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This dissertation involves measuring and testing the empirical performances of eq-

uity pricing models.

The �rst paper extends the constant discount factor model with intrinsic bubbles de-

veloped in Froot and Obstfeld (1991) to account for autocorrelation in dividend growth

rates. We derive an analytical expression for both the present value stock price and an

intrinsic bubble component when dividend growth rates evolve as a Gaussian AR(1) pro-

cess. Hypotheses tests favor an AR(1) process for dividend growth rates and an AR(1)-

based model developed here for price-dividends ratios over a benchmark case. Hypothe-

ses tests also reject the absence of a bubble component in stock prices. Incorporating the

bubble component into our model provides a signi�cant improvement in �t to observed

P/D ratios and stock prices.

The second paper assesses the empirical implications of the residual income model

developed in Ohlson (1995). A key assumption stipulates that next period t + 1 resid-

ual income is a linear function of current period residual income and a latent variable

referred to as ‘other information’. This ‘other information’ is posited to contain infor-

mation on next period t + 1 residual income and re�ected in current stock prices. We

propose to estimate this latent ‘other information’ variable using a state space frame-
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work. We estimate the valuation model, within the embedded state space framework,

using the Kalman �lter. Performance yardsticks indicate that our state space estimation

approach shows promise in valuing stocks.

The third paper attempts to estimate and study the role of ‘other information’ νt, as

theorized in the Ohlson (1995), for tracking and predicting future returns of the S&P

500. νt is unobserved and is de�ned as a summary of value-relevant information about

future pro�tability. This suggests a potential to predict subsequent returns. We apply

a factor augmented vector autoregression (FAVAR) to estimate νt and evaluate its pre-

dictive performance. The FAVAR model enables us to estimate unobserved factors that

are broadly captured by big data. We use principal components estimation to extract the

unobserved factors from a rich set of data. Our analysis shows that the estimated νt has

statistically reliable power to predict future returns.
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CHAPTER 1

INTRODUCTION

“An econometrician’s role is to choose among di�erent parameters that together describe a

family of possible models to best mimic measured real-world time series and to test the

implications of these models.” -Nobel Laureate Lars Peter Hansen, 2014

The primary purpose of this dissertation is to explore, assess, and conjecture the dy-

namic behavior of U.S. equity prices. Asset pricing theory is grounded upon the concept

that today’s price of an asset equals its expected discounted future payo�. The keywords

in that equation are ‘expected’ and ‘discounted’. These imply two things, respectively.

First, future payo�s or cash �ows, in terms of distribution to asset holders, have a prob-

ability of occurrence. This probability of occurrence makes the asset inherently risky.

Second, since the amount of money you have today is worth more than an identical

amount in the future due to either in�ation or its potential earning capacity, investors

require a rate of return on these assets. This is known as the discount rate. One uses

the discount rate to ‘discount’ the sum of future payo�s, such as dividends from a stock,

which renders the present value (or fundamental value) of an asset, or, in other words,

today’s asset price. Together, they yield the constant discount rate present value model,

which is the conventional valuation approach in asset pricing.

However, since the early 1980s, accruing evidence in the asset pricing literature has

shown that changes in asset value (and asset return) in the equity markets are not con-

sistent with the constant discount rate present value model. That is, observed stock

prices persistently deviate away from their fundamental values. There are at least three

possible reasons for this observation. First, changes in stock prices over time stem from

changes in the discount rates, which re�ect the market’s time-varying risk tolerance for
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an asset. Second, using the stream of cash dividends as the standard measurement for

future cash �ows in the constant discount rate present value model is misspeci�ed. This

is particularly true for �rms that do not issue dividends in the outset in order to reinvest

the proceeds to grow its business. As such, using a present value model built upon div-

idends as the future payo� stream becomes impractical. Furthermore, the literature has

revealed that the number of �rms paying cash dividends has drastically declined since

the late 1970s. In turn, the number of �rms using alternative avenues of cash distribution

to shareholders has considerably increased. These facts implore the need for di�erent

payo� measurements in the present value model. Third, the literature has suggested that

a self-reinforcing process of price increases (decreases) can occur if investors evaluate

potential gains (losses) from continuous increases (decreases) in stock prices as justi-

�cation for their movement away from fundamental values. In other words, investors

would be willing to pay premiums (discounts) for assets that they expect to appreciate

(depreciate) in market value in the near future, regardless of their fundamental values.

This dissertation attempts to investigate the latter two possible reasons. The three

papers taken together shed light on why traditional present value models do a poor

job in explaining stock prices and predicting future returns, as observed in the data.

This dissertation, however, does not attempt to propose which explanation, reason, or

method is correct. There are countless nuances of stock market behavior, as extensively

delineated throughout the three papers, that give rise to model uncertainty or misspec-

i�cation. There are also countless nuances in data measurement and aggregation that

naturally yield shortcomings to statistical techniques employed. Therefore, concocting

an absolute conclusion, given inevitable shortcomings, would be premature and likely

incorrect.

As a �nancial econometrician, the quote above signi�es three inherent tasks. The

�rst is to seek out alternative models introduced in the broader asset pricing literature
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that can potentially explain observed stock market behavior. The second is to assess how

well the models and their respective econometric methods carried out in the literature

perform empirically and re�ect available stock market data. The third is to propose and

implement alternative methods if there is a nontrivial de�cit in the literature. Collec-

tively, these underlie the title and theme of the dissertation.
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CHAPTER 2

A STUDY OF INTRINSIC BUBBLES IN STOCK PRICES UNDER PERSISTENT

DIVIDEND GROWTH RATES

2.1 Introduction

Rationalization of observed stock prices is a task of great interest in �nancial eco-

nomics. Several comprehensive surveys of the literature are available. See, for example,

Hansen (2014), for a recent e�ort. It is well known that traditional asset pricing mod-

els do not capture variation in stock prices very well. Examples of such models include

the popular constant discount factor present value model under a rational expectations

framework. Deviations in stock prices from those predicted by simple present value

models have proven empirically signi�cant and persistent over time (LeRoy and Porter,

1981; Shiller, 1981). One of several approaches to rationalize these deviations in stock

prices is the rational bubbles theory (Blanchard, 1979; Blanchard and Watson, 1982; Diba

and Grossman, 1983, 1988a, and 1988b).

Within this framework, Froot and Obstfeld (1991) develop a speci�c type of rational

bubble that they call a rational “intrinsic” bubble. Here, movements in stock prices are

exclusively driven by economic fundamentals alone (i.e., dividends) and not from any

extraneous factors, as are common in stock price bubbles literature. Speci�cally, they

assume a random walk process for log dividends and derive the present value stock price

within a constant discount factor present value model of stock prices. Another solution

to the present value model exists that violates the transversality condition. This solution

for stock prices consists of the present value stock price plus a bubble component. In the

intrinsic bubbles setup of Froot and Obstfeld (1991), this bubble component is driven by

fundamentals alone, which are exogenous dividends.
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A random walk model of log dividends used in Froot and Obstfeld (1991) is de�cient.

It fails to capture observed autocorrelation in dividend growth rates. The Lintner (1956)

model of corporate dividends payout assumes that �rms have a target payout ratio in

mind that is a fraction of current earnings. However, �rms are assumed to only make

partial adjustments every period. This results in a smoothing of dividends paid over

time, resulting in autocorrelation in their growth rates as observed in the data. Lansing

(2010) notes that, in order to generate observed persistence in price-dividend ratios, the

present value-type asset pricing model requires a persistent process for dividend growth

rates.

In this paper, we extend the framework of Froot and Obstfeld (1991) to account for

this autocorrelation. We derive an exact analytical expression for both the present value

stock price and an intrinsic bubble component when dividend growth rates evolve as

a Gaussian �rst-order autoregressive process. Our solution for the present value stock

price is an adaptation of the one provided in Burnside (1998) for the consumption-based

asset pricing model under a Gaussian AR(1) process for dividend growth rates. The an-

alytical form of the intrinsic bubble in our work is an augmented version of the one

provided in Froot and Obstfeld (1991). Their framework is a special case of the one con-

sidered here.

Within a random walk framework for log dividends, Bidarkota and Dupoyet (2007)

extend the intrinsic bubbles model of Froot and Obstfeld (1991) to account for observed

leptokurtosis and negative skewness in dividend growth rate by modeling the inno-

vations to the random walk as random variables drawn from a non-normal, fat-tailed

probability distribution. While it would be ideal to incorporate both persistence in div-

idend growth rates, as they are being done here, and non-normality, as considered in

Bidarkota and Dupoyet (2007), a solution to the present value model and characteriza-

tion of the intrinsic bubble component poses a signi�cant challenge under such a setting.
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Nevertheless, in the context of the present value model, at least individually, neither a

fat-tailed distribution nor persistence of dividend growth rates appear to improve the

�t of the present value stock prices signi�cantly, relative to a Gaussian random walk

process in the original Froot and Obstfeld (1991) paper. Though, Bidarkota and Dupoyet

(2007) demonstrate that accounting for non-normal, fat tails do diminish the role of non-

linearity of the price-dividend relation, hence that of the role of bubbles in rationalizing

observed stock prices.

Recent literature has studied bubbles to rationalize price movements of alternative

assets and markets, such as real estate in the U.S. (Nneji et. al, 2013 and Hu and Oxley,

2018) and China (Yu, 2011), Chinese stock markets (Chang and Cai, 2016), and cryp-

tocurrency (Cheah and Fry, 2015; Corbet et. al, 2018). Another strand of research has

focused on developing new econometric methods to statistically test for the existence

of speculative bubbles (Phillips et. al, 2011 and 2015; Whitehouse, 2019; Homm and Bre-

itung, 2011; Breitung and Kruse, 2013; and Yuhn et. al, 2015).

We estimate the model developed here with two sets of annual U.S. stock price and

dividends data, namely the DJIA and the S&P 500 series, over the last century. Hypothe-

ses tests reject an AR(0) process for dividend growth rates in favor of an AR(1) process

for both data series. Likelihood ratio tests also favor the AR(1)-based model developed

here for price-dividends ratios over the AR(0)-based model considered in Froot and Ob-

stfeld (1991). Hypotheses tests also reject the absence of a bubble component in both

series. This inference is robust to whether or not the parameters governing the intrinsic

bubbles process are restricted to values implied by our model or freely estimated. In-

corporating the bubble component into our model provides a signi�cant improvement

in �t to observed P/D ratios and stock prices as compared to the present value stock

prices alone. Lansing (2010) has completed work similar to our analytical solutions and

approach by using calibration techniques to match the moments of price-dividend data,
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while we instead use econometric methods. Nonetheless, his work ignores serial corre-

lation in dividend growth rates that we contend is a critical property observed in stock

data.

We organize this paper as the following. In Section 2.2, we introduce the present

value model for stock prices in which we describe the fundamental value stock price

and a bubble solution that violates the transversality condition. In Section 2.3, we derive

closed-form solutions to the model with a fundamental stock price component and an

intrinsic bubbles component under the assumption that dividends growth evolves as an

AR(1) process. In Section 2.4, we introduce the data and econometric speci�cations, and

provide a series of empirical results and inferences. We summarize our main �ndings in

the Section 2.5.

2.2 Present Value Model

The present value model with a constant discount rate is given by:

Pt = e−rEt [Dt + Pt+1] . (2.1)

Here, Pt is the real price of a share at the beginning of period t,Dt is the real dividend per

share paid out over period t, r is the non-stochastic and constant discount rate, Et is the

mathematical expectation conditioned on information available at the start of period t.

It is often useful to think about this pricing equation as arising from a Lucas (1978)-type

asset pricing model under risk neutrality.
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On forward iteration, the present value equation yields:

Pt =
∞∑
s=t

e−r(s−t+1)Et (Ds) + lim
s→∞

e−rsEt (Ps) . (2.2)

One solution to stock prices in the above equation, denoted P pv
t is obtained by imposing

the transversality condition:

lim
s→∞

e−rsEt (Ps) = 0. (2.3)

Imposing the transversality condition on Equation (2.2) gives:

Ppv
t =

∞∑
s=t

e−r(s−t+1)Et (Ds) . (2.4)

Thus, this equation provides the fundamental value of the stock price. One speci�es an

exogenous stochastic process for dividends and evaluates P pv
t .

There exist other solutions to the present value model given in Equation (2.1) that do

not satisfy the transversality condition in Equation (2.3). For instance, let {Bt}∞t=0 be

any sequence of random variables that satisfy:

Bt = e−rEt {Bt+1} . (2.5)

One can easily show that (P pv
t + Bt) satis�es Equation (2.1) but violates Equation (2.3)

for all Bt 6= 0.
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If Bt is constructed as a function of the fundamentals alone, i.e., as a function of the

dividends Dt alone in the present value model of Equation (2.1), it is termed an intrinsic

rational bubble by Froot and Obstfeld (1991). Intrinsic bubbles turn out to be a non-linear

function of dividends. Their exact functional form depends on the assumed stochastic

process for the dividends.

2.3 Solution to the Model

In this section, we obtain an exact analytical solution for the present value stock

price P pv
t when the dividend growth rate follows a �rst-order autoregressive process.

We also derive conditions under which a posited functional form for Bt satis�es all the

conditions for a rational intrinsic bubble.

2.3.1 ThePresentValue StockPrice underAR(1)DividendsGrowth

Rate Process

Let xt ≡ ln (Dt) − ln (Dt−1) denote the dividend growth rate. We assume that xt

stochastically evolves as a �rst-order autoregressive process:

xt − µ = ρ (xt−1 − µ) + ξt, |ρ| < 1, ξt ∼ iid N(0, σ2
)

(2.6)

One can now derive the present value stock price by evaluating the right hand side of

Equation (2.4). Following up on the results in Burnside (1998), Appendix A shows that

the present value stock price is given by:
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Ppv
t = Dt

∞∑
s=t

exp {−r(s− t + 1) + bs−t (xt − µ) + as−t} , (2.7)

where

as−t = (s− t)µ+
σ2

2(1− ρ)2

[
(s− t)− 2

ρ

1− ρ
(
1− ρs−t

)
+ ρ2

1− ρ2(s−t)

1− ρ2

]
(2.8)

and

bs−t =
ρ

1− ρ
{

1− ρs−t
}
. (2.9)

The following theorem provides conditions for the in�nite summation in Equation (2.7)

to converge, and hence for the priceâĂŞdividend ratio to be �nite.

Theorem 1. The series in Equation (2.7) converges if

R ≡ exp

{
−r + µ+

σ2

2 (1− ρ2)

}
< 1. (2.10)

Proof: See Appendix B.

The next theorem derives an expression for the mean of the fundamental stock price-

dividend ratio, i.e., the unconditional expectation of Ppv
t /Dt. It also provides conditions

under which this mean is �nite.

Theorem 2: The mean of the price dividend ratio Ppv
t /Dt is given by:

E (Ppv
t /Dt) =

∞∑
i=0

exp

{
−r(i + 1) + ai +

b2
i σ

2

2 (1− ρ2)

}
(2.11)
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where

ai = iµ+
σ2

2(1− ρ)2

[
i− 2

ρ

1− ρ
(
1− ρi

)
+ ρ2

1− ρ2i

1− ρ2

]
(2.12)

and

bi =
ρ

1− ρ
{

1− ρi
}

(2.13)

It is �nite if R ≡ exp
{
−r + µ+ σ2

2(1−ρ2)

}
< 1.

Proof: See Appendix C

2.3.2 Intrinsic Rational Bubbles

Let us postulate that intrinsic rational bubbles take the form:

B (Dt) = cDλ
t exp {hxt} . (2.14)

Here, λ > 0 for the bubble to grow with an increase in dividends, c > 0 to ensure non-

negativity of stock prices, and h is a constant.

Appendix D shows that the functional form for the intrinsic bubble in Equation (2.14)

satis�es Equation (2.5) de�ning a bubble, provided that λ and h are chosen to satisfy:

r = (λ+ h)(1− ρ)µ+ (λ+ h)2σ2/2 (2.15)

and

h = (λ+ h)ρ. (2.16)
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If the dividend growth rate stream follows an AR(0) process, then the solution for the

present value stock price is easily obtained by setting ρ = 0 in the equations above. One

can readily show that the expression obtained for the present value stock price in this

case is identical to the one given in Froot and Obstfeld (1991). From Equation (2.16) h =

0 when ρ = 0 . Therefore, the bubble component of the stock price given in Equation

(2.14) reduces to B (Dt) = cDλ
t , exactly the expression in Froot and Obstfeld (1991). In

this case the conditions needed for convergence of the fundamental stock price-dividend

ratio as well as the conditions forB(Dt) to be a rational intrinsic bubble are also identical

to those in Froot and Obstfeld (1991).

2.4 Empirical Assessment of the Model

2.4.1 Data Description

For empirical assessment of the model, we employ two aggregate stock price indices:

the Dow Jones Industrial Average (DJIA) and the S&P 500. We retrieved annual DJIA in-

dex data, including average, yearly closing values and dividends for a sample period of

1920-2017 from two data sources. For the 1920-2005 period, we use the 2006 Value Line

publication, A Long-Term Perspective: Dow Jones Industrial Average, 1920âĂŞ2005 and

for the 2006-2017 period, we use Standard & PoorâĂŹs Compustat database. Addition-

ally, we retrieved monthly S&P 500 index data, including closing values and dividends

for a sample period of 1900-2018 from Robert ShillerâĂŹs Irrational Exuberance (2000)

publication. Each series used in the Shiller dataset is of January values. Although S&P

500 data spanning from 1871 are available, to follow Froot and Obstfeld (1991), we begin

the series in 1900.
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Table 2.1 provides summary statistics on real dividend growth rates and P/D ratios

for both stock indices. As established in extant literature, dividend growth rates and P/D

ratios both indicate strong and statistically signi�cant leptokurtosis, negative skewness

for the former and positive for the latter, with normality being strongly rejected for

both series. The two series also exhibit strong �rst-order autocorrelation. Figures 2.1

and 2.2 plot real stock prices, real dividends and their growth rates, and price-dividend

ratios for DJIA and S&P 500, respectively. Our objective in this paper is to attempt

to rationalize movements in price-dividend ratios, and hence movements in the stock

prices themselves, through movements in dividend growth rates which we take here to

be exogenous.

2.4.2 Econometric Speci�cation

Empirical evaluation of our model requires speci�cation of an exogenous stochastic

process for dividend growth rates. This is taken to be the AR(1) process given in Equation

(2.6):

xt − µ = ρ (xt−1 − µ) + ξt, |ρ| < 1, ξt ∼ iid N(0, σ2
ξ

)
. (2.17)

Assumption of a normal distribution for ξt is inconsistent with its strong rejection

reported in Table 2.1 and discussed in Section 2.4.1. A non-normal, fat-tailed probabil-

ity distribution that explicitly accounts for leptokurtosis and negative skewness in the

dividend growth rate was considered in Bidarkota and Dupoyet (2007). However, their

analysis ignored persistence in dividend growth rates and considered a random walk

process, instead. While it would be ideal to incorporate both persistence in dividend

growth rates, as they are being done here, and non-normality, as considered in Bidark-

ota and Dupoyet (2007), a solution to the present value model and characterization of the

intrinsic bubble component pose a signi�cant challenge under such a setting. Burnside
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(1998) provides a solution to the consumption-based asset pricing model under a Gaus-

sian AR(1) process for dividend growth rates. However, he neither considers intrinsic

bubbles in his work nor undertakes an empirical assessment of the model.

Considering the discussion following Equation (2.5), one can write the complete so-

lution to the present value model as:

Pt = Ppv
t + Bt. (2.18)

Now using Equations (2.7)-(2.9) and (2.14)-(2.16), one obtains:

Pt = κtDt + cDt
λexp{hxt}. (2.19)

Here

κt =
∞∑
s=t

exp {−r(s− t + 1) + bs−t (xt − µ) + as−t} (2.20)

from Equation (2.7), and as−t and bs−t are given in Equations (2.8) and (2.9), respectively.

Dividing Equation (2.19) by Dt, we can write:

Pt

Dt

= κt + cDt
λ−1exp{hxt}. (2.21)

We follow standard practice in the literature by augmenting the stock price-dividend

ratio obtained by solving the present value equation with a regression residual ηt when

�tting the model to the data. As noted by Hamilton (1986), the regression residual cap-

tures omitted variables such as time-varying real interest rates, risk premia, and changes

in tax laws.
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Consequently, one obtains the following econometric model for the stock price-

dividend ratio:

Pt

Dt

= b0κt + b1D
λ−1
t exp{hxt}+ ηt, ηt ∼ iid N

(
0, σ2

η

)
. (2.22)

where b0, b1, λ, and h > 0. The error term ηt is assumed to be independent of the

innovations ξt to the dividend growth rate in Equation (2.17), at all leads and lags. κt

can be thought of as a time-varying dividends multiplier.

Thus, our econometric speci�cation, motivated by the present value model, is made

up of Equations (2.17) and (2.22), for the dividend growth rates and price-dividend ratios

respectively, subject to restrictions on the parameters governing the intrinsic bubble

process given in Equations (2.15) and (2.16). These restrictions can now be stated as

follows:

r = (λ+ h)(1− ρ)µ+ (λ+ h)2σ2
ξ/2 (2.23)

and h = (λ+ h)ρ.

2.4.3 Model Estimates for Dividend Growth Rates

Table 2.2 reports maximum likelihood estimates of the AR(1) model for dividend

growth rates given in Equation (2.17) in the top panel. The estimates for µ, σ2, and ρ

are close to the empirical mean, variance, and �rst-order autocorrelation coe�cient of

raw dividend growth rates reported in Table 2.1. Froot and Obstfeld (1991) consider a

random walk process for dividends, i.e. an AR(0) process for their growth rates xt:

xt = µ+ υt, υt ∼ iid N(0, σ2
υ). (2.24)
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Estimates of the benchmark AR(0) process for dividend growth rate are reported in Panel

B of Table 2.2.

A test of the benchmark AR(0) versus AR(1) process for dividend growth rates can

be conducted by testing for ρ = 0. The likelihood ratio (LR) test for such a hypothesis

is reported in the last column of Table 2.2. The test rejects AR(0) for both series at

better than the 10 percent signi�cance level. This provides empirical justi�cation for

considering extension of the work reported in Froot and Obstfeld (1991).

Figure 2.3 plots the unconditional distributions of the AR(1) and AR(0) models, along

with the kernel density of the dividend growth rates. Figure 3a suggests that the AR(0)

model renders a better �t to the DJIA kernel density, while Figure 3b indicates that the

AR(1) model provides a better �t for the S&P 500 kernel density. However, neither appear

to provide a signi�cant improvement in �t over the other. This is not surprising, given

that the maximum likelihood estimates for µ and σ2 for both models are close to the

empirical mean and variance of raw dividend growth rates reported in Table 2.1.

2.4.4 Present Value Stock Prices

In order to calculate present value stock prices implied by our model, we need a

value for the constant discount rate, r. As in Froot and Obstfeld (1991) and and Dupoyet

(2007), we choose r equal to 8.6%. Using maximum likelihood parameter estimates from

Table 2.2, we verify that the convergence condition given in Equation (2.10), required

for �niteness of the present value stock price given in Equation (2.7), is satis�ed. The

time-varying present value stock price to dividends ratio, or the dividends multiplier,

κt is estimated by evaluating the expression on the right hand side of Equation (2.20),

with appropriate truncation. Figure 2.4 plots these values for the two data series. Their

mean values are reported in the last column of the top panel in Table 2.3. We note
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that these values are considerably below their empirical counterparts reported in Table

2.1. However, these mean κt values are larger than the constant κ estimates of about 14,

reported in Froot and Obstfeld (1991) and Bidarkota and Dupoyet (2007) for the Gaussian

AR(0) dividend growth rate.

2.4.5 Intrinsic Bubble Parameter Estimates

Implied values of the parameters λ and h, governing the intrinsic bubble process

given in Equation (2.14), are obtained by solving Equations (2.23) and (2.16).

For the benchmark AR(0) process for dividend growth rates in Equation (2.24), the

form for the intrinsic bubbles term in Equation (2.14) reduces to:

B (Dt) = cDλ
t (2.25)

with λ>0 for the bubble to grow with increasing dividends, and c>0 to ensure non-

negativity of stock prices, as for the AR(1) dividend growth rate process. The constant

h that appears in the AR(1) case is now equal to zero. Parameter restrictions governing

the intrinsic bubble process given in Equations (2.15) and (2.16) now reduce to:

r = λ(µ+ λ)σ2
υ. (2.26)

Table 2.3 reports values for the intrinsic bubble parameters for both AR(1) and AR(0)

process for dividend growth rates. In Panel A, for the AR(1) process, the solution yields

values of 1.772 and 2.148 for λ for the two data series. By contrast, Panel B reports values

of λ = 2.062 and 2.609 for the AR(0) process. For comparison, Froot and Obstfeld (1991)

obtain an estimate of λ = 2.74 while Bidarkota and Dupoyet (2007) obtain λ = 2.50 for
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the Gaussian AR(0) process. This is not surprising given the expression for the intrinsic

bubble in the AR(1) case given by Equation (2.14):

B (Dt) = cDλ
t exp {hxt}

which can be re-expressed as:

B (Dt) = cD
(λ+h)
t D

(−h)
t−1 . (2.27)

In Panel A, for the AR(1) process, the solution yields values of 0.557 and 0.73 for

parameter h for the two data series.

2.4.6 Price-Dividend Ratio Regression

Models

We now proceed with estimation of the econometric model for price-dividends ratios

given in Equation (2.22). We estimate several versions of this model with the two data

series. The �rst two rows of Table 2.4 list the two main models of interest at this point.

The model in Equation (2.22), along with the restrictions speci�ed by Equations (2.16)

and (2.23), is the primary model of stock prices developed in this paper, with an AR(1)

process driving the dividend growth rate and comprising of intrinsic bubbles. This is

referred to as the Implied AR(1) Model. When estimating this model, the dividends

growth, xt follows an AR(1) process whose parameter values are the estimates reported

in Panel A of Table 2.2. The values of the bubble component parameters λ and h are

set equal to the implied parameter values reported in Panel A of Table 2.3. Implied

AR(0) Model is the version of the above model, where the dividend growth rates follow
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an AR(0) process instead, given by Equation (2.24). The econometric model for price-

dividends ratio is now:

Pt

Dt

= b0κ+ b1D
λ−1
t + υt, υt ∼ iid N

(
0, σ2

υ

)
. (2.28)

where κ =
∑∞

s=t exp {−r(s− t + 1) + as−t}, and as−t is given in Equation (2.8) with

ρ = 0. This is the model estimated by Froot and Obstfeld (1991). When estimating this

model, the dividends growth, xt follows an AR(0) process whose parameter values are

the estimates reported in Panel B of Table 2.2. As stated in the discussion in Section

2.3.2, in this instance, h = 0. The value of the bubble component parameter λ is now

set equal to the implied parameter values reported in Panel B of Table 2.3. For each of

these models, we estimate an unrestricted version which is the model described above.

This is referred to as Sub-Model A. We also estimate three restricted versions, referred

to as Sub-Models B, C, and D. The restrictions describing these three versions of the

models are speci�ed in the last three rows of Table 2.4. Sub-Model B is a semi-restricted

model with b0=1. Sub-Model C is a semi-restricted model with b1=0. Sub-Model D is

a restricted model with b1=0 and b0=1. As stated earlier, our primary model of interest

is the Implied AR(1) Model developed in this paper in the present value context with

an intrinsic bubble component. Implied AR(0) Model is the one estimated by Froot and

Obstfeld (1991). Within these two models, Sub-Model A is the unrestricted version with

an intrinsic bubble component whereas Sub-Model D is the most restricted version with

no bubble component and the mean price-dividend ratio equal to the one dictated by the

present value stock price.

19



Estimates

Tables 2.5a and 2.5b present maximum likelihood estimates of the models, Implied

AR(1) and AR(0) Model, described above. Each table presents estimates of all four Sub-

Models A-D.

For the unrestricted Sub-Model A of the Implied AR(1) Model, we obtain estimates of

b0=0.67 (0.79) and b1=0.29 (0.63) for the DJIA (S&P 500) series as reported in Table 2.5a.

Estimated variance of the model error is now just over half that of the series reported in

Table 2.1. Minimum AIC criterion selects Sub-Model B (Sub-Model A) of Implied AR(1)

Model as best for the DJIA (S&P 500) series among the four Sub-Models, suggesting the

importance of the bubble component in rationalizing movements in both series.

For the unrestricted Sub-Model A of the Implied AR(0) Model, we obtain estimates

of b0=0.92 (1.21) and b1=0.05 (0.11) for the DJIA (S&P 500) series as reported in Table

2.5b. Thus, the estimated slope coe�cients on the bubble component are now lower

than those for the AR(1) model. The slope coe�cients on the fundamental component

imply that the estimated fundamental present values (i.e., the product of b0 and κ) are

very similar to the DJIA (S&P 500) constant, theoretical price-dividend ratios κ of 17.102

(15.02) reported in the bottom panel of Table 2.3, but are also much lower than empir-

ically observed mean price-dividend ratios of 28.30 (29.79) reported in Table 2.1. For

comparison, we note that the estimated fundamental present values and slope coe�-

cients on the bubble component obtained here are higher for the former and lower for

the latter than the estimates of roughly 14 and at least 0.26, respectively as reported in

Froot and Obstfeld (1991) and Bidarkota and Dupoyet (2007) for the Gaussian AR(0) div-

idend growth rate. Minimum AIC criterion once again selects Sub-Model B (Sub-Model

A) of the Implied AR(0) Model as best for the DJIA (S&P 500) series among the four Sub-

Models.
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Among all the models estimated in Tables 2.5a and 2.5b, minimum AIC criterion

selects Sub-Model B of Implied AR(0) Model (Sub-Model A of Implied AR(1) Model) as

best for the DJIA (S&P 500) series. Thus, the broader stock market index favors the AR(1)

model developed here, whereas the blue chip index favors the Froot and Obstfeld (1991)

model by this criterion.

Figures 2.5 and 2.6 plot the observed price-dividend ratios and prices, along with

the �tted values of the fundamental and bubble components from Sub-Model A of both

the Implied AR(1) and AR(0) Models, respectively. The contribution of the fundamental

present value component alone in accounting for variation in observed ratios and prices

is vividly insu�cient in both �gures. Taking the bubble component into account pro-

vides a much better �t to the P/D ratios and stock prices.

Figures 2.7 and 2.8 compare the performance of the fundamental present value com-

ponent alone and fundamental plus bubble components, respectively, between Sub-Model

A of the Implied AR(1) and AR(0) Models. Visually, the empirical performance of the two

models is indistinguishable from one another.

In summary, while there is support for the AR(1) model developed here, particularly

for the S&P 500 series, as compared to the AR(0) model of Froot and Obstfeld (1991), both

models provide very similar performance when judged in terms of implied �uctuations

in the P/D ratios and stock prices.

Tests of Hypotheses

A test of the present value model can be conducted by testing for the null hypothesis

that b0=1 and b1=0 for Sub-Model A of the Implied AR(1) Model described in Equation

(2.22) above. The alternative hypothesis of b1 > 0 and/or b0 6= 1 is a rejection of the

present value model. The null hypothesis of no intrinsic bubbles implies that b1=0 in

Equation (2.22). b1 > 0 implies rejection of the absence of bubbles. These null and alter-
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native hypotheses are identical in the case of Sub-Model A of the Implied AR(0) Model

estimated by Froot and Obstfeld (1991).

Tables 2.6a and 2.6b report likelihood ratio (LR) tests for various hypotheses of inter-

est. In Table 2.6a, under an AR(1) process for dividend growth rates, LR tests for the two

hypotheses, b1=0 and joint hypothesis b0=1 and b1=0 are unequivocally rejected. Thus,

we can reject the null hypothesis of no bubbles for this model. LR test of b0=1 is rejected

for the DJIA, but not for the S&P 500.

For comparison, in Table 2.6b under an AR(0) process for dividend growth rates, we

�nd from Sub-Model A of the Implied AR(0) Model that, as in Table 2.6a, LR tests for the

single hypothesis, b1=0 and joint hypothesis, b0=1 and b1=0 are rejected. Like the Implied

AR(1) Model, the no bubbles hypothesis is rejected for this model as well. However, in

contrast to the results in Table 2.6a, the null hypothesis of b0=1 is rejected for the S&P

500, but not for the DJIA.

To provide support of optimal model selection, Table 2.6c shows the LR test results

between the two models. The null hypothesis of Implied AR(0) as the optimal �t is

unarguably rejected. In other words, there is evidence that favors the Implied AR(1)

over the Implied AR(0) model. This is a critical result which lends support for our model

extension from previous work.

Free Models - A Purely Econometric Speci�cation

We also estimate an alternative version of the above two models, referred to as Free

AR(1) Model and Free AR(0) Model, respectively. In these models, the values of the

bubble component parameters are no longer set equal to the implied parameter values

reported in the respective panels of Table 2.3, but are instead estimated freely along with

the rest of the regression parameters of the econometric model.
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Thus, the most general model is the Free AR(1) Model. We also have the Free AR(0)

Model. Among these two models, here too, we estimate an unrestricted version, which

is referred to as Sub-Model A, and three restricted versions, referred to as Sub-Models

B, C, and D. The restrictions describing these three versions of the models are identical

to those described earlier.

Tables 2.5c and 2.5d present maximum likelihood estimates of these two models, Free

AR(1) Model and Free AR(0) Model, described above. Each table presents estimates of

all four Sub-Models A-D. In Table 2.5c, under the AR(1) process for dividends growth

and free estimation of the nonlinear bubble components, the λ parameter estimates are

1.713 and 1.741 for the two data series. The estimate for λ is similar to the DJIA implied

parameter value in Panel A of Table 2.3. However, the S&P 500 λ estimate of 1.741 is

quite lower than the implied parameter value of 2.148 reported there. The parameter h

has been constrained to 0 in order to comply with the non-negativity assumption in our

theoretical model.

Figures 2.9 and 2.10 plot observed P/D ratios and prices, along with �tted values of

the fundamental and bubble components from Sub-model A of the Free AR(1) and AR(0)

Model, respectively. As seen earlier in Figures 2.5 and 2.6 for the Implied AR(1) and AR(0)

Models, the fundamental component alone does not track observed index P/D ratios and

prices adequately. Adding the bubble component allows the model to track the observed

data remarkably better. Figure 2.11 compares the �t of both the fundamental and bubble

components to the observed ratios and prices of Sub-model A between Free AR(1) and

AR(0) Models. Visually, the empirical performance of both models is indistinguishable

from one another. Table 2.6c con�rms this indistinction as the LR test does not reject

the hypothesis that Free AR(0) Model is the optimal model. Put another way, Free AR(1)

Model is no better for predictive performance than that of the Free AR(0) Model.
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For the sake of completeness, we visually and quantitatively compare Implied and

Free AR(1) Models and Implied and Free AR(0) Models in Figures 2.12 and 2.13, respec-

tively. Again, visually the models are not considerably di�erent from each other. Table

2.6d con�rms this observation for the DJIA results as the LR tests do no reject the null

Implied AR(1) and AR(0) Models, respectively; however, for the S&P 500 results in Table

6e, we can easily reject Implied AR(1) and AR(0) Models. In other words, under both

AR(1) and AR(0) process-driven speci�cations, we found no evidence that the theoret-

ical implied values of λ and h in Table 2.3 are not accurate estimates of the degree of

non-linearity in the price-dividend data for DJIA, but we can statistically signi�cantly

reject the S&P 500 implied parameter values.

2.4.7 Summary of Results and Model Comparison

The nonlinear price-dividend ratio regression results reported in Tables 5 and 6, and

discussed in subsection 2.4.6 above, indicate that we can conclusively reject the null hy-

pothesis of the absence of intrinsic bubbles across all four models, Implied and Free,

AR(1) and AR(0), considered here. This inference is robust, regardless of whether or not

we restrict b0 to 1. It aligns with the conclusions of Froot and Obstfeld (1991) and Bidark-

ota and Dupoyet (2007). Further substantiating the regression results, Figures 2.5 and

2.6 and 2.9 and 2.10 clearly demonstrate that the fundamental and bubble components

together track the observed stock indices more closely than the fundamental present

value component alone.

We conduct additional model analysis to determine a performance leader. When

using implied parameter values, the nonlinear model in which dividend growth rates

follow an AR(1) process outperforms a model driven by an AR(0) process. This shows

the improvement in the performance of the extension considered here when compared
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to the model in Froot and Obstfeld (1991). On the other hand, the two models are indis-

tinguishable when the bubble parameters are freely estimated.

Moreover, for both data series, a nonlinear model in which we use the implied pa-

rameter values and in which dividends growth follows either an AR(1) process or AR(0)

process is statistically superior than that of the same model except in which the bubble

components are freely estimated.

We could not �nd distinct di�erences between each model visually as Figures 2.7 and

2.8 and 2.11−2.13 show. However, LR tests reported in Tables 2.6a−2.6e allow us to infer

quantitatively that Implied AR(1) Model is statistically superior to Implied AR(0) Model.

This demonstrates the usefulness of the extension to the work in Froot and Obstfeld

(1991) considered here. The Free AR(1) and AR(0) Models seem to be equivalent, and

Implied AR(1) Model (AR(0) Model) is statistically superior to Free AR(1) Model (AR(0)

Model).

2.5 Conclusions

We extend the constant discount factor model with intrinsic bubbles developed in

Froot and Obstfeld (1991) to account for serial correlation in the dividend growth rate.

We derive an exact analytical expression for both the present value stock price and an

intrinsic bubble component when dividend growth rates evolve as a Gaussian �rst-order

autoregressive process. We estimate the model with two sets of annual U.S. stock price

and dividends data, namely the DJIA and the S&P 500 series, over the last century. We

compare the results with the benchmark speci�cation under which dividend growth

rates follow an AR(0) process, as in Froot and Obstfeld (1991).

Hypotheses tests reject an AR(0) process for dividend growth rates in favor of an

AR(1) process for both data series. Likelihood ratio tests also favor the AR(1)-based
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model developed here for price-dividends ratios to the AR(0)âĂŞbased model consid-

ered in Froot and Obstfeld (1991). Information-based model selection criteria favor the

AR(1) model developed here, particularly for the S&P 500 series, as compared to the

AR(0) model of Froot and Obstfeld (1991). Nonetheless, the implied P/D ratios and stock

prices from the two models are visually indistinguishable from one another.

Hypotheses tests also reject the absence of a bubble component in both series. This

inference is robust to whether or not the parameters governing the intrinsic bubbles pro-

cess are restricted to values implied by our model or freely estimated. Incorporating the

bubble component into our model provides a signi�cant improvement in �t to observed

P/D ratios and stock prices as compared to the present value stock prices alone.
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Table 2.1: Summary Statistics

Variable Index Sample

Size n

Mean Variance Median Min Max FOAC Skewness Kurtosis Test for

Nor-

mality

Dividend DJIA 97 0.021 0.020 0.029 -0.545 0.502 0.228 -0.587∗∗ 7.256∗∗∗ 78.768∗∗∗

Growth Rate (0.015) (0.003) (0.018) (0.000) (0.000)

S&P 500 118 0.017 0.012 0.024 -0.422 0.397 0.234 -0.795∗∗∗ 7.267∗∗∗ 101.952∗∗∗

(0.010) (0.002) (0.001) (0.000) (0.000)

DJIA 97 28.300 120.658 25.860 13.435 62.353 0.928 1.159∗∗∗ 4.047∗ 26.152∗∗∗

P/D Ratio (1.115) (17.400) (0.000) (0.052) (0.000)

S&P 500 118 29.790 240.193 25.320 10.459 85.296 0.919 1.519∗∗∗ 5.003∗∗∗ 65.097∗∗∗

(1.440) (31.700) (0.000) (0.003) (0.000)

Numbers in parentheses for mean and variance are their standard errors. FOAC is the �rst-order autocorrelation coe�cient. Num-
bers in parentheses for skewness and kurtosis are the p-values. The null hypotheses are no skewness and no excess kurtosis,
respectively. Test for normality gives the Jarque-Bera test statistic and its p-value in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.2: Dividend Growth Rate Process Estimates

xt − µ = ρ (xt−1 − µ) + ξt, |ρ| < 1, ξt ∼ iid N (0, σ2) (6)

Panel A: xt follows AR(1) process

Index µ σ2 ρ log L LR Test

(ρ = 0)

DJIA 0.019 0.01950 0.239 52.763 3.592∗

(0.019) (0.010) (0.101) (0.058)

S&P 500 0.017 0.01177 0.254 93.842 4.715∗∗

(0.013) (0.007) (0.093) (0.030)

Panel B: xt follows AR(0) process

Index µ σ2 ρ log L

DJIA 0.021 0.02047 0 50.967

(0.015) (0.010) (restricted)

S&P 500 0.017 0.01242 0 91.484

(0.010) (0.007) (restricted)

Maximum likelihood estimates of Eq. (1.6) for the dividend growth
rate process are reported in Panel A. Maximum likelihood estimates
of a restricted model with ρ = 0 are reported in Panel B. Numbers
in parentheses for the parameter estimates are their standard errors.
LR Test in the last column gives the likelihood ratio (LR) test statistic.
P-values from χ2 distribution with appropriate df are in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.3: Implied Parameter Values

Panel A: xt follows AR(1) process

Index r λ h Time-

varying

κ (mean)

DJIA 0.086 1.772 0.557 17.210

S&P 500 0.086 2.148 0.730 15.501

Panel B: xt follows AR(0) process

Index r λ h constant

κ

DJIA 0.086 2.062 17.102

S&P 500 0.086 2.609 15.020
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Table 2.4: Description of various regression speci�cations for nonlinear P/D ratio models
in Tables 2.5-2.6

Model Description

Implied AR(1) Model This is the nonlinear price-dividend regression speci�cation in which we set λ and h equal
to the implied parameter values in Table 2.3 and in which dividends growth, xt follows an

AR(1) process.

Implied AR(0) Model This is the nonlinear price-dividend regression speci�cation in which we set λ and h equal
to the implied parameter values in Table 2.3 and in which dividends growth, xt follows an

AR(0) process.

Free AR(1) Model This is the nonlinear price-dividend regression speci�cation in which we estimate λ and h
freely and in which dividends growth, xt follows an AR(1) process.

Free AR(0) Model This is the nonlinear price-dividend regression speci�cation in which we estimate λ and h
freely and in which dividends growth, xt follows an AR(0) process.

Sub-Model Description
A Unrestricted model
B Semi-restricted model (b0 = 1)
C Semi-restricted model (b1 = 0)
D Restricted model (b1 = 0 and b0 = 1)
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Table 2.5a: Maximum likelihood estimation of Implied AR(1) Model

Pt

Dt
= b0κt + b1D

λ−1
t exp{hxt}+ ηt, ηt ∼ iidN

(
0, σ2

η

)
Sub-Model Index b0 b1 σ2

η log L AIC

DJIA 0.669∗∗∗ 0.292∗∗∗ 76.309∗∗∗ -347.874 701.749

(0.144) (0.040) (0.627)

Implied AR(1): A

S&P 500 0.791∗∗∗ 0.629∗∗∗ 133.267∗∗∗ -456.085 918.170

(0.135) (0.065)

DJIA 1.000 0.206∗∗∗ 80.461∗∗∗ -350.444 700.888

(restricted to 1) (0.015) (0.644)

Implied AR(1): B

S&P 500 1.000 0.543∗∗∗ 135.902∗∗∗ -457.260 918.521

(restricted to 1) (0.033) (0.759)

DJIA 1.644∗∗∗ 117.543∗∗∗ -368.860 741.721

(0.064) (0.778)

Implied AR(1): C

S&P 500 1.922∗∗∗ 239.061∗∗∗ -490.561 985.123

(0.092) (1.006)

DJIA 1.000 240.842∗∗∗ -403.617 809.235

(restricted to 1) (1.114)

Implied AR(1): D

S&P 500 1.000 443.647∗∗∗ -527.036 1056.072

(restricted to 1) (1.371)

Implied AR(1) Model is the nonlinear price-dividend regression speci�cation in which we
set λ and h equal to the implied parameter values in Table 2.3 and in which dividends
growth, xt follows an AR(1) process. Sub-models A-D: Sub-model A estimates b0 and b1
freely; Sub-model B restricts b0 = 1; Sub-model C restricts b1 = 0; and Sub-model D
restricts both b0 = 1 and b1 = 0. Numbers in parentheses for the parameter estimates are
their standard errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.5b: Maximum likelihood estimation of Implied AR(0) Model

Pt

Dt
= b0κ+ b1D

λ−1
t + υt, υt ∼ iidN (0, σ2

υ)

Sub-Model Index b0 b1 σ2
υ log L AIC

DJIA 0.923∗∗∗ 0.047∗∗∗ 75.024∗∗∗ -347.049 700.098

(0.111) (0.006) (0.622)

Implied AR(0): A

S&P 500 1.208∗∗∗ 0.105∗∗∗ 139.435∗∗∗ -458.750 923.501

(0.112) (0.011)

DJIA 1.000 0.043∗∗∗ 75.405∗∗∗ -347.297 698.593

(restricted to 1) (0.003) (0.623)

Implied AR(0): B

S&P 500 1.000 0.121∗∗∗ 143.575∗∗∗ -460.482 924.963

(restricted to 1) (0.008) (0.780)

DJIA 1.655∗∗∗ 118.990∗∗∗ -369.421 742.841

(0.065) (0.783)

Implied AR(0): C

S&P 500 1.984∗∗∗ 240.170∗∗∗ -490.834 985.667

(0.095) (1.009)

DJIA 1.000 244.412∗∗∗ -404.331 810.663

(restricted to 1) (1.122)

Implied AR(0): D

S&P 500 1.000 458.418∗∗∗ -528.976 1059.951

(restricted to 1) (1.394)

Implied AR(0) Model is the nonlinear price-dividend regression speci�cation in which we
set λ and h equal to the implied parameter values in Table 2.3 and in which dividends
growth, xt follows an AR(0) process. Sub-model A estimates b0 and b1 freely; Sub-model B
model restricts b0 = 1; Sub-model C restricts b1 = 0; and Sub-model D restricts both b0 = 1
and b1 = 0. Numbers in parentheses for the parameter estimates are their standard errors.
∗p<0.1; ∗∗p<0.05; ***p<0.01.
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Table 2.5c: Maximum likelihood estimation of Free AR(1) Model

Pt

Dt
= b0κt + b1D

λ−1
t exp{hxt}+ ηt, ηt ∼ iidN

(
0, σ2

η

)
Sub-Model Index b0 b1 λ h σ2

η log L AIC

DJIA 0.537 0.462 1.713∗∗∗ 0.000 74.372∗∗∗ -346.626 703.253

(0.563) (1.056) (0.339) (0.399) (0.620)

Free AR(1): A

S&P 500 0.000 3.665 1.741∗∗∗ 0.000 120.674∗∗∗ -450.227 910.455

(0.561) (2.994) (0.186) (0.384) (0.731)

DJIA 1.000 0.036 2.095∗∗∗ 0.000 75.522∗∗∗ -347.370 702.741

(restricted to 1) (0.029) (0.146) (0.669) (0.626)

Free AR(1): B

S&P 500 1.000 0.443∗∗∗ 2.222∗∗∗ 0.000 131.675∗∗∗ -455.374 918.748

(restricted to 1) (0.172) (0.120) (0.866) (0.766)

DJIA 1.644∗∗∗ 117.543∗∗∗ -368.860 741.721

(0.064) (0.778)

Free AR(1): C

S&P 500 1.922∗∗∗ 239.061∗∗∗ -490.561 985.123

(0.092) (1.006)

DJIA 1.000 240.842∗∗∗ -403.617 809.235

(restricted to 1) (1.114)

Free AR(1): D

S&P 500 1.000 443.647∗∗∗ -527.036 1056.072

(restricted to 1) (1.371)

Free AR(1) Model is the nonlinear price-dividend regression speci�cation in which we estimate λ and h
freely and in which dividends growth, xt follows an AR(1) process. Sub-model A estimates b0 and b1 freely;
Sub-model B restricts b0 = 1; Sub-model C restricts b1 = 0; and Sub-model D restricts both b0 = 1 and
b1 = 0. Numbers in parentheses for the parameter estimates are their standard errors. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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Table 2.5d: Maximum likelihood estimation of Free AR(0) Model

Pt

Dt
= b0κ+ b1D

λ−1
t + υt, υt ∼ iidN (0, σ2

υ)

Sub-Model Index b0 b1 λ σ2
υ log L AIC

DJIA 0.576 0.391 1.739∗∗∗ 74.321∗∗∗ -346.595 701.189

(0.510) (0.849) (0.324) (0.619)

Free AR(0): A

S&P 500 0.000 3.665 1.741∗∗∗ 120.674∗∗∗ -450.227 908.455

(0.587) (3.062) 0.190 (0.721)

DJIA 1.000 0.036 2.098∗∗∗ 75.355∗∗∗ -347.264 700.527

(restricted to 1) (0.028) (0.142) (0.623)

Free AR(0): B

S&P 500 1.000 0.484∗∗∗ 2.202∗∗∗ 130.253∗∗∗ -454.753 915.506

(restricted to 1) (0.180) (0.112) (0.743)

DJIA 1.655∗∗∗ 118.902∗∗∗ -369.421 742.841

(0.065) (0.783)

Free AR(0): C

S&P 500 1.984∗∗∗ 240.167∗∗∗ -490.834 985.667

(0.095) (1.009)

DJIA 1.000 244.412∗∗∗ -404.331 810.663

(restricted to 1) (1.122)

Free AR(0): D

S&P 500 1.000 458.418∗∗∗ -528.976 1059.951

(restricted to 1) (1.394)

Free AR(0) Model is the nonlinear price-dividend regression speci�cation in which we estimate λ
and h freely and in which dividends growth, xt follows an AR(0) process. Sub-model A estimates
b0 and b1 freely; Sub-model B restricts b0 = 1; Sub-model C restricts b1 = 0; and Sub-model D
restricts both b0 = 1 and b1 = 0. Numbers in parentheses for the parameter estimates are their
standard errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.6a: Sub-Model Comparisons: AR(1) Model

Index Sub-Model LR Test (Null

H0: b0=1)

LR Test (Null

H0: b1=0)

LR Test (Null

H0: b0=1 and

b1=0)

Implied AR(1): Sub-model A vs Sub-model B 5.140∗∗

(0.023)

Implied AR(1): Sub-model C vs Sub-model D 69.514∗∗∗

(0.000)

Implied AR(1): Sub-model A vs Sub-model C 41.972∗∗∗

(0.000)

Implied AR(1): Sub-model B vs Sub-model D 106.350∗∗∗

(0.000)

Implied AR(1): Sub-model A vs Sub-model D 111.490∗∗∗

DJIA (0.000)

Free AR(1): Sub-model A vs Sub-model B 1.488

(0.223)

Free AR(1): Sub-model C vs Sub-model D 69.514∗∗∗

(0.000)

Free AR(1): Sub-model A vs Sub-model C 44.468∗∗∗

(0.000)

Free AR(1): Sub-model B vs Sub-model D 112.490∗∗∗

0.000

Free AR(1): Sub-model A vs Sub-model D 113.980∗∗∗

(0.000)

Implied AR(1): Sub-model A vs Sub-model B 2.351

(0.125)

Implied AR(1): Sub-model C vs Sub-model D 72.949∗∗∗

(0.000)

Implied AR(1): Sub-model A vs Sub-model C 68.953∗∗∗

(0.000)

Implied AR(1): Sub-model B vs Sub-model D 139.550∗∗∗

(0.000)

Implied AR(1): Sub-model A vs Sub-model D 141.900∗∗∗

S&P 500 (0.000)

Free AR(1): Sub-model A vs Sub-model B 10.293∗∗∗

(0.001)

Free AR(1): Sub-model C vs Sub-model D 72.949∗∗∗

(0.000)

Free AR(1): Sub-model A vs Sub-model C 80.668∗∗∗

(0.000)

Free AR(1): Sub-model B vs Sub-model D 143.320∗∗∗

(0.000)

Free AR(1): Sub-model A vs Sub-model D 153.620∗∗∗

(0.000)

See Table 2.4 for full model descriptions. Sub-model A estimates b0 and b1 freely; Sub-model B restricts b0 = 1;
Sub-model C restricts b1 = 0; and Sub-model D restricts both b0 = 1 and b1 = 0. LR Tests give the likelihood ratio
(LR) test statistic. P-values from χ2 distribution with appropriate df are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.6b: Sub-Model Comparisons: AR(0) Model

Index Sub-Model LR Test (Null

H0: b0=1)

LR Test (Null

H0: b1=0)

LR Test (Null

H0: b0=1 and

b1=0)

Implied AR(0): Sub-model A vs Sub-model B 0.495

(0.482)

Implied AR(0): Sub-model C vs Sub-model D 69.821∗∗∗

(0.000)

Implied AR(0): Sub-model A vs Sub-model C 44.744∗∗∗

(0.000)

Implied AR(0): Sub-model B vs Sub-model D 114.070∗∗∗

(0.000)

Implied AR(0): Sub-model A vs Sub-model D 114.560∗∗∗

DJIA (0.000)

Free AR(0): Sub-model A vs Sub-model B 1.338

(0.247)

Free AR(0): Sub-model C vs Sub-model D 69.821∗∗∗

(0.000)

Free AR(0): Sub-model A vs Sub-model C 45.652∗∗∗

(0.000)

Free AR(0): Sub-model B vs Sub-model D 114.140∗∗∗

(0.000)

Free AR(0): Sub-model A vs Sub-model D 115.470∗∗∗

(0.000)

Implied AR(0): Sub-model A vs Sub-model B 3.463∗

(0.063)

Implied AR(0): Sub-model C vs Sub-model D 76.284∗∗∗

(0.000)

Implied AR(0): Sub-model A vs Sub-model C 64.166∗∗∗

(0.000)

Implied AR(0): Sub-model B vs Sub-model D 136.990∗∗∗

(0.000)

Implied AR(0): Sub-model A vs Sub-model D 140.450∗∗∗

S&P 500 (0.000)

Free AR(0): Sub-model A vs Sub-model B 9.051∗∗∗

(0.003)

Free AR(0): Sub-model C vs Sub-model D 76.284∗∗∗

(0.000)

Free AR(0): Sub-model A vs Sub-model C 81.212∗∗∗

(0.000)

Free AR(0): Sub-model B vs Sub-model D 148.440∗∗∗

(0.000)

Free AR(0): Sub-model A vs Sub-model D 157.500∗∗∗

(0.000)

See Table 2.4 for full model descriptions. Sub-model A estimates b0 and b1 freely; Sub-model B restricts b0 = 1;
Sub-model C restricts b1 = 0; and Sub-model D restricts both b0 = 1 and b1 = 0. LR Tests give the likelihood ratio
(LR) test statistic. P-values from χ2 distribution with appropriate df are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.6c: Full Model Comparisons: AR(1) and AR(0) Models

Index Sub-Model LR Test (Null H0:

Implied AR(0) op-

timal �t

LR Test (Null H0:

Free AR(0) opti-

mal �t)

Sub-model A: Implied AR(1) vs. Implied AR(0) 1.651∗∗∗

(0.000)

Sub-model B: Implied AR(1) vs. Implied AR(0) 6.295∗∗∗

(0.000)

Sub-model C: Implied AR(1) vs. Implied AR(0) 1.121∗∗∗

(0.000)

Sub-model D: Implied AR(1) vs. Implied AR(0) 1.428∗∗∗

(0.000)

DJIA

Sub-model A: Free AR(1) vs. Free AR(0) 0.064

(0.801)

Sub-model B: Free AR(1) vs. Free AR(0) 0.213

(0.644)

Sub-model C: Free AR(1) vs. Free AR(0) 1.121∗∗∗

(0.000)

Sub-model D: Free AR(1) vs. Free AR(0) 1.428∗∗∗

(0.000)

Sub-model A: Implied AR(1) vs. Implied AR(0) 5.331∗∗∗

(0.000)

Sub-model B: Implied AR(1) vs. Implied AR(0) 6.443∗∗∗

(0.000)

Sub-model C: Implied AR(1) vs. Implied AR(0) 0.545∗∗∗

(0.000)

Sub-model D: Implied AR(1) vs. Implied AR(0) 3.879∗∗∗

(0.000)

S&P 500

Sub-model A: Free AR(1) vs. Free AR(0) 0.000

(1.000)

Sub-model B: Free AR(1) vs. Free AR(0) 1.242

(0.265)

Sub-model C: Free AR(1) vs. Free AR(0) 0.545∗∗∗

(0.000)

Sub-model D: Free AR(1) vs. Free AR(0) 3.879∗∗∗

(0.000)

See Table 2.4 for full model and sub-model descriptions. LR Tests give the likelihood ratio (LR) test statistic.
P-values from χ2 distribution with appropriate df are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.6d: Full Model Comparisons: Implied vs. Free AR(p) Model (DJIA)

Index Sub-Model LR Test (Null H0:

Implied AR(1) op-

timal �t)

LR Test (Null H0:

Implied AR(0) op-

timal �t)

Sub-model A: Implied AR(1) vs. Free AR(1) 2.496

(0.287)

Sub-model B: Implied AR(1) vs. Free AR(1) 6.148∗∗

(0.046)

Sub-model C: Implied AR(1) vs. Free AR(1) 0.000

(1.000)

Sub-model D: Implied AR(1) vs. Free AR(1) 0.000

(1.000)

Sub-model A: Implied AR(1) vs. Free AR(0) 2.560

(0.110)

Sub-model B: Implied AR(1) vs. Free AR(0) 6.361∗∗

(0.012)

Sub-model C: Implied AR(1) vs. Free AR(0) 1.121∗∗∗

(0.000)

Sub-model D: Implied AR(1) vs. Free AR(0) 1.428∗∗∗

(0.000)

DJIA

Sub-model A: Implied AR(0) vs. Free AR(0) 0.909

(0.341)

Sub-model B: Implied AR(0) vs. Free AR(0) 0.066

(0.797)

Sub-model C: Implied AR(0) vs. Free AR(0) 0.000

(1.000)

Sub-model D: Implied AR(0) vs. Free AR(0) 0.000

(1.000)

Sub-model A: Implied AR(0) vs. Free AR(1) 0.845

(0.655)

Sub-model B: Implied AR(0) vs. Free AR(1) 0.148

(0.929)

Sub-model C: Implied AR(0) vs. Free AR(1) 1.121∗∗∗

(0.000)

Sub-model D: Implied AR(0) vs. Free AR(1) 1.428∗∗∗

(0.000)

See Table 2.4 for full model and sub-model descriptions. LR Tests give the likelihood ratio (LR) test statistic.
P-values from χ2 distribution with appropriate df are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.6e: Model Comparisons: Implied vs. Free AR(p) Model (S&P 500)

Index Sub-Model LR Test (Null H0:

Implied AR(1))

LR Test (Null H0:

Implied AR(0))

Sub-model A: Implied AR(1) vs. Free AR(1) 11.715∗∗∗

(0.003)

Sub-model B: Implied AR(1) vs. Free AR(1) 3.772

(0.152)

Sub-model C: Implied AR(1) vs. Free AR(1) 0.000

(1.000)

Sub-model D: Implied AR(1) vs. Free AR(1) 0.000

(1.000)

Sub-model A: Implied AR(1) vs. Free AR(0) 11.715∗∗∗

(0.001)

Sub-model B: Implied AR(1) vs. Free AR(0) 5.015∗∗

(0.025)

Sub-model C: Implied AR(1) vs. Free AR(0) 0.545∗∗∗

(0.000)

Sub-model D: Implied AR(1) vs. Free AR(0) 3.879∗∗∗

(0.000)

S&P 500

Sub-model A: Implied AR(0) vs. Free AR(0) 17.046∗∗∗

(0.000)

Sub-model B: Implied AR(0) vs. Free AR(0) 11.457∗∗∗

(0.001)

Sub-model C: Implied AR(0) vs. Free AR(0) 0.000

(1.000)

Sub-model D: Implied AR(0) vs. Free AR(0) 0.000

(1.000)

Sub-model A: Implied AR(0) vs. Free AR(1) 17.046∗∗∗

(0.000)

Sub-model B: Implied AR(0) vs. Free AR(1) 10.215∗∗∗

(0.006)

Sub-model C: Implied AR(0) vs. Free AR(1) 0.545∗∗∗

(0.000)

Sub-model D: Implied AR(0) vs. Free AR(1) 3.879∗∗∗

(0.000)

See Table 2.4 for full model and sub-model descriptions. LR Tests give the likelihood ratio (LR) test statis-
tic. P-values from χ2 distribution with appropriate df are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Figure 2.1: Plots of Dow Jones Industrial Average Data
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Figure 2.2: Plots of S&P 500 Data
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Figure 2.3: Probability distributions of real dividend growth rates
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Figure 2.4: Plots of Time-varying κ and Constant κ
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Figure 2.5: Implied AR(1) Model Results
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Figure 2.6: Implied AR(0) Model Results
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Figure 2.7: Comparison of fundamental components [Implied AR(1) vs. AR(0)]
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Figure 2.8: Comparison of both fundamental and bubble components [Implied AR(1) vs.
AR(0)]
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Figure 2.9: Free AR(1) Model Results
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Figure 2.10: Free AR(0) Model Results
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Figure 2.11: Comparison of both fundamental and bubble components [Free AR(1) vs.
AR(0)]
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Figure 2.12: Comparison of both fundamental and bubble components [Implied vs. Free
AR(1)]
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Figure 2.13: Comparison of both fundamental and bubble components [Implied vs. Free
AR(0)]
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2.6 Appendix

2.6.1 Appendix A

Derivation of the Fundamental Stock Price

In this appendix we derive the expression for the fundamental stock price P pv
t given

in Equation (2.7). From Equation (2.2), we have:

P pv
t =

∞∑
s=t

exp{−r(s− t+ 1)}Et (Ds) . (2.29)

For s = t + 1, t + 2,...

Ds = Dt+s−t = exp {dt+s−t} = exp {xt+s−t + xt+s−t−1 + xt+s−t··· + xt+1 + dt} .

Using Equation (2.15) from Burnside (1998),

∑s−t
j=1 xt+j = (s− t)µ+ ρ

1−ρ {1− ρ
s−t} (xt − µ) +

(1− ρ)−1 [(1− ρs−t) ξt+1 + (1− ρs−t−1) ξt+2 + . . .+ (1− ρ)ξt+s−t].
(2.30)

Therefore,

Et (Ds) = Dt exp

 (s− t)µ+ ρ
1−ρ {1− ρ

s−t} (xt − µ) +

σ2

2(1−ρ)2

[
(1− ρs−t)2 + (1− ρs−t−1)2 + . . .+ (1− ρ)2

]
 . (2.31)
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This simpli�es to:

Et (Ds) = Dt exp


ρ

1−ρ {1− ρ
s−t} (xt − µ) +

(s− t)µ+ σ2

2(1−ρ)2

[
(s− t)− 2 ρ

1−ρ (1− ρs−t) + ρ2 1−ρ
2(s−t)

1−ρ2

]


(2.32)

which can be expressed as:

Et (Ds) = Dt exp {bs−t (xt − µ) + as−t} . (2.33)

with

as−t = (s− t)µ+
σ2

2(1− ρ)2

[
(s− t)− 2

ρ

1− ρ
(
1− ρs−t

)
+ ρ2

1− ρ2(s−t)

1− ρ2

]
(2.34)

and

bs−t =
ρ

1− ρ
{

1− ρs−t
}
. (2.35)

Equation (2.29) can be expressed as P pv
t = exp{−r}Dt +

∑∞
s=t+1 exp{−r(s − t +

1)}Et (Ds). Substituting for Et (Ds) yields:

Ppv
t = exp{−r}Dt + Dt

∞∑
s=t+1

exp {−r(s− t + 1) + bs−t (xt − µ) + as−t}

which can be rewritten as:

Ppv
t = Dt

∞∑
s=t

exp {−r(s− t + 1) + bs−t (xt − µ) + as−t} . (2.36)
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2.6.2 Appendix B

Proof of Theorem 1: Convergence of the Price-Dividend Ratio

From Equation (2.7),

Ppv
t = Dt

∞∑
s=t

exp {−r(s− t + 1) + bs−t (xt − µ) + as−t} (2.37)

where

as−t = (s− t)µ+
σ2

2(1− ρ)2

[
(s− t)− 2

ρ

1− ρ
(
1− ρs−t

)
+ ρ2

1− ρ2(s−t)

1− ρ2

]
. (2.38)

and

bs−t =
ρ

1− ρ
{

1− ρs−t
}
. (2.39)

Denoting i = s− t, vt =
Ppv
t

Dt

=
∞∑
i=0

exp{−r(i + 1)}exp {ai + bi (xt − µ)} (2.40)

where

bi =
ρ

1− ρ
{

1− ρi
}

and ai = iµ+
σ2

2(1− ρ)2

[
i− 2

ρ

1− ρ
(
1− ρi

)
+ ρ2

1− ρ2i

1− ρ2

]

Let

vt ≡
∞∑
i=0

zi (2.41)

Then
zi+1

zi
=

exp{−r(i + 1 + 1)} exp {ai+1 + bi+1 (xt − µ)}
exp{−r(i + 1)} exp {ai + bi (xt − µ)}
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= exp{−r} exp {(ai+1 − ai) + (bi+1 − bi) (xt − µ)}

bi+1 − bi =
ρ

1− ρ
{

1− ρi+1 − 1 + ρi
}

= ρi+1 (2.42)

ai+1−ai = µ+
σ2

2(1− ρ)2

[
1− 2

ρ

1− ρ
(
1− ρi+1 − 1 + ρi

)
+

ρ2

1− ρ2
{

1− ρ2(i+1) − 1 + ρ2i
}]

(2.43)

= µ+
σ2

2(1− ρ)2
[
1 + ρi+1

{
ρi+1 − 2

}]
.

Therefore,

zi+1

zi
= exp

{
−r + µ+

σ2

2 (1− ρ2)
[
1 + ρi+1

(
ρi+1 − 2

)]
+ ρi+1 (xt − µ)

}
.

Now zi+1

zi
=
∣∣∣ zi+1

zi

∣∣∣. With |ρ < 1|, limi→∞

∣∣∣ zi+1

zi

∣∣∣ = exp
{
−r + µ+ σ2

2(1−ρ2)

}
.

Therefore, from Burnside’s (1998) proof of Theorem 1,
∑∞

i=0 zi converges if

R ≡ exp

{
−r + µ+

σ2

2 (1− ρ2)

}
< 1 (2.44)

2.6.3 Appendix C

Derivation of Equation (2.11): Mean of the Price-Dividend Ratio

From Equation (2.7), we have:

vt ≡
Ppv
t

Dt

=
∞∑
i=0

exp{−r(i + 1)} exp {ai + bi (xt − µ)} (2.45)
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Therefore,

E (vt) =
∞∑
i=0

exp {−r(i + 1) + ai}E [exp {bi (xt − µ)}] .

We have from Equation (2.6),

xt − µ = ρ (xt−1 − µ) + ξt, |ρ| < 1, ξt ∼ iid N
(
0, σ2

)
. (2.46)

Therefore, xt − µ ∼ N
(

0, σ2

1−ρ2

)
which implies bi (xt − µ) ∼ N

(
0,

b2i σ
2

1−ρ2

)
. Therefore

E [exp {bi (xt − µ)}] = exp
{

b2i σ
2

2(1−ρ2)

}
.

Therefore,

E (vt) =
∞∑
i=0

exp

{
−r(i + 1) + ai +

b2
i σ

2

2 (1− ρ2)

}
. (2.47)

Proof of Convergence of Mean of the Price-Dividend Ratio

Let

E (vt) ≡
∞∑
i=0

Zi. (2.48)

zi+1

zi
=

exp
{
−r(i+ 1 + 1) + ai+1 + σ2

2(1−ρ2)b
2
i+1

}
exp

{
−r(i+ 1) + ai + σ2

2(1−ρ2)b
2
i

}
= exp

{
−r + (ai+1 − ai) +

σ2

2 (1− ρ2)
(
b2
i+1 − b2

i

)}
.

Following from the proof on convergence of the fundamental stock price-dividend ratio

Ppv
t /Dt, it su�ces to show that limi→∞

σ2

2(1−ρ2)

(
b2i+1 − b2i

)
= 0 for a version of Theorem

2.2 in Burnside (1998) to hold.
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We have from Appendix B,
(
b2
i+1 − b2

i

)
= ρ2

(1−ρ)2

[(
1− ρi+1

)2 − (1− ρi)2] which im-

plies
(
b2i+1 − b2i

)
= ρ2

(1−ρ)ρ
i {2− (1 + ρ)ρi}.

Therefore, limi→∞
(
b2
i+1 − b2

i

)
= limi→∞

ρ2

1−ρ

[
ρi
{

2− (1 + ρ)ρi
}]

= 0.

Now, we have
∣∣∣ zi+1

zi

∣∣∣ = zi+1

zi
. Therefore limi→∞

∣∣∣ zi+1

zi

∣∣∣ = exp {−r + limi→∞ (ai+1 − ai)}.

From Equation (2.43) we have:

ai+1−ai = µ+
σ2

2(1− ρ)2

[
1− 2

ρ

1− ρ
(
1− ρi+1 − 1 + ρi

)
+

ρ2

1− ρ2
{

1− ρ2(i+1) − 1 + ρ2i
}]

ai+1 − ai = µ + σ2

2(1−ρ)2 [1 + ρi+1 {ρi+1 − 2}] . Therefore limi→∞ (ai+1 − ai) = µ +

σ2

2(1−ρ)2 since |ρ| < 1. Therefore, limi→∞

∣∣∣ zi+1

zi

∣∣∣ = exp
{
−r + µ+ σ2

2(1−ρ)2

}
.

Therefore, from Burnside’s (1998) proof of Theorem 1,
∑∞

i=0 zi converges if R ≡ exp{
−r + µ+ σ2

2(1−ρ2)

}
< 1

2.6.4 Appendix D

Intrinsic Bubbles under AR(1) Process for Dividend Growth Rates

Equation (2.4) implies Bt = e−rEt {Bt+1}. Let B (Dt) = cDλ
t exp {hxt} where λ and

h are constants to be determined. Therefore,

Et {Bt+1} = Et

{
cDλ

t+1 exp [hxt+1]
}

(2.49)

= Et

{
cDλ

t exp [λ(1− ρ)µ+ λpxt + λξt+1] exp [h {(1− ρ)µ+ ρxt + ξt+1}]
}
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= Et

{
cDλ

t exp [(λ+ h)(1− ρ)µ+ (λ+ h)ρxt + (λ+ h)ξt+1]
}
.

Using the moment generating function of normal random variables, we obtain:

Et {Bt+1} = cDλ
t exp

{
(λ+ h)(1− ρ)µ+ (λ+ h)ρxt + (λ+ h)2σ2/2

}
(2.50)

Therefore, the r.h.s. of Equation (2.4) becomes:

cDλ
t exp {(λ+ h)ρxt} exp

{
−r + (λ+ h)(1− ρ)µ+ (λ+ h)2σ2/2

}
.

The l.h.s. of Equation (2.4) is Bt = B (Dt) = cDλ
t exp {hxt}. Therefore, for Equation

(2.4) to hold, we must have:

r = (λ+ h)(1− ρ)µ+ (λ+ h)2σ2/2 (2.51)

and

h = (λ+ h)ρ. (2.52)
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CHAPTER 3

A STATE SPACE FRAMEWORK FOR THE RESIDUAL INCOME VALUATION

MODEL OF STOCK PRICES

3.1 Introduction

Understanding equity valuation and expected stock returns have been preeminent

topics in asset pricing research for over half a century. The empirical asset pricing lit-

erature has largely focused on understanding both cross-sectional and time-series dif-

ferences in the average rates of stock returns (see Goyal (2012) for a recent survey).

One major strand of research within the stock return literature is the use of accounting-

based information to explain the cross-sectional behavior of returns. Chen and Zhang

(2007) provide theory and evidence to rationalize the link between stock performance

and accounting measures of performance. Within a wide array of accounting informa-

tion, canonical work, particularly Fama and French (1993, 1995, 1996, 1998), suggests

that book-to-market, market capitalization, and earnings yields can explain much of the

stock return variation. While expected-return models are crucial to gain further under-

standing of stock market dynamics, equally important are stock valuation models.

Bakshi and Ju (2002) distinctly note that stock valuation models that support the in-

trinsic link between returns, book values, and earnings “can provide the much-needed

impetus for reconciling the behavior of expected returns and market valuations." One

such stock valuation model is the discounted residual income model (RIM or RI), for-

malized by Ohlson (1991, 1995). The RIM is built upon the traditional dividend discount

model. It focuses on �rms’ earning power and wealth creation, as captured by account-

ing data, rather than the expected dividend sequence. It assumes the clean surplus re-

lation (CSR), which posits that the change in book value of equity is equal to retained
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earnings. ‘Residual income’ or ‘abnormal earnings’1, is de�ned as the di�erence between

accounting earnings and the previous-period book value multiplied by the cost of equity.

The residual income model implies that the current stock price equals the current

book value of equity plus the expected present discounted value of all future residual

income. One of the main ingredients of Ohlson (1995) is an explicit formulation of resid-

ual income information dynamics. The chief feature of information dynamics is that

expected next period t+ 1 residual income contains information known at time t that is

not present in current residual income. Dechow et al. (1999) (henceforth DHS) provide

an empirical evaluation of the Ohlson (1995) model, explicitly including residual income

information dynamics for the �rst time in their study. They use Wall Street consensus

analysts’ earnings forecasts as a measure to estimate the so-called ‘other information’

about next period t+1 earnings. They argue that Wall Street equity analysts hold better

predictive information on �rms’ earnings relative to retail investors.

Naturally, investors �nd information about a �rm’s future earnings prospects highly

important to their stock selection process. Therefore, they value consensus analysts’

earnings forecasts as a conveyor of or signal for information about a stock. Despite

their importance to investors, such use of earnings forecast data have several draw-

backs, including bias and subjectivity from competing stock analysts, limited data avail-

ability, ample heterogeneity in analysts’ reputation, and credibility of their forecasts

within the aggregate market. Furthermore, frequent con�icting interests of the analyst-

management relationship has been problematic for decades, hampering unbiased stock

recommendations. Recent regulatory reform, namely the NASD Rule 2711 mandates

analyst independence in order to enhance the objectivity of analyst recommendations.

However, such regulations have induced unintended consequences, particularly the re-

duction of market-wide research coverage. They have also widened information asym-

1We use residual income and abnormal earnings interchangeably throughout the paper.
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metry between retail investors and wealthier, highly-sophisticated institutional investors,

who have access to costly information sources (see Fisch (2007) for detailed discussion).

In light of this, we ask what are the alternative measurements or estimation methods for

modelling ‘other information’ in the residual income valuation model?

The purpose of this paper is to apply the residual income valuation model for equity

prices developed in Ohlson (1995) and assess the empirical implications of the model

by estimating the ‘other information’ variable using a state space framework. We esti-

mate the valuation model with the embedded state space framework using the Kalman

�lter across a sample of stocks, namely, in the Dow Jones 30 (henceforth DJIA) and S&P

500 indices. We compare model performance to the benchmark two-step regression ap-

proach used in DHS. Our empirical results provide comparative performance of the two

approaches in forecasting next period t + 1 abnormal earnings, current period t other

information, and current period t stock prices, both in- and out-of-sample.

We organize the paper as follows. In Section 3.2, we provide a general framework

for both the dividend discount model and the residual income model, and discuss ex-

tensions of Ohlson’s RI model. We also present the benchmark DHS estimation method

along with a discussion of its drawbacks, followed by an introduction to our state space

(henceforth SS) estimation method. In Section 3.3, we discuss the data, and report em-

pirical results along with inferences drawn from our investigations. We summarize our

main �ndings and brie�y consider plausible extensions of the paper in the concluding

section.
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3.2 Valuation Models

3.2.1 The Dividend Discount Model

In �nance, the conventional equity valuation model is the dividend discount model,

which speci�es that stock price is equal to the present value of expected future dividends

stream:

Pt =
∞∑
τ=1

Et [dt+τ ]

(1 + r)τ
, (3.1)

where Pt is the price of the �rm’s equity at time t, dt is net dividends paid at time t,

r is the constant discount rate, and Et[·] is the expected value operator conditional on

information set available at date t.

The subject of market e�ciency that promotes the idea that stock prices re�ect ratio-

nal investor responses to all new information about fundamentals has received critical

attention over virtually four decades. Such market e�ciency tests were pioneered by

the stock price volatility tests of LeRoy and Porter (1981) and Shiller (1981). Based on

Eq. (3.1), they found that stock market volatility was far greater than could be justi�ed

by subsequent changes in dividends. A number of studies provide further substantive

evidence that stock price �uctuations are simply too excessive to result solely from �uc-

tuations in the expected present discounted value of dividends. For example, West (1988)

developed a variance-bound test that avoids small sample bias and is valid even when the

cash (or ordinary) dividends stream does not mean-revert. Campbell and Shiller (1987)

derived testable implications of the present value model, taking into account the non-

stationarity and cointegration of stock prices and ordinary dividends. Both West and

Campbell and Shiller found strong evidence against the simple present value relation in

which ordinary dividends are used as the discounted cash �ow.
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However, Ackert and Smith (1993) show that inferences from volatility tests depend

on how econometricians measure dividend distributions to shareholders. As Miller and

Modigliani (1961) have established, dividends generally represent all cash distributions

to shareholders, including proceeds from share repurchases and mergers and acquisi-

tions. Empirically, this would make the dividend distribution a much broader set. As a

result, Ackert and Smith (1993), using broad dividends inclusive of other cash distribu-

tions, rather than ordinary, cash dividends solely as done in previous studies, show an

improvement in the performance of the present value model. In support of the use of

broad dividends, it is worth noting that Fama and French (2001) provide evidence that the

number of �rms paying cash dividends has drastically declined since the late 1970s. In

fact, Grullon and Michaely (2002) show that share repurchase activity has grown consid-

erably since the mid-1980s, and has become a substitutable form of cash payout channel

for publicly-traded US �rms.

Such dynamic shifts in dividend measurement illuminate the limitations of using the

dividend discount model to value stocks. This motivates the necessity of a discounted

cash �ow present value framework that can broadly capture total cash distributions paid

to shareholders, not just conventional cash dividends.

3.2.2 Residual Income Valuation Model

In accounting literature, an alternative valuation model, the residual income valua-

tion model (RIM or RI), has become widely popular among theoretical and empirical re-

searchers, primarily due to its formalization by Ohlson (1991, 1995). The RIM assumes an

integral accounting identity, namely, the clean surplus relation (CSR), which stipulates

that the change in book value of equity is equal to the di�erence between accounting

earnings and dividends. The residual income (or abnormal earnings) is de�ned as the dif-
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ference between current accounting earnings and the product of previous-period book

value and the cost of capital. RIM implies that the current stock price equals the cur-

rent book value of equity plus the expected present value of all future residual income.

A critical feature of the RIM is that dividends, via the CSR, are de�ned broadly as the

di�erence between earnings and the change in book value of equity. As such, dividends

in the RIM include not only traditional ordinary, cash dividends, but also other forms of

cash distributions to shareholders (e.g., share repurchases, mergers, acquisitions, etc.).

Model Overview

The CSR assumption is important for the RIM in order to express goodwill (i.e. the

di�erence between �rm market value and its book value) as a function of expected next

period t+1 residual income. The CSR stipulates that all gains and losses of a �rm’s book

value be incorporated in retained earnings; in other words, a one-period change in book

value equals earnings minus dividends. The CSR accounting identity is expressed as:

bt = bt−1 + xt − dt, (3.2)

where bt is the book value of equity at time t, xt is earnings for the period from t− 1 to

t, and dt is net dividends paid out at time t.

Combining Eq. (3.2) with the present value stock price in Eq. ((3.1) by substituting

out for dt yields:

Pt =
∞∑
τ=1

Et [bt+τ−1 + xt+τ − bt+τ ]
(1 + r)τ

. (3.3)

On forward iteration, Eq. (3.3) can be reduced to:

Pt = bt +
∞∑
τ=1

Et [xt+τ − r · bt+τ−1]
(1 + r)τ

− Et [bt+∞]

(1 + r)∞︸ ︷︷ ︸
0

. (3.4)
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Imposing the transversality condition on the last term in Eq. (3.4) guarantees that the

book value stream is not an explosive one. For this condition to be satis�ed, given the

clean surplus accounting relation, dividends will have to be paid at some future date.

As such, imposing the transversality condition allows one to de�ne residual income xat

as earnings minus a charge for the use of capital, as measured by start-of-period book

value of equity multiplied by the cost of capital (assumed to be the constant discount

rate, r):

xat = xt − r · bt−1. (3.5)

As such, we can specify the residual income model as:

Pt = bt +
∞∑
τ=1

Et

[
xat+τ

]
(1 + r)τ

, (3.6)

which states that the current stock price equals the sum of current book value of equity

and the present value of all expected future abnormal earnings. The latter term re�ects

a �rm’s future pro�tability. One should note that Eq. (3.6) is simply a restatement of

the dividend discount model. Speci�cally, it does not depend on the properties of the

accounting variables, other than by way of the CSR and the transversality condition

imposed in Eq. (3.4).

Using accounting values as a fundamental information framework for investors,

Ohlson (1995) formulates dynamic linear recursive equations in order to relate current

accounting numbers with future expected accounting information. Speci�cally, he as-

sumes that abnormal earnings satisfy the following modi�ed autoregressive process:
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xat = ωxat−1 + vt−1 + εt, εt ∼ iid N
(
0, σ2

ε

)
(3.7a)

vt = γvt−1 + ηt, ηt ∼ iid N
(
0, σ2

η

)
(3.7b)

where νt is ‘other information’ about next period t + 1 abnormal earnings xat+1 not

conveyed in current abnormal earnings xat , εt and ηt are unpredictable, mean zero dis-

turbance terms, and ω and γ are �xed persistence parameters, assumed non-negative

and less than one.

Combining the residual income valuation model in Eq. (3.6) with the information

dynamics in Eqs. (3.7a) and (3.7b) yields the following implied valuation function:

Pt = bt + α1x
a
t + α2vt, (3.8)

where α1 = ω/(1 + r − ω) and α2 = (1 + r)/[(1 + r − ω)(1 + r − γ)]. This valua-

tion function is consistent with the ModiglianiâĂŞMiller dividend irrelevance theorem.

Ohlson’s (1995) formulation of information dynamics in Eq. (3.7) implies that uncondi-

tional expected goodwill is zero. That is, even if there is persistence in goodwill for long

periods into the future, its average value approximates to zero. Therefore, book value

of equity is an unbiased estimator of market value of equity. Eq. (3.8) implies that the

market value for a �rm re�ects the book value adjusted for current abnormal earnings

and ‘other information’ about future pro�tability.

Extensions of Ohlson’s RI Model

While several empirical applications of the residual income valuation model have

surfaced in the literature, several of them unfortunately ignore the information dynamics

formulated in Ohlson (1995). Consequently, these valuation models e�ectively become
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applications of the dividend discount model, in which current earnings are assumed to

be the sole measure of ‘wealth creation’. As such, they overlook book value or abnormal

earnings (see, for example Whitbeck and Kisor, 1963; Malkiel and Cragg, 1970; Easton

and Harris, 1991; Kothari and Zimmerman, 1995).

Since Dechow et al. (1999) (DHS), however, recent works have incorporated residual

income information dynamics in addition to value-relevant information, and empirically

do a better job than competing variants of the dividend discount model. For instance,

Tsay et al. (2008, 2009) incorporate non-earnings information variables (e.g. bankruptcy

costs, earnings components, and growth opportunities) in addition to consensus ana-

lysts’ earnings forecasts. They �nd better predictive ability and estimation e�ciency in

explaining contemporaneous stock prices by incorporating such additional information.

Lyle et al. (2013) incorporate dynamic expectations about the level of systematic risk in

the economy. Balachandran and Mohanram (2012) use residual income (RI) to decom-

pose earnings growth into several growth factors (e.g. RI growth and invested capital

growth). They then use this decomposition to explain stock returns. Additional work

uses various econometric techniques to test the validity and empirical performance of

the RI model (see Jiang and Lee (2005)), and adjusts for sources of bias to forecast RI-

based stock prices (see Higgins (2011) and Kuo (2016)).

Several theoretical extensions, including but not limited to Feltham and Ohlson (1999),

Ang and Liu (2001), and Gode and Ohlson (2004), lay a solid foundation allowing for

stochastic interest rates and risk, in addition to information dynamics, in the residual

income model. Recent work by Bergeron et al. (2018) incorporates the now popular

concept of long-run risk, pioneered by Bansal and Yaron (2004), into the residual in-

come valuation framework.

In this paper, we reassess the residual income valuation model analyzed in DHS,

by utilizing a state space approach to extract the latent ‘other information’ variable in
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Ohlson’s model, instead of proxying it with consensus analyst forecasts of next period

t+ 1 earnings, as originally done in DHS.

3.2.3 DHS Estimation Method

The original, empirical implementation of information dynamics and implied valu-

ation function in Eqs. (3.7a and 3.7b) and (3.8), respectively, in DHS involves three vari-

ables (bt, xt, and νt) and three parameters (ω, γ and r). The �rst two variables, bt and

xt, are readily observed and easily measured. However, the last variable νt and the three

parameters are unobserved. These are to be estimated. The underlying idea of Ohlson

(1995) is that a �rm’s stock price re�ects information about its next period t + 1 prof-

itability that is not readily incorporated in current pro�tability. As such, Ohlson de�nes

the ‘other information’ variable, νt, as the di�erence between the conditional expecta-

tion of abnormal earnings for next period t+1 based on all available information at time

t and that based on current period t abnormal earnings alone:

vt = Et

[
xat+1

]
− ωxat . (3.9)

The conditional expectation of next period t + 1 abnormal earnings, denoted as fat is

equal to the conditional expectation of next period t + 1 earnings at time t less the

product of book value at time t and the discount rate. DHS measure the conditional

expectation of next period t+ 1 earnings at time t using the consensus analyst forecast

of next period t+ 1 earnings, denoted as ft, in which case

Et

[
xat+1

]
= f a

t = ft − r · bt. (3.10)
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Therefore, from Eqs. (3.9) and (3.10), ‘other information’, νt can be retrieved as

vt = fat − ωxat . (3.11)

The values for the three parameters, namely ω, γ, and r are pinned down as follows.

The authors use the average historical return on equities to measure the discount rate,

r. They estimate the persistence parameters, ω and γ, which they postulate as common

across �rms, by using unconditional pooled regressions.

xai,t = ω0 + ω1x
a
i,t−1 + ε1i,t, ε1i,t ∼ iid N

(
0, σ2

1

)
(3.12a)

vi,t = γ0 + γ1vi,t−1 + ε2i,t, ε2i,t ∼ iid N
(
0, σ2

2

)
. (3.12b)

xai,t is current period t abnormal earnings for �rm i. vi,t is ‘other information’ about next

period t+ 1 abnormal earnings known at time t for �rm i. ω0 and γ0 are the intercepts.

ω1 and γ1 are the persistence parameters. εi1,t and εi2,t are error terms for �rm i with a

zero mean and variances σ2
1 and σ2

2 , respectively.

The two-step regression approach of DHS proceeds as follows. First, Eq. (3.12a) is

estimated. The estimate of omega1 is used as an estimate of ω in Eq. (3.7a). Using the

estimate of ω1, from Eq. (3.12a) for ω in Eq. (3.11), a time series for νt is constructed.

Using this series for νt, (3.12b) is then estimated in the second step. The estimate of γ1

is then used as an estimate of γ in Eq. (3.7b).

In essence, in the DHS methodology, separate two-step estimation of Eqs. (3.12a)

and (3.12b) serves as the foundation of their empirical analysis. It enables calculation of

the implied valuation function in Eq. (3.8). This approach serves as a benchmark for our

alternative SS estimation approach.

70



From the standpoint of Ohlson’s theory, it is important to mention that this empir-

ical strategy of DHS in question is a �awed one. As denoted in Eqs. (3.7a) and (3.7b) of

section 3.2.2, a key assumption regarding information dynamics in the RIM framework

stipulates that next period t + 1 abnormal earnings are a linear function of current pe-

riod t abnormal earnings and a latent variable. This ‘other information’ variable about

next period t + 1 abnormal earnings is posited to evolve as a �rst-order autoregressive

process. Therefore, estimates of the persistence parameter ω1 in Eq. (3.12a), obtained

from an unconditional pooled regression for abnormal earnings, is contaminated. Fur-

thermore, the second step estimation of γ1 from Eq. (3.12b) is also problematic from an

econometric viewpoint.

Use of the two-step regression in DHS, as exempli�ed by Eqs. (3.12a) and (3.12b),

leads to the well-known drawback, namely, classical measurement error on generated

variables, and the e�ciency and consistency loss that ensues (see, for example Pagan

(1984); Oxley and McAleer (1993); and Hausman (2001) for related discussions). As a re-

sult, empirical analyses of the residual income valuation models that employ consensus

analysts’ earnings forecasts to extract the ‘other information’ variable νt are susceptible

to this drawback in methodology.

Our paper seeks to address two drawbacks in the RIM literature. One is to avoid

using analysts’ earnings forecasts data in favor of an objective model-based approach

to estimate ‘other information’ νt. Another is to avoid drawbacks of the two-step esti-

mation employed by DHS. We utilize a state space approach to extract the unobserved

other information νt in the next section. The application of this technique serves as the

paper’s main contribution to the residual income valuation literature.
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3.2.4 SS Estimation Method

The dynamic evolution of abnormal earnings is speci�ed in Equations (3.7a) and

(3.7b). Eqs. (7a) and (7b) can be represented in general state space form in which the

measurement (observation) equation relating yt to the latent unobserved variable αt is

formulated as:

yt
n×1

= ztαt + εt
n×1

, εt ∼ iid N
(

0̄
nx1
, Ht

)
(3.13a)

and the transition (state) equation describing the evolution of the latent variable can be

formulated as:

αt
(n+1)×1

= Tt αt−1
(n+1)×1

+Rt ηt
(n×1)

, ηt ∼ iid N
(

0̄
nx1
, Qt

)
. (3.13b)

Here, yt is the column vector of observed abnormal earnings at time t. zt = (In yt−1)

is a n × (n + 1) matrix containing a n-dimensional identity matrix and column vector

of lagged observed abnormal earnings at time t. αt =

 vt

ω

 is the (n + 1) × 1 state

vector of νt, the ‘other information variable’ in the RIM, and ω, the unknown persistence

parameter of abnormal earnings appearing in Eq. (3.7a). Ht = σ2
εIn is the covariance

matrix for the measurement noise εt. Tt =

 γIn 0

0 1

 is a (n + 1) × (n + 1) matrix

of parameters governing the state transition. Rt =

 In

0̄′

 is a (n + 1) × n matrix of

parameters and Qt = σ2
ηIn is the covariance matrix for the signal shock ηt. Ht and Qt

are serially and mutually independent.
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A scalar state space representation for Eqs. (3.7a) and (3.7b), for a single �rm n = 1,

along with the Kalman �ltering procedure that we have implemented for econometric

analysis can be found in the Appendix.2

Given the linear Gaussian state space speci�cation above, we estimate the unknown

parameters contained in the vector, φ={ω, γ, σ2
ε , σ2

η}, as well as the latent state vector

αt, using the Kalman �lter.

Initialization. We initialize the Kalman �lter with the initial state, at|t and pt|t at t = 0.

Let at|t = E [αt|Yt], where Yt = {yt, yt−1, yt−2, . . . y1}, be the �lter mean of unobserved

state αt, given observations up to and including yt, and pt|t be the n × n covariance

matrix pt|t = var(αt|Yt).

Prediction. Given at|t and pt|t, the one-step ahead predictor3 at+1|t is provided by:

at+1|t =E (αt+1|Yt)

= E (Tt+1αt +Rt+1ηt+1|Yt)

= Tt+1 · at|t

(3.14a)

pt+1|t = var (αt+1|Yt)

= var (Tt+1αt +Rt+1nt+1|Yt)

= Tt+1pt|tT
′
t+1 +Rt+1Qt+1R

′
t+1

(3.14b)

2Note that the sum of the log L for either state space form match as the former estimates the
log L for all �rms in the sample concurrently, while the latter does so individually for each �rm
j at a time.

3Note we lose a degree of freedom in the time-series for each stock in the respective sample
when calculating a one step-ahead prediction.
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Filtering. Once a new observation yt+1 arrives, the one-step ahead predictions are

updated using the �ltering equations:

at+1|t+1 = at+1 +
(
pt+1z

′
t+1F

−1
t+1

)
ϕt+1 (3.15a)

pt+1|t+1 = pt+1 − pt+1zt+1F
−1
t+1z

′
t+1pt+1 (3.15b)

where ϕt+1 = yt+1 − zt+1at+1 = yt+1 − E (yt+1|Yt) is the one-step ahead prediction

error and Ft+1 = var (ϕt+1) = zt+1pt+1z
′
t+1 + Ht+1 is its conditional variance. Eqs.

(3.14) and (3.15) together represent the Kalman �ltering recursive procedure, whose ap-

plication generates the �lter and predictive means and variances of the state variables

αt, conditional on φ={ω, γ, σ2
ε , σ2

η}.

Log-likelihood construction. As a by-product of the above recursive predictive

and �ltering equations, we can recursively compute f (yt|Yt−1, φ) for t = 1, 2, . . . , N

from the normal probability density function. We can use these densities to construct

the log-likelihood as follows:

logL = −nN
2

log(2π)− 1

2

N∑
t=1

log |Ft| −
1

2

N∑
i=1

ϕ′tF
−1
t ϕt, (3.16)

where |Ft| is the determinant of Ft. We use numerical methods to minimize the nega-

tive of the log-likelihood function in Eq. (3.16), with respect to the unknown vector of

parameters φ.
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3.3 Empirical Assessment of the Model

3.3.1 Data Description, Aggregation, Transformation, and Clean-

ing Details

Data Description

To investigate the empirical performance of our proposed SS estimation method, we

use a sample of constituents of major US stock indices, namely the DJIA and the S&P

500, from a couple of sets of accounting and stock market databases. We subsequently

clean, aggregate, and transform the raw sample data.

For historical stock price and accounting data, we use annual 1950-2017 CRSP and

COMPUSTAT Merged data �les. To identify the constituents of the DJIA and S&P 500

as of 2017 �scal year-end, we use COMPUSTAT Daily Updates - Index Constituents data

�les. Additionally, for analyst forecast data, we retrieve annual 1976-2017 I/B/E/S data

�les. In order to implement the benchmark DHS estimation method, the I/B/E/S �les

are a mandatory requirement since they contain analyst forecast data. An evident issue

here is the unavailability of analyst forecast data before 1976. However, for state space

estimation, we only need the 1950-2017 CRSP/COMPUSTAT data. This fact further mo-

tivates the usefulness of the state space approach, as it eliminates the need for additional

data sets that may be subject to limited availability.

Since the set of available analyst forecasts within the sample period is vast, we use

only the latest analyst forecast recorded for each forecast period.

We conduct the empirical evaluation using per-share accounting data, including

book value per share (bvps), earnings per share (eps), and closing stock prices per share.

Each accounting variable is adjusted for periodic stock events, including stock splits,

stock dividends, mergers and acquisitions, etc. We additionally measure each variable
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based on �scal year-end; otherwise, if unavailable for a �rm-year observation, we mea-

sure it using calendar year-end. All analyses use basic earnings measured before extraor-

dinary items, and a discount rate of 12% as adopted by DHS, which they approximate to

be the long-run average realized return on US equities.

We construct an abnormal earnings series by using data for earnings and book value,

and the assumed cost of equity at 12% in Eq. (3.5).4

We note two things for the empirical strategy in DHS: all relevant variables are scaled

by market value of equity to control for heteroscedasticity and the 1% most extreme ob-

servations are winsorised in order to mitigate their undue e�ect on regression estimates.

However, for our purposes, we do not follow their scaling and winsorization procedure.

The use of winsorization and scaling can be riddled with several pitfalls, which may jeop-

ardize the validity of results. Such pitfalls include the hazard of a skewed distribution

of the information set in sample, and the potential tradeo� between forecast accuracy

and economic value of such regression-based forecasts (see Brownen-Trinh (2019) for

in-depth discussion). Robust estimators such as least trimmed squares estimate, Theil-

Sen estimator (see Theil (1950 and Sen (1968)), and robust scale minimization (see Peña

and Yohai (1999) for procedure) can overcome the challenges of scaling and winsoriza-

tion, and tend to perform well in spite of any outliers that may be present. Employing

such robust estimators in the context of the SS model here goes beyond the scope of this

study.

4Note we lose a degree of freedom in the time-series for each stock in the respective sample
when aggregating abnormal earnings. Constructing abnormal earnings at time t requires book
value at time t− 1. Therefore, given that the sample period of 1950-2017 totals 68 time periods,
we can have no more than 67 time periods in the abnormal earnings data series for each stock.
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Data Aggregation and Transformation Details

We begin aggregating the original data by extracting the CRSP/Compustat Merged

- Fundamentals Annual data �le for active companies only during the January 1950

to December 2017 �scal year period. We select the following array of relevant vari-

ables5 to be generated within the extracted data set: GVKEY,6 Historical CRSP PERMCO

Link to COMPUSTAT Record (LPERMCO), Historical CRSP PERMNO Link to COM-

PUSTAT Record (LPERMNO), Company Name (CONM), Ticker Symbol (TIC), CUSIP,

North American Industry Classi�cation Code (NAICS), Standard Industry Classi�cation

Code (SIC), Adjustment Factor (Company) - Cumulative by Ex-Date (AJEX), Fiscal Year

(FYEAR), Book Value Per Share (BKVLPS), Earnings Per Share (Basic) Excluding Extraor-

dinary Items (EPSPX), Price Close - Annual - Calendar (PRCC_C), and Price Close - An-

nual - Fiscal (PRCC_F). Using the company identi�er (GVKEY) to relate the two data �les,

we identify the constituents of the DJIA and S&P 500 indices in the CRSP/COMPUSTAT

Merged data �le with the COMPUSTAT Daily Updates - Index Constituents data �le,

where there are 30 constituents within the Dow Jones Industrial Average and 501 con-

stituents within the S&P 500.7

Within the CRSP/COMPUSTAT Merged data �le, we create an adjusted version of

each per share data variable (i.e. price and earnings per share). The adjusted variables are

data transformations that account for all stock splits and stock dividends that occurred

subsequent to the end of a given period. To do so, we adjust the per share data and share

data by dividing and multiplying them by the adjustment factor (AJEX), respectively for

each time period.

5See Appendix for detailed list of variable names and descriptions relevant to the analysis.
6Automatically included in data extract.
7See Appendix for full list of constituents for each index.
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Note that we have two share price variables, PRCC_C and PRCC_F. We primarily

use the closing price based on �scal year-end (PRCC_F); however, if data are missing at

a speci�c time period, then we substitute it with the closing price at calendar year-end

(PRCC_C).

To follow the DHS estimation method, we extract the t + 1 analyst earnings fore-

cast data in the I/B/E/S - Summary History - Summary Statistics data �le during the

January 1976 to December 2017 forecast period. We select the following array of rele-

vant variables to be generated within the extracted data set for analyst earnings forecast:

CUSIP (8-digit), Forecast Period End Date, IBES Statistical Period, and Mean Estimate.8

Again, since the set of available analyst forecast universe is rather large, we use only

the most recent, mean analyst forecast estimate recorded for each forecast period in the

data extract. Using a combination of company identi�ers across the databases (GVKEY,

LPERMCO, and NCUSIP), we merge the t + 1 analyst earnings forecast in I/B/E/S with

our CRSP/COMPUSTAT Merged data �le.9 This produces a total of 1,515 �rm-year ob-

servations of the DJIA sample and 18,247 �rm-year observations of the S&P 500 sample.

Data Cleaning Details

To clean the merged data, we remove all �rm data if it contains missing observations,

gaps in the time-series, negative prices or book values, or less than three years of data.

As such, we end up with 19 DJIA stocks totalling 853 �rm-year observations and 286

S&P 500 stocks totalling 9,093 �rm-year observations.10 Note that all stocks under the

8See Appendix for detailed list of variable names and descriptions relevant to the analysis.
9To merge the analyst forecast data from I/B/E/S with CRSP/COMPUSTAT Merged data

�les in order to complete our compilation successfully is not straightforward and as such
requires several steps. This matter is a commonly known issue and a thorough solu-
tion can be found here: https://wrds-www.wharton.upenn.edu/pages/support/research-wrds/
linking-ibes-and-crsp-data/#using-link-tables-to-merge-ibes-and-crsp-data.

10See Appendix for full list of stocks included in sample set.

78

https://wrds-www.wharton.upenn.edu/pages/support/research-wrds/linking-ibes-and-crsp-data/##using-link-tables-to-merge-ibes-and-crsp-data
https://wrds-www.wharton.upenn.edu/pages/support/research-wrds/linking-ibes-and-crsp-data/##using-link-tables-to-merge-ibes-and-crsp-data


Dow Jones Industrial Average are also under the S&P 500. Therefore the 19 stocks used

in the DJIA sample are used in the S&P 500 sample too.11

We conduct our analysis by splitting the aggregate sample into two sub-samples:

�rms only in the �nancial, insurance, and public utility (henceforth FIPU) sectors and

�rms outside those sectors (henceforth non-FIPU). We do this because the quantitative

characteristics of �nancial data for �nancial institutions, insurance companies, and pub-

lic utilities tend to be substantially di�erent from those of other types of �rms. An aggre-

gate sample inclusive of FIPU �rms may skew the distribution of each �nancial variable

employed in our empirical evaluation. As such, we have 14 (5) non-FIPU (FIPU) stocks

in the DJIA sub-sample and 216 (70) non-FIPU (FIPU) stocks in the S&P 500 sub-sample.

Summary Statistics

Tables 3.1 and 3.2 provide summary statistics on key �nancial variables for non-FIPU

and FIPU stocks employed in the analysis, respectively. The mean stock price for non-

FIPU (FIPU) �rms traded under each index is over three times (nearly two times) the

mean value of book value per share. This potentially indicates that investors see mar-

ket price as a forward-looking metric, re�ecting information on expected next period

t + 1 earnings beyond the cost of capital and book value of equity (see Penman (1996)

for related discussion). This motivates the merit and practicality of the residual income

valuation model, which asserts that stock price is the sum of book value and the dis-

counted present value of expected abnormal earnings.

The �ve measures of variability for virtually all of the �nancial variables collectively

indicate larger dispersion for FIPU stocks relative to non-FIPU stocks. This is particu-

larly true for FIPU stocks under the S&P 500, driven predominantly by signi�cant �nan-

11We use these 19 stocks in addition to 5 others arbitrarily chosen for graphical illustrations
in the paper.
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cial losses reported by insurance giant AIG in 2008. This larger dispersion, coupled with

larger third and fourth central moments for FIPU �rms, further justi�es the need to split

the sample into two sub-samples, as done here.

Abnormal earnings is less than earnings per share on average for �rms traded under

each index by construction, underlying the critical assumption of the residual income

valuation model that earnings should account for the true cost of capital. That is, it

should not only capture the cost of debt (i.e. interest expenses readily included in net

income calculation), but also the cost of equity (i.e. cash distributions to shareholders

not readily included in net income calculation).

The �rst two central moments of analysts’ earnings forecast for non-FIPU stocks

traded under both the DJIA and S&P 500 are comparable to those of actual earnings per

share. This sheds some light on the forecasting abilities of Wall Street analysts for �rms

outside of the �nancial, insurance, and utilities sectors. We also �nd similarities in the

�rst two central moments for FIPU �rms traded under the DJIA, but not so much for

those traded under the S&P 500. This, of course, is not surprising considering that most

�nancial and insurance �rms, including AIG, reported record losses during the 2007-

2009 �nancial crisis.

The average P/E ratio for non-FIPU (FIPU) stocks traded under the S&P 500 is roughly

$0.08 ($1) above that of blue chip stocks.12 This may signify con�dence in future perfor-

mance investors have in stocks traded in the broader index, and thus the premium they

are willing to pay in shares per dollar generated in earnings. The mean RI/E ratio for

non-FIPU stocks shows that a dollar in earnings generates approximately 16-19 cents in

abnormal pro�ts. Yet, the mean RI/E ratio for FIPU stocks shows a 4-17 cent residual in-

come loss per dollar generated in earnings. It is worth remembering that residual income

12We use ‘blue chip stocks’ interchangeably with ‘stocks traded under the DJIA index’ or any
similar variation.
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is excess earnings, after accounting for the equity capital cost. Therefore, this result is

suggestive of the average historical performances for non-FIPU and FIPU �rms. The his-

torical performance of the former may signal to investors interested in diversi�cation

its relative lucrativeness when compared to the latter.

A stylized fact documented in the empirical �nance literature is the non-Gaussian

feature of �nancial data. All variables in each table exhibit strong leptokurtosis, high-

levels of skewness ranging from -13.736 to 21.048 (-44.428 to 21.507) in Table 3.1 (Table

3.2), with normality unequivocally rejected at a 1% signi�cance level. Figures 3.1 and 3.2

and 3.3 and 3.4 plot the raw data of the �nancial variables for the 19 DJIA and 286 S&P

500 stocks, respectively.

3.3.2 Model Estimates

We begin our empirical analysis by analyzing how well abnormal earnings are de-

scribed by the information dynamics characterized by Eqs. (3.7a) and (3.7b). Joint esti-

mation of Eqs. (3.7) is accomplished by the SS method proposed in this study. Benchmark

two-step estimation, as in DHS, is also undertaken for comparison. We report estimates

of the persistence parameters ω and γ, as well as those of the variances of shocks to the

abnormal earnings process and ‘other information’ dynamics σ2
ε and σ2

η , respectively.

Table 3.3 presents maximum likelihood (ML) parameter estimates for the SS method

described in section 3.2.4. Pooled time-series and cross-sectional regression estimates

for the DHS method described in section 3.2.3 are also reported. Panels A and B provide

parameter estimates for non-FIPU and FIPU �rms, respectively.
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Estimates of Abnormal Earnings for Non-FIPU Stocks

For the SS method in Panel A, the persistence parameter for xat , ω is 0.0139 and 0.003

with a standard error of 0.1177 and 0.0019 for DJIA and S&P 500, respectively. The persis-

tence parameter for νt, γ is 0.8967 and 0.4727 with a standard error of 0.0242 and 0.0102

for DJIA and S&P 500, respectively. The hypothesis that ω = 1 for stocks in both indices

is strongly rejected, and there is not su�cient evidence to reject ω = 0. On the other

hand, the hypotheses that γ = 0 or that γ = 1 are both �rmly rejected for non-FIPU

stocks in both indices.

To add, estimates of the standard deviation of the measurement equation noise term

for abnormal earnings σε equal 0.2238 and 0.0251 for the two indices, respectively. These

are statistically insigni�cantly di�erent from zero. Estimates of the standard deviation

of the state equation signal shock ση equal 0.9818 and 1.9740. These are strongly di�er-

ent from zero for non-FIPU stocks traded under the DJIA and S&P 500, respectively.

These results a�rm that abnormal earnings, with ‘other information’ embedded, are

mean-reverting. Their persistence and dispersion of the disturbance terms are primarily

re�ected in γ and ση, respectively. Collectively, these results in essence provide evidence

of the usefulness of our technique to extract hidden yet relevant information about ab-

normal earnings. To add, νt for non-FIPU stocks traded under the S&P 500 mean-reverts

at almost twice the rate of νt for DJIA stocks since its estimate of γ is half that of the

other. Therefore, short- to medium-term trading strategies may be more suitable for

non-FIPU stocks traded under the S&P 500. To clarify, assuming that the stock market

prices expectations about �rm pro�tability, investors who employ mean reversion trad-

ing strategies may �nd them to be lucrative by setting long (short) positions for stocks,

whose abnormal earnings deviate below (above) historical averages for short investment

horizons, before rebounding to normal levels.
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Estimates of Abnormal Earnings for FIPU Stocks: SS Method

For the SS method in Panel B, the persistence parameter for xat , ω is 0.0025 and 0.0333

with a standard error of 0.0093 and 0.0042 for DJIA and S&P 500, respectively. In this case,

the hypothesis that ω = 1 for stocks in both indices is strongly rejected. Furthermore,

while there is no su�cient evidence to reject that ω = 0 for FIPU blue chip stocks, we

do however �nd that it is statistically signi�cantly di�erent from zero for FIPU stocks

traded under the broader index. This indicates a low level of persistence in abnormal

earnings for S&P 500 FIPU stocks.

The persistence parameter for νt, γ is 0.8302 and 0.9649 with a standard error of

0.0898 and 0.0041 for DJIA and S&P 500, respectively. The hypotheses that γ = 0 and

γ = 1 respectively are both rejected for FIPU stocks traded under both indices at a 10%

signi�cance level or better. To add, there is strong dispersion of both noise and signal

shocks for FIPU stocks as quanti�ed by their standard deviation parameters, σε and ση.

The variation ranges from 1.25 to 24.84 of which the latter stems from FIPU stocks traded

under the S&P 500. These results are similar to those of Panel A discussed in the previous

subsection in that abnormal earnings are again mean-reverting, with their persistence

and variation in the disturbance terms largely re�ected in γ and ση, respectively. The

persistence parameter γ values for both FIPU and non-FIPU stocks traded under DJIA

are quite comparable to one another; however, νt for FIPU stocks traded under the S&P

500 mean-revert in twice the time of non-FIPU stocks. This suggests that a signal shock

to ‘other information’ today will have long-dated in�uence on future abnormal earnings

for S&P 500 FIPU �rms. Overall, these results again provide evidence of the usefulness

of our technique to extract latent information about abnormal earnings, particularly for

pricing and forecasting exercises.

Given the contrasting results, it would be of interest to analyze the forecasting ability

of abnormal earnings and stock prices using the two estimation techniques, namely, the
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SS method proposed in this paper and the benchmark DHS two-step regression method.

We undertake this task in section 3.3.3.

3.3.3 Forecasts of Stock Prices and Abnormal Earnings

In this section, inspired by the empirical analyses in Bakshi and Ju (2002) and Bakshi

and Chen (2005), we evaluate the in- and out-of-sample pricing and next period t + 1

abnormal earnings forecasting performance of our state space approach and the bench-

mark DHS approach on a set of performance metrics.

Metrics Used for Evaluating Forecast Performance

The procedure for forecasting stock prices with our SS method is as follows. Let the

current period be indexed by time t. Our objective is to forecast stock prices for period

t, using all available information to date. This is accomplished by applying Eq. (3.8), for

which we need estimates of coe�cients α1 and α2. These are functions of ω, γ, and r.

The value of the constant discount rate r is chosen as described in Section 3.3.1. In

our SS method, estimates of the persistence parameters ω and γ are obtained by ML.

In the SS approach, we need estimates of the latent ’other information’ variable νt

as well, in order to apply Eq. (3.8) to forecast stock prices. Estimates of νt are obtained

from the Kalman �lter recursions. These recursions yield the �lter mean of νt−1, after

observing abnormal earnings for period t xat . This is then updated, using Eq. (3.7b), to

obtain a predictive mean for νt. This is used in the pricing Eq. (3.8) to obtain model-

implied stock price for period t Pt.

In the DHS method, estimates of ω1 and γ1, obtained from pooled regressions in Eq.

(3.12), are used as proxies for ω and γ appearing in Eq. (7). These are used to estimate

the coe�cients α1 and α2 in the pricing Eq. (3.8).
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To construct the percentage pricing error and dollar forecast error for abnormal earn-

ings, let Pt indicate the actual price at time t, P̂t indicate the model-implied price at time

t given by the valuation function in Eq. (3.8), xat+1 indicate the actual next period t + 1

abnormal earnings, and Et{xat+1} indicate the conditional expectation of next period

t + 1 abnormal earnings as of time t in Eq. (3.9). Then, the percentage pricing error is

ePt = 100 × (Pt − P̂t)/Pt and the dollar forecast error for next period t + 1 abnormal

earnings is exat+1
= xat+1 − Et{xat+1}.

As such, the �ve standard error criteria used for pricing and abnormal earnings errors

include:

MPE/MDE =

∑T
t=1 et
T

STD =

√√√√ 1

T − 1

T∑
t=1

(et − e)2

MPSE/MSE =

∑T
t=1 e

2
t

T

MAPE/MADE =

∑T
t=1 |et|
T

RMPSE/RMSE =

√∑T
t=1 e

2
t

T

MPE and MDE denote, respectively, the mean percentage pricing error and mean dollar

error, and they measure the prediction bias. STD is the standard deviation of the pricing

and dollar error time-series, and it measures the variation of the errors over time. The

remaining criteria measure prediction accuracy: MAPE and MADE denote the mean

absolute percentage error and mean absolute dollar error, MSPE and MSE are the mean

square percentage error and mean square error, and RMSPE and RMSE are the root mean

square percentage error and root mean square error, respectively.
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Under the assumption that the market prices equities fairly, Bakshi and Chen (2005)

suggest that a ‘good’ forecasting or valuation model, strictly speaking, should have an

error et with a zero mean and low standard deviation over time. The authors further

imply that a forecasting or valuation model may still be ‘empirically acceptable’, even if

the mean error is nonzero, as long as et has negligible variation over time. On one polar

end, if the mean and standard deviation of et are both zero, then the model forecasts

perfectly. On the other polar end, if et is large in magnitude, then the model performance

is poor, and it may well be misspeci�ed.

1976-2017 In-sample Forecasts

Since νt is unobserved, we need Et(νt) in Eq. (3.8). This is obtained from the SS

method, applied to Eqs. (3.7a) and (3.7b), by using the predictive mean for νt, obtained

after observing xat .

Tables 3.4 and 3.6 each report the �ve in-sample mean pricing and forecasting error

measurements as provided above13 for our SS method and the benchmark DHS method.

Speci�cally, Table 3.4 reports in-sample results for non-FIPU stocks. Table 3.6 reports

in-sample results for FIPU stocks. They also provide the percentage di�erences for each

error measurement of our SS estimation method with respect to that of the benchmark

DHS estimation method. We use a 1976-2017 sub-sample to calculate the error measure-

13We �nd it important to mention that such standard mean error measurements as calculated
in our analysis are slightly troublesome because they do not account for di�erences in available
data points between the two competing estimation methods. For example, after accounting for
the two degrees of freedom lost in the data for each stock in the aggregate sample, our SS es-
timation approach uses a total of 815 and 8,521 data points for the DJIA and S&P 500 stocks,
respectively. Yet, the DHS approach, which is constrained by the availability of analyst forecasts
for each stock in the I/B/E/S database, uses only 664 and 7,719 in kind. In our view, such lapse
in the number of available data points may over- or under-value the mean error measurements.
Speci�cally, less data available may potentially favor the current mean error calculations for the
DHS method relative to our estimation technique. Although we do not adopt one, and, if one
exists, a modi�ed mean error calculation that accounts for or penalizes di�erences in data points
would be more appropriate within this context.
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ments for both abnormal earnings and stock prices. We do this in order to be consistent

with the time-period of data availability for consensus analysts’ earnings forecasts. Re-

call that consensus analysts’ next period t + 1 earnings forecasts are used in order to

approximate expected t+ 1 abnormal earnings in the DHS estimation method.

1976-2017 In-sample Non-FIPU Model-Implied Prices

Figure 3.8 provides a graphical demonstration of the model’s ability to price stocks

under each estimation method relative to actual prices for the 14 �rms. The implied

residual income valuations utilizing both methods do moderately well for Chevron and

DowDuPont but largely undervalue the remaining stocks. Such results do not come as

a surprise, though, given the stylized fact in the literature that traditional asset pricing

models assuming a constant discount factor do not capture variation in ex-post stock

prices very well.

The relative ability of the competing estimation methods to explain contemporane-

ous stock prices is analyzed in Panel B of Table 3.4. Panel B reports percentage pricing

errors for our SS method in the top-half of the panel and the DHS method in the bottom-

half. The MPE ranges from 50.67% to 54.84% for both estimation methods indicating that

the implied residual income valuation model using either method largely undervalues

stocks relative to the aggregate stock market. Although close, the DHS estimation gener-

ally demonstrates better valuation ability for non-FIPU stocks relative to our SS method.

Speci�cally, the DHS method values non-FIPU stocks traded under the DJIA and S&P

500 indices by approximately 2.3 and 4.3 percentage points more accurately than our

competing SS approach, respectively. We note here that, although, our SS method ex-

hibits better forecasting performance for abnormal earnings for non-FIPU stocks traded

under the S&P 500 in Panel A (discussed in the next subsection),the corresponding val-

uation result in Panel B does not. As such, it refutes the notion that improved forecasts
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for abnormal earnings. This result is not necessarily surprising, since explicit forecasts

of abnormal earnings are not used in the implied valuation model in Eq. (3.8). The com-

bination of ‘other information’, persistence parameters, and discount rate determines

stock price accuracy. As noted earlier, it is a drawback of our SS approach that we

learn about ‘other information’ νt only through the history of abnormal earnings. But

Ohlson’s model suggests that νt is other information that is useful in predicting next

period t + 1 abnormal earnings not contained in current abnormal earnings. Nonethe-

less, we still yield to the possibility that the valuation model may be misspeci�ed for the

broader set of non-FIPU stocks on average under the assumption that the stock market

values stocks correctly.

1976-2017 In-sample Non-FIPU Forecasts of Next Period Abnormal Earnings

Figures 3.5 and 3.6 illustrate the in-sample forecasting ability of the DHS and SS es-

timation methods for abnormal earnings in Eq. (7a) for 14 non-FIPU stocks. Figure 3.7

superimposes the graphical results for each estimation method for complete compari-

son under one graph. There is ample heterogeneity regarding optimal �t for abnormal

earnings between the competing estimation methods across the 14 stocks, with our SS

estimation method as the leading candidate for half of those stocks. For example, the

in-sample predictions of our SS estimation method are clearly superior in �t for Verizon,

DowDuPont, Merck & Co, United Technologies, Walmart, Microsoft, and Cisco Systems

compared to those of the benchmark DHS method. Both methods, at least visually, are

fairly comparable to one another for the remaining 7 stocks. We quantify the perfor-

mance evaluation for the full array of 216 non-FIPU stocks in the sample.

Panel A of Table 3.4 provides dollar forecast errors for abnormal earnings for our SS

method in the top-half of the panel and the DHS method in the bottom-half. For the SS

estimation method, the mean dollar error for abnormal earnings is 0.1184 and 0.1345 for
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DJIA and S&P 500 stocks, respectively. This result suggests that, on average between

1976-2017, forecasts on next period t + 1 abnormal earnings using our SS estimation

method are roughly 12-13 cents per share below realized t + 1 abnormal earnings for

both blue chip and broad index stocks. In contrast, for the DHS estimation method, the

mean error for abnormal earnings is -0.0973 and -0.2273 for DJIA and S&P 500 stocks,

respectively. This result re�ects the wide-ranging over-optimism in analysts’ forecasts

in earnings across �rms.

The SS and DHS methods both clearly indicate prediction bias for abnormal earnings.

The former has a 28% smaller standard deviation in the bias for the S&P 500 stocks at

27.31% compared to the latter at almost 38%. The latter has a 5.5% smaller standard

deviation in the bias for the DJIA stocks at 30.2% compared to the former at almost 32%.

The measures of forecast accuracy indicate that the SS estimation method has superior

predictive ability for abnormal earnings for non-FIPU stocks traded under the S&P 500,

while the competing DHS method does a better job for non-FIPU blue chip stocks. This

result provides further support for using a state-space approach to predict next period

t + 1 abnormal earnings for a broader set of stocks. Yet, it also reiterates the important

role of ‘other information’ embedded in analysts’ forecasts in predicting next period t+1

abnormal earnings, at least for blue chip stocks.

1976-2017 In-sample FIPU Model-Implied Prices

Figure 3.10 provides a set of graphs illustrating the model’s ability to price stocks, un-

der each estimation method, relative to actual prices, for the 10 �rms. The implied resid-

ual income valuations, utilizing both methods, again largely undervalue stocks, with

valuations for J.P. Morgan Chase and Bank of America being the most promising. The

relative ability of the competing estimation methods to explain contemporaneous stock

prices in the sample is evaluated in Panel B of Table 3.6. Panel B reports the percent-
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age pricing errors for our SS method in the top-half of the panel and the DHS method

in the bottom-half. Similar to non-FIPU stocks, the MPE for both estimation methods

indicates sizable undervaluation of FIPU stocks relative to the aggregate stock market.

One can readily see that the DHS estimation demonstrates superior valuation precision

for FIPU stocks relative to our SS method by 7 and 17.6 percentage points for the DJIA

and S&P 500, respectively. In addition to the in-sample pricing results for the 1976-2017

sub-sample period in Panel B of Table 3.4, this provides evidence for the superior ability

of the benchmark two-step regression employed in DHS to value �rms within the �-

nancial, insurance, and public utility sectors relative to our SS approach. The valuation

precision for the DHS method relative to our SS method is better by 2 percentage points

on average for blue chip stocks. Yet, it is de�nitively better by 30 percentage points on

average for S&P 500 stocks.

In-sample FIPU Forecasts of Next Period Abnormal Earnings

Figure 3.9 depicts the in-sample forecasting ability of both SS and DHS estimation

methods for abnormal earnings for 10 FIPU stocks. In this case, it is readily clear that

the SS method is the optimal predictor of in-sample abnormal earnings for virtually all

of them. As done for the non-FIPU stocks, we quantify the performance analysis to the

full set of 70 FIPU stocks in the sample.

Table 3.6 reports the �ve performance yardsticks for both estimation approaches as

in Table 3.4. Panel A of Table 3.6 provides dollar errors for abnormal earnings for our

SS method in the top-half of the panel and the DHS method in the bottom-half. For

the SS estimation method, the MDE for abnormal earnings is 0.1234 and -0.0257 for

DJIA and S&P 500 stocks, respectively. The under-prediction (about 12 cents) of our SS

approach for FIPU stocks traded under the DJIA is in line with that of non-FIPU stocks.

However, we �nd a 2.5 cent MDE for FIPU stocks traded under the S&P 500, indicating
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that our SS method is slightly over-optimistic on average. On the other hand, similar to

non-FIPU stocks, the DHS estimation method continues to forecast substantially above

realized t+1 abnormal earnings where the MDE is -0.2098 and -0.7307 for DJIA and S&P

500 stocks, respectively. This result rea�rms the signi�cant over-optimism in analysts’

earnings forecasts, noticeably for FIPU stocks.

The three measures of forecast accuracy of abnormal earnings for FIPU blue chip

stocks collectively indicate that the SS estimation method is more accurate than the

DHS estimation method on average by about 3%. So far, within the context of forecasting

next period t+1 abnormal earnings for the 1976-2017 sub-sample period, our SS method

seems to outperform the DHS method for FIPU and non-FIPU stocks traded under the

DJIA and S&P 500, respectively.

It is a drawback of our SS approach adopted here that we learn about νt in Eq. (7)

only through the observed history of xat . But, Ohlson’s (1995) model suggests that νt is

‘other information’ useful in predicting next period xat+1 that is not contained in current

period xat .

Therefore, it would be worth learning about νt from an expanded set of variables,

such has capital markets-speci�c, �rm-speci�c, and macroeconomic data. This is likely

to improve the performance of the SS approach further. We leave this task for future

research.

1950-2017 In-sample Forecasts

It is important to recall that one of the empirical de�ciencies of the DHS estimation

method is the dependence on analysts’ forecasts needed to estimate νt in order to value

contemporaneous stock prices. Such analyst forecast data in the I/B/E/S database were

not widely available across stocks until 1976. As such the �rst 26 years of the primary

1950-2017 sample period is unaccounted for in the pricing and forecasting error analysis.
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By way of contrast, our SS estimation method does not require analyst forecast data in

order to generate either ex ante or ex post ‘other information’ νt.

Tables 3.5 and 3.7 each display the same �ve performance metrics for our SS method

and the benchmark DHS method only now for the 1950-2017 full sample period. Speci�-

cally, Table 3.5 reports 1950-2017 in-sample results for non-FIPU stocks. Table 3.7 reports

1950-2017 in-sample results for FIPU stocks. Panels A and B for each table report the

dollar and percentage pricing error estimates for abnormal earnings and stock prices,

respectively. Note the error estimates remain the same as in Tables 3.4 and 3.6 for the

DHS method.

1950-2017 In-sample Non-FIPU Model-Implied Prices

For the SS estimation method in Panel B of Table 3.5, the MPE is 51.05% and 47.67%

for non-FIPU stocks traded under the DJIA and S&P 500 indices, respectively. These

estimates are substantial improvements in the implied valuation model based on our SS

method for the full 1950-2017 sample period compared to those in Panel B of Table 3.4.

The valuation model using the SS method reduces the undervaluation problem by ap-

proximately 5 percentage points in the full sample. Valuation for non-FIPU stocks traded

under the S&P 500 shows the largest valuation improvement by 7 percentage points al-

beit with a larger STD. To support, in contrast to Panel B of Table 3.4, the measures of

pricing accuracy now show that the implied valuation model based on our SS estimation

approach is the favorable one.

1950-2017 In-sample Non-FIPU Forecasts of Next Period Abnormal Earnings

For the SS estimation method in Panel A of Table 3.5, the MDE (STD) for abnormal

earnings is 0.0786 and 0.0869 (0.259 and 0.2262) for DJIA and S&P 500 stocks, respectively.

Compared to the MDE for the SS method in Panel A of Table 3.4, this result demonstrates
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a forecast improvement of roughly 4-5 cents from 12-13 cents to 8-9 cents below realized

abnormal earnings per share on average across stocks. The STD also reduces in value

by nearly 5-6 cents demonstrating lower volatility of the errors.

The remaining measures of forecast accuracy further illustrate the forecast improve-

ment of our SS method using the full sample period of abnormal earnings for non-FIPU

stocks. In fact, our SS method now has about 20% more accurate forecasts than those of

the benchmark DHS method for non-FIPU stocks traded under the DJIA, compared to

the results in the previous table.

1950-2017 In-sample FIPU Model-Implied Prices

For the SS estimation method in Panel B of Table 3.7, it reduces the undervalua-

tion problem by 3-4 percentage points for FIPU stocks and consequently demonstrates

a smaller MPE or undervaluation relative to the DHS method, along with a smaller STD

for S&P 500 FIPU stocks. Using the measures of forecast accuracy within this context,

the valuation model based on our SS method forecasts best for FIPU blue chip stocks,

while one based on the competing DHS method predicts best for FIPU stocks traded

under the broader S&P 500 index.

1950-2017 In-sample FIPU Forecasts of Next Period Abnormal Earnings

In Panel A of Table 3.7, we �nd that the prediction bias as measured by the MDE

of abnormal earnings for FIPU stocks is incrementally reduced for our SS method by 13

and 20% under the DJIA and S&P 500 indices, respectively. The DHS method is still the

leading method for prediction precision of next period t+1 abnormal earnings for FIPU

stocks traded under the S&P 500 as in Table 3.6, while our SS method is best for FIPU

blue chip stocks.
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Further Analysis of In-sample Model-Implied Price Performance

We additionally examine relative valuation performance of each estimation method

for the full 1950-2017 sample from a simple regression speci�cation:

Pt = β0 + β1P̂t + η̃t, (3.17)

wherePt is the market price in year t and P̂t is the corresponding model price determined

by the estimation method under consideration. If the valuation model under a given

estimation method immaculately �ts market stock price variation over time, then β1 = 1

and the regression R2 = 100%.

Panel A of Table 3.8 reports the regression results for each estimation method for

non-FIPU stocks. Panel B does the same for FIPU stocks.

For the valuation performance of non-FIPU blue chip stocks, the R2 for both esti-

mation methods are practically equal to each other, with the β1 coe�cient for our SS

method closer to 1. This result is in line with the performance metrics in Panel B of

Table 3.5, yielding a more accurate valuation under the SS estimation method.

In contrast, the R2 and β1 coe�cient for the DHS benchmark method is uniformly

better than our SS method for non-FIPU stocks traded under the S&P 500. This contrasts

with the results in Panel B of Table 3.5 for S&P 500 non-FIPU stocks. It is worth men-

tioning that, relative to non-FIPU blue chips, the lower R2 for non-FIPU stocks traded

under S&P 500 for both estimation methods potentially implies that systematic factors

unaccounted for in the residual income valuation model may be critical in explaining

stock market prices.

For FIPU stocks, in this case, the DHS method unreservedly produces a better �t-

ting valuation model, especially for FIPU stocks traded under the S&P 500. For the DHS

method, the R2 is about 66 percentage points higher than the SS method for S&P 500
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FIPU stocks. In addition, the β1 coe�cient for our SS method is not statistically di�er-

ent from zero which implies that the valuation model under this estimation method is

severely misspeci�ed for a broader set of FIPU stocks. These results are not surprising

and are comparable to those in Panel B of Table 3.7.

Given that the in-sample performance yardsticks and regression results in Tables

3.4-3.8 show mixed results contingent upon whether we use the full sample or restricted

sample, we next conduct out-of-sample stock price valuation under both sample types.

Out-of-sample Forecasts

For out-of-sample pricing under each estimation method, we take as input the pa-

rameter values estimated from the 3 years prior to and including year t and apply them

to the valuation formula in Eq. (3.8) for year t to determine the model-implied price

for each stock. Next, we proceed to year t + 1 to get a new trailing 3-year sub-sample

and apply the re-estimated parameters to year t+ 1. For example, to determine a model

price for IBM in year 2000, one would use IBM data from 1998-2000 to calculate param-

eter estimates to apply to the valuation formula for IBM in year 2000. Then, roll over

by one-period to re-estimate parameters using 1999-2001 data to compute a model price

for IBM in year 2001. This rolling-estimation procedure continues until 2017. In our

analysis, because we lose two degrees of freedom in the time-series for each stock (see

footnotes 3 and 4), we start the valuation exercise no earlier than the year 1952. The

initial 3 years of the 1952-2017 data sample are required to determine the �rst set of

out-of-sample pricing errors. Thus, the out-of-sample pricing results are based on the

1954-2017 valuation periods. Consequently, there are at most 64 observations of pricing

errors for any stock.

Additionally, we conduct a 5-year rolling-sample estimation procedure for robust-

ness. We �nd it important to mention that given the time-series of the data is short and
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the data frequency is in annual intervals, we face a hurdle of bias and large variance

for the rolling-sample parameter estimates under both competing estimation methods.

A longer time-series and/or shorter intervals (e.g. quarterly or monthly data) would

alleviate the problem statistically.

Considering that the rolling-estimation procedure is computationally-intensive, we

administer the out-of-sample pricing evaluation to an arbitrarily chosen set of 24 stocks

(14 non-FIPU stocks and 10 FIPU stocks): American Express, Aon, Apple, Bank of Amer-

ica, Chevron, Cisco Systems, DowDuPont, Duke Energy, ExxonMobil, Goldman Sachs,

Home Depot, IBM, Intel, JPM Chase, Merck & Co, Microsoft, Nike, Nisource, Pinnacle,

United Tech., UnitedHealth, Verizon, Visa, and Walmart.

As noted in Bakshi and Chen (2005), since the out-of-sample valuation for each stock

is based on the parameters estimated from each stock’s recent 3-year or 5-year history,

the model valuation implies what the stock price should be today if the market priced

the stock under the residual income framework as in the past 3 or 5 years. In other

words, the model price re�ects the market’s recent valuation standard for the stock.

Out-of-sample Model-Implied Price Performance

Tables 3.9 and 3.10 report the out-of-sample pricing performance metrics of the 3-

year and 5-year rolling sub-samples for the 1976-2017 valuation period respectively, as

done for the in-sample counterpart.14 Panel A in each table displays the consolidated re-

sults for the 14 non-FIPU stocks and Panel B for the 10 FIPU stocks. There are three main

features of the rolling-window performance results. First, the valuation model under our

SS estimation approach generally performs better across the 24 stocks than the compet-

ing DHS estimation method. Second, the out-of-sample results for the SS approach are

14We exclude results of the 1954-2017 full valuation period, given similarities to those of the
1976-2017 sub-sample valuation period.
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comparable between the 3- and 5-year rolling sub-sample performance metrics. Third,

both 3- and 5-year rolling-estimation results for the SS approach in terms of valuation

bias (MPE) and valuation accuracy (MAPE, MSPE, and RMSPE) are substantially better

than their in-sample equivalents, but typically with larger variation (STD). For exam-

ple, the valuation bias for the out-of-sample results ranges from 16-30%, compared to

that of its in-sample counterpart of 31-55%. Similarly, the valuation accuracy metrics

for the out-of-sample results range from 18-59%, compared to those of the in-sample

results of 20-74%. However, the STD for the out-of-sample results for non-FIPU (FIPU)

stocks range from 31-47% (41-56%), compared to those of the in-sample results of 16.5-

17% (32.5-65%). Such larger variation in the out-of-sample errors both over time and

across stocks motivates an in-depth analysis of their properties discussed later in this

section.

Result three above is surprising. At current period time t, having observed abnormal

earnings xat , SS method forms a prediction for the ’other information’ variable νt. This

prediction is used in the price valuation formula given in Eq. (3.8). Price formula is a

function of the estimated parameters, ω and γ, as well as νt. Result three suggests that

using only the most recent data presumably leads to more accurate estimates of ω and

γ, as well as of νt.

For the benchmark DHS method, on the other hand, its rolling-estimation out-of-

sample results are generally worse than their respective in-sample results. Also, sur-

prisingly, the 5-year rolling sub-sample results for FIPU stocks are decidedly worse than

those in the 3-year rolling sub-sample. In fact, the valuation accuracy of the 3-year re-

sults for the DHS estimation method are on par with those of our SS method, with a

lower MPE equal to 5.7% (albeit a larger STD equal to 62.5%). Yet, they deviate substan-

tially for the 5-year rolling sub-sample, where MPE is -55.33%, STD is over 300%, and the

smallest (largest) valuation accuracy criterion MAPE (MSPE) is nearly 100% (1000%).
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Figures 3.11-3.14 illustrate the valuation horse-race between the SS and DHS esti-

mation methods for the 3- and 5-year rolling sub-samples of the 24 stocks. The rolling-

window valuation under our SS estimation approach track stock prices moderately bet-

ter than the 5-year. The opposite is true for the DHS approach, especially for FIPU stocks,

like Aon and Bank of America.

Out-of-sample Forecast Errors

In light of the large STD of the model mispricing previously discussed, we now an-

alyze their patterns and their properties. Since the relative out-of-sample performance

for our SS estimation approach typically does a better job pricing stocks than the com-

peting DHS benchmark as mentioned above, we concentrate on mispricing under our

SS approach only.

Figures 3.15 and 3.16 add the percentage pricing-error path along with the actual

and model price paths for each stock for both the 3- and 5-year rolling sub-samples.

One can readily see that, for most stocks, especially FIPU stocks, pricing errors have

trend and are highly volatile. The large volatility of the percentage errors is expected

given the short time-series and low frequency of the data. However, some stocks are

particularly mispriced with a trending pattern, such as Verizon, ExxonMobil, Microsoft,

Walmart, and all of the FIPU stocks (Visa has too small of a sample much less a rolling

sub-sample to make a reasonable inference). Except for a few outliers, the percentage

pricing errors for Chevron, Intel, and United Technologies are relatively small and sta-

ble over time, especially for the 5-year rolling window. Nonetheless, the fact that the

model pricing errors would systematically go through periods of high and low levels

(especially for FIPU stocks) suggests that other �rm-speci�c or macroeconomic factors

may be important for the market’s valuation.
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Further Analysis of Out-of-sample Forecast Errors

To further understand the mispricing of the model under our estimation approach,

we look at both the autocorrelation and cross-stock correlations of the out-of-sample

pricing errors. Tables 3.11 and 3.12 show the autocorrelations at lags up to 5 years for

the 3- and 5-year rolling sub-samples, respectively. Panel A in each table provides au-

tocorrelations for non-FIPU stocks and Panel B for FIPU stocks. In Table 3.11, at the

1-year lag, the autocorrelations for non-FIPU stocks (FIPU stocks) range from -0.04 to

0.61 (-0.15 to 0.53). At the 2-year lag, they drop for each stock. Some stocks see further

reduction in autocorrelations, while most (particularly FIPU stocks) see increases at the

3-year lag. But, more �rms in the sample start to have negative autocorrelations by the

5-year lag.

Since we have performed both 3- and 5-year rolling sub-sample valuation exercises,

we use the Ljung-Box Q-test to test for the absence of autocorrelation at the 3- and

5-year lags for each rolling sub-sample. For the 3-year rolling-window in Table 3.11,

the Q(3) and Q(5)-statistics with their respective p-values for ExxonMobil, Microsoft,

JPM Chase, Aon, and Duke Energy suggest that the null hypothesis for the absence of

autocorrelation is clearly rejected.

For the 5-year rolling sub-sample in Table 3.12, the autocorrelations at the 1-year

lag for non-FIPU stocks (FIPU stocks) are higher than their counterparts in Table 3.11,

ranging from 0.03 to 0.71 (-0.85 to 0.70). The autocorrelations also decrease at the 2-year

lag similar to Table 3.11. As the lag increases to 3 years and 5 years, more �rms see

continued decrease in autocorrelations.

For the 5-year rolling-window in Table 3.12, the Q(3) and Q(5)-statistics with their

respective p-values for Chevron, ExxonMobil, Home Depot, IBM, Merck & Co, Nike,

Walmart Pinnacle, American Express, JPM Chase, Aon, Bank of America, UnitedHealth,

and Visa emphatically reject the null hypothesis of no autocorrelation. The pricing er-
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rors for ExxonMobil, JPM Chase, and Aon prove to be highly persistent regardless of

the rolling sub-sample. Altogether, the percentage pricing errors are persistent within

3-5 years, suggesting that �rm-speci�c and/or macroeconomic factors are relevant in

pricing these �rms.

Tables 3.13 and 3.14 provide the degree of covariation in the percentage pricing errors

across stocks under the following simple time-series regression:

εi,t = ai + biε
∗
i,t + ω̃i,t, i = 1, . . . , I (3.18)

where εi,t is the percentage pricing error of stock i in year t and ε∗i,t is the percentage

pricing error of IBM and UnitedHealth (also arbitrarily chosen for comparison) for non-

FIPU and FIPU stocks, respectively. Each table reports the b coe�cient and its standard

error as a correlation indicator between i stock and its respective benchmark stock, IBM

or UnitedHealth, along with its associated t-statistic and adjusted R2. For most of the

stocks, the b estimates are insigni�cant, with negative adjustedR2 values indicating that

cross-correlations of the percentage pricing errors overall are non-existent. For the 3-

year rolling sub-sample, Cisco Systems has a statistically insigni�cant b coe�cient but

with the highest adjusted R2 of 12.50% for non-FIPU stocks. In the 5-year counterpart,

both Intel and Duke Energy also have statistically insigni�cant b coe�cients but both

with the highest adjusted R2 values of 14.18% and 27.64%, respectively. Such high R2

values make sense for both Cisco Systems and Intel relative to IBM, as they all oper-

ate in the information technology sector. Duke Energy relative to UnitedHealth is an

unexpected result. Visa severely su�ers from small sample bias (only a maximum of 6

time-observations for the valuation exercise), therefore its adjusted R2 is super�cially

exacerbated.
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These results on pricing-error persistence and correlations potentially imply that

there are most-likely time-varying factors either unique to the �rm or common in the

macroeconomy that may be relevant to the model.

Summary of Empirical Results

The parameter estimates under our SS estimation approach for abnormal earnings

reported in Table 3.3 and discussed in section 3.2 above indicate that abnormal earnings,

with ‘other information’ embedded, are mean-reverting and their strongly signi�cant

persistence and variation in the disturbance terms are primarily re�ected in the γ and

ση parameters respectively. In this context, abnormal earnings for FIPU stocks mean

revert twice as fast as non-FIPU stocks traded under the broader S&P 500 index. Under

the benchmark DHS method, the parameter estimates also indicate that abnormal earn-

ings mean revert. Strong persistence and dispersion of disturbance terms are primarily

re�ected in ω and σε for non-FIPU stocks and γ and ση for FIPU stocks.

We conduct in- and out-of-sample forecast performance analysis to determine a

performance leader. Figures 3.5-3.10 graphically illustrate the heterogeneity in the in-

sample pricing and forecasting performances of both estimation methods for 24 stocks.

However, Figures 3.11-3.14 depict that our SS estimation approach generally does a bet-

ter job pricing the 24 stocks in both 3- and 5-year rolling-windows. We quantify the

�gures by reporting performance yardsticks in Tables 3.4-3.10. The in-sample exercises

produce mixed results, contingent upon using either the restricted 1976-2017 sub-sample

or the 1950-2017 full sample. Yet, we �nd that our SS approach is generally favorable in

valuing both FIPU and non-FIPU stocks out-of-sample. Finally, we evaluate the cross-

correlation and time-series properties of the percentage pricing errors in Tables 3.11-3.14

and Figures 3.15 and 3.16. The pricing errors in the �gures exhibit trend and high volatil-

ity, especially for FIPU stocks, indicating both persistence over time and large mispricing
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for speci�c years, respectively. There is high persistence in the pricing errors for some

�rms, including ExxonMobil, JPM Chase, and Aon for 3-5 years. In contrast, we �nd lit-

tle evidence of cross-correlation between stocks. Overall, we infer that there is at least

time-varying �rm-relevant or market-wide factors omitted from the valuation model.

3.4 Conclusions

We assess the empirical implications of the residual income valuation model for eq-

uity prices developed in Ohlson (1995) by accounting for residual income information

dynamics. A key assumption of the Ohlson (1995) residual income model stipulates that

next period t+ 1 residual income is a linear function of current period t residual income

and a latent variable referred to as ‘other information’. This ‘other information’ contains

information on next period t+ 1 abnormal earnings not re�ected in current period t ab-

normal earnings. Previous work in Dechow et al. (1999) is the �rst to explicitly account

for this variable in empirical application of the residual income model. They proxy this

‘other information’ variable with consensus analysts’ forecasts of earnings. In this pa-

per, we propose to estimate this latent ‘other information’ variable using a state space

framework instead. Our method obviates the need for analysts’ earnings forecasts.

Persistence and dispersion of the disturbance terms for abnormal earnings are pri-

marily re�ected in the parameters of the ‘other information’ variable νt using our SS

estimation approach. This signi�es the importance of the latent variable in predicting

next period t+1 abnormal earnings. It also demonstrates the usefulness of our approach

to extract hidden yet relevant information about abnormal earnings. Cognizant of the

�awed two-step regression benchmark approach in DHS, persistence and dispersion of

the disturbance terms for abnormal earnings are re�ected in the parameters of both cur-

rent abnormal earnings and ‘other information’.
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Empirical results indicate that our SS estimation approach is promising in pricing

stocks and predicting next period t + 1 abnormal earnings, relative to the two-step re-

gression benchmark approach in DHS. The SS estimation approach leads the DHS coun-

terpart for both 3- and 5-year rolling-window out-of-sample stock pricing.

Examination of the time-series properties of out-of-sample pricing errors across stocks

demonstrate high persistence and large mispricing for some years, prominently for FIPU

�rms. We �nd no direct evidence of cross-correlation in pricing errors. Given the time

trend and large volatility of pricing errors, we deduce that time-varying �rm-speci�c

and/or market-wide factors are omitted variables in the residual income valuation model.

The empirical results suggest at least a few research directions. First, one can intro-

duce stochastic discount rates in our state space application that would lead to a richer

valuation model. Second, it may be empirically desirable to examine jump-di�usion

processes for abnormal earnings, especially for �rms in the FIPU sectors, given the non-

Gaussian nature of the data. Lastly, one can consider extracting the ‘other information’

variable using a rich set of data on accounting, capital market, and macroeconomic vari-

ables. We leave this last task for future work.

103



Table 3.1: Summary Statistics: Non-FIPU Firms

Measures of Variability

Variable Index Mean Median Min Max Std Dev CV Range Range/Mean Range/Median Skewness Kurtosis Normality

Test

DJIA 7.630 4.113 0.005 82.477 10.692 1.401 82.472 10.809 20.052 3.442 19.847 9.59E+03

Book value -1.00E-03

per share S&P 500 9.324 5.331 0.002 212.789 12.381 1.328 212.787 22.820 39.915 3.914 37.447 3.55E+05

(0.001)

DJIA 25.861 13.313 0.029 200.900 33.245 1.286 200.871 7.767 15.089 2.048 7.965 1.20E+03

(0.001)

Price S&P 500 30.091 17.255 0.010 619.520 39.733 1.320 619.510 20.588 35.903 3.398 24.092 1.40E+05

(0.001)

DJIA 1.546 0.674 -3.505 15.680 2.411 1.559 19.185 12.410 28.449 2.771 12.388 3.44E+03

Earnings (0.001)

per share S&P 500 1.243 0.661 -111.182 23.500 2.893 2.327 134.682 108.355 203.835 -12.681 449.976 5.70E+07

(0.001)

DJIA 2.099 1.335 0.000 17.970 2.618 1.248 17.970 8.563 13.461 2.725 12.769 2.72E+03

Analysts’ EPS (0.001)

Forecast S&P 500 1.776 1.150 -62.600 20.960 2.373 1.336 83.560 47.047 72.661 -2.778 126.670 3.67E+06

(0.001)

DJIA 0.701 0.144 -10.003 13.086 1.857 2.648 23.089 32.929 159.981 2.603 19.186 8.20E+03

Abnormal (0.001)

Earnings S&P 500 0.233 0.112 -95.040 18.741 2.533 10.869 113.781 488.269 1018.412 -13.736 422.794 4.87E+07

(0.001)

DJIA 23.943 23.943 -962.500 2,925.00 122.074 5.099 3,887.50 162.367 162.367 18.723 467.767 6.30E+06

P/E (0.001)

S&P 500 24.024 24.024 -3479.000 7,697.00 149.334 6.216 11,176.00 465.210 465.210 21.048 1145.869 3.72E+08

(0.001)

DJIA 0.190 0.190 -142.387 78.987 6.816 35.782 221.373 1162.105 1162.105 -11.645 314.874 2.78E+06

RI/E (0.001)

S&P 500 0.160 0.160 -142.387 209.415 5.943 37.095 351.802 2195.807 2195.807 1.181 430.057 5.02E+07

(0.001)

Summary Statistics table provides descriptive information about key �nancial variables used in the analysis for �rms excluding �nancial institutions, insurance companies,
and public utilities (non-FIPU �rms). The data frequency in sample is annual using a 1950-2017 sample period. All per share data are in dollar units and are adjusted by the
cumulative factor to account for stock events (e.g. stock splits, stock dividends, mergers and acquisitions, etc.). The column denoted ‘CV’ is the coe�cient of variation, which
is the ratio of the standard deviation to the mean. The Range/Mean and Range/Median are the ratios of the range of the data to the mean and median respectively. These
three columns measure the relative dispersion of the data in relation to the sample mean or median. Normality Test gives the Jarque-Bera test statistic and its p-value in
parentheses. All p-values are within 1 percent signi�cance level.
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Table 3.2: Summary Statistics: FIPU Firms

Measures of Variability

Variable Index Mean Median Min Max Std Dev CV Range Range/Mean Range/Median Skewness Kurtosis Normality

Test

DJIA 24.413 11.767 0.011 182.474 36.414 1.492 182.463 7.474 15.507 2.771 10.621 5.85E+02

Book value -1.00E-03

per share S&P 500 23.451 12.800 0.007 781.772 44.349 1.891 781.765 33.336 61.075 9.095 123.608 1.41E+06

(0.001)

DJIA 44.670 29.420 0.113 254.760 52.892 1.184 254.647 5.701 8.656 1.921 6.647 1.85E+02

(0.001)

Price S&P 500 42.732 23.525 0.023 1971.250 104.774 2.452 1971.227 46.130 83.793 10.811 147.651 2.02E+06

(0.001)

DJIA 3.162 1.858 -5.560 26.340 4.479 1.416 31.900 10.088 17.171 2.686 11.709 6.89E+02

Earnings (0.001)

per share S&P 500 2.191 1.443 -756.800 107.600 16.928 7.726 864.400 394.533 599.237 -39.467 1783.534 3.00E+08

(0.001)

DJIA 3.641 2.350 0.010 22.630 4.365 1.199 22.620 6.213 9.626 2.341 8.417 3.05E+02

Analysts’ EPS (0.001)

Forecast S&P 500 3.329 2.030 -3.300 132.080 7.325 2.200 135.380 40.666 66.690 10.769 152.184 1.89E+06

(0.001)

DJIA 0.454 0.221 -12.777 17.626 3.007 6.629 30.402 67.014 137.609 1.098 16.199 1.14E+03

Abnormal (0.001)

Earnings S&P 500 -0.479 0.086 -847.693 27.820 18.406 38.425 875.513 1827.748 10184.832 -44.428 2042.545 3.82E+08

(0.001)

DJIA 17.126 17.126 -38.449 193.182 17.977 1.050 231.630 13.525 13.525 6.023 60.162 2.25E+04

P/E (0.001)

S&P 500 18.129 18.129 -467.188 2355.000 83.547 4.608 2822.188 155.673 155.673 21.507 569.261 3.05E+07

(0.001)

DJIA -0.040 -0.040 -34.842 3.542 2.919 73.862 38.384 971.246 971.246 -11.194 133.857 1.12E+05

RI/E (0.001)

S&P 500 -0.172 -0.172 -250.879 64.208 8.147 47.357 315.086 1831.601 1831.601 -23.638 694.209 4.40E+07

(0.001)

Summary Statistics table provides descriptive information about key �nancial variables used in the analysis for �nancial institutions, insurance companies, and public utilities
(FIPU �rms). The data frequency in sample is annual using a 1950-2017 sample period. All per share data are in dollar units and are adjusted by the cumulative factor to
account for stock events (e.g. stock splits, stock dividends, mergers and acquisitions, etc.). The column denoted ‘CV’ is the coe�cient of variation which is the ratio of
the standard deviation to the mean. The Range/Mean and Range/Median are the ratios of the range of the data to the mean and median respectively. These three columns
measure the relative dispersion of the data in relation to the sample mean or median. Normality Test gives the Jarque-Bera test statistic and its p-value in parentheses. All
p-values are within 1 percent signi�cance level.
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Table 3.3: Parameter Estimates

xat+1 = ωxat + νt + ε1,t+1, ε1,t+1 ∼ iid N (0, σ2
ε) (7a)

vt+1 = γνt + ε2,t+1, ε2,t+1 ∼ iid N
(
0, σ2

η

)
(7b)

Method Index ω σε ση γ

Panel A: Non-FIPU Firms

DJIA 0.0139 0.2238 0.9818 0.8967

SS Method (0.1177) (0.3288) (0.1325) (0.0242)

S&P 500 0.0030 0.0251 1.9740 0.4727

(0.0019) (0.0925) (0.0175) (0.0102)

DJIA 0.8068 1.0963 0.7715 0.3633

DHS Method (0.0099) (0.0262) (0.0137) (0.0166)

S&P 500 0.4184 2.3008 1.0110 0.5327

(0.0017) (0.0076) (0.0031) (0.0024)

Panel B: FIPU Firms

DJIA 0.0025 2.2544 1.2475 0.8302

SS Method (0.0093) (0.2001) (0.2967) (0.0898)

S&P 500 0.0333 1.6153 24.8357 0.9649

(0.0042) (0.4107) (0.3717) (0.0041)

DJIA 0.2774 2.8801 0.9089 0.6542

DHS Method (0.0288) (0.3684) (0.0455) (0.0333)

S&P 500 0.0962 18.3164 1.8947 0.7664

(0.0079) (1.7355) (0.0106) (0.0018)

Maximum likelihood parameter estimates for Ohlson’s dynamic
linear information model for abnormal earnings in Eqs. (7a) and
(7b) are reported in Panel A for �rms excluding �nancial in-
stitutions, insurance companies, and public utilities (non-FIPU
�rms). The same parameter estimates are reported in Panel B
for �nancial institutions, insurance companies, and public utili-
ties (FIPU �rms). The SS Method calculates parameter estimates
based on our state space application via the Kalman �ltering re-
cursive procedure. The DHS Method calculates parameter es-
timates based on two unconditional pooled regressions of Eqs.
(7a) and (7b). Numbers in parentheses for parameter estimates
are their standard errors.
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Table 3.4: 1976-2017 In-sample Pricing and Forecast Errors: Non-FIPU Firms

1976-2017 Sub-sample

Non-FIPU Firms

Method Variable Index MDE % di� STD % di� MADE % di� MSE % di� RMSE % di�

Panel A: Abnormal Earnings

DJIA 0.1184 -221.74% 0.3185 5.48% 0.2557 18.36% 0.1131 14.82% 0.3363 7.15%

SS Method xat

S&P 500 0.1345 -159.15% 0.2731 -27.72% 0.2090 -16.27% 0.0909 -52.42% 0.3015 -31.02%

DJIA -0.0973 - 0.3020 - 0.2161 - 0.0985 - 0.3138 -

DHS Method xat

S&P 500 -0.2273 - 0.3779 - 0.2496 - 0.1911 - 0.4371 -

Method Variable Index MPE % pt di� STD % pt di� MAPE % pt di� MSPE % pt di� RMSPE % pt di�

Panel B: Stock Price

DJIA 54.09% 1.56% 17.18% 3.58% 54.09% 1.56% 32.14% 2.74% 56.69% 2.47%

SS Method Pt

S&P 500 54.84% 4.17% 16.52% 0.38% 54.84% 4.17% 32.74% 4.53% 57.22% 4.10%

DJIA 52.53% - 13.60% - 52.53% - 29.40% - 54.22% -

DHS Method Pt

S&P 500 50.67% - 16.14% - 50.67% - 28.22% - 53.12% -

In-sample pricing and forecast errors table provides �ve error measurements for �rms excluding �nancial institutions, insurance companies,
and public utilities (non-FIPU �rms) for the 1976-2017 sub-sample period: Mean Dollar Error (MDE) or Mean Percentage Pricing Error (MPE),
Standard Deviation (STD), Mean Absolute Dollar Error (MADE) or Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE) or
Mean Squared Percentage Error (MSPE), and Root Mean Squared Error (RMSE) or Root Mean Squared Percentage Error (RMSPE). Panel A
reports each dollar error calculation based on both SS and DHS methods for abnormal earnings and Panel B reports the percentage price errors
for stock prices. The table also provides percentage (percentage point) di�erences of each dollar (percentage pricing) error measurement based
on the SS method with respect to the benchmark DHS method.
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Table 3.5: 1950-2017 In-sample Pricing and Forecast Errors: Non-FIPU Firms

1950-2017 Full Sample

Non-FIPU Firms

Method Variable Index MDE % di� STD % di� MADE % di� MSE % di� RMSE % di�

Panel A: Abnormal Earnings

DJIA 0.0786 -180.82% 0.2590 -14.22% 0.1695 -21.57% 0.0723 -26.62% 0.2688 -14.34%

SS Method xat

S&P 500 0.0869 -138.23% 0.2262 -40.15% 0.1373 -44.96% 0.0579 -69.68% 0.2407 -44.94%

DJIA -0.0973 - 0.3020 - 0.2161 - 0.0985 - 0.3138 -

DHS Method xat

S&P 500 -0.2273 - 0.3779 - 0.2496 - 0.1911 - 0.4371 -

Method Variable Index MPE % pt di� STD % pt di� MAPE % pt di� MSPE % pt di� RMSPE % pt di�

Panel B: Stock Price

DJIA 51.05% -1.48% 16.33% 2.73% 51.05% -1.48% 28.69% -0.71% 53.56% -0.66%

SS Method Pt

S&P 500 47.67% -3.00% 20.72% 4.58% 48.78% -1.88% 26.95% -1.27% 51.91% -1.21%

DJIA 52.53% - 13.60% - 52.53% - 29.40% - 54.22% -

DHS Method Pt

S&P 500 50.67% - 16.14% - 50.67% - 28.22% - 53.12% -

In-sample pricing and forecast errors table provides �ve error measurements for �rms excluding �nancial institutions, insurance companies,
and public utilities (non-FIPU �rms) for the 1950-2017 full-sample period: Mean Dollar Error (MDE) or Mean Percentage Pricing Error (MPE),
Standard Deviation (STD), Mean Absolute Dollar Error (MADE) or Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE) or
Mean Squared Percentage Error (MSPE), and Root Mean Squared Error (RMSE) or Root Mean Squared Percentage Error (RMSPE). Panel A
reports each dollar error calculation based on both SS and DHS methods for abnormal earnings and Panel B reports the percentage price errors
for stock prices. The table also provides percentage (percentage point) di�erences of each dollar (percentage pricing) error measurement based
on the SS method with respect to the benchmark DHS method.
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Table 3.6: 1976-2017 In-sample Pricing and Forecast Errors: FIPU Firms

1976-2017 Sub-sample

FIPU Firms

Method Variable Index MDE % di� STD % di� MADE % di� MSE % di� RMSE % di�

Panel A: Abnormal Earnings

DJIA 0.1234 -158.83% 1.3812 -3.76% 0.8473 4.00% 1.8776 -8.63% 1.3703 -4.41%

SS Method xat

S&P 500 -0.0257 -96.48% 3.4883 21.74% 1.0465 34.44% 11.8791 38.96% 3.4466 17.88%

DJIA -0.2098 - 1.4352 - 0.8147 - 2.0549 - 1.4335 -

DHS Method xat

S&P 500 -0.7307 - 2.8653 - 0.7784 - 8.5484 - 2.9238 -

Method Variable Index MPE % pt di� STD % pt di� MAPE % pt di� MSPE % pt di� RMSPE % pt di�

Panel B: Stock Price

DJIA 31.51% 7.04% 32.54% -3.37% 40.10% 2.69% 20.27% 1.69% 45.02% 1.92%

SS Method Pt

S&P 500 35.40% 17.64% 65.34% 31.11% 45.77% 12.02% 54.21% 39.62% 73.63% 35.42%

DJIA 24.47% - 35.91% - 37.41% - 18.57% - 43.10% -

DHS Method Pt

S&P 500 17.76% - 34.23% - 33.75% - 14.60% - 38.20% -

In-sample pricing and forecast errors table provides �ve error measurements for �rms for �nancial institutions, insurance companies, and
public utilities (non-FIPU �rms) for the 1976-2017 sub-sample period: Mean Dollar Error (MDE) or Mean Percentage Pricing Error (MPE),
Standard Deviation (STD), Mean Absolute Dollar Error (MADE) or Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE) or
Mean Squared Percentage Error (MSPE), and Root Mean Squared Error (RMSE) or Root Mean Squared Percentage Error (RMSPE). Panel A
reports each dollar error calculation based on both SS and DHS methods for abnormal earnings and Panel B reports the percentage price errors
for stock prices. The table also provides percentage (percentage point) di�erences of each dollar (percentage pricing) error measurement based
on the SS method with respect to the benchmark DHS method.
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Table 3.7: 1950-2017 In-sample Pricing and Forecast Errors: FIPU Firms

1950-2017 Full Sample

FIPU Firms

Method Variable Index MDE % di� STD % di� MADE % di� MSE % di� RMSE % di�

Panel A: Abnormal Earnings

DJIA 0.1076 -151.32% 1.3050 -9.07% 0.7646 -6.15% 1.6785 -18.32% 1.2956 -9.62%

SS Method xat

S&P 500 -0.0205 -97.19% 3.0681 7.08% 0.8195 5.27% 9.2395 8.08% 3.0397 3.96%

DJIA -0.2098 - 1.4352 - 0.8147 - 2.0549 - 1.4335 -

DHS Method xat

S&P 500 -0.7307 - 2.8653 - 0.7784 - 8.5484 - 2.9238 -

Method Variable Index MPE % pt di� STD % pt di� MAPE % pt di� MSPE % pt di� RMSPE % pt di�

Panel B: Stock Price

DJIA 27.66% 3.19% 33.02% -2.89% 37.29% -0.12% 18.32% -0.25% 42.81% -0.29%

SS Method Pt

S&P 500 32.53% 14.76% 59.89% 25.66% 43.95% 10.20% 45.78% 31.19% 67.66% 29.46%

DJIA 24.47% - 35.91% - 37.41% - 18.57% - 43.10% -

DHS Method Pt

S&P 500 17.76% - 34.23% - 33.75% - 14.60% - 38.20% -

In-sample pricing and forecast errors table provides �ve mean error measurements for �nancial institutions, insurance companies, and public
utilities (FIPU �rms) for the 1950-2017 full-sample period: mean error (ME), mean absolute error (MAE), mean squared error (MSE), and root
mean squared error (RMSE). Panel A reports each mean error calculation based on both SS and DHS methods for abnormal earnings and Panel
B reports the same for stock prices. The table also provides percentage di�erences of each mean error measurement based on the SS method
with respect to the benchmark DHS method.
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Table 3.8: Quantitative Assessment of Model Fit: SS Method
and DSH Method

Pt = β0 + β1P̂t + η̃t, (18)

Method Index β0 β1 t-stat Adj. R2

Panel A: Non-FIPU Firms

DJIA 6.46 1.92 6.49 72.09%

SS Method (2.36) (0.30)

S&P 500 7.93 2.38 13.74 53.77%

(1.40) (0.17)

DJIA 7.01 1.97 8.18 72.23%

DHS Method (2.54) (0.24)

S&P 500 6.74 2.31 13.53 59.90%

(1.69) (0.17)

Panel B: FIPU Firms

DJIA 14.07 1.20 9.67 71.67%

SS Method (3.95) (0.12)

S&P 500 38.12 0.30 1.17 12.68%

(6.33) (0.26)

DJIA 13.22 1.24 9.75 73.06%

DHS Method (4.11) (0.13)

S&P 500 -5.03 1.92 11.85 78.84%

(3.23) (0.16)

Simple regression analysis provide additional evidence
of the in-sample pricing performance relative to market
prices under both SS and DHS estimation methods using
the full sample. β coe�cients, t-statistic for the null hy-
pothesis of B1 = 0, and the adjusted R2 are reported
in Panel A for �rms excluding �nancial institutions, in-
surance companies, and public utilities (non-FIPU �rms).
The same are reported in Panel B for �nancial institutions,
insurance companies, and public utilities (FIPU �rms).
The SS Method represents the in-sample implied prices
using the state space application via the Kalman �ltering
recursive procedure. The DHS Method represents the in-
sample implied prices based on two unconditional pooled
regressions of Eqs. (7a) and (7b). Numbers in parentheses
for β coe�cients are their standard errors computed using
the Newey-West estimator to control for heteroscedastic-
ity.
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Table 3.9: 3-year Rolling-Window Out-of-Sample Performance Metrics

1976-2017 Sub-sample

Method Variable MPE % pt di� STD % pt di� MAPE % pt di� MSPE % pt di� RMSPE % pt di�

Panel A: Stock Price for Non-FIPU Firms

SS Method Pt 24.36% -32.55% 47.12% 32.84% 41.98% -14.93% 27.61% -6.77% 52.54% -6.09%

DHS Method Pt 56.91% - 14.28% - 56.91% - 34.38% - 58.63% -

Panel B: Stock Price for FIPU Firms

SS Method Pt 20.68% 14.98% 56.20% -6.25% 46.37% 4.03% 35.11% -3.25% 59.25% -2.68%

DHS Method Pt 5.69% - 62.46% - 42.33% - 38.36% - 61.93% -

3-year rolling-window out-of-sample pricing table provides �ve error measurements for 24 �rms during the 1976-2017 sub-sample
period: Mean Percentage Pricing Error (MPE), Standard Deviation (STD), Mean Absolute Percentage Error (MAPE), Mean Squared
Percentage Error (MSPE), and Root Mean Squared Percentage Error (RMSPE). Panel A reports each percentage pricing error cal-
culation based on both SS and DHS methods for 14 non-FIPU �rms and Panel B reports the percentage pricing errors for 10 FIPU
�rms. The table also provides percentage (percentage point) di�erences of each percentage pricing error measurement based on
the SS method with respect to the benchmark DHS method.
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Table 3.10: 5-Year Rolling-Window Out-of-Sample Valuation Performance Metrics

1976-2017 Subsample

Method Variable MPE % pt di� STD % pt di� MAPE % pt di� MSPE % pt di� RMSPE % pt di�

Panel A: Stock Price for Non-FIPU Firms

SS Method Pt 29.67% -6.49% 31.15% 0.18% 37.89% -5.35% 18.27% -4.14% 42.75% -4.59%

DHS Method Pt 36.15% - 30.97% - 43.24% - 22.41% - 47.34% -

Panel B: Stock Price for FIPU Firms

SS Method Pt 16.66% 71.99% 41.74% -261.55% 37.03% -62.13% 19.79% -906.50% 44.48% -259.87%

DHS Method Pt -55.33% - 303.30% - 99.16% - 926.29% - 304.35% -

5-year rolling-window out-of-sample pricing table provides �ve error measurements for 24 �rms during the 1976-2017 sub-sample
period: Mean Percentage Pricing Error (MPE), Standard Deviation (STD), Mean Absolute Percentage Error (MAPE), Mean Squared
Percentage Error (MSPE), and Root Mean Squared Percentage Error (RMSPE). Panel A reports each percentage pricing error calculation
based on both SS and DHS methods for 14 non-FIPU �rms and Panel B reports the percentage pricing errors for 10 FIPU �rms. The
table also provides percentage (percentage point) di�erences of each percentage pricing error measurement based on the SS method
with respect to the benchmark DHS method.
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Table 3.11: Pricing-error Autocorrelations for 24 Stocks: 3-year Rolling Sub-sample

Autocorrelations

No. Stock Lag 1 Lag 2 Lag 3 Lag 5 Q(3) p-value Q(5) p-value

Panel A: Non-FIPU Firms

1 Apple 0.29 0.04 -0.09 0.02 3.48 0.323 3.60 0.608

2 Verizon 0.42 -0.14 -0.13 -0.01 7.09 0.069 7.16 0.209

3 Chevron 0.13 0.05 0.11 -0.03 2.12 0.548 2.31 0.804

4 Dow DuPont 0.10 -0.04 -0.15 -0.10 2.03 0.567 3.76 0.585

5 ExxonMobil 0.45 0.06 0.04 0.17 13.93 0.003 17.99 0.003

6 Home Depot 0.39 0.07 0.11 0.13 6.15 0.104 7.87 0.164

7 Intel -0.04 -0.06 0.12 -0.11 0.98 0.806 1.64 0.896

8 IBM 0.29 -0.01 -0.06 -0.03 5.93 0.115 12.19 0.032

9 Merck & Co 0.09 -0.04 -0.07 -0.04 0.99 0.804 1.87 0.867

10 Nike 0.24 -0.12 0.04 -0.15 2.74 0.433 3.74 0.587

11 United Tech. -0.04 -0.05 -0.01 -0.22 0.24 0.971 4.04 0.544

12 Walmart 0.26 0.09 0.06 0.01 3.72 0.293 4.05 0.543

13 Microsoft 0.61 0.11 0.02 -0.08 12.09 0.007 12.55 0.028

14 Cisco Systems 0.16 0.01 0.31 -0.03 3.50 0.320 3.73 0.588

Panel B: FIPU Firms

1 Pinnacle 0.19 0.04 0.07 0.14 2.31 0.510 4.31 0.506

2 American Express 0.06 -0.10 0.04 -0.10 0.72 0.868 1.64 0.897

3 JPM Chase 0.53 0.38 0.49 0.31 32.92 0.000 47.67 0.000

4 Aon 0.33 0.19 0.23 0.42 9.12 0.028 22.38 0.000

5 Duke Energy 0.45 0.28 0.28 0.28 19.94 0.000 28.70 0.000

6 BofA -0.05 -0.11 0.06 -0.01 0.85 0.836 0.94 0.967

7 Nisource 0.23 -0.07 -0.07 -0.02 3.58 0.310 3.62 0.606

8 UnitedHealth 0.40 0.15 -0.19 -0.03 7.24 0.065 7.51 0.185

9 Goldman Sachs 0.41 0.00 0.04 -0.29 3.15 0.369 8.06 0.153

10 Visa -0.15 -0.13 -0.34 -1.32 2.23 0.527 87.65 0.000

We report the autocorrelations of out-of-sample percentage pricing errors based on a 3-
year rolling-window for the SS estimation approach. We also report the Ljung-Box Q-
statistic at 3- and 5-year lags and the corresponding p-values for the χ2 test. The test is
based on the null hypothesis of the absence of autocorrelation in the pricing errors. Q(3)
and Q(5) are each χ2-distributed with 3 and 5 degrees of freedom, respectively.
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Table 3.12: Pricing-error Autocorrelations for 24 Stocks: 5-year Rolling Sub-sample

Autocorrelations

No. Stock Lag 1 Lag 2 Lag 3 Lag 5 Q(3) p-value Q(5) p-value

Panel A: Non-FIPU Firms

1 Apple 0.36 0.16 0.07 -0.13 5.61 0.132 6.82 0.234

2 Verizon 0.41 0.09 0.03 0.05 5.57 0.135 6.69 0.245

3 Chevron 0.64 0.32 0.29 0.24 38.77 0.000 47.30 0.000

4 Dow DuPont 0.24 0.14 0.00 0.06 4.11 0.250 4.49 0.481

5 ExxonMobil 0.60 0.35 0.27 0.23 36.21 0.000 43.03 0.000

6 Home Depot 0.71 0.44 0.06 -0.02 24.16 0.000 24.32 0.000

7 Intel 0.03 -0.07 0.00 -0.07 0.24 0.971 0.48 0.993

8 IBM 0.44 0.02 0.06 0.02 12.87 0.005 13.13 0.022

9 Merck & Co 0.38 0.01 -0.12 -0.16 10.28 0.016 13.40 0.020

10 Nike 0.68 0.37 0.13 -0.22 21.93 0.000 25.50 0.000

11 United Tech. 0.01 -0.03 -0.03 -0.13 0.12 0.989 1.37 0.928

12 Walmart 0.63 0.25 0.19 0.55 21.39 0.000 45.58 0.000

13 Microsoft 0.15 -0.02 -0.05 -0.15 0.75 0.861 2.50 0.777

14 Cisco Systems 0.27 0.09 0.17 -0.01 2.93 0.403 3.06 0.691

Panel B: FIPU Firms

1 Pinnacle 0.37 0.10 0.21 0.33 10.41 0.015 18.54 0.002

2 American Express 0.61 0.37 0.24 -0.02 24.33 0.000 24.75 0.000

3 JPM Chase 0.54 0.44 0.48 0.33 33.72 0.000 46.03 0.000

4 Aon 0.70 0.42 0.27 0.22 32.01 0.000 36.69 0.000

5 Duke Energy 0.04 -0.03 0.04 0.01 0.20 0.978 0.23 0.999

6 BofA 0.28 0.01 0.38 0.07 10.78 0.013 16.16 0.006

7 Nisource 0.29 0.14 0.06 0.33 5.76 0.124 18.58 0.002

8 UnitedHealth 0.54 0.11 0.04 -0.08 9.62 0.022 9.86 0.079

9 Goldman Sachs 0.38 -0.34 -0.12 -0.10 4.71 0.194 5.03 0.412

10 Visa -0.85 0.48 -0.40 NA 12.29 0.006 NA NA

We report the autocorrelations of out-of-sample percentage pricing errors based on a 5-
year rolling-window for the SS estimation approach. We also report the Ljung-Box Q-
statistic at 3- and 5-year lags and the corresponding p-values for the χ2 test. The test is
based on the null hypothesis of the absence of autocorrelation in the pricing errors. Q(3)
and Q(5) are each χ2-distributed with 3 and 5 degrees of freedom, respectively.
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Table 3.13: Cross-correlations in Mispricing of 24 stocks: 3-
year Rolling Sub-sample

εi(t) = ai + biε
∗(t) + ω̃i(t), i = 1, . . . , I (19)

With IBM

No. Stock b se t-stat Adj. R2

Panel A: Non-FIPU Firms

1 Apple -0.07 0.08 -0.81 -2.89%

2 Verizon -0.02 0.05 -0.47 -3.47%

3 Chevron 0.14 0.12 1.24 -0.79%

4 Dow DuPont 0.12 0.07 1.84 -1.24%

5 ExxonMobil 0.23 0.15 1.58 0.80%

6 Home Depot 0.04 0.03 1.51 -1.18%

7 Intel -0.16 0.11 -1.40 1.81%

8 IBM NA NA NA NA

9 Merck & Co 0.08 0.12 0.64 -1.28%

10 Nike 0.04 0.05 0.84 -2.59%

11 United Tech. 0.21 0.12 1.71 -0.81%

12 Walmart 0.02 0.02 1.20 -2.29%

13 Microsoft 0.00 0.04 -0.03 -3.85%

14 Cisco Systems -0.48 0.17 -2.78 12.46%

With UnitedHealth

No. Stock b se t-stat Adj. R2

Panel B: FIPU Firms

1 Pinnacle -0.20 0.12 -1.61 -0.90%

2 American Express 0.05 0.08 0.71 -2.50%

3 JPM Chase -0.06 0.08 -0.74 -0.72%

4 Aon -0.03 0.03 -0.89 -2.67%

5 Duke Energy -0.12 0.14 -0.89 3.33%

6 BofA 0.00 0.10 -0.02 -3.57%

7 Nisource -0.15 0.15 -1.03 1.99%

8 UnitedHealth NA NA NA NA

9 Goldman Sachs -0.31 0.50 -0.63 -6.10%

10 Visa 0.69 0.24 2.89 58.67%

We examine the link between model pricing errors of
stocks under the SS estimation method with a sim-
ple time-series regression using the 3-year rolling sub-
sample. We use the pricing error for IBM and United-
Health (both arbitrarily chosen) as regressors for each
non-FIPU and FIPU stock, respectively. We report the
slope coe�cient b and its standard error using the
Newey-West estimator, the t-statistic under the null hy-
pothesis of b = 0, and the adjusted R2 for non-FIPU and
FIPU stocks in Panels A and B, respectively.
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Table 3.14: Cross-correlations in Mispricing of 24 stocks: 5-
year Rolling Sub-sample

εi(t) = ai + biε
∗(t) + ω̃i(t), i = 1, . . . , I (19)

With IBM

No. Stock b se t-stat Adj. R2

Panel A: Non-FIPU Firms

1 Apple -0.07 0.08 -0.81 -2.89%

2 Verizon -0.02 0.05 -0.47 -3.47%

3 Chevron 0.14 0.12 1.24 -0.79%

4 Dow DuPont 0.12 0.07 1.84 -1.24%

5 ExxonMobil 0.23 0.15 1.58 0.80%

6 Home Depot 0.04 0.03 1.51 -1.18%

7 Intel -0.16 0.11 -1.40 1.81%

8 IBM NA NA NA NA

9 Merck & Co 0.08 0.12 0.64 -1.28%

10 Nike 0.04 0.05 0.84 -2.59%

11 United Tech. 0.21 0.12 1.71 -0.81%

12 Walmart 0.02 0.02 1.20 -2.29%

13 Microsoft 0.00 0.04 -0.03 -3.85%

14 Cisco Systems -0.48 0.17 -2.78 12.46%

With UnitedHealth

No. Stock b se t-stat Adj. R2

Panel B: FIPU Firms

1 Pinnacle -0.20 0.12 -1.61 -0.90%

2 American Express 0.05 0.08 0.71 -2.50%

3 JPM Chase -0.06 0.08 -0.74 -0.72%

4 Aon -0.03 0.03 -0.89 -2.67%

5 Duke Energy -0.12 0.14 -0.89 3.33%

6 BofA 0.00 0.10 -0.02 -3.57%

7 Nisource -0.15 0.15 -1.03 1.99%

8 UnitedHealth NA NA NA NA

9 Goldman Sachs -0.31 0.50 -0.63 -6.10%

10 Visa 0.69 0.24 2.89 58.67%

We examine the link between model pricing errors of
stocks under the SS estimation method with a sim-
ple time-series regression using the 5-year rolling sub-
sample. We use the pricing error for IBM and United-
Health (both arbitrarily chosen) as regressors for each
non-FIPU and FIPU stock, respectively. We report the
slope coe�cient b and its standard error using the
Newey-West estimator, the t-statistic under the null hy-
pothesis of b = 0, and the adjusted R2 for non-FIPU and
FIPU stocks in Panels A and B, respectively.
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3.5 Appendix

3.5.1 Alternative Representation of the State Space Model

The dynamic evolution of abnormal earnings is speci�ed in Equations (3.7a) and

(3.7b) in the main text. Eqs. (3.7a) and (3.7b) can be represented in state space form in

which the measurement (observation) equation relating yt to latent unobserved variable

αt is formulated as:

yt
n×1

= ωyt−1
n×1

+ zt
(n×n)

αt
(n×1)

+ εt
n×1

, εt ∼ iid N (0, Ht) , (3.19a)

and the transition (state) equation describing the evolution of the latent variable can be

formulated as:

αt
n×1

= Tt
(n×n)

αt−1
(n×1)

+ Rt
(n×n)

ηt
(n×1)

, ηt ∼ iid N (0, Qt) . (3.19b)

Here, yt is the column vector of observed abnormal earnings at time t. ω is the unknown

persistence parameter of abnormal earnings appearing in Eq. (3.7a). zt = Rt = In is a

n-dimensional identity matrix, αt = vt, the ‘other information variable’ in the RIM, is

the n × 1 state vector, Ht = σ2
εIn is the covariance matrix for the measurement noise

εt, Tt = γIn is a matrix of parameters governing the state transition, and Qt = σ2
ηIn

is the covariance matrix for the signal shock ηt. Ht and Qt are serially and mutually

independent.

Given the linear Gaussian state space speci�cation above, we estimate the unknown

parameters contained in the vector, φ={ω, γ, σ2
ε , σ2

η}, as well as the latent state variable

αt, using the Kalman �lter.
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Initialization. We initialize the Kalman �lter with the initial state, at|t and pt|t at t = 0.

Let at|t = E [αt|Yt], where Yt = {yt, yt−1, yt−2, . . . y1}, be the �lter mean of unobserved

state at, given observations up to and including yt, and pt|t be the n × n covariance

matrix pt|t = var(αt|Yt).

Prediction. Given at|t and pt|t, the one-step ahead predictor at+1|t is provided by:

at+1|t =E (αt+1|Yt)

= E (Tt+1αt +Rt+1ηt+1|Yt)

= Tt+1 · at|t

(3.20a)

pt+1|t = var (αt+1|Yt)

= var (Tt+1αt +Rt+1nt+1|Yt)

= Tt+1pt|tT
′
t+1 +Rt+1Qt+1R

′
t+1

(3.20b)

Filtering. Once a new observation yt+1 arrives, the one-step ahead predictions are up-

dated using the �ltering equations:

at+1|t+1 = at+1 +
(
pt+1z

′
t+1F

−1
t+1

)
ϕt+1 (3.21a)

pt+1|t+1 = pt+1 − pt+1zt+1F
−1
t+1z

′
t+1pt+1 (3.21b)

whereϕt+1 = yt+1−zt+1at+1−ωyt = yt+1−E (yt+1|Yt) is the one-step ahead prediction

error and Ft+1 = var (ϕt+1) = zt+1pt+1z
′
t+1 + Ht+1. Eqs. (3.20) and (3.21) together

represent the Kalman �lter, whose application generates the �lter and predictive means

and variances of the state variables αt, conditional on Yt and φ={ω, γ, σ2
ε , σ2

η}.
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Log-likelihood construction. As a by-product of the above recursive predictive and

�ltering equations, we can recursively compute f (yt|Yt−1, φ) for t = 1, 2, . . . , N from

the normal probability density function. We can use these densities to construct the

log-likelihood as follows:

logLj = −N
2

log(2π)− 1

2

N∑
t=1

log |Ft| −
1

2

N∑
i=1

ϕ′tF
−1
t ϕt, (3.22)

where |Ft| is the determinant of Ft. We use numerical methods to minimize the nega-

tive of the log-likelihood function in Eq. (3.22), with respect to the unknown vector of

parameters φ.
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Table 3.15: Variable Description List

Variable

Name

Data Source Variable Description

AJEX–

Adjustment

Factor (Com-

pany) -

Cumulative

by Ex-Date

CRSP/COMPUSTAT

Merged

This item represents a ratio that enables

you to adjust per-share data (i.e., price,

earnings per share, and dividends per

share), as well as share data (i.e., shares

outstanding and shares traded) for all stock

splits and stock dividends that occur sub-

sequent to the end of a given period. The

cumulative adjustment factors for all pe-

riods are changed whenever a stock split

or stock dividend occurs. The factors are

carried to six decimal places to minimize

rounding errors. If for example, a two-for-

one split occurred in �scal 1994, the adjust-

ment factor for 1993 would be indicated as

2.000000. If, in addition, a 2 percent stock

dividend occurred in 1993, the adjustment

factor for 1992 would be indicated as cu-

mulative adjustment, 2.040000 (2.000000 X

1.020000). The adjustment factors are indi-

cated as 1.000000 when no changes in cap-

italization have occurred due to splits and

dividends. The ex-dividend date is used to

determine the adjustment of per-share data.
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BKVLPS–

Book Value

Per Share

CRSP/COMPUSTAT

Merged

For companies, Book Value Per Share is

based on �scal year-end data and repre-

sents Common Equity Liquidation Value

(CEQL) divided by Common Shares Out-

standing (CSHO). For indexes, Book Value

Per Share is an annual �gure calculated

from the calendar year-end index data.

CONM–

Company

Name

CRSP/COMPUSTAT

Merged

This is the o�cial company name as re-

ported on its EDGAR SEC �lings.

CUSIP CRSP/COMPUSTAT

Merged

CUSIP is the nine-character alphanumeric

code assigned by the CUSIP Service Bureau

to identify various securities.

I/B/E/S CUSIP

(8-digit)

I/B/E/S The I/B/E/S CUSIP is an I/B/E/S conven-

tion that helps di�erentiate CUSIPs for U.S.

companies from SEDOLs for international

companies. The I/B/E/S CUSIP for U.S.

is the company’s 8-character CUSIP. The

I/B/E/S CUSIP for international companies

is the 6-character SEDOL, preceded by a

two-digit country code. I/B/E/S CUSIPs do

not include the check sum digit.
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EPSPX–

Earnings Per

Share (Basic)

Excluding

Extraordinary

Items

CRSP/COMPUSTAT

Merged

This item represents basic earnings per

share before extraordinary items and dis-

continued operations.

FPEDATS–

Forecast

Period End

Date

I/B/E/S Forecast Period End Date (FPEDATS) is the

date to which the estimate applies. For 70%

of the companies, an estimate for a particu-

lar �scal year will have an FPEDATS of De-

cember 31st of that year.

FYEAR–Data

Year - Fiscal

CRSP/COMPUSTAT

Merged

This item represents the �scal year of the

current �scal year-end month. If the cur-

rent �scal year-end month falls in January

through May, this item is the current calen-

dar year minus 1 year. If the current �s-

cal year-end month falls in June through

December, this item is the current calendar

year.

LPERMCO–

Historical

CRSP

PERMCO

Link to COM-

PUSTAT

Record

CRSP/COMPUSTAT

Merged

CRSP PERMCO (company identi�er) link

during link period. It is set to zero if there

is no CRSP link during the range.
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LPERMNO–

Historical

CRSP

PERMNO

Link to COM-

PUSTAT

Record

CRSP/COMPUSTAT

Merged

CRSP PERMNO link (company identi�er)

during link period. It is set to zero if there

is no CRSP link during the range.

MEANEST–

Mean Esti-

mate

I/B/E/S The average of all estimates from all ana-

lysts for a given issue and time period.

NAICS–North

American

Industry

Classi�cation

Code

CRSP/COMPUSTAT

Merged

NAICS is a hierarchical structure and can

consist of up to six digits/levels. The �rst

two digits of the structure designate the

NAICS sectors that represent general cat-

egories of economic activity. The third

digit designates the subsector, the fourth

digit designates the industry group, the

�fth digit designates the NAICS industry,

and the sixth digit designates the national

industry.

NCUSIP

(8-digit)

CRSP NCUSIP is the 8-digit historical CUSIP in

CRSP data. NCUSIP is analogous to I/B/E/S’

CUSIP.

PRCC_C–

Price Close

- Annual -

Calendar

CRSP/COMPUSTAT

Merged

This item is the closing market price at the

calendar year end.
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PRCC_F–

Price Close

- Annual -

Fiscal

CRSP/COMPUSTAT

Merged

This item is the closing market price at the

�scal year-end.

STATPERS–

IBES Statisti-

cal Period

I/B/E/S I/B/E/S statistical period is the date when

the set of summary statistics was calcu-

lated.

TIC–Ticker

Symbol

CRSP/COMPUSTAT

Merged

This item identi�es the symbol associated

with trading of a particular issue on an ex-

change.
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Table 3.16: Index Constituents List

Company Name Ticker Sym-

bol

DJIA

Con-

stituent

S&P 500

Con-

stituent

Used in

Sample

AGILENT TECHNOLOGIES

INC

A No Yes Yes

AMERICAN AIRLINES

GROUP INC

AAL No Yes No

ADVANCE AUTO PARTS

INC

AAP No Yes Yes

APPLE INC AAPL Yes Yes Yes

ABBVIE INC ABBV No Yes Yes

AMERISOURCEBERGEN

CORP

ABC No Yes No

ABIOMED INC ABMD No Yes No

ABBOTT LABORATORIES ABT No Yes Yes

ACCENTURE PLC ACN No Yes No

ADOBE INC ADBE No Yes Yes

ANALOG DEVICES ADI No Yes No

ARCHER-DANIELS-

MIDLAND CO

ADM No Yes Yes

AUTOMATIC DATA PRO-

CESSING

ADP No Yes Yes
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ALLIANCE DATA SYSTEMS

CORP

ADS No Yes Yes

AUTODESK INC ADSK No Yes No

AMEREN CORP AEE No Yes No

AMERICAN ELECTRIC

POWER CO

AEP No Yes No

AES CORP AES No Yes No

AFLAC INC AFL No Yes No

ALLERGAN PLC AGN No Yes Yes

AMERICAN INTERNA-

TIONAL GROUP

AIG No Yes Yes

APARTMENT INVST &

MGMT CO

AIV No Yes Yes

ASSURANT INC AIZ No Yes Yes

ARTHUR J GALLAGHER &

CO

AJG No Yes Yes

AKAMAI TECHNOLOGIES

INC

AKAM No Yes No

ALBEMARLE CORP ALB No Yes Yes

ALIGN TECHNOLOGY INC ALGN No Yes Yes

ALASKA AIR GROUP INC ALK No Yes No

ALLSTATE CORP ALL No Yes Yes

ALLEGION PLC ALLE No Yes No
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ALEXION PHARMACEUTI-

CALS INC

ALXN No Yes Yes

APPLIED MATERIALS INC AMAT No Yes Yes

ADVANCED MICRO DE-

VICES

AMD No Yes No

AMETEK INC AME No Yes Yes

AFFILIATED MANAGERS

GRP INC

AMG No Yes Yes

AMGEN INC AMGN No Yes Yes

AMERIPRISE FINANCIAL

INC

AMP No Yes Yes

AMERICAN TOWER CORP AMT No Yes Yes

AMAZON.COM INC AMZN No Yes No

ARISTA NETWORKS INC ANET No Yes Yes

ANSYS INC ANSS No Yes Yes

ANTHEM INC ANTM No Yes Yes

AON PLC AON No Yes Yes

SMITH (A.O.) AOS No Yes No

APACHE CORP APA No Yes Yes

ANADARKO PETROLEUM

CORP

APC No Yes Yes

AIR PRODUCTS & CHEMI-

CALS INC

APD No Yes Yes
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AMPHENOL CORP APH No Yes No

APTIV PLC APTV No Yes No

ALEXANDRIA R E EQUI-

TIES INC

ARE No Yes No

ARCONIC INC ARNC No Yes No

ATMOS ENERGY CORP ATO No Yes No

ACTIVISION BLIZZARD

INC

ATVI No Yes Yes

AVALONBAY COMMUNI-

TIES INC

AVB No Yes No

BROADCOM INC AVGO No Yes Yes

AVERY DENNISON CORP AVY No Yes Yes

AMERICAN WATER

WORKS CO INC

AWK No Yes Yes

AMERICAN EXPRESS CO AXP Yes Yes Yes

AUTOZONE INC AZO No Yes No

BOEING CO BA Yes Yes No

BANK OF AMERICA CORP BAC No Yes Yes

BAXTER INTERNATIONAL

INC

BAX No Yes Yes

BB&T CORP BBT No Yes Yes

BEST BUY CO INC BBY No Yes Yes

BECTON DICKINSON & CO BDX No Yes No
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FRANKLIN RESOURCES

INC

BEN No Yes Yes

BROWN FORMAN CORP BF.B No Yes No

BRIGHTHOUSE FINANL

INC

BHF No Yes No

BAKER HUGHES A GE CO BHGE No Yes No

BIOGEN INC BIIB No Yes Yes

BANK OF NEW YORK MEL-

LON CORP

BK No Yes Yes

BOOKING HOLDINGS INC BKNG No Yes No

BLACKROCK INC BLK No Yes Yes

BALL CORP BLL No Yes No

BRISTOL-MYERS SQUIBB

CO

BMY No Yes Yes

BROADRIDGE FINANCIAL

SOLUTNS

BR No Yes No

BERKSHIRE HATHAWAY BRK.B No Yes No

BOSTON SCIENTIFIC CORP BSX No Yes Yes

BORGWARNER INC BWA No Yes Yes

BOSTON PROPERTIES INC BXP No Yes Yes

CITIGROUP INC C No Yes Yes

CONAGRA BRANDS INC CAG No Yes Yes

CARDINAL HEALTH INC CAH No Yes No
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CATERPILLAR INC CAT Yes Yes No

CHUBB LTD CB No Yes Yes

CBOE GLOBAL MARKETS

INC

CBOE No Yes Yes

CBRE GROUP INC CBRE No Yes Yes

CBS CORP CBS No Yes No

CROWN CASTLE INTL

CORP

CCI No Yes No

CARNIVAL CORP/PLC

(USA)

CCL No Yes Yes

CADENCE DESIGN SYS-

TEMS INC

CDNS No Yes Yes

CELANESE CORP CE No Yes Yes

CELGENE CORP CELG No Yes No

CERNER CORP CERN No Yes Yes

CF INDUSTRIES HOLDINGS

INC

CF No Yes Yes

CITIZENS FINANCIAL

GROUP INC

CFG No Yes Yes

CHURCH & DWIGHT INC CHD No Yes Yes

C H ROBINSON WORLD-

WIDE INC

CHRW No Yes Yes

CHARTER COMMUNICA-

TIONS INC

CHTR No Yes No
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CIGNA CORP CI No Yes Yes

CINCINNATI FINANCIAL

CORP

CINF No Yes Yes

COLGATE-PALMOLIVE CO CL No Yes No

CLOROX CO/DE CLX No Yes No

COMERICA INC CMA No Yes Yes

COMCAST CORP CMCSA No Yes No

CME GROUP INC CME No Yes Yes

CHIPOTLE MEXICAN

GRILL INC

CMG No Yes No

CUMMINS INC CMI No Yes No

CMS ENERGY CORP CMS No Yes No

CENTENE CORP CNC No Yes Yes

CENTERPOINT ENERGY

INC

CNP No Yes No

CAPITAL ONE FINANCIAL

CORP

COF No Yes Yes

CABOT OIL & GAS CORP COG No Yes Yes

COOPER COMPANIES INC COO No Yes No

CONOCOPHILLIPS COP No Yes No

COSTCO WHOLESALE

CORP

COST No Yes Yes

COTY INC COTY No Yes Yes
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CAMPBELL SOUP CO CPB No Yes No

CAPRI HOLDINGS LTD CPRI No Yes Yes

COPART INC CPRT No Yes Yes

SALESFORCE.COM INC CRM No Yes Yes

CISCO SYSTEMS INC CSCO Yes Yes Yes

CSX CORP CSX No Yes No

CINTAS CORP CTAS No Yes Yes

CENTURYLINK INC CTL No Yes Yes

COGNIZANT TECH SOLU-

TIONS

CTSH No Yes Yes

CITRIX SYSTEMS INC CTXS No Yes Yes

CVS HEALTH CORP CVS No Yes No

CHEVRON CORP CVX Yes Yes Yes

CONCHO RESOURCES INC CXO No Yes Yes

DOMINION ENERGY INC D No Yes Yes

DELTA AIR LINES INC DAL No Yes No

DEERE & CO DE No Yes No

DISCOVER FINANCIAL

SVCS

DFS No Yes Yes

DOLLAR GENERAL CORP DG No Yes No

QUEST DIAGNOSTICS INC DGX No Yes Yes

D R HORTON INC DHI No Yes Yes
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DANAHER CORP DHR No Yes No

DISNEY (WALT) CO DIS Yes Yes No

DISCOVERY INC DISCA No Yes No

DISH NETWORK CORP DISH No Yes No

DIGITAL REALTY TRUST

INC

DLR No Yes No

DOLLAR TREE INC DLTR No Yes Yes

DOVER CORP DOV No Yes No

DUKE REALTY CORP DRE No Yes No

DARDEN RESTAURANTS

INC

DRI No Yes No

DTE ENERGY CO DTE No Yes Yes

DUKE ENERGY CORP DUK No Yes Yes

DAVITA INC DVA No Yes Yes

DEVON ENERGY CORP DVN No Yes Yes

DOWDUPONT INC DWDP Yes Yes Yes

DXC TECHNOLOGY COM-

PANY

DXC No Yes No

ELECTRONIC ARTS INC EA No Yes Yes

EBAY INC EBAY No Yes Yes

ECOLAB INC ECL No Yes Yes

CONSOLIDATED EDISON

INC

ED No Yes No
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EQUIFAX INC EFX No Yes Yes

EDISON INTERNATIONAL EIX No Yes No

LAUDER (ESTEE) COS INC -

CL A

EL No Yes Yes

EASTMAN CHEMICAL CO EMN No Yes Yes

EMERSON ELECTRIC CO EMR No Yes Yes

EOG RESOURCES INC EOG No Yes Yes

EQUINIX INC EQIX No Yes Yes

EQUITY RESIDENTIAL EQR No Yes No

EVERSOURCE ENERGY ES No Yes Yes

ESSEX PROPERTY TRUST ESS No Yes No

E TRADE FINANCIAL

CORP

ETFC No Yes Yes

EATON CORP PLC ETN No Yes No

ENTERGY CORP ETR No Yes No

EVERGY INC EVRG No Yes No

EDWARDS LIFESCIENCES

CORP

EW No Yes No

EXELON CORP EXC No Yes No

EXPEDITORS INTL WASH

INC

EXPD No Yes Yes

EXPEDIA GROUP INC EXPE No Yes No
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EXTRA SPACE STORAGE

INC

EXR No Yes Yes

FORD MOTOR CO F No Yes No

DIAMONDBACK ENERGY

INC

FANG No Yes Yes

FASTENAL CO FAST No Yes Yes

FACEBOOK INC FB No Yes Yes

FORTUNE BRANDS HOME

& SECUR

FBHS No Yes Yes

FREEPORT-MCMORAN

INC

FCX No Yes No

FEDEX CORP FDX No Yes Yes

FIRSTENERGY CORP FE No Yes No

F5 NETWORKS INC FFIV No Yes Yes

FIDELITY NATIONAL INFO

SVCS

FIS No Yes Yes

FISERV INC FISV No Yes Yes

FIFTH THIRD BANCORP FITB No Yes Yes

FOOT LOCKER INC FL No Yes No

FLIR SYSTEMS INC FLIR No Yes Yes

FLUOR CORP FLR No Yes No

FLOWSERVE CORP FLS No Yes Yes
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FLEETCOR TECHNOLO-

GIES INC

FLT No Yes Yes

FMC CORP FMC No Yes No

FOX CORP FOXA No Yes No

FIRST REPUBLIC BANK FRC No Yes No

FEDERAL REALTY INVEST-

MENT TR

FRT No Yes No

TECHNIPFMC PLC FTI No Yes No

FORTINET INC FTNT No Yes No

FORTIVE CORP FTV No Yes No

GENERAL DYNAMICS

CORP

GD No Yes Yes

GENERAL ELECTRIC CO GE No Yes Yes

GILEAD SCIENCES INC GILD No Yes Yes

GENERAL MILLS INC GIS No Yes No

CORNING INC GLW No Yes Yes

GENERAL MOTORS CO GM No Yes No

ALPHABET INC GOOGL No Yes No

GENUINE PARTS CO GPC No Yes Yes

GLOBAL PAYMENTS INC GPN No Yes No

GAP INC GPS No Yes Yes

GARMIN LTD GRMN No Yes Yes
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GOLDMAN SACHS GROUP

INC

GS Yes Yes Yes

GRAINGER (W W) INC GWW No Yes Yes

HALLIBURTON CO HAL No Yes No

HASBRO INC HAS No Yes Yes

HUNTINGTON BANC-

SHARES

HBAN No Yes No

HANESBRANDS INC HBI No Yes Yes

HCA HEALTHCARE INC HCA No Yes No

HCP INC HCP No Yes No

HOME DEPOT INC HD Yes Yes Yes

HESS CORP HES No Yes No

HOLLYFRONTIER CORP HFC No Yes No

HARTFORD FINANCIAL

SERVICES

HIG No Yes Yes

HUNTINGTON INGALLS

IND INC

HII No Yes Yes

HILTON WORLDWIDE

HOLDINGS

HLT No Yes No

HARLEY-DAVIDSON INC HOG No Yes Yes

HOLOGIC INC HOLX No Yes Yes

HONEYWELL INTERNA-

TIONAL INC

HON No Yes Yes
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HELMERICH & PAYNE HP No Yes No

HEWLETT PACKARD EN-

TERPRISE

HPE No Yes No

HP INC HPQ No Yes No

BLOCK H & R INC HRB No Yes No

HORMEL FOODS CORP HRL No Yes No

HARRIS CORP HRS No Yes No

HENRY SCHEIN INC HSIC No Yes Yes

HOST HOTELS & RESORTS

INC

HST No Yes No

HERSHEY CO HSY No Yes No

HUMANA INC HUM No Yes Yes

INTL BUSINESS MACHINES

CORP

IBM Yes Yes Yes

INTERCONTINENTAL EX-

CHANGE

ICE No Yes Yes

IDEXX LABS INC IDXX No Yes No

INTL FLAVORS & FRA-

GRANCES

IFF No Yes No

ILLUMINA INC ILMN No Yes Yes

INCYTE CORP INCY No Yes No

IHS MARKIT LTD INFO No Yes Yes

INTEL CORP INTC Yes Yes Yes
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INTUIT INC INTU No Yes Yes

INTL PAPER CO IP No Yes Yes

INTERPUBLIC GROUP OF

COS

IPG No Yes Yes

IPG PHOTONICS CORP IPGP No Yes Yes

IQVIA HOLDINGS INC IQV No Yes No

INGERSOLL-RAND PLC IR No Yes No

IRON MOUNTAIN INC IRM No Yes No

INTUITIVE SURGICAL INC ISRG No Yes No

GARTNER INC IT No Yes No

ILLINOIS TOOL WORKS ITW No Yes Yes

INVESCO LTD IVZ No Yes No

HUNT (JB) TRANSPRT

SVCS INC

JBHT No Yes Yes

JOHNSON CONTROLS

INTL PLC

JCI No Yes No

JACOBS ENGINEERING

GROUP INC

JEC No Yes No

JEFFERIES FINANCIAL GRP

INC

JEF No Yes No

HENRY (JACK) & ASSO-

CIATES

JKHY No Yes No

JOHNSON & JOHNSON JNJ Yes Yes No
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JUNIPER NETWORKS INC JNPR No Yes Yes

JPMORGAN CHASE & CO JPM Yes Yes Yes

NORDSTROM INC JWN No Yes Yes

KELLOGG CO K No Yes Yes

KEYCORP KEY No Yes Yes

KEYSIGHT TECHNOLO-

GIES INC

KEYS No Yes Yes

KRAFT HEINZ CO KHC No Yes No

KIMCO REALTY CORP KIM No Yes No

KLA-TENCOR CORP KLAC No Yes Yes

KIMBERLY-CLARK CORP KMB No Yes No

KINDER MORGAN INC KMI No Yes No

CARMAX INC KMX No Yes No

COCA-COLA CO KO Yes Yes No

KROGER CO KR No Yes No

KOHL’S CORP KSS No Yes Yes

KANSAS CITY SOUTHERN KSU No Yes Yes

LOEWS CORP L No Yes Yes

L BRANDS INC LB No Yes No

LEGGETT & PLATT INC LEG No Yes Yes

LENNAR CORP LEN No Yes No
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LABORATORY CP OF

AMER HLDGS

LH No Yes Yes

LINDE PLC LIN No Yes Yes

LKQ CORP LKQ No Yes Yes

L3 TECHNOLOGIES INC LLL No Yes Yes

LILLY (ELI) & CO LLY No Yes Yes

LOCKHEED MARTIN CORP LMT No Yes No

LINCOLN NATIONAL

CORP

LNC No Yes Yes

ALLIANT ENERGY CORP LNT No Yes Yes

LOWE’S COMPANIES INC LOW No Yes Yes

LAM RESEARCH CORP LRCX No Yes Yes

SOUTHWEST AIRLINES LUV No Yes Yes

LAMB WESTON HOLD-

INGS INC

LW No Yes No

LYONDELLBASELL INDUS-

TRIES NV

LYB No Yes Yes

MACY’S INC M No Yes No

MASTERCARD INC MA No Yes Yes

MID-AMERICA APT CMN-

TYS INC

MAA No Yes No

MACERICH CO MAC No Yes No

MARRIOTT INTL INC MAR No Yes No
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MASCO CORP MAS No Yes No

MATTEL INC MAT No Yes No

MCDONALD’S CORP MCD Yes Yes No

MICROCHIP TECHNOL-

OGY INC

MCHP No Yes Yes

MCKESSON CORP MCK No Yes Yes

MOODY’S CORP MCO No Yes No

MONDELEZ INTERNA-

TIONAL INC

MDLZ No Yes Yes

MEDTRONIC PLC MDT No Yes Yes

METLIFE INC MET No Yes Yes

MGM RESORTS INTERNA-

TIONAL

MGM No Yes Yes

MOHAWK INDUSTRIES

INC

MHK No Yes Yes

MCCORMICK & CO INC MKC No Yes No

MARTIN MARIETTA MA-

TERIALS

MLM No Yes Yes

MARSH & MCLENNAN

COS

MMC No Yes Yes

3M CO MMM Yes Yes No

MONSTER BEVERAGE

CORP

MNST No Yes No
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ALTRIA GROUP INC MO No Yes Yes

MOSAIC CO MOS No Yes Yes

MARATHON PETROLEUM

CORP

MPC No Yes Yes

MERCK & CO MRK Yes Yes Yes

MARATHON OIL CORP MRO No Yes No

MORGAN STANLEY MS No Yes Yes

MSCI INC MSCI No Yes Yes

MICROSOFT CORP MSFT Yes Yes Yes

MOTOROLA SOLUTIONS

INC

MSI No Yes No

M & T BANK CORP MTB No Yes Yes

METTLER-TOLEDO INTL

INC

MTD No Yes Yes

MICRON TECHNOLOGY

INC

MU No Yes Yes

MAXIM INTEGRATED

PRODUCTS

MXIM No Yes No

MYLAN NV MYL No Yes No

NOBLE ENERGY INC NBL No Yes Yes

NORWEGIAN CRUISE LINE

HLDGS

NCLH No Yes Yes

NASDAQ INC NDAQ No Yes Yes
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NEXTERA ENERGY INC NEE No Yes No

NEWMONT GOLDCORP

CORP

NEM No Yes No

NETFLIX INC NFLX No Yes Yes

NISOURCE INC NI No Yes Yes

NIKE INC -CL B NKE Yes Yes Yes

NEKTAR THERAPEUTICS NKTR No Yes No

NIELSEN HOLDINGS PLC NLSN No Yes Yes

NORTHROP GRUMMAN

CORP

NOC No Yes No

NATIONAL OILWELL

VARCO INC

NOV No Yes Yes

NRG ENERGY INC NRG No Yes No

NORFOLK SOUTHERN

CORP

NSC No Yes No

NETAPP INC NTAP No Yes Yes

NORTHERN TRUST CORP NTRS No Yes Yes

NUCOR CORP NUE No Yes Yes

NVIDIA CORP NVDA No Yes Yes

NEWELL BRANDS INC NWL No Yes No

NEWS CORP NWSA No Yes No

REALTY INCOME CORP O No Yes No

ONEOK INC OKE No Yes No

161



OMNICOM GROUP OMC No Yes Yes

ORACLE CORP ORCL No Yes Yes

O’REILLY AUTOMOTIVE

INC

ORLY No Yes Yes

OCCIDENTAL

PETROLEUM CORP

OXY No Yes No

PAYCHEX INC PAYX No Yes Yes

PEOPLE’S UNITED FINL

INC

PBCT No Yes No

PACCAR INC PCAR No Yes Yes

PUBLIC SERVICE ENTRP

GRP INC

PEG No Yes No

PEPSICO INC PEP No Yes No

PFIZER INC PFE Yes Yes No

PRINCIPAL FINANCIAL

GRP INC

PFG No Yes Yes

PROCTER & GAMBLE CO PG Yes Yes No

PROGRESSIVE CORP-OHIO PGR No Yes Yes

PARKER-HANNIFIN CORP PH No Yes No

PULTEGROUP INC PHM No Yes Yes

PACKAGING CORP OF

AMERICA

PKG No Yes Yes

PERKINELMER INC PKI No Yes No
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PROLOGIS INC PLD No Yes No

PHILIP MORRIS INTERNA-

TIONAL

PM No Yes No

PNC FINANCIAL SVCS

GROUP INC

PNC No Yes Yes

PENTAIR PLC PNR No Yes Yes

PINNACLE WEST CAPITAL

CORP

PNW No Yes Yes

PPG INDUSTRIES INC PPG No Yes No

PPL CORP PPL No Yes Yes

PERRIGO CO PLC PRGO No Yes Yes

PRUDENTIAL FINANCIAL

INC

PRU No Yes No

PUBLIC STORAGE PSA No Yes No

PHILLIPS 66 PSX No Yes Yes

PVH CORP PVH No Yes Yes

QUANTA SERVICES INC PWR No Yes No

PIONEER NATURAL RE-

SOURCES CO

PXD No Yes Yes

PAYPAL HOLDINGS INC PYPL No Yes Yes

QUALCOMM INC QCOM No Yes Yes

QORVO INC QRVO No Yes Yes
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ROYAL CARIBBEAN

CRUISES LTD

RCL No Yes Yes

EVEREST RE GROUP LTD RE No Yes Yes

REGENCY CENTERS CORP REG No Yes No

REGENERON PHARMA-

CEUTICALS

REGN No Yes No

REGIONS FINANCIAL

CORP

RF No Yes Yes

ROBERT HALF INTL INC RHI No Yes No

RED HAT INC RHT No Yes Yes

RAYMOND JAMES FINAN-

CIAL CORP

RJF No Yes No

RALPH LAUREN CORP RL No Yes Yes

RESMED INC RMD No Yes Yes

ROCKWELL AUTOMA-

TION

ROK No Yes No

ROLLINS INC ROL No Yes No

ROPER TECHNOLOGIES

INC

ROP No Yes Yes

ROSS STORES INC ROST No Yes Yes

REPUBLIC SERVICES INC RSG No Yes Yes

RAYTHEON CO RTN No Yes No
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SBA COMMUNICATIONS

CORP

SBAC No Yes No

STARBUCKS CORP SBUX No Yes Yes

SCHWAB (CHARLES) CORP SCHW No Yes Yes

SEALED AIR CORP SEE No Yes No

SHERWIN-WILLIAMS CO SHW No Yes Yes

SVB FINANCIAL GROUP SIVB No Yes No

SMUCKER (JM) CO SJM No Yes No

SCHLUMBERGER LTD SLB No Yes No

SL GREEN REALTY CORP SLG No Yes Yes

SNAP-ON INC SNA No Yes Yes

SYNOPSYS INC SNPS No Yes Yes

SOUTHERN CO SO No Yes No

SIMON PROPERTY GROUP

INC

SPG No Yes No

S&P GLOBAL INC SPGI No Yes Yes

SEMPRA ENERGY SRE No Yes No

SUNTRUST BANKS INC STI No Yes Yes

STATE STREET CORP STT No Yes Yes

SEAGATE TECHNOLOGY

PLC

STX No Yes Yes

CONSTELLATION BRANDS STZ No Yes No
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STANLEY BLACK &

DECKER INC

SWK No Yes Yes

SKYWORKS SOLUTIONS

INC

SWKS No Yes No

SYNCHRONY FINANCIAL SYF No Yes Yes

STRYKER CORP SYK No Yes Yes

SYMANTEC CORP SYMC No Yes Yes

SYSCO CORP SYY No Yes Yes

AT&T INC T No Yes Yes

MOLSON COORS BREW-

ING CO

TAP No Yes No

TRANSDIGM GROUP INC TDG No Yes No

TE CONNECTIVITY LTD TEL No Yes Yes

TWENTY-FIRST CENTURY

FOX INC

TFCFA No Yes No

TELEFLEX INC TFX No Yes Yes

TARGET CORP TGT No Yes No

TIFFANY & CO TIF No Yes Yes

TJX COMPANIES INC TJX No Yes No

TORCHMARK CORP TMK No Yes Yes

THERMO FISHER SCIEN-

TIFIC INC

TMO No Yes Yes

TAPESTRY INC TPR No Yes Yes
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TRIPADVISOR INC TRIP No Yes Yes

PRICE (T. ROWE) GROUP TROW No Yes Yes

TRAVELERS COS INC TRV Yes Yes No

TRACTOR SUPPLY CO TSCO No Yes Yes

TYSON FOODS INC -CL A TSN No Yes Yes

TOTAL SYSTEM SERVICES

INC

TSS No Yes Yes

TAKE-TWO INTERACTIVE

SFTWR

TTWO No Yes Yes

TWITTER INC TWTR No Yes Yes

TEXAS INSTRUMENTS INC TXN No Yes No

TEXTRON INC TXT No Yes Yes

UNDER ARMOUR INC UAA No Yes No

UNITED CONTINENTAL

HLDGS INC

UAL No Yes No

UDR INC UDR No Yes No

UNIVERSAL HEALTH SVCS

INC

UHS No Yes Yes

ULTA BEAUTY INC ULTA No Yes Yes

UNITEDHEALTH GROUP

INC

UNH Yes Yes Yes

UNUM GROUP UNM No Yes No

UNION PACIFIC CORP UNP No Yes Yes
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UNITED PARCEL SERVICE

INC

UPS No Yes Yes

UNITED RENTALS INC URI No Yes No

U S BANCORP USB No Yes Yes

UNITED TECHNOLOGIES

CORP

UTX Yes Yes Yes

VISA INC V Yes Yes Yes

VARIAN MEDICAL SYS-

TEMS INC

VAR No Yes No

VF CORP VFC No Yes Yes

VIACOM INC VIAB No Yes No

VALERO ENERGY CORP VLO No Yes Yes

VULCAN MATERIALS CO VMC No Yes Yes

VORNADO REALTY TRUST VNO No Yes No

VERISK ANALYTICS INC VRSK No Yes No

VERISIGN INC VRSN No Yes No

VERTEX PHARMACEUTI-

CALS INC

VRTX No Yes Yes

VENTAS INC VTR No Yes No

VERIZON COMMUNICA-

TIONS INC

VZ Yes Yes Yes

WABTEC CORP WAB No Yes No

WATERS CORP WAT No Yes Yes
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WALGREENS BOOTS AL-

LIANCE INC

WBA Yes Yes No

WELLCARE HEALTH

PLANS INC

WCG No Yes Yes

WESTERN DIGITAL CORP WDC No Yes No

WEC ENERGY GROUP INC WEC No Yes No

WELLTOWER INC WELL No Yes No

WELLS FARGO & CO WFC No Yes No

WHIRLPOOL CORP WHR No Yes No

WILLIS TOWERS WATSON

PLC

WLTW No Yes Yes

WASTE MANAGEMENT

INC

WM No Yes Yes

WILLIAMS COS INC WMB No Yes No

WALMART INC WMT Yes Yes Yes

WESTROCK CO WRK No Yes Yes

WESTERN UNION CO WU No Yes No

WEYERHAEUSER CO WY No Yes No

WYNN RESORTS LTD WYNN No Yes No

CIMAREX ENERGY CO XEC No Yes Yes

XCEL ENERGY INC XEL No Yes Yes

XILINX INC XLNX No Yes Yes

EXXON MOBIL CORP XOM Yes Yes Yes
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DENTSPLY SIRONA INC XRAY No Yes Yes

XEROX CORP XRX No Yes No

XYLEM INC XYL No Yes Yes

YUM BRANDS INC YUM No Yes No

ZIMMER BIOMET HOLD-

INGS INC

ZBH No Yes Yes

ZIONS BANCORPORATION

NA

ZION No Yes Yes

ZOETIS INC ZTS No Yes Yes
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CHAPTER 4

THE ROLE OF ‘OTHER INFORMATION’ νT AS A VALUE-RELEVANT MEASURE IN

TRACKING AND PREDICTING STOCK RETURNS: A FAVAR APPROACH

4.1 Introduction

Ohlson (1995) has become seminal work within the accounting and �nance literature. The

paper comprises of two main parts. The residual income valuation model (RIM) and the residual

income information dynamics. Ohlson’s modelling of the latter is the primary contribution in the

paper. The key feature of the information dynamics is that expected next period t+ 1 abnormal

earnings1 contains information known at time t that is not present in current abnormal earnings.

Ota (2002) states that the linear information dynamics attempt to characterize the mechanism of

abnormal earnings and links current information to future abnormal earnings. This enables the

formulation of a valuation model of a stock.

Ohlson (1995) models this information about future abnormal earnings not re�ected in cur-

rent abnormal earnings as a latent variable denoted as ‘other information’ νt. Speci�cally, νt

summarizes unobserved value-relevant information about events and their e�ect on future prof-

itability that is captured in a company’s current stock price, but not yet re�ected in a company’s

current �nancial statements.

Dechow et al. (1999) (henceforth DHS) are the �rst to include the residual income infor-

mation dynamics explicitly in their study. They use Wall Street consensus analysts’ earnings

forecasts to proxy ‘other information’νt. They argue that Wall Street analysts have better sets of

information to predict future abnormal earnings and, in turn, price stocks e�ectively, relative to

retail investors. However, there are many issues with the use of analyst forecasts of earnings as

a proxy for ‘other information’ νt (see Awwal and Bidarkota (2019) for related discussion).

Several papers have attempted to model or estimate ‘other information’ νt for valuation using

various accounting variables (e.g. see Hand and Landsman (1998, 2005), Barth et al. (1999), Myers

1We use ‘abnormal earnings’ and ‘residual income’ interchangeably throughout the paper.
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(1999), and, most recently, Yamaguchi (2018) for details). Though, none of which has achieved

as much empirical success as the use of Wall Street analysts’ earnings forecasts.

Another strand of research involves attempts to �nd value-relevant measures for predicting

future stock returns with varying degrees of success. For example, Lettau and Ludvigson (2001)

use the aggregate consumption-wealth ratio for predicting returns. Lee et. al (1999) use intrinsic

value measures based on the residual income model to track current prices and predict future

market returns. However, Goyal and Welch (2007) argue that many popular predictor variables

used in the extant literature have poor in- and out-of-sample predictive ability and consistently

underperform against the historical mean model.

The aim of this paper is to estimate Ohlson’s ‘other information’ νt and to learn about its

time-series properties and its ability to track and predict stock returns. We do so by utilizing the

theoretical framework of the RIM in a factor augmented vector autoregressive (FAVAR) system

developed by Bernanke et al. (2005) (henceforth BBE). The FAVAR allows us to examine the

linkages of stock market value, residual income, and low-dimensional unobserved factors that

are broadly summarized by a rich set of data. These together are common factors to the system.

In the context of VAR models, the FAVAR’s ability to estimate a low dimension of unobserved

factors that re�ect informational content of big data makes it a suitable model to accomplish

our e�orts.2 In total, we consider 78 informational variables across �nancial market, accounting,

investor and consumer sentiment, and macroeconomic data to extract the unobserved factors.

We use a two-step principal components approach, as in BBE, to extract the latent factors.

The FAVAR model is widely used in various economic applications (see, for example, Lud-

vigson and Ng (2009), Koop and Korobilis (2010), Bai et al. (2016), Stock and Watson (2016),

Paccagnini (2018), and Fiorelli and Meliciani (2019), amongst many others). However, to the best

of our knowledge, no existing papers have employed FAVAR or any similar application of factor

analysis to explore ‘other information’ within the RIM framework.

2A standard problem in multi-variate VAR models is the depletion of degrees of freedom, as
more variables are added. The low dimension of the unobserved factors mitigates this problem.
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In this paper, we estimate ’other information’ νt using a two-step principal components ap-

proach under the FAVAR framework to assess to evaluate its success as a value-relevant measure.

A viable measure would satisfy tracking ability of current stock returns and forecasting ability

of future returns. Given that the FAVAR system makes use of the unobserved factors, we also

analyze the sources of information that drive such unobserved factors. This allows us to pinpoint

which type of information is value-relevant.

We organize the paper as follows. In section 2, we provide a framework of the RIM by

describing the information dynamics and the implied valuation function. We also discuss the

estimation of the ‘other information’ νt, proxied by analysts’ forecasts on earnings, as in DHS.

In section 3, we set a formal structure for the FAVAR model in the context of Ohlson’s RIM

framework. We discuss how we use estimation of the FAVAR to measure νt. We then detail

the two-step principal components estimation approach to estimate the FAVAR itself and an

identi�cation strategy rationalizing the analysis. In section 4, we discuss the data and report

empirical results. We summarize our �ndings in the concluding section.

4.2 Residual Income Model (RIM)

In this section, we lay the linear information dynamics framework and implied pricing func-

tion in Ohlson (1995)’s RIM. We then describe the estimation of the ‘other information’ νt proxied

by consensus analysts’ earnings forecasts.

4.2.1 Residual Income Information Dynamics and Implied Valu-

ation Function

Ohlson (1995) de�nes abnormal earnings as the di�erence between earnings at time t, xt,

and the equity capital charge, r · bt−1. r is the discount rate and bt−1 is the book value of equity

at time t− 1 for a �rm.
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He assumes that abnormal earnings satisfy the following modi�ed autoregressive process:

xat = ωxat−1 + vt−1 + εt, εt ∼ iid N
(
0, σ2ε

)
(4.1a)

vt = γvt−1 + ηt, ηt ∼ iid N
(
0, σ2η

)
, (4.1b)

where νt is ‘other information’ about next period t+ 1 abnormal earnings xat+1 not conveyed by

current abnormal earnings xat , εt and ηt are unpredictable, mean zero disturbance terms, and ω

and γ are �xed persistence parameters, assumed non-negative and less than one.

Ohlson (1995) also derives the following implied valuation function:

pt − bt = α1x
a
t + α2vt, (4.2)

where α1 = ω/(1 + r − ω) and α2 = (1 + r)/[(1 + r − ω)(1 + r − γ)]. Eq. (2) implies that the

di�erence between the market value of equity pt and book value of equity bt at time t for a �rm

re�ects the discounted value of current abnormal earnings and ‘other information’ about future

pro�tability. The right hand side of Eq. (2) is denoted as ’goodwill’.3

4.2.2 ‘Other information’ νt

The main theme of this paper surrounds this latent ‘other information’ νt in Ohlson (1995).

He postulates that a �rm’s stock price re�ects information about its next period t+1 pro�tability

that is not readily re�ected in current pro�ts. Furthermore, he formulates the ‘other information’

variable, νt, as the di�erence between the conditional expectation of abnormal earnings for next

period t + 1 based on all available information at time t and that based on current period t

abnormal earnings alone:

vt = Et
[
xat+1

]
− ωxat . (4.3)

3We use ‘goodwill’ to represent stock market value throughout the paper. Additionally, to
adhere to Equation (2) in the RIM, we reference pt − bt as ‘goodwill’ throughout the paper as
well.
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The conditional expectation of next period t + 1 abnormal earnings, denoted as fat below, is

equal to the conditional expectation of next period t + 1 earnings at time t less the product of

book value at time t and the discount rate. DHS measure the conditional expectation of next

period t+1 earnings at time t using the consensus analyst forecast of next period t+1 earnings,

denoted as ft, in which case

Et
[
xat+1

]
= fat = ft − r · bt. (4.4)

Therefore, from Eqs. (3) and (4), ‘other information’, νt can be retrieved as

vt = fat − ωxat (4.5)

The values for the three parameters, namely ω, γ, and r in Eqs. (1) and (2) are pinned down as

follows. The authors use the average historical return on equities to measure the discount rate, r,

which they approximated to be 12%. We employ time-varying discount rates, proxied by a 90-day

Treasury Bill when constructing abnormal earnings used in the empirical analysis later in the

paper. We do this to account for time-varying risk. They estimate the persistence parameters, ω

and γ, which they postulate as common across �rms, by using unconditional pooled regressions

(see DHS for details).

4.3 FAVAR Application

In this section, we �rst set a formal structure for the FAVAR model within Ohlson’s RIM

framework. We later provide the two-step principal components estimation approach of the

FAVAR and impose restrictions on the system and data sources.

4.3.1 Framework

Let Yt be a M × 1 vector of observable variables relevant to Ohlson’s RI model and assumed

to drive the dynamics of each other. Yt could contain return on equity (ROE) and B/P ratio.
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The standard approach involves estimating a VAR using data for Yt alone.

Though, additional information, not fully captured by Yt, may be relevant to modelling the

dynamics of these series. Let Ft be a K × 1 vector of unobserved factors encompassing this

additional information, where K is “small.” These unobserved factors may capture �uctuations

from an array of variables that are value-relevant. Such informational variables could include

accounting, macroeconomic, consumer con�dence, and �nancial market variables that may be

intrinsically related to the observed variables in Yt.

Assume that the joint dynamics of (F ′t , Y
′
t ) are given by the following state equation:

 Ft

Yt

 = Φ(L)

 Ft−1

Yt−1

+ vt, (4.6)

where Φ (L) is a conformable lag polynomial of �nite order d, which may contain a priori re-

strictions as in the structural VAR literature. The error term vt has a zero mean and covariance

matrix Q. Equation (6) is a VAR in (F ′t , Y
′
t ). We refer to Equation (6) as FAVAR. This system can

reduce to a standard VAR in Yt when the terms of Φ (L) that relate Yt to Ft−1 are all zero.

Equation (6) cannot be estimated directly because the factors Ft are unobserved. However,

as we interpret the factors as encapsulating informational content from a large set of economic

variables, we may use data on a variety of economic time series to extrapolate the factors Ft. As

such, letXt be aN × 1 vector of informational time series. N is “large” and may be greater than

the number of time periods T . We assume N to be strictly greater than the number of factors

and observed variables in the FAVAR system such that K +M << N . We also assume that the

informational time series Xt are related to the unobserved factors Ft and the observed variables

Yt by the following measurement equation:

Xt = ΛfFt + ΛyYt + et, (4.7)
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where Λf is aN ×K matrix of factor loadings, Λy isN ×M , and theN ×1 vector of error terms

et is mean zero, normally distributed, and has small cross-correlation.4 This representation nests

models in which Xt depends on lagged values of the factors Ft.

Equation (7) captures the idea that both Yt and Ft, which generally can be correlated, repre-

sent common forces that drive the dynamics ofXt. Conditional on Yt,Xt is therefore a vector of

noisy measures of the underlying unobserved factors Ft. Without observed factor Yt, Equation

(7) reduces to a dynamic factor model (see Stock and Watson (1998, 2002) for further details).

4.3.2 Estimation

To estimate νt in Equation (5), we have to estimate the FAVAR speci�cation to obtain �tted

values of the ROE. The �tted values of ROE represent the conditional expectation of next-period

t+1 ROE at time t.5 For the estimation of the FAVAR model, Equations (6) and (7), we follow the

two-step principal components approach as in BBE. As they note, “...provides a non-parametric

way of uncovering the common space spanned by the factors ofXt...” They denote this common

space as C (Ft, Yt).

In the �rst step, the space spanned by the factors is estimated from the measurement equation

in Eq. (7) using the �rst K + M principal components of Xt, even in the presence of slight

changes in the loading matrix Λ (Paccagnini (2018)). They denote this estimated common space

as Ĉ (Ft, Yt).

Estimation of the �rst step does not make use of the fact that Yt is observed. Stock and

Watson (2002) showed that the principal components consistently recover the space spanned by

both Ft and Yt, whenN is large and the number of principal componentsK+M used is at least

as large as the true number of factors.

4The estimator can allow for some cross-correlation in et that must vanish as N goes to
in�nity.

5One can use simple algebraic manipulation to convert ROE to residual income.
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Bai and Ng (2002) and Lopes and West (2004) provide selection criteria to determine the optimal

number of factors present in the Xt data set.6

Since Ĉ (Ft, Yt) corresponds to an arbitrary linear combination of its arguments, obtaining

F̂t involves determining the part of Ĉ (Ft, Yt) that is not spanned by Yt (see BBE for details).

In the second step, the FAVAR in Equation (6) is estimated by regression methods, with Ft

replaced by F̂t. Yt is removed from the space covered by the principal components in the �rst

step. Boivin et al. (2009) impose the constraint that Yt is one of the common components in

the �rst step, guaranteeing that the estimated latent factors F̂t recover the common dynamics,

which are not captured by Yt.

We use this two-step procedure for computational simplicity and execution, with few distri-

butional assumptions and it allows for some cross-correlation in the idiosyncratic error term et

(see Stock and Watson (2002) for discussion).

4.3.3 Identi�cation Strategy

At current form, Equations (6) and (7) of the FAVAR system are econometrically unidenti�ed

and therefore cannot be estimated directly. As such, we need to impose a set of restrictions on the

system as in BBE and restrictions on the data sources. The �rst is a minimum set of normalization

(orthogonality) restrictions on the measurement equation in Equation (7) that are needed to be

able to estimate the model. The second is a restriction on the variables of the data to be on an

aggregate or macro level.

First, we impose the orthogonality restriction in the principal components. In other words,

we take C ′C/T = I , where C ′ = [C(F1, Y1), ..., C(FT , YT )]. This implies that Ĉ =
√
TẐ ,

where Ẑ are the eigenvectors corresponding to the K largest eigenvalues of XX ′, sorted in

descending order.

Second, though the Ohlson (1995) model is built in the context of an individual �rm, we re-

strict the accounting and �nancial market data (i.e. equity, bond, and futures) used in the analysis

6We do not make use of the selection criteria from either work, as they are beyond the scope
of this paper.
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to an aggregate index level, namely, the S&P 500. We presume that news or shocks a�ecting an

entire stock index, such as the S&P 500, rather than an individual stock, could plausibly have an

impact on the overall economy and �nancial system.

4.4 Empirical Assessment of the Model

4.4.1 Data Aggregation

In this application, the aggregate data set Xt composes of a balanced panel of 78 quarterly

time series across �nancial market (FM), accounting, macroeconomic, and investor and consumer

sentiment (ICS) data. We source FM data from CRSP, Robert Shiller’s website,7 and Ken French’s

website.8. Accounting data for the S&P 500 are sourced from COMPUSTAT. Macroeconomic

data are sourced from the Federal Reserve Economic Data (FRED) - Federal Reserve Bank of St.

Louis,9. Investor and consumer con�dence data are sourced from the International Center for

Finance at Yale School of Management.10

In Yt, return on equity (ROE) and B/P ratio, constructed using the relevant accounting and

�nancial market variables for the S&P 500 are retrieved from CRSP and COMPUSTAT. S&P 500

index return data are retrieved from CRSP. To construct ‘other information’ νt as described in

Equation (5), we estimate two things. First, we calculate expected t + 1 abnormal earnings as

described in Equation (4). To do so, in addition to using the accounting data, we extract t + 1

analyst earnings forecast data for the S&P 500 from the I/B/E/S data �le. Second, we estimate the

persistence parameter, ω, obtained from a �rst-order autoregression of the abnormal earnings

time series, which equals 0.96. For both abnormal earnings and expected t+1 abnormal earnings,

7Source: http://www.econ.yale.edu/ shiller/data.htm
8Source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
9Source: https://fred.stlouisfed.org

10Source: https://som.yale.edu/faculty-research-centers/centers-initiatives/international-
center-for-�nance/data/stock-market-con�dence-indices/united-states-stock-market-
con�dence-indices
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we use the 90-day Treasury Bill to proxy for the time-varying discount rate.11. Treasury Bill data

are retrieved from CRSP as well.

The macroeconomic and FM data, including the S&P 500 return data, retrieved span the pe-

riod from 1993Q1 through 2018Q4. The accounting and forecast data retrieved span the same

period, but in annual frequency. We use a piece-wise cubic spline interpolation in order to con-

vert the accounting and forecast data into quarterly frequency. To ensure a balanced panel, we

conduct the analysis beginning in the period of 1994Q1 to 2018Q4.12

All Xt and Yt series are transformed appropriately to achieve stationarity. The description

of the series in the aggregate data set and their corresponding transformation are provided in

the appendix.

4.4.2 Empirical Results

In this section, we provide a set of empirical results to assess the viability, forecasting per-

formance, and determinants of the estimated ’other information’ νt under the FAVAR framework.

The FAVAR model includes return on equity (ROE) and B/P ratio, which are the only observed

factors in Yt, and two unobserved factors in Ft, which is estimated by the two-step principal

components method. We have this speci�cation for two reasons. First, we select ROE and B/P as

Yt variables in order to adhere to Ohlson (1995), as the paper explicitly assumes that pro�tabil-

ity and the accounting value of a �rm’s equity are relevant to contemporaneous market value

and returns. Second, we include two unobserved factors to ensure we model all value-relevant

information from big data.13

First, we evaluate the tracking ability and predictive power of ’other information’ νt esti-

mated under the FAVAR and compare it with two alternative measures to estimate νt. The �rst

11We use several constant discount rates, ranging from 9% to 12%, in the empirical analysis
for robustness. We �nd no substantial di�erences in the results.

12We lose degrees of freedom once we incorporate lags in the FAVAR system.
13We �nd that modelling either one, two, or three unobserved factors do not alter the results

substantially.
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alternative measure to estimate νt is under a standard bi-variate VAR. This speci�cation only has

a Yt vector and includes return on equity and B/P ratio, as in the FAVAR. The second alternative

measure proxies νt with Wall Street analysts’ earnings forecasts, as done in DHS. Accounting

and �nance literature together emphasize the signi�cance of value-relevant measures that track

current returns and predict future returns. A favorable estimate of ’other information’ νt scaled

by market value or book value results into a value-relevant ratio, νtpt or νt
bt

, that has similar sam-

ple moments, a faster mean-reversion rate, and predicts future returns better. This suggests that

the estimated value-relevant ratio has a lower degree of tracking error and mean-reverts quickly

when it deviates away from the mean error.

Second, we implement several sets of univariate and multivariate forecasting regressions of

quarterly S&P 500 returns. We �rst run univariate regressions of one-quarter ahead returns on

each of our FAVAR-derived value-relevant ratio estimates (henceforth, baseline predictor vari-

ables), as well as each traditional valuation ratio, including the B/P ratio, E/P ratio, D/P ratio,

and ROE (henceforth, benchmark predictor variables). Following, we run multivariate regres-

sions of one-quarter ahead returns on each of our baseline predictor variables, �rst paired with

each benchmark predictor variable, followed by pairing with all benchmark predictor variables

simultaneously. Finally, we assess the in-and out-of-sample forecasting regression of both quar-

terly real returns and excess returns on each baseline and benchmark predictor variable.

Third, we assess the determinants or sources of information of the unobserved factors mod-

elled in the FAVAR framework. Since the unobserved factors in Ft are the additive elements in

the estimation of ’other information’ νt, which is the primary focus of the paper, it will be use-

ful to quantify how much each source of information contributes to the variation of Ft Using

the same estimation procedure, we estimate four subsets of Ft extracted from the big data inXt.

These subsets include FM information only, accounting information only, investor and consumer

sentiment information only, and macroeconomic information only. This enables us to conduct a

simple variance decomposition analysis of the unobserved factors.
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Tracking and Predictive Abilities of νt

We begin our empirical work by analyzing how well the baseline predictor variables track

contemporaneous stock returns and predict future stock returns, relative to competing measures

of νt. Table 4.1 presents a comparison of alternative measures of ’other information’ νt based on

their ability to track variations of current S&P 500 returns and predict one-quarter ahead S&P

500 returns.

The composite tracking ability is measured by the a simple average of the absolute di�er-

ences of both mean and standard deviation and AR(1) parameter. Predictor variables with lower

scores indicate closer matching to the time-series properties of current returns. The composite

predictive ability is also measured by a simple average of the correlation coe�cient between the

νt estimates and one-quarter ahead S&P 500 returns and the Newey-West adjusted T-statistic for

quarterly forecast regressions. Predictor variables with higher absolute averages demonstrate

superior predictive power of future returns.

The baseline predictor variables emphatically demonstrate superior tracking, compared to

the alternate value-relevant measures. The absolute di�erences of the mean and standard devia-

tion show that they are more in line with the sample moments of current returns. The persistence

parameter of a �rst-order autoregression suggests a faster mean-reversion for the baseline pre-

dictors by at least two-fold, relative to the alternate measures. Figure 4.1 displays a graphical

illustration of the superior tracking of the baseline predictor variables, relative to the other mea-

sures. Figure 4.2 provides a closer look for the baseline predictors and current returns.

The baseline predictor variable scaled by market price only indicates a better predictive abil-

ity of future returns. The higher magnitude of the correlation coe�cient and the Newey-West

T-statistic yield a higher absolute composite average. It is important to note that the baseline

predictor variables and the alternative measure, based on consensus analysts’ earnings forecasts

(DHS), are both negatively correlated with future returns. This possibly implies that positive

(negative), value-relevant information about future pro�ts of the S&P 500 induces an apprecia-

tion (a depreciation) in market valuation. This subsequently makes equities appear less (more)

risky thereby allowing the market to lower (raise) expected returns. As such, the positive corre-
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lation between future returns and the alternative VAR-derived νt is slightly puzzling. It seems to

suggest that it is solely capturing the common linkages between the B/P ratio and ROE, which

are both historically positively correlated with stock returns.

Overall, we �nd that the baseline predictors, particularly νt/pFAV ARt , are able to track S&P

500 returns and showcase predictive power for one-quarter ahead returns better than their coun-

terparts. This provides evidence that the FAVAR-derived νt estimates are value-relevant to the

behavior and predictability of stock returns. In the next subsection, we evaluate the forecasting

performance of the baseline predictors and compare them to benchmark predictors.

Forecasting Regressions

Here, we assess the forecasting performance of the baseline predictors for stock returns and

compare them to the performance of the competing benchmark predictors. Table 4.2 reports

one-quarter ahead forecasts of the return on the S&P 500. Each column represents results of an

individual regression of a predictor variable, with the R2 measuring the forecasting ability. The

coe�cient estimates can be interpreted as the increase or decrease in basis points of the next

quarter’s returns given a 1 percentage point (100 basis point) change in a predictor variable.

Focusing on the benchmark predictors, only the D/P ratio and ROE demonstrate statistically

signi�cant predictive power on future returns. The D/P ratio (ROE) can predict nearly up to 5 (2.5)

percent of the variation in next quarter’s stock returns. The p-values indicate that the coe�cient

estimates of those predictors are nonzero with at least a 90 percent probability. The B/P and E/P

ratios explain a trivial percentage of future stock returns and have coe�cient estimates that are

not statistically di�erent from zero.

The baseline predictors have marginally more predictive power for next quarter’s stock re-

turns than the benchmark predictors. The �rst baseline predictor νt/pFAV ARt appears to have

the most forecasting ability of future returns at 5.65 percent. It explains from nearly 1 percentage

point to 5.5 percentage points more than the leading and worst benchmark predictors, D/P and

E/P ratios, respectively. It also has a statistically signi�cant coe�cient estimate of -0.305 with 95

percent con�dence. This is in line with the correlation estimate for the predictor variable in Table
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4.1. The second baseline predictor, νt/bFAV ARt , also performs better than the B/P ratio, E/P ratio,

and ROE. It explains nearly 3 percent of the variation in quarterly returns. It also has a statisti-

cally signi�cant coe�cient estimate at -0.126 percent with 90 percent con�dence. The marginal

predictive power over the B/P ratio, E/P ratio, and ROE ranges from 44 basis points to nearly 300

basis points. By contrast, they do not perform better against the �rst baseline predictor and D/P

ratio.

Table 4.3 adds robustness to the univariate forecasting regression results in Table 4.2. Ta-

ble 4.3 reports estimates from multivariate forecasting regressions of returns on our baseline

predictors that include benchmark predictors as controls. Columns 1-8 are forecasting regres-

sions of returns on a baseline predictor paired with each benchmark predictor. The remaining

columns are forecasting regressions of returns on a baseline predictor paired with all benchmark

predictors.

The results of the baseline predictors paired with the B/P ratio, E/P ratio, or D/P ratio in

columns 1-6 mirror the results in Table 4.2 with similar coe�cient estimates and signi�cance

levels. The R2 are arti�cially in�ated given an additional variable, but are in line with the sum

of the R2 each baseline and benchmark predictor pairing in Table 4.2. This indicates that each

pairing does not add predictive power.

The results of the baseline predictors paired with ROE in columns 7 and 8 are considerably

di�erent. With ROE as a control, both the R2 and the coe�cient estimates of the baseline pre-

dictors increase in magnitude substantially. The �rst baseline predictor νt/pFAV ARt increases in

magnitude by approximately 19 basis points to -0.491 from -0.3. The R2 is 14.6 percent. The sec-

ond baseline predictor νt/bFAV ARt increases in magnitude by approximately 14 basis points to

-0.263 from -0.12. The R2 is 12.6 percent. This is indicative of underestimated predictive power

of the baseline predictors in the univariate case in Table 4.2.

Given the results in columns 7 and 8, we determine if the predictive power of the base-

line predictors persist after controlling for all benchmark predictors considered in this analysis.

Columns 9 and 10 display these aggregate results. The coe�cient estimate of the �rst baseline

predictor νt/pFAV ARt lowers in magnitude by 8 basis points to -0.419. The coe�cient estimate of
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the second baseline predictor νt/bFAV ARt lowers in magnitude by 6 basis points to -0.207. How-

ever, they are still larger than the univariate case in Table 4.2 with 99 percent con�dence. This

provides further evidence that the predictive power of the baseline predictors are underestimated

in the univariate case.

Tables 4.2 and 4.3 provide only in-sample results for real returns of the S&P 500. Table 4.4

shows the in- and out-of-sample univariate forecasting performance of the predictor variables

on quarterly real returns in Panel A and excess returns over the 90-day Treasury Bill in Panel B.

Inspired by Goyal and Welch (2007), we conduct out-of-sample forecasts to minimize the look-

ahead bias of in-sample results and to compare our conditional forecasts with unconditional

forecasts of the historical mean of returns. The out-of-sample (OoS) forecasts use only the data

available up to the time at which the forecast is made. We let eN denote the vector of recursive

OoS errors from the historical mean model and eA denote the vector of recursive OoS errors

from the baseline predictor model. The OoS statistics are computed as

R2 = 1− MSEA
MSEN

, (4.8)

R̄2 = 1−
(
1−R2

)
×
(
T − k
T − 1

)
, (4.9)

where k is the number of parameters in the baseline predictor model.

∆RMSE =
√

MSEN −
√

MSEA. (4.10)

In Table 4.4, the in-sample results of the univariate regressions in Panel A are the same as in

4.1. The in-sample results of the univariate regressions in Panel B are similar to those of Panel A,

with a few exceptions. The baseline predictors still show larger predictive power over many of

the benchmark predictors, except the D/P ratio. The D/P ratio is the leading in-sample predictor

of next quarter’s excess returns of the S&P 500 over the 90-day Treasury Bill with a R2 over 6
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percent. It also has a coe�cient estimate of 0.024 with 99 percent con�dence. Additionally, the

B/P ratio also has predictive power with a R2 of 2.39 percent. A signi�cant improvement of its

predictive power of real returns. It has a coe�cient estimate of 0.015 with 90 percent con�dence.

The OoS results in both Panel A and Panel B of Table 4.4 unequivocally showcase the inability

of predictor variables to forecast quarterly real returns and excess returns. This is consistent with

the arguments of Goyal and Welch (2007) who argue that the historical mean model forecasts

future stock returns better than regressions of returns on predictor variables. In spite of this,

in relative terms, the results demonstrate that the predictive power of our baseline predictors

is larger than competing benchmark predictors. The R2 for the baseline predictors range from

-2.47 percent to -0.82 percent. In contrast, the R2 for the benchmark predictors range from -

5.45 percent to -14.54 percent. This provides evidence that the baseline predictors have closer

potential to outperform the historical mean model.

In summary, the FAVAR-derived baseline predictors, which represent value-relevant mea-

sures, contain useful information extracted from big data to predict quarterly returns. This result

is robust to additional predictor variables as controls.

Variance Decomposition of the Unobserved Factors

Given the forecasting performance of the baseline predictors in the previous section, within

a FAVAR system, we conduct a forecast error variance decomposition of the estimated unob-

served factors Ft using big data in Xt. We do this to quantify the contribution of each source

of information to the variation of Ft. The sources of information come from �nancial market

data, accounting data, investor and consumer sentiment data, and macroeconomic data. Table

4.5 displays the variance decomposition results for Ft. We �nd that a one standard deviation

shock to factors summarized by �nancial market data contribute to nearly 60 percent of the vari-

ation in Ft after one quarter. For the same horizon, a shock to accounting and macroeconomic

factors make up almost 25 and 15 percent of the variation of Ft, respectively. A shock to investor

and consumer sentiment factors are negligible. The relative contribution of each factor, except

accounting, begins to decay marginally by the second quarter. The contribution of an account-

186



ing shock becomes more pronounced after one quarter. It peaks after the fourth quarter before

decaying marginally in longer horizons.

Overall, this result showcases that the value-relevancy the FAVAR-derived estimates of νt

predominantly stems from �nancial market and accounting information at over 80 percent con-

sistently and persists over time. This is not surprising considering that such data would contain

more forward-looking metrics that are useful for stock return tracking and predictability.

4.5 Conclusions

This paper applies a FAVAR model, developed in Bernanke et al. (2005), to estimate ‘other

information’ νt, as postulated in Ohlson (1995). Ohlson (1995) de�nes ‘other information’ νt as a

summary of value-relevant information about events and their e�ect on future pro�tability. This

implies a potential to track contemporaneous stock returns and predict future returns. Past work

in the residual income literature proxies νt with Wall Street analysts’ earnings to capture unob-

served value-relevant information. Additionally, previous literature of stock return predictability

has found that traditional valuation ratios have weak predictive power for future returns.

We contribute to both branches of literature with a FAVAR approach because it enables us to

use a rich set of data to create a reliable value-relevant measure of ’other information’ νt, which

is important to stock valuation according to Ohlson’s theory. We estimate the FAVAR with use

of a two-step principal components estimation approach to extract the unobserved factors from

78 informational variables from �nancial market, accounting, investor and consumer sentiment,

and macroeconomic data. A summary of such rich data captured by few unobserved factors

could provide useful information for stock return predictability.

We �nd that our measure of νt derived in the FAVAR framework is a favorable measure as it

has closely matching sample moments to current stock returns, a faster rate of mean-reversion,

and predicts future returns better, relative to alternative measures employed in the analysis.

We also �nd that our estimate of νt has more predictive power for next period real returns and

excess returns, both in- and out-of-sample, compared to traditional valuation ratios. Additionally,
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given the promising performance of our νt measure, we conduct a variance decomposition of the

unobserved factors to learn about the determinants or sources of information. We show that the

majority of information stems from �nancial market and accounting data and persists over time.
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Table 4.1: Tracking and Predictive Ability of Competing Measures of νt

Tracking Ability Predictive Ability

Variable Mean rt |Di�| Std. Dev. SDrt |Di�| AR(1)

Parameter

Composite

Tracking Ability

Corr w/ rt+1 Newey-West

T-statistic

Composite

Predictive

Ability

νt/p
FAV AR
t 0.006 0.041 0.035 0.069 0.081 0.012 0.418 0.155 -0.258 -2.312 -1.285

νt/p
V AR
t -0.193 0.041 0.234 0.442 0.081 0.361 0.935 0.510 0.248 1.834 1.041

νt/p
DHS
t -0.154 0.041 0.195 0.430 0.081 0.349 0.933 0.492 -0.190 -1.181 -0.685

νt/b
FAV AR
t 0.011 0.041 0.030 0.128 0.081 0.048 0.309 0.129 -0.200 -1.998 -1.099

νt/b
V AR
t -0.226 0.041 0.267 0.746 0.081 0.666 0.949 0.627 0.244 2.021 1.133

νt/b
DHS
t -0.221 0.041 0.262 0.569 0.081 0.488 0.932 0.561 -0.149 -1.002 -0.575

This table provides a comparison of competing measures of νt estimates based on their tracking ability of contemporaneous S&P 500 return
variations over time and their predictive ability of next quarter’s S&P 500 return. The composite tracking ability is the average measure of the
absolute di�erences of the mean and standard deviations between a predictor variable and index returns and the AR(1) persistence parameter.
Variables with lower scores closely match with the sample moments of the index return. The composite predictive ability is the average measure
of the correlation coe�cient between a predictor variable and one-quarter ahead return and the Newey-West adjusted T-statistic for one-quarter
ahead stock return. Variables with higher scores in terms of magnitude have predictive power.

189



Table 4.2: Forecasting Quarterly S&P 500 Returns: Univariate Regres-
sions

S&P 500 Returns: rt+1

(1) (2) (3) (4) (5) (6)

Intercept 0.030∗∗∗ 0.039∗∗∗ 0.002∗∗∗ 0.039∗∗∗ 0.040∗∗∗ 0.056∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

B/P 0.010

(0.214)

E/P 0.009

(0.275)

D/P 0.021∗∗

(0.020)

ROE 0.015∗

(0.068)

νt/p
FAV AR
t -0.305∗∗

(0.012)

νt/b
FAV AR
t -0.126∗

(0.053)

R2 0.60% 0.22% 4.74% 2.52% 5.65% 2.96%

This table provides estimates of simple one-quarter ahead univariate fore-
cast regressions of S&P 500 market returns. The B/P ratio, E/P, ratio, D/P
ratio, and ROE compose of benchmark predictor variables. νt/pFAV ARt , and
νt/b

FAV AR
t make up the baseline predictor variables. The coe�cient esti-

mates can be interpreted as the increase or decrease in basis points of the
next quarter’s returns given a 1 percentage point (100 basis point) change in
a predictor variable. Numbers in parentheses are p-values. *p<0.1; **p<0.05;
***p<0.01.
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Table 4.3: Forecasting Quarterly S&P 500 Returns: Multivariate Regressions

S&P 500 Returns: rt+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept 0.040∗∗∗ 0.040∗∗∗ 0.041∗∗∗ 0.040∗∗∗ 0.042∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.043∗∗∗ 0.042∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

B/P 0.010 0.009 0.007 0.009

(0.216) (0.276) (0.559) (0.495)

E/P 0.009 0.009 -0.018 -0.018

(0.275) (0.304) (0.133) (0.125)

D/P 0.020∗∗ 0.019∗∗ 0.028∗∗ 0.026∗∗

(0.028) (0.037) (0.016) (0.030)

ROE 0.010 0.012 0.032∗∗∗ 0.034∗∗∗

(0.179) (0.142) (0.006) (0.005)

νt/p
FAV AR
t -0.302∗∗ -0.303∗∗ -0.285∗∗ -0.491∗∗∗ -0.419∗∗∗

(0.012) (0.012) (0.017) (0.000) (0.001)

νt/b
FAV AR
t -0.120∗ -0.124∗ -0.106 -0.263∗∗∗ -0.207∗∗∗

(0.067) (0.059) (0.102) (0.001) (0.009)

R2 6.21% 3.17% 5.86% 3.03% 9.59% 6.49% 14.60% 12.60% 21.80% 18.80%

This table provides estimates of one-quarter ahead multivariate forecast regressions of S&P 500 market returns. The B/P
ratio, E/P, ratio, D/P ratio, and ROE compose of benchmark predictor variables. νt/pFAV ARt , and νt/bFAV ARt make up the
baseline predictor variables. Columns 1-8 are estimates for one-quarter ahead S&P 500 return regressions on each baseline
predictor variable paired with each benchmark predictor as a control. Columns 9 and 10 are estimates for one-quarter
ahead S&P 500 return regressions on each baseline predictor variable paired with all benchmark predictors as controls. The
coe�cient estimates can be interpreted as the increase or decrease in basis points of the next quarter’s returns given a 1
percentage point (100 basis point) change in a predictor variable. Numbers in parentheses are p-values. *p<0.1; **p<0.05;
***p<0.01.
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Table 4.4: Forecasting Quarterly S&P 500 Returns: In-sample and Out-
of-Sample

Forecasts begin 24 quarters after sample

IS OoS

Variable β̂ R2 R2 ∆ RMSE

Panel A: Real Returns: 1994 Q1-2018 Q4

νt/p
FAV AR
t -0.305∗∗ 5.65% -1.21% -0.05%

(0.012)

νt/b
FAV AR
t -0.126∗ 2.96% -0.82% 0.01%

(0.053)

B/P 0.010 0.60% -14.54% -0.54%

(0.214)

E/P 0.009 0.22% -6.63% -0.23%

(0.275)

D/P 0.021∗∗ 4.74% -5.45% -0.18%

(0.020)

ROE 0.015∗ 0.025 -6.83% -0.23%

(0.068)

Panel B: Excess Returns: 1994 Q1-2018 Q4

νt/p
FAV AR
t -0.311∗∗ 5.86% -2.47% -0.05%

(0.011)

νt/b
FAV AR
t -0.132∗∗ 3.32% -1.81% -0.03%

(0.044)

B/P 0.015∗ 2.39% -14.40% -0.54%

(0.074)

E/P 0.010 0.29% -7.78% -0.27%

(0.263)

D/P 0.024∗∗∗ 6.29% -6.22% -0.21%

(0.008)

ROE 0.012 1.20% -10.26% -0.37%

(0.148)

This table provides estimates of one-quarter ahead univariate in-sample
and out-of-sample forecast regressions of S&P 500 real market returns in
Panel A and excess market returns in Panel B. The B/P ratio, E/P, ratio, D/P
ratio, and ROE compose of benchmark predictor variables. νt/pFAV ARt ,
and νt/bFAV ARt make up the baseline predictor variables. ∆ RMSE is the
RMSE (root mean square error) di�erence between the historical mean
model and the conditional forecast regressions for the same forecast pe-
riod. Positive numbers signify superior out-of-sample conditional fore-
casts. The OoS R2 is de�ned in Equations (8) and (9). The coe�cient esti-
mates can be interpreted as the increase or decrease in basis points of the
next quarter’s returns given a 1 percentage point (100 basis point) change
in a predictor variable. Numbers in parentheses are p-values. *p<0.1;
**p<0.05; ***p<0.01.
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Table 4.5: Variance Decomposition of Ft

Variance Decomposition

Forecast Horizon FFMt FAcctt F ICSt FMacro
t

1 0.589 0.244 0.017 0.137

2 0.494 0.358 0.014 0.095

3 0.402 0.457 0.012 0.072

4 0.368 0.482 0.010 0.067

12 0.288 0.439 0.009 0.077

20 0.283 0.437 0.009 0.079

This table provides decomposition of the variation
of the unobserved factor Ft, as estimated by princi-
pal components, into subsets of unobserved compo-
nents by information category. FFMt is the unob-
served factor for �nancial market; FAcctt is the un-
observed factor for accounting; F ICSt is the unob-
served factor for investor and consumer sentiment;
and FMacro

t is the unobserved factor for macroeco-
nomic variables. Each shock represents a 1 standard
deviation above the mean for each factor.
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4.6 Appendix

Following BBE, the transformation codes are the following: 1 (no transformation); 2
(�rst di�erence); 4 (logarithm); 5 (�rst di�erence of logarithm.) An asterisk*, next to the
mnemonic, denotes a variable assumed to be slow-moving in the estimation.

Table 4.6: Data Description

# Name Category Sub-category Tcode

1 Payout Ratio FM Valuation Metrics 2

2 Dividend Yield FM Valuation Metrics 2

3 D/P FM Valuation Metrics 2

4 E/P FM Valuation Metrics 2

5 Sales/P FM Valuation Metrics 2

6 EPS Growth FM Valuation Metrics 2

7 EV/Oper Inc Before Depr FM Valuation Metrics 2

8 Sales/EV FM Valuation Metrics 2

9 B/EV FM Valuation Metrics 2

10 Sharpe Ratio FM Valuation Metrics 2

11 Small Minus Big (SMB) Risk Premium FM FF5 2

12 High Minus Low (HML) Risk Premium FM FF5 2

13 Robust Minus Weak (RMW) Risk Premium FM FF5 2

14 Conservative Minus Aggressive (CMA) Risk Premium FM FF5 2

15 Market Risk Premium (Mkt-RF) FM FF5 2

16 Small and Low E/P (SMALL LoEP) Risk Premium FM Size and E/P 2

17 Medium and 30th Pctl EP (ME1 EP2) Risk Premium FM Size and E/P 2

18 Small and High E/P (SMALL HiEP) Risk Premium FM Size and E/P 2

19 Big and Low E/P (BIG LoEP) Risk Premium FM Size and E/P 2

20 Medium and 70th Pctl E/P (ME2 EP2) Risk Premium FM Size and E/P 2

21 Big and High E/P (BIG HiEP) Risk Premium FM Size and E/P 2

22 Small and Low CF/P (SMALL LoCFP) Risk Premium FM Size and CF/P 2

23 Medium and 30th Pctl CF/P (ME1 CFP2) Risk Premium FM Size and CF/P 2

24 Small and High CF/P (SMALL HiCFP) Risk Premium FM Size and CF/P 2

196



25 Big and Low CF/P (BIG LoCFP) Risk Premium FM Size and CF/P 2

26 Medium and 70th Pctl CF/P (ME2 CFP2) Risk Premium FM Size and CF/P 2

27 Big and High CF/P (BIG HiCFP) Risk Premium FM Size and CF/P 2

28 Small and Low D/P (SMALL LoDP) Risk Premium FM Size and D/P 2

29 Medium and 30th Pctl D/P (ME1 DP2) Risk Premium FM Size and D/P 2

30 Small and High D/P (SMALL HiDP) Risk Premium FM Size and D/P 2

31 Big and Low D/P (BIG LoDP) Risk Premium FM Size and D/P 2

32 Medium and 70th Pctl D/P (ME2 DP2) Risk Premium FM Size and D/P 2

33 Big and High D/P (BIG HiDP) Risk Premium FM Size and D/P 2

34 Momentum Risk Premium FM Momentum Factor 2

35 Short-term Reversal Risk Premium FM Short-Term Reversal Factor 2

36 Gross Pro�t Ratio Accounting Ratios Pro�tability 2

37 Operating Pro�t Ratio Accounting Ratios Pro�tability 2

38 Net Pro�t Ratio Accounting Ratios Pro�tability 2

39 ROA Accounting Ratios Pro�tability 2

40 D/E Ratio Accounting Ratios Solvency 2

41 Debt Ratio Accounting Ratios Solvency 2

42 Proprietary Ratio Accounting Ratios Solvency 2

43 Int. Coverage Ratio Accounting Ratios Solvency 2

44 LT Debt to Equity Accounting Ratios Solvency 2

45 Current Ratio Accounting Ratios Liquidity 2

46 Quick Ratio Accounting Ratios Liquidity 2

47 Cash Ratio Accounting Ratios Liquidity 2

48 Operating CF Ratio Accounting Ratios Liquidity 2

49 Working Capital Ratio Accounting Ratios E�ciency 2

50 Inventory Turnover Ratio Accounting Ratios E�ciency 2

51 Asset Turnover Ratio Accounting Ratios E�ciency 2

52 DSO Ratio Accounting Ratios E�ciency 2

53 ROIC Accounting Ratios E�ciency 2

54 CF ROIC Accounting Ratios E�ciency 2

55 Mkt Cap to GDP Macro Economic Activity 2
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56 GDP Growth %∗ Macro Economic Activity 2

57 GDPPC Growth %∗ Macro Economic Activity 2

58 Cons. Growth %∗ Macro Economic Activity 2

59 Production Growth %∗ Macro Economic Activity 2

60 Capacity Utilization %∗ Macro Economic Activity 2

61 Unemployment %∗ Macro Employment & Wages 2

62 Nat. Rate of Unemployment %∗ Macro Employment & Wages 2

63 Wage Growth %∗ Macro Employment & Wages 2

64 In�ation %∗ Macro In�ation & Expectations 2

65 In�ation Expectation % Macro In�ation & Expectations 2

66 10Y3M Spread % Macro Interest Rates 2

67 10Y2M Spread % Macro Interest Rates 2

68 Momentum Indicator Macro Labor Market Conditions 2

69 Level of Activity Indicator Macro Labor Market Conditions 2

70 All-Trans House Price Growth Macro Housing Market Conditions 2

71 Homer Ownership % Macro Housing Market Conditions 2

72 House Supply Growth Macro Housing Market Conditions 2

73 VIX Growth Macro Market Fear Gauge 2

74 Consumer Sentiment Growth Investor & Consumer Sentiment Consumer Sentiment 2

75 1Y Con�dence Growth Investor & Consumer Sentiment Investor Sentiment 2

76 Buys On Dips Con�dence Growth Investor & Consumer Sentiment Investor Sentiment 2

77 Crash Con�dence Growth Investor & Consumer Sentiment Investor Sentiment 2

78 Valuation Con�dence Growth Investor & Consumer Sentiment Investor Sentiment 2
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