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ABSTRACT OF THE DISSERTATION
MACHINE VISION, NOT HUMAN VISION, GUIDED COMPRESSION TOWARDS
LOW-LATENCY AND ROBUST DEEP LEARNING SYSTEMS
by
Zihao Liu
Florida International University, 2020
Miami, Florida

Professor Wujie Wen, Major Professor

Deep Neural Networks (DNNs) have been achieving extraordinary performance across
many exciting real-world applications, including image classification [28, 57, 106], speech
recognition [45, 40], natural language processing [6], medical diagnosis, self-driving
cars [12], drones [37], anomaly detection [17] and recognition of voice commands [45].
However, the de facto DNN technique in real life exposes to two critical issues:

First, the ever-increasing amounts of data generated from mobile devices, sensors, and
the Internet of Things (1oT) challenge the performance of DNN system. there lack efficient
solutions to reduce the power-hungry data offloading and storage on terminal devices like
edge sensors, especially in face of the stringent constraints on communication bandwidth,
energy, and hardware resources.

Second, DNN models are inherently vulnerable to adversarial examples (AEs) [38], i.e.
malicious inputs crafted by adding small and human-imperceptible perturbations to normal
inputs, strongly fooling the cognitive function of DNNs. Though image compression
technique have been explored to mitigate the adversarial examples [35, 29], however,
existing solutions are unable to offer a good balance between the efficiency of removing
adversarial perturbation on malicious inputs and classification accuracy on benign samples.

This dissertation makes solid strides towards developing low-latency and robust deep

learning systems by for the first time leveraging the deep understandings on the image

vi



perception difference between human vision and deep learning systems (a.k.a. "machine
vision" in this dissertation). In the first part, we propose to develop three types of “machine
vision" guided image compression frameworks, dedicated to accelerating both cloud-based
deep learning image classification and 3D medical image segmentation with almost zero
accuracy drop, by embracing the nature of deep cascaded information process mechanism
of DNN architecture. To the best of our knowledge, this is the first effort to systematically
re-architecture existing data compression techniques which are centered around human
vision to be machine vision favorable, thereby achieving significant service speed-up. In the
second part, we propose a JPEG-based defensive compression framework, namely “feature-
distillation”, to effectively rectify adversarial examples without impacting classification
accuracy on benign images. Experimental results show that the very low cost “feature-
distillation" can deliver the best defense efficiency with negligible accuracy reduction
among existing input-preprocessing based defense techniques, serving as a new baseline

and reference design for future defense methods development.
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CHAPTER 1
INTRODUCTION

As one of the most fascinating technique when we are entering the era of Artificial
Intelligent (AI), Deep Neural Networks (DNNs) are penetrating the real world in many
exciting applications such as image classification [28, 57, 106], speech recognition [45, 40],
natural language processing [6], medical diagnosis, self-driving cars [12], drones [37],
anomaly detection [17] and recognition of voice commands [45] etc. However, when
facing real applications, it is always challenging to deliver the low-latency and robust deep
learning services.

First, the marriage of big data and deep learning leads to the great success of artificial
intelligence, but it also raises new challenges in data communication, storage, and compu-
tation [65, 96] incurred by the growing amount of distributed data and the increasing DNN
model size. For resource-constrained IoT applications, while recent researches have been
conducted [63, 64, 42] to handle the computation and memory-intensive DNN workloads
in an energy efficient manner, there lack efficient solutions to reduce the power-hungry data
offloading and storage on terminal devices like edge sensors, especially in face of the strin-
gent constraints on communication bandwidth, energy, and hardware resources. Recent
studies show that the latencies to upload a JPEG-compressed input image (i.e. 152KB) for
a single inference of a popular CNN—“AlexNet” via stable wireless connections with 3G
(870ms), LTE (180ms) and Wi-Fi (95ms), can exceed that of DNN computation (6~82ms)
by a mobile or cloud-GPU [55]. Moreover, the communication energy is comparable with
the associated DNN computation energy.

Data compression is an indispensable technique that can greatly reduce the data volume
needed to be stored and transferred, thus to substantially alleviate the data offloading and
local storage cost in terminal devices. As DNNs are contingent upon tons of real-time

produced data, it is crucial to compress the overwhelming data effectively. Existing image



compression frameworks (such as JPEG) can compress data aggressively, but they are
often optimized for the Human-Visual System (HVS) or human’s perceived image quality,
which can lead to unacceptable DNN accuracy degradation at higher compression ratios
(CR) and thus significantly harm the quality of intelligent services. As shown later, testing
a well-trained AlexNet using C'R =~ 5x compressed JPEG images (w.r.t. C R = 1x high
quality images ), can lead to ~ 9% image recognition accuracy reduction for the large-scale
dataset— ImageNet, almost offsetting the improvement brought by more complex DNN
topology, i.e. from AlexNet to GoogLeNet (8 layers, 724M MACs v.s. 22 layers, 1.43G
MACs) [57, 98]. This prompts the need for developing a DNN-favorable deep compression
framework.

Moreover, Deep learning has significantly pushed forward the frontier of automatic
medical image analysis [24, 84, 118, 20, 24, 19]. On the other hand, most deep learning
based frameworks have high computation complexities [113, 119, 117, 120, 116, 53, 54].
For example, the number of operations needed by the network by [22] to segment a 3D
Computed Tomography (CT) volume would be around 2.2 Tera (10*?) , which needs days
to be processed on a general desktop computer. In addition, with the advances in medical
imaging technologies, the related data has been increasing exponentially for decades
[32]. Ponemon Institute survey found that 30% of the world’s data storage resides in the
healthcare industry by 2012 [36]. For both reasons, clouds have become a popular platform
for efficient deep learning based medical image analysis [71, 126, 114, 115, 1].

Utilizing clouds, however, requires medical images to be transmitted from local to
servers. Compared with computation time needed to process these images in the clouds,
the transmission time is usually higher. For example, the latency to transmit a 3D CT
image of size 300MB is about 13 seconds via fixed broadband internet (estimated with
2017 U.S. average fixed broadband upload speed of 22.79 Mbps [75]). On the other hand,

it takes no more than 100 milliseconds for 3D-DSN [33] to segment an image through a



high-performance cluster of 10 GPUs in cloud [70, 27, 55]. For slower internet speed, this
gap is even bigger.

To tackle this issue, image compression is typically used to prune unimportant informa-
tion before sending the image to clouds, thus reducing data traffic. The compression time
is usually negligible (e.g., 24 milliseconds to compress a 300MB 3D CT image to 30MB
using a moderate GPU [72]). There exist many general image compression standards
such as JPEG-2000 [14, 13], JPEG [109], and MPEG2 [51]. Most of these standards use
frequency transformation to filter out information that leads to little visual distortion. In
addition to the existing 3D image compression standards, alternative compression methods
have been proposed in the literature, most of which modify the existing standards to
improve their performance [15, 87, 86, 121]. There are also a few methods for lossless
compression of 3D medical images [88, 69].

Almost all the existing compression techniques are optimized for the Human-Visual
System (HVS), or image quality perceived by humans. However, when we compress
images for transmission to the clouds, their quality will not be judged by human vision, but
rather by the performance of the neural networks that process them in the clouds. As such,
an interesting question that naturally arises is: are the existing compression techniques
still optimal for these neural networks. Medical image segmentation extracts different
tissues, organs, pathologies, and biological structures to support medical diagnosis, surgical
planning and treatments. A critical point in this dissertation is that deep learning system
perceives input images in a completely different way from human vision, given its
primary goal is to achieve the best segmentation accuracy via judging the quality of
compressed (later decompressed) images by neural networks, rather than the visual
distortion of human vision. As a result, it naturally brings up several interesting questions:
1) Can we design a compression framework optimal for deep learning-based image

segmentation instead of human vision? 2) If so, how should we design that? Is it possible



to design a matched pair of compression and segmentation network guided by the concept
of “machine vision" for the whole process? Will the achievable compression ratio and
segmentation quality under such a framework outperform existing solutions significantly?

Second, recent studies have shown that DNN models are inherently vulnerable to
adversarial examples (AEs) [39, 99], i.e. malicious inputs crafted by adding small and
human-imperceptible perturbations to normal inputs, strongly fooling the cognitive func-
tion of DNNs. For example, in image recognition, adversarially manipulating the percep-
tual systems of autonomous vehicles by physically captured adversarial images, i.e. via
camera or sensor [77, 94], can lead to the misreading on road signs, thus causing potential
disastrous consequences in DNN-based cyber-physical systems.

Many countermeasures [62, 61, 85, 95, 107, 5] have been proposed to enhance the
robustness of DNNs against adversarial examples, mainly including DNN model-specific
hardening strategies and model-agnostic defenses [41]. Typical model-specific solutions
like “adversarial training" or “defensive distillation" may rectify the model parameters
to mitigate the attacks by using the iterative retraining procedure or masking adversarial
gradient. The model-agnostic approaches such as input dimensionality reduction [10, 108]
or direct JPEG compression [35, 29, 41] attempt to remove adversarial perturbations from
the inputs, before feeding them into DNN classifiers.

In this dissertation, to handle the first issue, we for the first time develop a highly
efficient image compression framework specifically targeting DNN, on two types of
codec engines, i.e. JPEG and JPEG-2000. Moreover, a DNN-based compression neural
network, i.e. auto-encoder, has also been explored to further enhance the compression
efficiency for compress both 2D and 3D medical images for the machine learning systems
without segmentation quality degradation. Unlike existing compressions that are developed
by taking the human-perceived distortions as the top priority, our codec based method

can preserve important features crucial for DNN classification and segmentation with



guaranteed accuracy and compression rate, thus to drastically lower the cost incurred
by data transmission and storage in resource-limited edge devices. For the second issue
claimed before, we focus on improving the effectiveness of JPEG compression based
model-agnostic defense against adversarial examples in image classification. As we shall
show later, directly deploying standard lossy JPEG compression algorithm as a defense
method [35, 29] neither effectively removes the adversarial perturbations nor guarantees
the accuracy of benign samples. Hence, we for the first redesign the JPEG compression
framework to be DNN-favorable (instead of centering around human-visual system (HVS)),
and develop a novel low-cost strategy, called “feature distillation”, augmented from
standard JPEG, to simultaneously improve the DNN robustness against AE attacks while
ensuring DNN model’s testing accuracy.

The rest of this dissertation is organized as follows. In Chapter 2, we develop an
image compression framework tailored for DNN applications, named “DeepN-JPEG",
to embrace the nature of deep cascaded information process mechanism of DNN archi-
tecture. In Chapter 3, we propose a machine vision guided medical image compression
framework for segmentation in the clouds. In Chapter 4, we propose a generative seg-
mentation architecture consisting of a compressive auto-encoder, a segmentation network
and a discriminator network. In Chapter 5, we further propose a JPEG-based defensive
compression framework, namely‘“‘feature distillation”, to effectively rectify adversarial
examples without impacting classification accuracy on benign data. Finally, in Chapter 6,

we conclude this dissertation.



CHAPTER 2
DEEPN-JPEG: A DEEP NEURAL NETWORK FAVORABLE JPEG-BASED
IMAGE COMPRESSION FRAMEWORK

As one of most fascinating machine learning techniques, deep neural network (DNN) has
demonstrated excellent performance in various intelligent tasks such as image classification.
DNN achieves such performance, to a large extent, by performing expensive training over
huge volumes of training data. To reduce the data storage and transfer overhead in smart
resource-limited Internet-of-Thing (IoT) systems, effective data compression is a “must-
have" feature before transferring real-time produced dataset for training or classification.
While there have been many well-known image compression approaches (such as JPEG),
we for the first time find that a human-visual based image compression approach such as
JPEG compression is not an optimized solution for DNN systems, especially with high
compression ratios. To this end, we develop an image compression framework tailored
for DNN applications, named “DeepN-JPEG", to embrace the nature of deep cascaded
information process mechanism of DNN architecture. Extensive experiments, based on
“ImageNet" dataset with various state-of-the-art DNNs, show that “DeepN-JPEG" can
achieve ~ 3.5x higher compression rate over the popular JPEG solution while maintaining
the same accuracy level for image recognition, demonstrating its great potential of storage
and power efficiency in DNN-based smart [oT system design.

In this work, we for the first time develop a highly efficient image compression
framework specifically targeting DNN, named DeepN-JPEG. Unlike existing compressions
that are developed by taking the human-perceived distortions as the top priority, DeepN-
JPEG preserves important features crucial for DNN classification with guaranteed accuracy
and compression rate, thus to drastically lower the cost incurred by data transmission and
storage in resource-limited edge devices.

Our major contributions are:



1. We propose a semi-analytical model to capture the image processing mechanism
differences between the human visual system (HVS) and deep neural network at

frequency domain;

2. We develop a DNN-favorable feature refinement methodology by leveraging the

statistical frequency component analysis of various image classes;

3. We propose piece-wise linear mapping function to link statistical information of
refined features to individual quantization values in the quantization table, thus to

optimize the compression rate with minimized accuracy drop.

Experimental results show that DeepN-JPEG can achieve much higher compression ef-
ficiency (i.e.~ 3.5x) than that of JPEG solution while maintaining the same accuracy
level with the same hardware cost, demonstrating the great potentials for its applications

in low-cost and ultra-low power terminal devices, i.e. edge sensors.

2.1 Background and Motivation

2.1.1 Basics of Deep Neural Networks

DCNN introduces multiple layers with complex structures to model a high-level abstraction
of the data [46], as shown in Fig. 2.1 and exhibits high effectiveness in finding hierarchical
patterns in high-dimensional data by leveraging the deep cascaded layer structure [44,
57, 92, 98]. Specifically, the convolutional layer extracts sufficient feature maps from the
inputs by applying kernel-based convolutions, the pooling layer performs a downsampling
operation (through max or mean pooling) along the spatial dimensions for a volume
reduction, and the fully-connected layer further computes the class score based on the

weighted results and non-linear activation functions. Softmax regression (or multinomial



Input layer

Output layer
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Convolution layer Pooling layer Fully Connected layer

Figure 2.1: A typical Deep Convolutional Neural Network (DCNN).

logistic regression) [11] is usually adopted in the last layer of most DNNs for a final
decision.

To perform realistic image recognition, the DNN hyper-parameters are trained ex-
tensively through an overwhelming amount of input data. For instance, the large-scale
dataset—ImageNet [31], which consists of 1.3 Million high-resolution image samples
(~ 140 Gigabyte) in 1K categories, is dedicated to training state-of-the-art DNN models

for image recognition task.

2.1.2 HYVS-based JPEG Compression

It is widely agreed that massive images and videos, as the major context to be understood
by deep neural networks, dominate the wireless bandwidth and storage ranging from edge
devices to servers. Hence, in this work, we focus on the image compression.

JPEG [109] is one of the most popular lossy compression standards for digital images.
It also forms the foundation of most commonly used video compression formats like
Motion JPEG (MPEG) and H.264 etc [82]. As shown in Fig. 2.2, for each color component,
i.e. the RGB channels, the input image is first divided into 8 x 8 non-overlapping pixel

blocks, then 2D Fourier Discrete Cosine (DCT) Transform is applied at each 8 x 8 block
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Figure 2.2: Briefly overview of JPEG compression technology .

to generate 64 DCT coefficients ¢; j,¢ € 0,...,7, 7 € 0, ..., 7, of which ¢ is direct current
(DC) coefficient, and cg 1, ..., ¢7,7 are 63 alternating current (AC) coefficients. Each 64 DCT
coefficients are quantized and rounded to the nearest integers as here ¢; ; is the individual
parameter of the 64-element quantization table provided by JPEG [109]. The table is
designed to preserve the low-frequency components and discard high-frequency details
because the human visual system (HVS) is less sensitive to the information loss in high-
frequency bands [125]. As a many-to-one mapping, such quantization is fundamentally
lossy (i.e. c;j # ¢;; X ¢;; at the decompress stage), and can generate more shared
quantized coefficients (i.e. zeros) for a better compression. After quantization, all the
quantized coefficients are ordered into the “zig-zag” sequence following the frequency
increasing. Finally, the differential coded DC and run-length coded AC coefficients will
be further compressed by lossless Huffman or Arithmetic Coding. Increasing (reducing)
the compression ratio (CR) can be usually realized by scaling down (up) the quantization

table by adjusting the quantization factor (QF). A larger QF indicates better image quality
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Figure 2.3: (a) Accuracy v.s. JPEG CRs of “AlexNet” for CASE 1/2; (b) CASE 2-Accuracy
w.r.t Epoch Number at various CRs.

but a lower CR. A reserved procedure of aforementioned steps can decompress an image.

2.1.3 Inefficient HVS Compression for DNNs

DNN suffers from dramatic accuracy loss if using existing HVS-based compression
techniques to aggressively compress the input images for more efficient data offload-
ing and storage: To explore how existing compressions can impact the accuracy of DNN,
we have conducted following two sets of experiments: CASE 1: training DNN model by
high quality JPEG images (QF=100), but testing it with images at various CRs or QFs
(i.e. QF=100, 50, 20); CASE 2: training DNN model by various compressed images
(QF=100, 50, 20), but testing it only with high quality original images (QF=100). In both
cases, a representative DNN example—“AlexNet” [57] with 5 convolutional layers, 3 fully
connected layers, and 60M weight parameters is trained with the ImageNet dataset for
large-scale visual recognition.

As Fig. 2.3 (a) shows, the “top-1" testing accuracies characterized from both cases

degrade significantly as the CR increases from 1 to 5 (or QF from 100 to 20). To achieve
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the best CR (QF=20, CR=5), the accuracy of CASE 1 (CASE 2) can be even dropped
by ~ 9% (~ 5%) than that of the original one (QF=100, CR=1). Note that the accuracy
improvement of ImageNet from “AlexNet" to “GoogLeNet" is mere ~ 9%, despite the
significantly increased number of layers (8 v.s. 22) and multiply-and-accumulate (724M
v.s. 1.43G). We also observe that “CASE 2" can always exhibit smaller accuracy reduction
than “CASE 1" across all CRs ranging from CR=3 to CR=5. This clearly indicates that
training the DNN with more compressed JPEG images (compared with testing ones) can
slightly alleviate the accuracy dropping, but cannot completely address this issue. As
Fig. 2.3 (b) shows, the accuracy gap between a higher CR (or low QF, i.e. QF=20) and
the original one (CR=1) for CASE 2 is maximized at the last testing epoch. Apparently,
existing compressions like JPEG, which are centered around the human visual system, are

not optimized solutions for DNNs, especially at a higher compression ratio.

2.2 Our Approach

Developing efficient compression frameworks has been widely studied in applications
like image and video processing, however, all these researches are taking the human-
perceived distortions as the top priority, rather than the unique properties of deep neural
networks, such as accuracy, deep cascaded data processing, etc. In this section, we first
discover the different views of the human visual system and deep neural network in
image processing, and then propose the DNN-favorable JPEG-based image compression

framework—"DeepN-JPEG".

2.2.1 Modeling the difference of HVS and DNN

We have initialized our studies on an interesting problem: What are the major differences

of image processing between human vision system (HVS) and deep neural network? This
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should help in explaining the aforementioned accuracy reduction issue, thus to guide the
development of DNN-favorable compression framework. Qur observation is that DNNs
can respond to any important frequency component precisely, but human visual system
focuses more on the low-frequency information than high-frequency ones, indicating fewer
features to be learned by DNNs after the HVS-inspired compression. Assume xy, is a single

pixel of a raw image X, and z; can be represented by 8 x 8 DCT in JPEG compression:

=7 n=T7

T = Z Z c(k,i,j) . b(i,j) (21)

i=0 j=0

where ¢ j) and b(; ;) are the DCT coefficient and corresponding basis function at 64
different frequencies, respectively. Because the human visual system is less sensitive
to high-frequency components, a higher CR can be achieved in JPEG compression by
intentionally discarding the high-frequency parts, i.e. zeroing out the associated DCT coef-
ficient ¢y ; ;) through scaled quantization. On the contrary, DNNs examine the importance
of the frequency information in a quite different way. The gradient of the DNN function F’

with respect to a basis function b; j) can be calculated as:

OF _OF 0w, _OF
8()(7‘,’]’) N 6$k (%m N Omk (ki)

2.2)
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Figure 2.5: An overview of heuristic design flow of “DeepN-JPEG" framework.

Eq. 5.7 implies that the contribution of a frequency component (b; ;) of a single pixel z;, to
the DNN learning will be mainly determined by its associated DCT coefficient (¢ ;))
and the importance of the pixel (g—gi). Here gTFk is obtained after the DNN training, while
C(k,i,j) Will be distorted by the image compression (i.e. quantization) before training. If
C(k,ij) = 0, the frequency feature (b; j), which may carry important details for DNN feature
map extraction, cannot be learned by DNN for weights updating, causing a lower accuracy.

It is often the case in a highly compressed JPEG image, given that c(;; ;s of high-
frequency parts (usually small in nature images) are quantized to zero to ensure a better
compression rate. As a result, DNNs can easily misclassify aggressively compressed
images if their original versions contain important high-frequency features. In CASE
1 (see Fig. 2.3(a)), the DNN model trained with original images learns comprehensive
features, especially high-frequency ones that are important in some images, however, such
features are actually lost in some more compressed testing images, causing considerable
misclassification rate. Fig. 2.4 demonstrates such an example—the “junco" is mis-predicted
as “robin" after removing the top six high-frequency components, despite that the dif-
ferences are almost indistinguishable by human eyes. In CASE 2 (see Fig. 2.3(b)), the
model is trained to make decisions solely based on the limited number of features learned
from more compressed training images, and the additional features in high quality testing

images cannot be detected by DNN for accuracy improvement.
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2.2.2 DNN-Oriented DeepN-JPEG Framework

To develop the “DeepN-JEPG" framework, it is essential to minimize the distortion of
frequency features that are most important to DNN, thus to maintain the accuracy as much
as possible. As quantization is the principal factor to cause important feature loss, i.e.
removing less significant high-frequency parts by using a larger quantization step in JPEG,
the key step of “DeepN-JEPG" is to re-design such HVS-inspired quantization table to be
DNN favorable, i.e. achieving a better compression rate than JPEG without losing needed
features.

Although the quantization table redesign has been proved to be a feasible solution in
various applications, such as feature detection [18], visual search [34], it is an intractable
optimization problem for “DeepN-JPEG" because of the complexity of parameter search-
ing [47], and the difficulty of a quantitative measurement suitable to DNNs. For example,
it is non-trivial to characterize the implicit relationship between image feature (or quan-
tization) errors and DNN accuracy loss. Moreover, the characterized results could vary
according to the DNN structure. Therefore, it is very challenging to develop a generalized
DNN-favorable compression framework.

Our analysis in section 5.2.2 indicates that the contribution of a frequency band to
DNN learning is strongly related to the magnitude of the band coefficient. Inspired by
this key observation, our “DeepN-JEPG" is developed upon a heuristic design flow (see
Fig. 5.2): 1) Sample representative raw images from each class and further characterize
the importance of each frequency component through frequency analysis on sampled
sub-dataset; 2) Link the statistical information of each feature with the quantization step of

quantization table through proposed “Piece-wise Linear Mapping”.

14



Image Sampling and Frequency Component Analysis

In “DeepN-JPEG" framework, our first step is to sample all classes within the labeled
dataset, for more comprehensive feature analysis. To extract the representative features
from the whole dataset and rank the importance of those features to DNN, we implied the
feature complexity of the image—a smooth image with simple features will be compressed
at small size while large size indicates the image consists of more complex features.

As shown in algorithm 1, each sampled image will be first partitioned into Nblock
8 x 8 blocks, followed by a block-wise DCT. After that, the DCT coefficient distribution
at each frequency component will be characterized by sorting all coefficients within the
same frequency component across all image blocks collected from different classes of
the image dataset. The statistical information, such as the standard deviation 0, ; of each
coefficient, will be calculated based on each individual histogram. Note that such a
frequency refinement procedure can precisely tell out the most significant features to
DNN, and is different from the simple assumption that low-frequency part is always more

important than the high ones can easily lead to the DNN accuracy reduction.

Quantization Table Design

Once the importance of frequency band to DNN is identified by our calibrated DCT
coefficient standard deviation, our next question becomes how to link that information to
the quantization table design to achieve a higher compression rate with minimized accuracy
reduction. The basic idea is to introduce less (more) quantization errors at the critical (less
critical) band by leveraging the intrinsic error resilience property of the DNN. To introduce
nonuniform quantization errors at different frequency bands, we develop a piece-wise

linear mapping function (PLM) to derive the quantization step of each frequency band
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Algorithm 1: Frequency component analysis Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
18
19
20
21

C: # of Classes;
N: # of images in each class;
k: Interval for sampling images;
Spath: Path of Sampled Images;
Nsamp: #number of sampled images;
fimg;: Image in frequency domain;
fecx: Frequency components;
Nblock: # of 8*8 blocks after block-wise DCT;
O standard deviation of kth frequency components;
foreach class class; in [classy .. classc] do
m=0; // count the number of images in certain class
foreach image img; in [img1 .. imgn ] do

m++;

if m % k = 0 then

t Spath record (Path of img;)

foreach image Spath in [img1 .. iMgN samp] do
fimg; = 8*8 block-wise DCT (img;)
foreach Block; j in [1 .. Nblock] do

Block;,j = fimg;|j*8-8:j*8](j*8-8:j*8]// ith sampled image jth 8%8 block

foreach fcy in[1 .. 64] do

fex store Block; j[k]// ith sampled image jth 88 block kth frequency
component

// Statistical Analysis

foreach fcy in[1.. 64] do
L calculate standard deviation

return 0, // standard deviation of each frequency components

from the associated standard deviation:

;

a — kl *x (51'7]' (51'7]' < T1

QiJ = b— ]{72 * (52'7]' Tl < 5i,j < TQ ’ s.t. Qi,j > Qmm

Cc— kg * 5,‘& (51'7:]' > Ty
\

(2.3)

where (); ; is the quantization step at the frequency band (7, j). )iy, is the lowest quanti-

zation step. a, b, ¢, k1, ko, k3 are fitting parameters. 7 and 75 are thresholds to categorize

the 64 frequency bands according to the J

/

Z?],

i.e. ascending order of the magnitude of

0;,j. As right part of Fig. 5.2 shows, following the similar frequency segmentation in [56],

the 64 frequency components are divided into three bands: Low Frequency (LF)-1-6

frequency components (largest 5;-, ;)» Middle Frequency (MF)-7-28 and High Frequency
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Figure 2.6: Parameter optimization for different frequency bands.

(HF)-29-64 (smallest 6: ;)- Hence, we adopt T; = 5’1’8 and Tp = 5’1? 4 in our design. Three

different slopes—k1, ko, k3, are assigned to HF band, MF band and LF band, respectively.

2.2.3 Design Optimization

In this section, we explore the parameter optimization for our proposed Piece-wise Linear
Mapping based quantization table design. In order to set optimized parameters of Eq. 2.3,
i.e. ki, ko and k3, we first study the sensitivity of quantization steps to DNN accuracy
across the LF, MF, and HF bands. We define our proposed band allocation in “DeepN-
JPEG" as the “magnitude based”, i.e. to segment the frequency band into three types
(LF/MF/HF) according to the magnitude of standard deviation of DCT coefficient. For
comparison purpose, we also implement the coarse-grained band assignment method based
on its position within a default JPEG quantization table, namely “position based". We

conduct the simulations by only varying the quantization steps of interested frequency
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bands, while all the others are assigned with minimized quantization steps, i.e. Q);; = 1
without introducing any quantization errors.

Frequency Band Segmentation. As Fig. 2.6 shows, “magnitude based" method can
always achieve better accuracy than that of “position based" in both MF and HF bands as
the quantization step increases. Moreover, our solution can provide a larger quantization
step in both MF and HF bands without accuracy reduction, i.e. 40 v.s. 60 in HF band,
which can translate into a higher compression rate than that of JPEG. Besides, we also
observe that DNN accuracy starts to drop if (); ; > 5 at the LF band, which indicates that
statistically the largest DCT coefficients are most sensitive to quantization errors, thus we
set Qmin = D as the lower bound of quantization value to secure the accuracy (see Fig. 2.6
(a)). Similarly, based on the critical points of Fig 2.6 (b) and (c), we can further obtain the
quantization steps at the point 7'1 and 7'2, thus to determine the parameters such as ky, ko,
a and b.

Tuning k5 in LF Band. Unlike the parameters in MF and HF bands, the optimization of

ks in LF band is non-trivial because of its significant impact on accuracy and compression
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rate. Since k3 cannot be directly decided according to the lower bound @),,,;, and ¢, we
investigate the correlation between compress rate and accuracy based on a variety of k3. As
shown in Fig. 2.7, a smaller k5 can offer a better compression rate by slightly sacrificing the
DNN accuracy. Based on our observation, we choose k3 = 3 to maximize the compression

rate while maintaining the original accuracy.

2.3 Evaluation

Our experiments are conducted on the deep learning open source framework Torch [26].
The “DeepN-JPEG" framework is implemented by heavily modifying the open source
JPEG framework [49].

The large-scale ImageNet [31] dataset is adopted to measure the improvement of
compression rate and classification accuracy. Specifically, all images are maintained as their
original scales in our evaluation without any speed-up trick such as resize or pre-processing.
The optimized parameters of “DeepN-JPEG" framework dedicated to ImageNet are as
follows: a = 255, b = 80, ¢ = 240, T} = 20, T5 = 60, ky = 9.75, ky = 1, k3 = 3. Four
state-of-the-art DNN models are evaluated in our experiment—AlexNet [57], VGG [92],

GooglLeNet [98] and ResNet [44].

2.3.1 Compression Rate and Accuracy

We first evaluate the compression rate and classification accuracy of our proposed DeepN-
JPEG framework. Three baseline designs are implemented for comparison purpose: the
“original" dataset compressed by JPEG (QF=100, CR=1), “RM-HF” compressed dataset
and “SAME-Q” compressed dataset. Specifically, “RM-HF” is extended from JPEG by

removing the top-N high-frequency components from the quantization table to further
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Figure 2.8: The compress rate and accuracy for different methods.

improve the compression rate, and “SAME-Q” denotes a more aggressive compression
method with the same quantization step () for all frequency components.

Fig. 2.8 compares the compression rate and accuracy based on the “ImageNet” dataset
“AlexNet” DNN model for all selected candidates. Compared with the “original”, “RM-HF”
slightly increases the compression rate (~ 1.1 X — ~ 1.3x) by removing more highest
frequency components (top-3—top-9), while “SAME-Q” achieves better compression rates
(~ 1.5 x — ~ 2x). However, both schemes suffer from increased accuracy reduction
(w.r.t. “original”) as long as the compression rate becomes higher. On the contrary, our
“DeepN-JPEG" delivers the best compression rate (i.e. ~ 3.5x) while maintaining the
similar high accuracy as that of the original dataset, indicating a promising solution to
reduce the cost of data traffic and storage of edge devices for deep learning tasks.

Generality of DeepN-JPEG. We also extend our evaluations across several state-of-
the-art DNNs to study how the “DeepN-JPEG" framework responses to different DNN
architectures, including GoogleNet, VGG-16, ResNet-34, and ResNet-50. As shown in

Fig. 2.9, our proposed “DeepN-JPEG" can always maintain the original accuracies (w.r.t.
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Figure 2.9: The compress rate and accuracy for different DNN models.

“Original”) for all selected DNN models. Although JPEG can easily achieve a similar
compression rate as that of “DeepN-JPEG" by largely reducing the JPEG QF value, e.g.
QF < 50, such an aggressive “data lossy" compression results in significant side effect on
the classification performance of all selected DNN models. In contrast, “DeepN-JPEG"
can preserve both high compression rate and accuracy for all DNNS, thus a generalized

solution.

2.3.2 Power Consumption

In resource-constraint terminal devices, the data offloading incurred power consumption
can even outperform that of DNN computation in deep learning [55]. Date compression
can reduce the associated cost. Following the same measurement in [55], Fig. 2.10 shows
the results of power reduction breakdown. Our “DeepN-JPEG" based data processing
consumes only 30% energy without accuracy reduction when compared with that of the

original dataset. Compared with “RM-HF3” (remove the top-3 high-frequency components
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in quantization table) and “SAME-Q4” (the same quantization value—4 in quantization
table), “DeepN-JPEG" can still achieve ~ 2x and ~ 3x power reduction respectively, due

to more efficient data compression.

2.4 Conclusion

The ever-increasing data transfer and storage overhead significantly challenge the energy
efficiency and performance of large-scale DNNs. In this chapter, we propose a DNN
oriented image compression framework, namely “DeepN-JPEG", to ease the storage
and data communication overhead. Instead of the Human Vision System inspired JPEG
compression, our solution effectively reduces the quantization error based on the frequency
component analysis and rectified quantization table, and further increases the compressing
rate without any accuracy degradation. Our experimental results show that “DeepN-JPEG”
achieves ~ 3.5x compression rate improvement, and consumes only 30% power of the
conventional JPEG without classification accuracy degradation, thus a promising solution

for data storage and communication for deep learning.
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CHAPTER 3
MACHINE VISION GUIDED 3D MEDICAL IMAGE COMPRESSION FOR
EFFICIENT TRANSMISSION AND ACCURATE SEGMENTATION IN THE
CLOUDS

Cloud based medical image analysis has become popular recently due to the high
computation complexities of various deep neural network (DNN) based frameworks
and the increasingly large volume of medical images that need to be processed. It has
been demonstrated that for medical images the transmission from local to clouds is
much more expensive than the computation in the clouds itself. Towards this, 3D image
compression techniques have been widely applied to reduce the data traffic. However,
most of the existing image compression techniques are developed around human vision,
i.e., they are designed to minimize distortions that can be perceived by human eyes. In
this chapter we will use deep learning based medical image segmentation as a vehicle and
demonstrate that interestingly, machine and human view the compression quality differently.
Medical images compressed with good quality w.r.t. human vision may result in inferior
segmentation accuracy. We then design a machine vision oriented 3D image compression
framework tailored for segmentation using DNNs. Our method automatically extracts
and retains image features that are most important to the segmentation. Comprehensive
experiments on widely adopted segmentation frameworks with HVSMR 2016 challenge
dataset show that our method can achieve significantly higher segmentation accuracy at
the same compression rate, or much better compression rate under the same segmentation
accuracy, when compared with the existing JPEG 2000 method. To the best of the authors’
knowledge, this is the first machine vision guided medical image compression framework
for segmentation in the clouds.

In this chapter, we propose a machine vision guided 3D image compression framework

tailored for deep learning based medical image segmentation in the clouds. Different
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from most existing compression methods that take human visual distortion as guide, our
method extracts and retains features that are most important to segmentation, so that the
segmentation quality can be maintained. We conducted comprehensive experiments on
two widely adopted segmentation frameworks (DenseVoxNet [124] and 3D-DSN [33]
using the HVSMR 2016 Challenge dataset [78]. Examples on the qualitative effect of our
method on the final segmentation results can be viewed in Fig. 3.7.
The main contributions of our work are as follows:
e We discovered that for medical image segmentation in the clouds, traditional com-
pression methods guided by human vision will result in inferior accuracy, and a new

method guided by machine vision is warranted.

e We proposed a method that can automatically extract important frequencies for
neural network based image segmentation, and map them to quantization steps for

better compression.

e Experimental results show our method outperforms JPEG-2000 in two aspects: for a
same compression rate, our method achieves significantly improved segmentation
accuracy; for a same level of segmentation accuracy, it offers much higher compres-
sion rate (3x). These advantages demonstrate great potentials for its application in

today’s deep neural network assisted medical image segmentation.

3.1 Related Work

3.1.1 Fully Convolutional Networks for 3D Segmentation

Fully convolutional networks (FCN) is a special category of DNN, which is widely used
for 3D medical image segmentation. Compared with general DNNs, FCNs only has

convolutional layers, up convolutional layer, and pooling layers as shown in Fig. 3.1.
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Figure 3.1: 3D u-Net [33]: a widely used framework in fully convolutional networks for
medical image segmentation.

With this characteristics, FCNs can efficiently output images with the same size as the
input images as shown in Fig. 3.1, which is extremely efficient for segmentation. Almost
all the DNN based methods for 3D image segmentation adopt FCN as the backbone
network structure, and add some structure and training strategy improvement. For example,
3D U-Net adds more connections between the first several layers and the last several
layers as shown in Fig. 3.1 to better extract features. Please refer to related literature

[20, 24, 73, 19, 33] for more details of such improvements.

3.1.2 3D Medical Image Compression

There are many general image compression standards such as JPEG-2000 [14][13], JPEG
[109]. Some video coding standards such as H.264/AVC [101],and MPEG2 [51] can
also be adopted for 3D image segmentation. Most of these standards use transforms
such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) for

compression while preserving important visual information for humans.
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Figure 3.2: Flow of 3D JPEG-2000 compression method.

In addition to the existing 3D medical image compression standard, alternative com-
pression methods have been proposed in the literature. Most of the methods modified the
existing standards to improve its performance. Bruylants [15] adopted volumetric wavelets
and entropy-coding to improve the compression performance. Sanchez [87] employed a
3-D integer wavelet transform to perform column of interest coding. Sanchez [86] reduced
the energy of the sub-bands by exploiting the anatomical symmetries typically present
in structural medical images. Zhongwei [121] improved the compression performance
by removing unimportant image regions not required for medical diagnosis. There are a
few methods for lossless compression of 3D medical images. Santos [88] processed each
frame sequentially and using 3D predictors based on the previously encoded frames. Lucas
[69] further adopted 3D block classification to process the data at the volume level.

Almost all the above methods still adopt the same objective as that used by JPEG-2000,
i.e., to minimize human perceived distortions. As shown in the example in Fig. 3.7, when it

comes to the deep learning based segmentation, such a strategy may lead to poor accuracy.

3.1.3 JPEG-2000 3D image Compression

Our method is also based on JPEG-2000 but modifies its human vision guided objective
to one that is guided by the segmentation network. Here we briefly review the details

of JPEG-2000 so that later we can explain our work better. Fig. 3.2 shows the major
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steps in JPEG-2000 compression: First, the 3D discrete wavelet transform (DWT) is
applied to an image to decompose it into a multiple-resolution representation in frequency
domain [91][7][80]. For example, a 3-D wavelet decomposition leads to three resolution
levels (L1, L2, L3). Each resolution level (except 1) is composed of eight subbands:
subband 1 to subband 8. The eight lower resolution levels are always generated by
progressively applying the 3D DWT process to the upper-left-front block (e.g., subband 1)
from the previous resolution level. Then a non-uniform quantization process is applied to

each subband based on the number of low pass filters in the subband:

x
QS

where x is the original coefficient after 3D DWT, (.S is the quantization step of a subband

o= 3.1)

and 2’ is the coefficient after quantization.

The rule is that the more low pass filters a subband has the smaller quantization step
are applied to the corresponding subband. This is because Human Visual System (HVS)
is more sensitive to low pass frequency information, thus less quantization errors in low
pass subband. Bit-plane coding and entropy coding mainly perform coding and please

interested readers are referred to the related literature [100][89][93][100] for more details.

3.2 Machine Vision oriented 3D Image Compression

In this section, the details of the proposed machine vision oriented 3D image compression
framework for segmentation in the clouds is presented. As shown in Fig. 3.3, the framework
contains two modules: frequency analysis module and mapping module. Compared with
original JPEG-2000 compression method, the added two modules can obtain optimized
quantization steps (QSs) for better segmentation accuracy. The frequency analysis module

extracts frequencies important to segmentation with high statistic indexes (SI) using a

27



Original _x_. Original JPEG-2000 Flow

quantization steps (QS)

Quantization

|

| DNN-oriented | . Qs Non-linear mapping Optimized Parameters
| Fr—e wency Model | Optimized Q max function @b, Q Omin)
I | quantization steps (QS) SI-0S (@, b, Qmax Qmin) max: Umin

| | | Mapping 1, |_ > I

| | i ! > Parameter

| | Frequency Extraction | T SI Optimization

: ' Statistic index (SI) of l l

| Frequency Analysis Module | Important subbands

Figure 3.3: Overview of the proposed DNN-oriented 3D image compression framework.

machine vision guided frequency model. The mapping module maps these SIs to optimized
QSs which are further provided to the quantization module in JPEG-2000 flow for the rest
of the processing. Particularly parameter optimization is also performed to find the optimal

parameters in the mapping module.

3.2.1 Frequency Analysis Module
Machine Vision Guided Frequency Model

In this section we build a frequency model that identifies information most useful for
segmentation. Assume x; is a single voxel of a raw 3D image X. z; can be represented by
3D-DWT at one resolution level in JPEG-2000 compression as:

i=N—-1

z= ), -l (3.2)

n=0

where ¢’ and b} are the 3D-DWT coefficient at matching 3D coordinate ¢ and corresponding
basis function at /V different subbands, respectively.

For human visual system, the quantization step (QS) for each subband in JPEG-2000
is positively correlated with the number of high pass filters in a subband. For example,

the QS of subband 4 is larger than that of subband 2 at the same resolution level. Then
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larger QS in high frequency subband will increase the distortion of coefficients in this
subband. Consequently, it will either directly zero out the associated 3D-DWT coefficient
c' or increase the chance to truncate them at rate-distortion optimization process. This
is because HVS is less sensitive to high frequency subband, so a high compression rate
can be achieved by discarding the high frequency information. In order to obtain the
important frequency for DNN based segmentation, we calculate the gradient of the DNN
loss function F with respect to a basis function b} as:
oF OF _Ox; OF

Equation (5.7) indicates that the importance of information at different subbands
of a single voxel to DNN is determined by its associated 3D-DWT coefficients (c]")
at all subbands. This is quite different from HVS which distorts ¢’ in high frequency
subbands (i.e. quantization or truncation). Large c;' in high frequency subband will be
heavily distorted in JPEG-2000. However, it may carry important information for DNN

segmentation, causing accuracy degradation.

Frequency Extraction

In this section, we extract important frequencies based on the above frequency model.
Previous studies [97][60] have demonstrated that the distribution of un-quantized 3D-DWT
coefficients in a subband indicates the energy in this subband. Moreover, the distribution
of each subband has been proven that they approximately obey a Laplace distribution
with zero mean and different standard deviations (¢,,). The larger ¢,, a subband has (i.e.
more energy in this subband), the more contribution this subband will provide to DNN
results. Therefore, d,, of each subband after 3D-DWT are selected as the SI to represent the
importance to DNN. Based on this we propose to conduct the frequency analysis as follows:

the number of subbands will be first calculated based on the number of resolution levels
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Figure 3.4: Diverse frequency domain of medical images.

at three different dimensions provided by users. After that coefficients that belong to the
same subband will be grouped up and reshaped to one dimension. Then the distributions
of reshaped coefficients at each subband will be characterized. Finally, the statistical
information of each subband, i.e. the standard deviation or SI, will be calculated based on
its histogram. The results from this frequency information projection procedure can clearly
indicate the importance of each subband to DNN by its SI. With the above discussion, we
further analyzed SIs and QSs in JPEG-2000 to show that JPEG-2000 is not optimized for
DNNs. We randomly selected two images from HVSMR 2016 dataset labeled as A and B,
and then applied our frequency extraction method on them after 3-3-3 3D-DWT. As shown
in Fig. 3.4, some important subbands have large QS which is undesired. For example,
subband 2 is less important than subband 3 for image A since d, < d3, however, its QS is
much smaller than that of subband 3. The same problem exists for subband 3 and subband
4 with image B. Thus, although lower frequency information is always more important

than that of higher frequency in JPEG-2000, it is not the case for segmentation accuracy.
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Table 3.1: Segmentation results of our methods and JPEG-2000 using DenseVoxNet and
HVSMR2016 dataset. The compression rate is set to 30 for both techniques. The images
compressed by ours can be segmented with almost the same accuracy as, or sometimes even
better than the original ones, much better than those compressed by JPEG-2000. The seg-
mentation performance of NLM is very close to or even better than that with the original

images while is much better than JPEG-2000.

Original Ours JPEG-2000

Dice 0.838+0.0334  0.834+0.0386 0.8164+0.042
Myocardium  Hausdorff 30.879+7.592  31+7.940 33.513+7.566

ASD 0.673+0.67 0.652+0.671 0.722+0.746

Dice 0.915+0.025 0.914+0.024  0.912+0.025
Blood Pool Hausdorff 41.03449.326  40.93+9.52 41.03149.648

ASD 0.601+0.455 0.556+0.432  0.582+0.453

Compression Rate 1 ~30x ~30x
PSNR (dB) 00 ~35 ~36

3.2.2 Mapping Module
SI-QS Mapping

With Sls at each subband, our next step is to find a suitable mapping between SI and
QS by well leveraging the intrinsic error resilience characteristic of DNN computation.
As a result, the segmentation accuracy loss due to increasing compression rate, can be
minimized by largely quantilizing the frequency subbands that are less significant to DNN.

In order to precisely model the mapping, we attempt to find a QS curve aligning with
most of the SIs. With extensive experiments (we add these experiments in the supplemental
material), we observe that the QS-SI points obey a reciprocal function (y = 1/x). Thus,
we propose a non-linear mapping (NLM) method to implement nonuniform quantization

steps at different subbands:

a

Qn = m, s.t.

where (), is the quantization step at subband n, (i, and )., are the smallest and largest

Qmin S Qn S Qmax (34)

QS, and a and b are the fitting parameters.
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Table 3.2: Segmentation results of our methods and JPEG-2000 using 3D-DSN and HVSMR
2016 dataset. The compression rate is set to 30 for both techniques. The images compressed
by ours can be segmented with almost the same accuracy as the original ones, and signifi-
cantly better than those compressed by JPEG-2000.

Original Ours JPEG-2000

Dice 0.784+0.059  0.786+0.059  0.773+0.058
Myocardium  Hausdorff 32.34549.164  31.002+8.988 33.041+8.768

ASD 0.310£0.171 0.3254+0.184  0.355+0.224

Dice 0.909+0.027  0.908+0.030  0.901+0.032
Blood Pool Hausdorff 38.51549.59  38.601+9.951 39.41649.932

ASD 0.235+0.200  0.223+0.201  0.230+0.204

Compression Rate 1 ~30x ~30x
PSNR (dB) 00 ~35 ~36

Parameter Optimization

With the proposed mapping function, parameter optimization is performed to obtain the
optimal a, b, (4 and @, in Equation (3.4). For a and b, we found that rational
functions can fit the relationship between the standard deviation of each subband of an
image and the quantization step very well. For ), and ),,;,, we examine two corner
cases, i.e. upper/lower corner to explore the quantization error tolerance for the most
insignificant/significant subband. Then all the parameters in non-linear mapping method
can be calculated by substituting pairs (Qumins Omaz) aNd (Qmaz> Omin) into Equation (3.4).

Lower Corner Case:

we assign the same QS to all the subbands to explore As long as the error induced by
QS in the subband with d,,,, (the most significant subband to DNN) does not impact the
segmentation accuracy, this will also hold true for all the other subbands.

Upper Corner Case: To find (),,,,.., we only vary QS at the subband with 9,),;,,, while
fixing that of all the other subbands as the same QS—(),,,;,,. If the subband with 9,,;, (the
least significant subband to DNN) cannot tolerate the error incurred by a ()., the other

subbands cannot either.
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3.3 Evaluation

3.3.1 Experiment Setup

Our proposed machine vision guided 3D image compression framework was realized by
heavily modifying the open-source JPEG-2000 code [2]. This code also served as our
baseline—JPEG-2000 for comparison.

Benchmarks: we adopted the HVSMR 2016 Challenge dataset [78] as our evaluation
benchmark. This dataset consists of in total 10 3D cardiac MR scans for training and 10
scans for testing. Each image also includes three segmentation labels: myocardium, blood
pool, and background.

Evaluation Metrics: We compared our method with the baseline (JPEG-2000) in
following two aspects: 1) segmentation results; 2) compression rate. For the segmentation
results, we followed the rule of HVSMR 2016 challenge where the results are ranked
based on Dice coefficient (Dice). The other two ancillary measurement metrics, i.e.
average surface distance (ASD) and symmetric Hausdorf{f distance (Hausdorff), were
also calculated for reference. Among the three metrics, a higher Dice represents higher
agreement between the segmentation result and the ground truth, while lower ASD and
Hausdorff values indicate higher boundary similarity.

Experiment Methods: To evaluate our methods comprehensively, two state-of-art
segmentation neural network models—DenseVoxNet [124] and 3D-DSN [33] were selected.
We followed the original settings of the two frameworks at training and testing phases
but with compressed images. In the testing phase, since the ground truth labels of the
selected dataset are not publicly available, we randomly selected five un-compressed
training images for training and the rest compressed five for testing. All our experiments
were conducted on a workstation which hosts NVIDIA Tesla P100 GPU and deep learning

framework Caffe [52] integrated with MATLAB programming interface.
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Figure 3.5: Optimal parameter selection of )., and Q.

3.3.2 Optimal Parameter Selection

In this section, we experimentally find the optimal parameters for Q4.5 Qmin, @ and b in
Equation (3.4), following the method discussed in Section 3.2.2. We tested the two cases
as discussed in Section 3.2.2 to find @42, @min- We took normalized dice coefficients
and Hausdorff distance as segmentation measurements for an 3D cardiac MR scan and
adopted the FCN model-DenseVoxNet. The measurements for two classes— myocardium
and blood pool, are reported. For the lower corner case, as Fig. 3.5 (a) and (b) show,
the two measurements for both labels do not suffer from any degradation only if QS is
not larger than 1. Therefore, (),,;, = 1 should be selected as ensure the segmentation
results. For the upper corner case, the results are shown in Fig. 3.5 (c) and (d). The

two measurements decrease when the QS at 9,,;, is larger than 16 at both classes, by
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following a similar trend as the lower corner case. Hence, we chose @),,,.. = 16 as the
upper bound for our quantization step. Based on ),,,4:» @ min and Equation (3.4), a and b
can be decided accordingly. In our evaluation, we only adopt DenseVoxNet, as an example,
to obtain )qz, Qmin SO as to solve a and b in Equation (3.4). Then we directly apply it
to both DenseVoxNet and 3D-DSN. Note that our method is model agnostic (or rather
data specific), since Equation (5.7) indicates that the importance of subbands can largely
rely on DWT coefficients without correlating with DNN model. Therefore, we can use the
same tuned parameters in our compression regardless of network structure. This is also

one of the advantages of our method.

3.3.3 Comparison of Segmentation Accuracy

We first evaluated how our proposed compression framework can improve the segmentation
accuracy over the baseline—3D JEPG-2000 using the state-of-the-art segmentation neural
network model-DenseVoxNet. For a fair comparison, both our method and 3D JPEG-2000
were implemented at the same compression rate (CR). For illustration purpose, we only
report the segmentation accuracy at C'R = 30x (results under other compression rates
are summarized in the supplemental material). The mean and standard deviation of the
three segmentation measurement metrics—Dice, ASD and Hausdorff, are calibrated from
the 5 testing images of HVSMR?2016 dataset. Note that Dice is the most important metric
among the three.

Table 3.1 reports the segmentation results of the two classes—myrocardium and blood
pool for the three methods—original (uncompressed, C'R = 1x), ours and JPEG-2000,
under DenseVoxNet. First, the default 3D JPEG-2000 exhibits the worst segmentation
results at all the three metrics among the three methods. This is as expected, since JPEG-

2000 takes the human perceived image quality as the top priority by offering the highest
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PSNR (~ 36). Second, our method, which is developed upon the “machine vision", can
beat JPEG-2000 across all three metrics for both classes, with a lower PSNR (~ 35).
Impressively, for myocardium, our method can significantly improve Dice, Hausdorff and
ASD over JPEG-2000 by 0.018, 2.039, 0.3 on average, respectively. The improvements
on blood pool, on the other hand, are relatively limited, given its much higher dice score
(0.915 for blood pool v.s. 0.838 for myocardium). Third, compared with the original
image for both classes, our method only slightly degrades the segmentation results, i.e.
0.001 ~ 0.004 on average for Dice, but offers a much higher compression rate (30 x v.s.
1x). We also observe that the degradation of all three metrics on compressed images
of myocardium (w.r.t. original) is always more significant than blood pool, for both
our method and JPEG-2000. This is because myoscardium has a lower dice score than
blood pool due to the ambiguous border. These results are consistent with the previous
work [124].

We would like to emphasize that the achieved performance improvement of our
method is very significant for segmentation on the HVSMR 2016 Challenge dataset
[110][124] (we also add detailed image by image segmentation results in the supplemental
material). Tens of studies performed extensive optimization for segmentation on this
dataset. While DenseVoxNet offers the best performance by far [124], compared with other
implementations, it still only improves Dice but degrades Hausdorff and ASD. our method,
on the other hand, obtains higher performance on all the three metrics on DenseVoxNet.
Furthermore, compared with the second-best method [110][124], the average improvement
of DenseVoxNet on Dice is 1.2%, while our method can achieve an average improvement
of ~ 1.8% for Myocardium on DenseVoxNet.

We also extended the same evaluations to another state-of-the-art FCN-3D-DSN, to
explore the response of our method to different FCN architectures. As shown in Table 3.2,

the trend of the results are similar to that of DenseVoxNet, except for lower segmentation
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accuracy. Note this is caused by the neural network structure difference, and DenseVoxNet
currently achieves the state-of-the-art segmentation performance. As expected, again, our
method significantly outperforms JPEG-2000 at the same compression rate (30 ) across
all the three metrics, i.e. 0.013 (myoscardium) and 0.007 (blood pool) on average for dice
score, while providing almost the same segmentation performance as that of uncompressed
version—original (1x). These results clearly show the generalization of our method.

It is also notable that from both tables, the segmentation results from compressed
images using our method sometimes even outperform that of original images. This is
because compression as frequency-domain filtering also has denoising property. Although
the training process attempts to learn comprehensive features, the importance of the same
frequency feature may vary from one image to another for a trained DNN. As a result,
after compression, the segmentation accuracy of some images may be improved because
the unnecessary features that can mislead the segmentation are filtered, as demonstrated in
Fig. 3.7(b) (Our method is better than Original CT). For most images, the segmentation
accuracy after compression is still slightly degraded compared with the original images
due to minor information loss at high compression rates, though our compression method

tries to minimize the loss of important features.

3.3.4 Comparison of Compression Rate

In this section, we explore to what extent our proposed machine vision-oriented com-
pression framework can improve the compression with regard to the human-visual based
3D JPEG-2000, for medical image segmentation. For a fair compression, we compared
the compression rate (CR) of these two methods under the same segmentation accuracy
for myocardium using DenseVoxNet. Dice score (0.834) was selected as it is the prime

metric to measure the quality of image segmentation. Since the compression rate may vary
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Figure 3.6: Compression rate comparison of our method v.s. JPEG-2000 under the same
segmentation accuracy.

from one image to another, we chose three representative images from the dataset. As
Fig. 4.3 shows, our method can always deliver the highest compression rate across all the
images. On average, it achieves 30 x compression rate over the original uncompressed
image. Compared with 3D-JPEG 2000, our method can still achieve 3x higher image
size reduction, without degrading the segmentation quality. Still taking the example from
Chapter 1, we assume the transmission time of a 3D CT image of size 300MB via fixed
broadband internet (22.79M ) to cloud is 13s, while the image segmentation computation
time on cloud is merely 100ms. Putting these two together, a single image segmentation
service time on cloud for our method (30 x) and JPEG-2000 (10x), are 0.53s and 1.4s,

respectively, translating into 2.6 speed up.

3.3.5 Visual results

The results for four randomly selected slices are shown in Fig. 3.7. From the figure we

can see that quite significant differences exist between the segmentation results from the
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original image and the one compressed by JPEG-2000, though visually little distortions
exist between the two.

The results may seem surprising at first glance, but it is also fully justifiable. The
boundaries in medical images mainly contribute to the high frequency details, which cannot
be perceived by human eyes. As such, existing compression techniques will ignore them
while still attaining excellent compression quality. Yet these details are critical features
that neural networks need to extract to accurately segment an image. Similarly, many low
frequency features in a medical image such as brightness of a region are important for
human vision guided compression, but not at all for segmentation. In other words, human

vision and machine vision are completely different with regard to the segmentation task.

3.3.6 Overhead

Our method is built upon 3D-JPEG 2000 by only adding two simple operations: standard
deviation calculation for 16 subbands and equation set solution (Equation (3.4)) with only
four variables. Since we reuse the majority of JPEG-2000’s function units, the compression
and decompression time are at the same level as that of JPEG-2000, e.g., 0.12ms for a
512x512 image [72], which is almost negligible compared with image transmission and
segmentation time. Therefore, we expect that our light-weighted machine vision guided

3D image compression framework can find broad applications in medical image analysis.

3.4 Conclusion

Due to the high computation complexity of DNNs and the increasingly large volume of
medical images, cloud based medical image segmentation has become popular recently.
Medical image transmission from local to clouds is the bottleneck for such a service, as

it is much more time-consuming than neural network processing on clouds. Although
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there exist a lot of 3D image compression methods to reduce the size of medical image
being transmitted to cloud hence the transmission latency, almost all of them are based on
human vision which is not optimized for neural network, or rather, machine vision. In this
chapter, we first present our observation that machine vision is different from human vision.
Then we develop a low cost machine vision guided 3D image compression framework
dedicated to DNN-based image segmentation by taking advantage of such differences
between human vision and DNN. Extensive experiments on widely adopted segmentation
DNNs with HVSMR 2016 challenge dataset show that our method significantly beats

existing 3D JPEG-2000 in terms of segmentation accuracy and compression rate.
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Figure 3.7: Segmentation details of four slices in a CT image in HYSRMR 2016 Chal-
lenge dataset [78], compressed using our method and JPEG-2000, and segmented by Den-
seVoxNet [124]. Many details are missing in the segmentation results from JPEG-2000 com-
pressed images but not in our method. Quantitative comparisons can be found in Section 3.3.
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CHAPTER 4
ORCHESTRATING MEDICAL IMAGE COMPRESSION AND
SEGMENTATION NETWORKS FOR EFFICIENT TRANSMISSION AND
ACCURATE SEGMENTATION IN THE CLOUDS

Deep learning based medical image segmentation in cloud offers outstanding segmentation
performance thanks to recent model innovation and computing hardware acceleration.
However, one major factor that limits its overall service speed is the long image data
transmission latency from local to cloud, which could far exceed the segmentation com-
putation time in cloud. Existing image compression techniques are unable to achieve a
sufficient compression rate to dramatically reduce the data offloading overhead which
dominates the whole service time, while maintaining the same level of segmentation
accuracy. This is because they are all developed upon human visual system, whose image
perception pattern could be fundamentally different from that of deep learning-based image
segmentation. Motivated by this key observation, in this chapter, we propose a generative
segmentation architecture consisting of a compressive auto-encoder, a segmentation net-
work and a discriminator network. Our design synthetically considers both segmentation
and compression, and orchestrates the different structures and loss functions, for improving
segmentation accuracy and efficiency simultaneously. Our results show that proposed
architecture can provide much better compression rate and segmentation accuracy than
the-state-of-the-art compression techniques, translating into great improvement on the
cloud-based medical image processing efficiency.

In this work we propose to orchestrate medical image compression and segmentation
networks for efficient transmission and accurate segmentation in the clouds. Particularly,
our end-to-end method trains several neural networks simultaneously for both image
compression locally and segmentation in the cloud using adversarial learning, thus to make

the two steps matched to extract and retain the most important features for neural network
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segmentation. The neural network for image compression is designed to be light-weighted,
which fits well for local processing. We conducted comprehensive experiments via Pytorch
framework on several 2D and 3D segmentation networks using both ISIC 2017 (2D) [25]
and HVSMR 2016 Challenge datasets (3D) [78].

The main contributions of our work are as follows:

1. We propose a framework which integrates compressive auto-encoder and generative
segmentation network (with discriminator network), so as to fully unleash the
compression potential of auto-encoder by truly embracing the concept of “machine

vision"—compression by the direct guidance of enhanced segmentation network.

2. We design a series of training loss functions to optimize the compressive seg-
mentation in the proposed architecture, for achieving high compression rate while

maintaining the segmentation accuracy.

3. We conduct comprehensive evaluations on 2D and 3D medical images. Results show
our design can improve the compression rate by 2 orders-of-magnitude comparing
with the uncompressed images, and increase the segmentation accuracy remarkably

over the state-of-the-art solutions.

4.1 Background and Related Work

4.1.1 Medical Image Segmentation

Medical image segmentation has always been one of the most important tasks in medical
imaging research. It extracts different tissues, organs, pathologies, and biological structures,
to support medical diagnosis, surgical planning and treatments. Recently, deep neural
networks (DNNG5), particularly fully convolutional networks (FCNs), boost the performance

of medical image segmentation and outperform the previous methods by a large margin.
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Figure 4.1: Our orchestrating medical image compression and segmentation networks de-
sign flow.

Ronneberger et al. [84] proposed the U-Net, a U-shaped deep convolutional network that
adds a symmetric expanding path to enable precise localization. The DCAN model by
Chen et al. [20, 21] added a unified multi-task object to the U-Net learning framework to
improve the accuracy of boundary detection. There are also some FCNs for 3D images,

such as 3D U-net [24] and V-net [73], which adopt 3D convolution for processing.

4.1.2 Medical Image Compression

Traditional image compression standards such as JPEG [109] and JPEG-2000 [13, 14]
are widely adopted in medical image compression, They usually employ Discrete Co-
sine Transform (DCT) and Discrete Wavelet Transform (DWT) for compression while
preserving important visual information for humans. A series of alternative methods
based on them, are also proposed to further improve the performance of medical image
compression. For example, in [121], authors improved the compression performance for
medical diagnosis by eliminating the unimportant image regions. In [69], a 3D block
classification is proposed to conduct compression at the volume level.

Besides aforementioned traditional approaches, image compression using trainable

auto-encoders which are built upon neural networks, have recently received great attention.
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[74] developed a joint auto regressive and hierarchical method which includes a normal
auto-encoder to first create compressed representation, followed by a trainable sub-network
dedicated to entropy coding for further compression. The goal allies with the classic
methods like JPEG/JPEG2000, which attempt to achieve a high compression rate without
degrading human perceived image quality, e.g. high PSNR, SSIM. In [105], authors
proposed to directly train an DNN with compressed representation produced by an auto-
encoder, so as to reduce the overhead of data transmission and DNN computation. To
balance the accuracy and compression rate, the auto-encoder needs to keep sufficient
details of input images, and thus is trained by minimizing the mean square error (MSE) of
the original and reconstructed image. [4] also developed a generative adversarial network
for image compression by combing the auto-encoder with a discriminator to improve
image visual quality and compression rate. Similar as [105], the auto-encoder is trained by
minimizing the visual difference between original and reconstructed images.

Apparently, all these classic and auto-encoder solutions compress images under the
guidance of human perceived image quality, which could be fundamentally different from
that of neural network-based image segmentation and lead to limited compression efficiency
under the context of machine vision. While the idea of using generative adversarial network
in our work seems to be similar to [105], the training of auto-encoder is very different:
our work adopts a joint training process guided by segmentator and descriminator with
different loss functions applied to the encoder and decoder, respectively, while that of
[105] is only assisted by the discriminator with human-visual quality as a measurement.

Very recently [66] proposed a proof-of-concept “machine vision" guided 3D image
compression framework based on JPEG-2000 to improve the accuracy and efficiency of
3D CT image segmentation. While we adopt the similar design concept in this work,
their basic approach is to slightly modify quantization steps of standard JPEG-2000, so

as to achieve ~ 2x compression ratio than the original JPEG-2000 without harming the

45



segmentation quality. As a result, its efficiency is still limited because of the underlying
JPEG-2000 structure and heuristic quantization step searching. Moreover, this solution
only focuses on the compression itself and does not jointly optimize the compression and
segmentation. In contrast, this work for the first time formulates a framework which jointly
takes the auto-encoder based compression loss, segmentation loss and discrimination loss
into consideration through an adversarial training manner, and can compress images in
a way that better assists neural network-based image segmentation ( “machine vision"),

thereby achieving much higher compression rate and better segmentation accuracy.

4.2 Our Methodology

Fig. 5.1 depicts an overview of our framework, which consists of three integrated compo-
nents: the auto-encoder (C'), segmentation network (.5) and the discriminator network (D).
Specifically, 1) C functions as a lossy image compression/decompression engine, with the
encoder producing highly compressed data locally and decoder recovering image data at
the cloud for segmentation after receiving the compressed bits through a wireless link. As
such, the network of auto-encoder, especially encoder for compression in local, should be
light-weighted for fast processing and low cost; 2) The segmentor S is a fully convolutional
neural network (FCN) that can generate a probability label map from the input image
reconstructed by the decoder of C'; 3) The discriminator D aims to capture any difference
between the predicted label map from S and the corresponding ground truth label map.
C, S and D are alternatively trained in an adversarial fashion with the goal of solving
a min-max optimization problem: the training of C' and S aims to minimize the label
feature loss while maximizing the compression rate (CR), while the training of D attempts
to maximize this loss. The goal is to achieve a high enough compression rate, under

the guidance of DNN-based segmentation quality measurement (NOT human perceived
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image quality, e.g. PSNR), so as to significantly accelerate the speed of cloud-based image
segmentation service while providing similar or even higher segmentation quality at the
testing stage. As we shall show later, images after our auto-encoder, though presenting
lower visual quality because of only keeping most important features for segmentation (see
Fig. 4.4), actually help the segmentation from two aspects: a much higher compression rate
(faster service speed) with a similar accuracy, or better accuracy for a similar compression
rate, when compared with existing solutions.

Note images sent to the cloud will be only used by segmentation networks in order
to generate accurate segmentation label maps. Such predicted label maps, together with
the local stored high-resolution image copies, can assist doctors [59] for better medical
diagnosis, surgical planning/treatment etc (see Fig. 5.1). Therefore, these images do not
necessarily preserve high visual quality, but can be compressed as much as possible (for

short service latency) as long as the segmentation results are good.

4.2.1 Architecture Design
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Figure 4.2: Illustration of (a) auto-encoder; (b) discriminator in our design.

Auto-encoder C': In our design, the auto-encoder (C') is followed by the segmentor (.5),
with the output of C' feeding into S' for segmentation accuracy feedback. An auto-encoder
consists of an encoder f (compression), decoder g (decompression) and a probabilistic
model @ (bit number estimation for encoder output representation, e.g. entropy coding).

Unlike existing auto-encoders which attempt to minimize the pixel-wise visual distortions

47



between original image and reconstructed image, our auto-encoder focuses on minimizing
the difference between the predict label from S and ground truth label y for an input
z—d(S(C(x)),y), as well as the number of bits needed after the encoder f——Ilog2Q(f(x))
for the highest compression rate, during the training process. This indicates that our auto-
encoder is dedicated to compressing images in an DNN-favorable manner for segmentation
purpose.

During the implementation, the computation cost and latency of the auto-encoder,
especially the encoder, should be low enough for local processing, e.g. comparable with
existing light-weighted JPEG/JPEG-2000 and much lower than the complex segmentation
network in cloud. Fig. 4.2(a) shows the detailed structure of our example 2D auto-encoder
inspired by [103]. It only consists of 6 (2) and 9 (3) convolution layers (residual blocks)
for encoder and decoder, respectively. Such an unbalanced structure can further reduce
the encoder’s local computing cost and latency. The downsampling is performed by
convolution with a stride 2 and maxpooling, while upsampling is realized by transposed
convolution operation. The 3D auto-encoder can be also designed following a similar
approach. Table 4.1 further compares the detailed parameters among encoder, decoder and
a segmentor [122] which we will use as a baseline in evaluation. Among them, the encoder
has the lowest cost, e.g. only 1/179, 1/11 and 1/7 of the number of parameters, number
of covolutional layers and ReLLU layers in segmentor. As we shall show in Table 4.4, this
translates into significant low processing time in local.

Semgentor S and Predict-oriented discriminator D: We do not design new seg-

Table 4.1: The comparison of detailed settings for encoder, decoder and segmentor.

| Encoder | Decoder | Segmentor | Times

CONY layers 6 9 66 11
Normal 0 0 17 N/A
ReLU 6 7 42 7
# Parameters | 872465 | 1308722 | 156265344 179

48



mentors for our framework, instead, we adopt existing representative networks for 2D
and 3D segmentation tasks [122, 50], and demonstrate the scalablity of our design. To
further compensate the potential accuracy loss because of the joint training of S and C/,
our framework incorporates a discriminator D after the S [68, 122]. Fig. 4.2(b) shows
the detailed structure of D. The inputs of D are ground truth label map and predicted
label map from S, the output from each layer will concatenate together first and then their

difference will be used as the label feature loss to train D.

4.2.2 Training Loss Design

To train the framework, we now design the loss function dedicated to each network. Given
a dataset with NV training images x,,, and y,, as the corresponding ground truth label map,
the multi-scale label feature loss (lossg;s) and segmentation loss (loss,.,) can be defined
as follows:

lossgis = min max ((0¢,0g,0p) =
0c.0s Op

1 Y 4.1)
NZ mac($0(65(6c(@n)))s S (n))

lOSSseg = 912191"13 5(06’7 QS) = gmse(@S(@C(xn))v yn) (4.2)

where 0¢, 65 and 6p are weight parameters of C', S and D, respectively. £, is the
mean absolute error or L; distance inspired from [122]-¢s(¢c(x,,)) is the prediction
result of S after input z,, is compressed by auto-encoder C' and ¢p(-) represents the
multi-scale hierarchical features extracted from each convolutional layer in D. /,,,. is the
MSE between predicted label from S and ground truth label. ¢¢(-), ¢s(-) and ¢ép(-) (i.e.
the hierarchical features extracted) represent the functions of C', S and D, respectively.

We model the loss for the discriminator as:

—108S4is = — min max ((0¢,0s,0p) 4.3)
90,05 Op
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We set this loss with a negative value to maximize the difference between the predicted
label and ground truth label. On the contrary, we add the reserved version of this loss
(positive value) to C' and S, with the goal of minimizing such loss for the combined C' and

S. Therefore, the total loss for segmentor and auto-encoder is:

lossiotal = 108855 + 105550 =
4.4)
min {(0c, 0s) + min max((6c,bs,0p)
0c,0s 0c.0s 0p

Finally, we introduce a compression loss (loss,.) to optimize the output of encoder
for achieving the best compression rate. We assume the encoder/decoder of the auto-
encoder is f/g, and use e to estimate the number of bits for the representation after f, e.g.
entropy coding. Since this coding process is non-differentiable, we employ a continuous
differentiable Jensen’s inequality [102] to estimate the upper bound of the number of
needed bits. This estimation is used to train the encoder [103]. Note this loss is only sent
to the encoder in auto-encoder without involving the decoder. Then the total loss for the
encoder f of auto-encoder C' is:

1085y +10555eg + 105545 = min(e(f(xy)))
—— ——

No.bits
4.5)

. ) .
+ min H;gXC(Hc,Hs, p) + Inin £(0c,0s)

Seg.distortion
4.2.3 Training and Testing

We train our framework by following an alternating fashion: For each training epoch,
first, we fix the parameters of D and only train that of C' and S for one step using above
designed loss functions, e.g. [0ss;.q (Eq. 4.4) for the decoder of C' and segmentor S,
and [05S. + 10SSi0a; (Eq. 4.5) for the encoder of C' for optimized compression rate of
encoded data from C'; Second, we fix the parameters of C' and S and train D by the

gradients computed from its loss function (l0ssg;s). As Eq. 4.1 shows, this training process
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behaves more like a min-max game: while C' and S' try to minimize [0ssg;s, D attempts to
maximize it. As a result, the training gradually improves the segmentation results of C,
S and D, as well as the compression efficiency of C' after each epoch until reaching the
convergence.

At the testing process, only C' and S are used to predict the segmentation accuracy and
D is not involved. The input image is first sent to the encoder of auto-encoder C, then
a stochastic binarization algorithm will be applied to the encoded data, i.e. the encoded
representation is in binary format. After that, the binary data is further encoded by entropy
coding. We adopt the entropy rate estimation method in [103] to estimate the final number
of bits. At the decoding process, the encoded binary data is directly decoded by the decoder
of auto-encoder C' to reconstruct the image. Then it is sent to the segmentation network S

for the label map prediction.

4.3 Evaluation

4.3.1 Experiment Setup

Our proposed method is built upon Pytorch [79] framework on a server with 6 cores
17-6850K CPU and multiple 2560 CUDA cores GTX 1080 GPUs. The encoder (for
compression) is implemented on both GPU and less powerful CPU to validate its feasibility
for local low-cost processing. The whole network is realized by heavily modifying the
adversarial segmentation network proposed by [122] with the integration of our auto-
encoder architecture. Benchmarks. Two datasets are selected for both 2D and 3D image
segmentation tasks. For 2D benchmark, ISIC 2017 challenge dataset [25] is adopted. This
fully annotated dataset provides 2000 training images, 150 validation images and 600

testing images for the Lesion segmentation task. For 3D benchmark, we use the HVSMR
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2016 challenge dataset [78], which consists of in total 5 3D cardiac MR scans for training
and 5 scans for testing. Each image includes three segmentation labels: myocardium,
blood pool, and background. Note that directly using the large-size 3D medical images
(e.g. 300MB) to train neural networks is difficult. Thus we randomly crop the original CT
image to many smaller pieces of data to facilitate training and overcome the overfitting,
which is consistent with [66].

Metrics. We evaluate our methodology from four aspects: segmentation perfor-
mance, compression efficiency, cloud-based service latency and visual analysis. To
measure the segmentation performance, we use the widely adopted Intersection over Union
(IoU) and Dice coefficient (Dice) as the two metrics. The higher IoU/Dice score indicates
better agreement (or accuracy) between the segmentation result and the ground truth. To
evaluate the proposed auto-encoder based compression, we use bits per pixel (bpp) as the
index. For the same image, the lower bpp means better compression efficiency or higher
compression rate. Note we also estimate cloud-based service latency, composed of trans-
mission and segmentation time, by considering the impact of compression/decompression.
Visual analysis illustrates the visual quality of the compressive auto-encoder reconstructed
images (predict labels) and original images (ground truth labels).

Auto-encoder, Segmentor & Discriminator Settings. The structure of 2D auto-
encoder is shown in Fig. 4.2(a). The 3D auto-encoder is as follows: the encoder consists of
4 convolutional layers for 3D downsampling by 3D convolutional operation with a 3 x 3 x 3
kernel and stride 2. The decoder performs 3D upsampling implemented by 4 3D Transpose
operation with a 2 x 2 x 2 kernel and stride 1, through 8 convolutional layers for image
reconstruction. For both 2D and 3D auto-encoders, the stochastic binarization [104] is ap-
plied to binarize the created code (compressed data) for achieving a high compression rate.
For segmentation networks, we choose FCN32s [67] (i.e. upsampling stride 32 predictions

back to pixels in a single step without combining encoder layer) and FCN16s [67] (i.e.
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combining predictions from both the final layer and the pool4 layer at stride 16), the default
segmentation network in original SegAN (i.e. UNet) and 3D-UNet [50]. The discriminator
network (see Fig. 4.2 (b)) is developed based on [122], including 3 convolutional layers
along with batch normalization and leaky ReLLU layers with the feature maps from each
hierarchical layer concatenated together to calculate [0ss ;5.

Evaluated Designs. We use the recent SegAN framework [122], which includes both
segmentation and discriminator networks, as the baseline. Then we modify it and generate
several designs with different components, e.g. incorporating the auto-encoder into it or

replacing its segmentation network, for comprehensive evaluations:

e Our (Seg+Dis). Design with segmentator and discriminator but no auto-encoder.
e Our (Auto+Seg). Design with auto-encoder and segmentator but no discriminator;

e Our (Auto+Seg+Dis). Standard design with auto-encoder, segmentator and dis-
criminator, without considering the compression loss (Loss..). This design is

expected to offer the best segmentation accuracy, but limited compression efficiency.

e Our (Auto+Seg+Dis+CR). Enhanced design with auto-encoder, segmentator, dis-
criminator and compression loss (Loss..). This design should achieve aggressive

compression with slightly degraded segmentation accuracy.

Besides, we select standard JPEG-2000 [14, 13], and latest “machine vision" based com-
pression “ [66]", in our evaluation. The auto-encoder and segmentation joint design which
is widely adopted by existing works, namely “Auto(MSE)/Seg" here, is also implemented.
Here the auto-encoder is trained by MSE of reconstructed image and original image and the
reconstructed images are used to train segmentor. As such, we expect “Auto(MSE)/Seg"

should suffer from prominent segmentation accuracy loss at high compression rates.
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4.3.2 Segmentation Performance

To show the scalability of our proposed design, we evaluate both 2D- and 3D- segmentation
on a series of baselines with different segmentation networks and structures.

2D Segmentation. Table 4.2 evaluates the Dice/IoU score of 2D segmentation on
several selected designs. For each baseline, we test both segmentation networks—FCN16s
and FCN32s. As shown in Table 4.2, our designs always achieve higher Dice and IoU
scores than SegAN on all testing cases. In particular, without compression, “Our (Seg+Dis)”
improves both Dice (0.809) and IoU (0.715) by ~ 0.01 than that of SegAN (0.798 on
Dice and 0.706 on IoU) with FCN32s, due to the optimized predict-oriented discriminator
in our design. We would like to emphasize that the achieved performance improvement
of our method is very significant for biomedical segmentation tasks [110, 124]. With
integrated auto-encoder, “Our (Auto+Seg+Dis)” achieves the best segmentation accuracy
(0.813 on Dice and 0.715 on IoU) among three designs on FCN32s. The similar trend
can be also observed on FCN16s— an enhanced segmentation network compared with
FCN32s, thus achieving better results on all selected cases. This result indicates our auto-
encoder based compression, instead of degrading the accuracy, can sometimes even
further improve the segmentation performance. This is because proper compression
can introduce the denoising effect. Although the training process attempts to learn as many
features as possible, the necessary features for segmentation needed by each image may
vary from one to another. Therefore, after compression, the segmentation accuracy of
some images can be improved because of removing unnecessary features that may confuse

the segmentation (we will present and discuss the compressed image samples in “Visual

Table 4.2: 2D segmentation results on ISIC 2017 dataset.

FCN32s FCN16s
Our (Auto+Seg+Dis) | Our (Seg+Dis) | SegAN | Our (Auto+Seg+Dis) | Our (Seg+Dis) | SegAN
Dice 0.813 0.809 0.798 0.814 0.812 0.805
ToU 0.715 0.715 0.706 0.718 0.717 0.708
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Table 4.3: 3D segmentation results on HVSMR 2016 challenge dataset [78]. Our: Our
(Auto+Seg+Dis)

Myocardium Blood Pool
Dice IoU Dice IoU
Uncomp. | [66] | Our | Uncomp. | [66] | Our | Uncomp. | [66] | Our | Uncomp. | [66] | Our
Img.1 0.895 0.868 | 0.899 | 0.809 0.756 | 0.817 | 0.915 0.876 | 0.927 | 0.844 0.818 | 0.864
Img.2 0.829 0.798 | 0.831 | 0.708 0.681 | 0.711 | 0.951 0.903 | 0.948 | 0.916 0.875 | 0.921
Img.3 0.811 0.782 | 0.815 | 0.672 0.652 | 0.674 | 0.883 0.858 | 0.888 | 0.807 0.754 | 0.808
Img.4 0.877 0.853 | 0.874 | 0.780 0.758 | 0.776 | 0.955 0.906 | 0.956 | 0.913 0.872 | 0.915
Img.5 0.809 0.778 | 0.810 | 0.679 0.647 | 0.681 | 0.883 0.849 | 0.881 | 0.806 0.779 | 0.788
Average | 0.844 0.816 | 0.846 | 0.729 0.699 | 0.732 | 0.918 0.878 | 0.920 | 0.857 0.820 | 0.859

‘ bpp ‘ Uncompressed (~1.1) ‘ [66](~0.04) ‘ Our(~0.014) ‘

Analysis").

3D Segmentation. Table 4.3 shows our 3D segmentation result on HVSMR 2016
dataset using 3D-UNet [50] as the segmentation network. We test 5 3D CT image vol-
umes with segmentation targets “Myocardium” and “Blood Pool”, and compare the
Dice/loU scores among “Our (Auto+Seg+Dis)”, “ [66]” (optimized JPEG-2000) and the
uncompressed design. For a fair comparison, the compression rate in ““ [66]” and “Our
(Auto+Seg+Dis)” is maintained at the same level (bpp = 0.014). Compared with the
uncompressed image segmentation, our design improves the average Dice (IoU) score by
0.002 (0.003) and 0.002 (0.002) on “Myocardium” and “Blood Pool”, respectively, which
is similar to the 2D segmentation. However, compared to the state-of-the-art “machine
vision" guided compression “ [66]", our design achieves more significant improvement on
3D segmentation, i.e., the average Dice (IoU) score is increased by 0.03 (0.033) and 0.042
(0.039) on “Myocardium” and “Blood Pool”, respectively. As expected, “ [66]" cannot
keep high accuracy at a high compression rate (~ 78x), e.g. much lower than that of the
uncompressed one. These results show great scalability and outstanding segmentation
performance of our design for 3D images.

Segmentation under different architectures. Figure 4.3(a) further compares the
segmentation performance of 2D dataset of selected baseline designs under different ar-

chitectures and component combinations. We use the same segmentation network as that
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Figure 4.3: (a) Segmentation results under various combinations. (b) Segmentation accu-
racy/bpp comparison with prior methods. Same bpp (bars): Our (Auto+Seg+Dis); Same
dice (line): Our (Auto+Seg+Dis+CR).

of default SegAN, but replace its descriminator or add our auto-encoder, to develop these
designs. Both Dice and IoU exhibit a similar trend on all selected designs. We use Dice as
an example to analyze the results. Compared with SegAN, “Our (Auto+Seg)" can slightly
improve Dice score with filtered features after compression. Moreover, “Our (Seg+Dis)"
achieves higher Dice score than “Our (Auto+Seg)”. These results indicate the proposed
predict-oriented discriminator can better improve the segmentation accuracy with the
combination of Loss,., and Lossg; than that of auto-encoder based compression. In par-
ticular, our standard design “Our (Auto+Seg+Dis)" shows the best Dice (and loU) among
all schemes. However, by further applying compression loss Loss,,, the segmentation
accuracy of “Our (Auto+Seg+Dis+CR)" is slightly degraded on both Dice and IoU. This is
because the applied compression loss performs more aggressive compression (i.e., > 1.5X)
on “Our (Auto+Seg+Dis+CR)” than that of “Our (Auto+Seg+Dis)", leading to slightly
sacrificed segmentation accuracy. On the other hand, as expected, “Auto(MSE)/Seg", an
auto-encoder and segmentor joint design adopted by existing works and guided by human
visual quality loss (e.g. MSE), achieves the lowest Dice/loU among all designs at the same

level of bpp (e.g. 0.013).
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Figure 4.4: Comparison between original and reconstructed (decompressed) images from
auto-encoder of 2D RGB images (left 2 columns) and 3D cardiovascular magnetic resonance
(CMR) images (right 3 columns) with corresponding predict label and ground truth label.

4.3.3 Compression Efficiency

To better evaluate the compression performance, we consider both compression (bpp)
and segmentation (IoU/Dice), and compare the results of proposed architecture with four
different compression approaches, including the uncompressed “Our (Seg+Dis)", the auto-
encoder based “Our (Auto+Seg+Dis+CR)", the standard “JPEG-2000" and the-state-of-the-
art machine-vision based compression (best) from ““ [66]". Figure 4.3(b) reports the results.
As shown by the bars, the uncompressed “Our (Seg+Dis)" shows slightly better (IoU and
Dice scores than “JPEG-2000" and “ [66]", since these two existing approaches cannot
well preserve the necessary features during compression. Instead, “Our (Auto+Seg+Dis)"
with our auto-encoder can always achieve the best segmentation performance for both IoU
and Dice, by better keeping important features during compression. Figure 4.3(b) (the
line) further shows the average bpp of each compression approach characterized at the
same level of segmentation accuracy (i.e., Dice = 0.84). Under such a constraint, “Our

(Auto+Seg+Dis+CR)” achieves the best compression rate (average bpp = 0.013) among
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all approaches, e.g. improving compression rate by almost two orders of magnitude than
that of uncompressed images (average bpp = 1.24), by an order of magnitude than that
of “JPEG-2000" (average bpp = 0.12), and > 3x than that of “ [66]" (average bpp =
0.04). Such significant improvement can be attributed to two factors: the auto-encoder
design and the compression loss. The code size (i.e., compressed data) in our implemented
auto-encoder is 16 x 8 x 8 (i.e. 1024 bits), while the input image is 3 x 128 x 128 (i.e.
49152 pixels), translating into the baseline bpp— ~ 0.02. Later, the upper bound of number
of bits is adjusted by the estimated entropy coding e. Therefore, the actual bpp (0.013) is

further reduced by ~ 1.54 x with proposed compression loss Loss,.

4.3.4 Cloud-based Service Latency

We evaluate the processing efficiency of cloud-based image segmentation under the same
quality by using different compression techniques. We assume the transmission latency
of an uncompressed CMR image (300MB) to cloud via an ideal network (e.g. stable
fixed broadband internet 22.79Mbps without bandwidth contention) is 13s, which is
much larger than the segmentation computation time (~ 100ms) in the cloud. Besides,
the compression/decompression time overhead incurred by auto-encoder should be also
considered. Table 4.4 further shows the detailed breakdown of image transmission time,
encoder (compression) time, decoder (decompression) time and segmentation time for

four designs. The image compression/decompression time overhead of “JPEG", “ [66]”,

Table 4.4: Time Complexity Comparison.

| Image (MB) | Trans.(s) | Enc.(s) | Dec.(s) | Seg(s) | Total (s)

Uncomp. 300 13 0 0 0.1 13.1
JPEG 30 1.4 0.0013 | 0.0013 | 0.1 1.5026

“[66]” 10 0.53 0.0015 | 0.0015 | 0.1 0.633
Our(Auto+Seg+Dis)(GPU) 33 0.16 0.0003 | 0.0003 | 0.1 0.2606
Our(Auto+Seg+Dis)(CPU) 33 0.16 0.003 | 0.0003 | 0.1 0.2633
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or our auto-encoder, are all negligible compared with their respective transmission time.
Putting all time together, the total service time of a single image segmentation in clouds
for “JPEG” (10x) and * [66] (30x), are 1.5s and 0.63s, respectively. However, our
design—“Our (Auto+Seg+Dis)" only takes 0.26s (50 %) for a single image segmentation
because of the significantly improved compression rate, translating into 5.7x and ~ 2.4x
speedup compared with “JPEG” and latest ““ [66]", respectively.

Besides the GPU-based auto-encoder implementation, we further evaluated the time
cost of encoder deployed in a less powerful CPU, which is quite common for low-cost
local compression, and observed that although the encoding time of auto-encoder in
CPU increases by 10x (e.g. 0.003s) comparing with GPU, it is still at the same order
of magnitude as JPEG (e.g. 0.0013s). Moreover, the encoding time in CPU is almost
negligible when compared with the transmission time (e.g. 0.16s). This means that data
transfer time dominates the total service latency, and significantly improving compression
rate (far better than JPEG) with our solution is very necessary for service speedup.

Auto-encoder Overhead. We also compare the overhead of our encoder with JPEG
compression from a theoretical perspective, since it should be low for local process-
ing. Based on [23], the compression complexity of JPEG can be roughly estimated as
O((kn)*) + O(N), where the first and second term represent the algorithm complexity
of DCT and quantization, receptively. Here n = 8. k and /N denote the total number
of 8 x 8 blocks and pixels in the image, respectively. The encoder complexity of an
auto-encoder can be calculated as O(3.%, = ny_y - s> - n; - m?) [43], where [ is the
index of a convolutional layer, d is the number of convolutional layers, n;/n;_; is the
number of filters in the [-th/[ — 1-th layer, s; is the spatial size of the filter and m; is the
size of the output feature map. Take a 128 x 128 x 3 image and our 2D auto-encoder
as an example, the overhead of JPEG compression is ~ 13X than that of our encoder.

This is consistent with our experimental results shown in Table 4.4. Note all reported
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time results of compression methods are characterized based on Python implementations.
Deployment Cost. For practical implementation, since each medical imaging task would
require a dedicated segmentation network and training process, in our framework, only
a local light-weighted auto-encoder needs to be paired with the target cloud network at
the training stage for each task and the additional training overhead is very marginal.
Moreover, auto-encoder based solution becomes popular in various deep learning tasks.
Considering the impressive performance and relatively low overhead, our solution will be

very attractive for ever-increasing DNN based medical imaging at cloud.

4.3.5 Visual Analysis

Figure 4.4 compares the visual results of our auto-encoder reconstructed images with
original images. The first row represents decompressed images from auto-encoder before
feeding into a segmentation network. Compared with original images, they demonstrate
lower visual quality for human vision, but can still maintain (or even improve) the seg-
mentation accuracy. These results also indicate that: First, the reconstructed image is
not a colorful image. Instead, it only has one red color channel, and the profile is not
clear enough for human eyes. Second, some undesired features have been removed. For
example, the hairs in the original image of first column are eliminated in the reconstructed
image, which actually may make segmentation more accurate. Third, all reconstructed
images, regardless of 2D or 3D, are formed by many small blocks (same pattern) and such

patterns can further improve compression rate.

4.4 Conclusion

This chapter presents a generative segmentation architecture for compressed biomedi-

cal images, which consists of a compressive auto-encoder, a segmentation network and
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a discriminator network. We propose to leverage the auto-encoder and different loss
function designs to enhance the cloud-based segmentation performance and efficiency by
synthetically considering segmentation accuracy and compression rate. We conducted
comprehensive evaluations on both 2D RGB and 3D CMR images and compared our
design with state-of-the-art solutions. Experimental results show that our design not
only significantly improves compression rate, but also increases the segmentation accu-
racy, outperforming existing solutions by offering better efficiency on cloud-based image

segmentation.
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CHAPTER 5
FEATURE DISTILLATION: DNN-ORIENTED JPEG COMPRESSION
AGAINST ADVERSARIAL EXAMPLES

Image compression-based approaches for defending against the adversarial-example at-
tacks, which threaten the safety use of deep neural networks (DNN), have been investigated
recently. However, prior works mainly rely on directly tuning parameters like compression
rate, to blindly reduce image features, thereby lacking guarantee on both defense efficiency
(i.e. accuracy of polluted images) and classification accuracy of benign images, after apply-
ing defense methods. To overcome these limitations, we propose a JPEG-based defensive
compression framework, namely “feature distillation", to effectively rectify adversarial
examples without impacting classification accuracy on benign data. Our framework signif-
icantly escalates the defense efficiency with marginal accuracy reduction using a two-step
method: First, we maximize malicious features filtering of adversarial input perturbations
by developing defensive quantization in frequency domain of JPEG compression or de-
compression, guided by a semi-analytical method; Second, we suppress the distortions of
benign features to restore classification accuracy through a DNN-oriented quantization
refine process. Our experimental results show that proposed “feature distillation" can
significantly surpass the latest input-transformation based mitigation such as Quilting and
TV Minimization in three aspects, including defense efficiency (improve classification
accuracy from ~ 20% to ~ 90% on adversarial examples), accuracy of benign images after
defense (< 1% accuracy degradation), and processing time per image (~ 259x Speedup).
Moreover, our solution can also provide the best defense efficiency (~ 60% accuracy)
against the recent adaptive attack with least accuracy reduction (~ 1%) on benign images
when compared with other input-transformation based defense methods.

In this work, we focus on improving the effectiveness and efficiency of compression

based model-agnostic mitigation against adversarial examples. Though standard JPEG
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compression has been explored to mitigate the adversarial examples [35, 29], it can neither
effectively remove the adversarial perturbations, nor guarantee the classification accuracy
on benign images, due to its focus on human visual quality. Instead, we propose the
DNN-favorable JPEG compression, namely “feature distillation”, by redesigning the
standard JPEG compression algorithm, in order to maximize the defense efficiency while
assuring the DNN testing accuracy. In specific, 1) We reveal the root reason to limit the
JPEG defense efficiency by analyzing the frequency feature distributions of adversarial
input perturbations during JPEG compression; 2) Inspired by our observation, we propose
a semi-analytical method to guide the defensive quantization process to maximize the
effectiveness of filtering adversarial features; 3) We characterize the importance of input
features for DNNs by leveraging the statistical frequency component analysis within JPEG,
and then develop DNN-oriented quantization method to recover the degraded accuracy
(i.e., a side-effect induced by the feature loss in perturbation removal) on benign samples.

Our proposed method is built upon the light modifications of widely adopted JPEG com-
pression and does not require any expensive model retraining or multiple model predictions.
Evaluations show that “feature distillation" offers significantly improved effectiveness
against a variety of mainstream adversarial examples (i.e., > 90% accuracy on AEs), with
very marginal accuracy reduction (i.e., < 1%) on benign data. Besides, it well beats recent
proposed image transformation based defense like Quilting and TV Minimization in terms
of defense efficiency, accuracy and processing speed. Furthermore, our solution offers
the best defense efficiency (~ 60%) with lowest accuracy loss (< 1%) against the recent
adaptive attack—-Backward Pass Differentiable Approximation (BPDA) [8] among existing
input-transformation based defenses, though it is not completely immune to such attack. 7o
our best knowledge, there is no published work that can completely mitigate BPDA, since
it is very challenging for defense if attackers can iteratively strengthen the adversarial

examples according to the defense. However, we believe our work provides a new angle
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to redesign input-based defense to well balance the accuracy of benign data and defense
efficiency with DNN-oriented/defensive quantization. It is a new trial towards developing

better input-transformation based defenses.

5.1 Background, Related Work and Motivation

5.1.1 Basics of Adversarial Examples and JPEG

Adversarial examples: (X* = X + dy) are created to fool the DNNs (Y* # Y') with
imperceptible perturbations: arg mins, || dx || s.t. F® (X +dx) = Y*, which can be
solved through many crafting algorithms: 1) FGSM [39] (fast gradient sign method) is
a L., attack and utilizes the gradient of the loss function to determine the direction to
modify all the input pixels. It is designed to be fast, rather than optimal; 2) BIM [58]
(basic iterative gradient sign method) is the iterative version of FGSM by gradually adding
small perturbations « (L) until reaching the upper bound ¢ or achieving successful attack;
3) Deepfool [76] uses geometrical knowledge to search the minimal perturbations (L-) by
assuming DNN as a linear classifier and each class is separated by a hyper-plane. Such
an approach finds the nearest hyper-plane from X and uses geometrical knowledge to
calculate the projection distance; 4) C&W [16] (Carlini & Wagner method) are a series of
Lq, Lo, and L. attacks that achieve 100% attack success rate with much lower distortions
comparing with the above-mentioned attacks. In particular, the C&W L, attack uses
a more effective objective function f(z) = max (mazx {Z(X); i #t} — Z(X)s, —k)
with logits Z(X); and adjustable parameter . Further, C&W L, and L., attacks are
implemented indirectly by iteratively calling their L, attack. 5) BPDA [8] is the latest
adaptive attack by recurrently computing the adversarial gradient after applying defense:

z* = clip(x + € - sgn(V,Jpy (DEF(z)))), where J represents the function of an DNN
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Figure 5.1: Illustration of two different modes of ‘feature distillation''—one pass and two
pass.

model and DEF' is the applied defense method in BPDA attack. It is state-of-the-art of
attack by assuming adversaries know the defense method.

JPEG: [109] is a popular lossy compression standard for digital images based on the
fact that Human-Visual System (HVYS) is less sensitive to the high frequency components
than low frequency ones [125]. A typical JPEG compression mainly consists of image
partitioning, discrete cosine transformation (DCT), quantization, zig-zag reordering and
entropy coding, etc. [109]. To compress a raw image, the high (low) frequency DCT coef-
ficients are usually scaled more (less) and then rounded to nearest integers by performing
element-wise division based on a predefined 8 x 8 Quantization Table (Q-Table) [109].
The trade-off between image quality and compression rate is realized by scaling each
element in Q-Table via the “Quantization Factor" (QF) [123]. A higher compression rate

corresponds to a lower QF. A reverse procedure of above steps can decompress an image.

5.1.2 Related Works

Applying JPEG compression to mitigate adversarial examples has been discussed in prior
work. Kurakin et al. [58] test some model-agnostic approaches on adversarial examples
and reveal a good potential of JPEG compression for defending adversarial attacks. Dziu-

gaite et al. [35] empirically report JPEG compression can reverse only small adversarial
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perturbations, but the reason behind is uncertain. Guo et al. [41] test JPEG compression,
image Quilting (piecing together small patches from a database of image patches), total
variance minimization (combining pixel dropout with total variation minimization), etc.
against the gray-box and black-box adversarial attacks, and report Quilting and TVM show
better efficiency than JPEG. Aydemir et al. [9] compare the effects of JPEG compression
and JPEG2000, against adversarial perturbations. Though JPEG2000 shows better per-
formance than JPEG, the efficiency is still far from satisfactory. Xu et al. [112] propose
an ensemble method, namely “feature squeezing", to defeat the adversarial examples by
integrating different types of “squeezers” (i.e. model-agnostic processing). Das et al. [29]
propose a JPEG compression based ensemble method, namely “vaccinating”, to mitigate
adversarial attacks by voting the result based on a variety of compression rates. Prakash
et al. [81] develop “‘pixel deflection" and “adaptive soft-thresholding" approaches by re-
placing or smoothing adversary perturbations. This method shows good defense efficiency
on gray box-setting without evaluating adaptive attacks. Xie. et al. [111] propose two
randomization operations—-random size and random padding, against adversary examples.
In summary, prior studies empirically test the JPEG compression by directly tuning the
compression rate, without digging into the underlying image processing mechanisms. The
conclusion is that JPEG suffers from very limited defense efficiency but inevitable DNN
accuracy degradation. To overcome those issues, standard JPEG compression should
be integrated with the costly ensemble solutions. On the other side, our work directly
targets the fundamental entities of JPEG compression/decompression, like defensive and
DNN-oriented quantizations, to unleash its defense potentials with almost zero loss of

DNN testing accuracy, thus is low-cost.
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5.1.3 Why standard JPEG is not good?

DNN suffers from both low testing accuracy and weak defense efficiency against adversar-
ial examples if we directly employ standard JPEG compression based on human-visual
system (HVS). To explore how existing compression can impact DNN'’s testing accuracy,
we trained a MobileNet [48] with high quality JPEG images (QF=100, ImageNet), and
tested it with both clear images and FGSM-based adversarial examples at various QFs (i.e.,
QF=100, 90, 75, 50). As Fig. 2.3 (a) shows, the testing accuracy degrades significantly
as the compression rate increases (or QF from 100 to 50), despite the slightly improved
defense efficiency (or drop in attack success rate). To achieve the best defense efficiency
among our selected four QFs (attack success rate = 0.62 at QF = 50), the accuracy is
even reduced by ~ 8% on benign images than that of the original one (QF=100). Ap-
parently, the HVS-based JPEG compression is not an ideal solution in terms of defense
efficiency and accuracy. Fig. 2.3 (b) further shows the means and standard deviations of
DCT coefficients of malicious distortions at all 64 frequency bands. Given that malicious
perturbations are almost randomly distributed in every frequency band, HVS-based JPEG
compression, which distorts more (less) on high (low) frequency components of the input,

is unlikely to effectively filter the distortions across the whole spectral domain.

5.2  Our Approach—Feature Distillation

In this section, we first provide a detailed analysis on how to wisely redesign the quan-
tization process in JPEG compression to minimize attack success rate. As this lossy
compression will still reduce the classification accuracy (see Fig. 2.3), we then develop
the DNN-oriented quantization refine method, to compensate the reduced accuracy of
benign images. Based on how/where the derived quantization will be placed in JPEG, our

framework supports two modes (see Fig. 5.1): 1) One pass process by inserting a new
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Figure 5.2: An overview of heuristic design flow of DNN-Oriented compression based on
crafted quantization.

quantization/de-quantization only in the decompression of standard JPEG; 2) Two pass
process by also replacing the quantization of compression, followed by one pass process.
The two pass method provides an opportunity to directly embed crafted quantization at
sensor side to compress raw data to further improve defense efficiency, given that JPEG-
based image compression, an integrated component in sensors, is usually a “must-have"
step to save data storage/transfer cost in real applications. Therefore, the one-pass handles
incoming images compressed by standard JPEG before sending them to DNNs, while the
two-pass targets raw data directly sampled by devices like image sensors. The target is to

address both attack efficiency and test accuracy simultaneously.

5.2.1 Step 1: Defensive Quantization for Enhancing Defense

We propose to use spectral filter by leveraging quantization process in JPEG on DNN
inputs (i.e., adversarial examples), in order to mitigate adversarial perturbations.

One pass process. The idea is to directly filter out the malicious perturbations in
frequency domain through the quantization process. As Fig. 5.1 shows, the JPEG-formatted
input will be decompressed and then feed into the DNNSs as the raw data at the beginning.
By taking this chance, we insert a new pair of quantization/dequantization processes after
the dequantization of standard JPEG decompression to purify the potential adversarial

perturbations. Note we omit the first dequantization in the following analysis ideally by
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assuming it can almost preserve all frequency features of the input. Assuming for each
8 x 8 block in the input image X, adversarial distortion dx is added to X with intensity e.
The DCT transformation—a linear operation, essentially projects the image from spatial
domain to spectral domain. Therefore, the original input and adversarial perturbations

could be linearly separated as:

DCT(X + 6x) = DCT(X) + DCT(5x) = Cx - B+ Cs, - B (5.1)

where C'x and Cj,, are the DCT coefficients of X and 0x, respectively, for the 8 x 8 image
block, and B is the DCT transformation basis. The maximum magnitude of Cs, can be
calculated by the summation of all 64 frequency components and each term is bounded by
cos(f) - €. Thus we have —8 - ¢ < C5, < 8- €.

The DCT coefficients will be quantized again in this decompression process, providing

a good opportunity for filtering the perturbations. The quantization is approximated as:
Round (Cx+Csx /Qs) ~ Round (Cx/Qs) + Round (Csx/Qs) (5.2)

where QS is the defensive quantization step (QS). Ideally, if QS > |Cjs,|, then the
perturbation Cj, can be eliminated. However, this equation may induce undesired rounding
error to limit the efficiency of removing malicious perturbations, given that Cy,, is usually
much smaller than C'y. We further analyze such a rounding error by decomposing C'y =

n + @5/2, then we have:
Round (Cx+Csx /Qs) = Round (m+25/2+Csx /Qs) (5.3)

If @5/2 + Cs,, > @S, this part will be rounded to +1,£2, 4+3..., which will induce a
stronger rounding error than the adversarial perturbations, resulting in degraded defense
efficiency.

Two pass process. To avoid such rounding error, we further propose two pass method.

As Fig. 5.1 shows, the raw data (i.e. sampled by sensors) will be compressed through a
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defensive quantization process, rather than the standard JPEG quantization, followed by
an entire one pass process.

Assuming such compressed benign inputs are then polluted by adversarial pertur-
bations, adversarial examples will be further processed by considering both compres-

sion/decompression procedures as:

Round <(Round(%)*¢?5+a§x )/QS) = Round(n) (5.4)

The malicious perturbations can be appropriately filtered without inducing any rounding

error if ().S satisfies the following equation:

Round (Csx/Qs) =0= QS > 2|Cs, |, Cs, € (—8e < Cs5,, < 8¢) (5.5)

Therefore, we adopt the same QS (S > 16 - €) to eliminate the perturbations Cs, in both

passes.

5.2.2 Step 2: DNN-Oriented Quantization for Compensating Accu-

racy Reduction

To recover the testing accuracy (see Section 5.1.3), our next step is to develop a DNN-
oriented JPEG compression method by refining the defensive quantization table from step
1. We analyze the difference between human visual system (HVS) and DNN on feature
extractions, and then propose a heuristic design flow.

Difference between HVS&DNN on Feature Extractions. Since the feature loss
happens in the frequency domain after the DCT process, we first study the problem that

which frequency components have the most significant impact on DNN results. Assume
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is a single pixel of a raw image X, and x; can be represented by 8 x 8 2D DCT transform:

7 7
Th= ) Cig) - b (5.6)

=0 =0
where c(; ;) and b, ;) are the DCT coefficient and its basis function at 64 different
frequencies, respectively. It is well known that the human visual system (HVS) is less
sensitive to high frequency components but more sensitive to low frequency ones. The
JPEG quantization table is designed based on this fundamental understanding. However,
DNNs examine the importance of the frequency information in a quite different way. The

gradient of the DNN function ' with respect to a basis function b; ;) is calculated as:
aF/ab(,;,j) — aF/afbk X 3$k/abi’j — aF/aﬂik X C(k,i,j) (57)

Eq. (5.7) implies that the contribution of a frequency component (b; ;) to the DNN
result will be mainly decided by its associated DCT coefficient (c(x ; j)) and the importance
of the pixel (9F/ax,). Here c(;; ;) will be distorted by the quantization before training.
Ideally a well trained DNN model should respond with different strengths to all the 64
frequency components depending on the ¢y ; jy values. From this observation, large ¢ ; ;)
should be compressed less (using a small quantization step) in order to ensure a desirable
classification accuracy.

In contrast, the default quantization table used in JPEG focuses on compressing more
on less sensitive frequency components to HVS. As a result, in order to defend against ad-
versarial attacks, aggressive compression is required, making DNNs easily misclassified if
original versions contain important high frequency features. The DNN models trained with
original images learn comprehensive features, especially high frequency ones. However,
such features are actually lost in more compressed testing images, resulting in considerable
misclassification rate (see Fig. 2.3(a)).

Therefore, we propose to compensate the accuracy reduction incurred by defending

adversarial examples through a heuristic design flow (see Fig. 5.2): 1) characterize the
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importance of each frequency component through frequency analysis on benign images;
2) lower the quantization step of the most sensitive frequency components based on the
statistical information for enhancing accuracy.

A: Frequency Component Analysis. For each input image, we first characterize
the pre-quantized DCT coefficient distribution at each frequency component. Such a
distribution represents the energy contribution of each frequency band [83]. Prior work [83]
has proved that the pre-quantized coefficients can be approximated as normal (or Laplace)
distribution with zero mean but different standard deviations (9; ;). A larger 0; ; means
more energy in band (7, j), hence more important features for DNN learning. As Fig. 5.2
shows, each image will be first partitioned into N 8 x 8 blocks, followed by a block-
wise DCT. Then the DCT coefficient distribution at each frequency component will be
characterized by sorting all coefficients at the same frequency component across all image
blocks. The statistical information, such as the standard deviation ¢; ; of each coefficient,
will be calibrated from each individual histogram.

B: Quantization Table Refinement. Once the importance of frequency components
is identified based on the standard deviations of DCT coefficients (J; ;), the next step is to
boost the accuracy of legitimate examples {acc; } (refer to the testing accuracy of benign
images processed after the defense method). Our analysis in Section 5.1.3 indicates that
a proper selection of Q.S can effectively mitigate the perturbations, whereas larger )5
will induce more quantization errors. Therefore, we reduce the quantization errors of
the most sensitive frequency components to enhance the testing accuracy by lowering
their corresponding quantization steps within the quantization table, but such frequency
components should be as few as possible to maintain the defense efficiency. In specific,

!

we first sort the magnitude of 9; ; in an ascending order as 9, ;,

then set the appropriate
quantization step based on (5;7j. To simplify our design, we introduce a discrete mapping

function to derive the quantization step on each frequency band, base on the associated
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Figure 5.3: Exploration of the defensive quantization step for a 8*8 table: (a) Defense effi-
ciency of one pass method against adversarial examples; (b) Defense efficiency of two pass
method against adversarial examples; (c) Average defense efficiency w.r.t. the legitimate im-
age accuracy (FGSM, ¢ = 0.008); (d) Accuracy impacts of ranked frequency components
(FGSM, ¢ = 0.008); (e) Accuracy impacts of various quantization steps w.r.t. different per-
turbation strength (FGSM).

standard deviation ¢ j, i.e., QS;; = (0;; < T ? .51 :.5;), where T is the threshold to
divide the 64 frequency components. Note that S; > S5. The 64 frequency components

are divided into two bands (see Fig. 5.2): the red colored Accuracy Sensitive (AS) band

with Q.5 = 55, and the blue colored Malicious Defense (MD) band with Q.S = S from

Section 5.2.1.

5.3 Evaluation

In this section, we first explore the parameter optimization in our feature distillation under
the constraints of high classification accuracy on malicious inputs after applying defense,
while preserving the accuracy of legitimate ones given that both types of data can arrive
for a realistic DNN testing. Then we comprehensively evaluate feature distillation under

following three different settings: 1). Gray-box: We assume the adversary has full access
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to DNN model, but is unaware of the input transformations applied (defense method
unaware) [41, 30]. 2). White-box: We consider adversary has full access to the DNN
model, as well as the full knowledge of the defense method [8], which is more challenging.
3). Black-box: We assume adversary does not know the exact network architecture and
weights, instead, can use a substitute model to craft adversarial perturbations that are

transferable to the target model [41].

5.3.1 Experimental Setup

Our experiments are conducted on the Tensorflow DNN computing framework [3], running
with Intel(R) Xeon(R) 3.5GHz CPU and two parallel GeForce GTX 1080Ti GPUs. Our
proposed feature distillation method is implemented on the heavily modified adversarial
machine learning library—EvadeML-Zoo [112] for white and gray-box settings and BPDA
attack [8] for white box setting. To better illustrate the image compression based mitigation,
we choose the large-scaled ImageNet dataset as our benchmark. Four other input-based
countermeasures, including default JPEG [35, 58], bit-depth (one of the feature squeezing
methods by reducing the bit number of an image pixel) [112] and the recent proposed TV
Minimization (TVM) and Image Quilting [41] , are selected as the baselines to compare
with our proposed feature distillation.

Methodology. Various types of adversarial example attacks, i.e., FGSM, BIM, Deep-
fool, CWy, CW(, CW, and adaptive attack—-BPDA, have been simulated in our experi-
ments for evaluating the defense. We adopt a similar evaluation model from [112]. First,
we choose 1000 benign images (one per class) to evaluate the testing accuracy of each
DNN model. The seed images, which will be adding adversarial perturbations, are selected
from the first 100 correctly predicted examples in the 1000 selected images on each DNN

model for all the attack methods. The legitimate examples classification accuracy (accy)
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Table 5.1: The defense efficiency (classification accuracy on adversarial examples) of selected
defense methods against different adversarial attacks.

FGSM BIM DeepFool CW2 CWO0 CWi Average acc; Time (s)

No defense (%) 0 0 11 10 0 0 35 69.5 0.11
Bit-depth (5-bit) (%) 2 0 21 68 7 33 21.83  69.4 0.04
JPG (90) (%) 5 9 9 68 5 32 21.33 69 0.11
Quilting (%) 48 61 47 50 48 49 50.5 63.5 3247
TVM (%) 33 42 68 77 49 90 59.8 60 38.89
FD-1P (%) 13 35 63 86 61 78 56 68.5 0.16
FD-2P (%) 92 99 99 99 58 99 91 68.5 0.16

is the testing accuracy of benign images processed by the defense method. The defense
efficiency is measured by the classification accuracy (acc,,) of 100 polluted images after

applying the defense method.

5.3.2 Optimized Quantization Step

Defending against adversarial examples. Fig. 5.3 (a) and (b) illustrate the impact of the
quantization steps of the 8*8 table under various adversarial attacks with our one-pass and
two-pass defense approaches applied, respectively. Apparently, both processes demonstrate
that the defense efficiency can be steadily improved as the QS grows, however, it will be
saturated (even decreased) if QS becomes too large for the two pass (one pass) process.
Compared with the one pass process, the two pass process always delivers much better
defense efficiency against most of the adversarial attacks (except the CW), due to the
elimination of the rounding error. The reason is because CWy, attacks attempt to use
a minimum number of pixel(s) with maximum perturbations to fool the DNN models,
therefore the perturbations of each single pixel will translate into larger magnitudes than
the other attacks in the frequency domain. This leads to a much higher QS for completely
removing the associated perturbations, as Fig. 5.3 (a) and (b) show.

Evaluating testing accuracy. Fig. 5.3 (c¢) shows the testing accuracy changes w.r.t.

QSs for both malicious examples (acc,,) and legitimate examples (acc;). The acc,, (1
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Table 5.2: The defense efficiency (accuracy on adversarial examples—acc,, and accuracy on
legitimate images—acc; on ImageNet, against adaptive adversarial attack—-BPDA.

None Bit-depth Quilting TVM JPEG(75) JPEG(20) JPEG(10) FD(1x) FD(2x) FD(3x)
acc, (%) 0 0 0 0 0 34 45 10 42 60
accy (%) 78 71 72 68 74 68 61 77 76 74

pass) and acc,, (2 pass) represent the average accuracy of various adversarial examples
by applying our one pass and two pass process, respectively. As Fig. 5.3 (c) shows, accy,
(1 pass) and acc; demonstrate an opposite trend as QS grows, but they have a cross-over
zone between QS=20 and QS=40. The adversarial perturbation dominates the accuracy
reduction before the cross-over point (small QS), however, after that, both acc,, (1 pass)
and acc; will decrease due to the enlarged QS. On the other hand, acc,, (2 pass) increases
consistently as QS increases because of additional defensive quantization in compression
stage. Therefore, we set So=20 and S1=30 for the top-n largest 5;-7]- (AS Band) and the
others (MD Band), respectively, to better balance the acc,, and acc, according to our flow
in Fig. 5.1. Fig. 5.3 (d) validates that such a configuration of (S1, S2) at n = 15 minimizes
the degradation of acc; (< 1%).

Theoretical validation of defensive QS. Fig. 5.3 (e) further compare our analytic
results (see Eq. 5.5) with experimental results for selecting QS. We use FGSM attack with
5 different perturbation strengths (i.e. € = 0.005,0.007,0.01,0.012,0.015) as an example.
The corresponding analytic QS values based on Eq. 5.5 should be: 20.5, 28.7, 41, 49.2 and
61.44, respectively (dash lines in Fig. 5.3 (e)). As expected, those analytical values are
in excellent agreement with the experimental results when the defense efficiencies reach

100%.

5.3.3 Enhanced Robustness Against AE

Based on our explorations on parameters optimization in section 5.3.2, we adopt S; =

30, Sy = 20,n = 15 to evaluate the overall defense efficiency. Note although we focus on
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defense efficiency, the images compressed by our method still provide acceptable visual

quality (detailed results are summarized in the supplemental material).

Gray Box Mitigation

Table. 5.1 compares the defense efficiency of two proposed methods (i.e., 1-pass feature
distillation FD-1P and 2-pass version FD-2P) with five baselines—no defense, JPEG, Bit-
depth, Quilting and TVM against 6 selected adversarial examples for MobileNet. Note
that JPEG (90% quality) and Bit-depth (5-bits) are conducted under the premise of < 1%
legitimate classification accuracy reduction. However, the other two methods Quilting and
TVM, cannot satisfy this constraint, so we compare our approach with those two methods
on both acc; and accy,.

Comparison with bit-depth and JPEG. We first limit our comparisons to the defense
with < 1% reduction of acc; under no defense. In this case, Quilting and TVM are not
included and will be compared separately.

Overall, FD-2P shows much better performance than that of FD-1P (56% v.s. 91% on
average). Compared with no defense baseline, our FD-2P improves the average accuracy
on adversarial examples from ~ 3.5% to ~ 91%, which demonstrates the best mitigation
efficiency among all methods. Moreover, FD-2P can significantly outperform two other
defensive baselines among all selected adversarial examples, i.e. improved by ~ 69% (or
~ 73%) on average than the bit-dept (5-bit) or JPEG on both DNN models.

Particularly, for L., attacks like FGSM, BIM and CWi, existing model-agnostic meth-
ods show very limited efficiency. Similarly, our one pass method FD-1P shows marginal
improvement when compared with the existing approaches. However, our two pass method
FD-2P can almost completely remove this type of L, perturbations and deliver the best
defense efficiency. Besides, for the L attacks, especially CWs, existing defense methods

show good defense efficiency (~ 68%). Again FD-2P can rectify this kind of adversarial
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examples with almost 100%. Compared with L., and L, the improvement of L attacks
(CWy) is less significant, however, FD-2P still achieves more than 50% defense efficiency
improvement comparing with bit-depth and JPEG. That is because, JPEG (90% quality)
uses small quantization steps (or large QFs) to maintain the quality of legitimate images for
desirable accuracy, however, is also resulting in a low defense efficiency. Bit-depth roughly
quantizes all image pixels uniformly, while our method distills the features in a more
fine-grained manner by maximizing the loss of adversarial perturbations and minimizing
the distortions of benign features.

Comparison with Quilting/TVM. We also compare our solutions with Quilting and
TVM in three aspects: acc,,, acc;, and processing-time-per-image. Our average defense
efficiency is much higher than the other two, i.e. 56%/91% (FD-1P/FD-2P) v.s. 50.5%
(quilting), 59.8% (TVM). We also achieve the best testing accuracy (acc;), that is 68.5%
(FD-1P/2P) v.s. 63.5% (quilting), 60% (TVM). Moreover, we improve the processing-time-
per-image (i.e., 0.15s on FD-1P) by ~ 216x (~ 259x) compared with Quilting (32.4s)
and TVM (38.8s), or 0.15s (FD-1P) v.s. 32.4s (quilting) and 38.8s (TVM), as Table 5.1
shows.

In general, our proposed feature distillation is particularly effective to mitigate stronger
attacks (i.e. CW attacks with least perturbations but ~ 100% attack success rate) crafted
from complex datasets like ImageNet. Our solution demonstrates great potentials to
safeguard the DNNs against adversarial attacks in practical applications, given that it
is likely the attackers prefer to generate stronger adversarial examples with minimum
adversarial perturbations from realistic large-scale dataset so as to evade any possible

defense methods.
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Figure 5.4: Defense efficiency of black-box setting for different attack and defense mecha-
nisms on ImageNet.

White Box Mitigation

In this section, we evaluate our method against recent BPDA attack, of which adversary
knows the defense method and iteratively generates adversarial examples according to the
defense. We implement our defense—Feature Distillation (FD-1P) in the released BPDA
attack [8] code at GitHub, using the same “Inception v3” model and 100 iterations for
BPDA. The accuracy of benign examples (adversarial examples) after defense-acc; (acc,,),
for different methods are reported in Table 5.2.

First, Bit-depth, quilting and TVM does not offer any defense against BPDA, as
expected. Second, JPEG can slightly mitigate BPDA by degrading image quality, i.e.
quality factor from 75 to 10, defense efficiency (acc,,) is improved from O to 45%. This is
consistent with the recent result [90]. However, acc; drops by 17% compared to baseline
(61% v.s. 78%), which is unacceptable. This reason is because in order to eliminate a large
perturbation of BPDA attack in the lowest frequency component in JPEG, a significant
large quantization factor (QF) will be needed. As a result, large quantization errors will

occur in high frequency components, thereby significantly hurting acc;. Third, On the
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other hand, our solution can provide the best defense efficiency against BPDA with least
accy reduction among all solutions, i.e. from FD (1X) to FD (3X), acc,, is improved from
10% to 60%, with merely 1%-3% acc; reduction compared to original 78%. FD-1x, 2x,
3x represent the quantization step (QS) of FD adopted in Table. 5.1 (reference), 2 times

and 3 times of the referred QS, respectively.

Black Box Mitigation

We follow the work [41] for black-box analysis: DNN model used for testing is trained on
transformed dataset (Feature Distillation), while attackers generate adversarial examples
from the model trained on the original dataset. The crafted examples have high transfer-
ability between the two models for fair black-box analysis. We adopt “MobileNet” and the
results of our methods are shown in Fig. 5.4.

The average defense efficiency is improved from 56%/91% (Table 5.1) to 81%/99%
(black-box) for our FD-1P/FD-2P method, respectively. These results indicate that our
method defends against black-box setting efficiently. This is also consistent with the
following conclusion based on [8, 41]: Black box setting shows weak attack efficiency

against the input-transformation based defenses.

Comparison of Visual Quality—Quantitative

As Table. 5.3 shows, all these three images compressed by our method (FD(1x)) can
achieve reasonable PSNR and SSIM, e.g. close to that of QQF = 75 for JPEG, which is
still acceptable for most visual systems. Similarly, the PSNR and SSIM of our FD(2x) and
FD(3X) are comparable with JPEG method at QF' = 50 and QF’ = 20, respectively.
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Table 5.3: The comparision of PSNR/SSIM between ‘feature distillation'' (FD) and JPEG.

Img. 1 Img. 2 Img. 3
PSNR SSIM PSNR SSIM PSNR SSIM
JEPG(QF=75) | 33.63 0.94 28.64 0.94 35.64 0.97
JEPG(QF=50) | 31.41 0.92 26.05 0.89 33.75 0.96
JEPG(QF=20) | 28.81 0.87 23.56 0.82 31.03 0.94
FD(1x) 33.05 0.93 29.12 0.94 34.86 0.97
FD(2x) 30.03 0.89 26.29 0.89 32.53 0.95
FD(3x) 28.44 0.86 24.15 0.84 31.11 0.94

5.4 Conclusion

As the robustness of DNN is significantly challenged by a variety of adversarial attacks,
existing studies investigate the standard JPEG compression as a defense method, however, it
is far from satisfactory in terms of both defense efficiency and testing accuracy. In this work,
we propose the DNN-favorable feature distillation method by re-architecting the JPEG
compression framework. Compared with existing model-agnostic defense approaches,
our “feature distillation" can simultaneously reduce the adversarial attack success rate
and maximize the testing accuracy on legitimate examples. Experimental results show
that our method can improve the defense efficiency from ~ 20% to ~ 90% over most
recent model-agnostic approaches with only marginal accuracy degradation (< 1%), while
significantly improving the processing time per image (~ 260x speedup). Our method
also demonstrates the best defense efficiency against latest adaptive attack—-BPDA (~ 60%)
with least accuracy drop (~ 1%) when compared with other input-transformation based

defenses.
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Figure 5.5: Visual results produced by default JPEG compression.
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CHAPTER 6
CONCLUSIONS

The ever-increasing data transfer and storage overhead significantly challenge the
energy efficiency, latency and performance of large-scale DNNGs. In this dissertation we
find that human visual system (HVS) and Deep Learning have very different views on the
importance of image features, challenging HVS-oriented compression for communication
overhead and robustness against adversarial attacks.

First of all, we propose a DNN oriented image compression framework, namely
“DeepN-JPEG", to ease the storage and data communication overhead. Instead of the
Human Vision System inspired JPEG compression, our solution effectively reduces the
quantization error based on the frequency component analysis and rectified quantiza-
tion table, and further increases the compressing rate without any accuracy degradation.
Our experimental results show that “DeepN-JPEG” achieves ~ 3.5x compression rate
improvement, and consumes only 30% power of the conventional JPEG without clas-
sification accuracy degradation, representing a promising solution for data storage and
communication for deep learning.

Due to the high computation complexity of DNNs and the increasingly large volume
of medical images, cloud based medical image segmentation has become popular recently.
Medical image transmission from local to clouds is the bottleneck for such a service, as it
is much more time-consuming than neural network processing on clouds. We then extend
our work to medical 2D/3D image tasks, we develop a low cost machine vision guided 3D
image compression framework dedicated to DNN-based image segmentation by taking
advantage of such differences between human vision and DNN. Extensive experiments on
widely adopted segmentation DNNs with HVSMR 2016 challenge dataset show that our
method significantly beats existing 3D JPEG-2000 in terms of segmentation accuracy and

compression rate.

84



We also desgin a generative segmentation architecture to further compress biomedical
images, which consists of a compressive auto-encoder, a segmentation network and a
discriminator network. We propose to leverage the auto-encoder and different loss function
designs to enhance the cloud-based segmentation performance and efficiency by syntheti-
cally considering segmentation accuracy and compression rate. Experimental results show
that our design not only significantly improves compression rate, but also increases the
segmentation accuracy, outperforming existing solutions by offering better efficiency on
cloud-based image segmentation.

In addition, as the robustness of DNN is significantly challenged by a variety of ad-
versarial attacks, existing studies investigate the standard JPEG compression as a defense
method, however, it is far from satisfactory in terms of both defense efficiency and testing
accuracy. We propose the DNN-favorable feature distillation method by re-architecting
the JPEG compression framework. Compared with existing model-agnostic defense ap-
proaches, our proposed compression framework can simultaneously reduce the adversarial
attack success rate and maximize the testing accuracy on legitimate examples. To summa-
rize, we believe that “Machine Vision" concept advocated by this dissertation, rather than
“Human Vision", should be a new angle for developing innovative designs that can provide

low-latency, efficient and robust deep learning services.
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