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ABSTRACT OF THE DISSERTATION 

DETECTION OF HUMAN VIGILANCE STATE DURING LOCOMOTION USING 

WEARABLE FNIRS 

by 

Masudur R. Siddiquee 

Florida International University, 2020 

Miami, Florida 

Professor Ou Bai, Major Professor 

 

Human vigilance is a cognitive function that requires sustained attention toward 

change in the environment. Human vigilance detection is a widely investigated topic 

which can be accomplished by various approaches. Most studies have focused on 

stationary vigilance detection due to the high effect of interference such as motion 

artifacts which are prominent in common movements such as walking. Functional Near-

Infrared Spectroscopy is a preferred modality in vigilance detection due to the safe 

nature, the low cost and ease of implementation. fNIRS is not immune to motion artifact 

interference, and therefore human vigilance detection performance would be severely 

degraded when studied during locomotion. Properly treating and removing walking-

induced motion artifacts from the contaminated signals is crucial to ensure accurate 

vigilance detection. This study compared the vigilance level detection during both 

stationary and walking states and confirmed that the performance of vigilance level 

detection during walking is significantly deteriorated (with a p<0.05). Further, this study 

explored motion artifact removal and applied machine learning methods. Results reveal 
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the vigilance detection during walking has a comparable performance to the stationary 

state when the motion artifacts are estimated and removed. 
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CHAPTER 1  INTRODUCTION 

1.1 Vigilance 

The human brain is a complicated and vital part of the human body. It is involved in 

various crucial functions, such as interpreting the sensory feedback from stimuli, staying 

vigilant and so on. Vigilance is the ability to maintain sustained attentional [1] focus 

toward external events, perceivable by any sensory input such as visual or auditory, over 

a prolonged period. This attentional focus, in turn, increases the neural activity  [2]  due 

to the increased cognitive workload. The energy needed for this increased cognitive 

workload increases the oxygen consumption in the cerebral cortex, which is later 

regulated by the brain’s control mechanism called glial regulation [3]. Conventionally, 

this cognitive workload increase is measured using a subjective test such as NASA-TLX  

[4]. However, the above blood oxygen dependent phenomenon arises from the vigilance 

or cognitive workload level change, makes it possible to measure it objectively using 

physiological signals  [5]–[8]. 

1.2 Detectable Brain signals related to vigilance 

There are two basic types of detectable signals related to the neural activity of the 

brain. The electrical activity due to the synchronous firing of neurons and blood oxygen 

level-dependent signal (BOLD) due to the change in the oxygenation change of the brain 

tissue. The only modality that uses the electrical activity of neurons arise from brain 

functions is the Electroencephalography (EEG). On the other hand, there are several 

modalities to detect brain signals related to BOLD that arise due to various brain 

functions. For instance, Functional Magnetic Resonance Imaging (fMRI) uses the 

magnetic property change due to BOLD [9], Transcranial Doppler Sonography (TCDS) 
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uses the speed change of blood flow due to BOLD [10] and functional Near-Infrared 

Spectroscopy (fNIRS) uses the optical property change of the blood due to BOLD [11]. 

Although fMRI is considered as the de facto standard in detecting cerebral regional blood 

oxygen concentration change [12]–[15], fNIRS is a less expensive technology with 

higher portability, higher temporal resolution, but with a comparable result to fMRI [13], 

[14], [16]–[18]. In the case of EEG application in cognitive workload assessment [19]–

[21], though it is capable of high temporal and spatial resolution, it is less portable and 

less immune to ambient electrical noise, which is not present in fNIRS due to its optical 

nature of technological implementation. 

 

1.3 Motivation 

Generally, sustained attention or vigilance is assumed to be easy to maintain, although 

a recent study by Warm et al. proved it requires hard mental work [22]. Moreover, 

detecting human vigilance levels during natural locomotion and ensuring a highly active 

level of vigilance state sometimes becomes essential for survivability during surveillance 

or combat [23]. For instance, over 70 Canadian soldiers have lost their lives due to 

Improvised Explosive Devices (IED) in convoy operation, and soldier vigilance was 

accounted as a key parameter for their survivability [24]. On the other hand, vigilance 

detection during locomotion is required for the betterment of basic human functions, such 

as gait recovery training for patients with impaired locomotion due to central nervous 

system injury [25]. Moreover, Intelligent Tutoring Systems, such as the adaptive tutoring 

system used in various military task training could also benefit from the detected 
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vigilance state for locomotion associated vigilance training [26], [27] as feedback to the 

adaptive system rather than the text-based objective input in the current feedback system. 

The research on the state-of-the-art technologies for brain imaging and sensing in the 

last few decades has led to the development of various modalities to detect brain 

functions, such as fMRI, Positron Emission Tomography (PET), TCDS and fNIRS. 

These modalities have been successfully used to monitor human vigilance level or 

cognitive state in static situations such as monitoring operator cognitive workload during 

air traffic control [28],  train driving [29], car driving [30] and so on [31]. However, these 

modalities pose several challenges for the application of vigilance detection, specifically 

when discussing non-static situations. Limitations such as the physical sizing of the 

systems, technological complexity, wearability, and so on make these technologies less 

suitable to detect vigilance level during locomotion. Specifically, two major challenges, 

namely detection of and removal of gait associated motion artifacts and optimization of 

wearability of vigilance detection systems have not been addressed. The major questions 

requiring investigation for accurate vigilance detection during gait are listed as follows: 

 

Question (1): How much improvement in artifacts estimation and removal can be 

achieved using multi-sensor motion sensing and sensor fusion method. 

 

Question (2): How does the reduction in sensing location on the human forehead for 

improved wearability affect the vigilance detection accuracy? 
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Question (3): How do the gait associated motion artifacts affect accurate vigilance 

detection during gait. 
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CHAPTER 2  FNIRS MOVEMENT ARTIFACTS REMOVAL 

2.1 Introduction 

The absorption coefficient by human tissue in the near-infrared light region of 700-

1000nm [32] is much lower than other wavelength lights in the spectrum that are 

harmless to the human body. This property leads to the development of Near-Infrared 

Spectroscopy (NIRS) as a widely used method for detecting oxy- and deoxyhemoglobin 

levels in the blood. The NIRS signal can be detected by illuminating the human body 

with light from the near-infrared region [11], [33]. Moreover, the non-invasiveness, 

safety and cost-effectiveness [34] make NIRS even more popular than any other method 

of detecting blood oxygenation level. The level of blood oxygenation in various parts of 

the human body convey a great deal of information about various physiological 

phenomena and processes [35], such as cardiovascular disease [36] and sepsis [37] from 

muscle oxygenation, cognitive involvement [16], [38] and activation of brain function 

[39], [40] from cerebral oxygenation.  

Movement artifact removal is one of the most challenging parts of any bio-signal 

processing and the NIRS for blood oxygen level detection is no exception. Although 

electrical noise [41] is a prominent problem in any electrical system for sensing [42]–

[44], it is not the case for fNIRS system. The problem in fNIRS is that it is not possible to 

fully restrict a subject from movement, voluntary or involuntary, and thus the acquired 

bio-signals are contaminated by the movement artifacts in different extents. Sometimes 

this contamination is so prominent that the subtle changes correspond to physiological 

changes subdued by the artifacts; thus, the usability of the acquired signal mostly depends 

on the successful removal of the movement artifacts [45]. In the NIRS, the light source 
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and the detectors are directly coupled to the human skin and this coupling is easily altered 

[46] by movement artifacts, which result in coupling error [47]. This coupling error 

imposes high uncertainty in the detection of the true changes in the NIRS signal which 

corresponds to the change in the physiological phenomena [48]. Moreover, from the 

perspective of the frequency domain, the NIRS signal variation due to the physiological 

change and the changes due to the motion artifacts are closely overlapped with each 

other, which makes it harder to separate the movement artifact content from the signal. 

2.2 Related Works 

Numerous artifacts removal techniques for NIRS have been developed in the last few 

decades [17], [49]–[54]. Most of them use the nature of the signal itself and the 

theoretical assumption of the influence of the movement artifact on the detected signal. A 

Majority of these methods development direction lies in the fact that detecting any other 

signal highly correlated to the movement artifacts was not readily available or difficult 

[55]. But the recent improvements in the Microelectromechanical systems (MEMS) chip 

components that are capable of registering motion information, i.e. acceleration, yaw, 

pitch, roll, etc., make it possible to observe motion-related signal concurrently with bio-

signals of interest for various biomedical applications [56]–[61]. With respect to NIRS 

signal detection, this advancement in the MEMS chip component makes it possible to 

record movement artifacts related motion data and the NIRS signal simultaneously [62]–

[64]. This additional information related to movement artifact leads to the more effective 

use of the adaptive noise cancellation technique on the NIRS signal. So far, all the 

research articles related to adaptive filtering to remove movement artifacts from the NIRS 

signal uses only the three-channel accelerometer data to estimate the movement artifacts 
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[57], [62], [63], [65]. In this study, nine-channel Inertia Measurement Unit (IMU) data, 

namely accelerometer, gyroscope, and magnetometer, are used to estimate the movement 

artifacts in NIRS signal and subsequently to remove the motion-related movement 

artifact. The basis of the study is that the more information correlated to movement 

artifacts available, the better the estimation of the interfering artifacts contribution on the 

detected signal, and greater signal to noise ratio (SNR) improvement can be achieved. 

Movement artifacts arise from diverse body movements, which might have very little 

acceleration, but a more rotational or directional change would be better registered by 

gyroscope and magnetometer would result in better estimation of the movement artifacts. 

Movement artifacts removal techniques commonly employ the autoregressive 

modeling (AR) to remove the artifacts from the NIRS signal [54], [66]. In this study, the 

Autoregressive model with exogenous input (ARX) was used as the method to estimate 

the movement artifacts, and the multi-channel IMU data served as the exogenous input to 

the system.     

Adaptive Noise Cancellation(ANC) was widely used in various fields for noise 

cancellation [67]. In this approach, one or more additional channels of information that is 

highly correlated to the interfering noise component in the primary recorded signal is 

used to remove the noise. The ARX modeling can be assumed as an altered method of 

ANC, which applies the classical least-squares (LS) algorithm to estimate the noise using 

exogenous input as the reference source for indirect noise estimation in the observed 

signal. ARX modeling is extensively used in the problems related to system 

identifications. In the current study, IMU signals were used as the inputs to the ARX 
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modeling to estimate the movement artifacts in the NIRS signal and then subtracted to 

estimate the true NIRS signal. 

2.3 Materials and Methods  

2.3.1 Data acquisition method:  

In this study, data acquisition with a single wavelength and a dual-wavelength NIR 

light source were used during the recording from the subjects.  The methodology 

presented in [49]  was used to quantitatively assess improvement in the signal quality 

after the removal of the artifacts. The methodology requires that two versions of the same 

NIRS channels are positioned as close as possible where one is impacted by movement 

artifacts and another remains unimpacted. In this respect, the unaffected signal is 

analogous to the "ground truth" signal presented in [49],  which was denote here as 

"reference ground truth" as the actual “ground truth” cannot be acquired. For the first two 

subjects, the single-wavelength LED was used with simulated artifacts, and signal quality 

improvement with respect to SNR and correlation was used for quantitative assessment. 

For the remaining two other subjects, a dual-wavelength NIR light source was used to 

record the data with the actual movement of the subjects causing the movement artifacts. 

As the NIRS signal from the last two subjects were recorded using two wavelengths, the 

NIRS signals can be converted to blood oxygenation concentration changes using the 

Modified Beer-Lambert law [68], [69] and the result of artifact removal can be compared 

to the expected hemodynamic changes. Considering that the hemodynamic change is 

minimal during a short duration when movement occurs, the levels of oxygenated (HbO2) 

and deoxygenated (Hb) hemoglobin concentration will be stable before and after 

movement occurs. Based on this, after the movement artifact removal from the 
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contaminated portion of the NIRS signal, a minimal hemodynamic change with stable 

HbO2 and Hb levels is expected.  

2.3.2 Sensor System  

To accomplish the above mentioned NIRS signal acquisition along with the 

simultaneous recording of multi-channel IMU data, a custom-made wearable NIRS 

system, based on Texas Instrument (TI) CC3200 chip, was developed incorporating other 

peripheral chips and using the sensor node architecture developed in [70] depicted by 

Figure 1. The IMU chip used in this architecture is MPU9250 which has a 3-axis 

accelerometer, 3-axis gyroscope and 3-axis magnetometer data acquisition capability 

with a 16-bit resolution for each channel, and the chip was attached to the NIR detector 

for better registration of the movement artifacts impact at the detector. In this study, each 

IMU channel was sampled at 62.5 Hz. An 850nm wavelength LED and another 850nm 

and 770nm dual-wavelength LED are used as the source of NIR light, and as the detector, 

a photodiode chip from TI modeled as OPT101 was used, which incorporate the required 

trans-impedance amplifier in the same chip. To digitize the analog signal from OPT101, a 

high precision analog to digital converter (ADC) chip from TI, with part no ADS1292, 

was used, which has a 24-bit resolution and high common-mode rejection ratio (CMMR) 

and support two-channel input. This ADC supports multiple sampling rates ranging from 

860 Hz to 8000 Hz, and we sampled the NIRS signal at 1000 Hz.  To minimize the bus 

contention by the two vital peripheral devices in the system, IMU and ADC, these 

devices were connected to the main processor unit via the different buses, I2C and SPI, 

respectively. The main processor unit used in this sensor architecture, CC3200, house 

two separate MCU in the same chip; one is featuring Wi-Fi Internet-On-a-Chip and 
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another one as a typical microcontroller. Thus, the system can simultaneously collect the 

data from the peripheral devices and transfer those wirelessly through the internet to a 

remote system or any local computer connected to the system using Wi-Fi. 

2.3.3 ARX modeling and artifacts removal  

The artifacts estimation and removal process are outlined in Figure 2. Let 𝑠[𝑛] denote 

the true hemodynamic signal, which was distorted by the motion artifacts signal 𝑤[𝑛]. 

This corrupted hemodynamic signal 𝑥[𝑛] detected by the NIRS sensor can be expressed 

as,  

𝑥[𝑛] = 𝑠[𝑛] + 𝑤[𝑛]                                               Eq. 1-1 

 

We used ARX modeling to estimate the motion artifacts in the detected signal. It is a 

widely used method in system identification task to determine the model structure using 

the input-output data. In this respect, it uses the least-squares method to estimate the best 

set of the coefficient of the system model from the input-output data available. In our 

study, the system resembled a multiple-input single-output (MISO) model, because the 

 
 
Figure 1. NIRS cyber-system Hardware Architecture 



11 

 

IMU data inputted into the model consisted of multiple channel data. In this case, the 

ARX modeling can be represented using the following equation, 

 

𝑤̂[𝑘] = 𝑎1𝑥[𝑘 − 1] + 𝑎2𝑥[𝑘 − 2] + ⋯ + 𝑎𝑁𝐴𝑥[𝑘 − 𝑁𝐴] + 𝒃𝟎
𝑻𝒖[𝑘] + 𝒃𝟏

𝑻𝒖[𝑘 − 1] +
⋯ + 𝒃𝑵𝑩

𝑻 𝒖[𝑘 − 𝑁𝐵]                                                                  Eq. 1-2 

 

Here 𝑥[𝑛] is the detected NIRS signal and 𝒖[𝑘] is the IMU data. Here 𝑤̂[𝑛] is the 

output from the system based on the model coefficients 𝒂 = [𝑎1 𝑎2  ⋯ 𝑎𝑁𝐴] and 𝑩 =

[𝒃𝟎 𝒃𝟏 ⋯ 𝒃𝑵𝑩] when the input to the model is 𝑼 = [𝒖[𝑘] 𝒖[𝑘 − 1] ⋯ 𝒖[𝑘 − 𝑁𝐵]]. The 

model coefficients 𝒂 and 𝑩 selection in ARX modeling can be depicted by the following 

equation, which is also known as the least square method, 

𝐽(𝒂, 𝑩) = ∑ (𝑥[𝑘] − 𝑤̂[𝑘])2𝑁

𝑘=1
                                                       Eq. 1-3 

 

where 𝒃𝟎
𝑻 𝒃𝟏

𝑻 ⋯ 𝒃𝑵𝑩
𝑻  are 1 × 𝐿 coefficient vectors and  𝒖[𝑘]  is a 𝐿 × 1 input vector, 

and the dimension 𝐿 is the number of IMU data channel used. There were three 

combination cases for 𝑼  used in this study, and they were, 

Case 1: 𝒖[𝑘] = [𝐴𝑥[𝑘] 𝐴𝑦[𝑘] 𝐴𝑧[𝑘]]
𝑇

;  𝐿 = 3  

Case 2: 𝒖[𝑘] = [𝐴𝑥[𝑘] 𝐴𝑦[𝑘] 𝐴𝑧[𝑘] 𝐺𝑥[𝑘] 𝐺𝑦[𝑘] 𝐺𝑧[𝑘]]
𝑇

;  𝐿 = 6 

 
 
Figure 2. Block diagram of artifacts removal process. 
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Case 3: 𝒖[𝑘] = [𝐴𝑥[𝑘] 𝐴𝑦[𝑘] 𝐴𝑧[𝑘] 𝐺𝑥[𝑘] 𝐺𝑦[𝑘] 𝐺𝑧[𝑘] 𝑀𝑥[𝑘] 𝑀𝑦[𝑘] 𝑀𝑧[𝑘]]
𝑇

; 𝐿 = 9 

For the conventional studies [54], [62], [64], [65] where only three channels 

Accelerometer data are used for autoregressive modeling, 𝑼  can be expressed as in case 

1 where Ax, Ay and Az represent the three channels of Accelerometer data. Additional to 

the conventional study using only three channels of Accelerometer data, we extended the 

study using six channels and nine channels of IMU data. In cases 2 and 3, Gx, Gy and Gz 

represent the three channels of Gyroscope data and Mx, My and Mz represent the three 

channels of Magnetograph data. 

In the artifact estimation process, the portion of the NIRS signal containing movement 

artifacts was fed to the ARX modeling algorithm as the output and the corresponding 

multichannel IMU data as the input to determine the model coefficients. For each artifact 

segment, this operation was iterated using several combinations of model orders from 1 

to 10 and the order selected for who’s the sum of squared error was the minimum 

between the estimation and the detected signal. Using the returned coefficient, a 

simulation model was defined for the current noisy portion of the NIRS signal. In the 

newly defined simulation model, the IMU signals were used as the input to the model to 

get the estimation 𝑤̂[𝑛]. Here, the estimation closely resembled to artifact 𝑤[𝑛] as the 

signal contribution by the true hemodynamic signal 𝑠[𝑛] to the detected signal 𝑥[𝑛] was 

very small compared to the artifact’s contribution. Thus, this estimated signal 𝑤̂[𝑛] was 

then subtracted from the observed signal 𝑥[𝑛] to get the estimation of the movement 

artifacts free hemodynamic signal 𝑠̂[𝑛] as per the equation below, 

 

𝑠̂[𝑛] = 𝑥[𝑛] − 𝑤̂[𝑛]                                                   Eq. 1-4 
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2.3.4 SNR improvement:  

As the data acquisition methodology used in this study was very much similar to [49], 

the SNR calculation was also done using a similar formula applied in that study. The 

difference in the SNR, before and after the removal of the artifacts, is calculated using the 

following equation which is described in [71], 

 

∆𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

(
𝜎𝑥

2

𝜎𝑒𝑎𝑓𝑡𝑒𝑟
2 )

−  10 𝑙𝑜𝑔10

(
𝜎𝑥

2

𝜎𝑒𝑏𝑒𝑓𝑜𝑟𝑒
2 )

                                     Eq. 1-5 

 

Where, 𝜎𝑥
2 is the variance of the movement artifacts free signal which is the referenced 

ground truth and 𝜎𝑒𝑏𝑒𝑓𝑜𝑟𝑒
2  and 𝜎𝑒𝑎𝑓𝑡𝑒𝑟

2  are the variance of the signal with the movement 

artifacts before and after the artifacts are removed, respectively.  

2.3.5 Subjects and experimental design  

Four healthy subjects, ages 22, 25, 27 and 28, with no history of asphyxia or brain 

disorder, volunteered for this study and a total of twelve sessions of data were collected. 

The NIRS signals were recorded from the forehead for simplicity. All the subjects were 

instructed to sit comfortably during the NIRS recording. As mentioned before, the NIRS 

signals from the first two subjects were contaminated by simulated movement artifacts. 

These simulations were done by external tapping on one of the two optical sensors, while 

the other remained unaffected. The NIRS signals from the other two subjects were 

collected by dual-wavelength NIR light source, the subjects were instructed to move their 

head to induce natural movement artifact in the NIRS signals.   
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2.4 Results 

In this study, the artifacts removal from the NIRS signal was implemented on the raw 

signal from the optical sensor. Thus, the clean signal (after the movement artifact 

removal) can be used in any other processing for further study. Figure 3 depicts a 

representative portion of the raw NIRS and the corresponding IMU data from subject 1. 

This NIRS signal contains three movement artifact segments which are indicated by 

vertical lines in the topmost plot in Figure 3. The simultaneous IMU data of this portion, 

which are three channels accelerometer, three channels gyroscope and three channels 

magnetometer data, are plotted in the same Figure 3. It is already mentioned earlier that 

most of the IMU-based movement artifact removal studies used three channels 

accelerometer data [62], [63], [65], whereas, in this study, it was observed from the raw 

signal that without any processing, the Gyroscope data have the most impact from the 

 
 
Figure 3. Raw data of one channel NIRS signal containing 3 noise segments indicated by vertical blue lines and 

corresponding 9 channel IMU signals 
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motion artifacts and thus highly effective in estimating the artifacts. In the signal portion 

presented in Figure 3, the gyroscope data have a more prominent impact on all three 

movement artifact segments in comparison to the accelerometer and the magnetometer 

data, which is apparent in Figure 3.  

The movement artifact estimation for the second segment in Figure 3 is presented in 

Figure 4. In Figure 4, movement artifact containing signal is depicted by the solid black 

line, and the estimation of the movement artifact is indicated by the dashed blue line. 

Three estimation results are presented qualitatively in Figure 4; the plot (a) for the case 

when only accelerometer data is used to estimate, the plot (b) presents the estimation 

result when accelerometer and gyroscope data are used in the modeling and lastly 

bottom-most plot (c) shows the estimation result when all the nine-channel IMU data, 

namely accelerometer, gyroscope and magnetometer, were used. This qualitative 

 
 

 
Figure 4. The estimated noise signal (blue dotted line) and the original signal (black solid line) for the second noise 

segment depicted in Figure 3. Plot (a) shows the result when 3 channels were used, plot (b) when 6 channels were 

used and plot (c) when 9 channels were used. 
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representation indicates that the more IMU channels that were used to model, the better 

the estimation was, and the best estimation was achieved when all the nine channels of 

IMU data available were used. 

The quantitative metric, to assess the performance of the artifact’s removal technique 

used in this study was the improvement in SNR which was calculated according to the 

equation (1-5) described in the previous section. This same metric and calculation were 

also used in several other research related to artifacts removal techniques presented in 

[49], [54], [64], [71]. In this respect, Table 1 represents the data of SNR improvement’s 

quantitative data for the three movement artifact segments indicated in Figure 3, which 

belongs to the data recorded from the subject 1 and for the data from the subject 2. For all 

the six segments, SNR improvements have been calculated in the cases of using three 

channels (only accelerometer data), six channels (accelerometer and gyroscope data) and 

nine channels (accelerometer, gyroscope and magnetometer). The data presented in Table 

1 indicates that for all the movement artifact segments, SNR improvements are higher 

when gyroscope and magnetometer data are used along with the accelerometer data. 

Specifically, for the first movement artifact segments from subject 1, we had 11.33dB 

SNR when six channels were used, which was 3.41dB higher than the SNR when only 

Table 1. SNR improvement of 6 representative segments of noise in the recording from the subject 1 and 2, when 

various number of IMU channel data were used to remove the artifacts. The correlation coefficient presented in the 

table is between artifacts removed signal and the ground truth signal. 

Subjects 
Accel. Accel. + Gyro. Accel. + Gyro. + Magn. 

SNR (dB) Correlation SNR (dB) Correlation  SNR (dB) Correlation  

Sub 1 Seg 1 7.92 0.79 11.33 0.82 14.77 0.83 

Sub 1 Seg 2 8.93 0.89 12.66 0.92 15.11 0.93 

Sub 1 Seg 3 5.31 0.94 13.92 0.96 13.92 0.96 

Sub 2 Seg 1 7.35 0.96 13.44 0.97 19.08 0.97 

Sub 2 Seg 2 3.04 0.77 5.29 0.78 11.95 0.98 

Sub 2 Seg 3 11.56 0.94 14.31 0.95 17.46 0.95 
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three channels were used, and the SNR was 14.77dB when nine channels were used 

which was 6.85dB higher than the SNR we got for three channels only. 

Similarly, for the second movement artifact segment, we had 15.11dB SNR which was 

6.18dB higher than the SNR when we only used three channels IMU data, and for the 

third movement artifact segment, we had 13.92dB SNR which was 8.61dB higher than 

the result for the three channels only case. Additionally, we computed the correlation 

between the artifacts removed signal and reference ground truth signal for each 

movement artifact segments which are also presented in Table 1. For the first movement 

artifact segment, the correlation coefficient was increased from 0.79 to 0.82 when six 

channels IMU data were used to remove the movement artifacts than when only three 

channels data were used, and this value increased to 0.83 when nine channels IMU data 

were used. In the case of the second movement artifact segment, the correlation 

 
 
Figure 5: Qualitative representation of the NIRS signal after replacing the 3 artifacts containing segments by de-

noised signal along with the referenced ground truth signal from the other NIRS channel which is analogous to 

“ground truth” signal. Plot (a) shows the result when three channels were used, plot (b) when six channels were 

used and plot (c) when nine channels were used. 
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coefficient was increased from 0.89 to 0.92 and 0.93 when six channels and nine 

channels IMU data were used respectively to remove the movement artifacts contribution 

in the signals. For the third movement artifact segment, the correlation between the 

movement artifact removed signal and the reference ground truth signal was 0.94 when 

only three channel IMU data were used to remove the artifacts, and it was 0.96 when six 

or nine-channel IMU data were used for artifacts removal.   

In the data recorded from the second subject, another three movement artifact 

segments were selected, and all the similar processing described above were applied to 

those movement artifact segments. The quantitative SNR improvements for those 

segments are also presented in the data Table 1 which shows a similar trend in the SNR 

improvements for subject 1. In the case of movement artifact segments from the subject 

2, we had 19.08dB SNR when we used nine channels IMU data which was 11.73dB 

higher than the result for three channels usage case for the first movement artifact 

segment. Likewise, for the second movement artifact segment from subject 2, we had 

11.95dB SNR and for third segment 17.46 dB when nine channels IMU data were used 

which were 8.91 dB and 5.90dB higher than when six and nine channels IMU data were 

used, respectively. In respect of the correlation coefficient, the first movement artifact 

segment for this subject had a coefficient of 0.96 between movement artifact removed 

signal and referenced ground truth signal when three channels IMU data were used and it 

0.97 when six or nine channels IMU data were used. For the second movement artifact 

segment, the correlation coefficient was increased from 0.77 to 0.78 and 0.99 when we 

increased the number of IMU channels used in artifact removal to six and nine channels, 

respectively, from only three channels data. The last movement artifact segment from this 
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subject had a correlation coefficient of 0.94 between the movement artifact removed 

signal and the reference ground truth when three channels IMU data were used to remove 

movement artifacts and 0.95 when six or nine-channel IMU data were used. 

The qualitative result of removing the artifacts that contaminated the abovementioned 

three segments present in the recording from subject 1 is presented in the Figure 5 which 

are plotted with the solid blue lines, whereas the artifacts-free NIRS signals from the 

other channel are also concurrently plotted in the same figure using solid dark lines to 

indicate the empirical comparisons. Similar to the presentation used in Figure 4, the result 

of a various number of IMU channel data usage is presented in Figure 5, plot (a) 

represent the result when only accelerometer data were used, plot (b) when accelerometer 

along with the gyroscope data were used and finally plot (c) depicts the result when 

accelerometer, gyroscope and magnetometer data were used altogether.  

In the case of quantitative results, it was easy to determine the best outcome of the 

artifacts removal as it was obvious from the exact values of SNR presented in the data 

table that the higher the SNR, the better the result is. But in the case of the empirical 

result, there is no direct way to determine the best. In this respect, in the current study, we 

assumed the artifact-free NIRS channel to be the reference ground truth signal, to 

compare empirically. Empirically, we can say that the closer the variance of NIRS signal 

after the artifacts removal to the variance of the referenced ground truth signal, the better 

the result is. In that sense, we can say the best result was achieved when nine channels of 

IMU data were used, which is also consistent with SNR improvement data presented in 

Table 1 and apparent from the plot (c) in Figure 5.  
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The NIRS signals from the subject 3 and 4 were recorded using dual-wavelength NIR 

light source so that it can be converted to oxygenated (HbO2) and deoxygenated (Hb) 

hemoglobin concentration changes with typical processing. The movement artifacts were 

removed from the raw NIRS signal using IMU signals as described in the previous 

section and then converted the denoised signals to HbO2 and Hb changes using typical 

 
 
Figure 6: Effect of estimating and removing movement artifacts using multi-channel IMU signals on HbO2 and Hb 

change detection. 



21 

 

Beer-Lambert law [68]. Three noise segments data from each of the two subjects are 

presented in figure 6. Each of the six plots in figure 6 presents the HbO2 and Hb change 

when no denoising was used, when only accelerometer signals were used, when 

accelerometer and gyroscope signal were used and when accelerometer, gyroscope and 

magnetometer signal were used for artifacts estimation and removal. In all the plots there 

were substantial changes in HbO2 and Hb concentration around the movement artifacts 

containing parts of the signals when no denoising was used. For all the six artifact 

segments, HbO2 and Hb changes curve get closer to the minimal change when artifacts 

estimation and removal was done for the artifacts containing part of the NIRS signal, and 

the case of estimating the artifacts by accelerometer, gyroscope and magnetometer result 

better than the case of using only accelerometer for the estimation and removal of the 

movement artifacts. 

2.5 Discussion 

In this paper, a method of using multi-channel IMU data to successfully remove 

movement artifacts from NIRS signal has been presented. The qualitative and 

quantitative results show that implementation of multi-channel IMU data resulted in more 

accurate modeling of motion artifacts in NIRS, and thus we obtained more accurate 

motion artifacts free NIRS signal, which can be used to detect physiological changes 

accurately. 

After the first massive production of micro-electromechanical-system (MEMS) chip-

based accelerometer in about 1993 [72], it was extensively used in other fields such as 

automobile, aerodynamics and so on; but there was a sloth progress in effectively using 

such devices in the field of bio-signal acquisition due to the reduction of comfort of the 
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subject [64] which results from the extra wiring and placement of this additional sensors. 

Moreover, placing the accelerometer sensor close to the NIR sensor was also another 

challenge as the NIRS system used in most of the research utilized the optical fiber-based 

light transport system [73] to and from the subject body. This close placement of the 

accelerometer to the light coupling to the subject body is necessary to record motion 

artifacts caused by the subject movement as well as due to the NIR sensor shifting [64]. 

These challenges were mitigated in this study by careful selection of the components 

used in the design of the system and making the system as wearable as possible. For 

instance, the IMU chip MPU9250, used in the system is only 3mm by 3mm in dimension 

and this IMU was attached to the body of the NIR detector sensor OPT101 chip to record 

the true motion of this detector as well as the movement of the subject body. The entire 

wireless NIRS system used in this study has a dimension of only 30mm by 48mm and 

power by a small lithium-ion battery, which makes it a true wearable NIRS data 

acquisition system. Considering the subtle details like those presented above could be 

helpful in designing a wearable NIRS system incorporating sophisticated chip like IMU 

which will improve the overall system performance.  

The main challenge related to the hardware of the system in this study came from the 

strategy used in the acquisition of the multi-channel NIRS signals. As already mentioned 

earlier, to use the effective method of quantitative evaluation of the result of movement 

artifacts removal success, the two NIRS detectors were placed as close as possible with 

the target of recording a very similar version of NIRS signal where one of them are 

intentional movements’ artifacts induced. Due to this closeness, inducing artifacts in one 
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NIRS channel while leaving another channel undisturbed was tough and a lot of attempts 

took place to achieve this data acquisition strategic goal. 

The effectiveness of the regressive modeling, like the ARX used in this study to 

estimate motion artifacts, highly depends on how much motion-related information 

present in the exogenous input. The raw data presented in Figure 3 has an important 

finding in this context; the first and the last artifact segments have a high impact on the 

gyroscope data, whereas, for the middle artifact segment, the accelerometer data have a 

prominent impact. This finding implies that using more channels of IMU data increases 

the probability of capturing the motion-related data in at least some of the channels, 

which in turn increase the successful estimation of the movement artifacts. In this respect, 

the SNR improvement results presented in the Table 1 depicts that SNR improvement 

increased if the number of IMU data channel used in the modeling were increased except 

for the movement artifact segment 3 from the subject 1. For the movement artifact 

segment 3 from subject 1, the SNR improvement value for the six-channel and nine-

channel IMU data, are the same, which is due to the fact that the last three channels of the 

IMU data (the magnetometer data) had an insignificant contribution on the artifact 

estimation. This insignificant contribution might have two reasons, either the artifact was 

indifferent to the variable the sensor was sensing or the sensor itself was not sensitive 

enough to detect the subtle change in that variable. On the other hand, for the movement 

artifact segment 2 from subject 2 in Table 1, the magnetometer data has a high 

contribution to the SNR improvement result. Besides the SNR improvement results, 

correlation coefficients between the movement artifact removed signal and the referenced 

ground truth signal are presented in Table 1 for both subjects 1 and 2 for each of the 
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movement artifact segments as another quantitative improvement indicators. This 

indicator signifies how much alike the signals are in respect of covariance by a single 

unitless quantity ranging from -1 to +1, where values closer to +1 indicates a stronger 

correlation between the signals [74]. For all the movement artifact segments, the 

correlation coefficients increase towards +1 when six channels of IMU data were used 

compared to only when three channels IMU data were used to estimate and remove the 

movement artifacts. When nine-channel IMU data were used to estimate and remove the 

movement artifacts, the correlation coefficients remained the same for some of the 

segments which is analogues to the case of SNR improvements after artifact removal 

from the third movement artifact segment from the first subject. 

The data from the subject three and four are presented in Figure 6. In the experiments 

with these two subjects, the movement artifacts in the NIRS were induced by natural 

head movements rather than the simulated movement artifacts as presented for the first 

two subjects. Furthermore, the NIRS signals were converted into Oxygenated (HbO2) and 

deoxygenated (Hb) hemoglobin change using Beer-Lambert law [68]. In contrast to the 

experiments with simulated artifacts where validation of the artifacts removal was 

assessed by the SNR and correlation improvement, the same validation method cannot be 

used in case of natural movement artifacts removal due to the lack of any reference 

ground truth signal. Considering that there was a minimal hemodynamic change during a 

short duration of the natural movement occurrence, a minimal change in concentration of 

the HbO2 and Hb was used to determine the performance of the artifacts removal 

associated with natural movements. The result presented in figure 6 demonstrates that 

with additional gyroscope sensors and magnetometer, the artifact in NIRS signals can be 
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better removed as revealed by the minimal change of HbO2 and Hb signals before, 

during, and after the movement artifacts occurred. This suggests that, in addition to the 

accelerometer in the IMU sensor, gyroscopes and magnetometer in the IMU are 

complementary to the accelerometer for a better modelling of the movement artifacts, 

which as a result, leads to better removal of the movement artifact in NIRS signals. A 

previous study [53] showed that the level of negative correlation between Hb and HbO2 

get reduced when movement occur. In the case of this study, the duration of the natural 

head movement resulting in artifact in NIRS signals was relatively short and 

hypothetically, there would not be any significant hemodynamic change during this short 

period. Based on this assumption, the distorted waveform of Hb and HbO2 signals as 

depicted in Figure 6, was due to the artifacts contaminated in the NIRS signal. As the 

distorted Hb and HbO2 waveform was due to the artifacts, the distortion should be 

independent of the true hemodynamic changes of Hb and HbO2, which might be 

positively or negatively correlated. In the experiments performed in this study, the data 

showed a major negative correlation between the oxyhemoglobin and deoxyhemoglobin 

signal; however, after removing the distortion induced by the artifact, the level of Hb and 

HbO2 kept the same as the baseline, which was in agreement with the hypothesis. 

It is to be noted here, the selection of the movement artifact segments was made 

manually by keeping track of the time of movement artifact occurrence and later visual 

inspections on the raw IMU data and the raw NIRS signal. This manual detection of the 

segment will be automated in the future based on IMU and NIRS signal feature changes. 

Though this study was not purposed to evaluate the quality of the NIR signal from the 

custom-made system, we did perform preliminary evaluation - the raw NIRS signal was 
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visually inspected for the presence of a heart beating signal, showing whether the signal 

was correctly acquired. However, the accuracy and quality of the NIR signals using the 

custom-made system needs further well-controlled test, particularly, the correlation with 

brain functions.   

Although the current results presented in this paper showed a significant improvement 

in artifacts removal, there are still a lot of scopes to improve the developed technique. 

From the system identification point of view, any movement artifact impact on the NIRS 

signal is unpredictable as they might differ in amplitudes, directivities, latencies, 

frequency contents and so on [73]; moreover, it has been observed in this research that 

various IMU channel might have different level of artifacts impact in different cases, 

which is another variability probably arise from sensor or from the nature of the artifact 

itself. 

2.6 Conclusion 

In the previous studies, the accelerometer was used in adaptive filtering for movement 

artifacts registering and estimating its impact in the NIRS signal. The theoretical 

application to accelerometer-based motion artifact removal is effective in mechanical 

systems, but the organic movements of a human subject are not only subjected to linear 

movements but simultaneous rotation and multi-directional displacements. These motions 

are roughly captured by the accelerometer but are effortlessly quantified with the use of 

the additional magnetometer and gyroscope. Thus, movement artifacts related signals 

detected by other sensors from IMU, along with the accelerometer signal, result in better 

estimation of the motion artifacts in the detected NIRS signal. In this study, the results 

showed that using the accelerometer, gyroscope and magnetometer signals from the IMU 
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sensor provide more accurate modeling of motion artifacts and thus improves the SNR 

improvement yields.  
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CHAPTER 3  SENSOR FUSION OF MOTION SENSORS  

3.1 Introduction 

The non-invasiveness, safety and cost-effectiveness [34] of NIRS make it an effective 

approach to detect blood oxygenation level. Moreover, it has been successfully employed 

to observe various physiological phenomena and processes [35] identifiable by blood 

oxygenation level, such as cardiovascular disease [36] and sepsis [37] from muscle 

oxygenation, cognitive involvement [16], [38] and activation of brain function [39], [40] 

from cerebral oxygenation. In this respect, NIRS based brain-computer interface (BCI) 

becoming common in the field of human-system interaction research [75]–[77] due to its 

certain benefits, i.e. better immunity to ambient electrical noise than conventional 

electroencephalogram (EEG) based BCI [78]. This interaction between humans and the 

system will take place outside of the lab environment in practical applications in the 

future. The implementations of NIRS based functional brain imaging using wearable 

NIRS systems in the naturalistic environment [79] promisingly indicate that NIRS based 

BCI [80] could be a perfect solution for human-system interaction in out of the lab 

situations. As this type of interaction, i.e. NIRS-BCI for gait rehabilitation [75], would 

incorporate body movement of a human in the loop of the systems, the improvement of 

detection and removal of movement artifact from NIRS signal would improve the 

specificity of the interactions. 

In a typical NIRS acquisition system, human tissue is illuminated by near-infrared 

(NIR) light and a detector senses the scattered light. The subtle changes in the detected 

light convey the information related to the hemodynamic changes in the illuminated 

tissue. The changes in the detected light are so minute that it is easily corrupted by 
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motion artifacts, which is a very common issue with any signal acquisition from the 

human body. The system or human body motion, change the coupling from the skin and 

the NIR light source, and from the skin to the detectors [47]. These alterations of the 

coupling arise the motion artifacts and corrupt the NIRS signal. Although multiple 

sensors-based motion-sensing presented in chapter 1 showed great improvement in the 

estimation of motion artifacts and removal, the sensor fusion of these artifacts may 

further improve the accuracy of the motion sensing and, subsequently, the removal of the 

artifacts by improvement in the motion sensing. 

3.2 Related Works 

Several artifact removal techniques for NIRS have been developed in the last few 

decades [52]. Typical motion artifact removal techniques detect and remove abrupt 

changes of either frequency components or time waveform in the NIRS signal. The recent 

advancement in the microelectromechanical system (MEMS) chip allows for the 

registration of motion information during the bio-signal recording, which subsequently 

can be used for adaptive noise cancellation of motion artifacts. Usually, three-channel 

accelerometer signals have been used to estimate and remove motion artifacts from the 

NIRS signal in adaptive noise cancellation [64], [65]. The investigation presented in 

chapter 1 [81], presented that gyroscope (G) and magnetometer (M) signals along with 

accelerometer (A) signals from an integrated Inertia Measurement Unit (IMU), can 

provide a better estimation of motion artifacts in NIRS signal, and subsequently removed 

it from NIRS signal, when compared to the estimation using only accelerometer signals. 

This improvement comes from the fact that motion artifacts arise from diverse body 

motions, which may have better registration through the different rotational and 
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directional changes acquired from other sensor types, such as gyroscope and 

magnetometer.  However, physical sensor readings suffer from imprecision, sensory 

deprivation, drift, and uncertainty [82]–[84]. Sensor fusion from physical sensors of 

accelerometer, gyroscope and magnetometer can reduce these problems in the resultant 

output by combining more sensor signals and may provide a more accurate estimation of 

the target variable, i.e., the motion artifacts in the NIR signal. This study was purposed to 

determine whether the combination of motion fusion algorithm-based signals and 

individual sensor readings from IMU could provide a more accurate correction of the 

motion artifacts in the NIRS signal acquired using a NIRS cyber sensor system. 

3.3 Methods 

3.3.1 Experimental Design and Data Acquisition 

Two healthy subjects, ages 22 and 28, volunteered for this study. Six sessions of data 

were collected. The NIRS signals were recorded from the forehead for simplicity. During 

the recording, the subjects were instructed to sit comfortably. To quantify the SNR 

improvement of the artifact removal process, two versions of the NIRS signal were 

recorded from the same location using two photodiodes placed as close as possible to 

each other. By referring to the quantitative assessment method suggested by Sweeney’s 

study [49], among these two versions of NIRS signals recorded using two separate 

channels simultaneously, one version was motion artifact-free and the other one was 

affected by the motion simulation. In this study, motion artifacts were simulated by 

tapping one of the photodiodes without affecting the other channel. The first channel 

reading which is unaffected by motion, is assumed to be close to ground truth signal and 

denoted as a “reference ground truth” signal subsequently in this study. The corrupted 
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NIRS signals were corrected by estimating and removing the motion artifacts in two 

ways, firstly using motion signal only in the artifact estimation and secondly, using 

motion signal as well as sensor fused signal in the artifact estimation. Afterward, SNR 

was calculated between the corrected NIRS signal and motion artifact-free referenced 

ground truth signal [49] for each version of the corrected signals and used as the 

quantitative measure for further assessment. 

 

3.3.2 Motion Fusion Algorithm 

Let 𝐺𝑥, 𝐺𝑦, 𝐺𝑧 be the gyroscope readings. The sensor frame rotation in respect to the 

inertial frame can be expressed by the quaternion as, 

 

𝑞Δ = (cos (
𝛥𝑡||𝐺||

2
)  ,   

𝐺𝑥

||𝐺||
sin (

𝛥𝑡𝐺𝑥

2
)   ,

𝐺𝑦

||𝐺||
  sin (

𝛥𝑡𝐺𝑦

2
)   ,   

𝐺𝑧

||𝐺||
  sin (

𝛥𝑡𝐺𝑧

2
))     Eq. 2-1 

With the change in rotation during one sampling period 𝛥𝑡, 𝑞𝛥 can be updated as 

 

𝑞(𝑡+𝛥𝑡) =  𝑞𝑡𝑞𝛥𝑡                                                  Eq. 2-2 

Assuming the acceleration is small compared to the gravity and only 1g gravity is 

active in the inertial frame, the reflected gravity vector F from the inertial frame to the 

sensor frame is, 
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1

]  Eq. 2-3 

 

The difference between the reflected gravity [𝐹1 𝐹2 𝐹3]𝑇 in (3) and the accelerometer 

measurements [𝐴𝑥 𝐴𝑦 𝐴𝑧]
𝑇
can be utilized to correct the error from the gyroscope 

measurement drifts. To do that, the inner and the cross product of these two vectors are 
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calculated to get the angle ϕ and rotation axis ν of rotation error. Using this axis and 

angle information, the rotation error is expressed in quaternion again as, 

 

𝑞𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑞((1 − 𝛼)𝜙, 𝜈) =  [cos
𝜙

2
  𝜈1 sin

𝜙

2
  𝜈2sin

𝜙

2
  𝜈3sin

𝜙

2
]

𝑇
= [𝑒0 𝑒1 𝑒2 𝑒3 ]𝑇     Eq. 2-4 

 

 

Finally, the quaternion can be updated as, 

  𝑞 =  𝑞(𝑡+𝛥𝑡)𝑞𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑                                           Eq. 2-5 

The quaternion in (5) leads to the Euler angle (Yaw, Pitch and Roll) as follows, 

 

[
𝜃𝑌

𝜃𝑃

𝜃𝑅

] = [

𝑎𝑟𝑐 tan 2(2(𝑞0𝑞3 + 𝑞1𝑞2), 1 − 2(𝑞2
2 + 𝑞3

2))

𝑎𝑟𝑐 sin(2(𝑞0𝑞2 − 𝑞1𝑞3))

𝑎𝑟𝑐 tan 2(2(𝑞1𝑞2 + 𝑞0𝑞3), 1 − 2(𝑞1
2 + 𝑞2

2))

]                  Eq. 2-6 

 

 

3.3.3 Artifacts Estimation and Removal 

The Autoregressive modeling with Exogenous input (ARX) was used to estimate the 

motion artifacts presented in chapter 1. However, the dimension L, which is the number 

of exogenous input signals used in the estimation, has changed in this investigation. Here, 

L=9 for Case 1, when using physical sensor only and L=12 for Case 2 physical sensors 

integrated with motion fusion algorithm-estimated Yaw, Pitch and Roll. 𝑼 can be written 

for these two cases as,       

     

Case 1:    𝒖𝟏[𝑘] = [𝐴𝑥[𝑘] 𝐴𝑦[𝑘] 𝐴𝑧[𝑘] 𝐺𝑥[𝑘] 𝐺𝑦[𝑘] 𝐺𝑧[𝑘] 𝑀𝑥[𝑘] 𝑀𝑦[𝑘] 𝑀𝑧[𝑘]]
𝑇

 

Case 2:  𝒖𝟐[𝑘] = [𝐴𝑥[𝑘] 𝐴𝑦[𝑘] 𝐴𝑧[𝑘] 𝐺𝑥[𝑘] 𝐺𝑦[𝑘] 𝐺𝑧[𝑘] 𝑀𝑥[𝑘] 𝑀𝑦[𝑘] 𝑀𝑧[𝑘] 𝑌[𝑘] 𝑃[𝑘] 𝑅[𝑘]]
𝑇
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The estimated motion artifacts 𝑤̂[𝑛]  is then subtracted from the signal 𝑥[𝑛] using 

equation (1-4) to estimate the motion artifacts free hemodynamic signal.  

 

3.3.4 SNR Improvement Calculation  

The SNR between the motion artifact corrupted NIRS signal and the referenced 

ground truth signal, before and after motion artifact removal, was calculated as per the 

equation (1-5) from chapter 1. 

 
Figure 7. NIRS signal and motion signal from accelerometer, gyroscope, magnetometer and motion fusion signals 

(YPR). 
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3.4 Result and Discussion 

Six motion artifact segments from the two subjects were analyzed in this study. Figure 

7 shows the raw signal of motion artifact containing NIRS signal segment 1 from subject 

1 along with the Accelerometer, Gyroscope, Magnetometer and YPR signal estimated by 

(6) in motion fusion algorithm. The portion of the NIRS signal shaded in gray in Figure 7 

was corrupted by the motion artifacts indicated by the motion signals. Table 2 presents 

the quantitative result of artifacts removal for each artifact segment from each subject 

with respect to SNR improvement. For the first artifact segment from the first subject, a 

6dB increase in the SNR was found when motion fusion signals were used in artifact 

estimation, and for the second segment, a 0.9dB SNR increment was found. However, 

there was no SNR improvement in the case of the third artifact segment from the first 

subject. It has already been mentioned that the sensor fusion reduces the limitations of the 

individual sensor’s registration of the motion by combining the motion signals from 

multiple sensors. However, sometimes the individual sensor may perform so well that the 

motion fusion signal’s accuracy improvement is subtle enough for the motion fusion 

signals to not improve the artifacts estimation accuracy. This accounts for the lack of 

Table 2. SNR improvement of motion artifacts removal using sensor fusion 

 

Motion artifact 
SNR (dB) using A, G 

and M only 
SNR (dB) using YPR 

fused with A, G, and M 

Subject 1 segment 1 16.2 22.2 

Subject 1 segment 2 17.8 18.7 

Subject 1 segment 3 19.3 19.3 

Subject 2 segment 1 20.6 20.6 

Subject 2 segment 2 13.4 21.9 

Subject 2 segment 3 9.6 10.0 
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SNR improvement on the third segment of the first subject and the first artifact segment 

from the second subject is presented in Table 2. Likewise, for the remaining two artifact 

segments from the second subject, 8.5dB and 0.4dB SNR improvement were found. 

 Figure 8 shows the artifact removed NIRS signals along with the original artifacts 

containing the signal and the referenced ground truth signal for the qualitative 

assessment. The artifact-removed signal is plotted in blue, which is closer to the 

referenced ground truth signal plotted in red, is the result of using motion fusion signals 

for artifact estimation. The green line indicates the artifact-removed signal when only the 

conventional individual sensor signals were used in the motion artifacts estimation. 

3.5 Conclusion 

In this study, motion fusion was applied with individual sensor signals to increase the 

accuracy of the motion signals.  To demonstrate this, a wearable wireless NIRS cyber 

sensor system was developed which incorporates an IMU sensor close to the optical 

 
 
Figure 8. Qualitative result of artifacts estimation and removal process using individual sensors signal and motion 

fusion signals. 
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sensor to capture the motion signals along with the NIRS signal. The cyber sensor 

provides motion signals from three individual sensors along with the motion fused signals 

which are used in the estimation of the motion artifacts contribution in the detected NIRS 

signal. The increase in the artifact estimation accuracy due to the use of sensor fused 

motion signals in the estimation leads to the SNR improvement in the corrected NIRS 

signal. Thus, more accurate detection of the hemodynamic response would be possible 

which is essential for any NIRS based human in the loop system where the specificity of 

the signal is critical for appropriate interaction. 
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CHAPTER 4  OPTICAL SENSOR LOCATION OPTIMIZATION ON HUMAN 

FOREHEAD 

4.1 Introduction 

The invention of the wheel introduced a new role to humankind, the operator. This job 

requires humans to take into account the current state of the system is being operated and 

the current environmental situation the system is in, and then take cognitively assessed 

actuating commands to operate the system effectively and safely. From riding a bicycle to 

operating an aircraft, these jobs exert various levels of cognitive load to the operator 

depending on the systems. The safety of the human users accompanying the operator is 

highly dependent on the continuous cognitive effort of the operator, which is also denoted 

as the cognitive workload on the operator. For instance, a study on aviation crashes [85] 

based on 329 major airline crashes claimed that 38% of the crashes were probably caused 

due to pilot error. Thus, ensuring balanced and continuous human operator’s cognitive 

effort via monitoring operator’s cognitive workload could improve the safety of such 

mission-critical operations by reducing the probability of human error.  

In an effort to improve safety by assessing and balancing operators’ cognitive 

workload, subjective tests, such as [4] NASA-TLX,  were used widely, which can only be 

done after the operator has completed the task and based on his experience during the 

task. The technological advancement in the modalities named as Functional Magnetic 

Resonance Imaging (fMRI), Electroencephalography (EEG) and Functional Near-

Infrared Spectroscopy (fNIRS) in about last three decades, brings a new dimension to the 

cognitive workload monitoring. Now it can be even monitored while the operator is doing 

the task. Several studies [5], [6], [19], [86] on cognitive workloads assessment already 

promisingly showed that physiological signals acquired using fMRI, EEG, and fNIRS or 
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combination of these modalities [8], [87], which are faster than the subjective tests, can 

be used to monitor cognitive workloads.   

The increased neural activity  [2]  due to the increased cognitive workload, increases 

the oxygen consumption in the cerebral cortex which is later regulated by the brain’s 

control mechanism called glial regulation [3]. This blood oxygen dependent phenomena 

can be measured using the fMRI [12]. Although fMRI is considered as the de facto 

standard in detecting cerebral regional blood oxygen concentration change, the 

technological limitations such as huge size, high cost, high system complexity, high 

artifacts susceptibility, and low temporal resolution greatly reduce its usability in the out 

of the lab environments. On the other hand, fNIRS is a less expensive technology with 

higher portability, higher temporal resolution, but with a comparable result to fMRI [13], 

[14], [16]–[18] in the detection of local cerebral oxygenation changes, although there is 

some compromise of signal to noise ratio (SNR) and spatial resolution. In the case of 

EEG application in cognitive workload assessment [19]–[21], though it is capable of high 

temporal and spatial resolution, it is less portable and less immune to ambient electrical 

noise, which is not present in fNIRS due to its optical nature of technological 

implementation.  

4.2 Related Works 

In research of operators' cognitive workload assessment, fNIRS has successfully been 

used in various studies in actual or simulated environments, such as car driving [30], 

[88],  train driving [29], and flight simulation [89]. The recent studies relating to 

cognitive tasks [90], [91] demonstrated that even wearable fNIRS system can detect the 

cognitive workload related to hemodynamic changes. Moreover, the wearability of the 
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fNIRS system enables such experiments being conducted in real-life scenarios, such as 

during walking, driving a vehicle and outdoor navigation [88], [90]–[92]. These studies 

are highly important in the field of engineering application utilizing the knowledge from 

cognitive science via fNIRS and also experimentally prove that fNIRS can be 

implemented in out of the lab situations. However, it’s applicability and wearability can 

be improved if the system size can be reduced, in respect of sensing area on a human 

head, with retaining comparable cognitive workload detection accuracy. In other words, 

wearing a system on the forehead for several minutes or hours by subjects may be okay in 

case of experiments. However, in the case of the practical application of fNIRS on 

operators’ cognitive workload detection during their whole day working period, the 

wearability of the system in respect of system dimension, weight, duration of operation 

on single battery recharge are the challenges to be accounted. These challenges could be 

mitigated if the required sensing area on the forehead could be reduced by optimizing the 

sensor locations for cognitive workload monitoring. 

 During the cognitive load, the portion of the cognitive system that retains the 

information for short term, necessary for processing to accomplish the cognitive tasks, is 

known as the working memory [93], which is widely assumed to be served by the Pre-

Frontal Cortex (PFC) along with the central executive function. Several cognitive-

function related studies using fMRI conform with this assumption from the observation 

of high hemodynamic activities in the PFC during the cognitive workloads [2], [5], [94].  

This observation of regional cerebral activation during cognitive tasks leads to the 

implementation of fNIRS modality in assessing cognitive workload [28], [86], [95], [96] 

by sensing the PFC optically. In general, fNIRS based cognitive workload assessment 
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studies sense the whole forehead region to classify the workload, but there is not any 

study that answers whether it is necessary to sense the whole forehead for successful 

detection of cognitive workloads, or what the compromise is in the cognitive workload 

detection accuracy if only certain portion of the forehead is sensed. 

4.3 Materials and Methods 

4.3.1 Participants 

Eight healthy volunteers (six males and two females) with no history of neurovascular 

and cognitive disorder, participated in this study.  The study was approved by the 

Institutional Review Board (IRB-19-0091) of Florida International University and signed 

informed consent was obtained from all the subjects prior to the study. 

 

4.3.2 Experimental Design 

To induce the cognitive workload in human subjects, the n-back task is widely used 

[86], [87], [94] paradigm related to cognitive study in research, which was first 

demonstrated by Kirchner WK. [97]. In this paradigm, the subject observes some series 

of events during the testing period and if any of the events match with n-events before 

then the subject provides feedback, where n could be 1,2,3 and so on depending on the 

 
 
Figure 9. Positional 2-back test. Each event is 2s long and the task state lasts for 48s. Afterward, a 25s Rest state 

followed when the subjects did not move and visually affixed to the blank computer screen. 
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requirement. As the target of this study is to explore how the detection accuracy of 

cognitive workload varies due to the sensing location on the human forehead, a moderate 

level of cognitive workload induction was applied, which is assumed to be the 2-back 

test. A free open-source software [98] named “Brain Workshop” was used to simulate the 

positional 2-back task, where a solid colored square changed its position randomly within 

a 3 by 3 grid in every two seconds (Figure 9 depicts this task paradigm). If the current 

position of the square matched with its position 2 events before, the subject pressed a 

button on the keyboard and did nothing if the position did not match. In each session of 

recording, there were 24 events of the positional 2-back task, which spanned 48 seconds 

and afterward 25 seconds of relaxing when subjects did nothing. This relaxing period was 

considered as the Rest state [87]. Recording of each session starts 10 seconds prior to the 

start of the 2-back task which was used as the baseline of the diffused optical signal in the 

conversion of the absorption of optical signals to hemodynamic change. Each subject did 

10 of such sessions where the subjects relax for about 30 seconds between the sessions 

and during this period data was not recording and the subjects were free to move. The 

sessions with less than 90% accuracy in 2-back task performance were rejected during 

the recording. 

 

4.3.3 Data Acquisition and Signal Processing 

A wearable wireless fNIRS system developed by the Human Cyber-Physical Systems 

Lab at Florida International University was used for data acquisition in the experiment. 

The system architecture was based on the sensor system developed in  [70], [81], and 

modified to accommodate more channels required to sense the whole forehead. The 

improved system consists of three light-emitting diodes (LED) as a source of near-
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infrared (NIR) light capable of multiwavelength (770nm and 850nm) emission and eight 

photodetectors (PD) as light detectors, where the source-detector distance is 3 cm with 

0.3 cm variability. The LED and PD together form twelve channels for sensing which are 

marked by channel numbers in Figure 10. The system covers the whole forehead for 

sensing which is the region of interest (ROI) in this study. This ROI is subdivided into 

five sub-location named as Left, Mid, Right, Left-Mid and Right-Mid. The channels 1 to 

4 sense the left location on the forehead, the channels 5 to 8 sense the mid location on the 

forehead and the remaining channels 9 to 12 sense the right location on the forehead. The 

location stated by Left-Mid and Right-Mid consist of channels 1 to 10 and channels 3 to 

12, respectively. The location name for the whole forehead sensing area is indicated by 

the name Whole in subsequent descriptions. Each channel was sampled at 25Hz sampling 

rate. Additionally, the headband that houses the system is equipped with a nine-channel 

inertial measurement unit (IMU) and record the movement data concurrently with NIR 

data. IMU data were checked immediately after each session from each subject for 

movements during the recording and the sessions that showed movements were 

 
 
Figure 10. Photodetector placement and channel positions. All the distances between detector and LED are same 

and 3 cm. The distance between adjacent detectors are 5.5cm horizontally and 4.5cm vertically. Similarly, the 

distance between adjacent LED is 5.5cm. 
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discarded. The raw NIR signals were low pass filtered with third-order Butterworth 

bandpass filter with 0.01 – 0.5 Hz cut-off frequency [99], and afterward, a two-second 

windowed moving average filter was applied to further remove any physiological 

interference in the detected NIR signal, such as Mayer wave, respiration and heart rate 

[100], [101]. Afterward modified Beer-Lambert [68] law was applied to convert the 

multiband raw NIR signal to oxygenation change signals, known as the change in 

oxygenated hemoglobin (ΔHbO2) and deoxygenated hemoglobin (ΔHbR).  

To study how the workload detection accuracy varies with the length of sensing period 

along with the sensing location on the forehead, the oxygenation change signals were 

segmented with various window lengths, such as 5, 10, 20, 25 and 48 seconds [87]. There 

was about 50% overlap [87] in the windowing when the segmentation window length 

was less than the whole period of the 2-back or Rest state. The overlapping is assumed to 

be necessary to reduce inter-subject variability in statistical temporal features of the 

signal [87], [102]. After segmentation, each signal segment was labeled as 2-back or 

Resting-state accordingly. 

This segmentation process resulted in n segments of 2-back state signal and m 

segments of resting-state signals. Here the values of n and m were dependant on the 

segmentation window lengths used in this study. For each session of any subject, it 

resulted in (n , m)=(18 , 11) when segmenting with 5 seconds window, (n , m)=(9,5) for 

10 seconds window, (n , m)=(4,2) for 20 seconds window, (n , m)=(2,1) for 25 seconds 

window and (n , m)=(1,1) when using whole period of the each state. These values of n 

and m also signify the number of samples in each class at different segmentation window 

lengths. All sessions of each subject, after segmentation and appropriate class label 
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assignment, resulted in 290, 140, 60, 30 and 20 samples for the segmentation window 

lengths of 5, 10, 20, 25 seconds and whole state period, respectively. 

4.3.4 Feature Extraction 

From each segmented hemodynamic change signal sample, commonly used statistical 

features were extracted, such as mean [103], [104], variance[105], slope [103], [104] of 

polynomial fit, skewness [105], [106], kurtosis [105], [106] and correlation [87] of 

ΔHbO2 and ΔHbR.   These features extraction from each channel resulted in a total of 11 

features per channel for any samples under any segmentation window length. As there 

were various numbers of channels were involved in sensing different locations on the 

forehead, various numbers of features resulted from each sample depending on the 

sensing location on the forehead. For example, there were 44 features for Left, Mid and 

Right location whereas there were 110 features for Left-Mid and Right-Mid Location for 

any length of segmentation. As there were 12 channels involved in the whole forehead 

location, there were 132 features resulted for the location denoted by Whole. 

4.3.5 Feature Selection and Classification  

In case of fNIRS based classification problem, several classification methods have 

been used, such as Discriminant analysis (DA) [77], [106], Support Vector Machine 

(SVM) [107]–[112], Artificial Neural Network (ANN) [113]–[116]  and so on. As the 

pivotal point of the study was to assess the cognitive workload monitoring accuracy 

variability using wearable fNIRS upon various sensing locations on the forehead, the 

speed of the classifier was a crucial property in consideration. Thus, the Linear SVM, 

which was already used in several other fNIRS based classification studies [87], [107], 

[117], was selected as a classifier in this study. In this respect, the generic 
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implementation of Linear SVM in MATLAB platform with box constraint of 1 and auto 

kernel scale was used for classification. For feature selection, two algorithms were used, 

namely Sequential Forward Selection (SFS) Wrapper algorithm [118] for feature subset 

selection and Relief algorithm [119], [120]. Each of these algorithms has its own merits 

in respect of the statistical relevance (Relief) of the features to the classes [119] and the 

interaction of the training feature set (SFS) with the classifier algorithm [118]. Thus, both 

of the selected feature-sets returned by these two algorithms were individually used in the 

classification using the linear SVM. The best accuracy among these two classification 

results was used in the statistical analysis. In this respect, as the SFS claims to return 

optimal feature subset by heuristic search, the whole subset of the returned features was 

used in classification. On the other hand, as the Relief algorithm instead returns the ranks 

and weights for all the features, only the features with positive weights were used in the 

classification.   

In the classification process, ten-fold testing cross-validation was applied [121]–[123]. 

In other words, there were 240 datasets resulting from segmentation, and in each of the 

classification process on these datasets, the dataset was partitioned into ten subsets using 

a random selection of the observations for each partition. Then, the SVM was trained 

using the nine subsets of this dataset leaving out the remaining one subset for testing. 

This leave-out subset is never seen by the classifier during the training phase.  The 

training of the SVM was done using ten-fold training cross-validation using those nine 

subsets of the partitioned data. Afterward, the trained SVM classifier was used to test the 

classification accuracy using the subset not used in training. Subsequently, this same 

training and testing procedure was applied on the other remaining nine subsets of this 
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dataset in a way nested cross-validation. The final accuracy of the classification on this 

dataset was calculated as the mean accuracy of these ten testing accuracies.       

 

4.3.6 Statistical Analysis 

For all the eight subjects, cognitive workload classification accuracies were calculated 

on the sensing locations Left, Mid, Right, Left-Mid, Right-Mid, and Whole, under several 

segmentation windows. The mean classification accuracies for each location across all 

the subjects were different from each other. Thus, to find the statistical significance of the 

differences in the mean classification accuracies of all subjects for each location (Left, 

Mid, Right, Left-Mid, Right-Mid) with the accuracy of the whole forehead location 

(Whole), two-sample t-test was applied with 5% significance level, which return the test 

decision whether the means are statistically equal or not at that significance level.    

4.4 Results and Discussion 

All the classification accuracies from all the datasets are presented in Table 3. For the 

5-seconds segmentation window, the lowest mean accuracy for all subjects was 83.4% 

with a standard deviation of 6.7%, which resulted when only the Right location was used. 

On the other hand, the highest mean accuracy resulted when the Whole forehead dataset 

was used to classify, which was 94.0% with a 3.9% standard error. Like 5-seconds 

segmentation window, the Right location in all other segmentation windows also resulted 

in the lowest classification accuracies, which were 84.0%, 86.5%, 90.8% and 95.0% for 

10, 15, 20, 25- and 48-seconds window length, respectively.  For the 48-seconds 

segmentation window, the Left location also resulted in the lowest classification accuracy 

like the Right location but with a higher standard deviation which was 6.5%. In case of 
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highest mean accuracy of classifications beyond the 5-seconds segmentation window 

length, Left-Mid location yielded highest mean accuracy for 20, 25- and 48-seconds 

Table 3. Classification accuracies along with mean and standard deviation (SD) across all subjects for each location 

on the forehead. 

    Classification accuracy (%) 

    Left Mid Right Left-Mid Right-Mid Whole 
0

5
s 

w
in

d
o

w
 

Sub1 82.4 88.3 84.5 89.3 89.0 92.1 

Sub2 87.2 95.5 80.0 98.3 97.6 98.6 

Sub3 80.0 87.2 72.1 87.2 90.0 91.4 

Sub4 84.1 76.9 85.2 83.8 85.2 89.3 

Sub5 94.1 92.1 93.1 96.9 99.3 98.6 

Sub6 91.4 97.9 87.6 96.2 96.9 98.3 

Sub7 90.0 88.9 87.9 92.4 93.4 93.1 

Sub8 78.3 84.1 77.2 90.7 88.3 90.3 

Mean ± SD 85.9 ± 5.7 88.9 ± 6.6 83.4 ± 6.7 91.9 ± 5.0 92.5 ± 5.1 94.0 ± 3.9 

1
0
s 

w
in

d
o

w
 

Sub1 82.9 92.1 85.0 91.4 89.3 91.4 

Sub2 88.6 94.3 90.7 98.6 93.6 99.3 

Sub3 79.3 70.7 72.1 86.4 89.3 81.4 

Sub4 89.3 75.0 80.0 86.4 90.7 85.7 

Sub5 94.3 91.4 96.4 97.1 99.3 97.9 

Sub6 91.4 97.9 85.0 97.1 97.9 98.6 

Sub7 90.7 92.2 82.2 93.6 94.4 92.7 

Sub8 84.3 87.1 80.7 87.9 90.0 91.4 

Mean ± SD 87.6 ± 5.0 87.6 ± 9.6 84.0 ± 7.3 92.3 ± 5.0 93.0 ± 3.9 92.3 ± 6.3 

2
0
s 

w
in

d
o
w

 

Sub1 86.7 95.0 83.3 88.3 90.0 93.3 

Sub2 93.3 100.0 93.3 98.3 95.0 95.0 

Sub3 83.3 81.7 70.0 86.7 85.0 85.0 

Sub4 93.3 70.0 86.7 91.7 93.3 90.0 

Sub5 98.3 98.3 93.3 98.3 100.0 100.0 

Sub6 96.7 100.0 90.0 96.7 96.7 93.3 

Sub7 86.6 94.7 85.2 95.2 94.7 95.2 

Sub8 88.3 93.3 90.0 93.3 88.3 93.3 

Mean ± SD 90.8 ± 5.4 91.6 ± 10.5 86.49 ± 7.6 93.6 ± 4.4 92.9 ± 4.8 93.2 ± 4.3 

2
5
s 

w
in

d
o
w

 

Sub1 100.0 93.3 83.3 96.7 100.0 100.0 

Sub2 96.7 100.0 96.7 100.0 100.0 100.0 

Sub3 90.0 83.3 76.7 83.3 80.0 83.3 

Sub4 93.3 86.7 90.0 93.3 93.3 90.0 

Sub5 100.0 100.0 100.0 100.0 100.0 96.7 

Sub6 86.7 100.0 93.3 100.0 100.0 100.0 

Sub7 96.7 96.7 96.7 97.5 96.7 93.3 

Sub8 93.3 90.0 90.0 96.7 93.3 90.0 

Mean ± SD 94.6 ± 4.7 93.8 ± 6.5 90.8 ± 7.7 95.9 ± 5.6 95.4 ± 6.9 94.2 ± 6.1 

4
8

s 
w

in
d
o

w
 

Sub1 100.0 100.0 90.0 100.0 100.0 100.0 

Sub2 95.0 100.0 95.0 100.0 100.0 100.0 

Sub3 85.0 90.0 90.0 95.0 90.0 90.0 

Sub4 100.0 90.0 95.0 100.0 95.0 100.0 

Sub5 100.0 100.0 100.0 100.0 100.0 100.0 

Sub6 85.0 100.0 95.0 100.0 100.0 100.0 

Sub7 95.0 90.0 100.0 96.7 95.0 95.0 

Sub8 100.0 95.0 95.0 95.0 100.0 100.0 

Mean ± SD 95 ± 6.5 95.6 ± 5.0 95 ± 3.8 98.3 ± 2.4 97.5 ± 3.8 98.1 ± 3.7 
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segmentation window lengths which are 93.6%, 95.9 and 98.3% respectively, and for the 

remaining 10-seconds segmentation window length Right-Mid resulted in highest mean 

accuracy of classification which was 93.0%.  

Regarding the statistical analysis aforementioned, two-sample t-test was used to test 

the statistical significance of the differences in the mean classification accuracies for each 

location (Left, Mid, Right, Left-Mid, Right-Mid) to the whole forehead location denoted 

by Whole. The t-test hypotheses testing decisions indicated that the mean classification 

accuracies were statistically different from the mean classification accuracy of location 

Whole in case of only in 10- and 20-seconds segmentation window lengths at location 

Right and in 5 seconds segmentation window length at locations Left and Right. In other 

words, except for these four cases, the mean classification accuracy for any location or 

segmentation window lengths, statistical significance was not found for the difference in 

the mean classification accuracies. Moreover, these results indicate that the Mid location, 

which is one of the three smallest sensing locations (Left, Mid, Right), resulted in mean 

classification accuracy with a statistically insignificant difference, compared to the 

largest location Whole for any segmentation window lengths. 

 
Figure 11. Mean accuracy of classifications across various location for different segmentation window length. The 

Standard errors of the mean classification accuracies are presented by the errorbars. The four classification 

accuracies mean whose differences are statistically significant, are presented by the significance-link with the star. 
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The mean classification accuracies have been depicted by the bar plot in Figure 11 for 

a qualitative assessment of how the classification accuracies vary along with the increase 

of the sensing location on the forehead, which are grouped into segmentation windows. 

The error bars in the plot show the standard error of the mean accuracies, which was 

estimated by dividing the standard deviation by the square root of the number of subjects 

in this study. From this plot, it is apparent that the differences in the mean accuracies 

between the largest location Whole to the other smaller locations get reduced with the 

increase of segmentation window length. 

Optical methods, such as fNIRS, which can reach a depth of few centimeters only 

from the skin of the human brain, could only sense hemodynamic changes of the brain 

tissue which are closer to the cerebral surface, such as PFC under the forehead. PFC is 

one of the most functionally correlated subsystems [124]  among other cerebral 

subsystems such as Hippocampal Formation (HF), Inferior Parietal Lobule (IPL) and so 

on, which form the default network in respect of cognitive states.  Moreover, researches 

based on other methods such as fMRI, Positron Emission Tomography (PET), showed 

the  Medial PFC in this network is the most involved region on the PFC related to the 

cognitive states [125]. In congruence with those physiological study-based findings, the 

statistical result presented in this study also showed that sensing the Mid location only 

can result in significant accuracy in cognitive workload classification compared to the 

location Whole on the forehead. Thus, from the system design point of view, the fNIRS 

system could be minimized to sense only Mid location on the forehead with statistically 

insignificant compromise of the cognitive workload detection accuracy. Alike Mid 

location, the other two smallest sensing locations, Left and Right, could also be targeted 
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for cognitive workload detection using minimized fNIRS system but with higher 

latencies in getting significantly comparable accuracy. 

4.5 Conclusions 

Statistically significant classification accuracy of cognitive workload can be achieved 

by sensing on the Mid location on the human forehead rather than the whole forehead 

using fNIRS. Thus, wearable wireless fNIRS systems which are resource and power 

constraint by nature, can be improved by minimizing the system design with optimized 

sensor locations on the forehead for cognitive workload monitoring. 
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CHAPTER 5  VIGILANCE DETECTION DURING GAIT 

5.1 Introduction 

It has been showed in other studies that fNIRS signals are susceptible to motion 

artifacts [52], [126]–[128]. Consequently, it can be hypothesized that vigilance level 

detection will be altered by the motion artifacts arise from the gait. Moreover, successful 

removal of these artifacts may improve the detection accuracy of the vigilance level 

during human locomotion. Although there are several studies carried out to detect brain 

activations related to dual-tasking involving walking as one of the tasks [129]–[132], it 

has not been investigated whether the vigilance level distinguishability during walking is 

impacted by the walking associated motion artifacts or not. Moreover, even if it is 

distinguishable from the motion artifacts impacted brain signals, the question of whether 

this distinguishability in the walking state differs from the distinguishability to the 

sedentary state vigilance level detection remains unanswered.  

The purpose of the study was to investigate the effect of motion artifacts on vigilance 

level detection while walking. Additionally, it was also explored whether a similar 

vigilance detection performance could be achieved during walking compared to the 

seated state. To achieve these goals, an experimental protocol was designed to induce 

different vigilance levels during walking and seated states. A supervised classification 

method was employed to detect the vigilance levels in both conditions from brain 

hemodynamic signals. The vigilance detection accuracies thus obtained were compared 

to assess the effect of motion artifacts on vigilance detection performance. The 

comparison implied that the motion artifacts reduce the vigilance level detection 

performance for the walking state. Afterward, motion sensor signals based artifacts 
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estimation and removal method was implemented to explore whether an enhancement in 

vigilance level detection performance could be achieved by removing artifacts or not.  

5.2 Related Works 

There are several studies conducted to explore human brain dynamics during walking. 

The target of most of the studies to detect the hemodynamic change during walking 

compared to resting state [133]–[135]. The results of those reveal the increase of fNIRS 

activity in several brain regions during walking such as the prefrontal cortex, premotor 

cortex, supplementary motor area, primary motor area and primary somatosensory cortex. 

Holtzer et al. reported increased PFC signal during walking and cognitive tasks among 

young and old subjects [136]–[138]. However, Lin et al. found decreased PFC activity in 

similar study in young subjects [129]. While these studies demonstrated the detectability 

of the brain dynamics during walking, it was not investigated whether the level of 

vigilance is detectable of not from the change in the fNIRS signals.   

5.3 Materials and Methods 

5.3.1 Participants 

Nineteen healthy volunteers (six females and thirteen males) with no history of 

neurovascular and cognitive disorder participated in this study.  The study was approved 

by the Institutional Review Board of Florida International University and signed 

informed consent was obtained from all the subjects prior to the study. 

5.3.2 experimental design 

Inducing a specific level of vigilance or cognitive workload in humans is impossible to 

guarantee. However, there are some widely accepted methods to use in experimental 
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design, which hypothetically entails the subject to put different levels of cognitive efforts. 

The n-back task is one such paradigm [86], [87], [94], which was first demonstrated by 

Kirchner WK. [97]. In the n-back task paradigm, the subject is presented with a series of 

events and if any of the events match with n-events before then the subject provides 

feedback. As this task require the subject to pay continuous attention towards 

surrounding for specific targets [1], take an executive decision upon target match [139] 

and execute the motor function to give response upon target match, we assume this task 

phenomenon closely resembles a person doing vigilance task in a field. There are several 

values of n in the n-back task, such as 0,1,2,3 and so on. Here, the higher the value of n in 

the n-back task, the higher the cognitive effort the subject has to provide to achieve a 

certain level of accuracy on the task. In this study, 1-back and 2-back task were used to 

 
Figure 12.  n-back trials. Each event is 2s long and the task state lasts for 120s. Afterward, a 30s Rest state 

followed when the subjects did not move and visually affixed to the blank computer screen. (a) 1-back and (b) 2-

back. 
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induce low and high cognitive workload in the subject, respectively. A sequence of 

English letters was selected as the n-back event in this study which is depicted in Figure 

12.  

Each subject participated in two sessions of n-back tasks. In each of the sessions, the 

subject did ten n-back tasks whose sequence and timing are depicted in Figure 13. Each 

n-back trial in each session spanned 120 seconds and each n-back event lasted for 2 

seconds each and prior to starting, there was a 5 seconds instruction of which n-back was 

going to start. There was a mandatory resting period of at least 30 seconds between two 

consecutive n-back trials when the subjects did not move and visually affixed to the blank 

computer screen. Recording of each session starts 30 seconds prior to the start of the first 

n-back task. This portion of the signal was used as the baseline of the diffused optical 

signal in the conversion of the absorption of optical signals to hemodynamic change. 

During the first session, the subject did the n-back tasks while seated on a comfortable 

chair. In the second session, the subject did the n-back tasks while walking at a preferred 

walking speed. Additionally, at the end of the walking session, two portions of about 20s 

long signal were recorded while the subject was instructed to just walking without doing 

any vigilance task. These two portions of the signals were used in artifacts estimation in 

later processing. There was a mandatory resting period of at least 10 minutes between 

these two seated and walking sessions. 

 
Figure 13. Timing of each n-back tasks and resting state in each of the two sessions. In session 1, the subject did 10 

n-back trials while seated on a chair and in session 2, the subject did 10 n-back trials while walking on a treadmill 

at a preferred speed. 
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The n-back tasks were implemented using the software “Psychology Experiment 

Building Language(PEBL) and Test Battery” [140]. The sequence of the English letters 

as the n-back event in this study was presented on three monitors simultaneously. The 

monitors are placed at about 0°, -60° and 60° angle to the sagittal plane of the subject. 

During the seated session, the subject was instructed to look at only the monitor at 0° and 

during the walking session, the subject was instructed to look at different monitors at 

different times. Moreover, there was a light-emitting diode (LED) placed on each monitor 

to indicate the subject to look at that monitor when it is on. These LEDs were turned on 

by a controller one at a time and the selection of which LED to turn on was programmed 

by a random number generator. This randomly looking at different monitors while doing 

the task assumed to make better emulation of vigilance tasks while walking. To provide a 

response during the n-back task, the subject used a handheld wireless button. The PEBL 

software assesses the objective performance of the subject based on the responses during 

the task. The n-back task performance accuracy is measured as the fraction of the correct 

responses where the missed target was also considered as an incorrect response. The 

acceptable n-back task performance level was set at >80% for the 1-back task to consider 

the subject attentive enough for the study [87]. 

5.3.3 Data acquisition  

For the data acquisition in the experiment, A wearable wireless fNIRS system 

developed by the Human Cyber-Physical Systems Lab at Florida International University 

was used. The system is capable of recording 12 channels of fNIRS signals and it was 

developed based on the system architecture presented by Wang et al.  [70], [141]. The 

system consists of three light-emitting diodes (LED) as a source of near-infrared (NIR) 
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light capable of multiwavelength (770nm and 850nm) emission and eight photodetectors 

(PD) as light detectors. The source-detector distance of the system is 3 cm with 0.3 cm 

variability. These LED and PD were multiplexed in the signal sensing algorithm to act as 

12 channels of fNIRS for sensing the PFC. Each channel of the system was sampled at 

25Hz. Additionally, the headband that houses the system is equipped with 2 six-channel 

inertial measurement unit (IMU) and record the movement data concurrently with NIR 

signals. 

 

 

 

5.3.4 Signal Processing 

5.3.4.1 ARX modeling and artifacts removal 

The ARX modeling presented in chapter 1 was used to estimate walking-related 

movement artifacts 𝑤[𝑛] in the detected signal 𝑠[𝑛]. Although LS returns the best model 

coefficients to fit the training signal for specific order 𝑁𝑎 and 𝑁𝑏, artifact estimation 

from the validation signal using the trained ARX model varies due to overfitting or 

underfitting. To select the best orders, the signal to noise ratio (SNR) of the artifact 

removed validation signal was assessed using the non-walking fNIRS signal as the 

reference signal. SNR improvement was determined as follows[71], 

∆𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

(
𝜎𝑛𝑜𝑛−𝑤𝑎𝑙𝑘𝑖𝑛𝑔

2

𝜎𝑤𝑎𝑙𝑘𝑖𝑛𝑔𝑎𝑓𝑡𝑒𝑟
2 )

−  10 𝑙𝑜𝑔10

(
𝜎𝑛𝑜𝑛−𝑤𝑎𝑙𝑘𝑖𝑛𝑔

2

𝜎𝑤𝑎𝑙𝑘𝑖𝑛𝑔𝑏𝑒𝑓𝑜𝑟𝑒
2 )

               Eq 5-1 

From the ∆𝑆𝑁𝑅 improvement values for various combinations of 𝑁𝑎 and 𝑁𝑏, the best 

combination of the model order 𝑁𝑎 and 𝑁𝑏 was selected which reflects the highest 

∆𝑆𝑁𝑅 on validation signal. This best order combination was then used to train an ARX 

model using the training signal and afterward, this trained model was used to estimate 
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motion artifact 𝑤̂[𝑛] in the validation signal.  This estimated motion artifact was used to 

estimate the motion artifact removed hemodynamic signal 𝑠̂[𝑛] using as per the equation 

(1-4). This method of ARX modeling and artifacts estimation was applied on each 

channel of fNIRS signals for each subject. 

5.3.4.2 Conversion to hemodynamic signals  

To remove physiological interference in the detected NIR signal, such as the Mayer 

wave [100] and heart rate, the raw NIR signals were high pass filtered with a fourth-order 

Butterworth filter with 0.01 Hz cut-off frequency [99]. Afterward, filtered with a fourth-

order Butterworth low pass filter with 0.14 Hz cut-off frequency [142].  

Afterward, modified Beer-Lambert [68] law (MBLL) was applied to convert the 

multiband raw NIR signal to oxygenation change signals, known as the change in 

oxygenated hemoglobin (ΔHbO2) and deoxygenated hemoglobin (ΔHbR). As a 

qualitative representation of the effectiveness of the motion artifacts removal algorithm, a 

portion of the MBLL converted raw fNIRS signal with and without artifacts removal has 

been depicted in Figure 14. 

 
Figure 14. A representative portion of MBLL converted hemodynamic signal from walking state fNIRS signal and 

artifacts removed version of the same hemodynamic signal. 
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5.3.4.3 Signal segmentation and feature extraction 

The oxygenation change signals were segmented with 2 seconds window length. 

There was a 50% overlap [87] in the windowing during the segmentation. The 

overlapping is assumed to be necessary to reduce inter-subject variability in statistical 

temporal features of the signal [87], [102]. After segmentation, each signal segment was 

labeled as 1-back or 2-back state accordingly. This segmentation process resulted in 595 

segments of 1-back state signals and 595 segments of 2-back state signals for each 

subject in each session.  

From each segmented hemodynamic change signal sample, commonly used statistical 

features were extracted, such as mean [103], [104], variance[105], [112], slope [103], 

[104] of polynomial fit, skewness [105], [106], kurtosis [105], [106] and correlation [87] 

of ΔHbO2 and ΔHbR.   These features extraction from each channel resulted in a total of 

11 features per channel for any samples of any state. As there were 12 channels in total, 

there were 132 features resulted from each sample.  

 

5.3.5 Feature selection  

For feature selection, “Select from Model” was used in this study. In this method, a 

classifier is initially trained with all the features in the training dataset. In this respect, the 

chosen classifier should calculate the importance of each of the features based on the 

feature value distributions which makes the classes most separable. For instance, in this 

study, an “Extra Trees Classifier” was used as the basis of feature selection [143]. In 

Extra Trees Classifier, the features are given importance values based on the normalized 

total reduction in the Gini index using a set of de-correlated random forest type 

classifiers. This importance value is termed as Gini importance. Afterward, features were 
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selected based on the Gini importance returned by the trained model. For that purpose, 

the features were sorted in descending order according to the returned Gini importance 

score for a training dataset. From the sorted list of the features, the top 12 features were 

selected to be used for the next steps in the classification process. In any supervised 

learning, feature selection is a general step to optimize the result of the classification 

process. It helps in reducing the number of features in the feature set by removing less 

correlated feature to the classes.  

 

5.3.6 Classification  

In the classification process, four-fold testing cross-validation was applied. In other 

words, each dataset was partitioned into four subsets using a random selection of the 

observations for each partition. Then, feature selection and training of a classifier were 

done using the three folds of the dataset. Afterward, testing was done using the remaining 

one-fold of the dataset. The same training and testing process was applied on the 

remaining three folds as well and the final accuracy of the classifications was reported as 

the mean of the four testing accuracies. This overall classification process was initially 

performed on a small subset of the dataset. The Linear Discriminant Analysis (LDA) was 

used to investigate whether the dataset is linearly separable or not, though LDA is 

generally used for dimensionality reduction in the classification process. Afterward, the 

classifiers, namely Support Vector Machine (SVM), k-Nearest Neighbors (KNN) and 

Gradient Boosting Classifier (GBT) were selected in search of a best-suited classifier for 

the binary classification problems in this study. All the classifiers were tuned for 

optimized hyperparameters using grid-search in Scikit-learn [144] to ensure the 
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optimized performance of each classifier for the dataset. Afterward, the classifier with the 

best accuracy score among them was selected in the further classification process.    

5.3.7 Statistical analysis  

The mean classification accuracy of the vigilance for all subjects was highest for the 

seated state and lowest when the task was done while walking. The classification 

accuracy got improved when artifacts removal was applied to the walking state dataset. 

Although optimization of the hyperparameters ensures the optimum classification 

accuracy, this improvement in the mean classification accuracy does not reflect whether 

it is intrinsic to the distribution of the datasets or not. Therefore, there must be a statistical 

analysis to evaluate the significance of the obtained improvement in classification 

Table 4. Behavioral task performance. 

 Seated Walking 

 1-back 2-back 1-back 2-back 

Sub 1 94.75 92.25 94.10 87.74 

Sub 2 96.06 88.06 93.11 80.97 

Sub 3 96.39 92.26 85.57 88.06 

Sub 4 98.69 92.10 99.02 94.20 

Sub 5 99.34 92.58 98.36 94.52 

Sub 6 97.38 84.52 91.15 87.10 

Sub 7 96.72 87.42 94.10 86.77 

Sub 8 97.70 90.97 94.75 88.06 

Sub 9 96.72 90.00 98.77 92.14 

Sub 10 98.03 85.16 95.41 83.87 

Sub 11 96.07 90.65 97.70 92.26 

Sub 12 97.70 86.13 97.38 85.48 

Sub 13 93.44 89.03 93.44 90.00 

Sub 14 99.02 87.74 96.31 93.01 

Sub 15 97.05 93.87 96.39 92.26 

Sub 16 100.00 85.48 98.69 88.06 

Sub 17 95.08 88.39 92.46 90.65 

Sub 18 97.38 86.77 98.69 93.23 

Sub 19 99.67 96.45 98.69 98.06 

Mean 97.22 89.46 95.48 89.81 
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accuracy. To find the statistical significance of the differences in the mean classification 

accuracies of all subjects during walking compared to the seated state, a two-sample t-test 

was applied with a 5% significance level, which returns the test decision whether the 

means are statistically equal or not at that significance level.  

5.4 Result and Discussion 

The behavioral task performances of each subject during seated and walking in this 

study are presented in Table 4. The maximum and minimum task performances for the 1-

back task during seated were 100% and 93.4% respectively whereas, during walking, the 

performance was 99.02% and 85.6% respectively. On the other hand, for the 2-back task, 

the maximum and minimum performances were 96.5% and 84.5% for the seated state, 

respectively and for the walking state, it was 98.06% and 81.0%, respectively. No subject 

was rejected as the lowest 1-back task performance was 85.6% among all the subjects, 

which is higher than the threshold of 80% for the 1-back task set at the beginning of the 

study. In the study conducted by Lin et al. [129], which employed human walking and 

cognitive task, they didn’t find any correlation of behavioral outcomes to hemodynamic 

change. Although the metric used in this study is different, alike that study, we didn’t find 

any correlation among the behavioral outcomes and the classification accuracy in any of 

the seated or walking state cognitive workload detection in this study. 

Table 5. Performance of various types of classifiers in vigilance detection of seated state for five subjects. 

  LDA SVM KNN GBT 

Sub 1 58.49 52.27 62.79 89.16 

Sub 2 55.46 48.90 74.74 92.44 

Sub 3 54.29 57.06 66.13 90.92 

Sub 4 62.61 47.98 69.08 85.72 

Sub 5 58.32 47.98 90.27 93.61 
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As mentioned earlier, initially, a small subset of the dataset was used to assess various 

types of classifiers’ performance in vigilance detection. In this regard, seated state 

vigilance data of five subjects were evaluated using LDA, SVM, KNN and GBT. The 

results presented in Table 5 indicate the SVM performs better than KNN. Maybe the 

general assumption in the SVM, the existence of a hyper-plane that separate the data 

points, is less helpful for vigilance datasets of this study. Thus, the non-parametric 

approximation of the underlying distribution of the dataset, which is the basis for KNN, 

might result in better accuracies presented in Table 5. Among the classifiers, GBT 

Table 6. Classification accuracies along with mean and standard error (SE) across all subjects for seated state, 

walking state and walking state with artifact removal. 

 Seated 

Walking 

(without removal 

of artifacts) 

Walking (with 

removal of 

artifacts) 

Sub 1 89.16 87.65 88.82 

Sub 2 92.44 87.73 91.34 

Sub 3 90.92 88.48 90.42 

Sub 4 85.72 82.86 84.29 

Sub 5 93.61 90.84 91.60 

Sub 6 92.69 80.68 81.85 

Sub 7 84.96 92.01 92.43 

Sub 8 89.16 85.04 84.79 

Sub 9 92.27 88.07 87.65 

Sub 10 91.93 91.01 91.18 

Sub 11 87.06 83.87 86.89 

Sub 12 91.60 87.73 87.99 

Sub 13 89.07 86.05 87.73 

Sub 14 91.69 91.60 91.77 

Sub 15 89.75 86.64 85.80 

Sub 16 86.89 86.05 87.82 

Sub 17 90.76 83.61 88.49 

Sub 18 85.29 80.08 83.28 

Sub 19 80.17 73.53 72.61 

Mean ± S.E 89.22 ± 0.79 85.98 ± 1.05 87.2 ± 1.08 

t-Test (p)  0.0183 0.1370 

t-Test (h)  1 0 
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performed the best for all the subjects as shown in Table 5. Thus, it was selected for 

vigilance detection in all locomotion state in this study. As the purpose of the study was 

to detect vigilance level during walking compared to the seated state, we used 

classification accuracy as the matric for evaluation though efficiency in respect of 

algorithm complexity and time cost is also important. To get an essence of these matrics, 

we calculated the execution time of the GBT to classify a subject’s vigilance level. It took 

22.56s to complete the classification of subject 1’s dataset. 

All the classification accuracies from all the datasets are presented in Table 6. For 

seated state datasets, the mean classification accuracy across all subjects is 89.22%, with 

a standard error of 0.79%. For the walking datasets, the mean classification accuracy was 

85.98% with 1.05% standard error, whereas it improved to 87.20% with 1.08% standard 

error while motion artifacts removal was applied on the fNIRS signals.  

The highest classification accuracy for the seated dataset resulted in subject 2 which 

was 92.44% and, for the walking dataset, it resulted in subject 7 which was 92.43% and 

92.01% for the case of with and without artifacts removal respectively on walking state 

fNIRS signals. 

Regarding the statistical analysis, a two-sample t-test was used to test the statistical 

significance of the differences in the mean classification accuracies for each walking state 

to the seated state. The t-test hypotheses testing decisions indicated that the mean 

classification accuracy of the walking state was statistically different from the mean 

classification accuracy of the seated state, while no artifacts removal was applied to the 

walking state dataset. This phenomenon is presented by the significance-link with the star 

in Figure 15. On the other hand, the classification accuracy of the walking state dataset 
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while the artifacts were removed is statistically comparable to the seated state cognitive 

workload classification accuracy although the difference in the mean accuracy is low. 

In the last few decades, fNIRS has been used to detect the neural activity of the human 

brain in various situations such as cognitive tasks [86], limb movement [145], functional 

motor activity [146], [147] and so on [80], [88], [148]. In the advent of the use of fNIRS 

for brain imaging, the researchers focused on the comparison of this modality with other 

modality of brain imaging [149], [150]. In these comparisons, the metric of interest was 

the signal waveform correspondence towards the cognitive or non-cognitive activity. To 

get the hypothesized outcomes in these studies, the factors distorting the waveforms in 

 
Figure 15. Mean accuracy of classifications for seated state, walking state and walking state with artifact removal. 

The Standard errors of the mean classification accuracies are presented by the errorbars. The classification 

accuracies mean whose differences are statistically significant, are presented by the significance-link with the star. 
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those studies are human resting-state physiological variables, such as heart rate, breathing 

rates and Mayer wave, which are mentioned earlier. A lot of researches focusing on the 

physiological interferences on fNIRS helped in making it widely accepted to use very 

low-frequency bandpass to mitigate this issue [151], [152].  

This generic methodology of fNIRS signal interference removal, whose basis is the 

non-movement state of the subject, has been relied on even when the studies involved 

human walking-related fNIRS studies. For instance, brain activation detection during 

walking by Mirelman et al. [132], attention-demanding locomotion study by Holtzer et al. 

[137], [138], hemodynamic of gait kinematics and PFC activation by Lin et al. [129], and 

so on. However, in this study, we have seen that the fNIRS signals get heavily distorted 

by the movement artifacts, which is apparent from Figure 14. Figure 14 depicts that 

motion artifacts distort the signal at 1-back signals by 3 to 7 μmol approximately. In 

contrast, the 2-back signals were distorted by only 1 to 3 μmol. The uncertainty due to 

this distortion of the signal resulted in the outcome of this study, where we have seen that 

the classification accuracy of the walking state vigilance when this distortion is not 

corrected, is lower than the classification accuracy of the vigilance for the seated state 

depicted in Table 6. 

As the technological advancement enhancing the use of fNIRS from the human 

sedentary state to the mobile state, the motion-related challenge in fNIRS signal 

processing needs special attention. The main challenge imposed by motion in the fNIRS 

signal is the unknow stationarity of the impact of the motions on the fNIRS signals [64]. 

The low-frequency domain-specific usable information-carrying property of this modality 

imposes additional difficulty in separating the accurate hemodynamic signal from the 
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detected fNIRS signals when the motion impacts are present in the signal. In this regard, 

it is known that the motion artifacts impact the Optode of the fNIRS system and alter the 

interfacing of the Optode to the human skin [47]. In our previous study, we showed that 

this alteration of the interfacing of the Optode to the skin can best be captured using 

sensors specific to motion artifacts, and a more accurate motion signal resulted in the 

better model to estimate the motion artifacts in the fNIRS signal more accurately. 

As the leading player corrupting the fNIRS signal during walking is the motion 

artifacts, it was necessary to investigate, for better usability of fNIRS modality, how this 

factor affecting the classification accuracy of the vigilance in walking state compared to a 

ground truth state where this player is not present which is the seated state. The key 

challenge of this comparison is that minimization of the variability arises from 

experimental design such as tasks, responses, task implementation, fNIRS system 

constrain and so on. To minimize variability, arise from these factors, we strictly 

maintain the same experimental procedure in both the seated and walking state and the 

only difference in these two states was walking. In this regard, a question might come 

why we didn’t choose the standing instead of seated as the ground truth state. Some 

previous studies showed that maintaining balance during standing also required cognitive 

resources and this effort to maintain balance is also part of walking[153], [154]. 

Moreover, in this experiment, the signal processing pipeline and the vigilance 

classification framework has been followed precisely the same in both seated and 

walking state. The vigilance classification accuracy of the seated and walking state in this 

study reveals that the classification accuracies of these states are very close in number, 
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though the walking state vigilance classification is lower than the seated state 

classification accuracy when no artifacts removal is applied on the walking state signals.  

Although the difference in these two mean classification accuracies are small, the 

statistical test analysis depicts that the distributions of the classification accuracies are 

significantly different, which is also denoted by the star in Figure 15. Thus, the motion 

artifacts in walking state fNIRS need special treatment to get the appropriate insight from 

the fNIRS signals. On the other hand, the mean classification accuracy of the walking 

state fNIRS signal improved by minimal amount when motion artifacts removal applied 

on the signal; however, it dramatically improves the distribution of the classification 

accuracies. Thus, the mean classification accuracies of the walking state vigilance get 

statistically comparable to the seated state when the motion artifacts were removed from 

the fNIRS signal [155]. 

5.5 Conclusions 

Vigilance is one of the most vital cognitive functions carried out by the human brain. 

Among all the state-of-the-art modalities of human brain sensing, fNIRS is one of the 

most suitable modalities for vigilance detection in ubiquitous human states such as seated 

as well as walking. However, the motion artifacts were limiting the use of fNIRS 

modality in the detection of human vigilance only to the sedentary state. In this regard, 

there are some attempts in taking fNIRS modality to detect human cognitive state during 

walking; however, the impact of motion artifacts on the fNIRS signal was not treated 

properly. Whereas, in this study, the quantitative and qualitative result reveals that 

motion artifacts greatly distort the fNIRS signal. This distortion of the fNIRS signal in 

the walking state significantly lowers the vigilance detection accuracy compared to the 



68 

 

vigilance detection from seated state fNIRS signals as ground-choose. The methodology 

presented in this article for the motion sensor signal fusion with the fNIRS optical signal 

to estimate more accurate hemodynamic signals can result in better detection of vigilance 

during gait. 
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