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Professor Prasad Bidarkota, Co-Major Professor

Professor Xiaoquan Jiang, Co-Major Professor

This dissertation involves measuring and testing the empirical performances of eq-
uity pricing models.

The first paper extends the constant discount factor model with intrinsic bubbles de-
veloped in Froot and Obstfeld (1991) to account for autocorrelation in dividend growth
rates. We derive an analytical expression for both the present value stock price and an
intrinsic bubble component when dividend growth rates evolve as a Gaussian AR(1) pro-
cess. Hypotheses tests favor an AR(1) process for dividend growth rates and an AR(1)-
based model developed here for price-dividends ratios over a benchmark case. Hypothe-
ses tests also reject the absence of a bubble component in stock prices. Incorporating the
bubble component into our model provides a significant improvement in fit to observed
P/D ratios and stock prices.

The second paper assesses the empirical implications of the residual income model
developed in Ohlson (1995). A key assumption stipulates that next period ¢ 4 1 resid-
ual income is a linear function of current period residual income and a latent variable
referred to as ‘other information’. This ‘other information’ is posited to contain infor-
mation on next period ¢ 4 1 residual income and reflected in current stock prices. We

propose to estimate this latent ‘other information’ variable using a state space frame-
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work. We estimate the valuation model, within the embedded state space framework,
using the Kalman filter. Performance yardsticks indicate that our state space estimation
approach shows promise in valuing stocks.

The third paper attempts to estimate and study the role of ‘other information’ v, as
theorized in the Ohlson (1995), for tracking and predicting future returns of the S&P
500. v, is unobserved and is defined as a summary of value-relevant information about
future profitability. This suggests a potential to predict subsequent returns. We apply
a factor augmented vector autoregression (FAVAR) to estimate 14 and evaluate its pre-
dictive performance. The FAVAR model enables us to estimate unobserved factors that
are broadly captured by big data. We use principal components estimation to extract the
unobserved factors from a rich set of data. Our analysis shows that the estimated 1, has

statistically reliable power to predict future returns.
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CHAPTER 1

INTRODUCTION

“An econometrician’s role is to choose among different parameters that together describe a
family of possible models to best mimic measured real-world time series and to test the

implications of these models.” -Nobel Laureate Lars Peter Hansen, 2014

The primary purpose of this dissertation is to explore, assess, and conjecture the dy-
namic behavior of U.S. equity prices. Asset pricing theory is grounded upon the concept
that today’s price of an asset equals its expected discounted future payoff. The keywords
in that equation are ‘expected’ and ‘discounted’. These imply two things, respectively.
First, future payoffs or cash flows, in terms of distribution to asset holders, have a prob-
ability of occurrence. This probability of occurrence makes the asset inherently risky.
Second, since the amount of money you have today is worth more than an identical
amount in the future due to either inflation or its potential earning capacity, investors
require a rate of return on these assets. This is known as the discount rate. One uses
the discount rate to ‘discount’ the sum of future payoffs, such as dividends from a stock,
which renders the present value (or fundamental value) of an asset, or, in other words,
today’s asset price. Together, they yield the constant discount rate present value model,
which is the conventional valuation approach in asset pricing.

However, since the early 1980s, accruing evidence in the asset pricing literature has
shown that changes in asset value (and asset return) in the equity markets are not con-
sistent with the constant discount rate present value model. That is, observed stock
prices persistently deviate away from their fundamental values. There are at least three
possible reasons for this observation. First, changes in stock prices over time stem from

changes in the discount rates, which reflect the market’s time-varying risk tolerance for



an asset. Second, using the stream of cash dividends as the standard measurement for
future cash flows in the constant discount rate present value model is misspecified. This
is particularly true for firms that do not issue dividends in the outset in order to reinvest
the proceeds to grow its business. As such, using a present value model built upon div-
idends as the future payoff stream becomes impractical. Furthermore, the literature has
revealed that the number of firms paying cash dividends has drastically declined since
the late 1970s. In turn, the number of firms using alternative avenues of cash distribution
to shareholders has considerably increased. These facts implore the need for different
payoff measurements in the present value model. Third, the literature has suggested that
a self-reinforcing process of price increases (decreases) can occur if investors evaluate
potential gains (losses) from continuous increases (decreases) in stock prices as justi-
fication for their movement away from fundamental values. In other words, investors
would be willing to pay premiums (discounts) for assets that they expect to appreciate
(depreciate) in market value in the near future, regardless of their fundamental values.

This dissertation attempts to investigate the latter two possible reasons. The three
papers taken together shed light on why traditional present value models do a poor
job in explaining stock prices and predicting future returns, as observed in the data.
This dissertation, however, does not attempt to propose which explanation, reason, or
method is correct. There are countless nuances of stock market behavior, as extensively
delineated throughout the three papers, that give rise to model uncertainty or misspec-
ification. There are also countless nuances in data measurement and aggregation that
naturally yield shortcomings to statistical techniques employed. Therefore, concocting
an absolute conclusion, given inevitable shortcomings, would be premature and likely
incorrect.

As a financial econometrician, the quote above signifies three inherent tasks. The

first is to seek out alternative models introduced in the broader asset pricing literature



that can potentially explain observed stock market behavior. The second is to assess how
well the models and their respective econometric methods carried out in the literature
perform empirically and reflect available stock market data. The third is to propose and
implement alternative methods if there is a nontrivial deficit in the literature. Collec-

tively, these underlie the title and theme of the dissertation.



CHAPTER 2
A STUDY OF INTRINSIC BUBBLES IN STOCK PRICES UNDER PERSISTENT

DIVIDEND GROWTH RATES

2.1 Introduction

Rationalization of observed stock prices is a task of great interest in financial eco-
nomics. Several comprehensive surveys of the literature are available. See, for example,
Hansen (2014), for a recent effort. It is well known that traditional asset pricing mod-
els do not capture variation in stock prices very well. Examples of such models include
the popular constant discount factor present value model under a rational expectations
framework. Deviations in stock prices from those predicted by simple present value
models have proven empirically significant and persistent over time (LeRoy and Porter,
1981; Shiller, 1981). One of several approaches to rationalize these deviations in stock
prices is the rational bubbles theory (Blanchard, 1979; Blanchard and Watson, 1982; Diba
and Grossman, 1983, 1988a, and 1988b).

Within this framework, Froot and Obstfeld (1991) develop a specific type of rational
bubble that they call a rational “intrinsic” bubble. Here, movements in stock prices are
exclusively driven by economic fundamentals alone (i.e., dividends) and not from any
extraneous factors, as are common in stock price bubbles literature. Specifically, they
assume a random walk process for log dividends and derive the present value stock price
within a constant discount factor present value model of stock prices. Another solution
to the present value model exists that violates the transversality condition. This solution
for stock prices consists of the present value stock price plus a bubble component. In the
intrinsic bubbles setup of Froot and Obstfeld (1991), this bubble component is driven by

fundamentals alone, which are exogenous dividends.



A random walk model of log dividends used in Froot and Obstfeld (1991) is deficient.
It fails to capture observed autocorrelation in dividend growth rates. The Lintner (1956)
model of corporate dividends payout assumes that firms have a target payout ratio in
mind that is a fraction of current earnings. However, firms are assumed to only make
partial adjustments every period. This results in a smoothing of dividends paid over
time, resulting in autocorrelation in their growth rates as observed in the data. Lansing
(2010) notes that, in order to generate observed persistence in price-dividend ratios, the
present value-type asset pricing model requires a persistent process for dividend growth
rates.

In this paper, we extend the framework of Froot and Obstfeld (1991) to account for
this autocorrelation. We derive an exact analytical expression for both the present value
stock price and an intrinsic bubble component when dividend growth rates evolve as
a Gaussian first-order autoregressive process. Our solution for the present value stock
price is an adaptation of the one provided in Burnside (1998) for the consumption-based
asset pricing model under a Gaussian AR(1) process for dividend growth rates. The an-
alytical form of the intrinsic bubble in our work is an augmented version of the one
provided in Froot and Obstfeld (1991). Their framework is a special case of the one con-
sidered here.

Within a random walk framework for log dividends, Bidarkota and Dupoyet (2007)
extend the intrinsic bubbles model of Froot and Obstfeld (1991) to account for observed
leptokurtosis and negative skewness in dividend growth rate by modeling the inno-
vations to the random walk as random variables drawn from a non-normal, fat-tailed
probability distribution. While it would be ideal to incorporate both persistence in div-
idend growth rates, as they are being done here, and non-normality, as considered in
Bidarkota and Dupoyet (2007), a solution to the present value model and characteriza-

tion of the intrinsic bubble component poses a significant challenge under such a setting.



Nevertheless, in the context of the present value model, at least individually, neither a
fat-tailed distribution nor persistence of dividend growth rates appear to improve the
fit of the present value stock prices significantly, relative to a Gaussian random walk
process in the original Froot and Obstfeld (1991) paper. Though, Bidarkota and Dupoyet
(2007) demonstrate that accounting for non-normal, fat tails do diminish the role of non-
linearity of the price-dividend relation, hence that of the role of bubbles in rationalizing
observed stock prices.

Recent literature has studied bubbles to rationalize price movements of alternative
assets and markets, such as real estate in the U.S. (Nneji et. al, 2013 and Hu and Oxley,
2018) and China (Yu, 2011), Chinese stock markets (Chang and Cai, 2016), and cryp-
tocurrency (Cheah and Fry, 2015; Corbet et. al, 2018). Another strand of research has
focused on developing new econometric methods to statistically test for the existence
of speculative bubbles (Phillips et. al, 2011 and 2015; Whitehouse, 2019; Homm and Bre-
itung, 2011; Breitung and Kruse, 2013; and Yuhn et. al, 2015).

We estimate the model developed here with two sets of annual U.S. stock price and
dividends data, namely the DJIA and the S&P 500 series, over the last century. Hypothe-
ses tests reject an AR(0) process for dividend growth rates in favor of an AR(1) process
for both data series. Likelihood ratio tests also favor the AR(1)-based model developed
here for price-dividends ratios over the AR(0)-based model considered in Froot and Ob-
stfeld (1991). Hypotheses tests also reject the absence of a bubble component in both
series. This inference is robust to whether or not the parameters governing the intrinsic
bubbles process are restricted to values implied by our model or freely estimated. In-
corporating the bubble component into our model provides a significant improvement
in fit to observed P/D ratios and stock prices as compared to the present value stock
prices alone. Lansing (2010) has completed work similar to our analytical solutions and

approach by using calibration techniques to match the moments of price-dividend data,



while we instead use econometric methods. Nonetheless, his work ignores serial corre-
lation in dividend growth rates that we contend is a critical property observed in stock
data.

We organize this paper as the following. In Section 2.2, we introduce the present
value model for stock prices in which we describe the fundamental value stock price
and a bubble solution that violates the transversality condition. In Section 2.3, we derive
closed-form solutions to the model with a fundamental stock price component and an
intrinsic bubbles component under the assumption that dividends growth evolves as an
AR(1) process. In Section 2.4, we introduce the data and econometric specifications, and
provide a series of empirical results and inferences. We summarize our main findings in

the Section 2.5.

2.2 Present Value Model

The present value model with a constant discount rate is given by:

Py = e "E¢ [Dy + Py . (2.1)

Here, P, is the real price of a share at the beginning of period t, D; is the real dividend per
share paid out over period t, r is the non-stochastic and constant discount rate, F is the
mathematical expectation conditioned on information available at the start of period t.
It is often useful to think about this pricing equation as arising from a Lucas (1978)-type

asset pricing model under risk neutrality.



On forward iteration, the present value equation yields:

S5—00

P, =) TR, (D) + lim e E, (Py). (2.2)
s=t

One solution to stock prices in the above equation, denoted P} is obtained by imposing

the transversality condition:

lim e ™E; (Ps) = 0. (2.3)

S§—00

Imposing the transversality condition on Equation (2.2) gives:
o0
PP =) e "R, (D). (2.4)
s=t

Thus, this equation provides the fundamental value of the stock price. One specifies an

exogenous stochastic process for dividends and evaluates P}

There exist other solutions to the present value model given in Equation (2.1) that do
not satisfy the transversality condition in Equation (2.3). For instance, let {B},-, be

any sequence of random variables that satisfy:
Bt = e_rEt {Bt+1} . (25)

One can easily show that (P + By) satisfies Equation (2.1) but violates Equation (2.3)

for all B; # 0.



If B; is constructed as a function of the fundamentals alone, i.e., as a function of the
dividends D; alone in the present value model of Equation (2.1), it is termed an intrinsic
rational bubble by Froot and Obstfeld (1991). Intrinsic bubbles turn out to be a non-linear
function of dividends. Their exact functional form depends on the assumed stochastic

process for the dividends.

2.3 Solution to the Model

In this section, we obtain an exact analytical solution for the present value stock
price P/” when the dividend growth rate follows a first-order autoregressive process.
We also derive conditions under which a posited functional form for B; satisfies all the

conditions for a rational intrinsic bubble.

2.3.1 The Present Value Stock Price under AR(1) Dividends Growth

Rate Process

Let x; = In (D) — In (D;y_1) denote the dividend growth rate. We assume that

stochastically evolves as a first-order autoregressive process:

Xe —p=p (X1 —p) + & |pl <1, & ~iid N(0,0%) (2.6)

One can now derive the present value stock price by evaluating the right hand side of
Equation (2.4). Following up on the results in Burnside (1998), Appendix A shows that

the present value stock price is given by:



P — DtZeXp{ (38—t 4+ 1) + by (x¢ — p1) +as}, (2.7)

where
asy = (s—t)u+

and

_ % {1-p). (2.9)

The following theorem provides conditions for the infinite summation in Equation (2.7)

to converge, and hence for the priceAASdividend ratio to be finite.

Theorem 1. The series in Equation (2.7) converges if

o2
= — P E—— 1. 2.10
R eXp{ r+u+2(1_p2>}< (2.10)

Proof: See Appendix B.
The next theorem derives an expression for the mean of the fundamental stock price-
dividend ratio, i.e., the unconditional expectation of P{" /Dj. It also provides conditions

under which this mean is finite.

Theorem 2: The mean of the price dividend ratio P{" /Dy is given by:

bZo?
pv i
P /Dt E exp{—r 1+ )~|—ai+2(1—_p2)} (2.11)

10



where

o2
= 91—y 2.12
a w+2(1_>2{2 —— (1=p) +r°5 7 (2.12)
and
b= {1- 4} (2.13)
L=p
It is finite if R = exp {—r+p+ 2(1%:2)} < 1L
Proof: See Appendix C
2.3.2 Intrinsic Rational Bubbles
Let us postulate that intrinsic rational bubbles take the form:
B (D) = D} exp {hx,}. (2.14)

Here, A > 0 for the bubble to grow with an increase in dividends, ¢ > 0 to ensure non-

negativity of stock prices, and h is a constant.

Appendix D shows that the functional form for the intrinsic bubble in Equation (2.14)

satisfies Equation (2.5) defining a bubble, provided that A and h are chosen to satisfy:

r=(A+h)(1—p)u+ (A+h)*?/2 (2.15)

and

h=(A+h)p. (2.16)

11



If the dividend growth rate stream follows an AR(0) process, then the solution for the
present value stock price is easily obtained by setting p = 0 in the equations above. One
can readily show that the expression obtained for the present value stock price in this
case is identical to the one given in Froot and Obstfeld (1991). From Equation (2.16) h =
0 when p = 0. Therefore, the bubble component of the stock price given in Equation
(2.14) reduces to B (D;) = cD}, exactly the expression in Froot and Obstfeld (1991). In
this case the conditions needed for convergence of the fundamental stock price-dividend
ratio as well as the conditions for B(D;) to be a rational intrinsic bubble are also identical

to those in Froot and Obstfeld (1991).

2.4 Empirical Assessment of the Model

2.4.1 Data Description

For empirical assessment of the model, we employ two aggregate stock price indices:
the Dow Jones Industrial Average (DJIA) and the S&P 500. We retrieved annual DJIA in-
dex data, including average, yearly closing values and dividends for a sample period of
1920-2017 from two data sources. For the 1920-2005 period, we use the 2006 Value Line
publication, A Long-Term Perspective: Dow Jones Industrial Average, 19204A$2005 and
for the 2006-2017 period, we use Standard & PooraAZs Compustat database. Addition-
ally, we retrieved monthly S&P 500 index data, including closing values and dividends
for a sample period of 1900-2018 from Robert ShillerAAZs Irrational Exuberance (2000)
publication. Each series used in the Shiller dataset is of January values. Although S&P
500 data spanning from 1871 are available, to follow Froot and Obstfeld (1991), we begin

the series in 1900.

12



Table 2.1 provides summary statistics on real dividend growth rates and P/D ratios
for both stock indices. As established in extant literature, dividend growth rates and P/D
ratios both indicate strong and statistically significant leptokurtosis, negative skewness
for the former and positive for the latter, with normality being strongly rejected for
both series. The two series also exhibit strong first-order autocorrelation. Figures 2.1
and 2.2 plot real stock prices, real dividends and their growth rates, and price-dividend
ratios for DJIA and S&P 500, respectively. Our objective in this paper is to attempt
to rationalize movements in price-dividend ratios, and hence movements in the stock
prices themselves, through movements in dividend growth rates which we take here to

be exogenous.

2.4.2 Econometric Specification

Empirical evaluation of our model requires specification of an exogenous stochastic
process for dividend growth rates. This is taken to be the AR(1) process given in Equation
(2.6):

Xt —p=pX-1—p)+& |pl <1, & ~iid N(O,Ug) . (2.17)

Assumption of a normal distribution for &; is inconsistent with its strong rejection
reported in Table 2.1 and discussed in Section 2.4.1. A non-normal, fat-tailed probabil-
ity distribution that explicitly accounts for leptokurtosis and negative skewness in the
dividend growth rate was considered in Bidarkota and Dupoyet (2007). However, their
analysis ignored persistence in dividend growth rates and considered a random walk
process, instead. While it would be ideal to incorporate both persistence in dividend
growth rates, as they are being done here, and non-normality, as considered in Bidark-
ota and Dupoyet (2007), a solution to the present value model and characterization of the

intrinsic bubble component pose a significant challenge under such a setting. Burnside
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(1998) provides a solution to the consumption-based asset pricing model under a Gaus-
sian AR(1) process for dividend growth rates. However, he neither considers intrinsic

bubbles in his work nor undertakes an empirical assessment of the model.

Considering the discussion following Equation (2.5), one can write the complete so-

lution to the present value model as:
P, =P}’ + B;. (2.18)
Now using Equations (2.7)-(2.9) and (2.14)-(2.16), one obtains:
P, = kD 4 cDPexp{hx,}. (2.19)

Here

Ky = Zexp {—r(s—t+1)+bgy(xx — ) +as¢} (2.20)
s=t

from Equation (2.7), and as_; and bs_, are given in Equations (2.8) and (2.9), respectively.

Dividing Equation (2.19) by D,, we can write:
— = ky + cD? texp{hx, }. (2.21)

We follow standard practice in the literature by augmenting the stock price-dividend
ratio obtained by solving the present value equation with a regression residual 77, when
fitting the model to the data. As noted by Hamilton (1986), the regression residual cap-
tures omitted variables such as time-varying real interest rates, risk premia, and changes

in tax laws.
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Consequently, one obtains the following econometric model for the stock price-
dividend ratio:

P boky + biDptexp{hx; } + 7, e ~iid N (0,07). (2.22)
Dy "

where by, by, A\, and b > 0. The error term 7, is assumed to be independent of the
innovations &, to the dividend growth rate in Equation (2.17), at all leads and lags. &y
can be thought of as a time-varying dividends multiplier.

Thus, our econometric specification, motivated by the present value model, is made
up of Equations (2.17) and (2.22), for the dividend growth rates and price-dividend ratios
respectively, subject to restrictions on the parameters governing the intrinsic bubble
process given in Equations (2.15) and (2.16). These restrictions can now be stated as
follows:

r=A+h)(1—ppu+ (A+h)c/2 (2.23)

and h = (A + h)p.

2.4.3 Model Estimates for Dividend Growth Rates

Table 2.2 reports maximum likelihood estimates of the AR(1) model for dividend
growth rates given in Equation (2.17) in the top panel. The estimates for y, 02, and p
are close to the empirical mean, variance, and first-order autocorrelation coefficient of
raw dividend growth rates reported in Table 2.1. Froot and Obstfeld (1991) consider a

random walk process for dividends, i.e. an AR(0) process for their growth rates z;:

X = p+ v, vy~ iid N(0,02). (2.24)
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Estimates of the benchmark AR(0) process for dividend growth rate are reported in Panel
B of Table 2.2.

A test of the benchmark AR(0) versus AR(1) process for dividend growth rates can
be conducted by testing for p = 0. The likelihood ratio (LR) test for such a hypothesis
is reported in the last column of Table 2.2. The test rejects AR(0) for both series at
better than the 10 percent significance level. This provides empirical justification for
considering extension of the work reported in Froot and Obstfeld (1991).

Figure 2.3 plots the unconditional distributions of the AR(1) and AR(0) models, along
with the kernel density of the dividend growth rates. Figure 3a suggests that the AR(0)
model renders a better fit to the DJIA kernel density, while Figure 3b indicates that the
AR(1) model provides a better fit for the S&P 500 kernel density. However, neither appear
to provide a significant improvement in fit over the other. This is not surprising, given
that the maximum likelihood estimates for . and o2 for both models are close to the

empirical mean and variance of raw dividend growth rates reported in Table 2.1.

2.4.4 Present Value Stock Prices

In order to calculate present value stock prices implied by our model, we need a
value for the constant discount rate, r. As in Froot and Obstfeld (1991) and and Dupoyet
(2007), we choose r equal to 8.6%. Using maximum likelihood parameter estimates from
Table 2.2, we verify that the convergence condition given in Equation (2.10), required
for finiteness of the present value stock price given in Equation (2.7), is satisfied. The
time-varying present value stock price to dividends ratio, or the dividends multiplier,
Kk is estimated by evaluating the expression on the right hand side of Equation (2.20),
with appropriate truncation. Figure 2.4 plots these values for the two data series. Their

mean values are reported in the last column of the top panel in Table 2.3. We note
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that these values are considerably below their empirical counterparts reported in Table
2.1. However, these mean k; values are larger than the constant « estimates of about 14,
reported in Froot and Obstfeld (1991) and Bidarkota and Dupoyet (2007) for the Gaussian

AR(0) dividend growth rate.

2.4.5 Intrinsic Bubble Parameter Estimates

Implied values of the parameters A and h, governing the intrinsic bubble process
given in Equation (2.14), are obtained by solving Equations (2.23) and (2.16).
For the benchmark AR(0) process for dividend growth rates in Equation (2.24), the

form for the intrinsic bubbles term in Equation (2.14) reduces to:

B (D,) = D} (2.25)

with A>0 for the bubble to grow with increasing dividends, and ¢>0 to ensure non-
negativity of stock prices, as for the AR(1) dividend growth rate process. The constant
h that appears in the AR(1) case is now equal to zero. Parameter restrictions governing

the intrinsic bubble process given in Equations (2.15) and (2.16) now reduce to:

r= A+ Ao (2.26)

Table 2.3 reports values for the intrinsic bubble parameters for both AR(1) and AR(0)
process for dividend growth rates. In Panel A, for the AR(1) process, the solution yields
values of 1.772 and 2.148 for ) for the two data series. By contrast, Panel B reports values
of A\ = 2.062 and 2.609 for the AR(0) process. For comparison, Froot and Obstfeld (1991)

obtain an estimate of A = 2.74 while Bidarkota and Dupoyet (2007) obtain A = 2.50 for
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the Gaussian AR(0) process. This is not surprising given the expression for the intrinsic

bubble in the AR(1) case given by Equation (2.14):

B (D;) = cD; exp {hx;}

which can be re-expressed as:

B (D) = cDM" DM (2.27)

In Panel A, for the AR(1) process, the solution yields values of 0.557 and 0.73 for

parameter h for the two data series.

2.4.6 Price-Dividend Ratio Regression

Models

We now proceed with estimation of the econometric model for price-dividends ratios
given in Equation (2.22). We estimate several versions of this model with the two data
series. The first two rows of Table 2.4 list the two main models of interest at this point.
The model in Equation (2.22), along with the restrictions specified by Equations (2.16)
and (2.23), is the primary model of stock prices developed in this paper, with an AR(1)
process driving the dividend growth rate and comprising of intrinsic bubbles. This is
referred to as the Implied AR(1) Model. When estimating this model, the dividends
growth, x; follows an AR(1) process whose parameter values are the estimates reported
in Panel A of Table 2.2. The values of the bubble component parameters A and h are
set equal to the implied parameter values reported in Panel A of Table 2.3. Implied

AR(0) Model is the version of the above model, where the dividend growth rates follow
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an AR(0) process instead, given by Equation (2.24). The econometric model for price-

dividends ratio is now:

— = bk + b D} + 1, vy ~ 1id N (0,07). (2.28)

where k = " ° exp{—r(s —t+ 1)+ as_}, and a,_; is given in Equation (2.8) with
p = 0. This is the model estimated by Froot and Obstfeld (1991). When estimating this
model, the dividends growth, x; follows an AR(0) process whose parameter values are
the estimates reported in Panel B of Table 2.2. As stated in the discussion in Section
2.3.2, in this instance, h = 0. The value of the bubble component parameter \ is now
set equal to the implied parameter values reported in Panel B of Table 2.3. For each of
these models, we estimate an unrestricted version which is the model described above.
This is referred to as Sub-Model A. We also estimate three restricted versions, referred
to as Sub-Models B, C, and D. The restrictions describing these three versions of the
models are specified in the last three rows of Table 2.4. Sub-Model B is a semi-restricted
model with by=1. Sub-Model C is a semi-restricted model with b;=0. Sub-Model D is
a restricted model with b1=0 and by=1. As stated earlier, our primary model of interest
is the Implied AR(1) Model developed in this paper in the present value context with
an intrinsic bubble component. Implied AR(0) Model is the one estimated by Froot and
Obstfeld (1991). Within these two models, Sub-Model A is the unrestricted version with
an intrinsic bubble component whereas Sub-Model D is the most restricted version with
no bubble component and the mean price-dividend ratio equal to the one dictated by the

present value stock price.
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Estimates

Tables 2.5a and 2.5b present maximum likelihood estimates of the models, Implied
AR(1) and AR(0) Model, described above. Each table presents estimates of all four Sub-
Models A-D.

For the unrestricted Sub-Model A of the Implied AR(1) Model, we obtain estimates of
bp=0.67 (0.79) and b;=0.29 (0.63) for the DJIA (S&P 500) series as reported in Table 2.5a.
Estimated variance of the model error is now just over half that of the series reported in
Table 2.1. Minimum AIC criterion selects Sub-Model B (Sub-Model A) of Implied AR(1)
Model as best for the DJIA (S&P 500) series among the four Sub-Models, suggesting the
importance of the bubble component in rationalizing movements in both series.

For the unrestricted Sub-Model A of the Implied AR(0) Model, we obtain estimates
of by=0.92 (1.21) and b;=0.05 (0.11) for the DJIA (S&P 500) series as reported in Table
2.5b. Thus, the estimated slope coefficients on the bubble component are now lower
than those for the AR(1) model. The slope coefficients on the fundamental component
imply that the estimated fundamental present values (i.e., the product of by and ) are
very similar to the DJIA (S&P 500) constant, theoretical price-dividend ratios ~ of 17.102
(15.02) reported in the bottom panel of Table 2.3, but are also much lower than empir-
ically observed mean price-dividend ratios of 28.30 (29.79) reported in Table 2.1. For
comparison, we note that the estimated fundamental present values and slope coeffi-
cients on the bubble component obtained here are higher for the former and lower for
the latter than the estimates of roughly 14 and at least 0.26, respectively as reported in
Froot and Obstfeld (1991) and Bidarkota and Dupoyet (2007) for the Gaussian AR(0) div-
idend growth rate. Minimum AIC criterion once again selects Sub-Model B (Sub-Model
A) of the Implied AR(0) Model as best for the DJIA (S&P 500) series among the four Sub-

Models.
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Among all the models estimated in Tables 2.5a and 2.5b, minimum AIC criterion
selects Sub-Model B of Implied AR(0) Model (Sub-Model A of Implied AR(1) Model) as
best for the DJIA (S&P 500) series. Thus, the broader stock market index favors the AR(1)
model developed here, whereas the blue chip index favors the Froot and Obstfeld (1991)
model by this criterion.

Figures 2.5 and 2.6 plot the observed price-dividend ratios and prices, along with
the fitted values of the fundamental and bubble components from Sub-Model A of both
the Implied AR(1) and AR(0) Models, respectively. The contribution of the fundamental
present value component alone in accounting for variation in observed ratios and prices
is vividly insufficient in both figures. Taking the bubble component into account pro-
vides a much better fit to the P/D ratios and stock prices.

Figures 2.7 and 2.8 compare the performance of the fundamental present value com-
ponent alone and fundamental plus bubble components, respectively, between Sub-Model
A of the Implied AR(1) and AR(0) Models. Visually, the empirical performance of the two
models is indistinguishable from one another.

In summary, while there is support for the AR(1) model developed here, particularly
for the S&P 500 series, as compared to the AR(0) model of Froot and Obstfeld (1991), both
models provide very similar performance when judged in terms of implied fluctuations

in the P/D ratios and stock prices.

Tests of Hypotheses

A test of the present value model can be conducted by testing for the null hypothesis
that by=1 and b;=0 for Sub-Model A of the Implied AR(1) Model described in Equation
(2.22) above. The alternative hypothesis of b; > 0 and/or by # 1 is a rejection of the
present value model. The null hypothesis of no intrinsic bubbles implies that b;=0 in

Equation (2.22). b; > 0 implies rejection of the absence of bubbles. These null and alter-
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native hypotheses are identical in the case of Sub-Model A of the Implied AR(0) Model
estimated by Froot and Obstfeld (1991).

Tables 2.6a and 2.6b report likelihood ratio (LR) tests for various hypotheses of inter-
est. In Table 2.6a, under an AR(1) process for dividend growth rates, LR tests for the two
hypotheses, b;=0 and joint hypothesis by=1 and ;=0 are unequivocally rejected. Thus,
we can reject the null hypothesis of no bubbles for this model. LR test of by=1 is rejected
for the DJIA, but not for the S&P 500.

For comparison, in Table 2.6b under an AR(0) process for dividend growth rates, we
find from Sub-Model A of the Implied AR(0) Model that, as in Table 2.6a, LR tests for the
single hypothesis, b;=0 and joint hypothesis, by=1 and b; =0 are rejected. Like the Implied
AR(1) Model, the no bubbles hypothesis is rejected for this model as well. However, in
contrast to the results in Table 2.6a, the null hypothesis of by=1 is rejected for the S&P
500, but not for the DJIA.

To provide support of optimal model selection, Table 2.6c shows the LR test results
between the two models. The null hypothesis of Implied AR(0) as the optimal fit is
unarguably rejected. In other words, there is evidence that favors the Implied AR(1)
over the Implied AR(0) model. This is a critical result which lends support for our model

extension from previous work.

Free Models - A Purely Econometric Specification

We also estimate an alternative version of the above two models, referred to as Free
AR(1) Model and Free AR(0) Model, respectively. In these models, the values of the
bubble component parameters are no longer set equal to the implied parameter values
reported in the respective panels of Table 2.3, but are instead estimated freely along with

the rest of the regression parameters of the econometric model.
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Thus, the most general model is the Free AR(1) Model. We also have the Free AR(0)
Model. Among these two models, here too, we estimate an unrestricted version, which
is referred to as Sub-Model A, and three restricted versions, referred to as Sub-Models
B, C, and D. The restrictions describing these three versions of the models are identical
to those described earlier.

Tables 2.5¢ and 2.5d present maximum likelihood estimates of these two models, Free
AR(1) Model and Free AR(0) Model, described above. Each table presents estimates of
all four Sub-Models A-D. In Table 2.5¢, under the AR(1) process for dividends growth
and free estimation of the nonlinear bubble components, the A parameter estimates are
1.713 and 1.741 for the two data series. The estimate for A is similar to the DJIA implied
parameter value in Panel A of Table 2.3. However, the S&P 500 )\ estimate of 1.741 is
quite lower than the implied parameter value of 2.148 reported there. The parameter h
has been constrained to 0 in order to comply with the non-negativity assumption in our
theoretical model.

Figures 2.9 and 2.10 plot observed P/D ratios and prices, along with fitted values of
the fundamental and bubble components from Sub-model A of the Free AR(1) and AR(0)
Model, respectively. As seen earlier in Figures 2.5 and 2.6 for the Implied AR(1) and AR(0)
Models, the fundamental component alone does not track observed index P/D ratios and
prices adequately. Adding the bubble component allows the model to track the observed
data remarkably better. Figure 2.11 compares the fit of both the fundamental and bubble
components to the observed ratios and prices of Sub-model A between Free AR(1) and
AR(0) Models. Visually, the empirical performance of both models is indistinguishable
from one another. Table 2.6¢ confirms this indistinction as the LR test does not reject
the hypothesis that Free AR(0) Model is the optimal model. Put another way, Free AR(1)

Model is no better for predictive performance than that of the Free AR(0) Model.
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For the sake of completeness, we visually and quantitatively compare Implied and
Free AR(1) Models and Implied and Free AR(0) Models in Figures 2.12 and 2.13, respec-
tively. Again, visually the models are not considerably different from each other. Table
2.6d confirms this observation for the DJIA results as the LR tests do no reject the null
Implied AR(1) and AR(0) Models, respectively; however, for the S&P 500 results in Table
6e, we can easily reject Implied AR(1) and AR(0) Models. In other words, under both
AR(1) and AR(0) process-driven specifications, we found no evidence that the theoret-
ical implied values of A\ and h in Table 2.3 are not accurate estimates of the degree of
non-linearity in the price-dividend data for DJIA, but we can statistically significantly

reject the S&P 500 implied parameter values.

2.4.7 Summary of Results and Model Comparison

The nonlinear price-dividend ratio regression results reported in Tables 5 and 6, and
discussed in subsection 2.4.6 above, indicate that we can conclusively reject the null hy-
pothesis of the absence of intrinsic bubbles across all four models, Implied and Free,
AR(1) and AR(0), considered here. This inference is robust, regardless of whether or not
we restrict b, to 1. It aligns with the conclusions of Froot and Obstfeld (1991) and Bidark-
ota and Dupoyet (2007). Further substantiating the regression results, Figures 2.5 and
2.6 and 2.9 and 2.10 clearly demonstrate that the fundamental and bubble components
together track the observed stock indices more closely than the fundamental present
value component alone.

We conduct additional model analysis to determine a performance leader. When
using implied parameter values, the nonlinear model in which dividend growth rates
follow an AR(1) process outperforms a model driven by an AR(0) process. This shows

the improvement in the performance of the extension considered here when compared

24



to the model in Froot and Obstfeld (1991). On the other hand, the two models are indis-
tinguishable when the bubble parameters are freely estimated.

Moreover, for both data series, a nonlinear model in which we use the implied pa-
rameter values and in which dividends growth follows either an AR(1) process or AR(0)
process is statistically superior than that of the same model except in which the bubble
components are freely estimated.

We could not find distinct differences between each model visually as Figures 2.7 and
2.8 and 2.11—2.13 show. However, LR tests reported in Tables 2.6a—2.6e allow us to infer
quantitatively that Implied AR(1) Model is statistically superior to Implied AR(0) Model.
This demonstrates the usefulness of the extension to the work in Froot and Obstfeld
(1991) considered here. The Free AR(1) and AR(0) Models seem to be equivalent, and
Implied AR(1) Model (AR(0) Model) is statistically superior to Free AR(1) Model (AR(0)

Model).

2.5 Conclusions

We extend the constant discount factor model with intrinsic bubbles developed in
Froot and Obstfeld (1991) to account for serial correlation in the dividend growth rate.
We derive an exact analytical expression for both the present value stock price and an
intrinsic bubble component when dividend growth rates evolve as a Gaussian first-order
autoregressive process. We estimate the model with two sets of annual U.S. stock price
and dividends data, namely the DJIA and the S&P 500 series, over the last century. We
compare the results with the benchmark specification under which dividend growth
rates follow an AR(0) process, as in Froot and Obstfeld (1991).

Hypotheses tests reject an AR(0) process for dividend growth rates in favor of an

AR(1) process for both data series. Likelihood ratio tests also favor the AR(1)-based
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model developed here for price-dividends ratios to the AR(0)aAASbased model consid-
ered in Froot and Obstfeld (1991). Information-based model selection criteria favor the
AR(1) model developed here, particularly for the S&P 500 series, as compared to the
AR(0) model of Froot and Obstfeld (1991). Nonetheless, the implied P/D ratios and stock
prices from the two models are visually indistinguishable from one another.
Hypotheses tests also reject the absence of a bubble component in both series. This
inference is robust to whether or not the parameters governing the intrinsic bubbles pro-
cess are restricted to values implied by our model or freely estimated. Incorporating the
bubble component into our model provides a significant improvement in fit to observed

P/D ratios and stock prices as compared to the present value stock prices alone.
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Table 2.1: Summary Statistics

Variable Index Sample Mean Variance Median Min Max FOAC Skewness Kurtosis Test for
Size n Nor-

mality
Dividend DJIA 97 0.021 0.020 0.029 -0.545 0.502  0.228 -0.587** 7.256"** 78.768"*

Growth Rate (0.015)  (0.003) (0.018) (0.000)  (0.000)
S&P 500 118 0.017 0.012 0.024 -0.422 0397  0.234 -0.795"* 7.267*  101.952"**

(0.010)  (0.002) (0.001) (0.000)  (0.000)
DJIA 97 28.300 120.658 25.860  13.435 62.353 0.928 1.159*** 4.047* 26.152"**

P/D Ratio (1.115)  (17.400) (0.000) (0.052)  (0.000)
S&P 500 118 29.790  240.193 25.320  10.459 85.296 0.919 1.519"* 5.003*** 65.097***

(1.440)  (31.700) (0.000) (0.003)  (0.000)

Numbers in parentheses for mean and variance are their standard errors. FOAC is the first-order autocorrelation coefficient. Num-
bers in parentheses for skewness and kurtosis are the p-values. The null hypotheses are no skewness and no excess kurtosis,
respectively. Test for normality gives the Jarque-Bera test statistic and its p-value in parentheses. *p<0.1; **p<0.05; ***p<0.01.
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Table 2.2: Dividend Growth Rate Process Estimates

Xe —p=p(xXe—1—p) +&, |pl <1, &~ ﬁdN(OaUQ) (6)

Panel A: z; follows AR(1) process

Index u o? ) logL LR Test
(0 =10)

DJIA 0.019 0.01950 0.239 52.763 3.592*

(0.019) (0.010)  (0.101) (0.058)

S&P 500 0.017 0.01177 0.254 93.842 4.715**

(0.013)  (0.007)  (0.093) (0.030)

Panel B: z; follows AR(0) process

Index L o? P log L

DJIA 0.021  0.02047 0 50.967

(0.015)  (0.010) (restricted)

S&P 500 0.017 0.01242 0 91.484

(0.010) (0.007) (restricted)

Maximum likelihood estimates of Eq. (1.6) for the dividend growth
rate process are reported in Panel A. Maximum likelihood estimates
of a restricted model with p = 0 are reported in Panel B. Numbers
in parentheses for the parameter estimates are their standard errors.
LR Test in the last column gives the likelihood ratio (LR) test statistic.
P-values from ? distribution with appropriate df are in parentheses.
*p<0.1; **p<0.05; ***p<0.01.
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Table 2.3: Implied Parameter Values

Panel A: x; follows AR(1) process
Index r A h  Time-
varying

k (mean)

DJIA 0.086 1.772 0.557 17.210

S&P 500 0.086 2.148 0.730 15.501

Panel B: z; follows AR(0) process

Index r A h constant
K
DJIA 0.086 2.062 17.102
S&P 500 0.086 2.609 15.020
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Table 2.4: Description of various regression specifications for nonlinear P/D ratio models

in Tables 2.5-2.6

Model Description
Implied AR(1) Model This is the nonlinear price-dividend regression specification in which we set A and h equal
to the implied parameter values in Table 2.3 and in which dividends growth, x, follows an
AR(1) process.
Implied AR(0) Model This is the nonlinear price-dividend regression specification in which we set A and h equal
to the implied parameter values in Table 2.3 and in which dividends growth, x; follows an
AR(0) process.
Free AR(1) Model ~ This is the nonlinear price-dividend regression specification in which we estimate A and h
freely and in which dividends growth, z; follows an AR(1) process.
Free AR(0) Model  This is the nonlinear price-dividend regression specification in which we estimate A and h
freely and in which dividends growth, z; follows an AR(0) process.
Sub-Model Description

lwX@lo~i

Unrestricted model
Semi-restricted model (by = 1)
Semi-restricted model (b; = 0)

Restricted model (b; = 0 and by = 1)
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Table 2.5a: Maximum likelihood estimation of Implied AR(1) Model

% = boky + let’\_le:Ep{ha?t} + 1y,

m ~ iid N (0,02)

Sub-Model Index bo by o; log L AIC
DJIA 0.669*** 0.292**  76.309"**  -347.874 701.749
(0.144) (0.040)  (0.627)
Implied AR(1): A
S&P 500 0.791*** 0.629*  133.267"** -456.085 918.170
(0.135) (0.065)
DJIA 1.000 0.206™*  80.461***  -350.444 700.888
(restricted to 1) (0.015) (0.644)
Implied AR(1): B
S&P 500 1.000 0.543"**  135.902*** -457.260 918.521
(restricted to 1) (0.033) (0.759)
DJIA 1.644** 117.543*** -368.860 741.721
(0.064) (0.778)
Implied AR(1): C
S&P 500 1.922*** 239.061"** -490.561 985.123
(0.092) (1.006)
DJIA 1.000 240.842"** -403.617 809.235
(restricted to 1) (1.114)
Implied AR(1): D
S&P 500 1.000 443.647°* -527.036 1056.072
(restricted to 1) (1.371)

Implied AR(1) Model is the nonlinear price-dividend regression specification in which we
set A and h equal to the implied parameter values in Table 2.3 and in which dividends
growth, z; follows an AR(1) process. Sub-models A-D: Sub-model A estimates by and b;
freely; Sub-model B restricts by = 1; Sub-model C restricts b; = 0; and Sub-model D
restricts both by = 1 and b; = 0. Numbers in parentheses for the parameter estimates are
their standard errors. *p<0.1; **p<0.05; **p<0.01.
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Table 2.5b: Maximum likelihood estimation of Implied AR(0) Model

L = ok + by DI 4 vy,

vy ~ iid N (0, 02)

Dy
Sub-Model Index bo by o log L AIC
DJIA 0.923** 0.047***  75.024™*  -347.049  700.098
(0.111) 0.006)  (0.622)
Implied AR(0): A
S&P 500 1.208"** 0.105"*  139.435"** -458.750  923.501
(0.112) (0.011)
DJIA 1.000 0.043**  75.405"**  -347.297  698.593
(restricted to 1) (0.003) (0.623)
Implied AR(0): B
S&P 500 1.000 0.121"**  143.575"** -460.482 924.963
(restricted to 1) (0.008) (0.780)
DJIA 1.655*** 118.990*** -369.421 742.841
(0.065) (0.783)
Implied AR(0): C
S&P 500 1.984*** 240.170"* -490.834  985.667
(0.095) (1.009)
DJIA 1.000 244.412***  -404.331 810.663
(restricted to 1) (1.122)
Implied AR(0): D
S&P 500 1.000 458.418"* -528.976 1059.951
(restricted to 1) (1.394)

Implied AR(0) Model is the nonlinear price-dividend regression specification in which we
set A and h equal to the implied parameter values in Table 2.3 and in which dividends
growth, z; follows an AR(0) process. Sub-model A estimates by and b, freely; Sub-model B
model restricts by = 1; Sub-model C restricts by = 0; and Sub-model D restricts both by = 1
and b; = 0. Numbers in parentheses for the parameter estimates are their standard errors.

*p<0.1; **p<0.05; ***p<0.01.
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Table 2.5¢: Maximum likelihood estimation of Free AR(1) Model

% = byt + by D) exp{ha;} + ny ~ iid N ((), 03)

Sub-Model Index by by A h o; log L AIC
DJIA 0.537 0.462 1.713**  0.000 74372 -346.626 703.253
(0.563) (1.056)  (0.339) (0.399)  (0.620)

Free AR(1): A

S&P 500 0.000 3.665  1.741***  0.000 120.674™* -450.227 910.455
(0.561) (2.994)  (0.186) (0.384)  (0.731)
DJIA 1.000 0.036  2.095** 0.000  75.522"** -347.370 702.741

(restricted to 1) (0.029)  (0.146)  (0.669) (0.626)
Free AR(1): B
S&P 500 1.000 0.443***  2.222**  0.000 131.675"** -455.374 918.748

(restricted to 1)  (0.172)  (0.120) (0.866)  (0.766)

DJIA 1.644** 117.543** -368.860 741.721
(0.064) (0.778)
Free AR(1): C
S&P 500 1.922%** 239.061"** -490.561 985.123
(0.092) (1.006)
DJIA 1.000 240.842"** -403.617 809.235
(restricted to 1) (1.114)
Free AR(1): D
S&P 500 1.000 443.647** -527.036 1056.072
(restricted to 1) (1.371)

Free AR(1) Model is the nonlinear price-dividend regression specification in which we estimate A and h
freely and in which dividends growth, z; follows an AR(1) process. Sub-model A estimates by and b; freely;
Sub-model B restricts by = 1; Sub-model C restricts by = 0; and Sub-model D restricts both by = 1 and
by = 0. Numbers in parentheses for the parameter estimates are their standard errors. *p<0.1; **p<0.05;
#*+p<0.01.
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Table 2.5d: Maximum likelihood estimation of Free AR(0) Model

Lo boH + let)\71 + Uy,

vy ~ iid N (0, 02)

Dy
Sub-Model Index bo by A o2 log L AIC
DJIA 0.576 0.391 1.739"* 74321  -346.595 701.189
(0.510) (0.849)  (0.324)  (0.619)
Free AR(0): A
S&P 500 0.000 3.665 1.7417*  120.674"* -450.227 908.455
(0.587) (3.062)  0.190 (0.721)
DJIA 1.000 0.036 2.098"**  75.355"**  -347.264  700.527
(restricted to 1)  (0.028)  (0.142) (0.623)
Free AR(0): B
S&P 500 1.000 0.484™**  2.202"** 130.253"* -454.753  915.506
(restricted to 1)  (0.180)  (0.112) (0.743)
DJIA 1.655*** 118.902***  -369.421 742.841
(0.065) (0.783)
Free AR(0): C
S&P 500 1.984*** 240.167"** -490.834  985.667
(0.095) (1.009)
DJIA 1.000 244.412"*  -404.331 810.663
(restricted to 1) (1.122)
Free AR(0): D
S&P 500 1.000 458.418** -528.976 1059.951
(restricted to 1) (1.394)

Free AR(0) Model is the nonlinear price-dividend regression specification in which we estimate A
and h freely and in which dividends growth, z; follows an AR(0) process. Sub-model A estimates
by and b; freely; Sub-model B restricts by = 1; Sub-model C restricts b = 0; and Sub-model D
restricts both by = 1 and b; = 0. Numbers in parentheses for the parameter estimates are their

standard errors. *p<0.1; **p<0.05; ***p<0.01.
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Table 2.6a: Sub-Model Comparisons: AR(1) Model

Index Sub-Model LR Test (Null LR Test (Null LR Test (Null
Hy: by=1) Hy: b1=0) Hy: bp=1 and
b1=0)
Implied AR(1): Sub-model A vs Sub-model B 5.140**
(0.023)
Implied AR(1): Sub-model C vs Sub-model D 69.514™**
(0.000)
Implied AR(1): Sub-model A vs Sub-model C 41.972"*
(0.000)
Implied AR(1): Sub-model B vs Sub-model D 106.350"*
(0.000)
Implied AR(1): Sub-model A vs Sub-model D 111.490***
DJIA (0.000)
Free AR(1): Sub-model A vs Sub-model B 1.488
(0.223)
Free AR(1): Sub-model C vs Sub-model D 69.514™*
(0.000)
Free AR(1): Sub-model A vs Sub-model C 44.468"*
(0.000)
Free AR(1): Sub-model B vs Sub-model D 112.490%
0.000
Free AR(1): Sub-model A vs Sub-model D 113.980***
(0.000)
Implied AR(1): Sub-model A vs Sub-model B 2351
(0.125)
Implied AR(1): Sub-model C vs Sub-model D 72.949%*
(0.000)
Implied AR(1): Sub-model A vs Sub-model C 68.953*"
(0.000)
Implied AR(1): Sub-model B vs Sub-model D 139.550%*
(0.000)
Implied AR(1): Sub-model A vs Sub-model D 141.900"**
S&P 500 (0.000)
Free AR(1): Sub-model A vs Sub-model B 10.293***
(0.001)
Free AR(1): Sub-model C vs Sub-model D 72.949%
(0.000)
Free AR(1): Sub-model A vs Sub-model C 80.668***
(0.000)
Free AR(1): Sub-model B vs Sub-model D 143.320™*
(0.000)
Free AR(1): Sub-model A vs Sub-model D 153.620***
(0.000)

See Table 2.4 for full model descriptions. Sub-model A estimates by and b; freely; Sub-model B restricts by = 1;
Sub-model C restricts b; = 0; and Sub-model D restricts both by = 1 and b; = 0. LR Tests give the likelihood ratio
(LR) test statistic. P-values from y? distribution with appropriate df are in parentheses. *p<0.1; **p<0.05; ***p<0.01.
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Table 2.6b: Sub-Model Comparisons: AR(0) Model

Index Sub-Model LR Test (Null LR Test (Null LR Test (Null
Hy: by=1) Hj: b;=0) Hy: byp=1 and
b,1=0)
Implied AR(0): Sub-model A vs Sub-model B 0.495
(0.482)
Implied AR(0): Sub-model C vs Sub-model D 69.821%**
(0.000)
Implied AR(0): Sub-model A vs Sub-model C 44.744**
(0.000)
Implied AR(0): Sub-model B vs Sub-model D 114.070***
(0.000)
Implied AR(0): Sub-model A vs Sub-model D 114.560***
DJIA (0.000)
Free AR(0): Sub-model A vs Sub-model B 1.338
(0.247)
Free AR(0): Sub-model C vs Sub-model D 69.821%**
(0.000)
Free AR(0): Sub-model A vs Sub-model C 45.652***
(0.000)
Free AR(0): Sub-model B vs Sub-model D 114.140%**
(0.000)
Free AR(0): Sub-model A vs Sub-model D 115.470***
(0.000)
Implied AR(0): Sub-model A vs Sub-model B 3.463*
(0.063)
Implied AR(0): Sub-model C vs Sub-model D 76.284"**
(0.000)
Implied AR(0): Sub-model A vs Sub-model C 64.166™*
(0.000)
Implied AR(0): Sub-model B vs Sub-model D 136.990***
(0.000)
Implied AR(0): Sub-model A vs Sub-model D 140.450***
S&P 500 (0.000)
Free AR(0): Sub-model A vs Sub-model B 9.051***
(0.003)
Free AR(0): Sub-model C vs Sub-model D 76.284***
(0.000)
Free AR(0): Sub-model A vs Sub-model C 81.212%**
(0.000)
Free AR(0): Sub-model B vs Sub-model D 148.440*
(0.000)
Free AR(0): Sub-model A vs Sub-model D 157.500***
(0.000)

See Table 2.4 for full model descriptions. Sub-model A estimates b, and by freely; Sub-model B restricts by = 1;
Sub-model C restricts b; = 0; and Sub-model D restricts both by = 1 and b; = 0. LR Tests give the likelihood ratio
(LR) test statistic. P-values from x? distribution with appropriate df are in parentheses. *p<0.1; **p<0.05; **p<0.01.
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Table 2.6¢: Full Model Comparisons: AR(1) and AR(0) Models

Index Sub-Model LR Test (Null Hy: LR Test (Null Hy:

Implied AR(0) op- Free AR(0) opti-

timal fit mal fit)
Sub-model A: Implied AR(1) vs. Implied AR(0) 1.651%*
(0.000)
Sub-model B: Implied AR(1) vs. Implied AR(0) 6.295%**
(0.000)
Sub-model C: Implied AR(1) vs. Implied AR(0) 1.121%*
(0.000)
Sub-model D: Implied AR(1) vs. Implied AR(0) 1.428***
(0.000)
DJIA
Sub-model A: Free AR(1) vs. Free AR(0) 0.064
(0.801)
Sub-model B: Free AR(1) vs. Free AR(0) 0.213
(0.644)
Sub-model C: Free AR(1) vs. Free AR(0) 1121
(0.000)
Sub-model D: Free AR(1) vs. Free AR(0) 1.428***
(0.000)
Sub-model A: Implied AR(1) vs. Implied AR(0) 5.331%**
(0.000)
Sub-model B: Implied AR(1) vs. Implied AR(0) 6.443**
(0.000)
Sub-model C: Implied AR(1) vs. Implied AR(0) 0.545***
(0.000)
Sub-model D: Implied AR(1) vs. Implied AR(0) 3.879*
(0.000)
S&P 500
Sub-model A: Free AR(1) vs. Free AR(0) 0.000
(1.000)
Sub-model B: Free AR(1) vs. Free AR(0) 1.242
(0.265)
Sub-model C: Free AR(1) vs. Free AR(0) 0.545™**
(0.000)
Sub-model D: Free AR(1) vs. Free AR(0) 3.879***
(0.000)

See Table 2.4 for full model and sub-model descriptions. LR Tests give the likelihood ratio (LR) test statistic.
P-values from y? distribution with appropriate df are in parentheses. *p<0.1; **p<0.05; ***p<0.01.
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Table 2.6d: Full Model Comparisons: Implied vs. Free AR(p) Model (DJIA)

Index Sub-Model LR Test (Null Hy: LR Test (Null Hy:

Implied AR(1) op- Implied AR(0) op-

timal fit) timal fit)
Sub-model A: Implied AR(1) vs. Free AR(1) 2.496
(0.287)
Sub-model B: Implied AR(1) vs. Free AR(1) 6.148**
(0.046)
Sub-model C: Implied AR(1) vs. Free AR(1) 0.000
(1.000)
Sub-model D: Implied AR(1) vs. Free AR(1) 0.000
(1.000)
Sub-model A: Implied AR(1) vs. Free AR(0) 2.560
(0.110)
Sub-model B: Implied AR(1) vs. Free AR(0) 6.361%*
(0.012)
Sub-model C: Implied AR(1) vs. Free AR(0) 1121
(0.000)
Sub-model D: Implied AR(1) vs. Free AR(0) 1.428™**
(0.000)
DJIA
Sub-model A: Implied AR(0) vs. Free AR(0) 0.909
(0.341)
Sub-model B: Implied AR(0) vs. Free AR(0) 0.066
(0.797)
Sub-model C: Implied AR(0) vs. Free AR(0) 0.000
(1.000)
Sub-model D: Implied AR(0) vs. Free AR(0) 0.000
(1.000)
Sub-model A: Implied AR(0) vs. Free AR(1) 0.845
(0.655)
Sub-model B: Implied AR(0) vs. Free AR(1) 0.148
(0.929)
Sub-model C: Implied AR(0) vs. Free AR(1) 1121
(0.000)
Sub-model D: Implied AR(0) vs. Free AR(1) 1.428**
(0.000)

See Table 2.4 for full model and sub-model descriptions. LR Tests give the likelihood ratio (LR) test statistic.
P-values from ) distribution with appropriate df are in parentheses. *p<0.1; **p<0.05; **p<0.01.
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Table 2.6e: Model Comparisons: Implied vs. Free AR(p) Model (S&P 500)

Index Sub-Model LR Test (Null Hy: LR Test (Null Hy:
Implied AR(1)) Implied AR(0))
Sub-model A: Implied AR(1) vs. Free AR(1) 11.715"**
(0.003)
Sub-model B: Implied AR(1) vs. Free AR(1) 3.772
(0.152)
Sub-model C: Implied AR(1) vs. Free AR(1) 0.000
(1.000)
Sub-model D: Implied AR(1) vs. Free AR(1) 0.000
(1.000)
Sub-model A: Implied AR(1) vs. Free AR(0) 11.715%*
(0.001)
Sub-model B: Implied AR(1) vs. Free AR(0) 5.015**
(0.025)
Sub-model C: Implied AR(1) vs. Free AR(0) 0.545***
(0.000)
Sub-model D: Implied AR(1) vs. Free AR(0) 3.879***
(0.000)
S&P 500
Sub-model A: Implied AR(0) vs. Free AR(0) 17.046™**
(0.000)
Sub-model B: Implied AR(0) vs. Free AR(0) 11.457**
(0.001)
Sub-model C: Implied AR(0) vs. Free AR(0) 0.000
(1.000)
Sub-model D: Implied AR(0) vs. Free AR(0) 0.000
(1.000)
Sub-model A: Implied AR(0) vs. Free AR(1) 17.046™**
(0.000)
Sub-model B: Implied AR(0) vs. Free AR(1) 10.215"**
(0.006)
Sub-model C: Implied AR(0) vs. Free AR(1) 0.545"**
(0.000)
Sub-model D: Implied AR(0) vs. Free AR(1) 3.879**
(0.000)

See Table 2.4 for full model and sub-model descriptions. LR Tests give the likelihood ratio (LR) test statis-
tic. P-values from x? distribution with appropriate df are in parentheses. *p<0.1; **p<0.05; ***p<0.01.
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Figure 2.2: Plots of S&P 500 Data
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Figure 2.3: Probability distributions of real dividend growth rates
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Figure 2.5: Implied AR(1) Model Results
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Figure 2.6: Implied AR(0) Model Results
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Figure 2.7: Comparison of fundamental components [Implied AR(1) vs. AR(0)]
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Figure 2.8: Comparison of both fundamental and bubble components [Implied AR(1) vs.
AR(0)]
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Figure 2.9: Free AR(1) Model Results

Freg AR(!) Model Resuts (DJIA)

o 1 — Obszned PID Rating
=== Fundamental + Bubble PID Ratio
= Fundamentd P10 Ratio

50

<
1

=0
1

O & — (bsaned PD Ratios
=== Fundamental + Bubdle PID Rati
----- Fundamental P/D Rati

FPrice

48

Free AR(1) Model Results (DJIA

| — Obszred Prices ‘II
"~ Fundamental+ Butbe Pces
Q|- Fundamentd Prces
0
0
0
0
0
0
L
0 1w %0 %0 0 a0
)
Free AR() Mode Result (S8 500)
— Ubsened Prces
7 =~ Fundamenta + Butbl Pries
Q| Fundamentd Pces
0.
N
O 4
0
0
L e e
L A O [
Y



o Ratiao

Figure 2.10: Free AR(0) Model Results
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Figure 2.11: Comparison of both fundamental and bubble components [Free AR(1) vs.
AR(0)]
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Figure 2.12: Comparison of both fundamental and bubble components [Implied vs. Free
AR(1)]
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Figure 2.13: Comparison of both fundamental and bubble components [Implied vs. Free
AR(0)]
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2.6 Appendix

2.6.1 Appendix A

Derivation of the Fundamental Stock Price

In this appendix we derive the expression for the fundamental stock price P/* given

in Equation (2.7). From Equation (2.2), we have:
P’ = iexp{—r(s —t+ 1)}E (Ds). (2.29)
s=t
Fors=t+1,t+2,..
Dg = Dyys—t = exp {diys—t} = exP {Xets—t + Xes—t—1 + Xprs—to + Xpp1 + di}
Using Equation (2.15) from Burnside (1998),

S iy = (s — D+ 12 {1 = o1} (2 — o) +

(2.30)
I=p) A =p" )+ A =p )&+ o+ (1= p)ersil-
Therefore,
_ L]~ Y (x, —
B, (D.) = D, exp (s=Opu+5{1=p" ) (xe —p) + (231)

2

o S— s—t—1)2
s |1 =7+ (L= P (1= P
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This simplifies to:

A= (e — ) +
)

Et (Ds) = Dt eXp 9 ) 1 p2(s—t
(s = O+ g [ (5= ) = 25 (L= ) + P |

2(1-p) p
(2.32)
which can be expressed as:
Et (DS) = Dt exXp {bs—t (Xt — ,LL) + as_t} . (233)
with
o2 p 1 — p2(s—t)
e =(s—t ——  l(s—t)—2—"—(1-p 20| (234
and
be_ = P {1-p"}. (2.35)
L—p

Equation (2.29) can be expressed as P/ = exp{—r}D; + > °,  exp{—r(s — t +
1)} E; (Ds). Substituting for E; (Dy) yields:

Py’ = exp{—r}D; + Dy Z exp{—1(s—t+1)+be_y(xy — ) +as_¢}
s=t+41
which can be rewritten as:
PP =Dy > exp{—r(s — t + 1) + bo_y (3¢ — o) + 2} - (2.36)
s=t
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2.6.2 Appendix B

Proof of Theorem 1: Convergence of the Price-Dividend Ratio

From Equation (2.7),

PP = D, Z exp{—1(s —t+ 1) + b (x¢ — p) +as ¢} (2.37)
s=t
where
= (s— —t)—=2—"— (1 —p* 2 2.38
and
p s—
bs,t:—l_p{1—p ‘1. (2.39)

P O
Denotingi =s — t, vy = Dt = Z exp{—r(i+1)}texp{a;+b; (x¢ —p)} (2.40)
b =0

where

2 2i
p ; : o : P i 2t~ P
bj=——11— da; = -2 1—
1—p{ p}an a 1M+2(1—p)2 {1 1—,0( p)—i—p 1=
Let
Vi= Yz (2.41)
i=0
Then

zigy _ exp{—r(i+1+1)}exp{aips + bipa (xe — p)}
7 exp{—r(i+ 1)} exp{a; + b (x¢ — p)}
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= exp{—r}exp {(ai1 — a;) + (biy1 — by) (x¢ — 1)}

bit1 —bi = % {1 - PiH —1+ Pi} = Piﬂ (2.42)
0'2 1% . . P . .
1 —a; = —1_2_ 1— 1+1_1+Z+ 1_ 2(l+1)_1+ 21
T _p( p p') 1_p2{ p P}
(2.43)
o+ o [1 1 il { il 2}}
TtV |
Therefore,
Zitl _ expd —r 4+ 0—2 [1 4 ot (pi+1 _ 2)] 1 o (x¢ — )
20— )
Now 2t — | 2| With [p < 1, lim, o 22‘1 = exp {—7“ + u+ 2(%:2)} .
Therefore, from Burnside’s (1998) proof of Theorem 1, > ;° | z; converges if
o2
R= — — <1 2.44
ot g ) 24

2.6.3 Appendix C

Derivation of Equation (2.11): Mean of the Price-Dividend Ratio

From Equation (2.7), we have:

Vi = —— = Z exp{—r(i+1)}exp{a;+ b (x; — u)} (2.45)
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Therefore,

ZeXp{ (i+1) +a} Efexp {bi (x, — p)}].

We have from Equation (2.6),
—p=pxe1—p)+& |pl <1, &~ iidN(0,0%). (2.46)

Therefore, x, — pt ~ N (O, 1—2) which implies b; (x; — ) ~ N <0 bio > Therefore

) 1—
b2g2 .
E [exp {bs (x, = 1)}] = exp { 55 }

Therefore,
> bZo?
E (Vt) = Z exp {—r(l + 1) + aj + W} . (2.47)

i=0

Proof of Convergence of Mean of the Price-Dividend Ratio

Let
V) =Y Z. (2.48)
i=0
Gy OXP {—r(i +14+1)+ai, + 2 b22+1}
Z; exp {—r(i +1)+a; + mb?}

g
exp{ r+(a+l a)+2(1_p2)(1+1 1)}

Following from the proof on convergence of the fundamental stock price-dividend ratio
P}V /Dy, it suffices to show that lim; ., 2(%:2) (bz 1 62) = (0 for a version of Theorem

2.2 in Burnside (1998) to hold.
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We have from Appendix B, (b, — b?) = (—1% [(1 - pi+1)2 - (1- pi)2] which im-

1

plies (b2, — b?) = 550" {2 — (14 p)p'}.
Therefore, lim;_, (b?Jrl b2) = limj00 = [p {2 —(1+p)p H

Zit1

Now, we have

i+l
z

i

= L Therefore lim;_, = exp {—7 + lim; o (a;11 — a;)}.

(3

From Equation (2.43) we have:

o2 ) . . )
ai+1—a,~:y+— |:1_2L (1_pz+1_1+pz>+ P - {1_p2(1+1)_1+p21}:|
p p L—p
A1 — @ = p+ 577 p)2 [1+ p {p"1 — 2}]. Therefore lim; ,o (a;11 —a;) = pu +

:exp{ T+ pt 3= p)g}

2 . .
305 since |p| < 1. Therefore, lim; .

Zit1
2(1 Z

Therefore, from Burnside’s (1998) proof of Theorem 1, ) >°, z; converges if R = exp

{ r—i—,u-|—2(1 pg)} <1

2.6.4 Appendix D

Intrinsic Bubbles under AR(1) Process for Dividend Growth Rates

Equation (2.4) implies B; = e "E; {By4,}. Let B (D) = c¢D; exp {hx,} where A and

h are constants to be determined. Therefore,
E; {Bij1} = Eq {cD3} exp [hxipa] } (2.49)

=B, {cD exp [A(1 = p)pe + Apx, + M) exp [ {(1 — p)pt + px¢ + &1} }
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= E; {cD exp [(A+h)(1 = p)pe + (A + h)pxy + (A + h)&a]} -

Using the moment generating function of normal random variables, we obtain:

E; {Bei1} = cDexp {(A+h)(1 — p)p + (A + h)px; + (A + h)*0?/2} (2.50)

Therefore, the r.h.s. of Equation (2.4) becomes:

cD? exp {(A + h)px; } exp {-r+ (A +h)(1—pp+ (A+h)’c?/2}.

The Lh.s. of Equation (2.4) is By = B (D;) = ¢D; exp {hx,}. Therefore, for Equation

(2.4) to hold, we must have:

r=(A+h)(1-pu+ (A+h)*c?/2 (2.51)

and

h=(A+h)p. (2.52)
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CHAPTER 3
A STATE SPACE FRAMEWORK FOR THE RESIDUAL INCOME VALUATION
MODEL OF STOCK PRICES

3.1 Introduction

Understanding equity valuation and expected stock returns have been preeminent
topics in asset pricing research for over half a century. The empirical asset pricing lit-
erature has largely focused on understanding both cross-sectional and time-series dif-
ferences in the average rates of stock returns (see Goyal (2012) for a recent survey).
One major strand of research within the stock return literature is the use of accounting-
based information to explain the cross-sectional behavior of returns. Chen and Zhang
(2007) provide theory and evidence to rationalize the link between stock performance
and accounting measures of performance. Within a wide array of accounting informa-
tion, canonical work, particularly Fama and French (1993, 1995, 1996, 1998), suggests
that book-to-market, market capitalization, and earnings yields can explain much of the
stock return variation. While expected-return models are crucial to gain further under-
standing of stock market dynamics, equally important are stock valuation models.

Bakshi and Ju (2002) distinctly note that stock valuation models that support the in-
trinsic link between returns, book values, and earnings “can provide the much-needed
impetus for reconciling the behavior of expected returns and market valuations." One
such stock valuation model is the discounted residual income model (RIM or RI), for-
malized by Ohlson (1991, 1995). The RIM is built upon the traditional dividend discount
model. It focuses on firms’ earning power and wealth creation, as captured by account-
ing data, rather than the expected dividend sequence. It assumes the clean surplus re-

lation (CSR), which posits that the change in book value of equity is equal to retained
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earnings. ‘Residual income’ or ‘abnormal earnings’', is defined as the difference between
accounting earnings and the previous-period book value multiplied by the cost of equity.

The residual income model implies that the current stock price equals the current
book value of equity plus the expected present discounted value of all future residual
income. One of the main ingredients of Ohlson (1995) is an explicit formulation of resid-
ual income information dynamics. The chief feature of information dynamics is that
expected next period ¢ 4 1 residual income contains information known at time ¢ that is
not present in current residual income. Dechow et al. (1999) (henceforth DHS) provide
an empirical evaluation of the Ohlson (1995) model, explicitly including residual income
information dynamics for the first time in their study. They use Wall Street consensus
analysts’ earnings forecasts as a measure to estimate the so-called ‘other information’
about next period ¢ 4 1 earnings. They argue that Wall Street equity analysts hold better
predictive information on firms’ earnings relative to retail investors.

Naturally, investors find information about a firm’s future earnings prospects highly
important to their stock selection process. Therefore, they value consensus analysts’
earnings forecasts as a conveyor of or signal for information about a stock. Despite
their importance to investors, such use of earnings forecast data have several draw-
backs, including bias and subjectivity from competing stock analysts, limited data avail-
ability, ample heterogeneity in analysts’ reputation, and credibility of their forecasts
within the aggregate market. Furthermore, frequent conflicting interests of the analyst-
management relationship has been problematic for decades, hampering unbiased stock
recommendations. Recent regulatory reform, namely the NASD Rule 2711 mandates
analyst independence in order to enhance the objectivity of analyst recommendations.
However, such regulations have induced unintended consequences, particularly the re-

duction of market-wide research coverage. They have also widened information asym-

'We use residual income and abnormal earnings interchangeably throughout the paper.
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metry between retail investors and wealthier, highly-sophisticated institutional investors,
who have access to costly information sources (see Fisch (2007) for detailed discussion).
In light of this, we ask what are the alternative measurements or estimation methods for
modelling ‘other information’ in the residual income valuation model?

The purpose of this paper is to apply the residual income valuation model for equity
prices developed in Ohlson (1995) and assess the empirical implications of the model
by estimating the ‘other information’ variable using a state space framework. We esti-
mate the valuation model with the embedded state space framework using the Kalman
filter across a sample of stocks, namely, in the Dow Jones 30 (henceforth DJIA) and S&P
500 indices. We compare model performance to the benchmark two-step regression ap-
proach used in DHS. Our empirical results provide comparative performance of the two
approaches in forecasting next period ¢ 4+ 1 abnormal earnings, current period ¢ other
information, and current period ¢ stock prices, both in- and out-of-sample.

We organize the paper as follows. In Section 3.2, we provide a general framework
for both the dividend discount model and the residual income model, and discuss ex-
tensions of Ohlson’s RI model. We also present the benchmark DHS estimation method
along with a discussion of its drawbacks, followed by an introduction to our state space
(henceforth SS) estimation method. In Section 3.3, we discuss the data, and report em-
pirical results along with inferences drawn from our investigations. We summarize our
main findings and briefly consider plausible extensions of the paper in the concluding

section.
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3.2 Valuation Models

3.2.1 The Dividend Discount Model

In finance, the conventional equity valuation model is the dividend discount model,
which specifies that stock price is equal to the present value of expected future dividends

stream:
(e}

o Et [dt+7']
F= ; (1+r)’ 3.1)

where P, is the price of the firm’s equity at time ¢, d; is net dividends paid at time ¢,
r is the constant discount rate, and F,[-] is the expected value operator conditional on
information set available at date ¢.

The subject of market efficiency that promotes the idea that stock prices reflect ratio-
nal investor responses to all new information about fundamentals has received critical
attention over virtually four decades. Such market efficiency tests were pioneered by
the stock price volatility tests of LeRoy and Porter (1981) and Shiller (1981). Based on
Eq. (3.1), they found that stock market volatility was far greater than could be justified
by subsequent changes in dividends. A number of studies provide further substantive
evidence that stock price fluctuations are simply too excessive to result solely from fluc-
tuations in the expected present discounted value of dividends. For example, West (1988)
developed a variance-bound test that avoids small sample bias and is valid even when the
cash (or ordinary) dividends stream does not mean-revert. Campbell and Shiller (1987)
derived testable implications of the present value model, taking into account the non-
stationarity and cointegration of stock prices and ordinary dividends. Both West and
Campbell and Shiller found strong evidence against the simple present value relation in

which ordinary dividends are used as the discounted cash flow.
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However, Ackert and Smith (1993) show that inferences from volatility tests depend
on how econometricians measure dividend distributions to shareholders. As Miller and
Modigliani (1961) have established, dividends generally represent all cash distributions
to shareholders, including proceeds from share repurchases and mergers and acquisi-
tions. Empirically, this would make the dividend distribution a much broader set. As a
result, Ackert and Smith (1993), using broad dividends inclusive of other cash distribu-
tions, rather than ordinary, cash dividends solely as done in previous studies, show an
improvement in the performance of the present value model. In support of the use of
broad dividends, it is worth noting that Fama and French (2001) provide evidence that the
number of firms paying cash dividends has drastically declined since the late 1970s. In
fact, Grullon and Michaely (2002) show that share repurchase activity has grown consid-
erably since the mid-1980s, and has become a substitutable form of cash payout channel
for publicly-traded US firms.

Such dynamic shifts in dividend measurement illuminate the limitations of using the
dividend discount model to value stocks. This motivates the necessity of a discounted
cash flow present value framework that can broadly capture total cash distributions paid

to shareholders, not just conventional cash dividends.

3.2.2 Residual Income Valuation Model

In accounting literature, an alternative valuation model, the residual income valua-
tion model (RIM or RI), has become widely popular among theoretical and empirical re-
searchers, primarily due to its formalization by Ohlson (1991, 1995). The RIM assumes an
integral accounting identity, namely, the clean surplus relation (CSR), which stipulates
that the change in book value of equity is equal to the difference between accounting

earnings and dividends. The residual income (or abnormal earnings) is defined as the dif-
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ference between current accounting earnings and the product of previous-period book
value and the cost of capital. RIM implies that the current stock price equals the cur-
rent book value of equity plus the expected present value of all future residual income.
A critical feature of the RIM is that dividends, via the CSR, are defined broadly as the
difference between earnings and the change in book value of equity. As such, dividends
in the RIM include not only traditional ordinary, cash dividends, but also other forms of

cash distributions to shareholders (e.g., share repurchases, mergers, acquisitions, etc.).

Model Overview

The CSR assumption is important for the RIM in order to express goodwill (i.e. the
difference between firm market value and its book value) as a function of expected next
period ¢ 41 residual income. The CSR stipulates that all gains and losses of a firm’s book
value be incorporated in retained earnings; in other words, a one-period change in book

value equals earnings minus dividends. The CSR accounting identity is expressed as:

by = b1 + ¢y — dy, (3.2)

where b, is the book value of equity at time ¢, z, is earnings for the period from ¢ — 1 to
t, and d; is net dividends paid out at time t.
Combining Eq. (3.2) with the present value stock price in Eq. ((3.1) by substituting

out for d; yields:

— E (btr—1 + Tpyr — bpyr]
P = . 3.3
: ; e (3.3)

On forward iteration, Eq. (3.3) can be reduced to:

Et Tppr — T bpgr 1] Ey [bt+oo]
P, =0 : 3.4
! t+z (1+7) (1) (34)
N——

0
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Imposing the transversality condition on the last term in Eq. (3.4) guarantees that the
book value stream is not an explosive one. For this condition to be satisfied, given the
clean surplus accounting relation, dividends will have to be paid at some future date.
As such, imposing the transversality condition allows one to define residual income x§
as earnings minus a charge for the use of capital, as measured by start-of-period book
value of equity multiplied by the cost of capital (assumed to be the constant discount
rate, 7):

xy =x— 1 bq. (3.5)

As such, we can specify the residual income model as:

B:bt+;%[+i)i}, (3.6)
which states that the current stock price equals the sum of current book value of equity
and the present value of all expected future abnormal earnings. The latter term reflects
a firm’s future profitability. One should note that Eq. (3.6) is simply a restatement of
the dividend discount model. Specifically, it does not depend on the properties of the
accounting variables, other than by way of the CSR and the transversality condition
imposed in Eq. (3.4).

Using accounting values as a fundamental information framework for investors,
Ohlson (1995) formulates dynamic linear recursive equations in order to relate current

accounting numbers with future expected accounting information. Specifically, he as-

sumes that abnormal earnings satisfy the following modified autoregressive process:
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x? = wx?fl + Vy—1 + &4, Er ~ 1itd N (O, 0'3) (378.)
U = Y1+ 1, My~ iid N (0, 02) (3.7b)

where 14 is ‘other information’ about next period ¢ + 1 abnormal earnings zf,; not
conveyed in current abnormal earnings z{, €; and 7, are unpredictable, mean zero dis-
turbance terms, and w and + are fixed persistence parameters, assumed non-negative
and less than one.

Combining the residual income valuation model in Eq. (3.6) with the information

dynamics in Egs. (3.7a) and (3.7b) yields the following implied valuation function:

P, = b, + oz + aguy, (3.8)

where a; = w/(1+r —w)and ay = (1 +7)/[(1 +r — w)(1 + r — 7)]. This valua-
tion function is consistent with the ModiglianiAASMiller dividend irrelevance theorem.
Ohlson’s (1995) formulation of information dynamics in Eq. (3.7) implies that uncondi-
tional expected goodwill is zero. That is, even if there is persistence in goodwill for long
periods into the future, its average value approximates to zero. Therefore, book value
of equity is an unbiased estimator of market value of equity. Eq. (3.8) implies that the
market value for a firm reflects the book value adjusted for current abnormal earnings

and ‘other information’ about future profitability.

Extensions of Ohlson’s RI Model

While several empirical applications of the residual income valuation model have
surfaced in the literature, several of them unfortunately ignore the information dynamics

formulated in Ohlson (1995). Consequently, these valuation models effectively become
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applications of the dividend discount model, in which current earnings are assumed to
be the sole measure of ‘wealth creation’. As such, they overlook book value or abnormal
earnings (see, for example Whitbeck and Kisor, 1963; Malkiel and Cragg, 1970; Easton
and Harris, 1991; Kothari and Zimmerman, 1995).

Since Dechow et al. (1999) (DHS), however, recent works have incorporated residual
income information dynamics in addition to value-relevant information, and empirically
do a better job than competing variants of the dividend discount model. For instance,
Tsay et al. (2008, 2009) incorporate non-earnings information variables (e.g. bankruptcy
costs, earnings components, and growth opportunities) in addition to consensus ana-
lysts” earnings forecasts. They find better predictive ability and estimation efficiency in
explaining contemporaneous stock prices by incorporating such additional information.
Lyle et al. (2013) incorporate dynamic expectations about the level of systematic risk in
the economy. Balachandran and Mohanram (2012) use residual income (RI) to decom-
pose earnings growth into several growth factors (e.g. RI growth and invested capital
growth). They then use this decomposition to explain stock returns. Additional work
uses various econometric techniques to test the validity and empirical performance of
the RI model (see Jiang and Lee (2005)), and adjusts for sources of bias to forecast RI-
based stock prices (see Higgins (2011) and Kuo (2016)).

Several theoretical extensions, including but not limited to Feltham and Ohlson (1999),
Ang and Liu (2001), and Gode and Ohlson (2004), lay a solid foundation allowing for
stochastic interest rates and risk, in addition to information dynamics, in the residual
income model. Recent work by Bergeron et al. (2018) incorporates the now popular
concept of long-run risk, pioneered by Bansal and Yaron (2004), into the residual in-
come valuation framework.

In this paper, we reassess the residual income valuation model analyzed in DHS,

by utilizing a state space approach to extract the latent ‘other information’ variable in
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Ohlson’s model, instead of proxying it with consensus analyst forecasts of next period

t + 1 earnings, as originally done in DHS.

3.2.3 DHS Estimation Method

The original, empirical implementation of information dynamics and implied valu-
ation function in Egs. (3.7a and 3.7b) and (3.8), respectively, in DHS involves three vari-
ables (b;, x;, and ;) and three parameters (w,~y and 7). The first two variables, b, and
x4, are readily observed and easily measured. However, the last variable 1; and the three
parameters are unobserved. These are to be estimated. The underlying idea of Ohlson
(1995) is that a firm’s stock price reflects information about its next period ¢ 4 1 prof-
itability that is not readily incorporated in current profitability. As such, Ohlson defines
the ‘other information’ variable, 14, as the difference between the conditional expecta-
tion of abnormal earnings for next period £+ 1 based on all available information at time

t and that based on current period ¢t abnormal earnings alone:

vy =By [2f,,] — wal. (3.9)

The conditional expectation of next period ¢ + 1 abnormal earnings, denoted as f;* is
equal to the conditional expectation of next period ¢ + 1 earnings at time ¢ less the
product of book value at time ¢ and the discount rate. DHS measure the conditional
expectation of next period ¢ 4+ 1 earnings at time ¢ using the consensus analyst forecast

of next period ¢ + 1 earnings, denoted as f;, in which case

E, [$?+1] =fi=f—r b (3.10)
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Therefore, from Egs. (3.9) and (3.10), ‘other information’, v; can be retrieved as

v = f{ —way. (3.11)

The values for the three parameters, namely w, v, and r are pinned down as follows.
The authors use the average historical return on equities to measure the discount rate,
r. They estimate the persistence parameters, w and 7y, which they postulate as common

across firms, by using unconditional pooled regressions.

l’?’t = W -+ wlxit,l + Eli,t; gli,t ~ 1id N (0, O'%) (3.128.)

Vit =0+ MVig—1 + Eaip,  E2ip ~ iid N (0,03). (3.12b)

r{, is current period ¢ abnormal earnings for firm 4. v; ; is ‘other information’ about next
period ¢ 4 1 abnormal earnings known at time ¢ for firm ¢. w and ~y, are the intercepts.
w; and 7; are the persistence parameters. €;; ; and ;9 are error terms for firm ¢ with a
zero mean and variances o7 and o3, respectively.

The two-step regression approach of DHS proceeds as follows. First, Eq. (3.12a) is
estimated. The estimate of omega, is used as an estimate of w in Eq. (3.7a). Using the
estimate of wy, from Eq. (3.12a) for w in Eq. (3.11), a time series for v, is constructed.
Using this series for 14, (3.12b) is then estimated in the second step. The estimate of v,
is then used as an estimate of 7y in Eq. (3.7b).

In essence, in the DHS methodology, separate two-step estimation of Eqs. (3.12a)
and (3.12b) serves as the foundation of their empirical analysis. It enables calculation of
the implied valuation function in Eq. (3.8). This approach serves as a benchmark for our

alternative SS estimation approach.
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From the standpoint of Ohlson’s theory, it is important to mention that this empir-
ical strategy of DHS in question is a flawed one. As denoted in Egs. (3.7a) and (3.7b) of
section 3.2.2, a key assumption regarding information dynamics in the RIM framework
stipulates that next period ¢ 4+ 1 abnormal earnings are a linear function of current pe-
riod ¢ abnormal earnings and a latent variable. This ‘other information’ variable about
next period ¢ 4+ 1 abnormal earnings is posited to evolve as a first-order autoregressive
process. Therefore, estimates of the persistence parameter w; in Eq. (3.12a), obtained
from an unconditional pooled regression for abnormal earnings, is contaminated. Fur-
thermore, the second step estimation of 7; from Eq. (3.12b) is also problematic from an
econometric viewpoint.

Use of the two-step regression in DHS, as exemplified by Egs. (3.12a) and (3.12b),
leads to the well-known drawback, namely, classical measurement error on generated
variables, and the efficiency and consistency loss that ensues (see, for example Pagan
(1984); Oxley and McAleer (1993); and Hausman (2001) for related discussions). As a re-
sult, empirical analyses of the residual income valuation models that employ consensus
analysts’ earnings forecasts to extract the ‘other information’ variable v; are susceptible
to this drawback in methodology.

Our paper seeks to address two drawbacks in the RIM literature. One is to avoid
using analysts’ earnings forecasts data in favor of an objective model-based approach
to estimate ‘other information’ v;. Another is to avoid drawbacks of the two-step esti-
mation employed by DHS. We utilize a state space approach to extract the unobserved
other information 74 in the next section. The application of this technique serves as the

paper’s main contribution to the residual income valuation literature.
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3.2.4 SS Estimation Method

The dynamic evolution of abnormal earnings is specified in Equations (3.7a) and
(3.7b). Egs. (7a) and (7b) can be represented in general state space form in which the
measurement (observation) equation relating y; to the latent unobserved variable o is
formulated as:

Y = 2Oy + &, Et ~ 1td N ( 61, Ht> (3138)

nx1 nx1

and the transition (state) equation describing the evolution of the latent variable can be

formulated as:

Qi = ﬂ op1 + Rt m e ~ iid N (721’ Qt) . (313b)

(n+1)x1 (n+1)x1 (nx1)

Here, y, is the column vector of observed abnormal earnings at time ¢. 2z, = (I,, ;1)

isan x (n + 1) matrix containing a n-dimensional identity matrix and column vector

v
of lagged observed abnormal earnings at time ¢. a; = " | is the (n+ 1) x 1 state
w

vector of v, the ‘other information variable’ in the RIM, and w, the unknown persistence
parameter of abnormal earnings appearing in Eq. (3.7a). H; = 021, is the covariance
vI, O

matrix for the measurement noise €,. T} = isa(n+1)x (n+ 1) matrix
0 1

I
of parameters governing the state transition. R, = " |isa (n + 1) X n matrix of

0
parameters and (); = Ugln is the covariance matrix for the signal shock 7;. H; and Q)¢

are serially and mutually independent.
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A scalar state space representation for Egs. (3.7a) and (3.7b), for a single firm n = 1,
along with the Kalman filtering procedure that we have implemented for econometric
analysis can be found in the Appendix.?

Given the linear Gaussian state space specification above, we estimate the unknown

parameters contained in the vector, ¢p={w, 7, 02, 0727}, as well as the latent state vector
oy, using the Kalman filter.
Initialization. We initialize the Kalman filter with the initial state, a;; and py, at ¢ = 0.
Let ayy = E [ow|Y:], where Yy = {ys, Y1—1, Ye—2, - - . 1}, be the filter mean of unobserved
state oy, given observations up to and including y;, and p;; be the n X n covariance
matrix py, = var(oy|Yy).

Prediction. Given a,; and p,;, the one-step ahead predictor® 41| is provided by:

A1)t =F (Oét—',-l‘yt)
= E (Tiy100 + Repanea |Ye) (3.14a)

=Tiy1 - G|t

Pe1je = var (au41[Y?)
= var (Tir10p + Rypinia|Ye) (3.14b)

= TiapyTi, + R Qe Ry

*Note that the sum of the log L for either state space form match as the former estimates the
log L for all firms in the sample concurrently, while the latter does so individually for each firm
j at a time.

3Note we lose a degree of freedom in the time-series for each stock in the respective sample
when calculating a one step-ahead prediction.
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Filtering. Once a new observation y;; arrives, the one-step ahead predictions are

updated using the filtering equations:
Qpp1ft+1 = App1 + (Pt+1Z£+1Ft111) Prr1 (3.15a)

Prriji+1 = Pt — Pz Fi 2 D (3.15b)

where ©i11 = Yir1 — Zir1a1 = Y1 — E (yi11|Y2) is the one-step ahead prediction
error and Fiyy = var (@ir1) = Zi41Pe412) 41 + Hyyq is its conditional variance. Egs.
(3.14) and (3.15) together represent the Kalman filtering recursive procedure, whose ap-
plication generates the filter and predictive means and variances of the state variables
oy, conditional on ¢={w, 7, 02, 07 }.

Log-likelihood construction. As a by-product of the above recursive predictive
and filtering equations, we can recursively compute f (y;|Y;_1,¢) fort = 1,2,..., N
from the normal probability density function. We can use these densities to construct

the log-likelihood as follows:

nN 1 1
log L = ——~log(2) — 5 ;mg Bl =5 e e (3.16)

=1

where |F}| is the determinant of F;. We use numerical methods to minimize the nega-
tive of the log-likelihood function in Eq. (3.16), with respect to the unknown vector of

parameters ¢.
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3.3 Empirical Assessment of the Model

3.3.1 Data Description, Aggregation, Transformation, and Clean-
ing Details
Data Description

To investigate the empirical performance of our proposed SS estimation method, we
use a sample of constituents of major US stock indices, namely the DJIA and the S&P
500, from a couple of sets of accounting and stock market databases. We subsequently
clean, aggregate, and transform the raw sample data.

For historical stock price and accounting data, we use annual 1950-2017 CRSP and
COMPUSTAT Merged data files. To identify the constituents of the DJIA and S&P 500
as of 2017 fiscal year-end, we use COMPUSTAT Daily Updates - Index Constituents data
files. Additionally, for analyst forecast data, we retrieve annual 1976-2017 I/B/E/S data
files. In order to implement the benchmark DHS estimation method, the I/B/E/S files
are a mandatory requirement since they contain analyst forecast data. An evident issue
here is the unavailability of analyst forecast data before 1976. However, for state space
estimation, we only need the 1950-2017 CRSP/COMPUSTAT data. This fact further mo-
tivates the usefulness of the state space approach, as it eliminates the need for additional
data sets that may be subject to limited availability.

Since the set of available analyst forecasts within the sample period is vast, we use
only the latest analyst forecast recorded for each forecast period.

We conduct the empirical evaluation using per-share accounting data, including
book value per share (bvps), earnings per share (eps), and closing stock prices per share.
Each accounting variable is adjusted for periodic stock events, including stock splits,

stock dividends, mergers and acquisitions, etc. We additionally measure each variable
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based on fiscal year-end; otherwise, if unavailable for a firm-year observation, we mea-
sure it using calendar year-end. All analyses use basic earnings measured before extraor-
dinary items, and a discount rate of 12% as adopted by DHS, which they approximate to
be the long-run average realized return on US equities.

We construct an abnormal earnings series by using data for earnings and book value,
and the assumed cost of equity at 12% in Eq. (3.5).*

We note two things for the empirical strategy in DHS: all relevant variables are scaled
by market value of equity to control for heteroscedasticity and the 1% most extreme ob-
servations are winsorised in order to mitigate their undue effect on regression estimates.
However, for our purposes, we do not follow their scaling and winsorization procedure.
The use of winsorization and scaling can be riddled with several pitfalls, which may jeop-
ardize the validity of results. Such pitfalls include the hazard of a skewed distribution
of the information set in sample, and the potential tradeoft between forecast accuracy
and economic value of such regression-based forecasts (see Brownen-Trinh (2019) for
in-depth discussion). Robust estimators such as least trimmed squares estimate, Theil-
Sen estimator (see Theil (1950 and Sen (1968)), and robust scale minimization (see Pena
and Yohai (1999) for procedure) can overcome the challenges of scaling and winsoriza-
tion, and tend to perform well in spite of any outliers that may be present. Employing
such robust estimators in the context of the SS model here goes beyond the scope of this

study.

“Note we lose a degree of freedom in the time-series for each stock in the respective sample
when aggregating abnormal earnings. Constructing abnormal earnings at time ¢ requires book
value at time ¢ — 1. Therefore, given that the sample period of 1950-2017 totals 68 time periods,
we can have no more than 67 time periods in the abnormal earnings data series for each stock.
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Data Aggregation and Transformation Details

We begin aggregating the original data by extracting the CRSP/Compustat Merged
- Fundamentals Annual data file for active companies only during the January 1950
to December 2017 fiscal year period. We select the following array of relevant vari-
ables’ to be generated within the extracted data set: GVKEY,® Historical CRSP PERMCO
Link to COMPUSTAT Record (LPERMCO), Historical CRSP PERMNO Link to COM-
PUSTAT Record (LPERMNO), Company Name (CONM), Ticker Symbol (TIC), CUSIP,
North American Industry Classification Code (NAICS), Standard Industry Classification
Code (SIC), Adjustment Factor (Company) - Cumulative by Ex-Date (AJEX), Fiscal Year
(FYEAR), Book Value Per Share (BKVLPS), Earnings Per Share (Basic) Excluding Extraor-
dinary Items (EPSPX), Price Close - Annual - Calendar (PRCC_C), and Price Close - An-
nual - Fiscal (PRCC_F). Using the company identifier (GVKEY) to relate the two data files,
we identify the constituents of the DJIA and S&P 500 indices in the CRSP/COMPUSTAT
Merged data file with the COMPUSTAT Daily Updates - Index Constituents data file,
where there are 30 constituents within the Dow Jones Industrial Average and 501 con-
stituents within the S&P 500.”

Within the CRSP/COMPUSTAT Merged data file, we create an adjusted version of
each per share data variable (i.e. price and earnings per share). The adjusted variables are
data transformations that account for all stock splits and stock dividends that occurred
subsequent to the end of a given period. To do so, we adjust the per share data and share
data by dividing and multiplying them by the adjustment factor (AJEX), respectively for

each time period.

>See Appendix for detailed list of variable names and descriptions relevant to the analysis.
% Automatically included in data extract.

’See Appendix for full list of constituents for each index.
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Note that we have two share price variables, PRCC_C and PRCC_F. We primarily
use the closing price based on fiscal year-end (PRCC_F); however, if data are missing at
a specific time period, then we substitute it with the closing price at calendar year-end
(PRCC_Q).

To follow the DHS estimation method, we extract the £ + 1 analyst earnings fore-
cast data in the I/B/E/S - Summary History - Summary Statistics data file during the
January 1976 to December 2017 forecast period. We select the following array of rele-
vant variables to be generated within the extracted data set for analyst earnings forecast:
CUSIP (8-digit), Forecast Period End Date, IBES Statistical Period, and Mean Estimate.?
Again, since the set of available analyst forecast universe is rather large, we use only
the most recent, mean analyst forecast estimate recorded for each forecast period in the
data extract. Using a combination of company identifiers across the databases (GVKEY,
LPERMCO, and NCUSIP), we merge the ¢ + 1 analyst earnings forecast in I/B/E/S with
our CRSP/COMPUSTAT Merged data file.” This produces a total of 1,515 firm-year ob-

servations of the DJIA sample and 18,247 firm-year observations of the S&P 500 sample.

Data Cleaning Details

To clean the merged data, we remove all firm data if it contains missing observations,
gaps in the time-series, negative prices or book values, or less than three years of data.
As such, we end up with 19 DJIA stocks totalling 853 firm-year observations and 286

S&P 500 stocks totalling 9,093 firm-year observations.!’ Note that all stocks under the

8See Appendix for detailed list of variable names and descriptions relevant to the analysis.

°To merge the analyst forecast data from I/B/E/S with CRSP/COMPUSTAT Merged data
files in order to complete our compilation successfully is not straightforward and as such
requires several steps. This matter is a commonly known issue and a thorough solu-
tion can be found here: https://wrds-www.wharton.upenn.edu/pages/support/research-wrds/
linking-ibes-and-crsp-data/#using-link-tables-to-merge-ibes-and-crsp-data.

0See Appendix for full list of stocks included in sample set.
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Dow Jones Industrial Average are also under the S&P 500. Therefore the 19 stocks used
in the DJIA sample are used in the S&P 500 sample too."!

We conduct our analysis by splitting the aggregate sample into two sub-samples:
firms only in the financial, insurance, and public utility (henceforth FIPU) sectors and
firms outside those sectors (henceforth non-FIPU). We do this because the quantitative
characteristics of financial data for financial institutions, insurance companies, and pub-
lic utilities tend to be substantially different from those of other types of firms. An aggre-
gate sample inclusive of FIPU firms may skew the distribution of each financial variable
employed in our empirical evaluation. As such, we have 14 (5) non-FIPU (FIPU) stocks

in the DJIA sub-sample and 216 (70) non-FIPU (FIPU) stocks in the S&P 500 sub-sample.

Summary Statistics

Tables 3.1 and 3.2 provide summary statistics on key financial variables for non-FIPU
and FIPU stocks employed in the analysis, respectively. The mean stock price for non-
FIPU (FIPU) firms traded under each index is over three times (nearly two times) the
mean value of book value per share. This potentially indicates that investors see mar-
ket price as a forward-looking metric, reflecting information on expected next period
t + 1 earnings beyond the cost of capital and book value of equity (see Penman (1996)
for related discussion). This motivates the merit and practicality of the residual income
valuation model, which asserts that stock price is the sum of book value and the dis-
counted present value of expected abnormal earnings.

The five measures of variability for virtually all of the financial variables collectively
indicate larger dispersion for FIPU stocks relative to non-FIPU stocks. This is particu-

larly true for FIPU stocks under the S&P 500, driven predominantly by significant finan-

We use these 19 stocks in addition to 5 others arbitrarily chosen for graphical illustrations
in the paper.
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cial losses reported by insurance giant AIG in 2008. This larger dispersion, coupled with
larger third and fourth central moments for FIPU firms, further justifies the need to split
the sample into two sub-samples, as done here.

Abnormal earnings is less than earnings per share on average for firms traded under
each index by construction, underlying the critical assumption of the residual income
valuation model that earnings should account for the true cost of capital. That is, it
should not only capture the cost of debt (i.e. interest expenses readily included in net
income calculation), but also the cost of equity (i.e. cash distributions to shareholders
not readily included in net income calculation).

The first two central moments of analysts’ earnings forecast for non-FIPU stocks
traded under both the DJIA and S&P 500 are comparable to those of actual earnings per
share. This sheds some light on the forecasting abilities of Wall Street analysts for firms
outside of the financial, insurance, and utilities sectors. We also find similarities in the
first two central moments for FIPU firms traded under the DJIA, but not so much for
those traded under the S&P 500. This, of course, is not surprising considering that most
financial and insurance firms, including AIG, reported record losses during the 2007-
2009 financial crisis.

The average P/E ratio for non-FIPU (FIPU) stocks traded under the S&P 500 is roughly
$0.08 ($1) above that of blue chip stocks.'? This may signify confidence in future perfor-
mance investors have in stocks traded in the broader index, and thus the premium they
are willing to pay in shares per dollar generated in earnings. The mean RI/E ratio for
non-FIPU stocks shows that a dollar in earnings generates approximately 16-19 cents in
abnormal profits. Yet, the mean RI/E ratio for FIPU stocks shows a 4-17 cent residual in-

come loss per dollar generated in earnings. It is worth remembering that residual income

12We use ‘blue chip stocks’ interchangeably with ‘stocks traded under the DJIA index’ or any
similar variation.
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is excess earnings, after accounting for the equity capital cost. Therefore, this result is
suggestive of the average historical performances for non-FIPU and FIPU firms. The his-
torical performance of the former may signal to investors interested in diversification
its relative lucrativeness when compared to the latter.

A stylized fact documented in the empirical finance literature is the non-Gaussian
feature of financial data. All variables in each table exhibit strong leptokurtosis, high-
levels of skewness ranging from -13.736 to 21.048 (-44.428 to 21.507) in Table 3.1 (Table
3.2), with normality unequivocally rejected at a 1% significance level. Figures 3.1 and 3.2
and 3.3 and 3.4 plot the raw data of the financial variables for the 19 DJIA and 286 S&P

500 stocks, respectively.

3.3.2 Model Estimates

We begin our empirical analysis by analyzing how well abnormal earnings are de-
scribed by the information dynamics characterized by Eqs. (3.7a) and (3.7b). Joint esti-
mation of Egs. (3.7) is accomplished by the SS method proposed in this study. Benchmark
two-step estimation, as in DHS, is also undertaken for comparison. We report estimates
of the persistence parameters w and v, as well as those of the variances of shocks to the
abnormal earnings process and ‘other information” dynamics o and o7, respectively.

Table 3.3 presents maximum likelihood (ML) parameter estimates for the SS method
described in section 3.2.4. Pooled time-series and cross-sectional regression estimates
for the DHS method described in section 3.2.3 are also reported. Panels A and B provide

parameter estimates for non-FIPU and FIPU firms, respectively.
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Estimates of Abnormal Earnings for Non-FIPU Stocks

For the SS method in Panel A, the persistence parameter for z{, w is 0.0139 and 0.003
with a standard error of 0.1177 and 0.0019 for DJIA and S&P 500, respectively. The persis-
tence parameter for 14, v is 0.8967 and 0.4727 with a standard error of 0.0242 and 0.0102
for DJIA and S&P 500, respectively. The hypothesis that w = 1 for stocks in both indices
is strongly rejected, and there is not sufficient evidence to reject w = 0. On the other
hand, the hypotheses that v = 0 or that v = 1 are both firmly rejected for non-FIPU
stocks in both indices.

To add, estimates of the standard deviation of the measurement equation noise term
for abnormal earnings 0. equal 0.2238 and 0.0251 for the two indices, respectively. These
are statistically insignificantly different from zero. Estimates of the standard deviation
of the state equation signal shock o,, equal 0.9818 and 1.9740. These are strongly differ-
ent from zero for non-FIPU stocks traded under the DJIA and S&P 500, respectively.

These results affirm that abnormal earnings, with ‘other information’ embedded, are
mean-reverting. Their persistence and dispersion of the disturbance terms are primarily
reflected in v and o, respectively. Collectively, these results in essence provide evidence
of the usefulness of our technique to extract hidden yet relevant information about ab-
normal earnings. To add, 14, for non-FIPU stocks traded under the S&P 500 mean-reverts
at almost twice the rate of v; for DJIA stocks since its estimate of v is half that of the
other. Therefore, short- to medium-term trading strategies may be more suitable for
non-FIPU stocks traded under the S&P 500. To clarify, assuming that the stock market
prices expectations about firm profitability, investors who employ mean reversion trad-
ing strategies may find them to be lucrative by setting long (short) positions for stocks,
whose abnormal earnings deviate below (above) historical averages for short investment

horizons, before rebounding to normal levels.
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Estimates of Abnormal Earnings for FIPU Stocks: SS Method

For the SS method in Panel B, the persistence parameter for z{, w is 0.0025 and 0.0333
with a standard error of 0.0093 and 0.0042 for DJIA and S&P 500, respectively. In this case,
the hypothesis that w = 1 for stocks in both indices is strongly rejected. Furthermore,
while there is no sufficient evidence to reject that w = 0 for FIPU blue chip stocks, we
do however find that it is statistically significantly different from zero for FIPU stocks
traded under the broader index. This indicates a low level of persistence in abnormal
earnings for S&P 500 FIPU stocks.

The persistence parameter for v, v is 0.8302 and 0.9649 with a standard error of
0.0898 and 0.0041 for DJIA and S&P 500, respectively. The hypotheses that v = 0 and

= 1 respectively are both rejected for FIPU stocks traded under both indices at a 10%
significance level or better. To add, there is strong dispersion of both noise and signal
shocks for FIPU stocks as quantified by their standard deviation parameters, 0. and o,,.
The variation ranges from 1.25 to 24.84 of which the latter stems from FIPU stocks traded
under the S&P 500. These results are similar to those of Panel A discussed in the previous
subsection in that abnormal earnings are again mean-reverting, with their persistence
and variation in the disturbance terms largely reflected in - and o,, respectively. The
persistence parameter 7y values for both FIPU and non-FIPU stocks traded under DJIA
are quite comparable to one another; however, v; for FIPU stocks traded under the S&P
500 mean-revert in twice the time of non-FIPU stocks. This suggests that a signal shock
to ‘other information’ today will have long-dated influence on future abnormal earnings
for S&P 500 FIPU firms. Overall, these results again provide evidence of the usefulness
of our technique to extract latent information about abnormal earnings, particularly for
pricing and forecasting exercises.

Given the contrasting results, it would be of interest to analyze the forecasting ability

of abnormal earnings and stock prices using the two estimation techniques, namely, the
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SS method proposed in this paper and the benchmark DHS two-step regression method.

We undertake this task in section 3.3.3.

3.3.3 Forecasts of Stock Prices and Abnormal Earnings

In this section, inspired by the empirical analyses in Bakshi and Ju (2002) and Bakshi
and Chen (2005), we evaluate the in- and out-of-sample pricing and next period ¢ + 1
abnormal earnings forecasting performance of our state space approach and the bench-

mark DHS approach on a set of performance metrics.

Metrics Used for Evaluating Forecast Performance

The procedure for forecasting stock prices with our SS method is as follows. Let the
current period be indexed by time ¢. Our objective is to forecast stock prices for period
t, using all available information to date. This is accomplished by applying Eq. (3.8), for
which we need estimates of coefficients oy and as. These are functions of w, v, and 7.

The value of the constant discount rate r is chosen as described in Section 3.3.1. In
our SS method, estimates of the persistence parameters w and 7y are obtained by ML.

In the SS approach, we need estimates of the latent 'other information’ variable v,
as well, in order to apply Eq. (3.8) to forecast stock prices. Estimates of 1, are obtained
from the Kalman filter recursions. These recursions yield the filter mean of v;_;, after
observing abnormal earnings for period ¢ x¢. This is then updated, using Eq. (3.7b), to
obtain a predictive mean for 1. This is used in the pricing Eq. (3.8) to obtain model-
implied stock price for period ¢ F;.

In the DHS method, estimates of w; and ~;, obtained from pooled regressions in Eq.
(3.12), are used as proxies for w and 7 appearing in Eq. (7). These are used to estimate

the coefficients a; and a5 in the pricing Eq. (3.8).
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To construct the percentage pricing error and dollar forecast error for abnormal earn-
ings, let P, indicate the actual price at time ¢, P, indicate the model-implied price at time
t given by the valuation function in Eq. (3.8), 2, indicate the actual next period ¢ + 1
abnormal earnings, and E;{z{,,} indicate the conditional expectation of next period
t + 1 abnormal earnings as of time ¢ in Eq. (3.9). Then, the percentage pricing error is
ep, = 100 x (P, — P,)/P, and the dollar forecast error for next period ¢ + 1 abnormal
earnings is e;e, | = 77, — E{zf, }.

As such, the five standard error criteria used for pricing and abnormal earnings errors

include:

ZT €t
MPE/MDE = t%l

T 2
MPSE/MSE = —Zt;l L

> led]
MAPE/MADE = =10

T 2
RMPSE/RMSE = |/ —Zt;l L

MPE and MDE denote, respectively, the mean percentage pricing error and mean dollar
error, and they measure the prediction bias. STD is the standard deviation of the pricing
and dollar error time-series, and it measures the variation of the errors over time. The
remaining criteria measure prediction accuracy: MAPE and MADE denote the mean
absolute percentage error and mean absolute dollar error, MSPE and MSE are the mean
square percentage error and mean square error, and RMSPE and RMSE are the root mean

square percentage error and root mean square error, respectively.
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Under the assumption that the market prices equities fairly, Bakshi and Chen (2005)
suggest that a ‘good’ forecasting or valuation model, strictly speaking, should have an
error e¢; with a zero mean and low standard deviation over time. The authors further
imply that a forecasting or valuation model may still be ‘empirically acceptable’, even if
the mean error is nonzero, as long as e, has negligible variation over time. On one polar
end, if the mean and standard deviation of ¢, are both zero, then the model forecasts
perfectly. On the other polar end, if e; is large in magnitude, then the model performance

is poor, and it may well be misspecified.

1976-2017 In-sample Forecasts

Since v; is unobserved, we need F;(1;) in Eq. (3.8). This is obtained from the SS
method, applied to Egs. (3.7a) and (3.7b), by using the predictive mean for 14, obtained
after observing z;.

Tables 3.4 and 3.6 each report the five in-sample mean pricing and forecasting error
measurements as provided above'® for our SS method and the benchmark DHS method.
Specifically, Table 3.4 reports in-sample results for non-FIPU stocks. Table 3.6 reports
in-sample results for FIPU stocks. They also provide the percentage differences for each
error measurement of our SS estimation method with respect to that of the benchmark

DHS estimation method. We use a 1976-2017 sub-sample to calculate the error measure-

13We find it important to mention that such standard mean error measurements as calculated
in our analysis are slightly troublesome because they do not account for differences in available
data points between the two competing estimation methods. For example, after accounting for
the two degrees of freedom lost in the data for each stock in the aggregate sample, our SS es-
timation approach uses a total of 815 and 8,521 data points for the DJIA and S&P 500 stocks,
respectively. Yet, the DHS approach, which is constrained by the availability of analyst forecasts
for each stock in the I/B/E/S database, uses only 664 and 7,719 in kind. In our view, such lapse
in the number of available data points may over- or under-value the mean error measurements.
Specifically, less data available may potentially favor the current mean error calculations for the
DHS method relative to our estimation technique. Although we do not adopt one, and, if one
exists, a modified mean error calculation that accounts for or penalizes differences in data points
would be more appropriate within this context.
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ments for both abnormal earnings and stock prices. We do this in order to be consistent
with the time-period of data availability for consensus analysts’ earnings forecasts. Re-
call that consensus analysts’ next period ¢t + 1 earnings forecasts are used in order to

approximate expected ¢ + 1 abnormal earnings in the DHS estimation method.

1976-2017 In-sample Non-FIPU Model-Implied Prices

Figure 3.8 provides a graphical demonstration of the model’s ability to price stocks
under each estimation method relative to actual prices for the 14 firms. The implied
residual income valuations utilizing both methods do moderately well for Chevron and
DowDuPont but largely undervalue the remaining stocks. Such results do not come as
a surprise, though, given the stylized fact in the literature that traditional asset pricing
models assuming a constant discount factor do not capture variation in ex-post stock
prices very well.

The relative ability of the competing estimation methods to explain contemporane-
ous stock prices is analyzed in Panel B of Table 3.4. Panel B reports percentage pricing
errors for our SS method in the top-half of the panel and the DHS method in the bottom-
half. The MPE ranges from 50.67% to 54.84% for both estimation methods indicating that
the implied residual income valuation model using either method largely undervalues
stocks relative to the aggregate stock market. Although close, the DHS estimation gener-
ally demonstrates better valuation ability for non-FIPU stocks relative to our SS method.
Specifically, the DHS method values non-FIPU stocks traded under the DJIA and S&P
500 indices by approximately 2.3 and 4.3 percentage points more accurately than our
competing SS approach, respectively. We note here that, although, our SS method ex-
hibits better forecasting performance for abnormal earnings for non-FIPU stocks traded
under the S&P 500 in Panel A (discussed in the next subsection),the corresponding val-

uation result in Panel B does not. As such, it refutes the notion that improved forecasts
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for abnormal earnings. This result is not necessarily surprising, since explicit forecasts
of abnormal earnings are not used in the implied valuation model in Eq. (3.8). The com-
bination of ‘other information’, persistence parameters, and discount rate determines
stock price accuracy. As noted earlier, it is a drawback of our SS approach that we
learn about ‘other information’ 14 only through the history of abnormal earnings. But
Ohlson’s model suggests that v, is other information that is useful in predicting next
period ¢ + 1 abnormal earnings not contained in current abnormal earnings. Nonethe-
less, we still yield to the possibility that the valuation model may be misspecified for the
broader set of non-FIPU stocks on average under the assumption that the stock market

values stocks correctly.

1976-2017 In-sample Non-FIPU Forecasts of Next Period Abnormal Earnings

Figures 3.5 and 3.6 illustrate the in-sample forecasting ability of the DHS and SS es-
timation methods for abnormal earnings in Eq. (7a) for 14 non-FIPU stocks. Figure 3.7
superimposes the graphical results for each estimation method for complete compari-
son under one graph. There is ample heterogeneity regarding optimal fit for abnormal
earnings between the competing estimation methods across the 14 stocks, with our SS
estimation method as the leading candidate for half of those stocks. For example, the
in-sample predictions of our SS estimation method are clearly superior in fit for Verizon,
DowDuPont, Merck & Co, United Technologies, Walmart, Microsoft, and Cisco Systems
compared to those of the benchmark DHS method. Both methods, at least visually, are
fairly comparable to one another for the remaining 7 stocks. We quantify the perfor-
mance evaluation for the full array of 216 non-FIPU stocks in the sample.

Panel A of Table 3.4 provides dollar forecast errors for abnormal earnings for our SS
method in the top-half of the panel and the DHS method in the bottom-half. For the SS

estimation method, the mean dollar error for abnormal earnings is 0.1184 and 0.1345 for
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DJIA and S&P 500 stocks, respectively. This result suggests that, on average between
1976-2017, forecasts on next period ¢ + 1 abnormal earnings using our SS estimation
method are roughly 12-13 cents per share below realized ¢ + 1 abnormal earnings for
both blue chip and broad index stocks. In contrast, for the DHS estimation method, the
mean error for abnormal earnings is -0.0973 and -0.2273 for DJIA and S&P 500 stocks,
respectively. This result reflects the wide-ranging over-optimism in analysts’ forecasts
in earnings across firms.

The SS and DHS methods both clearly indicate prediction bias for abnormal earnings.
The former has a 28% smaller standard deviation in the bias for the S&P 500 stocks at
27.31% compared to the latter at almost 38%. The latter has a 5.5% smaller standard
deviation in the bias for the DJIA stocks at 30.2% compared to the former at almost 32%.
The measures of forecast accuracy indicate that the SS estimation method has superior
predictive ability for abnormal earnings for non-FIPU stocks traded under the S&P 500,
while the competing DHS method does a better job for non-FIPU blue chip stocks. This
result provides further support for using a state-space approach to predict next period
t + 1 abnormal earnings for a broader set of stocks. Yet, it also reiterates the important
role of ‘other information’ embedded in analysts’ forecasts in predicting next period £+ 1

abnormal earnings, at least for blue chip stocks.

1976-2017 In-sample FIPU Model-Implied Prices

Figure 3.10 provides a set of graphs illustrating the model’s ability to price stocks, un-
der each estimation method, relative to actual prices, for the 10 firms. The implied resid-
ual income valuations, utilizing both methods, again largely undervalue stocks, with
valuations for J.P. Morgan Chase and Bank of America being the most promising. The
relative ability of the competing estimation methods to explain contemporaneous stock

prices in the sample is evaluated in Panel B of Table 3.6. Panel B reports the percent-
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age pricing errors for our SS method in the top-half of the panel and the DHS method
in the bottom-half. Similar to non-FIPU stocks, the MPE for both estimation methods
indicates sizable undervaluation of FIPU stocks relative to the aggregate stock market.
One can readily see that the DHS estimation demonstrates superior valuation precision
for FIPU stocks relative to our SS method by 7 and 17.6 percentage points for the DJIA
and S&P 500, respectively. In addition to the in-sample pricing results for the 1976-2017
sub-sample period in Panel B of Table 3.4, this provides evidence for the superior ability
of the benchmark two-step regression employed in DHS to value firms within the fi-
nancial, insurance, and public utility sectors relative to our SS approach. The valuation
precision for the DHS method relative to our SS method is better by 2 percentage points
on average for blue chip stocks. Yet, it is definitively better by 30 percentage points on

average for S&P 500 stocks.

In-sample FIPU Forecasts of Next Period Abnormal Earnings

Figure 3.9 depicts the in-sample forecasting ability of both SS and DHS estimation
methods for abnormal earnings for 10 FIPU stocks. In this case, it is readily clear that
the SS method is the optimal predictor of in-sample abnormal earnings for virtually all
of them. As done for the non-FIPU stocks, we quantify the performance analysis to the
full set of 70 FIPU stocks in the sample.

Table 3.6 reports the five performance yardsticks for both estimation approaches as
in Table 3.4. Panel A of Table 3.6 provides dollar errors for abnormal earnings for our
SS method in the top-half of the panel and the DHS method in the bottom-half. For
the SS estimation method, the MDE for abnormal earnings is 0.1234 and -0.0257 for
DJIA and S&P 500 stocks, respectively. The under-prediction (about 12 cents) of our SS
approach for FIPU stocks traded under the DJIA is in line with that of non-FIPU stocks.

However, we find a 2.5 cent MDE for FIPU stocks traded under the S&P 500, indicating
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that our SS method is slightly over-optimistic on average. On the other hand, similar to
non-FIPU stocks, the DHS estimation method continues to forecast substantially above
realized ¢ + 1 abnormal earnings where the MDE is -0.2098 and -0.7307 for DJIA and S&P
500 stocks, respectively. This result reaffirms the significant over-optimism in analysts’
earnings forecasts, noticeably for FIPU stocks.

The three measures of forecast accuracy of abnormal earnings for FIPU blue chip
stocks collectively indicate that the SS estimation method is more accurate than the
DHS estimation method on average by about 3%. So far, within the context of forecasting
next period ¢t + 1 abnormal earnings for the 1976-2017 sub-sample period, our SS method
seems to outperform the DHS method for FIPU and non-FIPU stocks traded under the
DJIA and S&P 500, respectively.

It is a drawback of our SS approach adopted here that we learn about 14 in Eq. (7)
only through the observed history of . But, Ohlson’s (1995) model suggests that v; is
‘other information’ useful in predicting next period z{, , that is not contained in current
period z7.

Therefore, it would be worth learning about »; from an expanded set of variables,
such has capital markets-specific, firm-specific, and macroeconomic data. This is likely
to improve the performance of the SS approach further. We leave this task for future

research.

1950-2017 In-sample Forecasts

It is important to recall that one of the empirical deficiencies of the DHS estimation
method is the dependence on analysts’ forecasts needed to estimate 14 in order to value
contemporaneous stock prices. Such analyst forecast data in the I/B/E/S database were
not widely available across stocks until 1976. As such the first 26 years of the primary

1950-2017 sample period is unaccounted for in the pricing and forecasting error analysis.
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By way of contrast, our SS estimation method does not require analyst forecast data in
order to generate either ex ante or ex post ‘other information’ v;.

Tables 3.5 and 3.7 each display the same five performance metrics for our SS method
and the benchmark DHS method only now for the 1950-2017 full sample period. Specifi-
cally, Table 3.5 reports 1950-2017 in-sample results for non-FIPU stocks. Table 3.7 reports
1950-2017 in-sample results for FIPU stocks. Panels A and B for each table report the
dollar and percentage pricing error estimates for abnormal earnings and stock prices,
respectively. Note the error estimates remain the same as in Tables 3.4 and 3.6 for the

DHS method.

1950-2017 In-sample Non-FIPU Model-Implied Prices

For the SS estimation method in Panel B of Table 3.5, the MPE is 51.05% and 47.67%
for non-FIPU stocks traded under the DJIA and S&P 500 indices, respectively. These
estimates are substantial improvements in the implied valuation model based on our SS
method for the full 1950-2017 sample period compared to those in Panel B of Table 3.4.
The valuation model using the SS method reduces the undervaluation problem by ap-
proximately 5 percentage points in the full sample. Valuation for non-FIPU stocks traded
under the S&P 500 shows the largest valuation improvement by 7 percentage points al-
beit with a larger STD. To support, in contrast to Panel B of Table 3.4, the measures of
pricing accuracy now show that the implied valuation model based on our SS estimation

approach is the favorable one.

1950-2017 In-sample Non-FIPU Forecasts of Next Period Abnormal Earnings

For the SS estimation method in Panel A of Table 3.5, the MDE (STD) for abnormal
earnings is 0.0786 and 0.0869 (0.259 and 0.2262) for DJIA and S&P 500 stocks, respectively.

Compared to the MDE for the SS method in Panel A of Table 3.4, this result demonstrates
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a forecast improvement of roughly 4-5 cents from 12-13 cents to 8-9 cents below realized
abnormal earnings per share on average across stocks. The STD also reduces in value
by nearly 5-6 cents demonstrating lower volatility of the errors.

The remaining measures of forecast accuracy further illustrate the forecast improve-
ment of our SS method using the full sample period of abnormal earnings for non-FIPU
stocks. In fact, our SS method now has about 20% more accurate forecasts than those of
the benchmark DHS method for non-FIPU stocks traded under the DJIA, compared to

the results in the previous table.

1950-2017 In-sample FIPU Model-Implied Prices

For the SS estimation method in Panel B of Table 3.7, it reduces the undervalua-
tion problem by 3-4 percentage points for FIPU stocks and consequently demonstrates
a smaller MPE or undervaluation relative to the DHS method, along with a smaller STD
for S&P 500 FIPU stocks. Using the measures of forecast accuracy within this context,
the valuation model based on our SS method forecasts best for FIPU blue chip stocks,
while one based on the competing DHS method predicts best for FIPU stocks traded

under the broader S&P 500 index.

1950-2017 In-sample FIPU Forecasts of Next Period Abnormal Earnings

In Panel A of Table 3.7, we find that the prediction bias as measured by the MDE
of abnormal earnings for FIPU stocks is incrementally reduced for our SS method by 13
and 20% under the DJIA and S&P 500 indices, respectively. The DHS method is still the
leading method for prediction precision of next period ¢ 4+ 1 abnormal earnings for FIPU
stocks traded under the S&P 500 as in Table 3.6, while our SS method is best for FIPU

blue chip stocks.
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Further Analysis of In-sample Model-Implied Price Performance

We additionally examine relative valuation performance of each estimation method

for the full 1950-2017 sample from a simple regression specification:

P, = Bo + B P+, (3.17)

where P, is the market price in year ¢ and P, isthe corresponding model price determined
by the estimation method under consideration. If the valuation model under a given
estimation method immaculately fits market stock price variation over time, then 5, = 1
and the regression R? = 100%.

Panel A of Table 3.8 reports the regression results for each estimation method for
non-FIPU stocks. Panel B does the same for FIPU stocks.

For the valuation performance of non-FIPU blue chip stocks, the R? for both esti-
mation methods are practically equal to each other, with the 3; coefficient for our SS
method closer to 1. This result is in line with the performance metrics in Panel B of
Table 3.5, yielding a more accurate valuation under the SS estimation method.

In contrast, the R? and f3; coefficient for the DHS benchmark method is uniformly
better than our SS method for non-FIPU stocks traded under the S&P 500. This contrasts
with the results in Panel B of Table 3.5 for S&P 500 non-FIPU stocks. It is worth men-
tioning that, relative to non-FIPU blue chips, the lower R? for non-FIPU stocks traded
under S&P 500 for both estimation methods potentially implies that systematic factors
unaccounted for in the residual income valuation model may be critical in explaining
stock market prices.

For FIPU stocks, in this case, the DHS method unreservedly produces a better fit-
ting valuation model, especially for FIPU stocks traded under the S&P 500. For the DHS

method, the R? is about 66 percentage points higher than the SS method for S&P 500
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FIPU stocks. In addition, the (; coefficient for our SS method is not statistically differ-
ent from zero which implies that the valuation model under this estimation method is
severely misspecified for a broader set of FIPU stocks. These results are not surprising
and are comparable to those in Panel B of Table 3.7.

Given that the in-sample performance yardsticks and regression results in Tables
3.4-3.8 show mixed results contingent upon whether we use the full sample or restricted

sample, we next conduct out-of-sample stock price valuation under both sample types.

Out-of-sample Forecasts

For out-of-sample pricing under each estimation method, we take as input the pa-
rameter values estimated from the 3 years prior to and including year ¢ and apply them
to the valuation formula in Eq. (3.8) for year ¢ to determine the model-implied price
for each stock. Next, we proceed to year ¢t + 1 to get a new trailing 3-year sub-sample
and apply the re-estimated parameters to year ¢ 4 1. For example, to determine a model
price for IBM in year 2000, one would use IBM data from 1998-2000 to calculate param-
eter estimates to apply to the valuation formula for IBM in year 2000. Then, roll over
by one-period to re-estimate parameters using 1999-2001 data to compute a model price
for IBM in year 2001. This rolling-estimation procedure continues until 2017. In our
analysis, because we lose two degrees of freedom in the time-series for each stock (see
footnotes 3 and 4), we start the valuation exercise no earlier than the year 1952. The
initial 3 years of the 1952-2017 data sample are required to determine the first set of
out-of-sample pricing errors. Thus, the out-of-sample pricing results are based on the
1954-2017 valuation periods. Consequently, there are at most 64 observations of pricing
errors for any stock.

Additionally, we conduct a 5-year rolling-sample estimation procedure for robust-

ness. We find it important to mention that given the time-series of the data is short and
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the data frequency is in annual intervals, we face a hurdle of bias and large variance
for the rolling-sample parameter estimates under both competing estimation methods.
A longer time-series and/or shorter intervals (e.g. quarterly or monthly data) would
alleviate the problem statistically.

Considering that the rolling-estimation procedure is computationally-intensive, we
administer the out-of-sample pricing evaluation to an arbitrarily chosen set of 24 stocks
(14 non-FIPU stocks and 10 FIPU stocks): American Express, Aon, Apple, Bank of Amer-
ica, Chevron, Cisco Systems, DowDuPont, Duke Energy, ExxonMobil, Goldman Sachs,
Home Depot, IBM, Intel, JPM Chase, Merck & Co, Microsoft, Nike, Nisource, Pinnacle,
United Tech., UnitedHealth, Verizon, Visa, and Walmart.

As noted in Bakshi and Chen (2005), since the out-of-sample valuation for each stock
is based on the parameters estimated from each stock’s recent 3-year or 5-year history,
the model valuation implies what the stock price should be today if the market priced
the stock under the residual income framework as in the past 3 or 5 years. In other

words, the model price reflects the market’s recent valuation standard for the stock.

Out-of-sample Model-Implied Price Performance

Tables 3.9 and 3.10 report the out-of-sample pricing performance metrics of the 3-
year and 5-year rolling sub-samples for the 1976-2017 valuation period respectively, as
done for the in-sample counterpart.'* Panel A in each table displays the consolidated re-
sults for the 14 non-FIPU stocks and Panel B for the 10 FIPU stocks. There are three main
features of the rolling-window performance results. First, the valuation model under our
SS estimation approach generally performs better across the 24 stocks than the compet-

ing DHS estimation method. Second, the out-of-sample results for the SS approach are

1We exclude results of the 1954-2017 full valuation period, given similarities to those of the
1976-2017 sub-sample valuation period.
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comparable between the 3- and 5-year rolling sub-sample performance metrics. Third,
both 3- and 5-year rolling-estimation results for the SS approach in terms of valuation
bias (MPE) and valuation accuracy (MAPE, MSPE, and RMSPE) are substantially better
than their in-sample equivalents, but typically with larger variation (STD). For exam-
ple, the valuation bias for the out-of-sample results ranges from 16-30%, compared to
that of its in-sample counterpart of 31-55%. Similarly, the valuation accuracy metrics
for the out-of-sample results range from 18-59%, compared to those of the in-sample
results of 20-74%. However, the STD for the out-of-sample results for non-FIPU (FIPU)
stocks range from 31-47% (41-56%), compared to those of the in-sample results of 16.5-
17% (32.5-65%). Such larger variation in the out-of-sample errors both over time and
across stocks motivates an in-depth analysis of their properties discussed later in this
section.

Result three above is surprising. At current period time ¢, having observed abnormal
earnings z{, SS method forms a prediction for the ’other information’ variable ;. This
prediction is used in the price valuation formula given in Eq. (3.8). Price formula is a
function of the estimated parameters, w and +, as well as v;. Result three suggests that
using only the most recent data presumably leads to more accurate estimates of w and
v, as well as of v;.

For the benchmark DHS method, on the other hand, its rolling-estimation out-of-
sample results are generally worse than their respective in-sample results. Also, sur-
prisingly, the 5-year rolling sub-sample results for FIPU stocks are decidedly worse than
those in the 3-year rolling sub-sample. In fact, the valuation accuracy of the 3-year re-
sults for the DHS estimation method are on par with those of our SS method, with a
lower MPE equal to 5.7% (albeit a larger STD equal to 62.5%). Yet, they deviate substan-
tially for the 5-year rolling sub-sample, where MPE is -55.33%, STD is over 300%, and the

smallest (largest) valuation accuracy criterion MAPE (MSPE) is nearly 100% (1000%).
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Figures 3.11-3.14 illustrate the valuation horse-race between the SS and DHS esti-
mation methods for the 3- and 5-year rolling sub-samples of the 24 stocks. The rolling-
window valuation under our SS estimation approach track stock prices moderately bet-
ter than the 5-year. The opposite is true for the DHS approach, especially for FIPU stocks,

like Aon and Bank of America.

Out-of-sample Forecast Errors

In light of the large STD of the model mispricing previously discussed, we now an-
alyze their patterns and their properties. Since the relative out-of-sample performance
for our SS estimation approach typically does a better job pricing stocks than the com-
peting DHS benchmark as mentioned above, we concentrate on mispricing under our
SS approach only.

Figures 3.15 and 3.16 add the percentage pricing-error path along with the actual
and model price paths for each stock for both the 3- and 5-year rolling sub-samples.
One can readily see that, for most stocks, especially FIPU stocks, pricing errors have
trend and are highly volatile. The large volatility of the percentage errors is expected
given the short time-series and low frequency of the data. However, some stocks are
particularly mispriced with a trending pattern, such as Verizon, ExxonMobil, Microsoft,
Walmart, and all of the FIPU stocks (Visa has too small of a sample much less a rolling
sub-sample to make a reasonable inference). Except for a few outliers, the percentage
pricing errors for Chevron, Intel, and United Technologies are relatively small and sta-
ble over time, especially for the 5-year rolling window. Nonetheless, the fact that the
model pricing errors would systematically go through periods of high and low levels
(especially for FIPU stocks) suggests that other firm-specific or macroeconomic factors

may be important for the market’s valuation.
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Further Analysis of Out-of-sample Forecast Errors

To further understand the mispricing of the model under our estimation approach,
we look at both the autocorrelation and cross-stock correlations of the out-of-sample
pricing errors. Tables 3.11 and 3.12 show the autocorrelations at lags up to 5 years for
the 3- and 5-year rolling sub-samples, respectively. Panel A in each table provides au-
tocorrelations for non-FIPU stocks and Panel B for FIPU stocks. In Table 3.11, at the
1-year lag, the autocorrelations for non-FIPU stocks (FIPU stocks) range from -0.04 to
0.61 (-0.15 to 0.53). At the 2-year lag, they drop for each stock. Some stocks see further
reduction in autocorrelations, while most (particularly FIPU stocks) see increases at the
3-year lag. But, more firms in the sample start to have negative autocorrelations by the
5-year lag.

Since we have performed both 3- and 5-year rolling sub-sample valuation exercises,
we use the Ljung-Box Q-test to test for the absence of autocorrelation at the 3- and
5-year lags for each rolling sub-sample. For the 3-year rolling-window in Table 3.11,
the Q(3) and Q(5)-statistics with their respective p-values for ExxonMobil, Microsoft,
JPM Chase, Aon, and Duke Energy suggest that the null hypothesis for the absence of
autocorrelation is clearly rejected.

For the 5-year rolling sub-sample in Table 3.12, the autocorrelations at the 1-year
lag for non-FIPU stocks (FIPU stocks) are higher than their counterparts in Table 3.11,
ranging from 0.03 to 0.71 (-0.85 to 0.70). The autocorrelations also decrease at the 2-year
lag similar to Table 3.11. As the lag increases to 3 years and 5 years, more firms see
continued decrease in autocorrelations.

For the 5-year rolling-window in Table 3.12, the Q(3) and Q(5)-statistics with their
respective p-values for Chevron, ExxonMobil, Home Depot, IBM, Merck & Co, Nike,
Walmart Pinnacle, American Express, JPM Chase, Aon, Bank of America, UnitedHealth,

and Visa emphatically reject the null hypothesis of no autocorrelation. The pricing er-
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rors for ExxonMobil, JPM Chase, and Aon prove to be highly persistent regardless of
the rolling sub-sample. Altogether, the percentage pricing errors are persistent within
3-5 years, suggesting that firm-specific and/or macroeconomic factors are relevant in
pricing these firms.

Tables 3.13 and 3.14 provide the degree of covariation in the percentage pricing errors

across stocks under the following simple time-series regression:

Eit = G + bl'c‘::t + C:Jiﬂg, 1= 1, ce ,[ (318)

where ¢;, is the percentage pricing error of stock 7 in year ¢ and &7, is the percentage
pricing error of IBM and UnitedHealth (also arbitrarily chosen for comparison) for non-
FIPU and FIPU stocks, respectively. Each table reports the b coefficient and its standard
error as a correlation indicator between 7 stock and its respective benchmark stock, IBM
or UnitedHealth, along with its associated t-statistic and adjusted R?. For most of the
stocks, the b estimates are insignificant, with negative adjusted R? values indicating that
cross-correlations of the percentage pricing errors overall are non-existent. For the 3-
year rolling sub-sample, Cisco Systems has a statistically insignificant b coefficient but
with the highest adjusted R? of 12.50% for non-FIPU stocks. In the 5-year counterpart,
both Intel and Duke Energy also have statistically insignificant b coefficients but both
with the highest adjusted R? values of 14.18% and 27.64%, respectively. Such high R?
values make sense for both Cisco Systems and Intel relative to IBM, as they all oper-
ate in the information technology sector. Duke Energy relative to UnitedHealth is an
unexpected result. Visa severely suffers from small sample bias (only a maximum of 6
time-observations for the valuation exercise), therefore its adjusted R? is superficially

exacerbated.
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These results on pricing-error persistence and correlations potentially imply that
there are most-likely time-varying factors either unique to the firm or common in the

macroeconomy that may be relevant to the model.

Summary of Empirical Results

The parameter estimates under our SS estimation approach for abnormal earnings
reported in Table 3.3 and discussed in section 3.2 above indicate that abnormal earnings,
with ‘other information’ embedded, are mean-reverting and their strongly significant
persistence and variation in the disturbance terms are primarily reflected in the v and
o, parameters respectively. In this context, abnormal earnings for FIPU stocks mean
revert twice as fast as non-FIPU stocks traded under the broader S&P 500 index. Under
the benchmark DHS method, the parameter estimates also indicate that abnormal earn-
ings mean revert. Strong persistence and dispersion of disturbance terms are primarily
reflected in w and o, for non-FIPU stocks and v and o, for FIPU stocks.

We conduct in- and out-of-sample forecast performance analysis to determine a
performance leader. Figures 3.5-3.10 graphically illustrate the heterogeneity in the in-
sample pricing and forecasting performances of both estimation methods for 24 stocks.
However, Figures 3.11-3.14 depict that our SS estimation approach generally does a bet-
ter job pricing the 24 stocks in both 3- and 5-year rolling-windows. We quantify the
figures by reporting performance yardsticks in Tables 3.4-3.10. The in-sample exercises
produce mixed results, contingent upon using either the restricted 1976-2017 sub-sample
or the 1950-2017 full sample. Yet, we find that our SS approach is generally favorable in
valuing both FIPU and non-FIPU stocks out-of-sample. Finally, we evaluate the cross-
correlation and time-series properties of the percentage pricing errors in Tables 3.11-3.14
and Figures 3.15 and 3.16. The pricing errors in the figures exhibit trend and high volatil-

ity, especially for FIPU stocks, indicating both persistence over time and large mispricing
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for specific years, respectively. There is high persistence in the pricing errors for some
firms, including ExxonMobil, JPM Chase, and Aon for 3-5 years. In contrast, we find lit-
tle evidence of cross-correlation between stocks. Overall, we infer that there is at least

time-varying firm-relevant or market-wide factors omitted from the valuation model.

3.4 Conclusions

We assess the empirical implications of the residual income valuation model for eq-
uity prices developed in Ohlson (1995) by accounting for residual income information
dynamics. A key assumption of the Ohlson (1995) residual income model stipulates that
next period ¢ + 1 residual income is a linear function of current period ¢ residual income
and a latent variable referred to as ‘other information’. This ‘other information’ contains
information on next period ¢ + 1 abnormal earnings not reflected in current period ¢ ab-
normal earnings. Previous work in Dechow et al. (1999) is the first to explicitly account
for this variable in empirical application of the residual income model. They proxy this
‘other information’ variable with consensus analysts’ forecasts of earnings. In this pa-
per, we propose to estimate this latent ‘other information’ variable using a state space
framework instead. Our method obviates the need for analysts’ earnings forecasts.

Persistence and dispersion of the disturbance terms for abnormal earnings are pri-
marily reflected in the parameters of the ‘other information’ variable v, using our SS
estimation approach. This signifies the importance of the latent variable in predicting
next period ¢t 4 1 abnormal earnings. It also demonstrates the usefulness of our approach
to extract hidden yet relevant information about abnormal earnings. Cognizant of the
flawed two-step regression benchmark approach in DHS, persistence and dispersion of
the disturbance terms for abnormal earnings are reflected in the parameters of both cur-

rent abnormal earnings and ‘other information’.
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Empirical results indicate that our SS estimation approach is promising in pricing
stocks and predicting next period ¢ + 1 abnormal earnings, relative to the two-step re-
gression benchmark approach in DHS. The SS estimation approach leads the DHS coun-
terpart for both 3- and 5-year rolling-window out-of-sample stock pricing.

Examination of the time-series properties of out-of-sample pricing errors across stocks
demonstrate high persistence and large mispricing for some years, prominently for FIPU
firms. We find no direct evidence of cross-correlation in pricing errors. Given the time
trend and large volatility of pricing errors, we deduce that time-varying firm-specific
and/or market-wide factors are omitted variables in the residual income valuation model.

The empirical results suggest at least a few research directions. First, one can intro-
duce stochastic discount rates in our state space application that would lead to a richer
valuation model. Second, it may be empirically desirable to examine jump-diffusion
processes for abnormal earnings, especially for firms in the FIPU sectors, given the non-
Gaussian nature of the data. Lastly, one can consider extracting the ‘other information’
variable using a rich set of data on accounting, capital market, and macroeconomic vari-

ables. We leave this last task for future work.
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Table 3.1: Summary Statistics: Non-FIPU Firms

Measures of Variability

Variable Index Mean Median Min Max | StdDev CV Range Range/Mean Range/Median | Skewness Kurtosis Normality
Test

DJIA 7.630 4.113 0.005 82.477 10.692 1.401 82.472 10.809 20.052 3.442 19.847 9.59E+03
Book value -1.00E-03
per share S&P 500  9.324 5.331 0.002  212.789 12.381 1.328 212.787 22.820 39.915 3.914 37.447 3.55E+05
(0.001)
DJIA 25.861 13.313 0.029  200.900 33.245 1.286 200.871 7.767 15.089 2.048 7.965 1.20E+03
(0.001)
Price S&P 500 30.091 17.255 0.010  619.520 39.733 1.320 619.510 20.588 35.903 3.398 24.092 1.40E+05
(0.001)
DJIA 1.546 0.674 -3.505 15.680 2.411 1.559 19.185 12.410 28.449 2.771 12.388 3.44E+03
Earnings (0.001)
per share S&P 500 1.243 0.661 -111.182 23.500 2.893 2.327 134.682 108.355 203.835 -12.681 449.976 5.70E+07
(0.001)
DJIA 2.099 1.335 0.000 17.970 2.618 1.248 17.970 8.563 13.461 2725 12.769 2.72E+03
Analysts’ EPS (0.001)
Forecast S&P 500 1.776 1.150 -62.600 20.960 2.373 1.336 83.560 47.047 72.661 -2.778 126.670 3.67E+06
(0.001)
DJIA 0.701 0.144 -10.003 13.086 1.857 2.648 23.089 32.929 159.981 2.603 19.186 8.20E+03
Abnormal (0.001)
Earnings S&P 500  0.233 0.112 -95.040 18.741 2.533  10.869 113.781 488.269 1018.412 -13.736 422.794 4.87E+07
(0.001)
DJIA 23.943 23.943 -962.500 2,925.00 122.074  5.099  3,887.50 162.367 162.367 18.723 467.767 6.30E+06
P/E (0.001)
S&P 500 24.024 24.024 -3479.000 7,697.00 149334 6.216 11,176.00 465.210 465.210 21.048  1145.869 3.72E+08
(0.001)
DJIA 0.190 0.190  -142.387 78.987 6.816 35.782 221.373 1162.105 1162.105 -11.645 314.874 2.78E+06
RI/E (0.001)
S&P 500  0.160 0.160  -142.387  209.415 5.943 37.095 351.802 2195.807 2195.807 1.181 430.057 5.02E+07
(0.001)

Summary Statistics table provides descriptive information about key financial variables used in the analysis for firms excluding financial institutions, insurance companies,
and public utilities (non-FIPU firms). The data frequency in sample is annual using a 1950-2017 sample period. All per share data are in dollar units and are adjusted by the
cumulative factor to account for stock events (e.g. stock splits, stock dividends, mergers and acquisitions, etc.). The column denoted ‘CV” is the coefficient of variation, which
is the ratio of the standard deviation to the mean. The Range/Mean and Range/Median are the ratios of the range of the data to the mean and median respectively. These
three columns measure the relative dispersion of the data in relation to the sample mean or median. Normality Test gives the Jarque-Bera test statistic and its p-value in
parentheses. All p-values are within 1 percent significance level.
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Table 3.2: Summary Statistics: FIPU Firms

Measures of Variability
Variable Index Mean Median Min Max |StdDev CV  Range Range/Mean Range/Median | Skewness Kurtosis Normality
Test

DJIA 24413 11767 0011 182474 | 36414 1492 182463 7.474 15507 2771 10.621 5.85E+02
Book value -1.00E-03
per share S&P 500 23.451 12.800 0.007  781.772 44349 1891  781.765 33.336 61.075 9.095 123.608 1.41E+06
(0.001)
DJIA 44.670 29.420 0.113  254.760 52.892 1.184  254.647 5.701 8.656 1.921 6.647 1.85E+02
(0.001)
Price S&P 500 42.732 23.525 0.023 1971.250 104.774 2452 1971.227 46.130 83.793 10.811 147.651 2.02E+06
(0.001)
DJIA 3.162 1.858 -5.560 26.340 4.479 1416 31.900 10.088 17.171 2.686 11.709 6.89E+02
Earnings (0.001)
per share S&P 500  2.191 1.443  -756.800 107.600 16.928  7.726  864.400 394.533 599.237 -39.467  1783.534 3.00E+08
(0.001)
DJIA 3.641 2.350 0.010 22.630 4.365  1.199 22.620 6.213 9.626 2.341 8.417 3.05E+02
Analysts’ EPS (0.001)
Forecast S&P 500  3.329 2.030 -3.300 132.080 7.325  2.200 135.380 40.666 66.690 10.769 152.184 1.89E+06
(0.001)
DJIA 0.454 0221  -12.777 17.626 3.007  6.629 30.402 67.014 137.609 1.098 16.199 1.14E+03
Abnormal (0.001)
Earnings S&P 500 -0.479 0.086 -847.693 27.820 18.406 38.425 875513 1827.748 10184.832 -44.428  2042.545 3.82E+08
(0.001)
DJIA 17.126 17.126  -38.449  193.182 17.977  1.050  231.630 13.525 13.525 6.023 60.162 2.25E+04
P/E (0.001)
S&P 500 18.129 18.129 -467.188 2355.000 83.547  4.608 2822.188 155.673 155.673 21.507 569.261 3.05E+07
(0.001)
DJIA -0.040 -0.040  -34.842 3.542 2919 73.862 38.384 971.246 971.246 -11.194 133.857 1.12E+05
RIE (0.001)
S&P 500 -0.172 -0.172  -250.879 64.208 8.147 47357  315.086 1831.601 1831.601 -23.638 694.209 4.40E+07
(0.001)

Summary Statistics table provides descriptive information about key financial variables used in the analysis for financial institutions, insurance companies, and public utilities
(FIPU firms). The data frequency in sample is annual using a 1950-2017 sample period. All per share data are in dollar units and are adjusted by the cumulative factor to
account for stock events (e.g. stock splits, stock dividends, mergers and acquisitions, etc.). The column denoted ‘CV’ is the coefficient of variation which is the ratio of
the standard deviation to the mean. The Range/Mean and Range/Median are the ratios of the range of the data to the mean and median respectively. These three columns
measure the relative dispersion of the data in relation to the sample mean or median. Normality Test gives the Jarque-Bera test statistic and its p-value in parentheses. All
p-values are within 1 percent significance level.
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Table 3.3: Parameter Estimates

T =wal + v+ e, €1 ~ Gid N (0,02) (7a)
Upp1 = VWi + €241, a1 ~ 1id N (07 03) (7b)
Method Index w Oc oy ol

Panel A: Non-FIPU Firms

DJIA 00139 02238 09818  0.8967
SS Method (0.1177) (0.3288) (0.1325) (0.0242)
S&P 500 0.0030  0.0251  1.9740  0.4727

(0.0019)  (0.0925) (0.0175) (0.0102)

DJIA 08068 1.0963 0.7715  0.3633
DHS Method (0.0099) (0.0262) (0.0137) (0.0166)
S&P 500 0.4184 23008 1.0110  0.5327

(0.0017)  (0.0076) (0.0031) (0.0024)

Panel B: FIPU Firms

DJIA 00025 22544 12475  0.8302
SS Method (0.0093) (0.2001) (0.2967) (0.0898)
S&P 500 0.0333  1.6153 24.8357  0.9649

(0.0042) (0.4107) (0.3717) (0.0041)

DJIA 02774 238801  0.9089  0.6542
DHS Method (0.0288) (0.3684) (0.0455) (0.0333)
S&P 500 0.0962 183164 1.8947  0.7664

(0.0079) (1.7355) (0.0106) (0.0018)

Maximum likelihood parameter estimates for Ohlson’s dynamic
linear information model for abnormal earnings in Egs. (7a) and
(7b) are reported in Panel A for firms excluding financial in-
stitutions, insurance companies, and public utilities (non-FIPU
firms). The same parameter estimates are reported in Panel B
for financial institutions, insurance companies, and public utili-
ties (FIPU firms). The SS Method calculates parameter estimates
based on our state space application via the Kalman filtering re-
cursive procedure. The DHS Method calculates parameter es-
timates based on two unconditional pooled regressions of Egs.
(7a) and (7b). Numbers in parentheses for parameter estimates
are their standard errors.
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Table 3.4: 1976-2017 In-sample Pricing and Forecast Errors: Non-FIPU Firms

1976-2017 Sub-sample
Non-FIPU Firms
Method Variable Index MDE % diff STD % diff ~MADE % diff MSE % diff RMSE % diff

Panel A: Abnormal Earnings

DJIA 0.1184 -221.74% 0.3185 5.48% 0.2557 18.36%  0.1131 14.82% 0.3363 7.15%
SS Method xf

S&P 500 0.1345 -159.15% 0.2731 -27.72% 0.2090 -16.27%  0.0909  -52.42% 0.3015 -31.02%
DJIA -0.0973 - 0.3020 - 0.2161 - 0.0985 - 0.3138 -
DHS Method f

S&P 500 -0.2273 - 0.3779 - 0.2496 - 0.1911 - 0.4371 -

Method Variable Index MPE %ptdiff STD %ptdiff MAPE %ptdiff MSPE % ptdiff RMSPE % pt diff

Panel B: Stock Price

DJIA 54.09% 1.56% 17.18% 3.58% 54.09% 1.56% 32.14% 2.74% 56.69% 2.47%
SS Method P,

S&P 500 54.84% 4.17% 16.52% 0.38% 54.84% 4.17% 32.74% 4.53% 57.22% 4.10%

DJIA 52.53% - 13.60% - 52.53% - 29.40% - 54.22% -
DHS Method P,

S&P 500 50.67% - 16.14% - 50.67% - 28.22% - 53.12% -

In-sample pricing and forecast errors table provides five error measurements for firms excluding financial institutions, insurance companies,
and public utilities (non-FIPU firms) for the 1976-2017 sub-sample period: Mean Dollar Error (MDE) or Mean Percentage Pricing Error (MPE),
Standard Deviation (STD), Mean Absolute Dollar Error (MADE) or Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE) or
Mean Squared Percentage Error (MSPE), and Root Mean Squared Error (RMSE) or Root Mean Squared Percentage Error (RMSPE). Panel A
reports each dollar error calculation based on both SS and DHS methods for abnormal earnings and Panel B reports the percentage price errors
for stock prices. The table also provides percentage (percentage point) differences of each dollar (percentage pricing) error measurement based
on the SS method with respect to the benchmark DHS method.
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Table 3.5: 1950-2017 In-sample Pricing and Forecast Errors: Non-FIPU Firms

1950-2017 Full Sample
Non-FIPU Firms

Method Variable Index MDE % diff STD % diff MADE % diff MSE % diff RMSE % diff

Panel A: Abnormal Earnings

DJIA 0.0786 -180.82% 0.2590  -14.22%  0.1695  -21.57%  0.0723  -26.62% 0.2688 -14.34%
SS Method xf

S&P 500 0.0869 -138.23% 0.2262  -40.15% 0.1373 -44.96%  0.0579  -69.68% 0.2407 -44.94%
DJIA -0.0973 - 0.3020 - 0.2161 - 0.0985 - 0.3138 -
DHS Method f

S&P 500 -0.2273 - 0.3779 - 0.2496 - 0.1911 - 0.4371 -

Method Variable Index MPE %ptdiff STD %ptdiff MAPE %ptdiff MSPE % ptdiff RMSPE % pt diff

Panel B: Stock Price

DJIA 51.05% -1.48% 16.33% 2.73% 51.05% -1.48% 28.69% -0.71% 53.56% -0.66%
SS Method P,

S&P 500 47.67% -3.00%  20.72% 4.58% 48.78% -1.88%  26.95%  -1.27% 51.91% -1.21%

DJIA 52.53% - 13.60% - 52.53% - 29.40% - 54.22% -
DHS Method P,

S&P 500 50.67% - 16.14% - 50.67% - 28.22% - 53.12% -

In-sample pricing and forecast errors table provides five error measurements for firms excluding financial institutions, insurance companies,
and public utilities (non-FIPU firms) for the 1950-2017 full-sample period: Mean Dollar Error (MDE) or Mean Percentage Pricing Error (MPE),
Standard Deviation (STD), Mean Absolute Dollar Error (MADE) or Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE) or
Mean Squared Percentage Error (MSPE), and Root Mean Squared Error (RMSE) or Root Mean Squared Percentage Error (RMSPE). Panel A
reports each dollar error calculation based on both SS and DHS methods for abnormal earnings and Panel B reports the percentage price errors
for stock prices. The table also provides percentage (percentage point) differences of each dollar (percentage pricing) error measurement based
on the SS method with respect to the benchmark DHS method.
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Table 3.6: 1976-2017 In-sample Pricing and Forecast Errors: FIPU Firms

1976-2017 Sub-sample
FIPU Firms

Method Variable Index MDE % diff STD % diff MADE % diff MSE % diff RMSE % diff

Panel A: Abnormal Earnings

DJIA 0.1234  -158.83% 1.3812 -3.76% 0.8473 4.00% 1.8776 -8.63% 1.3703 -4.41%
SS Method xf

S&P 500 -0.0257 -96.48%  3.4883 21.74% 1.0465 34.44%  11.8791  38.96% 3.4466 17.88%
DJIA -0.2098 - 1.4352 - 0.8147 - 2.0549 - 1.4335 -
DHS Method furs

S&P 500 -0.7307 - 2.8653 - 0.7784 - 8.5484 - 2.9238 -

Method Variable Index MPE %ptdiff STD %ptdiff MAPE %ptdiff MSPE % ptdiff RMSPE % pt diff

Panel B: Stock Price

DJIA 31.51% 7.04% 32.54%  -3.37% 40.10% 2.69% 20.27% 1.69% 45.02% 1.92%

SS Method P,

S&P 500 35.40% 17.64%  65.34%  31.11% 45.77% 12.02% 54.21% 39.62% 73.63% 35.42%

DJIA 24.47% . 35.91% - 37.41% - 18.57% - 43.10% -
DHS Method P,

S&P 500 17.76% - 34.23% - 33.75% - 14.60% - 38.20% -

In-sample pricing and forecast errors table provides five error measurements for firms for financial institutions, insurance companies, and
public utilities (non-FIPU firms) for the 1976-2017 sub-sample period: Mean Dollar Error (MDE) or Mean Percentage Pricing Error (MPE),
Standard Deviation (STD), Mean Absolute Dollar Error (MADE) or Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE) or
Mean Squared Percentage Error (MSPE), and Root Mean Squared Error (RMSE) or Root Mean Squared Percentage Error (RMSPE). Panel A
reports each dollar error calculation based on both SS and DHS methods for abnormal earnings and Panel B reports the percentage price errors
for stock prices. The table also provides percentage (percentage point) differences of each dollar (percentage pricing) error measurement based
on the SS method with respect to the benchmark DHS method.
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Table 3.7: 1950-2017 In-sample Pricing and Forecast Errors: FIPU Firms

1950-2017 Full Sample
FIPU Firms

Method Variable Index MDE % diff STD % diff MADE % diff MSE % diff RMSE % diff

Panel A: Abnormal Earnings

DJIA 0.1076  -151.32%  1.3050 -9.07% 0.7646 -6.15% 1.6785  -18.32% 1.2956 -9.62%
SS Method xf

S&P 500 -0.0205 -97.19%  3.0681 7.08% 0.8195 5.27% 9.2395 8.08% 3.0397 3.96%
DJIA -0.2098 - 1.4352 - 0.8147 - 2.0549 - 1.4335 -
DHS Method f

S&P 500 -0.7307 - 2.8653 - 0.7784 - 8.5484 - 2.9238 -

Method Variable Index MPE %ptdiff STD %ptdiff MAPE %ptdiff MSPE % ptdiff RMSPE % pt diff

Panel B: Stock Price

DJIA 27.66% 3.19% 33.02% -2.89% 37.29% -0.12% 18.32% -0.25% 42.81% -0.29%

SS Method P,

S&P 500 32.53% 14.76%  59.89%  25.66% 43.95% 10.20%  45.78%  31.19% 67.66% 29.46%

DJIA 24.47% - 35.91% - 37.41% - 18.57% - 43.10% -
DHS Method P,

S&P 500 17.76% - 34.23% - 33.75% - 14.60% - 38.20% -

In-sample pricing and forecast errors table provides five mean error measurements for financial institutions, insurance companies, and public
utilities (FIPU firms) for the 1950-2017 full-sample period: mean error (ME), mean absolute error (MAE), mean squared error (MSE), and root
mean squared error (RMSE). Panel A reports each mean error calculation based on both SS and DHS methods for abnormal earnings and Panel
B reports the same for stock prices. The table also provides percentage differences of each mean error measurement based on the SS method
with respect to the benchmark DHS method.
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Table 3.8: Quantitative Assessment of Model Fit: SS Method
and DSH Method

Pt:ﬁ()+ﬁlﬁ)t+ﬁta (18)

Method Index Bo B1  t-stat  Adj. R?

Panel A: Non-FIPU Firms

DJIA 646 192 649  72.09%
SS Method (2.36)  (0.30)
S&P 500 7.93 238 1374 53.77%

(1.40) (0.17)

DJIA 7.01 1.97 8.18 72.23%
DHS Method (259) (0.24)
S&P 500 6.74 2.31 13.53 59.90%

(1.69) (0.17)

Panel B: FIPU Firms

DJIA 1407 120 967  71.67%
SS Method (3.95) (0.12)
S&P 500 3812 030 117  12.68%

(633) (0.26)

DJIA 1322 124 975  73.06%
DHS Method (4.11) (0.13)
S&P 500 -5.03 192 11.85 78.84%

(3.23) (0.16)

Simple regression analysis provide additional evidence
of the in-sample pricing performance relative to market
prices under both SS and DHS estimation methods using
the full sample. [ coefficients, t-statistic for the null hy-
pothesis of B, = 0, and the adjusted R? are reported
in Panel A for firms excluding financial institutions, in-
surance companies, and public utilities (non-FIPU firms).
The same are reported in Panel B for financial institutions,
insurance companies, and public utilities (FIPU firms).
The SS Method represents the in-sample implied prices
using the state space application via the Kalman filtering
recursive procedure. The DHS Method represents the in-
sample implied prices based on two unconditional pooled
regressions of Egs. (7a) and (7b). Numbers in parentheses
for /3 coefficients are their standard errors computed using
the Newey-West estimator to control for heteroscedastic-

ity.
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Table 3.9: 3-year Rolling-Window Out-of-Sample Performance Metrics

1976-2017 Sub-sample

Method Variable MPE % ptdiff STD % ptdiff MAPE %ptdiff MSPE % ptdiff RMSPE % pt diff

Panel A: Stock Price for Non-FIPU Firms

SS Method P, 24.36%  -32.55% 47.12%  32.84%  41.98% -14.93% 27.61%  -6.77% 52.54% -6.09%

DHS Method P, 56.91% - 14.28% - 56.91% - 34.38% - 58.63% -

Panel B: Stock Price for FIPU Firms

SS Method P, 20.68%  14.98%  56.20%  -6.25%  46.37% 4.03% 3511%  -3.25% 59.25% -2.68%

DHS Method P, 5.69% - 62.46% - 42.33% - 38.36% - 61.93% -

3-year rolling-window out-of-sample pricing table provides five error measurements for 24 firms during the 1976-2017 sub-sample
period: Mean Percentage Pricing Error (MPE), Standard Deviation (STD), Mean Absolute Percentage Error (MAPE), Mean Squared
Percentage Error (MSPE), and Root Mean Squared Percentage Error (RMSPE). Panel A reports each percentage pricing error cal-
culation based on both SS and DHS methods for 14 non-FIPU firms and Panel B reports the percentage pricing errors for 10 FIPU
firms. The table also provides percentage (percentage point) differences of each percentage pricing error measurement based on
the SS method with respect to the benchmark DHS method.
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Table 3.10: 5-Year Rolling-Window Out-of-Sample Valuation Performance Metrics

1976-2017 Subsample

Method Variable MPE % ptdiff STD % ptdiff MAPE %ptdiff MSPE % ptdiff RMSPE % pt diff

Panel A: Stock Price for Non-FIPU Firms

SS Method P 29.67% -6.49% 31.15% 0.18% 37.89% -5.35% 18.27% -4.14% 42.75% -4.59%

DHS Method P, 36.15% - 30.97% - 43.24% - 22.41% - 47.34% -

Panel B: Stock Price for FIPU Firms

SS Method P, 16.66% 71.99% 41.74%  -261.55% 37.03% -62.13% 19.79%  -906.50%  44.48%  -259.87%

DHS Method A -55.33% - 303.30% - 99.16% - 926.29% - 304.35% -

5-year rolling-window out-of-sample pricing table provides five error measurements for 24 firms during the 1976-2017 sub-sample
period: Mean Percentage Pricing Error (MPE), Standard Deviation (STD), Mean Absolute Percentage Error (MAPE), Mean Squared
Percentage Error (MSPE), and Root Mean Squared Percentage Error (RMSPE). Panel A reports each percentage pricing error calculation
based on both SS and DHS methods for 14 non-FIPU firms and Panel B reports the percentage pricing errors for 10 FIPU firms. The
table also provides percentage (percentage point) differences of each percentage pricing error measurement based on the SS method
with respect to the benchmark DHS method.
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Table 3.11: Pricing-error Autocorrelations for 24 Stocks: 3-year Rolling Sub-sample

Autocorrelations

No. Stock Lag1 Lag2 Lag3 Lag5 Q(3) p-value Q(5) p-value

Panel A: Non-FIPU Firms

1 Apple 0.29 0.04 -0.09 0.02 3.48 0.323 3.60 0.608
2 Verizon 042 -0.14 -0.13 -0.01 7.09 0.069 7.16 0.209
3 Chevron 0.13 0.05 0.11  -0.03 212 0.548 2.31 0.804

4 Dow DuPont 0.10 -0.04 -0.15 -0.10 2.03 0.567 3.76 0.585

5 ExxonMobil 0.45 0.06 0.04 0.17 1393 0.003 17.99  0.003
6 Home Depot 0.39  0.07 0.11 0.13  6.15 0.104 7.87 0.164
7 Intel -0.04 -0.06 0.12 -0.11 0.98 0.806 1.64 0.896
8 IBM 029 -0.01 -0.06 -0.03 5093 0.115 12.19  0.032
9 Merck & Co 0.09 -0.04 -0.07 -0.04 0.99 0.804 1.87 0.867
10 Nike 0.24 -0.12 0.04 -0.15 274 0.433 3.74 0.587
11 United Tech. -0.04 -0.05 -0.01 -0.22 0.24 0.971 4.04 0.544
12 Walmart 026 009 006 001 372 0.293 4.05 0.543
13 Microsoft 0.61