP Transmission for Server
3 (H3) and Server 4 (H4)

Impact of the Frequency of Checks

Finally, we investigated if there is an impact of the frequency of running the proposed

algorithms at the Controller on the performance. Recall that at every 10 secs,

we were checking at the Controller to see if there is any link congested. In this

experiment, we changed it to 5 and 20 secs, respectively. We have used only TCP

since the impact of UDP on the performance was not as dramatic as TCP. The

results are depicted in Figures 4.8 and 4.9.

We observe that when the frequency of checking is increased, this helps to al-

leviate the congestion in most of the links. This is in line with the justification

provided when comparing TCP and UDP. The more link congestion is checked, the

more there is a chance to change the topology and thus have a better distribution

of the load. However, this may increase the packet delay due to its overhead in con-

nection establishment. Therefore, there is not always a pattern in delay distribution

based on the quality of the selected routes.
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Figure 4.8: Average Link Usage of MTD when frequency is varied
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4.4 Conclusion

In this chapter, we presented how the emerging SDN paradigm could be useful for

MTD, especially to defend Crossfire attacks, an emerging indirect link flooding-based

DDoS attacks. Specifically, we first presented an approach to detect attacks at the

planning phase by considering the traceroute messages through the SDN controller.

After this phase of traceroute profiling, we proposed an attack mitigation approach

using route randomization by also utilizing the information from the profiling phase.

Experimental results indicated that our proposed SDN-based MTD methodology

could effectively decrease the chance of link flooding by checking each link regularly

and changing routes and thus lessening on congested links. On the other hand,

because of the route updates, MTD will create a bit more delay, especially for those

TCP packets flowing at the same time as route mutations. Also, we have seen the

benefit of UDP from the proposed MTD approach is not as high as TCP.
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CHAPTER 5

SDN BASED MTD AGAINST THE RECONNAISSANCE PHASE OF

SLFA

In the previous Chapter 4, we considered the Crossfire attack and its consequences.

Our main target in that work was the data phase of Crossfire attack and we strive to

relieve the congested links load that attacker is trying to overburden. Our work in

this chapter has many differences and additions: First, we consider reconnaissance

phase of Crossfire attack. Second, we propose VCPs as a middleware solution by

utilizing NFV that will help to decrease SDN Controller’s load and store some net-

work information in order to support forensic applications as an incident response.

Finally, we consider NFV for deception.

That will also be costly in terms of updating all OF switches in the network.

Our proposal of using VCPs as middleboxes is cost-effective compared to changing

switch capabilities, especially considering the fact that VCPs can be implemented

as virtual machines. In addition, firewalls do not come with forensics capabilities.

Thus, they cannot, by themselves, be used as a sole defense mechanism to fully

cover the nodes in the ISP network.

As the owner of the network that provides these companies with access to the

Internet, Internet Service Providers (ISP) is the potential candidate to address any

indirect attacks passing through its autonomous system (AS) since it has a strate-

gic advantage of having the global view of the network. However, addressing these

attacks pose many financial, legal, and technical challenges for the ISP. Specifically,

an ISP may need to install new expensive dedicated security devices inside their

networks (i.e., increase capital expenditure) and/or modify their existing rigid in-

frastructure (i.e., increase operational cost) that eventually increases the system
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complexity [BAS11]. An ISP may also need to handle the legal aspect of capturing

the customer’s network traffic to detect such attacks.

However, even these efforts may not be enough. Due to the static nature of the

existing network infrastructures, there is a favorable environment for attackers where

they can take as much time as they need to obtain any information about the network

states for launching successful attacks. While there are existing countermeasures

through firewall and intrusion detection systems, the attackers may find ways to

bypass these systems (e.g., through malware or internal attacks) and eventually

obtain the network states inside the protected domain for launching further massive

attacks. Therefore, there is a need to make it more difficult for attackers to obtain

such information and thus launch attacks by enabling cooperation between ISPs and

their subscribers. Besides this defensive effort, ISPs and companies need to have

mechanisms to identify the source and type of attacks when the attacks cannot be

prevented and occur successfully. Therefore, network forensics tools should also be

employed as part of the network architecture to hold attackers responsible for their

actions. In addition, the network forensics tools can also help ISPs to comply with

regulations that expect ISPs to be more accountable when there is a security breach

and prove the state of their security [PJN10b].

We argue, in this chapter that, MTD mechanisms can be used to address the

aforementioned need. MTD is one of the effective defensive efforts to increase the

attackers’ costs [DASJ13, JASD13a, CSP15, RGAS+16]. It strives to break the

static nature of a network by adding uncertainties and pursuing frequent changes of

network states, which make it harder for attackers to obtain the network states for

launching attacks.

The key enablers for the cost-effective deployment of these capabilities (i.e., MTD

and forensics) in the ISP network are software defined networking (SDN) [KRV+15]
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and network function virtualization (NFV) [LC15] that can provide a significant level

of operational automation along with reduced capital and operational expenditures.

SDN offers highly adaptable and manageable networks through the separation of

the control and data plane, while NFV enables the implementation of network func-

tions in software that operates on the general hardware platform and virtualization

technologies with acceptable performance. While several SDN-based applications

for ISPs have been proposed [BAS11, KAA+14, WRH15, HAB+15] in the recent

years, the integration of SDN and NFV for ISP network security has just started

to emerge [FTSB15][LC15]. Even though the efforts are still in the early stages,

AT&T and Verizon, two major ISPs, have started their multi-year plan to leverage

these architectures [ATT16] for significant operational and business transformation

efficiencies.

Therefore, in this chapter, by envisioning a collaboration between ISP and its

subscribers, we propose a novel framework to thwart attacks at the reconnaissance

phase, by leveraging these two emerging technologies. We would like to emphasize

that our work has three main novelties that do not exist in the current studies: 1) We

tackle the Crossfire attack, which is a new type of attack with strong consequences

[KLG13]. While there are a few works that targeted Crossfire attack handling,

none of them focused on the reconnaissance phase of this attack. Our main focus

is this phase, as it is the pre-phase before the attack and provides strong tools to

the attackers. We strive to complicate this phase for the attackers through the

proposed framework in cooperation with the ISPs; 2) We utilize deception based on

NFV. Again, deception is not a new idea but as NFV is now very commonly used for

various purposes, utilizing its benefits for deception in the reconnaissance phase is

a novel idea that comes with almost zero costs; and 3) We supplement the package
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with forensics capabilities that are convenient and efficient. Putting these under an

integrative framework is our contribution different than the existing studies.

In our framework, MTD mechanisms are exploited to obfuscate attackers’ at-

tempts, while network forensics mechanisms are introduced for analyzing suspicious

network packets. The proposed framework is collaborative and adaptive in the sense

that the ISP’s subscribers can voluntarily participate in the defense by submitting

their security incidents or security policies to the ISP, which can then use these poli-

cies to decide which packets to apply MTD or store for further forensic analysis, etc.

As part of this proposed framework, we introduce two new components that will

utilize the SDN and NFV features in the most efficient manner: 1) a virtual collec-

tion point (VCP) that will be used to store the network traffic for network forensics

purposes, to host NFV software, and calculate possible routes and select one from

the list randomly each time route mutation is triggered; and 2) multi-purpose virtual

shadow nodes and networks that will be used for MTD approaches. Specifically, we

propose exploiting NFV to increase the diversity of network topologies by attaching

various virtual shadow networks to them. Under a comprehensive framework, we

investigate both overlay and mirror networks as shadow networks that will apply to

a typical ISP network. In this way, MTD strategies will have more options (e.g.,

more routes) to switch to at the reconnaissance phase. Consequently, the attackers

will be deceived, which will further complicate the process of actual network topol-

ogy extraction. We propose various algorithms for the creation and selection of the

shadow nodes and networks.

We implemented our prototype framework in Mininet emulator [Tea] using Flood-

light SDN controller [Pro] that gives an ISP provider the ability to communicate

with the system. We considered indirect DDoS such as the recent Crossfire attacks

[KLG13], and focused on the network topology reconnaissance attacks, which is the
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first phase of the Crossfire attack. In this attack, the goal of attackers is to identify

permanent common links for a particular region. The experimental results indi-

cated that even though 100% success rate is not achievable, the MTD approaches

significantly extend the permanent links identification time at the expense of a 25%

increase on the hop count for packet and some additional processing and storing

times.

This chapter is organized as follows. Section 5.1 describes the threat model and

problem definition. In Section 5.2, we describe the proposed framework and discuss

the proposed MTD approaches. Detailed performance evaluation of the proposed

work is given in Section 5.3. Finally, we conclude the chapter in Section 5.4.

5.1 Preliminaries

5.1.1 Threat Model

Addressing the reconnaissance phase for attacks is very important since it will have

a significant impact on the attacker’s effort to launch successful attacks. Therefore,

we first considered the threat from the reconnaissance phase for both direct and

indirect attacks in the framework. In this work, we particularly focused on the

reconnaissance phase of the Crossfire attack [KLG13] that attempts to obtain the

permanent links information that always appears when an attacker launches recon-

naissance attempts. When an attacker obtains this information, he/she can try to

isolate a specific area within an ISP network by flooding some of these links, as

illustrated in Fig. 5.1.
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Figure 5.1: An example of Link-flooding (crossfire) DDoS attack target area

5.1.2 Problem Definition

A variety of challenges must be addressed in order to make the proposed framework

feasible. Thus, our research questions are as follows: 1) How to harden the attacker’s

job of finding permanent links without increasing the overhead for the defender? 2)

How NFV can help with the first problem and how much we can confuse the attacker

by utilizing it? 3) Can we store network activities under a forensic framework as a

possible defense mechanism? If so, what is the cost that the defender needs to pay

for it?

5.2 SDN-NFV-based Framework for ISPs

5.2.1 Overview of the Framework

The proposed ISP network infrastructure utilizes SDN and NFV technologies to

manage the traffic flows within its autonomous system. As depicted in Fig. 5.2,
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Figure 5.2: The proposed SDN-based framework for ISP Networks
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the infrastructure consists of four major components: (1) VCPs; (2) VSNs; (3)

SDN-based switches; and (4) SDN controller.

A VCP is basically a general server that can host various software virtualization

applications. As detailed below, in our work, VCP is envisioned for pushing some

of the tasks of an SDN controller in a general SDN network to itself (i.e., serving

as a local middlebox) for scalability, load balancing and forensic purposes. This is

one of our main contributions in terms of design. To this end, we incorporate the

required applications in our proposed framework into two generic virtual devices,

a virtual switch, and a virtual host that will sit within the VCP. The network

applications such as Network Address Translation (NAT) and firewall software are

hosted in the virtual switch. A Virtual host is used as the data storages (watch

list, traceback database, path database), hosts the MTD applications, and handles

the communication with other northbound applications (e.g., network forensics and

customer-based access list), SDN controller, NFV orchestration, and the virtual

switch. Multiple VCPs are deployed across the ISP network for load balancing.

Each VCP handles a group of SDN switches.

A VSN is a general term used for a configurable, multi-purpose computer network

that can be used to provide a variety of forged responses for security purposes. For

instance, it can be used to represent a honeypot/honeynet, an overlay network, or

a replica of a certain network inside a protected domain as in [WW16]. A VSN can

be formed with at least a single virtual shadow host (VSH) that may have multiple

virtual machines (VMs) installed in it for a variety of purposes. For example, a

virtual honeypot or a replica of a web server can be built in a VM. Additionally, a

network simulation software (e.g., ns-3, mininet, OPNET, etc.) can also be installed

in each VM for running a simulated network environment that will be used as part

of the MTD mechanisms. An ISP can have multiple VSNs distributed across its
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AS. The placement of VSNs is crucial to prevent attackers from finding permanent

links, as described in Sec. 5.2.5.

SDN switches are logically separated by their location in the ISP network and

can be clustered into a number of clusters using an appropriate clustering algorithm

(e.g., [MA07]). Each cluster is then assigned to a specific VCP, and the member of

each cluster will be assigned a default flow rule to forward all traffic to the assigned

VCP. The SDN controller will be responsible for setting this default flow rule for

each member of the cluster.

Four major applications that are defined in our proposed framework: Customer-

based access list application, NFV management and orchestration appli-

cation, Network forensics application, and MTD application; are discussed

next.

5.2.2 Customer-based access list Application

We envisioned that our framework can be integrated into an ISP managed secu-

rity services, where instead of managing its own network security, customers can

outsource it to their ISP. In this case, ISP uses the customer-based access-list

application to register their applied security policies to those customer networks.

For customers who do not use these services (e.g., they manage their own network

security or outsource it to the other third party), they need to register it through

this application when they want to participate voluntarily. For instance, a regis-

tered customer may submit a security preference that allocates a specific period

for allowing any ICMP packets to be sent to the customer network. Outside that

time period, ISP is allowed to drop these packets before they reach the customers’

network or use them as part of the ISP defense (e.g., by redirecting those packets
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to a honeypot/honeynet). Since sharing any customer incident report (e.g., alert

from the customer’s intrusion detection system) and/or the security policy to ISP

may reveal other customer’s sensitive network information (e.g., network topology,

security infrastructure, network services, etc.) that can be used to pose a threat

to the customer network, the application must be secure and privacy-preserving so

that customers can feel confident and secure to participate in the ISP-level global

defense.

The proposed application consists of four major components: (1) participant

registration that handles the customer’s registration for joining the ISP-level global

defense; (2) security incident and policy submission that is used by both

ISP and customers to submit any security incident and/or their security policies.

In particular, for the ISP, this component is used to submit the applied security

policies of the ISP’s customers who are using the ISP’s manage security services; (3)

incident and policy evaluation that handles the evaluation of each submitted

security incident and policy with respect to the ISP policies and the previously

defined security policies in the watch list to identify any potential conflicts; and (4)

watch list management that handles the creation, modification, and distribution

of a watch list to the corresponding VCPs. A watch list is used to store the ISP

and customers’ security policy preferences as well as the suggested security from the

network forensics application. The watch list is distributed to all VCPs and used to

decide the action for any incoming traffic and set flow rules accordingly.

Each time there is an approved update to the watch list, the application notifies

the SDN controller to set a new flow rule or delete an old rule based on the status

of the update. When a new watch list is added, the SDN controller will set a

default flow rule to forward all received traffic in the SDN switch that matches with

the watch list description to the corresponding VCP. On the contrary, when an
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old watch list is deleted, the SDN controller removes any relevant flow rules from

the SDN switches accordingly. Additionally, the application also interacts with the

network forensics application for the investigation of a verified security incident

by sending an investigation request that contains any relevant information (e.g., the

incident time, the attack packet header, etc.), to uncover any potential network

attack and perform the appropriate action to thwart the attack.

5.2.3 NFV management and orchestration application

This application is responsible for the management and operation of NFVs in VCPs

and VMs in the virtual shadow hosts. Based on the VSN usage (e.g., as a hon-

eypot/honeynet, an overlay network, or a replica of a certain network), specific

NFV management and orchestration applications may be required. Besides dynam-

ically configuring the appropriate security software (e.g., Firewall, Network Address

Translation, etc.) in VCPs, the application is also responsible for installing a VM

with the appropriate network services such as a virtual honeypot software or a pre-

defined simulated network environment that runs on a network simulator. In the

case of the simulated network environment, the application’s responsibility includes

the creation, distribution to the appropriate VSH, operations, and removal of the

simulated network environments.

In the framework, a VM in each VSH can be mutated by migrating a VM from

one VSH to another VSH, either within the same VSN or to a different VSN to

support the fast network reconfigurations as well as to further obfuscate attackers’

reconnaissance attempts. In the case of VM migration, while the MTD applica-

tion will decide on when and where to move the VM, the NFV management and

orchestration application will coordinate the moving activities. A variety of VM
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placement and migration techniques from the cloud data center can be investigated

and used for these activities. For example, the VM migration can be performed by

first turning off the source VM (i.e., VM Cold Migration) and then sending the con-

figuration files to the destination VM to minimize the network traffic. Alternatively,

it can be migrated when the VM is still running to minimize the downtime (i.e., VM

Live/Hot Migration) by transferring the current working state and memory across

the network [CFH+05].

5.2.4 Network forensics application

This application handles the postmortem (i.e., reactive) investigation upon request

from authorities or as an initiative from ISP to strengthen its security policies (e.g.,

enhancing the MTD policy) or in response to the customer’s security incident re-

port. There are three major components in the application: (1) forensics server;

(2) forensics agent; and (3) forensics investigator. The forensics server is lo-

cated in a centralized server and acts as the forensic coordinator with the following

tasks: (1) receives an investigation request from the customer-based access-list

application or the SDN controller; (2) coordinates forensics agents for data col-

lection from the traceback database located in each VCP by sending a forensics

collection request ; (3) provides secure communications between all entities in the

network forensics application; and (4) provides all the necessary data from mul-

tiple sources to the forensics investigator. A forensics agent is placed in every VCP

to collect data from traceback database when the forensics server requests it and

then securely transport the collected data to the forensics server. The forensics in-

vestigator is responsible for the investigation and can be equipped with a number
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of algorithms such as machine learning or data mining techniques [JL14] to support

the investigation.

5.2.5 MTD application

The application handles the dynamic defense of the ISP networks by dynamically

changing routes in order to deceive attackers using the following MTD strategies, as

depicted in Fig. 5.3: (1) the direct route mutation strategy that performs route

mutation on the real network to the real host destination; (2) the mirror network

strategy that utilizes a VSN as the mirror network and one of the VSHs in the

VSN is used as the destination of the route mutation; and (3) the overlay network

strategy that utilizes a VSN as an overlay network while the destination of the route

mutation is still the real host. Additionally, a VSH in a VSN may have multiple

VMs, where each VM is running a different simulated network environment, which

will be used to provide forged routes for attackers. By exploiting virtualization, an

ISP can create a variety of alternate forged routes while minimizing the unwanted

traffic passing through the AS and reducing the deployment cost of the real network.

Fig. 5.4 shows the dynamic interaction between the infrastructure components

(i.e., SDN switch, VCP, and SDN controller) to handle the traffic flow in the ISP

network. Two databases, traceback database and path database, are used to support

the MTD operations and forensics purposes. The traceback database is used to store

the first-time traffic and interesting traffic that are being transmitted in the ISP

network. The path database is used to store the route information whenever new

flow rules related to that route are installed in SDN switches.

All SDN switches have a default flow rule that forwards all received first-time

traffic (i.e., traffic where the received switch can not forward it to the next hop
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since it does not have any specific assigned flow rule for this traffic). At the VCP,

if this first-time traffic passes the firewall, the traffic will be stored in the traceback

database. Then, this traffic will be classified further into either as a legitimate traffic

that can be sent to the SDN controller because the traffic is not in the watch list,

or as an interesting traffic that needs to be handled carefully for security reasons

because the traffic is in the watch list. On receiving the legitimate traffic, the SDN

controller will find an optimal path for it, installs the flow rules to SDN switches

accordingly, and returns this traffic back to the switch. This way, when the same

legitimate traffic continuously arrives at the switch, it just forwards them to the

next hop according to the installed flow rules. There is no need to send this traffic

to VCP/SDN controller again.

The interesting traffic, on the other hand, has a longer process than the legitimate

traffic. The path database will be searched to see whether flow rules have been

installed for this interesting traffic recently. When this is the first-time traffic, and

thus there is no record in the path database, the next step will be the selection

of the MTD strategy. A shadow network mutation and then NFV management

and orchestration application may be called when the selected MTD strategy

(i.e., overlay network strategy or mirror network strategy) requires a shadow

network, before the route selection and mutation is executed. The selected path

from the route selection and mutation is sent to the SDN controller that then

installs the flow rules to SDN switches accordingly. For this interesting traffic, the

assigned flow rule is always set to forward the traffic to both the next hop and to the

corresponding VCP. This way, when the same interesting traffic repeatedly arrives

at the switch, the MTD application can track the number of times the traffic has

passed the switch by updating the corresponding record in the path database. When

it has exceeded a predefined maximum usage, a new MTD cycle is kicked-in.
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Besides based on the maximum usage limit, a new MTD cycle can kick-in in a

number of ways. An SDN switch can trigger a new MTD cycle when the mutation

interval timeout for a flow rule is expired or when there is a network topology change

(e.g., new SDN switch is installed, or a link goes down). For these cases, the SDN

switch will notify the SDN controller. Subsequently, the SDN controller notifies

MTD application in all VCPs to check whether such situations may affect any of

the active flow rules that are stored in their path database. A new MTD cycle will

be conducted for the affected flow rule(s).

The algorithm that handles a sample interesting traffic is shown in Algorithm 4.

The maxUsage indicates the maximum number of packets that are allowed to use

this path before a new MTD cycle is initiated, while triggeredUpdate indicates that a

new MTD cycle is initiated due to the mutation interval timeout or topology change.

The complexity of Algorithm 4 depends on the function of finding alternative routes.

If a shortest-path algorithm is used, then the complexity is O(n ∗ logn), where n

is the number of nodes in the network. Since some of the links will be omitted

because of the MTD rules (edge-disjoint, node-disjoint), the running time will be

even smaller than this cost.

MTD Selection Strategy

In each MTD cycle, the first step is to choose the MTD strategy. The selection is

determined by three factors: (1) the predefined mutation probability for each MTD

strategy. Typically the direct route mutation strategy has a higher mutation

probability than the overlay network strategy and shadow network strategy

due to the high setup overhead of these two strategies; (2) the duration time limit

of the current MTD strategy that has been used for this interesting traffic; and (3)
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Algorithm 4 VCP Interesting Packet Received: receivePacket(SwitchID, srcIP,
dstIP, protocol, maxUsage, triggeredUpdate)

Require: SwitchID: Identification of last Switch
Require: srcIP: Source IP address of the packet
Require: dstIP: Destination IP address of the packet
Require: protocol: Protocol information of the packet
Require: maxUsage: Maximum number of packets before running MTD
Require: triggeredUpdate: Boolean true if time is up for running MTD
1: victimSamples← getSamples(victim);
2: RoutingEntry ← getFromPathDB(srcIP );
3: isExpired← false
4: if RoutingEntry != null then
5: usageCounter ← getEntryInfo(RoutingEntry)
6: if (usageCounter ≥ maxUsage) OR (triggeredUpdate == true) then
7: isExpired ← true
8: end if
9: usageCounter ←usageCounter+1

10: Update usageCounter of RoutingEntry in PathDB
11: end if
12: if (RoutingEntry == null) OR (isExpired == true) then
13: MTDStrategy ← SelectMTDStrategy(getEntryID(RoutingEntry))
14: route← findRoutes(srcIP , dstIP , protocol, MTDStrategy)
15: RoutingEntry ←currentTime, srcIP,dstIP, protocol, route
16: Add RoutingEntry to PathDB
17: end if
18: return

the predefined alternate probability that will be used to change to a different MTD

strategy from the current one to increase the route variability.

For the first-time traffic (i.e., traffic that does not have any specific assigned

flow rule in the received switch), the MTD strategy selection is only based on the

mutation probability. We proposed to use a roullete wheel selection mechanism.

In this approach, a roulette wheel is divided into three sectors proportional to the

mutation probability of each MTD strategy and then a spin in the roulette wheel,

which is represented by picking a random integer number between 0 and 100, is used

to determine which strategy will be used. For example, let the mutation probability
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for the direct mutation, overlay, and mirror be 60%, 25%, and 15%, respectively.

In the roulette wheel, the direct mutation strategy occupies the first 60% sector of

the wheel, overlay strategy occupies the next 25% sector of the wheel, and mirror

strategy occupies the rest of the sector in the wheel. When the selected random

number is 75, it indicates that the overlay strategy is chosen since this number

points to the second sector of the roulette wheel.

When the interesting traffic is not the first-time traffic, the duration time limit

and the alternate probability will determine whether we should try a different MTD

strategy to increase the route variability. When the existing strategy has been used

more than the duration time limit and the generated random number is greater

than the alternate probability, then we first reduce the mutation probability of the

currently used strategy by n%, and proportionally increase the other two mutation

probabilities, each by (n/2)%. Based on the new mutation probability of each strat-

egy, we use the roullete wheel selection mechanism again to select the MTD

strategy. The strategy is provided in Algorithm 5. The complexity of this algorithm

is O(1).

Virtual Shadow Network Placement

The VSN placement plays a significant role in the prevention of the reconnaissance

attempts to find permanent links in the ISP network, in particular when VSNs are

used in the overlay network strategy. An overlay network topology in the framework

can be built in three ways: (1) by inter-connecting some of the VSNs, where each

VSN is assumed to be a big overlay node; (2) by selecting some nodes in the ISP

network as the overlay nodes and then building an overlay network over these overlay

nodes; and (3) by combining overlay nodes and VSNs. The created overlay network

should ensure end-to-end reachability for any source-destination pairs across an
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Algorithm 5 MTD Strategy Selection: receivePacket(SwitchID, packet)

Require: IDofPathDatabaseEntry: Identification of the Path Entry in Database
Ensure: SelectedStrategy: Selection of the MTD strategy
1: timeStamp,mutationProbabilityList← getFromPathDB(IDofPathDatabaseEntry)
2: isMTDStrategyExpired← false
3: if this is NOT the first-time packet then
4: currentT ime← getSystemTime()
5: if (currentT ime ≥ (timeStamp + durationT ime) then
6: random1← randNumberGenerator(0,100)
7: if random1 ≥ alternativeProbability then
8: n← smallestOf(mutationProbabilityList/2)
9: updateMutationProbabilityList(n)

10: isMTDStrategyExpired← true
11: end if
12: end if
13: end if
14: if this is the first-time packet OR isMTDStrategyExpired ≡ true then
15: Direct,Overlay, Mirror ← getProbabilities(mutationProbabilityList)
16: random2 ← randNumberGenerator(0,100)
17: if random2 ≥ (Direct + Overlay) then
18: SelectedStrategy ← MirrorStrategy
19: NFVManagement()
20: end if
21: if random2 ≥ Direct then
22: SelectedStrategy ← OverlayStrategy
23: NFVManagement()
24: end if
25: else
26: SelectedStrategy ← DirectMutationStrategy
27: updatePathDB(IDofPathDatabaseEntry, currentT ime, selectedStrategy)
28: end if

29: return SelectedStrategy
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ISP network while taking into account the upper bound of the path length and

maximizing the path independence in the overlay networks.

Randomly selected overlay nodes for forming overlay network even if they are

topologically diverse, is not a good option to form overlay networks since paths from

these overlay nodes to the same destination are very likely to traverse the same links

at the IP layer, and thus, it cannot guarantee disjoint paths to destinations [HWJ06].

Therefore, the heuristic topology-aware algorithms such as the topology-aware K

minimum joint spanning-tree [LM07], the topology-aware K connection [LM07], and

the topology-aware node placement [HWJ05] can be used for the VSN/overlay node

placement that maximizes the path independence in the IP-layer (i.e., the overlay

paths passing through disjoint IP layer paths).

The first two topology-aware algorithms in [LM07] are based on the assumption

that the location of the overlay nodes is pre-determined. Since our goal is to find the

locations for the VSN, they cannot be directly used. Thus, we proposed to adopt

a heuristic mechanism as part of the topology-aware node placement framework

[HWJ05]. This framework is originally proposed for overlay networks across multiple

ISPs, but part of the framework also considers the selection of a subset of overlay

nodes inside the same ISP that maximizes the topological diversity between the

nodes by using a clustered-based heuristic. We proposed to adopt this clustered-

based heuristic for our VSN placement.

In our framework, we only consider where to place virtual networks without

paying attention to limited resources. Our number of VM requirements in a machine

is not so high, so we assume in our design that we are not limited in terms of

resources. But in case of such limitation, we need to consider how to utilize network

resources in an efficient way to create virtual nodes/links out of them. Mapping

virtual network nodes to substrate network resources in an efficient way has been
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studied under the name of the Virtual Network Embedding (VNE) problem. There

are already a few works [YYRC08] [CRB12] that have investigated this problem.

They can complement our solution for virtual shadow network placement.

Shadow Network Mutation

The shadow network mutation module is called when either overlay or mirror net-

work strategy is chosen. The module consists of two sub-modules, the VSN selection,

and the VSN mutation. The first sub-module is used to first pick k VSNs from N

available VSNs based on certain criteria. In this chapter, we propose to select it

based on the maximum edge-disjoint path criterion. Running time of our Algorithm

6 of finding and selecting VSNs is O(n*n). Note that since the VSN placements are

done in advance (i.e., static placement), the selected k VSNs can be pre-computed

in advance as well for every border source node (i.e., for every SDN switch that acts

as the gateway to the ISP network for a customer premise or other ISP’s network).

Re-selection or re-computation of paths to these selected VSNs can be performed

when there is a topology change. Based on the assigned VSNs and strategy (e.g.,

overlay or mirror network strategy), the VSN mutation sub-module will randomly

select an active VSN from the assigned k VSNs and inform the route selection and

mutation module about all possible edge-disjoint paths of the currently selected

VSN.

The proposed heuristic approach to select k VSNs from N available VSNs, k ≥ 2,

for every border source node as represented in Algorithm 6, can be summarized

as follows: Given a directed graph G that represents the ISP network topology

including the VSNs, a border source node s, and N VSNs t1, t2, ..., tN , we first find

the maximum number of edge-disjoint paths for each (s,ti), ∀i ∈ [1, N ] and store

them in the LP list, LP = {(p11,p12,...,p1s1),(p21,p22,...,p2s2), ...,(pN1,pN2,...,pNsN )}.
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Algorithm 6 Virtual Shadow Network Selection

1: for i← 1, N do
2: LPi ← maximum number of edge-disjoint paths for (s,ti) (e.g., using maximum

flow algorithm [KT05])
3: end for
4: L← {} (an empty list L)
5: for x← 1, (N-1) do
6: for y ← (x+ 1), N do
7: tmp← LPy (Store all paths of (s,ty) to tmp)
8: tmpLength← ‖LPy‖
9: count← 0

10: for i← 1, ‖LPx‖ do
11: tmp ← DeletePaths(LPx(i),tmp,b) (delete path(s) in tmp with common link

≥ b with LPX(i))
12: if ‖tmp‖ < tmpLength then
13: tmpLength← ‖tmp‖
14: else
15: count+ + (no path deletion. count LPx(i))
16: end if
17: end for
18: L← (count+ ‖tmp‖,x,y) (stores the total remaining paths and VSNs indexes in

a list L)
19: end for
20: end for
21: sList← DescendingSort(L) sort based on the total remaining paths
22: V SNs← sList[0].x save the first VSN index
23: V SNs← sList[0].y save the second VSN index
24: i← 1
25: while ‖V SNs‖ < k do
26: if NotInVSNs(sList[i].x) then
27: V SNs← sList[i].x
28: end if
29: if NotInVSN(sList[i].y) and ‖V SNs‖ < k then
30: V SNs← sList[i].y
31: end if
32: i+ +

33: end while
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(line 1-3). We then eliminate the edge-disjoint paths that have more than b common

links for every pair (s, tx) and (s,ty), ∀x, y ∈ [1, N ], x 6= y. To this end, we can have

some paths that are either edge-disjoint or have common links whose count is less

than b for every (s,tx) and (s,ty) pair. The number of the remaining paths for every

(s,tx) and (s,ty) pair along with the destination identities tx and ty form 3-tuples

(r, x, y). This 3-tuples is stored in a list L, L = {(r1, 1, 2),(r2, 1, 3),...,(rd, (N−1), N)}

(line 4-20). To select the k VSNs, we first sort L descending based on r and then

select k VSNs based on the largest number of the remaining paths (line 21-33).

Route Mutation

Since the goal of route mutation for indirect attacks is to obfuscate attacker’s efforts

to find any permanent link(s) (i.e., a link that consistently appear during attacker’s

reconnaissance phase), the route mutation must select a non-overlapping path for

each mutation round so that an attacker will not be able to find any shared link.

This route mutation problem can be considered as an instance of k edge-disjoint

paths problem. The ISP network can be represented as a directed graph G, while

the SDN switch where network traffic entering the ISP network is the source s, and

the target host is the destination t. Given these two nodes and the directed graph,

we find the k paths from s to t such that no two paths have a common edge.

To solve this problem, a maximum flow algorithm [KT05] is used. The route

mutation module will then randomly select one path from these k edge-disjoint

paths for each mutation round. This means a malicious network reconnaissance

packet from the same source will travel a different path next time it is sent. This

way, the attacker will see a different view of the network at each attempt.

We also consider cases when an edge-disjoint path cannot be found. In this case,

the problem becomes finding k paths with minimum edge vulnerability [YYWZ05],
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where a minimum number of common links is still acceptable. The idea is to pick

any path from the k paths for the next mutation round that has the least common

links with some of the previously selected paths.

5.3 Experimental Evaluation

In this section, we first considered the experiments related to the usage of VCP vs.

SDN Controller. Second, we observe the usage of different MTD strategies.

5.3.1 Experimental Setup

The proposed MTD framework is implemented in Mininet [Tea] emulator. Flood-

Light [Pro] is used as the SDN Controller. Since, by default, an SDN switch in

Mininet does not support network-layer operations, we added IP address and Time-

to-live (TTL) operations to the SDN switches. The network topology in Fig. 5.5 is

used for the experiments, and a number of bots are used to attack the servers.

Additionally, since our proposed framework suggests to utilize two databases to

support the MTD application, we design two simplified data structure files in the

experiments as follows: a record in the path database consists of the ID of each

entry (2 bytes), source IP field (4 bytes) and destination IP field (4 bytes), protocol

information field (1 byte), creation timestamp field (7 bytes) that stores the date

and time, path usage field (1 byte) to store how many times this path has been

used, and the path field that contains an array of the visited switch identities from

the source to the destination. The size of this path field is varied depending on the

path-length of the selected path from the route mutation. For the traceback database,

on the other hand, a record consists of some part of an interesting packet’s header

information with some additional information. The size of a record is 39 bytes, which
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includes timestamp (date and time) of the entry (7 bytes), source and destination

port numbers (2 bytes each), sequence number (4 bytes), time to leave (1 byte),

IP source and destination (4 bytes each), IP protocol (1 byte) if any, ether type (2

bytes) that is used in the data-link layer and corresponds to the protocol of network

layer, and the source and destination MAC addresses (6 bytes each).

In addition to the given fields of path database, we also added several fields to

store some MTD strategy information, as discussed in Section 5.2.5 in addition to

the aforementioned previous fields in the path database. That information includes

three mutation probability fields, each field (1 byte) for the mutation probability

of each MTD strategy, the currently used MTD strategy field (1 byte), and the

timestamp field of the used MTD strategy (7 bytes). We assumed that the maximum

number of switches is less than 256 by considering some example ISP networks’ size

mentioned in [SMW02], and thus we used 1 byte to store the switch ID. Therefore,

the minimum record size is around 31 bytes + the variable path field size that

depends on the path-length.
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Figure 5.5: Network topology used in experiments.
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In our experiments for comparing different MTD strategies (such as overlay, mir-

ror networks), we used multiple VMs where each VM represents a different frame-

work component, as explained in Section 5.3.2. We show these network topologies

in Fig. 5.6. In order to make the Mininet-based network topology in multiple VMs

talking to each other, we used GRE tunneling. GRE Tunnel is a virtual point-to-

point tunnel that can transmit IP packets from one host to another [FLH+00]. Even

though Open vSwitch (OVS) supports the GRE tunnel, we used the Linux GRE

Tunnels since its wide support. Additionally, we also enable root access to each

VM when it makes the connection through the GRE tunnel since a Mininet node

requires root-privileges. Enabling the GRE Tunnel in such manner is achieved by

changing some configuration parameters (permitting tunnels, etc.) of Secure Shell

(SSH), which is used by the GRE Tunnel.

5.3.2 A Mininet-based Virtual Testbed Setup

In our experiments, we used four VMs, namely the SDN controller VM, the simu-

lated ISP Network VM, the Overlay Network VM, and the Mirror Network VM. In

the SDN controller VM, we installed Floodlight SDN controller and implemented

the proposed MTD mechanisms. In the simulated ISP network VM, we created an

experimental Mininet-based network topology, as shown in Fig. 5.6. In this topol-

ogy, six bots are used to generate the reconnaissance traffic, and three servers are

the target of this traffic. In the overlay network VM and the mirror network VM,

we created the overlay network as in Fig. 5.6b and the mirror network as depicted

in Fig. 5.6c respectively.

The communications between VMs are shown in Fig. 5.7. The SDN controller

VM is connected to all network routers in the other VMs while the Linux GRE
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Figure 5.6: Network Topologies used in the experiments

tunneling is used from the simulated ISP network VM to the mirror network VM

and the overlay network VM. The NFV management component is responsible for

the creation and deletion of these GRE tunnels. Two GRE tunneling connections

that are required between the simulated ISP network and the Overlay network VM

creates an identification problem for the GRE tunnels since the source and destina-

tion addresses are same. In order to solve this issue, we needed to assign a different

key to each tunnel.
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Attacker Setup

For a realistic assessment, we developed an attack script and installed it on each

bot. This script is used to run traceroute commands for a configurable number of

times (e.g, 4, 10, 50, 250, and 1000 traceroute attempts) on each bot-server pair and

store the traceroute results to a file. The result files from all bots are then analyzed

by an attacker to determine the possible permanent links in the network.

Additionally, while the analysis can be done manually, typically, attackers would

not do a manual evaluation since it is very time consuming. Instead, they develop

a script to perform the analysis based on certain criteria. Therefore for the exper-

iments, we also develop another script that performs the analysis and decides the

permanent-links based on the most seen IP addresses in the traceroute replies. The

details of this script is discussed in Section 5.3.4.
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Defender Setup

On the defender side, we configured the MTD application in terms of parameter

settings and the default route setting for each SDN switch. We used the same

parameter values for both VCP-based and Controller-based experiments: maxUsage

∈ (4, 10, 100) and mutation Interval ∈ (30secs, 120secs). The default route for each

SDN switch, however, is different between the VCP-based and the controller-based.

The default route in each SDN switch for the former is assigned to forward packets

to the assigned VCP for that switch, while the default route for the latter is assigned

to forward packets to the SDN controller.

5.3.3 Baseline and Performance Metrics

We considered a baseline where all the operations would be performed by the SDN

controller. Thus, the MTD applications and the required storages are handled in

the centralized SDN controller, as depicted in Fig. 5.8. We labeled this baseline

as the Controller-based method, while for our proposed framework, using VCP is

labeled as the VCP-based method in the Table and discussion.

Two sets of metrics, namely the attacker cost and the defender cost metrics, are

used to show the proposed framework’s performance. Note that the choice where

the MTD applications are installed, either Controller-based or VCP-based, does not

have any impact on the attacker cost. However, it does have an impact on some of

the defender cost metrics, as we discussed in Section 5.3.4.
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Attacker Cost

The proposed MTD application strives to increase the attacker’s cost during the

reconnaissance phase. Therefore, the performance metrics that we use to measure

the effectiveness of the MTD application is as follows:

• Attacker Success Rate: This is the ratio of the number of correctly identified

common links by an attacker with respect to the actual number of common

links in the network.

Defender Cost

The proposed framework incurs additional cost that can be measured using the

following metrics:

• Route Calculation Time: This is the total time it takes to find a new route

from given source-destination pairs in a given scenario.
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• Storage: This metric shows the storage overhead that can be occurred during

the MTD operations and can be used for the forensics purposes as well.

• Hop Count : This metric shows the average percentage of increase in the num-

ber of hops (in routes) generated from the route mutation, which might be

using longer paths to the destination and consuming more system resources.

• End-to-end Transmission Delay (ETE Delay) Increase: This metric shows the

ETE delay experience by the legitimate packets due to the use of the proposed

framework.

In addition to the metrics used in comparison VCP vs. SDN Controller, we used

following metrics to observe different MTD strategies.

MTD Strategies

These metrics measure the cost of the comparison of Shadow Network vs. Direct

Route Mutation. Specifically, we looked at the following metrics.

• Route Mitigation Time: This metric measures the computation time in the

SDN controller to find and select a disjoint path for a given source-destination

pair.

• Time for Calculation of Routes : This is the computational time to find out

a new route when MTD is performed. This metric also relates to traceroute

requirements. Note that the total delays should not exceed the default 5.0

seconds response time for the traceroute probe since the traceroute’s sender

will consider that there is no response.

• Resource Cost : This metric displays the storage requirements of VMs to be

operated as SNs.
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Metrics for Traceroute Requirements

traceroute needs to provide a response within 5 sec. Thus, in addition to route

computation time mentioned, the following delays also need to be assessed during

the framework operations since they may have an impact on the maximum waiting

time of the traceroute packet: (1) the MTD processing time that can be measured

when a traceroute packet with the time-to-live (TTL) value of 2 in its header (which

indicates that this packet is seeking for the second hop node response) is waiting at

the first hop node due to the MTD operations until it can be released to the next

hop node after the new flow rule is successfully installed; (2) the NAT processing

time; and (3) the dynamic Linux GRE tunneling processing time that measures the

time it takes to establish a GRE tunnel between two VMs.

5.3.4 Experimental Results

Attacker Cost

We first look at the attacker’s difficulty, as this was our main objective in this

project.

Success Rate. As the attacker heuristic strategy to determine a permanent-link,

we consider that attacker first sorts the most used links in the network according to

its traceroute reply results and select first k of the links from that sorted list. An

attacker uses the following rules to selects the permanent-link in the network, which

is based on the crossfire attack’s characteristics, as follows: (1) the links should not

be adjacent to each other since they are supposed to attack the surrounding area

and cannot be linearly connected to each other, and (2) they are also not pointing

to the same specific target server directly.
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In our experimental topology, we have three common links. We run the attacker

script five times for each case. The defender uses the mutation interval of 30 secs

and the maximum usage of 10 traceroute packets. As can be seen in Tab. 5.1, the

success rate never reaches 100% even though the number of traceroutes is increased

significantly (e.g., up to 1000). The increase in the number of traceroutes attempts,

obviously, increases the collection time, the time it takes to collect all the traceroute

results from all bots as shown in the Table. Thus, in general, the attacker not only

spends a lot of time but also is not able to find the permanent links thanks to the

MTD approach.

Table 5.1: Attacker Cost

Number of TC Collection Time (min) Attacker Success Rate

4 0.26 33%

10 0.76 33%

50 3.8 33%

100 7.55 66%

250 17.96 66%

1000 68.35 66%

Defender Cost

The success of the VCP-based approach comes with some cost to the defender. Next,

we look at the defender’s cost in various aspects.

Storage Cost. First, we provide the storage cost analysis of our proposed frame-

work that utilizes two databases for the baseline (i.e., Controller-based). Addition-

ally, we also provide the analysis of the packet ins information, which is stored at

the controller for forensics purposes. Each entry in the path database, as previ-

ously described in Section 5.3.1, is expected around 34-38 bytes depending on the
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Table 5.2: Defender Storage Cost

Threshold to Trigger Database Size

4 maxUsage - 30 sec 239 Kb

4 maxUsage - 120 sec 238 Kb

10 maxUsage - 30 sec 104 Kb

10 maxUsage - 120 sec 95 Kb

100 maxUsage - 30 sec 43 Kb

100 maxUsage - 120 sec 17 Kb

hop count (e.g., 3-7 hop). The number of entries of the path database depends on

two parameters, the maxUsage and mutation interval. Table 5.2 shows the path

database storage cost for a variety of combinations of these two parameters.

As can be seen from the Table 5.2, the defender needs more storage when the

MTD defense strategy takes an aggressive effort to any traceroute traffic by using

a small value of mutation Interval or maxUsage. By relaxing these parameters by

increasing the limit, either mutation Interval or maxUsage, the required storage is

also reduced. However, the main driving force to reduce the storage size would

be the maximum usage limit since this limit can be met faster than the mutation

interval when an attacker also performs an aggressive attempt by sending multiple

traceroute messages within a short amount of time. For instance, when an attacker

wants to collect a more fine-grained traceroute information by increasing the number

of traceroute attempts (e.g., from 4 up to 1000), their success rate was around 66%,

while the storage overhead is much lower. So we can conclude that the overhead is

much less and there is still a reasonable failure rate for the attacker.

As the size of each entry in the traceback database is 39 bytes, in the worst case

for 1000 packets, the size is approximately 273 Kb considering the max number of

hops (7 hops) in the selected random routes. The size of storage in the Controller
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is the same as the one in VCP since the same information is being stored into the

traceback databases after processing packet-ins. The total size of packet ins, on the

other hand, is around 440-450 Mb, depending on the selected random routing path

(number of hops) that has been used. This is the size of the communication overhead,

which is required to store packets’ information to the traceback database for both of

the approaches. In our proposed framework, we divide a load of Controller’s forensic

databases to VCPs. Thus, instead of bringing an extra 450 Mb to the Controller for

such a simple network, we handle these databases in VCPs. We observed the CPU

usage of a machine that is running the SDN Controller in this manner. Our results

show that in our proposed framework, SDN Controller is using about 20% to 30% of

CPU while that number goes up to 80% in case the Controller receives all the traffic

to be stored. Thus, the Controller’s CPU will be overloaded if we enable forensics

investigations through the Controller machine. In addition, there is a single point

of failure if we store all the data in one machine (SDN Controller). We eliminate

that problem by disseminating the data to different VCP hosts.

The total storage cost for our VCP-based approach for two storages (path and

traceback) would be the same as in the Controller-based, as well as communica-

tion overhead of packet ins. The benefit of the VCP-based approach is that the

total storage cost for both the path and traceback databases can be distributed into

multiple VCPs instead of storing them at the SDN Controller (i.e., Load Balancing).

Route Calculation Time. In addition to storage constraints, we also compared

the defender cost in terms of the time to find a new path each time an MTD is

triggered for the Controller-based and our VCP-based approach. Thus, we recorded

the time cost for finding a new path for both cases, as shown in Table 5.3. We

can see that number of route changes is increasing with a decreased threshold as

expected. The behavior is similar to Table 5.2 when Threshold to Trigger increases
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Table 5.3: Defender Route Calculation Time

Threshold to Trigger
Time Spent (ms)

VCP/Controller

Number of

Route Updates

4 maxUsage - 30 sec 735.3 / 65.1 6128

4 maxUsage - 120 sec 730.8 / 59.8 6090

10 maxUsage - 30 sec 215.9 / 97.2 2669

10 maxUsage - 120 sec 194.6 / 86.4 2433

100 maxUsage - 30 sec 88.4 / 18.7 1106

100 maxUsage - 120 sec 33.9 / 9.0 424

from 4 to 100. That is the number of route updates and database storage size

decreases. However, we observed that the total time it takes to calculate new routes

does not correlate with the number of total route updates for the Controller-based

approach. While we still get the least time cost with 100 traceroute count threshold,

the time for 4 maxUsage (usage of traceroute count in our experiments) threshold

decreases compared to the case of 10. We speculate that this could be happening

because of controller software. Each time we do route updates, we access controller

modules, and controller might store topology information in the cache, while for

some other cases, it may need to run Link Layer Discovery Protocol (LLDP) packets

to refresh its knowledge about the network. This is not the case for the VCP-

based approach since it is supposed to call the Controller’s Northbound Application

program interface (APIs) to install the flow rules.

Furthermore, we can also see a significant increase in time for the VCP case.

The main reason behind this is that VCP will call the Controller’s API to install

flow rules, which requires additional communication between VCP and Controller.

Note that each flow rule installation for a switch takes around 20 milliseconds.

However, that rule installation can be done simultaneously with the packet trans-

mission, since for the VCP-based approach instead of letting the packet wait, we
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forward it to next hop and VCP at the same time. Thus, that delay does not affect

the average delay of overall packets.

Hop Count. Since the defender is doing random route mutation, longer paths and

more network resources may be used without depending on VCP or the Controller-

based approach. To assess the impact on the path lengths, we collected the average

hop count between each bot and server. The results in Table 5.4 indicate that, on

average, we used 23% more hops in order to confuse the attacker.

Table 5.4: Hop Count Cost

Number of TC Avg Number of Hops Min Hop

S6-S1 6.8 5

S10-S1 6.9 6

S4-S12 7 6

S4-S1 6.4 4

S10-S12 6.3 4

S10-S13 7.4 5

S4-S13 7.9 7

S10-S14 7.2 5

S4-S14 8 7

S6-S12 7 6

S6-S13 7.9 7

S6-S14 7.9 7

ETE Delay. Furthermore, we observed ETE Delay for a regular packet that is

being forwarded to either VCP or Controller for MTD purposes. The average ETE

delay of a UDP packet from a bot that is connected to S4 to a server that is connected

to S14 in Fig. 5.5 is about 562 microseconds for VCP-based and 643 microseconds

for Controller-based approaches, which are quite close as expected since packets are

forwarded to VCP or Controller at the same time they move to next hop. We believe

that the reason for the Controller-based approach having slightly higher ETE delay

81



is because the Controller is busier with the processing the data, route calculation,

storing information, and receiving lots of data to one centralized machine (SDN

Controller). That might cause a longer delay overall.

Note that the ETE delay is increased 3201 microseconds for the VCP-based

approach and 892 microseconds for Controller-based, on average, for a single packet

being transmitted at the time when MTD is applied. Time for installing a flow to

switch will be added to this delay for both cases which is 20ms in average for a switch.

In other words, whenever MTD is triggered, the first packet that is exposed to new

flow rules in the network will experience longer ETE delay compared to the next

packet that will use the same flow rules. Having slightly longer ETE Delay at the

VCP-based approach is expected since it will require extra time for the connection

to Controller, which is not the issue in the Controller-based approach. Even though

the Controller-based approach seems to be a better solution, we argue that it would

not be a good solution if the network gets larger to collect all data to the centralized

SDN-Controller, which would overload it as we have already displayed CPU usage

for that case. In summary, while the performance of VCP and Controller-based

approaches are quite similar to each other, the VCP-based approach is favorable

since it can provide the features of network provenance and forensics in a load-

balanced manner. Furthermore, our MTD operations are able to meet the delay

requirement of a videophone application, which was given as 150ms in [CGC+07]

even when considering the worst-case whenever MTD kicks in. It should also be

noted that this ETE delay increase only for the suspicious reconnaissance packets

that are passing through the network switches. We do not bring any additional

delay to the regular data packets.

Scalability Experiments. In order to show the scalability of our framework, we

extended the topology given in Fig. 5.5 by doubling ISP network size while still
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keeping the target area the same as in the previous experiments We observed that

the attacker’s collection time increased to 2.5 times the ones given in Table 5.1 while

the attacker’s success rate decreased to 33% for 100 and 250 number of traceroutes

and stays same in the other cases. These results are encouraging as they further

complicate things for the attacker. Meanwhile, database size for defender given in

Table 5.2 increases with the extended network topology since its size is related to the

path size. The size of each entry in the new database would change between 34-46

that would bring an extra 21% increase as the worst case in the total database size.

In addition to the given results, we also calculated the time to find a route in SDN

Controller. Our results show that increasing the number of nodes has a negligible

delay (e.g., in a few milliseconds level), which is in line with our algorithm’s running

time complexity, O(n*logn).

Cost Analysis of Shadow Networks

Comparison of DRM vs. SN Strategies. Table 5.5 shows the time it takes to

find all disjoint edge paths, selecting one from the list, and updating the flow rules

of switches when an attacker is using the strategy of sending 100 traceroute packets.

The average route update time increases when the (virtual) SN is used. The reason

is that by utilizing SN, more alternative routes need to be calculated and selected.

Table 5.5: Route Calculation Time

Strategy Average Time of Route Updates (ms)

DRM 42

DRM + SN 76

Note that the network size used in our experiments was fixed. Scaling this net-

work would increase the processing costs for route computation. Thus, in addition

to the given experiments, we also changed the network topology to show how much
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time it takes for our algorithm to find paths each time. In order to create randomly

connected networks, we utilize the project given at [Wes13]. We show the average

run time of the algorithm with respect to network sizes and the number of total links

in Table 5.6. As can be seen from this table, the running time of our algorithm in-

creases significantly by the increased number of edges, while the effect of the number

of nodes is not major. If the ratio of links to nodes is closer to 2, our system is not

able to support reasonable responses to the MTD module, especially after 30 nodes

(i.e., total delay exceeds 5sec). If the ratio is closer to 1.5, we can support up to 50

nodes in the network and still can meet the traceroute requirements. The results

suggest that adding virtual nodes, and more importantly the links, to the network

after some threshold is not helpful in terms of feasibility of traceroute although it

may be good for confusing the attackers.

Table 5.6: Runtime of Algorithm to Find Edge-Disjoint Paths

Network Topology Our Approach

# of Nodes # of Links Run Time (sec)

14 21 0.001

14 28 0.002

24 36 0.003

24 48 0.107

30 45 0.01

30 60 4.499

35 53 0.045

35 70 239.016

40 60 0.305

50 75 1.267

Finally, we assessed the storage requirements of running VM on the host ma-

chines. In our experiments, we created Linux based VMs. These VMs are created
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with 5 GB storage sizes, and we never exceeded more than half of the total storage

of each VMs individually.

5.3.5 Meeting Traceroute Operational Requirements

To assess the delays mentioned, we performed several experiments. Each experiment

is repeated ten times, and the average of the results is presented.

The first experiment is used to evaluate the MTD processing time. In the ex-

periment, we sent two traceroute packets; the first packet is for a single hop node

(i.e., traceroute with TTL=1) and the second packet is for the two-hop node (i.e.,

traceroute with TTL=2) and then find the time difference between the first and

the second reply packets. This gives the MTD processing time. The experiment

results show the average discrepancy of approximately 50 ms, which indicates that

the MTD processing time is much less than the 5s limit. Thus the attackers will

not notice it.

To measure the NAT processing time, we performed two experiments: the first

experiment uses a virtual NAT, while the second experiment does not use the virtual

NAT. On average, the discrepancy of these two experiments is around 7 ms, which

is quite small and thus does not have a significant impact on the overall delay.

To measure the Linux GRE tunneling processing time, we ran an experiment

using a UDP client and server application at each end of the GRE Tunnels that

connect two VMs. By adding a timestamp in the UDP packet, the Linux GRE

creation time can be measured by finding the difference between the UDP packet

reception time at the other end and the timestamp on it. On average, the GRE

tunneling processing time is approximately 53 ms. Hence, the GRE tunneling pro-

cessing time is also very low when compared to the 5s limit.
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Thus, overall, even the additive delays would not make an impact on the opera-

tion of the traceroute.

5.4 Conclusion and Future Work

In this chapter, we applied MTD and network forensics techniques to introduce

agility to ISP networks by using an architectural framework that exploits SDN and

NFV. A VCP is introduced in the framework as the data storage of the interesting

traffic, some of which could be forwarded to the SDN controller for further investi-

gation and starting the MTD process if needed. The framework offers three MTD

strategies related to route mutation to obfuscate the network topology information

for thwarting indirect DDoS attacks at the reconnaissance phase. These strategies

either use direct mutation on the path from a source to a destination or utilizes the

shadow networks and hosts as overlay or mirror networks for such mutation. By

employing the virtualized network environments, the proposed framework offers a

low-cost solution instead of deploying expensive dedicated hardware.

We implemented an emulated environment utilizing Mininet to be able to per-

form reconnaissance attacks and identify permanent links in the created topology.

The implementation demonstrated that with the proposed MTD mechanisms, it is

impossible for the attacker to reach 100% success in identifying the links. The pro-

cess is also very time consuming for the attackers while it only slightly increases hop

counts and storage complexity. In addition, the VCPs were successfully forwarding

the legitimate traffic to the SDN controller while acting as a filtering point to filter

some of the other traffic before it reaches the SDN controller as well as providing net-

work provenance capabilities if needed. Moreover, the proposed framework through
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NFV does not bring any significant overhead to the ISP network and execution of

genuine traceroute operations.
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CHAPTER 6

CLOUD-BASED EXTENSION OF SDN BASED MTD

In our earlier work, we considered reconnaissance attacks, and we applied MTD

techniques against these attacks. However, we did not consider the legitimate re-

connaissance attempts while deceiving the requester. Therefore, in this chapter, we

propose a deception-based defense framework against reconnaissance attacks where

we, as network defenders, strive to deceive and manipulate the attacker’s vision of

the network while aiming to keep network debugging tools useful. We specifically

consider traceroute and ping packets as examples of network reconnaissance packets,

which include useful information from source to destination in the response packets.

In this manner, we employ virtual networks in order to enable fake paths between

hosts by applying the MTD deception paradigm on routes. However, in order to

provide scalability and elasticity of the system, we consider running virtual networks

on cloud servers as part of the Network Function Virtualization (NFV) framework,

which allows network administrators to utilize them whenever they want. The vir-

tual network topology on the cloud not only provides a very cost-efficient way of

executing MTD actions but also eliminates most of the management burden in the

physical networks to run MTD functions.

In order to realize our proposed defense framework, we need to address the

challenges of running virtual networks in cloud servers. First, traceroute responses

include all the hops in response packets, which means that routers on the way to the

cloud server will be seen in the response. However, this produces a much longer path

than the authentic routing paths and disrupts the network debugging by providing

non-realistic path responses. To overcome this concern, we propose creating Generic

Routing Encapsulation (GRE) Tunnels [FLH+00] from the physical network nodes

to the virtual cloud nodes. The second challenge in the system is to provide useful
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information to the network debugger while confusing the attacker without knowing

the identity of the requester. In this respect, we propose utilizing IP hopping for

different traceroute responses (i.e., changing the network switches’ IP addresses) as

an element of MTD concept in order to create a complex puzzle for the attacker to

solve to find out target nodes/links. In our framework, we achieve this by creating

multiple cloud-based virtual networks and moving from one to another periodically.

In this design, SDN facilitates IP hopping and routing updates within the local and

cloud-based networks, which also simplifies to reflect network behaviors in cloud-

based responses. Useful information for the network debugger is provided through

creating a reflection network on the cloud that will exactly match the topology of

the physical network.

We implemented our aforementioned MTD deception framework on the GENI

platform [DRS+12], which is a well-known testbed that allows researchers to allo-

cate virtual hosts, switches within different university campuses, and enables SDN

capabilities. Our results show that cloud-based reflection network brings negligible

delay and is able to reflect different network events in the reconnaissance response

packets properly. This is achieved with much less cost in terms of resources and

labor.

This chapter is organized as follows: In Section 6.1 we list assumptions and the

attack model. Section 6.2 explains the problem motivation and the proposed system

in detail, and Section 6.4 presents the experimental evaluations of the proposed
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framework. In Section 6.5, a summary of the project’s findings and some future

extensions are discussed.

6.1 Assumptions and Attack Model

In this section, we explain our assumptions and attack model. We assume an Inter-

net Service Provider (ISP) Network or a campus network that has network switches

with SDN capabilities. The network owner is the potential client for our proposed

framework, which would provide them network troubleshooting features without

being exposed to malicious intentions.

We consider network reconnaissance attacks as our attack model. We specifically

focus on the attacks where an attacker strives to collect network link information

in order to exploit them for distributed Link Flooding Attacks such as Crossfire

[KLG13] and Coremelt [SP09] attacks. These types of attacks are indirect attacks

that strive to find any common links from multiple source-destination pairs such

that when these links are attacked, the target machines will be isolated from the

rest of the network. We assume that the attacker has access to a certain number of

bots located in various locations for sending reconnaissance packets. The attacker

pretends as a legitimate user while making reconnaissance attacks. The attacker

is not recognizable from his/her activities, since there is not any particular way of

telling who is sending reconnaissance packets to the network, and for what reason.

6.2 Cloud-based MTD deception Framework

In this section, our problem motivation and the cloud-based deception framework

are described in detail.
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6.2.1 Motivation

MTD approaches dynamically change the network parameters, while they enable

to obfuscate the attacker’s view of the network. However, they must ensure that

legitimate users are still able to access the network without any disruptions. This

issue was missing in the current works. In addition, the proposed approaches suffer

from limited resources (such as routes, IP addresses, nodes, etc.) to be able to scale

with affordable costs. Even though utilizing NFV [ASA18] can increase the route

variability, the use of servers to host many VNFs to extend the real network paths

introduces additional investment and management costs for servers. To address

these issues, we propose to employ a cloud-based MTD deception framework, as

explained next.

6.2.2 Framework Overview

In our framework, multiple reflection networks are formed in the cloud based on

our physical network. A reflection network is an exact virtual implementation of an

existing SDN-based physical network. For instance, instead of using a traditional

SDN switch as in the physical network, a cloud-based virtual switch is employed in

the reflection network. When multiple reflection networks are available, this means

each of the switches in these networks has a different IP address assignment from

each other. Furthermore, there will be multiple GRE tunnel connections from each

SDN-based switch in the physical network to its corresponding cloud-based switch

in each reflection network. The overall framework is shown in Fig. 6.1.
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6.2.3 Components of Framework

As shown in Fig. 6.1, our framework has five components: (1) physical network

switches, (2) cloud-based virtual switches, (3) SDN Controller for physical network

(i.e., Local SDN controller), (4) SDN Controller for cloud-based virtual switches

(i.e., Cloud SDN Controller), and (5) NFV management host. Cloud-based virtual

switches are implemented in the cloud servers by network owners. These cloud-based

virtual switches have IP address ranges as much as the cloud service provider has.

A cloud SDN controller manages these cloud-based virtual switches, which orga-

nizes the packet flow within these switches and from/to physical network switches.

The NFV management host acts as the interface between these two types of SDN

controllers to ensure a smooth collaboration between these two types of switches for

providing a connected route from a source to a final destination.

6.2.4 Procedure to Handle Reconnaissance Packets

In our proposed system, any reconnaissance packet received by a regular network

switch is forwarded to a cloud-based virtual switch, follows the paths within cloud-

based virtual switches, and then is forwarded back to another regular network switch

to reach the destination. The response packet to this reconnaissance packet follows

the same path but in reverse order.

As a first step of the framework, a reflection network is created by NFV Man-

agement. After these cloud-based virtual switches are ready, flow table rules are

assigned for each switch specifically for handling reconnaissance packets. Then, the

reconnaissance packet is routed along the reflection network path until the last hop

of the packet before the server. In the last hop, the packet is forwarded back to
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Figure 6.1: Cloud Based Defense Framework

the physical environment, and the real server generates the response. The response

packet follows the same path in reverse order.

Even though it looks like a simple procedure, there are multiple issues and design

problems to be considered. First of all, the response packet includes all the hops

until it reaches the destination. However, this is not desirable as it will render net-

work debugging infeasible. Therefore, GRE tunnels are created between a physical

network switch to its corresponding cloud-based virtual switch in the cloud in order

to solve this problem, as shown in Fig. 6.2. GRE is a packet encapsulation method,

which is used to create virtual GRE Tunnels where the packets are transmitted

through. Packets are encapsulated at the tunnel source, and they are decapsulated
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only at the tunnel destination. We opted to use GRE Tunnels in our framework due

to their ease of deployment and use.

Reflection Network Destination

Client

Figure 6.2: Connection between physical network and reflection network using GRE
Tunnels

6.2.5 Reflecting Network Changes

The proposed framework should be capable of instantly reflecting any changes in

the physical network to the reflection network. As network changes, we consider 1)

re-routing in the network paths; and 2) insertion/deletion of network switches/links

or their failures.

To this end, the NFV Management host is implemented as an interface, as shown

in Fig. 6.1 to enable communication between SDN Controller in the physical network

and the reflection network. In the first case, SDN Controller in the physical network

informs the SDN Controller in the reflection network, and the routes are updated in

both networks. In the second case, Link Layer Discovery Protocol (LLDP) packets

that are generated and received by SDN Controller, are used to discover if a link

goes down. After the SDN Controller in the physical network learns about it, the
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NFV management is notified. Then, the NFV management turns the corresponding

link interface to off. The same is valid for the addition of a new link.

6.3 Security Analysis of the System

In this section, we analyze the security features of the proposed framework based

on our attack model.

In our framework, we provide forged responses to the reconnaissance requests.

Our main target is not to let any malicious outsider collect routing paths/topology

properly, which s/he can easily utilize in launching DDoS attacks such as Crossfire

[KLG13] or Coremelt [SP09]. In the following example, we explain how the proposed

system brings the deception so the security: Let us assume that our routing path

in regular response from source to destination is IP-1, IP-5, IP-9, and with the

cloud-based reflection network the response is IP-190, IP-195, IP-199, IP-9. Notice

that only the last IP address is the same since it is the last hop is connected to

the destination host, which a client sends requests to. However, the rest of the IP

addresses are cloud service IP addresses. After responding to a few reconnaissance

packets, the IP addresses of cloud-based network switches are changed. Hence,

whoever sends additional requests to observe some patterns will receive new IP

addresses (i.e., IP-200, IP-203, IP-205, IP-9). Thus, a malicious user, who is not

aware of the deception mechanism, will not be able to properly understand network

topology and the routing paths. Meanwhile, the network tester who is aware of such

a defense mechanism and can transform those forged IP addresses to real ones can

still debug the network.
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6.4 Experimental Evaluation

6.4.1 Experimental Setup

Our proposed deception framework is implemented in the GENI environment, which

is a nationwide network testbed. GENI supports Openflow switches and SDN Con-

troller connection to these virtual switches. In this testbed, we created two networks,

one of which is considered as the physical network and the other one as the reflec-

tion of this physical network in the cloud environment. The first (i.e., physical)

network is created within the University of Kansas, and the second one (i.e., reflec-

tion) is within the University of Kentucky, as shown in Fig. 6.3. SDN Controller for

the physical network is a virtual server located at Northwestern University, while

the SDN Controller server for the reflection network is located at the University of

California, Los Angeles. We connected network switches in different locations with

GRE tunnels (shown by the links with yellow squares in the figure), which would

allow network debugger tools to work properly, as discussed in Section 6.2.4. These

tunnels are treated as interfaces of Openflow switches, and reconnaissance packets

are forwarded to these interfaces as flow table rules. We considered traceroute and

ping packets as reconnaissance packet examples in our experiments. As a proof-

of-concept, we used five switches in both the physical network and the reflection

network. In addition, we added two virtual hosts (i.e.,node-0 and node-1) in the

physical network, as shown in Fig. 6.3. We use SSH to connect to virtual hosts and

switches for traffic generation and run the simulations.
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Figure 6.3: Network Topology on GENI

6.4.2 Benchmarks and Metrics

In our experiments, we considered the physical network (Kansas) with no reflection

as our baseline network for normal reconnaissance operations. Then, we formed

the reflection network (Kentucky) and connect it with Kansas to show cloud-based

deception operations during a reconnaissance. We specifically consider the following

metrics for our evaluations:

• Response Time: This metric represents the server’s response time to recon-

naissance packets.

• Packet Loss Percentage: Packet loss happens when the client does not receive

a response to its request from the server.
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Table 6.1: Response Times and Numbers of Packet Losses

Network Packet Loss Percentage Response Time (in milliseconds)

Load Regular Network Cloud Based Regular Network Cloud Based

0% 0% 0% 2.1 47.8

10% 0 % 0% 2.2 47.5

20% 0 % 0% 2.3 47.6

30% 0 % 0% 2.3 47.4

40% 0 % 0% 3.3 47.4

50% 0 % 0% 4.2 47.4

60% 12% 0% 12.9 47.4

70% 16% 0% 13.1 47.4

80% 31% 0% 15.5 47.5

90% 32% 0% 18.6 47.5

100% 34% 0% 18.7 49.9

110% 34% 5% 19.2 50.9

130% 35% 10% 20.6 51.3

150% 36% 11% 19.5 51.6

180% 39% 12% 20.5 51.1

200% 40% 20% 19.6 51.9

• Delay of Reflecting Network Behavior : This metric represents the time it takes

to reflect any network events such as route change in the physical network,

network link failure, etc. on the cloud-based responses.

• Cost : This is the monetary cost to run our framework on the cloud with

respect to owning it.

6.4.3 Experimental Results

We conducted several experiments based on the mentioned metrics as detailed below:
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Response Time and Packet Loss Results

First, we looked at the response times and packet loss percentages for reconnaissance

packets with and without a cloud-based approach. In these experiments, we changed

the traffic load in the physical network from zero bandwidth usage (e.g., no other

traffic in the network) to overloaded communication links by doubling the packet

transmission rate with respect to the links’ bandwidth. We show these results in

Table 6.1.

In case of no traffic, there is not any packet loss in both cases as expected since

network switches are only dealing with reconnaissance packets. Average delays in

this case, however, have a big difference: from 2.1ms to 47.8ms. The difference is

caused by sending and receiving the packets through the reflection network. This

means having more number of hops due to GRE tunnels where the packet might be

passing through multiple hops on the Internet, which eventually results in increased

delay. However, the difference is smaller in a lightly loaded network environment.

For example, we observe that in the case of 60% of network load, the delay jumps

to 12.9ms for the physical network with a 12% of packet loss. Meanwhile, there

is not any noticeable impact on the cloud-based response results. Each increase in

the network load after 60% increases packet loss percentage for physical network

responses. The cloud-based response is affected in the scenario when the network

links’ bandwidths are fully loaded. Overall, our results show that the cloud-based

reflection network brings approximately 25-35ms additional delay while having less

packet loss.

We also observed two interesting results in this table. The first is the response

times in the physical network. More traffic load causes increased response times

but only after 60% network load until it is 100%. After this point, the response

time did not increase much; however, more packet loss is seen. We believe that this
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Table 6.2: Average Ping Responses Times from Different Server

Google Server in Cloud Hawaii Korea

10 ms 100 ms 168 ms

happens because of the filled queues of the switches. By default, ping packets are

not re-sent [Lin]. Thus, the packet loss keeps increasing if the switches are not able

to catch up with forwarding requests. Due to dropped packets, the delay also keeps

almost flat. The second interesting result is related to cloud-based response times.

We notice that there might be faster responses even though the traffic is increased

in the physical network (e.g., 20% network load vs. 30%). We speculate that this

happens because of the inconsistency of Internet traffic. The packets are sent to

the cloud-based reflection network by traveling through several routers. We do not

have control over these routers, and at each minute or even second, there might be

a huge difference in the number of packets transmitted from other networks.

Delay of Reconnaissance in Public Servers

In addition to our reconnaissance response times within the experimental setup, we

also run reconnaissance requests to public servers in different locations. Specifically,

we sent ping requests to google.com, hawaii.gov, and kaist.edu (a university in Ko-

rea). We observed that the Google server is able to respond within an average time

of 10ms. We believe this happens because the Google servers are located in different

cloud locations and possibly one within the same city or state of our node, which

sends the requests. However, the response from hawaii.gov and kaist.edu has over

100ms response times as displayed in Table 6.2. By showing these results, we claim

that our cloud-based response brings a reasonable and acceptable average delay of

25-35ms to the reconnaissance requests.
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Cost of Reflecting the Network Events

The other metric we evaluate is the delay in reflecting network behavior changes in

the cloud-based responses. These changes can be a new switch addition/deletion, a

link fault, or rerouting in the communication paths. The processes for such events

are explained in Section 6.2.4. Specifically, the total time it takes for reflecting the

link failure is the sum of the time for failure detection of the network link, time to

inform NFV Management, and time to turn the link off from NFV Management.

These values are shown in Table 6.3 as 50ms, 22ms, and 2ms on average. The total

time is less than 75ms. As another experiment, we considered rerouting networking

paths. In this case, SDN Controller was responsible for this update. Whenever

SDN Controller in the physical network changes any networking path, this updated

information is forwarded to the SDN Controller in the cloud through NFV Man-

agement. After that, the cloud SDN Controller updates the flow tables of cloud

switches in order to follow the same path in the reconnaissance packets as in the

physical network. In this case, the total time is the sum of time it takes to inform

NFV Management, and the time it takes to update network switches in the cloud.

This is measured as less than 70ms (22ms + 45ms) on average. As it is shown in

these two experiments, our reflection network is able to reflect the events of the

physical network in less than 75ms.

We now discuss if 75ms time overhead would be acceptable in actual settings.

The reconnaissance requests are typically repeated with a few requests. For example,

ping is sent every 1-second after it receives the response [Lin]. It is also sent multiple

times by default. Hence, we claim that our additional delay is negligible compared

to 1 second waiting time, and the correct response will be received from the client.

As another example, traceroute requests are typically sent three times consecutively.

Even if one of the traceroute response represents the network switches wrongly, the
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Table 6.3: Time for different Network Events/Updates

Network Link Time to Time to Update Routes

Failure Detection inform NFV Turn off in the Cloud

Detection Management the Link Network Switches

50ms 22ms 2ms 45ms

other two responses from the same switch will be corrected. Thus, our reflection

network is able to provide timely updates and responses to the clients correctly in

case of any network events.

Cost Analysis of Cloud-based Reflection Network

In this part of the analysis, we provide some cost considerations comparing the cases

of purchasing or renting these reflection network switches. If the reflection network

is purchased and installed within the physical network infrastructure, these are the

factors to consider: the cost of buying these switches and the cost of maintaining

these switches (electricity, management, providing the IP addresses, and the physical

location to store them). If the reflection network is rather rented from a cloud

provider, then the network owner does not need to invest any money for setting up

this system and maintaining it. The only cost would be cloud service cost, but this

will be very minimal as these virtual switches will be used only for reconnaissance

packets.

As a concrete example, we considered Microsoft Azure Virtual Network services

as a potential cloud-based network provider. According to the pricing calculator

on the Microsoft website, 100 Gb of data traffic per month costs only $1, and the

network infrastructure is free to use [Mic]. We should note that reconnaissance

packets are usually very tiny, and 100Gb of data traffic in a month is more than

what is required. However, if the other option is pursued, buying the simplest
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network switch would cost at least about $100, and installing full network topology

with tens of switches would end up thousands of dollars to spend. It would also

require labor work to install and maintain them. Hence, we claim that renting it

as a cloud service makes it a more affordable and logical choice instead of owning

these overlay network switches.

6.5 Conclusion and Future Work

In this chapter, we presented a cloud-based deception framework against network

reconnaissance attacks by utilizing a virtual reflection network on the cloud. Specif-

ically, we forward reconnaissance traffic to this virtual reflection network by creating

GRE tunnels from the physical network. We demonstrated that our solution brings

a negligible additional delay while letting the network tester to do the troubleshoot-

ing properly. We also provided a cost analysis of the system and justified that

it is more economical to rent the reflection networks as a cloud service instead of

purchasing and installing them locally.
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CHAPTER 7

SDN BASED MTD AGAINST SLFA BY ENGAGING WITH THE

ATTACKER: SIGNALING GAME APPROACH

MTD, more specifically, Random Route Mutation (RRM) [JASD13b], is found

useful in defending a network system against SLFAs [ASA19]. However, RRM brings

significant overhead to the network since it takes time to update the system char-

acteristic (i.e., routing information), and this process is usually applied not only to

malicious users but also to legitimate clients. This is because the defender is not

aware of the type of client. Therefore, the concern of when and for whom to change

system parameters in order to minimize the cost of the defender and impact of the

attacker becomes a critical issue, and it should be investigated thoroughly. Hence,

in this chapter, we consider the interaction between the attacker and the defender

in order to precisely apply MTD techniques.

Even though there are many research works proposing defense mechanisms against

SLFAs in the literature, they are mostly reactive solutions in which the attacker did

some harm before the attack is mitigated [XML+18, GKLD16]. In addition to these

works, there are other kinds of proactive defense mechanisms that apply detection

of bots, sending forged responses to the hosts, or similar approaches [WXZ+17,

MTL+18]. We argue that bot detection might not be possible considering that bots

often behave similarly to legitimate hosts, and serving fake replies to hosts is not

acceptable since that may cause letting the legitimate clients use the longer paths

and having more delays. Therefore, there is a need for proactive, dynamic solutions

that can harden the system from the attacks while bringing minimal service degra-

dation to the hosts. To the best of our knowledge, this work is the first to introduce

strategic defense against SLFAs in a proactive manner.
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In order to model such a system that achieves the best efficiency of RRM, we

need to design an intelligent defense mechanism that can take into account the above

concerns for running RRM. To design such a strategic defense mechanism, in this

chapter, we apply a signaling game [Noe88] to model and analyze the attack and

defense actions together. The results from this analysis assist in applying RRM

selectively and appropriately such that the target network can remain sufficiently

protected against Crossfire attacks, and the legitimate clients experience a minimal

cost. In this game, one player constructs a belief about the type of opponent. This

belief is always updated by the opponent’s actions. Then, the player can better

decide about its optimal strategy, given its belief about the type of player from

which it receives messages. Essentially, we consider the attacker and the defender

as the players of this signaling game. We analyze the game and compute all potential

Bayesian Nash equilibria. The game results are then used to decide when and for

whom to perform RRM. We name the corresponding defense mechanism as Strategic

RRM.

To evaluate our proposed solution, we first implement a network using Mininet,

a virtual SDN testbed [Tea], and the defense mechanism on FloodLight Controller

[Pro]. Then, we run experiments with extensive RRM, in which the routing paths are

periodically changed, to observe the overhead to the legitimate clients when there is

not an attack in place. Next, we run the SLFA and realize the reasonable frequency

for periodic RRM, which is used later to compare with Strategic RRM. Moreover,

we consider two kinds of attackers based on attack approach and capability. In

each case, we report the number of packet losses when the defender has either no

protection, periodic RRM, or Strategic RRM. We show that while periodic RRM

provides a significant improvement to the network defense, it introduces packet delay

as well as packet losses even when there is no attacker in the system. We also show

105



that Strategic RRM offers a similar defense performance as periodic RRM while it

causes much less overhead.

In summary, our contribution in this chapter is threefold: First, we model the

attacker and the defender as players of a signaling game and define their actions and

payoff models. Second, we solve the game and derive all possible Nash equilibria of

this game. According to the game results, we also design a strategic mechanism to

defend against SLFAs. Finally, we evaluate the proposed mechanism by conducting

extensive experiments considering different attack approaches and capabilities for

different defense strategies.

This chapter is organized as follows. In Section 7.1, we discuss the preliminaries.

In Section 7.2, we present the game model. In the following section, we analyze

the game and design a defense mechanism. Detailed performance evaluation of

the proposed work is presented in Section 7.4. Finally, we conclude the chapter in

Section 7.5.

7.1 Preliminaries

In this section, we briefly discuss the attack model and proposed defense mechanism

that we applied in this research project.

7.1.1 Attack Model

Stealthy link flooding attacks are indirect attacks such that the attacker targets

the communication links instead of targeting the server directly [RKWM08], as

explained in Section 2.4.1. The attack model of this research considers Crossfire

attacks as the threat and the Autonomous System (AS) as the target domain.

Two different approaches are considered for an attacker:
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• Stealthy Attacker : In this model, the attacker is not in a rush to conduct the

attack. S/he runs reconnaissance, and accordingly creates a target link set.

Sometimes s/he stays idle in order to behave like legitimate users. After that,

s/he starts the attack phase to exhaust the links’ bandwidth.

• Aggressive Attacker : In this approach, the attacker behaves more greedy and

transmits more quickly to congest the communication links. Reconnaissance

attack is performed, the information is collected and the attack pattern is

designed within a given short time for the aggressive attacker.

Furthermore, an attacker often has a limited number of bots. Thus, two quali-

tative capabilities are considered:

• Decent Attacker : The attacker has a small number of bots to launch a Crossfire

attack.

• Strong Attacker : The attacker has an extended capability (i.e., a significantly

increased number of bots) compared to a decent attacker.

7.1.2 Proposed Defense Mechanism

Our proposed defense mechanism is based on a signaling game. Note that the

signaling game is a dynamic game, in which the first move is made by the bot or

legitimate user, and the defender is the second player. The game is incomplete

information because the defender does not know with whom it is playing. This

uncertainty is modeled with Nature. Moreover, we update the knowledge of the

defender in repeated interactions with other nodes. Both players decide their actions

according to their expected outcome. We explain the details of the game model in

Section 7.2. The high-level architecture of our defense procedure is shown in Fig. 7.1.

As can be seen in the Fig. 7.1, our system first initializes the parameters depending
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Figure 7.1: The procedure of defense decision

on the network environment and topology. Then, it checks if the conditions to trigger

defense strategy is satisfied. If the decision is made as to defend, RRM is employed,

and system parameters are updated. If not, the defender stays idle until it receives

an action from the attacker. Each time an action received from the attacker, the

defender updates his/her parameters and checks if it is time to defend.

7.2 Crossfire Attack and Defense Game Model

In this section, we first give an overview of the proposed game. Then, we define the

players’ action sets and model the belief function and payoffs.

7.2.1 Overview

In our Crossfire Attack and Defense Game model, a client can be malicious (a bot

corresponding to a Crossfire attacker) or benign. Clients send various requests to the

servers in the target network. A bot makes ping and traceroute requests so that the

attacker can do the reconnaissance (i.e., link map construction) to launch a Crossfire
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attack. The security administrator of the target network (simply the defender) can

apply RRM to thwart this reconnaissance, so the data phase of the Crossfire attack.

In the case of applying RRM, the defender randomly changes/mutates the routing

paths, thus changing the link map. We model the interaction between the Crossfire

attacker (in fact, each bot individually) and the defender using a signaling game Gcf .

Signaling game is a two-player incomplete information game, in which Nature has a

unique randomizing strategy (i.e., θ) that is commonly known to both the defender

and the attacker. With this randomizing strategy, the type of sender would be

defined.

The first player, a.k.a. the sender (here, the attacker/bot), is informed of Na-

ture’s choice and chooses an action. The second player, a.k.a. the receiver (here, the

defender), then chooses an action without knowing Nature’s choice but observing

the first player’s action. Our choice of the signaling game is based on the dynamic

and incomplete information characteristic of the Crossfire attack, where the action

of one player is conditioned over its belief about the type of the opponent. The

action flow of the game is shown in Fig. 7.2.

The game Gcf is played individually with each client/sender who can be a bot

or a legitimate user. A bot is considered as a type t1 sender, while a legitimate user

as a type t2 sender. We represent this set of sender types as T, i.e., T = {t1, t2}.

The second player of game Gcf is the defender. The game is played in the following

steps, as shown in Fig. 7.2. The defender receives two different types of messages,

i.e., Reconnaissance or Regular Traffic. Nature draws type t1 or t2 with a probability

of θ or 1−θ, respectively. The defender does not know exactly whether the observed

message is coming from a bot or a legitimate user, but s/he can only form/follow

a belief. According to this belief, the defender must decide whether to defend by

applying RRM or not. In the following subsections, we define the actions of the
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players and accordingly model the belief and payoff functions. In the game, we

often use the term ”attacker” to represent a bot.
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Figure 7.2: Gcf signaling game model representation.

7.2.2 Action Sets

In game Gcf , we define the action set A of the first player by an ordered pair

(m(t1),m(t2)), wherem(t1) is the action of type t1 (i.e., a bot) andm(t2) is the action

of type t2 (i.e., a legitimate user). We also assume that each sender, irrespective of

his/her type, can select his/her action from the same action set. Let A be {N,G},

where N represents sending reconnaissance packets while G is about sending the

usual/regular traffic. It is worth noting that if the attacker sends reconnaissance

packets (i.e., plays N), then the defender may become suspicious. On the other

hand, when the attacker sends regular traffic (i.e., plays G), s/he will not gain the

necessary information.
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Table 7.1: Symbols used in manuscript

Symbol Definition

N Reconnaissance packet sender

G Regular packet sender

R Defender’s action as no RRM

R Defender’s action as RRM

α Attacker’s gain from single reconnaissance packet

θ Belief value of whether the client is legitimate or bot

β Cost for renting bots

δ Cost of not providing information to legitimate user

λ Gain of defending through reconnaissance

c Cost of applying RRM

f Frequency of Random Route Mutation (RRM)

Nc Number of hosts in the network

By using these actions, the attacker can make a strategic plan with a combination

of actions. This strategy could either be slow and stealthy, or quick and greedy. If

the attacker’s strategy is stealthy, as defined in Section 2.4.1, a longer time will be

required to do the reconnaissance. In this long period, there is a higher possibility

of having changes in the link map due to existing defense strategies (or even usual

network events). Hence, the attack will have less chance to be successful. On the

other hand, if the attacker is so greedy about the attack, s/he might immediately

do harm yet possibly end up being caught quickly. Thus, the attacker needs to do

a trade-off between the time spent for reconnaissance and the risk of being detected

by the defender. We will elaborate on this issue in more detail in Section 7.4.

Similar to the sender, the receiver/defender has action set B. It can respond/reply

with a route mutation to deceive the attacker (i.e., play R). Otherwise, it replies

with no route change (i.e., play R). Hence, B = {R,R}. If the defender applies

route mutation (i.e., R), then there will be an extra cost depending on the time it

takes to install flow rules on network devices. The cost for the regular replies (i.e.,
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R) is considered as zero since there are not any additional efforts required. We will

later elaborate on the defense cost when we obtain the defender payoffs.

7.2.3 Belief Model

In game Gcf , the defender does not know whether it receives messages from an

attacker or a legitimate user. Yet, it observes these messages and builds the belief

function (i.e., θ) about the sender’s type based on this observation. Remember that

this θ is common knowledge between the sender and the receiver. The defender

has a different belief for each client/sender: θy, where 0 < y ≤ Nc. Furthermore, to

represent the belief at a time instance x, we use the notation θy(x). The belief ranges

from 0 to 1, while 0 showing no sign of suspicion of the client’s legitimacy. The belief

has two parts: the initial belief that is statically calculated at the beginning of the

game and the dynamic belief that is updated according to the sender’s actions.

Initial Belief

In our environment, we assume there is no information available about any client,

and all clients are at the same level of suspicion. Thus, we assign 0 to each initial

belief (i.e., θy(0)). However, the defender can assign different values to the initial

belief for each client if any prior information is available.

Dynamic Belief

The dynamic belief for a specific sender will be calculated each time the game is

played. The belief is defined based on three different weighted factors, as shown in

Equation (7.1). While these factors are normalized values, the summation of their

weights is 1 (100%). The first factor is the previous belief (i.e., θy(x − 1)) that

is weighted by F1. The reason is that if a client has been behaving suspicious or
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benign for most of the time, his/her current action, which may be different from

this characteristic, cannot eliminate (or changes) his/her performance previously

observed/learned. That is why we consider assigning a high weight (e.g., 90% ) to

F1.

θy(x) = θy(x− 1)× F1 +

∑Nc

k=1 θk(x− 1)

Nc

× F2 + A(x)× F3 (7.1)

The second factor is the average of the beliefs for all the network nodes (i.e.,∑Nc
k=1 θk(x−1)

Nc
). This factor reflects the Crossfire attack characteristic in which a num-

ber of bots are used to perform the attack. F2 is the weight representing its impact

on the belief function, and we consider it notable (e.g., 9%). The last metric we

use to update our belief is the current/latest packet that we have received from the

sender (i.e., A(x)). Its weight is F3, which we consider as small (e.g., 1). Even

though its weight is considered small, its impact on the belief adds up rapidly as the

sender keeps sending packets to the receiver, and the game is continuously played

for each packet receipt.

7.2.4 Payoff Model

In this section, we calculate the benefit and cost of each of the players considering

all possible strategies. Let us first consider the case where the game is played

between the attacker/bot (i.e., the sender type is t1) and the defender. This case is

represented by the upper part of the signaling game, as shown in Fig. 7.2.

If the defender applies RRM (i.e., plays R) in response to a reconnaissance

message (i.e., the sender plays N) from the bot (i.e., given that Nature has chosen

the bot to play with a probability of θ), the defender can successfully defend the

targeted server(s) against the attack. Let us assume that α represents the number

of packet losses that the attacker can cause by leveraging the information that is
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collected through the reconnaissance process. In other words, α is the numerical

gain of the attacker. If we assume that the frequency of running RRM is f , then the

benefit of the attacker will be degraded for the higher frequency of RRM. Hence, in

this case, we model the benefit of the attacker by 1
f
α. We designate the attacker’s

cost by β, which is an increasing function on the number of bots that are deployed

by the attacker in the network. This parameter also represents the capability of

the attacker in our experiments: a decent or strong capability. While the decent

attacker can afford a small number of bots, the strong attacker can deploy more

bots. The number of packets sent by the attacker can be considered as another

metric of the attacker’s cost, yet this does not bring a direct cost to the attacker.

Finally, considering the calculated benefit and cost for the attacker, we conclude

that the attacker’s payoff is 1
f
α− β.

We represent the benefit of the defender (gain of defending against reconnais-

sance) by λ. This benefit is made by giving the attacker the wrong information

about reconnaissance, which prevents the data phase of the attack. This action

brings protection to the network in terms of decreased packet loss. Moreover, we

represent the total cost of applying RRM by c, which is measured in terms of ad-

ditional delay and packet loss that might be caused due to the flow table update.

Given the calculated cost and benefit for the defender, the payoff of the defender

running RRM against the bot is: λ− 1
f
α− c.

Following the above discussion for the payoffs of the attacker and defender, if the

defender does not react to the reconnaissance messages of the bot, the payoff of the

attacker and defender will be −α and α − β, respectively. With a similar analysis,

we can show that the payoff of the defender is −c. If it does not defend, the payoff

would be 0. The payoff of the attacker when s/he does not send reconnaissance

packets will always be equal to −β.
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Now we consider the second game, where the players are the legitimate user and

the defender (i.e., the lower part of the signaling game presented in Fig. 7.2). Since

RRM does not have a significant impact on the legitimate users’ traffic, we consider

its payoff as zero for all possible actions of the defender. However, running RRM

against legitimate users generates wrong information to the legitimate user, and it

may cause a problem with troubleshooting. We model this effect by parameter δ.

Hence, the payoff of the defender when it runs RRM will be equal to −δ − c.

7.3 Game Analysis and Protocol Design

In the following, we first examine game Gcf for the existence and properties of pure

strategy Perfect Bayesian Nash Equilibria (PBNE). We then use our analysis to

design a defensive protocol to optimize defender strategies against Crossfire attacks.

7.3.1 Game Analysis: Perfect Bayesian Nash Equilibrium

In complete information or non-Bayesian games, a strategy profile is a Nash equilib-

rium (NE) if every strategy in that profile is a best response to every other strategy.

However, players in Bayesian games would like to maximize their expected payoffs,

given their beliefs about the other players [SLB08]. A PBNE is characterized as a

strategy profile and belief that satisfy the following four requirements [G+92]:

Requirement 1: After observing any message mj from sender j, the defender

must have a belief about which types could have sent mj. Denote this belief by

the probability distribution µ(ti|mj), where µ(ti|mj) ≥ 0 for each type ti, and∑
ti∈T µ(ti|mj) = 1
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Requirement 2: For each message mj, the defender’s action a∗(mj) must maximize

his expected utility ud, given the belief µ(ti|mj) about which type could have sent

mj. That is, a∗(mj) satisfies:

max
mj∈M

∑
ti∈T

µ(ti|mj)ud(ti,mj, a(mj))

Requirement 3: For each type ti, the sender’s (whether a bot or a legitimate user)

message m∗(ti) must maximize his utility (ud), given the defender’s strategy a∗(mj).

That is, m∗(ti) satisfies:

max
mj∈M

ud(ti,mj, a
∗(mj))

Requirement 4: For each mj ∈ M , if there exists type ti such that m∗(ti) = mj,

then the defender’s belief at the information set corresponding to mj must follow

from Bayes’ rule and the sender’s strategy:

µ(ti|mj) =
p(ti)∑
ti∈Tj p(ti)

where Tj denotes the set of types that send the message mj. Considering the above

requirements, we can now define the PBNE.

Definition 1. A pure-strategy PBNE in a signaling game is a pair of strategy m∗(ti)

and a∗(mj) and a belief µ(ti|mj) satisfying Requirements 1 to 4.

In the following, we use (p, 1 − p) and (q, 1 − q) to denote the second player’s

(the defender) beliefs at its two information sets. Recall that for the defined signal-

ing game in Figure 7.2, the sender’s pure strategy determined by an ordered pair

(m(t1),m(t2)) where m(t1) and m(t2) are the chosen strategies by user types t1 and

t2, respectively. Note that in our model t1 and t2 are bot and legitimate types.

Similarly, the defender’s strategy is determined by an ordered pair (a(N), a(G)),

in which a(N) and a(G) demonstrate the defender strategy following the sender’s

reconnaissance and regular traffic signals, respectively.
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Furthermore, a pure strategy PBNE profile is determined as a tuple {S1,S2, p, q},

in which S1 is the pair of the sender strategy chosen by each type (whether bot or

legitimate user), S2 is the pair of defender strategy in response to each signal, and

p and q are attacker belief concerning the type of sender for reconnaissance (N) or

regular (G) signal, respectively. According to the sender’s pure strategy, two kinds

of PBNE could exist in a signaling game, called pooling and separating.

A PBNE is called pooling equilibrium if m(t1) = m(t2). In other words, the bot

and legitimate user send the same signal, regardless of their types. In contrast, a

PBNE is called separating equilibrium if m(t1) 6= m(t2), i.e., the bot and legitimate

users send a different signal, depending on their types. We now examine Gcf for

(pure) PBNE. We first probe the existence of pooling equilibria.

Given the definition of pooling and separating equilibrium, in the following,

we derive all conditions under which there exist these Nash equilibrium profiles

in our defined game. In other words, since the values of payoffs vary given the

topology of the network and the period of sending different packets and probes in

the reconnaissance phase, there would be different conditions to be checked for the

existence of these Nash equilibrium points.

Theorem 1. For any values of θ, there exists a pooling equilibrium on N , in Gcf

signaling game.

Proof. Let us suppose that there exists a pooling NE with (N,N) strategy for the

sender. Then the defender’s information set corresponding toN is on the equilibrium

path, so the defender’s beliefs (p, 1 − p) at this information set is determined by

Bayes’ rule and sender’s strategy: p = θ. We first compute the expected payoff of

the defender, given its belief. The defender’s expected payoff for playing R is:

θ × (λ− 1

f
α− c) + (1− θ)× (−δ − c) (7.2)
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And defender’s expected payoff for playing R is:

θ × (−α) + (1− θ)× (0) (7.3)

Comparing the above payoffs for the defender we can define a threshold for

belief, called θ∗, which is equal to δ+c
δ+α(1+λ− 1

f
)
. We first assume that θ∗ ≤ 0, then the

following two cases could take place for the dominant strategy of the defender:

• θ ≥ θ∗ := δ+c
δ+α(1+λ− 1

f
)
: Therefore playing R dominates R, following N signal,

which can be easily verified by comparing the expected payoffs presented in

Equations (7.2) and (7.3).

Now we should check whether the senders have incentives to deviate from

the N strategies, given the defender strategy, which is R in this case. If the

defender chooses strategy R for responding to the message G, there is no

incentive for the senders to deviate from their strategies. In fact, in that case,

the sender of type 1 (t1 or Bot) achieves −β instead of 1
f
α − β. The sender

of type 2 (t2 or legitimate user) obtains 0 in both cases. Hence, there is no

incentive for the senders to deviate from strategy N .

It remains to consider the defender’s belief at the information set correspond-

ing to G (i.e., off the equilibrium path). We need to show if the strategy of

playing R is optimal, given this belief. For this purpose and given that the R

is the best response when θ ≥ θ∗, we should calculate the expected payoffs of

the defender when it plays R and R following strategy G. These payoffs are

q×−c+(1− q)× (−δ− c) and q×0+(1− q)×0. Since there are no values for

q that makes the payoff of defender greater for playing R, there is no pooling

on (G,G) when the defender plays (R,R).

Similarly, to verify if there exists a NE where the defender plays (R,R), we

should first show that there are no incentives for the sender to deviate from the

118



pooling (N,N) strategy. This time considering the defender strategy (R,R),

both types of senders do not have any incentive to deviate from N and play

G as their payoff would be decreased from 1
f
α − β to −β for the bot player

and the legitimate user, its payoff remains 0. Now, we should again calculate

the payoff of the defender given its belief q. In other words, this time we need

to compute the values of q, where q × −c + (1 − q) × (−δ − c) ≤ 0. Hence

for all values of q ≤ 0, the payoff of the defender would be greater when it

plays R. Then, we can conclude that there exists one pooling equilibrium

{(N,N), (R,R), p = θ, q} for any q in Gcf when θ ≥ θ∗.

• θ ≤ θ∗ := δ+c
δ+α(1+λ− 1

f
)
: In this case the best response of the defender following

N signal is R. Similar to the previous case, we should first verify if there is an

incentive for the senders to deviate from N , if the defender plays R and R off

the equilibrium path. Since both types will not gain any extra benefits (for

bots, the payoff decreases from α− β to β and for the legitimate users, there

are no differences), there are no incentives for them to deviate from playing

N . Similar calculations can be done for the payoff of the defender, off the

equilibrium path to find the possible values for q. Similar to the previous

case, there are no values for q, where the expected payoff of playing R would

be bigger than R. Considering all possible deviations for the case that the

defender plays R and the values of the belief for q there exists another pooling

equilibrium, where {(N,N), (R,R), p = θ, q} for any q in Gcf when θ ≤ θ∗.

Theorem 1 represents that if the selected strategies of both types of the senders

are N , there is an equilibrium considering the belief of the defender for the possible

attacker. In this case, depending on the value of θ, the defender should select one
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Table 7.2: Equilibria and Their Conditions

Theorem Conditions Range of θ # PBNE
Condition on Beliefs

On-equilibrium Off-equilibrium

Theorem 1 − θ ≥ θ∗ PBNE1 {(N,N), (R,R), p, q} p = θ ∀q
Theorem 1 − θ ≤ θ∗ PBNE2 {(N,N), (R,R, ), p, q} p = θ ∀q
Theorem 4 λ ≥ λ∗ ∀θ∗ PBNE3 {(N,G), (R,R), p, q} p = 1 q = 0

Theorem 4 λ ≤ λ∗ ∀θ∗ PBNE4 {(N,G), (R,R), p, q} p = 1 q = 0

of the strategies R or R upon receiving signal N . In other words, if the probability

of the sender being a bot (i.e., θ) is greater than θ∗, the defender should run RRM .

Otherwise, the best response for the defender is playing R strategy. In the case of

θ ≥ θ∗ and θ ≤ θ∗, if users send reconnaissance packets, the defender’s response will

be R and R, respectively.

Theorem 2. For any values of θ, there does not exist any pooling equilibrium on

G, in Gcf signaling game.

Proof. In the game Gcf for any values of belief θ, the defender’s best respond to

pooling strategy of (G,G) is always R. In other words, the defender does not

perform RRM in this case. Consequently, we should see if the senders have any

incentive to deviate from G strategy. Let us consider two possible strategies of

the defender off the equilibrium path (when it believes in playing with Bot with

probability p). Since by deviating from G to N , the sender of type t1 (Bot) can

always increase his/her payoff from −β to 1
f
α − β (when the defender plays R off

the equilibrium path) or from −β to α − β (when the defender plays R off the

equilibrium path), (G,G) cannot be at any pooling equilibrium.

Theorem 3. There is no separating equilibrium on (G,N) in the Gcf signaling

game.

Proof. Suppose (G,N) is a pair of senders’ strategy, then both of the defender’s

information sets are on the equilibrium path, so both beliefs are determined by
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Bayes’ rule and sender strategy: q = 1 and p = 0. Defender’s best response following

these beliefs is always R, for both types of the sender. Hence, we should check if

the sender’s strategy is optimal, given the defender strategy. If the sender of type

1 deviates by playing N signal instead of G, the defender responds with R, giving

t1 (i.e., the Bot) a payoff of α− β, which exceeds t1’s payoff of −β from playing G.

Thus, (G,N) cannot establish any separating equilibrium.

Theorem 4. There are two classes of separating equilibrium {(N,G), (R,R), p =

1, q = 0} if λ ≤ α(1/f −1)+ c and {(N,G), (R,R), p = 1, q = 0} λ ≥ α(1/f −1)+ c

in the Gcf signaling game.

Proof. Similar to Theorem 3, we first assume that (N,G) is a pair of senders’ strat-

egy. Then both of the defender’s information sets are on the equilibrium path: p = 1

and q = 0. Considering (N,G) strategy of the senders, the defender’s best response

following these beliefs can be calculated by comparing the payoffs of the defenders.

For sender with type t1 (i.e., bot), the best response of the defender is calculated

by comparing the following two payoffs: λ − 1
f
α − c and −α. Two cases can be

identified given that λ∗ = α( 1
f
− 1) + c:

• λ ≥ λ∗: The best response to play N by type t1 is R and the best response to

type G by type t2 is R. We should check, if the sender’s strategy is optimal

given the defender strategy. Since the bot payoff would be decreased from

1
f
α − β to −β and there is no difference for the legitimate payoff, we can

conclude that the {(N,G), (R,R), p = 1, q = 0} is a PBNE. We name it as

PBNE3 for later references.

• λ ≤ λ∗: In this case, the best response to play N by type t1 is R and the best

response to type G by type t2 is R. Similar to the previous case there is no

incentive for the senders to deviate from (N,G) strategy.

121



The above results present all possible PBNEs of game Gcf . Considering these

equilibria, we can now provide the best plans of actions for the defender, given its

belief about the sender’s type and its payoff at different strategies.

7.3.2 Protocol Design

In this section, we design a strategic Crossfire defense mechanism to optimize the

strategy of the defender. Table 7.2 summarizes the results presented in Theorems 1,

2, 3, and 4. All possible separating and pooling PBNEs are displayed. Leveraging

these results, we design our proposed strategic Crossfire defense mechanism, namely

Strategic RRM. The pseudocode of this proposed mechanism is given in Algorithm

7.

In the Algorithm 7, we first pick a value for the frequency (f) of RRM that

represents how often the defender can perform RRM. It is decided through our

preliminary experiments. The minimum period of running RRM is shown as P ,

which is assigned to 1/f . Then the belief for each client is initialized to zero at the

beginning of the experiments. The defender always updates its belief each time it

receives a packet, and it computes the potential gain/payoff. Later, if the belief is

greater than θ∗ and the received packet is reconnaissance, the defender chooses to

run RRM at the end of P period. In addition to that, if the value of λ is greater

than λ∗, the defender should also run the RRM. Hence, the optimal decision for

the defender is obtained according to equilibria PBNE1 and PBNE3. The same

processes after the initialization will be performed every P seconds.
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Algorithm 7 Strategic Crossfire Defense Mechanism

1: h: Host ID (i.e., its IP address) communicating with the server
2: thalive: The time that host h is still transmitting packets
3: f : The frequency at which we can run RRM
4: P ⇐ 1

f
5: n := 1
6: θh ⇐ Initialize the belief for h
7: while ((n− 1)× T ) ≤ thalive do
8: Estimate/calculate α, β, λ, δ, and c.
9: for Each packet received from h between (n− 1)T and nT do

10: Update θh according to the packet type (signal)
11: Compute θ∗ (Theorem 1)
12: Compute λ∗ (Theorem 4)
13: end for
14: if λ ≥ λ∗ then
15: Perform RRM
16: else if θ ≥ θ∗ then
17: Perform RRM
18: end if
19: n := n+ 1
20: end while

7.4 Evaluation

In this section, we briefly discuss our experimental setup and evaluation metrics.

Then, we present the findings from the experiments.

7.4.1 Experiment Setup

The network environment is implemented using Mininet [Tea] and FloodLight [Pro]

is used as an SDN Controller. The proposed signaling game-based defense strategy is

developed as an application on top of the FloodLight Controller. In the experimental

setup, we consider the network topology with 20 switches, 3 decoy servers, 1 target

server, and several clients, as shown in Fig. 7.3. The number of clients differs for

each experiment based on the attack model and the purpose of the experiment.

The target server is encircled by red and decoy servers are placed interior part of
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Figure 7.3: Experimental Network Topology

the network topology in Fig. 7.3. The bandwidth of each link in the network is

configured as 100 Mbps. A python-based client/server application is implemented

for the communication between host-target servers. We implement different attacker

models and apply them in experiments to evaluate them. The configuration of the

network is further explained below.

Defender’s Setup

In our experiments, we consider 3 different configurations for the defender. We name

them as No Defense, Periodic RRM, and Strategic RRM.
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• No Defense: To observe the worst-case attack scenario the network envi-

ronment is implemented without any defense mechanism. In this case, the

attacker can easily gain the (static) routing information by doing reconnais-

sance attacks. Next, s/he attacks the target links which are found by using

that static information.

• Periodic RRM : The second defense setup is based on performing RRM peri-

odically. The routes are changed periodically to the alternative ones that are

pre-calculated. We choose different values of frequencies to run RRM in order

to observe the impact.

• Strategic RRM : It is our proposed signaling game-based defense mechanism.

In this case, the defender takes actions based on the attacker’s actions, as

explained in Section 7.2.2. The mechanism is given in Algorithm 7 and is

implemented accordingly.

Attacker’s Setup

In a Crossfire attack setup, a decoy server does not receive a large amount of traffic

from one or multiple bots simultaneously so that the activity is not considered as sus-

picious at the network administrator’s side. Thus, we limit each bot’s communica-

tion to only 1 decoy server with a regular amount of traffic. Each bot sends/receives

approximately 5 Mbit of data per second in order to behave as legitimate.

We implement two different attacker behaviors, namely aggressive and stealthy,

with two different capabilities, such as decent and strong, as mentioned in Sec-

tion 2.4.1. The aggressive attacker’s time for reconnaissance is fixed to 1 minute in

experiments. The decent attacker has a limited number of bots, which is as much

as the number of legitimate clients in the network. Meanwhile, the strong attacker

is equipped with a doubled number of bots. Even though the attack impact is ex-
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pected to increase, it should also be noted that the more bots the attacker employs,

the higher cost is incurred on him/her. We run our experiments on each case to

show how effective our solution would be with different attack models.

Table 7.3: Delay Caused by RRM (in microsecond)

Client Delay Delay with RRM

ID Without Optimum size Path Any size Path

RRM 60-seconds 30-seconds 10-seconds 60-seconds 30-seconds 10-seconds

1 2853 2892 3040 3398 3781 3717 4053

2 2854 2898 3050 3406 3761 3616 4145

3 1497 1533 1629 1882 1973 2075 2351

4 1499 2161 2322 2698 2986 3205 3578

7.4.2 Evaluation Metrics

The application of RRM introduces some overhead costs on the defender since it

creates extra packets in the network. This overhead can cause Quality of Service

(QoS) problems in the form of increased communication latency/packet delay or

a higher number of packet losses for legitimate users. We specifically consider the

following metrics to be measured in our experiments:

• Delay for using longer path: Using a randomized alternative path can cause

longer end-to-end delay since the route may not be the optimal/shortest any-

more. This metric shows the increase in delay compared to the optimal path.

• Delay for flow table updates: Flow tables are updated whenever RRM is trig-

gered. This process of updating flow table entries of switches takes time. This

time is measured to show additional delays that legitimate clients are exposed

to. Related to this issue, some of the packets may drop if the queue of a switch

becomes full, and it cannot handle any more packets whenever the flow table

is updated even though no attack is being taken place.
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• The number of packet losses: This metric represents the number of packets

lost for legitimate users due to attacks or the execution of RRM.

7.4.3 Experimental Results

We run experiments on different network configurations to observe each evaluation

metric separately. We first show the overhead of performing RRM on the network

(i.e., legitimate users) varying the RRM frequency, i.e., the interval period between

two subsequent route mutations. We find the optimal period among them, and

use this Periodic RRM to compare with the proposed Strategic RRM by running

experiments with different adversary models.

Observing RRM Costs without any Attacker

We run our experiments without considering any malicious activities in the network

in order to measure the defender’s cost (i.e., the cost imposed on its clients). In

the experiments, we measure the additional delay that is caused due to updating

flow tables as well as using longer paths when RRM is applied. We first change the

RRM frequency to observe the flow table update cost. Here, the routing paths are

kept the same. Then, to assess the delay for using longer paths, we run experiments

selecting optimal (shortest length) paths as well as non-optimal (alternative) paths.

Table 7.3 presents the average packet delay for 4 randomly selected legitimate

clients. We can easily see that a higher frequency of RRM (i.e., when the RRM

interval period is 10 seconds) brings additional delay to the clients if alternative

path sizes are the same as the optimum path. The slight difference between each

column is caused by flow table updating. As an example, we can take a look at

the delays for Client 1: during the 60-seconds period RRM, the average delay is

2892 milliseconds, while the delay becomes 3040 milliseconds and 3398 milliseconds
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Table 7.4: Packet Drop Caused by Flow Table Update

10-seconds RRM 30-seconds RRM 60-seconds RRM

10.1% 8.6 % 1.6%

when the periods are 30-seconds and 10-seconds, respectively. Even though the

difference between them looks negligible (in milliseconds), it should be noted that

the average delay is computed for approximately 100 thousands of packets in a 10-

minute long experiment. Thus, the sum of additional delays that are caused by flow

table updates is a significant cost considering the delay increase for 100 thousands

of packets where only a few times flow table updates are performed. We can also

observe in Table 7.3 that if we use alternative (i.e., non-optimal) paths for clients,

the average delay increases significantly. This is because the increased number of

hops adds further delay to the packet communication.

Next, we assess if the route updates can cause packet drops. The experimental

setup remains the same as the previous ones except we consider a higher number

of clients to send more simultaneous packets in order to occupy the queues/buffers

at the switches and simulate an environment that would more likely occur during

Crossfire attacks. We use small-sized packets (100 bytes each) so that the link

bandwidth cannot be a cause of packet dropping. The results from the experiments

are presented in Table 7.4. We observe that a higher frequency of RRM causes a

larger number of packet drops. This is reasonable considering switches are busier

updating their flow tables in the cases where more often route changes occurred.

In other words, some of the packets cannot be handled on time and are dropped

because of the overflowing of the queue.

The 60-seconds RRM case causes fewer delays and less packet loss compared to

30-seconds and 10-seconds RRM cases if there is no attack, as shown in Tables 7.3
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Table 7.5: Cost Metric for Different Attacker Model

Attacker Packet Loss Average Delay (in milliseconds)

Model No Defense Periodic RRM Strategic RRM No Defense Periodic RRM Strategic RRM

Strong-Aggressive 31% 22% 16% 1172 989 438

Strong-Stealthy 15% 7% 10% 579 380 278

Decent-Aggressive 7% 2% 2% 464 251 200

Decent-Stealthy 3% 0.7% 1% 263 168 141

and 7.4. In other words, the 10-seconds RRM case causes lots of overhead com-

pared to 60-seconds RRM. Thus, we opt to run 60-seconds RRM in the following

experiments to compare with Strategic RRM.
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Figure 7.4: Packet Loss with Strong Attacker

Comparing Strategic RRM with Periodic RRM

The values for different game parameters of Strategic RRM are chosen as shown

in Table 7.6. These parameters are observed and tuned based on our preliminary

experiments on the RRM cost and the impact of attacks. More specifically, α is the

attacker’s gain, and it is considered as the percentage of packet losses due to the

attack (when there is No Defense mechanism), which is 3% where the attacker is

stealthy and decent, as shown in Table 7.5. This value increases if the attacker’s

strategy is more intense or network size is smaller. The parameter λ is the gain

of the defender that s/he earns by defending against the reconnaissance attack. It
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Figure 7.5: Packet Loss with Decent Attacker

Table 7.6: Parameters Used in Simulation

Parameter Name α λ δ c f

Value 3 2.3 9 1.6 1

is calculated by deducting 0.7% packet loss when the 60-seconds Periodic RRM is

applied from 3% packet loss when there is No Defense mechanism. Thus, λ is set at

2.3. λ increases if RRM is applied more often than 60-seconds. The parameter δ is

the cost of the defender with respect to legitimate users. We derive this parameter as

the percentage of increase in the average packet delay from the case of No Defense

(a delay of 2175 microseconds) to the case of 60-seconds RRM (a delay of 2371

microseconds). Hence, we calculate δ as 9. The value of δ will increase if RRM is

applied more often. In addition, we assign 1.6 to c since it is the packet loss (as

shown in Table 7.4) in the case of 60-seconds RRM. The cost variable, c, increases

if RRM is more frequent. Finally, we consider the minimum possible interval of

running RRM as 1 second. Hence, the frequency (f) is set to 1.

In Strategic RRM, the defender builds its belief about each of its clients of being

a bot and performs RRM accordingly, as it is mentioned in Section 7.2.3. In other

words, the attacker is able to run a stealthy attack initially until the belief increases

to some extent. Therefore, it is expected to see more packet losses for Strategic
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RRM at the beginning of the experiments. Meanwhile, it is also expected that

Periodic RRM causes a similar number of packet losses since it has the same strategy

throughout the experiments.

In the next experiments, we implement different attack models for each defender

type and run them separately. In order to observe the performance in different

attack models, we plot the graphs individually in Fig. 7.4 and Fig. 7.5. Packet loss

percentage and average delay for all network nodes are given in Table 7.5. The

attacker model demonstrated in Fig. 7.4a considers a strong one with aggressive

behavior. As Fig. 7.4a shows, in the case of No Defense, the number of packet

losses are high, and it stays almost similar throughout the experiments. However,

in the cases of Periodic RRM and Strategic RRM mechanisms, the scenario changes

dramatically. Strategic RRM has a much less number of packet losses after the first

few minutes of the experiment. This initial period takes the belief to a state at

which RRM starts to perform properly against the possible bots. An important

observation is that Periodic RRM usually has a higher number of packet losses

continuously since it changes the routes at every time interval of the period, which

may not overlap with the attacker’s reconnaissance phase. However, this is not the

case for Strategic RRM. It defends against the attack only when there are highly

suspicious activities, which is reflected by the increased belief and the equilibrium

conditions. The other interesting observation in Fig. 7.4a is that the peak number

of packet losses appears at the beginning of the RRM cases, not in the No Defense

case. This can be explained as the nature of RRM. Since it is based on random

mutation, it may cause more routes to the same link, which can end up congesting

that specific link intensively. However, in the No Defense case, the attacker can

only target the same link set unless new bots are added, and new routing paths

are identified. In this attack model, the overall network’s packet loss percentages
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are 31% for No Defense, 22% for Periodic RRM, and 16% for Strategic RRM as

presented in Table 7.5. Average transmission delays are parallel to the packet loss

results and decrease from 1172 milliseconds at No Defense case to 989 milliseconds

Periodic RRM case and to 438 milliseconds in Strategic RRM case.

In addition to the attacker with aggressive behavior, we also consider a stealthy

one and represent the results in Fig. 7.4b. In this graph, we can see unbalanced

results, which are basically due to the attacker’s dynamic behavior. The stealthy

attacker model can stay idle some of the time and can make longer reconnaissance

attacks. Hence, it leads to such uneven consequences. Unlike the aggressive attack

model, Strategic RRM has higher packet losses (i.e., 10%) compared to Periodic

RRM case’s packet loss (i.e., 7%), even after the belief gets time to be matured as

shown in Table 7.5. The main reason behind this behavior is the characteristic of the

stealthy attacker model where the attacker reduces and increases the attack intensity

randomly, making the defender’s belief change more often. Even though Strategic

RRM has higher packet loss, the average transmission delay is 278 milliseconds for

the Strategic RRM case while it is 380 milliseconds in Periodic RRM. Moreover, it

should be noted that Periodic RRM brings additional overhead to the network even

if there is not an attack targeting the network. Hence, we claim that it is reasonable

to use Strategic RRM considering the overall advantages.

Furthermore, we run the same experiments with a decent attacker. As we defined

earlier, the number of bots he has is half of the bots that the aggressive attacker has.

The results are shown in Fig. 7.5, which are correlated with the ones in Fig. 7.4. One

significant observation is that the numbers of packet losses are decreased by more

than half. In other words, increasing the number of bots, as in the aggressive case,

raises the damage significantly, more than a linear increase. It is easily noticed that

the number of packet losses goes down to zero in the case of the decent attacker,
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as shown in Fig. 7.5a and Fig. 7.5b. This is because there are fewer bots to

be protected against. The other result to pay attention is that there is a more

high number of packet losses consecutively in Strategic RRM compared to a strong

attacker since less number of bots create less suspicion compared to more bots as it

is shown in Equation (7.1). This interesting outcome can be seen in the comparison

of Fig. 7.4b and Fig. 7.5b. In addition to that, Strategic RRM has almost the same

overall contribution (e.g., 2% for aggressive, and 1% for stealthy) to the network

defense compared to Periodic RRM (e.g., 2% for aggressive, and 0.7% for stealthy)

as reported in Table 7.5. Yet, there is still a notable transmission delay decrease

from 251 milliseconds to 200 milliseconds with Aggressive Attacker, and from 168

milliseconds to 141 milliseconds with Stealthy Attacker whenever Strategic RRM is

used.

7.5 Conclusion

In this chapter, we present a signaling game-based dynamic MTD to defend against

Crossfire attacks. We first model the attacker and the defender as a signaling game.

Considering their payoffs, we compute the equilibria of the game, which represents

the best strategies for each player considering the opponent is rational. According

to the game results, we develop an algorithm, namely Strategic RRM. We implement

and compare it with Periodic RRM. Our experimental results show that Strategic

RRM can lessen the impact of Crossfire attacks similar to Periodic RRM, while it

brings significantly less overhead.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, we proposed several defense frameworks against SLFAs.

In this section, we summarize our works in each chapter. In our first work, we

considered mitigating the SLFA attack before the network links incur significant

damage. In other words, we changed the traffic paths before any communication

link is congested. We showed that our framework is able to provide protection

depending on the frequency of route updates. Furthermore, we observed that the

benefit of TCP traffic is higher than that of the UDP.

In our second work, we proposed a framework for the ISP networks. In this

framework, we employed virtual network switches that deceive the attacker’s vision

of the networking paths. We also created virtual collection points (VCPs) that

behaves as a middle-box and analyzes all the interesting traffic. These VCPs were

also used to do forensics investigations for any incident that happens in the network.

In the experimental evaluations, we presented that the attacker has a much lower

success rate planning the data phase of SLFA.

In the third work, we considered the effectiveness of the network debugging

tools while employing MTD. In this manner, we utilized cloud-based services that

provide necessary information to the requester while the malicious requester is not

able to create target links for SLFA. We showed that the cloud-based overlay network

contributes to the system’s security with negligible additional delays.

Finally, in the last work, we strived to solve the problem of deciding and picking

the best strategy to employ MTD. We modeled the attacker and the defender into

a game and tracked the interaction between them. We showed that our game-

based solution has far less number of packet loss compared to the periodical MTD

application.
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We present several key directions for future research directions:

• It would be interesting to improve the MTD mechanism by investigating pos-

sible integration of machine-learning for enhanced early detection of potential

DDoS attacks. Furthermore, Intrusion Detection Systems such as SNORT

[R+99] can be integrated into the system for further security analysis.

• It would be beneficial to investigate the Virtual Network Placement problem,

which involves and explores the best usage of the virtual nodes in the network.

In our framework, we considered virtual nodes installed in a static location

without any resource constraints. Thus, the placement of virtual network

nodes would be improved and chosen more effectively and wisely.

• Another future research direction would be to extend our strategic MTD-based

framework for other DDoS-based emerging attacks. In other words, we would

like to consider the interaction between the attacker and the defender for other

similar attacks. For instance, a recent attack called the Maestro [MSS19] ex-

ploits Border Gateway Protocol (BGP) with poisoning messages which would

be investigated to mitigate with considering the interaction between BGP

routers.
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