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ABSTRACT OF THE THESIS  

AN ECONOMIC ASSESSMENT OF THE IMPACTS OF 

OUTDOOR WATER USE RESTRICTIONS IN SOUTH FLORIDA 

by 

Lara Kiesau 

Florida International University, 2020 

Miami, Florida 

Professor Pallab Mozumder, Major Professor 

Population growth and climate change are important factors determining residential 

water demand. Most residential water consumption can be attributed to outdoor use. To 

reduce water consumption, outdoor water use restrictions (OWRs) have become a 

popular policy tool in the last decades. We developed an integrated framework 

consisting of a Difference-in-Differences (DID) analysis, Value Function approach and 

Stated Preference Study to perform an economic assessment of the impacts of OWRs in 

South Florida. The results reveal a usage reduction of up to 133 gallons per person per 

month due to the strictest OWR, equaling a yearly value of US$26.6-US$54.4 million for 

South Florida residents. To link with the regional hydrological system, we estimate that a 

volumetric decrease of 0.9 million acre-feet in Lake Okeechobee could be related to the 

implementation of this OWR. The findings deliver beneficial information for policy 

decisions regarding the economic and societal implications of OWRs. 
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1. INTRODUCTION 

The scarcity of freshwater is becoming more frequent and more severe 

worldwide than at any point in human history. South Florida is one of the affected 

regions with various factors influencing the increasing water stress. Despite the region’s 

tropical climate with a defined rainy season over the summer months, drought events 

are becoming common, such as the 2006/07 drought (NIDIS National Integrated Drought 

Information System, 2020). During the 2006-07 drought, it rained 25% less than the 

average during the winter months, leading to more than 57% of the state experiencing 

some degree of drought in the subsequent spring (Di Liberto, 2017). Additionally, the 

temperatures were much higher than usual, making that winter the second hottest since 

1895 (Di Liberto, 2017).  

Residential water demand is especially high in urbanized areas with high 

population densities. High water demand can be partially attributed to the rate of water 

usage in private residences, which amounts to more than 300 gallons of water per day 

for the average American family (US EPA, 2018). At least 30% of the household 

consumption occurs outdoors, even a bigger proportion in dry parts of the country, and is 

used for watering lawns and gardens (US EPA, 2018). Therefore, outdoor water use is 

responsible for the largest proportion of residential water use in the U.S. (Argo, 2016). 

As a consequence, conditions such as rising temperatures and decreased or changing 

precipitation can, in combination with a high and varying consumption, result in 

increased pressure on freshwater supply (Environmental Protection Agency & Program, 

2013) in the Biscayne aquifer. The Biscayne aquifer is the main source of drinking water 

in South Florida (Miami-Dade County, 2018), and is part of the regional water 

management system including the Kissimmee Basin, Lake Okeechobee and the 

Everglades (SFWMD, 2018). About 8.7 million people spread over 16 counties depend 
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on this water system for daily supply (SFWMD, 2019c). Therefore, not only climate 

change but also growth-related issues, especially in the Miami metropolitan area, need 

to be considered in water management decisions. One of the pressing issues is the 

continuing population growth, which is projected to lead to over three million new 

residents within the next five years (SFWMD, 2019c). In addition, concomitant 

freshwater demand is estimated to increase by 25% until 2030 compared to 2005 

(Environmental Protection Agency & Program, 2013).  

To tackle these challenges, the water management districts in Florida including 

the South Florida Water Management District (SFWMD) follow the principles of 

Integrated Water Resources Management (IWRM) (Stoa, 2014). Already in 2000, the 

effective water supply plan indicated that traditional sources would eventually not be 

enough to satisfy the needs of South Florida’s growing population while at the same time 

treating the natural system sustainably (FDEP, FDEM, FDACS, & SFWMD, 2007). For a 

long time, the focus laid on supply-side management measures that included dams, 

reservoirs and distribution systems, and planners modeled for expected future growth 

with increased capacity (Gordon Foundation, 2004). Water resources were seen as 

infinite and solely limited by our ability to access and store them, which led to focusing 

on meeting future projected demands with big, centralized and expensive engineering 

solutions (Gordon Foundation, 2004). In South Florida, several alternative, “drought 

resistant” sources were identified and constructed, for instance reclaimed water and 

brackish water demineralization (FDEP et al., 2007).  However, after realizing that 

supply-side management of water with a continued expansion of infrastructures and 

development of new water sources have become more and more expensive and 

unsustainable, both economically and environmentally, there has been a trend towards 

demand-side management approaches (Karamouz, Moridi, & Nazif, 2010). These 
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management approaches recognize that water is a limited resource that needs to be 

conserved and used sustainably (Gordon Foundation, 2004). Urban water demand 

management (UWDM) is focused on measures to increase the efficiency and/or timing 

of water consumption to maximize the use of the existing capacity (Gordon Foundation, 

2004). Despite its initial application as a short-term approach, it has potential to change 

resource use fundamentally in the long term (Gordon Foundation, 2004).  

A common demand-side management tool of UWDM to reduce water 

consumption and regulate the allocation of water is outdoor water use restrictions 

(OWRs) (Milman & Polsky, 2016). Even though the U.S. alone has almost 30 state-

mandated OWRs, varying by frequency, timing, or duration, previous research has 

mainly focused on its effectiveness as a policy tool to change people’s behavior and 

conserve water (Kenney, Klein, & Clark, 2004; Loë, Moraru, Kreutzwiser, Schaefer, & 

Mills, 2001; Milman & Polsky, 2016; Survis & Root, 2012). It has been documented that 

different OWR programs lead to a reduction of the aggregate water consumption by 14-

56%, depending on severity and frequency of the restriction (Grafton & Ward, 2008; 

Kenney et al., 2004; Renwick & Green, 2000). However, several studies have revealed 

consumers’ willingness to pay (WTP) to avoid OWRs or supply disruptions (Gordon, 

Chapman, & Blamey, 2001; Hensher, Shore, & Train, 2006; Koss & Sami Khawaja, 

2001; Tapsuwan, Brennan, Ingram, & Burton, 2007), which illustrates the potential to 

allocate water more efficiently than previous restriction programs. Using a variety of 

models and methods, some studies indicate that OWR programs are economically 

inefficient. For instance, the economic loss caused by water use restrictions in Sydney, 

Australia, in 2004-05, aggregated to A$235 million, which equals A$150 per household 

(Grafton & Ward, 2008). Concerning the welfare impact of OWRs, a direct comparison of 

study results is limited because different methods have been applied. For example, 
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Mansur & Olmstead (2012) examined daily household consumption data from 11 urban 

areas in the U.S. and Canada. Using the estimated demand, they were able to 

determine the shadow price (the estimated price of a good for which no market price 

exists) for marginal units of restricted water, by implementing a two-day-per-week OWR 

for households. The average household’s shadow price was about three times higher 

than what they actually paid for their water (Mansur & Olmstead, 2012). Finally, 

regarding the implications of the price elasticity of water, it was calculated that a drought-

related need to decrease demand by 20% with focus on outdoor use would require an 

increase in marginal water price of about 50% (elasticity of -0.4) (Olmstead & Stavins, 

2009). These results show that there may exist substantial gains from adopting price-

based approaches to regulate water demand versus using OWRs (Brennan, Tapsuwan, 

& Ingram, 2007; Buck, Auffhammer, Hamilton, & Sunding, 2016; Grafton & Ward, 2008). 

Therefore, the extensive usage of OWRs as a water conservation policy tool in 

South Florida requires a better understanding of the economic implications to reveal 

potential costs and benefits for the society. The purpose of the current study is to assess 

the districtwide OWRs both regarding their effectiveness and economic impacts in the 

region. 
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2. LITERATURE REVIEW 

2.1 Demand-side Management Policy Tools 

Water is technically a renewable resource. However, in human time spans it can 

be considered a finite or exhaustible resource. Many regions of the world rely on water 

from aquifers that has accumulated over the course of thousands of years and is now 

removed at a rate that is much higher than can be refilled by rain. Therefore, water 

shortages have become increasingly common in many parts of the world, including 

North America, Europe and Australia. The water utilities need to handle the issue of 

water supply shortages to ensure a sustainable long-term water supply security. 

Historically, the focus of  water management was on the supply-side management to 

increase the supply to meet projected water demand challenges (Halich & Stephenson, 

2009). However, demographic trends and resource constraints increasingly limit the 

scope of expanding water supply. Instead, urban water demand management (UWDM) 

targets an increase of water use efficiency through the application of different measures, 

such as water pricing and metering, OWRs that promote water conservation, operational 

and maintenance measures to reduce loss and general consumption, and water saving 

devices or public participation programs in water conservation (Loë et al., 2001). These 

approaches can be subdivided into price and non-price measures with the latter 

requiring a much more active participation from water users (Borisova, Rawls, & Adams, 

2013). In general, non-price water demand management tools belong to one of the 

following categories: public education, technological improvements and water use 

restrictions (Kenney, Goemans, Klein, Lowrey, & Reidy, 2008). In most cases, water 

utilities do not solely use price to steer their customers’ water consumption (Kenney et 

al., 2008). Instead, as a result of political pushback, equity concerns, and legal 
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limitations they combine price with non-price policies that aim at the short- or long-term 

reduction of water consumption (Kenney et al., 2008).  

2.1.1 Non-price Tool: Public Education 

Public education as a water conservation measure is usually applied in 

combination with additional measures. Therefore, the pure effect of awareness 

campaigns is not clearly detectable, but generally expected to reduce water 

consumption between 2-5% (Baumann, Boland, & Haneman, 1998). However, the 

impact on water consumption varies widely depending on different education campaign 

designs, for instance face-to-face campaigns at schools or town halls versus billing 

inserts and pamphlets. Personal contact and repetitive messages, such as over the 

radio, presumably have a stronger effect on water conservation than a onetime billing 

insert. Nonetheless, results can vary significantly: while Renwick & Green (2000) found a 

water use reduction of 8% caused by a public information campaign (no detail on the 

nature of the campaign was available), a study from the UK that assessed the effect of 

an information campaign among 8000 residential customers including direct mailing, 

radio and newspaper advertisement, found no demand reduction and only 5% of the 

surveyed population indicated that they had noticed the campaign at all (Howarth & 

Butler, 2004). The presented findings indicate the existence of great variations among 

the different designs of this type of approach.  

2.1.2 Non-price Tool: Technological Changes 

Concerning technological improvements, the National Energy Policy Act requires 

all new constructions in the U.S., as of 1992, to install the most advanced low-flow 

toilets, showerheads, faucets, clothes and dishwashers (United States Environmental 

Protection Agency, 2008). Studies have demonstrated the effect of such regulations, 

with differing results for retrofit and replacement programs. Both retrofit programs, 
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considered as a temporary measure such as a faucet aerator or a low-flow shower head, 

and complete replacements with more efficient appliances have shown to lead to water 

use reductions. Renwick and Archibald (1998) performed an empirical study of 

household water demand in two Californian cities, revealing that the installation of low-

flow toilets reduced consumption by 10% per toilet, low-flow showerheads by 8% per 

fixture and the adoption of water-efficient irrigation technologies by 11%. A study by 

Kenney et al. (2008) found similar results with an average reduction of household water 

consumption of 10% because of participation in an indoor rebate program. Complete 

replacements with more efficient appliances seem to lead to greater water use 

reductions than retrofits: Several studies by Mayer et al. (2000; 2003; 2004) analyzed 

the effects of high-efficiency plumbing fixture retrofits in the U.S. in Seattle, Tampa and 

the East Bay Municipal Utility District and found indoor savings varying between 37-50%  

(Mayer, Deoreo, & Lewis, 2000; Mayer, Deoreo, Towler, & Lewis, 2003; Mayer, Deoreo, 

Towler, Martin, & Lewis, 2004). However, it should be noted that the authors found 

leakages to account for part of the water conserved, which points to the potential of 

leakage detection programs to reduce wasting significant amounts of water. Despite the 

pure conservation success, the cost of the appliance replacement must not be too high 

compared to the water rates. Otherwise it takes too long to recover the money spent for 

new appliances through reduced water bills caused by decreased water usage (Barrett, 

2004), which removes the incentive to replace the appliance in the first place.  

Another study analyzed a program by the Miami-Dade Water and Sewer 

Department in South Florida which included full retrofit for senior and low-income 

households, exchange of high-efficiency showerheads and rebates for high-efficiency 

toilets and clothes washers between 2005 and 2007 (Lee, Tansel, & Balbin, 2011). 

Overall, within the first and second year of the retrofit water consumption dropped by 6-
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14% with toilets and clothes washers leading to higher reductions (Lee et al., 2011). 

Furthermore, participants who had more than one appliance with higher efficiency 

reached a greater water use reduction (Lee et al., 2011). Immediately after the retrofit or 

exchange, participants first increased their water consumption (Lee et al., 2011). This 

offsetting behavior dissipated after one to two years (Lee et al., 2011).   

For outdoor water consumption, technological improvements include smart 

irrigation devices such as rain sensors or soil moisture sensors. The 2000 Florida 

Statutes already require every resident “[…] who purchases and installs an automatic 

lawn sprinkler system after May 1, 1991, shall install a rain sensor device or switch 

which will override the irrigation cycle of the sprinkler system when adequate rainfall has 

occurred” (The 2000 Florida Statutes, 2000). However, how closely this regulation is 

being followed is questionable since enforcement is relatively difficult.  

2.1.3 Non-price Tool: Outdoor Water Use Restrictions (OWRs) 

Outdoor water use restrictions (OWRs) are among the most popular measures, 

while they are relatively under-studied (Survis & Root, 2012). Outdoor water use 

restrictions can either be voluntary or mandatory and most of them do not restrict a 

certain amount of water per residential customer or household but instead specific times 

(e.g., not between 10am to 4pm) or uses (e.g., no car washing, no sprinkler using). In 

other words, certain behaviors are restricted. Since outdoor water use is climate-

sensitive and connected to behavioral and cultural factors, it is generally more flexible 

than indoor water use (Milman & Polsky, 2016). Therefore, OWRs were originally 

thought to be implemented as a stopgap measure to decrease an immediate or 

temporary discrepancy between supply and demand, for instance during a drought 

(Milman & Polsky, 2016). However, OWRs have been implemented as long-term 
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measures in many parts of the world (Milman & Polsky, 2016), aiming to increase the 

efficiency of irrigation practices. As a consequence of their large abundance, criticism 

has risen against OWRs, arguing that a scarce resource such as water should be 

allocated through prices that reveal information about its relative scarcity and value in 

use to avoid negative economic impacts (Olmstead, 2010). Therefore, the following shall 

give an overview of the studied impacts of OWRs, summarizing research findings on 

pure conservation effectiveness, as well as the more recent emphasis on welfare loss 

and residents’ WTP to avoid such restrictions. The combination of these issues will 

explain the diverging opinions on water restrictions, mainly between politicians and 

economists. 

2.1.3.1 Effectiveness 

In general, studies have shown that OWRs can reduce the aggregate water 

consumption by 4-56%, depending on severity and frequency of the restriction (Loë et 

al., 2001; Brennan, Tapsuwan, & Ingram, 2007; Grafton & Ward, 2007; Kenney, Klein, & 

Clark, 2004). A study by Kenney et al. (2004) revealed the significant difference between 

voluntary and mandatory (one- to three-days-per-week irrigation permitted) restrictions 

at eight utilities in Colorado in 2002, showing that voluntary restrictions led to water use 

reductions of 4-12% while the reduction effect of mandatory restrictions varied between 

18-56%, depending on strictness. An analysis of the water use from Southwest Florida 

residents between 1998 and 2010 revealed that tightened OWRs from two- to one-day-

per-week watering resulted in a reduction of water consumption of 13% (Boyer, Dukes, 

Duerr, & Bliznyuk, 2018).  

However, there are some limitations that require attention: the design impacts the 

overall effectiveness in a way that restrictions during certain days or times may not lead 

to an aggregate water use reduction but only a shift of the consumption (Survis & Root, 
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2012; Hensher, Shore & Train, 2006), which highlights that compliance does not equal 

effectiveness (Survis & Root, 2012). Furthermore, OWRs incur additional costs to water 

supply utilities that, in theory at least, need to monitor and enforce them (Loë et al., 

2001).  

Examples of non-compliance are delivered by one case study from Southeast 

Florida that found over-watering during wet periods, caused by neglected temporal 

changes in weather and lawn water demand (Survis & Root, 2012). Furthermore, a study 

conducted with household water consumption data in Tampa, Florida assessed the 

effectiveness of OWRs and found non-compliance having a strong effect, preventing the 

OWRs from being a successful conservation tool (Ozan & Alsharif, 2013). It was 

revealed that customers used over 7% more water when the implemented OWR became 

stricter, from two- to one-day-per-week watering(Ozan & Alsharif, 2013). The study’s 

authors assumed that households were in a dilemma, torn between complying with local 

conservation regulations and rules imposed by homeowners associations(Ozan & 

Alsharif, 2013). Potential additional reasons listed included that enforcement was not 

strict enough and fines not high enough and possibly cultural reasons that put a high 

importance on the perfection of the lawn (Ozan & Alsharif, 2013). Finally, a remarkable 

finding of a study from Northern Nevada in 2008 and 2010 was that an official watering 

schedule with designated days for each household caused wasteful behavior 

(Castledine, Moeltner, Price, & Stoddard, 2011). Weekly water use was 30-40% higher 

when customers followed the scheduled days for weekly usage and 50-60% higher for 

weekly peak consumption compared to periods when customers were allowed to 

distribute the number of days independently (Castledine et al., 2011). To the author’s 

knowledge, this is the only study assessing this characteristic of OWRs.  
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The review illustrates that the majority of studies on the effectiveness of OWRs 

provides evidence of their overall conservation success, with some results highlighting the 

importance of an appropriate design and potential factors for non-compliance. 

2.1.3.2 Willingness to Pay (WTP) 

Several studies have surveyed consumers’ WTP to avoid different kinds of 

OWRs or supply disruptions, with diverse results. Many of these studies focus on 

consumers in Australia who have to deal with the most extensive OWRs: more than 75% 

of all households are affected by water restrictions (Brennan et al., 2007). A study 

among residents of Western Australia showed them to have a WTP of additional 22% of 

the annual water bill to move from one-day to three-day-per-week sprinkler use 

(Tapsuwan et al., 2007). Compared to that, residents in California were found to be 

willing to pay up to US$16.92 per month (in 1993 dollars) to avoid a 50% water shortage 

every 20 years (Koss & Sami Khawaja, 2001). These studies are rather difficult to 

compare because of the different scenarios assessed, but most results show customers’ 

(in general willing to pay) general WTP to avoid restrictions or shortages. In contrast, 

one other study conducted in Canberra, Australia, revealed that residents were unwilling 

to pay to avoid the majority of drought-induced restrictions (Hensher et al., 2006). 

Interestingly enough, the residents were willing to pay an additional $239 (31.26% of 

their annual bill) on top of the average water bill to remove the most severe regulation, a 

daily, year-round restriction (Hensher et al., 2006). However, there were two notable 

limitations: the study included only three different levels of restriction to choose from and 

having a defined ending date is both uncommon and unrealistic (Hensher et al., 2006). 

Since citizens require a clearly defined scenario in order to make informed decisions, 

these limitations are relevant in most studies. Nevertheless, the majority of studies 
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reveal that people are willing to pay to avoid OWRs which illustrates the potential to 

allocate water more efficiently. 

2.1.3.3 Welfare Impact 

Concerning the welfare impacts of OWRs, again direct comparison is limited 

because different methods have been applied. The welfare costs of OWRs can result 

from direct implementation costs, their time requirements, the significant investment in 

public education campaigns and the water utilities’ foregone revenues. One production 

model approach has shown that the net welfare loss for Australian consumers caused by 

a sprinkler ban amounted to A$347 per household (Brennan et al., 2007). The number 

was calculated by averaging the time needed for manual watering at 33% of the mean 

wage rate, and it can climb to as high as A$871 when calculated at 100% wage rate 

(Brennan et al., 2007). Another study calculated the loss in Marshallian surplus, which is 

the total welfare consisting of consumer surplus (the difference between what the 

consumer pays and what he would have been willing to pay) (Murphy, 2019) and 

producer surplus (the difference between the actual price and the price the producer 

would be willing to sell it for) (Chappelow, 2019), with the result that raising the 

volumetric price of water charged to households to achieve the same level of 

consumption would generate a much bigger Marshallian surplus than the use of 

mandatory OWRs (Grafton & Ward, 2008). First, the difference between the welfare loss 

from removing OWRs and implementing a market-clearing price was calculated; next, 

the benefit from reallocating water from indoor to outdoor was estimated to find a 

positive Marshallian surplus of A$238 million, which equals A$55 per person (Grafton & 

Ward, 2008). A study conducted by Mansur & Olmstead (2012) among households in 

the U.S. and Canada used estimates of marginal prices to reveal price elasticities that 

strongly varied between customers. Effects of moving to a market-based approach 
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compared to a two-day-per-week OWR was simulated with resulting welfare gains of 

US$96 per household during the lawn-watering season which was about 29% of the 

average annual household’s expenditures on water (Mansur & Olmstead, 2012). 

Especially when the heterogeneity of the customers and different values for water uses 

are considered, estimates of welfare losses increase. 

All these case studies are focused on the economic explanation that OWRs 

cause greater welfare loss compared to increased volumetric prices (Sibly, 2006). These 

costs arise from the inability of households to equate the marginal cost of water to its 

marginal benefit in use, which results in households that are willing to pay for their water 

to satisfy their particular (outdoor) uses but are unable to do so (Sibly, 2006). These 

findings of significant welfare losses illustrate why economists demand action from 

politicians who fear the negative outcry that might come with an increase of water prices. 

2.1.4 Price tool: Water Rates 

Generally, the discussion between price and non-price advocates circles around 

two main opposing assumptions: price proponents argue that current prices do not 

reflect the water supply’s real economic costs, such as treatment, distribution or costs of 

current reservoirs (Olmstead & Stavins, 2009). Therefore, if prices were generally higher 

and increased during droughts, people would react, determined by their preferences, 

and decrease their water use (Olmstead & Stavins, 2009). In contrast, non-price 

proponents debate that residential water demand is comparatively price inelastic, 

meaning that an increase in price would not effectively lead to a water use reduction, 

and that price cannot be used as a tool to steer a good necessary to satisfy basic human 

needs (Renwick & Green, 2000).  
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Following microeconomic theory and empirical research, customers will reduce 

their consumption when prices increase (Marshall, 1920). The magnitude of the 

decrease depends on the product’s price elasticity, which is the responsiveness of the 

quantity demanded to a change in price (Marshall, 1920). However, the law of demand 

assumes consumers to be knowledgeable about prices, which is often violated (Gaudin, 

2006). The non-transparency of prices can lead to price elasticities below their actual 

potential (Gaudin, 2006). Despite that, Olmstead and Stavins (2009) found that water 

demand is not generally “unresponsive to price”. 

For instance, a study by Renwick & Green (2000) compared the effectiveness of 

different demand-side management (DSM) policies, including OWRs and prices, with the 

help of an econometric model. Over an eight year period in the 1990s (drought 1985-92) 

residential water demand in California was evaluated to identify how the aggregate 

quantity demanded was reduced (Renwick & Green, 2000). While water rationing and 

use restrictions were found to reduce the average household water consumption by 19% 

and 29%, respectively, a 10% increase in price led to a reduction of 1.6% (Renwick & 

Green, 2000), which is comparatively low. 

Performing a comprehensive meta-analysis, Dalhuisen et al. (2003) assessed 64 

regions in the U.S. and Europe concerning their price elasticity and found great 

variations. While price elasticities in the Eastern U.S. averaged only -0.005, in the 

Western U.S. they averaged -0.17 (Dalhuisen, Florax, de Groot, & Nijkamp, 2003). The 

authors link the differences in estimated elasticities to spatial and temporal variations 

and different research designs, but also to household characteristics (Dalhuisen et al., 

2003). An example for the influence of household characteristics on price elasticity could 

be that low-income households might have the tendency to use only that amount of 
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water which is necessary for their basic needs, while high-income households have 

more disposable income to spent on recreational water-use activities and price 

increases do not appear to be significant enough to require a behavioral change. 

Therefore, mainly middle-income households would reduce their affluent water 

consumption if prices rise. Compared to the results of Dalhuisen et al., a comprehensive 

literature survey by Worthington & Hoffman (2008), which includes results from 1980 to 

2005 from different regions of the world, found higher price elasticities than Dalhuisen et 

al. (2003), ranging between -0.25 and -0.75 (Worthington & Hoffman, 2008). To translate 

these elasticities into understandable values for water conservation targets, using an 

elasticity of -0.4 as an example, a drought related demand reduction of 20% would 

require a price increase of about 50% (Reynaud, 2013).  

Floridians are supposedly a little more responsive to water rate increases than 

the average US citizen: a 10% increase in water rate would be expected to lead to a 4 to 

8% decrease of water consumption (Whitcomb, 2005). Another influential factor found by 

an analysis derived from household-level panel data for two California communities 

showed that outdoor water use appears to be more price elastic than indoor use 

(Renwick & Archibald, 1998). The finding from Renwick & Archibald’s study seems 

reasonable since outdoor usage is usually recreational use and does not satisfy basic 

needs. A study by Kenney et al. (2008) looked at the interaction between OWRs and 

price and revealed that the implementation of restrictions is associated with a 31% 

decrease of water use, absent of any price for water (Kenney et al., 2008). Naturally, the 

absence of a price is an unrealistic scenario, but it helps to theorize that with an 

increasing price, the effect of restrictions decreases due to the price becoming a more 

significant decision factor (Kenney et al., 2008). Furthermore, the type of price rate 

structure has an impact on price elasticity, as revealed by Olmstead, Hanemann, & 
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Stavins (2003). They found a price elasticity of about -0.6 for households facing an 

increasing block rate structure and -0.19 for those facing uniform marginal prices 

(Olmstead et al., 2003). Additionally, the amount of information provided on the bill was 

found to have an impact on price elasticity. A study by Gaudin (2006) focusing on billing 

information of almost 500 utilities across the US revealed that price-related information 

increased price elasticity by at least 30%. As a general conclusion it can be noted that 

water demand is said to be rather “inelastic” at current prices (Olmstead & Stavins, 

2009), however, changes in water rates and rate structures, customers’ income and 

more factors have a crucial influence on this finding. Therefore, to use price as an 

effective management tool, certain rate structures and overall higher rates could be 

beneficial. 

There are a few supposed advantages to market-based approaches. One is the 

household’s ability to decide which uses to decrease depending on their individual 

preferences. Another advantage would be that market-based approaches enable 

households to respond heterogeneously. Some households would decrease their 

demand for water-based activities that they do not value enough to justify the price 

increase, while others would be able to continue participating in those activities if they 

felt the activity was worth the cost (Olmstead & Stavins, 2009). As previously mentioned, 

current water prices do not reflect the true price of water, because they are mostly set by 

the government and have the tendency to not entirely reflect the actual cost of water 

production and external costs to extract the water and return it as waste (Barrett, 2004). 

Water metering is a prerequisite to enable water pricing, since it allows charging on a 

per unit basis, transferring a price-signal to the individual customer and thereby 

increasing economic efficiency and promoting conservation (Baumann, 1998). Even the 

sole introduction of metering has shown to lead to a reduction of water consumption, 
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ignoring the effects of different water rate structures (Dalhuisen, de Groot, & Nijkamp, 

2001; Dalhuisen & Nijkamp, 2001). A comprehensive survey of more than 10,000 multi-

family residences in the U.S. revealed that submetering and a price increase led to a 

15.6% reduction in per capita demand, equaling almost 22 gallons per person per day 

(Mayer et al., 2004). The previous example by Mayer et al. (2004) shows that metering 

and pricing has an undeniable impact on residential water consumption. In that context, 

different price rate structures have a steering effect on residential water use. One can 

differentiate between a flat fee, a uniform rate, a decreasing or increasing block rate 

structure or a seasonal rate. While a flat fee charges every customer the same fixed 

price, ignoring the actual individual consumption, a uniform rate means that every 1,000 

gallons cost the same. On the contrary, under a decreasing block rate the price of every 

additional 1,000 gallons of water decreases the more the customer consumes. The 

exact opposite is the case under an increasing block rate structure, leading to every 

additional 1,000 gallons used by the customer to cost more than the previous one. All 

these rate structures refer to the respective billing cycle, which is usually monthly or 

quarterly. Under a seasonal rate, water prices increase during months of high 

consumption. For instance, Miami-Dade County Water and Sewer implemented 

seasonal rates between 1998 and 2004 (Whitcomb, 2005). For six month at a time it was 

alternated between two different five-block structures (Whitcomb, 2005). The last two 

price structures mentioned, increasing block rate and seasonal rate, send a price signal 

to the customers to decrease consumption, which is why they are also called 

conservation pricing (Inman & Jeffrey, 2006).  

In general, to avoid inequity issues between income groups and ensure enough 

revenue for the utility with simultaneously reduced water consumption, permanent 

surveys and observations seem to be unavoidable to control the effect a price approach 
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has on water users, resources and utilities. Furthermore, a certain amount which is 

necessary to cover basic needs should be affordable at a low price (rate structure) while 

everything that goes beyond this base amount can be charged with a much higher per-

unit fee. Alternatively, equity issues could be prevented by a fixed charge that is 

calculated using property values (as a proxy for a customer’s ability to be able to pay for 

water) or discounted for residents eligible for welfare (Sibly, 2006). Finally, a price 

increase or conservation pricing can serve as an incentive for the implementation of new 

water conservation technologies because of a possibility to save money in the long run 

(Olmstead & Stavins, 2009).  

In conclusion, according to Sibly (2006), the pure implementation of OWRs 

compared to pricing is not an efficient way of water allocation but rather it provides 

evidence that the charge is inefficient. Only in emergencies OWRs would be the fastest 

and most effective way to conserve water but not as a long-term measure (Sibly, 2006). 

Instead, OWRs cause not only utilities but also consumers to experience an economic 

loss resulting from the foregone economic value/benefits that would be gained from 

satisfying the water demand through increased water deliveries (Jenkins, Lund, & 

Howitt, 2003). Therefore, this study performs an economic assessment of the impacts of 

the OWRs in South Florida. 

2.1.5 Additional Considerations 

There are a variety of factors influencing not only the effectiveness of DSM tools 

but also residential water consumption in general that are beyond the control of water 

utilities. These include for instance local weather, which impacts short-term water usage, 

especially for outdoor irrigation, and yearly consumption patterns. Therefore, it is not 

uncommon that weather-related variables are controlled for in regression-based studies 
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evaluating price and nonprice management tools (e.g. Gutzler & Nims, 2005). For 

instance, the model designed by Kenney et al. (2008) predicted that water consumption 

would increase by about 2% for every additional 1°Fahrenheit in average daily maximum 

temperature, while consumption would decrease by about 4% per inch of precipitation. 

However, beyond that additional uncertainties are prevalent. The exact kind of such 

weather variables (frequency, total amount, variation) might have an effect and 

oftentimes researchers have to handle the constraint that water usage data exists only 

on a monthly level while weather happens daily (Kenney et al., 2008).  

Besides weather factors, demographic variables have a significant effect on 

residential water consumption. Ongoing research revealed that household income, 

family size, occupants’ age and individual preferences concerning water conservation 

have an impact (Jones & Morris, 1984; Renwick & Green, 2000; (Sheila, Michael, & 

Robert, 2002). Finally, housing characteristics can have an effect, for instance owning 

versus renting, the age of the house (and of its appliances), the size of the house and 

the lot (Renwick & Green, 2000). Unfortunately, limitations of available data impact the 

ability of researchers to analyze all of these impacts sufficiently. 

2.2 Difference-in-Differences Approach 

The Difference-in-Differences (DID) approach is a quasi-experimental research 

design to estimate causal effects and is widely used in empirical economics and policy 

evaluation (Lechner, 2010). It is used in the current study to estimate the effect of OWRs 

on residential water use. The DID approach is said to be transparent and suitable to 

estimate the effects of governmental policy interventions (Angrist & Krueger, 1998). 

Difference-in-Differences has a long history in economics with early uses dating back to 

the 1940s (Angrist & Krueger, 1998). Two studies, one by Card & Krueger (1994) 
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assessing the effects of state minimum wage law on employment, and one by Meyer 

(1990) assessing worker’s compensation benefit increases on the length of claims, 

triggered its wider application.  

In most cases, it can be distinguished between four groups which are the 

treatment group before and after the introduction of the treatment and the control group, 

likewise before and after the introduction of the treatment (Lechner, 2010). The idea is to 

compare the difference in outcomes of the affected and unaffected groups, before and 

after the policy intervention (Bertrand, Duflo, & Mullainathan, 2002) to clearly distinguish 

the effect attributable to the policy change.  
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3. METHODOLOGY 

The current study seeks to perform an economic assessment of the impacts of 

OWRs implemented in the SFWMD, where outdoor water use for irrigation and other 

purposes can account for up to 50% of total residential water use (SFWMD, 2019). After 

years of drought-related limited periods of OWRs primarily in the 2000s, the SFWMD 

finally implemented year-round OWRs in 2010. To analyze the effectiveness and 

economic impacts of OWRs, an integrated framework is developed whose main 

components are a Difference-in-Differences (DID) approach, a value function model and 

the application of a discrete choice model. The current study has three primary 

objectives: 

1. To reveal the effectiveness of OWRs in South Florida in terms of reduced water 

consumption by using the DID approach. 

2. To estimate the relationship between the implementation of OWRs and divisions 

of the hydrological system in South Florida. 

3. To compute the revealed preference values for avoiding OWRs, and compare 

the same with the stated preference values (WTP) estimated in a previous study 

by Seeteram, Engel, & Mozumder (2018). 

The current work is unique because we analyzed residential water use data at 

different times and at different levels of OWRs as a natural experiment to assess 

variations in people’s actual behavior. The analysis of actual water use behavior should 

deliver stronger evidence for WTP values than stated preference analysis. Furthermore, 

the DID approach does not only show a correlation but goes a step further to establish 

causality by utilizing the interaction term and estimating the treatment effect. The DID 

approach allows one to estimate the amount of water that residents consumed as a 
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consequence of different OWRs and therefore provides a more precise estimated impact 

of water use restrictions as a water management policy tool. Finally, the integration of 

the DID analysis with the physical water management system allows us to connect the 

human and the natural system, which enables us to estimate a value function of the 

value addition for the society from OWRs. 

3.1 Study Area 

The study analyzes the water use data of residents in Southern Florida, United 

States, ranging from Orlando to the Florida Keys. The region’s climate is subtropical to 

tropical with a pronounced rainy season from May to October (Weather Atlas, 2020). 

Florida’s average daily temperature is 70.7°F, with highest temperatures of 95°F in July 

and 2,800 hours of sunshine over the course of the year (Weather Atlas, 2020). In 

January, average lowest temperatures range between 40°F in the northern part (e.g., 

Pensacola, Tallahassee) and 60°F in the southern part of the state (e.g., West Palm 

Beach, Miami) (Weather Atlas, 2020). The majority of the annual 55 inches of 

precipitation occurs in the rainy season, causing an uneven distribution over the course 

of the year (Weather Atlas, 2020). 

Concerning outdoor water use, a few additional aspects are worth mentioning. In 

Florida, the amount of precipitation usually decreases between March and June, 

resulting in higher water consumption for outdoor water use (Marella, 1992). 

Furthermore, because of increasing temperatures from March to May potential 

evapotranspiration increases, leading to high water demand for grass and outdoor plants 

which is one reason for increased water consumption from public-supply in these 

months compared to the rest of the year (Marella, 1992). Finally, irrigation can be 
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required year-round in South Florida because of overall warmer temperatures (Marella, 

1992).  

The combination of certain climate patterns, which are becoming more unreliable 

as a result of climate change, with the water use of a continuously growing population 

(see Table 3.1) are major factors leading to the occurrence of water shortages (FDEP et 

al., 2007). That is why an efficient and sustainable management of water resources is 

critical in South Florida. 

Table 3.1: Population of 13 Analyzed Counties in South Florida 

County 1995 2005 2015 2025 

Broward 1,428,708 1,742,157 1,827,367 2,045,772 

Collier 197,055 303,893 343,802 413,739 

Glades 8,644 12,168 12,853 13,895 

Hendry 31,280 37,861 38,096 41,337 

Lee 382,830 545,931 665,845 826,909 

Martin 113,550 140,647 150,062 165,756 

Miami-Dade 2,076,171 2,395,071 2,653,934 3,062,631 

Monroe 79,824 77,608 74,206 75,855 

Okeechobee 32,059 38,627 40,052 43,146 

Orange 765,731 1,050,333 1,252,396 1,576,726 

Osceola 140,490 227,055 308,327 452,354 

Palm Beach 988,743 1,273,752 1,378,417 1,559,585 

St. Lucie 172,212 238,361 287,749 342,548 

Total 6,417,297 8,083,464 9,033,106 10,620,253 

Source: Office of Economic & Demographic Research (2017) 

The state of Florida is divided into five Water Resources Management Districts on the 

basis of the natural hydrological system. The studied counties are all encompassed, 

either entirely or partly, in the SFWMD, the agency that manages the regional water 

resources from Orlando in Central Florida to the Florida Keys in the very South (see 

Figure 3.1) (Abtew & Huebner, 2002). From the Kissimmee Chain of Lakes and the 
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Kissimmee River in the North, the water flows South through Lake Okeechobee, the 

Water Conservation Areas (WCAs) and the Everglades (FDEP et al., 2007). Lake 

Okeechobee is the main actor in the hydrologic system because its water is essential for 

the surrounding communities, and for the Everglades Agricultural Area (EAA), the St. 

Lucie and Caloosahatchee basins (Abtew & Huebner, 2002) and the WCAs. With an 

area of 1,763 km2 and an average depth of 2.7 m, it is an important source of water for 

the canals in Palm Beach, Broward and Miami-Dade and it recharges surface and 

groundwater supplies (Abtew & Huebner, 2002). Historically, the main objectives of the 

regulation schedule for Lake Okeechobee have included water supply and flood control, 

which is why the lake’s water levels are a suitable indicator of wet and drought 

conditions (Abtew & Huebner, 2002). The Upper Kissimmee Chain of Lakes, which 

includes Lakes Myrtle, Alligator, Mary Jane, Gentry, East Tohopekaliga, Tohopekaliga 

and Lake Kissimmee, is in turn an essential water source for Lake Okeechobee (Abtew 

& Huebner, 2002). In the South, the three WCAs follow specific regulation schedules as 

“part of the water storage and distribution system” (Abtew & Huebner, 2002).  
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Figure 3.1: Hydrological Divisions of the South Florida Water Management District 

 

Source: (SFWMD, 2019b) 

3.2 Data Description 

A group of 16 counties belongs to the SFWMD. Ten of these counties are located 

entirely within the SFWMD, which are Broward, Collier, Glades, Hendry, Lee, Martin, 

Miami-Dade, Monroe, Palm Beach and St. Lucie. The other six counties are split 

between the SFWMD and one of the neighboring water management districts which are 

St. John’s River Water Management District in the Northeast and Southwest Florida 

Water Management District in the Northwest. For the purpose of the current study, data 

from 13 counties could be analyzed concerning the OWRs’ effect on the residential 
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water use. We could include water use data of the ten counties that are entirely within 

the SFWMD as well as the parts of Okeechobee, Orange and Osceola that also fall 

within the borders of the SFWMD. As a result of incomplete water use data of the three 

remaining counties, Charlotte, Highlands and Polk, they were excluded from the DID 

analysis. However, they could be included in the value function approach. 

Figure 3.2: Florida's Five Water Management Districts 

 

Adapted from SFWMD (2018) 

The type of water use data we used falls under the category of public supply, 

which is defined as “Water withdrawn by public and private water suppliers and delivered 

to groups of users […] such as domestic, commercial, industrial, thermoelectric power, 

public water use, and other water use.” (Marella, 1992). A clear separation of the portion 
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served to residential users was not possible because of the type of the data. Therefore, 

a few factors need to be considered for the interpretation of results: the exact number of 

people served was provided, of which residential users account for the largest portion 

(Marella, 1992); the number of non-permanent residents (tourists) using water is not 

documented; all customers in the SFWMD have to follow OWRs but exact outdoor 

consumption is not measured.  

Figure 3.3: Overview of the Outdoor Water Use Restrictions in the South Florida Water 
Management District 

 

Source: SFWMD (2019) 

The areas of the 16 counties that are located within the SFWMD’s boundaries 

follow one of two irrigation restrictions today (see Figure 3.3): one of the two OWRs 

allows two-days-per-week of outdoor water use (yellow) while the other OWR allows 
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three-days-per-week outdoor water use (green). The fragmentation of the SFWMD is the 

result of a compromise between politicians, water managers, utilities and the 

landscaping industry (Reid, 2012). Unlike the rest of Florida, the SFWMD targeted a 

districtwide three-days-per-week OWR taking into consideration arguments from the 

landscaping industry and water utilities (Reid, 2012). However, local governments were 

given the freedom to choose a stricter two-days-per-week OWR (Reid, 2012), for 

instance to decrease confusion in those split counties in the North of the district.  

Furthermore, some bigger cities have a different rule than their surrounding 

counties, which could not be considered in the present analysis. Because of the spatial 

level of the analysis, which is the county level, only the overall county’s OWRs could be 

considered. The districtwide, year-round landscape irrigation rule has been in effect 

since 2010. Before 2010, counties or parts of counties would follow varying types of 

OWRs predominantly in times of dry periods or drought events (see Figure 3.4). The 

different types of OWRs can be categorized into three groups that will be referred to 

from now on as OWRP_1, OWRP_2 and OWRP_3 (for Outdoor Water use Restriction 

Phase 1, 2 or 3). Outdoor Water use Restriction Phase 1 (OWRP_1) is the least strict 

with three-days-per-week outdoor water use permitted and officially referred to as Phase 

1 restriction (FDEP et al., 2007). This restriction is followed by Outdoor Water use 

Restriction Phase 2 (OWRP_2) which allows two-days-per-week outdoor watering and is 

called Phase 2 restriction (FDEP et al., 2007). The strictest restriction is called Outdoor 

Water use Restriction Phase 3 (OWRP_3) which restricts outdoor water use to only one-

day-per-week and is referred to as Phase 3 restriction (FDEP et al., 2007). In times of 

drought, OWRP_1 (Phase 1) aimed for a 15% overall water use reduction, OWRP_2 

(Phase 2) targeted a 30% water use reduction and OWRP_3 (Phase 3) was set to 

reduce overall consumption by 45% (FDEP et al., 2007).  
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Within our period of analysis, starting in 1985, the first time that OWRs were 

implemented was caused by a districtwide drought that lasted from June 1989 to May 

1990  (Trimble, Marban, Sculley, & Beach, 1990). As a consequence, the OWRs started 

as a demand-side water management tool in November 1989 and were in effect until 

May of the following year (Trimble et al., 1990). Exact information on the strictness of the 

OWRs was inaccessible which is why the intermediate, most commonly implemented 

OWRP_2 was assumed for the analysis (see Figure 3.4). To the author’s knowledge, 

after the drought ended in 1990 there were no restrictions in effect for almost ten years. 

The only regulation that residents have been following continuously up until now, is that 

no outdoor watering is allowed between 10 a.m. and 4 p.m. caused by peak 

evapotranspiration during these hours (Bates, 2009). The next dry period occurred 

around the year 2000, which was the driest year on record up to that time with 

November 1999 to May 2001 as the driest dry-wet-dry season (FDEP et al., 2007). As a 

consequence, Lake Okeechobee’s water level dropped to the lowest stages ever 

recorded until then (FDEP et al., 2007), which was the reason why the SFWMD 

implemented OWRP_2 and OWRP_3 with the latter applying to surface water use in 

certain areas only (SFWMD, 2002). As mentioned before, due to the spatial level of 

analysis, only the general OWRP_2 implemented at the county level that lasted  from 

December 2000/January 2001 to September 2001 was considered (SFWMD, 2002). 

When it was detectable and implemented at the county level, OWRP_1 was also 

considered (SFWMD, 2002).  
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Figure 3.4: Overview of Different Phases and Timing of the Outdoor Water Use Restrictions in 13 South Florida Counties 
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Concerning the exact order of counties implementing different phases of OWRs 

from 2003 onwards, the available information is difficult to access which is why we have 

made several careful assumptions to address these challenges. Starting in 2003, Lee 

and Collier counties were the only regions that implemented OWRP_1 for a prolonged 

period of time independently of a drought (Bates, 2009). The next drought event took 

place in 2006-07 when South Florida broke a new drought record and experienced one 

of the driest periods in recorded climate history (SFWMD, 2009). From here on it starts 

to become a little bit challenging to keep track of which county had what kind of 

restriction in place when. The majority of counties in the SFWMD implemented OWRP_2 

as a response to the dry conditions (Bates, 2009). Exceptions were Glades and Hendry 

that followed OWRP_3, while Monroe and Okeechobee did not have any restrictions yet 

(FDEP et al., 2007). Orange and Osceola, partly located in St. John’s Water 

Management District, presumably followed OWRP_2 already a little before the other 

counties due to the endeavor to decrease the confusion among those counties’ residents 

(Bates, 2009). Another reason for the seemingly random variations between counties is 

their allocation into different regional groups that serve the purpose of water supply 

planning (see Figure 3.5). Therefore, implementing drought restrictions within the 

boundaries of these regions resulted in OWRs that were not applicable to the entire 

county, which is why the exact division and implementation of OWRs could not always 

be considered in the analysis. 
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Figure 3.5: The Water Supply Planning Regions of the South Florida Water Management 
District 

 

Source: SFWMD (2018) 

At least from July to December 2007, all 13 counties had OWRP_2 in place, 

turning into OWRP_3 from January to April 2008 for all counties except Orange and 

Osceola that continued following St. John’s OWRP_2 (SFWMD, 2009). Subsequently, 

the restrictions were not entirely removed. Instead, OWRP_2 remained implemented 

throughout the entire decision-making process about districtwide OWRs from June 2008 

to December 2009 (Bates, 2009). In 2010, the year-round landscape irrigation rule came 
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into effect, requiring a minimum of OWRP_1 in all counties, with some counties 

voluntarily implementing the stricter version, OWRP_2. 

3.2.1 Variable Description and Preparation 

For the DID approach we could analyze almost 4,000 observations. Water use 

data were taken from the Scientific Investigation Report, 2015 from Marella (2019). The 

Per capita water use was used as the dependent variable, ranging between 1,234.5 and 

11,700.7 gallons (see Table 3.2) with a mean value of 5395.99 gallons. The wide range 

of the values could not be verified by us, but it might be explicable with unobservable 

factors that can lead to high or low outliers. High outliers could result from uncounted 

tourists using water that falls under the category of public water use. Higher observed 

uses per resident are possible when these guests, as additional temporary water users, 

are not counted. A similar situation applies to other increased uses resulting from non-

residential customers such as commercial or industrial consumers, who use greater 

volumes of water and their proportion can vary between counties. Low outliers (less 

water consumption per resident) on the other hand could result from residents using 

private wells for outdoor use and thereby reducing their overall water use. 
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Table 3.2: Overview of the Continuous Variables 

Variable Observations Mean St. Deviation Min Max 
Per capita 
water use 
(dependent 
variable in 
DID) 

4,000 5,400 1,590 1,240 11,700 

Bachelor’s 
degree or 
higher 

4,000 19.2 7.4 6.2 34 

Median 
household 
income 

4,000 36,700 8,940 16,400 61,200 

Lake 
Okeechobee 
water level 
(in feet) 

4,870 14.1 1.98 8.94 18.3 

Lake 
Kissimmee 
water level 
(in feet) 

4,870 50.5 1.1 48 53 

WCA water 
level (in 
feet) 

4,870 13 0.64 11.2 15.5 

Precipitation 
(in inch) 

4,870 4.5 3.8 0 29.4 

Evaporation 
(in inch) 

4,870 0.25 0.07 0.1 0.49 

 

Table 3.3: Description of the Dummy and Categorial Variables 

Dummy and categorial variables Variable description 
OWRP_1 Phase 1 restriction with three-days-per-week outdoor 

watering allowed; 0=inactive, 1=active 
OWRP_2 Phase 2 restriction with two-days-per-week outdoor 

watering allowed; 0=inactive, 1=active 
OWRP_3 Phase 3 restriction with one-day-per-week outdoor 

watering allowed; 0=inactive, 1=active 
Treatment2007 0=before 2007, 1=including and after 2007 
Interaction1 Interaction: OWRP_1 x Treatment2007; 0=inactive, 

1=active 
Interaction2 Interaction: OWRP_2 x Treatment2007; 0=inactive, 

1=active 
Interaction3 Interaction: OWRP_3 x Treatment2007; 0=inactive, 

1=active 
Number of restricted days 
(dependent variable in value 
function) 

0=no OWR, 4=OWRP_1, 5=OWRP_2, 6=OWRP_3 
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For some counties, data on population served were incomplete, which is why in 

some cases the county’s actual population was used (Broward 2011, all of Monroe), 

provided by the Office of Economic & Demographic Research (2017). If the actual 

population appeared to be too high compared to existing values, the gaps were filled 

using linear interpolation. The respective years’ Per capita water use was calculated, 

using this value. This method was applied to Collier (2011) and Orange (1998). 

The water use data for Monroe county were included in the Miami-Dade usage 

because the water is provided by Miami-Dade Water and Sewer. The exported amount 

of water is documented clearly and used for this study. However, the actual number of 

residents served was not provided and so the county’s total population had to be used 

as a proxy.   

Regarding the weather data, which originally included the total monthly 

Precipitation in inches and the average monthly Temperature in degree Fahrenheit, data 

from one weather station in each county were used. The data were provided by the 

Florida Climate Center (2019) and by NOAA (2019). Predominantly in the earlier years, 

only daily data were available from which the monthly average for Temperature or sum 

for Precipitation was calculated. Where data on entire months were missing, values were 

calculated based on averages from existing months. For incomplete Temperature data, 

the average of the existing data was taken and for incomplete Precipitation data the sum 

of the existing days was extrapolated.  

The variable for educational attainment is called Bachelor’s degree or higher and 

the data were provided by the Unites States Census Bureau (2019). Finally, the data on 

Median household income were downloaded from the online platform “American Fact 

Finder” provided by the United States Census Bureau (2019). In both cases, there were 
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no exact data available for every individual month and year for each county, so the 

missing values were calculated with linear interpolation. 

For the value function approach, we could analyze 4,900 observations because 

of the inclusion of some additional years of data from Charlotte, Highlands and Polk 

counties. The independent variable was called Number of restricted days per week and 

varied between 0 and 6, which implies that there were periods without restrictions (0 

days restricted equals 7 days outdoor watering allowed in a week) and periods with the 

strictest OWRP_3 with 6 days restricted (1 day per week watering allowed). Lake 

Okeechobee, Lake Kissimmee and WCAs variables imply the monthly average water 

levels of those three water bodies. Data were obtained from DBHydro, an online 

database that stores hydrological data provided by the SFWMD (2019a). Water stages 

ranged between 8.9 and 18.3 feet for Lake Okeechobee, 48 and 53 feet for Lake 

Kissimmee and 11.2 and 15.5 feet for WCAs (see Table 3.2). Finally, Evaporation, which 

represents average monthly evaporation, was also obtained from DBHydro (SFWMD, 

2019a) and varied between 0.1 and 0.49 inches.  

For the statistical analysis of the data, Stata 15 was used (StataCorp, 2017). 

Before running the actual regression analysis, we tested the data for different types of 

correlations, including cross-sectional dependence, heteroskedasticity and 

autocorrelation. To test for cross-sectional dependence, we used the Breusch-Pagan LM 

test in a fixed-effects linear model. The test rejected the null hypothesis of no existing 

cross-sectional dependence, which means that our data show signs of cross-sectional 

dependence. To test for heteroskedasticity, we used the LR test, which rejected the null 

hypothesis of homoskedasticity. This result means that heteroskedasticity is present in 

our dataset. Finally, we tested the data for autocorrelation using the Wooldridge test. 
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The null hypothesis of no first-order autocorrelation was rejected which means that 

autocorrelation is present.  

3.3 Difference-in-Differences Approach 

The idea of the DID approach is to compare the difference in outcomes of the 

affected and unaffected groups, before and after a policy intervention to remove the 

effect of the time trend and the pre-existing difference between the groups and isolate 

the pure treatment effect (see Figure 3.6). 

 

Figure 3.6: Visualization of the Difference-in-Differences Approach 

Adapted from: Columbia University (2019) 

 The DID estimate is measured by calculating the difference between the change 

in the two outcomes before and after the treatment in the two different groups (treatment 

and control), which is equal to the estimated regression coefficient on the interaction of 

the dummy variable for a treatment group with the dummy variable for the after-

treatment period (Goodman-Bacon, 2019):  
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 𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑖𝑇𝑅𝐸𝐴𝑇𝑖 + 𝛽𝑡𝑃𝑂𝑆𝑇𝑡 + 𝛽𝑖𝑡𝑇𝑅𝐸𝐴𝑇𝑖  × 𝑃𝑂𝑆𝑇𝑡 + 𝑢𝑖𝑡 (1) 

     

With i and t signifying each group and period of time, 𝛽𝑖𝑇𝑅𝐸𝐴𝑇𝑖 stands for the treatment 

group, 𝛽𝑡𝑃𝑂𝑆𝑇𝑡 stands for the post-treatment time period and 𝛽𝑖𝑡𝑇𝑅𝐸𝐴𝑇𝑖  × 𝑃𝑂𝑆𝑇𝑖 is the 

interaction term of the two, revealing the effect of the treatment in the group that was 

treated. In this way, an estimate of the “effect” of the treatment in the pre-treatment 

period (when there is none) can be used to remove the effect of confounding factors that 

might cause confusion when post-treatment outcomes of treated and non-treated groups 

are compared (Lechner, 2010). Most real-life applications deviate from this basic setup 

as a result of treatments starting at different times (Goodman-Bacon, 2019).  

In the setup of the current study there is not one single group treated with OWRs 

and another group without any OWRs (see Figure 3.6). Instead, all counties 

implemented different phases of OWRs at different times. To set up a clear distinction 

between before and after the treatment, all periods when counties had OWRs in place 

before November 2006 were removed from the data. Then, starting from the end of 

2006/beginning of 2007, all counties had OWRs implemented continuously. Therefore, 

instead of comparing a treatment group with a control group we compare groups of 

counties with the same kind of OWR implemented. For instance, the group of counties 

with OWRP_3, used as the treatment group, is compared to the other counties without 

OWRP_3 as the control group. The advantage of the explained approach is its simplicity 

and its potential to avoid endogeneity problems that usually occur when comparing 

heterogeneous agents, which are counties in our case (Bertrand, Duflo, & Mullainathan, 

2002). 
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For the DID approach, a linear fixed-effects model is combined with the basic 

DID regression model. The bare linear fixed-effects model looks like the following 

(Allison, 2009): 

 𝑦𝑖𝑡 = 𝜇𝑡 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝛼𝑖 + 𝜀𝑖𝑡  (2) 

                               

Since panel data are used, there is a set of individuals (i = 1, …, n), which are the 

13 counties, each of whom has monthly data for 27 years (t = 1, …, T). In the above 

equation, 𝑦𝑖𝑡 is the dependent variable, which is Per capita water use. There are several 

predictor variables, some of which vary over time. These are represented by the vector 𝑥𝑖𝑡 (Allison, 2009). A second set of predictor variables are those that do not vary over 

time, represented by 𝑧𝑖. The variable 𝜇𝑡 is an intercept that can vary between each 

period, while 𝛽 and 𝛾 are vectors of coefficients. Furthermore, there are two error terms 𝛼𝑖 and 𝜀𝑖𝑡 , which behave differently from one another. While 𝜀𝑖𝑡  varies for each county in 

every point in time, 𝛼𝑖 does only vary for each county but stays constant over time 

(Allison, 2009). Therefore, 𝛼𝑖  represents the combined effect of all unobserved variables 

constant over time, which is called individual heterogeneity (Brüderl & Ludwig, 2015) on 𝑦, while 𝜀𝑖𝑡 represents variation at each point in time, that is purely random (Allison, 

2009). The two terms can only be identified with panel data because person-specific 

characteristics can only be assumed from repeated observations (Brüderl & Ludwig, 

2015).  

The advantage of fixed-effects regression models is that repeated observations 

on individuals are used to control for unobserved and invariant characteristics that relate 

not only to the outcomes but also to the explanatory variables (Angrist & Krueger, 1998). 

Therefore, fixed-effects can be useful when causal inference is aimed for to provide 
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unbiased estimates of causal effects if unobserved confounders might be present 

(Gangl, 2010). To check for robustness, we ran three fixed-effects linear regression 

models for each OWR, the first time controlling for variation between counties, the 

second time expanded to control for variation between months through the inclusion of 

monthly dummy variables, and the third time expanded to control for variation between 

years through the inclusion of yearly dummy variables. To address the first-order 

autocorrelation we decided to run an alternative fixed-effects linear model that 

considered this kind of disturbance. 

A third model was combined with the DID, called Generalized Estimation 

Equation (GEE), which is similar to a Generalized Linear Mixed Model (GLMM) because 

it can include subject-specific random effects (Hong & Ottoboni, 2017). Unlike GLMM, 

GEE does not require parametric assumptions (Hong & Ottoboni, 2017). Instead, the 

within-subject covariance structure is estimated through averaging over all subjects 

(Hong & Ottoboni, 2017). To describe the relationship between covariates and response, 

GEE chooses iteratively the best β (Hong & Ottoboni, 2017). The GEE can estimate 

population average effects and their standard errors (Hong & Ottoboni, 2017). To run the 

model in Stata, a covariance needs to be specified. If no covariance is specified, the 

default setting corresponds to the equal-correlation model (Stata Press, 2017). However, β will be estimated consistently even if the chosen covariance structure does not match 

(Hong & Ottoboni, 2017), though, wrong standard errors will be received, which can be 

corrected by choosing the option of robust standard errors. The Huber/White/sandwich 

estimator of variance is used to generate valid standard errors even though the within 

group correlations deviate from the original hypothesis in the specified correlation 

structure (Stata Press, 2017). The generalized linear model form looks as follows (Stata 

Press, 2017 following Zeger & Liang (1986)): 
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 𝑔{𝐸(𝑦𝑖𝑡)}  =  𝑥𝑖𝑡𝛽,          𝑦 ~ 𝐹 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝜃𝑖𝑡 (3) 

 

Where i = 1,…, m and t = 1,…, ni, with ni  observations for each group’s identifier i. 

The substitution of different definitions for g( ), which is the link function, and F, the 

distributional family, results in various models (Stata Press, 2017). One example can be 

if yit  is normally distributed (Gaussian) and g( ) is the so called identity function, which 

would have the following form (Stata Press, 2017 following Zeger & Liang (1986)): 

 𝐸(𝑦𝑖𝑡)  =  𝑥𝑖𝑡𝛽,           𝑦 ~ 𝑁( ) (4) 

 

This procedure yields a linear regression, a random-effects regression or other 

such models, depending on what is assumed to be the correlation structure (Zeger & 

Liang, 1986). Both of these models were used to analyze the effects of OWRP_2 and 

OWRP_3 on Per capita water use.  

Furthermore, we fit a panel-data linear model with feasible generalized least 

squares for OWRP_3 as the main independent variable in the DID model. The basic 

equation from which the model is developed can be written as (Stata Press, 2017): 

 𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡 (5) 

 

Where i = 1,…,m is the number of panels (counties) and t = 1,…,Ti  is the number 

of observations for panel i (Stata Press, 2017). Basically, y  can be written as an n by 1 

vector of outcomes, x as an n by k matrix of predictors with 𝛽 being a k by 1 parameter 

vector and 𝜖 as an n by 1 vector of unobserved error terms (Miller, 2017). Depending on 
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the assumptions on the structure of the matrices, various models can be specified 

(Miller, 2017). 

3.4 Value Function Approach 

The conceptual framework behind the value function approach aims to establish a 

connection between a dollar value in the social system and a hydrological flow in the 

natural/physical system. In the case of South Florida, the dollar value is the monetary 

value of the estimated amount of water that is conserved by the residential water 

consumers due to the OWRs. In other words, this dollar value is the saved money for the 

customers who have a reduced water bill because they used less water due to the 

restrictions. So, the first step connects a monetary value of the saved water with the 

estimated saved amount of water caused by OWRs (see Figure 3.7). We derived the 

volumetric amount of conserved water from the regression results of the DID approach 

using the predicted amount, specific for OWRP_3. To obtain the respective monetary 

value, we used available data from a South Florida water utilities rate study from 2018 

that revealed an inflation rate of 5.7% per year (Beecher, 2016). This inflation rate is 

much higher than the overall rate of inflation. For a simplified comparison, we calculated 

the water rates in 2020 dollars. The utility with the highest and the lowest rates in each 

county were used to calculate the respective cost for the amount of water not used. Most 

utilities have an increasing block rate structure, which means that with increasing 

consumption the price per 1,000 gallons of water increases. In the calculation process, 

we considered the general average water consumption in every county and calculated 

the price of the saved water in the respective tier in which the reduction occurred. In the 

second step, the value function regression model enabled us to relate the OWRs to 

several water use related variables in the regional hydrological system. More 

specifically, the hydrological value function allowed to develop a relation between Lake 
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Okeechobee water level and the Number of restricted days. The third step connects the 

value of the conserved water from step one to the hydrological variable, namely Lake 

Okeechobee water level, which is the main objective of this approach. Through the 

intermediate step we could monetize a specific water flow in the hydrological system 

based on how it relates to the implementation of OWRs, resulting in saved costs for 

consumers.  

Figure 3.7: Conceptual Framework 

 

 

1. Value of water (saved money for customers) = F (Reduced use of 

water due to OWRs) 

• Relationship between the water amount (static volume) saved due 

to restrictions and the value of that water ($) 

(The amount of OWR-related water savings, as estimated through DID 

approach, is given its monetary value on the basis of counties’ utility rates.) 

2. Outdoor water use restrictions (OWRs) = F (hydrological flow 

(volume) at Lake Okeechobee, Lake Kissimmee and the WCAs) 

• Relationship between restrictions (OWRs) and water flow 

(volume) in the hydrological system (Lake Okeechobee) 

(Established through the estimation of the value function.) 

3. Value of water (saved money due to reduced use of water) = F 

(OWRs (hydrological flow)) 

• Connecting $ value with the hydrological flow (volume) 

(Computed monetary value of saved water (from step 1.) is connected to 

water volume in hydrological system received from value function (from step 

2.).) 
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Especially for low counts like in our case (values of Number of restricted days 

between 0 and 6), OLS regression is not the proper choice either. The traditional 

negative binomial distribution is usually symbolized as NB2 (Cameron & Trivedi, 1986) 

and derived from a so-called Poisson-gamma mixture distribution (Hilbe, 2011). 

The negative binomial regression, which is a type of generalized linear model, 

can be explained by the following parametrization, given by Hilbe (2011): 

 𝑝(𝑦) = 𝑃(𝑌 = 𝑦) = Г (𝑦 + 1𝛼)Г(𝑦 + 1)Г (1𝛼) ( 11 + 𝛼 𝜇)1𝛼 ( 𝛼 𝜇1 + 𝛼 𝜇)𝑦, (6) 

 

where μ > 0 is the mean of Y and α > 0 is the heterogeneity parameter. The 

parametrization is derived as a Poisson-gamma mixture (Zwilling, 2013). The traditional 

NB2 model is  

 ln 𝜇 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 (7) 

 

While the predictor variables 𝑥1, 𝑥2, …, 𝑥𝑝 are given, the population regression 

coefficients 𝛽0, 𝛽1, 𝛽2, …, 𝛽𝑝 need to be estimated (Zwilling, 2013). When a random 

sample with 𝑛 observations is given, the dependent variable 𝑦1 and the predictor 

variables 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖 can be observed for subject 𝑖 (Zwilling, 2013). We can use vector 

and matrix notation, letting 𝛽 = (𝛽0 𝛽1 𝛽2… 𝛽𝑝)𝑇, and then enter the predictor data into 

the design matrix X as follows: 
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 𝑋 = ( 
 1 𝑥11 𝑥12 … 𝑥1𝑝1 𝑥21 𝑥22 … 𝑥2𝑝⋮ ⋮ ⋮ ⋮1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝) 

 
 (8) 

 

The 𝑖𝑡ℎ row of X is designated as 𝑥𝑖 and (7) is exponentiated, so that the distribution (6) 

can be written as 

 
𝑝(𝑦𝑖) =  Г(𝑦𝑖 + 1 𝛼⁄ )Г(𝑦𝑖 + 1)Г(1 𝛼⁄ ) ( 11 + 𝛼 𝑒𝑥𝑖∙𝛽)1 𝛼⁄ ( 𝛼 𝑒𝑥𝑖∙𝛽1 + 𝛼 𝑒𝑥𝑖∙𝛽)𝑦𝑖  , 𝑖 = 1, 2, … , 𝑛. 

 

(9) 

Then, 𝛼 and 𝛽 are estimated using maximum likelihood estimation with the following 

function (Zwilling, 2013): 

 𝐿(𝛼, 𝛽) =∏𝑝(𝑦𝑖𝑛
𝑖=1 ) =  ∏ Г(𝑦𝑖 + 1 𝛼⁄ )Г(𝑦𝑖 + 1)Г(1 𝛼⁄ ) ( 11 + 𝛼 𝑒𝑥𝑖∙𝛽)1 𝛼⁄ ( 𝛼 𝑒𝑥𝑖∙𝛽1 + 𝛼 𝑒𝑥𝑖∙𝛽)𝑦𝑖𝑛

𝑖=1 , (10) 

 

while the log-likelihood function looks like (Zwilling, 2013): 

 

ln 𝐿(𝛼, 𝛽) =∑(𝑦𝑖𝑙𝑛𝛼 + 𝑦𝑖(𝑥𝑖 ∙ 𝛽) − (𝑦𝑖 + 1𝛼) ln(1 + 𝛼𝑒𝑥𝑖∙𝛽)𝑛
𝑖=1+ 𝑙𝑛Г (𝑦𝑖 + 1𝛼) − 𝑙𝑛Г(𝑦𝑖 + 1) − 𝑙𝑛Г (1𝛼)) 

(11) 

 

The maximum likelihood estimates are the values of 𝛼 and 𝛽 that maximize 𝑙𝑛𝐿(𝛼, 𝛽) (Zwilling, 2013). Furthermore, the estimated variance-covariance matrix of the 

estimators is ∑ =  −𝐻−1, with H being the Hessian matrix of second derivatives of the 

log-likelihood function (Zwilling, 2013). The variance-covariance matrix can be used to 
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find the usual Wald confidence intervals and p-values of the coefficient estimates 

(Zwilling, 2013). 

The interpretation of coefficients resulting from count models, in our case a 

negative binomial regression model, can be challenging since they are shown in logged 

form (Meyer, 2020). Conveniently, the regression coefficients can also be reported in so-

called incidence rate-ratios. Therefore, we ran the same regression again with having 

the incidence rate-ratios displayed. Finally, we also applied a GLS model with population 

average that we described in the previous section on the DID approach.  

3.5 Comparison with Stated Preference Study 

The stated preference discrete choice model, which was designed and 

implemented by Seeteram (2014) as part of her Master thesis research (Seeteram, 

2014; Seeteram, Engel, & Mozumder, 2018), provides the WTP of South Florida 

residents to avoid OWRs. The study outline was extended, based on an earlier study by 

Milon et al. (1999), that examined the valuation of ecosystem services provided by the 

Everglades. Through an online survey, households in South Florida were provided with 

important background information about different scenarios, which outlined management 

and restoration alternatives with varying attributes for Lake Okeechobee, the Everglades 

National Park and WCAs accompanied by certain OWRs. A set of 20 different choice 

cards with hydrological variables was designed, combining different degrees of 

protection or conservation with OWRs and a monetary fee based on which the 

respondents had to make their choices. The respondents indicated their preferred 

management plan and agreed on the corresponding cost for its implementation 

(Seeteram et al., 2018). The study revealed that respondents in the general public stated 

a marginal WTP value of US$25.70-32.40 (US$10.58-13.35 in 2004 dollar) per one unit 
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OWR (equivalent to one day) per year to avoid both indoor and outdoor water use 

restrictions on the household level (Seeteram, 2014). Furthermore, pro-

environmentalists stated a marginal WTP of US$44.00 (US$18.14 in 2004 dollar) per 

one unit OWR per year to avoid such restrictions (Seeteram et al., 2018). The average 

WTP was US$58.00-87.00 (US$23.90-35.85 in 2004 dollar) per year (Seeteram, 2014). 

Based on that, it was estimated that the South Florida population is willing to pay 

between US$59.2-66.3 million (US$24.4-27.3 million in 2004 dollar) per year 

(n=2,044,741 households) to avoid OWRs (Seeteram, 2014). The findings from the 

stated preference study by Seeteram (2014), specifically the estimated WTP values for a 

relaxation of OWRs, are compared to the revealed preference value of OWRs obtained 

from the current study to find potential differences between stated and revealed 

preferences among South Florida residents. 
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4. RESULTS 

4.1 Difference-in-Differences Approach 

The results from the different DID regression models show varying effects of the 

three different levels of OWRs. Table 4.1 gives an overview of the results of the fixed-

effects regression that considered autocorrelation for all three types of OWRs, while 

Tables 4.2, 4.3 and 4.4 show the regular fixed-effects regression results for each OWR 

individually. These models controlled for variations on three levels, county, monthly and 

yearly which we used as a robustness check. 

The Interaction of OWRP_1 was not found significantly correlated to the 

dependent variable, Per capita water use in our analysis. The fixed-effects linear 

regression model that considered autocorrelation revealed a negative and insignificant 

effect of OWRP_1 (-175.86) and a positive and insignificant effect of the Interaction 

(79.29) (see Table 4.1).  

Table 4.1: Fixed-effects Linear Regression Results Considering Autocorrelation for All 
Three Outdoor Water Use Restrictions1 

VARIABLES MODEL 1 (OWRP_1) MODEL 2 (OWRP_2) MODEL 3 (OWRP_3) 

R-SQ 0.2424 0.2433 0.2451 

CONS 3573.93*** 3444.26*** 3550.58*** 

OWRS -175.86 -476.20*** -969.86*** 

TREATMENT2007 -1,102.71*** -1,234.87*** -1,177.06*** 

INTERACTION 79.29 463.03*** 917.83*** 

MEDIAN 

HOUSEHOLD 

INCOME 

0.03** 0.03*** 0.03*** 

BACHELOR’S 
DEGREE OR 

HIGHER 

57.54** 61.65*** 55.43** 

1 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

The regular fixed-effects regression model on the other hand revealed a positive 

correlation of OWRP_1 with Per capita water use, significant at the 10% level (Model 1: 

501.47; Model 2: 478.17; Model 3: 483.52). The Interaction_1 was found to be 
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negatively and insignificantly correlated to Per capita water use (Model 1: -197.29; 

Model 2: -181.44) (see Table 4.2). The coefficients of Treatment2007, Median 

household income and Bachelor or higher are all significant at the 1% level and very 

similar in Models 1 and 2 of the regular fixed-effect linear regression (see Table 4.2). 

Treatment2007 has a coefficient between -980 and -985, Median household income has 

a coefficient of 0.017 and Bachelor’s degree or higher has a coefficient of -42. In Model 

2, monthly dummy variables are included with September removed as the reference 

month since that month had the lowest usage on average. One can see that all 

coefficients of the other months are significantly and positively correlated with Per capita 

water use (between 205.57 for February and 869.64 for May). Model 3 deviates from the 

other two Models in that the constant is negative (-1,277.744), Treatment2007 is 

negative (-484.89), Interactoion_1 is positive (60.299) and the coefficients of Median 

household income (0.16) and Bachelor or higher (-72.47) are much greater (see Table 

4.2). The monthly dummy variables have very similar coefficients. For the included 

yearly dummy variables, Year_12 was removed beforehand for being the year with the 

lowest average Per capita water use and served therefore as the reference year. 

Furthermore, the regression dropped Year_06 due to collinearity. From Year_85 until 

Year_05 the coefficient is significant and positive implying that per capita water use was 

steadily decreasing for those two decades (from Year_85: 3,687.95; to Year_05: 

884.83). 

Table 4.2: Fixed-effects Linear Regression Output for Outdoor Water Use Restriction 
Phase 1 Under Different Control2 

VARIABLES MODEL 1  MODEL 2 MODEL 3 

CONTROLLED FOR County variance  County and monthly 
variance 

County, monthly and 
yearly variance 

R-SQ 0.0004 0.0028 0.3004 
CONS 5,773.51*** 5,345.49*** -1,277.744*** 
OWRP_1 501.47* 478.17* 483.52* 
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TREATMENT2007 -985.29*** -980.59*** -484.89*** 
INTERACTION_1 -197.29 -181.44 60.299 
MEDIAN 
HOUSEHOLD 
INCOME 

0.017*** 0.017*** 0.16*** 

BACHELOR OR 
HIGHER 

-42.25*** -42.37*** -72.47*** 

JANUARY  514.36*** 517.01*** 
FEBRUARY  205.57*** 208.52*** 
MARCH  823.29*** 825.94*** 
APRIL  680.36*** 680.73*** 
MAY  869.64*** 870.77*** 
JUNE  270.53*** 269.06*** 
JULY  310.94*** 310.94*** 
AUGUST  323.09*** 323.09*** 
SEPTEMBER  removed removed 
OCTOBER  381.04*** 386.32*** 
NOVEMBER  472.76*** 488.59*** 
DECEMBER  555.77*** 571.12*** 
YEAR_85   3,687.95*** 
YEAR_86   3,674.36*** 
YEAR_87   3,453.83*** 
YEAR_88   3,354.899*** 
YEAR_89   3,193.94*** 
YEAR_90   2,881.48*** 
YEAR_91   2,562.63*** 
YEAR_92   2,515.79*** 
YEAR_93   2,360.95*** 
YEAR_94   2,123.45*** 
YEAR_95   1,754.63*** 
YEAR_96   1,923.83*** 
YEAR_97   1,684.3*** 
YEAR_98   1,725.61*** 
YEAR_99   1,739.91*** 
YEAR_00   1,365.698*** 
YEAR_01   1,147.16*** 
YEAR_02   1,233.13*** 
YEAR_03   1,070.74*** 
YEAR_04   1,076.86*** 
YEAR_05   884.83*** 
YEAR_06   Omitted 
YEAR_07   -330.63*** 
YEAR_08   -95.9 
YEAR_09   335.01*** 
YEAR_10   118.74 
YEAR_11   23.42 
YEAR_12   removed 

2 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

Three different regression models were applied to test the DID approach with 

OWRP_2 as the main treatment variable. Model 2 in Table 4.1 shows the results of a 
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fixed-effects linear model considering autocorrelation. The coefficients are all significant 

with values of about -476 for OWRP_2, -1,235 for Treatment2007, 463 for the 

Interaction_2, 0.03 for Median household income and about 62 for Bachelor’s degree or 

higher. Compared to this, Table 4.3 shows the results of the fixed-effects linear 

regression with increasing control. In Model 1, two of the main variables, OWRP_2 and 

Interaction_2 with values of -168 and -132, respectively, were not significantly correlated 

to Per capita water use (see Table 4.3). 

Table 4.3: Fixed-effects Linear Regression Results for Outdoor Water Use Restriction 
Phase 2 Under Different Control3 

VARIABLES MODEL 1 MODEL 2 MODEL 3 

CONTROLLED County variance County and monthly 
variance 

County, monthly and 
yearly variance 

R-SQ 0.0000 0.0052 0.2969 
CONS 5,730.93*** 5,305.12*** -1,347.43 
OWRP_2 -167.72 -191.25* -22.42 
TREATMENT2007 -719.25*** -735.91*** 1.97 
INTERACTION_2 -131.81 -78.79 -356.89*** 
MEDIAN 
HOUSEHOLD 
INCOME 

0.017*** 0.016*** 0.017*** 

BACHELOR OR 
HIGHER 

-38.23*** -38.37*** -74.92*** 

JANUARY  502.06*** 499.44*** 
FEBRUARY  193.56*** 190.95*** 
MARCH  811.82*** 809.54*** 
APRIL  671.64*** 669.36*** 
MAY  869.18*** 870.61*** 
JUNE  269.88*** 268.91*** 
JULY  310.94*** 310.94*** 
AUGUST  323.09*** 323.09*** 
SEPTEMBER  removed Removed 
OCTOBER  380.25*** 384.96*** 
NOVEMBER  475.95*** 487.83*** 
DECEMBER  566.03*** 574.98*** 
YEAR_85   3,734.74*** 
YEAR_86   3,718.07*** 
YEAR_87   3,494.46*** 
YEAR_88   3,392.45*** 
YEAR_89   3,229.67*** 
YEAR_90   2,908.31*** 
YEAR_91   2,592.62*** 
YEAR_92   2,543.58*** 
YEAR_93   2,386.54*** 
YEAR_94   2,146.85*** 
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YEAR_95   1,775.83*** 
YEAR_96   1,942.84*** 
YEAR_97   1,701.10*** 
YEAR_98   1,740.22*** 
YEAR_99   1,755.42*** 
YEAR_00   1,411.83*** 
YEAR_01   1,155.54*** 
YEAR_02   1,246.55*** 
YEAR_03   1,083.80*** 
YEAR_04   1,082.91*** 
YEAR_05   890.14*** 
YEAR_06   Omitted 
YEAR_07   -470.03*** 
YEAR_08   -315.23*** 
YEAR_09   230.34** 
YEAR_10   118.93 
YEAR_11   23.32 
YEAR_12   removed 

3 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

Treatment2007, Median household income and Bachelor’s degree or higher were 

all significant with values of -719, 0.017 and -38, respectively. Results of Model 2 

including monthly variance are mostly comparable concerning the levels of significance 

and actual values. The coefficient of OWRP_2 increased to -191 and shows a 10% level 

significance while the coefficient of Interaction_2 decreased to -79 (see Table 4.3). 

Regarding the monthly dummy variables, September was again set as the reference 

category removed due to having the lowest Per capita water use on average. All 

remaining months are significantly and positively correlated to Per capita water use 

(between 193.56 in February and 869.18 in May). Model 3, considering county, monthly 

and yearly variation, greatly deviates from the other two models. The constant is not 

significant anymore and negative (-1,347.43), the coefficient of OWRP_2 is much 

smaller (-22.42), the coefficient of Treatment2007 is slightly positive and insignificant 

(1.97) and the coefficient of Interaction_2 is significantly correlated to Per capita water 

use (-356.89) (see Table 4.3). What remained very similar are Median household 

income (0.017) and the coefficients of the monthly variables. With regard to the yearly 

dummy variables, Year_12 was removed beforehand due to having the smallest average 
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Per capita water use (used as reference category), Year_06 was dropped due to 

collinearity and from Year_85 to Year_05 all of the coefficients are positive and 

significant (from Year_85: 3,734.74; to Year_05: 890.14).  

Finally, a population-averaged linear model with robust standard errors was 

applied (see Table 4.4). Overall, these results are very similar to Model 1 of the fixed-

effects linear models with OWRP_2 (-171.513) and Interaction_2 (-128.996) being 

negatively but not significantly correlated to Per capita water use. Median household 

income (0.016) and Bachelor’s degree or higher (-34.539) do not have a significant 

correlation with Per capita water use like in the fixed-effects models, leaving only 

Treatment2007 being significantly and negatively correlated to Per capita water use (-

723.12).  

Table 4.4: Regression Results for Outdoor Water Use Restriction Phase 2 (2 Days per 
Week Watering Allowed), Dependent Variable Per Capita Water Use5 

VARIABLES MODEL (POPULATION-AVERAGED WITH 

ROBUST STANDARD ERRORS) 

CONS 5735.708*** 

OWRP_2 -171.513 

TREATMENT2007 -723.12*** 

INTERACTION_2 -128.996 

MEDIAN HOUSEHOLD INCOME 0.016 

BACHELOR’S DEGREE OR HIGHER -34.539 
5 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

For the DID approach using OWRP_3 as the main treatment variable, we applied 

four different regression models: Model 3 of Table 4.1 shows results of a fixed-effects 

linear regression considering autocorrelation, Model 1 to 3 in Table 4.5 show results of a 

fixed-effects linear regression model that includes an increasing number of control 

variables for county, county plus monthly and county plus monthly plus yearly variation. 

Finally, Table 4.6 displays the results of a feasible generalized least squares (Model 1) 

and a population-averaged model (Model 2).  
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The fixed-effects linear regression considering autocorrelation (Table 4.1, Model 

3) shows significant results for all included variables. OWRP_3 has a coefficient of 

almost -970, Treatment2007 of -1,177, the respective Interaction of almost 918, Median 

household income of 0.03 and Bachelor’s degree or higher of about 55 (see Table 4.1). 

Compared to this, the results from the regular fixed-effects linear regression models 

show great differences for all variables. In Table 4.5, Model 1, showing results after 

controlling for county variation, and Model 2, showing results for county plus monthly 

variation, are very similar.  

Table 4.5: Fixed-effects Linear Regression Results for Outdoor Water Use Restriction 
Phase 3 Under Different Control6 

VARIABLES MODEL 1 MODEL 2 MODEL 3 

CONTROLLED County variance County and monthly 
variance 

County, monthly and 
yearly variance 

R-SQ 0.0006 0.0022 0.2692 
CONS 5,790.27*** 5,360.33*** -1,282.24*** 
OWRP_3 -2,230.99*** -2,307.697*** -1,590.89*** 
TREATMENT2007 -889.24*** -881.296*** -171.93 
INTERACTION_3 2,207.04*** 2,174.71*** 1,467.51*** 
MEDIAN 
HOUSEHOLD 
INCOME 

0.017*** 0.017*** 0.17*** 

BACHELOR OR 
HIGHER 

-43.09*** -44.10*** -85.87*** 

JANUARY  519.71*** 521.84*** 
FEBRUARY  211.21*** 213.34*** 
MARCH  828.63*** 830.76*** 
APRIL  687.64*** 689.82*** 
MAY  871.898*** 874.38*** 
JUNE  272.68*** 272.65*** 
JULY  310.94*** 310.94*** 
AUGUST  323.09*** 323.09*** 
SEPTEMBER  Removed removed 
OCTOBER  379.73*** 385.17*** 
NOVEMBER  485.01*** 496.34*** 
DECEMBER  572.33*** 583.21*** 
YEAR_85   3,715.45*** 
YEAR_86   3,695.95*** 
YEAR_87   3,469.51*** 
YEAR_88   3,364.67*** 
YEAR_89   3,198.72*** 
YEAR_90   2,882.434*** 
YEAR_91   2,559.35*** 
YEAR_92   2,509.21*** 
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YEAR_93   2,351.06*** 
YEAR_94   2,110.27*** 
YEAR_95   1,738.15*** 
YEAR_96   1,904.05*** 
YEAR_97   1,661.21*** 
YEAR_98   1,699.22*** 
YEAR_99   1,713.32*** 
YEAR_00   1,369.73*** 
YEAR_01   1,116.86*** 
YEAR_02   1,206.82*** 
YEAR_03   1,044.67*** 
YEAR_04   1,039.64*** 
YEAR_05   849.32*** 
YEAR_06   Omitted 
YEAR_07   -674.27*** 
YEAR_08   -427.47*** 
YEAR_09   -11.48 
YEAR_10   118.61 
YEAR_11   22.52*** 
YEAR_12   removed 

6 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

In Model 1, OWRP_3 has a coefficient of about -2,231, Treatment2007 of about -

889 and Interaction_3 of 2,207, compared to Model 2 with a coefficient of OWRP_3 of -

2,308, Treatment2007 of -881 and Interaction_3 of 2,175 (see Table 4.5). In both 

models, the coefficient of Median household income is 0.017 and the coefficient of 

Bachelor’s degree or higher is about -44. The included monthly dummy variables show, 

just like in the previous two cases, all positive and significant coefficients after 

September was removed as the reference month (between 211.21 for February and 

871.898 for May). Again, Model 3 controlling for county, monthly and yearly variance, 

deviates from the other two models. The constant is not positive but has a significant 

coefficient of -1,282, OWRP_3 has a significant coefficient of almost -1,591, 

Treatment2007 is not significant with about -172, and the Interaction is significant with 

almost 1,468. Median household income received the same value (0.17) while the 

coefficient of Bachelor’s degree or higher decreased to about -86. The coefficients for 

the monthly variables are very similar, while the yearly variables are significantly and 

positively correlated from Year_85 to Year_05 with Year_12 removed as the reference 
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category and Year_06 dropped for collinearity (from Year_85: 3,715.45; to Year_05: 

849.32). 

Table 4.6: Regression Results for Outdoor Water Use Restriction Phase 3 (1 Day per 
Week Watering Allowed), Dependent Variable Per Capita Water Use7 

VARIABLES MODEL 1 (FEASIBLE 
GENERALIZED LEAST 
SQUARES, ITERATED) 

MODEL 2 (POPULATION-
AVERAGED) 

CONS 3935.099*** 5795.216*** 
OWRP_3 -1498.603** -2226.074*** 
TREATMENT2007 -1260.147*** -893.567*** 
INTERACTION_3 1555.516** 2206.097*** 
MEDIAN HOUSEHOLD 
INCOME 

-0.009** 0.016*** 

BACHELOR’S DEGREE OR 
HIGHER 

109.458*** -39.396*** 

7 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

The remaining two models in Table 4.6 show results of a feasible generalized 

least squares model and of a population-averaged model. In Model 1, all variables are 

significant with the coefficient of OWRP_3 having a value of about -1,489, 

Treatment2007 of about 1,260, Interaction_3 of about 1,556, Median household income 

of -0.009 and Bachelor’s degree or higher of around 109. Model 2 on the other hand 

resulted in coefficient values very similar to the fixed-effects linear regression Model 1 

and 2 in Table 4.5, all being significant.  

Based on Model 2 of the regular fixed-effect linear regression models (see Table 

4.2, 4.3 and 4.5) and on the results of the fixed-effects linear regression considering 

autocorrelation (see Table 4.1), we predicted the marginal effects for all three OWRs. 

This is basically the predicted average Per capita water use per month considering the 

effect of different variables (see Figure 4.7). Despite different regression outputs, one 

can see that the results of most of the variables are no more than a few hundred gallons 

apart from each other. A closer look at the results of the model that considers 

autocorrelation, one can see an average Per capita water use of just around 5,700 
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gallons when neither Treatment2007 nor OWR is active (see 0 0). When Treatment2007 

is active, referring to all counties in the period between 2007 to 2012, the predicted 

average Per capita use is between 4,500 and 4,600 gallons per month (see 0 1). Under 

active OWRs, the average predicted Per capita water use decreases with increasing 

stringency of the restriction, with about 5,522 gallons under OWRP_1, about 5,255 

gallons under OWRP_2 and about 4,739 gallons under OWRP_3 (see 1 0).  

Table 4.7: Marginal Effects Based on Fixed-effects Linear Regression Results8 

INDEPENDENT 
VARIABLE 

MODEL 1 
(OWRP_1) 

MODEL 2 
(OWRP_2) 

MODEL 3 
(OWRP_3) 

CONSIDERING 
AUTOCORRELATION 

   

OWR    
0 5,439.91*** 5,442.48*** 5,432.89*** 
1 5,282.62*** 5,074.71*** 4,677.97*** 
TREATMENT2007    
0 5,684.64*** 5,653.38*** 5,694.94*** 
1 4,588.02*** 4,494.63*** 4,530.74*** 
OWR##TREATMENT2007    
0 0 5,698.14*** 5,731.66*** 5,708.53*** 
0 1 4,595.43*** 4,496.79*** 4,531.47*** 
1 0 5,522.28*** 5,255.45*** 4,738.67*** 
1 1 4,498.86*** 4,483.61*** 4,479.44*** 
CONTROLLED FOR 
COUNTY AND MONTHLY 
VARIANCE 

   

OWR    
0 5,372.65*** 5,438.94*** 5,400.03*** 
1 5,808.34*** 5,229.24*** 3,601.595*** 
TREATMENT2007    
0 5,639.1*** 5,579.83*** 5,574.08*** 
1 4,644.48*** 4,830.97*** 4,723.25*** 
OWR##TREATMENT2007    
0 0 5,602.28*** 5,611.27*** 5,606.41*** 
0 1 4,621.69*** 4,875.36*** 4,725.11*** 
1 0 6,080.46*** 5,420.02*** 3,298.71*** 
1 1 4,918.43*** 4,605.32*** 4,592.12*** 

8 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

Finally, the exact treatment effect of each restriction is estimated when 

Treatment2007 and OWRs are in effect simultaneously, showing that the predicted 
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average Per capita water use for OWRP_1 would be almost 4,500 gallons, for OWRP_2 

about 4,484 gallons and for OWRP_3 almost 4,480 gallons (see 1 1 in Table 4.7).  

Looking at the margins based on the regular fixed-effects regression model, one 

can see an average Per capita water use of just above 5,600 gallons when neither 

Treatment2007 nor OWR is active (see 0 0) which is about 100 gallons less than 

predicted with the other model. When Treatment2007 is active, referring to all counties in 

the period between 2007 to 2012, the predicted average Per capita use varies between 

almost 4,622 gallons for the OWRP_1 model and 4,875 gallons per month for the 

OWRP_2 model (see 0 1). Under active OWRs, the average predicted Per capita water 

use decreases steeply with increasing stringency of the restrictions, with about 6,080 

gallons under OWRP_1, about 5,420 gallons under OWRP_2 and almost 3,300 gallons 

under OWRP_3 (see 1 0). Finally, the exact treatment effect of each restriction is 

calculated when Treatment2007 and OWRs are in effect simultaneously, showing that 

the predicted average Per capita water use for OWRP_1 would be about 4,918 gallons, 

for OWRP_2 about 4,605 gallons and for OWRP_3 almost 4,592 gallons (see 1 1). 

These values are all below the individual values of both Treatment2007 and the 

respective OWR (see Table 4.7). 

Table 4.7 reveals that, looking at the model controlling for county and monthly 

variance, about 133 gallons of water per person per month are saved under OWRP_3 

(4,725.11 – 4,592.12) compared to the average of other OWRs. The savings due to 

OWRP_3 compared to before the treatment period would be around 1,014 gallons per 

person per month (5,606.41 – 4,592.12). We used both these numbers to calculate a 

monthly monetary value for these amounts of water saved in each county. To 

accomplish this, the most and the least expensive water rate structure in each county 
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were used to calculate the average dollar value of the saved water in 2020 dollar. The 

respective tier of water billing rate was considered, which means that we took into 

consideration the average amount of water that was consumed per person in each 

county despite the reduction of OWRP_3. For instance, if the price of the saved 133 

gallons was calculated in the 3,000 to 5,000 gallons tier with a higher price per 1,000 

gallons than it would have been in the 1,000 to 2,000 gallons tier. This is important to 

obtain a realistic picture of the amount of Dollars saved (for the consumers) or forgone 

(for the utilities). Those two values were then divided by two to obtain the average billing 

rate. This procedure was followed for both amounts and all counties to find specific 

values and extrapolated to receive the total monetary value of the saved amount of 

water for the whole year. Figure 4.1 and 4.2 illustrate the variation of water rates among 

the 13 different counties considered here. Over the course of a year almost 1,600 

gallons of water per person could be saved due to the OWRP_3, compared to the 

average usage within the Treatment2007 period, whereas it would be almost 12,170 

gallons per person compared to the pre-treatment average usage.  

The water rates vary significantly between counties, leading to the different 

monetary values for the 1,600 gallons of water saved (see Figure 4.1). Residents in 

Orange could save the smallest amount of money (US$1) while some residents in 

Broward could save most money with over US$13. The average value is US$4.90. 

Figure 4.2 illustrates the monetary value of 12,170 gallons saved in one year. The saved 

costs range between US$9.80 in Osceola and US$103.60 in Lee with an average value 

of US$44.60.  
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Figure 4.1: Monetary Value of Water Saved due to Outdoor Water Use  
Restriction Phase 39  

 

9 1,596 gallons per person per year, difference to consumption when less stringent restrictions are 
implemented 

 

Figure 4.2: Monetary Value of Water Saved due to Outdoor Water Use  
Restriction Phase 310 

 

10 12,168 gallons per person per year, difference to no restriction at all 
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Furthermore, based on the regular fixed-effects linear regression model 

considering county and monthly variations we predicted the specific amount of water that 

could be saved in each month of implemented OWRP_3 compared to the overall 

average usage (before and after treatment 2007). In Figure 4.3 one can see a significant 

variation between the beginning and the end of the year.  

Figure 4.3: Predicted Average Amount of Water Saved due to Outdoor Water Use 
Restriction Phase 3 in Different Months11  

 

11 no values for July-October since Phase 3 restriction was never implemented in these months 

For the four months between July to October, there were no such specific visible 

savings since OWRP_3 was never in effect during these months in any given year. We 

could estimate the values for January to April based on the data from eleven counties 

(except Orange and Osceola county) and both May and June, and November and 

December based on data from two counties only (Broward and Osceola for May-June, 

Glades and Hendry for November-December). The results show that the comparatively 
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smallest amount of water (about 700 gallons of water per person per month) was saved 

when the majority of counties had to follow OWRP_3 in 2008 due to a districtwide 

drought event, followed by the two months when only Broward and Palm Beach followed 

this rule in 2007 with a reduction of about 1,000 gallons (see Figure 4.3). The greatest 

savings were reached with over 1,600 gallons of water per person when OWRP_3 was 

implemented in Collier and Hendry even earlier at the end of 2006.  

In a next step we used the average monthly amount of water saved in all 

counties (133 gallons) and the respective monetary values to extrapolate it to the entire 

SFWMD level. In 2008, the entire district’s population was a little over 7.1 million people. 

All of them together would have saved almost 11.4 billion gallons in an entire year due to 

OWRP_3. The monetary value of this would equal more than US$42.2 million today. 

These values were used in the analysis of the value function approach.  

Finally, Figure 4.4 shows how Per capita water use varied across months 

between 1985 to 2012. Across all 13 counties and 27 years, water use was 

comparatively at its lowest in September, with an average amount of 5,360 gallons per 

person. The month with the greatest average water consumption was May with an 

average additional consumed amount of almost 900, bringing the overall average usage 

up to 6,360 gallons per person. One can see a slow and steady increase of water use 

from October to December. The water use remains almost stagnant from December 

through January. February shows a significant drop in average water use. The average 

consumption is substantially increased from March to May. And lastly, June through 

August show another noticeable decrease in consumption (see Figure 4.4).  
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Figure 4.4: Comparison of Differences in General Water Use over Months 

 

4.2 Value Function Approach 

The regression models used for the value function show that certain hydrological 

factors were significantly correlated to the dependent variable Number of restricted days, 

while results for others were less obvious. Four different models were used to analyze 

the relation between hydrological variables and the Number of restricted days: Model 1 

is a fixed-effects negative binomial regression, Model 2 is a negative binomial 

regression, reported as incidence-rate ratios, Model 3 is a population-averaged negative 

binomial regression with robust standard errors and Model 4 is a population-averaged 

negative binomial with robust standard errors and independent correlation (correlation 

between time points is independent) (see Tables 4.8 and 4.9). These models show all 

variables except WCA water level to be significantly correlated to the dependent variable 

Number of restricted days. Temperature was excluded from the analysis due to 

collinearity with Precipitation. 
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Table 4.8: Regression Results for the Hydrological Model of OWRs, Dependent Variable 
Number of Restricted Days12 (1) 

VARIABLES MODEL 1 (FIXED-
EFFECTS NEGATIVE 
BINOMIAL) 

MODEL 2 (NEGATIVE 
BINOMIAL, REPORTED AS 
INCIDENCE-RATE RATIOS) 

CON -16.001*** -1.12e-07*** 
PRECIPITATION -0.017** 0.983** 
LAKE OKEECHOBEE -0.545*** 0.5798*** 
LAKE KISSIMMEE 0.412*** 1.51*** 
EVAPORATION 2.015*** 7.449*** 
WCA 0.053 1.054 

12 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

The coefficients’ signs are similar in all models and in Model 3 and Model 4 the 

magnitude of the coefficients is also very similar. One can see that the Number of 

restricted days increases with low Precipitation and low Lake Okeechobee water level 

(coefficients -0.015/-0.017 for Precipitation and -0.55/-0.43/-0.45 for Lake Okeechobee). 

The coefficients of Lake Kissimmee water level, Evaporation and WCA water level 

increase with increasing Number of restricted days (0.41/0.36/0.37 for Lake Kissimmee; 

2/1.8 for Evaporation and 0.053/0.024/0.027 for WCA). To better understand these 

results, we had the fixed-effects negative binomial model reported as incidence-rate 

ratios (see Table 4.8, Model 2).  The incidence-rate ratios reveal that for a 1% increase 

in Precipitation, we can expect a decrease in Number of restricted days by a factor of 

0.98. For a 1% increase in the Lake Okeechobee water level, the Number of restricted 

days decreases by a factor of 0.58. By contrast, for a 1% increase in the Lake 

Kissimmee water level, the Number of restricted days increases by a factor of 1.51. 

Finally, for a 1% increase in Evaporation and the WCA water level, we can expect an 

increase in the Number of restricted days by a factor of 7.5 and 1.1, respectively. 
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Table 4.9: Regression Results for the Hydrological Model of OWRs, Dependent Variable 
Number of Restricted Days13 (2) 

VARIABLES  MODEL 3 
(POPULATION-
AVERAGED AS 
NEGATIVE BINOMIAL 
AND WITH ROBUST 
STANDARD ERRORS) 

MODEL 4 (POPULATION-
AVERAGED AS NEGATIVE 
BINOMIAL AND WITH 
ROBUST STANDARD 
ERRORS AND 
INDEPENDENT 
CORRELATION) 

CON -12.608*** 13.3295*** 
PRECIPITATION -0.015** -0.017* 
LAKE OKEECHOBEE  -0.432*** -0.448*** 
LAKE KISSIMMEE 0.359*** 0.374*** 
EVAPORATION 1.787*** 1.816*** 
WCA 0.024 0.027 

13 * indicates significance at 0.10; ** indicates significance at 0.05; *** indicates significance at 0.01 

Based on the relation between Lake Okeechobee water level and Number of 

restricted days established in these regression models, we can apply the framework 

developed in Figure 3.7. The first step is to connect a monetary value with the amount of 

water that is saved due to OWRP_3, which is possible with the DID regression model 

outputs. Based on those results, we can predict how much water would be saved in a 

year for each county and then extrapolate it to almost 11.4 billion gallons (133 gal x 12 

months x 7.1 million people) for the entire population of the SFWMD. A monetary value 

for the saved amount of water could be calculated for each county and extrapolated, 

revealing a total of more than US$42.2 million (US$21.7 million in 2008 dollar) for the 

entire SFWMD. Then we can use the relation established between the OWRs and the 

hydrological system. In this model, the dependent variable is not Per capita water use 

but Number of restricted days. As explained before, the incidence-rate ratios reveal that 

for a 1% increase of the Lake Okeechobee water level the Number of restricted days in 

a week can be expected to decrease by a factor of 0.58, which means that if the lakes’ 

water level falls by 1% we can expect that we will have almost half an additional day of 

water use restriction. Furthermore, we calculated the exact reductions of the Lake 

Okeechobee water level that correspond to an increasing Number of restricted days (see 
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Figure 4.5), then illustrated the relation in percent (see Figure 4.6) and finally 

transformed it into a volume that is related to different OWRs (see Figure 4.7).  

Figure 4.5: Water Level of Lake Okeechobee in Relation to Number of Restricted Days 

 

Figure 4.5 shows that the predicted average water level of Lake Okeechobee is 14.7 feet 

when there are no restrictions implemented. The orange points indicate the values 

based on actual data. Since there is no such OWR restricting outdoor water usage to 

six, five or four days or less than once a week, the blue values were interpolated. 

Decreasing water level in Lake Okeechobee is related to an increasing Number of 

restricted days, reaching an average 13.4 feet at 4 restricted days which is equivalent to 

OWRP_1, 12.4 feet at 5 restricted days which is equivalent to OWRP_2 and a low of 

10.4 feet at 6 restricted days which is equivalent to OWRP_3.   

Figure 4.6 shows, similar to Figure 4.5, the relationship between the water level 

change of Lake Okeechobee and the Number of restricted days, but now in percentage 

of water level. Setting the average water level when there are no restrictions as 100% 
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(14.7 feet), we calculated that an OWRP_1 is associated with a 9% drop of Lake 

Okeechobee water level. A 15% decrease is related to OWRP_2 and a much greater 

29% decrease is related to the implementation of OWRP_3. 

 Figure 4.6: Percentage Change of Lake Okeechobee’s Water Level in Relation to 
Number of Restricted Days14 

 

14 14.7 feet set as 100% 

Using the average lake surface area of Lake Okeechobee of 467,000 acres, we 

convert the water levels in feet into corresponding lake volumes in acre-feet (U.S. Army 

Corps of Engineers, 2008). Our model predicts that no restrictions occur around a 

volume of 6.9 million acre-feet in Lake Okeechobee (see Figure 4.7). Based on our 

results, we can expect OWRP_1 coincides with a volume of around 6.2 million acre-feet, 

OWRP_2 coincides with a volume of about 5.8 million acre-feet and OWRP_3 coincides 

with a volume of around 4.9 million acre-feet, a very significant decrease of 29%. 
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Figure 4.7: Percentage Change in Volume of Lake Okeechobee in Relation to Number of 
Restricted Days 

 

The last step is to connect the monetary value from the water saved due to 

OWRP_3 with the water in the hydrological system. We calculated the monetary value of 

the water saved due to OWRP_3, which implies that the volume of water that decreased 

in the hydrological system, more specifically in Lake Okeechobee, can be assigned to a 

monetary value. Therefore, a decrease of Lake Okeechobee of almost 0.9 million acre-

feet can be assigned a monetary value of more than US$42.2 million (US$21.7 million in 

2008 dollar). Here we took the difference between the average volume related to 

OWRP_2 and the average volume related to OWRP_3 (5.8 – 4.9million acre-feet) in 

Lake Okeechobee. 

Furthermore, it was also possible to calculate the average water levels of Lake 

Okeechobee over the course of the year between 1985 to 2012. One can see a variation 

between wet season, from May to October, and dry season from November to April. 
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Higher lake levels of above 14 feet are normal from September to March and lower lake 

levels from April to August (see Figure 4.8). Based on this seasonal variation in Lake 

Okeechobee water level, the probability of having OWRs in place also varies.  

Figure 4.8: Average Monthly Water Level of Lake Okeechobee 1985-2012 

 

 

Finally, Figure 4.9 shows the difference between the Lake Okeechobee water 

levels in the dry and wet season. In the wet season, signified by the blue dots, the 

maximum average water level (which is around 13 feet) coincided with three days of 

restriction. In general, actual water restrictions are related to smaller decreases in Lake 

Okeechobee water levels, for instance a 10% reduction of water level leads to OWRP_2. 

Compared to that, the 100% Lake Okeechobee average water level of the dry season, 

indicated by the orange dots, is related to one day of restriction and a 20% reduction in 

water level is associated with OWRP_2 (see Figure 4.9). 
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Figure 4.9: Relation of Lake Okeechobee’s Seasonal Lake Levels to Number of 
Restricted Days 

 

 

4.3 Comparison with Stated Preference Results 

The study by Seteeram et al. (2018) reported that the stated WTP values of 

survey respondents ranges between US$25.70-32.40 (US$10.58-13.35 in 2004 dollars) 

per unit OWR to avoid restrictions, while the average WTP is US$58.00-87.00 

(US$23.90-35.85 in 2004 dollars) per year (Seeteram, 2014). Based on these numbers, 

it was estimated that the South Florida population was willing to pay between US$59.2-

66.3 million (US$24.4-27.3 million in 2004 dollars) (n=2,044,741 households) to avoid 

OWRs (Seeteram, 2014). The monetary value that we received from the DID regression 

was between US$25.8-54.4 million (in 2020 dollars), based on the lowest and highest 

water utility rate in each county. Therefore, the stated WTP is about US$5-40.5 million 

higher than the monetary value we calculated for the saved water. It is important to 

understand that the WTP results from Seeteram et al. (2018) are related to the marginal 
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WTP, for one unit decrease of restriction. This means going from OWRP_3 to OWRP_2, 

one additional day of irrigation is allowed. In the current study, the monetary value 

relates to a similar unit since we calculated the reduced amount of water due to 

OWRP_3, and its monetary value, compared to the average usage from 2007 to 2012, a 

time period when all counties had OWRP_1 or OWRP_2 implemented. 
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5. DISCUSSION AND CONCLUSION 

5.1 Discussion 

5.1.1 Difference-in-Differences Approach 

Overall, we were not able to establish a causal relation in the DID analysis 

between OWRP_1 and a decrease of Per capita water use. Neither the pure OWRP_1 

nor the treatment effect expressed by the Interaction_1 were significantly correlated (at 

the 0.01 levels) to Per capita water use in any of the applied models. This might result 

from OWRP_1 being the least strict OWR mechanism. In the phase after 2007, there 

was no month or county without any implemented restrictions. Therefore, OWRP_1 

allowed the comparatively highest water consumption for outdoor use. As a 

consequence, it is not surprising that no reducing effect of this type of restriction could 

be found. 

In contrast, it was possible to establish a causal relation in the DID analysis 

between OWRP_2 and Per capita water use, however only in the fixed-effects linear 

regression model that considered autocorrelation. The other models delivered 

insignificant results for both OWRP_2 and Interaction_2. The results of the fixed-effects 

linear regression model considering autocorrelation revealed that OWRP_2 is correlated 

to a decrease of Per capita water use of about 476 gallons per month, while the 

Interaction_2 is positively correlated. To understand this, it is necessary to consider 

Treatment2007, which is also negatively correlated to Per capita water use, revealing a 

reduced water consumption of 1,235 gallons per month in the period after 2007 

compared to the average usage before 2007. What is most interesting in the context of 

the DID approach though is the effect of the Interaction_2, which can be better 

understood when looking at the margins. They reveal the actual amount of water used 

under different treatments. The predicted marginal effects calculated after the fixed-
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effects linear regression considering autocorrelation show an average water 

consumption under the influence of Interaction_2 of almost 4,484 gallons per person per 

month. Compared to the average usage in the post-treatment period, which is almost 

4,497 gallons, a small amount of 13 gallons are saved. Looking at the predicted margins 

calculated after the fixed-effects linear regression controlling for county and monthly 

correlation, the savings appear to be much bigger. With an average usage of about 

4,605 gallons per person per month under Interaction_2 and an average consumption of 

about 4,875 gallons in the post-treatment period, a reduction of 270 gallons per person 

per month could be calculated. Although these results are not congruent, it is possible to 

draw a few conclusions. Due to the partly insignificant results received, it is not possible 

to state with entire certainty that a specific reducing effect of this restriction on Per capita 

water use is proven. The margins have predicted a reducing effect of 13 and 270 

gallons, respectively, depending on the model used. Since 13 gallons have been 

predicted by the fixed-effects linear regression model with autocorrelation and it has 

delivered significant results beforehand, one could argue that at least 13 gallons have 

been saved due to OWRP_2 compared to OWRP_1. This is a relatively small reduction 

resulting from one additional day of OWR. On the other hand, with OWRP_1 as the 

baseline after 2007 one could argue, that the overall Per capita water use was already 

reduced so much due to only three-days watering allowed that an additional restricted 

day did not have a major impact on the average water consumption. On a large scale, 

permitted watering on two or three days a week may not have had such an influential 

effect on how and when residents used water outside since most of them may only water 

twice per week with restrictions present. 

The DID approach applied with OWRP_3 as the major independent variable 

unanimously established a causal relation between the most stringent type of restriction 
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and Per capita water use, revealing a significant and decreasing effect in the regular 

fixed-effects linear regression model and in the model considering autocorrelation. More 

importantly, the Interaction_3 is found to be significant. The predicted margins illustrate 

that the restriction in the period from 2007 to 2012 led to an average reduction of Per 

capita water use of 51 (considering autocorrelation) or 133 (considering county and 

monthly variation) gallons per person per month, depending on the model. OWRP_3 

was only ever implemented for a comparatively short time, a few months, and these 

periods were drought periods with residents following OWRs nonstop and increased 

efforts to raise awareness. The results indicate a success of these efforts with residents 

adjusting their behavior.  

Overall, a causal effect of the implemented OWRs could only be clearly shown 

for OWRP_3. However, this does not mean that there is none for OWRP_2 and 

OWRP_1. Instead, limitations of the data could have caused non-significance of the 

coefficients to weaken the results. Besides that, potential reasons for non-compliance or 

constrained compliance exist as explained in the literature review, such as consumers 

not being aware of the more stringent restriction, residents being in a dilemma between 

following OWRs or homeowner association rules or customers changing the water use in 

a strategic way that only shifts the amount used for watering from one day to the other. 

The actual reasons for certain types of water consumption behavior will remain unclear 

in the current study based on aggregate data.  

The other two explanatory variables in the DID models, Median household 

income and Bachelor’s degree or higher showed interesting and mostly matching 

results. Median household income revealed to be highly significantly and positively 

correlated to Per capita water use (0.017) in the majority of models. This indicates that 
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households with a higher income tend to use more water than those with a lower 

income. This is not surprising and corresponds to findings from previous studies 

(Fielding, Russell, Spinks, & Mankad, 2012; Gregory & Di Leo, 2003; Harlan, Yabiku, 

Larsen, & Brazel, 2009). As explained in the literature review, a higher income allows 

customers to maintain a certain affluent lifestyle with more water-consuming fixtures like 

additional bathrooms and bathtubs in the house, bigger yards and pools. Compared to 

this, the second variable, Bachelor’s degree or higher was significantly correlated with 

Per capita water use but sometimes negatively and sometimes positively, depending on 

the model. The value of the coefficient ranged between -38 (in the fixed-effects linear 

regression model controlling for county and monthly variation with OWRP_2 as the main 

predictor variable) and -44 (for the models with OWRP_1 and OWRP_3). In the fixed-

effects linear regression controlling for autocorrelation, the value of this coefficient was 

positive and between 55 to 62, making the effect of this variable inconsistent. In previous 

studies, both increasing and decreasing correlations between water use and education 

have been observed. On the one hand it can be argued that an increased level of 

education can advance knowledge and thus increase awareness of issues such as 

water scarcity and its impacts, translating it into reduced water consumption (Dean, 

Lindsay, Fielding, & Smith, 2016). On the other hand, higher personal water 

consumption can be related to showing off ones socioeconomic status when better 

education, leading to higher income, is associated with affluence, which can again 

manifest in a bigger house and garden with additional indoor and outdoor water 

appliances (Dean et al., 2016). Another influential factor might be political identity, 

related to increased or decreased awareness of environmental issues. The inconsistent 

finding on the effect of education reveals the complexity of such factors and indicates, 
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that single variables and their interactions can be more difficult to understand than 

assumed.  

The variations between the predicted amounts of water saved in each given 

month due to OWRP_3 compared to no restriction at all can reveal something about the 

time when this restriction was implemented. When looking at the timeline of OWRs we 

can see that Glades and Hendry were the first counties where OWRP_3 was 

implemented, which was at the beginning of a two-year drought phase from November 

2006 until March 2007. These two counties revealed the greatest water use reduction 

with an average decrease of 1,600 gallons per person per month among all counties that 

had this restriction implemented at any point in time compared to the overall average 

usage. Broward and Palm Beach county followed in May/June 2007 with a smaller 

reduction effect of about 1,000 gallons per person per month. By that time, people in 

these two counties already followed OWRP_2 since the previous November, potentially 

causing less responsiveness for the more stringent restriction. Finally, when all counties 

except Orange and Osceola had OWRP_3 implemented from January to April 2008, the 

resulting reductions were comparatively smaller (700 gallons per person per month) 

compared to the overall average usage. After more than one year of drought with 

respective restrictions and concomitant messaging, responsiveness might have come to 

a lower level. Residents might have been desensitized by previous episodes of water 

conservation and messaging. Besides the author’s personal observations, Whitcomb 

(2005) stated that there is some evidence that residents may not be entirely following 

OWRs. Similar to other water conservation regulations, such as required rain sensors on 

automatic irrigation systems, weak enforcement can result in policy instruments that are 

lacking in their effectiveness (Whitcomb, 2005). A similar finding was explained in a 

study by Ozan & Alsharif (2013a), that investigated the effect of OWRs in Tampa, 
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Florida. They found that water usage even increased with more stringent OWRs. Users 

with more citations due to violations increased their consumption the most. Reasons 

given by the authors included a possible discrepancy between local water use policies 

including OWRs and homeowner association regulations. Furthermore, the simultaneity 

of drought and OWRP_3 might have contradicted the homeowners’ constraint to keep 

their lawn green (Ozan & Alsharif, 2013). In this context, landscaping advocates argue 

that the actual water demand of turfgrass is not considered in the setup of OWRs, with 

OWRP_3 resulting in most grasses being underwatered. Therefore, it would not make a 

big difference to ban irrigation entirely at that point (Ozan & Alsharif, 2013).  

Summarizing, DID with OWRP_3 was the only model that showed entirely 

significant results in this analysis, while OWRP_2 revealed a significant treatment effect 

only in one of the models, however, a stronger effect than resulting from OWRP_3. 

The observed change in water use over months varies between an average of 5,360 

gallons per person in September and 6,232 gallons per person in May over the entire 

study period of 27 years and across all 13 counties. This variation is partly appearing 

arbitrary and therefore difficult to interpret in a concise way. Broadly speaking, one could 

argue that comparatively lower water consumption from June through October could 

match with the rainy season in South Florida, when the weather is usually shaped by 

greater amounts of precipitation. In the dry season between November to March, water 

usage is slightly higher, potentially due to reduced amounts of precipitation. For April 

and May, based on the climate graphs, the temperatures are usually already increasing 

while the rain has not increased yet, requiring residents to balance the resulting need for 

water. Another reason might be that more tourists and part-time residents visit during the 

dry season, which is more likely given the more comfortable season in South Florida 
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with lower temperatures and reduced likelihood of experiencing thunderstorms and 

hurricanes. Furthermore, it is winter in the Northern hemisphere where many tourists 

come from, leading to increased numbers of visitors that may be recognizable in the 

counties’ water use. 

Finally, the coefficients of the yearly dummy variables simply indicate that average Per 

capita water use decreased over the course of the years compared to the last analyzed 

year 2012 which had the lowest average Per capita water use. This can potentially be 

related to general improvements in the water saving technologies of appliances and 

increased awareness.  

5.1.2 Value Function Approach 

The hydrological variables used in the value function approach are in all four 

regression models significantly correlated to the Number of restricted days. Number of 

restricted days decreased with an increasing Precipitation. Since drier weather 

conditions partly result from less precipitation, it seems logical that the Number of 

restricted days increases the drier it becomes. The difficulty of including climate 

variables such as temperature and precipitation is based in the potential multitude of 

different aspects of such variables, such as daily maximum or average temperature, 

number of rain events, average amount of rain or sum, which can all have varying 

impacts on the results of an analysis. Lake Okeechobee water level is also negatively 

correlated to Number of restricted days which means that when the lake’s water level 

decreased, additional days of water restrictions were put ina place. Again, a decreasing 

water level could be related to drought or drier conditions, triggering more stringent 

water restrictions to be implemented. However, one must keep in mind that Lake 

Okeechobee is not only impacted by the local weather but has also been managed 
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under a complex management plan, letting water in from the Kissimmee Chain of Lakes 

and out to the adjacent canals or WCAs to follow the various objectives, such as flood 

control, navigation, water supply for agricultural irrigation, the Everglades National Park 

and regional groundwater control (U.S. Army Corps of Engineers, 2008). Therefore, a 

direct causal relation between a decreasing water level (due to evaporation or water 

allocation) in a drier climate and increasing restrictions is challenging. Lake Kissimmee 

water level is positively correlated to Number of restricted days, which means that the 

water level in the lake raised when OWRs became more stringent. At first sight, this 

does not appear to be logical. It could potentially be explained, at least partly, with its 

importance as nesting and foraging habitat for the Everglades snail kite that is focused 

on in restoration plans in regards to Lake Kissimmee (Community Development 

Department, 2015). Connected to targeted higher water levels that are closer to 

historical stages, it is particularly mentioned that Lake Kissimmee is meant to serve as a 

refuge for the snail kite during drought conditions in Lake Okeechobee (Community 

Development Department, 2015; FWC, 1994). However, how strong the impact of this 

management target is can only be assumed and for how long this management purpose 

has already been followed could not exactly be determined. Evaporation is positively 

correlated to Number of restricted days, as well, signifying that increased evaporation 

(due to drier and/or hotter weather) was related to increasingly stringent OWRs, which 

appears logical. Finally, WCAs water level is also positively but not significantly 

correlated to Number of restricted days. Among other purposes, WCAs are, right after 

Lake Okeechobee, the second most important source of water for irrigation during the 

dry season and water is taken from them to increase canal and groundwater stages 

(Abtew & Ciuca, 2016). Based on this information, a decreasing relation should have 

been observed. 
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Looking at the change of Lake Okeechobee water level and its relation to the 

Number of restricted days, one can see that 14.7 feet, which was the overall average 

water level of the analyzed period, equates to a volume of 6.9 million acre-feet (14.7 feet 

x 467,000 acre, from U.S. Army Corps of Engineers (2008)). Filled with this amount of 

water, the probability of OWRs is very low. A drop of 9% to 6.2 million acre-feet, is the 

average volume corresponding to OWRP_1, while OWRP_2 could be related to an 

average volume of 5.8 million acre-feet. These volumes correspond to water levels of 

13.4 and 12.4 feet (U.S. Army Corps of Engineers, 2008), respectively, which are within 

the boundaries that the lake’s water level is managed. Due to the nonstop 

implementation of OWRP_1 and OWRP_2 since 2007, these values appear relatively 

high for being related to the implementation of OWRs. In contrast, OWRP_3 occurs at 

an average volume of 4.9 million acre-feet, which equates to a reduction of Lake 

Okeechobee volume of 29%. In other words, almost a third of the lake’s average water 

volume, corresponding to an amount of 2 million acre-feet, has either left the lake, been 

used or evaporated, when OWRP_3 is implemented.  

The last step of the framework is the connection of the water volume in the 

hydrological system with the monetary value related to the water saved due to OWRP_3 

in the human/social system. Therefore, we can assign a revealed preference value for 

0.9 million acre-feet, which is the reduced lake volume going from OWRP_2 to 

OWRP_3, to a sum of between US$25.8-54.4 million. 

Before we continue to connect this revealed WTP value with the stated WTP, it is worth 

noting that the Lake Okeechobee water level varies over the time of the year, as 

mentioned before not only due to climate variables but also due to management 

decisions. Therefore, the results show that the lake’s water levels have been much lower 
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in the wet season to enable the storage of water when heavy rain events happen. 

However, at the same time the probability for OWRs is theoretically much higher than it 

is in the dry season. Already a 10% decrease of the Lake Okeechobee water level in the 

dry season is related to OWRP_2, whereas the same restriction corresponds to an 

almost 20% reduction of the average water level in the wet season. These findings 

appear counterintuitive, but they are mostly the result of water management decisions. 

5.1.3 Comparison with Stated Preference Study 

The discrete choice analysis by Seeteram et al. (2018) found respondents’ stated 

willingness to pay for a relaxation of OWRs. The current study used a DID and a value 

function approach to find revealed preferences. The connection of these two studies 

allows for a great opportunity to compare stated and revealed preference information for 

outdoor water use from South Florida residents. In the current study, the monetary value 

of the saved/restricted water due to OWRP_3 compared to less stringent restrictions 

turned out to be between US$25.8-54.4 million for all South Florida residents for an 

entire year. The stated WTP of respondents for using additional amounts of water, in 

other words relaxing OWRs, was calculated to be US$59.2-66.3 million (US$24.4-27.3 

million in 2004 dollars) for all South Florida households for a year (Seeteram, 2014). 

This value relates to a one-unit step, for instance going from OWRP_3 to OWRP_2. 

Therefore, it becomes clear that in this specific case the South Floridians’ stated WTP is 

about between US$5-40.5 million higher than the estimated value of the water saved in 

2008. This finding indicates that residents would be willing to pay more money for using 

additional amounts of water. The monetary value that South Florida residents ascribe to 

the water they saved seems to be higher than the rates they must pay for that water. 

With regard to water conservation, the results indicate that higher water rates would be 

necessary to achieve a reduction of water consumption via a price signal alone. If lower 
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water rates are favored, OWRs can help to reduce the consumption. Besides that, while 

the stated WTP in Seeteram et al. (2018) was set to be equal for every one-unit 

decrease of OWRs, it is probable that varying amounts of water are saved due to 

different OWRs. Therefore, to go from OWRP_2 to OWRP_1 (potentially a greater 

difference in water use than between OWRP_3 and OWRP_2) may have a greater 

monetary value and therefore cost the people more money. 

5.2 Limitations 

Within the scope of this graduate thesis research, data from 13 and 16 counties, 

respectively, over the course of 27 years were analyzed. The data were provided by 

employees of the SFWMD. Due to the type of water use data and the geographical and 

time scale used to analyze the data, certain limitations exist concerning the validity of the 

analysis. As briefly explained in the methods section, the study analysis is based on 

public-supply water use data, which does not reveal clear information about the exact 

amount of water used by a certain number of exclusively residential customers. The 

number of people (permanently living in South Florida) served was known and regarding 

OWRs, all kinds of customers need to follow these restrictions. However, the usage of 

non-residential users that consume water on a bigger scale than individual households is 

included in the data which warps the results on Per capita water use. Furthermore, the 

number of tourists visiting South Florida every year cannot be considered due to lacking 

information on the variation between counties, months and years. Therefore, the values 

derived for Per capita water use are probably in general slightly too high in this study.  

Additionally, data were used on the county level, which is a rather broad scale to 

analyze water use data. Other studies used single household data provided by individual 

water utilities. The advantage of our approach is that we were able to cover a greater 
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area than an analysis on the household level that is likely to cover only a smaller number 

of customers. Nonetheless, the disadvantage of the county level analysis is that in some 

cases millions of people’s water use behavior is analyzed without being able to monitor 

the individual user’s or neighborhood’s actions and motives. Similarly, weather data 

were applied to entire counties, using precipitation and temperature from one single 

weather station in the entire county. Especially in South Florida, where very local 

weather events are common, such data can only be a proxy for areas farther away from 

the measuring stations. This limitation applies also to educational attainment and 

household income, which is always relating to the entire county, not able to show the 

variability between residents within a county.  

Concerning the focus of this analysis, the spatial and temporal variation could not 

always be considered entirely. On the spatial scale, the analysis took place on the 

county level, while restrictions were sometimes implemented on a regional scale (e.g. 

Lower East Coast, Upper West Coast etc.) or even on a local scale (e.g. cities or certain 

neighborhoods). On the temporal scale, while this analysis used months as the smallest 

unit, OWRs were rarely implemented on the first of a given month and did sometimes 

not last longer than two weeks. We tried to consider this variation as good as possible 

but unavoidably, some of the details could not be modeled in the analysis. Therefore, the 

observed effects of certain OWRs could not be estimated as accurately as I would have 

hoped. 

Another aspect that could not be considered was the usage of private irrigation wells 

or reclaimed wastewater instead of potable water provided by the water utilities (Marella, 

1992). This water can be used for most outside uses such as irrigation. Previous studies 

on the density and frequency of such wells have shown that they were already within the 
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thousands in the 1970s and 80s (Marella, 1992). Nonetheless, private irrigation wells are 

neither permitted nor inventoried on a county level basis, and so information about them 

is very limited while they are assumed to exist in substantial numbers (Marella, 1992). 

Therefore, the existence of private irrigation wells might be one reason for confounding 

the Per capita water use reduction of residential consumption, which cannot be isolated 

without additional data that do not yet exist. Furthermore, following an informational 

report from the SFWMD from 2014, several utilities have wastewater treatment facilities 

and deliver the recycled water to residential irrigation purposes, for instance in Collier 

county with over 18 million gallons per day sent to 20,000 residences and 23 golf 

courses or Palm Beach county with 14 million gallons per day sent to 6,000 residences, 

ten golf courses and two parks (SFWMD, 2014). Therefore, increasing use of reused 

wastewater might be another invisible reason for reduced water consumption from 

utilities over the years. 

Additionally, other water management tools might have had impacts too. Local 

retrofit programs and information campaigns have been implemented in South Florida 

within the last decades and efforts to encourage the adoption of Florida-friendly 

landscaping principles have increased as well, while their effectiveness was only partly 

monitored. Some information exists only at the utility level and is therefore not readily 

available (SFWMD, 2008). To reach out to all utilities within the borders of the SFWMD 

to collect all information regarding conservation measures between 1985 to 2012 was 

beyond the scope of this thesis. Therefore, their impacts might have had a masking 

effect that was impossible to distinguish from the effects of the analyzed OWRs. Finally, 

changing water rate structures, including not only increases but also switching from one 

rate structure to another might have had an undetected impact, because, in the scope of 
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this thesis, it was impossible to find almost 30 years of water rate information for all 93 

utilities (those serving >2,000 people) within the SFWMD (SFWMD, 2017).  

5.3 Concluding Remarks 

In summary, the demand-side management policy tools are much cheaper than 

supply-side measures and they help reduce pressure on the existing water supply. 

Therefore, they are a more sustainable approach which is positive for the environment. 

Overall, OWRs are a successful management approach in most cases, considering the 

specific circumstances and the appropriate design of the restriction. However, it became 

clear that it is important for local water supply managers to also take into account the 

effort and resources required for the implementation of different measures. For instance, 

OWRs call for information dissemination and at least a minimum of enforcement which 

both have financial and political costs. Additionally, they need the users’ participation 

and willingness to change behavior which is more difficult to exactly predict than many 

other measures. Furthermore, the more specific the more effective any DSM tool can be. 

That is why knowledge of certain characteristics about the target community is crucial, 

such as neighborhood characteristics. On top of that, the expectations of the policy 

should be stated clearly to be able to assess its success and reach its full conservation 

potential. In this regard it is important to point out the possible advantages of 

implementing an additional, consumption-steering price tool in combination with OWRs. 

The advantage of prices is that the necessary infrastructure already exists, and no extra 

staff or time is needed to monitor compliance while the consumers’ welfare is likely to 

increase.  

The main goal of this thesis was to perform an economic analysis of the OWRs in 

South Florida to enable us to draw conclusions about the impacts of this type of 
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demand-side management tool. Our approach consisted of three parts that built on each 

other to provide a comprehensive assessment of the effects of this policy tool. Our 

results have revealed varying conservation effects of the different OWRs which was not 

surprising. While we could not establish a relation between the least stringent OWRP_1 

and Per capita water use, this relationship was possible to establish between 

OWRP_2/OWRP_3 and Per capita water use. Both restrictions were found to have a 

decreasing effect on residential water consumption. Noteworthy is the finding that the 

most stringent OWRP_3 did not lead to a similarly strong decrease of water 

consumption like OWRP_2. Interference with other unobserved factors seem to have a 

strong effect on residential water use as well.  

The established connection between the water resource in the human and in the 

natural system was insightful in the sense that it increased the understanding of how 

variables on both sides cause reactions on each other. The theoretically established 

relation between the water in Lake Okeechobee and OWRs in residential neighborhoods 

could be developed and, despite a multitude of additional influential factors, simplifies 

how these two variables are linked.  

Regarding the monetary value of the water saved, the study could reveal a 

disparity between the residents’ stated WTP to reduce the extent of restrictions and the 

water’s actual monetary value. South Florida residents stated that they would be willing 

to pay a much greater amount of money for relaxing the OWRs than the actual monetary 

value of the water. This highlights the potential to change the current DSM tools in a way 

that increases the customers’ welfare through access to increased amounts of water, 

potentially connected to an increased water rate for greater amounts of consumption. 
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Certain additional water access could be purchasable while the main target, to reduce 

the overall consumption of water, would still be encouraged via the existing OWRs.  

Finally, this analysis showed that the effect of a specific water management tool 

is difficult to isolate, especially when the available data are only accessible on a broader 

scale and additional information on other implemented measures or influencing factors is 

lacking. Therefore, future research should focus on the interaction of multiple DSM 

measures at the same time. Their potentially synergistical or additive effect is of 

increased interest to water managers to achieve the sustainable water management 

goals and objectives. 
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APPENDIX 

Comparison of studies on OWR concerning effectiveness, welfare outcome, WTP, Model/Method & Geography 

(This list is not intended to be exhaustive) 

Study OWR Design Effectiveness Welfare impact WTP Model/Method Geography 

(Shaw & 

Maidment, 

1988) 

Voluntary and 

mandatory lawn 

irrigation, plant 

irrigation every 

few days 

No effect for voluntary, 

31% (every 10 days) to 39 

%(never) reduction for 

mandatory 

   Texas, USA 

(Shaw et el., 

1992) 

Voluntary & 

mandatory 

Average 25% and 36% 

reduction, respectively 

  Statistical model Southern 

CA, USA 

(Kenney, 

Klein & 

Clark, 2004) 

Voluntary vs 

mandatory 

4-12% reduction vs 18-56% 

reduction, respectively, 

compared to “expected 
use” (before restrictions) 

  Regression 

analysis, predictive 

regression model 

Colorado, 

USA 

(Halich & 

Stephenson, 

2009) 

Mandatory & 

voluntary with 

different levels of 

information 

Reductions ranging from 0-

7% for voluntary and 4-22% 

for mandatory (with 

increasing information & 

enforcement for 

mandatory) 

   USA 

(Ozan & 

Alsharif, 

2013) 

From twice- to 

once-a-week OWR 

Increase 7.14%   GIS mapping & 

statistical data 

analysis 

Tampa, 

Florida 



98 
 

Study OWR Design Effectiveness Welfare impact WTP Model/Method Geography 

(Mini et al., 

2014) 

Voluntary 

restrictions; 

Mandatory, limited 

to 2 days per week 

plus increased 

water rates 

No savings for voluntary; 

highest savings 19-23% 

reduction for mandatory 

  Linear mixed-

effects regression 

model 

Los Angeles, 

CA, USA 

(Renwick & 

Green, 

2000) 

 10% increase in price will 

reduce aggregate water 

demand by 1.6%; water 

rationing/use restrictions 

will reduce average 

household demand by 

19%/29% 

  Econometric 

model with price, 

climate & water 

demand equations 

California, 

USA 

(Loë et al., 

2001) 

 Almost 30% of all savings, 

10-20% outdoor water use 

reduction 

  Questionnaire  

(Kenney et 

al., 2008) 

 12% reduction   Demand model as 

function of 

observable and 

unobservable 

variables, fixed 

effects regression 

Coloradon, 

USA 

(Survis & 

Root, 2012) 

 Overwatering occurred   Conservation 

effectiveness ratio 

(CER) 

Southeast 

Florida, USA 
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Study OWR Design Effectiveness Welfare impact WTP Model/Method Geography 

(Pérez-

Urdinales & 

Baerenklau, 

2020) 

 14-32% reduction   Household 

production theory 

& stochastic 

frontier analysis 

California, 

USA 

(Brennan et 

al., 2007) 

 36% reduction under mild 

restrictions, 42% during 

complete sprinkler ban 

Net welfare cost 

under complete 

sprinkler ban 

between $347 per 

household when 

time costs are low 

to $871 when time 

measured at full 

wage rate 

 Production model Australia 

(Grafton & 

Ward, 2008) 

 

 14% decline in aggregate 

water consumption 

Positive Marshallian 

surplus of price vs. 

rationing $238 mil., 

$55 per person, 

$150 per household 

 Estimation of 

demand, 

calculation of 

choke price & 

Marshallian 

surplus 

Sydney, 

Australia 

(Roibas, 

Garcia-

Valiñas, & 

Fernandez-

Llera, 2018) 

  Varying from €1.68 
for 2.5% reduction 

to €31.83 for 15% 
reduction 

 Simulation analysis Sevilla, 

Spain 
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Study OWR Design Effectiveness Welfare impact WTP Model/Method Geography 

(Woo, 1994) 

 

 

  Per capita 

compensation 

variation 

(CV=amount of 

additional money 

needed to reach 

initial utility after 

price change) 

estimate $221-

$1607 per month 

 Model with utility 

function, virtual 

price, double log, 

linear demand 

function 

Hong Kong 

(Griffin & 

Mjelde, 

2000) 

   $25.34-$34.39 to 

avoid an occurrence 

of water restrictions; 

average 

$9.76/month (1/4 of 

water bill) to improve 

future supply 

security levels (in 

1997 US-Dollars) 

Contingent 

valuation method 

USA 

(Gordon et 

al., 2001) 

   Additional $150/year 

for more voluntary 

management instead 

of mandatory 

restrictions 

Choice modeling 

approach 

Canberra, 

Australia 

(Koss & 

Sami 

Khawaja, 

2001) 

   $11.67-16.92/month 

(1993 US-Dollars) to 

avoid restrictions of 

varying severity 

Contingent 

valuation method 

California, 

USA 
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Study OWR Design Effectiveness Welfare impact WTP Model/Method Geography 

(Jenkins et 

al., 2003) 

  US$ 1.6 billion per 

year from water 

scarcity 

 Loss function California, 

USA 

(de los 

Angeles 

Garcia 

Valiñas, 

2006) 

  Average losses 

19.52€ (in 2001 € 

per m3) 

If restrictions >6 

hours/day virtual 

price three times 

higher than real price 

Concept of 

consumer surplus, 

virtual prices, 

generalized 

method of 

moments 

Sevilla, 

Spain 

(Hensher, 

Shore & 

Train, 2006) 

   Lack WTP to avoid 

most types of 

restrictions; but up 

to $239 (31.26%) 

extra on water bill to 

move from complete 

sprinkler restrictions 

every day all year 

round to no 

restrictions 

Stated choice 

experiment 

 

 

 

Canberra, 

Australia 

(Tapsuwan 

et al., 2007) 

   Moving from one to 

three-day sprinkler 

use, 22% extra on 

annual water bill 

Choice 

experiments 

Perth, 

Western 

Australia 

(Cooper, 

Burton, & 

Crase, 2011) 

  $113-292, 

depending on 

individual income, 

owning a lawn and 

local water situation 

 Multiple-bounded 

discrete choice 

contingent 

valuation study 

New South 

Wales & 

Victoria, 

Australia 
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Study OWR Design Effectiveness Welfare impact WTP Model/Method Geography 

(Mansur & 

Olmstead, 

2012) 

  Gain of $96 per 

household during 

lawn watering 

season, 29% of 

average annual 

household 

expenditures on 

water 

To move from no 

watering to two days 

per week WTP of 

$5.36 per thousand 

gallons, instead of 

$1.79 

Usage of demand 

estimates, 

calculation of 

shadow price, price 

elasticity 

11 North 

American 

cities 

(Buck et al., 

2016) 

  For 10/20/30% 

reduction for single 

family 

$1,458/2,153/3,426 

losses per acre-foot 

$64-633 for 10-30% 

reduction per acre-

foot 

Econometric 

model including 

demand 

estimation 

California, 

USA 
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