Florida International University FIU Digital Commons

FIU Electronic Theses and Dissertations

University Graduate School

3-20-2020

Volcanic History of the Izu Bonin Mariana Arc Prior to the First Arc Rift from Volcaniclastic Sediments of DSDP Site 296 and IODP Site 1438

Eshita Samajpati Florida International University, esama005@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Geochemistry Commons, Geology Commons, and the Volcanology Commons

Recommended Citation

Samajpati, Eshita, "Volcanic History of the Izu Bonin Mariana Arc Prior to the First Arc Rift from Volcaniclastic Sediments of DSDP Site 296 and IODP Site 1438" (2020). *FIU Electronic Theses and Dissertations*. 4408.

https://digitalcommons.fiu.edu/etd/4408

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

VOLCANIC HISTORY OF THE IZU BONIN MARIANA ARC PRIOR TO THE FIRST ARC RIFT FROM VOLCANICLASTIC SEDIMENTS OF DSDP SITE 296 AND IODP SITE 1438

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

EARTH SYSTEMS SCIENCE

by

Eshita Samajpati

2020

To: Dean Michael R. Heithaus College of Arts, Sciences and Education

This dissertation, written by Eshita Samajpati, and entitled Volcanic History of the Izu Bonin Mariana Arc Prior to the First Arc Rift from Volcaniclastic Sediments of DSDP Site 296 and IODP Site 1438, having been approved in respect to style and intellectual content, is referred to you for judgement.

We have read this dissertation and recommend that it be approved.

Andrew MacFarlane

Florentin Maurrasse

Grenville Draper

Jose Almirall

Rosemary Hickey-Vargas, Major Professor

Date of Defense: March 20, 2020

The dissertation of Eshita Samajpati is approved.

Dean Michael R. Heithaus College of Arts, Sciences and Education

Andres G. Gil Vice President for Research and Economic Development And Dean of the University Graduate School

Florida International University, 2020

© Copyright 2020 by Eshita Samajpati

All rights reserved.

DEDICATION

I dedicate my dissertation thesis to my parents for all their sacrifices and hard work in providing me the best and to my advisor, Dr. Rosemary Hickey-Vargas, for all the support and help during this journey.

ACKNOWLEDGMENTS

I would like to thank my Advisor, Dr. Rosemary Hickey-Vargas, for mentoring me these past years as a doctoral student. Her guidance throughout these years has made me grow as a person and become a better researcher. Her positive criticism has always pushed me in the right direction by motivating me to achieve my goals. She has always been supportive throughout this journey and helped me in both academic and non-academic matters. I am grateful to have her as my mentor and major professor.

I would also like to thank all my committee members Dr. Florentin Maurasse, Dr. Jose Almirall, Dr. Andrew Macfarlane, and Dr. Grenville Draper for their guidance throughout the dissertation process. They have always helped me in answering my doubts and questions by giving invaluable suggestions and ideas.

I would like to thank my friends in the Earth and Environment department, Kimberly Beck, Maria Gudnitz, Vanessa Londono, and Jander Socorro for their support, encouragement and help in my research. The only friends in Miami who understand what I study, these people helped me keep my sanity.

I would like to thank the Earth and Environment department and the people, especially Gail Excell and her help throughout these years. Thomas Beasley for his help in my analysis and for teaching me how to use the instruments. I am also thankful to the Graduate School for awarding me the dissertation year fellowship, which gave me valuable time to finish my thesis. I am also thankful to the NSF grants to Dr. Rosemary Hickey-Vargas, OCE 1537786, which funded my analysis for this research and my research assistantship for a year and OCE 0931440 which allowed my advisor to get the core samples from Site 296 from the repository.

Lastly, I would like to thank my family, my mom Dipti Kana Samajpati and my dad Rathin Samajpati for believing in me and letting me come so far to pursue my dreams. My brother, Rajarshi Samajpati, and my cousins for keeping me updated on the family fun that I am missing out. My boyfriend, Pushkar Bharambe, for motivating me to finish my thesis without giving any excuses. And my close friends, Tiyash Parira, Charles Rodrigues, Pritesh Pardeshi, and Kusha Kapoor for bearing with me throughout these years and helping me whenever I need. And lastly, the fur babies, Zara and Skye, for all their cuddles and help in de-stressing.

ABSTRACT OF THE DISSERTATION

VOLCANIC HISTORY OF THE IZU BONIN MARIANA ARC PRIOR TO THE FIRST ARC RIFT FROM VOLCANICLASTIC SEDIMENTS OF DSDP SITE 296 AND IODP SITE 1438

by

Eshita Samajpati

Florida International University, 2020

Miami, Florida

Professor Rosemary Hickey-Vargas, Major Professor

The Izu-Bonin Mariana (IBM) island arc in the western Pacific basin is a volcanic chain formed by subduction of the Pacific lithospheric plate beneath the Philippine Sea plate. Worldwide, subduction causes high-magnitude earthquakes and explosive volcanic activity in addition to forming the Earth's continental crust and major ore deposits, thus its understanding is important to human concerns. In the IBM, volcanic activity spans 50 million years to the present and the arc has undergone extension and periodic rifting, preserving remnants of its early history. The Kyushu Palau ridge (KPR), an inactive Oligocene remnant of the rifted IBM system, is a unique window to understanding the early subduction processes. In this work, contemporaneous volcaniclastic sediments drilled at Deep Sea Drilling Project (DSDP) Site 296, located in a basin at the crest of the northern KPR, and volcaniclastic sediments drilled at IODP (International Ocean Discovery Program) Site 1438, in the nearby Amami-Sankaku basin, were studied and compared to understand the early volcanic history of the IBM, from the early Oligocene to arc rifting and opening of the Shikoku basin in the early Miocene. Grains of feldspar, pyroxene and amphibole, together with enclosed melt inclusions, glass grains and lithic fragments were separated from the sediment at intervals along the drilled cores and analyzed for major and trace elements and radiogenic isotopes. In-situ analysis on minerals, glass grains and meltinclusions was performed using electron probe microanalysis (EPMA) and laser-ablation inductively coupled plasma mass-spectrometry (LA-ICPMS). Lithic fragments were dissolved and analyzed for elemental abundances by solution introduction ICP-MS and for isotopes by multi-collector-ICP-MS. Mineral compositions were used to calculate equilibrium magma compositions using major element matched partition coefficients, to compare with glass grains and lithic fragments. Findings show that magma compositions of the arc became progressively more water-rich with time, with periods of explosive eruption evidenced by pumice layers, stabilization of amphibole and Ca-rich plagioclase feldspar. Interspersed incompatible element-depleted mafic magmas at intermediate depths in the Site 296 core probably represent the initial intrusions associated with arc rifting which may have begun contemporaneously with arc volcanism.

CHAPTER P	AGE
1 INTRODUCTION	1
1.1 Subduction Zones	1
1.2 Izu-Bonin Mariana Arc	2
1.3 Main Objective	6
1.4 Study Locations	7
1.5 Hypothesis	11
1.6 Overview of Methods for this Study	12
1.7 Dissertation Structure	16
1.8 References	16
2 GEOCHEMISTRY OF VOLCANIC GLASS FROM OLIGOCENE DETRITAD SEDIMENTS AT DSDP SITE 296, KYUSHU PALAU RIDGE: INTERPRETING THE MAGMATIC EVOLUTION OF THE EARLY NORTHERN IZU BONIN	L
MARIANA ISLAND ARC	24
2.1 Introduction	25
2.2 Background	29
2.3 Methodology	30
2.3.1 Core description	30
2.3.2 Analytical Techniques	32
2.4 Results	38
2.4.1 Major Oxides	38
2.4.2 Trace Elements	41
2.4.3 Comparison with Site 782 Glass	43
2.4.4 Comparison with Volcanic Rock fragments	46
2.4.5 Comparison with Plutonic Rocks	46
2.5 Discussion	47
2.5.1 Interpretation of diverse igneous materials from the northernmost early IBM an	c.47
2.5.1.1 Liquid compositions	47
2.5.1.2 Method of recovery and time constraints	49
2.5.1.3 Unequal record of mafic and felsic and intrusive and extrusive parts of volcar systems.	nic 50

TABLE OF CONTENTS

2.5.1.4 Sample recovery and alteration	
2.5.2 Inferences about the Evolution of the Oligocene IBM Arc	
2.5.2.1 Evidence for diverse parental magmas	52
2.5.2.2 Differentiation processes	54
2.5.2.3 Volcanic/plutonic relationships	56
2.5.3 Geochemical Evolution of Magmas in KPR Segment 1	
2.5.3.1 Mantle Fertility and Subduction inputs	
2.5.3.2 Temporal variations in Oligocene	61
2.6 Conclusions	
2.7 Acknowledgments	
2.8 References	

3 EARLY MAGMATIC HISTORY OF THE IBM ARC INFERRED FROM VOLCANIC MINERALS AND MELT INCLUSIONS FROM EARLY– LATE OLIGOCENE DSDP SITE 296: A MINERAL-MELT PARTITION APPROACH.

OLIGOCENE DSDP SITE 296: A MINERAL-MELT PARTITION APPROACH 7	3
3.1 Introduction	4
3.2 Method	6
3.2.1 Core Samples	6
3.2.1 Analytical Technique	7
3.3 Results	0
3.3.1 Feldspars	0
3.3.2 Pyroxenes	1
3.3.3 Amphibole	3
3.3.4 Melt Inclusions	5
3.4 Discussion	6
3.4.1 New Findings from Mafic Minerals at Site 296	6
3.4.2 Clinopyroxenes	8
3.4.3 Amphiboles	3
3.4.4 Magma Compositions Recorded at Site 296	9
3.4.5 Temporal changes and Oligocene Rifting 104	4
3.5 Conclusions	5
3.6 Acknowledgments	6
3.7 References	7

3.8 Appendices	107
4 MAGMATIC EVOLUTION OF THE EARLY NORTHERN IZU-BONIN MARIANA ARC FROM SITE 1438 AND SITE 296 ROCKS AND MINERALS: COMPARATIVE STUDY	A 182
4.1 Introduction	183
4.2 Methods	185
4.2.1 Sample description	185
4.2.2 Analytical methods	187
4.3 Results	189
4.3.1 Pyroxene	189
4.3.2 Amphibole	191
4.3.3 Glass and Melt Inclusions	192
4.3.4 Lithic Fragments (Clasts) from Sites 1438 and 296	194
4.3.5 Mafic minerals of Site 1438	195
4.4 Discussion	197
4.4.1 Comparison of Site 296 and Site 1438	197
4.4.1.1 Location and physical characteristics	197
4.4.1.2 Magma compositions	199
4.4.3 Mantle Geochemistry	201
4.4.3 Temporal Variation and Correlation of the Sites	205
4.5 Conclusion	208
4.6 Acknowledgment	209
4.7 References	210
4.8 Appendices	210
5 CONCLUSIONS	257
5.1 Model for Oligocene Evolution and Rifting based on Site 296 and Site 1438	257
5.2 Implication for the Evolutionary History of Izu Bonin arc	260
5.3 Future Research Direction	262
APPENDIX I	263
VITA	279

LIST OF FIGURES

GURE PAGE	FIGURE
gure 1-1 Schematic diagram of a subduction zone and the different components. tern, 2002)	Figure 1-1 Scho (Stern, 2002)
gure 1-2 (a) Tectonic evolution of the IBM (Stern et al., 2003); (b) paleo- construction of the Philippine sea plate from Hall (2002)	Figure 1-2 (a) Treconstruction
gure 1-3 Map showing the location of Site 296 and Site 1438 (Arculus et al., 2015) 8	Figure 1-3 Map
gure 1-4 Seismic reflection profile across the KPR, near Site 296. Red line indicates the 296. (Ingle et al., 1975)	Figure 1-4 Seis Site 296. (Ingle
gure 1-5 Seismic reflection image showing location of Site 1438, on the east of it lies e Kyushu Palau ridge (Arculus et al., 2015)	Figure 1-5 Seis the Kyushu Pal
gure 1-6 Profile line from Site 296 to Site 1438 11	Figure 1-6 Prof
gure 2-1 (a) Map of the Izu-Bonin Mariana (IBM) Arc region showing remnant arcs d back arc basins. The first remnant arc, the Kyushu Palau Ridge (KPR) has been vided into four segments after Ishizuka et al. (2011b); this study focuses on the first gment which is shown as an inset. (b) Close up map of Segment 1 of the KPR and e northern Izu Bonin arc showing the location of DSDP Site 296 and previously idied locations in that area. Green filled circles show study locations of Haraguchi et (2003, 2012) and purple filled circles are locations of rocks described in Ishizuka et (2011b)	Figure 2-1 (a) M and back arc ba divided into for segment which the northern Izu studied location al. (2003, 2012 al. (2011b)
gure 2-2 Simplified history of the IBM arc system modified after Stern et al. (2003). aded areas are magmatically inactive, and cross-hatched areas are magmatically tive. The approximate time period or stage of geochemical evolution studied in this per is shown in panel C	Figure 2-2 Sim Shaded areas an active. The app paper is shown
gure 2-3 The stratigraphic column of DSDP Site 296 showing the lithological Unit 2, d 1G through 1A and their biostratigraphic ages. The glass shards and the clasts in s work were sampled from Unit 2 and the lower part of Unit 1G	Figure 2-3 The and 1G through this work were
gure 2-4 Figure 2-4 Plot of depth vs. SiO2 content of glass shards in volcaniclastic diments of DSDP Site 296	Figure 2-4 Figure 2-4 Figure 3 Figure 2-4 Figure 3 Figure
gure 2-5 (a-h) Harker plots showing the variation of major oxides with SiO2 for Site 6 glass, clasts, and previously studied volcanic materials from KPR Segment 1 and analog in the Izu-Bonin forearc (Straub, 2003, 2010; Bryant et al., 2003; Ishizuka al., 2011b; Haraguchi et al., 2003, 2012). Fields for the K2O-SiO2 plot are after Le aitre et al. (1998). Vectors on the plot show the effect of mineral crystallization (see	Figure 2-5 (a-h 296 glass, clast its analog in the et al., 2011b; H Maitre et al. (19

discussion). Data points are color-coded, with different symbols for different materials and locations
Figure 2-6 Primitive mantle normalized elemental abundances for glass shards and lithic clasts from DSDP Site 296: a) basalt and basaltic-andesite; (b) andesite; (c) dacite and (d) rhyolite. Normalizing values from Sun and McDonough (1989)
 Figure 2-7 (a) Primitive mantle normalized elemental abundances for tephra and glass from ODP Site 782A, data from Straub et al., 2010 and Bryant et al., 2003. (b) Primitive mantle normalized elemental abundances for Segment 1 volcanic rocks from Ishizuka et al., 2011b. Shaded area represents the compositional range of Site 296 glasses and clasts (c) Primitive mantle normalized elemental abundances for tonalites from Haraguchi et al., 2003. (d) Primitive mantle normalized elemental abundances for tonalized elemental abundances for volcanic rocks from Haraguchi et al., 2012. Dark green colors represent the rocks from Nichinan seamout.
Figure 2-8 (a) Plot of Ba vs. Nb ; (b) Plot of La vs. Th and (c) Plot of Ba vs. Th for Site 296 and samples cited in Fig. 2-7 caption
Figure 2-9 (a) Logarithmic plot of Th/Yb vs. Nb/Yb showing depleted and enriched MORB fields (Pearce and Peate, 1995). (b) Ba/La vs. (La/Sm)N plot for all samples. (c) Ba/Th vs. (La/Sm)N plot for the mafic glasses and volcanic rocks
Figure 2-10 (a) Olivine-Diopside-Quartz and (b) Olivine-Plagioclase-Quartz pseudo ternary projections showing glasses and rocks. The 1-atmosphere multiple saturation curve after Grove and Baker (1984) is shown on the Ol-Di-Q plot. The volcanic rocks are from Haraguchi et al. (2012) and Ishizuka et al. (2011b)
Figure 2-11 Schematic diagram of the origin of volcanic and plutonic materials discussed. The top panel (a) shows the active first arc prior to rifting with the drill sites 296 and 782 denoted by stars. The bottom panel (b) depicts the present-day geological setting with the subsided and inactive KPR stranded by rifting
Figure 2-12 (a) Plot of Zr/Sm vs. SiO2 showing a slight increase in the ratio with differentiation. (b) Plot of La/Nb vs. SiO2 showing no variation in the ratio with differentiation. (c) Plot of Th/La vs. SiO2, showing a very slight increase to no variation with differentiation. Symbols as in Figure 2-5 caption
Figure 2-13 (a) Plot of La/Yb vs. SiO2 showing the trends of garnet and amphibole fractionation with differentiation of magma (Davidson et al., 2007). La/Yb increases during the fractionation of both garnet and amphibole with a greater increase in the ratio for garnet compared with amphibole. (b) Plot of Dy/Yb vs. SiO2 showing the trends of garnet and amphibole fractionation with differentiation (Davidson et al., 2007). Dy/Yb increases with fractionation of garnet and decreases with amphibole fractionation. The dashed horizontal line shows the primitive mantle ratio from Sun and McDonough (1989). Symbols as in Figure 2-5 caption

Figure 2-14 Primitive mantle normalized spider plots of tonalites and dacite glasses from Site 296 and 782, which show complementary features. Tonalites are shown in grey, Site 296 glasses in blue and Site 782 in orange
Figure 2-15 Plot of (La/Sm)N vs. age in Ma for tephra, volcanic, and plutonic rocks from KPR Segment 1. Some older Eocene Site 782 tephras are also plotted. The blue squares are the range of (La/Sm)n for glass shards and clasts from DSDP Site 296 using their early to late Oligocene depositional age. Symbols as in Figure 2-5 caption 60
Figure 3-1 (a) Map of the present day Izu-Bonin Mariana arc and features of the Philippine Sea plate. The Kyushu Palau ridge has been divided into 4 segments as per Ishizuka et al. (2011b). Red star shows the location of DSDP Site 296. (b) Lithostratigraphic sequence as defined by the Shipboard Party, DSDP Leg 31 (Ingle et al, 1975).
Figure 3-2 Depth vs. cumulative frequency of compositional range of plagioclase at different depths
Figure 3-3 (a) Ternary plot showing the composition of pyroxenes at Site 296 (b-d) Tectonic discrimination diagram based on clinopyroxene composition from Leterrier et al. (1982). Elements are expressed in cationic value from the structural formula of clinopyroxenes. Orange ones in c and d are the unusually high Mg# clinopyroxenes 82
Figure 3-4 Primitive mantle normalized multi-elemental composition of some mafic clinopyroxenes. Normalizing values after Sun and McDonough (1989). Clinopyroxene with $Mg\# > 85$ is shown in orange; $Mg\#$ 80-85 is shown in blue and $Mg\#$ less than 80 is shown in yellow.
Figure 3-5 (a)Site 296 amphibole compositions plotted using cationic values based on 23 Oxygens after Leake et al. (1997). (b) Primitive mantle normalized trace element abundances in amphiboles; blue are magnesiohastingsites, yellow are edenites and the orange ones are magnesiohornblendes
Figure 3-6 (a) K ₂ O vs SiO ₂ showing Site 296 melt inclusions in clinopyroxene compared with detrital glass shards from Site 296. (b) Cationic Fe/Mg ratios for melt inclusions and host clinopyroxenes. Kd line for cpxs/melt is 0.27 after Putirka et al. (2008). Clinopyroxene Fe/Mg calculated from Site 296 glass shards and melt Fe/Mg calculated from Site 296 clinopyroxenes are plotted on the equilibrium line. The melt inclusion which plots on the equilibrium line is of a basaltic composition. (c) Primitive mantle normalized trace element compositions of melt inclusions from clinopyroxenes (orange) and orthopyroxenes (purple).
Figure 3-7 Al2O3 vs Mg# for Site 296 clinopyroxenes
Figure 3-8 Comparison of clinopyroxene/melt partition coefficients from published

data and partition coefficients calculated from melt inclusions and host cpxs from Site

296. For basaltic melts:-Rb-Klemme et al. (2002); Sr, Sm-Johnson (1994); Ce, Y-Jenner et al. (1994); Ba, Zr, Hf- Hart and Dunn (1993); Th, U, La, Nd, Eu, Dy, Er, Yb, Lu- Hauri et al. (1994); Gd-Hack et al. (1994); Pb-Beattie (1993). For basaltic- andesite melts -Rb-Philpotts and Schnetzler (1970); Sr, Y, Zr, La, Ce, Nd, Sm, Dy, Er, Yb- Ronov and Yaroshevskiy (1976); Ba- Hart and Brooks (1974); Gd- Gallahan and Nielson (1992); Hf, Th, U- Dostal et al. (1983). For andesitic melts: La, Sm, Dy, Yb- Nicholls and Harris (1980); Zr- Watson and Ryerson (1986); Rb, Pb, Sr, Y-Ewart and Griffin (1994); Ba, Nd- Luhr and Carmichael (1980); Th, Ce, Hf - Bacon and Druitt (1988) ; Er-Schnetzler and Philpotts (1970)
Figure 3-9 Primitive mantle normalized trace element abundances in melts calculated from Site 296 clinopyroxenes using cpx-basalt MI partition coefficients. Color-coded as figure 3-4. Grey shaded area at the back represents the trace element abundances of Site 296 glass shards. A high Mg andesite from Bonin Ridge Escarpment is shown in dark grey (Ishizuka et al., 2006)
Figure 3-10 (a) Primitive normalized trace element abundances in melts calculated from amphiboles using amphibole/melt partition coefficients from Nandedkar et al. (2016). The shaded field represents the trace element abundances of Site 296 glass shards. (b) Calculated melt compositions using the method of Humphreys et al. (2019). Y and Ho values produced anomalous elevated and depleted peaks and hence were removed
Figure 3-11 Plot of Al/Si and Fe/Mg of Site 296 glass shards compared with melt compositions calculated from amphibole compositions. Open symbols are for calculated melts and closed symbols are for the glass shards
Figure 3-12 Primitive mantle normalized REE plot for analyzed and calculated melts for all materials. Compositional ranges inferred from clinopyroxenes, amphiboles and analyzed melt inclusions are shown as shaded fields
Figure 3-13 Logarithmic plot of Th/Yb vs Nb/Yb for melt composition, both analyzed and inferred from mafic minerals; also includes high Mg andesite data from the Bonin Ridge Escarpment (BRE)
Figure 3-14 From left to right, plot showing the depth vs Mg# of clinopyroxenes with their magmatic affinity; SiO_2 content of melt in equilibrium with amphibole; La/Sm _N of mafic to intermediate glass shards and calculated melts from minerals; and Nb/Yb of mafic to intermediate glass shards and calculated melts
Figure 4-1Map showing the location of Site 296 and Site 1438 on KPR 184
Figure 4-2 Lithostratigraphic column of Sites 296 and 1438, red dashed lines correlate to similar biostratigraphic ages and the studied section
Figure 4-3 (a) Mg# vs. Al ₂ O ₃ (wt%) of clinopyroxenes of Site 1438, (b), & (c)

Tectonic discrimination diagram for clinopyroxenes from Leterrier et al. (1982). Elements are expressed in atoms per formula unit. The shaded region in the background shows the composition of Site 296 clinopyroxenes
Figure 4-4 (a) Primitive mantle normalized trace element concentration of Site 1438 cpxs. Normalizing values after Sun and Mcdonough (1989) (b) Primitive mantle normalized trace element concentrations of Site 1438 amphiboles. Shaded regions are the composition of Site 296 minerals
Figure 4-5 (a), (b), & (c) SiO ₂ vs. other oxides (in wt%) for glass, melt inclusion and clasts from Site 296 and Site 1438. Fields for K ₂ O are from Peccerillo and Taylor (1976)
Figure 4-6 (a)Primitive mantle normalized trace element concentration of Site 1438 glass (orange), MI (blue) and clast (purple) (b) Primitive mantle normalized trace element concentration of new Site 296 glass (orange) and clast (purple). Shaded background is the composition of previously analyzed glass and clast composition from Site 296
Figure 4-7 εNd vs. εHf plot for Site 296 and Site 1438 clast. CHUR values used to calculate the ε values are from Bouvier et al. (2008), mantle line from Pearce et al. (1999)
Figure 4-8 (a) Primitive mantle normalized calculated melt composition in equilibrium with mafic clinopyroxene from Site 1438 (b) Primitive mantle normalized calculated melt composition in equilibrium with amphiboles from Site 1438, blue are andesite, yellow are dacite and orange are rhyolite melt composition in equilibrium. The shaded background represents the calculated melt compositions from Site 296 minerals
Figure 4-9 (a) SiO ₂ vs FeOt/MgO plot distinguishing the tholeiitic (Th) and calc- alkaline (Ca) fields (Miyashiro, 1974) for melt compositions represented by glass, MI and clasts from Site 296 and Site 1438 (b) Logarithmic plot of Th/Yb and Nb/Yb ratios for melts (c) Ba/Yb vs Nb/Yb plot for the melt compositions
Figure 4-10 (a) Initial ¹⁴³ Nd/ ¹⁴⁴ Nd and ¹⁷⁶ Hf/ ¹⁷⁷ Hf isotope ratio evolution of IBM arc from 49 m.y to Neogene (b) Mixing curves between the mantle composition represented by Site 1438 basement, Pacific Ocean sediments, clay (CL), chert (CH) and volcanic sediments (V) and altered ocean crust (AOC)
Figure 4-11 (a)- (d) Trace element ratio vs. ¹⁴³ Nd/ ¹⁴⁴ Nd for mafic and intermediate clasts of Site 1438 and Site 296. Blue diamonds are also Site 296 clasts. Also shown are data from Laxton (2016) from same depth interval
Figure 4-12 (a) La/SmN vs. depth (mbsf) of Site 296 mafic and intermediate melt compositions (b) La/SmN vs. depth of site 1438 mafic and intermediate melt

compositions (c) Nb/Yb ratio vs. depth of Site 296 melt compositions (d) Nb/Yb rati vs. depth of Site 1438 melt compositions. Both analyzed and calculated melt are shown.	o 207
Figure 5-1 Stratigraphic section studied from both Sites 296 and 1438 and the changes in mineralogy and geochemistry observed	259
Figure 5-2 Schematic diagram showing the possible magma evolution of the northernmost IBM prior to rifting	260

ABBREVIATIONS AND ACRONYMS

%	Percent
0	Degrees
°C	Degrees Celsius
Al	Aluminum
Al ₂ O ₃	Aluminium Oxide
Al^{T}	Tetrahedral Aluminium
$\mathrm{Al}^{\mathrm{VI}}$	M site Aluminium
An	Anorthite
Ar	Argon
Ba	Barium
BHVO	Basalt, Hawaiian volcanic observatory
cm	Centimeter
em	
Ca	Calcium
Ca CaO	Calcium Calcium Oxide
Ca CaO Ce	Calcium Calcium Oxide Cerium
Ca CaO Ce CHUR	Calcium Calcium Oxide Cerium Chondritic Uniform Reservoir
Ca CaO Ce CHUR Cpx	Calcium Calcium Oxide Cerium Chondritic Uniform Reservoir Clinopyroxene
Ca CaO Ce CHUR Cpx Cr	Calcium Oxide Calcium Oxide Cerium Chondritic Uniform Reservoir Clinopyroxene Chromium
Ca CaO Ce CHUR Cpx Cr Cr ₂ O ₃	Calcium Calcium Oxide Cerium Chondritic Uniform Reservoir Clinopyroxene Chromium (III) Oxide
Ca CaO Ce CHUR Cpx Cr Cr ₂ O ₃ Cs	Calcium Oxide Calcium Oxide Cerium Chondritic Uniform Reservoir Clinopyroxene Chromium Chromium (III) Oxide Cesium
Ca CaO Ce CHUR Cpx Cr Cr2O3 Cs DI	Calcium Oxide Calcium Oxide Cerium Chondritic Uniform Reservoir Clinopyroxene Chromium Chromium (III) Oxide Cesium Deionized water

EPMA	Electron probe micro-analyzer
Er	Erbium
En	Enstatite
Eu	Europium
Fe	Iron
FeO	Iron (II) oxide
Fig	Figure
Gd	Gadolinium
HCl	Hydrochloric acid
Hf	Hafnium
HFSE	High field strength element
Но	Holmium
HREE	Heavy rare earth elements
IBM	Izu Bonin Mariana
In	Indium
K	Potassium
K ₂ O	Potassium oxide
Kbar	Kilobar
Kd	Partition coefficient
km	Kilometers
KPR	Kyushu Palau Ridge
La	Lanthanum
La/Sm _N	Normalized ratio of lanthanum over samarium

La/Yb_N	Normalized ratio of lanthanum over ytterbium	
LA-ICP-MS	Laser ablation inductively coupled plasma mass spectrometry	
LILE	Large ion lithophile element	
LREE	Light rare earth elements	
Lu	Lutetium	
m	Meter	
Ma	Mega annum	
Mbsf	Meters below sea floor	
Mg	Magnesium	
Mg#	Magnesium number	
MgO	Magnesium oxide	
MI	Melt inclusion	
MnO	Manganese oxide	
MORB	Mid oceanic ridge basalt	
MREE	Middle rare earth elements	
m.y.	Millions of years	
Na	Sodium	
NaO	Sodium oxide	
Nb	Niobium	
Nd	Neodymium	
Ni	Nickel	
NIST	National Institute of Standards and Technology	
Opx	Orthopyroxene	

P ₂ O ₅	Phosphorus pentoxide	
Р	Pressure	
Pb	Lead	
Pr	Praseodymium	
Pm	Promethium	
PM	Primitive mantle	
ppm	Parts per million	
Rb	Rubidium	
REE	Rare earth elements	
SEM-EDS	Scanning electron microscope with energy dispersive system	
Si	Silicon	
SiO ₂	Silicon dioxide	
Sm	Samarium	
Sr	Strontium	
Т	Temperature	
Та	Tantalum	
Tb	Terbium	
Th	Thorium	
Ti	Titanium	
TiO ₂	Titanium dioxide	
U	Uranium	
USGS	United States Geological Survey	
V	Vanadium	

Wo	Wollastonite
wt%	Weight percent
Y	Yttrium
Yb	Ytterbium
Zr	Zircon

1 INTRODUCTION

1.1 Subduction Zones

Convergent margins are the regions on the earth's surface where two lithospheric plates move towards each other. In the case of a convergence involving two oceanic lithospheres, one of the lithospheres will sink into the mantle because of its high density, forming a subduction zone (Fig. 1-1). Intra-oceanic arcs are an example of subduction zone systems where both the lithospheric plates converging is oceanic. During subduction, the downgoing oceanic lithosphere undergoes metamorphism, releasing water from hydrous minerals. The released water acts like a flux in melting the overlying rocks, forming volcanic chains along the length where subduction is occurring. Subduction has led to the growth of the continental crust, element recycling between the earth's surface to the interior, and is the driving force behind plate tectonics theory. Therefore, subduction and its related processes are critical phenomenons to understand what shapes our planet and how it evolves through time. Although we are quite familiar with what happens during subduction, there are still many questions yet to be answered. Many complexities are involved in the study of subduction zones, one of them being in most cases the initial volcanic records of an intra-oceanic arc remain buried and are challenging to study. The absence of initial records poses a challenge to understand how subduction initiates and how the arc system evolved to the current stage. The Izu Bonin Mariana (IBM) arc system in the West Pacific, is an example of an intra-oceanic arc which has been periodically rifted and its volcanic history from the initial to the active stage has been well exposed to be explored and understood.

Figure 1-1 Schematic diagram of a subduction zone and the different components. (Stern, 2002)

1.2 Izu-Bonin Mariana Arc

The Izu-Bonin Mariana (IBM) arc is formed due to the subduction of the older Pacific plate under the Philippine plate. The arc is undergoing extension, which is not a consequence of trench rollback. Instead, the trench is moving towards Eurasia and the extensional regime is maintained by the rapid convergence between the Eurasian and Philippine plate (Scholz and Campos, 1995). Due to extensional stress in the back-arc region, the volcanic chain is rifted apart where one part becomes a remnant arc, and the other half becomes the active arc. The tectonic evolution of the IBM system is well known. According to Bloomer et al. (1995) and Stern and Bloomer (1992), the IBM subduction zone began with the subsidence of old and dense lithosphere in the western Pacific at ~50 Ma (Fig 1-2a). During this time, the forearc was the site of magmatic activity with the eruption of forearc basalt (FABs) consisting of low K and mid-ocean ridge like characteristics (Reagan et al. 2010; Ishizuka et al., 2011a) along with boninite, low-K tholeiite, and low-K rhyodacite (Hickey and Frey, 1982; Stern et al., 1991; Taylor et al., 1994; Reagan et al., 2010).

After 5 Ma had passed, the active magmatic front was localized, forming the first mature arc. This marked the transition from lithospheric subsidence to subduction, which probably began around 43 Ma, due to a major change in Pacific plate motion (Fig 1-2b) from a northerly to a westerly direction (Richards and Lithgow-Bertollini, 1996). This retreat of magmatism allowed the forearc lithosphere to cool. Arc volcanism continued until at least 30 Ma when the arc was disrupted due to rifting to form the back-arc basins, Parece Vela Basin and Shikoku Basin (Taylor et al., 1992; Kobayashi et al., 1995). Parece Vela Basin and Shikoku Basin met at ~20 Ma, disrupting the arc and stranding the KPR as a remnant arc. The lack of systematic age variations of volcanic rock along the KPR indicates that rifting was initiated almost concurrently along the entire ridge, this means that the initiation of the Shikoku and Parece Vela Basins and isolation of the KPR as a remnant arc occurred at about the same time. This back-arc basin spreading stopped at ~15 Ma, simultaneously with the opening of the Japan Sea, causing the northernmost IBM arc to collide with Honshu beginning at ~15 Ma.

Arc magmatism was minimal or even absent from 25 to 15 Ma during the opening of the Shikoku Basin. A resurgence of arc volcanism began at ~17 Ma, slightly before the Shikoku Basin ceased spreading, and continued until ~3 Ma (Ishizuka et al., 1998, 2003b). A new episode of rifting of the southern IBM arc began at ~7 Ma, with seafloor spreading to form the Mariana Trough back-arc basin beginning ~3–4 Ma (Yamazaki and Stern, 1998). Current arc magmas in the Izu-Bonin section are low K and more depleted in incompatible elements than in the Mariana section where magmas are medium K and slightly more enriched (Taylor and Nesbitt, 1998; Ishizuka et al., 2003, 2008, 2011b). The evolution of the basins and remnant arcs in the Philippine Sea is said to be episodic (Karig, 1972). With new episodes of back-arc spreading and formation of a remnant arc, there is a period of almost no volcanism, which led Karig (1975) to conclude that marginal basins opened rapidly during the height of volcanic pulses along the associated arc system. He also proposed that any disruption in volcanism during back-arc spreading might be related to a physical separation of the near-vertical downgoing slab in the region of flexure (Kroenke and Scott, 1983), a period would then be required for the upper part of the subducting plate to reach a sufficient depth to produce magma.

Figure 1-2 (a) Tectonic evolution of the IBM (Stern et al., 2003); (b) paleo-reconstruction of the Philippine sea plate from Hall (2002)

1.3 Main Objective

The IBM system presents a remarkable opportunity to study subduction processes occurring at intraoceanic margins. Previous research has mainly focused on the IBM forearc and the magmatic evolution of the volcanic front through 50 Ma (Bloomer et al., 1995; Stern and Bloomer, 1992; Hickey and Frey, 1982; Stern et al., 1991; Taylor et al., 1994; Ishizuka et al., 1998, 2003b). Compared to the forearc, the rear-arc IBM magmatic history has not been studied thoroughly despite its importance in understanding crustal evolution. Examination of early arc records can delineate the chemical changes seen from the trench to back-arc region, the history of mantle depletion and enrichment during arc evolution, and intracrustal differentiation. The recent focus of studies has, therefore, now shifted to the early evolutionary history of the IBM system. Recent IODP expedition like Leg 350, was drilled in the Izu-Bonin back-arc region to understand the evolution after the formation of the Shikoku basin and the resurgence of arc volcanism. In contrast, Leg 351 was drilled in the Amami Sankaku basin to follow the pre- subduction history and the evolution of the first IBM arc before the rifting event.

The main objective of this study is to understand the magmatic evolution in the northernmost section of KPR leading up to the rifting event, which separated the KPR from the IBM arc. KPR, which represents the initial arc of the IBM system, is a key to understand the early evolutionary history of the IBM arc. Study sites include two drilled sites, DSDP Site 296 and IODP Site 1438, which contains the contemporaneous record of the Oligocene volcanic evolution of the Izu-Bonin arc. A study by Ishizuka et al. (2011b) divided the KPR into four segments based on inflections and geologic features intersecting the ridge. Segment 1 is the northernmost segment extending southward to the intersection of Daito

Ridge with KPR, and the rocks are mainly hornblende andesites. DSDP Site 296 and IODP Site 1438 both lie in segment 1, which corresponds to the early Izu-Bonin arc section before rifting. Thus, this study will add on to the knowledge of the early evolutionary history of the Izu-Bonin arc and interpret if any rifting related process may have affected the magma composition in terms of geochemistry or mineralogy.

1.4 Study Locations

The DSDP Site 296 (Fig. 1-3, 1-4, and 1-6) lies on a northwest west trending structural terrace on the northern part of the first remnant arc of the Izu-Bonin-Mariana, the Kyushu Palau Ridge (Ingle et al., 1975). It has records of volcanism, which date to the later part of the initial magmatic history, prior to the opening of the Parece Vela and Shikoku basin (Taylor, 1992; Kobayashi et al., 1995; Stern et al., 2003). The ridge is of Paleogene age, which has undergone subsidence, sometime in the Oligocene, in conjunction with rifting of the arc. Unit 1 of Site 296 is a 453m thick layer of clayey nannofossil ooze/nannofossil clay (Ingle et al. 1975) with interbedded volcanic ash-rich zones from Late Oligocene to Pleistocene age, which has been divided into several subunits. Unit 2 consists of Early to Late Oligocene volcanic sandstones and lapilli tuffs with a thickness of around 634m. The interface between units 1 and 2 is interpreted to coincide with subsidence of the area following rifting and the opening of the Shikoku basin (Ingle et al. 1975).

The focus of this study is the base of unit 1G and unit 2, where volcanic minerals and lithic clasts are abundant. In unit 2, cores 49 to 59 are lapilli and ash tuffs, which are poor to moderately sorted with mostly angular grains in a glassy matrix, are indicative of a direct deposition from volcanic eruptions (Ingle et al., 1975). Cores 60 to 65 are mainly volcanic sandstone, siltstone, and conglomerates, with moderate to good sorting, deposited from the eroded parts of ridges surrounding Site 296 (Ingle et al., 1975). Detailed lithologic and structural of the core samples studied can be found in the Appendix.

Figure 1-3 Map showing the location of Site 296 and Site 1438 (Arculus et al., 2015)

Figure 1-4 Seismic reflection profile across the KPR, near Site 296. Red line indicates Site 296. (Ingle et al., 1975)

The IODP Site 1438 lies in the Amami Sankaku basin (Fig.1-3, 1-5, 1-6), close to the western flank of the Kyushu Palau ridge. In the absence of other volcanic highs, the volcaniclastic sediments from the site are most probably shed from the KPR (Brandl et al., 2017). The lithology includes four sedimentary units (Arculus et al., 2015), Unit I (terrigenous, biogenic and volcaniclastic mud and oozes with interspersed ash layers), unit II (tuffaceous mudstone and siltstones), unit III (tuffaceous conglomerates, sandstone, with volcanic and sedimentary clasts), unit IV (radiolarian mudstone, sandstone, conglomerates, and tuffaceous siltstones) and the igneous basement unit 1 (Basalt). The total length drilled is 1461 mbsf, and the age ranges from recent Pleistocene to Eocene. Unit II and the top of unit III of Site 1438 overlaps in age with the base of unit 1G and unit 2 of DSDP Site 296 and hence is the focus of this study. In both the sites, the lithology changes from a volcaniclastic and tuffaceous unit to nannofossil oozes around late Oligocene/early Miocene, which marks the period when the KPR was completely rifted and became inactive. The main objective of Leg 351 which drilled Site 1438 was to understand the subduction initiation of IBM, the evolution of the first arc and the nature of the oceanic basement pre-subduction

Figure 1-5 Seismic reflection image showing location of Site 1438, on the east of it lies the Kyushu Palau ridge (Arculus et al., 2015)

Figure 1-6 Profile line from Site 296 to Site 1438

1.5 Hypothesis

In the proposed study, the following hypothesis will be tested:

The chemical composition of arc magmas erupted on the early IBM/Kyushu Palau arc changed when rifting of the arc began.

Possible changes that might be observed include:

1) As the KPR started to rift and form the back-arc basins, there was a change of composition of the volcanic rock toward more siliceous rocks like dacite and rhyolite. Siliceous volcanism might appear due to the more extensive differentiation of arc mafic magmas as the arc magma supply diminished.

2) Back arc basin basalt (BABB), which forms in the rift basin, has a trace element

signature between arc rocks and MORB. During rifting of the arc, there is the possibility that BABB have mixed with arc basalt. There will be a significant difference between the trace element composition of mineral derived from BABB and those from arc rocks.

1.6 Overview of Methods for this Study

A detailed study of the geochemistry of the volcanic grains using established analytical methods is one of the ways to investigate changes in arc magma geochemistry leading up to the rifting of the arc. For this study, unaltered feldspar, pyroxene, glass grains, and lithic fragments were separated from the sediment and analyzed for major and trace elements and isotope studies.

Sample Preparation

The core samples for Site 296 were sampled at the DSDP Repository in LaJolla, CA, by R. Hickey-Vargas. Samples were selected based on coarse grain size and also the presence of fresh, vitreous glass fragments that could be seen in the samples, both macroscopically and with a binocular microscope. The same procedure was repeated while selecting site 1438 samples. Selected core samples were crushed with a mortar and passed through a series of mesh sizes to separate the mineral and glass grains from the matrix. Depending on the size of the grain, different mesh sizes were used. The crushed samples were then wet sieved to remove the finer matrix, and then hand-picked. A preliminary study was done using a Scanning Electron Microscope with Energy Dispersive System (SEM-EDS) to identify the type of minerals and glass grains from specific core sections were picked out and set in epoxy. The epoxy buttons were polished using 600 and 1000 grit powder before moving on to final polishing using 3 and 1 micron powder for Electron Probe Micro Analyzer (EPMA) analysis. After polishing, major element composition of the mineral grains, melt inclusion, and glass was analyzed using EPMA at FCAEM. Trace element compositions of minerals and glass were studied using the Laser Ablation ICP Mass Spectrometry (LA-ICP-MS) at Trace Evidence Analysis Facility (TEAF), FIU. Melt inclusion in pyroxene was studied using the EPMA for major elements, and if the size of the inclusions were large enough, they were further analyzed for trace elements using the LA-ICP-MS.

Selected unaltered lithic fragments or clasts from the core sample were cut out using a small rock saw, ultrasonicated in DI water, then powdered after drying for further analysis. Clast samples having sufficient material for accompanying Hf and Nd-isotope study (200-400 mg) were selected for major and trace element analysis. From 10 to 50 mg of the clast samples were digested for ~ 12 hours in a 1:2 HF: HNO₃ acid mix in capped savillex beakers, including 1 hour of ultrasonication. Samples were dried, redissolved in 8N HNO₃, and dried again. Dried samples were picked up in 8N HNO₃ and diluted to exactly 4000 X by mass for trace element analysis and 1 X 10⁶ X by mass for major elements. Calibration curves were constructed with 8 rock standards dissolved and diluted with the samples: United States Geological Survey BIR-1, W-2, DNC-1, BHVO-2, BCR-2, AGV-2, and Geological Survey of Japan JB-2 and JA-2. Solutions were run on the Elan DRC+ quadrupole ICPMS in the Trace Evidence Analysis Facility (TEAF) at Florida International University. Instrument drift was monitored using In as an internal standard and intensities for rock standards run at fixed intervals. The Nd and Hf isotope ratios were analyzed by Thermo Neptune multicollector-inductively coupled plasma mass spectrometer (MC-ICP-MS) using methods described by Yogodzinski et al. (2018).
Review of Analytical Methods

The Electron Probe Microanalysis is a technique used for analyzing samples chemically, by exciting X-rays with a focused electron beam. A qualitative analysis can be obtained by identifying the characteristic X rays from their wavelength spectrum, but a quantitative analysis could also be done if the intensities are compared with those emitted from a standard sample. The relative accuracy for major oxides approaches about 1% and detection limit down to tens of parts per million can be attained (Reed, 2005). The Scanning Electron Microscope (SEM) is similar to the EPMA but is designed primarily for imaging purpose rather than analysis. The SEM have an Energy Dispersive Spectrometer (EDS) system which can be used for analysis, but the resolution is lower than Wavelength Dispersive Spectrometry (WDS) system of EPMA. The WDS provides greater analytical precision, superior peak resolution and lower detection limit which can be used for quantitative analysis of glass, minerals and melt inclusions, as well as for mapping chemistry and distribution of mineral phases (Spray et al., 1995; Pownceby, 2006; Hayward, 2012; Helz et al., 2014). A detailed comparison between the analytical characteristic of the WDS and EDS system is also given by Potts (1987), remarking that the EDS analysis can be accurate and convenient provided the element measured is more than 1% (weight). For detection of amount below this limit, the accuracy and precision of the analysis decreases.

The Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is an analytical technique which generates fine particle by focusing a laser beam on the sample in a process known as Laser Ablation. The ablated particles are then transported by a carrier gas to the secondary excitation source of the ICP-MS instrument for digestion and

ionization of the sampled mass and subsequently introduced to a mass spectrometer detector for both elemental and isotopic analysis. The LA-ICP-MS has lower limits of detection than the EPMA (Jackson et al. 1992; Eggins 2003) which makes it more sensitive towards detection of trace elements in minerals and in melt inclusions. Halter et al. (2004) showed that LA-ICP-MS can be used for quantitative analysis of melt inclusions using an internal standard. The use of LA-ICP-MS technique has been well evaluated and proved to be capable of producing high precision and accurate data for a range of geologic materials (Jackson 2008; Arevalo et al. 2011; Russo et al. 2013; Almirall et al., 2016). A recent article by Jenner and Arevalo Jr. (2016) has also explained the methods and challenges for analyzing geologic material using LA-ICP-MS and its various applications in studying glasses, melt inclusions and experimental petrology.

The Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) is an instrument used to measure the isotope abundances of an element in a sample. Traditional ICP-MS has a quadrupole analyzer which allows only single collector analysis, whereas the MC-ICP-MS has multiple collectors to analyze isotope ratios. The precision and resolution are also higher in MC-ICP-MS which are necessary to analyze some radiogenic isotopes. Simple sample introduction with high mass resolution and ionization efficiency, and flat topped peaks provide accurate and precise analysis of isotope ratios, with the precision reaching upto 0.001% (Yang, 2009). The application of MC-ICP-MS has been well studied in geoscience and has been used for precise measurement of radiogenic isotope ratios for geochemistry, cosmochemistry and geochronology (Halliday et al., 1998; Liang et al., 2003; Albarede et al., 2004)

1.7 Dissertation Structure

The dissertation has been laid out into three chapters following the introduction and then a general conclusion. Each chapter is written in a manuscript style, which includes the objective, methods and results to answer questions about the early magmatic evolution of the IBM.

- Chapter 2 -Composition of glass shards and lithic fragments from Site 296, which is compared to the other Oligocene and Eocene studies from Northern IBM to interpret the primary magmas of the IBM arc.
- 2) Chapter 3- Study of Site 296 detrital minerals, feldspars, pyroxenes and amphiboles and any melt inclusions within them. The minerals are used to interpret temperature and pressures of the magma and the composition of magma in equilibrium. These and including data from previous chapter interprets any temporal evolution observed at Site 296.
- 3) Chapter 4- Major and trace element compositions of mafic minerals from Site 1438 and lithic fragments, and Nd and Hf isotope ratios of the lithic fragments. The two Sites have been compared and together combined sums up the Oligocene evolution of the IBM arc before rifting.
- 4) Chapter 5- General conclusions
- 1.8 References
- Albarede, F., Telouk, P., Blichert-Toft, J., Boyet, M., Agranier, A., and Nelson, B., 2004, Precise and accurate isotopic measurements using multiple-collector ICPMS: Geochimica et Cosmochimica Acta, v. 68, no. 12, p. 2725-2744.

- Almirall, J.R., Trejos, T., Sylvester, P.J., and Jackson, S.E., 2016, Applications of LA-ICP-MS to forensic science: Elements, v. 12, no. 5, p. 335-340.
- Arculus, R.J., Gill, J.B., Cambray, H., Chen, W., and Stern, R.J., 1995, Geochemical evolution of arc systems in the western Pacific; the ash and turbidite record recovered by drilling: Geophysical Monograph, v. 88, p. 45-65.
- Arculus, R., Ishizuka, O., Bogus, K., et al., 2015, International Ocean Discovery Program Expedition 351 preliminary report; Izu-Bonin-Mariana Arc origins; continental crust formation at an intraoceanic arc; foundation, inception, and early evolution; 30 May-30 July 2014: Preliminary Report (International Ocean Discovery Program), v. 351.
- Bloomer, S.H., Taylor, B., MacLeod, C.J., Stern, R.J., Fryer, P., Hawkins, J.W., and Johnson, L., 1995, Early arc volcanism and the ophiolite problem; a perspective from drilling in the western Pacific: Geophysical Monograph, v. 88, p. 1-30.
- Brandl, P.A., Hamada, M., Arculus, R.J., et al., 2017, The arc arises; the links between volcanic output, arc evolution and melt composition: Earth and Planetary Science Letters, v. 461, p. 73-84.
- Eggins, S.M., 2003, Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses: Geostandards Newsletter, v. 27, no. 2, p. 147-162.
- Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana Arc: Journal of Geophysical Research, v. 102, no. B7, p. 14-15,019.

- Hall, R., 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific; computer-based reconstructions, model and animations: Journal of Asian Earth Sciences, v. 20, no. 4, p. 353-431.
- Halliday, A.N., Lee, D., Christensen, J.N., et al., 1998, Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography: Geochimica et Cosmochimica Acta, v. 62, no. 6, p. 919-940.
- Halter, W.E., Pettke, T., and Heinrich, C.A., 2004, Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex; I, Analytical approach and data evaluation: Contributions to Mineralogy and Petrology, v. 147, no. 4, p. 385-396.
- Hayward, C., 2012, High spatial resolution electron probe microanalysis of tephras and melt inclusions without beam-induced chemical modification: Holocene, v. 22, no. 1, p. 119-125.
- Helz, R.L., Clague, D.A., Mastin, L.G., and Rose, T.R., 2014, Electron microprobe analyses of glasses from Kilauea tephra units, Kilauea Volcano, Hawaii: Open-File Report - U.S.Geological Survey.
- Hickey-Vargas, R., 2005, Basalt and tonalite from the Amami Plateau, northern West Philippine Basin; new Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications: Island Arc, v. 14, no. 4, p. 653-665.
- Ingle, J.C., Jr, Karig, D.E., Bouma, A.H., et al., 1975, Site 296: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 191-274.

- Ishizuka, O., Oto, K., Yuasa, M., Hochstaedter, A.G., Stern, R.J., and Arima, M., 1998, K-Ar ages from seamount chains in the back-arc region of the Izu-Ogasawara Arc: Island Arc, v. 7, no. 3, p. 408-421.
- Ishizuka, O., Tani, K., Reagan, M.K., et al., 2011, The timescales of subduction initiation and subsequent evolution of an oceanic island arc: Earth and Planetary Science Letters, v. 306, no. 3-4, p. 229-240.
- Ishizuka, O., Taylor, R.N., Milton, J.A., and Nesbitt, R.W., 2003, Fluid-mantle interaction in an intra-oceanic arc; constraints from high-precision Pb isotopes: Earth and Planetary Science Letters, v. 211, no. 3-4, p. 221-236.
- Jackson, S.E., 2008, Calibration strategies for elemental analysis by LA-ICP-MS: Short Course Series - Mineralogical Association of Canada, v. 40, p. 169-188.
- Jackson, S.E., Longerich, H.P., Dunning, G.R., and Freyer, B.J., 1992, The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals: The Canadian Mineralogist, v. 30, Part 4, p. 1049-1064.
- Jenner, F.E., and Arevalo, R.D., Jr, 2016, Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS: Elements, v. 12, no. 5, p. 311-316.
- Karig, D.E., 1975, Basin genesis in the Philippine Sea: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 857-879.

- Karig, D., 1971, Site surveys in the mariana area: United States (USA), Washington, d. c.,u.s. govt. printing office.
- Kelley, K.A., Plank, T., Ludden, J., and Staudigel, H., 2003, Composition of altered oceanic crust at ODP Sites 801 and 1149: Geochemistry, Geophysics, Geosystems -G3, v. 4, no. 6.
- Kobayashi, K., Kasuga, S., and Okino, K., 1995, Shikoku Basin and its margins: New York, NY, United States (USA), Plenum Press, New York, NY.
- Liang, X., Wei, G., Li, X., and Liu, Y., 2003, Precise measurement of Nd-144/Nd-143 and Sm/Nd ratios using multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS): Diqiu Huaxue = Geochimica, v. 32, no. 1, p. 91-96.
- Potts, P.J., 1987, A handbook of silicate rock analysis: New York, NY, United States (USA), Chapman & Hall, New York, NY, 622 p.
- Pownceby, M.I., MacRae, C.M., and Wilson, N.C., 2007, Mineral characterisation by EPMA mapping: Minerals Engineering, v. 20, no. 5, p. 444-451.
- Reagan, M.K., Ishizuka, O., Stern, R.J., et al., 2010, Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system: Geochemistry, Geophysics, Geosystems -G3, v. 11, no. 3, p. Citation Q03X12.

- Reed, S.J.B., 2005, Electron microprobe analysis and scanning electron microscopy in geology: Cambridge, United Kingdom (GBR), Cambridge University Press, Cambridge, 189 p.
- Richards, M.A., and Lithgow-Bertelloni, C., 1996, Plate motion changes, the Hawaiian-Emperor bend, and the apparent success and failure of geodynamic models: Earth and Planetary Science Letters, v. 137, no. 1-4, p. 19-27.
- Russo, R.E., Mao, X., Gonzalez, J.J., Zorba, V., and Yoo, J., 2013, Laser ablation in analytical chemistry: Analytical Chemistry, v. 85, no. 13, p. 6162-6177.
- Savov, I.P., Hickey-Vargas, R., D'Antonio, M., Ryan, J.G., and Spadea, P., 2006, Petrology and geochemistry of West Philippine Basin basalts and early Palau-Kyushu Arc volcanic clasts from ODP Leg 195, Site 1201D; implications for the early history of the Izu-Bonin-Mariana Arc: Journal of Petrology, v. 47, no. 2, p. 277-299.
- Scholz, C.H., and Campos, J., 1995, On the mechanism of seismic decoupling and back arc spreading at subduction zones: Journal of Geophysical Research, v. 100, no. B11, p. 22-22,115.
- Scott, R.B., Kroenke, L., Balshaw, K.M., et al., 1980, Petrology and geochemistry of arc tholeiites on the Palau-Kyushu Ridge, Site 448, Deep Sea Drilling Project Leg 59: Initial Reports of the Deep Sea Drilling Project, v. 59, p. 681-692.

- Spray, J.G., Rae, D.A., Hawthorne, F.C., and Martin, R.F., 1995, Quantitative electronmicroprobe analysis of alkali silicate glasses; a review and user guide: The Canadian Mineralogist, v. 33, Part 2, p. 323-332.
- Stern, R.J., 2002, Subduction Zones: Reviews of Geophysics, v. 40, no. 4, p. 3-1.
- Stern, R.J., and Bloomer, S.H., 1992, Subduction zone infancy; examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs: Geological Society of America Bulletin, v. 104, no. 12, p. 1621-1636.
- Stern, R.J., Fouch, M.J., Klemperer, S.L., and Eiler, J.M., 2003, An overview of the Izu-Bonin-Mariana subduction factory: Geophysical Monograph, v. 138, p. 175-222.
- Stern, R.J., Morris, J.D., Bloomer, S.H., and Hawkins, J.W., Jr, 1991, The source of the subduction component in convergent margin magmas; trace element and radiogenic isotope evidence from Eocene boninites, Mariana Forearc: Geochimica et Cosmochimica Acta, v. 55, no. 5, p. 1467-1481.
- Sutter, J.F., Snee, L.W., Kroenke, L., et al., 1980, K/Ar and (super 40) Ar/ (super 39) Ar dating of basaltic rocks from Deep Sea Drilling Project Leg 59: Initial Reports of the Deep Sea Drilling Project, v. 59, p. 729-734.
- Taylor, B., Fujioka, K., Janecek, T.R., et al., 1992, Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana Arc: Proceedings of the Ocean Drilling Program, Scientific Results, v. 126, p. 627-651.

- Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., and Croudace, I.W., 1994, Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan: Journal of Petrology, v. 35, no. 3, p. 577-617.
- Westgate, J.A., Perkins, W.T., Fuge, R., Pearce, N.J.G., and Wintle, A.G., 1994, Traceelement analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry; application to tephrochronological studies: Applied Geochemistry, v. 9, no. 3, p. 323-335.
- Yamazaki, T., Murakami, F., Stern, R.J., and Arima, M., 1998, Asymmetric rifting of the northern Mariana Trough: Island Arc, v. 7, no. 3, p. 460-471.
- Yang, L., 2009, Accurate and precise determination of isotopic ratios by MC-ICP-MS: A review: Mass Spectrometry Reviews, v. 28, no. 6, p. 990.
- Yogodzinski, G.M., Bizimis, M., Hickey-Vargas, R., et al., 2018, Implications of Eocene age Philippine Sea and fore-arc basalts for initiation and early history of the Izu-Bonin-Mariana Arc: Geochimica et Cosmochimica Acta, v. 228, p. 136-156.

2 GEOCHEMISTRY OF VOLCANIC GLASS FROM OLIGOCENE DETRITAL SEDIMENTS AT DSDP SITE 296, KYUSHU PALAU RIDGE: INTERPRETING THE MAGMATIC EVOLUTION OF THE EARLY NORTHERN IZU BONIN MARIANA ISLAND ARC

Eshita Samajpati, Rosemary Hickey-Vargas. In revision, Island Arc

Abstract

Understanding the petrologic and geochemical evolution of island arcs is important for interpreting the timing and impacts of subduction and processes leading to formation of continental crust. The Izu-Bonin Mariana (IBM) arc, western Pacific, is an outstanding location to study arc evolution. The IBM first arc (45-25 Ma) followed a period of forearc basalt and boninite formation associated with subduction initiation (52-45 Ma). In this study, we present new major and trace element data for the IBM first arc from detrital glass shards and clasts from DSDP Site 296, located on the northernmost Kyushu-Palau Ridge (KPR). We synthesize these data with published literature for contemporaneous airfall ash and tephra from the Izu-Bonin forearc, dredge and piston core samples from the KPR, and plutonic rocks from the rifted eastern KPR escarpment, locations which lie within or correlate with KPR Segment 1 of Ishizuka et al. (2011b). Our objective is to test ways in which petrologic and chemical data for diverse igneous materials can be used to construct a complete picture of this section of the Oligocene first arc and to draw conclusions about its evolution. Important findings reveal that widely varying primary magmas formed and differentiated at various depths at this location during this period. Changes in key trace element ratios such as La/Sm, Nb/Yb and Ba/Th show that mantle sources varied in fertility and in the inputs of subducted sediment and fluids over time and space. Plutonic rocks appear to be related to early K-poor dacitic liquids represented by glasses sampled both in

the forearc and volcanic front. An interesting observation is that the variation in magma compositions in this relatively small segment encompasses that inferred for the IBM arc as a whole, suggesting that sampling is a key factor in inferring temporal, across arc and along-strike geochemical trends.

2.1 Introduction

The Izu-Bonin Mariana (IBM) island arc is one of the best-studied subductionproduced volcanic chains worldwide because it has unique features that make it ideal for investigating subduction processes (Stern et al., 2003). The arc is intra-oceanic (Fig. 2-1a), limiting sources of magma to oceanic mantle plus subducted oceanic crust and sediment. Arc growth since subduction inception at about 52 Ma has been interrupted by rifting and back-arc spreading, stranding remnant arcs and back-arc basins of varying age behind the current active arc and trench (Fig. 1a,1b), thus providing a unique window into arc evolution through time (Stern et al., 2003). Understanding of many parameters of the active arc, such as crustal thickness and age, seismicity, and magma chemistry along strike, slab dip, convergence angle and rate, age and chemical character of the subducting Pacific plate has yielded a remarkable array of findings about the active arc processes that bear on the evolution of arcs over time (Woodhead, 1989; Arculus et al., 1992; Stern et al., 1993; Lee et al., 1995; Elliot et al., 1997; Taylor and Nesbitt, 1998; Pearce et al. 1999; Hochstaedter et al., 2001; Sun and Stern, 2001).

Figure 2-1 (a) Map of the Izu-Bonin Mariana (IBM) Arc region showing remnant arcs and back arc basins. The first remnant arc, the Kyushu Palau Ridge (KPR) has been divided into four segments after Ishizuka et al. (2011b); this study focuses on the first segment which is shown as an inset. (b) Close up map of Segment 1 of the KPR and the northern Izu Bonin arc showing the location of DSDP Site 296 and previously studied locations in that area. Green filled circles show study locations of Haraguchi et al. (2003, 2012) and purple filled circles are locations of rocks described in Ishizuka et al. (2011b)

The sequence of tectonic events affecting the IBM arc is relatively well understood (Fig. 2-2). Subduction initiated at about 52 Ma, apparently simultaneously along the boundary of the Philippine Sea and Pacific plates, with the eruption of forearc basalts or FABs, followed by boninites and transitional lavas (Stern et al., 1991; Taylor et al., 1994; Reagan et al., 2010; Ishizuka et al., 2011a; Arculus et al., 2015a, 2015b). These magmas erupted in an extensional forearc environment through a complex of linked spreading centers (Ishizuka et al., 2003; Arculus et al., 2015a). This initial stage of magmatism was

followed by the construction of a chain of arc volcanoes and the eruption of typical arc magmas starting at about 45 Ma (Fig. 2-2) (Stern et al., 2003). At 25-28 Ma, rifting and sea-floor spreading resulted in the opening of the Shikoku and Parece Vela basins (Taylor et al., 1992; Kobayashi et al., 1995), and distribution of former arc crust between the remnant Kyushu-Palau Ridge (KPR) (Fig. 2-2) and the present-day arc and forearc. A new arc front reformed at about 150 km from the trench, in some places on top of older arc structures. In the south, arc rifting and spreading of this arc occurred again at about 7 Ma, to form the Mariana Trough, and the remnant West Mariana Ridge and the active Mariana island arc (Yamazaki and Stern, 1997).

Figure 2-2 Simplified history of the IBM arc system modified after Stern et al. (2003). Shaded areas are magmatically inactive, and cross-hatched areas are magmatically active. The approximate time period or stage of geochemical evolution studied in this paper is shown in panel C

The magmatic evolution and spatial and temporal variations in magma chemistry of the first IBM arc (45-25 Ma) are less well-understood than those of the active IBM arc. This is because most early arc materials are submarine, subaerially exposed only on the southernmost Mariana Islands and islands of the Bonin ridge. Submarine volcanic products have been drilled and dredged in both forearc and remnant arc settings and are primarily volcaniclastic. Researchers have used many strategies to understand the first arc using these materials. Lee et al. (1995), Straub 2003, Straub et al. (2004, 2010) and Bryant et al. (2003) used drilled fallout tephra layers in sediments to examine temporal geochemical trends of explosive volcanic eruptions. Drilled sections in the IBM forearc on DSDP Leg 60, ODP Legs 125 and 126 and IODP Expedition 352 recovered in-situ lavas that documented the transition from subduction initiation to early arc volcanism. Dredged suites from the KPR recovered both volcanic and plutonic rocks (Ishizuka et al., 2011b; Haraguchi et al., 2003), whereas drilling on the remnant KPR arc at DSDP Sites 296 and 448 recovered both lavas and volcaniclastic sediments. Broad syntheses of magma chemistry from these works have delineated possible temporal and along-strike variations in early IBM arc magmatism (Pearce et al., 2005; Straub et al., 2010, 2015; Ishizuka et al., 2011b) within the limitations of incomplete records and limited sampling.

In this paper, we focus on one heavily-sampled section of the first arc, as recovered from drilling and dredging in the northernmost KPR and Izu-Bonin forearc (Fig. 2-1b), using new and published geochemical data for diverse types of volcanic materials. Our objective is to examine the Oligocene volcanic products probably derived from a few early arc volcanoes, to provide a close-up view of geochemical variations that occurred in a spatially limited setting. We also consider and compare the kinds of geologic information that can be extracted from distinct types of material to build an improved understanding of early arc processes.

2.2 Background

The KPR, the remnant of the IBM first arc, was divided into four segments based on inflection points of the ridge and its intersection with other geologic features (Ishizuka et al., 2011b). This study focuses on Segment 1, extending on the KPR from the intersection of the Daito ridge in the south, to the northernmost tip of the KPR where it is subducted at the trench (Fig. 1b). Tectonic reconstructions of the early IBM arc by the closure of the Shikoku basin (Okino et al., 1994) indicate that this segment correlates with part of the northern Izu-Bonin arc where first arc materials were also recovered. New volcanic materials included in this study are Oligocene detrital volcaniclastic sediments drilled at DSDP Site 296, which is located near the KPR crest at 29° 20.41' N lat. Petrologic, major and trace element data for glass shards from this section are compared with published data for volcanic rocks recovered at piston core and dredge sites along KPR crest (Ishizuka et al., 2011b; Haraguchi et al., 2012), plutonic rocks dredged from the Komahashi Daini Seamount (Haraguchi et al., 2003), and ash layers and tephra from ODP Site 782A in the Izu-Bonin forearc (Straub, 2003; Straub et al., 2010; Bryant et al., 2003).

Segment 1 rocks studied by Ishizuka et al. (2011b) consist of olivine basalt and clinopyroxene-olivine basalt, recovered by drilling (at a depth of 5-10 m) using the deepsea boring machine system at flat ridge tops or gentle slopes and by dredging at steep escarpments. The volcanic and plutonic rocks studied by Haraguchi et al. (2003, 2012) were obtained by chain bag dredges from the northern KPR and Komahashi Daini seamount at steep escarpments. The volcanic rocks were classified into two-pyroxene and clinopyroxene basalt or basalt-andesite while the plutonic rocks were classified as biotite-hornblende tonalite and hornblende tonalite based on mineral assemblages. ODP Site 782A is situated on the eastern margin of the Izu-Bonin forearc basin consists of a sedimentary unit (I) and a volcanic basement unit (II). The sedimentary unit consists of nannofossil chalks and marls with dispersed volcanic debris and 111 ash layers which become coarser and more abundant down core with some interbedded tuffaceous sediments.

Ages for some of these materials have been determined. Shibata et al. (1977) reported the K-Ar age of the tonalites between 37-38 Ma. The K-Ar age of the volcanic rocks from the Kita-Koho Seamount are between 25-26 Ma (Katsura et al., 1994), whereas volcanic rocks dredged from Miyazaki and Nichinan seamount and the Buzen knoll are reported to be 24 and 18 Ma. Ishizuka et al. (2011b) reported the Ar-Ar ages of the volcanic rocks from Segment 1 and its rear arc to be 24-28 Ma, with one sample (DS059BO) older at approximately 32.8 Ma. The ages of the ash layers from Site 782A range from Pleistocene to middle Eocene inferred from nannofossil biostratigraphy (Xu et al., 1992); in this paper, only Oligocene tephras are compared.

2.3 Methodology

2.3.1 Core description

Deep Sea Drilling Project Site 296 is located in the northernmost Kyushu-Palau Ridge (Fig. 2-1a, 2-1b), on a sediment covered terrace on the western side at a water depth of 2,920 meters (Ingle et al., 1975). The Site 296 section consists of 453 m of Late Oligocene to Pleistocene nannofossil chalks and oozes (unit 1), overlying more than 634 m of Early to Late Oligocene interbedded lapilli tuffs and volcanic sandstones (unit 2). The interface between the two units is interpreted to coincide with subsidence of the area following rifting and the opening of the Shikoku basin (Ingle et al. 1975). Depositional ages of the sediments are based on biostratigraphy. Ozima et al. (1977) reported an Ar/Ar age of 47.5 Ma for a volcanic clast in lapilli tuff from Core 63.

Figure 2-3 The stratigraphic column of DSDP Site 296 showing the lithological Unit 2, and 1G through 1A and their biostratigraphic ages. The glass shards and the clasts in this work were sampled from Unit 2 and the lower part of Unit 1G

Lapilli tuffs and sandstone constitute unit 2 of the section (Fig. 2-3). The lapilli tuffs consist of lithic fragments, glass shards, and mineral fragments (mainly feldspar, pyroxene, and magnetite, with some amphibole) in a matrix of green clay. The sandstones are similar, although clasts and the matrix are more oxidized, and glass is scarce. Clasts are mainly 1-5 mm, pyroxene and plagioclase-bearing volcanic rock in which plagioclase and groundmass are strongly altered. Except for three unusually large (3-5 cm) clasts found in

Core 55, this study focuses on glass fragments found loose in the matrix. In the lapilli tuffs and sandstones, the pyroxenes appear fresh, whereas magnetite surfaces are fully oxidized, and feldspars are cloudy and strongly altered.

2.3.2 Analytical Techniques

Tuff and sandstone samples were disaggregated by agitating them in deionized water using a mechanical wrist-arm shaker for times ranging from 2 to 100 hours. The resulting sediment was sieved, rinsed and handpicked at the 500 microns to 1-millimeter grain size for glass and minerals. In total, fresh glass fragments were identified in 15 different 2-cm segments of the lapilli tuff and sandstone (Fig. 2-3). Glass shards selected for analysis ranged in color from brown to colorless and were optically isotropic, with no evidence of devitrification. Some grains contained microlites which were visible in cross-polarized light and avoided during analyses. The grains were mounted in epoxy and polished for microprobe analysis. Parts of three unusually large clasts in Section 55-1, mentioned in Ingle et al. (1975), were cut from the core and powdered for bulk chemical analysis.

Glass fragments were first analyzed for major elements using the JEOL 8900 Superprobe EPMA at Florida Center for Analytical Electron Microscopy at Florida International University (FIU). To analyze non-volatile elements a 1-micron electron beam and 20 Amp current were used. For Na and K, the beam was diffused during analysis to minimize volatilization. At least three spots were analyzed on each grain and averaged. BHVO-2 glass was used as a calibration and quality control standard for glasses. After analysis, carbon coatings were removed, and glasses were further analyzed for trace elements Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb, Hf, Pb, Th and U by Laser Ablation ICP-MS using a New Wave 213 nm laser connected to a Thermo Element 2 HR ICP-MS at the Trace Evidence Analysis Facility at FIU. NIST 612 and BHVO-2 were used for calibration and data quality assessment, and Si and Ca were used as internal standards. At least two 55-micron spots were ablated on each grain, near microprobe analyses, and averaged. Three clasts from Core 55-1 were powdered, dissolved and analyzed for major elements and Ni, Cr, Sc, Sr, Zn, Co, V, Cu, Zr, and Y, with a Jobin-Yvon JY 70 ICPOES in the Earth Sciences Department at FIU, using techniques reported in Hickey-Vargas et al. (1995). Trace elements Ba, Nb, Rb, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Pb, Th and U were analyzed by solution introduction ICP-MS at Boston University, using methods published by Kelley et al. (2003). Data for glasses and clasts are listed in Table 1, and information about data quality for all the analyses are listed in Table 2. Table 2-1 Major oxide and trace element data for Site 296 glasses and clasts. Sample name starts with the core number, core section and the section depth in cm from which it was collected

Major oxide	47-1(117-	47-1(117-	47-1(117-	49-1 (24 - 27)	49-1 (24 - 27)	50-1 (122 -	54-1 (115-	54-3 (23 - 26)
(wt%)	119) Glass 1	119) Glass 2	119) Glass 3	Glass 1	Glass 2	124) Glass 1	118) Glass 3	Glass 1
SiO ₂	60	75	52	53	52	57	49	53
TiO ₂	1.0	0.3	1.0	1.6	1.2	1.9	1.0	1.7
Al_2O_3	15	11	15	13	14	13	14	15
FeO	10	2	13	15	13	15	16	12
Na_2O	10	2	13	15	13	15	16	12
MnO	0.2	0.1	0.1	0.3	0.2	0.2	0.2	0.2
MgO	2.5	0.1	4.6	4.2	4.9	3.0	5.7	4.1
CaO	6	1	10	9	10	6	12	9
K_2O	0.9	3.6	0.5	0.9	0.8	0.8	0.4	1.4
P_2O_5	0.3	0.0	0.1	0.2	0.2	0.3	0.1	0.3
Total	106.1	96.5	109.8	111.1	109.8	112.7	113.6	109.4
Trace element (ppm)								
Rb	16	36	8	11	7	11	6	16
Sr	243	122	169	252	270	254	180	213
Y	38	69	19	33	19	42	17	26
Zr	101	239	40	75	47	89	34	69
Nb	2	6	1	1	1	1	0	3
Ba	184	360	71	94	96	96	50	340
La	8.5	18.4	3.1	5.8	5.0	6.0	2.7	16.7
Ce	20	44	8	15	11	15	7	28
Nd	16	31	7	13	8	17	6	16
Sm	4.7	8.6	2.2	4.1	2.6	5.6	2.0	4.0
Eu	1.6	2.1	0.9	1.4	0.8	2.0	0.7	1.4
Gd	6.1	10.2	3.0	5.2	2.8	7.7	2.9	4.8
Dv	6.5	13.3	4.0	5.2	3.2	8.8	3.5	5.8
Er	4.1	8.2	2.8	3.4	2.1	5.7	2.4	3.5
Yb	4.2	8.9	2.6	3.7	2.2	6.1	2.3	3.3
Hf	3	8	2	2	1	4	1	2
Pb	3.5	12.3	2.3	1.7	2.2	3.0	2.0	4.1
Th	1.1	2.6	0.3	0.6	0.5	0.8	0.3	3.5
U	0.4	1.0	0.1	0.2	0.2	0.3	0.1	0.9
-								

(
SiO_2	52	49	58	50	59	56	66
TiO ₂	1.6	1.0	1.0	0.9	0.9	1.0	0.6
Al_2O_3	15	14	15	14	15	15	14
FeO	12	14	11	14	9	10	7
Na_2O	12	14	11	14	9	10	7
MnO	0.2	0.2	0.1	0.1	0.2	0.3	0.2
MgO	4.7	6.6	3.1	5.9	2.7	3.4	1.3
CaO	9	12	7	11	6	7	4
K_2O	1.3	0.5	1.2	0.6	1.3	1.2	2.3
P_2O_5	0.4	0.1	0.3	0.2	0.4	0.5	0.2
Total	108.0	100.0	100.0	100.0	100.0	100.0	100.0
Trace element (ppm)							
Rb	19	5	20	9	21	19	23
Sr	310	169	255	210	212	221	189
Υ	22	16	27	22	31	29	31
Zr	70	33	113	52	125	118	136
Nb	3	0	2	1	2	2	3
Ba	349	41	285	125	276	259	325
La	18.4	2.3	11.1	7.4	13.1	12.9	14.8
Ce	33	6	23	15	26	26	28
Nd	17	7	16	11	16	16	16
Sm	3.7	2.1	4.0	2.9	4.2	3.7	3.8
Eu	1.3	0.8	1.2	1.1	0.9	1.0	1.0
Gd	4.2	3.0	5.1	3.4	4.7	4.3	4.1
Dv	4.7	3.0	5.7	4.1	5.1	4.7	4.9
Er	3.0	1.8	3.5	2.8	3.3	3.3	3.1
Yb	3.0	2.0	3.0	2.8	3.5	3.1	3.3
Hf	2	1	3	2	3	3	3
Ph	- 4.8	1.7	46	2.5	4.4	3.2	4.0
Th	43	0.3	2.2	0.8	21	1.9	2.1
TI	1.2	0.1	0.8	0.4	0.7	0.7	0.7
N/	. 4	V. 1	V.0	V.++	V. /	N. /	V. /

 Major oxide
 54-3 (23 - 26)
 56-5 (93 - 95)
 59-1 (89 - 91)
 59-1 (98 - 91)
 59-1 (98 - 101)
 59-1 (98 - 101)
 59-1 (98 - 101)

 (wt%)
 Glass 2
 Glass 1
 Glass 2
 Glass 1
 Glass 2
 Glass 3

Major oxide	61-1 (39 - 41)	61-1 (39 - 41)	61-2 (38 - 40)	63-1 (146-	63-1 (146-	63-2 (31 - 34)	63-2 (31 - 34)
(wt%)	Glass I	Glass 2	Glass 3	149) Glass I	149) Glass 2	Glass I	Glass 2
SiO_2	74	74	52	51	50	50	54
TiO ₂	0.8	0.7	0.9	1.2	1.4	1.0	1.2
Al_2O_3	14	14	14	15	16	14	14
FeO	4	5	15	12	12	15	12
Na ₂ O	4	5	15	12	12	15	12
MnO	0.1	0.2	0.2	0.2	0.1	0.2	0.2
MgO	0.5	0.6	5.2	5.5	5.6	6.0	5.1
CaO	2	3	10	11	11	11	10
K_2O	3.6	3.3	0.5	0.7	0.6	0.6	0.7
P_2O_5	0.1	0.1	0.1	0.2	0.3	0.1	0.2
Total Trace element (ppm)	100.0	100.0	100.0	100.0	100.0	100.0	100.0
(ppin)	16	40	7	11	10	7	0
RO	46	40	/	11	10	/	9
Sr	147	159	229	289	296	205	224
Y	40	4/	19	22	23	1/	22
Zr	179	240	43	72	76	40	68
Nb	3	5	1	2	3	1	1
Ba	429	514	125	156	96	114	99
La	15.8	25.5	4.5	10.6	10.6	4.2	7.4
Ce	34	50	10	21	22	9	16
Nd	22	29	8	13	14	7	11
Sm	5.3	6.5	2.3	3.3	3.7	2.1	2.8
Eu	1.2	1.5	0.9	1.1	1.3	0.8	1.1
Gd	6.2	7.3	3.2	3.4	3.8	2.8	3.8
Dy	7.7	9.7	3.7	4.7	4.9	3.1	4.3
Er	5.6	6.5	2.5	2.9	3.0	2.0	2.7
Yb	5.6	6.6	2.8	3.0	2.7	2.0	2.9
Hf	6	7	1	2	2	1	2
Pb	8.8	9.3	2.2	2.1	2.0	1.7	2.4
Th	3.1	5.5	0.6	1.3	1.2	0.5	0.9
U	1.3	1.8	0.3	0.4	0.4	0.2	0.3

Major oxide	63-2 (31 - 34)	63-3 (140-	64-3 (119-	64-3 (119-	55-1 (115-	55-1 (133-	55-1 (122-
(wt%)	Glass 3	143) Glass 1	121) Glass 1	121) Glass 2	118) Clast 1	135) Clast 2	124) Clast 3
SiO_2	77	74	67	69	60	58	60
TiO ₂	0.6	0.7	0.6	0.8	0.6	0.7	0.7
Al_2O_3	14	15	15	15	17	18	17
FeO	4	4	5	5	7	6	6
Na_2O	4	4	5	5	7	6	6
MnO	0.1	0.2	0.2	0.1	0.2	0.1	0.1
MgO	0.6	0.8	1.3	1.2	4.1	2.2	2.9
CaO	2	3	5	4	7	8	6
K_2O	2.4	2.7	1.4	1.4	0.7	2.7	2.3
P_2O_5	0.1	0.2	0.2	0.2	0.2	0.7	0.3
Total Trace element	100.0	100.0	100.0	100.0	100.0	99.3	99.5
(ppm)							
Rb	29	27	10	11	21	96	87
Sr	125	187	185	167	337	369	360
Y	41	38	34	31	23	59	27
Zr	183	170	75	75	106	153	163
Nb	4	3	1	1	3	6	7
Ва	472	415	125	131	271	847	840
La	16.9	15.9	4.3	4.2	12.3	29.4	26.8
Ce	34	34	11	11	25	47	46
Nd	21	21	10	9	14	20	19
Sm	5.1	5.4	3.1	3.2	3.3	3.9	3.7
Eu	1.4	1.3	1.0	0.8	1.0	1.3	1.2
Gd	6.0	5.9	4.0	3.8	3.3	4.3	3.6
Dv	79	7.8	5.1	47	3.4	5.2	3.8
Er.	53	5.1	3.6	3.2	2.1	3.7	2.0
Vh	5.0	4.0	2.4	3.2	2.1	2.9	2.5
10 Uf	J. T	4.2	J. 4	3.1 ว	2.2	3.0	4
ni Dh	2	2	4.0	2	20	5	4
L0	ð.5	8.U 0.7	4.0	3.8	5.U D.C)./ 7.0	1.5
In	2.9	2./	0.3	0.3	2.5	1.8	8.1
U	1.2	1.2	0.2	0.2	0.5	2.3	2.2

EPMA	Mean	Mean Std % Recommended		Std	%	
	of 13	dev	RSD	values	dev	Bias
SiO2	49.31	0.45	0.9 49.90		0.6	-1.2
TiO2	2.69	0.06	2.1	2.73	0.04	-1.6
Al2O3	13.73	0.31	2.3	13.50	0.2	1.7
FeO	10.83	0.33	3.1	11.00	0.2	-1.6
MnO	0.12	0.03	26.6			
MgO	7.15	0.09	1.3	7.23	0.12	-1.2
CaO	11.28	0.16	1.4	11.40	0.2	-1.1
Na2O	2.29	0.25	11.0	2.22	0.08	3.1
K2O	0.49	0.09	17.7	0.52	0.01	-6.5
P2O5	0.26	0.04	16.6	0.27	0.02	-2.1
Total	98.13	0.52	0.5			
LA-	Mean	Std	%	Recommended	Std	%
ICPMS	of 5	dev	RSD	values	dev	Bias
Rb	9.2	0.69	7.5	9.8	1	-6.2
Sr	385	28.23	7.3	389	23	-1.0
Y	24.9	1.75	7.0	26	2	-4.2
Zr	159	9.38	5.9	172	11	-7.8
Nb	17.2	0.97	5.6	18	2	-4.2
La	15.4	0.96	6.2	15	1	2.4
Ce	35.9	1.77	4.9	38	2	-5.5
Nd	24.1	1.07	4.4	25	1.8	-3.6
Sm	6.0	0.32	5.4	6.2	0.4	-3.5
Eu	2.0	0.10	4.9			
Gd	6.1	0.34	5.6	6.3	0.2	-2.5
Dy	5.2	0.34	6.6			
Er	2.5	0.19	7.6			
Yb	2.0	0.20	9.6	2	0.2	2.4
Hf	4.2	0.34	8.2	4.1	0.3	2.3
Pb	1.6	0.10	5.8			
Th	1.2	0.13	11.2	1.2	0.3	-0.5
U	0.39	0.04	9.4			
Ba	123	8.43	6.8	130	13	-5.2

2.4 Results

2.4.1 Major Oxides

Site 296 glasses range from basalt to rhyolite (48-78% SiO_2) and are present throughout the core without any apparent pattern, although all felsic glasses except one are found at depth (Fig 2-4). Most glasses from Site 296 plot within the medium K series on a diagram of K₂O vs. SiO₂ (Fig. 2-5g). Mg numbers for basaltic glasses (48-52% SiO₂) range from 38 to 51, which are not primitive but similar to basalts from other continental and island arcs. The three clasts separated from core 55 are altered plagioclase aphyric andesites. On oxide-oxide plots, major element abundances of the clasts differ from the smooth trends formed by the glasses. Specifically, TiO_2 and FeO are lower for a given SiO_2 and Al_2O_3 , and K_2O is higher in clasts than glass shards. Based on their chemistry, the clasts would be classified as high-Al calc-alkaline andesites.

Figure 2-4 Figure 2-4 Plot of depth vs. SiO2 content of glass shards in volcaniclastic sediments of DSDP Site 296

Major elemental trends over the wide range of SiO₂ emphasize differentiation processes controlling magma chemistry (Fig. 2-5). Decreases in MgO and FeO with increasing SiO₂ concentration show the apparent saturation of olivine and pyroxene, decreasing CaO and level Al₂O₃ are consistent with plagioclase, clinopyroxene, and possible amphibole crystallization, while the increase and then decrease of TiO₂ and P₂O₅ with SiO_2 are consistent with the onset of titanomagnetite and apatite saturation in intermediate compositions. The vectors in Fig. 2-5 show an approximate direction the crystallization of the phases would shift the melt composition.

Figure 2-5 (a-h) Harker plots showing the variation of major oxides with SiO2 for Site 296 glass, clasts, and previously studied volcanic materials from KPR Segment 1 and its analog in the Izu-Bonin forearc (Straub, 2003, 2010; Bryant et al., 2003; Ishizuka et al., 2011b; Haraguchi et al., 2003, 2012). Vectors on the plot show the effect of mineral crystallization (see discussion). Data points are color-coded, with different symbols for different materials and locations

2.4.2 Trace Elements

All glasses and clasts show diagnostic features of subduction magmas, such as Nb depletion and enrichment in Th and LILE (Fig. 2-6) when normalized to primitive mantle compositions. Highly incompatible trace element abundances are quite variable in the basaltic glasses ((La/Yb)_N 0.81-4.44 and Ba/La 9.01-27.28) and suggest that primitive magmas, although arc-like in character, were diverse. Basaltic glass with low TiO₂ and high FeO contents are relatively more depleted in incompatible elements than basaltic glasses with higher TiO₂ content. Of the three andesite clasts, two clasts (55-1B and 55-1C) are enriched in incompatible elements ((La/Yb)_N value of 5.50 and 7.57 and Ba/La of 28.8 and 31.4) compared to the other andesitic clast ((La/Yb)_N = 3.95 and Ba/La =22). However, none of the clasts has a negative Eu anomaly as seen for some andesitic glass shards. Two of the dacitic glasses have flat REE patterns and are similar to some of the more mafic glasses (Fig. 2-6c).

Figure 2-6 Primitive mantle normalized elemental abundances for glass shards and lithic clasts from DSDP Site 296: a) basalt and basaltic-andesite; (b) andesite; (c) dacite and (d) rhyolite. Normalizing values from Sun and McDonough (1989)

Figure 2-7 (a) Primitive mantle normalized elemental abundances for tephra and glass from ODP Site 782A, data from Straub et al., 2010 and Bryant et al., 2003. (b) Primitive mantle normalized elemental abundances for Segment 1 volcanic rocks from Ishizuka et al., 2011b. Shaded area represents the compositional range of Site 296 glasses and clasts (c) Primitive mantle normalized elemental abundances for tonalites from Haraguchi et al., 2003. (d) Primitive mantle normalized elemental abundances for volcanic rocks from Haraguchi et al., 2012. Dark green colors represent the rocks from Nichinan seamout

2.4.3 Comparison with Site 782 Glass

Figures 5 and 7 show major and trace element plots of Site 296 glasses compared with materials from other locations of Segment 1 and its rifted counterpart. Glass from Site 782 fallout ash layers (Bryant et al., 2003; Straub, 2003) are similar to Site 296 glass trends for most oxides over the full range of SiO₂ from 50-75 (Fig. 2-5 a-h) although there is a slight depletion in Na₂O, K₂O and P₂O₅ compared to Site 296 (Fig. 2-5 f-h). Mafic to intermediate glasses from Site 782 plot within the low K series and only rhyolite glasses show medium to high K content. Primitive mantle normalized trace elements are also like Site 296 glass (Fig. 2-7a), although some basalt and basalt-andesite glasses have more pronounced LREE depletion, e.g., $(La/Sm)_N 0.50$ to 0.88 compared to $(La/Sm)_N 0.69$ to 3.25 in Site 296 mafic glasses. Site 782 glasses also have low concentrations of Nb (0.23-2.62 ppm) and Th (0.09- 3 ppm), except three felsic glasses, whereas Site 296 glasses have higher concentrations of Nb (0.3-6.43 ppm) and Th (0.26-4.34 ppm) (Fig. 2-8). Mafic glass from Site 296 also has higher Th/Yb ratios (0.13 to 1.45) compared to mafic glass from Site 782A (0.03 to 0.16). In a Th/Yb vs. Nb/Yb plot (Fig. 2-9), Site 296 glass and Site 782 ash plots above both depleted and enriched MORB fields.

Figure 2-8 (a) Plot of Ba vs. Nb ; (b) Plot of La vs. Th and (c) Plot of Ba vs. Th for Site 296 and samples cited in Fig. 2-7 caption

Figure 2-9 (a) Logarithmic plot of Th/Yb vs. Nb/Yb showing depleted and enriched MORB fields (Pearce and Peate, 1995). (b) Ba/La vs. (La/Sm)N plot for all samples. (c) Ba/Th vs. (La/Sm)N plot for the mafic glasses and volcanic rocks

2.4.4 Comparison with Volcanic Rock fragments

Volcanic rocks from northern KPR previously reported are basalt to andesitic composition (Ishizuka et al., 2011b; Haraguchi et al., 2012) whereas the lithic fragments from tephra fallout of Site 782A are intermediate to silicic in composition (Fig. 2-5). The TiO₂ contents of the whole rocks and rock fragments, including Site 296 clasts, are lower than glasses of similar silica composition from Site 296 and 782A (Fig. 2-5a). Other disparities are lower FeO and MgO contents and higher Al₂O₃ contents for a given SiO₂ in the volcanic rock fragments compared with glass from both Site 296 and 782A. (Fig. 2-5b, 5c, 5d). As shown in Fig. 5g the volcanic rocks mainly plot within the medium K series with a few basalts and andesites in the high K series. In the Th/Yb vs. Nb/Yb plot (Fig. 2-9a) the whole rocks show a depletion in LREE compared to HREE, which is seen in both Site 296 and 782A mafic glass (Fig. 2-7b, 7c). Rock compositions from Haraguchi et al. (2012) vary in their trace elemental concentration, especially Nichinan seamount which has high concentrations of LREEs (shown as green filled circles in Fig. 2-8b).

2.4.5 Comparison with Plutonic Rocks

The silica content of tonalites dredged from Komahashi Daini seamount ranges from 56 to 74%. Tonalites show trends in major oxides similar to the glass shards and volcanic rocks (Fig. 2-5 a-h). The tonalites have higher MgO and lower TiO₂ content compared to the glasses from Site 296 and 782A, whereas K₂O contents are low like Site 782A. Primitive mantle normalized REE show a concave upward pattern with MREE depletion (Fig. 2-7c). The tonalites also show arc-like features such as Nb depletion, but unlike their volcanic counterparts, they are depleted in Rb compared to Ba and enriched in Zr and Hf compared to LREEs (Fig. 2-7d).

2.5 Discussion

2.5.1 Interpretation of diverse igneous materials from the northernmost early IBM arc

Diverse igneous materials were sampled from Segment 1 of the KPR by several different recovery methods, thus integrating their chemical characteristics to produce a coherent interpretation of arc processes is not straightforward. The origin of whole volcanic rocks, glasses, tephra, minerals, and plutonic rocks are different, and this will affect the chemistry of the sample and its interpretation. As a first step toward interpretation, we consider what the samples represent, constraints on their ages, and the effects of alteration.

2.5.1.1 Liquid compositions

Whole rock analyses may give the actual composition of the magma, or they may include entrained crystals of cognate or xenocrystal origin. Overall, the best proxy for melts or liquids is glass, either from tephra or detritus, when preserved. In Fig. 2-10a the composition of Site 296 and Site 782 glasses and volcanic rocks from the northern KPR are plotted on a mineral component diagram projected from plagioclase onto a Cpx-Ol-Qtz pseudo ternary diagram (Grove et al., 1982, 1983). Most of the Site 296 and Site 782 glasses follow a trend close to the one-atmosphere saturation curve of Grove and Baker (1984), commonly used for calc-alkaline rocks, and likely represent a liquid line of descent from parent magmas. While some of the volcanic rocks plots near the Ol + Cpx saturation curve most plot towards the Ol apex. This shift most likely reflects olivine accumulation and excess olivine in the bulk analysis. On the mineral component diagram projected from diopside (Fig. 2-10b), volcanic rocks are shifted towards the plagioclase apex compared to the glasses. A similar disparity in composition has been observed in prior studies of the IBM arc; the alumina content of whole rocks is generally higher compared to glasses (Fig. 2-5b) which has been attributed to plagioclase accumulation (Lee et al., 1995; Straub, 2003). Therefore, when present in detrital sediments, glass shards, and volcanic ash provide better insight into the evolution of melt compositions than whole rock fragments.

Figure 2-10 (a) Olivine-Diopside-Quartz and (b) Olivine-Plagioclase-Quartz pseudo ternary projections showing glasses and rocks. The 1-atmosphere multiple saturation curve after Grove and Baker (1984) is shown on the Ol-Di-Q plot. The volcanic rocks are from Haraguchi et al. (2012) and Ishizuka et al. (2011b)

2.5.1.2 Method of recovery and time constraints.

The kind of samples studied and how they were acquired are essential factors to consider in our interpretation of the first IBM arc (Fig. 2-11). As noted by Straub (2003), fallout ash layers interbedded with volcaniclastic sediments provide a useful chronological tool. However, because ash layers represent only magmas that erupt explosively, ages are sporadic rather than continuous. Such magmas are also typically more silicic and form one end of the SiO₂ series of KPR glasses. Glass shards in detrital sediments preserve the composition of diverse magmas but can be significantly older than their depositional age inferred from biostratigraphy or the age of bracketing ash layers. Erosion of volcanic edifices of different ages delivers sediment to fore arc, intra-arc, and back arc basins (Fig. 2-11). In drilled sediments, logically, older detrital fragments will be more abundant deep in the cores, whereas upper parts could be a wide range of ages up to the depositional age. At Site 296, the presence of a 47.5 Ma clast from Core 63 (around 966-975 meters below sea floor) implies that parts of the igneous basement and possibly Eocene "protoarc" volcanics were among sediments deposited in the Oligocene. In contrast, volcanic rocks dredged or drilled from near surface sediments from the northern KPR all have Ar/Ar ages between 24-28 Ma and appear to document only the later pre-rifting history of the first arc. If we assume that Site 296 glass shards were eroded and deposited shortly after their solidification, which would explain their preservation, their ages could be a close match to the depositional age of the sediments.

Figure 2-11 Schematic diagram of the origin of volcanic and plutonic materials discussed. The top panel (a) shows the active first arc prior to rifting with the drill sites 296 and 782 denoted by stars. The bottom panel (b) depicts the present-day geological setting with the subsided and inactive KPR stranded by rifting

2.5.1.3 Unequal record of mafic and felsic and intrusive and extrusive parts of volcanic systems.

Tephra and ash layers correspond to the explosive part of the volcanic history and may not sample the compositions of effusive eruptions, resulting in an incomplete evolutionary picture. Like the glass shards, lithic clasts from Site 296 and lithic surface debris recovered from the KPR in dredges and piston cores are more likely to include the complete range of magma chemistry. As discussed above, glasses represent homogenous liquids, whereas the rocks may contain excess crystals, and if these are unevenly distributed through a lava flow, the rock fragments may not even represent the composition of the larger rock unit from which they are eroded.

A second important aspect of arc evolution is understanding the relationship between volcanic and plutonic products. Recent studies have pointed out the importance of understanding the geochemical relationship and comparative volumes of volcanic and plutonic rocks in subduction settings (Bachmann and Bergantz, 2004; Eichelberger et al., 2006; Bachmann et al., 2007; Lundstrom and Glazner, 2016). Tonalites from dredged from the Komahashi Daini seamount are 37-38 Ma and could be contemporaneous with some Site 296 glasses and fallout ash and tephra from Site 782, whereas the rocks dredged and drilled from the KPR crest are all younger. Exposed plutonic rocks are rare in oceanic arc settings, despite evidence for a thick mid-crustal felsic layer (Nishizawa et al., 2016), thus comparing the glasses and contemporaneous KPR tonalites could provide a unique insight into arc crustal differentiation processes.

2.5.1.4 Sample recovery and alteration

All seafloor rocks are subject to alteration by reaction with seawater, especially when hydrothermal fluids are present. In general, loose debris on the ocean floor available for dredge sampling or shallow drilling is expected to be altered and possibly more altered than drilled core samples as the result of long-term contact with seawater. Elevated P_2O_5 in some of the KPR volcanic rock specimens (>0.5%) compared to glasses (<0.5%) suggest ocean floor alteration or mineralization (Fig. 2-5h). According to Haraguchi et al. (2003, 2012), less than half of the volcanic rocks, and only 10% of the tonalites recovered by dredging from the KPR were fresh enough to be studied. The preservation of fresh glass shards in Site 296 sediments indicates minimal interaction with water, suggesting an origin by an explosive eruption or rapid erosion, followed by rapid sedimentation. According to Straub (2003), glass in ash layers from Site 782 were also rapidly buried and therefore are preserved well. The instability of glass in the presence of water suggests that the ages of detrital glass shards, like fallout ash, are similar to the depositional age of the sediment.

2.5.2 Inferences about the Evolution of the Oligocene IBM Arc

2.5.2.1 Evidence for diverse parental magmas

An important feature of the Site 296 glass suite is that basaltic glasses have a wide range of incompatible element characteristics (Fig. 2-6a). Explanations for these differences include differing mantle sources, differing partial melting regimes, and/or differing interaction with arc crust. Since none of the mafic glasses have Mg-numbers's high enough to have equilibrated with mantle peridotite, both mantle and crustal processes must be considered. One line of evidence against early crustal assimilation is the lack of Eu anomalies in mafic glasses since arc crust is typically plagioclase-bearing.

The basaltic glasses of Site 296 fall into three groups of REE patterns: LREE depleted $(La/Sm)_N <1$, slightly LREE enriched $(La/Sm)_N$ 1-2, and highly LREE enriched $(La/Sm)_N >2$, with a maximum value of 3.25. As shown in Figure 6a, REE patterns change curvature from LREE depleted to LREE enriched. It is notable that the range of REE pattern types continues through the differentiation sequence from basalt to andesite to dacite (Fig. 2-6 and 2-12). This feature strengthens the conclusion that the patterns in mafic glasses are primary and not related to differentiation by crystal fractionation and or crustal assimilation. La/Sm variation in primary arc magmas (Fig. 2-9) may result from variably enriched mantle sources, LREE-enriched inputs from the subducted slab or differences in

the extent of mantle melting and differing mantle mineralogy. The extent of mantle melting is increased by the addition of H_2O , thus flatter REE patterns and indicators of slab influence are often correlated (Fig. 2-9c). Among Site 296 rocks there is also a strong correlation between LREE enrichment and Th enrichment (Fig. 2-6a), which might indicate that input of melted sediment from the slab produced the LREE enrichment (Pearce et al., 2005; Elliott et al., 1997; Plank and Langmuir, 1998).

Figure 2-12 (a) Plot of Zr/Sm vs. SiO2 showing a slight increase in the ratio with differentiation. (b) Plot of La/Nb vs. SiO2 showing no variation in the ratio with differentiation. (c) Plot of Th/La vs. SiO2, showing a very slight increase to no variation with differentiation. Symbols as in Figure 2-5 caption

2.5.2.2 Differentiation processes

Major element compositions for glasses from Site 296 follow trends indicating multiple saturation with clinopyroxene, olivine, and plagioclase (Fig. 2-10). Except for olivine, these are common phenocrysts in lithic fragments from the Site 296 core and are found loose in the sediment matrix. Trends on Harker diagrams support crystallization of these phases as a control on the composition of the glasses (Fig. 2-5). FeO, MgO, and CaO decrease with SiO₂ and Al₂O₃ is relatively constant through andesitic compositions. Roughly similar trends are seen in the Site 782 fallout ashes. Accessory minerals also affect major element trends for TiO_2 and P_2O_5 . Except for four mafic glasses with high TiO_2 , TiO₂ decreases with SiO₂, indicating crystallization of titano-magnetite. With increasing differentiation, the P_2O_5 in Site 296 glasses reaches its peak in the andesitic range, marking the onset of apatite crystallization. This trend is unique to Site 296 glasses and is not seen in Site 782 glasses (Fig. 2-5). Based on major oxides and an increasing presence of negative Eu, Sr and Ti anomalies (Fig. 2-6a & b), basalt through andesite differentiation was dominated by clinopyroxene and plagioclase crystallization, followed by magnetite in intermediate compositions. There is limited evidence in Site 782 tephra for plagioclase crystallization as not much variation in Sr is observed.

For magmas as silicic as dacite and rhyolite, crystallization of accessory minerals, such as zircon, ilmenite, apatite, and allanite, with significant partition coefficients for trace elements Nb, Zr, Ti, Hf, REE, U, Th, may influence incompatible element ratios (Fig. 2-12). For example, zircon crystallization will decrease Zr/Sm, La/Nb, and Th/La; allanite and apatite crystallization will increase Zr/Sm and decrease La/Nb; allanite crystallization will increase Th/La. As shown in Fig. 12, only Zr/Sm changes with increasing SiO₂ toward

slightly higher ratios; thus, the apatite crystallization indicated by decreasing P_2O_5 abundances may have affected MREE and HREE abundances (Fig. 2-5). In the absence of accessory mineral crystallization, the differences among dacites and rhyolites, especially LREE enrichment, Th/La and La/Nb ratios can be inferred to reflect differences among different primary basalts.

MREE and HREE contents can also be affected by amphibole or garnet crystallization or assimilation of crust with these phases in the residue during differentiation. A relative depletion of Eu, Gd, and Sm in the dacite glasses and two of the three clasts of Site 296 suggests that amphibole crystallized in these magmas (Fig.2-6 b &c). Although none of the lithic fragments at Site 296 or dredged and drilled rocks are reported to contain amphibole, there are scattered amphibole grains in the sediments which must have originated in the arc magmas of the KPR. Plots of La/Yb and Dy/Yb with SiO₂ (Fig. 2-13a, b) can reveal and distinguish the presence of amphibole or garnet as a fractionating phase or residue of partial melting and mixing processes (Davidson et al. 2007). The tonalites, which contain amphibole, and intermediate to silicic Site 782 samples follow a subtle trend of amphibole fractionation; relatively little change in La/Yb and slightly decreasing Dy/Yb with increasing SiO₂.

For Site 296 glasses and dredged and drilled volcanic rocks, interpretations are complicated by the wide range of La/Yb and Dy/Yb at mafic compositions. Primary magmas for these rocks and glasses could have formed by partial melting at varying mantle depths with the presence or absence of residual garnet controlling the La/Yb and Dy/Yb ratios (Fig. 2-13). In this case, the different trends of the basaltic glasses of Site 296 would signify their origin at variable mantle depths.

Figure 2-13 (a) Plot of La/Yb vs. SiO2 showing the trends of garnet and amphibole fractionation with differentiation of magma (Davidson et al., 2007). La/Yb increases during the fractionation of both garnet and amphibole with a greater increase in the ratio for garnet compared with amphibole. (b) Plot of Dy/Yb vs. SiO2 showing the trends of garnet and amphibole fractionation with differentiation (Davidson et al., 2007). Dy/Yb increases with fractionation of garnet and decreases with amphibole fractionation. The dashed horizontal line shows the primitive mantle ratio from Sun and McDonough (1989). Symbols as in Figure 2-5 caption

2.5.2.3 Volcanic/plutonic relationships

The relationship between contemporaneous volcanic and plutonic rocks is a topic of interest in understanding the origin of the continental crust. The association is still not clear whether silicic volcanic and plutonic rocks are formed from crystal mushes or derived together from greater depth, or separate processes altogether (Lundstrom and Glazner, 2016). The recovery of 37-38 Ma old hornblende, biotite-hornblende, and hornblende-cpx tonalites from Komahashi Daini seamount (Haraguchi et al., 2003) in Segment 1 of the northern KPR, presents an unusual opportunity to compare volcanic and plutonic products from the early IBM and analyze possible relationships. Seismic data for this region shows that there is a developed mid-crust in the northern KPR, similar to that observed within the northern IBM arc (Kodaira et al., 2007; Suyehiro et al. 1996; Takahashi et al. 1998). The presence of hydrous minerals like hornblende and biotite in the tonalites displays one of the recognized disparities seen within the volcanic and plutonic rocks of island arcs; anhydrous versus hydrous assemblages. The anhydrous assemblage of volcanic rock is hypothesized to result from magma degassing during ascent through crust whereas the hydrous assemblage commonly seen in plutonic rocks are attributed to the formation from un-degassed water-rich magma which crystallizes hornblende at depth. There is limited evidence of hydrous minerals in volcanic rocks of the northern IBM, but depletion in MREEs in some dacite glass shards of Site 296 (Fig. 2-6c) and presence of hornblende grains in the volcaniclastic sediments from the core suggest otherwise.

Figure 2-14 Primitive mantle normalized spider plots of tonalites and dacite glasses from Site 296 and 782, which show complementary features. Tonalites are shown in grey, Site 296 glasses in blue and Site 782 in orange

In the crystal mush model, both volcanic and plutonic rocks are co-magmatic; melt extraction from the crystal mush forms silicic volcanic rock, while the residual crystal mush forms the plutonic rock (Bachmann and Bergantz, 2004; Eichelberger et al., 2006; Bachmann et al., 2007). Negative Rb anomalies, high Ba, Zr, and Hf concentrations with weak depletion in Sr, P, and Ti are commonly observed within the plutonic rocks whereas complementary volcanic rocks have excess Rb and maybe more depleted in Ba, Sr, P, and Ti (Yan et al., 2016; 2018). This type of relationship is found between the Komahashi Daini tonalites and glasses from Site 296 (Fig. 2-7c). On Harker diagrams (Fig. 2-5), the more silicic tonalites have low K contents, more like the Site 782 tephra than Site 296 glass. This could indicate a relationship where tonalites and Site 782 glasses originated from an initially low K primary magma; alternatively, K, like Rb, may have been extracted from the crystal mush (Hickey-Vargas, 2005). Two dacite glasses from Site 296 and some dacite glasses from Site 782A show signatures similar to the tonalites (Fig. 2-14). Similar depletion in MREE like Gd and the trends of La/Yb and Dy/Yb with silica, together with the high Zr, Hf, and low Rb content of the tonalites, may point to a complementary relationship between the two. Despite the geochemical evidence, age relationships do not support actual coexistence of the tonalite magma and these Site 782A ashes, as the ash is 7-8 m.y. younger (Fig. 2-15). The tonalites are also older than the depositional ages of the Site 296 sediments. However, the two dacite glasses from Site 296 Core 64 (~ 1075 mbsf) lie below a clast dated at 47.5 Ma (~970 mbsf); therefore, they may originate from Eocene lavas of similar age to that of the tonalites.

2.5.3 Geochemical Evolution of Magmas in KPR Segment 1

2.5.3.1 Mantle Fertility and Subduction inputs

At present, ODP Site 782 is located 830 km closer to the Izu-Bonin Trench than DSDP Site 296 (Fig. 2-11b). Assuming the sources of sediments for these sites were also

spatially distinct, even before arc rifting (Fig. 2-11a), some geochemical differences can be attributed to distance from the convergent margin. Mafic Site 782 tephra and ash are more depleted in LREE compared to HREE ($(La/Yb)_N 0.49$ to 0.88) than mafic Site 296 glass ($(La/Yb)_N = 0.70$ to 4.44). Differences in LREE-enrichment between the glasses from two drill sites may indicate volcanic front or forearc (Site 782) versus rear arc settings (Site 296), with greater input of slab-derived fluids causing a greater extent of melting or a more depleted mantle wedge near the plate boundary (Straub et al., 2003). Volcanic rocks dredged from the KPR crest are always enriched in LREE compared to HREE ($(La/Yb)_N$ = 1.05 to 8.80). The absence of LREE depleted signatures may indicate that LREEenrichment increased and became more uniform in the later stages of early IBM magmatism (Fig. 2-15), since these rocks are younger. Haraguchi et al. (2012) proposed that an enriched MORB mantle source replaced a depleted MORB mantle from the west during rifting and opening of Shikoku basin which would result in more enriched volcanic products toward the end of the lifetime of the early IBM. Alternatively, replacement of enriched MORB mantle might have been a localized process that affected the sources of volcanic rocks from Nichinan Seamount (Haraguchi et al., 2012), and also possibly the sources of the Site 296 clasts. Nb enrichment in the rear arc, shown by higher Nb/Yb, may also reflect an increase in asthenosphere fertility (Pearce et al., 2005; Brandl et al., 2017). The reason for the increase in the fertility of asthenosphere is unsure, but the tectonic forces causing rifting may also have induced upwelling of asthenosphere from deeper and more enriched sources.

Figure 2-15 Plot of (La/Sm)N vs. age in Ma for tephra, volcanic, and plutonic rocks from KPR Segment 1. Some older Eocene Site 782 tephras are also plotted. The blue squares are the range of (La/Sm)n for glass shards and clasts from DSDP Site 296 using their early to late Oligocene depositional age. Symbols as in Figure 2-5 caption

The low K content of Site 782 glasses also stands out from the medium K content of the Site 296 glasses and the whole rocks. The low K content was attributed to the input of slab fluids together with high extents of mantle melting (shallow subduction) compared to input from both slab fluid and melt in the rear arc (deep subduction), which is also seen in the Quaternary Izu arc (Taylor and Nesbitt, 1998; Straub, 2003, 2008; Straub et al., 2010). According to Pearce et al. (2005), Ba enrichment is an indicator of input of slab fluids and shallow subduction, whereas Th is a component of the sediment melt which forms at depth. Among mafic samples, highest Ba/La and Ba/Th, together with low La/Sm and Nb/Yb are found in tephra from Site 782 (Fig. 2-9), currently in the forearc, consistent with high fluid inputs, high extents of mantle melting and source depletion in this part of the arc. A subset of these samples overlaps with Site 296 glasses at intermediate Nb/Yb, La/Sm, Ba/La and Ba/Th (Fig. 2-9), suggesting that mantle inputs and melting regimes were similar in these locations at some point during their individual histories. Interestingly, rocks from the KPR crest have lowest Th/Yb, Ba/La, and Ba/Th (Fig. 2-9). This feature may mark the waning of subduction inputs and the onset of arc extension and rifting.

Among rocks from the KPR crest, Ishizuka et al. (2011b) found small but systematic increases in Ba/La and ⁸⁷Sr/⁸⁶Sr toward the south (2-10, and 0.7029-0.7032, respectively). These differences are small compared with the total range of Oligocene materials from Segment 1, but they could reflect subduction conditions that existed in the short time interval of 25-28 Ma. Assuming that their low Ba/La, Ba/Th, and Th/La indicate limited input from subducted materials compared with melts of depleted mantle, greater input of subduction fluids (high Ba and Sr) may have occurred toward the south. This variation along the volcanic front can be tested further with samples from the current Izu-Bonin arc basement.

2.5.3.2 Temporal variations in Oligocene

The biostratigraphic ages of Site 296 sediments, from Early to Late Oligocene (Ingle et al., 1975), are poorly constrained, and there might be older lithic fragments in the sediments as evidenced by the presence of the lithic fragment aged 47.5 Ma (Ozima et al., 1977). Although volcanic debris will be mixed during deposition, younger volcanic materials are expected up the core. In contrast, no systematic trace element variation was observed in the glasses up the Site 296 core. The volcanic rocks sampled from the surface of the northern KPR are all young (24-28 Ma) and show widely varying composition, from those poor in subduction indicators (see above) to the highly enriched rocks dredged from Nichinan seamount. Based on their similar age, it may be that mantle sources of the

enriched seamount rocks are localized, caused by the invasion of enriched MORB sources (Haraguchi et al., 2012) in this location. The trend toward low subduction inputs in some of the KPR crest rocks could mark the effect of incipient rifting, with roll-back of the downgoing slab eliminating the source of subducted materials.

2.6 Conclusions

- 1. Glasses from a 653-meter section of volcaniclastic sediment recovered from DSDP Site 296 in Segment 1 of the northern KPR show a wide range of trace element variation, even among basaltic compositions. These are more likely to be related to different primary magmas than differentiation processes; this is also seen within glasses and tephras of forearc ODP Site 782. Therefore, it appears that the melting of compositionally diverse mantle sources occurred even in relatively small segments (approximately 540 km of 2600 km total arc length) of the early IBM arc.
- 2. Differentiation through rhyolite mostly retains the trace element features of basaltic magmas, such as high Rb, Ba contents, and La/Nb, Th/La and La/Sm ratios. Fractionation of accessory apatite affected the signature of some silicic derivatives by producing higher Zr/Sm and lower La/Yb ratios. Hornblende was not a primary fractionating phase for basaltic magmas but may have played a role in the differentiation of silicic magmas.
- 3. Comparison of the compositions of broadly coeval Segment 1 volcanic suites with a plutonic suite exposed by arc rifting suggests that they are related. Tonalites were formed from low K primary magma, similar to some Site 296 and Site 782A glasses and differentiated at depth to stabilize hornblende and biotite. Crust building probably

occurred by contemporaneous intrusive and extrusive activity, as evidenced by the similar radiometric ages of the tonalites, volcanic rocks and the tephra layers.

4. Within Segment 1, the Oligocene IBM arc was characterized by chemically varying primary magma sources which may have been affected by rifting, the flow of localized enriched MORB mantle and/or varying additions of sediment and fluid to the melting mantle, processes which have been documented in other parts of the early arc. Based on this finding, the identification and interpretation of along-strike and across-strike trends for the entire early IBM arc may be premature and rest upon more thorough exploration and investigation.

2.7 Acknowledgments

This research was supported by NSF grants OCE 0931440 and OCE 15377861 to Rosemary Hickey-Vargas. We gratefully acknowledge the contribution of Mary White, Maria Pages, Carrie Rebenack and Donna Adams to prepare mineral and glass separates for this project, supported by NSF grant OEDG 0303173. We thank Thomas Beasley of the Florida Center for Analytical Electron Microscopy (FCAEM) at FIU for assistance with EPMA analyses and Dr. Tatiana Trejos of the Trace Evidence Analysis Facility (TEAF) at FIU for assistance with LA-ICPMS analyses

2.8 References

Arculus, R.J., Bloomfield, A.L., Fryer, P., et al., 1992, Major-element geochemistry of ashes from Sites 782, 784 and 786 in the Bonin forearc: Proceedings of the Ocean Drilling Program, Scientific Results, v. 125, p. 277-292.

- Arculus, R.J., Ishizuka, O., Bogus, K.A., et al., 2015, A record of spontaneous subduction initiation in the Izu-Bonin-Mariana Arc: Nature Geoscience, v. 8, no. 9, p. 728-733.
- Arculus, R., Ishizuka, O., Bogus, K., et al., 2015, International Ocean Discovery Program Expedition 351 preliminary report; Izu-Bonin-Mariana Arc origins; continental crust formation at an intraoceanic arc; foundation, inception, and early evolution; 30 May-30 July 2014: Preliminary Report (International Ocean Discovery Program), v. 351.
- Bachmann, O., and Bergantz, G.W., 2004, On the origin of crystal-pore rhyolites; extracted from batholithic crystal mushes: Journal of Petrology, v. 45, no. 8, p. 1565-1582.
- Bachmann, O., Miller, C.F., and de Silva, S.L., 2007, The volcanic-plutonic connection as a stage for understanding crustal magmatism: Journal of Volcanology and Geothermal Research, v. 167, no. 1-4, p. 1-23.
- Brandl, P.A., Hamada, M., Arculus, R.J., et al., 2017, The arc arises; the links between volcanic output, arc evolution and melt composition: Earth and Planetary Science Letters, v. 461, p. 73-84.
- Bryant, C.J., Arculus, R.J., and Eggins, S.M., 2003, The geochemical evolution of the Izu-Bonin Arc system; a perspective from tephras recovered by deep-sea drilling: Geochemistry, Geophysics, Geosystems - G3, v. 4, no. 11.
- Davidson, J., Turner, S., Handley, H., Macpherson, C., and Dosseto, A., 2007, Amphibole "sponge" in arc crust?: Geology (Boulder), v. 35, no. 9, p. 787-790.

- Eichelberger, J.C., Izbekov, P.E., and Browne, B.L., 2006, Bulk chemical trends at arc volcanoes are not liquid lines of descent: Lithos (Oslo), v. 87, no. 1-2, p. 135-154.
- Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana Arc: Journal of Geophysical Research, v. 102, no. B7, p. 14-15,019.
- Grove, T.L., Gerlach, D.C., and Sando, T.W., 1982, Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing: Contributions to Mineralogy and Petrology, v. 80, no. 2, p. 160-182.
- Grove, T.L., Gerlach, D.C., Sando, T.W., and Baker, M.B., 1983, Origin of calc-alkalic series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing; corrections and clarifications: Contributions to Mineralogy and Petrology, v. 82, no. 4, p. 407-408.
- Grove, T.L., and Baker, M.B., 1984, Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends: Journal of Geophysical Research, v. 89, no. B5, p. 3253-3274.
- Haraguchi, S., Ishii, T., Kimura, J., and Kato, Y., 2012, The early Miocene (approximately 25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku back-arc basin opening: Contributions to Mineralogy and Petrology, v. 163, no. 3, p. 483-504.

- Haraguchi, S., Ishii, T., Kimura, J., and Ohara, Y., 2003, Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust: Contributions to Mineralogy and Petrology, v. 145, no. 2, p. 151-168.
- Hickey-Vargas, R., 2005, Basalt and tonalite from the Amami Plateau, northern West Philippine Basin; new Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications: Island Arc, v. 14, no. 4, p. 653-665.
- Hickey-Vargas, R., Abdollahi, M.J., Parada, M.A., Lopez-Escobar, L., and Frey, F.A., 1995, Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone; implications for crustal composition and magma-crust interaction: Contributions to Mineralogy and Petrology, v. 119, no. 4, p. 331-344.
- Hochstaedter, A., Gill, J., Peters, R., Broughton, P., Holden, P., and Taylor, B., 2001,
 Across-arc geochemical trends in the Izu-Bonin arc; contributions from the subducting slab: Geochemistry, Geophysics, Geosystems G3, v. 2, no. 7, p. Citation 2000GC000105.
- Ingle, J.C., Jr, Karig, D.E., Bouma, A.H., et al., 1975, Site 296: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 191-274.
- Ishizuka, O., Tani, K., Reagan, M.K., et al., 2011, The timescales of subduction initiation and subsequent evolution of an oceanic island arc: Earth and Planetary Science Letters, v. 306, no. 3-4, p. 229-240.

- Ishizuka, O., Taylor, R.N., Milton, J.A., and Nesbitt, R.W., 2003, Fluid-mantle interaction in an intra-oceanic arc; constraints from high-precision Pb isotopes: Earth and Planetary Science Letters, v. 211, no. 3-4, p. 221-236.
- Ishizuka, O., Taylor, R.N., Yuasa, M., and Ohara, Y., 2011, Making and breaking an island arc; a new perspective from the Oligocene Kyushu-Palau Arc, Philippine Sea: Geochemistry, Geophysics, Geosystems - G3, v. 12, no. 5, p. Citation Q05005.
- Katsura, T., and Shimamura, K., 1994, Geological, geochemical research of bottom samples, from continental shelf surveys, H. D. Japan (part 1): preliminary study for ocean floor on the Japanese continental shelves (In Japanese): Rept Hydrogr Res, v. 30, p. 345-381.
- Kelley, K.A., Plank, T., Ludden, J., and Staudigel, H., 2003, Composition of altered oceanic crust at ODP Sites 801 and 1149: Geochemistry, Geophysics, Geosystems -G3, v. 4, no. 6.
- Kobayashi, K., Kasuga, S., and Okino, K., 1995, Shikoku Basin and its margins: New York, NY, United States (USA), Plenum Press, New York, NY.
- Kodaira, S., Sato, T., Takahashi, N., Ito, A., Tamura, Y., Tatsumi, Y., and Kaneda, Y.,
 2007, Seismological evidence for variable growth of crust along the Izu intraoceanic arc: Journal of Geophysical Research, v. 112, no. B5, p. B05104.

- Lee, J., Stern, R.J., and Bloomer, S.H., 1995, Forty million years of magmatic evolution in the Mariana arc; the tephra glass record: Journal of Geophysical Research, v. 100, no. B9, p. 17-17,687.
- Lundstrom, C.C., and Glazner, A.F., 2016, Silicic magmatism and the volcanic-plutonic connection: Elements, v. 12, no. 2, p. 91-96.
- McDonough, W.F., and Sun, S.S., 1995, The composition of the Earth: Chemical Geology, v. 120, no. 3-4, p. 223-253.
- Miyashiro, A., 1974, Volcanic rock series in island arcs and active continental margins: American Journal of Science, v. 274, no. 4, p. 321-355.
- Nishizawa, A., Kaneda, K., and Oikawa, M., 2016, Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea Plate: Earth, Planets and Space, v. 68, p. Article 30.
- Okino, K., Shimakawa, Y., and Nagaoka, S., 1994, Evolution of the Shikoku Basin: Journal of Geomagnetism and Geoelectricity, v. 46, no. 6, p. 463-479.
- Ozima, M., Kaneoka, I., and Ujiie, H., 1977, (super 40) Ar- (super 39) Ar age of rocks, and the development mode of the Philippine Sea: Nature (London), v. 267, no. 5614, p. 816-818.
- Pearce, J.A., and Peate, D.W., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earth and Planetary Sciences, v. 23, p. 251-285.

- Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., 2005, Geochemical mapping of the Mariana arc-basin system; implications for the nature and distribution of subduction components: Geochemistry, Geophysics, Geosystems - G3, v. 6, no. 7.
- Plank, T., and Langmuir, C.H., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, v. 145, no. 3-4, p. 325-394.
- Reagan, M.K., Ishizuka, O., Stern, R.J., et al., 2010, Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system: Geochemistry, Geophysics, Geosystems -G3, v. 11, no. 3, p. Citation Q03X12.
- Shibata, K., Mizuno, A., Yuasa, M., Uchiumi, S., and Nakagawa, T., 1977, Further K-Ar dating of tonalite dredged from the Komahashi-daini Seamount: Chishitsu Chosajo Geppo = Bulletin of the Geological Survey of Japan, v. 28, no. 8, p. 1-4.
- Stern, R.J., Fouch, M.J., Klemperer, S.L., and Eiler, J.M., 2003, An overview of the Izu-Bonin-Mariana subduction factory: Geophysical Monograph, v. 138, p. 175-222.
- Stern, R.J., Jackson, M.C., Fryer, P., and Ito, E., 1993, O, Sr, Nd and Pb isotopic composition of the Kasuga Cross-Chain in the Mariana Arc; a new perspective on the K-h relationship: Earth and Planetary Science Letters, v. 119, no. 4, p. 459-475.
- Stern, R.J., Morris, J.D., Bloomer, S.H., and Hawkins, J.W., Jr, 1991, The source of the subduction component in convergent margin magmas; trace element and radiogenic

isotope evidence from Eocene boninites, Mariana Forearc: Geochimica et Cosmochimica Acta, v. 55, no. 5, p. 1467-1481.

- Straub, S.M., Layne, G.D., Schmidt, A., and Langmuir, C.H., 2004, Volcanic glasses at the Izu Arc volcanic front; new perspectives on fluid and sediment melt recycling in subduction zones: Geochemistry, Geophysics, Geosystems - G3, v. 5, no. 1.
- Straub, S.M., 2008, Uniform processes of melt differentiation in the central Izu Bonin volcanic arc (NW Pacific): Geological Society Special Publications, v. 304, p. 261-283.
- Straub, S.M., 2003, The evolution of the Izu Bonin-Mariana volcanic arcs (NW Pacific) in terms of major element chemistry: Geochemistry, Geophysics, Geosystems - G3, v. 4, no. 2.
- Straub, S.M., Goldstein, S.L., Class, C., Schmidt, A., and Gomez-Tuena, A., 2010, Slab and mantle controls on the Sr-Nd-Pb-Hf isotope evolution of the post 42 Ma Izu-Bonin volcanic arc: Journal of Petrology, v. 51, no. 5, p. 993-1026.
- Straub, S.M., Woodhead, J.D., and Arculus, R.J., 2015, Temporal evolution of the Mariana Arc; mantle wedge and subducted slab controls revealed with a tephra perspective: Journal of Petrology, v. 56, no. 2, p. 409-439.
- Sun, C., and Stern, R.J., 2001, Genesis of Mariana shoshonites; contribution of the subduction component: Journal of Geophysical Research, v. 106, no. B1, p. 589-608.

- Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes: Geological Society Special Publications, v. 42, p. 313-345.
- Suyehiro, K., Takahashi, N., Ariie, Y., et al., 1996, Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc: Science, v. 272, no. 5260, p. 390-392.
- Takahashi, N., Suyehiro, K., Shinohara, M., Stern, R.J., and Arima, M., 1998, Implications from the seismic crustal structure of the northern Izu-Bonin Arc: Island Arc, v. 7, no. 3, p. 383-394.
- Taylor, B., Fujioka, K., Janecek, T.R., et al., 1992, Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana Arc: Proceedings of the Ocean Drilling Program, Scientific Results, v. 126, p. 627-651.
- Taylor, R.N., and Nesbitt, R.W., 1998, Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan: Earth and Planetary Science Letters, v. 164, no. 1-2, p. 79-98.
- Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., and Croudace, I.W., 1994, Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan: Journal of Petrology, v. 35, no. 3, p. 577-617.
- Woodhead, J.D., 1989, Geochemistry of the Mariana Arc (western Pacific); source composition and processes: Chemical Geology, v. 76, no. 1-2, p. 1-24.

- Xu, Y., Wise, S.W., Jr, Fryer, P., et al., 1992, Middle Eocene to Miocene calcareous nannofossils of Leg 125 from the western Pacific Ocean: Proceedings of the Ocean Drilling Program, Scientific Results, v. 125, p. 43-70.
- Yamazaki, T., and Stern, R.J., 1997, Topography and magnetic vector anomalies in the Mariana Trough: JAMSTEC Journal of Deep Sea Research, v. 13.
- Yan, L., He, Z., Beier, C., and Klemd, R., 2018, Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China: Contributions to Mineralogy and Petrology, v. 173, no. 1, p. Article 4.
- Yan, L., He, Z., Jahn, B., and Zhao, Z., 2016, Formation of the Yandangshan volcanicplutonic complex (SE China) by melt extraction and crystal accumulation: Lithos (Oslo), v. 266-267, p. 287-308.

3 EARLY MAGMATIC HISTORY OF THE IBM ARC INFERRED FROM VOLCANIC MINERALS AND MELT INCLUSIONS FROM EARLY– LATE OLIGOCENE DSDP SITE 296: A MINERAL-MELT PARTITION APPROACH Eshita Samajpati, Rosemary Hickey-Vargas (Contributions to Mineralogy and Petrology- Pending Submission)

Abstract

Detrital volcanic minerals from DSDP Site 296 on the Kyushu-Palau Ridge (KPR) present a unique opportunity to understand the early evolution of the Izu-Bonin Mariana (IBM) arc. In this research, we present major and trace element compositions of detrital amphiboles and pyroxenes with their melt inclusions and feldspar compositions. Mafic minerals are particularly important in this study, because we use their composition to predict the crystallization temperature and pressure in the most primitive magmas. We also use previous experimental partition coefficient and calculated coefficient from melt inclusion and its host clinopyroxene to get equilibrium melt compositions. Major findings include that most primitive magma which crystallized amphibole, had a basalt melt composition with crystallization temperatures of 1016 °C. Melt composition from amphibole show slight to highly enriched characteristics (La/Sm_N 1-8), with some mafic amphibole showing high Nb/Yb and Th/Yb ratios (9 and 21) indicating mantle fertility and high subduction component. The amphibole in the core are present in close conjunction with some unusually high Mg# clinopyroxenes (88-92), which have overall low REEs concentration; the calculated melt in equilibrium also show low trace element concentration and low Nb/Yb (0.04-0.3) and low to moderate Th/Yb (0-4.6) ratios which imply that some major mantle re-organization might have taken place during this period.

3.1 Introduction

The Izu-Bonin Mariana arc (Fig. 3-1a) in the Western Pacific is perhaps one of the best places to study and understand early arc evolution. Periodic rifting of the arc has formed inactive rifted arcs providing a window to early history. The tectonic history and active processes of IBM have been studied over the last few decades and are well understood. In short, IBM (Fig. 1a) started with lithospheric subsidence along a transform fault which separated the old Jurassic Pacific plate from a much younger Philippine plate around 50 Ma years ago; during this period, forearc was the region of magmatism with the eruption of forearc basalt, boninites, and low K tholeiites (Stern et al., 1991; Taylor et al., 1994; Reagan et al., 2010; Ishizuka et al., 2011a; Arculus et al., 2015a, 2015b). After 5 Ma, the magmatic arc was established and was active until 30 Ma with eruption of typical arc magma (Stern 2003). Arc volcanism was disrupted by rifting and opening of the Parece vela in the South and Shikoku basin in the North, completely separating the Kyushu Palau Ridge from IBM Arc (Taylor et al., 1992; Kobayashi et al., 1995). After a period of back arc basin formation, arc volcanism again resumed around 17 Ma and continued until 7 Ma, when another period of back arc basin formation in the south formed the Mariana Ridge (Yamazaki and Stern, 1997).

Figure 3-1 (a) Map of the present day Izu-Bonin Mariana arc and features of the Philippine Sea plate. The Kyushu Palau ridge has been divided into 4 segments as per Ishizuka et al. (2011b). Red star shows the location of DSDP Site 296. (b) Litho-stratigraphic sequence as defined by the Shipboard Party, DSDP Leg 31 (Ingle et al, 1975).

Compared to the active processes, early arc evolution is still studied, leading to a shift in the focus of study in the IBM to the back-arc regions like the Kyushu Palau Ridge (KPR). Earlier and previous studies come mainly in the form of dredged volcanic and plutonic rocks, glass, minerals, and melt inclusion studies from several drilled sites at the back arc and forearc regions. (Ishizuka et al., 2011; Brandl et al. 2017; Haraguchi et al. 2003, 2012; D'Antonio et al. 2006; Lee et al. 1995; Arculus et al., 2015). These studies have interpreted and revealed significant findings of the early arc chemistry, but more is required for a cohesive and complete understanding. Since the uncommon recovery of fresh lava hampers this knowledge, it is critical to utilize every possible method to detrial volcanic materials to get a significant finding. Detrital minerals especially early mafic ones like pyroxenes and amphibole, can be used to understand the nature of the magma. Recent and earlier studies have shown that these minerals can tell us about the temperature, and pressure of crystallization (Nimis and Ulmer 1995, Nimis 1999; Putirka 2003,2016; Putirka et al., 2008). Besides, the experimental partition coefficients between mineral-melt can also be used to predict the composition of the melt it crystallized from (Sisson and Grove, 1993; Nandedkar et al., 2016; Humphreys et al., 2019). In this study, we use major and trace elemental chemistry of pyroxene, amphibole, feldspar and melt inclusion within the pyroxene from DSDP Site 296, located in the northern KPR to model the possible composition of the melt in equilibrium and its pressure and temperature to understand a part of the early arc.

3.2 Method

3.2.1 Core Samples

Deep Sea Drilling Project Site 296 located in the northernmost Palau-Kyushu Ridge consists of two distinct lithological units, 1 and 2 (Fig 3-1b). Unit 1 comprises 453 meters of nannofossil chalks and oozes and is further divided into seven subunits. The biostratigraphic age of the unit is between Late Oligocene to Pleistocene. The base of unit 1 coincides with the rifting of the arc and opening of the Shikoku basin (Ingle et al., 1975). Unit 2 is 634 meters of Early to Late Oligocene interbedded lapilli tuffs and volcanic sandstone. The lapilli tuffs and sandstones of unit 2 consist of lithic fragments, glass shards, and volcanic minerals like plagioclase, pyroxenes, and titano-magnetite with a sparse amount of amphibole in a clayey or silty matrix. Plagioclase, pyroxene, and titano-

magnetite are present throughout the core and in all the core samples studied, whereas amphiboles are only present at some intervals. The feldspar grains picked were usually clear and white without any signs of alteration; the pyroxenes were either black, green or brown-orange and were usually fresher than feldspars. Both orthopyroxene and clinopyroxenes were present. Clinopyroxenes were typically in shades of green or black, whereas orthopyroxenes were orange and brown. Both had inclusions of oxide, feldspar, and melt composition. Amphiboles were present as black grains slightly opaque than the pyroxene grains under a binocular microscope. The amphiboles had inclusions of feldspar, oxide, and apatite; melt inclusions were mostly absent.

3.2.1 Analytical Technique

Twenty-two core samples selected for their coarse grain size and fresh appearing detrital grains were disaggregated in deionized water; twenty were from Unit 2 and two from the base of unit 1G. The resulting sediment was sieved, rinsed, and handpicked at 500 microns to 1-millimeter grain size. Minerals were first identified under a binocular microscope and later using SEM-EDS. The grains were then mounted in epoxy, polished, and carbon-coated for microprobe analysis. Melt inclusions inside the pyroxenes were first identified under backscattered electron imaging and then analyzed for major oxides. Melt inclusions (MIs), which were round and intact and did not show post entrapment crystallization, were analyzed. Large MIs were rare; the size of the melt inclusions analyzed was typically 30-60 microns. Major oxides of the minerals and melt inclusions were analyzed using JEOL 8900 Superprobe EPMA at Florida Center for Analytical Electron Microscopy at FIU. Standards were analyzed before and after each sample to

check the quality of the analysis. The analysis was done using a 1-micron beam for minerals, 2.5 microns for MIs, at 20 nA current, and 15 kV with two spots analyzed per grain. For Na and K, the beam was diffused during analysis to minimize volatilization. For feldspars and pyroxenes, the grains with a total in the range of 99-101% were considered; for melt inclusions, the totals were as low as 90% for some felsic ones. The amphiboles analyzed had totals between 94-98%.

Trace elements, including the rare earth elements in the amphiboles, pyroxenes and melt inclusions, were analyzed by Laser Ablation ICPMS using the Elan 6100 ICP-MS at the Trace Evidence Analysis Facility at FIU, using a New Wave 213 nm laser. NIST 612 was used as a calibrator and BHVO-2 as the external standard. Spot size for minerals was 80 microns, and for melt inclusions, it was 40-55 microns, with a 10 Hz rep rate and 100% output for both. The size of the inclusion didn't allow for more than one spot, and anything smaller than 40 microns was not analyzed. The data was then processed using the software Glitter, with Ca as the internal standard.

Smear slides were prepared for all the samples to compare mineral abundances in the coarse and fine sediments. The size of the grains used for making smear slides was in between 75-100 micron. Accuracy and precision for standard data using EPMA and LA-ICP-MS are listed in Table 1. The data for all the analysis is listed in the appendices.

Table 3-1 Data quality of the standards used, major oxide data from EPMA and trace element from LA-ICP-MS

	Standard Kaersutite			
	Mean(25)	%RSD	Rec Val	%bias
SiO_2	39.71	1.47	40.09	-0.96
TiO ₂	4.93	6.51	5.04	-2.09
Al_2O_3	12.29	1.76	12.36	-0.58
Na_2O	2.46	5.74	2.44	0.63
MnO	0.08	25.45	0.18	-56.79
MgO	12.20	2.57	12.55	-2.79
Cr_2O_3	0.03			
K_2O	0.96	8.56	1.17	-18.27
CaO	11.29	1.26	11.56	-2.31
FeO	12.31	4.40	12.24	0.57

	Standard Enstatite				
	Mean(25)	%RSD	Rec value	%bias	
SiO ₂	54.96	1.94	54.31	1.20	
TiO ₂	0.10	36.70	0.17	-40.77	
Al_2O_3	4.34	3.39	4.34	0.10	
Na ₂ O	0.07	19.60	0.08	-14.55	
MnO	0.08	17.97	0.16	-49.26	
MgO	32.23	3.49	33.32	-3.28	
Cr_2O_3	0.28	18.72	0.30	-5.07	
CaO	0.77	4.86	0.84	-8.15	
FeO	6.91	3.32	6.35	8.83	

	Standard BHVO-2			
	Mean(10)	%RSD	Rec Value	%bias
SiO_2	50.32	1.79	49.60	1.45
TiO ₂	2.59	3.62	2.73	-5.08
Al_2O_3	13.61	1.73	13.44	1.25
Na ₂ O	1.89	3.06	2.22	-15.01
MnO	0.17	27.47	0.17	1.72
MgO	7.57	3.09	7.26	4.36
K_2O	0.50	1.45	0.51	-2.93
P_2O_5	0.27	9.39	0.27	0.87
CaO	11.45	1.12	11.40	0.45
FeO	10.71	2.20	11.07	-3.27

	Standard Plagioclase				
	Mean(40)	%RSD	Rec value	%bias	
SiO_2	54.31	1.06	54.21	0.18	
Al_2O_3	28.65	1.48	28.53	0.43	
Na_2O	4.09	3.80	4.35	-6.06	
MgO	0.03	149.40	0.13	-80.00	
K_2O	0.34	7.46	0.41	-17.35	
CaO	11.81	2.90	11.80	0.07	
FeO	0.40	13.46	0.37	7.02	

Table 3-1 continued

	Standard BHVO-2			
Element	Mean of 20	%RSD	Rec Value	%bias
Rb85	7.56	6.30	9.26	-18.4
Sr88	380.51	3.17	394.10	-3.4
Y89	25.10	5.78	25.91	-3.1
Zr90	147.79	5.67	171.20	-13.7
Nb93	17.50	4.74	18.10	-3.3
Cs133	0.08	48.00	0.10	-23.5
Ba137	111.98	4.85	130.90	-14.5
La139	15.85	7.94	15.20	4.3
Ce140	37.46	5.72	37.53	-0.2
Pr141	5.10	6.28	5.34	-4.5
Nd146	24.99	3.95	24.27	3.0
Sm147	6.13	7.25	6.02	1.7
Eu153	1.97	5.69	2.04	-3.6
Tb159	0.91	11.21	0.94	-3.2
Gd160	6.35	5.85	6.21	2.4
Dy163	5.43	8.78	5.28	2.8
Ho165	1.00	8.37	0.99	1.1
Er166	2.57	8.37	2.51	2.4
Yb172	2.04	22.20	1.99	2.2
Lu175	0.31	15.53	0.28	11.7
Hf178	4.49	10.33	4.47	0.5
Ta181	1.23	7.67	1.15	6.8
Pb208	1.21	16.88	1.65	-27.0
Th232	1.25	7.77	1.22	1.7
U238	0.39	11.30	0.41	-4.8

3.3 Results

3.3.1 Feldspars

Feldspars had occasional melt inclusions and mineral inclusions of titanomagnetite, pyroxene, and apatite. Compositionally, all the feldspars analyzed were plagioclase with a bimodal distribution around An₄₅₋₆₀ and An₈₅₋₉₅, although intermediate varieties were also observed. Among the plagioclase analyzed, Andesine (38%) is the most common type followed by Bytownite (23%), Labradorite (21%), and Anorthite (18%) (Fig 3-2). The K₂O content of the plagioclases is <0.6%, which may be a result of preferential weathering of high K plagioclase in volcanic rocks (Maynard, 1984). MgO and FeO contents are less than 0.1% and 1% respectively, although few Bytownites have slightly higher MgO (0.2-0.8 %) and FeO (2.3-4.7 %) contents. The bimodal variation is observed throughout the core, but anorthite-rich plagioclase becomes more dominant towards the top of Unit 2 (Fig 3-2). The presence of >An₉₀ is commonly attributed to high H₂O content of arc magma as high-water content suppresses Si-O-Si-O polymerization and favors crystallization of anorthite over albite (Sisson and Grove, 1993).

Figure 3-2 Depth vs. cumulative frequency of compositional range of plagioclase at different depths

3.3.2 Pyroxenes

Both clinopyroxenes (cpxs) and orthopyroxenes (opxs) are present in Unit 2, however, the presence of orthopyroxene is low and is found in a few samples only. Compositionally, opxs are Bronzite-Hypersthene with a composition of En₅₄₋₇₃Wo₂₋₄ (Fig. 3-3a); no magnesian enstatites, usually associated with boninites were seen. Mg numbers (Mg#) of the opx are between 56 and 77. Cpxs falls mainly in the diopside and augite field (Fig. 3-3a), with compositions of Wo₃₆₋₄₈En₃₆₋₅₀ and Mg#ranging from 61-92.

The composition of the cpxs was also used to distinguish the magmatic affinities of the cpxs (Fig. 3-3 b-d) using the discrimination diagram of Leterrier et al. (1982). The result shows that these cpxs are mostly from subalkaline magma, showing both calcalkaline and tholeiitic affinities, and few are MORB-like. Stratigraphically, calc-alkaline cpxs are more dominant at the bottom cores whereas tholeiitic ones are more common at the top. The few MORB like cpxs also occurs at the top of the section.

Figure 3-3 (a) Ternary plot showing the composition of pyroxenes at Site 296 (b-d) Tectonic discrimination diagram based on clinopyroxene composition from Leterrier et al. (1982). Elements are expressed in cationic value from the structural formula of clinopyroxenes. Orange ones in c and d are the unusually high Mg# clinopyroxenes

Normalized trace element patterns of all cpxs show Nb depletion, characteristic of island arc magma, light rare earth element (LREE) depletion compared to middle rare earth element (MREE) and heavy rare earth element (HREE), and Zr, Hf, and Th depletion compared to LREE (Fig 3-4). As seen from the plot, higher concentrations of incompatible trace elements are seen for low Mg# grains and vice versa. Most high Mg# cpxs have very low concentrations of LREE and other trace elements, sometimes close to the detection limit.

Figure 3-4 Primitive mantle normalized multi-elemental composition of some mafic clinopyroxenes. Normalizing values after Sun and McDonough (1989). Clinopyroxene with Mg# > 85 is shown in orange; Mg# 80-85 is shown in blue and Mg# less than 80 is shown in yellow.

3.3.3 Amphibole

The amphiboles are not a common detrital mineral, but they are present in the upper part of Unit 2 from cores 49 to 57 (depth 453-719 m). Smear slides of the samples (75-100 microns) at deeper depth do not show any amphiboles. Smear slide of a sample from the upper part of core 60 had an amphibole but was absent in the larger grain fraction. Compositionally all the amphiboles are calcic amphibole (Fig 3-5a). Based on the chemical content, they can further be divided into magnesiohornblende, edenite, and magnesiohastingsites (Leake et al., 1997). The Mg# of the amphiboles range from 57 to 73. The normalized trace element concentrations show a depletion of Th and Nb compared to LREEs and depletion of Zr and Hf compared to REEs (Fig. 3-5b). From the trace element concentration, there are two distinct groups of amphiboles, with some intermediates. One group is slightly depleted in LREE and HREE compared to MREE and shows enrichment of Ti and no Eu depletion. The other group is enriched in LREE compared to MREE, depleted in Eu and Ti, and has flat MREE and HREE.

Figure 3-5 (a)Site 296 amphibole compositions plotted using cationic values based on 23 Oxygens after Leake et al. (1997). (b) Primitive mantle normalized trace element abundances in amphiboles; blue are magnesiohastingsites, yellow are edenites and the orange ones are magnesiohornblendes.

3.3.4 Melt Inclusions

Melt inclusions within pyroxene are typically between 10-60-micron size ranges and are found in both orthopyroxenes and clinopyroxenes; only the largest ones were analyzed. Some pyroxene grains had more than one melt inclusion; when analyzed, they had similar major oxide compositions. SiO2 contents range from 47 to 73%, while the Mg#s of most basaltic MIs range from 39 to 53. The totals for some of the felsic MIs are as low as 90%. All the MIs plot within the medium K series on a plot vs SiO2, similar to detrital glass shards from Unit 2 (Fig. 3-6a). There is disequilibrium between almost all MIs and host cpxs, as the Kd^{Fe-Mg} (Putirka et al., 2008) for the pairs are below the equilibrium line (Fig. 3-6b). Normalized trace element patterns show island arc features like Nb and Ta depletion compared with LREE and depleted to highly enriched LREE/MREE (La/Sm_N 0.33 to 4.03) (Fig. 3-6c).

Figure 3-6 (a) K₂O vs SiO₂ showing Site 296 melt inclusions in clinopyroxene compared with detrital glass shards from Site 296. (b) Cationic Fe/Mg ratios for melt inclusions and host clinopyroxenes. Kd line for cpxs/melt is 0.27 after Putirka et al. (2008). Clinopyroxene Fe/Mg calculated from Site 296 glass shards and melt Fe/Mg calculated from Site 296 clinopyroxenes are plotted on the equilibrium line. The melt inclusion which plots on the equilibrium line is of a basaltic composition. (c) Primitive mantle normalized trace element compositions of melt inclusions from clinopyroxenes (orange) and orthopyroxenes (purple).

3.4 Discussion

3.4.1 New Findings from Mafic Minerals at Site 296

DSDP Site 296 presents a unique opportunity to study the evolution of Oligocene magma in the northernmost section of the KPR (segment 1 from Ishizuka et al. (2011b)). Prior studies on the KPR in this region were made on dredged and piston core samples of plutonic and volcanic rocks (Haraguchi et al., 2012; Ishizuka et al., 2011b; Haraguchi et al., 2011b; Haraguchi et al., 2012; Ishizuka et al., 2012; Ishizuk

al., 2003). Other studies are from volcaniclastic sediments in the adjacent Amami-Sankaku basin drilled at IODP Site 1438 (Brandl et al., 2017; Arculus et al., 2015) and in the IBM forearc where Oligocene ashes and tephra were drilled at ODP Site 782 (Straub 2008, 2003; Bryant et al. 2003). Studying only uppermost volcanic and dredged rocks does not provide a complete timeline of arc magma evolution, whereas debris shed into a rear arc basin may not sample magma erupted during the rifting stages of the Oligocene arc. Because it is situated in a basin near the crest of the KPR, Site 296 records a continuous record of the magmatic evolution of the early-late Oligocene IBM arc, up until arc rifting and opening of the Shikoku basin.

When it comes to determining melt compositions, fresh glass shards like those found in Unit 2 at Site 296 provide the best magmatic record (Lee et al.,1995; Samajpati and Hickey-Vargas, 2020), but fresh and undevitrified glass in older volcaniclastic sediments is uncommon. Compared to glass, fresher mafic minerals like pyroxene and amphiboles which are more resistant to weathering, are readily available. Pyroxenes at Site 296 are the dominant mafic silicate grains and are present throughout the stratigraphic section. With more and improved experimental studies on mafic minerals in terms of mineral-melt partitioning and their temperature and pressure dependence, the cpxs can provide an extensive record of the magmatic history. For example, in Fig. 3-6b, the Mg# of liquids inferred from the composition of Site 296 cpxs is compared with the Mg# of glass shards found in Unit 2. It is observed that the glasses do not record the more primitive melts inferred from the cpxs. Another observation is that cpxs apparently did not crystallize in extreme silicic melts represented by the glass shards. Amphiboles in early IBM magmas were associated with felsic melt composition (Straub 2008), and there is limited evidence of their crystallization in the Site 296 glass shards and lithic clasts found in Unit 2. In contrast, pristine amphibole crystals are found as detrital grains and suggest otherwise. In following sections, we utilize experimental tools to understand the origins of the minerals, which together with glass shard compositions, can redefine or add to our knowledge on the evolution of the early arc.

3.4.2 Clinopyroxenes

Mg numbers of Cpxs and coexisting melts

The partition coefficient (K_d) of an element, defined as the ratio of its concentration in the mineral to its concentration in the melt, is a measure of the preference of that element in a given phase and can be used to model magmatic processes (O'Hara 1995; Shaw 2000). Studies defining the values of partition coefficients between mineral and melts under varying conditions can be used to understand the melt characteristics at Site 296. Using partition coefficient between Fe-Mg in melt and pyroxene (Kd^{Cpxs-liq} =0.27) preferred by Putirka et al. (2008), the most primitive cpxs with Mg numbers of 88-92 were calculated to coexist in equilibrium with a melt of Mg numbers ranging between 67-73, which is higher than what is observed in the Oligocene IBM melts represented by either glass, ash or lava. Cpxs with Mg# between 87- 61 is in equilibrium with a melt of Mg# 65-30, which represents a suite of mafic to felsic arc lavas; some of the most primitive KPR basalt lavas reported by Haraguchi et al. (2012) and Ishizuka et al. (2011b) had Mg# 65-63.

An interesting trend can be seen in the plot of Al₂O₃ vs. the Mg# of the Cpxs (Fig 3-7). Overall, Al₂O₃ contents increase to a maximum of about 7 wt% at around Mg# 80 and then decrease at higher Mg#s. That the alumina content of the most magnesian Cpxs

increases as Mg# decreases from 92 to 86 suggests that the magnesian Cpxs crystallized without accompanying plagioclase, consistent with the suppression of plagioclase crystallization at high pressure and water contents (Kay & Kay, 1985; DeBari et al.,1987; DeBari & Coleman,1989; Muntener et al., 2001). The broadly decreasing trend in the alumina content with further decreasing Mg# may indicate the onset of plagioclase crystallization together with Cpxs during differentiation to form silicic magmas. The Al content in Cpxs also increases as a function of pressure (Nimis and Ulmer, 1999) such that low alumina contents of Cpxs may be related to lower pressures of crystallization. Using this reasoning, the highest Mg# cpxs with low alumina could have crystallized in a shallow setting, whereas wide variation in Al contents at Mg# 80, could be a result of the generation of magma at different depths and or variable alumina contents of the magma it crystallized as the result of co-precipitation of plagioclase.

Figure 3-7 Al2O3 vs Mg# for Site 296 clinopyroxenes

Pressure estimates using cpxs thermobarometry

Pressure estimates from clinopyroxene are calculated as a linear function of cell site and M site volume (Nimis and Ulmer, 1999; Nimis, 1999). Both volumes decrease linearly with an increase in pressure as a combination of M1, M2, and T site exchanges, whereas at a given pressure, the volumes are inversely correlated (Nimis 1995; Nimis and Ulmer, 1998). In particular, Al_{M1} in clinopyroxene is directly related to the pressure. However, for hydrous magmas like those of subduction zones, the barometer is sensitive to the temperature of crystallization and a close estimation of temperature (± 50 °C) is needed to give accurate pressure readings. Since these are detrital pyroxenes, it is difficult to estimate a temperature using other geothermometers. The temperature of the clinopyroxenes will be based on a previous temperature determined on lithic clasts from ODP Site 1201 near the KPR (D'Antonio et al., 2006) of $1155 \pm 56^{\circ}$ C for the most primitive magmas. Using the cpxs geobarometer (Nimis, 1999) at temperatures of 1155 °C some high Mg# cpxs produced negative pressures, whereas most high Mg cpxs at 1100-1075 °C give a pressure of crystallization of 0-2 kbar, and a few give 4-6 kbar pressure of crystallization (those with high Al content in Fig 3-7). Cpxs with lower Mg numbers between 78-84 gave pressures ranging from 0-8 Kbar at temperatures of 1100-1075 °C. Because of the sensitivity of the barometer to Al contents of magma, only mafic magmas provide a reasonable pressure estimate. Higher pressures are related to the high Al Cpxs; it is impossible to distinguish the case of crystallization in deeper magma reservoirs versus higher alumina parent magmas, since both would increase the Al_{M1} component. The cpxsbar program (Nimis, 1999) is sensitive to the Al contents, and high alumina basalts are not considered for pressure estimation.

Melt trace element concentrations and patterns estimated from clinopyroxene partition coefficients

Partitioning of trace elements between melt and crystal is affected by changes in pressure, temperature, the composition of magma and the structure of the phase (Blundy and Wood, 2003; Nandedkar et al., 2014, 2016; Shimizu et al., 2017; Humphreys et al., 2019). At subduction zones, water also plays a vital role in partitioning, as it may decrease the trace element activity in melts and cause fractionation of one valence from the other (Blundy and Wood, 2003). Numerous experiments have been conducted aimed at measuring partition coefficients of elements between the melt and mineral (Nandedkar et al., 2016; Shimizu et al., 2017; Humphreys et al., 2019), and these studies provide more reliable information than studies based on phenocryst-matrix measurements. However, few experiments cover multiple elements; for Cpx-melt Kds, experimental partition coefficients for trace elements and REE must be drawn from several different studies. The partition coefficients used here for basaltic and basaltic andesite liquids were taken from the Geochemical Earth Reference Model (GERM) Reservoir database and are mainly experimental. Kds for intermediate and felsic magmas are poorly constrained by experimental data. In order to improve our selection, we first calculated partition coefficients using melt inclusions and enclosing clinopyroxenes from this work. These are compared with published values in Fig. 3-8. Partition coefficients calculated from the mafic cpx-basaltic MIs that fall on the equilibrium Kd_{Fe-Mg} line in Fig. 3-6b has a similar trace element Kd trend to those resulting from experiments (Fig. 3-8). Among other partition coefficients calculated from host-MI pairs, REE Kd's increase exponentially with more evolved melt inclusions, but this not observed for other trace elements. To calculate equilibrium melt compositions, we used the Kd's calculated from cpx and enclosed basaltic melt inclusion and we only infer the melt composition for mafic cpxs (Mg#s >75) in equilibrium with melt Mg#s of 45 and above, since it is difficult to determine the Kds for more evolved melts.

Figure 3-8 Comparison of clinopyroxene/melt partition coefficients from published data and partition coefficients calculated from melt inclusions and host cpxs from Site 296. For basaltic melts:-Rb-Klemme et al. (2002); Sr, Sm-Johnson (1994); Ce, Y-Jenner et al. (1994); Ba, Zr, Hf- Hart and Dunn (1993); Th, U, La, Nd, Eu, Dy, Er, Yb, Lu- Hauri et al. (1994); Gd-Hack et al. (1994); Pb-Beattie (1993). For basaltic-andesite melts -Rb-Philpotts and Schnetzler (1970); Sr, Y, Zr, La, Ce, Nd, Sm, Dy, Er, Yb- Ronov and Yaroshevskiy (1976); Ba- Hart and Brooks (1974); Gd- Gallahan and Nielson (1992); Hf, Th, U- Dostal et al. (1983). For andesitic melts: La, Sm, Dy, Yb- Nicholls and Harris (1980); Zr-Watson and Ryerson (1986); Rb, Pb, Sr, Y-Ewart and Griffin (1994); Ba, Nd- Luhr and Carmichael (1980); Th, Ce, Hf - Bacon and Druitt (1988) ; Er-Schnetzler and Philpotts (1970).

Fig. 3-9 shows the calculated melt composition coexisting with the high Mg# cpxs (88-92) and cpxs with Mg# between 75 to 87. The calculated trace element patterns for melts coexisting with the high Mg# cpxs have a flat REE pattern and low concentrations of trace elements compared to glass shards from the Site 296 drill core (Samajpati and Hickey-Vargas, 2020). Calculated trace element patterns for melts coexisting with cpxs with Mg# 75 to 85 vary widely, from flat REE patterns to LREE enriched patterns. Cpxs with Mg# of 86-87 yield melt trace element patterns that are similar to those of the highest Mg# cpxs and hence grouped in the trace element plot (Fig. 3-4). Some of these calculated

melts have higher Nb contents than LREE in the normalized multi-element plot (Fig. 3-9) and therefore do not exhibit arc trace element characteristics.

Figure 3-9 Primitive mantle normalized trace element abundances in melts calculated from Site 296 clinopyroxenes using cpx-basalt MI partition coefficients. Color-coded as figure 3-4. Grey shaded area at the back represents the trace element abundances of Site 296 glass shards. A high Mg andesite from Bonin Ridge Escarpment is shown in dark grey (Ishizuka et al., 2006).

3.4.3 Amphiboles

Temperatures and magma compositions from amphibole compositions

Recent studies in amphibole compositions have indicated that amphibole is not a suitable pressure indicator (Erdmann et al., 2014; Putirka, 2016) except at highly restrictive conditions like T<800 °C and Fe# amp<0.65 (Anderson and Smith, 1995). Rather than pressure, amphiboles are more sensitive to temperature and liquid composition. In his paper, Putirka (2016) emphasized that amphibole barometers based on D_{AI} (Ridolfi and Renzulli, 2011) are only successful when multiple P estimates for different compositions are averaged, without which there could be an error of ± 4 Kbar. Unlike P, temperature estimates from amphibole compositions have a precision of ± 30 °C. In this paper, we will

use the P independent thermometer from Putirka (2016), given as Equation 5, to estimate the temperature and Equation 10 to determine the SiO₂ content of the coexisting melt.

Using the pressure independent thermometer from Putirka (2016), we get a temperature of crystallization from 741 to 1016 °C for the amphiboles. From this deduced temperature and amphibole compositions, the silica content of the melt from which the amphiboles crystallized ranges from basalt-andesite to rhyolite (52-75 wt%). Magnesiohastingsites yield higher temperatures than magnesiohornblende. Magnesiohastingsites, crystallized at temperatures of 1016-872 $^{\circ}$ C, are more common in mafic to intermediate magmas (SiO₂ 52-66 wt%), whereas edenite and magnesiohornblendes are more common in silicic magmas (SiO₂ 69-75 wt%). The amphiboles crystallizing in basalt andesite composition are henceforth referred as mafic amphiboles, these amphiboles do not have very high Mg#s (62-67). Given the range of amphibole and melt bulk compositions, the trace element variation in the amphiboles (Fig. 3-5c) may be related to the magma composition. The amphiboles which show low incompatible trace element concentrations mainly crystallized from mafic and intermediate magma. Among the mafic amphiboles, the variation in LREE is probably related to the geochemical characteristics of their primary magmas as LREEs are incompatible in amphiboles. During differentiation from intermediate to silicic magma, plagioclase and titano-magnetite are major fractionating phases, and this might explain the depletions of Eu and Ti in the normalized trace element patterns for silicic amphiboles. Apatite crystallization in silicic magma can also affect rare earth elements (REE); magma crystallizing apatite may have low concentrations of REE, and this might explain the differences among the silicic amphiboles.

Melt trace element concentrations estimated from composition matched amphibole-melt partition coefficients

In the previous section, we saw that amphiboles from Site 296 could be linked to different magma composition. Using that information, we can also get the trace element abundances of the melt using composition matched partition coefficients, as given by Nandedkar et al. (2016) and Humphreys et al. (2019) (Fig. 3-10a & b). We used both methods to get a better comparison of data and to model the maximum number of trace elements. The partition coefficient values can be found in Nandedkar et al. (2016) Table 5; partition coefficients used are RN8 inner for basalt-andesite, RN10s for andesite, RN12V2-2 for dacite, and RN14V2 for rhyolite composition. None of the calculated basalt-andesite (mafic) melt compositions show LREE depletion which was seen in some basalt or basalt-andesite glass shards from Site 296 (Fig 3-10a). As seen on fig. 3-10, there are some highly LREE enriched melt composition was not observed within Site 296 glasses (shaded region in fig. 3-10).

We also used methods from Humphreys et al. (2019) to calculate melt compositions in equilibrium with the Site 296 amphiboles. When the two calculated melt compositions are compared, Kd values from Nandedkar et al. (2016) produced trends of highly elevated LREE over other rare earth elements (Fig. 3-10a) whereas using Humphreys et al. (2019) method, the melt compositions produced had slightly elevated LREEs and more depleted HREEs in some felsic melts (Fig 3-10b) when compared to Site 296 glass compositions. Overall trace element abundance patterns calculated using Kds from Humphreys et al. (2019) have a better fit to the range of Site 296 detrital glass shards. Calculated La/SmN values using Kds from Humphreys et al. (2019) for basalt-andesite are 1.1 to 7.2, indicating

the magma crystallizing amphibole was enriched in LREEs. Calculated trace element patterns for basalt-andesite and andesite magmas using both sets of Kds have a positive Sr peak (Fig 3-10 a and b), indicating plagioclase was not an important phase in these magmas. In contrast, plagioclase was a major fractionating phase in the silicic magmas as inferred from the depletion of Sr in the plots.

Figure 3-10 (a) Primitive normalized trace element abundances in melts calculated from amphiboles using amphibole/melt partition coefficients from Nandedkar et al. (2016). The shaded field represents the trace element abundances of Site 296 glass shards. (b) Calculated melt compositions using the method of Humphreys et al. (2019). Y and Ho values produced anomalous elevated and depleted peaks and hence were removed.

Amphiboles in Island Arcs

Understanding amphibole stability in volcanic rocks and especially in island arcs is an issue of great importance in the evolution of the crust (Smith, 2014; Larocque, 2009). Stagnation of magma at intermediate crustal depths can stabilize amphiboles to a minimum of about 1.5-2 GPa (Allen and Boettcher, 1983) under water-saturated conditions but magma degassing during ascent can destabilize amphibole. A slow ascent can cause the amphibole to break down into anhydrous minerals and fluid. In arc magmas, amphiboles are more common in intermediate and felsic rocks presumably because these are cooler and may have higher water contents. Therefore, the presence of mafic amphiboles in equilibrium with melts 52-56 wt% SiO_2 at Site 296 is relatively unique. Experiments conducted to address amphibole stability in arc magma revealed that Na₂O in addition to water contents of the magma are crucial factors in stabilizing amphibole (Sisson and Grove et al., 1993). In hydrous high alumina basalts and basalt andesites at low temperatures with at least 3 wt% Na₂O, amphiboles can crystallize at the expense of olivine and Caplagioclase, whereas in lower Na₂O magmas, amphiboles will only appear only when andesite compositions are reached (Sisson and Grove et al., 1993). Experiments of amphibole stability in primitive high Mg andesites and basaltic andesites in arc magmas at variable water, pressure and fO₂ contents (Krawczynski et al., 2012) yielded high Mg amphiboles (Mg#s 76-82) coexisting with olivines at pressures over 500 MPa and temperatures of 975-1025 °C under high water contents (10-14 wt%). Such high Mg# amphiboles are absent in Site 296, thereby suggesting that such primitive magmas are not the origin for these amphiboles.

We used the Kd^{Fe-Mg} and Kd^{Al-Si} between amphibole and melt from Sisson and Grove (1993) to understand more about the composition of the melts. Kd^{Al-Si} is restricted to 0.94

in different melt compositions but Kd^{Fe-Mg} between the amphibole/melt pairs vary from 0.30-0.38 in mafic and intermediate melts to lower values in silicic melts (Sisson and Grove, 1993). Putirka (2016) also reported a high variation in the partition coefficient of Kd^{Fe-Mg} 0.28±0.11 between amphibole and melt. Here we have taken a Kd^{Fe-Mg} of 0.30 for mafic and intermediate composition and 0.2 for silicic composition as the Kd values. Fig. 3-11 shows Fe/Mg and Al/Si ratios of melts in equilibrium with the amphiboles; also plotted are date for Site 296 glass shards. The calculated melts from which the mafic and intermediate amphiboles crystallized have higher Al/Si ratios than what is observed in the more mafic-intermediate glasses from Site 296. This could mean that the more mafic amphiboles crystallized from more alumina rich magmas than those represented by the Site 296 glass shards. Fe/Mg values, although biased as there is significant error for the Kd, are similar or slightly lower in calculated melts compared with Site 296 glass shard compositions. We used the calculated major element melt composition from amphibole (Humphreys et al., 2019; Zhang et al., 2017) which yielded 18.01-18.70 wt % Al₂O₃ and MgO 2.13-5.3 wt% for basalt-andesites. The composition is similar to the low Mg high alumina hornblende diorites (equivalent to basaltic andesite) from experiments by Sisson and Grove (1993), where amphiboles started crystallizing at 998 °C with olivine and before plagioclase crystallization. Therefore, based on the major element calculated compositions and previous experimental studies, the mafic amphiboles might have crystallized in basalt andesite with high alumina, low to moderate MgO and at least 3 wt% Na₂O concentrations.

Figure 3-11 Plot of Al/Si and Fe/Mg of Site 296 glass shards compared with melt compositions calculated from amphibole compositions. Open symbols are for calculated melts and closed symbols are for the glass shards

3.4.4 Magma Compositions Recorded at Site 296

In this section, we have compiled all trace element information for the analyzed and calculated melts represented at Site 296 to understand the magmatic evolution recorded by the detrital sediments. For amphiboles, melt compositions using the Humphreys et al. (2019) method are shown, with Th partition coefficients from Nandedkar et al. (2016). Fig. 3-12 shows the compositional range of REE concentrations represented by the different materials. A significant observation is that the Site 296 glass shards and clasts represent only a fraction of the total geochemical variation of the Oligocene KPR arc magmas sampled at Site 296. The glass compositions do not include highly depleted magmas as calculated in equilibrium with high Mg cpxs and highly incompatible element enriched magmas (La/SmN >7) in equilibrium with some amphiboles (Fig. 3-12).

Figure 3-12 Primitive mantle normalized REE plot for analyzed and calculated melts for all materials. Compositional ranges inferred from clinopyroxenes, amphiboles and analyzed melt inclusions are shown as shaded fields.

High Mg magmas

Brandl et al. (2017) describe high-Mg cpxs (Mg# 89 to 92) from the older >37Ma section of IODP Site 1438 to be similar to plagioclase poor (1-4%) high Mg andesites of the transitional suites at the Bonin Ridge Escarpment (BRE) (Ishizuka et al., 2006), which had K-Ar ages around 44 Ma and represented the transition from forearc spreading to arc building. The melts that formed the Site 296 high Mg# cpxs and BRE high Mg-andesites have high Sr contents compared to REE, suggesting these magmas were not saturated with plagioclase.

The high Mg# cpxs do not appear throughout the core; they appear in the uppermiddle section of Unit 2 between cores 54 to upper 61 at approximate depths of 625-863 m, depths where lapilli and ash tuffs are common which indicates they are direct deposition from a volcanic event. In the oldest core (65), the most primitive cpxs has an Mg# of around 87 and has a calculated melt trace element pattern similar to the other high Mg# cpxs. Although sediments of different ages can be eroded from a volcanic edifice and deposited together, older sequences are limited to the lower section and younger sequences are expected toward the top. The stratigraphic gap between cores 65 and 61 suggests that the high Mg# cpxs at the bottom and upper parts may not be related. It is possible the high Mg# cpxs from the base are of similar age as the older BRE transitional suite rocks, but the same can't be said with confidence for the ones at the top. When compared to high-Mg andesite from the BRE there are similarities in trace element concentration (Fig. 3-9), both have low concentrations of trace elements with flat REE patterns. However, in the normalized multi-element plot the calculated melts from high Mg# Site 296 cpxs (except one) have REE values close to 1, whereas the high Mg andesites plot higher than 1.

Enriched magmas

There is also evidence of LREE enriched magmas at Site 296. Some mafic and intermediate magma compositions inferred from amphiboles had REE patterns similar to enriched lithic clasts from Site 296 (Samajpati and Hickey-Vargas, 2020), these were hornblende-bearing andesites. LREE enriched compositions were also observed within inferred melts from two cpx grains (Mg#s around 80 and 4-6 wt% Al₂O₃) and, an andesite melt inclusion within a cpx which had 17.9 wt % alumina content. Highly enriched magmas were also observed at Nichinan seamount, located 160 km NW relative to Site 296 (Haraguchi et al., 2012. All the above materials which point to LREE-enriched high Al magmas as their origin are present in the topmost section of Unit 2, core 49-57.

Our interpretation is that these enriched magmas were formed under high pressure and or water contents towards late Oligocene. Evidence for high water contents and/or a deeper magma reservoir is both the stabilization of amphibole and increasing dominance of calcic plagioclase at the middle to top of the stratigraphic section (Fig. 3-2). At high pressures and or water content amphiboles are stabilized, and plagioclase crystallization is suppressed as the volume of cpxs rather than calcic plagioclase is expanded (Yoder, 1965; Baker and Eggler, 1983). When plagioclase crystallizes, it is more Ca rich and Si poor with compositions of An₉₀₋₉₅ (Arculus and Wills, 1980; Kuno 1950), as seen in Site 296. High water content also destabilizes orthopyroxene in favor of olivine (Kushiro 1969) which is also reflected in the absence of primitive opx at Site 296.

Mantle enrichment

In Fig. 20 the composition-matched trace element abundances of mafic and intermediate melts inferred from amphiboles using the method of Humphreys et al. (2019) vary from slightly to highly enriched in terms of La/Sm_N (1-7) and Nb/Yb = 0.9 to 10.6. Th concentrations for the melts are calculated using the composition-matched partition coefficients from Nandedkar et al. (2016), and these also vary widely (1-11 ppm) (Fig 20b). The most LREE-enriched mafic melt (SiO₂ 54 wt%) have the highest Nb and Th concentrations and highest Nb/Yb and Th/Yb ratios (9 and 21 respectively), which indicates high mantle fertility in the first case and incorporation of a subduction component in the second case. Some felsic melts (70 wt% SiO₂) calculated from amphibole, are only slightly enriched (La/Sm_N~1.2) at low Nb/Yb and Th/Yb ratios and plot close to the mantle array in Fig. 3-13. Since La/Sm_N values typically increase with differentiation, it is possible that the primary magma which evolved to form these amphiboles was depleted.

Figure 3-13 Logarithmic plot of Th/Yb vs Nb/Yb for melt composition, both analyzed and inferred from mafic minerals; also includes high Mg andesite data from the Bonin Ridge Escarpment (BRE)

The mafic melt compositions calculated from most cpxs show a range of depleted to enriched characteristics (La/Sm_N values 0.5 -3.8). Cpxs having extremely low Nb/Yb ratios (Fig. 3-13) are the unusually high Mg# cpxs discussed above and their Nb/Yb ratios are lower than the high Mg andesites from the Bonin ridge (Fig 3-13). Since Nb is an indicator of mantle fertility (Pearce et al., 2005), the wide variation of Nb/Yb ratios suggests changes in mantle sources took place between the formation of enriched fertile magmas as inferred from amphiboles in cores 49-57 and depleted magmas inferred from cpxs (cores 54-61). In short, we can suggest towards the late Oligocene deep-seated magma storage or high-water contents of the magma may have led to the evolution of high Al magmas with variable Mg contents from a somewhat enriched source with the crystallization of high Al cpxs, amphiboles, and high calcic plagioclases.

Figure 3-14 From left to right, plot showing the depth vs Mg# of clinopyroxenes with their magmatic affinity; SiO₂ content of melt in equilibrium with amphibole; La/Sm_N of mafic to intermediate glass shards and calculated melts from minerals; and Nb/Yb of mafic to intermediate glass shards and calculated melts.

The KPR started rifted during the late Oligocene around 28 Ma, forming the Shikoku back arc basin (Ingle et al., 1975). Judging from the lowermost cores of Unit 1 and uppermost cores of Unit 2 at Site 296, there does not appear to be particular petrologic or geochemical signature that could be exclusively connected to rifting but rather a gradual change over time prior to rifting is seen. First, from the composition of the cpxs it is observed that the arc become more tholeiitic over time (Fig. 3-14). This same trend was noted by Brandl et al. (2017) in Site 1438 melt inclusions. The trace element compositions of inferred melts in equilibrium with these cpxs are also depleted (La/Sm_N values<1), with low Nb and Th contents. The change from slightly enriched sources to more depleted sources (towards lower Nb/Yb concentration in Fig. 3-13) together with a decrease in

Th/Yb values (4 to ~0) could reflect the decreasing subduction component and increasing MORB component. The high Mg cpxs plot at the boundary of calc-alkaline and tholeiitic (Fig. 3-3c) with relatively low crystallization pressures (0-3 kbar at 1100 °C). A second trend is that amphiboles, found only in cores 57 and above, crystallized in the arc magmas prior to rifting of the arc and that mafic amphiboles formed in mostly LREE enriched magmas. They reflect high water or pressure conditions that may have developed as the arc crust thickened and matured, and enrichment of water and fluid mobile elements from the subducted slab.

The melt compositions inferred from the unusually high Mg# cpxs, although similar to the high Mg transitional suite seen in Bonin ridge which is a potential example of the earlier IBM magmas, have overall lower trace element concentrations (Fig. 3-9). These cpxs are not at the bottom of the core but in section 54-61, which suggests that they are not from the early rocks unless they are xenocrysts brought up in the amphibole-bearing enriched magmas. The early transitional BRE suites were associated with intra-arc rifting (Taylor and Nesbitt, 1995), therefore, magmas forming the high Mg# cpxs may have formed during the rifting of the KPR in the Oligocene. One possibility is that there were multiple stages of rifting rather than one event, and one such rifting event could have produced high Mg melts from a depleted mantle source.

3.5 Conclusions

In conclusion, DSDP Site 296 presents unique findings on the early magmatic history of the IBM arc which are not well recorded in other sites:

1) Diverse primary magmas formed and differentiated at different depths (0-30 km) as indicated by the crystallization pressure of the mafic clinopyroxene. Based on

105

clinopyroxene composition calc-alkaline magmas dominate the lowest sections of earlylate Oligocene Unit 2, followed by tholeiitic magmas.

2) At some point, highly enriched magmas formed from a fertile mantle source and crystallized mafic amphibole bearing lavas; this may have been a local source like that producing the enriched magmas from Nichinan Seamount (Haraguchi et al., 2012).

3) Slightly LREE enriched, high-Al melts formed at high water contents to form mafic amphiboles with clinopyroxenes and high An-plagioclase. These dominate the later period of deposition at Site 296.

4) Arc rifting probably occurred in multiple stages. Magma formed during one such step might have produced the unusually high-Mg# cpxs from a depleted, MORB-like mantle source, similar to transitional suite rocks from the Bonin ridge escarpment.

5) The time scale for these events is uncertain; mafic amphiboles (late stage arc magmas) and high Mg cpxs (MORB-like magmas) coexist in some samples, so the possibility of deep-seated amphibole-bearing magmas carrying xenocrysts of older KPR rocks is also possible.

3.6 Acknowledgments

This research was supported by NSF grants OCE 15377861 to Rosemary Hickey-Vargas. We gratefully acknowledge the contribution of Gabriela Fernandez in preparing the smear slides for the core samples. We also thank Thomas Beasley of the Florida Center for Analytical Electron Microscopy (FCAEM) at FIU for assistance with EPMA analyses and Dr. Sarah Jantzi of the Trace Evidence Analysis Facility (TEAF) at FIU for assistance with LA-ICP-MS analyses.

- Anderson, J.L., and Smith, D.R., 1995, The effects of temperature and f (sub O2) on the Al-in-hornblende barometer: American Mineralogist, v. 80, no. 5-6, p. 549-559.
- Arculus, R.J., Ishizuka, O., Bogus, K.A., et al., 2015, A record of spontaneous subduction initiation in the Izu-Bonin-Mariana Arc: Nature Geoscience, v. 8, no. 9, p. 728-733.
- Arculus, R.J., and Wills, K.J.A., 1980, The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc: Journal of Petrology, v. 21, no. 4, p. 743-799.
- Arculus, R., Ishizuka, O., Bogus, K., et al., 2015, International Ocean Discovery Program Expedition 351 preliminary report; Izu-Bonin-Mariana Arc origins; continental crust formation at an intraoceanic arc; foundation, inception, and early evolution; 30 May-30 July 2014: Preliminary Report (International Ocean Discovery Program), v. 351.
- Bacon, C.R., and Druitt, T.H., 1988, Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon: Contributions to Mineralogy and Petrology, v. 98, no. 2, p. 224-256.
- Baker, D.R., and Eggler, D.H., 1983, Fractionation paths of Atka (Aleutians) high-alumina basalts; constraints from phase relations: Journal of Volcanology and Geothermal Research, v. 18, no. 1-4, p. 387-404.
- Blundy, J., and Wood, B., 1994, Prediction of crystal-melt partition coefficients from elastic moduli: Nature (London), v. 372, no. 6505, p. 452-454.

- Blundy, J.D., and Wood, B.J., 1991, Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions: Geochimica et Cosmochimica Acta, v. 55, no. 1, p. 193-209.
- Brandl, P.A., Hamada, M., Arculus, R.J., et al., 2017, The arc arises; the links between volcanic output, arc evolution and melt composition: Earth and Planetary Science Letters, v. 461, p. 73-84.
- D'Antonio, M., Savov, I., Spadea, P., Hickey-Vargas, R., and Lockwood, J., 2006, Petrogenesis of Eocene oceanic basalts from the West Philippine Basin and Oligocene arc volcanics from the Palau-Kyushu Ridge drilled at 20 degrees N, 135 degrees E (Western Pacific Ocean): Ofioliti, v. 31, no. 2, p. 173-187.
- Debari, S.M., and Coleman, R.G., 1989, Examination of the deep levels of an island arc; evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska: Journal of Geophysical Research, v. 94, no. B4, p. 4373-4391.
- Debari, S., Kay, S.M., and Kay, R.W., 1987, Ultramafic xenoliths from Adagdak Volcano, Adak, Aleutian Islands, Alaska; deformed igneous cumulates from the Moho of an island arc: Journal of Geology, v. 95, no. 3, p. 329-341.
- Dostal, J., Dupuy, C., Carron, J.P., Le Guen de Kerneizon, M., and Maury, R.C., 1983, Partition coefficients of trace elements; application to volcanic rocks of St. Vincent, West Indies: Geochimica et Cosmochimica Acta, v. 47, no. 3, p. 525-533.

- Erdmann, S., Martel, C., Pichavant, M., and Kushnir, A., 2014, Amphibole as an archivist of magmatic crystallization conditions; problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia: Contributions to Mineralogy and Petrology, v. 167, no. 6.
- Ewart, A., and Griffin, W.L., 1994, Application of proton-microprobe data to trace-element partitioning in volcanic rocks: Chemical Geology, v. 117, no. 1-4, p. 251-284.
- Gallahan, W.E., and Nielsen, R.L., 1992, The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere: Geochimica et Cosmochimica Acta, v. 56, no. 6, p. 2387-2404.
- Hack, P.J., Nielsen, R.L., and Johnston, A.D., 1994, Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar: Chemical Geology, v. 117, no. 1-4, p. 89-105.
- Haraguchi, S., Ishii, T., Kimura, J., and Kato, Y., 2012, The early Miocene (approximately 25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku back-arc basin opening: Contributions to Mineralogy and Petrology, v. 163, no. 3, p. 483-504.
- Haraguchi, S., Ishii, T., Kimura, J., and Ohara, Y., 2003, Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust: Contributions to Mineralogy and Petrology, v. 145, no. 2, p. 151-168.

- Hart, S.R., and Brooks, C., 1974, Clinopyroxene-matrix partitioning of K, Rb, Cs, Sr and Ba: Geochimica et Cosmochimica Acta, v. 38, no. 12, p. 1799-1806.
- Hart, S.R., and Dunn, T., 1993, Experimental cpx/melt partitioning of 24 trace elements: Contributions to Mineralogy and Petrology, v. 113, no. 1, p. 1-8.
- Hauri, E.H., Wagner, T.P., and Grove, T.L., 1994, Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts: Chemical Geology, v. 117, no. 1-4, p. 149-166.
- Humphreys, M.C.S., Cooper, G.F., Zhang, J. et al., 2019, Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole.: Contributions to Mineralogy and Petrology, v. 174, no. 9.
- Ingle, J.C., Jr, Karig, D.E., Bouma, A.H., et al., 1975, Site 296: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 191-274.
- Ishizuka, O., Kimura, J., Li, Y.B., et al., 2006, Early stages in the evolution of Izu-Bonin Arc volcanism; new age, chemical, and isotopic constraints: Earth and Planetary Science Letters, v. 250, no. 1-2, p. 385-401.
- Ishizuka, O., Taylor, R.N., Yuasa, M., and Ohara, Y., 2011, Making and breaking an island arc; a new perspective from the Oligocene Kyushu-Palau Arc, Philippine Sea: Geochemistry, Geophysics, Geosystems - G3, v. 12, no. 5, p. Citation Q05005.

- Jenner, G.A., Foley, S.F., Jackson, S.E., Green, T.H., Fryer, B.J., and Longerich, H.P., 1993, Determination of partition coefficients for trace elements in high pressuretemperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS): Geochimica et Cosmochimica Acta, v. 57, no. 23-24, p. 5099-5103.
- Johnson, K.T.M., 1994, Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures; petrogenetic implications: Mineralogical Magazine, v. 58A, no. A-K, p. 454-455.
- Karig, D.E., 1975, Basin genesis in the Philippine Sea: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 857-879.
- Kay, S.M., and Kay, R.W., 1985, Aleutian tholeiitic and calc-alkaline magma series; 1, The mafic phenocrysts: Contributions to Mineralogy and Petrology, v. 90, no. 2-3, p. 276-290.
- Klemme, S., Blundy, J.D., and Wood, B.J., 2002, Experimental constraints on major and trace element partitioning during partial melting of eclogite: Geochimica et Cosmochimica Acta, v. 66, no. 17, p. 3109-3123.
- Kobayashi, K., Kasuga, S., and Okino, K., 1995, Shikoku Basin and its margins: New York, NY, United States (USA), Plenum Press, New York, NY.

- Krawczynski, M.J., Grove, T.L., and Behrens, H., 2012, Amphibole stability in primitive arc magmas; effects of temperature, H (sub 2) O content, and oxygen fugacity: Contributions to Mineralogy and Petrology, v. 164, no. 2, p. 317-339.
- Kushiro, I., 1969, The system forsterite-diopside-silica with and without water at high pressures: American Journal of Science, v. 267-A, p. 269-294.
- Larocque, J., and Canil, D., 2010, The role of amphibole in the evolution of arc magmas and crust; the case from the Jurassic Bonanza Arc section, Vancouver Island, Canada: Contributions to Mineralogy and Petrology, v. 159, no. 4, p. 475-492.
- Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997, Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names: The Canadian Mineralogist, v. 35, Part 1, p. 219-246.
- Lee, J., Stern, R.J., and Bloomer, S.H., 1995, Forty million years of magmatic evolution in the Mariana arc; the tephra glass record: Journal of Geophysical Research, v. 100, no. B9, p. 17-17,687.
- Leterrier, J., Maury, R.C., Thonon, P., Girard, D., and Marchal, M., 1982, Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series: Earth and Planetary Science Letters, v. 59, no. 1, p. 139-154.

- Luhr, J.F., and Carmichael, I.S.E., 1980, The Colima volcanic complex, Mexico; I, Postcaldera andesites from Volcan Colima: Contributions to Mineralogy and Petrology, v. 71, no. 4, p. 343-372.
- Maynard, J.B., 1984, Composition of plagioclase feldspar in modern deep-sea sands; relationship to tectonic setting: Sedimentology, v. 31, no. 4, p. 493-501.
- Nandedkar, R.H., Hurlimann, N., Ulmer, P., and Muntener, O., 2016, Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust; an experimental study: Contributions to Mineralogy and Petrology, v. 171, no. 8-9, p. Article 71.
- Nandedkar, R.H., Ulmer, P., and Muntener, O., 2014, Fractional crystallization of primitive, hydrous arc magmas; an experimental study at 0.7 GPa: Contributions to Mineralogy and Petrology, v. 167, no. 6.
- Nicholls, I.A., and Harris, K.L., 1980, Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids: Geochimica et Cosmochimica Acta, v. 44, no. 2, p. 287-308.
- Nimis, P., 1995, A clinopyroxene geobarometer for basaltic systems based on crystalstructure modeling: Contributions to Mineralogy and Petrology, v. 121, no. 2, p. 115-125.

- Nimis, P., 1999, Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems: Contributions to Mineralogy and Petrology, v. 135, no. 1, p. 62-74.
- Nimis, P., and Ulmer, P., 1998, Clinopyroxene geobarometry of magmatic rocks; Part 1, An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems: Contributions to Mineralogy and Petrology, v. 133, no. 1-2, p. 122-135.
- O'Hara, M.J., 1995, Trace element geochemical effects of integrated melt extraction and "shaped" melting regimes: Journal of Petrology, v. 36, no. 4, p. 1111-1132.
- Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., 2005, Geochemical mapping of the Mariana arc-basin system; implications for the nature and distribution of subduction components: Geochemistry, Geophysics, Geosystems - G3, v. 6, no. 7.
- Putirka, K., 2016, Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes: American Mineralogist, v. 101, no. 4, p. 841-858.
- Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H., 2003, New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava composition, with applications to lavas from Tibet and the Snake River plain, Idaho: American Mineralogist, v. 88, no. 10, p. 1542-1554.
- Putirka, K.D., and Tepley, F.J.,III, 2008, Thermometers and barometers for volcanic systems: Reviews in Mineralogy and Geochemistry, v. 69, no. 1, p. 61-120.

- Ray, G.L., Shimizu, N., and Hart, S.R., 1983, An ion microprobe study of the partitioning of trace elements between clinopyroxene and liquid in the system diopside-albite-anorthite: Geochimica et Cosmochimica Acta, v. 47, no. 12, p. 2131-2140.
- Reagan, M.K., Ishizuka, O., Stern, R.J., et al., 2010, Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system: Geochemistry, Geophysics, Geosystems -G3, v. 11, no. 3, p. Citation Q03X12.
- Ridolfi, F., and Renzulli, A., 2012, Calcic amphiboles in calc-alkaline and alkaline magmas; thermobarometric and chemometric empirical equations valid up to 1.130 degrees C and 2.2 GPa: Contributions to Mineralogy and Petrology, v. 163, no. 5, p. 877-895.
- Ronov, A.B., and Yaroshevskiy, A.A., 1976, A new model for the chemical structure of the Earth's crust: Geochemistry International, v. 13, no. 6, p. 89-121.
- Samajpati, E., and Hickey-Vargas, R., 2020a, Geochemistry of Volcanic Glass from Oligocene Detrital Sediments at DSDP Site 296, Kyushu Palau Ridge: Interpreting the Magmatic Evolution of the Early Northern Izu Bonin Mariana Island Arc.
- Schnetzler, C.C., and Philpotts, J.A., 1970, Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts; II: Geochimica et Cosmochimica Acta, v. 34, no. 3, p. 331-340.

- Shimizu, K., Liang, Y., Sun, C., Jackson, C.R.M., and Saal, A.E., 2017, Parameterized lattice strain models for REE partitioning between amphibole and silicate melt: American Mineralogist, v. 102, no. 11, p. 2254-2267.
- Shimizu, N., 1974, An experimental study of the partitioning of K, Rb, Cs, Sr and Ba between clinopyroxene and liquid at high pressures: Geochimica et Cosmochimica Acta, v. 38, no. 12, p. 1789-1798.
- Sisson, T.W., and Grove, T.L., 1993, Experimental investigations of the role of H (sub 2)
 O in calc-alkaline differentiation and subduction zone magmatism: Contributions to
 Mineralogy and Petrology, v. 113, no. 2, p. 143-166.
- Stern, R.J., Fouch, M.J., Klemperer, S.L., and Eiler, J.M., 2003, An overview of the Izu-Bonin-Mariana subduction factory: Geophysical Monograph, v. 138, p. 175-222.
- Stern, R.J., Morris, J.D., Bloomer, S.H., and Hawkins, J.W., Jr, 1991, The source of the subduction component in convergent margin magmas; trace element and radiogenic isotope evidence from Eocene boninites, Mariana Forearc: Geochimica et Cosmochimica Acta, v. 55, no. 5, p. 1467-1481.
- Straub, S.M., 2008, Uniform processes of melt differentiation in the central Izu Bonin volcanic arc (NW Pacific): Geological Society Special Publications, v. 304, p. 261-283.

- Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes: Geological Society Special Publications, v. 42, p. 313-345.
- Taylor, B., Fujioka, K., Janecek, T.R., et al., 1992, Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana Arc: Proceedings of the Ocean Drilling Program, Scientific Results, v. 126, p. 627-651.
- Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., and Croudace, I.W.,
 1994, Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima,
 Bonin Islands, Japan: Journal of Petrology, v. 35, no. 3, p. 577-617.
- Watson, E.B., and Ryerson, F.J., 1986, Partitioning of zirconium between clinopyroxene and magmatic liquids of intermediate composition: Geochimica et Cosmochimica Acta, v. 50, no. 11, p. 2523-2526.
- Yamazaki, T., and Stern, R.J., 1997, Topography and magnetic vector anomalies in the Mariana Trough: JAMSTEC Journal of Deep Sea Research, v. 13.
- Zhang, J., Humphreys, M.C.S., Cooper, G.F., Davidson, J.P., and Macpherson, C.G., 2017, Magma mush chemistry at subduction zones, revealed by new melt major element inversion from calcic amphiboles: American Mineralogist, v. 102, no. 6, p. 1353-1367.

3.8 Appendices

Refer to table 3-1 for precision data

-

'altra	47-1-117-119							
(INT NO	···	See .	41		100	1	15	
Addant ends								
1.								
S12'-	45.24	6555	47.25	23.25	50.50	50.32	30.22	
n.;,	9.7	0.51	0.11	0.9	6.14	0.0	2.16	
A.C.	1.25	1.52	- 200	2.32	2.04		244	
5-0.03	0.54	0.55	0.20	0.54	0.25	1.21	3 2 2	
NO	4.95	0.81	1.25	**35	1.13	1.94	3.8	
2.50	123.2	.4.25	14.15	14.81	1-58	2-1-	14	
Cel	6.19		12 5		10.28	51.5	18.7	
0:0								
18.0	1274	.524	12.52	11.57	11.73	1244	13.51	
Toral	66.46	44 F.	89.1	100.92	101.05	Ir. er	20.2	
3461	\$ 25	:	25 12	:5.85	55.52	:5 57	66.54	
13	0.5 2	0.41	0.42	0.45	1.45	1.40	140	
60×	9.23	023	1.4	0-0	1.1	1.0	2.15	
P 4 1 33 C								
Trac Dump Is								
(\$24)								
3:45								
1.41								
· · · ·								
134.5								
2.8							1.112	
14.5							110	
R C							1.0	
10-10							3.0	
1012								
h							114	
To 21							10	
1							215	
2011							10.12	
P1 Y IS							1.1	
15.14.							241	
SHUE							30.51	
1.65							12.19	
2127							12.0	
IIP 78							1.12	
Sed 12							5 1	
13.125							1.22	
2414.2							n r	
10753							2.03	
27163							12.21	
Holes .							9 C	
:82							32.21	
191-4								
301.2								

Appendix I. Major and trace element composition of elimpyreazone from Site 296. B. don reliev to core sample named as tors number-core vection-intervals in em

Balow						494-24-23		
Genia No.	16-3	12-1	1381	59-2	22-1	5-4	2-3	8-5
Majar Osida Iwthio								
810;	50,085	23.48	42.15	56.34	49.75	52.07	50:91	51.08
TIO:	a 57	0.48	0.94	0.49	0.54	6.53	1.37	0.51
ABC	1.57	0.59	0.99	1.92	3.75	160	9.19	3.08
Ne:O	1.23	0.25	0.12	0.51	0.26	0.25	1.79	6.32
3800	2.51	2.75	8.93	0.96	0.77	6.23	1.28	0.46
Mago	14.25	17.40	13.85	13.65	13 22	13.63	15,49	16.59
Ca3	18.87	29.29	22.87	1919	18 36	18.98	19:91	16.48
, Cr ₂ O ₁							3.07	
B-O	12.50	7.22	6.01	12.81	14 81	10.02	3.34	11.60
Total	163 84	\$9.38	95.12	\$9.27	106.85	22.21	99.78	98.95
Math	65.30	\$1.13	82.45	65.53	61.73	73.55	74,78	71.58
Eri	0.40	0.48	0.45	0.39	0.28	0.45	3.44	0.41
Wo	4.98	0.40	0.45	0.10	0.19	6.39	3.40	0.74
Pat 1100 C								
Trace Demonts								
(((0)))								
Sol5							53.82	
T.19							5774.98	
V31							415.08	
0.03							518.74	
2000							63.25	
120.44							1.00	
REAS							20.6	
194137							2.04	
11032								
1223								
741.01							2.05	
Latina .							3.20	
CALLY							19.6	
26.3.12							2.03	
19-14							1 76	
NILLE							210	
5:55							18.15	
2:50							4.75	
Hft 78							3.79	
5m1-67							1.00	
Em155							3.35	
Gd112							1.46	
Tb123							3.27	
Dy163							2.00	
BaleS							2.44	
1.8.							10.48	
Ericki							1.12	
Vb172							1.34	
1.0175							116	

Balan								
Genia No.	4-2	5-1	6-2	7-12	5-5	4-2	10-1	11-1
Major Oxide								
INPO.								
810;	20.24	21.16	52.30	33.63	49.79	30.24	20.99	50.49
TO	0.50	0.38	0.34	0.99	0.55	6.66	2.50	9.63
Abra	214	1 99	100	1.02	4.74	3.50	3 33	4.73
his of	A 10	0.76	0.00	0.00		1.10		4.74
19825	0.24	0.25	0.22	0.20	0,45	1.28	3.20	0.23
NUM	0.22	0.484	0.02	0.12	0.05	0.31	9.21	0.22
Augo .	12.48	12.12	20.05	21.46	1515	14,00	1224	12,40
0.0	21.26	19.65	22.00	0.00	21.5	30.51	22.15	4.74
Cr30			0.25	0.20	0.12			9.54
Teel	1 11	22.20	2.29	0.74	0,04	8.81	5.26	0.04
10.00	76.11	13.78	84.54	40.55	20.27	25.07	97.00	80.55
Page -	0.42	0.10	0.07	0.45	0.44	1.41	3.43	4.44
1110	0.44	0.41	0.45	02.4	0.11	6.43	1.45	0.44
	4.44	wat	to as	0.10		1.47		
P31101 C	5 32		1.72	2.80	3.98		3.05	3.78
Trace Denants								
(ppr.)								100.00
2015			121.46	148.10	151.58			176.03
1.14			TEOL OF	2790.85	2812.55			1992415
1.51			255.72	500.58	513.15			578.87
Carlos .			145.92	108.00	2011			462.55
0.00			140.01	108,50	10425			0.02
Dest								4.05
B-122				2005				0.00
75.735			0.01					0.00
10398			0.01					
N853			0.01		6.61			
74181				0.01	0.01			4.0
14139			0.05	0.02	0.07			0.05
Cel47			0.35	0.51	0.23			4.58
Ph338			0.01		ngd.			9.03
15:14:			0.03	0.15	0.12			0.17
Did14c			0.84	1.72	1.10			1.06
Sr\$5			12.06	12.53	13.20			13.45
2150			2.52	4.61	4.20			3.56
105.78			0.15	0.35	0.27			0.23
Sinil 47			0.84	0.60	0000			0.53
Endys			0.14	0.34	6.26			0.26
Gd153			0.79	1.28	3.17			9.96
Thise			0.12	0.26	0.55			4.15
Dy163			0.85	1.67	1.76			1.36
Ela165			0.22	0.36	0.27			0.38
789			5.12	8.11	8,15			6.25
Er166			0.61	1.00	1.00			9.82
70172			0.59	0.75	0,56			0.64
1.0175			0.03	0.12	0.12			9.05

Wednesd		ALC: 120.011					
Contra Ma	10.00	30-04120-024	1000		10.020	10.0	22.2
Made: Calds	14-7	2-1	2002	6-7	Post.	10-7	11-1
Completion of the							
194116-	1.10	41.47	12.11	47.81	41.00	53.22	1212
200	0.00	2.42	24.50		2	10.00	
III.	9.68	2.26		0.55	.003	1.44	10.01
ABCT	5.25	. 3.32	2.2,	8.45	541	3.94	391
19870	0.21	1.28	0.25	0.54	0.25	0.73	0.71
NBO	0.35	9.35	4.52	0.64	0.39	0.45	0.04
MgO	15.72	16.01	16.78	12.70	16.00	13.92	16.65
C90	5.,67	21.40	19.18	17.83	34,42	18.66	22.45
, Cr3O1							0.16
PvO-	6.38	7.67	8.87	11.21	8.87	40.37	6.13
Total	\$6.24	100.56	10134	100.12	100.86	23.70	100.58
Man	\$5.06	78.83	77.19	71.39	76.27	79.28	\$2.53
En	0.45	0.45	4.41	0.45	0.45	0.45	0.46
Wo	0.44	0.43	4.35	9.97	0.41	6.38	0.44
Fat 1101 C	0.85	0.79	2.55		1.92		0.76
Trace Demants							
(ppm)							
5045							140.52
T.19							221514
W31							304.31
Cr13							1992-65
N65							128.30
Ci4.53							
RESS							0.03
Da17?							
Th232							
1/298							
NB53							0.02
Ta SI							
Tal 39							0.09
Ce147							0.44
Pb3.18							0.03
P1141							0.11
314146							0.80
Sr\$5							13.35
Zr50							3.05
HE 78							0.28
Sinsi 47							0.66
Eul25							0.23
G4153							0.90
Thise							0.12
Dy163							1.13
Ela165							0.28
789							6.58
12:166							0.77
70172							0.64
1.0175							0.10
Bullot						34-1413-015	
-------------	--------	--------	---------	--------	--------	-------------	--------
Genit No.	12-1	18-2	18-1	23-2	54	1-1	2-3
Majar Oside							
04649							
5901	30,50	20.53	39.60	56.25	50.25	50.39	51.31
TIO;	4.67	9.63	0.56	0.59	0.50	6.73	0.56
AbO.	4.45	5.27	3.84	4,54	0.52	4.52	3.46
Ne;O	1.25	0.51	0.22	0.35	0.26	11.18	0.24
March	3.55	0.54	0.15	0.27	4.18	0.20	0.14
MgO	12.26	15.24	05.12	14.23	14 29	13.01	15:40
040	25.29	\$ 34	22.65	31.10	21.10	20.19	21.51
. 0:00			0.15				
FcO	\$.54	11.50	6.68	9.34	2.04	8.46	8.12
Tetal	103 59	100.65	100.22	100.51	44.42	29.78	100.52
NOT	79.67	30.24	81.13	13.51	75.81	75.99	27.27
En .	0.45	0.44	0.45	0.41	0041	0.44	0.44
Wo	3.46	0.38	0.44	0.42	0.14	6.42	0.44
Fat 1000 'C	1.78		0.53			421	0.98
Dier Brente							
(pp no-							
5:45			304.43		205.01		
Ti 45			2414,15		321.36		
3254			3889.12		316.67		
Cr55			874.63		215.63		
Ni60			63.38		21.51		
Cv135					0.00		
R#85			0.07		0.18		
Da17?			0.65		1.22		
Th::32			0.01				
10238			0.01		0.01		
NB65			0.01		0.03		
Taisi							
Later			013		1001		
Ce145			0.97		1,41		
POLES			0.04		0.05		
101141			0.22		2.54		
0.66			10.77		1510		
244			5.66		1012		
106.75			0.21		0.77		
Sini 47			0.74		1.64		
Entits			0.54		0.67		
Gd157			1.42		2.44		
Thus a			0.25		0.55		
ED+162			1.95		2.66		
Elo168			0.42		0.80		
3'89			10.25		19.36		
Ert 55			1.25		221		
Yb172			1.05		3.17		
1.0175			0.17		0,32		

Balan								
Genia No.	8-2	41	3-3	8-1	6.5	11-2	12-1	26-12
Major Oxide								
INPR-								
810;	30.51	23.33	49.20	31.55	42.29	-49,47	49.10	49.32
TIO:	4.58	9.54	0.69	0.55	0.64	6.63	1.55	4.54
AbCa	136	214	1.60	2.88	6.05	341	9.74	4.87
Next	1.12	012	0.26	0.72	0.37		1.75	4.41
3.840	3.63	017	0.92	0.21	0.11	0.33	3.11	0.56
Marco	14.94	15.77	14.30	15.93	14.35	14.50	14.51	14.10
(30)	23.61	32.74	20.61	20.32	21.65	19.92	\$1.61	19.72
0.0		0.44		0.000	0.36		Carboo C	
Bet	7.42	3.95	5.66	0.9.16	6.32	10.75	\$ 56	11.29
Total	103 55	191.10	99.63	100.41	52 51	22.51	98.92	100.25
Math	78.24	\$9.19	72.53	75.10	\$3.51	70.64	74.07	69.38
En	3.42	0.50	0.41	0.44	0.44	0.42	3.41	9.41
Wo	3.46	0.44	0.45	0.41	0.46	6.41	3.44	4.4
Pat 1100 C	3.32	-0.04		1.00	6.70			
Trace Demonts								
(ppm)-								
5:45		59 13			144.93			
T.19		812.35			3512:09			
W31		1337486			312.64			
C112		1021.36			3463.56			
N65		164.13			128.15			
Ci4.53								
RERS		9.97			0,42			
19a137		0.12			3,30			
110.32					1001			
11235		1.64			0.00			
20122		0.01			0000			
14.31		0.02			1.00			
Coldi		0.20			4.74			
Ph338		0.01			0.11			
15.141		0.072			0.00			
314144		0.50			2.44			
5:55		12.75			37.32			
2:50		0.77			13 96			
105.78		0.05			0.74			
Site1.47		0.25			1.98			
En155		0.07			0,66			
Gd153		9.92			2.41			
Thise		0.08			0.49			
Dy163		0.39			258			
Elo165		0.07			0.62			
785		240			15.81			
12:166		0.25			1.85			
Yol 72		0.19			1.78			
10175		0.02			0.25			

DURINE								
Denis No.	23-4	28-1	29-1	R1-3	852	38-2	33-2	- 88
Maja: Oside								
DALLEY .								
840;	30,56	28.57	20.86	52.33	50.55	50.72	49,35	51.8
TO:	3.48	0.64	0.65	0.45	0.16	6.55	2.64	9.4
ABC:	6.62	2.75	2.29	1.91	4.36	. 59	1.83	2.9
Ne ₂ O	8.12	0.51	0.37	0.38	0.21	1.23	1.29	4.1
Max	9.15	0.42	0.52	0.49	0.25	0.64	3.08	9.2
MgO	12.78	15.66	12.66	15.54	14.32	15.70	14,47	16.
CaO	25.28	19.26	20.13	19.47	21.29	18.71	\$2.56	- 22
, Cr ₂ O;								
Dec.	-1.87	10,25	10.12	9.16	8.07	11.29	7.27	4.5
Tatal	363.49	100,45	199.57	100.15	29.29	22.42	99.49	100
3429	85.04	72,49	79.48	75.74	75.58	71.25	78.00	85
En	3.45	0.44	0.44	0.46	0.41	0.44	3.42	4.4
Wo	3.45	0.39	0.40	0.40	0.45	26.3	3.47	-0.4
Pat 1100 C	6.52			2.12	3.23		3.87	-9.6
Trace Damaits								
(ppm)								
Solf								
T119								
W31								
Cr13								
Nick								
Ci4.53								
Cid.53 R885								
Cal.33 R885 Bal37								
Cid.53 R885 Bid37 Th032								
Cal 33 R085 Bal37 Th032 U298								
C&33 R885 Ball? Th032 U238 N853								
Cul 33 Rh85 Du137 Th232 U238 Nh53 Tu181								
C&33 R885 Bal37 Th332 1038 N853 Ta181 La189								
Ci4.33 R185 Did177 Th512 U238 N1853 Tu1.81 Tu1.81 Tu1.80 Ce147								
Ci4.33 R885 Did37 Th532 U238 N853 Ta181 Ta189 Ce147 Pb538								
Cid.33 Rb85 Bid37 Th232 U248 Nb55 Ta184 Ta189 Cel447 Pb338 Pv144								
Cid. 33 R1835 Dia137 Th:232 112.98 N1833 Ta184 Ta189 Cost433 Ph:338 Ph:44 Ph:338								
C4233 R885 B4177 T6222 U238 N883 T6181 C4181 C4181 C4181 C4181 F6338 P1348 P1348 P1442 N4146 S188								
C4233 R885 B4077 Th032 U238 N855 Tu181 Ca183 Ca183 Ca183 Ca184 N444 N444 S488 2456								
C42.33 R845 Bal377 Th232 U248 N853 Ta184 Ca147 Ph538 Ph44 Nd146 S488 Z456 HE 78								
Ca.33 R885 Da177 Th232 U238 N853 Tu138 Tu139 Co147 Pb338 Co147 Pb338 Co147 Pb338 Co147 Pb338 Co147 Pb338 Co147 State Sta								
Ca.33 R885 Ba177 Tra22 U238 N883 Ta181 Ca181 Fa38 P4538 P4538 P4538 P4538 P4538 P4538 P4544 Sa88 Za56 UR: 76 Sa6147 Ead255								
C4233 R885 Dat177 Th232 U238 N885 Tu181 Ca180 Ca180 Ca181 Ca180 Ca181 Ca180 Ca181 Ca180 Ca181 Ca180 Ca181 Ca180 Ca181 Ca180 Ca181 Ca180 Ca								
C42.53 R845 Bal377 Th232 U238 N853 Ta130 Cel47 Ph538 U142 Nd144 S456 U16 76 San147 Ea135 Gd135 Th159								
Cal.33 R885 Da177 Th222 U238 N893 Tu139 Cal47 Pk388 S489 Z456 R714 N4146 S489 Z456 R714 N4146 S489 Z456 R715 S46147 Th155 Dp164 Dp164								
Ca.33 R835 Da177 Tr522 U238 N853 Tr181 Ca140 P4538 P4538 P4538 P4538 P4538 P4544 Sat8 2,85 UR 78 Sat147 Ea155 G4155 Dy163 Bioleff V20								
Cal.33 R885 Bal377 Th232 U288 N853 Ta189 Cal43 P538 P144 Nd146 S888 Z456 UE N Sad155 Gd155 Th169 Dy163 Bla165 Y894								
C42.53 R845 Da177 Th222 U238 N183 Ta149 Cel44 P6588 D444 S486 2486 2486 2486 2486 2486 2486 2486 2								

Ballot	54-1-141-143							
Genir No.	1-1	2-1	6-2	6-3	8-3	6-2	14-3	15-3
Major Oxide								
04550								
590,	20.00	23.86	21.48	56,70	50.77	.57.28	50.82	49.85
TIO;	3.51	0.76	0.44	0.45	0.47	6.38	2.33	#45
AbO.	2.43	1.09	1.35	4.45	228	1.55	4.44	\$26
Ne ₂ O	3.54	0.37	0.29	0.18	0.2.1	0.32	3.14	0.25
Max	3.79	6.77	0.65	0.18	0.31	1.59	3.16	8.12
Mago	14.85	54.94	18.30	15.62	13-37	12.01	16.35	15.24
CaO	56.12	18.97	24.25	22.31	21.39	20.64	22.84	21.67
, Cr ₂ O ₂								
Fe0	5 2 2	11.44	30.19	5.85	7.22	10.57	5.12	9.01
Tetal	\$5.12	190.20	100.05	99.51	106.23	22.25	139.19	92.42
Math	71.66	63.56	19.05	82.64	79.22	70.10	85.96	75.09
En-	3-45	0.43	0.45	0.45	0.44	04.3	3.46	0.41
Wo	3.12	0.39	0.41	0.46	0.14	6.13	3.46	6.43
Pat 1101 'C				4.17	0.13		1.85	
Dist Boarb								
(ppn)								
Sec."			166.03					
THE			15,40					
37.51			\$25.55					
Cr58			13.25					
Ni60			20.34					
Cv135			0.05					
R#85			0.19					
Da137			1.45					
ThG32			0.05					
U233			0.91					
NE65			0.05					
TalSI			0.63					
L9144			8.20					
Ce347			19.22					
PEDES			0.22					
PE141			2,40					
262146			12.98					
203			28.00					
201			28.00					
fin 47			1.33					
Sec. 17			1.20					
10025			1.42					
course.			1.12					
100103			8.01					
Elal.St			1.63					
2000			45.55					
194.55			4.41					
20172			4.51					
10175			0.20					
and the second s								

100000								
Genia No.	20.00	10.0	Q.,	10.1	15.1	14-1	17.4	18-1
Maler Colds		200-2			10-1	10-1	1.1-1	18-1
ENTRY:								
540.	50.628	98.02	31.24	21.22	31.85	52.14	\$2.40	\$1.10
TO	0.55	0.47	0.57	0.54	031	0.49	3.45	0.14
AbC-	4.57	51.6	0.92	1.00	0.00	1.05	3.05	0.15
hite of		100	0.45	010	0.14		1.00	4.12
District of	4.27	0.05	0.31	1.50	0.50	0.52	1 13	4.47
NUM	1.35	2011	1.30	1.007	122	1.12	139	9.08
Choo a	20.12	70.00	12.11	19.75	10.35	10.85	20.25	96.67
00	30.0	26.500		1000	19.63	10.39	10.23	0.00
13.05	16.12	20.00	110.00	0.2.00	11.87	11.07	1.11	4.0
Taral	101.72	100.05	100.51	101.03	99.57	101.24	101.75	100.04
54+9	73.12	73.21	66.98	66.75	67.94	65.93	81.19	\$1.19
En	3.41	0.43	0.41	0.41	0.41	0.40	3.48	0.45
Wo	3.42	0.40	0.39	0.39	0.19	0.19	3.40	6.45
Post 1101 C							3.44	5.44
Ince Hermite								
(ner.)								
Sols								
T.09								
W31								
Cr53								
Ni64								
Ci4.53								
R#85								
Dall?								
Th:232								
1/298								
N855								
14 31								
12.147								
10.139								
15.14								
364144								
5:55								
2:50								
105.78								
Sini 47								
Endys								
Gd153								
Thise								
Dy163								
E0165								
180								
Er166								
10172								
runa?								

Entre	\$1.5.1.20							
Genia No.	8-5	8.2	10-2	81-3	18-2	14.0	15t	13.4
Main Oakle								
INPO.								
810;	53.23	45.36	53.59	50.61	31.03	31.09	-49.24	49.34
TIC:	1 3 3	0.82	0.60	0.50	0.38	6.17	3.54	9.65
AbG	1.89	6.56	1.20	105	\$ 18	3.00	7.09	5.56
14.0		10.000	016	0.24	0.72	0.75		
THE P		0.00	0.19	0.02	0.12	1.14	1.17	4.42
2000	17.14	14.27	0.20	2.0.24	0.12	14.00	14.14	13.00
000	57.10	31.73	35.24	22.71	31.17	21.72	00.00	-05-51
0.0	3.35	0.25	11.05	020	1000	1.04	10.00	10.05
0.00		2.60			0.00	4.57		
Tanl	65.77	65 76	100.04	100.10	100.57	103.41	100.05	00.71
10.21	00.00	36.18	30.14	78.75	14.65	20.34	21.33	01-51
Page -	3.52	0.02	0.00	0.13	0.13	5.48	3.44	4.45
1110	3.45	0.44	0.45	0.15	0.1	6.44	1.47	0.46
1.27 1161 C	3.41	4.56		1.03		3.34	2.40	4.41
(ppr.)								
5:45	12.75	1,65,52	78.68	205.46		156.65		
T119	1011-11	1555-68	629-33	296119		2819.56		
W31	138.48	\$74,60	\$5.84	343.06		42718		
C112	2761.85	1532.65	1053.83	1342.89		3.115		
Nick	255.75	109.54	177.41	63.44		72,00		
Ci4.53				0.01				
RB85	019	0.96	0.05	0.91		1.34		
Dall?	1.54	0.07				1.47		
Th:232	3 31		0.01					
1/238			0.05			6.00		
NB53	3 3 2	0.01		0.02		5.03		
Ta 31	83.88	2225	1.0.025	1996		0.142		
171.95	3.75	0.89	0.05	0.15		1.17		
Ce147	3 SL	1.39	0.24	0.39		0.70		
Pt-3.18	115	9.94	0.05	0.00		1.1		
12141	3.35	0.38	0.05	0.17		0.12		
06d14c	3.52	2.22	0.42	1.30		2.10		
Sr\$5	15.09	39.73	17.34	3631		12/98		
2150	1.64	8.52	0.48	2.77		2.23		
101.78	2.35	9.62	9.00	0.22		2,41		
See 1.47	0.28	1.05	013	0.75		1.66		
Endas	313	0.40	0.05	0.33		0.19		
Gd155	3 47	1.89	0.25	1.09		36		
10154		0.20	004	0.25		L SD		
Dyled	3.51	1.92	0.32	1.00				
Fighter	313	0.42	0.05	0.54		0.24		
1387	2.82	3,30	1.42	1.1.1		8.18		
12106	3.55	1.04	0.17	0.85		1.00		
100112	3.34	0.1.5	0.03	0.10		0.34		
100.12	2.24	412	000.0	0.19				

Balow								
Genia No.	18-2	19-1	20-1	21-1	22-4	58-4	582	25-1
Majar Öside								
(with)								
810;	51.86	21.32	82.35	23.29	48,45	52.54	50.42	51,37
TIO;	\$ 17.	0.51	0.49	0.97	0.14	1.35	1.55	0.33
ABG	3.36	5.98	5.02	2.05	68	65	1.69	9.72
Ne ₂ O	315	0.26	0.13	0.16	0.32	1.17	3.22	0.08
March	111	0.19	0.24	0.17	0.07	010	219	0.15
Mago	16.21	15.46	18.58	17.55	13.52	18.21	15.72	16.11
00	62.23	21.53	32.34	33.45	22.17	29.75	22.34	22.51
Qr-D				0.55		E.45	3.05	
Bet	436	7.19	4.92	3.55	6.72	2.22	\$ 17	5.65
Total	99.34	100.43	199.45	100.12	22.15	102.04	109.17	100.63
Math	85.15	79.30	85.79	88.53	78.58	90.98	82.05	83.45
In	3-45	0.44	0.47	0.50	0.41	05.3	3.45	0.42
Wo	3.46	0.44	0.45	0.45	0.45	6.45	3.45	4.46
Pat 1907 C	2.42	MI	2.64	1.51	1.15	-0.16	2.61	1.41
Ince Dentate	0.10	10020	20225	1.02.0	-25-03			
(DET.)								
5:45				99.63		78.14	62.99	
T119				1072.89		67511	2819/65	
331				134.60		20.302	376.37	
Cr53				3752 32		3275.24	549.00	
Niet				195.67		229.97	:4.80	
Ci4.53							3.03	
R885				0.36		\$3.3	1.98	
Da17?				0.17		0.45	1.51	
Th032						0.01	3.01	
1/238				0.91			3.02	
NB53				.0.02		\$3.3	3.02	
Ta 31								
121.95				0.05		1.16	3.10	
Ce147				0.26		0.19	3.46	
Pt-3-18				0.95		6.64	3.09	
19:141				0.05		1.15	8.12	
31d14c				0.42		0.22	1.00	
5185				82.52		14.31	22.28	
2150				1.18		0,72	9.08	
105.78				0.04		111	3.21	
2001.07				0.24		1.0	2.41	
Enllys				0.10		6.09	9.21	
00155				0.30		1.38	2.99	
10134				0.45				
Distor.				0.40		0.00	1.25	
220				0.16			6.00	
15146				0.35		5.16	3.77	
32472				0.30		0.75	3.67	
10175				0.34		6.0.3	3.05	

Balog							94-3-23-25	
Genia No.	26-1	22-1	28-2	29-2	84-2	85-1	2-3	Re-t
Major Oxide								
(with)								
840;	45.0T	21.41	52.85	30.22	55.12	52.27	50.97	50.64
TIO;	9.99	0.56	0.45	55.0	0.74	6.33	3.35	0.11
ABC	5 84	8.47	9.43	4.12	195	3 57	9.35	3.67
NeO	0.25	0.72	0.19	0.78	0.16	1.14	3.77	6.77
3400	0.28	017	0.16	0.15	0.56	0.01	115	111
Marco	14.33	16.73	17.97	14.91	16.85	16.76	16.52	14.72
(36)	\$ 86	33.45	23.63	21.42	32.92	20.92	21.36	00.90
0.0	0000	10000	0.15		0.58		176	6.64
Bith	818	3.18	1.45	2034	4.78	440	5.45	9.48
Tani	65.43	00.00	99.94	100.15	39.09	90.50	99.05	99.14
Main	75 50	55 75	89.45	79.53	97.51	26.31	24.07	21.61
Pri	0.0	0.47	0.45	0.41	0.47	0.46	1.47	0.44
10.0	0.45	0.45	0.45	0.42	0.16	6.47	3.44	646
E-4 1323 22	1.65	1.47	0.45		0.01		1.11	1.47
Tainer C	1 35	1.002	-40.45		1001	1.8.	1.33	1.44
Line Dariate								
(ppr)					110.05		35.64	
7.42			9/0.91		1222.01		1507 10	
2223			110.00		155.55		700.00	
10.01			120.00		1020.51		5.17	
Nier			141.07		154.53		19.00	
102.53			1000.0		0.00		10.00	
Dest			2020		0.01		1.11	
Ball?			10.01		0.08		3.34	
75.735							2.00	
10398							2.01	
NESS					0.01		3.06	
74181							3.00	
1.41.99			0.05		0.05		3.91	
Ce147			0.22		0.14		4.54	
Ph338			0.48		0.068		3.11	
11141			0.64		0.05		1.04	
31d14c			0.35		0.24		5.91	
Sr\$5			15.30		12.85		30.78	
2,50			0.78		1.16		14.20	
105.78			0.05		0.09		3 51	
Sini 47			0.21		0.10		4.53	
Endys			0.05		6.12		3.56	
Gd153			0.37		0.10		4.57	
Thise			0.66		0.08		3.50	
Dy163			0.30		0.28		5.19	
Ela165			0.09		0.13		1.28	
189			1.98		5,89		\$0.22	
Ib:166			0.21		0.22		3.54	
76172			0.34		0.34		3.49	
1.0175			0.64		0.04		3.43	

Bates								
Genia No.	4.2	5-2	61	7-12	5-1	4-1	12-1	18-2
Major Oxide								
EWITE:								
810;	45.75	45.65	49.76	48.35	49.47	-63.91	48.98	50.34
TIC	0.42	0.41	0.55	0.61	0.13	640	3.45	0.68
AbG	4.82	\$ 27	4.9.1	\$10	1.08	181	\$ 13.	4.67
Ne-O	4.77	12.26	0.78	0.71	6.7.4	P.19	1.70	6.10
3.000	0.30	0.02	0.11	0.11	0.11	1.00	3.06	6.60
2000	14.50	15.16	6.3.44	14.75	15.16	15.50	14.44	14.27
00	5 45	31.91	22.43	33.37	2215	32.46	12.67	01.02
0.0	0.15	0.41	0.65	0.00	0.91	E.19	3.93	11.00
Bath	7.14	6.78	4.41	7.64	4.78	4.40	4.60	641
Taral	55.07	59.43	99.15	38.65	98.55	29.13	98.47	98.95
MAR	75 84	\$1.17	82.55	17.14	86.18	89.55	85.68	80.69
En	0.45	0.44	0.44	0.41	0.42	0.43	3.45	0.45
Wo	0.45	0.46	0.47	0.46	0.47	6.46	3.47	6.45
Post 1102 VC	10	3.07	0.75	0.10	4.47		3.63	4.00
Trans Dimensio			201.0					144
(there's								
5:45		125.04						
T.19		1698 43						
VSL		455.27						
0:03		1715.91						
Niet		121.11						
Ci4.53		0.02						
RESS								
Bal3?		0.03						
Th232								
1/298		0.01						
NB53		0.02						
Ta 31		9.01						
121.99		9.26						
Ce147		1.27						
Pb3.18		0.03						
P(14)		0.81						
34d14e		2.39						
5155		17.46						
2150		8.48						
HPL 78		0.64						
Sini1.17		1.24						
Endos		0.45						
75.465		4.20						
10154		0.47						
Distor.		242						
3/20		11.52						
19144		1.32						
70177		1.05						
1.0175		0.1-5						

Bulou			56-3-85-98					
Genia No.	13-2	15-1	B1	61	10-2	11-2	12-1	18-2
Major Oxide								
(with)								
810;	\$1.24	53.06	49.82	32.61	42.24	31.12	20.87	51.29
TIO:	0.94	0.19	0.59	0.43	0.19	6.39	3.45	0.50
ABG	1.55	1.19	5.50	2.80	5.57	2.48	1.39	1.94
Ne ₂ O	0.95	0.1.5	0.22	0.15	0.19	0.26	1.31	6.33
March	0.38	0.18	0.16	0.03	0.08	04.3	1.16	0.19
MgO	12.12	17.65	14.26	15.53	14 37	14.75	12,40	13.91
Ca0	52.37	22.95	22.14	22.51	2216	17.52	17.83	19.58
, Ch.O;	0.15	0.19				0.0.0		
Evo-	9.61	4.16	7.62	4.85	6.42	11.05	15.51	10.55
Total	\$5.21	\$5.39	99.74	99.65	55.55	26.95	99.73	98.69
Meth	19.79	\$\$.35	78.05	85.45	79.99	68.80	18.78	70.56
En	0.45	0.48	0.42	0.46	0.41	0.43	3.37	0.41
Wo	0.42	0.45	0.47	0.47	0.17	697	3.38	6.42
Pat 1101 C			4.30	1.17	4.42			
Loss Danais								
(ppm)								
5:45		157.85	167.79			163.66		
T119		1389.85	2621.79			21.39.70		
W31		212,49	375.43			409.71		
Cr12		1018 72	-199.09			102.66		
Nick		102.22	68.51			31.22		
CK.53			10.01					
RB85			0.11			21.1		
Da17?		0.22				0.00		
Th032								
1/238								
NE53								
Ta 31		2622	1.000					
1.1. 35		0.05	0.12			0.1		
Ce147		0.26	0.45			0.52		
Pt-3-18		9.11	0.42					
19.141		0.05	0.14			0.25		
pidl4c		0.41	1.19			1.12		
2183		10.00	12.31			8.13		
2150		1.50	4.1.4			3.29		
105.70 Coult 47		9.12	0.25			1.15		
See 12		0.00	0.38					
20125		0.10	0.25			0.26		
75.465		0.10	0.12			6.37		
10-163		4.77	1.44			1.00		
Elales.		0.1.6	0.22			130		
780		8.84	6.82			4.51		
15146		0.44	0.81			1.14		
32472		0.42	0.75			1.07		
1.0175		0.15	0.11			0.15		

Balox								
Genia No.	13-2	1.5-1	16-1	97-1	18-1	19-1	3D-1	21-2
Major Oxide								
INPS)								
810;	20.83	45.12	20.22	20.61	50.21	50.82	-9.95	50.75
TIO:	0.61	0.94	0.55	0.55	0.63	1.81	158	8-44
AbCa	2.76	6.44	105	3.29	1.94	2.49	3.50	1.91
Ne-O	0.30	0.78	0.72	0.75	0.20	1.41	1.68	6.15
3.640	0.00	0.08	0.28	0.21	0.15	0.54	143	816
3.840	17.15	12.36	14.45	14.41	15 25	1515	13.20	15/64
00	15 47	31.33	20.55	36.53	31.65	19.25	10.56	-00.00
0.0	24,40	14.50	1944.65	1.00.00			11.00	
Bith	12.72	0.62	20.05	2.92	7.87	1114	1120	6.62
Taral	55.81	69.19	32.57	55.75	63.55	22.22	99.30	99.52
Mark	64.73	63.50	71.54	74.33	75 àr	67.75	67.36	\$1.75
Pri	0.72	0.52	0.42	047	0.41	0.10	3.15	0.44
Wo	0.39	0.46	0.43	0.44	046	6.62	3.43	146
E-4 1322 22	100	10.00	1000		4.00			100
Tan Des C					130			1.20
(new)								
0.46							105 63	
7.42							2010/02	
3753							505.41	
10.13							616	
Nier							10.01	
100.51							70/41	
Dest								
Bo122							3.02	
75/232								
10398								
NBSS								
741.81								
Tat 39							2.79	
Ce147							3 328-	
Ph338							3.07	
15:14:							1.24	
31d14c							1.82	
5:55							14.95	
2:50							5.12	
105.78							3.35	
Sinel 47							1.00	
Eu125							3.42	
Gd153							1.79	
Thise							5 33	
Dy163							2.33	
Boles							3.46	
189							11.84	
15:166							1.34	
70472							1.38	
1.0175							3.17	

Refer								
Genia No.	12.1	32-3	24-5	35-3	26.0	22.0	10.1	10.1
Maler Oxide								
EWENCE:								
840;	20.76	43.55	52.88	40.62	55.24	50.25	20.41	49.85
TO	0.56	0.68	0.45	0.50	0.14	6.56	3.54	DEL
ABC	214	0.24	1.90	6.02	1.95	187	2.68	4.23
his of	4.14		0.12	0.1-	6.19		1.70	
Party P	019	0.51	0.14	0.00	0.10	1.24	1.25	6.54
NUM	10.00	0.55	0.94	0.02	0.34	6.89	1.14	0.26
Augo .	12.00	24.02	00.37	23.52	22.20	21.10	10.05	10.05
0.0	2. 28	20.84	22.57	21.94	25.57	4.19	19.72	13.12
Cr30			0.17	0.005	0.5%		10.00	10.00
Teel	3.35	3.26	4.25	0.90	2.20	140	10.85	10.97
10121	29.18	22.00	READ IN	22.65	20.00	74.67	20.12	20.41
N.C.	0.00	12.90	99.51	0.13	50.00	0.51	69.93	08.45
111.0	0.44	0.44	0.47	0.47	0.17	6.44	2.42	6.45
	0.0	1.41	0.49				112	6.4.5
Pat 1101 C	2.72		0.41	6.41	0.48	1.59		
Lose Danais								
(ppr.)				10203	1.000			
5015			12511	177.94	36.19			
1.14			898.38	3622.38	906.50			
VSF			128.26	399.62	128.79			
CLUS			1192.28	526.54	428828			
2000			118.65	92.82	321.26			
CHISS			10.01		000			
NES)			0.01	1000	000			
194137			0.99	0005				
11538								
N275				0.01				
74123								
14129			0.02	0.02	0.05			
Coldi			0.72	044	6.12			
19.3.72			0.64	0.14	0.05			
15.14			0.02	0.11	D10			
314144			0.91	0.972	0.47			
5:55			15.47	15.57	12.90			
2,80			0.52	4.25	6.69			
105.78			0.05	0.25	0.02			
Sini 17			0.92	0.59	0.50			
Eulbs			0.10	0.74	0.08			
Gd153			0.40	0.92	0.37			
Thise			0.67	0.20	0.06			
Dy163			0.55	1.40	6.40			
Boles			0.09	0.27	0.08			
139			2.45	6.25	5.35			
12:166			0.28	0.76	0.36			
20172			0.30	0.62	0.17			
1.0175			0.64	0.09	0.04			

Balos							51-1-23-25	
Genin No.	8:-3	82-5	80-1	85-1	44-1	87-2	1-0	2-4
Majar Öside								
(with)								
840;	20.24	21.22	99.37	31.63	31.85	50.55	51.34	50.94
TIO;	0.51	0.45	0.47	0.59	0.43	6.55	2.39	4.53
ABCT	5.59	2.22	9.87	8.87	1.15	3.17	2.78	9.91
Ne/O	0.29	0.54	0.27	0.50	0.18	0.33	3.28	0.25
3800	0.34	0.61	0.18	0.87	0.15	10.33	128	1.92
Mago	14.40	24.84	14.21	12.55	19.53	14.34	16.01	12.85
030	\$ 45	7.78	49.72	36.53	21.74	19.96	19.82	19.19
0:0							3.00	
P.O	819	11.43	11:24	9.13	6.81	5.55	3.60	14.39
Tatal	95.52	\$9.26	39.61	95.62	\$9.75	9.8.77	120.33	100.37
Math	75.39	69.82	71.65	72.58	\$3.26	72.79	74.84	61.38
En	0.41	0.44	0.42	0.41	0.44	0.42	2.45	4.37
Wo	0.45	0.38	0.41	0.44	0.45	6.47	3.40	4.46
Pat 1101 C	1.52				1.71			
Trace Demonts								
(pgm)								
Sols								
T.19								
V31								
CH2								
N65.								
Ci4.53								
R#85								
Dall?								
Th232								
1/298								
NE53								
Ta 31								
1.4.39								
Ce147								
PE3.18								
14142								
010140								
2189								
2150								
first 47								
Sector.								
6415								
Thiss								
De167								
Bales								
1/80								
12:166								
320172								
1.0175								

Balog								\$7-2-07-100
Genin No.	41	52	6-2	7-1	8-5	6-2	11-1	1-1
Maja: Oxide								
(with)								
810;	51,62	52.12	32.58	30.12	50.76	31.70	-49.92	51.66
TIO:	131	9.20	0.20	0.46	0.49	6.39	2.53	0.76
ABCT	1.51	512	1.1.6	3.21	3.56	3.69	116	1.95
Ne/O	1.11	0.19	0.95	0.35	0.2.5	1.17	3.22	4.33
MIN	2.44	0.10	0.25	0.51	0.37	81.1	9-19	0.32
Mago	14.74	16.20	14.64	15.65	13.57	16.87	15.47	14.41
030	19.10	22.47	39.49	19.64	18.99	21.02	22.92	19.61
0:0	11.0	0.1.5				0.10	3.03	
P.O	11.37	5.46	10.35	10.65	10.21	4.02	5.62	10.69
Tatal	161 32	100/01	190.41	99.11	23.51	99.54	99.58	99.52
Math	(8.89	\$4.10	78.68	79.47	75-86	88.20	80.61	70.62
En	3.42	0.46	0.42	0.45	0.46	0.47	1.44	9.42
Wo	4.34	0.46	0.42	0.39	0.18	6.46	3.46	4.4
Pat 1103 'C		1.45				2.43	3.47	
Truce Demonts								
(per)								
Sols								
T.19								
W31								
CH3								
Niet								
Ci4.53								
R885								
Da13?								
Th232								
1/238								
NB53								
Ta 31								
131.35								
Ce147								
Pb3.18								
P(14)								
36d14c								
5755								
2150								
101.78								
Sent d/								
Endos								
C0015 -								
10134								
Distor.								
220								
1-1-1-2								
224122								
1.0175								

No.								
Control of the	100	12.22	10.10	1.10	1.1	1.11	1000	144.40
Malan Calda	20-2	1-1	81	Bo (2)	8-0	4-1	10-2	11-0
Sage Coor								
Sic.	15.00	11.02	31.82	10.71	48.51	49.92	40.17	49.64
TO	45.00	0.00	0.00	1.10	100	-0.57	1.14	42.04
1102	1 41	0.000	0.54	112	1.09	1. SL	1.14	4.11
NBL-	21.4	4.07	\$12	2.90	- 94	- 58	110	4.54
19870	3.57	0.21	0.25	0.24	0.24	0.22	1.51	0.28
Mayo	915	0.10	0.26	0.15	0.00	0.16	3.00-	0.06
MgO	12.40	54.50	15.81	14,54	14 87	1- 90	15.43	16.76
C90	5.8	55.36	18.65	29.59	21.15	51.91	10.05	\$1.47
_ Cr ₂ O;	3,43							
P.O	5 51	6.01	00.22	8.43	8.34	7.24	3.10	3.56
Total	100.50	55.55	99.95	100.15	25 82	100.68	120.13	99.17
Man	84.14	\$1.55	73.88	75.56	76.33	78.46	75.15	83.37
En	3-44	0.43	0.45	0.43	0.43	0.43	3.44	0.47
Wo	3.45	0.47	9.8 0	0.4.5	0.14	0.46	3.40	0.43
Fat 1101 C	516	2.82		3.345	3.54	4.25	3.25	1.45
Lose Danais								
(ppm)								
Solf	161.62							
T.19	1<1.99							
W31	401.12							
CH12	2745-54							
N65	120698							
Ci4.53	3.31							
RESS	017							
Da17?	4.45							
Th032	0.05							
1/235	3.38							
NB53	3 33							
Ta 31	9.91							
171.35	2 2 8							
Ce147	9.25							
Pb3.18	3.38							
P(14)	1.25							
01d14c	2.41							
5185	13.29							
2150	15.26							
101.78	224							
See 1.37	2.61							
Endag	3.93							
Gd133	931							
10154	151							
Dy163	3 51							
Ela162	3.74							
185	11.19							
12106	2.92							
20112	1.75							
1.01.75	1.24							

Bullow								
Dinis No.	11-1	14-2	201	32-3	26-1	81-1	82t	882
Maja: Oside								
IN THE	10000000	10.000				1.		
810;	-19,98	81.87	49.51	40.44	42.20	50.82	50,74	50.8
TO:	3.54	9.74	1.1.5	0.88	1.55	6.63	1.97	9.73
ABCT	6.19	1.89	4.47	525	197	238	2.84	4.19
Ne/O	1.24	0.50	0.28	0.24	020	1.35	3.33	9.15
MayO	9.64	0.19	0.15	0.11	0.08	0.20	138	0.35
MgO	12,44	15.52	34,47	15.63	13.71	14,43	16.05	16.3
C90	23.63	25.08	32.19	22.17	19.66	20.28	19:84	22.13
, Cr ₂ O;								
Peo	5.83	10.81	8.16	6.73	10.27	10.05	3.70	3.65
Tatal	103 25	190.13	190,37	100.42	22.11	22.12	120.70	1001
Man	85.58	31.99	75.98	80.53	70.42	71.93	74,49	85.9
En	0.45	0.44	0.41	0.44	0.41	0.42	3.45	4.45
Wo	3.45	0.39	0.46	0.45	0.45	6.47	3.40	9.45
Pat 1101 C	4.55		-0.17	2.19				2.11
Lose Deneits								
(ppm)								
Solf								
T119								
W31								
CL12								
Niet								
CK 53								
RESS								
Dall?								
Th:32								
11235								
24855								
14.31								
10.147								
10.132								
10.141								
204144								
5-68								
2.50								
100.78								
Seei 47								
Entry								
Gd153								
Thise								
D+163								
Bales								
Hol65 Y89								
Ho168 3789- Dr166								
Ho168 1989 Dr166 19677								

Balow						23-528-40		
Detain No.	42-2	85-1	86-1	87-3	20+1	5-2	2-3	4-2
Majar Osida								
(with)								
840;	20,05	21.10	21.59	26.27	31.55	30.54	20.04	30.31
TO:	3.76	9.72	0.45	0.62	0.57	£ 47	3.65	0.48
ABCt	5.45	0.68	8.94	3.96	4.50	9.19	1.46	5.64
Ne ₂ O	3 2 3	0.21	0.25	0.24	0.3.1	0.20	3.27	0.22
MayO	919		0.16		0.12	013	3.03	0.22
MgO	16.20	15.32	17.50	17.01	17:35	16.31	15.72	15.68
C93	\$5.09	22.18	32.38	33.32	22.28	21.88	\$1.68	22.49
, Cr ₂ O;								0.07
P.O.	5 25	5.58	4.62	5.01	2.42	7.03	5.72	3.62
Tatal	99.75	0.00138	190.45	99.75	\$9.52	99.71	99.62	92.55
1429	84.54	\$1.29	87.38	85.53	\$9.88	30.33	80.66	88.55
En	3-45	0.46	0.42	0.47	0.49	0.45	3.45	8:46
Wo	3.45	0.45	0.44	0.45	0.46	6.44	1.44	6-48
Pat 1101 C	3.62	4,92		1.05	4.64		2.35	6.90
Lose Danais								
(ppm)								
Solf								156.16
T.09								81.45
V31								488.25
CH2								499.56
Niet								2.14
Ci4.53								
R#85								
Dall?								0.11
Th:232								0.01
11295								1.1.1
24855								10.9
14 31								0.02
10.147								1.44
10,7343								1.24
PEO AS								
214144								1.10
5-68								22.32
2.80								6.56
106.78								0.10
Sect 47								0.92
Eul35								0.43
64113								1.06
Thise								6.2.5
Dy163								1.26
Bales								0.19
782								1.19
12:166								640
70172								0.05
1.0175								0.10

Bulze					39-1-29-51			
Genit No.	8	20-1	22-4	25-4	1.0	2-3	8-3	
Maja: Oside								
04530								
590)	52,36	59.22	49.68	45.00	93,57	51.52	49.80	1.1
TIO:	3.47	9.72	0.59	0.62	0.51	0.47	3 50	
AbO.	1.37	5.57	6.25	5.98	2.50	0.85	5.44	
Ne ₂ O	1.37	0.25	0.26	0.29	0.29	6.18	1 23	
Max	1.19	0.21	0.06	0.02	0.45	120	3.44	
MagO	14.15	15.32	14.84	15.25	15.58	13.52	14,67	1
CaO	26,79	22.92	22.55	23.67	23 39	19.90	\$1.04	
. 42:50:								
FeO.	7.540	4.24	4.95	3410	8.56	12.99	9.68	
Tetal	97.76	59.29	95.55	55.41	105.04	100.52	98.79	5
NOT	27,94	\$6.47	31.52	86.96	76.14	61.99	75.14	
En-	0.45	0.45	0.44	0.45	0.44	0.39	3.42	
Wo	3.45	0.48	0.48	0.48	0.45	0.41	3.44	
Pat 1101 'C		5.08	716	5.56	0.97		1.17	
Disc Engab.								
(pero)								
5:45	159.40							
Ti.45	51.34							
3254	145.15							
Cr58	4.19							
Ni60	3.52							
Cv135	2.15							
RESS	9.27							
Da177	1.21							
ThG32	9.16							
U238	3.66							
NB65	9.19							
TalSI	3.05							
PU135	10.66							
Ce147	30.36							
Pbdt8	9.54							
Pr141	A.21							
34146	32,06							
2425	25,99							
269	37,35							
1111 19	1.50							
2010 1-17	11.51							
Enlas	215							
Colloc	11.68							
10123	2.37							
marks.	2.71							
20102	3.32							
180	8.02							
1011-010	3.24							
3241.72	3.14							

Ballow								
Genia No.	8-2	8-1	-t	10-2	11-1	18-1	14-2	16-2
Major Oxide								
IN THE								
810;	51,48	23.75	21.40	33.15	51.52	51.28	50,98	50.50
TIC:	0.51	0.48	0.59	0.85	0.49	0.43	3.51	9.55
AbG	1.69	5.09	1.97	0.75	0.80	2.00	9.06	3.36
Ne-O	1.17	0.79	0.29	032	6.37	1.73	1.74	4.71
The second	1.64	0.14	0.02	1.02	1.04	6.44		10.00
2000	12.00	10.04	13.72	1.0.	11.00	16.00	14.22	9.25
nago.	12,51	22.24	24.10	1513	15-42	10,39	12/07	12.14
0.0	13,35	19.94	18.09	10.87	09.65	20.54	20.49	10.44
Crack								
IVO	12.75	19 29	12.79	12.81	12.29	1,68	5.71	8.36
Tarai	103.00	\$2.16	100.51	25.04	106.37	22.51	992.05	19652
Man	60.94	12.98	61.85	49.72	65.13	26.99	30.82	05.79
En	3.39	0.44	0.42	0.37	0.28	0.47	3.45	9.43
Wo	3.41	0.40	0.38	0.45	041	6.43	1.44	0.45
Fat 1101 C						1.22	3.96	-0.51
Lose Denets								
(ppm)-								
Sols							95.00	
T.19							<235.98	
W31							258.34	
Cr13							13.25	
Niet							28.05	
Ci4.53								
RESS							1.65	
Bal3?							5.47	
Th232							3.07	
1/238							3.02	
NB53							3.02	
Ta 31							3.01	
Tal 99							3.15	
Ce147							1.06	
Ph3.18							3 53	
15:145							8.15	
31d146							1.06	
Sr\$5							10.11	
2:50							5.13	
105.78							3.35	
Sini 47							3.48	
Eul25							3.10	
Gd153							3.56	
Thise							1 25	
Dv163							1.81	
Elul65							139	
132							13.32	
12:166							2.09	
37:172							3.05	
1.0175							3.51	

Balos	02-07	100000	10.010	23376	35245	10.000	11000101	0.0214
Genin No.	12-1	13-1	29-2	21-3	22-1	28-4	21-2	25-1
Weight, Oktobe								
INTER-	1.000	1000	1000		1000			
340;	20.28	23.03	20,80	22.35	50.25	50.17	20.30	55.6
TO:	0.50	0.59	0.52	0.51	0.58	6.39	149	0.95
ABC	2.71	< 90 ×	1.82	2.92	3,14	3.70	2.96	1.07
Ne/O	325	0.20	0.31	0.18	0.2.2	0.21	3 24	9.26
Mayo	0.33	0.24	0.89	0.18	0.06	0.17	3.56	0.05
MgO	12.19	54.29	14,75	16.25	14.53	14.98	15.25	18.4
C90	\$1.14	22.38	38:85	32.27	22.32	22.08	\$1.07	22.7
, Cr ₂ O;								
Evo-	3.32	8.58	12.33	4.57	827	7.55	\$.51	2.52
Total	99.52	100.21	100.27	55.64	25-21	22.11	29.95	99.5
Man	75.01	35.68	68.13	86.35	75.89	77.96	75.31	91.8
Eri	3-45	0.41	0.42	0.47	0.41	0.43	3.43	0.23
Wo	3.19	0.45	0.38	0.45	0.45	1.45	3.43	6.45
Pat 1101 C				0.95	-0.50	613	-0.43	-4.4
Loss Barats								
(ppm)								
Solf								
T.19								
W31								
C112								
N65								
Ci4.53								
RES								
Dall?								
Th232								
11295								
24855								
14 31								
12.147								
101110								
10.14								
204144								
5-68								
2.80								
106.78								
Sinel 47								
Endag								
64113								
Thise								
Dv163								
Elul65								
132								
11-1-12								
1211000								
30172								

Balos								
Gala No.	26-2	28-2	30-1	81-1	82-1	88-4	84-2	- 25
Majar Oxide								
(with)								
810;	45.60	49.15	20.34	50.14	42.20	50.29	20.36	49
TIO;	0.56	0.46	0.52	0.59	018	6.53	3.49	
ABG	5.92	0.98	8.0.9	2.68	3.67	3.63	1.08	- i
Ne:O	0.27	0.79	0.27	0.37	0.36	0.26	1.30	- 6
3400	015	0.96	0.04	0.61	0.16	0.03	1.13	- 2
Mago	14.87	15.20	12.35	14.54	54.40	13.43	13.40	12
000	< 69	31.43	21.65	26.45	21.82	21.68	18.51	18
0.0	2000	10.000	288,245	1.55155	194,26.01	0.00000	11.46620.1	
Bith	7.893	12.42	0.51	20.03	9.00	8.27	13.92	14
Tatal	\$5.29	59.00	99.75	95.57	55.79	22.12	99.44	- 99
MAR	76.84	65.45	71.46	72.42	74.51	36.89	63.36	-58
En	0.42	0.57	0.45	0.42	0.41	0.43	139	
Wo	0.45	0.49	0.49	0.42	0.14	6.44	3 3 5	- 6
Post 1101 (C	0.25							
Tree Dennis								
(ner)								
5:45								
T.19								
3751								
0:0								
Niet								
CH 53								
Rb85								
Da177								
Th032								
1/235								
NB53								
Ta 31								
1.4.39								
Ce147								
Ph328								
11:141								
3id14c								
Sr\$5								
2150								
102.78								
Seel 47								
Eu122								
Gd153								
Thise								
Dy163								
E0168								
186								
15:166								
Ybi 73								

Bulou								
Geniu No.	82-1	49-2	30-1	41-3	42-2	68-1	45t	4.6-
Majar Osida								
IN THE								
810;	20.45	59.23	20.37	33.63	31.50	50.78	\$1.11	50.0
TIO:	9.46	9.54	0.47	0.78	0.59	0.54	3.61	- 44
ABCT	< 36	\$ 75	3.74	3.54	1.01	3.56	2.83	3.8
Ne ₂ O	0.24	0.26	0.25	0.26	0.28	1.23	3.26	5.0
Max	0.19	0.32	0.15	0.20	1.22	1.24	1.53	0.6
MgO	15.40	54.86	14.30	1-1.65	15.46	15.28	15.35	15
CaO	\$2.11	23.95	28.74	21.61	9.91	21.99	12.51	- 92
, Cr ₂ O;								
P.O.	6 72	8.62	3.55	8.91	15.25	7.14	10.32	6.5
Tatal	\$5.15	59.54	100.35	100.25	100.22	22.36	99.05	- 92
Math	\$2.02	35.45	74.55	34.55	6177	79.22	73.61	79
Eri	0.44	0.45	0.41	0.42	0.59	0.44	3.45	8-4
Wo	9.46	0.43	0.44	0.44	0.40	0.45	\$ 3.9	6.4
Pat 1103 C	2.51	1.57				0.55		-0.1
Loss Danais								
(ppm)								
Solf								
T119								
W31								
Cr13								
Nitt								
Ci4.53								
R#85								
Da13?								
ThG32								
1/238								
N855								
Ta 31								
1.1. 39								
Ce147								
PE0.18								
19141								
212146								
2.84								
1102.745								
Seal 47								
Entre								
64113								
Thise								
Da167								
and a second								
Flates								
E0163								
730 12165								
1989 19466 19466 19477								

Balos	59-1-98-101						60-1-8-11	
Genia No.	2-2	5-1	8-2	18-1	19-2	282	1-0	2-4
Majar Öside								
(with)								
810;	50.84	53.56	21.42	21.72	50.54	50.41	50.09	30.86
TIO;	198	0.58	0.60	0.59	0.55	6.54	3.70	9.55
ABC	9.90	2.95	5.95	3.16	135	100	2.76	3.55
Ne ₂ O	3.44	0.72	0.24	0.21	0.33	\$1.18	130	0.24
MaxO	917	0.06	0.64	0.06	0.35	1.18	1.63	0.22
MgO	12.45	17.08	12.04	15.54	13-40	13.13	15.15	15.56
CaO	\$1.09	22.29	28.55	21.43	21.24	22.73	20.91	21 72
, Cr ₂ O;								
P.O.	5-45	5.04	7.55	6.78	9.20	6.27	3.33	7.32
Tatal	120.16	\$9.12	199.67	99.57	106.55	22,25	99.85	100.32
Math	76.25	\$5.71	17.99	.89.79	74.89	81.1.3	74.99	78.68
Eri	3-44	0.47	0.45	0.4.5	0.42	0.43	3.43	0.44
Wo	0.19	9.45	0.45	0.44	0.43	6.47	3.43	0.44
Pat 1101 C	1.14	-0.51	2.77	2.15		1.77		0.62
Trace Demonts								
(ppm)								
5:45								
T.19								
333								
CH2								
Nick								
Ci4.53								
RB85								
Da13?								
Th:232								
1/238								
NE55								
TA 31								
1.0.49								
02147								
PEOLS								
214144								
5-68								
2.50								
106.28								
See1.47								
Endby								
64153								
Thise								
Dy163								
Boles								
189								
Ib:166								
70172								
1.0175								

Basis No. Nijer Celle (wfb) 8-2 4-4 5-4 6-2 3-3 8-1 10-4 11-2 Si01 25.04 51.38 91.77 52.05 52.45 52.00 55.71 40.97 Ti0, 0.65 0.52 0.42 0.55 0.41 6.41 0.41 6.41 0.41 6.41 0.49 6.45 A65, 3.55 2.94 1.31 2.98 5.43 1.73 1.59 1.41 0.97 Na0 0.18 0.11 0.99 0.32 0.61 6.16 1.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.24 5.26 3.14 0.48 0.14 0.48 0.14 0.41 0.41 0.42 0.45 0.34 8.13 8.756 89.24 9.061 99.250 Ma0 0.45 0.38 0.45 0.48 8.26 9.24 9.061 99.250 Ma1	Bullos								
Major Celde (wPb) SiGi SiGi SiGi SiGi SiGi SiGi SiGi SiGi	Gmis No.	3-2	41	S1	6-2	3-3	81	101	11-2
(wffs) 353() 564() 513() 517() 5245 5245 5240 537() 4997 TiO, 0.63 0.53 0.42 0.55 0.41 0.41 0.40 0.41 0.40 0.41 0.40 0.41 0.41 0.40 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.41 0.42 0.41 0.41 0.41 0.41 0.42 0.41 0.41 0.44	Major Oxida								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(with)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	840;	50.04	21.55	31.77	52.65	52.43	52.90	53.71	49.97
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TiO ₂	0.65	0.52	0.42	0.55	041	6.41	0.41	0.18
Nu0 0.25 0.18 0.26 0.18 0.16 1.13 0.22 0.22 MaO 0.18 0.11 0.90 0.53 0.01 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.02 0.03 18.19 14.69 MaO 0.53 0.231 2.56 0.243 15.25 2.23 51.38 21.45 5.66 7	ALC	5.25	2.98	1.91	2.58	2.41	1.79	1.59	3.47
Nacio 0.18 0.11 0.30 0.31 0.01 0.16 <th0.16< th=""> 0.16 0.16 <th< td=""><td>NeG</td><td>0.25</td><td>0.18</td><td>0.26</td><td>0.18</td><td>0.16</td><td>E 15</td><td>3.77</td><td>0.74</td></th<></th0.16<>	NeG	0.25	0.18	0.26	0.18	0.16	E 15	3.77	0.74
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1000	0.12	0.11	0.93	0.10	0.01	6.16	3.16	0.09
BAC 11.55 12.51 11.64 12.15 12.15 12.16 10.15 12.15 CO 9.31 5.08 12.29 6.08 4.44 12.55 12.61 90.05 92.61 90.01 92.61 90.01 92.61 90.01 92.61 90.01 92.71 74.36 Trail 95.56 95.91 90.045 92.91 90.45 90.91 90.97 74.36 In 0.42 0.47 0.41 0.47 0.48 6.20 1.51 0.41 0.41 0.41 0.44 0.44 0.41 0.44 0.44 0.41 0.44 0.44 0.41 0.44 0.44 0.44 0.41 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.44 0.45 0.44 0.44 0.44 0.44 0.45 0.4	3.0.00	15 00	14 56	14.74	1.5 95	17.20	17.84	1819	14.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	0.00	32.31	18.00	20.45	26.95	22.43	21.92	21.65
Byd 931 3.08 12.29 6.39 4.44 3.26 3.46 5.06 Tani 95.50 59.51 100.45 59.59 59.45 59.51	ChD	100.000	10.00	2400	100.00		0.37	3.68	22.25
Taul 95.56 95.81 100.45 95.95 92.45 92.51 99.61 92.75 Mg4 T13.6 85.58 66.33 81.48 87.36 89.94 90.37 74.36 Bn 0.42 0.47 0.41 0.47 0.48 6.45 4.44 0.41 Vo 0.45 0.38 0.38 0.45 6.45 4.44 0.41 Pat 1103 C 0.39 2.42 0.46 4.04 1.56 Timet Hamais	Beth	0.31	4.08	12.89	6.39	4.44	3.40	3.46	5.08
Mg9 74.36 85.58 66.33 81.48 87.36 89.94 90.37 78.36 In 0.42 0.47 0.41 0.47 0.48 6.20 3.31 6.42 Wo 0.43 0.45 0.38 0.45 0.44 6.44 7.44 7.45 6.45 7.44 7.45 7.44 7.45 7.44 7.45 7.44 7.45 7.	Tanl	55.56	59.55	100.45	99.59	99.45	99.24	99.61	22.70
Bn 0.42 0.47 0.41 0.47 0.48 E.20 123 0.41 0.41 Wo 0.45 0.45 0.45 0.45 0.45 0.44 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.44 0.45 <td>Math</td> <td>74.30</td> <td>\$5.58</td> <td>66.33</td> <td>\$1 18</td> <td>87.96</td> <td>39.94</td> <td>90.37</td> <td>74.26</td>	Math	74.30	\$5.58	66.33	\$1 18	87.96	39.94	90.37	74.26
Wo 0.45 0.38 0.45 0.45 1.45 1.44 0.44 Pat 1160 °C 0.59 2.62 0.66 4.601 1.56 Taxed Damatic 1 1 1.56 1.56 1.56 Sol5 1 1.66 62.45 1.49 1.56 T149 22.23 14.98 94.30 1.56 1.56 V51 25.068 1.30 94.30 1.57 1.56 1.56 1.57 1.56 1.56 1.57 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.51 1.56 1.56 1.56 1.56 1.56 1.56 1.	En	0.42	0.47	0.41	0.47	0.48	040	0.51	0.43
Pat 1100 °C 0.59 2.62 0.66 4.04 1.56 Tiset Harrans (ppr) 81.46 62.45 14.93 174 22.22 14.93 123.38 94.30 175 123.38 94.30 125.38 120.78 176 25.01.08 1701.78 120.78 120.78 176 25.01.08 1701.78 120.78 120.78 1760 155.23 167.09 120.78 120.78 1760 152.23 16.01 121.78 122.79 120.79 1763 15.05 121.78 122.79 123.79 122.79 123.79 1763 16.03 122.79 123.79 123.79 123.79 123.79 1763 16.01 10.05 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79 123.79	Wo	0.45	0.45	0.38	0.45	0.45	6.45	3.44	10.44
Taxe Harmais Ease Ease <thease< th=""> Ease Ease</thease<>	Pot 1101 /C		0.59		2.07	0.00	10.1	1.56	
lipsi 81.86 81.86 62.85 Ti49 22.23 14.93 123.36 94.30 Cr53 25.31.08 4701.78 123.36 94.30 Cr53 25.33 8.36 8.31 123.36 94.30 Cr53 25.31.08 4.33 8.24 123.36 94.30 123.36 94.30 123.36 123.37 123.37 123.37 123.3 123.3 123.37 123.33 123.37 123.33	Truce Departs								
Suif 81.46 62.45 T44 22.22 14.96 V51 123.38 94.50 Cr53 25.40.68 4301.72 N66 359.25 162.09 Cr633 5.66 3.31 R655 6.63 8.26 Bul37 C.22 9.23 Th232 6.64 8.06 U238 6.61 8.06 N855 6.61 0.05 N853 6.61 0.05 N853 6.61 0.06 Cc143 6.64 8.06 Ta181 6.66 8.06 Ta181 6.64 8.06 Ta181 6.64 8.06 Cc143 6.33 9.31 Pb308 6.31 9.16 Pi4.4 6.35 9.06 St98 1.71.9 15.60 Zi50 1.30 9.45 St98 1.71.9 15.60 Zi51 5.17 3.48 St93 5.10 3.18 St93 </td <td>(new)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(new)								
Ti49 22.25 14.93 V51 123.39 94.30 Cr53 25.0.08 1501.78 N60 155.23 167.09 Cr53 5.06 3.31 R485 6.33 3.34 Bull37 7.22 3.23 Th22 6.04 4.05 U238 6.01 3.05 N853 6.01 3.06 U238 6.01 3.05 N853 6.01 3.05 N853 6.13 3.06 C2440 6.21 3.31 PH318 6.16 3.05 N144 7.75 3.44 St88 17.19 15.60 2x56 1.10 3.28 Su147 <td< td=""><td>Sets</td><td></td><td></td><td></td><td></td><td></td><td>21.06</td><td>102.05</td><td></td></td<>	Sets						21.06	102.05	
V31 123.38 94.30 $Cr53$ 2543.08 4501.78 N68 335.23 162.09 $Cc433$ 6.06 5.31 R685 6.33 5.24 R697 6.01 3.05 R698 6.01 3.05 R693 6.15 8.06 Cc143 6.21 9.33 PK308 6.13 3.16 R144 6.36 8.06 S158 17.19 15.60 Z456 1.16 3.47 R177 6.13 3.28 S10147 6.44 3.28 S10147	T.09						22.02	14.93	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¥51						123.30	94.30	
N66 195.23 162.09 CC4.33 6.06 5.16 6.13 R685 6.03 6.24 6.27 Bull77 6.22 0.27 Th523 6.03 6.04 U238 6.01 0.05 N853 6.01 0.05 N854 6.12 9.37 Ph358 6.01 0.05 Cc140 6.21 9.37 Pb338 6.12 9.37 Pb338 6.13 9.16 Pb444 6.72 9.48 St\$19 17.19 15.60 Ze80 1.10 9.47 M1778 6.12 3.28 Se147 6.44 9.38 En123 6.10 3.16 G	Cr53						2543.08	1701 78	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nice						135.25	162.09	
R885 6.33 8.24 Bull 7 6.25 9.27 Th 322 6.01 8.65 10238 6.01 9.65 N833 6.01 9.65 Tal 80 6.01 9.65 Tal 81 6.61 9.05 Tal 81 6.15 9.06 Cal 43 6.15 9.06 Cal 43 6.15 9.06 Cal 43 6.15 9.06 Cal 44 7.75 9.44 Staff 1.719 15.60 Zal 56 17.19 15.60 Smit 47 6.44 328 Emi353 6.10 3.10 Gal 57 6.44 328 Emi353 6.10 3.20 Th 59	Ci6.53						0.05	9.31	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rb85						0.33	3.24	
Th:32 0.00 0.05 U238 0.01 0.05 N553 0.01 0.05 Taili 0.02 0.06 Laibi 0.05 0.06 Laibi 0.05 0.06 Cold 0.05 0.06 Cold 0.05 0.06 Cold 0.13 0.06 Cold 0.13 0.16 Ph308 0.13 0.16 Ph404 0.16 0.05 Nd146 0.16 0.05 Nd146 0.16 0.05 Zr50 1.10 3.47 Sw147 0.12 0.25 Sw147 0.44 0.38 Ex155 0.10 3.10 Cd151 0.26 0.26 Dy163 0.66 0.66	Bul37						0.25	0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Th232						D).0	3.05	
N83 6.01 Ta181 6.06 3.08 La189 6.15 3.08 Ce143 6.21 3.31 P6338 6.13 3.16 P141 6.16 0.06 N446 6.75 0.48 Sa58 17.19 15.60 Ze56 1.16 8.47 IT7.76 6.12 3.28 Sa6147 6.44 3.28 Ea135 6.10 3.10 G4147 6.33 3.31 Th759 6.66 2.38	U238						0.00	3.05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nb55						0.01		
Lal 39 6 15 6 08 Cel43 0.21 3.37 P6538 0.13 0.16 Pr141 0.16 0.05 Dd144 0.77 0.48 St58 17.19 15.60 Zr56 1.10 0.47 T07.78 0.12 0.28 Sm(147) 0.43 0.38 Ex155 0.10 0.30 Gd151 0.38 0.30 T0(59) 0.66 0.66 Dy163 0.62 0.39	Ta181						0.00	3.08	
Cc143 6.21 9.37 Pb038 6.33 9.16 Pb144 6.16 9.05 Nd146 7.79 9.48 \$x88 17.19 15.60 Zx86 1.31 9.48 \$x89 1.10 3.47 T07.76 6.12 3.28 \$x8147 6.44 9.38 \$x8155 6.10 3.10 Gd1977 6.33 9.31 T059 6.66 102 Dy163 5.62 9.38	14139						0.15	3.08	
Pr338 0.13 0.16 Pr141 0.16 0.05 Nd446 0.75 0.48 Sr58 17.19 15.60 Zr56 1.10 0.47 IRT.76 6.12 0.28 Sm147 6.12 0.28 Ka193 0.10 0.16 Gd147 6.33 0.10 Dy163 0.66 0.66	Ce147						0.20	137	
Pr141 0.16 0.05 Nd146 0.75 0.48 Sr88 17.19 15.60 Zr50 1.10 0.47 HP178 0.12 0.28 Sect 47 0.44 0.38 Em135 0.10 0.10 Gd157 0.03 0.30 Tb159 0.69 0.66 Dy163 0.42 0.39	Pb318						0.13	9.16	
Nol446 0.79 0.48 Sr88 17.19 15.60 Zr80 1.10 0.47 100.78 0.12 0.28 Sect 47 0.44 0.28 Ext155 0.10 0.49 Gd157 0.33 0.30 Tb(59 0.66 0.66 Dy163 0.42 0.38	P(14)						0.16	3.05	
Sr88 17,19 15,60 Zr96 1,10 3,47 107.75 6,12 2,28 Smit 47 6,44 5,38 Em185 6,10 3,10 Gd187 6,33 3,30 Tb(53 6,66 0,66 Dy163 6,62 9,38	202146						0.75	3.45	
2750 1.30 9.47 107.76 6.12 0.28 Sect 47 6.44 0.38 Ext153 6.10 0.30 Gd147 6.33 0.30 Tb(53) 6.66 0.66 Dy163 6.62 0.39	SrS8						17.19	15.60	
107.78 0.12 0.28 Soul 47 0.44 0.38 En/135 0.10 0.10 Gd4/57 0.33 0.31 Tb/55 0.06 0.06 Dy163 0.42 0.39	2150						1.10	3.47	
Sector E 44 2 78 End55 E,10 0.16 Gd457 E,33 8.30 Tb/59 E 66 2.06 Dy163 E,42 0.39	101.78						0.12	1.25	
En125 0.10 0.19 Gd157 0.13 0.13 Tb159 0.66 0.66 Dy163 0.42 0.39	Sint 47						1.44	3.78	
Collect 1.00 1.00 Tb)/53 1.06 1.06 Dy163 1.62 1.39	20125						0.10	0.29	
Dy163 0.62 1.39	Thich						1.00	2.41	
19103 6.02 9.35	10174						2.43	3.75	
E10 576	Electrical States						6.10	3.55	
V30 1.00 1.00	780						7.44	1.58	
1044 L27	15166						E 31	3.73	
70172 0.27 0.29	3/5172						6.27	9.29	
14075 0.04 1.05	1.0175						0.04	3.05	

Refer				61.1.114				
Genia No.	16-3	13-3	29-5	1-2	7.12	10-2	16-2	22.4
Main Oxide								
INPRO-								
810;	24.05	\$1.42	32.56	31.51	51 25	51.18	\$1.05	51.51
TO	1 3 3	0.12	0.39	0.46	0.25	0.45	2.45	0.56
ABC	1.03	5.73	0.78	4.52	1.24	30	3.10	1.15
14.0		12.25	015	014	0.14	0.76	1.75	4.78
Trans.		0.00	0.15	012	1.30	1.00	2.10	1.15
20070	15.45	14.10	17.44	24.24	1.4.72	11.07	14.70	12.44
1000	10,00	20.30	27.46	17.65	13.33	17.46	1100	10.00
0.0		21.36	20.00	0.77	14.00	17.00	21,06	18.00
0.00	1.75	10000	4.83	1.00		1.1.1.1.1.1.1		1.000
Terel	2 23	0.71	10017	100.14	100.14	14.00	124	00.00
10.01	200.02	50.04	PO0.17	100.00	(100	63.55	20.00	61.00
N.C.	34.52	26.64	20.15	88.31	6. 22	85.71	13.86	01.55
1110	3.51	0.40	0.44	0.47	0.10	0.32	2.42	4.35
			0.44	0	11.50		,	
Pat 1161 C	3.52	2.83	-0.22	2.00				
Lose Dariants								
(ppr.)				1.00.00				
5.45	47.54			153.54				221 24
1.1.4	12.39			1361.0				1982.11
1.51	202.5.4			286.767				256.1.9
6192	100111			1591.0				24.00
10005	225.01			112,36				1124
Dest	315							1.122
Post 27				10010				10.74
100107	0.02			0.10				43.16
113.32	1.11			0.01				0.05
NEER	3.31			0.02				0.15
71121	3.34							0.63
14139	3.37			0.14				3.45
Cel47	1.25			0.64				17.88
P\$338	313			0.02				0.36
15/141	3.15			0.14				2.65
314144	3.45			1.03				16.92
5:55	12.30			26.65				61.09
2:50	335			3.43				37.11
105.78	312			0.19				1.66
Sini 47	3.97			0.55				7.81
Eu125	1 15			0.19				1.61
Gd153	3.25			0.79				10.24
Thise	3.34			0.15				1.75
Dy163	313			1.12				12.78
Elo165	3.35			0.29				2.12
189	1.35			4.73				65.45
Dr166	212			0.53				7.23
70172	315			0.51				2.04
1.0175	3.32			0.05				LIC

Balos								61-2-38-41
Genia No.	58-1	20-1	2452	77-1	29-2	80-4	482	5-1
Maja: Oside								
(with)								
810;	51,81	21.00	59.18	21.81	31.50	50.64	20069	51.47
TIO:	0.59	0.89	0.49	0.61	0.13	6.53	1.66	9.15
ABCT	1.19	4.90	4.72	2.4.7	0.96	237	3.60	1.16
Ne ₂ O	1.11	0.24	0.25	0.79	0.27	1.25	3.29	0.21
Max	1.42	0.21	0.02	0.22	1.75	1.87	3.44	9.65
MgO	12,45	15.17	14.24	16.25	12.34	13.19	15.15	13.71
CaO	18.54	21.99	21.85	89.72	3.20	18.85	\$0.53	19.02
, Cr ₂ O;								
Peo-	12.26	6.81	7.51	8.42	14 55	12.85	3.10	13.85
Tatal	162.49	100.07	99.37	99.52	57 52	29.57	99.8T	104.21
Man	61.38	79.89	78.06	77.52	59.38	\$1.65	74.81	63.87
En	3.39	0.44	0.42	0.46	0.26	223	3.43	0.35
Wo	3.34	0.45	0.46	0.49	0.19	04.0	3.43	9.35
Pat 1101 C		5.05	3.22	2.64				
Loss Danais								
(ppm)								
5:45								
T.19								
W31								
CI-12								
Niet								
CK 53								
RB85								
Dal37								
Th:32								
11295								
24855								
14 31								
Caldy								
19.132								
14.14								
314144								
5:55								
2,50								
HE 78								
Seel 47								
Eu125								
Gd153								
Thise								
Dy163								
Elol65								
189								
Er166								
224122								
101114								

Fature								
Genia No.	13-4	12-2	34-4	25-3	12.1	10-1	36.2	24.1
Main Oakk	12-1			44-2	0.000	100-1	240-2	
ENTRY:								
\$40.	51.65	\$2.30	31.15	91.00	51.82	51.51	40.71	51.67
TO	1.14	0.56	0.32	0.31	0.10	0.34	3.46	644
AbC	1.68	0.94	0.94	2.91	1.01	3.77	3.99	1.11
hite C		11.11	0.00	0.75	6.13			
19870	3.32	0.54	0.31	0.55	0.22	1.20	1.00	0.30
NOV.	9.84	0.00	13.75	0.55	11.54	12.22	1.26	1.10
Cool	10.00	0.44	12.00	10.00	19.52	20.00	10.00	10.50
0.0	12.40		13.16	34.62	1.0.61	D 13	19.19	10.30
Bath	11.00	201205	218.002	34.45	11.17	7.67	11.61	10.72
Tani	101.75	100.50	100.35	95.43	105.20	29.17	99.95	22.00
50-9	16.36	63.39	65.14	72.56	61.92	89.10	66-59	71.92
En	3.32	0.52	0.43	0.4.5	0.28	0.48	1.19	0.43
Wo	3.43	0.38	0.39	0.39	0.40	6.0	3 34	6.40
Post 1101 72						1.06		
Ince Florante								
(DET.)								
5:45								
T149								
3331								
Cr13								
Nich								
Ci4.53								
RB85								
Da13?								
ThG32								
1/238								
NE55								
TA 31								
1.0.49								
0.2343								
PECAS								
204144								
5-68								
2,50								
105.78								
Sinel 47								
Eu125								
Gd153								
Thise								
Dy163								
Elof65								
7.85								
Er166								
70172								
1.0175								

Balan								
Ginia No.	55-1	25-2	28-3	33-2	R1-2	82-1	38-2	Rd1
Majar Okida								
100 miles	10.04	11.04	31.72	41.113	31.65	10.70	40.80	41.20
70	1.62	0.54	0.22	0.00	010	6.63	2,000	22.0
10.2	3.75	214	1.02	0.05	1.00	2.10	2.17	1.00
NBA 1	1.4.5	219	1.92	2.17	1140	3.19	2.4.1	1.44
1987.0	1.25	0.29	0.32	0.27	019	1.24	3.28	0.32
NBV/	3.23	0.26	0.59	0.25	029	0.20	9.28	0.10
ango .	10.00	12.04	13.00	12.81	10.45	10.00	12.20	10.01
0.0	10.75	19.65	10.10	0.72	0.6	19.65	13.30	10.01
Bach	16.22	10.14	218.44	12.22	12.78	11.14	10.00	14.52
Taral	99.43	100.03	100.05	22.24	105.41	29.30	99.92	20.00
MAR	71.99	79.16	65.18	71.32	65.66	\$8.50	TRAL	62.45
En	3.44	0.44	0.40	0.44	0.40	0.40	3.44	0.28
Wo	4 39	0.39	0.39	0.99	0.40	6.43	3.40	6.18
Pat 1101 C								
True Dennis								
(00.0)								
SolS								
T189								
W31								
CH3								
Niet								
CN 23								
R#85								
Dall?								
1632								
11295								
741.04								
Tal 39								
Cel41								
Ph318								
11141								
3id14c								
5155								
2150								
102.78								
Site1.47								
Endys								
Gd133								
Thise								
Dylea								
Elo168								
189								
121096								
1.0175								
and the second s								

Balog								
Genia No.	25-2	87-1	48-3	89-1	40-1	43-12	48-2	45-1
Major Oxide								
(with)								
810;	\$1.21	21.54	21.25	33.65	31.58	53.56	51.93	50.90
TIO;	128	0.99	9.66	0.58	0.57	6.46	131	0.15
ABCT	1.17	1.26	1.29	3.34	1.87	2.42	2.99	0.97
Ne/O	3.22	0.58	0.22	0.25	0.30	0.50	1.79	0.28
3400	352	0.56	0.32	0.17	0.59	6.31	1.59	0.64
Mago	13.80	54.67	14.73	1510	14.78	13.43	14,00	13.07
030	15.02	29.24	38:29	21.43	23.19	19.88	19.11	18.45
0:0	3 3 4	0.05						9.62
P.O	12.41	13.70	15.32	8.79	10.62	5.55	13.38	16.00
Total	55.56	\$9.67	100.47	100.25	10030	22.11	109.60	100.67
Man	64.72	78.97	66.33	75.38	36.27	73.43	65.10	59.29
En	3.59	0.42	0.42	0.43	0.41	0.44	3.40	0.37
Wo	0.94	0.41	0.37	0.4.5	0.41	0.40	3.39	4.35
Pat 1101 C								
They Denote								
(pex)								
Sol5								
1.19								
VSF								
CLUB 2								
10000								
Dest								
Bull?								
Th232								
1/298								
NB53								
Ta 81								
Tat 39								
Ce147								
Pb3.18								
P(14)								
36d14c								
5785								
2150								
THE 28								
South a								
6415								
Thise								
Dv163								
Bales								
789								
15:166								
70172								
1.0175								

Ballos			\$5-1-846-145					
Geniri No	46-2	47-2	11	2-1	1-1	6-3	2-3	8-1
Major Oxide								
Defea)								
50.	51.34	23.65	39.68	30.45	50.81	32.00	20.96	51.67
TIO:	1 3 3	9.69	0.54	0.47	040	6.47	156	0.19
al-O	141	1.75	8.95	5.85	1.08	2.07	1.32	1.18
NeO	1.29	0.57	0.72	0.71	0.19	0.27	1.12	0.79
Barrie .	3.58	0.56	0.05	0.25	0.15		1.12	1.40
Maci	17.30	14.95	14.75	15.22	15.29	15.00	13.389	15.70
00	19.17	19.16	22.14	32.43	21.29	15.80	10.31	12 39
0:01	3 3 2	0.02	00000		244000	0.19966-0		10.00
EcO.	13.96	11.68	612	6.04	6.44	211.M	1213	12.80
Teal	99:64	52.04	22.47	100.03	22.5	99.71	99.83	22.20
Met	63.04	68.95	82.13	.92.79	81.32	20.45	67.12	65.61
En	3.57	0.47	0.45	0.44	0.45	0.47	3.40	0.40
Wo	3.13	0.39	0.45	0.45	0.44	6.33	3.40	0.10
Post 1101 '2'		1000	1.00	0.02	4.14			
Day Frank			1.00		0.00			
inear.								
5045		180.20						
Ti.45		87.70						
37.51		313,295						
Cr51		43.78						
Ni60		63.30						
CVIDS		0.07						
RESS		0.14						
Da177		0.07						
ThC32		0.02						
17538		0.03						
NB65		0.10						
TalSI		9.94						
La139		1.92						
Ce147		8.10						
PhOES		0.13						
Ph141		1.99						
34d14e		12.59						
SiSS		17.69						
2190		24.02						
1115 2.2		1.11						
Sint 47		414						
Eulps		1.54						
Gd157		8.49						
30059		1.48						
Dylei		31.10						
Fialos		2.51						
1.8.		25.67						
1011.55		1.12						
1.0114		0.03						
1.411.12		0.00						

Total No. Mejor Code Notice s-c Sin-3 Si	Balos								
Majer Cekk bills 2608 2137 26.39 51.39 51.35 91.71 21.72 40.32 T05 4.65 0.66 0.62 0.98 0.62 0.03 1.36 40.31 Md5 1.72 1.42 5.34 0.13 1.06 1.35 1.34 5.39 Ma0 1.71 1.42 5.43 0.12 1.62 0.63 1.34 6.43 Ma0 1.41 1.22 0.16 0.22 1.44 1.28 4.43 Ma0 1.41 1.22 0.16 0.27 1.43 1.06 1.28 4.43 Co 1908 3.40 12.29 11.81 12.44 10.08 7.66 Ro 11.27 12.34 6.25 6.03 111.15 12.44 10.08 7.66 Trai 95.25 100.20 100.17 92.30 0.41 0.41 0.42 10.67 10.42 10.67 10.42 1	Genia No.	9-5	10-1	18-2	18-2	29-2	89-2	ay1	881
Invite Si 0; 26.88 29.97 98.39 91.33 91.35 91.71 21.72 40.35 Tric, 4.85 9.66 0.42 0.38 0.28 0.03 1.36 0.43 Ad65 1.72 1.40 5.35 1.11 1.65 1.34 5.13 Na0 1.21 1.22 0.14 0.12 6.23 1.36 0.38 Na0 1.21 1.22 0.14 0.12 1.25 0.38 1.24 1.25 0.38 1.36 1.26 1.38 1.37 1.26 1.38 1.37 1.26 1.38 1.37 1.26 1.38 1.37 1.36 1.27 1.38 1.37 1.38 1.37 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.44 1.43 1.44 1.43 1.44 1.43 1.44 1.43 1.44 1.43 1.44 1.43 1	Majar Oxide								
SiG: 56.08 23.87 36.39 91.39 91.45 91.71 21.72 40.32 TG: 145 0.46 0.62 0.38 0.52 0.53 156 0.44 513 134 513 134 513 NgO 1.32 0.29 0.14 0.12 0.22 1.42 1.45 1.24 1.45 1.26 0.33 0.43 0.12 1.23 0.20 0.44 0.14 0.22 0.44 0.14 0.23 0.21 1.24 1.26 1.20 0.43 0.23 0.23 0.29 0.23 0.29 0.20 0.20 0.23 0.29 0.20 0.20 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 </td <td>(with)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(with)								
TO2 445 0.64 0.83 0.72 0.03 156 4.63 M60 1.12 1.02 5.36 4.13 1.06 1.35 1.34 0.13 M60 1.31 1.22 0.16 0.22 1.42 1.06 1.28 0.13 M60 1.31 1.22 0.16 0.22 1.42 1.06 1.28 0.13 M60 1.90 1.402 1.23 1.43 1.24 1.43 1.43 0.43 0.41 1.43 1.28 0.19 1.27 1.23 4.53 1.14 1.43 1.29 1.91 1.27 1.23 1.14 1.43 1.43 0.43 1.43 0.43 0.43 0.43 0.43 0.44 0.43 0.43 0.44 0.43 0.44 0.44 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44	810;	50.85	23.57	30.35	38.79	51.85	51.71	\$1.71	49.32
A65 1.72 1.42 5.36 1.13 1.05 1.53 1.34 5.19 Na00 1.71 1.22 0.14 0.12 0.22 0.21 3.36 0.38 0.48 Na00 1.74 1.22 0.16 0.12 0.44 1.44 1.43 1.508 1.4.71 050 1.968 3.403 32.39 1.18 1.9.73 1.8.91 1.9.13 1.8.91 1.9.13 1.8.91 1.9.13	TIO:	1.65	0.66	0.62	0.58	0.18	0.13	156	9.63
Nep0 132 0.29 0.14 0.12 0.22 1.44 1.06 1.38 0.48 Map0 14.02 14.23 14.04 12.22 0.16 0.22 14.44 14.45 11.28 0.44 OSO 19.06 13.03 12.29 11.81 19.78 12.89 19.41 21.79 COSO 19.06 12.27 12.34 6.23 6.03 11.15 12.44 10.03 7.66 KO 11.27 12.34 6.23 6.03 11.15 12.44 10.03 7.67 KO 11.27 12.34 6.23 6.03 11.15 12.44 10.03 7.61 Map 43.15 0.14 0.45 0.43 0.41 0.42 10.43 14.42 Wo 14.10 0.45 0.43 0.41 0.42 14.44 0.42 Wo 14.10 0.43 0.45 0.41 0.42 14.44 0.42 <td< td=""><td>ABC:</td><td>1.72</td><td>1.62</td><td>5.90</td><td>4.15</td><td>1.05</td><td>1.55</td><td>1.34</td><td>5.13</td></td<>	ABC:	1.72	1.62	5.90	4.15	1.05	1.55	1.34	5.13
Mag0 1.91 1.22 0.16 0.22 1.42 1.06 1.38 0.18 Mg0 14.02 24.28 34.38 12.24 12-4 12-45 12-30 12.47 Cy00 1127 12.34 6.20 6.03 11115 12.44 10.08 12.76 K0 1127 12.34 6.20 6.03 11115 12.44 10.03 7.66 Tatal 59.25 100.20 100.17 84.35 106.71 166.02 120.53 190.51 Me9 68.15 67.14 84.17 82.30 69.77 66.01 70.38 173.9 Ba 14.0 0.41 0.45 0.43 0.41 0.42 14.0 0.42 Wo 14 0.42 2.45 2.45 2.33 14.0 0.43 14.0 0.44 0.45 14.0 0.44 14.0 0.44 14.0 0.43 14.0 0.43 14.0 0.42 14.0	Ne ₂ O	1.12	0.29	0.14	0.14	6.22	0.20	330	9.15
Mgo 14.02 54.28 54.96 12.74 14.44 14.35 15.08 14.71 0.50 1916 13.65 22.19 11.81 19.78 13.69 19.41 22.76 0.50 11.47 12.244 6.23 6.35 11.15 12.54 10.035 96.91 1.61 12.45 1.91 19.25 19.14 81.17 82.30 69.71 16.62 19.33 19.39 1.61 1.41 0.45 0.45 0.45 0.41 6.40 1.41 0.42 19.05 19.40 0.45 0.44 0.44 0.45 0.41 6.40 1.41 0.42 19.05 1.40 0.42 19.05 1.40 0.42 1.41 0.42 1.41 0.42 1.41 0.42 1.41 0.42 1.41 0.42 1.41 0.42 1.41 0.42 1.41 0.42 1.41 0.42 1.41 1.41 0.42 1.41 1.41 0.42 <t< td=""><td>3800</td><td>1.21</td><td>1.22</td><td>0.16</td><td>0.22</td><td>1.45</td><td>1.05</td><td>1.28</td><td>0.15</td></t<>	3800	1.21	1.22	0.16	0.22	1.45	1.05	1.28	0.15
CSO 1968 3403 32.29 11.81 1978 13.69 1941 21.76 NO 11.27 12.34 6.23 6.03 11.15 12.54 100.83 7.66 Taal 99.52 190.20 100.07 98.43 106.71 106.62 50.63 99.77 Mc 84.35 67.34 84.17 106.72 50.63 99.77 Mc 84.35 67.34 84.17 106.72 50.63 99.77 Ma 84.15 0.43 0.44 0.45 0.43 64.1 64.2 Wo 3.10 0.39 0.445 0.45 64.1 6.43 10.42 3.44 Wo 3.10 0.39 0.46 0.45 64.1 6.45 10.45 2.17 Trace Unrantic 19975 3.65 2.16 2.17 2.13 10.41 0.42 2.17 2.13 2.13 2.13 10.42 2.41 2.11	MgO	14.42	14.28	14.5%	12.74	14.44	14:05	15.08	14.71
, Cr30; 1127 1234 620 6.03 1113 1244 1003 7.66 Taal 99.53 106.20 100.07 19.13 100.71 100.72 59.13 100.71 100.72 59.13 100.71 100.72 59.11 71.38 71.39 Tai 1.11 0.41 0.45 0.43 0.41 0.41 0.42 10.03 1.04 0.43 Tai 1.11 0.13 0.43 0.41 0.41 0.43 0.41 0.43 0.43 0.41 0.43 0.43 0.41 0.43 0.43 0.41 0.43 0.43 0.41 0.43 0.43 0.41 0.43 0.43 0.43 0.43 0.41 0.43 </td <td>Ca0</td> <td>19.08</td> <td>19.08</td> <td>32.19</td> <td>31.51</td> <td>19.78</td> <td>18.90</td> <td>19.41</td> <td>23.70</td>	Ca0	19.08	19.08	32.19	31.51	19.78	18.90	19.41	23.70
Prod 1127 1234 620 6.03 1115 1241 10635 768 Tarai 9952 100.20 100.17 89.35 106.71 106.62 100.25 99.75 Ibi 3.41 0.41 0.45 0.43 0.41 0.41 0.42 10.03 10.04 1.41 0.42 10.04 1.41 0.42 10.0 0.46 0.45 0.41 0.41 0.42 10.0 0.46 0.45 0.41 0.42 1.60 0.45 0.42 10.0 0.46 0.45 0.41 0.42 1.60 0.45 0.45 0.41 0.45 0.42 1.60 0.45 0.42 1.60 0.45	, Ch(D)								
Tani 99:43 100:20 100:17 19:43 100:71 10:672 10:633 19:54 Mg 68.15 67.34 89.17 82.30 69.77 66.11 71.28 77.39 Mu 3.44 0.45 0.45 0.45 0.41 0.41 0.42 Wo 3.40 0.32 0.46 0.45 0.41 0.41 0.44 0.42 Wo 3.40 0.32 0.45 0.45 0.41 0.41 0.44 0.45 Pst 1310 C 4.32 2.47 2.37 2.33 2.33 2.33 2.33 2.33 The Elements 100.17 10.32 2.47 2.33	P.O.	11.57	12.34	6.20	6.03	1145	12.54	10.83	7.65
Mg8 68,15 67.14 81,17 82.33 69.77 66.11 71,128 77.34 Ba 3.44 0.43 0.45 0.43 0.41 0.42 0.42 Wo 3.14 0.59 0.46 0.45 6.11 6.36 3.40 0.42 Wo 3.14 0.59 0.46 0.45 6.01 6.36 3.40 0.42 Tose Barnate (977) 5.34 2.37 2.37 2.33 (977) 5.34 7.34 2.37 2.37 2.33 (977) 5.34 7.34 2.37 2.37 2.33 (733 5.36 7.34 2.37 2.37 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.34 2.33 2.34 2.33 2.34 2.34 2.33 2.34 2.34 <td>Total</td> <td>99.42</td> <td>100.20</td> <td>100.07</td> <td>59.45</td> <td>106.70</td> <td>100.62</td> <td>100.53</td> <td>99.54</td>	Total	99.42	100.20	100.07	59.45	106.70	100.62	100.53	99.54
In 2.41 0.41 0.45 0.45 0.41 0.41 0.42 0.43 0.43 0.44 0.42 0.43 0.43 0.41 0.41 0.43 0.43 0.44 0.43 0.43 0.43 0.41 0.41 0.43 0.43 0.43 0.41 0.41 0.41 0.43 0.43 0.43 0.41 0.41 0.43 0	3429	68.35	67.34	\$1.17	82.33	69.77	66.11	71.28	77.53
Wo 140 0.39 0.46 0.45 0.41 0.39 140 0.45 Pair 1305 °C 4.32 2.47 2.73 2.73 2.73 Three Barnanis (ppr) 5.45 2.73 2.73 2.73 Scal5 5.45 7.14 7.73 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74	En	3.41	.0.41	0.45	0.43	0.41	0.41	3.43	4.42
Pad 1103 °C 4.32 2.47 2.73 Taxe Elemants (ppr) Saf4 T16 V31 Cr53 N68 CG435 R885 Bal37 Th032 U238 N685 Ta184 La139 Col47 P6038 P144 Nd44e 568 2.496 HF 78 Seal 4 Saf4 Dd44e 568 2.496 HF 78 Seal 4 Saf4 Dd44e 568 2.496 HF 78 Seal 4 Saf4 Dd44e 568 2.496 HF 78 Seal 4 Saf4 Dd44e 568 2.496 HF 78 Seal 4 Dd44e 568 2.496 HF 78 Seal 4 Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd44e Dd45e Dd45e Dd45e Dd47e D	Wo	1.01	0.59	0.46	0.45	041	0.10	3.40	9.45
Trace IBerunis (pr 7: Sal5 Til4 T:31 Cr03 NRC Cr033 R885 Bul37 Th032 Tl238 N853 Til 81 Tal 39 Cr147 Ph038 P:142 Nd14e Sa88 Za85 Za85 Za85 Za85 IE.78 Su81 37 Eul355 Gd137 Th159 Dy163 Ela166 Ya89 El166	Pat 1101 C			4.32	2.97				2.73
(ppr) Sci4 Ti4 Y51 Cr33 NR Cci33 R085 Bui37 Ti332 Ti333 N88 Cci33 N88 Dui37 Ti332 Ti333 Ti34 Cci43 Vi38 Vi39 Vi31 Sum	Loss Denaits								
Sal3 Til4 Til4 Til5 Cr53 Ni64 Cr635 R885 Bal37 Th332 Ti238 Ni65 Til238 Til2	(ppm)								
Tu4 V31 Cr53 Nikt Cr633 Ri85 Bal37 Th52 Bal37 Th52 Bal37 Th538 Nik53 Tu181 Tu184 Ri638 Pr141 Nid146 Sr85 Zr86 HF 78 Sm137 En155 Gd157 Th154 Dy163 Ela165 Nik5 Ela165 Nik5 Ela165 Nik5	Sols								
Y31 CH32 NR4 CH33 R885 Bal377 Th332 U2383 N883 T1132 U2383 N883 T111 Col437 P6338 P144 Nd44e Sr88 Zr86 HE 78 Sr84 Th454 Dy163 Bal665 Ya89 E1666 Yu172 Lu175	1.19								
CH33 R185 Da137 TL332 TL333 N183 TL332 TL333 N183 TL334 TL335 TL335 TL336 TL337 TL338 N183 TL337 TL338 N183 Col47 Ph338 Ph41 Mil4e Sr68 Zr56 TE 78 Smil 17 Ex135 Gd117 TL353 Gd117 TL354 Dy163 Ela165 Ya82 L165 Yu172 Lu175	V31								
NR4 Cid 35 R885 Dal 37 Th 332 Ti 238 N858 Ta 181 Lat 39 Ciel 47 Fr 338 P 141 Nal 46 Sr 88 Zi 86 THE 78 Sec 147 E hal 35 Ciel 47 Th 154 Dig 147 E hal 35 Ciel 47 Fr 38 Sec 147 Fin 38 Fin	CHER								
Riss Bul 27 Th 232 Bul 27 Th 232 Bul 27 Th 232 Th 233 Niss Tu 181 Tu 181 Tu 180 Cel 47 F6338 Pi 141 Nid 146 Sr85 Zr86 Hi 141 Nid 146 Sr85 Zr86 Hi 141 Nid 146 Sr85 Zr86 Hi 141 Nid 146 Sr85 Zr86 Hi 141 Dig 147 Emi 25 Gid 17 Th 159 Dig 143 Emi 45 Emi 45 Sin 147 Emi 25 Gid 17 Th 159 Dig 143 Emi 45 Emi 45 Sin 147 Emi 25 Gid 17 Th 159 Dig 145 Sin 147 Emi 25 Gid 17 Th 159 Dig 145 Sin 147 Emi 25 Gid 17 Th 159 Emi 45 Sin 147 Th 159 Sin 147 Th 159 Th 159 Sin 147 Th 159 Sin 147 Th 159 Sin 147 Th 159 Sin 147 Th 159 Sin 147 Th 159 Th 159 Sin 147 Th 159 Th 159 Sin 147 Th 159 Sin 147 Th 159 Th 159 Sin 147 Th 159 Sin 147 Th 159 Sin 147 Th 159 Th 159 Sin 147 Th 159 Sin 147 Sin	2004								
Bal37 Th332 U238 N858 Tu181 Lu139 Col47 F6338 P142 Nd14e Sa88 Za86 HFF78 Sa0147 Th159 Dy163 Ela166 Y389 Ela166 Y389	Dest								
Th 32 1238 N883 N181 La 39 Cel 47 P6 328 P141 N6146 Se88 Ze86 HE 78 Sen1 47 Eba135 G4117 Tb 159 Dy 163 Eba166 N89 Eb166 Yun72 La175	Bal173								
11233 Ni853 Tul 84 Uul 89 Oct47 Fr838 Fr141 Ni2146 Sr85 Tiff 78 Smi 17 Em125 Gd137 Tb154 Ep165 Fi84 Ep165 Y89 Ep165 Y89	Th:232								
N833 Tul 84 Ual 89 Cel47 Ph528 Ph141 Na146 Sa85 Za86 TR: 78 Saal 37 Em125 Gd157 Tul 59 Dy163 Elal66 N88 Ual 66 N88	112.98								
Tu [8] Tu [30 Col 47 Ph 538 Ph 141 Mull 46 Sr85 Zr86 Tr 78 Smil 37 Emi25 Gd137 Th 159 Dy 163 Emi65 Y89 Emi65 Y89	N853								
La 149 Cel 47 Ph538 Ph141 Md146 Sa65 Za56 HE 78 Sani 47 Ex135 Gd137 Tb159 Dy163 Ela166 Ha166 Ya172 La175	Ta 31								
Ce147 F6338 F0141 Na146 Sr85 Zr86 TH: 78 Seci 17 En125 Gd137 Tb154 Ep165 F38P Ep165 Y89 Ep165 Y89 Ep165 Y89	Tat 99								
Ph388 Ph344 Str85 Zr86 TH: 78 Seei 17 End25 Gd157 Th454 Dy162 Elaf65 Y89 Elaf65 Y89	Ce147								
P. 141 Nd146 Sr85 Zr86 Tiff. 78 Smit 37 Em125 Gd137 Th159 Dy163 Em165 Y89 Em165 Y89	Pb3.18								
Nd146 Sr85 Zr86 HE 78 Smi 47 Eu135 Gd137 Th159 Dy163 Eu166 Ta166 Y00173 Lu175	Pr141								
5:65 2:66 107:78 5mil 47 End55 Gd147 Tb/54 Exp163 Exp163 Ha/66 Y389 Ec166 Y3173 Lat75	34d14c								
2755 HE 78 Smi 17 En125 Gd157 Tb154 Dy160 Ela165 Y89 Er166 Y9173 La175	5755								
10: 78 See 17 En125 Gd157 Tb159 By163 Ela165 Y89 Br166 Y0173 La175	2150								
500 77 En125 Gd137 Th159 Dy163 En166 Y89 D1566 Y0173 Ln175	10F. 78								
Em123 Gd137 Th/89 Dy163 Eb165 1889 D:166 Ya173 Lu175	Sent dy								
Tb159 Dy163 Bo165 138 Br166 Yu173 Lu175	24143								
Dy163 Ela165 1389 E-166 Ya173 Lu175	Thiss								
Epi65 389 15166 Yul73 Lul75	Da167								
1889 18166 70173 Lui 75	Bales								
15166 Yul 72 Lul 75	189								
376172 Lui75	12:166								
Lui 75	375172								
	1.0175								

Ballon Gente Me		25.2	25.4	33.4	22.3	10.3	44.4	
Majar Osida	84-1	69-7	30-1	47-1	100-1	01-7	11-1	1871
414	47.17	11.15	100.05	100.00	201002	1000	47.74	1000
0103	24.47	23.30	7920	29.63	51.52	50.55	24.04	20054
no;	9.10	9.64	0.45	0.54	648	629	154	4.56
APC	3.54	5.71	8.94	1.23	1.55	1.79	1.34	1.6
Ne/O	0.13	0.16	0.25	0.30	020	0.24	1.33	0.28
Mayo	945	0.06	0.02	1.84	1.08	1,70	1.30	1.26
MgO	16.42	15.82	06.80	15.52	14-11	14.55	14,81	14,10
040	5,30	22.34	28.81	15.31	19.39	18.51	19:50	18.61
, Cr ₂ O;								
P.O.	619	5.84	7.51	31.25	12.92	12.65	11.53	12.61
Total	\$5.32	59.66	95.55	99.51	106.42	100.34	101.75	99.62
Man	82.55	\$2.86	79.68	71.67	66.77	66.32	69.68	66.59
En	0.47	0.45	0.45	0.43	0.40	0.41	3.42	0.41
Wo	0.13	9.46	0.43	0.40	0.19	0.15	3.40	9.35
Pat 1101 C	1.76	0.51	0.88					
Trace Demonts								
(ppm)								
Sols								
T.19								
W31								
Cr53								
Niet								
Ci4.53								
R#85								
Da17?								
Th232								
1/238								
NB53								
Ta 31								
Tat 39								
Ce147								
Pb3.18								
Pr141								
34d14c								
5155								
2150								
105.78								
Sint 47								
Endys								
Gd133								
Thise								
Dy163								
E0168								
789								
15:166								
70172								
10175								

Entor	43-3-41-50							
Genia No.	2-2	5-1	8-2	12-1	15-2	21-1	33-2	26-1
Major Oxide								
EWP62								
810;	35.35	23.09	50.65	39.27	51.41	51.30	21.03	51.74
TIC	199	0.58	0.52	0.00	0.17	0.17	3.51	0.44
AbCa	1.14	1.17	1.21	1.12	3.89	1.77	1.06	1.61
Next	1.61	0.29	0.78	0.78	674	617	1.11	4.44
3.840	1.58	\$ 10	1.28	0.82	0.10	11.24	3.36	1.53
3.840	1716	15.68	1115	15.84	16.21	15.90	12.90	14.87
(20)	15 15	19.18	18.45	19.36	19.11	21.92	18.70	18.45
0.0	48.500	1000	1000	10000		01000	100.00	1000
Bith	12.94	12.75	13.52	0.69	6.63	6.49	1515	21.16
Total	120.12	59.75	99.90	22.32	100.55	100.28	22.78	100.43
Math	62.58	65.63	62.55	7443	74.36	81.27	63.61	70.30
In	3 55	0.39	0.55	0.45	0.42	0.45	138	0.43
Wo	3 13	0.40	0.39	0.40	0.19	0.45	3.40	4.16
Pat 1101 C						1.98		
Ince Herente								
(per.)								
Sols								
T.19								
W31								
CH3								
Nick								
Ci4.53								
R#85								
Da177								
Th:232								
1/238								
N855								
12 31								
10.147								
10110								
10.141								
104144								
5:55								
2:50								
105.78								
Sinil 47								
Eu125								
Gd153								
Thise								
Dy163								
Elo165								
785								
12:166								
20172								
10122								

Bullon								
Grain No.	22-3	29-1	80-2	31-1	422	88-1	36-1	4
Mojor Oxide								
(WPN)								
8101	20.41	59.87	51,46	51.85	93.58	49.15	51.77	3
TiO;	0.54	0.54	0.52	0.46	0.47	0.48	3.48	
ALC:	< 39	0.92	8.15	2.92	3.35	E C E	1.99	
Ne/O	0.52	0.27	0.21	0.24	0.13	8.37	3.21	- 1
Mic	0.21	1.36	0.20	0.51	0.15	81.1	8.19	
Mar	12.75	14.79	16.32	16.25	15.90	14.66	16.31	1
Circl	54.43	21.39	21.14	15.32	8 92	22.37	19.64	- 2
Cr-D-				140968	1.444.004.00		1.467.00	
Beth	7.82	20.000	6.71	8.28	8.76	1.44	8.74	
Tanl	95 G	53.70	99.71	00.53	53.45	22.12	10.02	
50.0	78.15	73 47	81 37	18.12	76.25	89.01	76.88	
En	0.45	0.42	0.45	0.47	0.45	0.41	3.46	1
10%	0.42	0.43	0.43	040	0.41	6.47	3.40	- 1
Place 1 1 1 1 1 1 1 1 1		1000	2.00					- 1
Failere	10.00		7.04	4.55	1.50	1.11		- 1
Three Derivates								
(ppm)								
2005								
1014								
820								
CIN								
NEC								
CRAS								
KESS								
194137								
100.02								
0235								
20123								
12120								
1.41.57								
100147								
PECES								
11144								
0.0145								
2.44								
Zr50								
2r50 101.78								
Zr50 HPL78 Smil 47								
Zr5t HPL78 Smt 47 End25								
Zr50 HPL78 Sout 47 Exc155 Gd157 7b.155								
2,456 1191.78 Sout 47 Exc125 Gd157 Tb159								
Zr56 HPL78 Sout 47 End25 Gd157 Tb159 Dy163 Hp163								
Ze50 101.74 Sect 47 En135 Gd157 Tb159 Dy163 Ha165								
2,650 101.74 Sect 47 En125 Gd157 Tb159 Dy163 Ha165 Y89 Y89								
2,550 1017.24 Sout 47 Earl25 Gd157 Tb159 Dy163 Ba165 Y89 Ex166 Y89								

Ballos	43.3.35.38							
Grain No. Maior Osida	53-2	11-2	12-4	18-2	14-5	15-2	16-2	13-4
EN PSA								
840.	82.83	53.55	51.75	52.27	31.29	51.44	51.62	\$1.65
TIC	3.53	0.25	0.47	0.25	046	6.57	3.45	6.45
41.0	3.67	119	1.05	114	1.04	116	2.05	1.00
March		0.74	0.71	0.04	0.77		2.44	
1987.0	9.27	0.25	0.51	0.25	0.17	0.30	3.56	9.38
NBW.	9.25	0.29	0.02	0.56	0.40	0.82	9.63	1.10
Coo	16,45	17.76	19.62	31.13	10.00	10.00	19,05	10.70
000	315	10.08	10.04	14.74	19.00	19.30	3.05	10.07
- Criste		20.00	11.25	2000.00	11.000	2011/07/07	10.00	11.12
Tani	65.00	53.16	99.05	100.76	22.41	90.54	108.15	100.75
1.640	\$ 96	11.05	69.95	71.17	62 52	47.17	21.48	61.97
En	3.47	0.47	0.41	0.41	0.40	0.40	3.43	0.15
Wo	3.13	0.37	0.40	0.45	0.43	0.40	2.41	6.16
Post 1101 72	1.51		1000		00135		200	2223
True Dennis								
(new)								
Sols								
T189								
W.51								
Cr53								
Niet								
Ci6.53								
Rb85								
Bul37								
Th032								
U238								
Nb55								
Ta: 81								
LALIN								
C2143								
PEJUS								
21141								
5-68								
7.65								
101.78								
Seet 47								
Eu123								
Gdist								
Tb159								
Dy163								
Bal65								
189								
12:166								
3/5172								
1.0175								

Redee						61.1.200.141	13	
Genia No.	12-2	32-1	24-4	22-3	244.2	and the second	2-1	2.3
Male: Oside			1001	2.4-2	10-1		100	
INPS:								
810;	45.28	81.15	99.82	21.55	51.20	30.94	\$1.67	48.85
TIO;	0.55	0.94	0.92	0.55	0.47	6.60	1.42	0.74
ABC	3 8 5	2.22	101	1.65	1.71	9.11	3 90	4.4
Ne-O	0.27	0.58	0.55	0.37	0.26	E 16.	1.10	4.34
3400	0.28	0.56	0.14	1.48	0.55	1.43	1.11	0.46
Mao	12.16	12.42	0.6.71	14.25	13.25	15.51	13.47	13.45
00	15 13	\$ 61	21.15	19.65	20.91	19.74	50.95	20.72
0.0	0.22	100.00	0.59	20000			(1997) (1997) (1997)	
Bet	15.14	11.05	6.01	11.15	6.60	6.52	11.60	9.66
Tatal	\$5.25	55.66	99.65	100.32	22.55	22.52	100.00	28.65
MAR	72.71	71.36	83.34	69.51	89.25	75 59	67.41	71.27
In	0.44	0.44	0.47	0.42	0.44	0.42	1.39	9.46
Wo	0.40	0.58	0.49	0.40	0.44	6.43	3.42	4.44
Pat 1100 'C					4.87	3.01		
Trace Demants								
(ppm)								
5:45		181.55						
T119		1977.68						
W31		-456.25						
C12		42.63						
Nitt		25.15						
Ci4.53		0.04						
R#85		0.35						
Da17?		2.88						
Th032		0.01						
1/238		12.23						
NE53		0.02						
Ta 31		1.1.1.1						
1.0.49		9.66						
Ce147		1.90						
PEOTS		0.11						
19141		0.46						
212140		3.56						
2183		21/10						
112.20		2,00						
Seal 47		1.72						
Entre		0.63						
(34)13		2.65						
Thise		0.52						
Da163		3.72						
Flates		0.80						
132		9.51						
Dr166		2.34						
30472		2.12						
1.0175		9.52						
100000								
---------------	--------	--------	--------	--------	--------	-------	--------	--------
Genia Mo	44.00	18.1	10.0	100.00	10.0	241.4	16.1	100.0
Malar Calda	11-3		3452	74-7	2042	100-1	Sheet	10-4
Same -								
840.	50.67	81.76	11 10	363.00	47.65	50.75	11.04	41.99
700	2.44	0.57	0.05	0.45	0.07	6.14	243	0.13
10.2	2.15	0.52	0.65	0.45	0.00		1 50	9.44
NBLT	3.23	2.23	2.63	1.75	476	1.84	1.90	4.0
Pill/O	3.25	0.54	0.38	0.90	0.11	0.27	1.10	0.22
NBWO	2.35	0.74	1.00	1.95	0.06	110	1.36	1.25
MgO	14.71	12,34	14.04	12.53	19.58	13,44	13.76	13.54
1.30	23.10	27.94	29.55	19.43	22.52	19.41	19.89	30.85
, CI(O)								
140	3.82	12.49	9.48	82.17	2.71	12.12	12.33	11.92
Taral	103 59	100.39	100.32	39.15	55.21	81.57	100.52	100.55
242.4	13.80	15.31	19.12	66.13	\$5.11	99.30	00.90	06.95
111	0.42	0.45	0.45	0.40	0.44	139	3.39	9.25
	1.11	0.92	0.42	0.89	test i	1.41	1.11	9.47
Pat 1101 C					129			
Trace Demots								
(ppm)								
5015								
1.14								
131								
North Company								
0005								
Dest								
Ball?								
75.735								
10298								
NB53								
Tal SI								
Tat 39								
Ce147								
Pb318								
P1141								
34d14c								
Sr\$5								
2150								
HPL 78								
Smi < T								
En155								
Gd133								
Thise								
Dy163								
Ho163								
1.85								
12:166								
20112								
1011.2								

Entre								
Genia No.	36-3	80-2	82-3	88-1		84-1	39-3	40-1
Main Oakle								
INTE:								
810;	31,75	21.30	21.75	32.65	51.75	5210	\$1.39	50.87
TIO:	3.33	0.48	0.46	0.52	0.55	0.40	3.47	1-41
AbCa	4.59	0.89	0.99	119	118	0.85	1 83	1.06
Ne-O	1 16	0.51	0.11	0.50	674	6.79	1.14	6.10
3.640	1.12	0.91	114	1.12	0.84	0.88	1.04	5.64
March	12.05	15.19	19.87	15.85	17.55	15.08	17.49	12.3
(363	19.98	33.36	19-98	13.53	19.71	20.24	30.56	19.55
0.0	34500	1070	10000			0.04630-0	0.000470.0	10000
Bet	12.85	12.08	12.12	12.53	12.92	12.44	12.32	13.31
Tatal	163.47	59.62	100.65	100.35	29.22	100.21	99.53	99.14
Met	64,44	65.58	66.27	65.51	65.95	65.21	61.56	63.05
En	3.35	0.58	0.35	0.40	0.28	0.38	3.37	0.27
Wo	3.41	0.42	0.42	0.40	0.13	0.49	3.43	6.43
Pat 1103 C								
They Benetix								
(DET)								
SolS								
T189								
W51								
CH2								
Nick								
CH 23								
R#85								
Ba137								
76.032								
1/295								
248.2.3								
Ta 39								
C+147								
Ph338								
15.14								
Did14c								
5:55								
2,50								
102.78								
Site1.47								
Eu125								
Gd153								
Thise								
Dy163								
Elo163								
1.86								
15:166								
Y6172								
rm.22								

Bater	643-113-121							
Genia No. Malar Calda	3-2	4-4	81	10-2	21-55	15-2	141	15-1
INPO:								
540.	57.05	93.23	31.82	21.25	31.88	91.46	50.75	51.55
TO	1.33	0.45	0.99	0.52	0.56	6.65	3.37	0.15
AbG	316	1.00	1.66	1.91	1.57	3.08	3.13	3.56
March.		1.24	0.22	0.25	0.00	1.75	1.17	4.74
Trans.		0.50	0.24	0.15	0.09	6.45	1.12	4.45
2000	17.74	14.50	5.5.54	15.15	10.00	1.5 57	14.55	15.75
00	15.75	33.44	1.2 67	1914	19.45	12.78	20.29	10.91
0.0	3.25	0.04	24.64	0.01	0.07		1.06	0.03
Bet	7.97	11.72	10.25	11.47	17.54	12.71	11.75	10.50
Tatal	120.70	\$9.47	99.94	100.25	106.26	22.95	100.55	101.25
Meth	75.88	53.44	72.92	70.33	74.78	67.15	(8.88	72.59
En	3.53	0.42	0.45	0.43	0.44	0.41	3.41	0.44
Wo	3.98	0.41	0.98	0.39	0.39	6.18	2.41	4.46
Pat 1100 C	\$ 1.7							
Unice Mariante								
(ppm)-								
5:45								
T.19								
W31								
043								
Niet								
Citiss								
RES								
194137								
113.98								
NESS								
741.81								
Lat 39								
Ce147								
Pb338								
15:141								
3id14c								
Sr85								
2150								
105.78								
See1.47								
Eulys								
Gd155								
10154								
Disto.								
730								
DelAA								
70472								
1.0175								

Balos		55-1-51-57						
Genit No.	16-1	12	21	8-1	8-5	6-3	6-2	2-1
Maja: Oxide								
04530								
590,	31,55	21.55	55.15	56.33	52-48	31.17	51.55	51.52
TIO:	0.31	0.53	0.47	0.58	0.19	6.54	1.53	(1) 本方
AbO.	1.35	2.54	1.74	4.85	1.86	2.82	1.98	1.96
Ne ₂ O	1.25	0.16	0.19	0.25	0.18	1.23	129	0.25
MaxO	2.35	0.29	0.21	0.16	0.18	1.1.5	154	6.44
MgO	14.56	15.47	17.27	15.53	17-45	16.58	15:52	17.01
Ca0	19.96	22.23	21.96	33.52	22.77	19:13	17.59	18 35
42:505	215	0.19	0.58	0.42	0.36			
FcO	15.55	618	4.70	6.11	2.21	7.60	11.90	9.72
Tetal	163.67	100.29	99.73	100.36	106.55	99.24	100.04	22.52
NOT	67.43	\$2.60	86.83	\$1.53	35.66	79.54	20.63	75.86
En .	0.41	.0.46	0.49	0.44	0.48	0.48	3.45	0.4E
Wo	4.34	0.44	0.44	0.46	0.45	6.40	136	0.57
Fat 1101 'C		.0.45	0.90	2.99		4.5		3.15
Disc Hounds								
(ppace								
5045		125.49	36.33	171.65	155.45			
Ti.45		1537.00	984.01	2917.67	1.926.84			
3254		225.20	153.66	304.22	201.54			
Cr52		1399.76	2686.46	2873.45	12389-05			
Ni60		165.65	208.89	215,29	165.82			
Cv135			0.02	0.01	0.046			
RESS		0.55	1,74	0.37	1.73			
Da137		0.81	3.01	0.25	0.72			
ThG32			0.01		0.01			
10338		0.01	0.01	1322	0.01			
NESS		0.02	0.02	0.32	0.02			
TAIN		0.01	0.01					
Calify		0.10	0.77	1.22	0.14			
10.0343		0.54	0.35	1.29	025			
Peues		0.14	0.10	0.02	0.30			
ALLA		0.24	0.55	2.55	100			
945		19.03	30.75	13.67	19.87			
2,66		1.95	\$14	2.95	2.62			
116.75		0.05	0.15	0.44	0.14			
Sini 147		0.45	0.28	1.05	0.46			
Eu125		0.1.5	0.13	0.57	0.15			
Gd157		0.53	0.45	1.45	0.77			
Thurse.		0.14	0.10	0.27	0.13			
Dy142		0.89	0.57	1.77	0.2%			
Bobie		0.21	0.13	0.38	0.33			
339		434	3.29	9.41	4.5.2			
12rf.95		0.45	0.35	1.05	0.47			
Yb172		0.51	0.28	1.01	021			
1.0175		0.98	0.05	0.15	- 0.07			

2010/01/01								
Genia No.	8.1	0.4	10.1	81	40.00	16.0	26.0	18.1
Maler Colds	A. 1					100-1	16-1	100-1
ENTRY:								
540.	\$1.71	\$2.30	82.72	92.75	81.78	50.71	50.31	51.14
TO	3.55	0.54	0.50	0.42	0.55	6.50	3.53	6.51
AbC	2.04	2.09	1.77	1.95	1.44	221	3.13	3.01
hite of		1.00	0.22	0.10	6.79		1.10	6.47
District of	3.32	0.57	0.25	0.12	0.10	6.23	1.12	
2000	14.000	14.77	10.74	26.43	10.01	14.15	14.77	14.41
000	17.00	10.00	18-91	23.34	31.35	12.0	17.94	20.41
0.0	1.000	-26	39.99	100.04	26.45	la a	11.01	10.14
13.05	12.02	20.000	0.04	10.00	7.14	11.12	11.28	116
Taral	163.52	100.03	100.30	55.75	63.37	29.90	99.24	99.77
54+9	20.27	32.14	76.58	81.13	79.92	72.06	71.94	76.41
En	3.45	0.43	0.47	0.45	0.42	0.46	1.46	0.44
Wo	135	0.41	0.38	0.45	0.41	6.37	136	6.45
Post 1101 (C			2.64	-0.41	1.76			1.66
Ince Hermite								
(ner.)								
Sols								
T.09								
W31								
Cr53								
Ni64								
Ci4.53								
R#85								
Dall?								
Th:232								
1/298								
N855								
14 31								
12.147								
10.139								
15.14								
364144								
5:55								
2:50								
105.78								
Sini 47								
Endys								
Gd153								
Thise								
Dy163								
E0165								
180								
Er166								
10172								
runa?								

10000								
Genia No.	12-1	34.45	33.4	32.3	Net	Sect	12.0	10
Main Oakk	11-1	21-1			1000	100.0		200-2
ENTRY:								
540.	45.84	93.16	31.07	21.24	81.36	51.72	42.31	52.09
TO	0.54	0.59	0.75	0.00	0.74	634	3.36	6.46
Abra	412	0.00	0.79	1.95	2.50	354	1.93	9.47
NO.1		1.30	0.00	0.00		2.04	1 83	
1987.0	0.20	0.20	0.51	0.29	0.51	6.17	8.17	8.20
NUM	9.75	0.52	0.07	0.50	0.15	6.26	1.09	0.20
Coop.	17.00	18 73	10.00	12.12	12.30	22.01	10.01	00.00
0.0	1110	10.12	19/28	47.37	13.02	51.00	22,00	11.00
0.05	10.00	1.14	0.72		1000	2.4.4	1.10.1	1.01
Taral	06 00	22.20	30.75	100.75	100.17	29.00	00.01	99.92
Mark	16.15	74 70	73 35	10.52	13.65	82.40	\$2.21	26.61
En	0.45	0.44	0.45	0.46	0.44	1.46	3.46	0.47
Wo	0.35	0.38	0.41	0.35	0.38	6.11	3.45	6.46
Post 1107 (c)	1000	10.00	1000			0.70		4.76
True Floramic								
(ner)								
Sols								
T.09								
V31								
Cr53								
Niet								
Ci4.53								
R#85								
Dall?								
Th232								
1/298								
NE53								
Ta 31								
1.0.49								
C2147								
PEOLS								
2114.								
5-68								
2.80								
105.78								
Simi 47								
Endas								
G4153								
Thise								
Dy163								
Ela165								
189								
Ib:166								
70173								
10175								

Ballow					
Genia No.	24-2	69-1	82-4	88-1	AL-1
Majar Öside					
(with)					
840;	03.05	23.53	92,40	33.55	51.13
TIO:	0.97	0.42	0.50	0.65	0.43
ABC	2.10	2.89	9.96	247	3.09
Ne ₂ O	0.51	0.24	0.24	0.33	624
NIN	0.56	0.33	0.26	0.19	0.76
MgO	12.07	15.86	16.50	15.23	14.77
Ca0	17.76	21.44	18.79	18.85	18.79
, Cr ₂ O;					
BeO-	11.77	6.90	8.52	11.21	12.78
Total	55.55	55.00	39.60	100.35	100.27
Math	65.53	\$1.38	78.35	71.25	68.51
En	0.44	0.45	0.45	0.44	0.41
Wo	0.97	9.54	0.38	0.58	0.18
Pat 1101 C		-0.06	4.92		
Lose Danaits					
(ppm)					
5:45					
T149					
331					
Cr13					
Niet					
Cid.53					
R885					
Da17?					
Th032					
1/238					
NB53					
Ta 31					
131.39					
Ce147					
Pb3.18					
P1141					
34d14c					
Sr\$5					
Zr50					
HP. 78					
Sinel 47					
Endaz					
Gd153					
Thise					
Dy163					
Elo163					
189					
15-166					
10172					
rmaz					

Appendix II. Major oxide (in wt%) composition of Site 296 orthopyromene.

Terrar	Galo	so.	T.C.		**	Math	140		0.0.	D:O	Total Mail Do Wa
120.012.015		12.12	0.52	4.63	1.04	1.4.1	78.70	104	refed	14.38	10140 7542 0 24 0 25
-deserver and	2.5	51.45	0.10	1.71	6.16	0.91	126	6.09		19.30	10.00 (2012 0.00 0.01
	10-2	30.38	0.85	3.44	1.10	0.55	21.78	6.18		22.55	55.56 65.26 (LAS U.S.)
	21-4	30.65	0.52	3.05	33.3	0.51	21.19	0.21		24.52	103.47 60.64 0.61 0.40
49.1126.57	12.0	\$2.79	015	4.65	1.06	1.87	\$7.07	141		16.70	10115 7035 9 72 0 28
50-1-822-114	7-2	38.32	0.12	1.25	11.0	0.12	23.72	121		16.25	100.58 75.12 0.78 0.27
	8-1	32,89	0.25	0.58	0.13	0.45	25.79	2.12		17.66	10118 (2.25 0.69 0.51
541415418	15-1	51.17	0.16	0.53	1.00	118	23.74	1.16		20.80	103.36 67.04 9.65 0.35
	15-L	30.28	0.12	1.15	t.te	0.61	24.15	1.35		21.65	10154-6115-0.65-0.55
	182	52,48	0.10	1.16	11.7	0.65	27.29	125		16.91	101.21 74.51 0.72 0.28
	151	51.30	0.17	0.36	1.00	0.95	19.57	121		27.34	101.03 5676 0.55 0.45
	20.5	52.58	6.24	9.55	6.07	1.26	\$2.66	1.15		22.48	10139-0135-0.63-0.37
	2112	33.29	0.19	1.32	1.16	0.44	19.85	1.89		17.98	101.06 73.99 0.69 0.31
	233	53.59	0.10	0.92	0.04	0.14	35.14	1.58		18.43	\$9.95 70:15 0.65 0.92
	\$6.1	51.25	0.22	0.73	1.04	0.27	\$4.02	171		18:88	\$9.19 (09.46 - 9.67 0.95
34-1-840-143	16-1	30.20	014	0.28	0.04	1.15	12.90	699		25.24	103-52-62-52-0.62-0.58
	19-2	.52.50	0.19	0.54	0.04	0.45	24.36	0.5%		20.55	\$9.75 67.56 0.67 0.55
	22-5	53.07	0.12	9.61	1.05	0.74	25.08	1.53		18.17	\$9.19.71.11 0.69.0.91
	24-3	30.71	0.25	0.31	1.03	1.35	11.74	1,14		22.21	51.38 62.21 0.62 0.38
34-0-17-00	1-1	52,40	0.19	1.72	0.01	0.04	29.23	0.26		15.29	10145 7731 0.77 0.25
	2-1	52.50	0.15	9.45	1.19	1.57	\$2.01	1.04		22.79	10154 6036 962 0.38
	9-1	30.96	0.17	0.55	1.00	1.57	11.86	123		24.33	59 80 6124 0.60 0.40
54,8,29,26	1-1	31,45	0.51	0.71	0.62	0.82	12.62	1.12		22.86	10131 (0.32 0.62 0.88
	102	53.24	9.14	1.49	1.01	0.55	26.37	1.19	0.34	17.16	10119 77.56 0.72 0.28
	11-2	32,72	0.20	0.12	1.62	0.21	34.95	1.42		19.67	10139-6924-0.67-0.35
28-3-35-82	L-J	32,94	0.30	2.98	t.ie	0.35	14.15	1.20		18.80	59.46 69:28 0.67 0.55
	12	32.20	0.20	2.46	0.01	0.45	24.74	1.51		19.27	103 55 62:55 0.65 0.52
	2-1	51,82	0.28	0.53	1.12	1.08	19.05	1.14		23.78	101 12 6431 0.63 0.37
	3-4	32,64	0.14	1.42	5.04	0.10	24.83	1.43		18.71	59.51 T0:25 0.68 0.52
	+-2	51.06	0.10	0.44	0.13	1.57	15.10	1.24		26.55	103.59 52.83 0.54 0.46
	5-2	51,51	0.34	0.35	1,05	1.55	19.69	1.09		26,68	10145.568, 0.56.0.44
	6-1	52.21	0.25	2.33	EX6	0.25	23.74	1.5/3		19,48	100.22 68:31 0.64 0.34
25-1-22-50	47-4	\$2,07	0.13	0.44	0.63	0.75	20.33	124		25.64	103.77 5027 0.37 0.43
	452	51.93	014	1.69	1.07	0.82	26.23	1.93		18.17	103 29 73.02 9.69 0.31
	30-2	51.40	0.25	0.41	1.10	0.81	10.06	1,29		26.30	1031552 05604
	51i,	31.11	0.16	0.41	EY6	0,75	20.32	128		22,35	53.52 5623 0.37 0.48
	Stol.	21/12	0.14	0.35	1.06	1.03	30.26	157		25.27	10116 58:81 9:57 9:45
	Stol.	51,69	9.29	0.35	1.07	0.95	20,44	1.44		24,44	59.59.59.58 0.58 0.42
	52L	30.21	0.10	0.42	512	0.95	15.13	1.43		26.91	53.50 35.25 0.54 0.46
59-1-98-100	Hel	52.77	911	1.17	5.43	015	25.83	1.71		18.85	103-49 70.95 0.69 0.51
6141439443	12-1	51.90	0.32	0.44	0.01	0.95	20,70	1.15		36.13	101.28.5835 0.57 0.45
	181	32.04	0.18	0.27	5.12	1.57	23.23	1.49		20.60	53.46 66.81 0.65 0.53
	363	21.8	0.17	9.45	5.03	1.05	20.13	121		24.72	101 23 59.31 0.57 0.45
	28-5	52,28	0.50	0.52	1.06	1.58	12.64	1,44		23.00	103 12 61.73 0.63 0.37
	382	52,07	0.17	0.65	1.06	220	23.14	1.62		21.91	101.59 6220 0.63 0.57
	20-2	51.80	015	0.42	5.04	1.51	20.87	1.70		24.75	101 34 6008 0.58 0.42
	400	51.24	0.25	9.45	1,10	0.67	10.65	1.64		24.42	59.41 59.74 0.54 0.42
	41L	51.19	0.16	0.35	1.04	1.19	19.26	1.70		26.99	101 52 5625 0.54 0.46
	421	.90.88	017	0.25	610	1.81	19,79	129		25.58	10140 3729 0.38 0.44

	Grain									
Botton	No.	5102	Tic, Al	0, 100	Mix	Mg0	0.0	$D_2 f_{2}$	7#0	Total More En Wa
	6-1	32.00	0.25 0	31 1.10	1.17	10.42	1.70	0.05	25.10	10 15 59 19 0.97 0.48
	8-1	52.16	035 1	3L C.R.	0.41	15.84	1.55	0.01	17.46	59 52 72 52 0.70 0.90
	5-1	22.24	0.52 1	37 0.04	1.03-	22.33	1.64		22.04	101 14 64 35 0.52 0.58
	16-2	23.27	0.25 0	45 0.80	1.51	15.46	1.83		27.67	10110-56127 0.54 0.46
	21-3	52.37	0.32 0	\$1 1.03	1.12	12.08	1.52		23.96	311.40.631.6.0.61.0.39
	29-4	51.14	0.22 0	31 1.16	1.45	19.36	1.58		25.36	10137 57.64 0.56 0.44
	-162	29.22	0.18 0	31 6.47	1.54	15.29	1.48		27.11	59 58 54 63 0.55 0.47
\$31,046,145	15-1	\$1.95	0.27 0	42 0.03	1.35	\$3.27	1.61		23.30	101184312-041-039
	15-3	51.34	0.25 0	41. 0.08	1.48	12.18	1.56		28.62	jt0374231-0.6L039
	16-3	21.74	0.34 0	44 5.85	1.10	32.24	1.65		22.55	59.32 45.75 0.82 0.56
	17-1	51.87	0.24 0	57 0.04	1.34	33.73	1.55		21.87	101 22 64 53 0.63 0.37
	18-1	\$3.07	0.25 0	42 0.04	2.64	10.26	1.63		24.67	\$9.95.59.4L 0.57 0.45
	19-2	22.15	0.21 0	36 5.40	1.97	23.96	6.5%		20.64	103434745 0.56 0.54
	20-2	\$1.49	0.15 0	35 2.00	2.57	20.17	1.65		23.94	101364113 0.55 0.42
	21-2	51.38	0.22 0	43 1.04	0.95	\$2.47	1.51		22.14	59 32 61.43 0.42 0.38
	22-2	21.45	0.21 0	45 1.10	0.91	22.07	1.61		22.81	57 58 65 37 0.51 0.32
	24-1	21.22	0.16 0	34 5.40	2.11	19.52	1.38		24.25	101 \$3 58.45 4.57 0.45
	26-3	51.57	017 0	36 8.00	2.07	23.18	1.55		20.43	59 38 46.73 0.45 0.35
	27-0	21.85	0.27 0	34 6.60	1.08	12.28	1.37		22.68	1011045.65 0.52 0.58
	28-1	22.50	0.14 0	41 0.45	1.75	32.86	1.08		21.54	1013545341 0.54 0.56
	M-d	49.45	019 0	35 0.04	2.92	20.34	1.75		23.48	55.51 40.70 0.59 0.41
63-3-31-34	1-1	53.15	017 0	55 1.10	0.74	25.35	1.52		18.51	1038/054 0.09 0.31
	2-1	21.42	0.25 0	34 5.04	1.57	22.56	1.72		22.05	100.00 64.25 0.52 0.58
	11-1	51.85	0.21 0	55 6.04	1.89	21.96	1/8		22.70	103 85 65 39 9.51 0.59
	12-3	\$3.49	035 2	78 6.33	0.55	16.01	20,75		8.34	\$9.53 77.39 0.45 0.55
	141	21.45	0.25 0	36 1.04	1.15	23.12	1.76		22.44	103.75 64.75 0.53 0.57
	16-1	\$3.97	0.35 0	46 2.05	2.22	30.04	1.68		25.25	100 85 59 59 9 57 0.45
	17.3	52.31	012 0	45 \$10	1.91	\$1.54	1.36		22.40	59 59 62 74 0.61 0.39
	18-2	53.59	0.27 0	34 5.15	1.33	21.00	1.57		22.71	55 50 62 24 0.50 0.40
	2-1	\$1.41	0.12 0	52 0.00	2.45	20.14	1.26		23.78	101074015-0.58 0.42
63-3-36-38	2-1	52.72	916 0	15 6.62	2.94	\$4.32	1.56	0.05	19.79	10304846048032
	41	\$2.54	0.21 0	44 0.04	1.4°	23.78	1.62	0.02	21.48	103374637-0.65-0.85
	2-1	\$2.25	0.15 0	53 6.40	1.22	23.90	1.10	0.01	21.55	101724641 0.65 0.55
	6.3	52.19	0.22 0	53 6.05	1.75	19.96	16	0.04	24.19	103 89 59 39 10 57 0.45
	72	\$2.57	9.17 0	37 0.07	0.89	\$2.57	1.62	0.03	21.79	101386487 0.63.0.37
	8-1	12.4P	917 9	56 6.70	1.21	23.93	1.23	0.07	20.81	10259-67.21 0.55 0.54
	27.8	52.05	0.16 0	10 6.05	1.08	\$1.18	1.61	0.03	21.04	100 96 67 19 9 65 9 95
643-119-155	41	51.27	0.27 0	88 6.05	0.07	23.70	. 96		21.63	59 89 66 15 0 64 0 96
	6-1	51 13	0.25 1	10 1.04	0.54	22.71	1.77		22.67	103 59 6413 9 52 9 39
	7.1	\$2.37	019 0	84 6.60	0.86	19.91	1.19		21.18	101716653-0.65035
	9.3	52.41	0.27 0	66 6.65	0.36	31.69	1.45		21.11	102 17 66 67 0 65 0.35
	131	52.20	018 0	38 6.40	0.25	23.96	1.42		21.44	1011546535 0.15 0.35
	12-4	51.82	0.20 0	51 1.04	0.68	12.80	:46		22.12	53 52 64,75 0.58 0.37

Appendix III. Major oxide (in wt%) composition of feldspars from Site 295

setur.	Quin Ne.	\$80,	FeQ.	CeQ.	Na/O	AU0,	6,0	MgC	tool	An Confert.
4515417413	1=1	56.23	0,49	10.51	4,98	27.49	100		99.20	0.53
	2-2	56.15	0.44	10.53	4.93	27.38	641		99.38	1.23
	3-2	17.86	0.43	9.57	5.49	35.85	01.3		100.35	2.49
	4-8	E0.19	0.25	7.96	6.05	25.11	1.1		99 X1	6.37
	5-2	57.95	0.43	8.69	3.77	25,36	0.20		99,46	0.45
	9-2	45.51	0.50	17.90	1.02	21.24	110	612	100.16	0.91
	2.2	10.00	1	0.90	6.32	20.21			99.29	
	0-2	22.24	0.44	0.10	0.00	22.28	0.23		100.10	0.42
	10.2	47.86	0.05	12.25	0.01	33,47		4.4.3	100.31	6.01
	11.1	49.00	D IN	10.87	4.40	72.27	6.0.0	1.12	00.22	7.44
	12.4	10.25	0.29	10.30	4.00	37.14	0.15	6.63	100.04	0.43
	12.1	55 70	0.50	10.94	4.68	37.61	1.10	4.43	0014	1.46
	14.7	86.76	0.61	10.10	4.79	37.34	2.12	6.64	00 U	0.44
	153	46.76	0.29	10.20	1.92	37.14	6.10	4.66	00.57	6.53
	17.8	48.51	0.42	15.26	1.92	32.13	1.13	1.14	02.01	6.81
	18.4	48.79	0.32	795	6.19	34.38	1.74		09.71	0.41
	19.3	\$6.84	0.59	10.5	\$ 02	37.47	106	10	-90.97	6.43
	20.1	49.505	0.00	11.28	0.147	45.00	100		00.40	0.001
	21.4	15.07	0.31	10.43	6.08	34.68	1.73	441	00.00	1.41
	00.0	61.05	0.49	2.00	5.04	Mar.	1.1		00.15	1.46
	28.5	88.44	1.22	84	8.65	34.61	1.75	200	10.24	1.48
	No.1	86.14	0.41	10.50	1 79	37.68	1.10	2.2	00.00	2.44
	02.4	\$1.91	0.12	9.09	\$ 50	36.66	6.4	1.13	00.00	1.47
	20.7	46.74	0.51	17.77	0.94	23, 58	6.03	4.5	00.71	P.60
	29.3	\$7.00	0.43	9.71	\$ 20	36.98	6.15	1.17	99.19	0.50
	41.7	MAG	11.14	11.81	4.75	12 0.0			100 40	1.40
161.28.27	1	15.17	0.00	810	6.15	25.24	0.74	114	00.11	0.47
	0.1	48.01	0.14	9.79	6.12	25.77	1.32	6.66	100.17	6.44
	5-3	45.12	0.85	18.89	0.44	44.47	1.1.1	6.54	69.76	E 500
		45.11	0.39	18.49	D.HR	33.81	0.00	6.62	99.73	0.52
	6.2	56.10	0.55	10.15	5.09	36.86	6.18	1.03	99.15	0.57
	10-1	\$9.36	D.a.t	8.05	6.44	24.94	1.26	4.62	99.43	0.40
	12-7	18.75	0.14	2.2%	6.10	25.04	1.32	6.67	99.51	0.44
	14.9	63.55	0.58	7.81	E.57	34.17	6.37		99.71	6.10
	16-2	59.17	0.35	835	6.57	25.H	1.22		99.4E	0.41
	17.1	55.64	0.66	10.44	4.86	27.32	5 5	147	99.06	6.54
	18-2	35.68	0.38	8.66	6.74	25.61	5.24	4.62	99.84	0.43
	20-3	60.07	0.16	6.92	6.72	34.99	1.43	4.0	99.19	0.35
	24-1	45.15	0.46	19904	0.42	35.00	0.02	4.6.2	106.15	0.96
	25-2	29.81	0.31	2.83	6.51	25.25	0.27	0.12	99.55	1.39
	26-1	26.87	0.34	10.22	3,40	27.14	0.19	6.52	100.15	0.41
	27.3	56.98	0.37	9.78	5.55	36.76	0.33		99.54	0.45
	28-2	59.82	0.34	7.93	6.55	25.00	0.25		99.89	0.25
	29-1	47.67	0,70	16.70	1.61	32.07	6.03	111	98.87	0.85
	30.2	51.72	0.58	11.59	4.65	2817	6.20		99.66	6.57
	51-0	59.34	0,38	8.09	6.33	34.87	0.20		99.11	0.41
	32-1	\$9.08	0.51	7.92	6.85	31.98	6.31	6.67	99.00	6.15
	33-2	47.52	6.72	16,30	1.54	\$2.39	1.12	6.5.5	99.15	1.38
	34-2	25.18	0,48	8.88	6.16	25.59	0.14		99.72	0.44
	361	59.81	0,31	7.90	6.55	25.25	6.38	4.62	10633	0.39
	\$7.2	59.71	6.27	8.00	6.42	24.88	5.23	4.5.	99.67	0.40
	38-2	25.35	0.36	8.90	6.12	25.65	0.22		990.60	0.44
	39-1	\$9.60	0.15	7.72	6.45	25.80	1.75		99.43	0.39
3041-122-124	11-1	44.78	0.38	18.95	0.49	35.44	02.3	1.1.1	100.05	0.96
	2-1	\$7.41	0.50	9.59	5.62	27.77	0.15	642	100.56	0.45
	4.4	46.50	0.65	17.50	1.92	3:15	6.62	6.62	100.13	0.85

laten.	Grain Nr.	51O2	Fe0	Cat	Na _i O	Al ₃ O ₃	R30	MgD	Total	As Contes
	6-2	45.50	0.54	18.62	0.65	\$5.10	0.03	1000	100.42	0.54
	3-2	15.12	0,46	2.12	6.18	35.00	0.32	111	100.05	0.42
	9.1	58.53	0.54	\$82	\$ 95	26.57	6.23	441	100.45	6.44
	10-4	45.68	0,46	18,48	0.74	\$1.50	03.3		99.94	0.50
	11 1	47.86	0.53	16.81	1.71	35 H	6.62		100.75	0.84
	12-4	45.35	6,54	18.75	0.58	\$5.53	1.12		100.62	0.95
	120	44.46	0,50	115.96	0.52	35.58	0.00	0.02	99.97	0.55
	14-1	58.51	0.25	8.56	6.16	36.01	1.23	4.6.	99.58	0.42
	120	25.06	0,32	8,85	6.04	25.25	0.12	6.51	99.72	0.45
	160	34.62	0,00	11.25	4.47	25.55	0.10	0.02	30.02	0.28
	18-2	41.96	0.43	18,21	0.75	34.71	111	6.64	99.31	0.53
544-415-41	3 4-1	47.92	0,47	13,22	0.90	\$5.76	1.13	6.65	100.93	0.91
	4-2	47.64	0.44	17.24	1.42	15.13	0.02		99.58	E.RT
	11.3	47.35	0.71	17.4	3.42	32.67	1116	111	99.68	1.87
	128	28.94	0.30	9.70	3.63	27.52	8.18		99.77	0.48
	14-1	41.48	0.02	17.05	3.45	32.92	6.63	6.63	100.61	£.87
	15-2	45.35	0.38	18.61	0.66	34.22		6.6.	100.41	0.94
	170	47.94	0,56	17,48	1.08	\$5.56		6.6.2	100.25	0.50
	17-0	12.68	3.37	16.56	1.13	30.56	1.25	0.25	99.23	0.55
	180	45.53	0.37	18.72	0.64	\$4.35	03.3	0.52	100.66	0.94
	192	15.58	0.50	18.72	0.70	21.60	112	6.64	100.15	0.94
	20-1	46.76	0.28	18.52	0.85	11.55			106.31	0.92
	241	47.77	0.61	17.81	1.24	35.58		1.1	101.62	0.88
	278	49.39	0.52	15.68	1.88	\$5.00	015		100.46	0.82
	29.1	50.13	0.78	16.05	2.15	41.89	115	11	100.95	0.80
	30-3	45.06	6.85	18.90	0.56	\$5.71	1.14	410	99.91	1.95
	36-1	45.06	0.51	18.60	0.87	34.92	613	6.65	100.34	0.52
	89.4	45.29	0.64	18.54	0.29	91.98	6.84	1.12	100.40	0.99
	420	47.15	0.56	18.15	1.02	\$3.95	01.1	13.9	100.84	0.50
	12.2	46.26	0.61	18,50	0.68	34.52	011	6.01	100.35	0.94
	43.4	58.05	0.33	9.67	5.58	36.38	6.15	6.63	100.37	0,45
	441	25.60	0,48	937	3.63	25.71	0.12	03.9	100.88	0.48
	-18-1	47.39	0.2	17.89	1.19	35.90	0.02	6.62	100.95	0.89
	49-2	53.46	0.30	12.57	3.58	29.98	21.1	6.84	100.49	0.67
	50-2	47.08	0.56	18.56	0.75	51.14	111	0.000	100.90	0.53
	51 1	\$1.45	0.95	15.71	1.95	29.31	64		101.14	6.63
54-5-17-26	2-1	45.16	0.36	18:53	1.01	\$5.78	1.12		99.14	0.91
	5-2	47.85	0.73	17.08	1.57	51.96	0.13	6.65	99.75	0.35
	12-1	46.58	0.66	18.08	1.19	32.54	6.13	1.13	99.10	0.59
	283	45.20	0.54	19.22	0.30	23.50	011	6.03	950.05	0.55
	531	47.19	0.95	17/6	1.38	32-01	213	0.15	99.19	0.87
\$4.3.23.26	1-2	\$5.96	0.43	16.49	5.01	28.21	6.65	4.63	106.32	6.54
	2-1	52.94	0.41	12.07	1.99	29.30	0.19	6.62	98.95	0.62
	3-2	57.62	0.54	9.52	5.77	35.55	6.15		100.05	0.47
	4.2	46.33	0.50	17.48	1.92	94.11	6.64	6.62	99.00	0.89
	5-1	25.83	0.52	10.32	5.20	27.44	81.3	6.62	99.50	0.42
	6-1	45.15	0.44	18.28	0.90	31.82	663	44	99.60	6.92
	2-T	45.15	0.47	18.56	0.65	\$3.00	0.02	4.4.	99.20	0.94
	8-2	45.50	0.36	17.26	1.44	\$5.57	513	6.61	99.73	DAT
	9.1	41.66	0.49	18:50	0.60	35.24	6.00		00.10	E.94
	10-4	27.87	0.47	2.04	3.91	25.47	0.12		55.87	1.45
	12-2	\$1.97	0.53	18,00	0.59	35.15	011	6.63	99.72	0.95
	15.3	51 18	0.44	14.51	2.90	31.86	6.65		99.74	6.73
	14-7	44.60	0.33	18.95	0.51	35.44	61.1		99.79	0.95
	15-2	45.24	0.72	16-22	1.85	32.64	111	0.04	100.36	0.53
	16.2	\$7.44	0.41	826	4.99	36.99	1.3	4.4	99.40	0.45
	17.7	35.36	0.00	9.99	3.78	35 16	6.18	1	99.41	0.41
	18.1	55.97	0.44	10.30	4.21	27.76	6.23	6.63	99.91	6.57
	12-1	54.33	1.18	11.25	4.09	36.57	0.45	6.67	100.43	0.60
				1000	4 1 1 1 1	and the second sec	1000	19.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

letan	Grain Nr.	30O2	FeD	Cat	Na _i O	$\Delta l_2 O_2$	R30	MgD	Teal	As Contes
	102	54.54	0,40	11.35	4,49	25.75	513		99080	1.28
165.92-98	2-4	45.49	0.22	18.10	0.78	24.04	0.02	6.62	100.24	6.93
	2.2	59.50	0.79	12.16	2.16	31.77	6.15	113	106.44	6.79
	32	25.47	0,36	11.02	4.60	25.13	0.25		99.81	0.26
	4.2	46.73	0.39	17.78	0.87	33.83	113	113	100.36	6.92
	2-4	28.28	6,64	14.99	1.29	\$1.65	1.11	4.82	100.10	1.78
	21	45.80	0.54	17.58	0.97	54.00	11.1		100.00	0.51
	Sol	54.68	0,47	11.00	4.35	28.68	8,87		99.93	0.60
	1-1	47.84	0.71	16.32	1.55	52.79	0.05	0.54	99.82	0.85
	5-2	47.45	0,70	17.17	1.29	\$5.58	0.02	6.87	55.56	0.38
	10-4	45.52	0.64	18,48	0.63	34.47	6.02	6.6"	99.77	0.94
	11-1	55.76	0.25	8.81	5.97	25.46	6.25		100.46	0.44
	122	46.82	0.42	17.58	1.21	33.25	613	6.61	99.32	0.55
	19-1	58.94	0.38	8.72	5.88	25.69	6.32		99.62	6.45
	34-4	47.34	0.71	17.22	1.20	\$5.57	0.54	1.11	100.11	0.28
	5-1	47.94	0.55	16.95	1.39	32.94	612	645	99.80	£.87
	15-1	45.92	tute	15.99	1.80	\$2.34	0.04	0.85	99.79	0.83
	17-2	47.72	0.76	17.17	1.38	52.99	1.54	6.53	100.04	0.87
	18-2	47.01	0.72	17.07	1.20	33.86	11.1		99.06	0.89
	13-1	45.58	0.50	17.00	0.73	\$4.29	0.02		99,19	0.93
	201	17.50	0.53	16.97	1.25	33.25	113	222	99.43	1.55
	211	17.16	0.57	17.06	1.05	13:43	613		99.67	0.50
	52.1	49.74	6.64	7.94	6.14	55.65	1.5	6.65	00.04	6.41
	232	47.00	0.73	16.30	1.57	13.96	0.04		00.18	0.07
	31.1	47.43	0.02	17.54	1.20	33.53	1.11		100.53	1.99
	25.1	40.14	6.74	12.00	1.84				100.40	
	16.0	42.14	6.74	17.12	1.00	22.22	224		100.05	1.00
	43.0	16.50	0.00	110.00	1.44				100.00	1.00
	20.02	49.70	0.00	17.18	0.08	22.8/		1.11	101,08	1.04
	23-2	40.34	0.51	10.12	0.11	24.24	1.21	241	100.02	0.00
	38-1	17.00	10.54	18.11	0.58	91.83	1.14		10004	1.54
	11-1	42.09	0.85	17,24	102	33.79	6.82	4.6.2	100/38	6.90
	31-1	42.34	0.96	18,12	0.61	54.44	0.52	613	59062	0.24
	321	45.92	0.54	17.29	1.23	m	112	612	99.19	1.55
	231	47.13	0.77	16.97	1.41	\$2.34	613	0.82	99.66	0.87
	341	45.23	0,51	17.38	10.01	5413	513	41.	99.49	0.92
	35 2	58.41	0.90	9.02	5.66	26.89	6.3		100.15	D.AT.
	35-2	49.46	0.65	15.94	1.90	51, 55	11.1	415	99.99	0.82
	371	45.32	0.75	16.60	1.58	51.96	6114	111	99.30	0.83
	351	47.45	0.73	17.58	1.16	33.43	4.65		10035	0.89
	19-4	47.43	0,52	17,48	0.98	55.65	0.05	6.54	100,05	0.50
	402	45.52	0.73	17.79	0.94	13.96	61.1	0.2.0	100.36	0.91
\$7.1.25.26	2-2	58.37	0.34	9.49	\$.62	25.88	6.23	4.61	106.10	0.48
	22	68.33	0,44	2.59	5.73	25.04	1.33	111	100.15	0.44
	31	59.99	0.29	8.67	6.03	25.22	5.25		10646	2.44
	4.0	58.45	0.33	10.08	\$.34	26.39	6.21	1.13	100.95	4.50
	£1	35.13	0.48	9.95	3.34	2513	0.17		100.31	050
	6-2	59.30	0.49	8.99	\$.73	25.68	\$.22	664	100.17	6.46
	7.2	89.17	0.50	7.79	6.58	24.25	\$22	6.82	100.01	0.35
	81	25.45	0.29	9.22	3.74	25.90	0.20	33.3	99.90	0.46
	Sect	\$9.41	0,37	8.87	5.82	25.84	6.21	1.12	100.55	0.45
	13-2	26.43	0,48	10.77	3.03	27.57	0.15	6.51	106.44	0.44
	11-2	15.86	0.51	18.95	0.53	51.18	613		100.33	0.95
	2.0	48.53	0.43	9.51	\$ 74	2616	8.3	44	100.16	6.47
	37	19.10	0.54	897	1.95	25.56	1.73		20.00	0.45
	Stel	89.10	0.54	211	6.05	25.23	1.16		100.75	0.45
	5.3	\$9.85	0.14	0.01	4.00	35.36	6.33		LODICE	6.45
	See.	38.30	0.30	9.05	8.79	25.51	1.11		100.43	1.40
		10.00	0.10	7.5.7	2.63	34.32	6.38		100.72	6.17
	1.1.2				and the second se	the second se		the second se	and the second sec	

Rutton	Grain Nr.	SiD ₂	FeD.	Cat	Na _i O	Al ₂ O ₂	R30	MgD	Tetal .	As Conic
	192	57.30	0.34	8.14	6.43	24.75	1.24	5.5.5	106.14	0.41
	20-4	\$9.63	0.51	9.00	6.11	25.00	6.37		100.01:	0.44
	51-1	58.71	0.46	9.69	5.36	26.15	6.21		100.44	6.49
	23-4	\$9.33	0,40	8.19	6.08	24.36	0.24		99.79	0.42
	\$4.0	5915	0.36	9.29	5.78	25.51	6.9		100.3	0.47
	15-2	25.48	0.26	9.69	5.49	25.83	\$.15		99.91	0.45
	26-2	45.35	0.32	18.76	0.67	\$4.19	013		100.33	0.54
	\$7.2	54.86	0.74	15.43	3.90	27.98	\$26		99,90	0.63
	182	52.56	0.32	8.3.3	6.20	34.75	0.21	13.3	99,30	0.42
	25-4	59.26	0.32	936	3.64	25.26	0.21		100.05	0.48
	20-2	59.66	0.52	9.20	5.80	25.46	0.30	4.81	100.05	2.46
	312	59.94	0.41	7.95	6.47	21.40	\$ 23	6.61	99.30	0.40
	32-4	55.51	0.57	9/7	5.53	25.87	0.15	6.67	100.52	0.45
	11.5	58.85	0.49	897	5.81	25.51	619		99.81	6.45
	24-4	52.54	0.62	8.11	4.74	25.17	0.55		99.77	0.41
	14.5	\$2.63	0.21	6.60	115	25.96	630		100.75	E 13
	Sec.1	51.79	0.42	10.50	4.90	22.60	1.15		100.15	E 14
	37-4	53.00	1.33	9.17	3.365	35.10	0.17		100.43	1.46
	18.1	51.44	0.53	14.94	3.05	30.85	013	116	100.55	6.73
12.2.57.401	1-2	45.84	0.20	18:30	0.81	\$1.99	0.03	4.64	100.45	1.07
	2-2	45.25	0.72	16.20	1.51	15.45	115		100.15	0.84
	33	\$5.52	0.46	11.51	4.77	27.84	0.16	114	100.13	0.56
	4.3	\$7.64	6.26	940	\$ 66	36.95	1 33	40	106.15	6.47
	2.2	\$1.66	0.48	15.01	2.76	31.52	0.00	6.67	100.52	0.76
		\$7.31	0.50	1019	\$ 07	37.81	1.17	4.13	100.55	6.53
	2.2	45.64	6.51	18.64	0.77	41.84			100.11	1.01
	8-1	\$7.68	0.50	11.16	1.65	2018	1.10	111	100.11	1.00
	0.3	SAIN	0.00	12.00	4.10	11.15			101.14	1.42
	10.7	41.14	6.50	18.44	0.47	58.77	1.1.7		100.12	1.84
	11.1	47.65	0.00	17.51	1.80	35.48	1.14		100.00	1.61
	12.0	47.41	0.72	17.10	1.20	20.58	6.63	1.15	100.75	0.97
	11.1	40.00	10.04	10.00	0.000	20.70		201	100.15	2.60
	11. 1	49.52	0.00	10.10	1.00	22.42	0.00		Los of	0.04
		15.00	0.00	10.00	1.44	21.02			100.00	
	12-1	42.62	0.00	16.00	1.07	33.87	2.24	1.1.2	100.00	1.04
	17 1	46.02	0.54	16.00	0.07	34.61	2.04		100.02	0.00
	10.1	19.90	0.00	18:51	1.41	40.92			100.00	1.91
	10-1	27.24	0.56	2.00	2,000	21.42	1.42		100.34	0.20
	19-1	38.12	0.56	10.00	0.11	25.25	1.11	111	100.00	5.64
	2101	49.82	0,64	18.05	1.11	24.28	4.82		100.37	0.50
	12-2	45.26	0.50	16.02	D.TT	25.85	110	1000	100.12	0.20
	24-1	15.05	0.74	16,50	1.60	10.16	113	6.8.	100.12	6.85
	241	42.22	0.00	18.21	0.78	34.91	6.82	4.6.	100.14	0.99
	11	45.95	0.52	17.50	1.54	15.56	112	613	100,04	0.95
	26-2	41.97	0.57	18.2	0.78	25.32	112	440	12.99	0.93
	\$7-L	38.59	6.56	17.90	0.94	36.47	112	6.65	106.63	1 (6)
	182	45.82	0.50	18,57	0.70	\$5.29	11.1	641	100.90	0.54
	10-2	55.00	0.51	18.08	4.28	29.86	105		101.65	1.00
	21-4	49.34	0.36	15.32	1.57	\$2.99	6128	445	100,10	0.53
	322	45.55	0.34	18.32	0.66	\$4.95	013		100.55	0.54
	23-4	45.82	0,47	18,81	0.68	35,24	1.03	4.0	100.05	0.94
	24-4	59.56	0.33	15.12	2.69	52.11	53.3	0.54	101.06	0.75
	32-2	59-45	0.38	8.57	6.05	35.39	0.20		100.85	6.43
	26-1	48.67	0.58	16/3	1.96	32.39	6,66	4.64	106.13	0.82
	28-2	45.52	0.51	18/2	0.77	\$5.02	5.1.2	6.63	100.25	0.93
	39-3	\$7.43	0.25	9.62	5,08	27.34	1.17		100.51	0.45
	40.2	51.58	0.58	11.71	4.55	29.79	12.34	111	10115	1 18
	412	45.66	0.31	18.45	0.71	\$5.44	31.3	0.04	100.88	0.94
	43-3	\$9.67	0.22	8.00	6.47	2612	1.36	641	100.75	0.40
	44.1	44.95	11.54	17.94	1.00	54.28	0.01	0.01	106.12	0.50

Taution	Grain Nr.	SID	Fe0	Cat	Na _i O	Al ₂ O ₂	R30	MgD	Tetal	As Conk
	462	45,46	0,56	18,12	0.94	34.34	0.03	6.82	10006	0.5/1
	47-2	\$5.15	0.52	11.27	4.92	28.82	0.19	6.62	100.57	0.55
	48.2	16.65	0.58	18.25	0.84	31.15	6.64	6.64	106.52	0.92
	492	45.57	0,42	18.82	0.55	35.H	0.01	6.8.2	100.43	0.595
	10.0	45.65	0.50	18.55	0.74	34.19	112	6.65	100.44	6.98
	21-2	22.48	6.85	11.11	4,96	28.60	1.13		100.61	0.42
	12-2	55.30	0.57	12.14	3.80	39.56	6.05		100.26	5.63
	23o1	45.28	0.57	18,56	0.85	转班	1,12		100.06	1.92
	242	45.17	0.52	18.32	0.73	\$3.22	0.03		101.00	0.50
	22-2	47.05	0.39	17.77	1.10	54.55	0.02	0.04	10022	0.20
	26-2	47.90	0.50	16,78	1.75	33.55	2.24	6.2.	100.51	0.84
	482	45.15	0,38	18,56	0.48	35.72	1.12		100.11	0.95
	29-2	45.96	0.2	18.21	0.79	24.51	01.1		100.42	0.93
	.60-4	51.74	0.94	11.54	9.94	91.19	6.67	6.65	100.09	0.65
	61-4	49.52	0.39	12.02	2.58	\$2.98	117	0.81	99.81	0.76
	63-2	52.45	0.49	11.10	3.75	39.31	1.20	6.67	100.33	1.63
	63-2	45.23	0.57	18.01	0.85	关列	0.01	6.54	99.91	0.92
	641	59-42	0.74	14.73	2.85	51.27	0.12	6.62	100.15	0.74
	66-4	56.99	0,48	10,09	5.09	27.35	0.13	111	100,17	0.52
	672	58.75	0.32	14.96	2.66	31.47	50.0	93.9	101.00	0.75
\$7-3-38-40	1-4	13.85	0.46	15.72	1.99	31.97	613	6.62	99.42	0.91
	1-1	4634	0.90	18.05	0.85	35.78	513		99,45	0.92
	2-1	45.56	0.56	17.91	6.78	34.88	6.50	1.1	99,05	0.93
	2-1	46.01	0.39	18.04	0.90	34.35	0.04		29.41	0.92
	6.1	4617	0.63	17.84	0.80	49.96	111	6.63	99.25	6.93
	4-1	47.54	6,76	17.08	1.4T	\$5.87	0.03		99.77	18.0
	9-4	49.46	0.65	15.02	2.51	31.36	115		99.04	0.76
	10.42	45.19	0.47	18,16	0.75	35.38	1.14		99.48	0.95
	112	59.87	0,50	14,44	2.80	31.55	0.13	13.0	99341	0.74
59-1-89-91	3-1	48.84	0.32	16.93	1.55	31.56	111	613	101.36	0.78
	43	57.70	0.37	10.25	5.21	27.72	0.13	6.6.	103.35	0.53
	8-2	47.32	0,67	18,06	1.34	\$3.92	0.02		101.13	84.3
	9-2	56.55	0.45	11.58	5.05	27.84	0.12		100.44	0.55
	10-2	55.78	6.53	937	3.85	25.78	6.27	1.1.	100.45	0.46
	112	\$1.36	0.53	12.02	4.64	27.95	0.13	1.1	99.62	0.28
	13.1	51.35	0.67	13:41	3.77	30.89	6.66	6.67	101.14	6.75
	16-2	31.62	1,390	16.24	1.85	29.80	1.18	124	101.78	0.82
	182	49.87	0.70	17.50	1.82	\$2.38	613	0.82	101.14	0.84
	19-4	48.15	0,30	17,90	1.35	35.18	5.54	1.13	101.32	1.88
	721	47.81	0,50	17.94	1.21	\$4,17	02.3	6.51	100.54	1.25
	19-1	53.83	0.52	13.51	3.92	29.46	2.11	6.81	100.36	6.78
	\$12	47.56	0.75	11.71	1.58	35.17	6.62	0.04	101:16	1.86
	32-4	52.32	0.30	14.18	3.16	22.43	0.10	6.63	101.03	0.71
	26-2	55.62	0.58	2.1	5.80	25.92	0.36	4.81	100.13	0.46
59.1.98.101	1-1	15.04	0.68	18.81	0.81	31.96	6.63	6.63	10133	6.93
	T1	\$1.06	0.37	7.97	6.25	25.65	0.22	23.2	101.51	0.41
	12-0	47.99	0.68	17.68	1.63	33.55	6 6 2	6.67	101.45	6.86
	13-4	28.21	0.63	10.82	2.16	27.01	6.18	4.8.	106.32	0.35
	17-4	57.64	0.51	10.34	5.56	27.15	0.21	13.3	101.42	050
	24.2	59.54	0.46	8.76	6.08	26.16	6.24		101.54	0.44
	261	52.05	0,-6	939	3.74	35.28	0.21	13.0	101.27	0.47
	27-4	55.50	0.42	9.50	5.70	35.12	1.24		106.57	0.47
	30-1	58.64	0,41	9.52	5.72	26.53	6.26	11.	101.05	6.47
	22-4	55.42	0.37	2.25	3.39	35.56	1.25		100.35	050
	341	59.11	0.55	2.10	6.00	35.16	1.33		100.94	0.45
	15.1	58.23	0.65	9:81	\$ 75	26.81	\$ 33		101.45	0.45
	26-2	55.75	6.35	9.50	3.33	35.48	0.20	0.02	100.92	0.45
	37-1	55 32	0.51	13.01	4.55	28.74	613	6.67	101.36	0.19
	411	57.36	0,40	10.2	3.27	27.35	0.22	6.62	100.25	0.32

liefin	Grain Nr.	202	FeD	CaC:	Na ₀ O	Al_2O_2	R30	MgD	Tetal	As Contes
	422	55.63	0.39	10,54	5.17	27.57	0.34	0.02	100.88	0.23
	42-4	\$9:51	0/2	2.75	6.05	26.39	0.23		101.16	0.44
	44.1	29.02	0.51	9.57	\$ 57	26.59	6.22	6.62	103.46	6.48
	452	75.23	0,34	10,31	5.27	27.36	0,24		100.03	0.42
11813	1 2	46.07	0.65	18.13	0.86	H H	6.62	11	99.74	6.92
	2-4	25.64	0.46	8.97	2.71	25.99	5.25	4.82	100.00	0.46
	2-2	45.56	0.72	16.05	1.79	52.55	0.03	0.02	29,98	E.83
	42	58.53	0,46	8.86	5.77	25.87	1.23	4.6.	99,72	0.45
	2-1	22.06	0.41	8.18	5.61	25.76	0.25		99,30	0.44
	61	25.50	0,40	8.63	5.397	25.71	0.27	0.02	55,74	0,44
	7-2	58.96	0.51	8.94	5.86	25.81	1.34	6.12	109.34	1.45
	8-2	\$7.34	0.41	9.19	5.67	25.41	8.24		99,25	6.47
	2-1	\$7.33	0.52	9.5	5.29	26.99	0.05		100.36	050
	10-1	21.61	0.47	943	5.69	26.52	1.8	115	99.77	6.48
	11-2	25.11	0.41	885	9.70	25.95	1.25	0.82	99.96	0.43
	18-2	58.08	0.04	9.24	5.36	26.46	6.38	6.63	99.79	6.48
	132	27.42	0.48	7.69	6,57	25.31	0.20		99.50	0.40
	141	22.70	0.42	838	3.84	25.50	0.34	6.8.2	9934	\$.44
	12-2	58.38	0.54	9.95	5.26	26.04	1.21		99,45	84,0
	16-4	47.70	0,64	16.94	1.52	55.17	11.3	9.82	100.05	56.3
	17-4	\$7.60	0/1	9.99	5.51	26.98	0.21	4.C.	100.02	2.49
	191	\$7.68	6.43	9.90	5.17	26.86	0.16	113	99.90	02.0
	10-2	58.47	0,44	8.92	5.72	26.44	6.24	4.63	100.15	0.46
	22-2	58.66	0.51	2.13	5.55	25.35	6.35	6.62	100.35	0.47
	28.2	\$9:07	0.44	875	5.58	58.98	1.39		100-54	1.46
	141	29.46	0.30	839	3.77	25.75	1.24		100.10	0.44
	14-1	45.67	0.72	16-48	7.59	32.58	112	6.6.2	100.15	1.85
	26-4	48.20	0.50	16.08	1.81	32.88	6.03	110	99.30	1.83
	272	45.60	0.72	17.66	1.01	55.42	11,1	0.52	55,46	0.50
	1-87	\$2.13	0.46	9/18	\$.41	26.76	2.33		10616	0.49
	19-2	56.83	0,40	10.06	4.98	27.44	0.25	4.43	99.88	0.52
614-3242	1-2	22.45	0.38	8.84	2.99	25.81	0.27	41.	100.78	0.44
	2-1	46.47	0.39	18,98	0.83	33.78	0.02	614	100.85	0.93
	2-4	29.18	0,42	8.55	3,78	25.50	1.24	0.04	99.75	E;44
	41	55.90	0,46	9.22	5.78	25.04	12.31	11.1	100.61	0.46
	5.1	\$1.07	0.89	15.18	3.79	33.47	1.15	612	100.51	0.75
	6-2	28.39	0.43	9.44	3.55	25.12	0.22	11.1	10015	0.48
	7-4	45.06	0.33	18.78	0.94	\$5.39	E.E.2		100.06	0.92
	8-1	58.38	0.48	9,87	5.26	26.52	5,23		100.25	0.20
	2-4	22.42	0,41	833	2.80	25.78	0.21		100.16	0.44
	10-2	58.28	0.51	9.25	5,49	2516	2.17		99.85	2.48
	12-4	68.38	0,47	8.47	6.05	25.52	6.28		101.11	0.43
	12-1	18.92	0.52	8.65	1.41	25.99	1.32	6.83	100.62	0.45
	10-4	27.91	0.57	9.52	2.391	29.11	1.23	643	point.	6.40
	12-2	28.84	0.05	9.88	5.11	29.28	6.24		100.44	4.21
	16-2	29.39	0.40	9.19	2,45	25.14	0.15		100.75	2.48
	15.3	1140	10.50	841	5.82	25.29	5.05		100.52	1.44
	18-2	24.92	0,44	11.51	4,48	27.85	6.24	8.8.2	99.75	0.28
	19-4	27.92	0.47	9.95	3.26	25.29	0.21	ex:	100.05	020
	20.5	28.99	0.58	9.00	2.12	25.58	1.25		99.98	0.46
	111	25.40	0,49	6.75	2.73	25.38	0.25		32,001	0.42
	10-2	69.10	0.53	201	6.10	25.14	2.18		100.17	1.41
	22-4	29.61	6.35	8.73	2.19	25.79	6.19	1000	100.52	8.45
	241	19.53	0,49	8.55	1.89	25.79	0.25	6.61	100.31	2.44
	12.0	15.18	0.56	9.72	5.28	25 21	1.33	44	100.17	0.20
	21.12	38.95	0.00	89.	5.08	28.95	1.24	0.02	wind	1.05
	181	44.83	0.30	18.92	0.88	\$4.05	013	0.04	99.39	0.52
		40.00	10.00	A 84		5.2.22	1 10 10 M	ALC: N. M.	10000 000	10.00

Hetten	Grain Nr.	300g	Fe0	Cat	Na ₀ O	ALO	R30	MgO	Total	As Conto
	23-4	23.65	0,48	8.25	6.02	25.45	0.27	12.4	100.16	0.42
	24-4	10.22	0/2	11.21	4.55	27.56	0.15	0.01	100.36	0.57
	45.1	\$9.40	0.57	9.06	5.63	25.99	6.29		100.85	6.46
	26-2	35.T6	0,43	9.05	5.67	25.55	0.37	20.0	100.00	0.46
	17.0	51.95	0.50	11.18	4.45	2811	6.1		99.10	6.18
	38-2	28.36	6,46	9.52	5.31	25.72	1.5		100.65	0.45
	30-4	22.75	0,43	8.71	3.62	25.78	0.34		100.35	0.45
	40-2	57.08	0.57	10.22	5.03	26.44	1.29		99.54	0.52
	411	21.63	0.62	14.54	2,80	\$9.55	1.15	0.05	100.22	0.74
	421	27.80	0.50	9.76	4.33	25.57	0.25	0.02	550.72	0.41
	432	58.68	0.45	2.49	5.56	25.84	\$1.3	0.00	99.43	6.46
	44L	59.14	0,44	8.99	5.44	25.25	6.23	0.03	10045	6.47
	49-2	56.15	0.58	11/7	1.51	27.55	0.15	0.01	100.72	1.15
61.2.38.40	8.2	57.10	0.58	9.66	5.25	26.65	6.25		\$9.18	6:50
	2-1	\$7.37	0.39	9.44	3.38	25.97	0.34	0.02	100.33	0.48
	4-2	58.15	0.51	8.82	5.82	26.58	6.35	0.04	100.15	6.45
	3-3	29.23	0.48	8.45	5.94	25.17	1.32	0.08	100.55	0.43
	6-1	25.87	0,47	8.65	3.69	25.25	0.25	0.08	100.32	0.43
	7-2	45.96	0,68	18:00	0.91	34.83	6.03	0.04	100.44	6.93
	8-2	26.72	0.54	9.72	3.34	27.17	0.25	0.02	99.82	0.45
	9-2	55.43	0.36	2.11	8.45	27.11	2.33	2223	100.75	0.47
	10-2	\$9.26	0.44	2.51	5.68	26.55	6.35	0.01	100.45	0.45
	18.2	58.36	0.47	9.18	5.63	27.11	6.25	0.05	101.64	6.47
	14-4	67.75	0.43	2.20	8.52	27.84	0.19	0.02	100.35	0.45
	15.1	58.01	0.02	9.04	\$ 30	27.44	1.33		100.77	6.49
	16-2	55.00	0.38	8.96	3.58	27.25	1.22	+	100.35	0.46
	17-2	45.11	0.56	18.53	0.65	35.59	0.02	ant	101.50	0.94
	18-1	59.54	0.58	882	5.92	26.65	6.57	0.05	10135	0.45
	19-4	25.78	0,40	8.75	3.92	27.85	1.25	-	101.35	0.44
	\$L-I	55.44	0.40	2.5	5.74	26.64	0.32		100.17	0.44
	\$2-4	58.18	0,49	9.29	5.46	26.87	0.26	0.05	100.57	0.48
	23-2	27.12	0,49	9.35	8.33	27.85	5.23	0.01	99,76	0.45
	24-1	59.26	0.23	2.72	5.51	25.49	0.35	0.02	100.62	04.0
	15-4	35.76	0.42	8.64	3.84	25.74	6.25		100.65	0.44
	26-2	45.96	0.75	17,47	1.05	54.14	91.3	0.04	99.50	0.90
	\$7.0	SE 16	0.45	9.56	\$ 66	37.00	6.28	0.03	100.55	0.47
	18-2	54.67	0.72	11.74	4.18	2937	1.3	0.01	100.75	0.60
	29-2	25.42	0.51	9.47	8.27	27.84	6.32	0.07	100.55	0.49
	10.0	48.68	0.49	16.13	1.84	33.46	6.63	0.05	100.75	0.81
	31-1	97.TD	0.57	0.12	8.17	27.54	1.34	aut	100.66	0.40
	32-3	45.47	0.71	17.63	0.91	34.65	11.1	0.04	100.15	D.92
	14.1	\$9.45	6.4	875	\$.91	26.40	6.23	0.01	101.11	0.44
	15-1	15.10	0,10	9.65	5.30	27.13	15.71		100.84	0.20
	26-2	\$7.39	0/2	2.72	5.22	27.92	6.18		100.55	02.7
	17.1	\$7.98	0.51	9.60	5.86	27.98	6.14	0.07	101.04	6.49
	38-7	35 97	D.AT	10.14	4.85	27.71	5.28	0.01	99.11	0.43
	40-1	48.95	0.41	8.29	6.00	26.57	6.33	0.01	100.45	6.43
	412	51.60	1.66	0.51	3.75	22.61	1.11	0.02	100.74	0.45
	42-1	35.45	0.04	8.21	6.14	25.39	1.22	0.00	100.73	0.47
	44.0	59.63	0.41	8.22	5.94	26.24	6.38	0.05	100.75	1.43
42.2.51.24	1-7	17 304	6.57	245	4.74	23.54	0.15	0.02	00.04	P.48
a second	2-1	19.06	0.54	10.05	6.47	36.65	1.17	0.00	101.67	01.0
	4.1	SE 17	0.51	9.99	\$ 12	36.67	6.5	0.05	100.75	0.50
	4.1	47.74	4.70	17.05	1.25	37.30	2.12	0.02	00.04	7.00
	Gent	87.07	0.25	10.90	4.99	37.64	2.15	0.16	100.83	0.44
	7.1	58.68	0.44	10.10	5.59	36.37	1.5		101.20	6.50
	8.3	41.75	6.30	1.10		75.04	0.10		101.75	F 10
	0.1	16 62	0.50	10.00	0.91	24.94	1.15	0.02	107.15	6.50
	10.7	43.87	1.40	16.10	0.27	22.77		0.00	100.04	7.54
					and the second sec		and the second se		the second se	

Heim	Grain Nr.	\$00g	FeD	CHC:	Na ₂ O	ALO ₂	K30	MgD	Teal	As Conk
	111	54.93	0,40	11.98	4,65	27.99	679	6.6.1	100,03	1.28
	12-1	\$5.09	0.51	16.31	1.18	26.75	0.29	111	100.15	0.53
	13.1	\$7.51	0.64	10.57	\$.02	27.89	6.55	6.62	169,67	1.59
	14-4	37.73	0.52	10,31	3.50	25.55	0.15		103,25	0.51
	16-2	\$1.52	0.60	11.78	4.58	27.90	1.13	113	99.53	6.18
	17-2	28.14	0,64	959	3.85	25.31	1.15	1.12	101.14	4.41
	18-4	22.34	0.39	2.11	6.09	25.79	0.45		100.64	0.45
	10-2	68.04	0.43	8.84	6.38	25.47	8.29	4.4.	101.34	0.43
	212	26.73	0,50	10.32	2.15	25.57	6.24	6.13	106.13	0.43
	12-4	45.02	0.38	16.20	0.72	54.14	0.05	0.02	100.30	0.50
	23-4	69.67	0.58	7.91	6.32	25.62	5.33		101.10	01.0
	14-4	25.44	0,64	9.55	5.56	25.51	\$25		100.12	0.48
	22-1	45.94	2.15	16.58	1.76	33.25	613	6.22	100.45	0.93
	36.1	69.04	6.4	8.68	631	25.12	1 23	££,	101.05	6.43
	19-4	25.27	0.31	9.75	5,66	25.52	8.17	441.	100.64	0.48
	30-4	56.16	0.44	16.35	5.17	37.27	10.15	44	99.96	0.53
	31-4	24.16	0.55	12.58	4.3>	25.58	428	6.62	101.09	1.6.7
	32-4	47.61	0.58	18.17	3.22	\$2.75	513	6.65	106.45	0.85
	16-5	48.89	0.92	15.12	1.99	31.88	0.04	441	106.86	0.82
	27-2	45.25	0,40	19.31	0.33	55.70	6.03	0.82	99.29	0.95
	28-4	\$6,62	0.2	11.54	4.75	27.79	1.11	645	101.25	0.36
	101	19.07	6.43	9,67	6.03	26.87	0.15	61.	101 23	0.46
	402	\$7.46	0.54	10.58	5.30	27.16	6.15	4.62	101.6€	0.52
	42-1	19.89	0.75	845	6.17	25.45	0.21	££.	100.36	2.43
	48.1	59.39	0.48	9.00	£03	58.82	1 8	4.1	100.54	1.45
	44-12	57.98	0.62	16.30	5.31	25.78	5.15	112	101.25	0.42
	442	16.16	6.95	11.33	1.02	27.94	6.35	1.1	103.33	0.55
	481	59.30	0.39	9,44	3.75	25.81	475	1.12	101.25	1.41
	20-2	29.32	0.62	934	2,61	25.54	0.03	0.12	101.86	0.46
	26-4	56.48	0,50	9.97	\$160	26.59	127	61.	99.35	049
	\$7.2	55.38	0.61	12,18	4.41	25.96	K 🗆 9	4.0	100/21	0.60
633-36-28	1-1	27.59	0.36	8.87	3.72	25.92	5.15	41.	990.08	5.46
	2-4	\$3.48	0.71	12.56	3.82	28.51	602	613	99.06	0.63
	2-4	39.35	0.29	7.90	6.55	25.42	5.15	441	99.48	0.40
	2-1	49.20	0.73	16.57	1.65	52.00	513	612	99.03	0.85
	6.2	15.99	0.71	17.35	1.17	33.22	1.19	10	99.54	1.86
	11-2	57.85	0.58	9,46	2,48	25.35	\$75	6.53	590.98	0.48
	122	98.10	0,42	9.10	3.63	25.75	DOS	6.62	99.21	0.47
	13-4	\$7.50	0.51	2.11	5.45	2631	£_3		99.08	C.47
	1-2	25.37	0.37	9.61	4.93	25.15	0.19		99,30	0.21
	2-0	\$7.82	0.9	10.25	5.03	26.25	2.13	1000	100.03	0.33
	2-1	56.78	0.57	10.90	4.71	25.96	6.13	6.63	100.04	0.26
	4-1	47.49	0.70	17.64	1.33	32.46	111	6.62	99.59	1.55
	242	68.99	0/6	1.62	6.45	21.35	2.23	6.6.2	100.12	1.39
	2.2	25.25	0.58	7.8	3.18	22.95	6.15		99.56	6.49
	fred.	45.64	0.55	16.87	1000	33.75	6.12	1.17	99.48	0.54
	4.7	12.08	1.41	9.94	2.63	22.00	2.25		99.35	1.47
	10-2	26.36	0.51	11:30	4.61	27.42	6.15		100.24	6.51
	111	25.16	0.55	3,000	2.51	29.72	6	647	100.00	1.45
	Theat.	28.23	0.00	11.00	4.39	29.89	6.14	6.6.5	59.24	1,21
	13-2	25.40	0,50	9.20	2,41	22.26	5.25		55/11	0.48
	112	17.91	0.56	9.05	5.20	25.54	2.21	612	20,00	1.49
	-8-2	56.93	0.55	10.19	5.08	26.25	6.24	8.62	99.11	6.22
		17.26	0.53	10.14	5.02	25.54	5.15	6.02	99.75	1.32
	1.1	10.90	0.56	7.12	6.46	24.11	1.74		20.15	2.31
	4.1	58.74	0.08	10.04	N 14	22.81	6.28		100.14	1.21
	29-2	28.27	0.53	11.11	4.00	27.18	6.4		99,82	6.26
	214	24.16	0.41	885	2.87	25.04	1.18		10033	0.45
		27.36	0.52	10.21	4.271	23.9	6 - 2	5.5.	20020	122

Seden.	Grain Nr.	502	FeD	Call	Na ₂ O	Al ₂ O ₂	R ₃ D	MgD	Teal	As Contes
	22-1	\$8.14	0,49	8.50	5.93	25.15	0.20	6.64	100.25	0.44
	24-3	\$7.90	0/9	10,00	1.05	35.21	0.04	111	99.70	0.52
	-252	58.69	0.40	9.01	5.63	25.25	6 8	6.65	99.21	6.46
	26-2	35.52	0.31	9.16	3.59	25.24	0.15	6.8.	59.61	0.41
	28.7	56.49	0.56	16.84	4.79	27.19	6.69		99.97	6.15
	2242	\$7.05	0,54	10.56	2,05	26.57	847	1.12	99.96	1.23
62-5-140-14	5.12	25.37	0.57	9.61	4.93	25.15	6.15		99,80	141
	2+1	57.83	0.53	10.36	5.03	36.25	1.73		100.00	0.29
	3-1	25.78	0.57	10,90	4.71	25.95	6.13	6.53	100,07	0.26
	1	47,45	0.70	17.64	1.33	52.40	02.0	0.02	99395	1.58
	5-3	68.99	0,46	1,62	1.42	24.35	5.33	612	100.36	0.39
	6-2	55.29	0,53	9.27	5.28	25.95	\$35	6.61	99,46	0.45
	7-1	15.59	0.74	16.52	1.74	31.14	5.24	613	98.91	0.54
	8.1	45.64	6.35	18.87	0.61	39.79	1.15	6.67	\$1,99	6.94
	2-1	25.68	0.43	930	5.65	25.38	0.20	4.81.	99.31	0.41
	10-2	56.26	0.57	11.26	4.61	27.45	\$1.5	44	100.34	0.5T
	111	28.16	0.33	9,44	237	25.72	478	62.	100.06	1.45
	121	26.22	0.00	11.01	4.59	25.50	0.12	13.9	59.24	0.37
	13-1	58.40	0.50	9,20	5.41	25.59	\$16		99,17	0,48
	14-2	27.57	0.56	9.43	3.26	25.54	0.21	6.62	99,00	0.45
	12-1	55.89	0.56	10.96	4.65	35.68	2.12	6.62	98.89	136
	16-1	16.90	0.6	10.19	5.08	36.25	0.14	113	99.17	122
	17-2	\$7.26	0.53	10.14	5.02	26.64	6.16	41.	99.75	0.32
	19-1	\$2.90	0.56	7.12	6.45	24.11	6.23	1.25	99.19	0.37
	19.1	58.34	0.58	10.01	\$ 24	52.81	1.30	113	100.04	4.51
	20-2	28.27	0.53	11.11	4.66	27.58	1.14		99.89	0.20
	21-1	59.TE	6.43	885	5.87	25.84	E.18		100.53	1.45
	323-2	20.36	0.55	10.21	4.97	35.78	6.58	4.4.2	990m	0.25
	Z2-0	60.14	0.40	830	3.53	25.36	0.20	0.54	100.25	0.44
	24-2	\$7.80	0,49	10,00	\$.05	26.21	104	11	99.70	1.52
	25-2	28.65	0.40	901	5.63	25.25	178	4.4.5	99.21	0,46
	26-2	25.92	0.51	2.16	2,39	25.24	0.15	ex:	55062	0.47
	28-1	58.12	0/16	9.25	\$.15	26.25	6.34	673	99.99	231
33633	22-2	27.02	0.54	10,56	2,05	25.57	673	613	99.96	0.43
64-3-119-13	11-1	45.41	0.54	16.92	2.01	\$2.25	111		100.11	28.3
	2.1	59.25	0.68	16.61	1.85	29.15	6.67		100.0	1.01
	8-1	45.08	0.21	1.21	1,48	\$5.78	6.02		100%	0.81
	111	35.24	0.58	15.46	3.94	28.42	674	0.000	100.11	0.63
	11-1	53.81	0.49	11.39	3.69	29.14	10.07	1.14	100.05	0.65
	121	42.72	0.58	16.25	2.13	51,45	1000	612	100.15	181
	Deal	\$6.07	0.52	11.23	4.44	28.85	110	6.8.	100.55	0.59
	141	46.91	0.68	17.90	1.24	\$5.43	6.03	4.82	100.32	0.89
	121	15.12	0.57	11/2	4,40	27.76	1.10		100.15	029
	12-1	55.17	0.55	12.30	1.05	21.57	110		10005	1002
	20.01	58.00	0.01	16.0	2.09	31.17		ш.	100.05	6.19
	212	44.12	0.74	10.72	1.04	34.28	113		29.56	0.91
	20-2	44.22	0.00	10.1	1.80	47.19	2.01		100-02	1.2.9
		21.20	0,40	14,43	3.05	90.15	6.22		200.00	0.12
	20-0	24.30	0.54	12.52	4.04	25.52	119		100.08	0.03
	See.	47.32	1.00	18,50	1.14	35.78	4.42	1.12	100.09	6.50
00-2-58-57	1-2	21.04	0.00	10.20	2.00	30.34	0.02	6.6.8	100.12	0.77
	0.0	10.10	0.74	10.10	2.05	31.34	0.00	2.4.4	100.10	0.00
	4-2	49.29	0.78	16,05	2,03	51.26	6.82	1.14	100.40	1.82
	12.2	43.56	0.74	16.35	1.08	33.37	1.10	4.8.2	100.07	0.00
	 A 100 million and 100 million 	48.44	100	115.3	2.10	10.01	2.23		100.15	1.01
	12.1	43.40	0.70	10.00					and the second sec	
	18.0	49.66	0.78	16.53	2.01	41.52			100.52	1.92
	18.4	49.61	0.78	16.4	2.01	41,52 31,94	113	6.02	101.02	1.82

	51-3-17-	\$4-9-17-	51-3-23-	\$4-3-25	14-1-140	\$1-1-040	47-1-117-	47-1-112-	/1-1-123-	59-1-122
Number	20-6-1	20.6-2	26-1-1	26-8-2	548-16-1	3853	134124	113654	124-24-1	124-34-2
Major Colde Outrie										
5400	57.40	58.56	67.15	66.94	73.25	\$2.31	67.80	59.05	-12.95	52.90
Tiuc	1.23	1,47	9.88	0.70	1.32	0.65	3.56	0.88	1.06	1.18
AI205	15.81	16.43	14.16	13.55	12.47	17.67	16.32	15.33	17.92	48.19
Ne20	1.82	1.92	0.89	0.97	8,78	0.68	3.63	1.76	2.22	0.81
MaD	0.23	0.18	0.12	0.21	0.05	0.10	0.14	0.27	9.20	0.22
MgD	2.45	2.51	1.04	1.05	0.32	0.78	2.64	2.71	3.97	1.94
DryO ₃		0.07								
CsO	6.53	6.65	3.55	3.37	2.07	2.53	2.54	6.20	7.16	7.26
K:0-	0.55	1:10	1.22	1.24	1.16	1.72	1.43	0.87	3.44	0.50
P.0.										
FeD	11.07	14.53	5.45	5.80	2.45	3.57	5.72	9.25	10.82	19.61
SO.										
0										
Total	97.57	99.65	94.42	84.25	93.43	92.66	99.78	36.25	96.68	85.51
These										(11)(11)
Empered										
100000										
Set5						16.10	32.15		10.72	
T149						187.61	27,41		2116.07	
V21						278.19	18.03		216.40	
Cr52						8.15	2.44		102.91	
N560						4.82	8.72		19.68	
Cid33						1.49	0.03		2.04	
Table:						59.81	5.18		178	
Bal 37						382.00	61.01		5.54	
13232						5.02	0.91		3.03	
0238						1.45	9.83		9.02	
54593						5.81	3.47		0.10	
'Ta181						0.50	2.02			
La139						17.54	2.45		0.48 ···	
Cg140						32.55	\$ 69		1.51	
Ph 208						5.94	0.69		0.26	
Fy141						3.30	9.92		2.46	
N2B45						10.23	5.25		1.79	
3/33						11678	3) 92		25.10	
2093						144.96	21.69		10.09	
341178						3.93	1.55		3.36	
830147						2.81	1.42		9.99	
101153						0.84	0.35		0.54	
Coll 57						2.01	2.02		1.32	
T51.59						0.87	331		0.24	
Dy065						2.41	2.27		1.96	
Holds						0.64	246		0.35	
A88						19.39	12.28		9.83	
12106						2.14	1.23		1.30	
3.09.23						2.07	1.47		1.00	
1.01.75						0.52	0.26		0.16	

Appendix IV. Major oxide and trace element concentration of melt inclusion inside elinopyroxene and orthopyroxene from Site 296. First four number indicates the button and then mineral grain.

Number	51-3-38-	57.3.38-	64.3-119- 121-3	61-2-38- 40-12-1	61-2-38-	61-2-38- 40-21-1	\$1-2-38- 40-47-1	\$4-1-11.5- 119-22	\$1-1-35- +1-32-6	61-1-39- 41-22-2	
Major Clúck											
8400	40.27	30.11	10.01		47.74	4.4 100	11.91	74.74	40.00	47.93	
TOC	0.15	0.51	0.43	0.85	0.42	0.55	3.43	0.40	3.43	0.50	
al209	bi de	16.93	12.11	1575	10.01	15 50	11.51	11.46	14.52	15 25	
NR2O	0.65	0.61	1.87	1.72	1.63	0.58	1.87	2.01	3.85	1.40	
MaD	0.06	0.10	0.81	0.16	0.17	0.15	0.06	0.10	0.13	0.10	
Math	0.35	0.36	0.99	0.49	0.45	0.55	9.21	0.30	9.58	0.45	
CryCl ₁	0.64					0.02	0.62	0.02		0.07	
CaO	1.84	1.78	3.67	2.10	1.87	2.57	1.77	1.72	2.23	3.15	
K:O	1.67	1.61	0.55	2.04	1.94	1.98	2 3 3	2.27	2.53	2,00	
P.O.			0.07	0.06	9.67	0.21	217	0.00	2.11	0.05	
FeD	2.04	1.81	4.25	3.28	3.19	3.92	1.35	3.10	3.68	2.95	
50.			0.05	0.05	0.05	0.05	0.07	0.02	20.0	0.01	
C1			0.24	0.82	0.48	0.93	1.75	0.46	141	0.30	
Tota	92.81	84.20	\$1.12	35.22	92.20	51.10	10.92	35.48	30,95	25.95	
Trace											
Elements											
-(ppm)											
Sc15	13.21			29.51			14.78	49.94			
Ti49	4.60			13.85			10.78	1455.28			
VSL	11.32			6.11			36.37	11 51			
Ci92	0.34			0.72			4.51	1.27			
Na63	0.34			0.25			5.31	13.52			
Cs133	0.05			0.06			3.65	0.38			
30.662	0.53			2.34			1.01	14.91			
Bal 57	4.68			29.44			11.46	103.51			
Th232	9.36			0.18			9.94	0.77			
0.2.58	20.0			0.08			0.04	0.23			
NB%	0.07			0.51			212	0,70			
19181	0.00			1.112			2.02	0.05			
Col. 40	4.54			1.65			1.64	0.75			
Dictor	4.64			0.00			0.71	1.64			
Pel-41	0.75			0.45			3.77	1.38			
NUMBER	3.63			2.81			1.85	6.51			
39/55	3.85			14.80			5.55	32.55			
70190	5.47			13.07			5.00	\$6.21			
310.78	0.27			0.50			1.35	1.44			
3m147	1.17			1.08			0.54	7.72			
Ind 55	0.30			0.28			0.15	0.46			
GdI57	1.53			1.95			0.81	1.60			
150.99	0.26			0.22			0.13	0.31			
Dyles	1.46			1.61			1.95	3.23			
Hotes	0.25			0.31			327	0.83			
7.85	7.35			\$1.09			5.11	25.27			
E1166	0.84			0.95			3.66	3,20			
¥6072	0.34			0.99			2.68	2.88			
Lat/5	4.35			6.12			2.24	0.48			

Number	61-1-39-	55-1-98- 100-19	59-1-94- 101-14-1	59-1-98- 101-14-2	63-3-36- 39-25	49-1-04-27-
Majer Oxide						
(9176)						
SHOC	68,02	25.13	26.75	23.66	28.18	47.84
111.04	11.55	1.4.13	10.00	17.00	0.55	1.01
North Co.	1.14	1.50	2.04	3.39	19.95	9.76
Marth	0.37	0.17	0.35	0.10	0.71	0.03
Math	0.52	9.90	1.51	1.66		6.61
Dego.	0.22	2.04	2.20	0.00	5.54	0.61
0.01	0.00	2.32	6.44	0.06	7.44	12.16
1.0	1.02	1.41	2.44	7.10		14.10
K ₂ D	1.52	1.19	1.00	1.00	0.37	1.03
P ₂ O ₀	0.06	0.14	9.42	0.29	9.28	101000
FeD	3.48	11.13	7.75	7.84	5.65	10.11
59C) j	9.00	0.19	0.17	0.14	0.15	0.26
ct	9.35	0.16	0.20	0.18	0.11	
Total	91.49	35.25	55.24	36.12	59.28	56.00
Trace						
Circuits						
(blau)						
8645			32.39			126.64
T182			1361.38			19989.13
V31			199,47			978.89
Ch92			2.83			962.53
Na63			4.31			111.75
Cs133			9.06			0.16
30.62			3.07			4.1.2
Bal 37			46.95			40.43
18232			9.35			9.21
0258			11.0			0.11
NEWS .			0.16			0.51
19181						0.04
Cal 40			4.74			6.52
Distance			0.15			4.12
P-0.41			0.72			1.00
NVII 43			0.04			5.47
10/22			67.42			04.11
20-90			22.07			11.00
110.18			0.87			1.04
Sml47			1.25			1.85
Dul 55			0.37			0.64
GdIS7			0.96			2.65
151.99			0.12			0.37
Dv065			1.49			2.67
Holes			0.32			0.56
785			8.24			14.56
Er166			0.95			1.61
Yb072			1.07			1.85
Lat75			9.15			0.24

10000	49-1-34-	10-1-122-	561-115	50-1415	244-415	\$4.1-115	544-115-	54-1-115-	544-05-	\$4-1-115-
NO.	27-22-2	124-3	112-1-4	11942-2	119-3-4	113-13-	10514	115-39-1	10-0-1	119-11-1
Nujor										
arcide										
(MTN)										
805	47,94	45.91	40.32	46.67	47,48	41.05	半月	44.45	49.21	25.13
TiO	0.25	0.90	1.24	1.17	1.53	0.61	1.32	1,66	217	122
. Al ₂ 0 ₃	6.24	7,54	12.62	\$.67	7.22	14.52	3 5 3	7.19	12.13	13.46
Na ₂ C	1.16	1.56	2.32	1.49	1.58	5.50	2.58	1.65	2.34	3.04
MnO	0.45	0.96	0.22	0.42	0.50	0.14	0.55	6.25	0.35	0.07
MgO	14.08	15.10	13.70	14.72	14.74	14.70	15.58	12.05	12-04	12.90
K ₁ C	0.29		0.82	6.24	0.25			6.50	0.36	1.33
Dr.O.								81.1	0.34	0.04
00	10.29	01:56	11.80	12.77	10.38	12.91	11.96	13.52	11.59	12.91
7e0	15.28	14.98	12.67	13.50	15.85	12.48	15.41	17.66	12.01	13.26
Tutal	96.57	98.31	95.28	67.65	97.96	97.75	97.42	65 59	94.12	95.76
Matt	61.10	64.18	65.78	65.87	65.28	67.51	61.15	55.66	66.25	63.37
T	746.45	813.75	05630	\$17.52	7.89.04	505.05	\$52.25	\$\$5.57	928.23	554.52
Malk	70,90	73.04	58.06	71.15	72.95	25.57	70.59	75.04	33.40	54.45
There.										
cleana										
(COTO)										
8:45	94.46	168.01	128.77	121.35	87.51	15.10	115.95	12.15	147.59	18.03
TH5	11644.85	10275.20	17316.09	11938.45	2576.30	12307.25	10081.05	17214.97	15761.68	12239.17
3/51	417.09	1:9.81	673.79	\$ 1.81	26.11	671.55	#2591	\$12.95	700.11	568.69
0.22	13.55	4.58	67:20	31.88	10.90	5.52	811	12.35	4.19	6.48
NED	5.47	6.79	69.12	37.37	2.52	9.54	20.00	23.55	25.94	8.76
B385	6.92	0.85	2.62	1.08	3.39	8.04	2.63	4.32	0.81	124
Ibi137	70.14	25.56	182.77	41.57	23.35	635.65	233.22	157.50	70.73	221.10
Th232	2.90	0.11	0.36	6.11	0.07	0.18	0.19	1.34	0.34	0.21
U238	0.72	0.02	0.01	0.03	0.02	0.01	0.64	1.33	0.01	0.01
C435	0.14	0.01	0.11	0.03	3.32	0.01	0.03	81.3	0.02	0.03
NB49	7.90	4.87	2.01	1.70	321	5.18	36.11	1518	0.75	4.80
TALKI.	0.19	0.08	0.97	1.10	111	0.18	0.65	0.45	0.25	0.14
La179	76.77	12.74	2.50	6.16	8.35	951	2817	55.15	2 37	936
-Ca144	178.14	52.33	9.99	22.67	3513	10.79	107.38	1.27.40	7.65	\$7.11
Phone	0.99	0.28	0.21	1.46	215	1.12	0.19	1.32	0.25	1.04
2:141	24.32	10.37	2.00	4.04	5.57	4.66	16.57	15.55	1.45	4.15
Nd146	111.18	60.35	11.40	22.69	49.11	12.48	82.97	35.68	9.86	21.42
5(55	32.34	25.02	248.10	145.05	45.11	235.82	23.23	73.71	194.23	455 21
Zr90	34.71	68:35	24.75	45.23	\$5.19	40.00	138.18	10216	25.21	44.31
HU 38	1.93	3.11	1.14	1.85	2.44	1.84	5.43	417	1.26	1.90
Set147	25.22	22.90	4.21	7.33	12.37	2.44	22.27	15.55	3.82	5.87
E0159	3.79	1.78	1.57	2.35	917	1.98	4.29	3.32	1.97	1.56
04157	27.28	59,55	5.53	\$ 13	13.85	5.54	25.41	17.59	5.94	5.67
Tb195	4.32	5.23	0.51	1.27	2.27	0.80	5.53	2.73	0.55	0.87
Dy163	29.58	36.94	5.97	5.35	15.86	1.68	26.61	18.56	5.59	\$.10
20165	6.14	1,83	1.04	1.95	\$ 29	0.90	3.49	3.33	117	038
2,80	163.74	157.36	25.73	20.34	\$5.26	11.91	143.31	132.44	28.53	16.19
E1166	18.55	22.12	2.89	2.68	9.59	221	16.49	11.20	3.97	3,61
10172	0.51	21.81	2.55	6.42	3.35	124	10.45	1130	0.57	011
1411-13			1. 1.	a 2.1	1.		1.11	11.	1.1.1.	

Appendix V. Major oxide and trace element concentration of amphiboles from Site 296.

	34-1-140-	26-5-92-	\$7-1-23-	\$14-22-	57-1-28-	37-3-97-	\$7-2-97-	37-3-97-	\$7-2-97-	37-3-97-
No.	143-16-5	95-1-1	36-182	36-19-3	36-202	101-1-1	100-282	100.1-2	130-21	100-3-4
Major										
axide										
(which :										
50;	43.08	18.37	47.06	47.49	46.62	41.61	41.57	45 6	45,40	46.46
TICS	2.05	0.85	1.17	1.10	1.51	1.82	1.62	1.96	1.34	1.06
Alio	11.54	6.55	6.75	6.24	6.52	13.55	3.19	8.00	7.55	12.46
Na-C	3.06	141	1.67	1.18	1.46	3.36	1.51	1.74	1.69	1.10
89:01	0.14	0.50	0.24	0.78	0.35	P.18	1.45	0.74	3.74	0.05
MaO	15 60	15.14	14.33	13.83	17.97	14.45	14.75	17.62	14.44	13.55
K-O	0.16	0.54	0.24	0.28	0.29	0.47		0.33	0.37	0.15
000				0.02	0.01	6.10		0.07	4.04	0.01
000	13.64	10.15	10.16	10.42	0.55	11.05	11.26	10.77	10.04	15.77
20	34.54	17.45	14.47	15.85	16.50	13.17	14.92	15.05	11.55	11.72
Tatel	66.68	42.15	0640	94.68	96.15	68.45	92.20	64.52	96.15	65 17
Mail	(2.61	\$7.75	63.63	50.91	40.10	(7.54	63.50	6.71	45.50	67.55
7	\$72.31	241.19	789.16	822.95	387.14	\$74.99	\$73.09	\$51.88	562.75	965.08
Melt	65.59	69.05	13.14	25.20	75.17	55.88	09.75	73.32	77.15	17.41
-				1000						
claund										
(FERIO)										
3.44	110.44	22.63	10.00	48.65	91.92	118.01	21.61	64.67	14.99	171 45
7545	\$525.44	7041 94	7199.75	2551 60	1071.4 18	1418149	7500.55	11502.02	1301 80	19132 21
1951	125.49	195.71	309.63	184.78	216.06	(75.99	306.49	163.65	44.58	\$75.79
043	315	714	46.14	4.4.8	0.78	65.67	3615	634	2.54	6.94
10.00	0.00	10.15	75.48	15.22	9.33	48.87	5.64	8.17	1.70	15.05
Rh85	0.26	2.19	9.22	0.59	0.77	1.23	166	0.82	0.79	0.78
Ball?7	13.68	25.67	57.17	18.36	\$4.55	\$2.65	51.74	70.41	67.45	42.00
11.292	0.01	0.29	1.68	0.66	0.99	01.0	3.51	0.73	3.05	0.00
11338		0.09	0.47	0.13	0.07	0.00	0.15	0.06	0.01	
Curs.	0.00	0.10	0.28	0.01	0.11	6.60	3.01		0.02	
N853	0.24	6.50	2.90	7.16	6.51	0.75	3.55	3.06	3.55	0.42
Ta181	01.0	0.19	0.17	0.22	0.20	0.04	8.17	0.18	3.64	0.03
La139	0.44	21.65	19,87	50.15	22.31	1.68	40.83	13.52	4.02	0.89
Ce140	2.39	79.55	129.10	128.30	72.48	6.72	195.86	45.19	9.77	1.62
Phone	617	0.37	1.98	0.41	0.39	0.53	3.61	0.88	1.12	0.33
2:141	0.63	14.06	18.68	19.35	11.63	1.40	13,79	8.00	1.62	0.24
Md146	5.43	73.44	84.33	85.28	67.82	518	71.36	46.25	8.12	\$.76
5(55	\$1.59	24.18	162.12	45.46	51.21	259.91	95.88	153.54	\$26.96	188.28
Z190	12.27	41.55	1026	45.40	85.25	17.42	68.33	15.21	13.72	17.20
HIT 78	0.75	2.21	3.16	2.53	3.88	0.50	2.73	3.68	3.62	0.74
Seit 47	2.52	20.94	19,70	24,48	19.16	3.16	18.32	13.39	2.19	1.61
Da153	1.03	3.20	3.57	2.71	3.52	1.20	5.77	3.36	1.55	0.5/7
Gd157	4.48	21.55	19.01	25.85	20.84	4.00	18.95	15.59	2.53	3.53
Tb155	0.52	3.59	1.63	4,09	5.90	0.61	3.00	1.54	3.39	0.67
Dy163	6.12	24.51	17.68	27.45	22.90	4.34	19,86	17.16	2.55	4.66
Holes	2.36	5.02	3.74	5.62	2.62	6.83	1.01	3.52	3.58	0.90
288	32.58	138.15	99.53	1.53.44	112.84	13.23	105.86	92,45	13.69	12.68
B:165	3.54	15.56	10.33	16.56	11.57	3.30	11.35	ня	1.42	3.40
Ap115	9.24	17.91	10.98	17.91	12.43	1.92	10.00	9.64	1.46	3.38
10122	0,47	2,47	1.40	2.42	1.99	0.25	1.44	146	3.25	0.01

	\$7-2-97-	\$7-2-97-	\$7-2-97-	\$1-2-97-	\$7-2-97-	37-2-07-	57-3-38-	17-3-38-
No.	100-41	101-5-1	100.6.1	101.7-5	100-81	10.8-1	43-14-1	40.0
Major								
anide								
(wf%)								
50.	64.71	47.08	40.34	41.65	40.97	41.51	45.90	44.55
TICS	2.98	1.21	1.81	3.18	1.98	1.18	1.42	13.9
AliOi	8.11	6.86	12.81	\$16	13.28	11.34	7.52	8.84
Na ₂ C	1.01	1.28	2.29	2.52	2.65	8.27	1.47	1.85
8200	0.20	0.33	3.36	0.20	0.07	0.08	0.30	1.12
MgO	12.94	13.95	13.61	13.15	13.72	14.06	13.27	14.44
K d	0.35	0.23	0.48	6.33	0.36	0.39	0.35	
000			3.41	6.61		0.02	3.64	
CrO	10.26	10.25	11.78	13.78	11.48	11.51	10.07	11.66
740	15.41	14.95	12.25	15.06	12.18	12.05	15.77	9.76
Timi	96,20	95.15	95,49	5536	95.56	35.26	96.00	92.75
Mail	59.90	\$2.44	66.38	63 53	66,70	\$7.47	59.95	73.45
7	811.55	772.24	1016.70	\$ 50.88	945.78	16.63.96	\$23.66	866.77
Mdl	71.94	71.38	32.42	71.69	39.36	56.37	73.15	68.52
Time								
closed.								
(ppm)								
3045	119.71	82,08	127.87	151.50	145.32	171.61	80.37	\$1.51
Tb42	12810.05	7272.34	12138.87	15276.98	15721.55	15326.78	1238.59	13282.04
3/51	306.25	215.69	632.95	151.95	424.75	713.51	159.46	363.87
0:53	3.23	5.38	837	431	4.92	\$14.52	3.50	7.68
N:60	3.61	15.65	13.21	21.83	11.50	118.51	7.85	12.29
Rh85	0.52	1.67	1.24	6.52	0.00	0.59	0.54	1.55
Ba137	59.90	90.99	11414	72.67	66.13	3614	40.59	133.81
11:232	0.21	0.74	9.95	81.8	0.02	0.02	3.45	1.10
U338	0.97	0.16	9.05	0.04			919	0.33
CH33	0.02	0.10		0.01	0.02	0.02	0.02	6.05
N865	4.55	5.19	0.69	6.11	0.63	0.57	5.75	8.13
Ta181	0.18	0.19	9.81	0.32	0.94	0.01	319	0.32
La135	12.00	25.16	2.1.0	15.54	1.45	1.21	35.19	15.44
Ce140	40.51	90.55	5.03	15.00	5.91	4,70	98.72	92.55
Pb288	0.47	3.82	\$ 33	6.49	0.22	0.19	3.39	1.79
26141	7.42	13.62	1.46	13.49	1.28	1.14	13,70	14.42
Nd146	4.94	72.06	9.57	69.15	8.71	9.08	78.93	73.59
0(98	20.11	51.28	251,64	51,20	213.90	158.85	44.13	92.38
Zr90	73.84	\$2.22	19.27	53.26	19,99	21.10	54.39	106.52
HIL18	2.91	2.61	0.80	4.30	0.98	0.99	2.72	4.37
301.47	12.70	19,33	\$ 33	08.78	3.00	2,65	1929	15.22
131123	3.31	3,35	113	4.21	1.36	1.01	3.28	4,12
COLUMN	0.02	21.10	2.4.1	24.95	2.91	2.10	21.39	36.32
10125	2.75	3.24	2.50	3.82	0.89	0.99	332	3.26
The Lot	11.00	1.70	102	25.20	1.00	1.40	21.5%	4.16
10000	in 11	1222-022	77.16	100.00	120.04	100.00	133.52	1.1.5
Del.or	10.00	14.74	3.42	16 67	111	1.40	11.62	11.45
Vhi 22	0.31	10.82	1.81	12.12	0.40	2.42	19.76	13.58
10175	1.40	2.16	0.26	1.55	0.57	0.42	2.04	1.77

4 MAGMATIC EVOLUTION OF THE EARLY NORTHERN IZU-BONIN MARIANA ARC FROM SITE 1438 AND SITE 296 ROCKS AND MINERALS: A COMPARATIVE STUDY

Eshita Samajpati, Rosemary Hickey-Vargas

Abstract

Evolution of island arcs has always been an important topic to understand arc building and formation of the continental crust. However, the initial arc stages which are crucial to understand these processes has always been challenging to study because of the lack of volcanic records. The Izu-Bonin Mariana (IBM) arc and its rifted remnant arcs thus present an opportunity to explore early arc evolution. IODP Site 1438 and DSDP Site 296 which contains contemporaneous volcanic debris from the first remnant arc of IBM, Kyushu Palau Ridge (KPR), records the early magmatic history in the form of volcanic minerals, glass and lithic fragments. Major oxide, trace elements, and ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf isotope ratios reveal a significant piece of this information which is also used to compare the two sites. Lithic fragments or clasts from both the Sites indicate an Indian-type MORB origin, although higher variation in Nd isotope ratios is observed within Site 296 clasts in the late stages perhaps due to mixing of Pacific sediments. The mantle source becomes more enriched towards the last stages of arc evolution, evidenced by Nd isotope ratios of Site 296 clasts at high La/Sm_N (3.7-4.8) and Nb/Yb (2-4) ratios, and such features are not seen Site 1438 compositions which indicate a possible rifting related event which may have missed in the rear arc side. However, an enrichment in fluid mobile elements like Ba and Rb prior rifting is observed within the amphibole composition of Site 1438.

4.1 Introduction

IODP Site 1438, located in the Amami Sankaku Basin (Fig. 4-1), contains volcaniclastic sediments derived from the Kyushu Palau Ridge (KPR), a remnant of the first rifted arc of the Izu-Bonin Mariana (IBM) arc. The IBM provides a remarkable opportunity to study both active and past processes because of its unique extended nature. The volcanic and tectonic history of the IBM has been well studied and can be found in previous studies (Stern et al., 2003; Straub et al., 2010; 2015; Ishizuka et al., 2011a), although compared to the recent activities, the initial history is still being explored and comprehended. IODP Site 1438 was drilled to answer essential questions about early subduction processes, mainly arc inception and subsequent evolution of the IBM. Drilled samples from Site 1438 included the basement ocean crust and subsequent sedimentary deposits which comprises volcanic products shed from the KPR until it rifted. Site 1438 is also adjacent to another drill site, DSDP Site 296 located on the upper eastern flank of the ridge, and thus may have contemporaneous volcanic sediments (Fig. 4-2), which together can reveal some of the early evolutionary history of the IBM arc. In addition, the two Sites can also reveal any spatial differences seen between a proximal site (Site 296) and a distal site (Site 1438) and may be useful in the future when addressing questions in a similar setting.

Figure 4-1Map showing the location of Site 296 and Site 1438 on KPR

The main objective of this study is to understand part of the early history of the IBM arc by comparing sediments from the two Sites, focusing mainly on the last stages of the magmatic evolution of the arc just prior rifting. For Site 1438, we present new major and trace element data for glass and mafic minerals, pyroxene and amphibole, and melt inclusions. Additionally, we also have new major, trace elements and Nd-Hf isotope data for lithic fragments from both Site 296 and 1438. These results, together with previous data from Site 296: 1) glass and three andesite clast compositions (Samajpati and Hickey-Vargas, 2020a) and 2) melt compositions calculated from mafic minerals (Samajpati and Hickey-Vargas, 2020b), will be used to interpret the magmatic evolution at the northernmost section of IBM, segment 1 of Ishizuka et al. (2011b).

4.2 Methods

4.2.1 Sample description

The drilled section from Site 1438 (Fig 4-2) was divided into four sedimentary units (Unit I-IV) and the basement igneous unit (Unit 1) (Arculus et al., 2015a). The samples studied for this research are from Unit II (Cores 21F-30X) and the upper part of Unit III (Cores 12R-30R). Six samples studied from Unit II were mostly intervals of coarse unconsolidated sediments, with silty to clayey matrices. Minerals grains were loose in the sediments, and the grain size becomes finer up the core. Unit III samples are described as either turbidites or debrites (Johnson et al., 2017) and consist mostly tuffaceous mudstone, sandstone or breccia-conglomerate containing pumice and volcanic minerals. The biostratigraphic ages of the studied core samples from Site 1438 is early to late Oligocene, same as Site 296 (Ingle et al., 1975; Arculus et al., 2015a). Samples with large mafic lithic fragments or clasts were rare.

Samples containing a representative range of large lithic fragments, pyroxenes and amphiboles were selected for further analysis. Amphiboles were quite common in the Site 1438 samples, unlike Site 296, and they become more abundant upward, especially in Unit II sections 30X-6W (86-88 cm) and 30X-7W (13-15 cm). In these core sections amphiboles were the primary mafic phenocryst in the sediments rather than pyroxenes. Twelve Site 1438 samples were lightly crushed in plastic with a hammer and then disaggregated in DI water. After drying, pyroxenes and amphiboles were picked out from the samples and set in epoxy for chemical analysis.

Lithic fragments from Unit III, Site 1438, and Unit 2, Site 296 were cut from slabs using a small rock saw, then the outer layer was ground away using a grit paper followed by washing and ultrasonication in DI water. Samples were then dried and powdered for further analysis. Fifteen lithic fragments from Site 296 and 6 lithic fragments from Site 1438 were selected for the study. Out of the 21 samples, eight samples for Site 296 and four samples from Site 1438 were also analyzed for Nd and Hf isotope ratios. Also, some amphibole separates from 30X-7W (13-15) were picked for isotopic analysis.

Figure 4-2 Lithostratigraphic column of Sites 296 and 1438, red dashed lines correlate to similar biostratigraphic ages and the studied section

4.2.2 Analytical methods

Pyroxenes and amphiboles from Units II and III were analyzed for major elements at FCAEM, Florida International University (FIU) using a JEOL 8900R superprobe instrument. Minerals were analyzed at an accelerating voltage of 15 kV and 20 nA beam current using a 1 µm electron beam; for melt inclusion within pyroxene, the electron beam was defocused. Major elements were measured for15-30 seconds and data were corrected using the ZAF correction method. The accuracy of measurements for major oxides was better than 5%, trace elements in the minerals close to the detection limit had a higher error. Minerals were analyzed in back-scattered electron mode to reduce the possibility of analyzing inclusions; two points per grain close to the core were analyzed and averaged. Repeated analysis of standards FIU enstatite STD 350, BHVO-2 and Kaersutite (#AS1200-AB) was carried out at the beginning, middle and end of the analysis to check for data quality and account for any instrument drift.

Trace elements including rare earth elements (REEs) were analyzed by Laser Ablation ICP-MS using the Elan 6100 ICP-MS at the Trace Evidence Analysis Facility at FIU, using a New Wave 213 nm laser. NIST 612 was used as a calibrator and BHVO-2 as the external standard. Spot size for minerals was 80 microns, and for melt inclusions, it was 40-55 micron with a 10 Hz rep rate and 100% output for both. Two points per grain were analyzed for minerals; the average values are reported. The data was then processed using the software Glitter, with Ca as the internal standard. Melt inclusions smaller than 40 microns were not analyzed. Table 1. lists the data quality for the trace elements.

LA-ICP-MS (Trace elements in ppm)						SI-ICP-MS (Trace elements in ppm)				
Element	Mean of 20	%RSD	Rec value	%bias	Element	Mean of 3	%RSD	Rec value	%bias	
Rb85	7.72	4.7	9.261	-16.6	Rb85	10.07	1.1	9.261	8.8	
Sr88	379.57	3.6	394.100	-3.7	Sr88	370.44	3.1	394.100	-6.0	
Y89	24.98	6.1	25.910	-3.5	Y89	27.22	2.3	25.910	5.1	
Zr90	146.82	6.4	171.200	-14.2	Zr90	169.03	1.2	171.200	-1.3	
Nb93	17.35	6.2	18.100	-4.1	Nb93	17.86	0.3	18.100	-1.3	
Cs133	0.09	26.8	0.100	-8.5	Cs133	0.25	1.6	0.100	156.1	
Ba137	112.69	4.5	130.900	-13.9	Ba137	138.82	0.9	130.900	6.0	
La139	15.80	8.2	15.200	3.9	La139	14.72	0.6	15.200	-3.1	
Ce140	37.25	6.8	37.530	-0.7	Ce140	36.22	0.9	37.530	-3.5	
Pr141	5.09	6.5	5.339	-4.6	Pr141	5.14	1.2	5.339	-3.7	
Nd146	24.75	4.4	24.270	2.0	Nd146	23.49	2.5	24.270	-3.2	
Sm147	6.03	9.3	6.023	0.2	Sm147	6.08	0.8	6.023	1.0	
Eu153	1.94	6.1	2.043	-4.7	Eu153	1.72	1.7	2.043	-15.7	
Tb159	0.89	11.9	0.939	-4.7	Tb159	0.90	2.9	0.939	-3.3	
Gd160	6.27	7.0	6.207	1.1	Gd160	6.11	1.9	6.207	-1.5	
Dy163	5.44	8.6	5.280	3.0	Ho165	0.98	1.3	0.989	-0.8	
Ho165	0.97	11.2	0.989	-1.2	Dy163	5.27	1.6	5.280	-0.2	
Er166	2.54	8.9	2.511	1.4	Er166	2.31	2.7	2.511	-8.0	
Yb172	2.09	11.2	1.994	5.1	Yb172	1.99	3.2	1.994	0.1	
Lu175	0.30	16.2	0.275	10.0	Lu175	0.29	3.1	0.275	5.7	
Hf178	4.41	10.7	4.470	-1.3	Hf178	4.06	2.0	4.470	-9.0	
Ta181	1.20	10.1	1.154	4.6	Ta181	1.27	0.6	1.154	10.5	
Pb208	1.31	11.8	1.653	-20.2	Pb208	2.56	1.3	1.653	55.1	
Th232	1.23	8.2	1.224	1.1	Th232	1.26	1.4	1.224	3.6	
U238	0.39	14.0	0.412	-4.5	U238	0.45	2.0	0.412	11.1	

Table 4-1 Data quality of USGS standard BHVO-2 for trace elements using LA-ICP-MS and SI-ICP-MS methods

Powdered lithic fragments (0.2 to 5 g) were dissolved for major oxide and trace elements using methods described in Laxton (2016) and analyzed using solution introduction ICP-MS at FIU. Seven standards were analyzed as a measure for quality and to calculate the calibration curve. Major oxide data for standards analyzed as unknowns had percent bias less than 5.

Analysis of Nd and Hf isotope ratios for some of the lithic fragments were carried out at the University of South Carolina using a Thermo Finnigan Neptune MC-ICP-MS, methods are mentioned in Yogodzinski et al. (2018). Amphibole separates from Unit II sample 30X-7F-13-15 was also analyzed for Nd and Hf isotopes. The results were normalized to the standards La Jolla for ¹⁴³Nd/¹⁴⁴Nd and JMC-457 for ¹⁷⁶Hf/¹⁷⁷Hf. USGS standards, AGV-1 and BCR-2 analyzed as unknowns agree with published reference values of Weis et al. (2006, 2007) for Hf isotope ratios but are slightly high for Nd isotope ratios; within-run 2 sigma of the mean errors are within 0.000008. Data for all analyses are listed in the appendices.

4.3 Results

4.3.1 Pyroxene

Both orthopyroxene and clinopyroxene are present in the samples; some of the pyroxenes had melt inclusions. Clinopyroxene (cpx) has a composition range of Wo₃₈. ⁴⁵En₃₉₋₄₆ and magnesium numbers (Mg#) of 56-85, whereas orthopyroxene (opx) was Wo₁. ⁴En₅₇₋₆₉ and Mg# between 58-72. Unusually high-Mg cpxs which were found in Site 296 samples are absent (Samajpati and Hickey-Vargas, 2020b). In the alumina vs. Mg# plot for cpx (Fig. 4-3a), the alumina in cpx increases until Mg# 80, where a high variation of alumina content is seen, and after which the alumina content seems to decrease. However, for Site 1438 cpxs this is not as apparent as in Site 296, where high-Mg# low Al cpxs are present. Using a discrimination diagram from Leterrier et al. (1982), nearly all cpxs from Site 1438 have a tholeiitic affinity with subduction features; no calc-alkaline or MORB like cpxs are present (Fig 4-3b & c). In comparison, cpxs from Site 296 straddle the tholeiite/calc-alkaline boundary and a few have MORB-like characteristics.

Primitive mantle normalized trace element concentrations of cpxs is shown in Fig. 4-4a. All cpxs show Nb depletion. Low Mg# cpxs (60-70), most likely from felsic magmas, have increasing Eu, Zr and Hf depletion, probably reflecting the crystallization of plagioclase, apatite and Fe-Ti oxides. Site 1438 cpxs fall entirely within the compositional range observed within Site 296 cpxs.

Figure 4-3 (a) Mg# vs. Al₂O₃(wt%) of clinopyroxenes of Site 1438, (b), & (c) Tectonic discrimination diagram for clinopyroxenes from Leterrier et al. (1982). Elements are expressed in atoms per formula unit. The shaded region in the background shows the composition of Site 296 clinopyroxenes

Figure 4-4 (a) Primitive mantle normalized trace element concentration of Site 1438 cpxs. Normalizing values after Sun and Mcdonough (1989) (b) Primitive mantle normalized trace element concentrations of Site 1438 amphiboles. Shaded regions are the composition of Site 296 minerals

4.3.2 Amphibole

Amphiboles analyzed are from both units II and III, Site 1438. According to the Leake et al. (1997) classification, the amphiboles from Site 1438 are of the varieties magnesiohornblende, edenite, tshermakite, and magnesiohastingsite. Normalized trace element abundances among the amphiboles (Fig. 4-4b) show a generally similar trace element pattern with few differences. One is variable Eu depletion and the other is Ti depletion and enrichment. These differences are related to magma composition; amphiboles from felsic magma will have higher overall REE concentration, with Eu and Ti depletion as the result of crystallization of plagioclase and Fe-Ti oxides. More mafic magma will form amphibole with low trace element concentrations and Ti peaks indicating Fe-Ti oxides did not yet saturate in the magma. A second prominent difference is the high variation in LILE elements, Ba and Th. Higher Ba and Th concentrations are seen in Unit II amphiboles. Unlike Site 296, Unit 2 amphiboles, there are no LREE, Ba, and Th enriched amphiboles in Site 1438 Units II and III. Also, Site 1438 amphiboles range to lower overall concentrations of trace elements compared with amphiboles from Site 296.

4.3.3 Glass and Melt Inclusions

Individual detrital glass shards were rare in Site 1438 sediments. Of the few that were found, SiO₂ content ranges from 63 to 74 wt% and Mg#s are 13 to 58. Glassy melt inclusions enclosed in pyroxene, both cpx and opx, have SiO₂ contents of 52 to 73 wt% and Mg#s of 11 to 67. Among both glass shards and MIs, some andesitic and dacitic compositions show high Mg#s. Glass shards from Site 1438 plot mainly within the low K magma series whereas the MIs plot both in low and medium K fields (Fig. 4-5a). Glass shards and MIs from Site 296 were medium K. TiO₂ contents for glass shards and MIs from both Sites are similar but high variation is observed in the MgO contents of MIs and glass from Site 1438 (Fig. 4-5b & c). Broadly two groups can be seen, one is a high-MgO series (7.8 wt% in basalt to 2 wt% in rhyolite) and the other is low MgO series (3.4 wt% in basalt to 0.3 wt% in rhyolite).

Normalized trace element concentrations of glass shards and MIs (Fig 4-6a) show Nb depletion throughout a wide variation in trace element concentrations, including La/Sm_N values from 0.5 to 3.3. Zr and Hf concentrations also vary relative to REE, which may be due to crystallization of apatites, which remove REE, in intermediate to felsic magmas. The compositional range of the glass shards and MIs falls within the analyzed Site 296 melt compositions (Samajpati and Hickey-Vargas, 2020a).

Figure 4-5 (a), (b), & (c) SiO₂ vs. other oxides (in wt%) for glass, melt inclusion and clasts from Site 296 and Site 1438. Fields for K_2O are from Peccerillo and Taylor (1976)

Figure 4-6 (a)Primitive mantle normalized trace element concentration of Site 1438 glass (orange), MI (blue) and clast (purple) (b) Primitive mantle normalized trace element concentration of new Site 296 glass (orange) and clast (purple). Shaded background is the composition of previously analyzed glass and clast composition from Site 296.

4.3.4 Lithic Fragments (Clasts) from Sites 1438 and 296

Site 296 clasts reported in this paper plot within low K to shoshonite fields on a K₂O vs. SiO₂ plot (Fig. 4-5a), whereas clasts from Site 1438 plot in low to medium K magma fields. Except for one high MgO basalt clast, most Site 296 clasts have MgO concentrations (6.3 to 1.3 wt%) similar to previously reported glass shards and clasts (6.6 to 0.9 wt%) (Samajpati and Hickey-Vargas 2020a). Site 1438 clasts have similar MgO contents (6.0 to 2.7 wt%), except for a high-MgO dacite (Fig. 4-5c).

Normalized trace element patterns for Site 296 clasts show typical arc features, such as negative Nb anomalies (Fig. 4-6b) and slightly depleted to highly enriched LREE (La/Sm_N values 0.6 to 4.8). In contrast, clasts from Site 1438 have flat to slightly enriched LREE (Fig. 4-6b) (La/Sm_N values of 1 to 2.7).

¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁷Hf/¹⁷⁶Hf ratios measured in clasts from Site 296 and 1438 are plotted in Fig. 4-7, using epsilon notation. In the ENd vs. EHf plot, all but one clast plots within the Indian MORB field (Fig. 4-6). Site 296 clasts range to lower ¹⁴³Nd/¹⁴⁴Nd at a similar ¹⁷⁷Hf/¹⁷⁶Hf ratio compared with Site 1438 clasts. The amphibole separate from Site 1438 Unit II (30X-7F-13-15) had a small Hf signal, therefore, a large 2 sigma error of 0.00005.

Figure 4-7 ENd vs. EHf plot for Site 296 and Site 1438 clast. CHUR values used to calculate the E values are from Bouvier et al. (2008), mantle line from Pearce et al. (1999)

4.3.5 Mafic minerals of Site 1438

Trace element abundances for melts in equilibrium with mafic clinopyroxenes were calculated using partition coefficients calculated from a Site 296 cpx and basalt melt inclusion pair (Samajpati and Hickey-Vargas, 2020b). Clinopyroxenes with Mg#s greater than 75 (Mg# 45 in the liquids, Putirka et al., 2008) were used to infer equilibrium trace element contents. Normalized trace element concentration (Fig 4-8a) for the equilibrium melts have a La/Sm_N ratios of 0.5 to 1.7. This composition range for the melts falls within the compositional range of inferred Site 296 melts (Fig. 4-8a). High Mg# (88-92) cpx

grains from Site 296, which had unusually low melt trace concentrations, are excluded from this comparison. Two Site 1438 cpx with Mg#s 75 and 80 had normalized melt Nb concentrations slightly higher than La; these cpxs may have formed during rifting stage which could lead to higher Nb concentrations of the melt.

Using equations for temperature and melt silica content in equilibrium with amphibole from Putirka (2016), the Site 1438 amphiboles yield a crystallization temperature of 750 to 1006 °C and melt SiO₂ contents 54 to 75 wt%, although felsic melts are more common. Inferred melt compositions for these amphiboles were calculated using methods from Humphreys et al. (2019). La/Sm_N values for these magmas range from 0.27 to 6.78 (Fig. 4-8b). La/Sm_N values for magmas in equilibrium with the amphibole decreases up the core such that Unit II amphiboles have La/Sm_N less than or close to 1. In constrast, Rb concentrations are higher than unit III amphibole inferred melts from Site 1438 (Fig. 4-8b). Since Unit II amphiboles had higher Ba concentration than the Unit III amphiboles, the magmas which crystallized these amphiboles will also have higher Ba values. Melts in equilibrium with Unit III amphiboles have lower Rb concentrations but at a higher La/Sm_N ratio.

Figure 4-8 (a) Primitive mantle normalized calculated melt composition in equilibrium with mafic clinopyroxene from Site 1438 (b) Primitive mantle normalized calculated melt composition in equilibrium with amphiboles from Site 1438, blue are andesite, yellow are dacite and orange are rhyolite melt composition in equilibrium. The shaded background represents the calculated melt compositions from Site 296 minerals

4.4 Discussion

4.4.1 Comparison of Site 296 and Site 1438

4.4.1.1 Location and physical characteristics

The drilled Units studied from Sites 296 and 1438 are similar in that both are interpreted as turbidites containing lithic fragments, volcanic glass and minerals and eroded from the KPR. Nonetheless, there are significant differences between the sites based on the composition of fragments, grain size, and compactness of the core samples. Site 296 is located on a structural terrace in the western side of KPR, where the upper part of Unit 2, consisting mainly of poorly to moderately sorted lapilli tuffs, were described as direct products from active eruptive processes. In contrast, the lower part of Unit 2 samples were volcanic sandstones, where volcanic materials shed from either side of the terrace were reworked and deposited (Ingle et al., 1975). Lithic fragments change from more pumice or felsic dominated to more mafic or andesitic dominated up the core, with the concentrations of felsic clasts at specific intervals. The grain size of the minerals is also larger in Site 296 samples compared with Site 1438, and in most samples the matrix has been vitrified making it challenging to disintegrate some of the core samples.

Site 1438 located on the Amami Sankaku basin is a distal location relative to the KPR source and volcanic debris is deposited by downslope migration of arc deposits as a result of the steepening of the slopes (Brandl et al., 2017). Studied Unit III samples from Site 1438 were interpreted as debrites with interbedded turbidites (Johnson et al., 2018). The studied samples were not as compact as Site 296 samples, the mineral grains were smaller, and the major lithic fragments observed was pumice; mafic clasts were mostly absent until Core 30 at approximately 490 meters. Another significant difference observed between the two sites is the distribution of types of lithic fragments. Site 1438 samples were repeated units of very coarse pumice-bearing conglomerates which transitioned to finer-grained sandstones upward. Since pumice was the significant lithic fragment observed at Site 1438, unlike in upper Site 296 Unit 2 lapilli tuffs, the question arises if the upper unit III are just turbidites and debrites or the product of explosive volcanism of the last stages of Oligocene IBM arc. Since pumice is also light, it can float until settling in suspension to form normal graded sedimentary units.

A last significant difference seen between the two sites may be rifting related changes. Since Site 1438 is situated on the rear arc side, magmatism accompanying arc rifting and arc subsidence may not be recorded. In contrast, debris collecting at Site 296 on the eastern side of the ridge at shallower water depths could show petrologic and geochemical signatures related to rifting. Indeed, some clinopyroxenes from Site 296 had MORB like features (Fig. 4-3c) and unusually high Mg clinopyroxenes present in Site 296, but such materials were absent in Site 1438.

4.4.1.2 Magma compositions

Overall, magma compositions from glass, melt inclusions and clasts of the northernmost IBM arc are predominantly medium K with the presence of both high and low K magmas. Although very mafic clasts or minerals are not common in upper Site 1438, some felsic low K melts (Fig 4-4a) from Site 1438 have high Mg#s (50-60). In the FeOt/MgO vs. SiO₂ (Fig. 4-9a) these melts plot in the calc-alkaline field or at the boundary line. Based solely on the compositions of clinopyroxenes from two sites, cpxs from Site 1438 are of tholeiitic type (Fig 4-3b) whereas both types were present in Site 296, with more calc-alkaline cpx at the bottom cores and tholeiitic cpx in the upper ones. However, as shown in Fig 4-9a from glass, MI and clast data, calc alkaline melts were also present in Site 1438. A few calc-alkaline, and esitic clasts and a melt inclusion from Site 296 Unit 2 have the highest La/Sm_N ratios (4-4.8) observed at either site, with high Ba, Th and Nb concentrations (Fig. 4-9 b,c). Such LREE enriched mafic or intermediate magmas are absent in Site 1438 (both from analyzed and calculated), which makes the enriched magmas in Site 296 unique to the two sites. Some MIs from Site 1438 have the highest Th/Yb ratios at similar Nb/Yb ratios compared with Site 296 melts (Fig. 4-9b). Except for one basalt clast from Site 1438,

which shows very high Ba concentration (Fig. 4-9c), most melts from Site 1438 have lower Ba and Nb concentrations than Site 296 melt compositions. Amphiboles in Unit II, Site 1438, which represent the last stage of IBM are activity, concurrent or prior to rifting have higher Ba concentrations than the amphiboles from Unit III (Fig. 4-3b), indicating the magma it crystallized from also had high Ba concentrations. Ba add to the mantle sources of are magma by hydrous fluids derived from subducted sediment, a process which occurs at the arc front and at shallower depths than sediment melting (Pearce et al., 2005). Therefore, an increase in Ba concentration in the last stage magma could be related to either increased contribution of fluids or an originally Ba-enriched mantle source. Nb concentrations of Site 296 magmas are also higher than Site 1438 magmas. Nb and high Nb/Yb indicates asthenosphere fertility, therefore the mantle sources for Site 296 primary magmas could be from a more fertile asthenosphere than those for contemporaneous magmas represented by sediments at Site 1438.

Figure 4-9 (a) SiO₂ vs FeOt/MgO plot distinguishing the tholeiitic (Th) and calc-alkaline (Ca) fields (Miyashiro, 1974) for melt compositions represented by glass, MI and clasts from Site 296 and Site 1438 (b) Logarithmic plot of Th/Yb and Nb/Yb ratios for melts (c) Ba/Yb vs Nb/Yb plot for the melt compositions

4.4.3 Mantle Geochemistry

Figure 4-10a show the initial ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf isotope ratios the IBM arc through time, as inferred from data from DSDP Site 296 and 1438. Data for Site 1438 basement and Unit IV sills are from Yogodzinski et al. (2018), Shikoku basin, and Neogene

Izu arc data from fallout tephras are from Site 782 (Straub et al., 2010) and some Unit III Site 1438 samples are from Laxton (2016). Overall there is an increase in ¹⁴³Nd/¹⁴⁴Nd isotope ratios from the Oligocene arc to the Neogene arc, suggesting either mantle depletion with time or a shift in mantle source compositions. Interestingly, Nd isotope ratios for the Site 296 clasts show a wide range of values which may result from mixing of the sub-arc mantle with Pacific Ocean sediments or the subducting altered crust. Compared to the Nd isotope ratios, Hf isotope ratios of the IBM arc have not undergone much change. This may reflect the common assumption that Hf isotopes are not very affected by subduction processes, and that Hf isotopes of the arc volcanic materials reflect that of the mantle source (e.g., Pearce et al., 1999).

To further assess whether mixing of mantle and subducted materials leading to the isotopic composition of these clasts is plausible, mixing curves calculated between the subarc mantle, sediments, and the altered oceanic crust (Fig. 4-10b). The mantle values have been inferred from the average basement data of Site 1438 assuming a 5% batch melting of an upper mantle composition of olivine:opx:cpx:spinel= 58:27:12:3 and mineral-melt partition coefficients from Donnelly et al. (2004). Pacific sediments, clay (CL), chert (CH) and volcanic sediment (V), data for trace elements are from Elliot et al. (1997) and isotopes are from Pearce et al. (1999). Altered Oceanic Crust (AOC) data are from Kelley et al. (2003) for trace elements and Chauvel et al. (2009) for isotopes. Two mixing lines between the mantle compositions and the sediments are constructed, and one between the mantle and a mix of volcanic sediment and the AOC. Based on the calculations, the Site 1438 magma is derived from the mantle with inputs from Pacific volcanic sediments and the AOC (2-5%), whereas Site 296 magma composition have similar mantle sources, but mixing trends with Pacific volcanic sediments (2%), AOC and volcanic sediments (5%) and Pacific pelagic sediment (CH)(2%) (Fig. 4-10b). The input from pelagic sediments observed within Site 296 are present towards the top of Unit 2.

Figure 4-10 (a) Initial ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf isotope ratio evolution of IBM arc from 49 m.y to Neogene (b) Mixing curves between the mantle composition represented by Site 1438 basement, Pacific Ocean sediments, clay (CL), chert (CH) and volcanic sediments (V) and altered ocean crust (AOC)

Figure 4-11 (a)- (d) Trace element ratio vs. ¹⁴³Nd/¹⁴⁴Nd for mafic and intermediate clasts of Site 1438 and Site 296. Blue diamonds are also Site 296 clasts. Also shown are data from Laxton (2016) from same depth interval.

Trace element ratios vs. ¹⁴³Nd/¹⁴⁴Nd isotope ratios for intermediate and mafic clasts from Site 296 and 1438 are shown in figure 4-11 a-d. In Site 296, Nd isotope ratios decreases up the core indicating an increasing mantle enrichment; clast from core 64, Site 296 has the highest Nd isotope ratios or derived from the most depleted mantle source. Clasts from the lower cores section of Unit II, Site 296 are isotopically similar to Site 1438 samples; these are the volcanic sandstones where pumice is the major clast type. Highly enriched magmas (La/Sm_N >4) from Site 296, are from a fertile mantle source with high Th and Nb concentration (Blue diamonds in Fig 4-11 a,b & d) and have relatively lower ¹⁴³Nd/¹⁴⁴Nd. The mafic Site 1438 clast has relatively higher ¹⁴³Nd/¹⁴⁴Nd, but Th/Yb ratio is higher, and Ba/Nb lower than other clasts (Fig 4-11). Nd isotope ratio of clasts (Site 1438) from Laxton (2016) from the same depth interval, show similar isotope ratio as the Site 1438 clast from this study, but at lower Nb/Yb and Th/Yb values (Fig. 4-11 b,d); 2 clasts from Laxton (2016) has high La/Yb values (Fig 4-11a) and very high Ba values (not shown in fig. 4-11c)

4.4.3 Temporal Variation and Correlation of the Sites

Together, volcanic sediments from Sites 1438 and 296 represent the volcanic history of the early IBM arc before rifting. The upper section of Site 1438, Unit II and Unit III correlate in time with Site 296 Unit 2. Although there are few differences observed within the two sites, there are also many similarities. Rocks and minerals from Site 1438 are mostly of felsic composition with few intermediate and rare mafic compositions which present a challenge in distinguishing source characters from magmatic differentiation. Based on the inferred composition of melts in equilibrium with Unit II Site 1438 amphiboles, the latest stage magmas become enriched in Rb and Ba, but have low La/Sm_N ratios for intermediate and felsic magmas (0.2 to 1.9). This contrast with felsic melts in equilibrium with amphiboles from Unit III which have lower Ba and Rb concentration and low to high La/Sm_N ratios (0.5 to 6.8). Also, amphiboles become predominant mafic minerals in Unit II rather than pyroxenes which is usually the dominant mafic mineral in the core samples from both the Sites.

Site 296 sediments show a wider variation in magma and source compositions compared with Site 1438. The compositional range represented by trace element concentrations (both

calculated and analyzed) of Site 1438 magma falls within the Site 296 magma compositions. Very depleted and enriched trace element concentrations are uncommon in Site 1438. Previous and new data (mafic to intermediate clasts) from Site 296 indicate that the magma composition became more LREE enriched with time and with increasing mantle fertility (Fig. 4-11a, c) possibly due to an enriched mantle source. This trend is not very apparent in Site 1438 (Fig. 4-11b, d), although there were not many mafic and intermediate magma compositions to provide a thorough comparison. The previous study of melt inclusions from Brandl et al. (2017) on Site 1438, Unit III concludes that magma composition does become more enriched during the last stages of the Oligocene IBM arc, < 37 Ma. Isotope composition of Site 296 also becomes more enriched up the core as suggested by lower Nd isotope ratios, with the most enriched mantle sources coinciding with high La/Sm_N and Nb/Yb ratios (Fig. 4-11a, b). The enrichment of Nd isotope ratios could be because of mixing of pelagic sediments in the later stages as observed in Site 296 compositions.

Figure 4-12 (a) La/SmN vs. depth (mbsf) of Site 296 mafic and intermediate melt compositions (b) La/SmN vs. depth of site 1438 mafic and intermediate melt compositions (c) Nb/Yb ratio vs. depth of Site 296 melt compositions (d) Nb/Yb ratio vs. depth of Site 1438 melt compositions. Both analyzed and calculated melt are shown.

The biostratigraphic ages of Unit 2, Site 296 and Units II and upper Unit III, Site 1438 is early to late Oligocene; both are within the < 37 Ma group described by Brandl et al. (2017). Correlating Sites 296 and 1438 is problematic, although it seems that before the appearance of highly enriched magma (around 700 m, Site 296) magma compositions were similar at both Sites, in terms of both trace element composition and isotopic ratios. The

core samples in both the sites, below 700 m in Site 296 and Site 1438, also are rich in pumice clasts; therefore, they may be contemporaneous and represent a more explosive eruptive stage of the arc. Around 700 m and above in Site 296, the core samples are lapilli tuff which is said to be direct deposition of the volcanic activity (Ingle et al., 1975). These are the units where enriched mafic amphiboles and depleted unusually high Mg# cpxs are common. Considering that Site 1438 may not have any evidence rifted related magmatic activity since it is on the rear arc side, the magmas which formed these features at Site 296 may be associated with the initiation of rifting. During true rifting and opening of the Shikoku Basin, the magma composition in Site 296 may have become more depleted and cpxs with high Mg#s, MORB affinity, and depleted trace element compositions crystallized. The change from fluid mobile element (like Ba and Rb) depleted amphibole in Unit III to higher concentration in Unit II also reflects a high influx of fluid between the two units of Site 1438. At the last stages of arc magma evolution as recorded in Site 1438, high fluid content lead to the stabilization of amphiboles with high concentration of fluid mobile elements.

4.5 Conclusion

In summary, Site 296 and Site 1438 reveal the magmatic evolution of the early to late Oligocene IBM arc (~28 to 36 Ma). Volcaniclastic materials reveal some significant similarities and difference which can be related to the location of these sites on KPR. Site 1438 located on the rear arc side contains pumice as the major lithic fragments whereas Site 296 situated on the ridge contains both mafic and pumice clasts; this may be due to higher mobilization of pumice over mafic clasts during deposition in Site 1438. The lower section of Unit 2, Site 296 and the upper studied section of Site 1438 correlate in terms of

the abundance of pumice clast in the core samples, these are either volcaniclastic sandstone or breccias. The trace element composition and the isotope ratios are also similar in these sections from the two sites, which suggests a possible correlation between the two. Towards the last stage of arc evolution, there were high input of fluid or water which led to crystallization fluid mobile (Ba and Rb) enriched amphiboles in unit II, Site 1438 which are slightly depleted in LREE. Evidence of high-water content of magma in upper unit 2, Site 296 is also present inferred from increasing abundance of anorthite plagioclase and amphiboles. However, there are features unique to Site 296 which are present towards the top of Unit 2, such as magmas from an enriched mantle source leading to the evolution of highly LREE enriched magmas at high Nb/Yb ratios, which also crystallized some mafic amphiboles in Site 296 magmas. Around the same time, there were also REE depleted high Mg magmas which formed some very high Mg clinopyroxenes. Indication of these late magma types is absent in Site 1438 which suggest that these magmas evolved during rifting stages and therefore maybe absent in the rear arc.

4.6 Acknowledgment

This research was supported by NSF grants OCE 15377861 to Rosemary Hickey-Vargas. We gratefully acknowledge the contribution of Gabriela Fernandez for her help in sample disintegration and minerals separation and Ryan Waldman for his help with sample preparation for isotope analysis. We also thank Thomas Beasley of the Florida Center for Analytical Electron Microscopy (FCAEM) at FIU for assistance with EPMA analyses and Dr. Ping Jiang of the Trace Evidence Analysis Facility (TEAF) at FIU for assistance with ICP-MS analyses and lastly, the people at Centre for Elemental Mass Spectrometry, University of South Carolina for their help in analyzing the sample.

- Arculus, R., Ishizuka, O., Bogus, K., et al., 2015, International Ocean Discovery Program Expedition 351 preliminary report; Izu-Bonin-Mariana Arc origins; continental crust formation at an intraoceanic arc; foundation, inception, and early evolution; 30 May-30 July 2014: Preliminary Report (International Ocean Discovery Program), v. 351.
- Bouvier, A., Vervoort, J.D., and Patchett, P.J., 2008, The Lu-Hf and Sm-Nd isotopic composition of CHUR; constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets: Earth and Planetary Science Letters, v. 273, no. 1-2, p. 48-57.
- Brandl, P.A., Hamada, M., Arculus, R.J., et al., 2017, The arc arises; the links between volcanic output, arc evolution and melt composition: Earth and Planetary Science Letters, v. 461, p. 73-84.
- Chauvel, C., Marini, J., Plank, T., and Ludden, J.N., 2009, Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle: Geochemistry, Geophysics, Geosystems - G3, v. 10, no. 1, p. Citation Q01001.
- Donnelly, K.E., Goldstein, S.L., Langmuir, C.H., and Spiegelman, M., 2004, Origin of enriched ocean ridge basalts and implications for mantle dynamics: Earth and Planetary Science Letters, v. 226, no. 3-4, p. 347-366.

- Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana Arc: Journal of Geophysical Research, v. 102, no. B7, p. 14-15,019.
- Hickey-Vargas, R., Abdollahi, M.J., Parada, M.A., Lopez-Escobar, L., and Frey, F.A., 1995, Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone; implications for crustal composition and magma-crust interaction: Contributions to Mineralogy and Petrology, v. 119, no. 4, p. 331-344.
- Humphreys, M.C.S., Cooper, G.F., Zhang, J. et al., 2019, Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole.: Contributions to Mineralogy and Petrology, v. 174, no. 9.
- Ingle, J.C., Jr, Karig, D.E., Bouma, A.H., et al., 1975, Site 296: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 191-274.
- Ishizuka, O., Tani, K., Reagan, M.K., et al., 2011, The timescales of subduction initiation and subsequent evolution of an oceanic island arc: Earth and Planetary Science Letters, v. 306, no. 3-4, p. 229-240.
- Ishizuka, O., Taylor, R.N., Yuasa, M., and Ohara, Y., 2011, Making and breaking an island arc; a new perspective from the Oligocene Kyushu-Palau Arc, Philippine Sea: Geochemistry, Geophysics, Geosystems - G3, v. 12, no. 5, p. Citation Q05005.

- Johnson, K., Waldman, R., and Marsaglia, K.M., 2017, Data report: sedimentary columns with facies and bedding for Units II–IV at IODP Site U1438: Proceedings of the International Ocean Discovery Program, v. 351.
- Kelley, K.A., Plank, T., Ludden, J., and Staudigel, H., 2003, Composition of altered oceanic crust at ODP Sites 801 and 1149: Geochemistry, Geophysics, Geosystems -G3, v. 4, no. 6.
- Laxton, K., 2016, Petrological and geochemical evolution of the Kyushu-Palau (early IBM) volcanic arc, Western Pacific, University of Leeds, 2016.
- Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997, Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names: The Canadian Mineralogist, v. 35, Part 1, p. 219-246.
- Leterrier, J., Maury, R.C., Thonon, P., Girard, D., and Marchal, M., 1982, Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series: Earth and Planetary Science Letters, v. 59, no. 1, p. 139-154.
- Miyashiro, A., 1974, Volcanic rock series in island arcs and active continental margins: American Journal of Science, v. 274, no. 4, p. 321-355.
- Pearce, J.A., Kempton, P.D., Nowell, G.M., and Noble, S.R., 1999, Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction

components in Western Pacific arc-basin systems: Journal of Petrology, v. 40, no. 11, p. 1579-1611.

- Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., 2005, Geochemical mapping of the Mariana arc-basin system; implications for the nature and distribution of subduction components: Geochemistry, Geophysics, Geosystems - G3, v. 6, no. 7.
- Peccerillo, A., and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey: Contributions to Mineralogy and Petrology, v. 58, no. 1, p. 63-81.
- Putirka, K., 2016, Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes: American Mineralogist, v. 101, no. 4, p. 841-858.
- Putirka, K.D., and Tepley, F.J.,III, 2008, Thermometers and barometers for volcanic systems: Reviews in Mineralogy and Geochemistry, v. 69, no. 1, p. 61-120.
- Samajpati, E., and Hickey-Vargas, R., 2020b, Early magmatic history of the IBM arc inferred from volcanic minerals and melt inclusions from Early– Late Oligocene DSDP Site 296: a mineral-melt partition approach.
- Samajpati, E., and Hickey-Vargas, R., 2020a, Geochemistry of Volcanic Glass from Oligocene Detrital Sediments at DSDP Site 296, Kyushu Palau Ridge: Interpreting the Magmatic Evolution of the Early Northern Izu Bonin Mariana Island Arc.

- Stern, R.J., Fouch, M.J., Klemperer, S.L., and Eiler, J.M., 2003, An overview of the Izu-Bonin-Mariana subduction factory: Geophysical Monograph, v. 138, p. 175-222.
- Straub, S.M., Goldstein, S.L., Class, C., Schmidt, A., and Gomez-Tuena, A., 2010, Slab and mantle controls on the Sr-Nd-Pb-Hf isotope evolution of the post 42 Ma Izu-Bonin volcanic arc: Journal of Petrology, v. 51, no. 5, p. 993-1026.
- Straub, S.M., Woodhead, J.D., and Arculus, R.J., 2015, Temporal evolution of the Mariana Arc; mantle wedge and subducted slab controls revealed with a tephra perspective: Journal of Petrology, v. 56, no. 2, p. 409-439.
- Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes: Geological Society Special Publications, v. 42, p. 313-345.
- Weis, D., Kieffer, B., Hanano, D., et al., 2007, Hf isotope compositions of U. S. Geological Survey reference materials: Geochemistry, Geophysics, Geosystems - G3, v. 8, no. 6, p. Citation Q06006.
- Weis, D., Kieffer, B., Maerschalk, C., et al., 2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS: Geochemistry, Geophysics, Geosystems - G3, v. 7, no. 8.
- Yogodzinski, G.M., Bizimis, M., Hickey-Vargas, R., et al., 2018, Implications of Eocene age Philippine Sea and fore-arc basalts for initiation and early history of the Izu-Bonin-Mariana Arc: Geochimica et Cosmochimica Acta, v. 228, p. 136-156.

4.8 Appendices

Refer table 3-1 for major oxide precision and table 4-1 for trace element precision Applie in L Major and trace exclusive concentrations of elitoper means from Sile 1428. Juli at refers to the is to work for a number-scalar-stary stary in any

	362.5015						
2014.	15						
12	1-1	2-0	4-1	7-1	5-4	13-1	17-0
field to de							
10 5 1							
1.12	e 200	4 46	12.10.	A 1120	1. 41	24 232	91.927
	< a		- 25	1.3		0.02	.*
5.2.				-1	1 80	4	1.
6.50		157				1.44	
K 1.3	C.P.	120	-4-	4.22	150	<23	A.!!
6.5.1	< 01	12.21	1.25	- 32	11.4	17.28	
141	23.5	i. (I	14.7	12.4	15 ×	8.0	24
F 3					1.1	11	1.4.4
10.	· · · ·	1.10			2.11	u.	A.A.
	1.87		15.24		11.12	* *	S 11
a.1	bu S		1.1	111.75		11.125	1.0.15
F2.	14	3.5	. 18	6.15	1.10	0.15	2.6
			2550				
	72.24	71.0	2.4		2" 3.		1.2"
7.0							
denter							
(2.83-							
Ser.					23022		
					~~ ~·		
241							
CSC					241		
2854					7 54		
12111					3-1		
2.44					12"		
P104					: *:		
323					1.12		
					4		
260					1-		
Talk1					2.4		
Later					2.24		
					E		
12965					·		
2.1					··×		
					1.4		
- 58					In It		
2:0					10.00		
un ·					- 2.		
1 11/1							
A					1.4.		
					12.45		
1.4					1.52		
					0.4		
1.1.7							
1.0							

Batton							
No. Napor Cloude hantich	18-2	232	19-4	34-3	25-1	26-2	29-5
SiO.	51.731	51 217	33,106	\$1,172	51.979	53.541	\$1,774
181.	32.0	0.25	0.17	0.16	0.15	1.21	0.33
ALG.	2.57	2.34	2.55	1.40	1.60	1.44	1.54
March.	0.15	0.28	013	0.21	0.15	0.74	4.16
Collection of the second	0.11	0.41	0.10	6.15	0.63		
MIND	4444	0.44	0.15	6.12	10.00	9.24	10.04
MgC	10.00	14.5		10.45	14.91	16.02	15.99
0.00	44.44	12.32	22.70	21.32	20.51	15/00	12.50
K _c O		2010	10.00				
CT_1O_2	0.82	0.01	0006	0.04	19935	2225	20.22
FAC	618	12.05	5.98	118	10.14	a (A)	10.85
Tetal	99,98	100.15	100,94	100.38	100.TE	101.25	99.39
Wo	0.44	0.99	0.46	6.44	0.42	0.19	4.35
12m	0.46	0.41	0.46	0.45	0.42	0.45	0.42
Mat	25.20	65.33	\$131	93.10	72.77	74.15	TL-58
Trice							
annuts							
Reds.							788 45
71.49							1004.00
WSI.							63.69
(542							3.70
N863							1.31
Collab							4.16
31.054							2.24
Bal 37							13.27
10.232							4.54
U238							4.65
38:25							0.15
Ta181							4.60
1a139							5.97
Cc140							21.52
Ph/hits							6.66
Prid.							4.16
Nd146							27.59
56:38							25.48
2090							45.42
31178							1.35
Sm147							10.55
Butst							1.65
Celus?							14.54
161.59							2.44
Dylif3							18.25
Hole5							3.82
215							92.60
12166							10.70
26672							10.46
Sec. 27.							

					300-00-81-			
Batton					86			
Ne. Major Cickle (wr%)	35-2	54L	23-4	731	11	22	31	
SiO ₂	50.671	52 3 55	55-138	3.503	\$0.364	52.465	52.373	
190,	0.21	0.34	0.1.5	0.05	0.27	0.16	0.37	
ALC.	2.53	1.55	1.62	0.5/1	3.71	1.00	1.00	
Na/O	0.23	0.29	0.16	0.34	0.32	9.24	4.34	
MaD	0.26	0.55	6.12	1.78	0.20	0.57	0.53	
Mate	15.78	11.95	16.51	12.10	15.38	14.52	14.55	
0.0	21.04	20.45	21.50	18.75	21.97	20.23	19:99	
K-0		0.01				0.01		
CLO.		0.35	0.11				0.60	
FeD	946	997	629	1419	7.69	10.67	10.50	
Teral	10011	100.3	100.01	101.14	99.60	90.97	99.57	
Wo	0.07	0.42	6.24	6.19	0.45	8.43	4.41	
in.	0.42	0.42	0.46	1.26	0.43	9.41	0.42	
Math	15.41	72.53	52 42	\$7.86	78.54	70.87	TL.19	
Trace alamants								
5045	14478			101.01				
11.09	2446.77			1201.75				
WSI.	326 57			63.52				
0.92	27.42			2.31				
N860	21.59			1.14				
Callas	0.01			0.06				
30,685	0.0.6			1.67				
Bal N7	33.0			19.62				
10(232	0.63			6.16				
U238				0.06				
N0x25	0.67			0.12				
Ta181	0.62			6.01				
1.a139	0.14			4.14				
Cc140	0.73			15.65				
Ph/M8	0.62			0.47				
FY14	0.2			3.30				
Nd146	1.34			25.42				
59788	17.00			21.32				
2093	4.46			40.14				
2011-8	0.20			2.23				
Duist.	0.33			5.81				
Tailor 1	1.14			12.61				
751.63	0.74			136				
Dylif3	1.75			17.73				
Hotes	0.45			1.10				
235	5.27			\$3.27				
12164	0.55			10.54				
26672	0.54			10.04				
Lu173	0.12			1.63				

Ne	4.1	let.	4.1	Sect	0.1	15-2	19-5
Major Cleske			077	1.44	1		-
310.	52 3 26	51 855	50.663	35.719	5.000	51.615	52.061
TRI.	017	0.12	0.50	0.19	0.30	9.22	0.25
ALC.	1.41	1.45	2.33	1.49	1.79	1.63	0.75
No.O	0.25	0.32	0.29	6.15	0.19	0.31	0.56
March .	0.67	0.73	6.00	1.90	0.00	8.53	
Marco	10.00	16.40	16.68	1.4.99	11.45	16.04	13.50
All Contract of the second	10.73	70.75	79.05	24.71	20.00	20.42	20.22
K.0	15.0	46.16		24.71	20,35	0.07	20.21
CT-C			0.45		1.03		
5.5	10.14	10.00		5.14	10.00	2.00	12.00
Peak P	10.15	10.38	141	3.59	10.40	* 27	15.20
Sector .	100.48	101.10	Terro	64.72	100.09	1 20.04	1003.13
Wo	0.46	0.41	0.10	6.4.2	0.41	P.43.	6.41
10 Marth	0.44	0.45	23.64	0.43	0.42	0.43	0.25
Train	11.10	12.23				10.23	CHILDRY.
alaments							
(pages)							
5045							
T549							
VSL							
0.52							
N860							
Cs135.							
30.685							
Ba137							
10(232							
U258							
N0x93							
79181							
1a139							
Cc140							
Ph/938							
Prist							
Nd146							
NdB46 SeRR							
Nd046 Sir3R 2190							
NdB46 Se38 2r90 HB78							
Nd146 Se38 2990 HIL78 Sm147 Dou51							
Nd14t Se32 2194 HIL78 Sm147 But St takes 1							
Nd146 Se38 2190 HE178 Sm147 Bu155 Ud157 Th145							
Nd146 Se38 2190 Hf178 Sm147 But St Gd157 Tb159 Dod45							
Nd146 Se38 2294 Hf178 Sm147 Bu155 Od157 Tb159 Dy163 Hote5							
Nd146 Sv28 2994 HIL18 Sm147 Bu155 Gd157 Tb159 Dy163 Ho165 Yas							
Nd846 Sr88 2990 30147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm146 Sm146 Sm146 Sm146 Sm146 Sm146 Sm146 Sm146 Sm146 Sm147 Sm14 Sm147 Sm14 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm147 Sm14							
Nd846 Sr38 2990 30147 Sm147 Bu155 Cd157 Ub159 Dy163 Ho165 YB5 D7166 YB6 T5							

Batton		215-39-80-84					12R-378-99 100
Ne. Major Gesle	30-2	4-2	5-3	9-1	17-1	11-2	11
(wipe)		100 101 10		40.004	41.417		
3103	21.2.0	49 413	49.453	30.194	5.441	31.105	49.45
1801	015	0.25	0.41	E.290	0.37	0.20	6.35
AUTO2	1.82	1.97	1.03	2.75	1.61	1.67	254
NajO	0.31	0.25	-0.27	0.33	0.25	9.26	4.12
MnD	0.75	0.49	0.58	1,42	0.48	0.55	4.12
MgC	11.59	15.83	1574	16.97	15:12	11.21	15.85
040	20.21	15.15	1555	19,95	157,74	18.81	20.02
KcO				10.1			•11
CT ₁ O ₂			0.03				0.66
FeD	10.75	16.85	11.25	5.98	10.07	11.5%	9.99
Text	99.88	55.73	\$9.35	29,38	99.13	99.69	99.16
Wo	0.41	0.94	0.58	1.19	0.40	0.10	4.46
12m	0.42	9.44	0,44	0.45	0.44	0.42	6.44
Math	70.75	73.17	71.35	74.59	73.19	69.54	T1.98
Tricz							
alamants							
(Mar)							
5045							
T149							
VSL							
C152							
N860							
Cs135							
30.63							
Ra1 37							
0(23)							
0258							
NBSR							
18181							
141.59							
C2140							
PENNES							
POPUL							
Nd146							
Derives.							
2094							
THI IS							
Duist							
today 1							
151.53							
Delica							
Heltes							
Vas							
1.00							
12:164							
12166 71673							

Batton							
Ne. Najor Cleske	21	3-2	4-1	8-1	10-1	122	14-5
SiO.	48.215	51 231	51.118	-49.21	50.51	49.115	\$1.503
1961	0.46	0.23	0.25	6.47	0.27	3.75	0.11
1.0		213	0.05	4.14	7.43	5.76	1.64
10103	0.14	012	0.10	0.09	6.17	8.19	4.64
contro.		0.00	6.05		6.10		
MBD	0.00	024	0.42	0.14	11.00	0.20	1.4.9
MgC	15.304	15.95	1149	15.02	1 - 33	16.95	16.00
0.00	23.23	20.04	19 32	19.52	10.90	20.24	20.55
KcO		0.02	0.01	1.5	100	1.0	0.00
$cr_i o_i$	0.30	C.S.	0004	010	0.00	9.02	0.37
FeO	5.64	10.51	15.20	9.44	10.84	10.92	4.64
Teral	98,63	100.89	59.49	89.28	99.75	99,27	99.15
We	0.46	0.41	0.39	6.40	0.19	3 3 9	6.43
12m	0.42	0.44	0.42	0.45	0.44	0.44	0.46
Mat	83.34	13.00	63.64	74,85	72.31	72.74	\$1.74
Trace							
damants							
pyce,	100.00						1.41.61
20042	1718.47						100.07
1949	0118.42						1286.1
12.02	200.02						227.50
NACO .	121.63						79,00
194144	1.1.81						19000
21.00							
Bal 37	0.02						
10.020							
61938							
NB-95	0.67						
7,191							
1.4150	0.55						20.00
Cr140	2.46						0.65
Renne	0.63						4.03
Prid	0.55						e 15
Ndt44	4.01						1.15
59788	29.96						11.95
2:90	15.55						3.96
HD 78	0.54						6.25
Sm147	1.64						6.72
But St	0.6						6.33
Colup?	234						1.16
151.59	0.34						0.15
Dylif3	2.76						1.36
Holes	0.51						0.20
235	12.77						7.45
11166	1.42						0.85
							1000
25672	1.42						0.59

Batton					53		
Ne. Mator Cleade	15-2	192	181	13-d	2+4	32	32
(with)							
SiO ₂	50.532	51 435	49:875	45.178	45.783	51.295	50.869
TRO,	0.25	0.41	0.50	0.37	0.39	9.17	9.16
ALC.	1.65	1.75	2.90	2.23	3.34	1.48	1.43
Na.O	0.18	0.22	-0.05	6.19	0.94	0.43	4.27
MnD	0.22	0.22	0.06	0.10	0.26	8.75	0.58
MaG	15.66	15 67	1576	15.96	15.29	14:57	14.34
0.0	20.46	15.47	22.65	22.1-9	19,46	20.05	19.09
K.O.	12.0	0.15	0.01	D.C.I	0.03	1.07	1
CLO.		0.34	<u> </u>	5.12			0.00
E.O.	10.41	1. 56	1.21	7.11	6.44	11.65	11.10
Teal	06.54	05.02	53.43	100.17	00.50	100.44	DE OL
Sec. at	225.01	22.22		Jun 1	6.30	1.00.00	26.01
Mo		0.44	10.25	1.45	0.40		
Mail	10.42	11.26	\$3.51	79.28	75.99	62.03	0.42
Trar	10001					tor.a.t	
alaniants:							
(ppm)							
5045			160,46			277.88	
T549			177113			2998.28	
VSL			250.69			62.45	
C152			826.32			2.56	
N860			\$2.61			8.25	
Cs135						0.05	
30,685						9.18	
Ra137						1.64	
10(23)						10.01	
U258						20.4	
Nb35			0.01			10.4	
Ta181							
1.a139			0.05			9.70	
Cz140			0.25			3.62	
Phyne						a 10	
PT04			0.06			0.999	
Nd146			0045			10.2	
2000K			0.00			12.99	
2094						1.87	
2011-8			0.10			9.81	
Dur			0.54			1.16	
20135			6.10			1.16	
251.65			0.13			1.50	
End 65			0.05			10.94	
Holes			6.12			3.7%	
Vas			4.45			10.47	
12164			0.55			6.57	
Yb (73			0.45			5.81	
- 10 C						1. CO.	

Ne.	12-2	152	16-4	13-4	20-1	34.00	28-3
Major Cleade							
SiO.	57.83	51.742	30.523	10.479	48.71		51.064
1901.	0.35	0.94	0.24	0.26	0.48		0.21
ALC.	1.42	1.25	1.47	1.44	4.15		2.42
March.	0.75	0.33	0.41	6.14	0.19		4.75
MaD.	0.34	52.0	6.85	1.20	0.19		
Mats	15.50	14.16	13.63	12.11	15.64		1613
1240	20.07	71.97	18.76	144.71	20.00		10.01
K.0		41.14	0.04	6.13	D.08		0.64
CT-G		0.75		0.07			
640	4.44	9.63	0.78	11.41	6.04		4.0
Treat	100.05		10.00	2210	00.47		10.00
And a second	194.99	59.34	55.62	6319	26,179		99.00
MO		0.19	11.405	1.40	1.45		
Mad	71.00	77.60	66.14	00.80	75.99		10.40
Trace							10000
denents							
(ppm)							
5045	24.087					346.83	
T549	1492,14					2777.39	
VSL .	60.74					81.16	
Cr52	4.23					5.14	
N860	30.41					1.38	
Cs133	0,85					0.00	
30.63	2.60					9,72	
Bal 37	18.70					3.99	
10(23)2	0.23					0.03	
U238	0.86					9.02	
Nb95	0.36					90.0	
TAISI	0.12					2.00	
241.59	1.24					9.13	
02140	4.12					3.39	
Purints Relia	0.54					8.97	
Shines.	2.44					1.17	
6-00	20.05					19.31	
2:90	20.01					18:40	
10.78	0.54					0.004	
5m147	0.45					3.96	
Butst	011					1.07	
taits?	0.85					6.22	
151.59	0.14					1.24	
Dylif3	1.46					8.76	
Hotes	0.25					1.90	
295	6.53					41.07	
Er164	0.52					5.70	
25672	1.82					5.30	
Lu175	0.15					8.77	

		17R-1W-82-					
Batton		36					
Ne. Najor Cleide	29-4	1-1	2-0	33	61	9-4	81
SiO.	51.535	51 281	18:946	51.747	50.068	50.141	51.865
190.	0.27	0.07	0.43	1.26	0.16	9:47	0.32
ALC.	1.41	2.05	2.30	120	2.94	2.48	1.87
Na.O	0.21	0.23	0.41	6.37	0.32	0.40	4.32
Mail	0.56	0.25	6.50	1.40	0.47	0.11	# 15
Meth	13.74	16.41	11.32	1	15.63	15.36	16.75
150	18.34	15.00	16.81	1.1.70	70.87	19.53	10.15
K.O.	0.04	10.00	0.02	Entrat.		1.01	0.04
CT.G.	0.53	011	0.05		1.05	0.05	0.16
E.C.	11.45	913	1.75	11.45		10.55	0.00
Terri	00.50	66.63	67.15	100.14	07.04	00.05	80.55
The second	0.36	0.00	2.10	100.10	2.42	2.10	27.80
ALC: NO	0.42		10.00	1.40	0.44		
Mail	61.56	76.12	73.30	08.38	79.20	72.14	75.17
Trace			100				1000
alamants							
(ppm)							
5045			128.74				
T)-49			3391.55				
VSL			245.80				
C152			22.84				
N860			59.67				
Cu133			222				
30565			0.03				
1001.07			0.24				
01255			0.05				
0235			0.02				
7-191			1012				
1 2 1 2 0			0.00				
Cr140			0.14				
20,002			0.05				
Pylid.			1.89				
Ndt 46			12.33				
50.98			3 51				
2094			3136				
HD 78			1.18				
Sm147			4.99				
Butst			115				
Column 7			5,24				
151.59			1.1+				
Dylif3			8.02				
Holt5			1.64				
215			41.55				
Dr164			4.77				
26072			4.59				
Lu173			0.57				

Batton							
Ne. Najor Cleske	9-1	10L	11-2	12-3	13-1	142	15-5
SiO.	50.511	10.64	53.47	51 25	50.58	49.77	51.08
1000	ate	0.58	0.55	0.21	0.70	0.15	0.74
st.G	\$ 77	1.45	4.05	7.14	1 17	5.07	7.71
March .	0.15	0.25	0.22	0.10	0.47	8.4.5	1.46
inello.		0.25	0.10		0.00		
SIND.	9.19	0.57	0.14	12.25	11.00	11.00	16.04
MgC	12.39	14.7.5	15.25	13.54	1 - 29	16.94	12.06
0.00	21.32	17.25	21.35	19,28	10.15	20.72	18.75
K ₂ O		0.01			100	0.04	
C3165	0.11	0.35	0.50	0.07	0.04	0.30	6.00
File	5.52	13.25	0.37	10.15	10.03	7.46	11.56
Teal	98.07	95.34	89.00	5511	99.26	98.30	99,65
We	0.45	9.97	0.45	1.19	0.40	p.44	6.35
12s	0.46	0.42	0,000	0.45	0.44	0.44	0.42
Mat	83.75	66.36	\$1 63	7.5.99	72,99	78.16	10.23
Trace							
harr's							
Seds							
T149							
WSI.							
0.92							
1360							
Cuiss							
30.685							
Ral 37							
10232							
0258							
NB:95							
Ta181							
1a139							
Cc140							
Ph/M8							
Pri4L							
Nd146							
59788							
2194							
310.48							
Sm147							
Doi 51							
1001.35							
Gill57							
04057 10159							
Colics7 The LS9 Dyli63							
Udits? Udits? Ubits9 Dyl63 Hol65							
GillS7 Th159 Dy163 Ho165 Y15							
04057 10459 Dy169 Hote5 Y85 Dy164							
04057 10459 Dy163 Hote5 Y35 Dy164 Y5672							

El ancie	5333	2577	1023	2015.0	22572	332423	12.53
Ne. Najor Cickle (wi%)	16-0	18F	181	20-4	21-1	22-2	23-1
SiO ₂	50.10	51,56	93 55	-49.75	51.59	51.85	51.35
TRO,	0.33	0.21	0.11	0.43	9.27	0.12	0.05
ALC.	3.72	215	2.18	2.85	1.41	1.16	2.80
Na _i O	0.37	0.36	0.22	0.39	332	\$35	4.32
MnD	0.21	0.24	0.13	0.26	238	0.52	0.23
MaG	11.39	16.53	16.24	15:40	14.87	14:49	1641
0.0	20.71	15.4D	21.61	18.54	19.55	19.49	18.16
K _c O		0.05	0.04		0.03	20.6	0.04
CT ₁ O ₂	53.0	0.02	0.11		0.0T	9.08	0.85
FeD		9.01	5.71	11.51	10.97	11.92	10.07
Teal	99.03	58.52	5833	89.15	98.84	99.94	99.39
We	0.49	0.43	0.44	6.18	340	0.40	4.37
12m	0.42	0.45	0.46	5.44	2.43	0.41	0.46
Mat	73.71	76.26	\$3.52	20.30	71.85	(8.54	T1.54
Trace							
alaments							
(Mar)							
2045					104.44 Not 70		
8151					3100.79		
1542					203.20		
N360					\$3.59		
Cuiss					0.01		
31.685					0.05		
Bal 37					0.11		
10(232					0.03		
U238					0.01		
Nh25							
Ta181							
1,a139					3.52		
Cc140					12.55		
Ph/h08					0.02		
Prid					2.56		
Nd146					17.40		
26.288					16.60		
22943					40.70		
HIL 18					1.19		
Durst.					1.10		
Tality 1							
Th1.59					1.40		
Dylify					6.19		
Holes					1.04		
235					-7.84		
12166					2.49		
26672					4.87		

		19R-1W-18-				
Batton		21			213.49-14-18	
Ne. Najor Geste twitte	24-4	8-2	1-1	1-2	2-2	5-2
310.	50-48	91.27	45.75	52.36	52.55	33.47
190,	0.24	0.21	3 25	0.15	6.07	9.20
ALC.	1.57	0.22	2 2 2	0.93	0.83	5.54
Na.O	0.32	0.23	3.28	0.33	6.54	0.15
Main	0.75	0.87	3.83	0.45	1.50	0.15
Math	11.95	11.5	15 66	13.93	1/ 12	14.05
0.0	17.27	26.12	17.78	71.70	31.57	71.79
K.O.					6.03	0.10
CLC.	0.05		2.64		0.04	0.11
FOC	12,63	1.55	13.10	9.95	6.14	615
Teral	08.19	95.63	66.75	98.41	22.66	68.72
The	0.36	0.43	3.35	0.44	6.43	0.46
i.e.	0.47	0.41	7.45	0.41	5.47	0.44
Mat	67.87	(5.77	67.36	72.51	75.54	\$1.27
Trace						
alamants						
(ppm)						
5045						
T)49						
VSL						
C192						
Nasa						
03155						
Bal 37						
Those						
61258						
N8:25						
Te181						
1a139						
Cc149						
Ph/M8						
Pri/4						
Nd146						
36.88						
2194						
3111.48						
Sm147						
Butst						
CHES?						
10159						
Liyuna .						
Notes -						
12164						
75673						
Lu175						
1.						

Batton						
Ne.	8	11-2	121	13-0	16-3	52
Major Cleade (with)						
3i0,	52.36	53.36	50.82	51.69	52.39	530
190,	0.04	017	0.22	6.12	9.16	0.2
al.0.	0.84	3.77	3.30	2.62	1.16	4.43
NaO	0.29	0.23	0.34	6.35	9.18	0.25
MnD	0.50	915	0.22	0.24	4.47	0.2
MaC	12.59	15.76	14.95	13.81	31.15	11
0.0	21.52	22.73	20.71	19.55	20.79	21.3
K.O	0.01				0.00	
CI;O.	0002	0.03	0.36	0.0G		0.11
FeD	11.35	5.88	7.11	11.94	9.15	24
Teral	99.32	99.8T	\$5.63	98.91	98.92	591
We	0.44	9.16	0.44	640	0.43	0.4
10m	0.37	0.45	0.44	0.41	0.41	0.40
Math	65-43	\$2.56	75.53	68.47	72.5	75.3
Trace						
damants						
(Mar)						
5045					174.02	
T)49					1803.55	
VSL					156.92	
C192					7.59	
Naca					18/23	
Calso						
30365					0.09	
With the					0.05	
61952					4.62	
Neg3						
75181					10.00	
1a139					1.51	
Ccl-40					15.58	
Ph/MR					0.02	
Fylia)					3.65	
Nd046					16.21	
58788					14.22	
2:94					34.70	
HD 78					1.02	
Sm147					6.16	
ButSt					1.15	
Odd57					9.65	
16159					1.36	
Dyli63					8.65	
Hole5					1.82	
2.92					46.16	
Dr164					3.22	
26672					5.04	
Lot 25					0.75	

Button						
Ne. Najor Cieste	22-2	24-1	222	23-4	28-1	20
(W(74)	\$1.83	45.61	81.44	\$1.37	0.14	47.5
5803	0.22	0.00	0.07	6.14		
1801	1.01	0.00	0.1.		2.44	
10,05	0.24	0.57	0.25	2.16	2.45	4.0
sajo	0.12	9.31	0.25	1.24	9.23	0.9
MnD	0.90	0.58	0.94	136	9.28	0.3
MgC-	11.91	13.40	11.(8	16.71	15.06	115
Cao	1911	20.90	15.00	20.32	15:01	23 5
KcO	0.01		0.01	2042122		0,0
Cr_1O_2	0002	010	0.33	0.03	0.06	
FeD	15.12	10 of	15.44	5.81	10.07	89
Tetal	100.40	98.7T	95,46	98.64	98.68	53.4
Wo	0.40	9.44	0.41	£ 47	0.46	0.43
10s	0.38	0.52	0.53	0.43	0.44	0.43
Math	\$8.41	65.18	56.03	72.78	72.75	34.2
Trace						
alamants						
Shire?						
2045						
1940						
425						
2002						
Childs						
alos.						
Bal M						
10.032						
£1258						
10:25						
75181						
1a139						
Cc140						
Phylog						
Pylid.						
Ndt46						
5028						
2094						
310.28						
Sm147						
But St.						
Collect /						
101.59						
161.59 Dy163						
Th159 Dy163 Hote5						
TB159 Dy863 Hote5 Y85						
191.59 Dy063 Hote5 Y85 Dr166						
19159 Dy163 Hote5 Y85 Dr166 Y8672						

Batton		208-27-36-78				
Ne. Najor Cickle	1	22	5-3	4L	5L	5-
(with)	61.33	47.00	80.00		49.71	
58.03		0.00			0.15	
1901	0.4.	0.95	0.12	2.00	9.16	
'm'to?	0.85	0.50	0.54	020	0.81	0.0
Najo	6.14	915	0.18	6.15	9.15	0.1
MnD	0.58	9.57	0.52	4.20	9.44	0.4
MgC	14.99	11.36	14.53	14.22	33.87	11
Ciro	20.44	15.22	20.30	20.27	19:95	23
KcO	3.5		0.01	÷		1.1
Cr_1O_2	100	0.14	-	0.08	0.06	0.0
FeD	11.1.1	13.01	12.51	12.71	17.55	12
Tetal	99.58	59.74	99.34	29.36	99.71	55
Wo	0.45	9.39	0.40	6.43	0.41	0.4
En	0.41	0.40	0.40	0.40	0.25	4.4
Mat	69.72	66.2T	67.45	65.99	66.35	67.
Trace						
alamants						
Sher?						
2045						
1949						
12.42						
Naca						
Collab						
11004						
Bal 37						
Those.						
0238						
N8:25						
75181						
1a139						
Cc140						
Ph/hits						
Frid.						
Nd146						
58:58						
2:94						
340.78						
Sm147						
Butst						
Colics?						
161.59						
Dyli63						
Hotes						
235						
13166						
Er164 Yb072						
Button						133.137-89-91
---	-------	----------	--------	-------	--------	---------------
No. Injor Cleade	7-2	82	9j	13-0	11-1	1-1
310.	51.01	51.54	51.67	51.99	58.61	49.75
TRI.	0.21	017	0.21	6.12	9.31	0.58
al.C.	1.32	0.54	0.51	6.47	0.6.	4.75
Na.O	0.11	912	0.18	0.16	9.11	0.25
March	6.94	0.10	0.55	6.41	4.56	0.14
Mate	14.05	11.02	14.04	12.57	14.12	13 43
100	31.54	70.445	36.36	21.45	15.545	71 84
K.G		-				0.02
01.0		0.02	626	1.04	22	0.08
E.C.	611	13.65	13.44	11.85	12.25	7.00
Trans.	2018	12.00	100.00	20.21	10.10	1.000
100.00	3915	190.32	100.27	20.11	99.33	57.18
Mo	0.41	9.12	0.11	6.45	9.46	0.50
Mail	75.47	0.59	0.57	6.25	0.40	75.54
Trair		to de la		0	100.51	
alaments						
(append)						
5045						
T)49						
VSL						
C152						
N860						
Cs135						
30.685						
Ba137						
10(232						
U258						
N0x95						
Te181						
1.a1.59						
Cg140						
PENES						
Print						
100046						
2000						
100.22						
SmildT						
Sm147 But St						
Sm147 But St Tall S7						
5m147 Bu155 Od157 T6159						
5m147 But Si Odi Si Ub 159 Dv163						
Sm147 But SF Odd57 Tb159 Dy163 Hote5						
Sm147 Bu155 Ch157 Tb159 Dy163 Hone5 Y85						
5m147 Bu155 Gd057 T6159 Dy163 Ho165 Y85 Dy164						
5m147 Sm147 But55 Odt57 Tbi159 Dy163 Hore5 Y85 Dy164 Ybr72						

Batton				273		29R-2W-39-41
Ne.	time.	e1	111	T-L	13.6-2	11
Major Cleide						
(With)	41.57	17.07	81.11	1010	67.76	43.34
5803		214	0.00		0.55	4.78
1001	1.15	4.00	0.22		1.25	
10,05	1.00	0.22	1.44	1.51	1.29	1.05
sajo	0.0	0.33	0.99	6.02	6.28	9.17
MnD	0,49	9.46	0.56	6.15	0.31	0.18
MgC-	14.09	14.37	13.82	15.86	1-1 75	15:55
0.0	19.54	20.43	15.33	19.52	12.07	20.63
KcO	0.01	0.11	0.72		1	3. A.
Cr_1O_2	2000	0.02	0.00			0.64
FeD	10.44	9.86	11.35	10.77	19.63	9.51
Teral	9813	98.45	\$\$.37	99.47	100.91	100.54
Wo	0.41	0.49	0.41	6.19		0.42
10 A	0.42	0.42	0.41	0.44		0.45
Mat	70.54	73.87	65.35	72.41		13.36
Trace						
alamants						
(Max)						
5045			136.32			
1349			1965.73			
VSL			226,42			
Cr52			138.97			
N863			46.05			
CM188			0.01			
30.65			0.35			
Ra1.57			6.95			
0(232			0.01			
U238						
N872.5			0.32			
18181			4.45			
141.59			0.49			
C2140			1.55			
PERMIS			0.11			
PYDAL			0.45			
Nd146			2,93			
Deriver.			19.19			
2041			0.75			
20118			0.50			
Dust			1.13			
and se			0.02			
20127			0.55			
Delich			2.63			
Margar S			0.55			
Vac			12.74			
12164			1.52			
23.473			1.42			
1.00 .00						

Batton				
Ne.	5-12	41	6-1	T-L
Major Cleade				
(with)	*1.**	41.000	48.41	1.0.00
3003	51.99	21.598	48.1%	50.15
1001	0.14	0.33	0.15	6.11
'vr'te'	2.36	1.50	6.35	4.23
NajO	6709	0.13	0.14	6.05
MnD	0.11	9.24	0.96	1.05
MgC	16.24	15 38	14.96	16.15
0.0	21.52	21.29	22.00	23.95
KcO	2.8	100	0.01	
CT ₁ O ₂	0.38	0.00	0.10	0.05
FeD	5.99	10.55	8.36	\$ 13
Teal	98.97	109.67	100.10	103.00
We	0.24	0.12	0.45	6.46
i.e.	11.16	0.47	0.47	0.44
Mat	82.85	72.60	76.71	35.14
Trace				
denents				
(append)				
5045	116.24			190.76
T549	1889,91			1823.5
VSL	100.65			253.83
Cr52	1796-49			525.20
N860	145.31			137,90
Cs135	0.59			6.01
30.685	0.22			0.08
Ba137	0.06			
10(23)				6.01
U238				
Nbr95	0.04			
Ta181	0.05			
1a139	0.48			0.06
Cc149	1.90			6.35
Ph/M8	0.01			6.05
Pri/4	0.45			6.10
Nd146	2,54			6.87
26.25	2513			12.25
2193	12.68			3.1E
311.48	0.62			6.15
3m147	1.14			0.32
Butst	6.85			6.51
00057	1.54			6.41
16159	0.22			0.14
Dy163	1.84			1.01
Hole5	0.43			0.32
7.85	10.53			4.76
12166	1.17			0.45
500.25	1.08			0.45
Lo175	0.17			0.01

Appendix II Major oxide (in wt%) composition of Site 1438 orthopyroxene

Fatton 217.	No	510;	$\mathbf{n}\mathbf{O}_{I}$	ALO,	Na/O	Mr.0	Mgð	C10	$\kappa_{\rm f} \sigma$	$\Im_{ij} O_{ij}$	560	Total	Mar	Wz	Ea
3W-80-	1.4	51.52	£.19	0.89	0.04	1.6.	21.74	1.67		0.96	2257	109.00	1.63	6.08	0.61
	3-4	52.16	1.15	1.13	0.04	6.76	34.34	1.66			19.25	99.42	1.19	0.40	0.67
	4.2	\$9.67	6.11	0.51	0.95	6.95	22.16	1.45			22.58	99.16	1.64	6.63	0.42
	2-4	¥2.49	121	1.10	0.94	6.65	25.73	1.65		0.15	15.5	100.61	0.12	6.10	0.20
	12	31.00	1.32	0.54	0.02	1.00	22.05	1.75	6.82		22.17	22.41	1.63	0.10	0.01
3005- 678-403- 86	10-1	51.70	6.36	0.54	0.01	1.23	23.55	1.01	6.02		22 32	100.06	E.63	6.62	0.68
	14-2	\$2.33	1.07	0.55	0.03	136	13.63	1.05		0.11	22 59	101.87	1.65	0.00	0.63
	18-1	50.54	1.24	0.55	0.02	6.52	22,46	1.53			25 25	101.80	0.61	0.00	0.60
	23-1	\$2.87	01.7	0.45	0.04	1.22	25.41	1.12			21.33	102.59	1.68	0.82	0.65
90%- 7W-13- 15	4-2	\$9.56	1.15	0.51	0.02	1.55	21.24	LH	4.64		25 11	109.56	6:19	613	0.58
	8.1	51 38	c ir	0.76	0.05	6.75	31.99	045			29.42	106.15	0.68	6.09	0.61
	10-1	59.28	11.1	0.68	0,05	1.65	21.95	1.48			25.11	98.25	1.63	0.00	0.61
	14+2	51.52	1.00	0.74	0.02	6.75	21.79	1.46			21.42	109.57	0.62	0.03	0.60
	13-1	\$2.36	1.01	0.51	0.01	1.30	23.07	1.12		9.15	21.45	100.10	0.96	6.40	0.64
	16-2	\$9.70	6.18	0.45	0.05	131	29,72	1:16	9.01		25 27	99.85	0.59	6.62	0.58
	17-2	\$2.34	1.00	0.10	0.01	1.20	21.64	1.16			24.23	101,39	0,61	0.42	0.60
	30-2	52.60	5.10	0.34	0.03	1.65	34.84	1,60		0.11	15.55	99.25	0,70	6.10	0.65
	27-1	59.78		4.82		1.49	20.69	1,51		0.14	25.41	100.45	0.59	0.09	0.58
	90-L	\$2.42	1,06	.1.01	0.94	1.16	22.23	1.30			22.05	109.16	0,64	6.62	0.63
	31-2	51.42	53.5	0.43	0.03	1.22	20.32	1.36	0.84	0.11	25.52	22.81	0.39	6.10	0.37
	12-3	51.51	10.1	1.52	0.05	0.67	25.06	1.28	0.03		13.25	99.75	0.70	6.82	0.65
	35-3	51.69	0.01	0.51	0.92	1.06	23.28	1.01			21.57	99.15	1.66	6.00	0.64
	95-2	51.51	1.15	0.55	0.07	1.64	22.56	1.84	4.64	0.19	15.55	100,24	0.81	0.04	0.68
138- 2W-90- 139	12	\$1.33	1.04	121	0.05	1.21	34.29	1.43	6.01		19.57	101.58	£.68	6.64	0.67
	16-2	\$5.14	6.25	1.14	100	6.36	22.34	1.74	4.01	0.01	21 71	100.61	1.12	0.04	0.62
148- 198-5)- 23	1.4	51.30	1.16	м	0.04	1.95	19.09	1,49			2519	100.50	6.57	1.0	0.55
	6-2	52.37	1.61	0.65	0.94	1.16	21.99	1.55	6.82		22.45	100.38	0.64	6.10	0.62
	8-2	51.68	1.14	0.47	0.96	1.53	22.00	1.57			22 15	99.51	1.63	0.00	0.61
	11.2	\$2.04	6.11	0.95	0.95	6.0	21.54	1.56	0.01		19.58	99.46	6.09	0.03	0.67
	14.3	\$8.67	0.05	0.94	0.07	1.70	13.95	1.55	9.15		31.3	97.51	\$.44	6.69	0.43
	17-0	52.30	0.11	0.78	0.09	1.34	21.43	1.60	0.02		22.81	100.55	0.43	6.88	0.61
	18-1	51.01		0.76		1.08	22.98	1.11	0.01		21 72	99.44	6.12	0.00	0.64
	21-1	\$1.46	6.14	0.57	0,05	8.72	17.08	1.59	10.1	0.11	23.19	97.52	0.67	0.09	0.65
	25-2	59.55	6.15	1.31	0.16	1.61	22.45	1.93	0.06	0.13	19.87	97,62	0.67	9.04	0.65
	35-1	21.28	6.15	0.52	0.10	121	20.13	1.70		0.12	25 25	101.56	0.18	0.10	0.56
	27	\$9.32	6.11	0.63	0.06	1.16	18.31	1.48	6.00		27.3	99.44	0.55	6.69	0.55

Fatton	No	SiD	nc),	ALO,	Na/O	Mró	Með	00	6.0	37,04	560	Total	Mar	Wz	En
	31.2	52.84	1.15	37.0	6,06	6.15	22.72	1,49	0.10	i casa	21.11	22.88	1.66	6.10	0.64
15B- 1W-82- 86	1-2	50.66	1.12	0.64	1001	632	23.14	1.14	0.04		25 52	100.39	1.63	6.40	0.62
	3.1	51.06	6.0	0.71		16	22.40	1.20	0.09		2415	101.33	1.62	6.69	0.61
	17-1	¥2.88	t.te	0.25	0,03	6.52	21.94	1.42		0.19	14.1	101.94	1.62	6.1.8	U.et
	27-1	31.26	0.12	0.14	0.00	1.8.	21.88	1.44	0.82	0.15	24.57	101.29	1.61	0.03	0.29
	28-2	\$2.33	0.07	0.71	0.00	0.96	32.49	1.05			25.25	100.77	0,63	0.02	0.62
	29	\$2.43	6.04	0.66	0.00	6.94	32.50	1.00			29.81	108.90	0.68	6.69	0.67
	30-2	\$2.36	131	1.66	0.94	1.39	25.50	1.51	4.01	0.84	19:3	100.18	0,50	4.03	0.68
198. 478-18- 21	12	90.18	t.te	0.40	0.01	6.47	21.00	1.26	4	0.15	25 97	98.58	139	6.62	0.58
	22	59.68	6.35	0.33	0.05	121	28.71	1,23	1		25:2	100.84	03.3	0.62	0.55
	3-4	49.52	0.06	0.35	0.01	18.1	29.02	1.25	1.01		24.87	99.51	0.62	0.02	0.61
	8-2	\$2.16	1.12	0.57	0.02	1.45	22.36	1.10			25.75	100.38	1.63	6.62	0.42
	9-2	31.80	21.7	18.0	0.02	1.67	31.60	1.17	÷.	-	25.83	101.18	06.3	0.82	0.55
	10-2	\$2.3.T	6.16	0.73		6.48	31.26	1.25	6.03		24.53	100.07	1.60	6.65	0.59
	11-2	59.13	6.69	0.52		6.50	38.37	0.40	6.04		26.41	99.35	6.39	4.00	0.59
	15-2	51.44	0.07	0.45		6.78	39.82	1.08		1.0	2518	109.96	0.59	6.62	0.58
21B- 1W-14- 15	31	52.5%	1.01	91.0	0,04	134	20.90	0.91	6.00		25.13	100,61	1,60	6.42	0.99
	6-1	52.49	0.0	0.35	0.15	1.02	39.75	1.00	4.01		25.53	100.67	1.19	0.02	0.58
	1.2	58.85	1.16	0.36	0.05	1.32	20.97	1.00		0.94	24.51	101.36	1,60	6.1.2	0.55
	5-4	52.22	1.14	1.02	0.02	0.95	34.32	1.28		0.90	13.55	109.28	6.68	0.40	0.67
	10-1	55.22	513	0.34		1.09	32.05	0.98		0.17	25.53	100.76	0.67	0.80	0.61
	14-1	\$5.46	0.01	0.51	0.91	1.81	33.18	1.08	4.05.	0.14	22.24	101.67	0.65	6.00	0.61
	13-2	28.19	51.7	0.45	0.05	1.64	21.65	6.86	0.64	0.00	25.94	106.78	0.62	0.02	0.61
	17-1	59.90	1.12	1.13	6.04	1.29	19.85	1.69	0.00	0.11	34.29	99.64	0.39	0.03	0.57
	15-2	\$3.74	1.00	0.85	0,03	6.87	24.97	1.21	0.02	0.30	18.52	109.71	0.70	0.60	0.65
	19.1	53 (0)	1.04	4.4	0.96	1.11	31 95	0.99	6.02	0.02	23.47	101.67	6.13	6.00	0.61
	29-2	52,83	6.68	9.68	0.94	6.84	21.96	1.13		0.11	22.53	100,48	6,68	\$.62	0.62
	26-2	55.27	1.16	0.44	4,03	1.04	21.61	0,91	0.62	0.90	25.43	101.01	1.62	0.62	0.61
	31-2	52.19	6.06	0.72	0.06	1.15	20.57	1,40	6.00	0.32	23.67	100.13	0,40	0.00	0.55
	32-3	\$5.10	1,15	0.58	0,02	6,94	33,22	1.14	0.05	0.10	21.94	100.10	0,64	0.00	0.63
27R- JW-88A 50	9-4	92.96	0.6	0.35	0.02	138	33.88	1.64	e.tet	0.80	99	20.44	1.67	619	0.65
	2-1	32.41	0.13	0.31	0.01	1.32	29.82	0.85	0.01	0.30	25.85	22.82	1.61	6.82	0.00
	81	52 83	1.12	0.54		1.04	32.30	0.99		9.91	21 44	F199	6.65	6.60	0.64
	10	\$2.59	1.01	0.55	0.94	45	38.85	0.90		0.11	22.54	109/60	0.68	6.10	0.62
	12-2	\$2.8T	0.12	0.35	0.03	2.46	21.85	1.04	0.01	0.15	21.55	99.65	1,64	6.62	0.63
	12-1	51.61	6.13	1.12	0.05	1.22	15.78	1.57	10.0	0.15	25:5	99.75	0.57	0.03	0.55
	1-1-2	52.41	0.00	0.43	0.00	1.74	21.04	0.79	0.01	0.00	22.65	99.34	0.72	6.10	0.61

Tation	No	SiD	$\mathbf{R}O_{ij}$	ALO,	Na/O	Mr.0	Mgð	C10	$\mathbf{K}_{i}(t)$	$2\gamma_i \sigma_i$	50	Total	Mat	Wz	En	
278- 198- 119- 121	12	55.68	617	ù \$\$		640	32.04	1.50			N 55	101.55	6.65	¢.09	0.63	
	5-1	53.62	\$1.3	0,73		4.45	31.99	0,68	4.68	0.15	22.16	106,48	0.63	0.61	0.62	
	61	55.17	1.13	0.54	6.01	5.41	25.17	6,36			21.15	20.45	66.3	6.84	0.65	
	5-2	\$2.11	0.04	0.46	÷	0.67	21.48	0.46	6.01	0.14	24.23	22.52	1.61	0.85	0.60	
298- 337-19 41	5-1	55 10	6.15	0.52	0.02	634	24.87	1.90	6.65		170	109.24	6.75	6.01	0.70	
	8-1	55.52	1.15	0.58	0.01	1.43	29.22	1.17	0.04	0.12	22.5	101.92	0.65	0.02	0.64	
	9-2	\$2.56	6.13	0.53	0.05	6.65	21.25	0.86	12	0.11	25.45	101.00	0.00	0.62	0.59	
	13-2	\$1.60	6,15	140	0.00	6.39	23.76	1.73			20.37	108.92	6.38	0.03	0.65	

Appendix III. Major and trace element concentration of melt inclusions within pyrotene. First four number is the core sample than the mineral and lastly the inclusion

Na.	30X-7W-13- 15-9-1	3000-7W-13- 15-21-1	302-78-	30X-7W-D- 13-38-1	143-30-50-	HR-2W-SI- 51-0-1-1	14R-3W-51- 0.46.1	
Maior	1000	3253351		1.500	0.000	Contraction -		
-made								
(Willia)								
SiO ₂	68.25	65.55	52.54	62.14	64 23	60.29	43.92	
TIO	0.46	.0.67	83.7	3.35	0.73	0.52		
Al ₂ O ₂	13.16	13.55	16.30	15.11	12.55	10.55	34.55	
Ne ₀ O	0.25	1.07	2.65	3.23	1.55	1.89	0.55	
MrO-	0.14	0.08	4.53	3.5	0.12	0.27	0.01	
Mg0	9.62	0.52	3.26	2.44	0.32	6.11	0.14	
0.0	3.86	3.13	6.27	5.67	1.72	5.27	18.11	
K ₂ O-	0.78	1.1.5	126	3.25	1.85	1.47	0.04	
CtyD ₁		0.05	1.06	0.0	0.06	0.02		
P ₁ Cl ₂	-0.15	0.28	4.17	1.52	017	01.0		
Fe ₁ O ₂	4.91	5.08	5.06	425	2.97	2.21	9.31	
ci.	0.36	0.21	4.11	0.35	0.28	0.23	0.01	
5.08	0.06	0.06	4.3.5	0.00	0.04	0.01	0.01	
TOPE	90.57	32.34	34,38	95.19	69.74	96.00	58.52	
Tince								
danale								
Self								
7542								
V51								
Cr92								
Ner								
C\$138								
31983								
Ba137								
Th252								
0258								
741.01								
1.11.59								
Ca140								
26208								
Pr141								
No046								
5:88								
2190								
310 78								
SELET								
6-957								
151.99								
D5163								
Hol 68								
789								
Er166								
Yb072								
20175								

Na.	173-1W-83- 86-L	178-10-53- 86-21-1	1600-700-15- 15-10-2	148-28-31- 53-4-1	143-338-81- 39-11-1	HR-2W-81- 53-17-3	21 R-1W-14+ 18-3-1
Major usade barbia							
80.	39.67	62.16	65.41	64.40	10.10	41-01	12.25
TIO.	1.65	0.08	0.96	3.78	6.22	1-41	0.25
abo	14.97	18.77	14.48	17.01	10.03	1.77	11.41
Natio	2.24	7.41	7.17	1.71	7.64		1.00
March 1	0.34	0.21	4.17	3.42	6.75	1.00	0.35
Math	2.14	0.21	1.05	2.12	5.21	10.07	1.00
0.0	2.54	3.18	8.37	3.71	4.11	7.77	1.47
1.0	1.12	1.89	1.90	1.67	1.57	1.47	2.58
200	0.02	0.00	4.44	3.54	1.51	1.04	0.00
B.C	0.47	010	6.14	2.02	0.20	1.07	0.00
P. 41	4.0	0.09	4.14	1.04	0.30	1.01	9.03
10,07	0.57	4.48	4.14	2.51	1.07	2.77	4.80
0	0.25	0.31	6.34	0.25	0.24	0.04	0.24
508	9.09	0.02	6.08	0.01	1006	1.04	0.01
TOTAL	92.14	32.48	39.52	22,04	54.21	10,100	91.09
1100							
aanate							
Self					\$3.65		
1542					4771.76		
751					171.72		
Cr52					11.51		
Ner					\$7.17		
C\$133					0.22		
31685					5.21		
Ba137					59.82		
Th252					0.95		
0298					0.28		
3023					0.99		
D181					0.15		
14139					6.02		
C1143					19.22		
70208					1.22		
PTPHL .					1,909		
0-040					34.63		
2010					bern.		
18176					2.14		
Smidt					1.25		
Eal 55					0.79		
GdB57					5.96		
15139					0.42		
D5163					3.54		
Holds					0.59		
789					19.12		
Er166					2.59		
AP8123					2.44		
Lat25					0.49		

Ne.	217-1W-H- 18-3-2	218-10214- 18-6-1	21R-1W-1	108-PW-H- 18-143	213-18-14- 18-15-1	218-13-14- 13-16-1	21 R-1W-14- 18-16-2
Major usade tueñão							
30.	73.94	71.85	20.19	71.30	73.42	77.52	72.85
TIO:	0.25	0.21	6,19	3.45	0.18	0.44	0.32
al-o.	12.23	12.47	12.25	17.08	12.01	12.99	13.07
No.O	1.92	2.85	1.78	5.5	1.94	1.44	1.46
Math	0.11	1111	0.04	3.54	0.05	0.04	0.12
Meth	13.56	0.87	6.16	3.3	0.85	0.30	0.73
0.0	1.95	1.77	1.87	1.51	1.72	1.66	1.90
K.O.	2.57	7.77	2.64	2.15	3.62	7.46	2.41
0.0					0.05		24
B.C.	4.67	0.01	A 63	2.62	0.00	0.04	0.04
2.0		0.45			in an		
100,007	2.85	2.78	2,44	2	2.35	- 66	210
0.00	0.26	0.27	6.36	0.25	0.20	0.35	0.26
51.0	10.01	0.00	1.00	0.05	22.55	1.10	0.09
TOTAL	20.31	32.25	91.72	24.23	36.27	:94,072	54.72
dimension in							
annate							
Seif		14.00	40.85				
1540		767.74	1477.11				
141		11.33	\$1.45				
0.92		1.91	644				
NIG		0.39	31.31				
CS135		0.05	6.48				
3665		1.42	21.45				
Ba137		6.98	105.15				
Th252		0.57	2.33				
0238		0.14	4.24				
3063		0.07	1.14				
Th181		0.01	0.64				
1.41.52		17.85	\$.67				
Ca143		39.35	17.20				
76208		0.15	1.74				
Pr141		5.55	2.04				
Ne046		26.52	\$10				
3:88		12.20	42.11				
2190		5.05	74:1.5				
383.78		0.07	1.75				
Sm141		5.39	1.69				
0.0.55		0.115	636				
00153		5.51	2.04				
10133		0.74	8.20				
Upped .		0.22	2.13				
780		14.00	10.00				
to lot		21.52	7.12				
X100		1.84	3.67				
1.4125		0.29	8.44				
- A46.1		W.E.					

Ne.	2078-1W-14- 18-20	218-1W-14- 18-30-2	21R-1W-1	108-1W-H- 18-31-1	213-18-14- 18-31-3	218-1W-14- 18-30-5	21 R-1W-1
Major usade							
SIL	75.19	42.24	C 31	21.47	45.77	71.44	71.09
2002	10.10					11.04	14.000
1.0	10.40	1.55	1.78	2.41	0.45	1.754	0.25
10,07	12.0+	16.15	16.32	11.41	13.51	12.96	11.09
NIFO.	3.08	2.95	2.74	3.53	1.60	3.21	2.65
MID	0.05	0.36	4.39	3.55	0.47	00.0	0.00
Mg0	9.45	3.41	3.41	5.84	4.345	0.15	0.29
0.0	3.48	7.75	7,87	5.15	2.96	120	1.54
K ₁ O	2.24	0.22	4.32	3.52	0.36	2.63	2.37
Ct(D)			0.05			0.04	
P.(C)	1.34	80.0	6.07	0.65	0.10	0.03	
Fe,O,	2.64	11.54	12.72	11296	13.05	2.11	2.00
CI.	0.36	0.10	6.10	0.7	0.15	0.15	0.24
508	0.00	0.35	6.34	3.04	0.97	00.0	9.89
Total	56.15	96.31	36.78	97,49	\$7.78	95.22	56.36
Tines .							
depent.							
pure)							
Sci5	\$0.1c						
7542	2065.77						
231	100.52						
Cr92	9.22						
Niei	47.84						
Ci138	9.02						
30685	8.120						
Ba1.97	33.95						
Th252	-6.47						
0258	0.27						
3053	0.27						
20181							
791755	37.25						
Ca140	\$8.89						
76208	1.42						
Pr141	32.13						
No046	55.01						
3:88	23,60						
2(90	23.38						
380.78	0.17						
Smith	14.95						
01155	2.79						
60823	14.22						
19139	2.21						
Dy163	14,38						
House	3.43						
789	11.10						
E1100	8.18						
10032	8.35						
20175	1.04						

Maga patho Solution 300, 67.27 63.44 89.85 76.18 93.38 67.54 67.69 300, 12.64 13.62 11.95 12.01 13.62 11.92 13.48 300, 0.44 0.36 1.05 12.01 13.62 11.92 13.48 300, 0.44 0.35 12.56 1.3 0.18 6.08 0.31 Mp0 0.94 0.35 1.56 1.3 0.18 0.08 0.31 Mp0 0.94 1.32 1.56 1.67 0.95 2.96 1.11 CyCh 0.02 0.02 0.03 0.04 0.04 0.04 CyCh 0.02 0.01 0.01 0.01 0.01 0.01 P.G. 0.18 0.02 1.00 0.01 0.03 0.00 0.01 Jobs 0.99 0.19 0.3 0.16 6.02 0.03 0.00 0.01 Jobs <th>Na.</th> <th>273-1W-89- 91-01-0</th> <th>2783W-55- 98-11-2</th> <th>27R-178-89- 91-12-1</th> <th>278-1W-89- 91-:4-1</th> <th>300-70-80- 85-1-2</th> <th>3707-5W-88- 83-2-1</th> <th>10X-6W-99- 85-12-1</th>	Na.	273-1W-89- 91-01-0	2783W-55- 98-11-2	27R-178-89- 91-12-1	278-1W-89- 91-:4-1	300-70-80- 85-1-2	3707-5W-88- 83-2-1	10X-6W-99- 85-12-1
300, 65.27 62.64 99.35 71.38 57.38 67.54 67.69 710, 0.68 0.42 6.28 3.55 1.14 5.39 0.52 310,0 12.64 11.36 12.61 11.35 15.62 11.92 11.46 310,0 0.44 0.23 6.26 1.3 0.18 1.60 0.39 310,0 0.44 0.23 6.26 1.3 0.18 1.62 0.34 0.40 0.43 0.25 1.56 1.3 0.18 1.62 0.34 0.40 0.44 0.23 1.66 1.67 0.32 0.18 0.40 0.44 0.23 1.66 1.67 0.35 2.56 1.1 0.40 0.42 0.42 0.44 2.11 9.28 2.60 2.23 0.40 0.45 0.46 0.46 1.61 0.94 0.65 0.40 0.46 0.38 0.46 0.12 0.15 0.02 2.00 0.64 1.46 0.48 0.46 0.38 0.46 0.12 0.15 0.15 0.41 0.46 0.38 0.46 0.15 0.02 2.00	Major Joade Suthis							
Ti0, 0.48 0.42 0.28 0.35 1.14 0.29 0.35 Me0 0.46 0.36 0.20 1.46 1.79 0.36 0.35 Me0 0.44 0.25 0.26 1.3 0.18 0.86 0.35 Mg0 0.44 0.25 0.26 1.3 0.18 0.42 0.43 Mg0 0.44 0.25 0.25 1.34 2.20 2.72 K.0 1.44 1.18 1.66 1.67 0.95 2.26 1.11 Cy0, 0.02 0.02 0.04 0.04 0.05 0.05 P.G. 0.35 0.39 6.44 0.01 0.05 0.25 P.G. 0.35 0.39 6.14 0.01 0.05 0.25 P.G. 0.36 0.39 6.16 0.02 0.00 0.01 Drai 89.65 91.44 95.32 95.61 95.11 90.29 85.69 Trace 0.06 0.08 0.29 0.29 85.69 11. 90.29 85.69 Trace 0.06 0.08 0.35 2.66 15 16.1 90.29 Sel5 70.60	30,	65.27	\$2.64	59.35	78.18	5535	67.54	67.60
Al,0 12.64 13.66 11.35 12.01 13.62 11.32 11.48 Ne0 0.44 0.03 23.0 1.44 1.79 1.80 0.97 Shipo 0.44 0.25 23.5 1.32 1.42 0.84 Shipo 0.44 0.25 1.35 1.32 1.44 0.20 2.21 K,6 1.44 1.46 2.40 2.23 1.34 2.20 2.22 K,6 1.41 1.81 1.66 1.61 6.01 1.65 P,0 0.35 0.02 0.66 0.65 0.65 0.65 P,0 0.35 0.39 0.19 3.3 0.16 0.22 0.23 C1 0.36 0.39 0.19 3.3 0.16 0.23 0.25 C3 0.18 0.02 2.60 0.64 0.23 0.25 S10 0.18 0.36 0.52 2.6.0 3.51 0.52.0 86.69 Trace 10.18 87.63 35.44 35.32 57.6.0 35.11 0.52.0 86.69 Trace 10.16 0.16 3.51 0.52.0 86.69 1.60 S10	TRO	0.68	0.42	1.18	3.35	1.14	0.39	0.35
NeO 0.48 0.08 1.20 1.45 1.79 1.80 0.32 MuO 0.44 0.25 1.56 1.5 0.18 1.66 0.31 MuO 0.44 0.25 1.56 1.5 0.18 1.62 0.42 0.44 CuO 2.48 4.46 2.46 2.55 1.34 2.20 2.52 K.6 1.44 1.18 1.66 1.61 0.01 0.05 0.66 P.0. 0.35 0.30 6.66 1.61 6.01 0.05 2.35 1.35 <td< td=""><td>al-o.</td><td>12.64</td><td>13.66</td><td>11.35</td><td>17.01</td><td>15.62</td><td>11.92</td><td>11.45</td></td<>	al-o.	12.64	13.66	11.35	17.01	15.62	11.92	11.45
Sh0 0.44 0.23 1.56 1.3 0.18 1.06 0.36 Mg0 0.91 1.32 1.57 2.23 1.32 0.42 0.44 CoO 2.44 1.13 1.66 1.27 0.35 2.26 1.11 CyO 0.02 0.02 0.05 0.06 0.06 P.G. 4.85 0.46 1.61 0.06 0.06 P.G. 4.85 0.46 1.61 0.06 0.06 P.G. 4.86 0.36 0.46 0.16 0.22 0.07 0.06 0.04 P.G. 4.88 0.36 0.38 0.46 0.31 0.16 0.23 0.06 O.03 0.08 0.08 0.08 0.02 0.00 0.04 D.04 87.65 97.64 357.1 97.20 87.07 D.05 97.01 97.02 97.00 97.1 97.02 97.00 97.01 97.0	No.O	0.45	0.55	1.30	1.45	1.79	1.80	0.92
Mg0 0.99 1.82 1.95 2.23 1.82 6.42 0.84 Cu0 2.44 4.46 2.40 2.23 1.34 2.20 2.72 K, O 1.41 1.18 0.02 1.05 1.01 0.05 P, A. 4.18 0.01 6.61 1.01 0.01 0.05 Cl 0.36 0.32 2.06 1.01 0.03 2.00 2.35 Cl 0.36 0.02 5.62 95.61 35.11 90.29 88.69 Trace 38.65 95.44 95.52 95.61 35.11 90.29 88.69 Trace 38.65 95.44 95.52 95.61 35.11 90.29 88.69 Trace 38.69 1.01 1.02 1.02 1.02 1.02 1.02 Sc15 39.61 35.12 90.29 1.02 1.02 1.02 1.02 Trace 39.01	MaD	0.44	0.25	0.56	0.5	0.13	0.08	0.55
Cool 248 446 240 223 134 220 272 R50 1.41 1.18 1.66 1.1' 0.03 100 P.G. 0.18 0.30 6.6 1.0 0.01 0.05 P.G. 0.18 0.30 6.6 1.0 0.01 0.05 P.G. 0.18 0.39 6.19 3.3 0.16 0.32 2.00 0.04 Total 0.36 0.39 6.19 3.3 0.16 0.02 0.00 0.04 Total 33:65 38.44 5.32 59.61 35.31 50.29 88.69 Trace Maxmit/ 50.29 50.29 50.29 50.29 50.2	Meth	0.98	1.82	1.95	3.23	7.82	0.47	0.84
K.0 L4L 1.18 1.06 L47 0.95 2.96 1.71 Ch(D) 0.02 0.02 0.03 0.06 0.01 0.06 P,OL 0.15 0.50 0.06 0.01 0.06 0.05 F6,O 4.05 0.44 2.11 928 2.96 2.29 C1 0.36 0.39 4.19 0.3 0.16 0.32 0.35 SOJ 0.16 0.02 0.00 0.04 0.04 0.04 Total 87.65 91.44 55.52 91.61 95.71 90.29 88.69 Trace #dammt- 90.91 90.91 90.91 90.91 90.91 90.91 90.91 Sci15 7360 91.44 95.52 91.61 95.71 90.29 88.69 Prove #dammt- 90.91 90.92 90.9	0.0	2.48	4,46	2.46	2.25	7.84	2.20	2.72
CyCb, 0.02 0.04 0.01 0.05 P,G, 0.18 0.29 0.66 1.01 0.01 0.05 F6,G, 4.88 4.34 2.44 2.11 938 2.60 2.35 C1 0.36 0.08 0.66 1.05 0.02 0.00 0.04 JOIN 3780 91.44 95.42 91.64 95.11 90.29 88.69 Trace #mem14 gorn1 56.65 1.05 0.02 0.00 0.04 JOIN 379.65 91.44 95.42 91.64 95.11 90.29 88.69 Trace #mem14 gorn1 56.65 1.05 10.29 88.69 JOIN 36.65 10.5 91.64 95.11 90.29 88.69 JOIN 36.65 10.5 91.64 92.9 88.69 JOIN 36.65 10.5 92.9 88.69 92.9 JOIN 36.65 10.5 91.64 91.7 JOIN 36.65 10.5 91.64 91.7 JOIN 30.05 91.64 91.7 91.7 JOIN 30.05 91.64 91.7 91.7 <	K.O.	L.4L	1.18	1.66	1.67	0.95	2.5%	1.31
P,Cl. 0.15 0.20 0.66 1.01 0.01 0.05 F6,Co. 4.85 4.74 2.44 2.11 9335 2.60 2.25 C1 0.36 0.39 0.19 3.3 0.16 6.32 0.35 500 0.16 0.38 0.16 1.31 0.017 0.00 0.01 Jona 87.65 91.44 95.32 91.61 35.11 90.29 88.69 Trace Maxeth 95.32 91.61 35.11 90.29 88.69 Trace Maxeth 95.32 91.61 35.11 90.29 88.69 Trace Maxeth 95.32 91.61 35.12 90.29 88.69 Trace Maxeth 95.32 91.61 35.14 90.29 88.69 731 C123 10.35 10.35 10.35 10.35 10.35 10.35 1043 50.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 <td>Ctr(D)</td> <td></td> <td>0.02</td> <td></td> <td></td> <td></td> <td>0.05</td> <td></td>	Ctr(D)		0.02				0.05	
Fe/C 4.83 4.14 2.44 2.11 928 2.60 2.53 C1 0.34 0.39 6.19 3.3 0.16 6.23 0.35 503 0.08 0.038 6.06 115 0.02 2.00 0.04 Tota 89.65 95.44 95.52 95.61 35.11 95.29 88.69 Proce dmemb 999 3.3 95.11 95.29 88.69 Proce dmemb 929 88.69 86.69 Proce dmemb 929 88.69 929 Proce dmemb 929 88.69 93.63 Proce dmemb 929 93.63 93.63 Proce dmemb 93.63	P.C.	0.15	0.20	6.645	3.61	0.01		9.05
C1 0.36 0.39 0.19 3.3 0.16 0.32 0.00 0.01 JOH 37.65 91.44 95.32 95.61 95.71 90.20 80.69 Tuxe scats scats scats scats scats gen1 scats scats scats scats JN0 37.80 91.44 95.32 95.61 95.71 90.20 V10 37.80 91.44 95.32 95.61 95.71 90.20 Scats 36.85 91.44 95.32 95.61 95.71 90.20 Scats 36.85 91.44 95.32 95.61 95.71 90.20 Scats 36.85 91.44 95.82 95.71 90.20 V31 52.72 36.85 91.44 95.71 90.20 V31 52.72 36.85 91.44 91.44 Scats 36.95 91.44 91.45 91.44 Scats 91.77 91.15 91.14 91.14 Scats 91.17 91.14 91.14 91.14 Scats 91.14 91.14 91.14 91.14 Scats 91.14 91.14 91.1	Fe.O.	4.65	4.74	3.44	2.1	928	2.60	7.58
503 0.08 0.08 0.07 0.00 0.04 Total 87.65 98.44 55.52 98.64 35.11 50.20 85.69 Total 87.65 98.44 55.52 98.64 35.11 50.20 85.69 gent) 5.45 57.64 35.11 50.20 85.69 gent) 5.45 57.64 35.11 50.20 85.69 730 5.45 57.64 35.11 50.20 85.69 740 57.21 57.21 57.64 35.12 50.20 731 57.22 57.64 35.12 57.21 740 57.21 57.21 57.21 57.21 733 57.21 57.21 57.21 57.21 733 57.21 57.21 57.21 57.21 734 57.21 57.21 57.21 57.21 735 57.21 57.21 57.21 57.21 736 57.21 57.21 57.21 57.21 735 57.21 57.21 57.21 57.21 736 57.21 57.21 57.21 57.21 737 57.21 57.21 57.21 57.21	CI.	0.36	0.39	£ 19	3.8	0.16	6.12	0.35
Total \$7.65 \$7.64 \$5.75 \$7.64 \$5.71 \$0.20 \$5.69 Trace gemi Sci5 THE Sci5 Sci5 Sci5 Sci6 Sci5 Sci6 Sci7 Sci7 <t< td=""><td>500</td><td>9.16</td><td>0.28</td><td>6.05</td><td>3.05</td><td>0.02</td><td>0.00</td><td>0.04</td></t<>	500	9.16	0.28	6.05	3.05	0.02	0.00	0.04
Tura Japan Sal5 Ta0 Y80 Y81 C192 Na66 CA135 Ba137 Tu232 JU28 Ba137 Tu232 JU28 Sal05 Tu181 La139 Ca140 J0208 Fv141 Na146 Sal6 Sal9 Sal9 Sal9 Sal9 Sal9 Sal9 Sal9 Sal9	Total	87.65	31.44	95.32	55.61	35.71	90.20	88.69
#memb #ppm) Sc45 Tk2 Y51 Cr52 Name Ch153 JM86 Ch153 JM86 Ch153 JM86 Ch153 JM86 Ch153 JM86 Bal37 Th232 JU283 JM87 TM81 La139 Ch40 JS278 Pr141 Nm46 Sem8 2:90 18178 San4 Sen8 2:90 18178 San4 Sen8 2:90 18178 San4	Tince							
genn) Su45 Tv40 Y51 C122 Na66 CA135 J062 Ba137 Tv252 J028 J0203 T0181 La159 Ca140 Xc208 Pv141 Nim46 Sen8 Zc90 L8176 Ba153 Gw157 Tb159 Dy163 Ba165 Gw157 Tb159 Dy163 Ba165 Gw157 Tb159 Dy163 Ba164 Tw159 Dy163 Ba164 Tw159 Dy163 Ba164 Tw152 Tw153 Dy163 Ba164 Tw153 Dy163 Ba164 Tw153 Dy163 Ba164 Tw15 <	depet-							
Sel6 TN80 TN80 Cr52 Name Cv138 J065 Bal 37 Tv1352 J285 J065 Tv181 La139 Cat40 J008 Pv141 Nm44 Sel8 2008 Pv141 Nm44 Sel8 2019 Lt176 Sul171 Sul176 Sul171 Sul176 Sul1776 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul176 Sul177 Sul176 Sul177 Su	(pine)							
780 V31 Cr52 Naes Cr133 Jaces Ba137 Tn232 J228 3005 Tn181 La139 Ca140 J2038 Pr141 Nu446 Sen8 2090 J2170 J2171 Tn135 G4037 Tn139 Dy140 Ba162 T99 En155 G4037 Th29 La166 Y99 En162 T913 La164 J2175	Sci5							
791 Criss Nate Criss Juss Bai37 Tri252 U228 Ju228 Ju228 Ju228 Ju228 Ju228 Ju228 Ju228 Ju228 Ju228 Ju228 Ju228 Ju228 Crition Ju228 Crition Ju228 Crition Ju228 Ju228 Ju228 Crition Ju228 Ju228 Ju228 Crition Ju228 Ju228 Crition Ju228 Ju228 Crition Ju228 Ju228 Crition Crition Crition Crition Crition Crition Crition Crition Crit	.D40							
C 192 Nate C 183 Jass Bal 37 T 1932 J 128 Jass Jass Jass C 140 Jass Prill Nate Sett Sett Sali Sali Sali Sali Sali Sali Sali Sali	231							
Nate Chi283 2005 Bal 37 Th 252 U288 2005 Th 181 Lai 39 Cat 40 2008 Pri 41 Nint 46 Sen8 2019 U40 78 Sen8 2019 U40 78 Sen8 2019 Sen8 20 Sen8 2019 Sen8 20 Sen8 20 Sen8 20 Sen8 20 Sen8 20 20 Sen8	C/92							
Coll35 Bal 37 Th252 U288 3005 Th181 Lal 39 Col40 30078 Pri41 Nm446 Set8 2090 Bit176 Sm147 Bal 55 Gell37 Th139 Dy169 Bal 65 Gell37 Th139 Dy169 Bal 65 Gell37 Th139 Dy169 Bal 66 Yth172 Lal 75	Dates							
Bai 37 Th 252 U238 39025 Th 181 Lai 39 Cai 40 39028 Pri 41 Nai 46 Setts 22:90 U81 78 Smi 47 Bai 55 Gel 57 Th 199 Dy 069 Hai 66 Y 789 En 166 Y 789	03133							
Th232 1/238 3/605 Th131 La139 Ca140 3/0208 Pr141 Ni046 3/608 2/30 2/30 2/30 2/30 2/30 2/30 2/30 2/30	Bal 37							
U238 3603 Tuli81 La139 Ca140 Ze398 Pri41 Nah46 3698 2090 38176 Sml47 Ba155 Gvl57 Tb159 Dy663 Ha665 739 Ea166 Ytb172 La175	79252							
3003 Tal 81 1 al 39 Cat 40 2008 Pr141 Nim 46 Sen8 2:90 140.7% Sen8 2:90 141.7%	1798							
Tul 81 La 139 Cal 40 J0208 Pri 41 Nill 46 Sel 8 Sel 8 Sel 8 Sel 9 Sel 178 Smi 47 Bal 55 Gel 57 Tul 59 Dy049 Hal 68 Tul 59 Dy049 Hal 68 Tul 59 Dy049 Hal 68 Tul 59 Dy049 Hal 68 Tul 59 Dy049 Hal 68 Tul 59 La 166 Tul 59 La 166 Tul 59 La 166	1003							
La139 Ca140 2028 Pr141 Nm46 Set8 2090 18378 Sm147 Ra155 Gd37 Tb159 Gy163 Ra165 739 E2166 Yb172 La175	Ta181							
Cal 40 3/02/8 Pril41 Nal 46 Set8 22:90 181776 Sml47 Ea155 G4057 Tb159 Oyl69 Hol65 739 E2:166 Yb172 La125	1.41.52							
26298 Pr141 Nali46 Sel8 22:90 18176 Sm147 Ea155 Gw157 Tb159 Dy663 Had65 739 Ea166 Ytb172 La175	Ce143							
Pr141 Nm146 Set5 2:90 340.76 Sm147 Ba155 Gv057 Tb159 Dy669 Ba166 Y267 Y89 Ex166 Y2672 Lat75	76208							
Nill-46 Set89 22:90 181:78 8m147 Ba155 Gdt57 T9159 D9063 Ha565 785 Ex166 Y28172 Lat25	Pr141							
2010 20176 30176 30147 Fa155 Gel57 Tb159 Gyl63 Hal65 739 E0166 Yb172 Lat75	Nel346							
22:90 36176 Sm147 Fa155 Ge057 Tb159 Cy663 Ho165 Y29 239 239 24175	.5:88							
50176 50147 50147 50147 50149 50469 50469 50469 50466 5056 5056 5056 5056 5057 505	20190							
En155 G0157 T0159 Dy083 Hn065 789 En166 Yb167 Lu175	10178							
Geni57 Tal.59 Dy063 Histofe 789 Ex166 Yb072 Lut75	Eal 65							
T9139 Dy063 Hotes 789 Ex166 Yb172 Lat75	6-957							
Cy663 Ho165 739 Ex166 Yb172 Lat75	15139							
Hint 65 739 En166 Ybb 72 Lat 75	D5163							
780 h:166 Yb873 Lat75	Holds							
10166 Yb073 Lat75	789							
Yb072 1at75	Er166							
La175	Yb072							
	20175							

Na	30X-6W-80 83-8-1
Main	
onade	
duints)	
510-	67.46
150	0.45
alich	17.14
Maple1	1.00
100	1.50
MRO	9.15
200	0.45
200	2.10
A/U	2.80
CDO1	0.01
P _X O ₁	0.05
Fe/O1	2,47
CI	9.32
\$09	9.65
Total	90.06
Titlet	
el ernents	
\$000 Sc45	
749	
VSL	
0152	
15.68	
Cid33	
3085	
Bal 37	
Th232	
11238	
N093	
70181	
La139	
Cel40	
76208	
Pr14L	
N/0.46	
5/88	
2r90	
HI 78	
Sm147	
Eat 53	
Gd157	
Tb1.59	
Dy163	
Holds	
785	
8/166	
136.72	
La175	

Appendix IV.	Major exide and trace element concentration of Site 1438 Amphiboles

Butter	300.69-2-						
	30			3 53 C	020.00	1202304	2221
Nr	5-4	0	8	11-1	12-1	19-2	36-1
Majar Ceide							
SIC		14.17	10.00	40.00	47.7.8		
no-	0.52	0.55	-14	1.55	1 33	1.35	0.00
ALO.	6.74	10.09	13.20	7,54	15.42	12.61	11.61
Na _i O	1 39	2.01	1.71	1.19	1.85	1.79	1.68
MinO	0.97	0.34	6.13	0.49	0.13	0.18	0.20
NigO	16.22	16.29	14.57	13.41	15.63	15,46	15.77
Cito N.O	10.65	10.88	12.16	1117	35.30	13.63	11.58
0.0.	0.62	0.15	6.25	0.08	0.23	9.21	8.13
Fell.	13.74	15.02	12.35	15.20	11.25	11.92	1211
Tobl	55.72	20030	38.42	37.55	53.64	19.82	98.55
Mgt	68.53	(2:9)	68.45	\$7.55	72.34	(3):31	69.52
т	788.46	\$03.61	911.58	817,x8	929.70	965.56	\$26.43
McB	13.45	67,82	61.54	75.92	60.20	59.29	65.37
Inac clements (ppro	,						
THP	\$141.00	7106.45	5976.02	\$594.24	(\$99.13	6577.94	5642.34
V51	175.90	301.45	101.04	185.19	539-61	192.05	155.54
0132	5.44	4.30	4.25	6.74	11.03	88.57	3.31
Ni50	5.75	5.88	6.60	5.51	37.52	51.50	9.11
Ce111	0.61	210	0.00	0.02	0.02	0.00	0.02
Rh85	0.11	0.14	6.4	611	0.28	4.34	0.18
BallsT	647	445	15.36	1.84	2.48	13.28	13.42
75.222	0.05	0.25	1.07	0.01	0.12	0.01	0.01
17516	0.01	0.01	2.00	0.01	0.11	0.00	0.00
Shot.	0.05	0.33	6.33	0.51	0.14	4.67	0.54
Walker.				0.04			
Talle.	0.65	0.04	1.00	0.04	0.94	0.02	000
Lan 25	2.34	0.16	1.25	1745	0.11	0.15	0.12
Ce140	36,76	5.40	1.38	7.20	0.79	1.14	3.06
Pb208	0.69	9.2.9	11.10	0.12	0.88	9.11	0.10
20140	2.87	351	1,45	2.25	0.24	9.29	0.91
Nd1-46	38,34	\$11	4.22	16.83	2.42	2.83	8.66
5488	36.54	18:36	145.51	-42.52	149.20	447.07	132.17
7/90	36.65	16.55	11.55	99.39	5.29	-6 &D	16.62
HPI 78	1.91	0.8	4.66	1.37	9.99	0.40	0.91
Sec.147	8.22	424	1.8.	7,80	1.15	1.32	9.12
End 33	2.25	1.32	6.75	3.16	0.50	0.63	1.10
Gd157	12.37	5.63	2.99	19.79	1.51	2.30	4.54
Thise	214	1.5	6.45	1.91	26.6	-0.44	0.87
Detes	15.58	8.76	3 66	10.16	215	2.81	6.07
Hatak	5.81	1.84	1.50	1.01	0.51	11.64	5.74
1001.02	201	14.	10.45	20.00	19.14	10.04	10.01
100	83.598	10.00	1994		1.05	10.42	2.10
1011-02	1.24	2.78	4.10	8-31	1.52	1.36	1.00
1007.00		A 44					
Y9172	8.53	4.65	2.60	8.53	1.15	1.65	1.11

Button							
We	20-1	21-1	\$3.2	\$4-5	25-1	26-1	27-1
Major Oxide							
[5574]	12122231	10022	202.62	102033	222402	1001017	25.222
no	45.26	42.90	43.91	-45.75	41.78	41.66	65.99
41.0.	1.35	1.25	1.0.00	1.91	10.00	1.35	1.01
Na.O	1.05	2.02	1.47	0.95	1.00	1.14	1.00
NIN	0.54	3.38		0.51	0.10	0.51	0.15
NigO	13.63	15.57	15.34	15.11	15.09	15.21	14.65
Cat	16.74	10.99	11 13	19.74	12.42	10.74	10.79
K ₂ O	0.05	0.20	91.9	0.10	0.25	9.10	0.16
cho'	0.64			0.02			
FeQ	34.49	13.65	15.34	1415	11.57	15.36	15.20
Tobl	55.14	:96.67	98.99	29.24	55.84	58.36	97.64
Mget	68.77	96.3	68.19	\$5.99	72,73	63.93	63.17
1	827.56	\$89.55	251.54	196.99	948.61	776.03	816.16
Mca	74.74	96,12	67.25	34.44	17.91	73.56	73.21
Trace clements (ppn)							
THE	4826.04	425.60	5916.13	4354.56	:597.97	\$399.50	5521.22
3/51	269.75	256.61	351.24	171.80	496.25	251.62	175 89
63.92	6.67	5.99	13.97	55.51	08.25	7.83	92.24
Ni99	5.55	3.21	12.54	4.50	7.82	4.51	49.55
Ce123	0.62	0.02	0.03	0.01	0.12	9.00	0.01
Rh85	0.25	0.53	6.16	0.16	0.33	9.13	0.14
Balst	818	8.26	10.39	6.36	13.16	9.58	3,91
Th221	0.01	0.20	0.00	0.14	0.00	0.01	0.01
U2235	13.0	120	2.00	0.02	0.01	9.00	0.00
Nb67	0.71	0.25	1.34	0.59	0.15	0.78	0.93
Tul 81	0.64	0.62	0.62	0.02	0.12	0.64	6.04
Lat 25	1.55	37.0	1.25	3.36	0.19	216	2.02
Ce140	91.19	4.55	3.04	19.55	1.12	11.84	10.12
Pb/266	4.13	0.16	1 13	0.15	0.19	0.17	0.17
20140	285	1.11	1.80	4.36	0.32	3.85	2.56
Nd1-46	26.13	6.82	1.25	21.50	2.92	22.17	19.45
Settin	45.66	75.26	97.10	52.35	151.49	36.24	45.31
7,190	13.19	15.05	12.47	28.51	6.33	17.92	82.75
HPI 15	1.0	0.75	6.75	1.68	9.35	1 58	1.25
Sec.147	3.45	3.32	3.28	19.99	1.51	9.28	7.18
Eu132	2.45	1.0	1.38	2.74	0.90	219	2.05
G41.57	12.55	5.54	4.49	14.51	2.74	12.29	9,40
Thise	2.24	1.66	6.87	\$.57	0.51	2 32	1.00
Dutes	16.43	637	6.05	1819	3.15	15.66	11.65
Tial 65	5.97	1.44	1.25	2.78	0.75	3.40	2.57
7/85	85.74	36.00	\$2.45	35.70	18.17	90.05	6619
Eri 66	16.56	4.35	3.55	10.55	216	9.70	7.55
V61.22	10.14	414	145	9.90	1.51	10.14	8.11
1.075	1.41	1.14	1.44	1.40	0.75	1.45	1.17
Entry.	1.23		6.46		w	1.02	

Nr 23-3 1 5-3 1-1 5-2 7-3 9-4 Vege Ords. (076) 0000 1.27 1.76 1.38 1.27 1.20 46.97	Butten							
Step: Step: <tt< td=""><td>Ne</td><td>28-5</td><td>1.0</td><td>4-3</td><td>1-1</td><td>\$ 2</td><td>7.3</td><td>9.4</td></tt<>	Ne	28-5	1.0	4-3	1-1	\$ 2	7.3	9.4
Ownshill Ownshilli Ownshill Ownshill	Major Oxide							
3%3 45.8% 45.21 45.35 47.24 (7.20) 46.97 46.97 B0g. 137 138 137 138 133 135 Mu0 122 237 246 1.57 153 1.69 2.08 Mu0 129 247 246 1.57 1.53 1.69 2.01 Mu0 129 247 246 1.41 1.537 1.53 1.69 2.01 Mu0 152 1.27 1.66 3.16 1.17 1.56 3.17 1.53 1.69 1.11 1.57 1.56 3.17 1.53 1.69 1.11 1.57 1.56 1.57 1.57 1.53 1.69 1.57 1.57 1.57 1.53 1.69 3.17 1.57 1.57 1.53 1.57 1.53 1.57 1.53 1.57 1.53 1.57 1.53 1.57 1.53 1.57 1.53 1.57 1.53 1.57 1.53 1.57<	(914)							
Model 1.37 1.34 1.37 1.34 1.33 1.37 1.34 1.33 1.37 1.33 <t< td=""><td>SIC1</td><td>45.09</td><td>48,21</td><td>4.3.35</td><td>47.24</td><td>47.30</td><td>46.97</td><td>44.54</td></t<>	SIC1	45.09	48,21	4.3.35	47.24	47.30	46.97	44.54
No.0 122 121 100 1.57 1.53 1.69 7.16 NhO 193 1.46 4.22 0.00 0.55 0.15 1.27 NhO 193 1.46 4.22 0.00 0.55 0.15 1.278 1.278 CHC 14.39 10.81 10.15 1.360 9.76 11.17 K/O 0.15 0.16 0.57 1.360 9.76 11.17 K/O 0.15 0.12 0.00 0.09 0.14 8.12 C/O 0.12 0.00 0.09 0.14 8.12 C/O 1.43 16.05 14.39 15.45 15.20 17.36 17.38 17.38 17.38 17.37 19.38 17.37 19.38 17.37 19.38 17.37 19.38 17.37 19.38 17.37 17.37 19.38 17.37 17.37 17.37 19.38 17.37 17.37 17.37 17.37 17.37 17.37	41.0	1.97	1.36	1.58	1.87	1.25	1.12	1.39
NHO 1.22 1.24 1.04 1.05 1.35 1.45 1.27 NHO 15.21 12.26 14.10 15.57 33.39 12.78 13.72 Cac 14.45 14.26 14.10 15.57 33.39 12.78 13.72 Cac 14.45 14.26 14.37 0.16 0.18 9.14 8.12 Chyo, 12.2 0.03 0.22 0.03 0.22 13.86 15.25 FPO 14.45 16.06 14.39 15.43 53.26 9.8.70 37.37 57.77 90.38 97.12 Mage 65.66 59.07 7.57.32 98.00 7.7 75.32 98.00 Mage 65.66 59.07 77.57.32 98.00 7.7 75.75 66.58 Trais 7.81.29 85.46 816.56 79.07 77.57.2 98.07 Mage 63.65 79.07 77.57.2 98.07 7.57.4 7.56 7.54	Na.C	0.03	5.20	10.54	1.50	0.90	7.52	10.31
Mg0 1521 1539 1410 1537 1535 1535 1537 1540 1549 1081 1012 1037 1640 9.16 1112 1540 1443 1666 14.29 1044 14.29 1138 1522 1540 1443 1666 14.39 14.45 1520 1738 1339 1445 1537 1443 1537 1443 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1137 1537 1438 1537 1438 1537 1438 1537 1438 1537 1438 1537 1537 1639 1638 1638 1638 1638 1638 1637 1636 1637 1636<	MIN	0.54	2.45	6.17	0.50	0.55	0.15	0.27
Cold 16 59 16 63 19 57 19 67 19 60 9 75 11 12 KeO 0.15 0.45 0.45 0.00 0.02 0.11 0.12 FeO 14.45 16.05 14.39 15.45 15.20 17.36 13.38 Teal 56.18 27.26 28.30 77.37 19.38 27.17 19.38 27.17 May 62.66 29.07 7.37 29.38 27.17 19.39 19.17 19.13 19.16 19.16 19.16 19.16 <td>NigO</td> <td>15.41</td> <td>12.99</td> <td>14.10</td> <td>13.57</td> <td>15.19</td> <td>12.78</td> <td>13.72</td>	NigO	15.41	12.99	14.10	13.57	15.19	12.78	13.72
650 CipO 0.15 JIZ 0.10 0.03 0.83 0.42 9.44 8.12 FO 14.45 16.05 14.32 15.45 3.520 17.36 13.58 Teal 93.8 97.02 98.30 37.37 57.77 19.38 97.17 Mpd 65.66 95.07 65.78 68.29 15.45 56.78 68.29 T 781.29 854.13 855.56 816.56 70.07 775.72 868.16 Max 73.20 71.81 68.44 75.42 73.40 76.75 67.54 Insectments (opped) 190.32 75.11 68.44 75.42 73.40 76.75 67.54 Insectments (opped) 190.32 75.77 193.34 76.75 67.54 T149 965.80 17 190.32 76.75 67.54 Chi23 0.11 180.35 16.5 76.75 67.54 T1416 0.13 17.25 211 17.25 <t< td=""><td>Cat</td><td>16.59</td><td>10.81</td><td>10.87</td><td>19.67</td><td>33.60</td><td>9.76</td><td>11.12</td></t<>	Cat	16.59	10.81	10.87	19.67	33.60	9.76	11.12
CODD 0.02 0.03 0.02 Frod 14.45 50.26 15.20 17.36 15.20 Mg0 152.66 50.07 65.30 41.34 55.25 55.75 66.25 T 701.29 154.13 855.56 816.56 700.07 77.57 868.70 Mail 73.20 71.01 68.44 75.42 73.40 70.75 66.54 Mail 73.20 71.01 68.44 75.42 73.40 70.75 67.54 Inaccelements 0pero 71.01 68.44 75.42 73.40 70.75 67.54 Inaccelements 0pero 71.01 68.44 75.42 73.40 70.75 67.54 Inaccelements 0pero 71.01 68.44 75.42 73.40 70.75 67.54 Inaccelements 0.13 0.01 70.50 70.55 67.54 Inaccelements 0.13 0.01 70.57 67.55 67.54	K ₂ O	0.05	9.45	6.12	0.10	0.89	9.11	0.12
FPO 14.45 16.02 14.39 15.45 15.20 17.36 13.35 Table 15.34 59.07 45.30 41.34 57.17 58.38 97.12 Mpt 153.20 71.21 854.13 855.55 816.56 700.07 77.37.2 868.10 Maa 73.20 71.21 68.44 73.42 73.40 70.75 67.54 Inac clemens gepe0	culo?		9.52		0.03	0.02		
Total 95.18 97.50 95.50 114 97.51 94.38 97.55 61.37 Mg# 67.64 50.07 65.30 61.44 55.39 66.75 66.13 T 781.29 854.63 855.56 816.56 790.07 77.53 67.54 Trace charense 0 0 64.4 75.42 75.40 70.75 67.54 Trace charense 0 9 66.5 70.07 67.54 70.75 67.54 Trace charense 0 9 66.5 70.32 87.57 67.54 Trace 100.5 190.52 190.52 190.52 190.55 67.54 0.032 19.23 0.01 190.55 67.54 190.55 67.54 0.032 19.23 0.01 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 190.55 </td <td>FeQ</td> <td>34.45</td> <td>16.05</td> <td>14.39</td> <td>15.45</td> <td>16.20</td> <td>17.36</td> <td>13.53</td>	FeQ	34.45	16.05	14.39	15.45	16.20	17.36	13.53
Mgp MAD SSU10 SSU51 SL21 SL210 SL210 <thsl210< th=""> <thsl210< th=""> SL210<</thsl210<></thsl210<>	Tohl	55.18	97.90	38.70	37.57	57.71	56.58	97.17
Mai 11.20 17.00 601.00 17.00 <th1< td=""><td>T</td><td>221.29</td><td>55113</td><td>946.65</td><td>916.56</td><td>292.02</td><td>125.75</td><td>505.70</td></th1<>	T	221.29	55113	946.65	916.56	292.02	125.75	505.70
Trace clamen a Trace clamen a TH49 H658.83 V51 190.9 G192 HE22 Ni60 434 Cel13 G11 Rh68 0.13 Ball35 6.65 Th221 G11 D228 G11 D228 G11 D218 G13 La025 221 D2140 1.162 Pb008 0.13 J0143 3.11 Nd148 25.10 J0149 3.11 Nd148 25.10 J0143 3.11 Nd148 25.11 Sell 3.13 Sell 3.14 Nd133 2.37 G4157 13.40 J0163 17.14 J0163 17.14 J0163 17.14 J0163 17.14 J0163 17.24 J0172 1.23 <td>McR.</td> <td>13.20</td> <td>71.01</td> <td>62.44</td> <td>25.42</td> <td>73.40</td> <td>70.75</td> <td>67.54</td>	McR.	13.20	71.01	62.44	25.42	73.40	70.75	67.54
Trace clamera a Tria particle Tria parti parti	100					1000		
TH9 3665.82 V51 190.92 Cx52 36.23 Ni90 434 Cx133 0.01 R165 0.13 Bu157 6.65 Th221 0.01 U238 0.01 U238 0.01 Nb00 0.72 Tu08. 0.05 La023 2.21 D2140 11.02 P1008 0.13 2410 3.11 N61.8 2.5.13 Sellit 2.2.20 2790 30.90 H9173 1.65 Saul47 9.80 La035 2.37 G4157 13.30 Tb159 2.41 Dp163 17.34 Tb164 18.92 Y9172 11.24 La075 1.23	(ppro)							
V51 V60 32 V52 H123 N590 4.34 Cx033 0.01 R168 0.13 Bu157 6.05 Tr2213 0.01 U238 0.01 U239 0.01 U238 0.01 U239 0.02 Tu181 0.05 La025 2.21 Cx140 11.45 P608 0.13 P414 3.11 Nd1-86 29.13 Sull 2 2.97 Gd157 13.16 Tb159 2.41 Dp163 17.34 Tu142 3.81 Tu143 2.97 Gd157 13.16 Tu143 2.13 Dp163 17.34 Tu143 3.81 Tu143 5.81 Tu144 5.81 Tu145 5.81 Tu145 5.81 Tu145 5.81 Tu145 1.24 Lu175 1.25 <	THE	1065.53						
0.92 H-23 Ni99 4.34 Cel13 0.01 R168 0.13 Ba157 6.05 Th221 0.01 U238 0.01 U239 0.01 U239 0.01 U239 0.01 U239 0.01 U239 0.01 U239 0.01 U240 0.13 Pic049 0.13 Pic049 0.13 Pic049 0.13 Pic14 3.11 Sell 3.237 Gel157 13.46 Pic153 2.41 Dip163 17.34 Tib162 17.34 Tib163 17.34 Tib164 18.66 Yi877 12.24 Lu175 1.25	V51	190.04						
Ni99 4.34 C4133 0.01 R148 0.13 Ba157 6.65 Th2212 0.01 U238 0.03 Nb09 0.72 Ta161 0.05 La029 2.21 D2140 0.13 P4006 0.13 P410 3.11 Nd140 3.11 Nd140 3.11 Nd140 3.11 S400 19.20 7090 30.96 H0131 1.65 Sau347 9.30 Ba157 13.36 Tb199 2.41 D9163 17.34 Tb125 3.81 Y09 95.21 Ba145 3.81 Y09 95.21 Ba145 1.25	01.92	10.21						
Cull33 0.01 Rh48 0.13 Bul37 0.05 Th223 0.01 U238 0.01 Nb00 0.72 TubE 0.03 Lu325 2.21 Cul40 0.13 Ph006 0.13 Ph10 3.11 Sul1 3.11 Sul1 3.20 2090 0.200 HP173 1.65 Sul17 0.80 HU135 2.37 Gul 57 0.30 Tb199 2.41 Dp163 0.74 Tb199 2.41 Dp163 0.74 Tb199 2.41 Dp163 0.74 Tb199 2.41 Dp163 0.74 Tb199 2.41 Dp163 0.75 Sul 7 0.74 Tb199 2.41 Dp163 0.75 Sul 7 0.75	Ni50	4.34						
RMS 0.13 Bul157 6.05 Th221 0.01 U228 0.01 Nb00 0.72 Tulk1 0.05 La025 2.21 D2140 0.13 Ph006 0.13 Ph107 0.14 S410 3.11 S414 3.11 S414 3.11 S414 3.11 S414 3.12 S414 3.13 S414 3.14 S414 3.15 S414 3.11 S414 3.12 S414 3.13 S414 3.14 S414 3.15 S414 3.16 S4147 3.45 S4147 3.45 S4157 13.16 Tul425 3.81 Y49 9.431 E44 10.45 Y497 10.24 La175 1.25	Ce113	0.01						
Bul 57 6.05 Th223 0.01 U238 0.01 Nb60 0.72 TubB1 0.03 Lu025 2.21 D2400 0.13 Ph006 0.13 Ph108 3.11 Ni140 32.10 Sel440 32.00 Ph709 32.00 Ph173 1.65 Su147 3.80 Ph175 1.23 Ph175 1.24 Dp165 11.34 Tu145 5.81 Y89 96.31 En464 8.92 Y8172 1.24 Lu175 1.23	Rhds	0.13						
Th222 0.01 U228 0.01 Nb01 0.72 Th081 0.03 La025 2.21 De140 0.13 P008 0.13 P0140 3.11 Nd146 3.20 P029 3.23 P0413 2.37 P04157 13.4 P0453 17.4 P0453 17.4 P0453 18.6 P0453 16.5 P0453 16.5 P0453 16.5 P0453 16.5	Balst	6.65						
U225 0.01 N800 0.72 Tu181 0.03 La023 2.21 U240 0.13 P0066 0.13 P018 1.65 P018 1.65 P018 1.65 P018 2.37 Gd157 13.16 Tb159 2.41 D9163 17.34 Tb165 2.81 Y019 96.31 P0164 10.95 Y0172 11.24 Lu175 1.25	Th222	0.01						
No.0 0.72 Tullit. 0.05 La125 2.21 De140 11.05 Pb098 0.13 Pb140 3.11 Nd140 25.11 Sellit 25.20 2090 30.90 HP178 1.65 Saul42 9.05 La153 2.37 Ga157 13.16 Tb159 2.41 Dp163 17.34 Tula25 5.81 Y08 96.31 En165 18.62 Y08 96.31 En165 18.95 Y08 19.51 La172 1.24 La172 1.25	175.16	0.01						
Tubb 0.12 Tubb 0.03 La125 2.21 De140 11.32 Ph208 0.13 Selin 35.20 Z090 32.00 R0175 1.65 Sult7 9.80 Eul37 2.37 G4157 13.40 Tb159 2.41 Dy163 17.34 Tb1645 18.96 Y0173 11.24 Lu175 1.23	5.667	0.75						
Table 0.05 La025 2.21 De140 0.13 Ph068 0.13 Ph140 3.11 Selle 35.20 2090 12.50 R0175 1.65 Selle 3.237 G4187 13.10 Tb159 2.44 Dp163 17.34 Tb165 5.81 Y08 96.31 Dr164 16.56 Y0172 11.24 La175 1.25	The second							
La133 221 E2140 11.03 Ph206 013 20140 311 Selfe 35.0 700 73.50 HP178 1.65 Sec147 9.65 Ea153 2.37 G4157 15.10 Tb159 2.44 Dy163 17.34 Tb145 5.81 Y09 96.31 En166 16.56 Y0172 11.24 La175 1.23	Tallet	0.62						
Cel40 11.02 P6008 0.13 P6109 3.11 Nd140 32.11 Sel040 32.20 7090 32.90 HP173 1.65 Sel047 3.85 Ful133 2.37 Gd157 13.16 Tb159 2.44 Dp165 17.34 Tb1425 5.81 Y892 96.31 Erit64 81.66 Y8172 11.24 La175 1.25	Lat 25	2 21						
P6008 0.13 P6008 0.13 P6140 3.11 Nd146 29.13 Sell 32.00 Price	Ce140	11.12						
20140 3.11 Nd146 29.17 Selli 29.20 20190 32.50 20190 32.50 R0175 1.65 Sau147 9.80 E0157 13.10 Tb159 2.41 Dy163 17.34 Tb1425 5.81 Y019 95.31 En165 11.24 Lu175 1.23	Pb/268	0.19						
Nd1-86 29.11 Settil 39.20 3r/90 30.90 HP175 1.65 Set147 9.80 Eu1375 2.37 G4157 13.10 Tb159 2.41 Dy163 17.34 Tb155 5.81 Y88 96.31 Eri464 86.95 Y8672 11.24 La175 1.23	20141	3.11						
Sell 25.20 25.90 33.90 HP175 1.65 Sell47 9.85 Eu133 2.37 G4157 13.16 Tb159 2.44 Dp163 17.14 Tb145 3.81 YB2 95.31 Er164 86.96 Yb172 11.24 Lu175 1.25	Nd1-46	39.13						
2590 20.90 HP175 1.65 Sm147 9.65 En133 2.37 G4157 13.40 Tb159 2.44 Dp163 17.34 Tb145 3.81 Y992 96.31 En145 18.66 Y6172 11.24 La175 1.25	5488	19.20						
HP1 78 1.65 Sm147 9.85 Bull 53 2.37 Gd1 57 B.16 Tb(59 2.44 Dp165 17.34 Tb(125 5.81 Y092 96.31 Br1645 18.66 Y61 72 11.24 Lul 75 1.25	7,190	33.90						
Sul 47 9.85 Eul 33 2.37 Gd1 57 Eul 30 Tbi 159 2.41 Dy163 17.34 Tbi 145 3.81 Y09 95.21 End 65 11.24 Lul 75 1.25	HP1 75	1.65						
Bal33 2.37 Gd157 B.36 Tb159 2.41 Dy163 17.34 Tb145 3.81 Y08 96.31 Entes 10.95 Y0172 11.24 La175 1.29	Sec 147	135						
Gd157 13.16 Tb159 2.41 Dy163 17.34 Tb145 3.51 Y09 55.31 Er166 00.66 Y0172 01.24 Lul 75 1.53	15-0.03	2.22						
Gall S1 HA10 Tb (59) 2.41 Dy(63) 17.34 Tb (155) 3.51 YM9 96.31 Eri 66 00.66 Yb(72) 11.24 Lul 75 1.53	100.55	2.1/						
To 159 2 44 Dipt 65 17 14 The 145 3 81 WB 95 31 Erit 64 08.06 Wb 172 01.24 Lul 75 1.25	search and	14.10						
Dy163 11.24 Te1.45 3.81 Y09 95.31 Er1.66 98.65 Y61.72 91.24 Lol.75 1.25	Tb159	2.41						
The 145 5.81 V09 95.31 Eri 66 01.95 V01.72 01.24 Exi 75 1.53	Dy163	17,24						
V89 9531 Eri65 96.90 V9172 91.24 Lul75 1.53	Tial 45	3.81						
Erics 10.55 Viel.72 01.24 Lui 75 1.55	7/82	95.31						
Viel.72 01.24 Lot 75 1.50	Eri 66	16.92						
Lul 73 1.33	Y6172	11.24						
	Lul 73	1.23						

Button							
Wr	10-1	11-8	12-1	14-1	16-1	18-2	26-2
Major Oxide							
SIC	43.94	47.56	44,35	47.11	45.01	48.0T	42.55
noz	1.52	1 22	1.42	1.29	1.82	9.79	1.17
ALO.	7.23	5.52	10.34	7,48	8.25	7.60	12.25
Na,O	1.52	1.11	2.65	1.4	2.20	1.37	2.43
MinO	0.49	0.55	6.22	0.47	0.35	0.41	0.14
NigO	12.25	13.00	15.22	13.55	12.73	14.65	13.65
Cat	HE GL	10.54	11.28	19.81	33.73	10.78	11.67
K ₂ O	0.95	9.20	5.12	0.11	0.13	9.19	0.73
Cr ₂ O ₄				0.03		0.04	0.00
FeO	17.96	16.24	15.35	14.55	15.39	14.05	13.64
Total	25.22	97,32	97.55	37.36	55.64	97.8T	5%.02
Math	54.58	58:31	64.16	\$1.99	\$2.58	68.02	65.55
T	792.31	758 55	871.0.5	815.06	840.01	822.03	948.55
McB	71.54	71.11	65.39	75.21	75.63	73.43	69.23

Trace elements (ppro) THP V51 0.92 Ni59 cam Rh85 Balst Th211 U235 Nb69 TME: Lal 25 Ce140 Pb.068 204 Nd1-45 548 7/90 HPI 75 Sec.147 Eu132 Gd157 Tb159 Dyt63 The 45 7/85 E/165

Y6172 Lui 73

Nr 14-5 21-1 52-1 11-2 19-1 26-5 Mager Cests, (merc) 300 41.06 46.08 48.32 46.37 45.22 44.02 64.39 TD2, 1.15 3.51 6.81 0.66 9.13 0.99 64.02 64.39 Nb,0 2.17 1.23 1.14 1.08 1.15 1.04 1.06 1.05 1.01	Button			366-18-15-				
Name Dec. J. 1 Dec. Dec. <thdec.< th=""> Dec. Dec. <thd< th=""><th>-</th><th>10.0</th><th>11.1</th><th></th><th></th><th>11.5</th><th>14.1</th><th>24. 3</th></thd<></thdec.<>	-	10.0	11.1			11.5	14.1	24. 3
No. 41.66 46.87 46.87 46.87 46.87 46.87 46.87 D0. 1.15 3.51 6.81 0.66 9.18 0.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 0.99 9.99 9.99 46.67 1.24 1.06 1.15 1.06 1.15 1.06 1.15	Major Colds				8	11-2		12.5
DO- NALO 115 351 4281 096 018 0180 0197 MAO- NALO 2124 333 722 7.25 7.38 11.36 12.47 MAO 0.03 0.23 6.25 0.09 0.59 0.31 6.65 MAO 0.13 8.11 11.35 11.35 11.31 10.88 10.90 CO 0.12 2.24 0.49 0.19 0.20<	SIC	41.06	18.18	4.8 87	45.87	45.77	44.07	44.72
4400, bit 0 1224 637 723 725 726 1286 1247 Nu0 247 123 114 108 128 149 121 Nu0 329 14.24 14.15 15.53 1433 1322 14.25 C6 11.38 4.71 14.15 15.53 1433 1322 14.25 C6 0.13 9.29 9.24 1.66 0.12 0.89 9.20 0.20 C6 0.23 9.24 1.66 0.12 0.89 9.20 0.20 C700 0.24 0.24 0.01 0.49 0.25 0.20 Tabl 9.23 9.24 5.23 0.25 0.25 0.25 0.26 0.25 0.26 0.2	noz	115	35	6.81	0.96	0.19	9.89	0.97
Na,0 2.17 1.13 1.14 1.08 1.45 1.69 1.59 Na,0 12.29 14.25 1.53 1.53 1.13 1.445 C.G 11.78 4.71 11.15 1.125 1.11 1.048 1.041 K.G 0.14 0.24 0.01 0.40 0.26 0.26 CY,0 0.24 0.24 0.01 0.40 0.27 1.53 1.13 1.53 1.53 1.22 1.25 1.22 1.25<	ALO1	15.54	5.57	7.22	7.75	7.36	11.85	12.47
MAO 0.03 <th0< td=""><td>Na₁O</td><td>2.47</td><td>1.13</td><td>2.34</td><td>1.08</td><td>1.85</td><td>1.69</td><td>1.70</td></th0<>	Na ₁ O	2.47	1.13	2.34	1.08	1.85	1.69	1.70
MgC 11.29 11.25 11.15 1	MinO	0.69	0.63	6.22	0.49	0.50	0.31	0.12
bid 0 <th0< th=""> 0 0 0</th0<>	NigO	13.29	14.28	14:15	13.55	54.33	13.82	14.65
CPD 0.35 0.34 0.45 0.12 0.49 0.49 0.49 FeO 12,16 15,32 14,27 14,75 14,32 12,95 11,53 Tobal 92,13 97,82 98,139 12,35 14,32 12,95 11,53 Tobal 92,54 51,22 64,32 52,35 64,42 62,35 64,43 T 955,43 199,72 162,25 18,10 74,66 841,35 844,41 Taxe clears a (ppro) 10,07 70,44 71,25 72,56 62,06 64,15 Trace clears a (ppro) 10,07 70,44 74,13 10,16 3875,42 V51 365,37 574,95 188,67 631,95 541,67 V51 365,37 574,95 188,67 631,95 541,67 V51 365,37 574,95 188,67 631,95 64,67 V51 365,37 574,95 188,97 631,95 64,67 V51	200	11, 78	9.4	11.15	11.25	21.33	10.88	19.63
Field Field <th< td=""><td>0.0.</td><td>0.25</td><td>324</td><td>6.79</td><td>0.12</td><td>0.89</td><td>02.0</td><td>0,20</td></th<>	0.0.	0.25	324	6.79	0.12	0.89	02.0	0,20
Teal 1423 1722 1413 <th< td=""><td>Ter1</td><td>17.16</td><td>15.59</td><td>14.92</td><td>15.75</td><td>19.99</td><td>19.95</td><td>11.52</td></th<>	Ter1	17.16	15.59	14.92	15.75	19.99	19.95	11.52
Mgg 66.28 61.25 61.12 52.35 64.35 68.43 T 985.45 799.72 762.25 78.62 705.66 69.65 68.15 Trace charens Oppro 70.46 71.25 78.62 70.56 69.05 68.15 Trace charens Oppro 545.37 754.65 188.67 181.51 547.62 V51 545.37 754.65 188.67 181.51 547.67 V51 545.37 754.65 188.67 181.51 547.62 V51 545.37 754.65 188.67 181.51 10.65 V51 545.37 754.65 188.67 181.51 10.65 V51 545.37 754.65 188.67 10.15 10.65 Ch13 6.66 0.01 0.32 0.02 60.2 Ch13 6.67 0.01 0.31 0.06 60.3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01<	Tobl	56.21	97.60	98.19	35.31	\$7.71	56.53	97.45
T 983.45 799.72 782.58 782.62 785.69 891.35 884.61 Mail 24.11 74.07 70.46 71.26 71.26 65.06 64.15 Trace clemens (ppro 5597.42 1689.48 1682.44 36.08.16 Mol.16 887.42 V51 545.37 56.05 198.57 181.57 560.07 5100 2.58 6.24 2.57 0.85 108.75 5100 2.58 6.24 2.57 0.85 108.75 5100 2.58 6.24 2.57 0.85 108.75 5113 6.6 0.01 0.42 0.62 66.23 5113 6.6 0.01 0.41 0.01 0.02 51215 6.6 0.01 0.41 0.01 0.02 51215 6.6 0.01 0.41 0.00 0.02 51215 6.6 0.01 0.41 0.00 0.02 5121 <td< td=""><td>Math</td><td>66.28</td><td>63.25</td><td>65.82</td><td>\$2.35</td><td>64.25</td><td>(8.55</td><td>68.45</td></td<>	Math	66.28	63.25	65.82	\$2.35	64.25	(8.55	68.45
Null 94.11 74.07 70.34 71.26 71.36 60.05 60.13 Trace clemens (ppro) 1509.08 1682.44 3633.36 3601.16 3873.42 Ti49 1515 353.37 176.95 188.67 61.13 907.07 151 353.37 176.95 188.67 61.13 10.65 1509 2.26 6.24 2.57 0.39 18.09 1509 2.26 6.24 2.57 0.39 18.09 1509 2.56 6.24 2.57 0.39 18.09 15013 6.60 0.01 0.42 0.02 0.02 1513 1.65 9.36 7.44 7.34 12.21 1522 1.60 0.01 0.41 0.40 0.01 1523 1.63 0.77 0.40 0.40 0.02 1524 1.63 0.77 0.40 0.40 0.40 1525 1.64 1.25 1.45 <t< td=""><td>T</td><td>985.45</td><td>799.72</td><td>762.58</td><td>78.02</td><td>765,69</td><td>891.35</td><td>\$\$4,61</td></t<>	T	985.45	799.72	762.58	78.02	765,69	891.35	\$\$4,61
Trace classes Oppo Not AR Not 2.44 Scala 3.6 Molt 1.6 Not 7.42 V51 55 3.7 57 6.95 158 6.7 181 5.9 50 7.42 V51 55 3.7 57 6.95 158 6.7 181 5.9 50 7.42 V51 5.75 6.26 2.87 9.89 6.02 6.02 C0133 6.76 6.01 0.02 0.05 6.02 6.02 R165 6.53 6.28 7.44 7.34 12.21 Th222 6.76 6.01 0.01 0.01 6.03 U228 6.76 6.01 0.01 0.01 6.03 U228 6.76 6.01 0.01 0.02 6.02 L015 1.63 0.05 0.03 0.02 6.02 L015 1.64 1.02 0.04 0.03 6.02 L015 0.15 0.12 0.49 0.16 6.12 L015 0.15 0.12	Mclt	54.11	74.07	79,54	71.26	72.56	68.05	68.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trate clements (ppro							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THE			\$596.48	1382.44	3633.36	3401.16	3873.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/51			545.97	\$76.95	138.67	(81.52	\$07.07
Ni90 2.98 6.28 2.87 9.89 18.99 Cel131 6.60 0.01 0.02 0.02 0.02 R168 6.33 0.23 0.11 0.11 0.01 B0157 3.65 9.86 7.44 7.34 12.21 Th2212 6.60 0.01 0.01 0.01 0.00 U235 6.67 0.01 0.01 0.00 0.00 V235 6.67 0.01 0.01 0.00 0.00 V235 6.67 0.01 0.01 0.00 0.00 V235 6.67 0.02 0.33 0.06 0.02 Tu015 6.12 0.15 0.12 0.02 0.02 La055 1.46 1.25 0.15 0.12 0.49 0.16 P1008 1.35 0.15 0.12 0.49 0.16 P1019 1.35 48.59 51.46 112.27 148.76 P1028 <t< td=""><td>431.952</td><td></td><td></td><td>8.18</td><td>10.03</td><td>4.73</td><td>0.17</td><td>10.65</td></t<>	431.952			8.18	10.03	4.73	0.17	10.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni59			2.56	6.24	2.57	9.85	18.02
RMS 4.53 6.23 6.11 6.14 6.24 Bul37 7.45 9.36 7.44 7.34 12.21 Tr221 E.60 6.01 6.01 6.01 6.01 6.01 U228 E.67 6.01 6.01 6.01 6.01 6.01 N801 E.63 6.77 0.40 0.23 6.02 TMR1 6.03 6.03 0.03 6.02 6.02 La125 1.60 6.02 0.15 0.12 6.02 La125 1.60 1.26 1.35 0.22 6.22 La125 1.60 1.26 1.35 0.22 6.24 P6068 1.15 0.15 0.12 0.46 6.45 N146 18.52 19.35 14.34 1.30 0.30 Sta18 51.25 46.59 9.146 112.37 146.76 H175 1.43 1.36 1.46 112.37 145.76	Ce133			0.00	0.01	0.02	0.02	0.02
Bal37 7.65 9.86 7.44 7.34 12.21 Tr221 6.60 0.01 0.01 0.01 0.01 0.01 Tr228 6.67 0.01 0.01 0.01 0.01 0.01 No00 6.67 0.60 0.31 0.68 0.06 Trais: 6.67 0.60 0.33 0.66 0.02 La225 1.66 1.26 1.35 0.12 0.62 La235 1.66 1.26 1.35 0.22 0.22 Ce140 6.77 10.58 8.12 2.26 1.42 Pic66 1.35 0.12 0.49 0.10 0.10 Pic141 2.25 1.44 2.33 0.78 0.39 Sil146 18.52 19.53 46.59 9.16 9.12 9.63 Sil147 14.6 18.52 14.31 8.64 14.57 14.56	Rh85			6.53	0.28	9.11	9.11	0.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Balst			3.68	9,86	2.44	7.34	12.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Th222			0.00	0.01	0.11	0.01	0.03
Nb90 4.63 0.77 0.49 0.23 0.08 Tuble 6.63 0.05 0.15 0.02 0.02 La025 1.66 1.26 1.35 0.22 0.22 Cel40 6.77 10.958 8.12 2.26 1.42 Plo206 1.35 0.12 0.69 0.16 Plo206 1.35 0.12 0.69 0.16 Plo206 1.35 0.12 0.69 0.16 Plo206 1.35 0.15 0.12 0.69 0.16 Plo206 1.35 0.15 0.12 0.69 0.16 Plo206 1.35 0.15 0.12 0.49 0.16 Plo206 1.35 0.15 0.12 0.49 0.16 Plo206 1.35 0.15 1.35 0.49 0.16 0.16 Statt 1.35 1.40 1.86 0.16 <t< td=""><td>17235</td><td></td><td></td><td>2.00</td><td>0.01</td><td>9.01</td><td>9.01</td><td>0.01</td></t<>	17235			2.00	0.01	9.01	9.01	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13593			6.63	0.77	0.60	0.21	0.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tul 81			0.03	0.03	0.15	0.02	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lat 25			1.60	1.95	1.55	0.35	0.25
P6008 1.35 0.15 0.12 0.49 0.16 2131 2.33 2.34 2.33 0.78 6.39 Nd146 18.52 19.53 15.34 0.40 9.02 Seliu 51.35 48.59 51.46 112.27 148.76 7990 52.18 46.40 11.67 11.44 6.49 1973 1.43 1.86 1.66 0.75 6.33 Sm147 1.43 1.85 0.73 6.73 6.33 Sm147 1.51 10.54 1.50 6.73 6.73 Gd157 11.51 10.54 1.50 6.234 1.13 6.60 Dp163 15.41 12.85 1.71 8.60 3.07 Tm145 <td>Ce140</td> <td></td> <td></td> <td>\$.77</td> <td>10.55</td> <td>8.12</td> <td>2.26</td> <td>8.43</td>	Ce140			\$.77	10.55	8.12	2.26	8.43
20140 2.23 1.74 2.33 9.78 6.39 Selies 18.52 19.53 15.24 6.49 9.02 Selies 51.25 48.59 51.46 112.27 145.76 7990 52.18 46.64 112.07 145.76 7990 52.18 46.64 112.07 145.76 8010 1.46 112.07 145.76 6.49 80175 1.43 1.86 1.66 9.75 6.43 80147 1.46 1.27 145.76 6.49 6.49 6.49 6.49 80175 1.43 1.86 1.66 9.75 6.43 5115 0.54 1.22 2.39 1.53 6.73 5115 0.54 1.22 2.39 1.53 6.73 5145 0.54 1.25 1.24 1.39 6.69 5165 1.54 12.35 1.71 8.60 3.07 5165 1.54 1	Pb/208			£.15	0.15	0.12	9.69	0.10
Nd146 18.52 19.33 15.24 0.40 9.02 Sellin 51.35 48.50 51.46 112.27 148.56 7000 52.18 46.40 31.07 11.44 6.40 H9175 143 1.86 1.66 0.73 0.33 San40 4.32 8.13 8.82 3.80 1.33 San40 2.41 2.22 2.39 1.53 6.73 Ga155 11.51 40.54 1.30 4.31 3.53 Ga157 11.51 40.54 1.30 4.31 3.53 Tb159 2.11 1.86 2.34 1.13 6.65 D9165 15.41 12.85 17.11 8.60 3.07 Tb1425 3.24 2.46 5.79 1.84 6.63 Y89 81.50 72.10 57.65 43.49 15.39 Ent64 5.78 8.19 10.49 5.14 4.53 Y9172 <td< td=""><td>20140</td><td></td><td></td><td>2.29</td><td>2,74</td><td>2.33</td><td>0.78</td><td>0.39</td></td<>	20140			2.29	2,74	2.33	0.78	0.39
Settil S1.25 46.50 S1.46 112.27 146.76 70'90 52.18 36.40 33.67 11.61 6.49 H0'175 1.43 1.86 1.66 9.75 6.33 Sm040 4.32 8.13 8.62 3.80 1.33 Sm147 1.51 10.54 1.23 6.71 3.53 Tb159 2.11 1.86 2.34 1.13 6.40 D19163 15.40 12.35 1.24 6.39 1.34 6.62 M14 25 3.24 2.36 5.79 1.84 6.53 M14 25 3.24 2.36 5.79 1.84 6.53 M15 25	Nd1-46			18.92	19.55	15.24	0.80	9.10
7990 52.18 46.40 31.67 11.61 6.49 H0175 1.40 1.86 1.66 9.75 6.33 Sm147 4.22 8.15 8.62 3.83 1.85 Sm147 4.22 8.15 8.62 3.83 1.85 Sm147 4.22 8.15 8.62 3.83 1.85 Sm159 2.41 2.22 2.39 1.52 6.71 D159 2.11 1.94 13.09 6.21 2.53 D165 1.541 1.285 2.34 1.13 6.49 D165 1.541 1.285 2.34 1.03 6.49 D165 1.541 1.285 3.59 1.64 6.07 M162 3.24 2.36 5.39 1.84 6.07 M163 3.18 72.10 57.65 43.39 15.39 Ent64 5.78 8.19 10.49 5.14 1.67 Y0172 5.32	5248			51.25	45.51	51.46	112.37	148.76
H9175 143 136 146 975 633 Sm147 8.32 8.13 8.82 3.81 1.32 Ba157 2.4 2.21 2.39 1.53 6.71 Ga157 11.51 10.54 13.09 6.21 2.33 Tb159 2.14 13.09 6.21 2.33 Dy163 15.41 12.85 17.11 8.60 3.07 Tb159 2.14 2.86 2.54 1.13 6.63 Dy163 15.41 12.85 17.11 8.60 3.07 Tb145 2.34 1.34 6.63 3.07 3.64 3.07 Tb145 3.24 2.36 5.59 1.84 6.63 Y09 31.51 72.10 55.65 43.94 15.39 Ent65 5.78 8.19 10.69 5.14 1.63 Y0172 5.32 8.60 9.49 4.53 1.74 Lu175 1.25	7,190			22.32	46.10	33.97	11.4t	6.49
Smill? 4.22 8.13 8.82 3.80 1.23 Bull33 2.41 2.22 2.39 1.53 6.71 Gd157 11.51 40.54 15.09 4.20 2.33 Tb159 2.11 1.86 2.34 1.13 6.60 Dy163 15.40 12.85 17.11 8.60 3.07 Tb142 2.34 5.39 1.84 6.62 Dy163 15.40 12.85 17.11 8.60 3.07 Tb1425 3.24 2.46 5.94 1.84 6.62 Y05 81.51 72.10 53.05 43.06 15.39 Tb164 5.78 8.19 10.69 5.14 1.63 Y0672 3.22 8.60 9.69 4.53 1.74 Lu175 1.25 1.28 1.91 0.40 0.22	HP1 75			43	1.86	1.65	0.15	0.33
Bal33 2.4: 3.22 2.39 1.53 6.71 Gd157 11.51 10.54 15.09 6.21 3.33 Tb159 2.11 1.86 2.34 1.13 6.60 Dy165 15.40 12.85 17.11 8.60 3.07 Tb159 3.34 3.24 5.40 12.85 17.11 8.60 3.07 Dy165 3.54 3.24 3.26 3.59 1.84 6.62 Y05 3.53 72.10 53.05 43.06 15.39 B1425 3.53 72.10 53.05 43.06 15.39 B1425 3.53 8.19 30.06 5.14 1.63 Y05 8.23 8.60 9.69 4.53 1.71 Y0672 3.52 8.60 9.69 4.53 1.74 Lu175 1.25 1.28 1.91 0.40 0.225	Sta.147			8.32	8.13	8.92	3.81	1.32
Gd157 11.51 10.54 52.09 6.21 2.53 Tb159 2.14 1.26 2.34 1.13 0.00 Dy163 15.40 12.85 17.11 8.60 3.07 Tb159 3.24 2.46 5.59 1.84 0.62 Tb142 3.24 2.46 5.59 1.84 0.62 W9 81.58 72.10 85.05 43.94 15.39 En463 6.78 8.19 10.09 5.14 1.63 W972 5.22 8.60 9.49 4.53 1.74 La175 1.25 1.28 1.91 0.40 0.22	Eu133			2.45	2.22	2.39	1.52	0.72
Tbis9 2.14 1.26 2.34 1.13 0.00 Dy163 15.40 12.85 17.11 8.60 3.07 Tbis9 3.24 2.46 3.59 1.84 0.62 W8 31.51 2.46 3.59 1.84 0.62 W8 31.51 72.10 53.05 43.94 15.39 Extes 5.75 8.19 10.09 5.14 1.63 W8.72 5.22 8.60 9.49 4.53 1.74 Lu175 1.25 1.28 1.91 0.40 0.22	6541.57			11.51	10.54	13.09	6.28	3.53
Dy163 15.40 12.85 17.11 8.60 3.01 Tbi125 3.24 2.46 3.59 1.84 0.63 Y85 81.50 72.10 65.05 43.04 15.39 Enics 6.75 8.19 10.69 5.14 1.63 Y8172 5.32 8.60 9.69 4.51 1.74 Lu175 1.25 1.28 1.91 0.40 0.22	Tb159			2.14	1.36	2.34	1.13	0.40
Thi 155 1.24 2.46 3.59 1.84 0.63 Y89 91.58 72.10 53.65 43.04 15.39 Eri 64 5.78 8.19 10.69 5.14 1.63 Y8172 5.32 8.60 9.69 4.51 1.74 Lul 75 1.25 1.28 1.91 0.60 6.22	Dy163			15.41	12 85	17.13	8.60	3.07
Y89 21.51 72.10 53.05 43.00 15.39 Ert 65 5.78 8.19 10.69 5.14 1.63 Y81 72 5.32 8.60 9.69 4.53 1.74 Lul 75 1.25 1.28 1.91 0.60 0.22	Tiol 45			3.24	2,96	3.99	1.51	0.63
Eri63 5.78 8.19 13.69 5.14 1.63 Y6172 5.32 8.60 9.69 4.53 1.74 Lu175 1.25 1.28 1.91 9.60 0.22	7/82			81.58	72.00	\$3.65	43.84	15.35
Yet 72 5.32 8.60 9.69 4.57 1.74 Laf 75 1.29 1.28 1.91 9.60 0.22	Ert 66			5.75	8.19	93.69	5.24	1.63
Lul 75 1.28 1.31 0.60 0.22	Y6172			5.22	8,60	9.69	4.53	1,74
	Lu175			1.29	1.28	1.71	0.60	0.22

Batter	18			9]			
Wr	SIR-3A-1	218-45-1	218.45.2	\$29 17-2	85-91-18-1	89/91-19-1	8991-20-2
Major Oatik (artis)							
SIC	43.60	46.36	46.99	47.79	47.92	41.55	49.01
no ₂	5.45	1.55	1.90	1.10	1.17	1.92	1.00
NA G	11.21	6,72	7.15	6.66	6.43	7.64	6.05
NIC	2.15	1.51		0.28	0.45	1.55	2.34
NeC	13.60	12.07	12.81	15.85	13.96	13.69	14.10
Cit	11.30	10.68	10.75	10.98	3 59	10.82	10.58
K ₂ O	0.93	0.28	6.25	0.14	0.14	9.15	0.14
cho'		0.25			0.82		
FeQ	13.85	18,13	17.22	15.75	15.34	15.82	15.63
TobJ	55.5%	20030	20.42	35.15	55.08	26.17	58.47
Mge	63.65	50.81	57.41	51.08	11.55	52355	61.45
3.6-8	66.16	73.87	73.17	72.63	24.36	22.50	71.35
Trace clements	ta.ie				140	14-55	
(bbu)							
THE	12934-21	1225- 90	11552.59	10437.53	\$91.4.72	\$434.25	3451.45
3/51	670-11	198.69	(54.3)	108.40	268.67	274.94	313 44
63.32	35.86	852	20.25	29.28	4.11	11.29	3.23
Ni50	38.20	10.88	18.32	5.84	3.96	5.33	4.72
Cel23	1.51	0.56	1.00	0.23	0.22	0.27	0.20
Rh85	16.61	\$1.78	20.70	15.25	13.68	10.96	5.99
Balst	0.63	414	1.15	0.02	0.86	0.63	0.01
10.000				0.02	0.00		0.02
TTAL A		3.55		0.01	2.11	20.00	0.00
0235	4.61	0.16	2.54	001	2122	9.03	0.01
15569	1.29	125	1.30	1.57	1.16	1.24	1.22
Tailst	0.03	32.0	1.12	0.04	0.15	0.16	0.02
Lat 25	4.45	17.62	16.32	2.03	3.40	2.5%	3.32
Ce140	14.27	GELOG	35.41	14.21	14.51	13,77	16.22
Pb/268	1.35	3.46	1.35	0.21	0.18	9.18	0.14
2(14)	2.85	12.51	11.16	3.48	3.58	3.32	4,00
Nd1-45	15.28	18.68	62.56	24,28	27.52	23.58	27.65
5488	207.55	\$2.77	77.34	45.67	42.68	44.97	36.67
7,99	44.09	90.51	97.49	11.01	45.70	47.75	\$5.55
HPI 15	269	3.6	4 44	5.14	217	2.28	2.47
Sec.142	4.85	74.36	78.47	0.36	11.68	0.14	12.22
E-d M	715	4.57	3.63	7.04	3.77	7.44	1.01
241.67		10.10	20.2		10.00	14.01	10.10
100.100		12.11	1.00	4.5.1.4	1.20	4.33	10.15
10129	10	9.15	1.0	5.30	2.82	2.11	2.0
Dy163	9.52	33.72	33.65	16.35	15.64	16,61	19.61
1101.65	1.54	5.45	6.56	2.30	3.34	3.52	4.12
A45	-45.19	1 59 32	175.56	19.41	59.52	91.55	106.32
Eri 66	5.42	19.04	19.35	10.24	31.63	10.12	12.16
Y6172	4.75	18.87	17.10	9:93	1839	9.60	11.25
			2.24	1.00	1.47	1.47	1.14

BUIDON							
Ne	\$9/91 C -1	8951-25-1	894 24-2	\$2.91-31-2	85/91-35-2	89-91-14-1	59/91-1
Major Colds							
194951	2.24	10103	12225	10000	1000	1000	100
DO	47.24	41/2	-12.99	-45.55	45.21	47.89	47.23
ALO.		1 32	4.17	4.10	4.74	7.04	1.17
Na,O	1.88	1.52	2.47	1.0	1.91	1.51	1.70
MpO.	0.44	0.45	E 45	0.54	0.40	0.45	8.41
NigO	13.75	12.98	1-12	14.42	14.39	13.52	13.77
Cat	16.49	13.00	10.89	19.13	33.46	10.85	11.63
4K ₂ O	0.05	0.28	6.16	0.17	0.20	9.16	0.19
cn/0,		110	E 4.0	0.03	0.00	9.93	0.03
FeQ	16.19	15.27	15.45	15.93	14,78	15.75	14.65
Tobl	27,82	97.99	98.35	3814	55.29	98.16	97.65
Mget	66,32	62.00	62.37	\$5.39	63.45	60.47	62.63
1	776.31	825 22	199.02	198.33	734.00	\$14.87	\$14.2
Mc	12.43	76.72	14,35	20.28	12.18	(1.90	72.9
Trate clements (ppn)							
THE	7975.13	102515	95:4.16	\$612.79	5017.78	19962 93	7601.0
3/51	247.21	398 76	559.76	114.61	288.00	272 EE	321.6
01.92	18.65	551	4.31	2.25	\$3.00	4.88	30.13
Ni99	7.97	5.32	9.37	4.38	10.22	4.80	25.57
Ce123	0.47	0.21	6.25	0.16	1.10	0.29	1.05
Rh85	10.80	4.55	10.56	\$.85	7.96	13.84	3.07
Balst	0.17	9.62	1.00	0.08	0.08	0.09	0.09
Th222	0.05	0.22	0.00		0.11		0.21
17235	0.01	210	2.00	0.01	0.11		0.00
Nb69	1 23	LIC.	1.43	1,29	1.25	130	0,12
Tul 81	0.64	33.0	0.60	0.08	0.13	0.05	0.06
Lat 25	5.71	5.1.2	3.32	2,44	2.91	2.92	7,86
Ce140	15.27	15.07	15.35	16.34	15.5%	13.98	20.74
Pb/208	0.41	4.53	1.45	0.14	0.50	0.14	0.30
20140	3.44	3.62	3.64	2.98	5.36	3.39	3.35
Nd1-95	25.95	25.43	25.77	25.41	22.73	24.17	10.55
Settin	62.82	37.96	33.34	31.42	37.49	41.30	21.21
7/90	45.44	02.95	1814	15.65	\$2.36	46.28	17.90
HPI 15	211	223	3.13	5.31	2.50	2.95	0.61
Sec.147	3.02	3.32	10.15	11.34	9.35	10.14	3.89
En133	2.35	2.36	2.35	2.75	2.21	2.68	0.97
Gd157	12.78	12.75	14.35	14.29	14.04	15.45	5.37
Thise	2.13	376	1 40	4.77	2.25	2.42	6.95
Derick	15.51	16.27	16.38	19.81	12.07	11.94	1.00
21-1-05	8.83	2.44	1.43	4.55	4.64	1.14	
101.25	5.72	245	01.00	100.70	5.71	5.54	
100	82.75	10.00	10.21	110.10	89.15	MLADS	20.40
61165	8.92	10000	10.51	12.38	10.21	10.68	7.61
Ye172	9.24	9.52	10.21	11.57	19708	9.52	15.14
A CONTRACTOR OF	1 11	1.47	1.48	1.64	1.42	1.47	2.78

Battern	458-4W-18- 21-1A-3	19R-4W-18- 11-2A-6	21-14-2	2040-18- 204A-1	25R-4W-76- 28-LA=I	18/2A-0	268-4W-7 78-3A-4
Wr	1	5	8			14	15
Mater Oxide							
(979)							
SIC1	41.17	43,09	43.15	42.78	43.21	47.17	48.53
no _z	2.74	9.2.9	83	5.84	2.26	1.86	1.15
ALOL	11.20	\$31	8.27	55.64	10.44	7.87	6.28
194,12	2.35	2.00	2.00	3.24	2.34	1.32	1.16
NEED.	0.10	0.25	1.15	0.14	0.10	0.19	0.19
Conto.	13.06	10,20	10.39	12.79	33.42	10.05	14.35
6,0	0.75	0.74	1010	0.24	4.72	10.07	0.12
Cr.O.	0.00			0.24	0.34	412	2014
FeD	14.45	19:96	20.80	1531	24.41	14.87	13.47
TobJ	22.51	96.48	36.22	35.45	55.64	16.62	95.03
Mor	61,70	(7.3)	445.87	59.51	62.42	62.74	65.59
т	924,25	\$19.13	812.53	895.12	958,44	774.68	161.65
Mcl	62.91	70,86	70.51	\$7.57	64.24	71.69	72.34
Trate elemento (ppro)							
THE	16650.62	13825.29	13754.10	11963-55	14990.02	7158.14	9218.23
3/51	625.46	345 33	311.06	199-13	(2) 20	308.63	368.17
13.92		311	4.12	4.54	× #1	8.85	1.7
Minh	8.45		1.14	7.01	9.1.2	4.77	4.71
0.111				0.71	0.07	0.00	0.10
Contra .	4.51	10.00	8-2 W	10-9	10.57	11.22	10.12
KIRO	35.90	1938	20.32	26.58	23.63	14.75	10.40
Balst	0.13	0.52	1.00	0006	0.94	9.82	610
Th231	0.01	017	E.KC	0,01	0.11	0.02	0.05
0225	0.61		513	0.03		0.06	0.01
Nb69	1.21	4.55	\$.59	2.49	2.11	0.59	1.42
Tul 81	0.67	928	6.16	0.14	0.10	0.02	0,06
Lat 25	2 2 3	14,30	10.45	4,43	4.27	3.72	3.92
Ce140	9.29	51.12	43.92	19.19	15.17	14.22	17.55
Pb.208	0.15	3.35	6.33	0.16	0.20	0.60	1.25
21.11	212	10:25	6.15	4.07		-7.85	4.14
Sold and	10.64	44.9	100 110	A1.11	10.47	100	1.10
1991-49	121.00	10.10	30.15	20.20	25.41	20045	20.67
248.0	121.25	35.00	57.91	31.35	136.65	145.81	33.35
23590	59.97	117.65	141 55	32.00	63.04	15.97	408.59
HPI 15	2.58	53	5.73	1.59	5.88	1.52	2.54
Sta147	611	22,46	19.25	11.59	18.73	7.32	10.29
Eu133	1.55	4.20	1.70	2.95	2.54	1.82	2.45
G41.57	8.99	29.37	25.25	1-5.52	13.72	10.65	16.03
Tb159	1.43	4.76	1.50	5.66	217	1.78	3.28
Dutes	9.85	31.85	26.34	1831	14.78	11.68	17.64
The Loss	242	A ST	1.65	1.27	2.91	2.84	1.17
338.5	42.42	1 75 74	144.00	30.54	14.10	10.00	61.4F
100	10.01	10.0	10.02	11.00	1.19	0.00	21.45
67165	1.83	195/9	16.13	11.11	3 29	7/07	10.65
Y6172	5.52	18.05	15.48	9.65	6.97	7.52	10.05
D(175	0.72	2.31	2.24	1.35	0.34	1.00	1.48

Butten	35R-4W-76- 78-4A	168-4W-76- 18-5 Ard	268-494-76- 78-6A-4	258-1W-118- 321-1A-1	24-2	3A2	4.42
We			0	44	47	49	61
Major Colds							
(situ)							
SICi	12.35	47.92	44.45	45.85	47.63	45.48	05.85
no _z	0.98	0.55	1.45	1.27	1.12	1.40	1.46
ALCI	5.25	5.55	7.06	6.66	6.41	7.34	7.12
Page -	013	1.13	2.34	1.54	1.23	1.35	1.43
NERJ	0.87	9.15	6.13	0.26	0.20	0.19	6.15
ingo.	13.81	12/2	15/44	10.35	33.84	13.94	13.67
6.0	2.81	10.9	10.00	1974	4.57	11.00	10.25
Ch.O.	2014	0.74	1.1.2		0.15	416	0.04
Fe0	31.50	14.73	14.81	14.75	15.04	14.87	14.30
Tobl	55.40	96.02	23.51	35.32	55.55	58.30	96.27
Mp#	\$3.43	61.90	61.99	\$2.34	62.13	62.56	62.37
T		795.87	785.26	774.75	796.72	797.23	194,39
Mail		72.50	72.35	72.45	74.37	72.36	72.53
inac clenci a (ppro							
THE	1833.17	9955.10	\$595.89	\$129.61	19916.18	\$\$68.42	30033.0
3/51	991.19	37 662	135.75	171.14	298.47	251.97	315.07
63.92	186.75	431	3.24	3,04	3.85	3.18	2.73
Ni50	36.17	5.53	6.47	5.06	5.91	4.42	6.20
0423		0.47	6.75	0.21	0.34	0.27	0.02
Rb.85	5.08	11.05	5.75	\$ 29	915	10.12	15 56
Balst	0.01	4.64	1.07	0.02	0.82	0.04	0.08
10-222	1.0.00	4.25		0.02	0.01	4.64	0.02
Lines.				0.02			0.00
CLUS	1000	4.4		1001	222	4.04	1001
14069	0.42	1.36	2.19	1.50	1.24	1.22	1.20
THEFT	0.63	0.24	0.04	0,06	0.14	0.64	0.02
Lat 25	0.10	2.24	2.38	2.89	2.55	3.04	3.34
Cc140	0.52	12.12	13.50	13.71	12,61	13.88	14.23
Pb.008	0.42	0.27	1.35	0.13	0.18	0.17	0.51
20140	0.12	2.58	3.12	2.11	5.90	8.23	3.21
Nd1-95	1.03	20.51	22.32	21.52	21.33	22.55	25.25
Settin	17.65	47.62	35.92	35.20	37.97	\$7.97	55.83
70:90	3.35	44.20	20.75	12.63	42.18	43.81	45.67
HPI TS	014	1.53	76	1.90	1.99	0.84	3.06
Sec.147	0.51	8.42	1.14	8.40	2.61	8.18	
Ext.St.	0.75	314	2.00	7.11	2.19	2.14	7.48
C.41.67	0.01	17.07	11.75	15.55	13.43	12.00	17.00
100.000	0.81	1.2.4	11.35	12.23	A 10	11.044	1.4.85
10129	0.15	1.51	210	1,91	2 88	1.90	0.02
Dilles	1.19	14.25	14,90	13.85	54.84	13.67	10.13
That 45	0.24	5.14	3.40	2.91	3.99	2.54	3,46
7/82	5.58	79.08	78.29	77.62	\$1.53	77.46	88.52
Eri 65	0.67	8.50	\$.70	8.35	9.82	3.44	10.15
Y6172	0.54	8.55	8.23	8.40	8.53	8.36	5.14
Lu173	0.03	1.23	1.15	1.18	1.50	1.22	1.28

Butter	26-3	6.4-4	1A-4	84-2	34-1	10.1-1	11.4-1
Wr	49	41	46	-19	58	59	44
Major Calde							
(9795)							
SIC1	47.26	46.55	44.15	-45.70	45.35	47.17	47.18
41.0	1.93	1.0	1.12	1.50	1 75	1.26	1.07
NA.C.	6.63	7.40	08.5	2.46	8.27	6.52	6.84
MIN	0.00	1.10		0.55	0.12	0.35	0.00
NeO	14.40	11.04	15.25	14.35	15.41	14.09	14.03
Cit	15.76	10.71	10.97	19.79	31.01	10.77	10.76
K_0	0.14	0.2k	5.12	0.1.5	0.16	9.19	0.12
cho,			0.00				
FeQ	34.60	15.55	15.51	13.36	24,54	15.18	15.02
Tobl	56.62	97,067	95.95	37.52	56.00	91,00	96.25
Mgr	61.71	61,06	- 30.31	\$2.45	62.19	62.54	62.63
10.0	770.50	192.54	191.50	196.51	\$23,95	778.04	71.04
POCE	14.12	14.00	12.39	72.10	4.25	12.01	11.84
Trace clements (ppm)							
THE	12954.95				12459-50	9115.55	9581.37
V51	8 59 89				\$77.57	369.82	367.46
01.92	5.85				3.90	8.72	9.86
Ni50	5.45				6.29	5.03	4.14
Ce123	0.52				0.33	0.33	0.21
Rh85	11.71				19.54	9.88	10.29
Balst	0.13				0.82	0.04	0.05
Th222	0.62				9.01	0.02	0.01
17235	0.62						0.03
13567	115				1.07	1.37	1.39
THER.	0.05				0.05	0.06	6.04
1 - 5 7 5	2.41				2 87	1.45	1.07
15-140	17.04				14.04	18.71	1.4 72
DA SOR	0.50				0.12	A (8	1.1.5
POLIS	0.83				4.17	2.44	0.10
Attai	2.52				2.07	3.45	9.30
841-46	31.94				29.32	22.99	22.59
2488	\$2.52				91.35	54.17	38.52
7,190	43.19				37.52	45.79	46.14
HPI 15	1.50				1.68	2.34	3.05
Sec.147	3.81				9.15	2.84	9,44
Bull 52	2 53				2.52	2.29	2.36
G41.57	15.22				14.6T	12.55	12.55
Tb159	265				2.46	2.82	2.16
Dw163	15.54				17.26	14.82	15.37
Tales	6.62				3.64	3.00	2.24
1195	66.74				05.03	01.54	
Evice	11.11				33.45	0.77	B.1.1
					4.99		6.00
1.00 A 1993					1.00		10 June 1
Y6172	16.10						

Button	12.8-4	14.82	134-1	15/4-1	17.31	183-1	194-2
We	57	62	a	46	47	69	78
Major Oxide							
(\$79)							
arch	46.11	47.36	47.99	-95.55	47.3(1	46.91	45.41
410	1.59	1.25	1.69	1.36	1.00	1.35	1.25
Na.O	1.45	1.14	5.25	1.00	0.30	4.35	5.20
MIN	018	0.23	8.14	0.16	0.24	0.26	0.12
NigO	13.38	12.70	15.72	15.50	14.30	D.ST.	13.32
Cat	16.46	10.68	10.66	19.59	39.65	10.68	10.74
K ₂ O	0.14	9.24	5.12	0.14	0.12	9.14	0.14
cr _i o,				0.01			0.01
742	14,21	15.04	15.47	13.23	15.01	15,81	15.49
Toni	67.36	26,60	26.54	35.35	55.40	00,90	20.27
T	785.97	373 53	753.00	184.83	254.95	779.75	159.16
Mal	71.72	72.10	71.99	72.58	71.56	72.19	72.42
Terrandana a s							
(ppro							
TH9	9511.83	9000.05	9711.73	\$153.24		\$703.05	9096.70
3/51	279.82	295.19	589.94	\$7.45		264.39	346.98
01.92	5.75	5.18	3.92	3,390		3.45	3.42
Ni90	4.40	5.76	4.72	4.60		2.55	4.05
Cel11	0.34	0.26	6.15	0.96		0.23	0.30
Rh85	9.58	3.63	5.42	9.96		8.94	10.12
BalST	0.42	63.0	0.00	0.07		0.05	0.05
Th222	0.01	0.20		0.01		0.01	0.03
1/2/15	0.01	0.02	2.00	0.01		9.09	0.01
13507	1 27	1.36	1.31	1.27		1.24	1.27
TARK	ark	3.54		0.04		0.64	6.04
1.0.35	2.22		7.40	1.00		1.75	1.74
12-140	12.45	14.17	12.25	10.00			
Deney.	414	10.14	1.5.75	10.55		11.24	1.10
PEGIN	9.14	0.19	£.13	1.19		9.15	0.19
ALA	5 2 5	\$20	3.25	2,60		3.82	3.16
Nd1-46	32.26	29.25	22.65	25.52		26.61	22.25
2488	46,77	33,36	3.5.97	57.55		43.19	59.25
73/90	45.63	43.00	46.79	12.41		45.97	43.51
HPI 75	214	1.57	89	8.27		219	2.11
Soc147	3.54	3.32	5.32	10.34		9.99	8.69
En133	219	2.36	2.35	2.30		2.33	2.19
Gd157	12.39	14.59	12.79	1415		11.55	12.64
Tb159	218	2.35	2.16	2.06		2.28	3.05
Dy163	14.51	16.89	15.45	17.17		15.89	15.11
Tial 45	515	5.55	3.23	2.63		3.42	3.14
7785	\$2.47	97.07	8519	3519		90.90	02 13
Edits	914	10-1	5.44	10.14		9.84	a of
Vis1 99		1.45		10.14		10.23	6.44
101.12	3.73	228	270	10.24		10.25	1.04
1.00.00				1.000		1.11	A 1941

Battan	30.6-4	1982W-38 (1.1 Acc)
Ne	79	31
Major Colds		
(situ)		
SIC	47.28	41.77
no _z	1.22	2.65
APOT	0.71	10.08
194,42	1 29	2.31
NER.J	0.23	9.11
Nigo.	14.44	13.50
6.0	11.1	10.95
Ch.O.	0.05	0.75
Fe0	14.65	15.25
Tobl	54.23	38.56
Mart	63.72	61.82
T	\$07.76	1006,17
McB	74.27	56,97
Interclements (non)		
THE	9837.06	15310.26
3/51	991.96	510.67
0.32	5.95	2.35
Ni99	3.84	12.92
Ce123	0.61	310
Rh85	0.91	0.65
BalST	9.55	39.00
Th222	0.01	027
17235		121
13593	1.23	2.52
THEF	0.54	414
1.5175	2.65	5.35
12:140	12.84	21.42
Pb.208	016	0.21
Balan.	215	116
Sult as	70.53	21.47
No.610	17.46	185.68
7:50	47.40	01.01
100 18		436
Mar 141		10.00
010.047		10.12
100.55	2101	311
641.57	11.10	14.19
Tb159	1 \$7	3.8
Dy163	13.25	14.60
That 45	2 52	3.15
378.5	74.82	75.16
1000		
Erics	8.31	8.35
EH 65 V91.72	8 31 8 35	8.39 7.56

Annendix V. Major, o	mee element and isotope	ratios of clasts fra	m Site 296 and S	Site 1438
----------------------	-------------------------	----------------------	------------------	-----------

Ma.	355-54-1-	296-54-3-	296-55-1	15.112	255-56-1-	256-55-1-	295-56-4-	286-63-1-	296-90-1- 011-005
Mapor Ousle	112413	32+23	112-1.04	1.7418	1002	19-16	34:100	5-11	141-100
(341)51									
80;	\$4.95	\$7.45			64.71	48.16	45.41	5211	27.52
TIO.	0.92	0.77			0.51	191	0.92	6.54	1.01
21.0.	9.18	18.27			6.43	15.09	2 13	25.67	16.97
M.D	3.05	1.77			3.78	2.54	245	2.54	\$ 50
Mac	0.96	0.07			0.37	167	0.02	1.06	3.67
Meth	2.58	7.50			241	5.12	6.50	1 500	8.45
0.0	7.45	7.26			4.51	12.33	11.31	5.36	5.84
K.C	3.36	2.49			2.46	3.17	0.22	1.18	3.26
P.O.	0.40	0.41			0.24	1.05	0.65	0.72	2.43
Deck.	4.51	6.04			4.54	1 57	13.04	6.49	10.11
Most	47.20	45.95			43.81	44.42	\$3.50	15.90	12.04
Tranc	15.20	40.00			13.61	22.21	22.69	-45.74	20004
daries									
0.0001									
L	9.39	8.07			7.52	1160	7.90	17.36	16.03
Be	1.59	1,45			1.36	1.62	0.99	0.5/4	1.25
52	24:59	22.19			1.1.60	11:55	3151	17.29	18:44
11	4151.50	4325.41			20.0195	44.3.39	4542.25	4172.39	0.63.26
V	20.43	164.95			113.47	235.85	245.77	15(1)	329 39
Cr	\$5.16	47.35			22.11	213.82	222.53		
Co	14,39	14.39			10.20	23.78	27.37	10.57	18.19
M	25.10	13.29			8.10	\$7,68	27.61	6.19	10.20
a	15.49	97.91			3,7,43	10.63	55.44	99.95	16.06
2.0	66.70	99.54			41.58	96,60	126.05	32.65	\$5.21
CP.	21.43	16.75			24,72	14.11	15.65	19.27	12,44
CS	0.85	1.79			1.19	3.22	0.38	4.75	3.43
TP-	\$5.25	99.17			65.45	-135	4.79	6.50	2.12
B.	9,4.46	125.87			581.25	277.85	152.10	54,22	91.34
n	8.51	\$200			7.40	1.85	1.75	0.75	3.72
	1.82	3,25			1.78	1.50	0.33	3.54	3.33
	2.71	6.82			5.20	2.51	2.91	2.74	2 39
10	19.48	1.00			0.00	1.1	914	1.10	114
14	28.89	25.77			10.00	24.12	21.29	33.35	5.78
	24.29	2.41			29.22	28.50	41.42	185.46	30130
De	4.23	4.10			1.20	1.43	5.09	37.77	1.14
244	10.00	\$1.50			19.65	14.42	12.64	117 88	14.20
Sr.	350.84	108.70			38.64	117.85	150.41	1:131	172.69
20	102.14	164.07			65.17	14.17	15.22	77.45	32.16
111	3.59	1.68			2.65	1.58	1.98	7.16	212
50	5.89	4.41			2.65	3 51	645	38.78	4.22
Ta	1.75	1.24			0.85	2 35	1.67	1.59	1.25
-04	6.79	4.48			2.22	12.86	822	44,34	455
n	0.35	0.71			0.45	2.25	1.39	7.87	3.72
Dy.	5.62	4.47			5,04	14.75	8.97	48.32	5.00
llo .	1.21	0.95			0.55	417	2.29	1.5.32	1.67
Y	34.02	28.48			15.55	195.10	79.28	126.85	15.96
b	3.25	2.70			1.39	10.61	5.87	\$2.39	2.82
20	3.34	3.08			2.15	31.34	6.14	35.45	9.09
1:	0.45	0,47			0.35	1.65	0.91	4.20	2.43
	0.51504	3 41287	6.51204	0.51108		0.51500			0.51105
Contract of the local division of the local	A COLORADOR OF A COLORADOR OF A COLORADOR AND A			the second se		A DECISION OF A DECISIONO OF A DEC			the second se

No.	295-61-2-	296-63-2-	295-63-4-	235-64-3-	235-63-1-	1458-3000-	1438-138-	1438-15R-	1458-18R
Same Charles	30.32	21-99	112-112	123-123	0.3	34-401b	306-43-45	304-13-13	50.04
harbol									
80	43.40	11.01	41.43	61.74	0.10		63.62	48.40	47.16
710	0.75	6.63	1.02	0.00	0.05		3.64	1.11	0.00
10.0		10.00	14.00	12.00	1.2.2.2		12.04	12.00	12.02
199.00	11.24	18.91	14.69	27.69	20.21		1200	11.58	13.65
Mi ₄ D	5.29	3.25	3,48	3.37	1.55		5.09	2.54	1.85
MbD	0.07	6.16	0.07	0.07	0.07		3.67	9.97	0.07
MgO.	1.34	3.26	1.91	1.89	8.23		2.67	5.11	0.00
0.0	3.24	7.82	3.25	6.30	7.51		4.70	12.30	2.65
K ₁ O	2.29	6.68	0.74	0.23	1.16		9.92	012	0,60
P_2O_C	0.45	0.47	0.34	0.51	0.48		3.35	1.43	0.09
Fe ₂ O ₂	5.34	5.17	9.31	6.11	9.95		7.74	9.54	6,40
Mari	31.39	41.57	34.59	35 52	\$9.59		38.08	48.07	\$2.68
Thurs:									
starrate									
(open)									
L)	31.50	6.15	7,77	9.76	1819		6.75	7.83	17.99
Be	1.58	1.04	1.23	0.85	0.58		3.85	1.02	0.92
54	1419	27.16	26.56	21.58	43.89		\$1.11	31.42	15.48
11	2645.14	4275.95	2691.0.9	3651.02	4273.08		3912.38	2500.14	2793.84
V	54.73	165.23	111.96	55.67	402.46		245.84	25812	73.47
Cr					114.12			19.17	
Co	6.65	15.39	17.00	13.23	34.56		15.52	23.00	14.95
- 14	4.95	5.49	4,65	4.15	26.62		13.79	31.31	25.76
α	4.39	9.67	13 32	0.50	23.48		37.55	23.13	27.95
24	164.31	71.95	89.17	31.88	58.41		63.58	15.51	43.24
Gh	54.35	14.90	54.42	17.35	12.55		12.67	16.76	15.07
CSF .	0.48	6.26	0.61	0.39	0.32		3.83	0.43	0.65
RP.	27.75	10.94	19.73	6.05	12.75		16.88	7.54	11.51
Bu	368.27	149.47	214.76	106.45	\$9.02		138.15	2155.28	38.39
n	2.49	0.20	1.92	0.28	0.57		1.05	2.55	1.42
U	1.08	6.39	0.77	0.47	0.41		9.49	0.98	0,64
Nb	4.95	1.77	3.19	1.47	1.25		1.67	2.51	2.58
Ta	0.29	6.05	0.17	0.06	0.94		3.16	0.28	6.13
La.	19.32	11.38	20.02	12.46	9.05		5.02	91.38	1.78
Ce	42.10	28.21	45.43	31, 13	23.51		12.30	195.18	4.63
16	2.97	2.5%	3.72	2.90	1.77		3.25	2.55	1.07
Pr	7.82	4.47	6.92	2.62	4.44		2.02	23.95	0.58
144	25.84	21.29	32.69	29.54	23.41		10.40	102.61	3.25
Sr	179,87	457.61	215.89	256.10	181.42		150.74	402.71	100.50
22	197.96	61.51	121.30	82.57	40.36		120.36	125.11	164.10
III	5.07	1.64	4.06	2.47	1.38		3.25	3.52	4.42
NI	0.51	6.72	2.13	19.92	1.51		3.03	19.15	0,78
F.R.	1.55	1.76	2.11	1.99	2.15		1.52	613	0,40
00	7,40	0.05	11.35	12.83	0.65		5.82	18.09	1.10
n	1.22	1.24	1.92	3.28	1.54		3.64	0.25	0.16
34	7.99	8.43	11.19	24.00	10.12		4.49	33.59	1.71
210	1.36	2.00	2.97	3.55	2/11		1.91	643	0.25
Y.	21.64	20, 20,	5101	59.91	62.16		21.34	200.00	19.12
22	6.71	2.10	7.20	8.04	3.75		2.65	12.59	1,00
10	0.95	1.59	1,43	8.00	0.01		2.99	16.02	3,40
11	0.76	6.72	1.01	112	0.76		2.44	243	0.0
Street Harry							ATIMA		
190 - 190			421292	121109		=21400	0.51310		421300
			A	A. 2 10 1 10 10			0.3812.34		

No.	1498-21R- (W-10-18	1438-27R- \$20,100,142	1438-253-
Mayor Ocade (set5)			
30.	65.21	48.52	63.44
TIO	0.69	0.61	0.50
41.0	1616	21.23	15.95
1000	2.00	7.04	2.64
Jaco I	0.39	2.06	3.02
MIC	0.07	0.07	0.01
MgU	2.72	4,08	5.86
2.0	1.40	6.12	4.12
NIO.	1.144	0.14	0.29
P304	0.41	0.31	0.36
P6/OF	6.65	\$.24	7.19
Mgr ⁱ Thure	42.40	50.31	48.57
alameters			
(april)			
L	7.66	8.54	11.92
Be	1.02	0.84	1.28
Sc	1135	26.26	15.86
11	3413.38	\$184.87	1911.55
v	136.78	228.06	98.59
Cr	9.14	12.75	33.0
Co	12.52	23.1.5	11.74
- 167	10.14	19.61	9.99
Ci.	166.61	53.1.8	48.76
2.0	51.34	63.42	55.78
Ch	15.32	16.47	15.77
CS .	0.67	0.25	0.39
пь	25.56	3.31	10.87
Bu	174,70	39.23	38.51
n	3.85	0.27	0.03
U	0.80	0.58	0.34
Nb	2.55	1.4T	1.21
Ta	0.18	0.03	0.07
La	22.51	37.44	3.39
00	25.20	69.31	8.99
Pb .	4.54	1.48	1.52
PT	215	10.04	1.35
244	13.21	44.34	7.35
SF	213.22	318.95	223.63
22	142(12)	-4.08	119.09
in .	0.50	2.44	2.12
50	2.95	10.04	2.08
2M	0.01	10.95	2.62
0.0	5.05	10.55	2.61
10	0.40	6.10	5.74
The star	0.60	7.00	0.64
v	IN TH	51.12	21.78
Ex.	1.41	4 00	1.00
20	2.1.8	4.14	2.46
1.	0.96	0.36	0.42
HOME HAN	0.51306		0.51304
in the	0.29115		0.25325
EL EL	Contract of		C. BRAND

5 CONCLUSIONS

5.1 Model for Oligocene Evolution and Rifting based on Site 296 and Site 1438

DSDP Site 296 and IODP Site 1438 record the evolution of early to late Oligocene (~28 to 36 Ma) magma compositions in the northernmost segment of Izu-Bonin Mariana arc (segment 1 of Ishizuka et al., 2011b) before arc rifting and opening of the Shikoku Basin. Overall, melt compositions determined from glasses, clasts, and melt inclusions and inferred from mafic minerals show a wide range of trace element variation in basaltic compositions, suggesting that diverse primary magmas existed during this time and were derived from depleted to enriched mantle sources. Mantle sources became more enriched with time because of the input of pelagic sediments from the subducting Pacific plate. Differentiation of the basaltic magmas to felsic compositions retained the original incompatible trace element features but was affected by crystallization of accessory minerals like apatite and or amphiboles. Simultaneous intrusive and extrusive activity during this time led to crustal thickening, which may have aided in stabilizing amphiboles in magma at depth during the later periods.

Based on the mineralogical and geochemical changes seen along the stratigraphic sections between the cores (Fig 5-1) the following evolution can be interpreted:

- The base of Site 296 are volcanic sandstones-breccias. These were eroded from the ridge and thus may contain fragments of older Eocene IBM volcanics, which indicates a possible volcanic-plutonic connection between the tonalites and some dacitic volcanism (Stage A in Fig 5-2)
- With increasing crustal thickness and increasing water contents of the magma, amphiboles became stable. High water contents also led to the crystallization of

anorthite rich plagioclase and suppression of primitive orthopyroxenes in these magmas. Diverse primary magmas existed, both slightly LREE enriched and depleted. Magma compositions became tholeiitic as inferred from clinopyroxenes. (Stage B in Fig 5-2)

- Increasing signs of rifting related magmatism but still at high water contents. At Site 296, high Mg# clinopyroxenes are observed accompanied by increasing Nb concentrations and the appearance of MORB like clinopyroxenes. Amphiboles from Site 1438 change from slightly enriched to depleted in LREE/MREE ratios but enriched in fluid mobile elements like Ba and Rb.
- During this stage there were some late-stage enriched arc magmas (enriched in LREE and Nb) which gave rise to some mafic to intermediate amphibole bearing magmas. (Stage C in Fig 5-2). This is not observed in Site 1438 sediments as the subduction shifted eastward and debris from this stage did not arrive at the Amami-Sankaku basin.
- Magmas from the top of unit 2 Site 296 become again depleted possibly due to increased rifting, intrusion of MORB-like decompression melts and decreasing subduction input (Stage D in Fig 5-2).

Figure 5-1 Stratigraphic section studied from both Sites 296 and 1438 and the changes in mineralogy and geochemistry observed

Figure 5-2 Schematic diagram showing the possible magma evolution of the northernmost IBM prior to rifting

5.2 Implication for the Evolutionary History of Izu Bonin arc

The Izu-Bonin Mariana arc has been one of the best places to study and understand intraoceanic arcs. The extended nature of the arc has allowed scientists to explore and discover early subduction rocks like boninites, in addition to understanding the evolution of marginal basins and remnant arcs. This study was conducted to understand the evolution of the first Izu-Bonin arc and any changes that may indicate the initiation of rifting. Postrifting, around 20 Ma ago, the resurgence of arc volcanism in the IBM are currently being studied in the rear arc side of the active Izu-Bonin arc, where depleted tholeiitic and calcalkaline arc magmas are erupting. This research suggests that during rifting of an arc, magma composition may become more tholeiitic with the intrusion of decompressions melts along with arc melts, which may be of enriched type.

From the previous research on the IBM arc and this study, the early evolution observed in the Izu-Bonin arc until the first rifting events are such:

- IBM started with lithospheric subsidence around 50 Ma ago; during this time, forearc was magmatically active with the eruption of FABs and boninites. Site 1438 located on the rear arc side does not have significant evidence for boninites, indicating that boninites perhaps were restricted in the forearc region.
- Around 45 Ma, there was a transition from subsidence to subduction, which may have led to the eruption of some high Mg andesite, as exposed in Bonin Ridge escarpment.
- The first arc was established around 43 Ma with the start of subduction, new evidence from Site 296 and Site 1438 suggests that early arc magma was dominated by calcalkaline magma type instead.
- Rifting at least in the north may have been in multiple stages, leading to crustal thinning and intrusion of decompression melt, which led to the eruption of tholeiitic magma in the later stages.
- Contemporaneously there were highly enriched calc-alkaline magmas which formed at the same time as the MORB like melts
- Following rifting and formation of the Shikoku basin, there was no further activity on the KPR; all magmatic activity shifted to the east.

5.3 Future Research Direction

- To get a better age constraint for the time of evolution using mineral dating method. Dating biotite grains in the sediments from Site 296 can help to define the timing of events and prove that there has not been much reworking in the core section; the same thing can be done in Site 1438 if required to re-establish the ages.
- To test the early evolution in other segments of KPR. Site 1201 and Site 448, which lies in the southern section, coincides with the Oligocene Mariana arc. These sites can be revisited, and a similar research approach can help to establish the evolution along the arc.
- Oxides like chromites were not analyzed in this study, but their mineral chemistry is significant in understanding their genesis and the mantle condition during formation. Therefore, in addition to mafic minerals, chromites can help to understand the evolution of the IBM system.

APPENDIX I.

Sample Description

1. DSDP Site 296

DSDP Site 296 is located on a terrace on the west side of the Kyushu Palau ridge at a water depth of 2920 meters. The drilled section consists of 1087m of sediments and sedimentary rocks, which were, divided into two major lithological, Units 1 and 2, by the shipboard scientific party (Ingle et al. 1975). Unit 1 is 453 m thick (Cores 1-47) and is subdivided into 7 subunits (1A-1G). These consist of foraminifera rich nannofossil clays and nannofossil oozes with interbedded volcanic ash layers. Ash layers and layers of unconsolidated volcanic silt and sand are predominant in the bottom sections of Unit 1, especially subunits 1F and 1G (cores 31-48). Biostratigraphic ages from the nannofossils indicate ages of late Oligocene to Late Pleistocene for Unit 1. Unit 2 is 634m thick (Cores 48-65) and consists of two lithologies, defined by the shipboard party: 1) tuffs and lapilli tuffs and 2) volcanic sandstones and siltstones. The Unit is not subdivided. The biostratigraphic age of the sediments ranges from early to late Oligocene (Ingle et al., 1975). An Ar-Ar age of a basalt clast in Core 63 was dated at 47.5 Ma (Ozima et al., 1977), indicating some material is significantly older than the depositional ages of the sediments. The overall interpretation of the drilled section at Site 296 was that Unit 2 represented volcanic debris shed from the KPR during its major eruptive phase before rifting, and that Unit 1 represented volcanic and pelagic sediment deposited following rifting as the ridge subsided below sea-level. Study of ash layers in the upper units of Unit 1 by Donnelly et al. (1975) suggested a possible origin as airfall from surrounding subaerial volcanoes not located on the KPR.

For this study, samples were selected in order to be able to isolate fresh glass shards, mineral grains and clasts large enough to analyze individually for geochemical analysis. A total of 92 samples were taken from the Site 296 cores at the former DSDP West Coast Repository in La Jolla, CA by R. Hickey-Vargas in 1991. Selection was based on core summaries in the DSDP Leg 31 Initial Reports and direct examination. This is a summary of all samples from the drilled section that were collected, including cores that were too fine-grained for use in this study.

Cores 25-35

These are classified as nannofossil chalks with ash layers. – Materials are mainly buff to light grey colored clay to silt sized unconsolidated or loosely consolidated sediments, consisting mainly of foraminifera, and variable amounts of volcanic glass and lithic fragments present as ash layers with minor quantity of feldspars, micas, magnetite and clay minerals. These sediments (16 samples) belong to subunit 1E and top of unit 1F have an age of Early Miocene to Late Oligocene. Samples taken from Cores 28 to 35 are from interbedded ash layers. Such samples have high quantity of volcanic glass and fewer foraminifera including a few samples with high radiolarian content and appear as poorly consolidated sand to silt sized sediments. Both felsic and mafic lithic fragments are present and become abundant in the lower cores. No samples were analyzed.

Core 36-38

These are classified as clay rich nannofossil chalks with volcanic ash. Cored rocks change from buff to grey colored consolidated sediment with patches of dark, clay rich horizons and light-colored chalks. Four samples taken from these cores consist of sand-sized volcanic glass and minerals in a silty-clay matrix. All the samples are from ash layers so has high content of glass and other volcanic minerals. Grain size becomes coarser and the matrix is more clayey in deeper intervals. The samples belong to bottom of unit 1F and top of unit 1G and are Late Oligocene in age. No samples were analyzed.

Core 39-40

These are classified as nannofossil chalk with volcanic ash. – Eleven samples were taken from these cores. There is general decrease in nannofossil content compared with to cores 36 to 38 and samples are more clay rich than light colored chalks. Samples are dark greyblack to dark grey-brown mainly unconsolidated sediments with interspersed and varying amount of light grey poorly consolidated sediments, possibly nannofossil chalk. Sample are from or close to ash layers and consist mainly of volcanic glass and feldspars with
minor nannofossils and heavy minerals. All samples are from the middle of Unit 1 G and are late Oligocene in age. There is an increase in the chalk content from Core 39 to 40. Samples from top of Core 40 are sandy siltstone and contain equal buff and dark grey sediments which becomes slightly intermediate beige-grey color loosely consolidated sediments down the core. No samples were analyzed.

<u>Core 41-47</u>

These are classified as clay rich nannofossil chalks with volcanic ash. Nine samples were taken from these cores. Samples are beige to light grey colored nannofossil chalk and dark grey-black colored clay rich chalk units with interbedded ash layers. Sediments are either consolidated or unconsolidated, with varying amount of volcanic glass, lithics and minerals like feldspar, pyroxene and magnetite in a matrix of chalk and clay. Samples are late Oligocene and are at the bottom of Unit 1G. The size of the volcanic grains increase down the core from silt to sand size and the amount of clay to chalk varies. Sample 47-1-117-119 present at the base of Unit 1G is a light grey-beige colored rock with sand sized grains of glass, pyroxene and feldspar in a silty clay matrix made up of nannofossil chalk and clay was analyzed for minerals and glass.

Intervals analyzed are: 47-1 (117-119) were disaggregated and glass shards and mineral grains were analyzed

Cores 49-50

These are classified as lapilli tuffs. – Three samples were taken from these cores. Samples are dark to medium grey-black tuffaceous sandstones with some tan colored sediments in a sand-silt sized matrix. They consist of mafic and felsic volcanic lithic fragments with loose volcanic minerals like feldspars and pyroxene and oxides with glass shards and minor

quantity of amphibole.

Intervals 49-1 (24-27) and 50-1 (122-124) were disaggregated and glass shards and mineral grains loose in matrix were analyzed.

<u>Core 52</u>

This is classified as a clay and ash rich nannofossil chalk. One sample was taken from the core. Sample 52-1 (139-141) is a laminated sedimentary rock; the layers are light to dark grey in color with interbedded nannofossil chalk and ash layers. Some grains are sand to silt size in a silt-clay sized matrix. There is a sharp contact between the ash and chalk layer and sedimentary features produced by current.

<u>Core 54</u>

This is classified as lapilli tuffs and ash tuffs. Six samples were taken from this core. These are dark grey to olive green breccias with a clay and vitreous matrix. Both felsic and mafic volcanic lithic fragments are present, mafic clasts are more angular than the pumice clasts. In the matrix, volcanic minerals also occur as loose grains. Minerals include feldspars and pyroxenes with amphiboles and oxides. Fresh glass shards are also seen within the sediments. Amphiboles are not very abundant (less than 5%) but are most abundant in this core compared with others.

Intervals analyzed are: 54-1 (115-119), 54-1 (140-143), 54-3 (17-20) and 54-3 (23-26) were disaggregated and minerals and glass were picked and analyzed. Clast from 54-1 (115-119) and 54-2 (23-25) was cut out and analyzed.

<u>Core 55</u>

This is classified as a lapilli tuff. Three samples were taken from this core. These are breccia with large andesite clasts (up to 5 cm). Two of the three clasts are hornblende andesite and the other is a pyroxene andesite (Ingle et al., 1975). The groundmass is made up of mineral grains of feldspar, augite and oxide are found in a relatively fresh to slightly altered groundmass made up of mainly glass with some altered plagioclase and clays. The clasts were cut from the matrix and powdered for elemental analysis.

Intervals analyzed are: Clast was cut out from 55-1 (115-118), 55-1 (133-135) and 55-1 (122-124) and analyzed

<u>Core 56</u>

These are classified as lapilli tuffs and ash tuffs. – Nine samples were taken from this core. Except one sample, these are poorly sorted olive green breccias with predominantly large mafic clasts and smaller pumice clasts. In the matrix, loose volcanic minerals and glass can be seen in a clayey-silty matrix. One sample from Section 5 is a buff colored graded nannofossil chalk. The grading is from slightly coarser ash layer upward to a very fine chalk.

Intervals analyzed are: 56-5 (93-95) was disaggregated and loose minerals were analyzed. Clast was cut out from 56-1 (70-72), 56-1 (76-78) and 56-4 (98-100) and analyzed

268

<u>Core 57</u>

These are classified as lapilli tuffs and ash tuffs. Six samples were taken from this core. They are poorly sorted light olive green to grey breccias with both mafic and pumice clasts. Compared with Core 56, there are more pumice grains in this section, and some of the mafic clasts in this section have been altered to clay. Sample 57-2 (97-100) has the most amphiboles found within Site 296 samples studied. Sample 57-3 (38-40) is graded sandstone, with coarse sand-sized lithic fragments in silty clayey matrix to finer fragments in a more clayey matrix.

Intervals analyzed are: 57-1 (23-26), 57-2 (97-100) and 57-3 (38-40) was disaggregated and loose minerals were analyzed

<u>Core 59-60</u>

These are classified as lapilli tuffs and volcanic siltstone. -Four samples were taken from these cores. These are light to dark gray poorly sorted clast-supported breccias with angular to subangular lithic fragments. Lithic fragments include pumice, aphyric basalts, scoria andesites in a silty to sandy grey matrix. Other volcanic minerals are also present in the matrix including fresh feldspars and pyroxene. These are the lowermost samples where amphiboles are seen at Site 296. Core 60 samples are slightly more altered than those in Core 59, the pumices have altered to clays.

Intervals analyzed are: 59-1 (89-91), 59-1 (98-101) and part of 60-1 (8-11) were disaggregated and minerals and glass in the matrix were analyzed. Clast was cut out from 60-1 (8-11) and 60-1 (101-105).

Core 61-62

These are classified as ash and lapilli tuffs with volcanic siltstones and sandstones. -Five samples taken from these cores are medium to dark grey poorly sorted breccia with angular to subangular clasts, which are medium to large sized pumice clast and smaller mafic clasts in an altered glassy matrix. Fresh feldspars and pyroxene can also be seen in the groundmass of the clasts. One sample from Core 62, section 2 is a fine-grained breccia with equally abundant mafic and felsic clasts.

Intervals that were used for analysis are: 61-1 (39-41) and 61-2 (38-40) were disaggregated and minerals and glass in the matrix were analyzed. Clast was cut out from 61-2 (30-32) and analyzed.

<u>Core 63</u>

These are classified as lapilli tuff and volcanic sandstones. Seven samples from Core 63 were taken. These are like Cores 61- 62; medium to dark grey poorly sorted breccias with big pumice clasts and medium sized mafic clasts (0.5 cm) in an altered glassy matrix. Fresh volcanic glass and minerals are common in the matrix.

Intervals that were used for analysis are: 63-1 (146-149), 63-2 (31-34), 63-3 (36-38) and 63-3 (140-143) were disaggregated and minerals and glass in the matrix were analyzed. Clast cut out from 63-2 (31-34) and 63-4 (112-115) were analyzed.

<u>Core 64</u>

These are classified as volcanic siltstone and sandstone. Four samples were taken; these are medium to fine grained medium grey breccias and one is a coarse sandstone. The clasts are poorly sorted, sub-angular mainly pumice and microcrystalline or porphyritic basalts in altered glass and clay matrix.

Intervals that were used for analysis are: 64-3 (119-121) were disaggregated and minerals and glass in the matrix were analyzed. Clast cut out from 64-3 (125-127) was analyzed

<u>Core 65</u>

This is classified as a volcanic siltstone. -Four samples were taken from the core. The samples are olive green breccias or sandstone. Clasts are angular, poorly sorted and consist of pumice, scoria, aphanitic or porphyritic basalts, pyroxenes, and altered feldspars in an olive green clay matrix.

Intervals that were used for analysis are: 65-2 (84-87) were disaggregated and minerals and glass in the matrix were analyzed. Clast cut out from 65-1 (0-3) was analyzed.

2. IODP Site 1438

IODP Site 1438 is located about 230 km to the SW of Site 296 in the Amami Sankaku Basin. Drilling recovered 1461m of sediment sequences and 150 m of oceanic basement. The sedimentary sequence was divided into 4 lithological units (I-IV) based on texture, compactness and proportion of rock types. As described by Arculus et al. (2015) Unit I is 160 m thick recent to latest Oligocene tuffaceous mud and clay with discrete ash beds; Unit II is 139 m thick Oligocene tuffaceous siltstone and fine sandstones; Unit III is 1046m Oligocene to Eocene tuffaceous sandstone, mudstone and breccia, and finally Unit IV is 100m thick Eocene mudstones and tuffaceous siltstones, sandstones and breccia. In this study, we focused on Unit II and part of the upper Unit III (Until core 30) of Oligocene age to correlate and compare the results from Site 296. The basis for sample selection was the same as for Site 296 cores. Samples with glass, mineral or lithic fragments large enough to isolate and analyze individually were favored. The full set of 59 samples were selected by R. Hickey-Vargas in 2014 as a Leg 351 shipboard scientist. E. Samajpati selected the subset of samples used in this study.

<u>Unit II</u>

Six samples were taken from Unit 2. They are all unconsolidated sediments with a few clasts in the sediments. The color of the sediment down the core goes from dark greybrown to dark grey which also reflects the amount of clay in the samples. The upper sediments are more clayey, which becomes siltier and then grades downward into fine sand. The sediments contain variable amounts of clay minerals, volcanic fragments like scoria and pumice grains and mineral grains of pyroxene, feldspars, Fe-oxides and amphibole. Amphibole-rich layers are found in the two bottom fine sand layers (30X-6W (86-88) and 30X-7W (13-15)) which also had small pumice clasts.

<u>Unit III</u>

Fifty-three samples were taken from Unit III cores 12R through 30R. The samples studied extend through Core 30 (about 500 m below sea level), representing the later stage of the volcaniclastic sequence which correlated with Site 296. A focus for sample selection for this study was the presence of amphibole, which could be readily analyzed for both major and trace elements. Broadly, in this section there are two kinds of sedimentary rocks: 1) medium to coarse grained breccias, which have pumice as the main clast and 2) finegrained breccias with few pumice clasts and mainly small granular mafic clasts. Mineral grains also appear individually in the matrix, including feldspars and pyroxenes. Coarsegrained pumice bearing breccias are the dominant rock type, the fine-grained breccia appears in between and might be a part of an upper graded sequence. Amphibole grains were occasionally observed within pumice clasts. Fresh large glass shards and large mafic clasts are not very common and mostly absent in the upper section of Unit III. The clasts are poorly sorted, the coarse-grained pumice bearing breccias are clast supported whereas the fine grained breccias are matrix supported. The matrix is dark grey brown color consisting of clay, silt and altered glass.

Fourteen samples from Unit III, from different intervals and different lithology, both pumice and non-pumice bearing, were selected for analysis. These are 12R-3W (90-100), 14R-2W (51-53), 17R -1W (82-86), 19R-4W (18-21), 21R-1W (14-18), 26R-2W (76-78), 27R-1W (89-91), 27R-1W (118-121) AND 29R-2W (39-41) were disaggregated and minerals and glass were picked for analysis. Two clasts from 15R-3W (13-15) and one clast from 19R-4W (0-3), 21R-1W (14-18), 26R-5W (126-127) and 27R-3W (100-102) were cut out and analyzed.

References:

- Arculus, R., Ishizuka, O., Bogus, K., et al., 2015, International Ocean Discovery Program Expedition 351 preliminary report; Izu-Bonin-Mariana Arc origins; continental crust formation at an intraoceanic arc; foundation, inception, and early evolution; 30 May-30 July 2014: Preliminary Report (International Ocean Discovery Program), v. 351.
- Donnelly, T.W., 1975, Neogene explosive volcanic activity of the western Pacific; sites 292 and 296, DSDP Leg 31: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 577-597.
- Ingle, J.C., Jr, Karig, D.E., Bouma, A.H., et al., 1975, Site 296: Initial Reports of the Deep Sea Drilling Project, v. 31, p. 191-274.
- Ozima, M., Kaneoka, I., and Ujiie, H., 1977, (super 40) Ar- (super 39) Ar age of rocks, and the development mode of the Philippine Sea: Nature (London), v. 267, no. 5614, p. 816-818.

VITA

ESHITA SAMAJPATI

2009-2012	B.S., Geology University of Calcutta Kolkata, India
2012-2014	M.S., Applied Geology Indian Institute of Technology Mumbai, India
2014-2017	M.S. enroute Florida International University Miami, Florida
Dec 2017	Travel Grant, CASE and E&E department
2014-2020	Teaching and Research Assistant Florida International University Miami, Florida
Summer 2019	FIU Dissertation Year Fellowship
Dec 2019	Travel Grant, GPSC
Dec 2019	Travel Grant, CASE and E&E department
2017-2020	Doctoral Candidate Florida International University Miami, Florida

PUBLICATIONS AND PRESENTATIONS

- Manuscript under revision in Island Arc journal, titled "Samajpati E., Hickey-Vargas R. Geochemistry of Volcanic Glass from Oligocene Detrital Sediments at DSDP Site 296, Kyushu Palau Ridge: Interpreting the Magmatic Evolution of the Early Northern Izu Bonin Mariana Island Arc."
- Manuscript to be submitted to Contributions of Mineralogy and Petrology, titled "Samajpati, E., Hickey-Vargas R. Early Arc history of the IBM from volcanic minerals and melt inclusions from DSDP Site 296: a mineral-melt partition approach."

- Manuscript submitted in GSA Bulletin "Marsaglia et al. IODP Drilling Reveals the Sedimentary Record of Nascent IBM Arc Development"
- Samajpati, E., Hickey-Vargas R. Interpreting the late Oligocene Izu Bonin arc from DSDP Site 296 and IODP Site 1438 sediments. American Geophysical Union, Fall Meeting. San Francisco. December 9-13, 2019.
- Samajpati, E., Hickey-Vargas R. Reconstruction of Late Oligocene Izu-Bonin Arc Magmas from Mineral-Melt Partitioning. Goldschmidt, Boston. August 12-17, 2018.
- Samajpati, E., Hickey-Vargas R. Insights into the Early to Late Oligocene Izu-Bonin Mariana Arc Magmatic History from Volcanic Minerals and Glass within Volcaniclastic Sediments of IODP Site U1438 and DSDP Site 296. American Geophysical Union, Fall Meeting. New Orleans. December 11-15, 2017.