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ABSTRACT OF THE DISSERTATION
ARTIFICIAL INTELLIGENCE BASED ENERGY AND DEMAND SIDE
MANAGEMENT FOR MICROGRIDS AND SMART HOMES CONSIDERING

CUSTOMER PRIVACY

by
Ahmed F. Ebrahim
Florida International University, 2020
Miami, Florida, USA
Professor Osama A. Mohammed, Major Professor

The rapid development of various power electronics applications facilitates the
integration of many smart grid applications in recent years. However, integration of
intermittent renewable energy sources, highly stochastic electric vehicles (EVs) activities
on the grid and time-varying smart loads have increased the level of grid vulnerability to
unusual and high complexity and quality-related problems. Among these problems is to
accurately estimate the real contribution and consumption of household loads, in the era of
smart appliances and interoperability operation, and its relative impact to the grid’s
operation. Specifically, household loads represent a significant percentage of electrical
energy consumption and therefore, could offer great prosperity to the rise of the demand-
side management (DSM) programs which subsequently improve the stability of the grid’s
operation. As a result, our main focus in this dissertation is to develop DSM strategies
based on Artificial Intelligence (AI) techniques to properly model and estimate the amount

of support smart homes could offer to the smart grids and microgrid’s operation.

VI



Throughout the way to achieve our goals, we develop an energy management
framework for smart homes that operate in efficient and reliable microgrids with multiple
energy sources and energy storage applications to meet the demands at stable voltage and
frequency limits. Furthermore, we develop a precise short-term load forecasting (STLF)
which is a critical tool needed to manage DSM program for residential loads that have very
high uncertainty and volatility in load consumption. We also develop an energy exchange
portal with communication sources, demands and connectivity information between each
consumer and the local power utility at the distribution level. Finally, creative Al
methodologies have been developed throughout the way to facilitate the integration,
control and management of the DSM programs taking into account the consumers’ own
privacy and security. The security of the DSM is provided by preserving the indoor privacy
of the smart homes by sharing a limited and encoded data among household appliances

controllers.
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Chapter 1 Introduction and literature review

Demand-side management has a vital role to support the continually increasing rise in
smart grid applications. New implementations of innovative techniques on various power
system infrastructure levels facilitate the integration of new ideas to improve system
operations. The integration of smart grid architectures and concepts could add extra
burdens on the grid, which increase in both complexity and uncertainty. In addition, the
increased penetration of intermittent renewable energy sources, electric vehicles (EVs),
and time-varying loads at the distribution system level make the grid vulnerable to other
stochastic and challenging issues. This makes utility-customer interactions more difficult
and even sometimes undesirable. Household loads represent a significant percentage of
electrical energy consumption. Therefore, active consumer participation by means of
households’ demand-side response (DSR) lead to better operation and control at the grid

level and enhance both the power system stability, security and reliability.

1.1 Literature Review

The energy infrastructure is being improved with smart technologies and increased
utilization of alternative renewable sources. Smart homes and appliances are also on the
increase giving rise to additional issues in implementing the new load demands into the
grid. Examples could be time-varying loads demand and stochastic electric vehicles (EVs)
in the distribution grid; which adds a burden on the grid and threaten its stability. These
issues adds a significant intermittent and highly stochastic issues that need to be solved to

improve reliability.



Household load demand represents a significant portion of electrical energy
consumption. Households' demand-side response (DSR) enables the active participation of
the household load instead of considering it as a passive load. Therefore, it provides a
positive impact on power system stability. Forecasting the household load consumption is
essential for residential DSR program. Precise short-term load forecasting (STLF) on the
household level can significantly influence the management and the power system
operations at the distribution level. In addition, STLF is a necessary tool required in the
management and control of the households’ loads to enable smart consumption. Yet, the
main challenge that faces the STLF at this level of the grid is the high percentage of
uncertainty in the load demand, affected by customer behavior, which is too difficult to
expect. There is a lot of research done in the literature on load forecasting. Most of this
work is built upon time-series analysis, for example, exponential smoothing and
autoregressive integrated moving average (ARIMA) and machine learning methods, for
instance, feed-forward artificial neural networks (FFANN) and support vector machine
(SVM). An adopted ARIMA model for a day ahead load forecasting is offered [10]. The
prediction mechanism in this study is based on gathering the targeted day with a
comparable meteorological day in the historical data. Another study offers Radial basis
function (RBF) neural network is used for STLF [1]. A combination of the adaptive neural
fuzzy inference system (ANFIS) and RBF neural network is provided in [2]. This study
was established to regulate the forecasting by considering the real-time electricity price. A
neural network-based predictor for very short-term load forecasting [3]. It considered only
the load values of the current and previous time steps as the Input to predict the load value

at the following time step. A group of extreme learning machines (ELMs) to acquire and



predict the total load of the Australian national energy market [4]. A committed input
selection strategy to work with the hybrid prediction framework based on wavelet
transformation and the Bayesian neural network was presented in [5]. All the previous
load-forecasting techniques mentioned in the literature can be concluded in three
categories. In the first category, all approaches avoid the wuncertainty by
Clustering/classification techniques that gather similar customers, days or weather to
reduce the alteration of uncertainty within each cluster [6]. However, the performance is
comprehensively dependent on the available data. The second category is trying to cancel
out the uncertainty by using aggregated smart metering data so that the aggregated load
exhibits mostly regular patterns and more easier to predict. In addition, it is used only on
an aggregated level. The third category is demanding to separate the regular pattern from
the other component of load profile such as uncertainty and noise by pre-processing
techniques. Mostly spectral analysis such as empirical mode decomposition (EMD) [7],
Fourier transform [8], and wavelet analysis [9]. This method cannot be used in household

load forecasting due to the high proportion of uncertainty in the load pattern.

The predicted massive utilization of photovoltaic (PV) systems in the residential sector
is justified for several reasons. The efficiency of the PVs is improving, the cost of
manufacturing is declining, and the incentives provided by the utility to decrease the utility
bills are a fact. In addition, it is highly expected that the DC loads usage is increasing in
the distribution network. Such as the usage of new DC appliances and equipment in the
residential sector (consumer electronics, LED lighting, and compact fluorescent lamps)

[10]. Despite the benefits of the innovations at source and demand sectors, many power



quality problems are facing the distribution network against all these innovations. For
example, the integration of rooftop PVs may cause severe voltage fluctuations and
unbalance due to the uncertainty and the lake of availability of the irradiance [11]-[14]. In
addition, the increased usage of DC Loads adds more harmonics to the distribution network
[15], [16]. That is because all individual DC load needs an individual rectifier to facilitate
the connection of the equipment to the current AC network and provide power factor
correction to comply with the utility policy [17], [18]. Moreover, the expedite movement
toward the usage of a sensitive component in residential, commercial, industrial, traction
applications such as refrigerators, televisions, computers, switched-mode power supplies
add nonlinearly, and unbalanced loads to the distribution network [19]. Degrading the
power quality of the power system network wears out the network component, increases
the probability of system shutdown, and increases the maintenance disbursal [20-22].
Consequently, enhancing the power quality of the electric power network is a critical factor

in the process of power generation and delivery.

The electrical regulation standards in distribution networks such as power factor and
harmonics levels are applied to all AC loads connected to the current AC network. Some
of these regulations define the interconnection requirement of the distributed generation
(DG) units in low-voltage distribution systems [23]-[25]. Others, determine the
interconnection regulation for the electric loads, such as home appliances [26]—[28]. The
main concern for utility companies is the massive utilization of loads in current homes that
do not comply with the standard regulation and degrade the power quality of the power

system network [29].



The IEEE 1547 is one of the power quality standards, which define the harmonics and
total harmonic distortion (THD) levels. Several works introduce different ways to mitigate
harmonic components and compensate for reactive current, negative harmonics. Some use
the injection of negative reactive current to the power network to reduce the harmonics and
provide power factor correction [30]-[32]. Another approach allows the simultaneous
compensation for the harmonics and reactive power issues called Active Power Filter
(APF). In addition, it can provide compensation for the system load unbalance and
compensate for voltage fluctuations at the point of common coupling (PCC). The different
topology of APF such as series, and shunt. The performance of the APF is depended on the
accuracy of selecting a suitable method to extract undesired current. The Synchronous
Reference Frame (SRF) method is used in three-phase balanced systems [33]-[35].
Another effort work based on instantaneous power theory in three phases, the unbalanced

system [36]-[39].

1.2 Problem Statement

The innovations at different power system infrastructures’ levels facilitate the
integration of new smart grid ideas. However, new architectures of the smart grid add an
extra burden on the grid as it relates to complexity and uncertainty. Because of the
increased penetration of intermittent renewable energy, highly stochastic electric vehicles
(EVs) activities as well as time-varying loads in the distribution system, the grid will be
vulnerable to unusual, challenging problems that increase difficulties to achieve better and

reliable utility-customer interactions. Household loads represent a significant percentage



of electrical energy consumption. The households’ demand-side response (DSR) enables

active participation of these loads in the grid enhancing power system stability.

For several decades, network operators have used various forms of Demand Side
Management (DSM) to improve the balancing of system supply and demand and to reduce
load peaks. Many of the practical DSM programs implemented worldwide to date have
focused on large industrial consumers since these have demand of sufficient volume to
produce significant effects at the system level. However, with the introduction of smart
metering and time-varying electricity rates for individual customers, new opportunities are
being created for small electricity users to participate in demand-side services. Recently,

much research has focused on DSM in the residential sector [40]-[47].

Many existing DSM programs use direct load control, where the network operator can
directly actuate large industrial loads according to the needs of the network, and the exact
terms of the DSM contract are agreed beforehand. While direct load control may be suitable
for specific industrial users, it has technical and practical difficulties in the context of
residential users, where direct actuation of loads is typically considered an invasion of user
privacy and comfort. Also, direct load control may require significant investments to
provide additional communication and control technology for each user. Most residential
DSM schemes instead rely on the user response to an electricity price signal to produce the

required outcome, e.g., [40], [41], [43]-[48].

To mitigate the adverse effect of direct load control on the customer and the power
system infrastructure. There will be a need for innovative control and management

solutions that result in significant enhancements in the power grid operations. This



innovative solution will be based on artificial intelligence algorithms that provide more
data to efficiently facilitate the deployment of smart homes and Microgrids to the current

power system.

1.3 Research Objectives

The primary objective of this dissertation is to provide management and control
strategies to make the best use of demand-side management in the power systems. The
management and control should satisfy the customer or the operator preferences, the
system technical constraints, and the involved economic issues. In this paradigm, the
deployment of smart homes which allows active load participation are appropriate
solutions that can reduce the drawbacks of the massive penetration of renewable energy,

Electric Vehicles (EVs), and time-varying loads in the distribution system.

This study is critical because it will provide valuable solutions for many issues that are
related to the active participation of the load consumption sector in power grids stability.
The study proposes an effective energy management framework and control algorithm that
can lead to the optimal control and operation of individual customers in the distribution

level and thus bringing benefits to the environment, customers, and system operators.

The development of the current power system grid is essential to serve the client better.
Especially, with the massive expansion in the distribution network and the increase of
renewable energy penetration. This development means the grid must be reliable, more
flexible, and smarter. Households represent a massive portion of the grid infrastructure.
The deployment of smart appliances enables the grid to be smarter through energy/demand-

side management based appliances control. Therefore, Short-Term Load Forecasting



(STLF) is highly needed to help the energy management for households’ systems. STLF at

this level of the grid is very challenging due to the high percentage of uncertainty in the

load demand.

Based on that, the major aspects of the dissertation are:

1.4

Developing Demand-side management (DSM) strategies that allow the active
participation of smart homes to the power system stability.

Developing an energy management framework for Microgrids and smart homes with
multiple sources and energy storage to meet the load demand without violating the
voltage and frequency constraints.

Developing a precise short-term load forecasting (STLF) which is a critical tool
needed for the DSM program especially for residential loads that have very high
uncertainty and volatility in load consumption.

Developing creative techniques based on artificial intelligence algorithms to facilitate
DSM programs considering customers' privacy and security.

Original Contribution of this Dissertation

The main goal of the research work in this dissertation is to provide management and

control strategies to make the best use of demand-side management in the power systems.

The management and control should satisfy the customer or the operator preferences, the

system technical constraints, and the involved economic issues. In this paradigm, the

deployment of smart homes which allows active load participation are appropriate

solutions that can reduce the drawbacks of the massive integration of renewable and

distributed energy resources, electric vehicles (EVs), and time-varying loads.



As we mentioned early, recent advances and development of different fields related to
the power system’s operation, utilization and control requires much attention for successful
implementation of the concept of the smart grids. Among those options set to be one of the
promised solution for a smarter grid is demand response management programs which
focuses on household loads management of what is considered significant percentage of
electrical energy consumption. The households’ demand-side response (DSR) enables
active participation of these loads in the grid enhancing power system stability.
Consequently, the forecasting of household energy consumption is crucial for household
DSR programs. Precise short-term load forecasting (STLF) has a significant effect on the
accuracy of the household DSR. However, STLF is challenging at this level of the grid due
to uncertainty and volatility in load consumption originating from customer behavior,

which is too stochastic to predict. The contribution of this dissertation can be divided into:

I- We developed an innovative methodology to enhance household demand
forecasting based on energy disaggregation for Short Term Load Forecasting [49].
This approach is constructed from Feed-Forward Artificial Neural Network
forecaster and a pre-processing stage of energy disaggregation. This disaggregation
technique extracts the individual appliances’ load demand profile from the
aggregated household load demand to increase the training data window for the
proposed forecaster [50], [51]. These proposed algorithms include two benchmark
disaggregation algorithms; Factorial Hidden Markov Model (FHMM),
Combinatorial Optimization in addition to three adopted Deep Neural Network;

long short- term memory (LSTM), Denoising Autoencoder, and a network which



regress start time, end time, and average power. The proposed load forecasting
approach outperformed the currently available state-of-the-art techniques; namely,
root mean square error (RMSE), normalized root mean square error (NRMSE), and
mean absolute error (MAE).

We developed a real-time operation of the energy management system (RT-EMS)
is one of the vital functions of Microgrids (MQ). In this context, the reliability and
smooth operation should be maintained in real-time regardless of load and
generation variations and without losing the optimum operation cost. I developed a
real-time operation energy management system (RT-EMS) at the residential
Microgrid level [52]. This work presents a design and implementation of an RT-
EMS based on Multiagent system (MAS) and the fast converging developed
algorithm to minimize the MG operational cost and maximize the real-time
response in grid-connected MG. The RT-EMS has the main function to ensure the
energy dispatch between the distributed generation (DG) units that consist of this
work of a wind generator, solar energy, energy storage units, controllable loads and
the main grid. The MAS has features such as peer-to-peer communication
capability, a fault-tolerance structure, and high flexibility, which make it
convenient for the MG context. Each component of the MG has its own managing
agent. While, the MG operator (MGO) is the agent responsible for running to ensure
the seamless operation of the MG in real-time, the MG supervisor (MGS) is the
agent that intercepts sudden high load variations and computes the new operating

point.
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3-

We developed a RT-EMS develops integration of the MAS platform with the Data
Distribution Service (DDS) as a middleware to communicate with the physical
units. In this work, the proposed algorithm minimizes the cost function of the MG
as well as maximizes the use of renewable energy generation; then, it assigns the
power reference to each DG of the MG. To verify the performance of the proposed
system, an experimental validation in an MG testbed was conducted. Results show
the reliability and effectiveness of the proposed multiagent based RT-EMS.
Various scenarios were tested such as normal operation as well as sudden load
variation.

The microgrids offer an essential solution to enable a resilient grid infrastructure
since they can continue operating in case of a utility outage. The futuristic
distribution system, which is one of the fundamental smart grid concepts, can be
viewed as a cluster of microgrids and each microgrid can be viewed as a cluster of
distributed energy resources DERs. Microgrids mostly depend on intermittent
renewable resources. This configuration may introduce severe stability problems,
especially during the islanded operation. Therefore, We developed a hybrid
residential microgrid system for future city houses [53]. It is composed of both AC
and DC networks tied together through an interlinking bidirectional AC/DC
converter (IC). The DC network contains the DC loads and the distributed energy
sources (DES) such as Photovoltaic (PV) and battery storage. The AC network
includes the AC loads and a synchronous AC generator as the only AC source in
islanding operation in this system. The islanding operation at this level of the grid,

prone the network to be more vulnerable to stability issues. Therefore, it is essential
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to obtain the best control parameters for the IC controller, which ensures sufficient
power exchange and stable operation between the DC/AC networks. Consequently,
a Genetic Algorithm (GA) has been used to tune the vector decoupling control
parameters of the IC controller to find the best parameter combination to improve
the hybrid grid performance. The proposed scheme maintains system stability
during various conditions such as variable or pulsed demand and uncertain
renewable power sharing. The tuned vector decoupling controlled sinusoidal pulse
width modulation (SPWM) technique has been used to not only allow the IC to
maintain stable voltage and frequency but also tracks the active and reactive power
set points.

We developed a control methodology to facilitate the smart integration of a DC
Microgrid to Neighborhood Low Voltage Distribution Network (NLVDN). The DC
Microgrid connected to the NLVDN through a three-phase voltage source inverter
(VSD) [54]. In which, the VSI works as Distribution Static Compensator
(DSTATCOM), and the DC link provides an integration point for the PV and the
DC native loads. The proposed technique is capable of compensating reactive
power, unbalance and harmonics demanded by three-phase non-linear loads and
unbalanced connected to the distribution side improves the power quality [55].
Besides, it is able to prevent the source from being overloaded by providing active

power support to the load.
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1.5 Dissertation Organization
This dissertation is organized in eleven chapters, including the current chapter, which
presents the introduction of this dissertation following the problem statement, research

objectives, and the significant contribution.

Chapter 2 discusses the Hybrid AC/CD microgrid that is used to verify the proposed
energy management schemes. In which, a genetic algorithm-based hybrid AC/DC
microgrid control is proposed to ensure system stability. The coordination control scheme
is proposed for the Interlinking Converter (IC) to maintain a stable system operation under
various load and resource conditions. The Matlab/Simulink simulation verify the tuned
coordinated control system. Different resource conditions and load capacities are tested to
validate the control method. The results show that the hybrid grid can operate steadily in
islanding mode. Stable AC and DC bus voltage can be guaranteed when the operating
conditions or load capacities change. The power is smoothly transferred when the load
condition varies.

Chapter 3 provides an overview of extracting new features from load pattern for
supporting the management system based on a Non-Intrusive Load Monitoring (NILM)
techniques. The NILM techniques extract the individual load pattern from the available
historical aggregated load demand. These new features increase the training data window
for the ANN forecaster and achieve a significant enhancement for its prediction

performance.
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Chapter 4 introduces a comparison between the NILM based Deep learning techniques
to select the suitable for smart home applications. Three deep neural network architectures
have been used for energy disaggregation. 1) denoising autoencoder (DAE); 2) a unique
type of a recurrent neural network (RNN) entitled long short- term memory (LSTM); 3) a
network that provides rectangles for the estimated demand by regression the start time, end
time and average power demand (nicknamed as RECTANGLES). The proposed method
outperforms the state of the art techniques in household load forecasting regarding RMSE,
NRMSE, and MAE.

Chapter 5 proposes a precise short-term load forecasting for residential loads with high
uncertainty in load consumption. An innovative methodology to enhance
household demand forecasting based on energy disaggregation for Short Term Load
Forecasting. This approachis constructed from Feed-Forward Artificial Neural
Network forecaster anda  pre-processing  stage  of  energy  disaggregation.
This disaggregation technique extracts the individual appliances’ load demand profile
from the aggregated household load demand to increase the training data window for
the proposed forecaster. ~ These proposed  algorithms include =~ two  benchmark
disaggregation algorithms; Factorial Hidden Markov Model (FHMM), Combinatorial
Optimization in addition to three adopted Deep Neural Network; long short- term memory
(LSTM), Denoising Autoencoder, and a network which regress start time, end time, and
average power. The proposed load forecasting approach outperformed the currently
available state of the art techniques; namely, root mean square error (RMSE), normalized

root mean square error (NRMSE), and mean absolute error (MAE).
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Chapter 6 presents a demand response technique to enhance the power quality of the
distribution network. This work demonstrates a smart integration of a DC Microgrid to
Neighborhood Low Voltage Distribution Network (NLVDN). The DC Microgrid
connected to the NLVDN through a three-phase voltage source inverter (VSI). In which,
the VSI works as Distribution Static Compensator (DSTATCOM), and the DC link
provides an integration point for the PV and the DC native loads. The proposed technique
is able to compensate for unbalance, reactive power and harmonics demanded by three-
phase and non-linear loads and unbalanced connected to the distribution side, leading to
the power quality enhancement. Besides, it is able to prevent the source from getting
overloaded by providing active power support to the load.

Chapter 7 provides a demand response technique to ensure stability in the distribution
network. This work is constructed based on a multiagent real-time operation of the energy
management system (RT-EMS) structure. The RT-EMS has the main function to ensure
the energy dispatch between the distributed generation (DG) units that consist of this work.
Such as a wind generator, solar energy, energy storage units, controllable loads and the
main grid. The Multiagent System (MAS) has features such as peer-to-peer communication
capability, a fault-tolerance structure, and high flexibility, which make it convenient for
the MG context. In addition, the proposed RT-EMS develops integration of the MAS
platform with the Data Distribution Service (DDS) as a middleware to communicate with
the physical units.

Chapter 8 provides a laboratory equipment to validate the hardware developed to work
on the MV levels. This work presents a design of a scaled-down MV DC laboratory testbed.

The proposed system is based on Power Electronic Transformers (PETs) in order to provide
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the high step-up ratio of voltage without occupying much space. This MV DC testbed is a
laboratory setup that provides a power source and a power sink for any DC hardware to be
tested in the MV range. The proposed system is evaluated through Matlab Simulink

simulations.

Chapter 9 provides a fault detection and fault-tolerant control mechanism to maintain
the continuous operation of the grid-tied inverter, which is commonly used to interface
renewable energy and distributed generation to the grid. The fault tolerance is provided
using the modified topology of the DC-AC power converter with a redundant standby
branch. The proposed system ensures continuous operation without isolating the energy
source from the grid during faults on the inverter switch. The fault may be an open circuit

fault or short circuit fault.

Chapter 10 provides the experimental work that used to test and validate the demand side
management methodologies at the distribution network level. This work will include the
design and implementation for different Hardware setup such as the hybrid AC/DC

microgrid.

Chapter 11 concludes this dissertation and gives insight into future work.
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Chapter 2 Design and Control of Hybrid AC/DC Microgrid for Future Smart

Grid

In this work, a hybrid residential microgrid system was considered for future city
houses. It is composed of both AC and DC networks tied together through an interlinking
bidirectional AC/DC converter (IC). The DC network contains the DC loads and the
distributed energy sources (DES) such as Photovoltaic (PV) and battery storage. The AC
network includes the AC loads and a synchronous AC generator as the only AC source in

islanding operation in this system.

The islanding operation at this level of the grid, prone the network to be more
vulnerable to stability issues. Therefore, it is essential to obtain the best control parameters
for the IC controller, which ensures sufficient power exchange and stable operation
between the DC/AC networks. Consequently, a Genetic Algorithm (GA) has been used to
tune the vector decoupling control parameters of the IC controller to find the best parameter

combination to improve the hybrid grid performance.

The proposed scheme maintains system stability during various conditions such as
variable or pulsed demand and uncertain renewable power-sharing. The tuned vector
decoupling controlled sinusoidal pulse width modulation (SPWM) technique has been used
to not only allow the IC to maintain stable voltage and frequency but also tracks the active

and reactive power set points.
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2.1 Introduction

The microgrids offer an essential solution to enable a resilient grid infrastructure since
they can continue operating in case of a utility outage [56]. The futuristic distribution
system, which is one of the fundamental smart grid concepts, can be viewed as a cluster of
microgrids [57] and each microgrid can be viewed as a cluster of distributed energy
resources DERs, which has a connection to the main utility grid. Microgrids could be
composed of conventional or renewable DERs. Microgrids mostly depend on intermittent
renewable resources. This configuration may introduce severe stability problems,
especially during the islanded operation [58], [59]. Minor stability problems can cause
cascading outages which would result in a large-scale blackout if proper action is not taken
on time. An efficient way to prevent such risks, ensure robustness, and resilience is to
operate the grid in a coordinated mode [60], [61] with considering the different parameters
of the heterogeneous mix of the available resources. The microgrids are categorized as AC
and DC. There’s a trend to consider DC microgrids widely. The reasons for this, are well
discussed in the literature [62]-[68]. On the other side, the advantages of AC systems
cannot be omitted; this is mainly due to the efficient and cheap means of generation
provided by the synchronous AC machines. The majority of the loads have been designed
to operate in AC form [66]. Thus, a combination of AC and DC microgrids can be

introduced as a viable solution.

Photovoltaic (PV) generation is one of the most viable renewable energy sources to be
considered in the future smart grid. However, substantial impediments need to be overcome

to achieve the more comprehensive utilization of PV. The most salient one is the
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intermittency of PV generation which can be compensated not only by using energy storage
technologies but also by demand-side management and exchanges with other power
networks: the main grid and surrounding microgrids [67]. Many researchers verify the
validation of applying stochastic optimization techniques like a genetic algorithm in tuning
the controller parameters [73]-[74]. In [75], authors have an effort to optimize the PID
control parameters by selecting best suitable combination to verify the stable control
region, and it is applied to the DC-DC converter. Another paper [76] discusses many efforts

that done to design non-isolated DC-DC converters for PV applications.

In this work, a Genetic Algorithm (GA) has been used to tune the vector decoupling
control parameters of the IC controller to find the best parameter combination to improve
the hybrid grid performance. The proposed technique not only guarantees stability in DC
side but also coordinates with AC side for optimum behaviors of the two sides under
unpredicted severe changes in both types of demand. The results ensure that the proposed
technique improves and maintains stable system operation under various load and resource

conditions.

2.2 system description, Modeling, and Control

This system consists of a hybrid AC-DC microgrid interconnected to each other with a
bi-directional AC-DC converter as shown in Figure 2.1. The DC microgrid depends mainly
on renewable energy sources such as PV array to supply its local DC loads. Also, it includes
backup battery storage that can support the load deficiencies and the PV source

intermittency. The AC microgrid depends mainly on a synchronous generator to supply its
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local AC loads. The AC grid is isolated from the utility to represent microgrid in islanding

operation or rural area network.
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Figure 2.1 The main configuration for the hybrid AC-DC Microgrid

The system has been designed in a way that can autonomously satisfy the power needs

in both AC and DC microgrid.

2.2.1 PV System Model and Interface
A typical 20 (kW) maximum output PV array power is constructed from a number of series
and parallel connected modules. It consists of 22 parallel string with 3 series modules each.
The commercial SunPower SPR-305-WHT PV 305 W module is considered in this design.
The IV characteristic of the PV array is represented by the single diode model which offers

both the advantage of accuracy and simplicity [70]-[72]. The PV array current is described

by (1).

gV py + 1, *R) Wyt Ly *Rs)
Kg+T*4 Ry,

Ipy =1 —1g *[exp[
(1)
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Where Rs is the series resistance, and Rsh is parallel leakage resistance, /z is the internal
PV current in the PV array, I,vis the PV array output current, /s is the reverse saturation or
leakage current of the diode. A is the ideality factor of the solar cell. g is the charge of the

electron (1.6x107" C), K3 is the Boltzmann constant (1.3806488x107% J/K).

A DC to DC boost converter is utilized. Figure 2.2 shows the schematic diagram of the PV

array, the boost converter, and the DC bus.

This converter has two principal targets: first, step up the PV voltage to the DC bus level
and achieve MPPT. Second, to extract as much power as possible from PV panel by

performing maximum power point tracking (MPPT).

In this work perturbation and observe (P&O) traction algorithm is used to keep track the
maximum power even if temperature or irradiance change does occur. The algorithm
receives the reading of the PV output current and voltage to calculate the power. The value
of the power at the ku iteration (Pk) is stored, then the same value is measured and

calculated for the (k+1)™ iteration (Pk+1).

The power difference between the two iterations (AP) is determined. The converter should
decrease the PV panel output voltage if AP is negative and increase the PV panel output
voltage if AP is positive, which finally leads to adjusting the duty cycle. When AP is
approximately zero, the PV panel reaches the maximum power point. The flow chart of the

Perturb and Observe MPPT algorithm is given in Figure 2.3.

The control technique for the boost converter designed based on equations (2), (3) and (4).

Where d1 is the duty cycle ratio of the switch Spv.
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Figure 2.2 The schematic diagram for the PV with the boost converter interface to the DC bus
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Figure 2.3 The flow chart for the MPPT method (Perturb & Observation).

The block diagram shown in Figure 2.4 indicates the implementation of the boost

converter control algorithm.
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In which the voltage reference V' calculated from the P&O algorithm which mainly
depends upon solar irradiation and temperature of PV array. The control composed of dual-
loop control. The outer voltage loop helps in tracking the reference voltage with zero

steady-state error, and inner current loop helps in the improvisation of dynamic response.

P&O
MPPT
. *l— Algorithm ll
p % : V
1 L
1 s +ROf(Y 17 scpr] L

Figure 2.4 Block diagram for the boost converter control.

2.2.2 Battery Converter Model and Control
The battery converter topology is a bidirectional DC-DC converter as shown in Fig.2.5.
The battery is connected to the low voltage side, while the DC bus is connected to the high

voltage side of the converter.
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Figure 2.5 The schematic diagram for the battery with the bi-directional DC-DC converter
interface to the DC bus

It consists of two switches Sc and Sd have different operation purposes and never
operate at the same time. When Sc is on, the converter is going to work in buck mode. To
move the power from the DC bus to the battery, charging purpose. When Sd is on, the
converter is going to work in boost mode, in which the power flows from the battery to the
DC bus, for discharging operation. The control algorithm of the battery converter was

designed based on the formulas (5), (6) and (7).

V.-V, =L d1b+R1
D b 2dt 24b

)
Vo=V, %d, ©)
il(l_dl)_iac_idc_ib*dzzcddstd )

The control scheme for the bidirectional DC-DC converter is shown in Figure 2.6. The
main target of the bidirectional DC-DC converters of the battery banks is to regulate the
DC bus voltage. A dual-loop control is used to provide stable DC link voltage. The external

voltage-controlled loop is used to generate a reference charging current for the internal
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current controlled loop. The input of the PI controller is the error between the reference
and the measured DC bus voltage for the system(Vd ~Va) | This error multiplied by -1 and

the output is the reference current (5) . The internal current control loop will compare the
measured current signal with the reference current flow through the converter. The output

of the former is set as input for another PI controller for the inner controller.

Based on (5) the battery current @) will be obtained, and the duty cycle 5 is estimated

by (6) and (7). The injected current i =ii(I=d\)=lse ~la For instance, when the DC bus
voltage is higher than the reference voltage, the outer voltage controller will generate a
negative current reference signal, and the inner current control loop will adjust the duty
cycle to force the current flow from the DC bus to the battery, to be charged. During this
process, the energy transfers from the DC bus to the battery and the DC bus voltage will
decrease the rating amount. If the DC bus voltage is reduced lower than the normal value;
the outer voltage control loop will generate a positive current reference signal, which will
regulate the current flow from the battery to the DC bus. As a consequence, the extra energy

injected from the batteries; the DC bus voltage will increase to the rating value.

¥

Vi +

Figure 2.6 The flow chart for the MPPT method (P&O).
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2.2.3 Bi-directional DC/AC converter model and control

In hybrid AC/DC microgrid, the frequency and voltage amplitude of the three-phase
AC side is not so robust. Especially, in islanding mode where there is no slack bus
connected to the AC side. Usually, the slack generator in the hybrid power system can
handle the load with a small varying ratio, but when the pulse load is connected to the AC
side, or the total load exceeds the generator’s limit, the system frequency may decrease,
and the voltage may collapse. Therefore, the main role of the bi-directional DC/AC
converter is to regulate the frequency and the voltage magnitude of the AC grid [78]-[81].
Furthermore, in this work, the controller of the DC/AC converter can assure exchange of
power between AC and DC grid smoothly. The model of the DC/AC converter can be

represented in ABC coordinate as in (8).

e A

t
ic ic V. e, A, (8)

d |l “Ry why|ig| Ve | |V
Ly—| . |= .|t -

dt|i, -wLy; —R; |1, Veg Vg ©)
The control scheme for the bidirectional AC-DC inverter is shown in Figure 2.7. Two-loop
controllers are applied. Active and reactive power control loop to control both frequency
and voltage respectively. For the active power loop. Coordination control was developed

to control both the frequency of the AC side and partial control of the DC bus voltage with

cooperation with the battery storage.
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Figure 2.7 Schematic diagram of the AC/DC converter

In the frequency control, the error between the reference frequency and the measured is
subtracted from the error between the reference and the measured DC voltage. The output
of that summation is set as the input to a PI controller which generates the /s reference.
Another control loop to control the reactive power flow helps to control the voltage
amplitude. The error between the reference voltage amplitude and the measured voltage

amplitude is sent to a PI controller to generate /, reference.

2.3 CONTROL PARAMETERS DESIGN USING GA.
GA has turned out to be an excellent optimization tool. It does not require an exact

mathematical model of the physical system. Furthermore, speed and robustness are
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prominent properties of this scheme. The proposed design strategy for generating the
control parameters is based on GA. It has been used in this paper to optimize the
interlinking DC/AC control parameters and reduce time consumption compared to the trial-
error method. GA is a stochastic search algorithm that emulates biological evolutionary
theories to solve optimization problems. It enables parallel search from a population of
points. Therefore, it can avoid being trapped in optimal local solution unlike traditional
searching methods, which search from a single point. Based on the literature, using GA to
optimize the control parameters show success [82], [83]. Such optimal parameters could
provide ideal control performance and achieve the desired coordination performance. GA
is used to select the optimum combination of the control parameters (Kp £, Ki £, Kp vdc, Ki vac,
Kp vae, Ki vac, Kp m and Ki m) based on the optimization procedure. GA calls the system
dynamic simulation and calculates the integral absolute frequency (Af) and RMS voltage
(AVrms) deviation of the AC Micro-grid, as given in equation (10), which represents the

multi-objective fitness function (F).
- Mi ty tr
F = Min {fto |Af1dt + [/ AVl dt } (10)

The objective of GA optimization is to minimize the cost function by accurately
choosing the control parameters of the interlinking converter. GA setup for the proposed
design optimization procedure is presented in table I. The progression of GA optimization
is shown in Figure 2.8-a. The optimum control parameters are indicated in Figure 2.8-b
and summarized in Table 2.2. These parameters are introduced to the FL system to provide

optimized damping performance.
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Table 2.1 GA setting

Parameter Value
Number of variables 8
Variable [Kp A Ki ', Kpivdc, Kiivdc, Kpivac, Kiivac, Kpﬁm, Kiﬁm]
Lower [0, 0, 0, 0,0,0]
Upper [10, 5000, 10, 5000, 1, 1, 5000, 1000]
Populations 20
Mutation Uniform 80%
Crossover Single point
Iterations 50
Number of running 3
x 10° Best: 222334 Mean: 241780
4. b T T T T [ — ——— — |
g 3. :ii;:w,:::::;f:::f;:::f;:::}::: ¢ Best fitness ||
T 3 f”f’f?o;;ﬁ fffff e e - ¢ Mean fitness -
3 :::::I:,::‘:;:::I::::]:::::I:::I:::[::I::I:::
L %ee, 4 777777 — B N — S—
g 2. tt?”,,\,,,,‘,‘,,,tf; o ia i ol ___L____
2. ::::::,::::ff,’f‘,‘,,’f‘:*“,,,,???*‘,,}?*“,,3?#“,,}?“??!?&, -}
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Figure 2.8 GA optimization results (a) Best Fitness, (b) Best Values
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Figure 2.9 The schematic diagram for Matlab/Simulink model of the hybrid AC/DC microgrid

Table 2.2 OPTIMIZED FUZZY PARAMETERS

DC Micro-grid Battery bank i

' Convertel

(QHop

AC Micro-grid

Optimized Variable Optimized Value

Ky s 1.96710133791885
Kiy 2754.44647432590
Kp vie, 0.803382264716479
Ki vae, 1110.28219240551
Kp vac 0.0227061401037617
Ki vac 0.0857318115661076
Kp m 547.070250756871
Kim 4804.29071432778
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24 SIMULATION RESULTS

To investigate the effectiveness of the proposed methodology, a Matlab/Simulink
model for a hybrid AC/DC system is built as shown in figure 2.9. The AC microgrid
includes a synchronous generator and AC loads. The DC microgrid contains a PV array

and Lithium-ion Battery. DC loads are connected to the DC bus as well.

The AC and DC microgrids are interfaced through a VSC as explained earlier. Two
pulsed loads are connected to the system, one of them is on the AC side while the other is
on the DC side. The simulation time is 4 seconds. The results are depicted in Figures 2.10
through 2.12. It is assumed that the output of the PV array is dropping from 0.8 s to 1.5 s

due to a dense cloud cover.

This can be seen from Figure 2.10 (a). Consequently, the microgrid control increases
the battery output to compensate for this deficit as shown in Figure 2.10 (b). At the same
time during the cloud cover, the output of the generator is increased to share this deficit
with the battery. The output of the generator is shown in Figure 2.12 (a). This is done in a

rapid and coordinated manner such that the supply to the load remains unaffected.

The load profiles are shown in Figure 2.10 (c) and 2.12 (c). It should be noted that in
the case of parameter optimization there’s more contribution from the generator, this
reduces the stresses on the battery. Further, there’s less contribution from the DC microgrid

to save its assets.
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Figure 2.10 Active power flow in the DC microgrid (a) Generated power from the PV
array (b) Battery power (c) Load power.

The pulsed load on the DC bus is energized for 0.4 s (from 2 s to 2.4 s) and the second
pulsed load is energized from 3.2 s to 3.5 s). The developed controller acted rapidly and
mitigated the pulsed load by sharing the power with the appropriate ratio to avoid any
disturbance. In the case when the DC pulsed load is energized, the power flow in the
inverter is reversed. This is shown in Fig. 2.12 (b) where the power is negative. This
indicates the reversal of the power flow direction to be from the AC side to the DC side to
share the pulsed load and compensate the DC bus voltage. The stable operation of the

microgrids is indicated by variation of the voltage and frequency.
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It can be seen from Figure 2.11, with considering the variations above and dynamic
operation scenarios. The voltage and frequency variations are within the allowed limits by

the standards.
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Figure 2.11 (a) AC bus voltage (RMS value) for phase a (b) AC microgrid frequency
(c) DC bus voltage.
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Figure 2.12 Active power flow in the AC microgrid (a) Synchronous generator output
power (b) Inverter power at the PCC(c) Load power

Although the voltage variations are high as shown in Figure 2.11 (a), however, these
variations are still within the allowed limits. The DC bus voltage is shown in Figure 2.12
(c) and it is stable around the reference value (400V). Due to the variations in the generator
loading, the frequency is fluctuating. It can be seen that with the optimized parameter
scenario using GA, the fluctuations are less. Whereas in the non-optimized case the
frequency fluctuations are exceeding the limits in some instances. This may cause

triggering the under/over frequency functions on the protection relays. These fluctuations
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are limited through the optimized parameter approach which indicates the effectiveness of

the proposed method in this paper.

2.5 CONCLUSION

In this work, a genetic algorithm-based hybrid AC/DC microgrid control is
proposed to ensure system stability. The coordination control scheme is proposed for the
IC converter to maintain stable system operation under various load and resource
conditions. The Matlab/Simulink simulation verify the tuned coordinated control system.
Different resource conditions and load capacities are tested to validate the control method.
The simulation results show that the hybrid grid can operate steadily in islanding mode.
Stable AC and DC bus voltage can be guaranteed when the operating conditions or load

capacities change. The power is smoothly transferred when load condition varies.
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Chapter 3  Non-Intrusive Load Monitoring (NILM) Techniques for Load

Forecasting

The new vision for moving the power system to a smart grid enables a variety of smart
applications at different power system infrastructure’s levels. Households represent a large
part of the grid infrastructure which could not be considered as a smart grid without smart
households integrated into it. Short Term Load Forecasting (STLF) is an essential tool
needed in the management and control techniques required for households to be smart. The
STLF at this level of the grid is very challenging due to the high percentage of uncertainty
in the load demand, influenced by customer behavior, which is too stochastic to predict. In
this dissertation, a new approach for STLF of household load demand is employed based
on artificial neural network (ANN) and a pre-processing stage of a Non-Intrusive Load
Monitoring (NILM) techniques. The NILM techniques extract the individual load pattern
from the available historical aggregated load demand. These new features increase the
training data window for the ANN forecaster and achieve a significant enhancement for its
prediction performance. By comparing the new approach with the state of the art
techniques in household load forecasting, the proposed method outperforms feed-forward
artificial neural network (FFANN) regarding RMSE. Two techniques of NILM were used
to emphasize the correlation between the NILM disaggregation accuracy performance and

the load forecasting enhancement performance.
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3.1 Introduction

The contemporary power system is moving forward towards a smart grid,
whereas several innovations at different power system infrastructure’s levels occur.
Furthermore, the unprecedented penetration increase of renewable energy, time-varying
load demand, and Electric Vehicle (EV) in the distribution grid, add an extra burden on the
grid regarding the complexity and uncertainty. Therefore, the stability of the grid is
experiencing extraordinary challenges due to the intermittency of renewable generations,
the complexity of utility-customer interaction, and dynamic behaviors. A considerable
section of this complex distribution network represented on Households which are
responsible for a significant portion of electrical energy consumption. Enabling the active
participation of households' demand-side response (DSR) instead of considering it as a

passive load will have a positive impact on the power system stability.

In this case, forecasting household load consumption is essential for residential DSR
program. Accurate short-term load forecasting (STLF) on the household level can
significantly facilitate the power system operations. STLF refers to the expectation of the
power demand in the next hour, next day, or up to a week. STLF is the essential tool needed
in the management and control techniques required for households to be smart. STLF at
this level of the grid is very challenging due to the high percentage of uncertainty and
volatility in the load demand, influenced by customer behavior, which is too stochastic to

predict.

Based on the state of the arts in the field of load forecasting, the prediction methods

have been used include time-series analysis such as exponential smoothing and
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autoregressive regressive integrated moving average (ARIMA) and machine learning
approaches such as artificial neural networks (ANN) and support vector machine (SVM).
In [84] adopted autoregressive integrated moving average model for a day ahead load
forecasting was presented. In which the prediction mechanism is based on grouping the
targeted day with the similar meteorological days in the historical data. In [85] Radial basis
function (RBF) neural network had been used to address the STLF. In [86] a combination
between RBF neural network and the adaptive neural fuzzy inference system (ANFIS) was
presented to adjust the prediction by taking into consideration the real-time electricity
price. In [87] it is proposed a neural network based predictor for very short-term load

forecasting.

It takes only the load values of the current and previous time steps as the Input to predict
the load value at the subsequent time step. In [88] an ensemble of extreme learning
machines (ELMs) to learn and forecast the total load of the Australian national energy
market was used. In [89] a dedicated input selection scheme to work with the hybrid
forecasting framework using wavelet transformation and the Bayesian neural network was
presented. Based on the previous literature, the techniques used for load forecasting can be
concluded in three categories. The first is avoid the uncertainty by Clustering/classification
techniques which group similar customers, days or weather in the hope of reducing the
variance of uncertainty within each cluster [90]. However, the performance is heavily
dependent on the data. The second is trying to cancel out the uncertainty by using
aggregated smart metering data so that the aggregated load exhibits mostly regular patterns

and more easier to predict, yet the prediction is visible only at an aggregated level. The
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third is trying to separate the regular pattern from the other component of load profile such
as uncertainty and noise by pre-processing techniques, mostly spectral analysis such as
empirical mode decomposition (EMD) [91], Fourier transforms [92], and wavelet analysis
[93]. This method can be ruled out in household load forecasting due to the high uncertainty

proportion of the load pattern.

All these previous work for load forecasting techniques are suitable for the aggregated
level such as system or community level. There is a little work on the literature regarding
load forecasting at the household level. For example, the first two trails to address load
forecasting at household level in [94], [95]. In which, a functional time series forecasting
approach was proposed. However, it used daily median absolute errors (DMAE) which is
not the commonly used metric. In that way, it is improper to assist as a benchmark for
experimental assessments. The standard metric used to assess the forecaster performance
is mean absolute percentage error (MAPE). Recently, some work is done in the area of load
forecasting using the deep artificial neural network (DANN). In [94], the accuracy of load
forecasting for industrial customers is improved by using DANN. It was the first attempt
to use a factored conditional restricted Boltzmann machine, for household load forecasting.
However, it outperforms regarding the performance than artificial neural network and
support vector machine. In [96], another deep neural network (DNN) approach called long
short-term memory (LSTM) is used. Although deep learning has received high expectation
in forecasting community, the state of the arts indicates that deep learning is more prone to
over-fitting compared with artificial neural networks [97]. The problem is expected due to

the existence of more parameters and relatively fewer data. For that reason, another work
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based on a pooling-based deep recurrent neural network (PDRNN) is proposed in [98] to
tackle the overfitting issue. However, the methodology was tried to avoid the over-fitting
problem by increasing the data dimension which is the historical data of the neighbors to
the neural networks. The main drawback here that this method is pooling the data of the
neighboring household to increase the data set. Which most probably not available in

another place for privacy policy.

In this work, a new approach for STLF of household load demand is employed based
on artificial neural network (ANN) and a pre-processing stage of a Non-Intrusive Load
Monitoring (NILM) techniques. The NILM techniques extract the individual load pattern
from the available historical aggregated load demand. These new features increase the
training data window for the ANN forecaster and achieve a significant enhancement for its
prediction performance. By comparing the new approach with the state of the art
techniques in household load forecasting, the proposed method outperforms ARIMA,
SVR, and ANN regarding root mean square error RMSE. We use two different
disaggregation algorithms called Factorial Hidden Markov Model (FHMM) and
Combinatorial Optimization (CO) to extract the power demand profile for individual
appliances from the main aggregated Household smart meter. Two techniques of NILM
were used to emphasize the correlation between the NILM disaggregation accuracy
performance and the load forecasting enhancement performance. Figure 3.1 shows the

block diagram of the whole proposed system.
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3.2 Non-Intrusive load monitoring

Non-intrusive load monitoring or energy disaggregation is a computational approach
for estimating the individual appliances power consumption from a single meter which
measures the aggregated power consumption of multiple appliances. This research started
with the vital work of George Hart [99], [100] in the mid-1980s. His earliest work described
a signature taxonomy of feature. However, his focus was on extracting only transitions
between steady-states. Following Hart's lead, many NILM algorithms designed for low-
frequency data (1 Hz or slower). But only extract a small number of features. Regarding
the high frequency (sampling at kHz or even MHz), there are several examples of manually
engineering feature extractors discussed in the literature [101], [102]. Humans can learn to
detect appliances in aggregate data by eye, especially appliances with feature-rich
signatures. Hand-engineering feature extractors could be considered for analyzing profiles
with rich features. But this would be time-consuming, and the resulting feature detectors
may not be robust to noise and artifacts. Hand-engineer feature extractors such as scale-
invariant feature transform [103] (SIFT) and difference of Gaussians (DoG) was the
dominant approach to extract features for image classification prior 2012. But, in 2012,
during the competition of ImageNet Large Scale Visual Recognition, different algorithms
achieved an excellent performance and did not use hand-engineered feature detectors.
Instead, they used different disaggregation algorithm which automatically learned to
extract a hierarchy of features from the raw image. Using the same approach in this paper,
we will use various disaggregation algorithms called Factorial Hidden Markov Model

(FHMM) and Combinatorial Optimization (CO) to extract the power demand profile for
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individual appliances from the main aggregated Household smart meter. The detailed

illustration of these algorithms introduced later in this section.

3.2.1 Dataset and Non-Intrusive Load Monitoring Tool Kit (NILMTK).

There are numerous problems in energy sector need to be tackled. A lot of them need
prediction tasks and data analysis, areas where techniques such machine learning and data
mining can prove invaluable. As is the case in this paper, to use the NILM to enhance the
household forecasting performance, the energy consumption of each household has to be
available. For this reason, the data from the Reference Energy Disaggregation Data Set

(REDD) released in 2011[104] is used.

NILM p|  Load Forecaster
1- Combinatorial- Ang
» Optimization. > ANN CO ' >
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Household Power 2- Hidden Markov R ANN HMM Household Power
Modle -
Predicted
appliances Power

Figure 3.1 Block diagram for the proposed household load forecasting approach.

The first publicly available dataset collected mainly to assist the research of NILM.
The dataset comprises of whole-home and device/circuit specific electricity consumption
for some real houses over several months’ time. For each house, the whole home electricity

signal is recorded. The measurement placed as follows: a voltage monitor on one phase
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and current monitors on both phases of power. All these recorded at a high frequency
(15kHz). Furthermore, there are 24 individual circuits in the home, which labeled with its
category of appliances, recorded at 0.5 Hz. Also, there are 20 plug-monitors in the home,
recorded at 1 Hz, with a focus on plugged electronics devices where multiple devices are
grouped into a single recorded point circuit. It is considered the most popular dataset for
evaluating energy disaggregation algorithms. The implementation of the two
disaggregation algorithms as mentioned above is done based on the NILMTK [105] to
implement the disaggregation process. This NILMTK implemented based on Python which
provides a massive set of libraries supporting both machine learning and NILM algorithms.
Furthermore, Python permits easy implementation in diverse environments including
academic settings and is increasingly being used for data science. Figure 3.2. presents the
NILMTK’s process block diagram from the import of the datasets to the estimation of

different disaggregation algorithms over multiple metrics [105].
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Figure 3.2 NILMTK s process block diagram
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3.2.2 . Combinatorial Optimization (Optimization Methods)

Optimization approaches require the existence of appliance signature libraries with all
possible combinations of power demands of the appliances it is needed to disaggregate. If
we include the combinations of all the installed appliances in a household, then this
optimization approach is called brute-force. However, as was stated in [106] due to
memory limitations, brute-force methods are impossible to be applied in an embedded
system. Thus the load identification requires the definition of an objective function and its

minimization. Considering the aggregate data x and an appliance set =

[ X1, v ee ee v v, Xy ], the problem is formulated as [106]:
lrsr}’LiélN I = Xn=r 2 | (1

The most critical algorithm in this domain is the Combinatorial Optimization which
minimizes the difference between the sum of the measure aggregate power and predicted
appliance power [107]. This method was also used by Hart in [108]. The computational
complexity is o (KNT) , where K is the number of appliance states, N the number of
appliances and T the number of times slices used in the implementation. The problem
complexity increases as the number of different loads in the aggregated signal increases,
since the algorithm should take into account all possible combinations of appliances

contained into the training set. The problems with this approach are [107]:

1. The presence of new loads in the aggregated signal.

2. The sequential dependencies among the appliances are neglected.

3. Appliances with similar consumption are difficult to distinguish.
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Thus optimization methods address mainly disaggregation for the most power-hungry
devices and a limited number. In [109] it is discussed the two commonly cited
disadvantages of this approach which are the decreasing of accuracy with the number of

appliances and level of noise.

Factorial Hidden Markov Model belongs to the category of Temporal Graphical
Models which is a class of probabilistic models. Such models have been applied previously
to many real-world problems like speech recognition. The most straightforward
representation of sequence data is through the use of a Markov chain which is a sequence
of discrete variables. State transitions of devices are handled by the hidden Markov model
(HMMs) which is a statistical tool. Each variable is described by its real power
consumption in addition to other useful information such as duration of the on and off
periods and time of use during the day/week. Thereby, at an instant of time t of a period T,
t € T, the aggregate consumption is X(t) and needs to be broken down to number of
appliances z{*, where t € T and n € N with N the number of appliances. The value of each
device z{* at any time corresponds to one of the K states of the trained model of the
appliances [106]. The mathematical representation of the a HMM represented through Eq
2. The behavior of a HMM can be completely defined and inferred by three parameters.
First the probability of each state of the hidden variable at the time t can be represented by

the vector 7 such that

Mg = p(ze = K) (2)

Second, the transition probabilities from state i at t to state j at t + 1 can be represented by

the matrix A such that,
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Ay = p(Zey1 = jlzp = 10) (3)

Third, the emission probabilities for x are described by a statistical function with

parameter @ which is commonly assumed to be Gaussian distributed such that,
xt | Zt ) Q) ~ N(:uzt, TZt) (4)

Where @ = {u, 7}, and p,, , 7,, are the mean and precision of a state’s Gaussian

t

distribution. Finally, Equations 2, 3, 4 can be used to compute the joint likelihood of a

HMM:

p(x,z[0) = p(z¢|m) HtT=2 P(Zt111Ze, A) H;r=1 p(X¢lzy, 0) (5)

Where the set of all model parameters which must be found for each appliance during

the training phase is represented by 8 = 1, 4, @.

Therefore, when applying an HMM for Energy Disaggregation, it is needed to tune the
6 parameters for each appliance during the training phase and afterwards, given a sequence
of power signal x to find the optimal sequence of discrete states z. Their ability to handle
daily operation consumption and the information about state transition of devices makes

them a suitable solution for the problem. The complexity of the

disaggregation using HMM s is O (K?T), where K is the number of states of all the
appliances and T is the number of the time slices, i.e. ,who many times the algorithm is
required to be applied [106]. As it is shown the complexity is exponential with regard to
the number of appliances while re-training is needed when a new group of appliances is

added [110]. In[111], the HMMs were used for appliance load recognition, and it was also
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shown that they are useful in the field of NILM. Finally, Oliver Parson in [109] is using
HMMs to disaggregate an energy signal using generalized appliance model, and as a result,
it was possible to extract consumption of individual devices without any manual labeling.
But he used low-frequency Smart Meter data because of lack of high-frequency data and
smart metering infrastructure supporting such high rates. Although the HMM is a powerful
technique, the method for the inference of hidden states is often affected by local minima
[112]. To overcome this limitation, variants of HMMs are used like the Factorial HMM
(FHMM). The concept is that the output is an additive function of all the hidden states. In
the model, each observation is dependent upon multiple unknown variables [113]. The
graphical model is given in Figure 3.3. Similarly, the joint likelihood of an FHMM as stated

in [114] is computed by,

p(x,210) = oy p(207 1) [Ty Ty p (289 |2, 4) Ty (|28, 0) (6)

Where 1: N symbolizes a sequence of appliances 1,..., N. However, the computational
complexity of both learning and disaggregating is greater for FHMMSs compared to HMMs.

This is due to the conditional dependence of the Markov chains.

Appliances 1

Appliances N

Aggregate
Consumption

Figure 3.3 Illustration of a Factorial Hidden Markov Model.
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3.2.3 Load disaggregation
In this part, the performance of the NILM algorithms is presented. For preparing the
appliances power profiles for load forecasting stage, the data are reformed to be hourly
power demand as in Figure 3.4. And Figure 3.5. Where Figure 3.4. Represent the
aggregated data and the disaggregated data by using FHMM algorithm. However, Figure

3.5. Represent the aggregated data and the disaggregated data by using CO algorithm.
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Figure 3.4 Aggregated power for Home (b). Comparison between predicted and ground truth

fridge power. (c) Comparison between predicted and ground truth microwave power. (b)

Comparison between predicted and ground truth Kitchen Sockets power by using FHMM
algorithm for disaggregation.
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Figure 3.6 Comparison between the actual and predicted power demand with three different
algorithms FFANN, FFANN combined with FHMM, and FFANN
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3.3 The implemented Short-Term Load Forecasting

A feed-forward Neural Network of the same design as used in [115] is employed.
Which is with nine input nodes and one output nodes. One input for the current hour power
demand, one for an hour before, one for two hours before, one for a day before, one for the
23 hours before, one for 22 hours before, and three inputs for the three predicted appliances

from the current power profile. The output node for the expected hour ahead.

The loads used were taken from 2 weeks April 2011. In many ways, this test network
presents a challenging forecasting case these are all drawn from the real USA. Forecasts
with all models are made at midnight every day for subsequent 47 hourly increments. Load
forecasts across all 123 premises on the network are aggregated together and compared to

the actual aggregate load.

3.4 Simulation result

Figure 3.6 Shows the comparison between the actual and predicted load for the home
with different prediction algorithm technique one using FFANN, the second using FFANN
with the extracted predicted appliances from FHMM, and FFANN with the extracted
predicted appliances from CO. Figure 3.7 Shows the difference Error between the expected
power developed by ANN or ANN_HMM or ANN_CO and the actual power. It can be
noticed from Figure 3.7 that the orange graph represent the least error condition. Table 3.1,
shows the estimated RMSE and NRMSE at different predictor approached used in
household load forecasting through this work. It can be inferred that the approach has the
least RMSE and the least NRMSE is the one used the ANN with combined with pre-

processing NILM technique (HMM).
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Table 3.1 Comparison of the RMSE and NRMSE with the three predictors approach

ANN ANN_ HNN ANN CO
RMSE 0.088693502 0.034189461 0.110849268
NRMSE 0.065156642 0.033566291 0.700878406
Error (pu)
1
) '\
0 — _—— A—‘—*«A - —*,,A—W - -~ = —>—
T AR RN N R A AP RR SR d 000 09N NmMBRTSnisb 8
_05 R I e I e T e O TR T e e B e T R B IO I |
-1
e ErrOr_ANN e FError_ HMM Error_CO

Figure 3.7 Show the difference Error point by point.
3.5 CONCLUSION

This work for the first time explores the potential of employing the state-of-art NILM
techniques combined with ANN for household STLF under high uncertainty and volatility.
The proposed mechanism provides the possibility to forecast the energy consumption
conditions and to predict the home energy requirements at different times of the day or on
different days of the week. The proposed approach is suitable for smart grid applications
for effective demand-side management, as it can rely on matching present generation
values with demand by controlling the energy consumption of appliances and optimizing

their operation at the user side.
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Chapter 4 Evaluation of NILM-Based Deep Learning Techniques for Efficient

Demand Side Management

The development of the current power system grid is essential to better serve the
customer. Especially, with the massive expansion in the distribution network and the
increase of renewable energy penetration. This development means the grid must be
reliable, more flexible, and smarter. Households represent a massive portion of the grid
infrastructure. The deployment of smart appliances enables the grid to be smarter through
energy/demand-side management based appliances control. Therefore, Short-Term Load
Forecasting (STLF) is needed to help the energy management for households’ systems.
The main challenge for STLF at the household’s level is the high uncertainty in the load
demand. In this paper, a new method for households” STLF is employed. It consists of a
Feed-Forward artificial neural network (FFANN) and a pre-processing stage of Energy
Disaggregation (ED) techniques. Extract the individual load pattern of household’s
appliances from the total load demand by the ED techniques, enlarge the training data set
of the FFANN forecaster to achieve a remarkable improvement for its forecasting
performance. Three deep neural network architectures have been used for energy
disaggregation. 1) denoising autoencoder (DAE); 2) a unique type of a recurrent neural
network (RNN) entitled long short- term memory (LSTM); 3) a network that provides
rectangles for the estimated demand by regression the start time, end time and average

power demand (nicknamed as RECTANGLES). The proposed method outperforms the
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state of the art techniques in household load forecasting regarding RMSE, NRMSE, and

MAE.

4.1 Introduction

The current power system is expanding, and more alternative renewable sources are
emerging du one to the continuous increase in the demand sectors. As a result of the
revolution in technology which leads to new load demand emerging. For example load
demand with time-varying behavior, and excessive penetration for Electric Vehicle (EV)
in power grid. Add all of that to the huge penetration of renewable energy which has

intermittent behavior. The grid almost works near to the stability limits.

Therefore, moving towards a smart grid is essential and require more revolutions
at different power system infrastructure’s levels. Households load demand represents a
significant portion of electrical energy consumption. Households' demand-side response
(DSR) enables the active participation of the household load instead of considering it as a

passive load. As a consequence, it provides a positive impact on the power system stability.

Forecasting the household load consumption is essential for residential DSR
program. Precise short-term load forecasting (STLF) on the household level can
significantly influence the management and the power system operations. Also, STLF is a
necessary tool required in the management and control of the households’ loads to enable
smart consumption. The main challenge for STLF at the household’s level is the high

uncertainty in the load demand, due to the difficulty to expect the customer behavior.
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There is a lot of research done in the literature on load forecasting. The conventional
methods are used 1). Exponential smoothing and autoregressive integrated moving average
(ARIMA) which is based on time-series analysis. 2). feed-forward artificial neural
networks (FFANN) and support vector machine (SVM) which is machine learning
methods. A day ahead of load forecasting based on an adopted ARIMA model was offered
in [116]. The prediction mechanism in this study is based on gathering the targeted day
with a comparable meteorological day in the historical data. Another study offers Radial
basis function (RBF) neural network is used for STLF [117]. A combination between the
adaptive neural fuzzy inference system (ANFIS) and RBF neural network is provided In
[118]. This study was established to regulate the forecasting by considering the real-time
electricity price. A short-term load forecasting based neural network presented in [119]. It
considered the current and previous of the load value as the Input to predict the consecutive
load value at the next time step. The prediction of the Australian national aggregated load
demand is studied based on extreme learning machines (ELM) [120]. A committed input
selection strategy to work with the hybrid prediction framework based on wavelet
transformation and the Bayesian neural network was presented in [121]. All the previous
load forecasting techniques mentioned in literature can be concluded in three categories.
In the first category, all approaches avoid the uncertainty by Clustering/classification
methods which gather similar customers, days or weather to reduce the alteration of
uncertainty within each cluster [122]. However, the performance is comprehensively
dependent on the available data. The second category is using the aggregated historical
data to cancel out the uncertainty and make it easier to predict. Also, it is effective only on

an aggregated level. The third category is demanding on analyzing the data by pre-
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processing techniques to separate the normal pattern from the uncertainty and noise
component. These pre-processing techniques are spectral analysis empirical mode
decomposition (EMD) [123], Fourier transform [124], and wavelet analysis[125].
Therefore, this category is improper to be used in household STLF because the uncertainty

represents most of the load pattern.

All the previously mentioned work for load forecasting are suitable for the
aggregated level such as community or system level. There are a few numbers of studies
on the literature regarding the household load forecasting. For instance, the first two trials
reported for the household’s demand load forecasting introduced in [126],. Wherein, a
functional time series prediction technique was presented. But, it didn’t use a commonly
used metric to measure its performance. It used daily median absolute errors (DMAE)
metric which unsuitable to be used as a benchmark for preliminary assessments. Unlike,
the mean absolute percentage error (MAPE) which considered the standard metric for the
load forecaster performance. Recently, a load forecasting technique using the deep artificial
neural network (DANN) improves the accuracy of load forecasting for industrial customers
presented in [127]. A factored conditional restricted Boltzmann machine was used for the
first time for the purpose of household load forecasting. And it’s performance outperforms
SVM and FFANN. The long short-term memory (LSTM) which is a type of deep neural
network (DNN) techniques used for household load forecasting [128]. The deep learning
is prone to over-fitting issues compared with artificial neural networks [129]. However, it
was expected to succeed in load forecasting as it was in other similar work such as pattern

recognition. The problem was anticipated due to the presence of a high number of
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parameters and comparatively fewer data. In order to tackle the overfitting problem, a new
technique called a pooling-based deep recurrent neural network (PDRNN) is presented in
[130]. Nevertheless, the technique was trying to solve the over-fitting issue by enlarging

the dimension of the training data.

The main drawback here that this technique is collecting the data from the neighboring
household and gathering them in one pool to increase the training dataset. However, these
data hard to access because of privacy. A preliminary work based on extracting load pattern
by applying a Factorial hidden Markov model and combinatorial optimization [131]. These
extracted data increased training data set and enhanced the load forecasting. However, the
accuracy of the extractor needs more enhancement to affect the forecasting performance
significantly. In this work, a new method for households’ load demand forecasting is
employed based on a pre-processing stage of energy disaggregation techniques and feed-
forward artificial neural network. The ED techniques analyze the available historical
aggregated load demand to extract the individual load pattern. These extracted new data
increase the training data window for the FFANN forecaster and has a preliminary
predicted signature for the aggregated demand. As a consequence, a significant
enhancement for its prediction performance was achieved. Three deep neural network
architectures have been used for energy disaggregation. 1) denoising autoencoder (DAE);
2) a unique arrangement of a recurrent neural network (RNN) entitled long short- term
memory (LSTM); 3) a network that products a rectangles for the estimated load pattern by
regression the start time, the end time and the mean load demand (nicknamed by

RECTANGLES). In the comparison between the proposed technique and the state of the
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art techniques in household load forecasting such as ARIMA, and SVM, the proposed

method outperforms ARIMA, SVM, and FFANN regarding RMSE, NRMSE, and MAE.

4.2 ENERGY DISAGGREGATION

Energy disaggregation is a computational methodology for extracting appliances power
demand from a single meter which records the aggregated power consumption for a single
household. The research begins with the work of George Hart [132] in the mid-1980s. His
primary work defined a signature taxonomy of feature. Nevertheless, he concentrated on
extracting only the transitions among steady-states. Subsequent Hart's leads, many ED
algorithms prepared for low-frequency data (1 Hz or less). Nevertheless, which extract a
minor number of features only. Numerous examples of manually engineering feature
extractors about the high frequency (sampling at kHz or more ), argued in the literature
[133], [134]. By observation learning, humans are able to observe the appliances profile
among aggregate data profile by eye. Particularly, the appliances with distinguishing
signatures. Hand-engineer signature detectors for immediate difference of Gaussians
(DoG) and scale-invariant feature transform (SIFT) was the main procedures to extract
signatures for image classification before 2012 [135]. Nevertheless, in 2012, several
procedures accomplished an outstanding performance without using the hand-engineered
signature extractors. These findings obtained through the competition of ImageNet Large
Scale Visual Recognition. In which, they used numerous disaggregation procedures to

extract a hierarchy of signatures from the raw image.

In this work, a three adapted deep learning algorithms for energy disaggregation called

DAE, RNN, and RECTANGLES have been used to extract the load demand pattern for
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every single appliance from the total Household load demand. Figure 4.1 shows The
proposed household’s load forecasting block diagram. The main parts of this block diagram

are illustrated later in the next sections.

. _| Load Forecasting
ED Algorithms based techniques:
three adapted Deep _
Learning techniques: L 1- ARIMA
[ I | 2 SVM
[ I |
> LST™ > 3-FFANN >
" - T T 4 LSTM + FFANN ; "
2- RECTANGLES | | | | Predicted
Aggregated 3DAE oo A NG Household
1 1 1 1 .
Houseg‘gggem““d Estimated > 6 DEA + FFANN demand Power
(Smart meter Data) appliances demand
Power

Figure 4.1 The proposed household’s load forecasting block diagram.

4.2.1 Non-Intrusive Load Monitoring Tool Kit (NILMTK)

Non-Intrusive load monitoring toolkit is an open-source toolkit implemented based on
Python which offers a significant set of libraries to support Non-Intrusive Load Monitoring
(NILM), and machine learning studies [136]-[144]. In this work, the NILMTK was used
for the ED purpose to improve the household’s load forecasting performance. To use this
toolkit, available historical data for the energy consumption of each household is required.
Therefore, the data from the UK-DALE is used [145]. Which is one of the primarily
available datasets released in public to assist the research of NILM. Figure 4.2 shows the
block diagram of the NILMTK. And all the steps from the import of the datasets to the
assessment of the disaggregation algorithms over different benchmark metrics [146]. Three
disaggregation algorithms were implemented on the NILMTK for the purpose of ED. The

UK-DALE dataset is the first available UK dataset. It has a record of five houses.

58



Statistics Training |  Model |

A

NILMTK- >l Pre- >l Dis- »| Metrics

UK-DALE . .
DF processing aggregation

Data Iinterface
Figure 4.2 Block diagram for the NILM toolkit
But the study here focuses on two homes. One of them his historical data was available
during the training of the NILM algorithm. However, the other was not seen during the

training of the NILM stage.
4.2.2 Energy Disaggregation Algorithms for Home Consumption

4.2.2.1 Denoising Autoencoder (DAE)

An autoencoder tries to rebuild a real target profile from a noisy profile input.
DAE:s are trained by artificially corrupting’s signal before its uses with the net's input, and
using the clean profile signal as the net's target. In this work, the DAE considers the
corruption profile is the power demand of the aggregated appliances power consumption.
Therefore, no need to add the noise artificially. Instead, the aggregate power demand works
as the noisy input to the DAE’s network which used to reconstruct the clean load profile
of the target appliance. Figure 4.3 show the energy disaggregation algorithm output by

using DAE.
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Figure 4.3 Shows the ED output performance by using DAE technique vs the ground
truth data.

4.2.2.2 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a unique kind of ANN. In which, the
relations among units construct a directed graph along a sequence. This construction
enables it to show dynamic time-based performance in a time sequence. Different type
of FFANN, RNNs use their internal memory to generate a sequence of inputs. Figure 4.4

show the energy disaggregation algorithm output by using RNN.
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Figure 4.4 Shows the ED output performance by using LSTM technique vs the
ground truth data.

4.2.2.3 Regress the start time, the end time, and the mean power (RECTANGLES)
This technique generates a rectangle around each appliance activation pattern
in the aggregated data. The left side of the rectangle represents the start time of target
profile, the right side represents the end time of the target profile, and the height is the
mean power demand between the start and end times of the target appliances pattern. Figure
4.5 show the energy disaggregation algorithm output by using RECTANGLES. Figures

4.3, 4.4, and 4.5 are composed of two-column and six rows. The column on the left-hand
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side shows the disaggregation data of the home which his data was seen during training.
The column on the right-hand side shows the disaggregation data of the home which his
data was not seen during training. The first row represents the recorded aggregated power
demand for each home. From the second row to the sixth, a comparison between the ground
truth data and the estimated data for five different appliances was shown. They arranged
from row two to row six as follow: Dishwasher, Fridge, Kettle, Microwave, and Washing

machine.
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Figure 4.5 Shows the ED output performance by using RECTANGLES technique vs
the ground truth data.
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4.2.3 Disaggregation stage analysis
In order to classify the best disaggregation algorithm performance that used in the ED

stage. Seven commonly used classification metrics is used as stated by Eq 1-17:

TP = number of true positive (1)
FP = number of false positive (2)
FN = number of false-negative 3)
P = number of positive in the ground truth 4)
N = number of negative in the ground truth (5)
recall = TPZPFN (6)
precision = P (7)
| = o 5 Preision x recall (8)

precision + recall

accuracy = T;’IZN )

E = total actual energy (10)
E = total actual energy (11)
Vi = appliance i actual power at time t (12)
}7?) = appliance i estimated power at time t (13)

63



y; = aggregated actual power at time t (14)

relative error in total energy = % (15)

mean absolute error = 1/T >,

Je = e | (16)

Sea 39~ e (17)

the proportion of total energy correctly assigned =1 — T 5
t=17t

Figure 4.6 represents the comparison between the energy disaggregation analyses for the

house which its historical data was available during training.
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Figure 4.6 NILM performance analysis for home seen during training
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Figure 4.7 shows the comparison between the energy disaggregation analyses for the house
which its historical data was unseen during training. The findings show that the denoising
autoencoder outperforms LSTM, and RECTANGLES in most of the assessment metrics

through the five appliances.
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Figure 4.7 NILM performance analysis for home unseen during training

4.3 Short-Term Load Forecasting Implementation
An FFANN based backpropagation structure was used [147]. The Neural network
contains one input layer with eleven nodes, three hidden layers, and the output layer

represented by one node. The Eleven inputs represent the input layer consists of (five inputs
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from the energy disaggregation step and a six inputs from the historical aggregated demand
of the house for the current and previous hours. Five inputs for the estimated power demand
of the five main appliances in the house at the current hour which extracted from the energy
disaggregation step (kettle, microwave, fridge, dishwasher, and washing machine). The six
inputs for the current and historical consumption hours divided into two sets. Three inputs
include the power demand of the current hour, the power demand for an hour before, the
power demand for two hours earlier, and another three inputs composed of one for a day
earlier, one for the 23 hours earlier, and one for 22 hours earlier. One output node for the

expected power demand in an hour ahead.

4.4 Simulation Result

Figure 4.8 and Figure 4.9 show the actual load and the predicted load with a different
STLF algorithm for the house, which has its data available during the ED training, and the
house that has its data unavailable during ED training respectively. Three common metrics
are applied to evaluate the performance of the proposed STLF method for residential grid
level; root mean squared error (RMSE), normalized root mean squared error (NRMSE),

and mean absolute error (MAE).

— Jzﬁtl(yt ~ %) (18)
N

NRMSE = —MSE (19)

Ymax — Ymin

_ e v | (20)

MAE
N
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Figure 4.8 The actual and predicted load demand by different method for the home
whose historical data was seen during the NILM training.

Consumption (Wh)

2500

2000 -

1500

1000

500

Actual Load
—@— ARIMA
SVM
=—i— RNN+FFANN
—4@— Rectangles+FFANN
—le— DAE+FFANN
—a— FFANN

S ST S S

)
Q¥
S FE S ,\b‘ IR
Time

S S S w@

DAY

Figure 4.9 The actual and predicted load demand by different method for the home
whose historical data was unseen during the NILM training.
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Table 4.1 and Table 4.2.give a comparative analysis of different performance metrics used
to assess all the STLF approach used. The proposed STLF approach outperform regarding
RMSE, NRMSE, and MAE with the common state of the art techniques, i.e., AIRMA,
SVM, and FFANN. All the presented metrics in the tables take the averaged values across
all the tested households. As illustrated, the three proposed approach (Rec + FFANN, RNN
+ FFANN, and DAE + FFANN) outperform ARIMA, SVM, and FFANN in all
performance metrics used. Result in Table II was expected to be the worst because the data
was unseen during the ED stage. However, the proposed approach shows excellent
performance that means it succeeds to generalize to unseen data. The proposed (DEA +
FFANN) brings 20.37 % reduction in RMSE and NRMSE, 17.48 % reduction of MAE.

Compared with ARIMA.

Table 4.1 Load Forecasting Performance Comparison for the seen home

Architecture RMSE(kwh) NRMSE MAE(kwh)
ARIMA 0.543 0.102 0.288
SVM 0.527 0.106 0.283
FFANN 0.508 0.103 0.274
Rec + FFANN 0.493 0.087 0.267
RNN+FFANN 0.471 0.086 0.259
DEA+FFANN 0.429 0.078 0.248

68



Table 4.2 Load Forecasting Performance Comparison for the unseen home

Architecture RMSE (kwh) NRMSE MAE(kwh)
ARIMA 0.553 0.108 0.289
SVM 0.528 0.107 0.289
FFANN 0.509 0.104 0.279
Rec + FFANN 0.498 0.095 0.269
RNN+FFANN 0.478 0.089 0.262
DEA+FFANN 0.440 0.086 0.238

4.5 CONCLUSION
This work explores the possibility of employing FFANN combined with a pre-
processing stage of energy disaggregation for households’ STLF with high uncertainty in

the load pattern.

Three energy disaggregation techniques were applied and assessed for a data of two
different houses; DAE, RECTANGLES, and RNN. Seven assessment metrics were utilized
to benchmark the implemented energy disaggregation techniques. These analyses give a
comprehensive comparison of the techniques being assessed. The proposed STLF
methods; RECTANGLES + FFANN, DAE + FFANN, and RNN + FFANN outperform
FFANN, SVM, and ARIMA in all three benchmark metrics. The best way used for energy
disaggregation is denoising autoencoder which affected the output performance of the
STLF at the residential household system level. The proposed Deep learning techniques
used for ED stage are generalized even with data from an unseen home. The best approach

used for energy disaggregation is denoising autoencoder which directly affected the
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performance of the STLF at residential household level. The proposed (DEA + FFANN)
brings 20.37 % reduction in RMSE and NRMSE, 17.48 % reduction of MAE. Compared

with ARIMA.
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Chapter S Precise Short-Term Load Forecasting for Residential Demands
Considering Highly Stochastic Energy Consumption

Demand-side management has a vital role in supporting the demand response in smart
grid infrastructure; the decision making of energy management in the household
applications is significantly affected by the load forecasting accuracy. This work introduces
an innovative methodology to enhance household demand forecasting based on energy
disaggregation for Short Term Load Forecasting. This approach is constructed from Feed-
Forward Artificial Neural Network forecaster and a pre-processing stage of energy
disaggregation. This disaggregation technique extracts the individual appliances’ load
demand profile from the aggregated household load demand to increase the training data
window for the proposed forecaster. These proposed algorithms include two benchmark
disaggregation algorithms; Factorial Hidden Markov Model (FHMM), Combinatorial
Optimization in addition to three adopted Deep Neural Network, long short- term memory
(LSTM), Denoising Autoencoder, and a network which regress start time, end time, and
average power. The proposed load forecasting approach outperformed the currently
available state of the art techniques, namely root mean square error (RMSE), normalized

root mean square error (NRMSE), and mean absolute error (MAE).

5.1 Introduction

As mentioned, the innovations at different power system infrastructure levels facilitate
the integration of new smart grid ideas. However, new architectures of the smart grid add
extra burden on the grid regarding complexity and uncertainty. As a result of the increased

penetration of renewable energy, Electric Vehicles (EVs), and time-varying loads in the
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distribution system, the grid will be vulnerable to unusual, challenging experiences for
utility-customer interactions. Household loads represent a significant percentage of
electrical energy consumption. The households' demand-side response (DSR) enables

active participation of these loads in the grid enhancing power system stability.

Consequently, the forecasting of household energy consumption is crucial for the
household DSR program. Precise short-term load forecasting (STLF) has a significant
effect on the accuracy of the household DSR. However, STLF is challenging at this level
of the grid due to uncertainty and volatility in load consumption originating from customer

behavior, which is too stochastic to predict.

Common techniques such as exponential smoothing, autoregressive integrated moving
average (ARIMA) based time-series analysis, support vector machine (SVM), and feed-
forward artificial neural networks (FFANN) based machine learning have been used in the

literature to achieve good STLF forecasting.

An adopted ARIMA model for a day ahead load forecasting was presented in [148], in
which the forecasting technique is based on grouping the targeted day with similar
meteorological days in historical data. A radial basis function (RBF) neural network was
used for STLF in [149]. An adaptive neural fuzzy inference system (ANFIS) was combined
with an RBF neural network to adjust the forecasting by taking into consideration real-time
electricity prices [150]. A neural network-based predictor for STLF was presented in [151].
The latter uses the load values of the current and previous time steps as inputs to predict
the load value at the subsequent time step. A forecaster for the total load of the Australian

national energy market was based on an ensemble of extreme learning machines (ELMs)
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is suggested in [152]. A committed input choice structure to work with the hybrid
prediction framework using the Bayesian neural network and wavelet transformation was

introduced in [153].

Based on the current state of the art, the procedures used for load forecasting can be
classified into three categories. The first is to evade the uncertainty by
clustering/classification techniques that gather comparable customers, days or weather in
the hope of decreasing the variance of uncertainty within each cluster [154]. However, the
accuracy of this technique is heavily dependent on the amount of available data. The second
category is using the aggregated smart metering data to cancel out the uncertainty.
Therefore, the aggregated load exhibits typically regular patterns and more accessible to
predict. However, the accuracy of this technique is heavily dependent on an aggregated
level of data. The third category is separating the regular pattern from the other component
of load profile such as uncertainty and noise by pre-processing techniques, mostly spectral
analysis such as empirical mode decomposition (EMD) [155], Fourier transforms[156],
and wavelet analysis[157]. These techniques are unsuitable for the household load

forecasting due to the high uncertainty proportion of the load pattern.

All these previous techniques are appropriate for higher grid levels, such as community
or system levels. However, there are few works done in the literature on STLF at the
household level. In [158, 159], a functional time series forecasting approach was presented.
However, it used a daily median absolute error (DMAE) which is not the commonly used
performance metric. Therefore, it is improper for use as a benchmark for preliminary

assessments. Mean absolute percentage error (MAPE) is the standard metric used to assess
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forecaster performance. Recently, a deep artificial neural network (DANN) used in
household load forecasting [158]. The DANN technique used is a factored conditionally
restricted Boltzmann machine. The latter improve performance rather than support vector
machine and artificial neural network. Another deep neural network (DNN) approach
called long short-term memory (LSTM) was used in [160]. Although the high expectation
in the forecasting community, the current state of the art indicates that deep learning is
more prone to over-fitting compared with artificial neural networks [161]. This issue is
expected due to the existence of more parameters and relatively fewer data. For that reason,
another work based on a pooling-based deep recurrent neural network (PDRNN) was
proposed in [162] to tackle the overfitting issue. However, the procedure was an attempt
to tackle the over-fitting issue by increasing the training data window dimension which is
the historical data of the neighbors to the household system under study. The main
drawback here is that the PDRNN method pools the data of the neighboring smart meters
to enlarge the training widow dataset which most probably is unavailable for privacy

concerns.

In this work, an innovative methodology for STLF of household load demand is
developed and employed. This approach is constructed from Feed Forward Artificial
Neural Network (FFANN) and a pre-processing Stage of Energy Disaggregation (SOED)
based on Data Mining Algorithms (DMA). This SOED extracts the individual appliances’
load demand profile from the aggregated household load demand to increase the training
data window for the FFANN forecaster. These DMA include two bench-mark

disaggregation algorithms (Factorial Hidden Markov Model (FHMM), Combinatorial
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Optimization) and three adopted Deep Neural Network (Long Short-Term Memory
(LSTM), Denoising Autoencoder (DAE), and a network which regress start time, end time,
and average power (RECTANGLES)). The proposed load forecasting approach

outperforms the current state of the art techniques such as ARIMA, SVM, and FFANN

regarding RMSE, NRMSE, and MAE.

Load Forecasting
Five ED Algorithms techniques
1-CO T T 1 ; é\?'MMA
I I I | 3
2 FHMM [ T T 3 FFANN
—> $LSM T T 1 4 CO + FFANN >
4 (R I 5 FHMM + FFANN Predicted
Aggregated | RECTANGLES [ T | 6 RNN + FFANN Household
Household demand 5DAE 1 T-RECTANGLES + demand Power
Power Estimated FFANN
(Smart meter Data) appliances demand 8 DEA + FFANN
Power

Figure 5.1 Block diagram for the proposed household load forecasting approach.

5.2 Energy Disaggregation

Energy disaggregation (ED) is a computational approach for predicting the individual
appliance's power demand from a single meter which measures the aggregated power
demand. George Hart starts this research in the mid-1980s [163], [164]. His earliest
research defined a signature taxonomy of features. Nevertheless, his concentration was on
extracting only transitions between steady-states. Consequent Hart's clues, several ED
procedures prepared for low-frequency data (1 Hz or slower) only to extract a minor
number of features. There are numerous instances in the literature of manual feature
extractors regarding the high-frequency sampling at kHz or even MHz. [165], [166]. Hand-

engineer feature extractors, for instance, Difference of Gaussians (DoG) and scale-
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invariant feature transform (SIFT), was the leading method to mine features for image
classification before 2012 [167]. However, in 2012, through the competition of ImageNet
Large Scale Visual Recognition, diverse procedures achieved exceptional performance and
did not use hand-engineered feature detectors. As an alternative, they used a number of
disaggregation algorithms that automatically learned to extract a hierarchy of features from
the raw image. In this paper, we will use five data mining algorithms for ED called CO,
FHMM, DAE, LSTM, and RECTANGLES to extract the power demand profile for
individual appliances from the main aggregated household power demand. Figure 5.1
shows the block diagram of the whole proposed system. The comprehensive illustration of
these algorithms presented later in this section. To use ED to enhance household
forecasting performance, the energy consumption of each household must be available.
Therefore, the dataset from the UK-DALE was used [168]. Which is one of the first
publicly available datasets collected essentially to support research on ED. It has a record
of five houses. In our work, we will focus the study on only two houses. One his recorded
data was available during the training of the ED algorithm. However, the other was not
seen during the training stage of the ED algorithm. Those five ED algorithms were
implemented based on a toolkit called NILMTK [169]. The code is written in Python which

offers a massive set of libraries supporting both machine learning and ED algorithms.

5.2.1 Data Mining Disaggregation algorithms
Five data mining disaggregation algorithms were used in this work. Two bench-mark
disaggregation algorithms, Factorial Hidden Markov Model (FHMM) and Combinatorial

Optimization, were utilized. Moreover, three adapted deep neural network architectures
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have been used for ED; 1) an exceptional form of a recurrent neural network (RNN) called
long short- term memory (LSTM); 2) a network that produces rectangles for the estimated
demand by regression of the start time, end time and average power demand (nicknamed
by RECTANGLES); and 3) denoising autoencoder (DAE). The full illustration of these

algorithms is presented later in this section.

5.2.1.1 Combinatorial Optimization (CO)
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Figure 5.2 Shows the energy disaggregation algorithm output by using the CO technique. (a)
Aggregated power consumption for the home; (b) Dish Washer estimated and Ground truth
power demand; (c) Fridge estimated and Ground truth power demand; (d) Kettle estimated and
Ground truth power demand; (e) Microwave estimated and Ground truth power demand; (f)
Washing machine estimated and Ground truth power demand
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Optimization methods necessitate the presence of appliance signature libraries with all
possible groupings of power demands of the appliances it desires to disaggregate. If we
include the gatherings of all the connected appliances in a house, then this optimization
approach is called brute-force. However, due to memory limitations, as stated in [170].
Brute-force methods are difficult to be applied in an embedded system. Therefore, the load
identification requires the definition of an objective function and its minimization.
Considering the aggregate data x and an appliance set = [ x4, ... ... ... ... .., Xy | , the problem

is formulated as [170].

. - N
min X — —_1 X
1=nsN I n=1%n I, (1)

Combinatorial Optimization is the most critical algorithm in this domain which
minimizes the difference between the sum of the measure aggregate power and predicted
appliance power [171]. Hart, in [172], used this technique. The computational complexity
is 0 (KNT) , where K is the number of appliance states, N the number of appliances and
T the number of times slices used in the implementation. Consequently, the optimization
approaches address mainly disaggregation for the most power-hungry devices. Reference
[173] discusses the two commonly cited disadvantages of this approach which are the
decreasing of accuracy with the number of appliances and level of noise. Figure 5.2 shows
the output result of the CO energy disaggregation algorithm. The figure divided into two-
column. The left-hand side (LHS) column has the analysis for the home whose data was
available during the training of the disaggregation algorithm. The right-hand side (RHS)
column has the analysis for the home whose data was not available during the training of

the disaggregation algorithm. The figure has six rows described as follows: (a) Aggregated
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power consumption for the home; (b) comparison between the estimated and Ground truth
power demand for the Dish Washer; (¢) comparison between the estimated and Ground
truth power demand for the Fridge; (d) comparison between the estimated and Ground truth
power demand for the Kettle; (e) comparison between the estimated and Ground truth
power demand for the Microwave; (f) comparison between the estimated and ground-truth

power demand for the washing machine

5.2.1.2 Factorial Hidden Markov Model (FHMM)

FHMM belongs to the group of Temporal Graphical Models, which is a class of
probabilistic models. Such models have been applied previously to many real-world
problems such as speech recognition. The most direct demonstration of sequence data is
through the use of a Markov chain, which is a sequence of discrete variables. The hidden
Markov model (HMMs) which is a statistical tool controls the state transitions of devices.
Each variable is defined by its real power consumption in addition to other useful
information such as duration of the on and off periods and time of use during the day/week.
Thereby, at an instant of time t of a period T, t € T, the aggregate consumption is X(t) and
needs to be broken down to the number of appliances z{*, where t € T and n € N with N
the number of appliances. The value of each device z{* at any time corresponds to one of
the K states of the trained model of the appliances[170]. The mathematical representation
of an HMM represented by equation 2 through 6 [170]. The behavior of an HMM can be
defined entirely and inferred by three parameters. First, the probability of each state of the

hidden variable at the time t can be represented by the vector m such that
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g = p(z = k), 2)

Second, the transition probabilities from state i at t to state j at t + 1 can be represented

by the matrix A such that,

Ajj = p(Zes1 = jlze = 10), 3)

Third, the emission probabilities for x are described by a statistical function with a

parameter @ which is commonly assumed to be Gaussian distributed such that,
xt | Zt ) ¢ ~ N(Hzt/ TZr)’ (4)

Where @ = {u, 7}, and u, , 7, are the mean and precision of a state’s Gaussian

distribution. Finally, Equations 2, 3, 4 can be used to compute the joint likelihood of an

HMM:

p(x,z|0) = p(zm) HZ:Z p(ze4112¢, A) H?:l p(x¢lze, ), (5)

Where the set of all model parameters which must be found for each appliance during
the training phase is represented by 6 = 1, 4, @. Therefore, when applying an HMM for
Energy Disaggregation, it is needed to tune the 8 parameters for each appliance during the
training phase and afterward, given a sequence of the power signal X to find the optimal
sequence of discrete states z. Their ability to handle daily operation consumption and the
information about the state transition of devices makes them a suitable solution for the
problem. The complexity of the disaggregation using HMMs is O (K2T), where K is the
number of states of all the appliances and T is the number of the time slices, i.e., how many

times the algorithm is required to be applied [170]. As it is shown, the complexity is
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exponential with regard to the number of appliances, while re-training is needed when a

new group of appliances is added [174].

The HMMs were used for appliance load recognition, and it was also shown that they
are useful in the field of ED [175]. Finally, HMMs are used to disaggregate an energy
signal using a generalized appliance model, and as a result, it was possible to extract the
consumption of individual devices without any manual labeling [173]. Nevertheless, the
author uses low-frequency smart meter data because of the lack of high-frequency data and
smart metering infrastructure supporting such high rates. Although the HMM is a powerful
technique, the method for the inference of hidden states is often affected by local minima
[176]. To overcome this limitation, variants of HMMs are used such as the Factorial HMM
(FHMM). The concept is that the output is an additive function of all the hidden states. In
the model, each observation is dependent upon multiple unknown variables [177].
Likewise, the joint likelihood of an FHMM as stated in [31] is computed by,

p(x®M), z]0) =
(6)

| P(Zt(n)lﬂ) t=2[Th=1 p (Zt(?1|zt(n)ﬂ4) t=1 p(x Zt(l:N), ?),

Where 1: N symbolizes a sequence of appliances 1, ... N. However, the computational
complexity of both learning and disaggregating is more significant for FHMMs compared
to HMMs. This is due to the conditional dependence of the Markov chains. Figure 5.3.
Shows the output result of the FHMM energy disaggregation algorithm. The figure divided
into two-column. The LHS column has the analysis for the home whose data was available

during the training of the disaggregation algorithm.
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Figure 5.3 Shows the energy disaggregation algorithm output by using the FHMM
technique. (a) Aggregated power consumption for the home; (b) Dish Washer estimated and
Ground truth power demand; (¢) Fridge estimated and Ground truth power demand; (d) Kettle
estimated and Ground truth power demand; (e) Microwave estimated and Ground truth power
demand; (f) Washing machine estimated and Ground truth power demand

The right-hand side (RHS column) has the analysis for the home whose data was not

available during the training of the disaggregation algorithm. The figure has six rows
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described as follows: (a) Aggregated power consumption for the home; (b) comparison
between the estimated and Ground truth power demand for the Dish Washer; (c)
comparison between the estimated and ground-truth power demand for the fridge; (d)
comparison between the estimated and ground-truth power demand for the kettle; (e)
comparison between the estimated and Ground truth power demand for th microwave; (f)
comparison between the estimated and Ground truth power demand for the washing

machine.

5.2.1.3 Denoising Autoencoder (DAE)

It is an autoencoder, which attempts to reconstruct a clean target from noisy input. DAEs
are typically trained by artificially corrupting a signal before it goes into the net's input,
and using th Clean signal as the net's target. In ED, we consider corruption as being the
power demand from the other appliances. Therefore, we do not add noise artificially.
Instead, we use the aggregate power demand as the (noisy) input to the net and ask the net
to reconstruct the clean power demand of the target appliance. Figure 5. 4 shows the output
result of the DAE energy disaggregation algorithm. The figure divided into two-column.
The LHS column has the analysis for the home whose data was available during the training
of the disaggregation algorithm. The right-hand side (RHS column) has the analysis for the
home whose data was not available during the training of the disaggregation algorithm.
The figure has six rows described as follows: (a) aggregated power consumption for the
home; (b) comparison between the estimated and ground-truth power demand for the
dishwasher; (¢) comparison between the estimated and ground-truth power demand for the

fridge; (d) comparison between the estimated and ground-truth power demand for the
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kettle; (e) comparison between the estimated and ground-truth power demand for the
microwave; (f) comparison between the estimated and ground-truth power demand for the

washing machine.
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Figure 5.4 Shows the energy disaggregation algorithm output by using the DAE technique.
(a) Aggregated power consumption for the home; (b) Dish Washer estimated and Ground truth
power demand; (c) Fridge estimated and Ground truth power demand; (d) Kettle estimated and
Ground truth power demand; (¢) Microwave estimated and Ground truth power demand; (f)
Washing machine estimated and Ground truth power demand
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5.2.1.4 Regress start time, end time, and average power (RECTANGLES)
This algorithm draws a rectangle around each appliance activation in the aggregate data
where the left side of the rectangle is the start time, the right side is the end time, and the

height is the average power demand of the appliance between the start and end times
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Figure 5.5 Shows the energy disaggregation algorithm output by using the DAE technique.
(a) Aggregated power consumption for the home; (b) Dish Washer estimated and Ground truth
power demand; (c) Fridge estimated and Ground truth power demand; (d) Kettle estimated and
Ground truth power demand; (¢) Microwave estimated and Ground truth power demand; (f)
Washing machine estimated and Ground truth power demand

85



Figure 5.5 shows the output result of the DAE energy disaggregation algorithm. The
figure divided into two-column. The LHS column has the analysis for the home that its
data was available during the training of the disaggregation algorithm. The right-hand side
(RHS column) has the analysis for the home whose data was not available during the
training of the disaggregation algorithm. The figure has six rows described as follows: (a)
aggregated power consumption for the home; (b) comparison between the estimated and
ground-truth power demand for the dishwasher; (c) comparison between the estimated and
ground-truth power demand for the fridge; (d) comparison between the estimated and
ground-truth power demand for the kettle; (e) comparison between the estimated and
ground-truth power demand for the microwave; (f) comparison between the estimated and

ground-truth power demand for the washing machine.

5.2.1.5 Recurrent Neural Network (RNN or LSTM)

A recurrent neural network (RNN) is a type of artificial neural network where relations
between units form a directed graph along a sequence. This allows it to exhibit dynamic
temporal behavior in a time sequence. Different from feedforward neural networks, RNNs
can use their internal memory to process sequences of inputs. Figure 5.6 shows the output
result of the LSTM energy disaggregation algorithm. The figure is divided into two
columns. The LHS column has the analysis for the home whose data was available during
the training of the disaggregation algorithm. The right-hand side (RHS column) has the

analysis for the home whose data was not available during the training of the
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Figure 5.6 Shows the energy disaggregation algorithm output by using RNN or LSTM
technique. (a) Aggregated power consumption for the home; (b) Dish Washer estimated and
Ground truth power demand; (¢) Fridge estimated and Ground truth power demand; (d) Kettle
estimated and Ground truth power demand; (e) Microwave estimated and Ground truth power
demand; (f) Washing machine estimated and Ground truth power demand

87



disaggregation algorithm. The figure has six rows described as follows: (a) aggregated
power consumption for the home; (b) comparison between the estimated and ground-truth
power demand for the dishwasher; (¢) comparison between the estimated and ground-truth
power demand for the fridge; (d) comparison between the estimated and ground-truth
power demand for the kettle; (¢) comparison between the estimated and ground-truth power
demand for the microwave; (f) comparison between the estimated and ground-truth power

demand for the washing machine.

5.3  Disaggregation stage analysis
To identify the best disaggregation algorithm was used in the NILM stage. Seven common

classification metrics represented through equation 7-23:

TP = number of true positive (7)
FP = number of false positive (8)
FP = number of false negative 9)
P = number of positive in the ground truth (10)
N = number of negative in the ground truth (11)
recall = TPZPFN (12)
precision = P (13)
F = 5 Prcision x recall (14)

precision + recall
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TP+TN (15)
accuracy = m

E = total actual energy (16)
E = total actual energy (17)
Vs D - appliance i actual power at time t (18)
99 = appliance i estimated power at time t (19)
y: = aggregated actual power at time t (20)
the relative error in total energy = % @D
mean absolute error = 1/ T Z{=1|}A’t -Vt | (22)
recall = —— (23)

TP+FN

Figure. 5.7 shows the comparison between the disaggregation analyses for the home, which
was seen during training. Figure.6.8 shows the comparison between the disaggregation
analyses for the home that was unseen during training. The denoising autoencoder and
RECTANGLES outperform LSTM, FHMM, and CO in most of the metrics throughout the
five appliances. Figure 5.7 and Figure 5.8 are divided into five columns and seven rows.
The five-column represent five appliances labeled from the left as follows: Dish Washer;
Fridge; Kettle; Microwave; Washing machine. The seven rows labeled from upper to lower
as follows: F1 score Equation 14; Precision score Equation 13; Recall score Equation 12;

Accuracy score Equation 15; Relative error in total energy Equation 21; Proportion of total
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energy correctly assigned Equation 23; Mean absolute error Equation 22. Therefore, the
result at position (1, 1) represents the F1 score for the Dishwasher with five different data

mining energy disaggregation algorithms. These five algorithms were the legend at the

footer of the figures.

Dish Waching
Washer Fridge Hettle Microwave iy
1 L] L] ¥
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sCoMne
Accuracy
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energy
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Figure 5.7 Energy disaggregation performance analysis for home seen during training
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Figure 5.8 Energy disaggregation performance analysis for home unseen during training
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5.4 The implemented Short-Term Load Forecasting

A feed-forward Neural Network of the same design as used in [179] was employed,
which is with eleven input nodes and one output node. One input for the current hour power
demand, one for an hour before, one for two hours before, one for a day before, one for the
23 hours before, one for 22 hours before, and five inputs for the five predicted appliances
from the current power profile. The output node is for the expected hour ahead. In many
ways, this test network presents a challenging forecasting case and these are all drawn from

the real UK dataset.

5.5 Simulation Results
Figure 5.9 and Figure 5.10 demonstrate the actual load and the forecasted load by
different methods for the home seen during the ED training and unseen during ED training,
respectively. In order to assess the performance of the proposed method in conducting STLF
for residential households, three widely used metrics were employed, including root mean
squared error (RMSE), normalized root mean squared error, and mean absolute error. The

three performance metrics are introduced in equations 24-26

I Jzﬁ_l(yt -

N (24)
RMSE
NRMSE = —8—— (25)
Ymax — Ymin
T |y —
MAE = Zt=1|Yt Yt (26)

N
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Figure 5.9 The actual and forecasted load by different methods for the home seen during the
NILM training

Table 5.1 Load Forecasting Performance Comparison for the seen home

Architecture RMSE(kwh) NRMSE MAE(kwh)
ARIMA 0.3831 0.1906 0.2935
SVM 0.1369 0.0749 0.1145
FFANN 0.1145 0.0627 0.0942
CO + FFANN 0.0877 0.0480 0.0641
FHMM + FFANN 0.0580 0.0318 0.0457
RNN + FFANN 0.0382 0.0209 0.2880
DAE + FFANN 0.0309 0.0169 0.0228
REC + FFANN 0.0291 0.0159 0.0221
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Tiivoai:
Figure 5.10 The actual and forecasted load by a different method for the home was unseen
during the ED training

Table 5.2 Load Forecasting Performance Comparison for the unseen home

Architecture RMSE(kwh) NRMSE MAE(kwh)
ARIMA 0.4280 0.1854 0.3506
SVM 0.1665 0.0722 0.1359
FFANN 0.1397 0.0605 0.1112
CO + FFANN 0.1145 0.0496 0.0770
FHMM + FFANN 0.0769 0.0333 0.0558
RNN + FFANN 0.0507 0.0219 0.0354
DAE + FFANN 0.0432 0.0187 0.0287
REC + FFANN 0.0372 0.0161 0.0268
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Table 5.1 and Table 5.2 compare the performance of the proposed approach regarding
RMSE, NRMSE, and MAE with the current state of the art techniques, i.e., AIRMA, SVM,
and FFANN. As illustrated, the five proposed approaches; DAE + FFANN, REC +
FFANN, RNN + FFANN, FHMM + FFANN, and CO + FFANN outperform FFANN,
SVM, and ARIMA in all metrics used. In the case of Table 5.2 that should be the worst
because, the data was unseen during the energy disaggregation stage. The proposed (REC
+ FFANN) brings a 91.13 % reduction in RMSE and NRMSE, 92.36 % reduction of MAE

as compared with ARIMA.

5.6 Conclusion

This paper explored the potential of employing a pre-processing stage of NILM
techniques combined with FFANN for household STLF under high uncertainty and
volatility. As illustrated, the three proposed approaches; Rec + FFANN, RNN + FFANN,
and DAE + FFANN, outperform FFANN, SVM, and ARIMA in all metrics used. The
proposed deep learning techniques used for NILM stage were generalized even with data
from unseen home. The best approach used for energy disaggregation is denoising
autoencoder that directly affected the performance of the STLF at the residential household
level. The proposed (DEA + FFANN) brings 91.13 % reduction in RMSE and NRMSE,

92.36 % reduction of MAE as compared to ARIMA.
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Chapter 6  Power Quality Enhancement of Low Voltage Distribution Grid

A massive evolution of the residential energy consumption sector has emerged lately.
It added more convenience for the customer but with a more added burden on the grid. For
instance, the integration of renewable distributed energy sources and the modern expansion
usage of the essential DC electrical equipment may cause severe power quality problems.
For example, the integration of rooftop photovoltaic (PV) may cause unbalance and voltage
fluctuation, which can add constraints for further PV integrations to the network and the
deployment of DC native loads with its nonlinear behavior increase the harmonics to the
network. This work demonstrates a smart integration of a DC Microgrid to Neighborhood
Low Voltage Distribution Network (NLVDN). The DC Microgrid connected to the
NLVDN through a three-phase voltage source inverter (VSI). In which, the VSI works as
Distribution Static Compensator (DSTATCOM), and the DC link provides an integration
point for the PV and the DC native loads. The proposed technique is able to compensate
for unbalance, reactive power and harmonics demanded by three-phase and non-linear
loads and unbalanced connected to the distribution side, leading to the power quality
enhancement. Besides, it can prevent the source from getting overloaded by providing

active power support to the load.

6.1 Introduction
The predicted massive utilization of photovoltaic (PV) systems in the residential sector

is justified for several reasons. The efficiency of the PVs is improving, the cost of
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Figure 6.1 IEEE 13-bus test feeder system with a smart load

manufacturing is declining, and the incentives provided by the utility to decrease the utility
bills are a fact. Also, it is expected that the DC loads usage is increasing in the distribution
network. Such as the usage of new DC appliances and equipment in the residential sector
(consumer electronics, LED lighting, and compact fluorescent lamps) [180]. Despite the
benefits of the innovations at source and demand sectors, many power quality problems
are facing the distribution network against all these innovations. For example, the
integration of rooftop PVs may cause severe voltage fluctuations and unbalance due to the
uncertainty and the lake of availability of the irradiance [181]-[184]. Also, the increased

usage of DC Loads adds more harmonics to the distribution network [185], [186]. That is
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because all individual DC load needs an individual rectifier to facilitate the connection of
the equipment to the current AC network and provide power factor correction to comply

with the utility policy [187], [188].

Moreover, the expedite movement toward the usage of a sensitive component in
residential, commercial, industrial, traction applications such as refrigerators, televisions,
computers, switched-mode power supplies add nonlinearly, and unbalanced loads to the
distribution network [189]. Degrading the power quality of the power system network
wears out the network component, increases the probability of system shutdown, and
increases the maintenance disbursal [190 - 192]. Consequently, enhancing the power
quality of the electric power network is a critical factor in the process of power generation

and delivery.

Consequently, this work proposes a smart integration of a DC Microgrid to
Neighborhood Low Voltage Distribution Network (NLVDN), as depicted in Figure .6.1.
The DC Microgrid connected to the NLVDN through a three-phase voltage source inverter
(VSI). In which, the VSI works as Distribution Static Compensator (DSTATCOM), and
the DC link provides an integration point for the PV and the DC native loads. The DC
Microgrid composed of a Photovoltaic (PV) source and DC loads connected to the DC

side, DC link capacitor bank, and three-phase VSI to integrate to the NLVDV.

The electrical regulation standards in distribution networks such as power factor and
harmonics levels are applied to all AC loads connected to the current AC network. Some
of these regulations define the interconnection requirement of the distributed generation

(DG) units in low-voltage distribution systems [193]-[195]. Others determine the
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interconnection regulation for electric loads, such as home appliances [196]-[198]. The
main concern for utility companies is the massive utilization of loads in current homes that
do not comply with the standard regulation and degrade the power quality of the power

system network [199].

The IEEE 1547 is one of the power quality standards, which define the harmonics and
total harmonic distortion (THD) levels. Several works introduce different ways to mitigate
harmonic components and compensate for reactive current, negative harmonics. Some use
the injection of negative reactive current to the power network to reduce the harmonics and
provide power factor correction [200]-[202]. Another approach allows the simultaneous
compensation for the harmonics and reactive power issues called Active Power Filter
(APF). Besides, it can provide compensation for the system load unbalance and
compensate for voltage fluctuations at the point of common coupling (PCC). The different
topology of APF, such as series and shunt. The performance of the APF is depended on the
accuracy of selecting a suitable method to extract undesired current. The Synchronous
Reference Frame (SRF) method is used in three-phase balanced systems [204]-[205].
Another effort work based on instantaneous power theory in three phases, the unbalanced
system [206]-[209]. However, the previous approach requires extra computation to process
the three phases current and the voltage measured, which affect the cost of implementation.
In this paper, the smart integration of a DC Microgrid to Neighbourhood Low Voltage
Distribution Network (NLVDN) was demonstrated. The DC Microgrid connected to the
NLVDN through a three-phase voltage source inverter (VSI). In which, the VSI works as

Distribution Static Compensator (DSTATCOM), and the DC link provides an integration
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point for the PV and the DC native loads. The proposed technique is capable of
compensating reactive power, unbalance and harmonics demanded by three-phase non-
linear loads and unbalanced connected to the distribution side, improves the power quality.
Besides, it can prevent the source from getting overloaded by providing active power

support to the load.

The work is arranged as follows: In Section 2, a description of the system under study
and the suggested control technique is demonstrated. In Section 3, simulation results are
presented and inquired about validating the proposed technique. In section 4, experimental
results are presented to evidence the validation of the controller’s execution

experimentally. Finally, in Section 5, the conclusions of the work contribution are listed.

6.2 Proposed system description and the control technique

6.2.1 The proposed system description

In order to evaluate the effect of a smart load on the distribution system, the smart load
is connected to the IEEE 13-bus test feeder system. The test system is modified to include
the smart load. Figure 6.1 shows the standard IEEE system under study, and the smart load
is connected at bus 675. The network bus 632, 671, 692, and 675 are renamed to bus Z, M,
Y, and X, respectively. The effect of imposing the smart load on the distribution system is
studied on the pass from bus Z to bus L. The smart load contains a non-linear load, which
is connected directly on bus L. The PV source and the DC load are connected to grid via a
coupling converter. On the one hand, the converter works to harvest the PV energy and

drive the DC load. On the other hand, the proposed control system provides ancillary
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service and ensures the power quality at the point of the common coupling, which

positively impacts the distribution grid.
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Figure 6.2 A block diagram for the proposed control technique

6.2.2 The control technique

The main functions of the control technique are canceling the harmonics caused by the
non-linear loads, compensating for the load unbalance caused due to the existence of single
and three-phase powered loads that are arbitrarily distributed, and act as power factor
corrector (PFC) at PCC. The proposed algorithm is based on a modified version from
vector-decoupled control. In which the instantaneous three phases current measured and

transformed from ABC to DQ reference frame. This revised version of the vector decouples
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control technique capable of dealing with unbalanced and balanced systems. A block

diagram depicting the control algorithm is shown in Figure 6.2.

This controller is based on the park’s transformation. In which the three-phase current
is converted to direct and quadrature current ild, and ilq respectively. This calculated
current ild is analyzed. The analysis result gives a DC value representing the fundamental
active component, and AC value representing the harmonic components. Unlike the vector
decouple control method, which uses the high pass filter to isolate the AC component from
ild. The proposed modified vector decouple control method uses a low-pass filter with a
cut-off frequency of 75 Hz. The DC component of ild is obtained by passing ild through
the low pass filter. The low pass filter output represents the magnitude of the fundamental
active current component existing in the load current. To regulate the DC bus voltage, a
power balance technique used to control the power delivered and submitted to/from the DC
link. By maintaining the power balance through the DC Microgrid, the amount of power
controlled by the grid tie converter needs to be obtained, as given by equation (1), which
represents the difference of power between the PV power and the local DC load power.
The active power component controlled as given in equation (2). Since the synchronous
reference frame d-axis is aligned with the three-phase voltage angle, Vq will be equal to

zero. Then, the 14 reference is calculated from equation (3).

Pcon = Ppv — Pldc (1)
3
Pconzz(Vd*Id+Vq*1q) (2)
2 Pcon
Id = v (3)
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In which a PI controller will preserve this balance and provide a direct current
component to represent the voltage regulator's direct current share. The previous
component is added to the calculated ild (low pass filter output). Then, by using inverse
Park’s transform, the three-phase sinusoidal current reference is obtained. The quadrature
current component ilq and zero current component il0 were set to zero since the target is
to capture the active fundamental component only. Consequently, the obtained three-phase
sinusoidal current reference is subtracted from the load current. The resultant reference
current represents all harmonics and reactive components associated with the load current
plus a fundamental component necessary for power balancing. The obtained three-phase
sinusoidal reference is being subtracted from the load current to obtain the final current
reference controls the injected current to the AC side. Therefore, the injected current will
contain a component to balance the power flow and component to counteract the harmonics
and unbalance values at the original non-linear load. Which mean pure current from the

utility side at the PCC. Also, it maintains the load balance at bus L

6.3 Results and Discussion

6.3.1 Case study A

In this case study, the smart load control system is applied to a t=1.5 sec. Moreover, the
following figures depict the comparison between the IEEE 13-bus system before and after
the smart load application. To show the improved performance after applying the smart
load, Figure 6.3 shows the effect of the smart load on active power, reactive power, and

voltage profiles at bus X, M, and Z. The results show that the active power capability for
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the whole pass of the smart load is increased. In addition, the reactive power at the same

pass is reduced, which improves the power factor and the voltage profile at these points.
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Figure 6.3 A comparison between the active, reactive power, and the PU voltage at buses X,
M, and Z, respectively
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Figure 6.4 A comparison between three-phase current (RMS) at buses X, M, and Z,
respectively, respectively

Correspondingly, as shown in Figure 6.4, the unbalanced current ratio is diminished
through the distribution bus pass, especially at point X. To clearly show the effect of the
smart load application, the instantaneous values of three-phase voltages, load currents,

coupling converter currents, and bus L injected currents are illustrated in Figure 6.5. The
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figure demonstrates that the non-linear load and the converter compensation current to

balance the bus L (PCC) three-phase current.
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Figure 6.5 The three-phase voltage, load current, converter current, and bus current
respectively at PCC
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Figure 6.6 Phasor Diagram for the voltage and current at PCC, (a) before the proposed
technique (b) after the proposed technique

Analytically, Figure 6.6 illustrates the harmonic analysis and vector diagram for five
cycles before and after the controller compensation effect. In Figure 6.6 (a), the total
harmonic distortion recorded 6.7%. In addition, the current vector is not only unbalanced
but also is shifted away from the voltage angle. On the other hand, Figure 6.6 (b) shows
the effect of the smart load control system, the total harmonic distortion is reduced to 4.78%

with balanced current, and the power factor is improved toward unity.

6.3.2 Case study B
In this case study, the controller will be examined to verify the capability for providing
bi-directional power flow operation in addition to the power quality solving solutions. The

simulation time is scaled to 24 sec to represent a daily operation of 24 hours.
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Figure 6.7 Simulation result: (a) DC link bus voltage (V), (b) output power of PV system
(Watt), (c) Local DC load power (Watt), (d) The grid-tie converter power (Watt)

The controller examined under severe, bidirectional loading conditions to prove its
capability to deal with such a load pattern. The DC voltage of the DC link bus is shown in
Figure 6.7(a). It is noticed that the voltage is consistent at a constant value (380 V) during
the whole running operation. Even at the load transition instant, the bus voltage ripple
fluctuates between 370 V to 390 V. this ripple does not exceed the 5% ratio allowed by the
standards. The PV output power profile is shown in Figure 6.7 (b). The local DC load
power of the Microgrid shown in Figure 6.7 (¢). The power for the grid tie converter shown
in Figure 6.7 (d). It can be noticed that the grid tie power between 0 to 7 sec and 17 to 24

sec is positive, which indicates that the converter power flows from the AC grid to the DC
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microgrid (the converter is working in rectifier mode). The reason is: In these intervals, the
PV power is not sufficient to feed the local DC load, the converter extracts power from the
AC grid to supply the deficit in the DC Microgrid local load. However, between (7- 17
sec), the grid tie power is negative, which indicates that the converter power flows from
DC microgrid to the AC grid (the converter is working in the inverter mode). The reason

is: In these intervals, the PV output power is exceeding the local DC power, so the inverter
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Figure 6.8 Simulation result: (a) AC load current, (b) Zoom in the AC load current (¢) Zoom
in for AC load current (d) Zoom in for AC supply current (¢) Zoom in for AC supply current (f)
AC supply current
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extracts power from the DC Microgrid to support a local AC load on the AC utility side.
Besides, the grid tie converter control proves its capability to control the power flow
between both sides; it is also providing power quality solutions as illustrated in the

description of the next figures

The three-phase AC load and source currents are shown in Figure 6.8(a) and Figure
6.8(f), respectively. Figure 6.8(a) shows the load current is an unbalanced, three-phase
current, which is one of the problems that the controller has to tackle. Figure 6.8(b) and
Figure 6.8(c) gives a close view of Figure 6.8(a) and shows the load current at two different
intervals to demonstrate the performance of the system in both rectifier/inverter modes. It
is noticed that the current waveforms suffer from noticeable distortion due to the existence
of a nonlinear load. It can be seen in Figure 6.8(d) and Figure 6.8(e) that the three phases
are balanced and the current waveforms are uniform. Which means the ability of the
controller to mitigate harmonics and compensates for unbalances under both modes of

operation

6.4 Hardware Implementation & Experimental Results

To investigate the feasibility of the proposed control technique, a hardware setup has
been established as depicted in Figure 6.9. The DC building connected at the PCC through
DC/AC converter. It has been implemented in the power system test-bed (Energy System
Research Laboratory, Florida International University) [208]. It consists of AC and DC
zones connected through an AC-DC converter. A DC bus represents the DC zone, where
its voltage was set to 380 V, a DC load emulator to represent load appliances connected to

the DC side, and a PV emulator to represent a rooftop PV source.
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Figure 6.9 Experimental setup block diagram

It is interfaced with the DC bus through a DC-DC boost converter to extract maximum
power generated by the PV system. The mathematical modeling of the PV system and the
converter MPPT controller are built within the MATLAB/SIMULINK environment and
executed with the DSpace 1104 real-time interface. The DC load emulator comprises of a
combination of eight resistors with different values (1 Q, 5 Q, 10 Q, 20 Q, 30 Q, 40 Q, 50
Q, and 60 Q) in a particular arrangement [210]. In addition to these load resistor
combinations, eight controlled switches are used to change the connection topology. Which
means, changing the values of the equivalent load resistors to obtain different load patterns.

The central concept of operation is based on sending control signals to the switches to
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change their states (on/off). By changing their states, the equivalent load resistance is
changing. The control commands are generated from a load profile generator developed in
the LabVIEW environment. The control commands are transferred through the PCI 6025E
card to a circuit. This circuit is based on TEXAS INSTRUMENT inverting buffer module
sn7406n. This module contains six inverters with open collector output. The RMS values
for the voltage in the AC zone is set to 208 V. The AC bus is connected to the utility grid
at PCC. Also, different load models were designed to represent the AC load pattern [211].
One of the passive loads built has a switching capacity of 10 levels parallel of resistive
loads from 300-W to 3-kW power in steps of 300-W at a nominal voltage that can be

switched to emulate various load patterns.

The parameters of the main components of the hardware setup are given in Table 6.1.
The experimental results are shown in Figure 6.8; they show the capability of the proposed
algorithm to compensate for the unbalance and nonlinearity of the load current in different
modes of operation. This figure is divided into four regions separated by the red-dashed
line. These four regions represent three different modes of operation. In mode one, (interval
between 0-28 sec), the converter is working as an APF for the AC load but without any

exchange in power between AC and DC zones.

In mode two, (interval between 28-88 sec and 188-278 sec), the converter works as an
APF and rectifier in which the power is transferred from the AC side to the DC side. In
mode three, (interval between 88-188 sec), the converter works as an APF and inverter in

which the power is transferred from the DC side to the AC side.
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Table 6.1 the experimental setup Parameters

Component Parameter Specification
power rating 2500 W
IGBT module SKM100GAL12T4
Boost Converter switching frequency 5 kHz
LBC, RLBC 6 mH, 0.21Q
power rating 1800 W
AC /%girgggsgir IGBT module SK45GB063
switching frequency 10.89 kHz
AC Filter L AF, RLAF 12 mH, 0.31 Q

The DC voltage of the main DC bus is shown in Figure 6.10(a). It is noticed that the
voltage is stable during the whole operation at 380 V. The ripple in the voltage fluctuates
in an acceptable range between 370 V to 390 V at the instant of load transition. This small
fluctuation in the DC bus voltage is compatible with the standards, as it does not exceed
5%. The grid tie converter power is shown in Figure 6.10(b). Which explains the bi-
directional power flow between the AC grid and the DC microgrid. It can be noticed that
the grid tie power between 30 to 100 sec and 188 to 278 sec is positive, which indicates
that the converter power flows from the AC grid to the DC microgrid (the converter is
working in rectifier mode). However, between (100-188 sec), the grid tie power is negative,
which indicates that the converter power flows from DC Microgrid to the AC grid (the

converter is working in the inverter mode).

In response, the converter control verified its capability to control the bidirectional power
flow between the DC building and the AC grid. The three-phase AC load and source

currents are shown in Fig. 6.10(c) and Fig. 6.10(j), respectively. Fig. 6.10(d), Fig. 6.10(e)
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and Fig. 6.10(f) give a close view of Fig. 6.10(c) at modes one, two, and three, respectively.
There is noticeable distortion in the current waveforms to the existence of nonlinear loads.
Fig. 6.10(g), Fig. 6.10(h) and Fig. 6.10(i) gives a close view of Fig. 6.10(j) at modes one,
two, and three, respectively. This shows the controller's capability to mitigate the

harmonics and compensate for unbalances under all modes of operation.
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Figure 6.10 (a) DC link bus voltage (V), (b) the output power of PV system (Watt), (c) AC
load current, (d) Zoom in for AC load current (e) Zoom in for AC load current (f) Zoom in for
AC load current (g) Zoom in for AC supply current (h) Zoom in for AC supply current (i) Zoom
in for AC supply current (j) AC supply current
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Figure 6.11 (a) Phase a Voltage (V) and load current, (b) Zoom in between (25.03-25.1) sec,
(c) Zoom in between (150.03-150.1) sec, (d) Zoom in between (200.03-200.1) sec, (¢) Zoom in
for between (25.03-25.1) sec, (f) Zoom in between (150.03-150.1) sec, (g) Zoom in between
(200.03-200.1) (h) Phase a Voltage (V) and phase a supply current.
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As is seen in Fig. 6.10(g), Fig. 6.10(h) and Fig. 6.10(i), the three-phase currents at the
source side are balanced. This indicates that the grid tie converter’s controller succeeds to
cancel out power quality issues (distortion and imbalance) from the source side. In order
to validate the controller capability to improve the power factor, Fig. 6.11 is shown. Fig.
6.11(a) shows the phase a’s voltage versus phase a’s the load current. Fig. 6.11(h) shows
the phase a voltage versus phase a supply current. Fig. 6.11(b), Fig. 6.11(c) and Fig.
6.11(d) gives a close view of Fig. 6.11(a) at modes one, two, and three, respectively. It is
noticed that the current waveform is out of phase and lagging the voltage waveform, which
means lag PF. Fig. 6.11(e), Fig. 6.11(f) and Fig. 6.11(g) gives a close view of Fig. 6.11(h)
at modes one, two, and three, respectively. It can be seen that the current waveform is in
phase with the voltage waveform, which means unity PF. Thus, the proposed control

algorithm id succeeds to correct the power factor for the system.

6.5 Conclusion

In this paper, a smart control technique for DC microgrid’s grid-tie converter is
proposed. It offers a solution for the near-future distribution network in a smart grid. It
offers a power quality enhancement to the distribution network in the neighborhood. The
controller is based on a modified vector decoupling control. This control technique enables
the microgrid’s grid-tie converter to act as DSTATCOM to maintain the power quality at
the bus of connection in the best condition. By counteracting the unbalance and harmonics

problems with the help of the smart integration of microgrid.

Moreover, the controller provides harmonic mitigation and power factor correction at

the PCC. The controller is verified in MATLAB/SIMULINK for simulation purposes. The
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developed controller is then tested experimentally. Different loading conditions are
simulated to prove the effectiveness of the system. Based on the simulation and the
experimental results, it can be deduced that the compensation for reactive power and
harmonics has been achieved effectively. The source current is balanced, sinusoidal,
distortion-free and with improved power factor. The %THD has reduced significantly after

compensation.
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Chapter 7  An Optimal Energy Management System for Real-Time Operation of

Multiagent-Based Microgrids

The real-time operation of the energy management system (RT-EMS) is one of the vital
functions of Microgrids (MG). In this context, the reliability and smooth operation should
be maintained in real-time regardless of load and generation variations and without losing
the optimum operation cost. This work presents a design and implementation of an RT-
EMS based on Multiagent system (MAS) and the fast converging T-Cell algorithm to
minimize the MG operational cost and maximize the real-time response in grid-connected
MG. The RT-EMS has the main function to ensure the energy dispatch between the
distributed generation (DG) units that consist of this work on a wind generator, solar
energy, energy storage units, controllable loads, and the main grid. A modular multi-agent
platform is proposed to implement the RT-EMS. The MAS has features such as peer-to-
peer communication capability, a fault-tolerance structure, and high flexibility, which
make it convenient for the MG context. Each component of the MG has its managing agent.
While the MG optimizer (MGO) is the agent responsible for running the optimization and
ensuring the seamless operation of the MG in real-time, the MG supervisor (MGS) is the
agent that intercepts sudden high load variations and computes the new optimum operating
point. In addition, the proposed RT-EMS develops integration of the MAS platform with
the Data Distribution Service (DDS) as a middleware to communicate with the physical
units. In this work, the proposed algorithm minimizes the cost function of the MG as well

as maximizes the use of renewable energy generation; then, it assigns the power reference
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to each DG of the MG. The total time delay of the optimization and the communication
between the EMS components were reduced. To verify the performance of our proposed
system, an experimental validation in an MG testbed was conducted. Results show the
reliability and effectiveness of the proposed multiagent based RT-EMS. Various scenarios
were tested, such as regular operation as well as sudden load variation. The optimum values
were obtained faster in terms of computation time as compared to existing techniques. The
latency from the proposed system was 43% faster than other heuristic or deterministic
methods in the literature. This significant improvement makes this proposed system more

competitive for RT applications.

7.1 Introduction

Technology has shaped our modern life in many aspects: starting with smart TV,
passing by smartphones, and ending by Smart Grid. The power system, which is
conventionally structured as a generation, transmission, and distribution, is reshaped as an
agglomeration of Microgrids (MGs). The idea behind such a new structure is the increasing
distributed energy resource (DER) mainly renewable energy that has been installed in the
low voltage (LV) networks. Injecting power into the distribution power system is a new
phenomenon that must be dealt with. This is where smart cyber systems interfere.
Information technologies have been integrated with the power system enabling,
consequently, the smart control of DG and make it possible for the MG to operable
autonomously without being connected to the grid. Besides, such a structure favorites the
interaction of the customer to become an active player in the system and control its load

depending on the distribution network operator.
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The information system responsible for the control and economic optimization of MG
is known as the energy management system (EMS). The EMS comprises three parts. The
primary, secondary, and tertiary control. More details on the primary, the secondary, could
be found in [212, 213]. This work focuses on tertiary control. One of the most crucial tasks
of a real-time EMS in grid-connected MG is to satisfy the minimum total operation cost
while meeting the energy balance between different DER, storage units, controllable loads,
and the power exchanged with the primary grid under their specific constraints. This is
called in the literature review as the economic dispatch problem or the economic load
dispatch problem. To solve this issue, several optimization methods have been used in the
past decades. All of them can be categorized into two main categories: Classical and

evolutionary algorithms.

In the conventional power system, the problem is modeled as a quadratic cost function,
which is solved by classical methods such as the Lagrange multiplier method, base point
participation factor, lambda iteration, Newton’s method, gradient method, mixed-integer
linear programming, and linear programming [214]. Most of the previous works presented
a power dispatch of thermal generators, which makes the cost function considered not
suitable for MG optimization [215, 216]. Besides, some of those used technics suffer from
some limitations such as the assumption that the incremental cost curves of the generation
units are monotonically increasing piecewise linear functions and the high dependency on
the specific mathematical model. Even if dynamic programming could be used to solve the

economic dispatch, it presents a complex solution that is not appropriate for real-time
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applications [217]. Furthermore, it is not possible to apply such methods in real-time,

specially with an MG containing a large number of components.

In this respect, evolutionary algorithms were introduced to overcome those limitations.
The heuristic evolutionary algorithms are inspired by the natural and social behavior of
animals and organisms [214]. For instance, genetic algorithm, improved genetic algorithm
was based on genes behavior, while evolutionary programming, ant colony metaheuristic,
artificial bee colony, particle swarm optimization, and artificial neural network are based
on swarm behavior of insects and micro-organisms. However, even if some of these
methods present competitive results, still some of them suffer from the curse of local
optimality in some cases [218]. The literature review reveals that most of the previous work
was considering a day ahead optimization and not considering the real-time constraint
[219]. More recent works present the real-time operation of energy management in MG
[220, 221]. However, some of the work was based on simulations and did not experiment
with the RT operation in the real testbed, while other work did not consider the point of a
single failure of the system. An RT framework for EMS of MG using MAS was considered

in [222], however, there was no cost optimization in the system.

Since deterministic optimization methods are time-consuming to reach the optimal
solution for problems with large dimensions, evolutionary algorithms were introduced to
overcome this limitation. The main advantage of these solutions is that they solve complex
problems with a non-deterministic polynomial problem. Furthermore, in the MG context,
while the EMS is running in real-time, solving the ED optimization time is also a crucial

parameter. Thus, looking for a fast optimization technique is essential.
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In this work, the T-Cell algorithm is presented as a heuristic method inspired by
immunobiology to solve ED in RT. The algorithm was first introduced in [223]. The T-
Cell algorithm is inspired by the mediated immune cells in the human body. The T-Cell or
as known in the immunobiology, helper T-cells play a key role in the adaptative immune
response. During their life, helper T-cells experience three phases. During the first phase
of their life, they develop in the Thymus, then they immigrate and start circulating between
the bloodstream and lymphoid tissue. At this stage, they are known as a naive helper T-
cells. Then in the second phase, the naive T-cells encounter an antigen-presenting cell. This
latter binds to the peptide and protein receptors at the cell surface, which results in the T-
Cell activation. Once activated, the cell starts proliferating and differentiating. This is the
third phase. Helper T-Cell differentiate into either T helper 1 or T helper 2 effector cells,
depending on their environment’s composition. Each type of effector cell helps to eliminate
the antigen presented in the activation process [224]. Therefore, during an antibody
intrusion, the T-Cells proliferate by generating other clones of themselves; then, each clone
differentiates by acquiring new proprieties to destroy the intrusion [225]. The authors in
[226] tested the performance of the T-Cell algorithm compared to other optimization
heuristics. The algorithm presents a competitive result in terms of convergence and

execution time.

However, the optimization is just one part of an EMS. The EMS in the context of MGs
deals with all management aspects of MG. It must coordinate between different DERs,
supervise the network in case of load or generation fluctuation and make sure that energy

balance is satisfied all time. A multi-agent system (MAS) is well suited in this context.
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MAS knew many improvements during the last years. The nature of the modular and
decentralized structure increases researchers’ interest to apply them in a power system
context [227]. An agent is nothing but a cyber or cyber-physical entity that can act
autonomously according to its environment, make decisions, and achieve its goals and

interacts with its peers [228].

The distributed nature of MAS makes it suitable for the MG environment. Furthermore,
their flexibility, extensibility, and fault tolerance have pertinently justified their adoption.
Flexibility refers to the agent’s ability to choose the most appropriate action; extensibility
means the system can be extended easily; fault tolerance refers to the inherent redundancy
mechanism build in MAS [229]. The central management of MG has been criticized for a
long time by its drawback, the single point of failure. However, using a multiagent platform
that implements fault tolerance capabilities would resolve this issue. For these reasons,
MAS was adopted in many areas of the power system. The classic bidding mechanism of
electricity, for instance, used the MAS as an efficient negotiation tool [230-233]. Finally,
MAS was also implemented as a fundamental MG and smart building management

platform [221, 234 — 237].

For these reasons, this work harvests the advantage of using a heuristic algorithm that
is inspired by the immune system to optimize the ED and reaches the optimum in less time,
even in complex systems with large dimensions. Besides, the use of MAS makes the system
overcome the drawback of a single point of failure and adds fault tolerance feature in

addition to the ability of easy extensibility in case of future system growth.
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7.1.1. Target
The present work’s target is to implement the T-Cell algorithm as optimization methods
for DED within MG based on agents’ paradigm, and interoperability capabilities. The main

contributions of this work are as follows:

e The implementation of an enhanced version of the T-Cell algorithm for RT-
EMS within MG;

e The integration of the Multiagent EMS with the testbed lab using DDS;

e Fault tolerance implementation of the multiagent EMS;

e The experimental validation and implementation of this architecture into a real
MG;

e Competitive time delay optimization for real-time application.

This work presents a new optimization algorithm in the MG context. Although some
heuristic optimizations were used in the EMS in MG, other system’s features were not
taken into consideration, such as the central aspect of the EMS or the failure case
management. Excluding the fault, the case scenario makes the system vulnerable and
suffers from a single point of failure. Moreover, the author's objective is to design a
comprehensive system that tackles several aspects of the MG EMS: Optimization and

communication as a cyber-physical system.

7.1.2. System Component
The present work uses different components to implement the proposed system. The
MAS was adopted for the EMS within the MG. The multiagent platform comprises three

main agent’s categories. Management agent, backup agent, and interoperability agents. The
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management agent comprises the MG optimizer (MGO) and the MG supervisor (MGS).
The backup agent is the MGO backup agent. The communication agents correspond to MG
unit agents that manage communication between the RT-EMS and the real components of

the MG. The presentation of each agent will be explained in section four with more details.

The Data Distribution Service (DDS) middleware was also proposed as an
interoperability solution between the agent part, and the hardware part is assured by. The
DDS is a middleware protocol and standard for data-centric communication for distributed
real-time applications. It facilitates the development and integration of a distributed system
and data exchange. The RT-EMS integrates the DDS components to communicate the

computed references to the hardware part.

7.1.3. Method

The optimization of the DED in this work is solved by using the T-Cell heuristic
algorithm inspired by the body's immune system. This algorithm mimics the human body
defense mechanism. The heuristic technics based on biological process has several
advantages compared to classical deterministic methods. One of the main advantages of
these solutions is that they solve complex problems with a non-deterministic polynomial
problem. The execution time of the optimization is improved, and the same time, an
optimal solution is reached. These reasons are behind the motivation of using the T-Cell as
techniques to solve our DED. Besides, the comparison of our algorithm to other existing
ones shows better results in terms of optimum computation and time delay which makes it

competitive for RT applications.
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The next section will cover the problem statement that includes the mathematical
implementation of dynamic economic dispatch (DED). Section three describes the T-Cell
algorithm that is implemented in the energy management system (EMS). Section four of
this paper discusses the proposed multiagent platform that was designed in this study.
Lastly, sections five and six present and address the findings and concluding remarks on

applicability, reliability, and time delay.

7.2 Problem Formulation

As mentioned before, the EMS is the information system responsible for the economic
optimization and the steady operation of the MG. Its primary function at a single MG is to
ensure the dynamic economic dispatch (DED) between generators of the system. The DED
problem consists of allocating the total demand among generating units so that the
production cost is minimized [238]. However, it is important to stress that the DED in the
MG context is more straightforward than the DED in a conventional power system. Indeed,
the MG has much fewer units than the whole system. Also, the DED in MG does not have
a wide variety of conventional fuel generators and, at the same time, tries to integrate more

renewable energy RE resources. The hypotheses considered in this work are as follows:

e The distribution of power losses neglected;
e The electric water heater is considered a controllable load;
e The reactive power flow is neglected;

e The MG is operating in connected mode.

The objective function of the DED optimization problem is defined as:
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m
minZ(Ftp" +FY + FES~ + Ff~ — FS* — FESY — Fl — FEY. At (1)
t=1

m represents the optimization period. Ftpv and F}” represent the cost function of the PV
panels and the wind turbine respectively; F£5~ and FF5* represent the cost function of the
battery storage in discharging and charging mode respectively; FE~ and FE* represent the
cost function of the power imported from the grid and exported to the grid respectively; F}
and F£! represent the cost function of the non-controllable loads and a controllable load of

the EWH, respectively. The generation cost function of each unit is determined by:

Npy
P;:pv — Z 7T;c,pv1_)tk,pwu (2)
k=1
ny
FY = Z Y e 3)
k=1
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FEST = mloBS. (1 = Ogg). B o)
k=1
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FESt = Z TSt g, plES* 5)
k=1
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Fft =nl+.9,.PFt (7)
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Fl= Z gltplt (8)

k=1
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Fel = Z kel phel 9)

k=1

pv

where th o, th W depict the offer prices by the kth PV panel and the wind turbine

respectively; ny,, n,,, ngs indicate the number of PV panel, wind turbines, and ES

installed in the MG; nf ES= T[f Bt represent the electricity cost of the kth storage unit

during discharging and charging mode respectively; Oz is a binary number equal to 1 if

the battery is charging and 0 otherwise; m¢~, mS* depict the power price of the power

imported from the grid and exported to the grid respectively; 6 is a binary number equal
kl kel

to 1 if the MG is exporting to the grid and 0 otherwise; ", m,”" represent the power cost
of the of non-controllable loads and a controllable load of the EWH, respectively. n;, n.;
indicate the number of the of non-controllable loads and controllable load; Ptk'pv is the
power generated by the kth PV panel during time period ¢; Ptk’W is the power generated by

k,ES— pkES+
P , B

the kth wind turbine during time period ¢ are the power generated and

consumed off the kth storage unit during discharging and charging mode respectively; Ptk’l

and Ptk'Cl are the power generated and consumed by non-controllable loads and a

controllable load of the EWH respectively.
The objective function must be minimized subject to the following constraints:

e Power balance
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e The renewable energy resources

Npy
0< 2 Ptk,pv < Ptmax,pv (1 1)
k=1
nw
0< Z Ptk,w < Ptmax,w (12)
k=1
where PPV p4%W are the maximum available power from PV panels and

wind generators during the period 7.
e ES unit [239]:

Maximum discharge limit:

0. PES™ < PESZ PES= > (13)

max’
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Maximum charge limit:

(1 — Ops). PEST < PESt, pESt > ¢ (14)

max»

When the battery is in discharging mode 8¢ = 1, the power discharged cannot

go beyond the maximum discharging power of the battery PES.; similarly, the

power charging the battery cannot go beyond the maximum power that could
PpES+

be consumed by the battery Py, .

Maximum discharge limit considering the total stored energy:
(Ops. PES=.AL) < EFS, (15)
e Maximum charge limit considering the total stored energy:
((1 — Bg5). PES* . AL) + EFS, < EES, (16)
e Energy balance in ESS:
EES = EFS, + (PES* — PES™). At a7
The inequality (16) formulates the energy constraint for the battery in a way
that the discharged should not exceed the available power. Similarly, the energy
charging the battery should not exceed the upper battery limit. During the

battery operation, the available energy EES should always be between the upper

and lower limits EES | EES | respectively as shown in Equation (18) [240].

min’
EEin < EES S Ef (o

e State of charge of the battery:
ES

E
soc, = ﬁ (19)
(]
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e The interconnection with the grid [30]:
(1-66).PF* < PEL, PE* 20 (20)

0g. P~ <PS..,PF~ =0 (21)

PS~. is the maximum power that could be injected in the grid; PS¢}, is the

maximum power that could be imported from the grid.

7.3 Proposed Algorithm for the Real-Time Optimization

Among classical techniques to solve the DED are the dynamic programming [242,
243] or the Lagrangian relaxation [215, 244, 245]. However, most deterministic
optimization techniques are not suited for real-time optimization since they need more time
to reach the optimum. Heuristic techniques, on the other hand, may reach a sub-optimum
solution, but their computational time is very competitive, which make them adequate for
real-time application. Much progress was made in heuristic techniques that have proven
their efficiency as competitive optimization methods in the power system [214, 216, 218,
246 — 248]. The biological process of immune cell defense mechanisms inspires the
artificial immune algorithm. The search process of this optimization approach is fast and
robust, which, not like the particle swarm and the genetic algorithm, search for potential
solutions in the overall shape space and do not fall into the trap of sub-optimality
convergence [249]. This work proposes the T-Cell algorithm as a variant of the immune

system algorithm to solve the DED in real-time MG operation.
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The T-Cell algorithm is inspired by the mediated immune cells in the human body.
These cells are called lymphocytes and develop in the Thymus as a group of white blood
cells [225]. They play a central role in cell-mediated immunity. They have receptors called
T-Cell Receptors (TCR) that interact with proteins in their environment. Through this
interaction, the T-Cells suffer two stages to get activated: proliferation then differentiation.
In the first process, T-Cells proliferate by generating other clones of themselves; then, in
the second process, each clone cell acquires new propriety; this is the so-called activation

process [226]. This algorithm implements this process:

Each cell has nine characteristic values:

e P, represents the decision variables of the dispatch problem;

- 1,pv Npv,PV
AL )
1w Nny,W
P y P W
t t
Pl,ES— PTLES—,ES—
t t
— E.
P, = Ptl’ES+ PtnEs+, S+ (22)
P7~
G+
Py
1,cl— Nep—,cl—
P, .. P _

e The objective function value for P;;

e The proliferation is the number of clones that the cell will generate;

e The differentiation is the number of decision variables that will be changed
when the differentiation process takes place;

e The power generated by P;;

e The equality constraint violation (ECV) for P, (|P — P;|);
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e The inequality constraints violation (ICV) sum;
e The feasible propriety indicates if the cell is feasible or not. A cell is

considered as feasible if:

ECV =0 and ICV = 0. This means that if a solution generates less than the demanded
power (ECV < 0) or more than needed (ECV > 0), or the decision variable are in a

prohibited zone (ICV < 0) or (ICV > 0) then it is considered as infeasible.

The required parameters for the T-Cell algorithm are the Number of objective function
evaluations, population size and probability of the redistribution operators. The appropriate

values of each parameter were chosen from the analysis result of this study [216].

Figure 7.1 describes the T-Cell algorithm execution steps.

Start

y
— Initialize Population()
Evaluate Constraints()
Evaluate Objective Function()

Initialize Population()

while number of evaluations not reached

¥

Proliferation Population()

Differentiation Population()

End While

!
Wait next period t ()

t=t+1

Figure 7.1 T-Cell algorithm process.
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7.4 Proposed Multiagent EMS Platform

This section presents the MAS implemented for MG management and will present the
developed agents and the proposed management strategy.

The agents are implemented in the Java Agent Development Framework (JADE)
platform. This platform respects the Foundation for Intelligent Physical Agents’ (FIPA)
standards that are considered as the reference for MAS standards used by computer science
developers’ community. JADE platform has the default Agent Management System
(AMS) that controls the platform, creates and destroys other agents.

The default Directory Facilitator (DF) is the agent responsible for registering all
connected agents of the platform. Thus, if another agent wants to communicate with his
peer, he has to ask the DF who will provide him with the name of the connected agent. In
addition to these agents, the Agent Communication Channel, also called the Message
Transport System, is the agent in charge of transferring messages between agents of the
platform [250].

JADE also provides graphical management service for platform management and
control through the remote management agent (RMA). Any agent created in JADE is
hosted in a container. This latter has all services for executing and hosting agents. Figure
7.2 presents the structure of the JADE platform, according to the FIPA agent management

reference model.
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Figure 7.2 Jade platform architecture

The MG considered in this work is composed of wind generators, PV panels, storage
units, controllable load, and non-controllable load. The MG is operating in grid-connected
mode. Each one of these components has a specific agent. There are three agent categories:
The management agents, backup agents, and communication agents.

The MAS implemented is illustrated in Figure 7.3.
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Figure 7.3 MAS architecture.
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7.4.1 Management Agents

The first category comprises agents that ensure the proper operation of the MG. The
MG optimizer (MGO) is the agent responsible for running the optimization and ensuring
the seamless operation of the MG in real-time. The T-Cell algorithm is implemented in this
agent. This agent gets the forecast data of the wind, PV, and load power and computes the
references of each generation unit and controllable load at each time step 15 min. However,
during this period, an unpredictable load variation can occur, which can jeopardize the MG
operation. So, instead of running the optimization every few seconds, which is resource
consuming, this work presents a solution to implement a specific agent that checks

continually if the load power has gone beyond permissible limits during the time step.

The MG supervisor (MGS) is the load supervisor agent. When the MGS intercepts
sudden high load variations, it contacts the MGO that launches a new optimization cycle

and computes the new optimum operating points of the generators and controllable loads

7.4.2 Backup Agent

The Main Container (MC) is the special node which the agent platform relies on. It
coordinates between the other nodes and hosts the AMS and the DF. Since this node is very
critical, if it terminates or fails to connect to other containers, some vital operational
features can become unavailable, and this severely hampers the platform [251]. In order to
strengthen the agent platform and make it more reliable, a fault-tolerant structure is
implemented. It can be observed from Figure 7.4 that there are two MC in the agent
platform. Replication support for MC has been introduced. Using this support, it is also

possible to duplicate as many as MC in the system. These MC arrange themselves in a
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logical ring so that whenever one of them fails, the others will notice and act accordingly

[229].
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Figure 7.4 The fault tolerance mechanism in the MAS platform.

7.4.3 Interoperability Agents
The main function of interoperability agents is to ensure the communication between
the MAS platform and the physical hardware. The communication is based on the data-

centric publish-subscribe (DCPS) model.

Two main distributed communication models could be implemented in the MG context:
Data-centric communications and object-centric communication models. In data-centric
communications, data distribution between communicating entities is the fundamental
concept. This model is based on data publishers and data subscribers. Publishers pass data
of known types to subscribers through a common channel. In the opposite, in object-
oriented communications, instead of focusing on the data, the main concern is the interface

between entities.
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An interface comprises of a list of predefined methods ready to be used. An object-
oriented system is based on server and client interface communication. The client interface
invokes methods on a named server interface, in which the server responds accordingly
[252]. Even though the two approaches are complementary, middleware built on data-

centric communication is more competitive in the RT applications.

RTI DDS Connect was implemented as middleware for RT interoperability between
the agent context and the hardware of the testbed. As explained earlier, data-centric
communication is based on data sharing between publishers and subscribers. The RTI DDS
Connext allows to user to create publishers and subscribers independently of the

programming language.

Publishers and subscribers are connected by ‘Topics.” A Topic corresponds to a single
data type that allows identifying which data is being to be shared between which publishers
and subscribers [253]. For instance, if publisher A is publishing value ‘x’ in Topic 1,

subscribers who want to get the ‘x” value should connect to the same Topic 1.

In this work, a publisher for each generation unit and controllable load were
implemented in the MAS context. The MGO computes the references and sends them to

the corresponding publisher agents.

Once the data is published, the subscribers implemented in the SCADA system of the
testbed read the data and operate accordingly. Figure 7.5 illustrates how the agents
implemented in the agent context publish data in RTI DDS topics, and how each generation

unit reads the published data through subscribers.
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Figure 7.5 Interoperability Communication Setup

7.5 Results

7.5.1 Description of the Cyber-Physical Setup
This section describes the implemented configuration of the testbed for the multi-agent
RT-EMS experimentation in the Energy Systems Research Laboratory (ESRL) testbed,

Florida International University [254].

The MG considered in this study is composed of a wind generator and a synchronous
generator, a storage unit emulated by a DC power supply, a controllable load, load, and

connection to the grid, emulates PV system, each one.

Each generating station has five different types of motor drives, acting as five different
prime movers to enable the implementation of various generation control strategies. These
generators are equipped with frequency drives, Automatic Voltage Regulator (AVR) and
synchronizer systems to control these different prime movers. The voltage regulators and

automatic power control module controllers enable the system to operate as real-time
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generators. An automatic synchronizer connects each generator and controls the switching
and measurement busses. The control and setup of each generation station are described in

Figure 7.6.
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A DC bus represents the DC zone that emulates the DC storage unit, where its voltage
was set to 380 V and XR SERIES DC power supply offered by the MAGNA-POWER

ELECTRONICS, which emulates the charging/discharging battery characteristics.

It is interfaced with the DC bus through the DC-DC boost converter. The converter
controllers are implemented in the SIMULINK environment and executed in the DSpace
1104 real-time interface. The system topology can be changed by using eight controlled

switches. The switches have two states on and off.

A control signal is sent to these switches to change their state, which changes the
equivalent circuit. The control is initiated from a virtual instrument (VI) program

implemented in the LabVIEW environment.

The card PCI 6025E sends the control command to the circuit. This circuit is an
inverting buffer module sn7406n of TEXAS INSTRUMENT. This module contains six
inverters with open collector output. The RMS values for the voltage in the AC zone is set
to 208 V. The AC bus is connected to the utility grid at PCC. Also, different load models

were designed to represent the AC load pattern. Figure 7.7 shows the control of the power

supply.

The testbed is controlled and monitored through the LabVIEW SCADA interface, as
shown in Figure 7.8. The connected components for this experiment have switched with

light green color.
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Figure 7.8 SCADA interface in ESRL

7.5.2 Experiment Results
This section presents the results obtained from simulation and experimentation of the
multi-agent RT-EMS. Three case studies are considered. The first case study presents the

implemented load supervision mechanism of the MAS.

The second case study describes the operation of the fault tolerance mechanism in the
MAS. The third case study compares the results of the experimentation and the simulation

and presents the competitively of the implemented RT-EMS in terms of time delay.
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7.5.2.1 Case Study 1

conducts the optimization every 15 min based on the forecasted PV, wind, and load data.
However, due to some exceptional event, the load value can occasionally make a high
variation from the forecast value, which affects the stability of the MG operation. For this
reason, the MGS was conceived to supervise the high load variation in RT. The MGS is a
cyclic agent that executes every 2 s. It computes the variation between the RT load and the
forecast values. When the computed difference exceeds 30%, the MGS sends a signal to

the MGO to start another optimization cycle based on the new sensed load value.
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Figure 7.9 shows the communication mechanism implemented in the Jade platform

between the MGO, MGS, and other publisher agents.

At line 241, the MGS detects a high variation of the load. Then, the MGS sends a
request to the DF agent to send him references of connected MGO. Once credentials are
delivered, the MGS sends it to the MGO, the signal to start a new optimization cycle at line
243. An optimization communication cycle starts from line 244 to line 262. The MGO at
the beginning of each cycle sends the parameters of the current cycle to the MGS. Then,
the MGO launches the optimization based on the T-Cell algorithm. At the end of the

optimization, the computed references are sent to the publisher agents.

7.5.2.2 Case Study 2

This case study describes the implemented operation of the fault tolerance mechanism
in the MAS. As explained in Section 3, the Main Container (MC) is a special node in the
JADE platform that coordinates between other containers and agents hosted in these
containers. In order to implement a fault-tolerant mechanism, a backup agent of the MC
was created. The two main-containers are arranged in a unidirectional ring. The MC is
considered as the master MC, while the backup agent is considered as the slave. Once the
master MC fails, the slave MC detects the failure and takes the appropriate recovery
actions. Three containers were created in this case study. By default, the AMS and DF
agents are affected by the master MC, which is the ‘Main-Container’ in our case. The
‘BackupContainer’ is created, and ‘Container-1" hosts the MG agents. ‘Mg1’ is the MGO
while other agents are the interoperability agents of each MG component. Figure 10

illustrates the MAS platform before and after the fault test. A manual failure event was
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introduced while the RT-EMS was running. Through the Jade user interface, the MC was
terminated. Automatically and instantaneously, the backup agent detects the event, changes
its status to the new master MC and transfers the AMS and DF from the faulty MC to its
container. As a consequence, the list of all alive agents and containers in the multi-agent

platform remains updated, and the RT-EMS continues its regular operation.

7.5.2.3 Case Study 3

This case study compares the results of the conducted experimentation and the
simulation of the RT-EMS and presents the performance of this system compared to

previous work.

The experimental validation of the implemented T-Cell based RT-EMS developed in a
MAS environment was tested in the Energy Systems Research Laboratory at Florida
International University. Three different scenarios were taken into consideration to validate

the efficiency and performance of the proposed algorithm:
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Figure 7.10 Fault tolerance mechanism in the JADE platform
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Scenario 1: Normal operation of the MG. In this case, the system is running
without a sudden event. The MGO is computing and sending references of the
generation units according to forecast data without any incident

Scenario 2: Generation drop. This case tests the ability of the system to operate
after a significant shift in power generation. For this matter, the wind generator
has been shut down during the period 6:00 —7:00;

Scenario 3: Sudden load variation. This scenario challenges MG operation
when there is a sudden load increase. It is reflected in the period 15:00-16:00,

where the load increases from 1500 to 2400 W.

Table 7.1 presents the parameters of the considered system. It presents the interval

values of each system variable. The energy storage is considered operating between 0.4

and 0.9 to protect the battery from the deep discharging and overcharging

Table 7.1 Microgrid parameters.

Variable Meaning of the Variable Limit Values

Ppv The predicted power generation of the PV system 0 W <Pp <700 W
Puw The predicted power generation of the wind turbine 0W<Pw<1500 W
Pou The predicted charging or discharging power of the —-1500 W < Prar< 1500

battery A

SOC State of charge of the battery 0.2<50C<09
P Active power load 0W<Pi<2700 W
Pa Controllable load Pa=0.2D

Figures 7.11 and 7.12 illustrate the power profile of the wind and PV systems. As

explained in Section 4.1, both wind and PV were emulated by two synchronous generators.
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It is noticeable from the two profiles that at the beginning of each period, there is a
power fluctuation due to system transients. The power measured during the experiment is
also slightly below simulated values because of the system losses. The wind generator was
supposed to shut down during the period 6:00-7:00 and the PV power profile was also
assumed to be null before 7:00 and after 20:00, yet due to experimental constraints, the
generators were kept running at the minimum level. However, in Figures 7.13, 7.14 and
7.15, the experimental profile of the energy storage, the load and the controllable load
matches the simulated values. The wind and PV profiles data used in this experiment are

available in [254] and [255], respectively.
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Figure 7.13 Comparison between simulated output and testbed measured values of energy
storage power.
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Figure 7.14 Comparison between simulated output and testbed measured values of load
power

Figure 7.16 describes the power exchange with the grid. Unlike the PV and the wind
emulators that receive the reference from EMS, the power exchange with the grid is
automatically imported or injected depending on the system consumption and generation.
For this reason, all system errors are compensated by the grid power, which creates, in
some cases, a mismatch between the experiment and simulation values. It also should be
mentioned that the simulation shows the RMS value without any transient, but the
experimental result demonstrates the actual values along with transient of the power system

which includes the compensation within the generators, reactions and power grid losses.
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Figure 7.17 Experimental results of the MG powers during 24 h operation

Figure 7.17 illustrates the MG dynamic during a day of operation going through the
three scenarios. From 00:00 to 2:00, the MG is supplying the load from the wind and the
grid. As soon as the load decreases from 2:00 to 6:00, the proposed algorithm allows the
charging of the energy storage with excess power. During the shutdown of the wind
generator from 6:00 to 7:00, reflected by a drop of the wind power (scenario 2), the needed
power was supported by the energy storage and the controllable load. The following day’s
hours match more load increase, which is supplied by the grid, wind, controllable load, and
the increasing PV power. From 13:00 to 15:00, the PV power is at the top generation, which

allows charging the energy storage with excess power. Scenario 3 is tested from 15:00 to
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16:00 in which the load suddenly rises from 1500 to 2400 W. The algorithm compensates
the deficit power using the energy storage and controllable load. The MG continues its
normal operation and uses the available power from the energy storage until it reaches its
minimum value; then, the power needed is imported from the grid and the available wind
power. Through the 24 h of operation in different scenarios, the proposed T-cell based RT-
EMS has proven his effectiveness and capability of maintaining the stability and balance

of the MG.

The proposed T-Cell algorithm that has been implemented for the EMS optimization
is coded in Java language using the Eclipse programming environment. The environment
integrates the JADE tool kit and the DDS interoperability agents. Before implementing
those agents, it is important to define the data model for the MG. In our case, the data
model consists of four variables of type double that represents the reference computed by
the MGO. These four variables are published through the DDS agents into four topics, as
illustrated in Figure 7.18. On the other side, the LabVIEW SCADA system implements the
subscribers for these topics. Once the new data is published, it is automatically intercepted

by the subscribers and sent to the appropriate generator or controllable load.

The RT-EMS has been tested using a computer with the following specifications: 4GB
of RAM and 2 GHz of CPU. In this configuration, the average execution time of the T-Cell
algorithm is 231 ms. However, when executed in a computer of 6G of RAM, the average
execution time is 60 ms. In both cases, the T-Cell algorithm presented better performance
than mixed integer nonlinear programming (MINLP) and multi-period artificial bee colony

algorithm (MABC) that have 8.23 s and 1.14 s, respectively [221].
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Figure 7.18 DDS Connext view

The execution time is very crucial for RT-EMS in the MG context and not as crucial
as in day ahead management, where the optimization is run a day before. The notion of
real-time that has been reported in different papers is between 3 to 5 min. The reason behind
choosing this time is because it is less than the time needed for the adjustment of protective
relay such as over/under voltage relay. Besides, PV systems and wind generators usually
need more than 5 s to be affected by atmospheric variations. Although the implemented
RT-EMS could be executed every 5 min and still presents better results than previous
works, it is executed every 15 min. The main reason is that the system has the MGS, which
is continually checking for high load variation and in this case, launches a new optimization
cycle. This way, system resources are used optimally. The MG understudy has an RS232

serial connection network for the control of the testbed components and the SCADA
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system, as illustrated in Figure 7.5. The latency time for sending data from the LabVIEW

SCADA system to the generators and controllable loads in the testbed is 1 s [256].

Furthermore, for a measurement message size of 32 bytes and a message rate of 1000
Msg/s, the average latency for DDS middleware is 243 ps with 90% below 269 us [257].
The T-Cell optimization algorithm executed in a computer of 4GB of RAM and 2 GHz of
CPU has an average latency of 231 ms. Therefore, the total latency of the RT-EMS is 1.3

s on average, which is way less than the 3 min presented in [221].

Another positive point could be stated. As the MG size increases and additional
components are connected, the system variables will increase. This would be reflected in
the execution time that would increase too. However, the proposed immune algorithm was
tested along with fast, chaotic particle swarm optimization (PSO) and independent
component analysis based PSO in the case of the small and medium power network, and

the T-Cell algorithm reached a better optimum in minimum time [226].

7.6 Discussion

The proposed RT-EMS has several features that make it easy to implement in MGs as
well as in smart buildings. The MAS makes it easier to extend the system and add other
components. New agents can be designed for new components, integrated into the agent
platform, and then added to the optimization system. Also, the DDS makes it very easy to
integrate any hardware to the existing MG. For instance, a new PV system in a smart
building can be interfaced with the SCADA using a new publisher and a new topic for this

new PV system. Thus, the RT-EMS is modular and easy to extend for larger MGs.
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Nevertheless, the system can be improved by considering the distribution losses and
constraints in the optimization. Since the present work focuses on small scale MGs, e.g.,
smart home, where all generations and consumption units are in the same location, the
losses are not significant; for this reason, this assumption was made. However, one of the
future improvements of the present work is to consider it. The authors considered the water
heater as a controllable load as it can be quickly turn on and off without affecting customer
comfort. Besides, the relatively small size of the controllable power used in this work
makes it comparable to a water heater. However, in a large Mg, the controllable loads could
be considered as the centralized air conditioner, the washing machine or dishwasher that
presents a more significant power to control. A second optimization layer between MGOs
that negotiate the best option for buying or selling the power depending on the market
prices could be added. Besides, the grid-connected mode was considered in this study.
Future works can consider the islanded mode of operation that updates the RT-EMS

parameters accordingly

7.7 Conclusions

Smart cities are no longer a future vision but a reality. Technologies are not only
shaping our modern life but also helping us to preserve the environment and adopt a more
sustainable life. Several cities around the world launch programs are aiming to preserve
the environment. While some cities choose to promote the use of applications to ease the
city traffic and therefore reduce gas emissions, others present incentives to its citizens to
produce renewable energy and reduce their consumption during peak hours; In this context,

developing a comprehensive EMS that would enhance cities sustainability agenda is a hot
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topic. Our proposed solution that incorporates fast real-time optimization would be a good
asset for sustainable cities. A multiagent RT-EMS based on the T-Cell algorithm was
implemented and successfully experimented in the smart grid testbed at Florida
International University for optimally managing an MG. Three scenarios were tested to
show the effectiveness and optimal operation of the MG using the proposed technique.
Comparison of simulations and experimental results show the ability of the proposed
multiagent T-Cell based RT-EMS in maintaining the stability and smooth operation of the
MG. Besides, the modularity and fault tolerance features were more comfortable to
implement through the MAS JADE platform. The DDS middleware also allows the
interoperability between different components of the system. The results obtained by the
multiagent RT-EMS highlight the effectiveness of the proposed algorithm and demonstrate
a faster convergence time compared to previous works. The optimum values were obtained
faster in terms of computation time as compared to existing techniques. The latency from
the proposed system was 43% faster than other heuristic or deterministic methods in the
literature. This significant improvement makes this proposed system more competitive for
RT applications. Therefore, our proposed EMS could be envisioned as a real solution for

future RT operating MG.

Furthermore, this EMS could also be implemented in smart homes or smart buildings
that integrate RE and need RT EMS. Through the use of RT-EMS, the MG operator not
only guarantees a reduction of energy consumption cost but also assures the maximum

utilization of available RE. As a consequence, the system is more resilient and participate
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in reducing the negative environmental impact. The RT-EMS also applies DR when

needed, which has a positive impact on the distribution system during peak hours.
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Chapter 8  Medium Voltage DC Testbed: An Essential Tool to Facilitate the

Futuristic integration of DC Microgrids/Nanogrids

The futuristic distribution system, which is one of the basic smart grid concepts, can be
viewed as a cluster of microgrids/nanogrids composed of a cluster of distributed energy
resources (DER). Also, the exponential development of solid-state transformers
technology which makes it possible to directly integrate the microgrids/nanogrids to the
medium voltage (MV) part of the power grid. The MVDC network facilitates the
integration of DC microgrids/nanogrids clusters to the AC grid. However, this necessitates
the research institutions to develop laboratory equipment to validate the hardware
developed to work on the MV levels. This work presents a design of a scaled-down MV
DC laboratory testbed. The proposed system is based on Power Electronic Transformers
(PETs) in order to provide the high step-up ratio of voltage without occupying much space.
This MV DC testbed is a laboratory setup that provides a power source and a power sink
for any DC hardware to be tested in the MV range. The proposed system is evaluated

through Matlab Simulink simulations.

8.1 Introduction

The microgrids/nanogrids offer an essential solution to enable a resilient grid
infrastructure since they have the ability to continue operating in case of a utility outage
[258]. The futuristic distribution system that is one of the primary smart grid concepts can
be viewed as a cluster of microgrids/nanogrids [259] and each microgrid/nanogrid can be

viewed as a cluster of distributed energy resources DERs, which has a connection to the
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primary utility grid. Microgrids could be composed of conventional or renewable DERs.
Microgrids mostly depend on intermittent renewable resources. This configuration may
introduce severe stability problems, especially during the islanded operation [260], [261].
Minor stability problems can cause cascading outages that would result in a large-scale
blackout if proper action is not taken on time. An efficient way to prevent such risks, ensure
robustness, and resilience is to operate the grid in a coordinated mode [262], [263] with
considering the different parameters of the heterogeneous mix of the available resources.
The microgrids are categorized as AC and DC. There is a trend to consider DC microgrids
widely. The reasons for this are well discussed in the literature [264]-[270]. On the other
side, the advantages of AC systems cannot be omitted; this is mainly due to the efficient
and cheap means of generation provided by the synchronous AC machines. The majority
of the loads have been designed to operate in AC form [268]. Thus, a combination of AC
and DC microgrids can be introduced as a viable solution. Under the smart grid views,
these microgrids/nanogrids are mostly a distributed DC grids. Therefore, The MVDC
network facilitates the integration of DC microgrids/nanogrids clusters to the AC grid. The
MVDC network has introduced before for MV DC shipboard power systems and electrified
transportation means charging stations are attracting many research interests in the past
few years [271], [272]. Providing a realistic laboratory-based environment for testing these
MYV DC power electronic systems is a challenging problem since it requires a high voltage
power (>1kV) and a high voltage dc electronic load.

The exponential development in power switching devices by introducing the high power
wide-band-gap devices that are capable of switching at high frequencies [273]-[275], and

the availability of advanced magnetic materials like amorphous and monocrystalline which
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have excellent magnetic characteristics for medium and high-frequency applications, such
as high permeability, high saturation flux density, and relatively low core losses [276],
have brought an extensive attention to solid-state transformers (SST) [277]. SST is a
medium/ high-frequency transformer preceded and followed by two power converters, one
of them provides the high frequency (HF) input voltage to the primary side of the
transformer, and the other power converter (following the transformer) converts the HF
stepped up/down voltage from the secondary side of the transformer to the desired voltage
profile (AC at the nominal frequency or DC). The SST operates at medium/high
frequencies which help explicitly in reducing its volume and weight. Reliable state
transformers can have a single core as in [278] or multiple cores as in [279]. The
development of the SST has influenced and attracted a lot of research in the area of
integrating medium size microgrids directly to the MV part of the power grid using HF
medium voltage power electronic interfacing systems without the need to the bulky and
heavy low-frequency power transformers [280]. This growing development of this kind of
MYV power electronic systems requires the research institutions to develop tools and
testbeds to test and validate the developed hardware.

In this work, an architecture of MV DC testbed based on power electronic transformers
(PETs) to have a high step-up gain or high step down gain. The PET is a medium/ high-
frequency transformer preceded and followed by two power converters, one of them
provides the high frequency (HF) input voltage to the primary side of the transformer, and
the other power converter (following the transformer) converts the HF stepped up/down
voltage from the secondary side of the transformer to the desired voltage profile (AC at the

nominal frequency or DC) [281]-[284]. The Construction of the proposed MV DC testbed
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is discussed in section I, section III presents the control scheme of the system, preliminary

results are shown in section IV, and finally, the conclusion is given in section V.
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Figure 8.1 The architecture of the proposed MV DC testbed.

8.2 Construction of PET I

PET I is depicted in Fig. 8.1; it comprises four stages. The first stage is an LV three-
phase uncontrolled rectifier to rectify the three-phase AC voltage coming from the electric
plug. The second stage is a full-bridge inverter to convert the DC link voltage to an HF

square wave voltage required by the HF transformer. The third stage is an HF step-up
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transformer to amplify the square wave voltage to the required voltage level (square wave
pulses swinging between SKV and -5KV). The fourth stage is an MV uncontrolled rectifier
to rectify the square wave voltage and provides the medium voltage DC voltage of the
MVDC bus; the MV rectifier relies on the DC link capacitors of the neutral-point-clamped
(NPC) inverter in SST II instead of having its own DC link capacitors. SSI is an
uncontrolled unidirectional step-up power electronic converter, and the HF transformer
turns ratio is the only means to control the MVDC bus voltage magnitude (in the design
phase not in the operational phase). The MVDC voltage level can be manipulated by
applying the phase-shift control technique described in [285], [286], and an LC filter after

the MV rectifier will be required in this case.

_ _—

Figure 8.2 Controller of the single-phase inverter of PET1.

The primary design methodology of the proposed MVDC testbed is to keep the size

and volume as small and compact as possible, so the proposed design of PET I gave up the
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voltage magnitude controllability feature of the MVDC bus to get rid of the extra LC filter
following the MV rectifier, thus instead, the voltage magnitude of the MVDC bus is set at
5KV, which is appropriate to test most of the MV power devices and systems. A higher
voltage level requires a higher number of levels of the NPC inverter in PET II (more power
switches) and larger transformers. The control schemes of the single-phase inverter of

PET1 is shown in Fig. 8.2.

8.3 Construction and Control of PET II
The structure of PET II is shown in Fig. 8.1; it consists of three main stages. The

operation and function of each stage are discussed and illustrated as follows.

8.3.1 Five-level Neutral-Point-Clamped Square-wave Inverter

The neutral-point-clamped (NPC) inverter is the first stage after the MVDC bus, and
its main function is to convert the MVDC voltage on the MVDC bus to an HF square-wave
voltage required by the HF transformer. Detailed illustration of the operation of the NPC
inverter is in [287]. The MVDC link voltage is divided over four capacitors; the voltage
over each of them equals Vbc / 4 (= 1.25KV). The structure of the leg of the NPC inverter
resembles the structure of the leg of the LV inverter with the replacement of each power
switch by four power switches. A path for the load current in the positive and negative
direction should be provided for each voltage level with the help of the voltage clamping
diode. The MVDC link voltage is applied sequentially to the primary side of the
transformer. The switching sequence associated with each voltage level is shown in
Fig.8.3. Tpuise is the time of Vbc /2 or —Vpc /2 realization, and Tseep is the time that separates

between two consecutive levels, and it is minimal (in the range of tens to hundreds of
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Nanoseconds) compared to Tpuise. The square-wave voltage with fine stepping requires a
dedicated circuit to provide the gate pulses for the eight power switches of the NPC

inverter.

A firing circuit is proposed in Fig. 8.4; the circuit provides the fine stepping by
means of monostable timers. The firing circuit is fed with reference square waveform (P);
negative and positive edge detectors fire short pulses at each edge of P; these short pulses
are then supplied to monostable timers. Vpc /2 and —Vpc /2 have two designated
monostable timers, one of them fires a high pulse at the edge of P with a pulse width of
(2TsteptTpuise), and the other one fires a low pulse at the edge of P with a pulse width of
(2Tstep). Passing the output of the two monostable timers through an AND gate produces
the reference pulse width of Vpc /2 or —Vpc /2. A demultiplexer is used to select whether
the reference pulse generated is for Vbc /2 or —Vpc /2. The same technique is used to
generate the reference pulses of Vbc /4 or —Vpc /4. There are another two monostable
timers designated for these voltage levels, one of them fires a high pulse at the edge of P
with a pulse width of (3Tstept+Tpuise) and the other timer fires a low pulse at the edge of P
with a pulse width of (Tswep). Passing the output of both timers through an AND gate
generates the reference pulses for Vbc /4 or —Vpc /4; a demultiplexer selects whether the
generated pulses to be for -Vpc /4 reference or Vpc/4 reference. The reference for (Ov)
voltage level exists whenever the reference of —Vbc/2, Vbc/2, -Vpce/4, or Vbe/4 does not

exist.

Combinational logic circuits, as shown in Fig. 8.4 use the reference pulses for each

level of the NPC inverter to trigger the power switches associated with each voltage level.
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The buffer circuit has two functions; the first one is to provide galvanic isolation between
the control circuit and the power switches; the second function if to translate the triggering
pulses of the control circuit to the adequate voltage level required by the power switches.
An HF transformer follows the NPC inverter to step down the voltage level of the voltage

pulses generated by the NPC inverter.

pulse
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pulse step
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Figure 8.3 Switching sequence associated with each voltage level of the 5-level NPC inverter
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Figure 8.4 The proposed firing circuit of the 5-level NPC inverter
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Figure 8.5 The proposed firing circuit of the 5-level NPC inverter

8.3.2 Three-phase matrix Converter

A matrix converter (MC) follows the HF transformer (instead of a back-to-back
converter, to eliminate the need for DC link capacitors) to convert the HF square-wave
voltage to three-phase voltage at the grid voltage level. The voltage at the point of common
coupling (PCC) with the three-phase bus system is measured and passed to a phase-locked-
loop (PLL) circuit to calculate the phase angle of the grid voltage (0). A hysteresis current
controller (HCC) is used to generate the switching signals to the power switches of the MC
[280]. HCC is an easy technique to directly control the current, where it forces the current
vector supplied from the MC to track a reference trajectory. If the actual current exceeds
the reference current plus the positive tolerance band error, the HCC output goes to zero,
and if the actual current is lower than the reference current plus the negative tolerance band
error, the output goes to one. For the MC, the implementation of the HCC requires the
knowledge of the HCC output, the polarity of the reference current, and the polarity of the

input voltage to the MC. The polarity of the input voltage to the MC converter can be
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acquired from the driving pulses of the NPC inverter (P), where the voltage is positive
when P is one (high) and negative when P is zero (low). The HCC switching sequence of

leg ‘a’ of the matrix converter is shown in Table 8.1

Table 8.1 The HCC Switching Sequence of leg ‘a’ of the MC

Switches
AR P the Refle)roelizlgyc(zlfrrent L’ .
Sia Sia Sup Si
! 1 Positive 1 0 0 0
! 1 Negative 0 0 1 0
! 0 Positive 0 0 0 1
! 0 Negative 0 1 0 0
0 1 Positive 0 0 0 1
0 1 Negative 0 1 0 0
0 0 Positive 1 0 0 0
0 0 Negative 0 0 1 0

8.3.3 The programmable load operation of PET II

Vector control is utilized to decouple between the active and reactive power
components (P and Q) [288]. In Fig. 8.6, the reference to the quadrature current component
(i"q) of the injected current to the three-phase AC bus is set to zero (no reactive power is
injected into the three-phase AC bus). The reference of the direct current component (i )
is calculated directly from the reference power (p*) given by the user, and the direct voltage
component of the three-phase AC bus voltage (Vd4). After calculating the reference d-q
currents, inverse Clark and inverse Park transformations are utilized to calculate the

reference three-phase current (iabc) from i'a and i
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8.4 Simulation Results

The model of the proposed MV DC testbed is simulated in Matlab Simulink, and the

parameters of the model are shown in Table 8.2

Table 8.2 MVDC simulation model parameter

Simulated system parameters

PET1 parameters

L | 680uH C | 10pF
HF transformer frequency 2kHz

Carrier frequency 30kHz

PET?2 parameters

HF transformer frequency 2kHz

Matrix converter frequency variable

L 2mH

Both Figures 8.6 and 8.7 are dedicated to showing the performance of PET1 under

different reference voltage levels of MV DC bus 1, where Fig. 8.6 shows that the actual
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Figure 8.6 MV DC bus 1 voltage with different reference levels
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voltage is tracking well the reference voltage. Specifically, the control algorithm shows
robustness and firmness in changing the voltage levels across different steps of the grid
operation without encountering any operational deficiencies. As an example, figure 8.6
shows the voltage level being stepped-up from zero to 2.3 Kv without the occurrence of
any regular voltage issues that occur in such processes, such as voltage overshoots or
oscillations. This is true and could be noticed even in the case of voltage changes from 2.3
Kv to 3.5 Kv, respectively. Fig. 8.7 shows the pulses used to trigger the four switches of
the single-phase inverter of PET1. In this case scenario, we decide to test the converters
under fixed voltage conditions with variable power reference this time, comparing to
variable voltage levels at fixed power reference in the previous case scenario. As we can
see from figure 8.7, the output power values followed the referenced power values at a
robust and accurate fixed voltage level. This is a valid indication of the accuracy and

validity of our proposed control methodology.
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Figure 8.7 Injected power from PET2 to the grid (different power levels at a fixed voltage
level at MV DC bus2).
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Figure 8.8 Three-phase currents injected from PET2 to the grid at different power levels

Figures 8.7 and 8.8 show the performance of PET 2 (under varying power levels and fixed
voltage of MV DC bus 2) and (under a fixed reference power and varying voltage level of
the MV DC bus 2), respectively. Fig. 8.8 shows the three-phase grid currents injected by

PET?2 to the grid under different reference power levels.
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Figure 8.9 Switching pulses of the four switches of the single-phase inverter of PET1
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Figure 8.9 presents the results of the PWM driving signals for all the four switches of the
inverter PETI. Specifically, the figure illustrates zoomed screenshots of both upper and
lower switches pulses for the purpose of more clarification. As someone may notice, both
the upper and lower pulses complement each other with the width of PWM changes
periodically due to the changes in power levels. Figure 8.10 shows different corresponding
power levels measured at a fixed voltage level of the MV DC part. To be specific, we fixed
the power at the point of the coupling and applied variable voltage levels considering
different case scenarios at the DC bus in order to test the capability of our proposed scaled-
down MV DC testbed. Furthermore, the results show that voltage levels were changing
safely between different operational levels (e.g., from 2, 2.5, 3, and 4 kV) without leading

to any power oscillations problems, as can be concluded from the power levels shown in

figure 8.10.
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Figure 8.10 Injected power from PET2 to the grid (different power levels at a fixed voltage
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8.5 Conclusion

This paper presented a detailed architecture of an MV DC testbed that is developed
based on the concept of power electronic transformers. Specifically, the circuit diagrams
of the two power electronic transformers and their associated controls are documented
throughout the testing procedure. Preliminary results indicate the behavior of the proposed

system under severe steady-state and transient conditions.
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Chapter 9  Fault Detection and Compensation for a PV System Grid Tie Inverter

The primary purpose of this work is to propose a fault detection and fault-tolerant
control mechanism to maintain the continuous operation of the grid-tied inverter, which is
commonly used to interface renewable energy and distributed generation to the grid. The
fault tolerance is provided using the modified topology of the DC-AC power converter
with a redundant standby branch. The proposed system ensures continuous operation
without isolating the energy source from the grid during faults on the inverter switch. The

fault may be an open circuit fault or short circuit fault.

9.1 Introduction

Increasing demand of electrical energy with the rapid change of climate lead to the
intention of maximizing the penetration of renewable energy versus the decrease of using
fossil fuels. One of the most promising types used to generate electrical energy from
renewable energy is the photovoltaic (PV). There are different topologies used to connect
PV energy to the utility grid such as Centralized, String, Multi-string, Module and Modular
configuration topology [289]. All of these topologies can be summarized in two different
structures, two-stage structure and one stage structure in which the primary power
electronics device used to connect such a system to the utility grid is the inverter. It is
essential to increase the reliability and survivability of the inverter by increasing the
inverter fault tolerance to ensure continuous feeding utility by this type of distributed
generation (DG) energy. In the last three decades, there are many literatures on the fault
tolerance of inverter with drive system such as studies focused on the fault-tolerant control

of inverter feeding passive load, some of them focusing on fault detection [290]-[291],
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fault detection and identification [292] and the other present integration of fault detection
and identification and compensation in one topology [293]. The main causes of inverter
malfunction are the DC bus capacitor and semiconductor failures. The semiconductor
switch failures can be classified into open circuit faults and short circuit faults. This work
presents a fault detection control algorithm used to detect, isolate, identify fault occurs on
one of the inverter switches and reconfigures the inverter circuit by using modified inverter
topology. So its focus on the fault occurs on the semiconductor switches. To avoid a
complete loss for one of the inverter branches. The detection mechanism will detect
abnormal inverter operation. The identification mechanism will identify the source and
location of the faulty component and trigger reconfiguration action. Using such an
algorithm to increase the reliability of the grid-tie inverter is a significant issue, especially
in the smart grid in which renewable energy sources will supply a high level of energy.
These cause a big stability problem in the case of sudden isolation in a significant portion

of energy.

9.2  System description

A typical grid-connected PV system shown in Figure 9.1, which includes six main
parts: PV arrays, a DC-DC Boost converter, DC Bus represented by Capacitor bank, a DC-

AC converter (proposed inverter topology), LC filter, and a power transformer.

9.2.1 PV Array

A typical 60 (KW) array is constructed from a number of series and parallel connected

modules, and this module is a typical Solarex MSX60 PV 60 (W) module constructed from
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36 series Polycrystalline cells [294]. Table 9.1 presents the specification for the PV module

at Temperature 25 0C and irradiance of 1000 W/m2 [294].

9.2.2 DC-DC converter

A DC to DC boost converter is inserted at the output of the PV array. Its inductance is
30 mH, and capacitance 1000 puF and the switch used is IGBT is operating on a 50 kHz
switching frequency. This converter has two main targets: first, to step up the output
voltage of the PV array to be around the voltage level of the DC Bus. Second, absorb as
much as possible from array power by performing maximum power point tracking (MPPT)
algorithm to keep track of maximum power with the ambient change, for example,
temperature change or irradiance change. This means the converter is working in power
control mode and as a result, the DC bus voltage will be continually increased and led to
make the voltage of the DC. The bus reaches an unwanted limit which may cause damage,

the DC bus, but the DC will solve this problem to AC converter control which illustrated

later.
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Figure 9.1 An overall grid-connected PV system with modified inverter topology
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Table 9.1 PV MODULE SPECIFICATION

Open Circuit Voltage (Voc) 21.0

Short Circuit Current ( Ish) 3.74

The voltage at Maximum Power (Vmax) 17.1

Current at Maximum Power (Imax) 3.50

Maximum Power (Pmax) 59.9
9.2.3 DC bus

Constructed from the capacitor bank, it is total capacitance value is 2000 pF and the

rated voltage is 1200 V.

9.2.4 Proposed DC — AC Converter

A DC-AC converter (proposed Inverter) is the main part of the Grid Connected PV
system, which is commonly used in the Two-stage structure and One stage structure of the
PV system. The main target for it is to convert the energy from the DC side of the PV
system to the AC side of the utility grid at the same voltage sequence and frequency of the
utility grid and is responsible for maintaining the voltage of the DC bus to remain constant.
This can be done by regulating the rate of power transfer to the AC side to be equal the rate
of injecting power from the MPPT controller. In this work, a proposed circuit topology for
the Inverter is used to reconfigure the inverter circuit after detecting and identify the fault
occurrence. This inverter topology depends on using a redundancy branch to substitute the

faulty branch after fault occurrence. The reconfiguration process is performed through
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three triacs used as bidirectional power flow switches to connect a redundant branch with

the isolated grid phase. Figure 9.2 shows the circuit diagram for the fault-tolerant inverter

topology.

9.3 Fault Detection And Isolation

For a grid-tied inverter, a fault detection algorithm needs to distinguish between
internal and external faults. External faults on the grid can be detected from positive and
negative sequence components in the voltage and currents while internal faults can be
detected from the DC components resulted from asymmetrical switching activities when a
semiconductor switch fails. The magnitude and direction of the DC components in each

phase can be used to identify the phase and failure switch.

To isolate the DC component in the inverter output, a low pass filter with a cutoff
frequency of 20 Hz was used to reject the AC current. One filter was used for each phase.
The filtered three-phase current then fed to detection logic, which detects the phase and
switch based on the current magnitude and direction in each phase. The fault simulation
shows that for an open circuit fault, the phase that has a faulty switch always has the
smallest DC components, and the direction of these DC components is related to the switch

position in this phase.

For a short circuit fault, fast-acting fuses located in each inverter branch isolate
defected branch. The controller can also detect the existence of a short circuit fault by
monitoring the current rate of change. Isolating the defective branch by a fuse leads to an

open circuit case that is detected by controllers and reconfiguration action is taken place
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after detection to transfer the load to a redundant branch Figure. 9.3. shows the block

diagram for the detection and identifying the algorithm.
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Figure 9.2 The modified inverter topology in the healthy mode

9.4 Reconfiguration technique

Isolation of the faulty branch and reconfiguration of the circuit after disconnection is
done using the inverter topology shown in Figure 9.2. This inverter topology has four

branches composed of switches SiS4, S3S6, SsS2 and S aux_(a)

S aux (b). The fourth branch, composed of switches S aux (a) S aux (b), is used as a
redundancy branch. In this configuration, there are disconnecting devices fast active fuses
(Fj,7=1,2,3,4,5, 6), two in each inverter branch and three connecting devices trj (SCRs
connected back to back) represented here by triacs, which are used to modify the inverter
circuit after isolation of the faulty branch. Reconfiguration of the inverter will be done by
disconnection of the faulty branch and connecting the redundancy branch instead. This can

be illustrated as the following:
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Figure 9.3 Detection and identification block diagram

9.4.1 Disconnection of the faulty switch

Isolating the faulty switch by disconnecting the branch which contains this switch. This
process has two different ways related to the type of fault. If the fault is an open circuit
fault, disconnection is performed by disabling the PWM signal for the faulty branch.
Otherwise, if the fault short circuits the faulty branch, which contains the faulty switch, it
will be isolated automatically because the fast-acting fuses on this branch will be blown up
as a result of large short circuit current passing on it. This massive current because of a

short circuit on the DC bus during a short circuit on any switch.

9.4.2 Connection of the redundancy branch

After the disconnection processes for the faulty branch, the reconfiguration is obtained

by using the triac t rj that is triggered on, interconnecting point (Li, 1= 1, 2, 3) to point 0

179



as given in Figure 9.4. This describes the shape of the inverter after the fault is disconnected
and reconfiguration is wholly done. In this figure, a short circuit fault happened for switch
S1 or switch Sz so the branch which contains these switches is disconnected and the
redundancy branch is connected instead of the faulty branch by connected the Triac switch
trl. Reconfiguring the circuit after fault disconnection is necessary to continuously feed

the utility grid by renewable energy instead of disconnecting a large amount of energy

suddenly from the grid and causing stability problems.
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Figure 9.4 the modified inverter topology in the post fault mode

9.5 Simulation result

9.5.1 Open Circuit Fault

It is noticed that the phase voltage and current of the three-phase output of the inverter
have been affected by an open circuit fault occurs in any of the inverter switches. However,
in the case of an open circuit fault, the change of the output fault has not a significant effect
as the output current because of the connection to the grid so there is a voltage still appears

from the grid side. This appears in the following result:
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e Switch Si Open Circuit As shown in Figure 9.5, the inverter works in regular operation
until the time (t=0.52 Sec). Att=0.52, an open circuit fault occurs in switch S1 which
connect phase (a) by the positive terminal of the DC BUS. The simulation shows that
the current phase (a) has a negative DC component and appears disconnected on the
positive half cycle. While phase (b) current has a positive DC component, phase (c)
current has a negative DC component but with complete operation during the full cycle.
Based on previous notices, the detection algorithm generates a detection signal at t =

0.59. This detection signal triggers a reconfiguration process connecting the point L1

to point 0" to connect the redundant branch to phase (a).
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Figure 9.5 The behavior of grid-tie inverter topology with switch S1 open circuit

e Switch S4 Open Circuit

As shown in Figure 9.6, the inverter works in regular operation until time t = 0.52 Sec.

At t = 0.52, an open circuit fault occurs in switch S4, which connect phase (a) by the
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negative terminal of the DC BUS. As described before, this occurs with switch S1 as an
open circuit. The fault produces DC components, but with an opposite sign for the DC
component of the three-phase current in case of S1 open circuit and with complete
disconnection for the current of phase (a) on the negative half cycle. So the detection signal
takes the same action by trigger reconfiguration process connecting the redundant branch

to phase (a).
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Figure 9.6 The behavior of grid-tie inverter topology with switch S4 open circuit

e Switch S3 Open Circuit

As shown in Figure 9.7, the inverters work in regular operation until the time (t = 0.52
Sec). Att=10.52, an open circuit fault occurs in switch S3 which connects phase (b) by the
positive terminal of the DC BUS. The simulation shows that the current phase (b) has a
negative DC component and appears disconnected on the positive half cycle. While phase

(c) current has a positive dc component, phase (a) current has a negative dc component but
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with complete operation during a full cycle. Based on previous notices, the detection
algorithm generates a detection signal at t = 0.59. This detection signal trigger
reconfiguration process connects the point L2 to point 0" to connect the redundant branch

to phase (b).
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Figure 9.7 The behavior of grid-tie inverter topology with switch S3 open circuit

e Switch S6 Open Circuit

As shown in Figure 9.8, the inverter works in normal operation until time t = 0.52 Sec.
At t = 0.52, an open circuit fault occurs in switch S6, which connects phase (b) by the
negative terminal of the DC BUS. As described before, this occurs with a switch S3 open

circuit. The fault produces DC components, but with an opposite sign for the DC
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component of the three-phase current in case of S3 as an open circuit and with complete

disconnection for the current of phase (b) on the positive half cycle.

So the detection signal takes the same action by triggering reconfiguration processes

connecting the redundant branch to phase (b).
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Figure 9.8 The behavior of grid-tie inverter topology with switch S6 open circuit

9.5.2 Short Circuit Fault

When a short circuit occurs, the distortion in both the phase voltage and current
appears. The three-phase current will be rapidly increased. The detection algorithm can
find the short circuit fault but cannot identify the faulty phase until the fuses on the faulty
branch blow, and one of the phases currently becomes zero. The following results will

appear these effects:

e Switch S1 Short Circuit
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As shown in Figure 9.9, the inverter works in regular operation until the time (t = 0.52
Sec). At t =0.52, a short circuit fault occurs in switch S1. The simulation shows that the
current of phase (a) has a negative DC component, while phase (b) current and phase (c)
current has positive DC components. Because of the rapid rate of change for the current,
the detection algorithm can distinguish the short circuit fault as shown at t = 0.5242 sec but
without identifying the faulty branch until the fast-acting fuses on that branch burned. As
shown at t = 0.5342, the current phase (a) became zero. Based on previous notices. The
detection algorithm generates a Triac signal at t = 0.5542 sec. This triac signal triggers a

reconfiguration process connecting the point L1 to point 0" to connect the redundant branch

to phase (a).
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Figure 9.9 The behavior of grid-tie inverter topology with switch S1 short circuit

e Switch S4 Short Circuit

As shown in Figure 9.10, the inverter works in regular operation until the time (t = 0.52
Sec). At t=0.52 Sec, a short circuit fault occurs in switch S4. As described before, switch

S1 is short-circuited. The fault produces DC components as same as the DC component of
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the three-phase current in case of an Si short circuit based on the same sequence taken in
the previous case. The detection algorithm detects the faulty case at t = 0.5242 sec and
identifies the faulty branch at t = 0.5342 sec when the current of phase (a) becomes zero
and sends a Triac signal which triggers a reconfiguration process connecting the redundant

branch to phase (a).

e Switch S3 Short Circuit

As shown in Figure 9.11, the inverter works in regular operation until the time (t =
0.52 Sec). At t=0.52, a short circuit fault occurs in switch S3. The simulation shows that
the current of phase (b) has a positive DC component, while phase (a) current has a negative
DC component and phase (c) current has a positive dc component. Because of the rapid
rate of change for the current, the detection algorithm can distinguish the short circuit fault
as shown at t = 0.5242 Sec and identifies the faulty branch as shown at t = 0.5342 when
the current of phase (b) became zero. Based on previous notices, the detection algorithm
generates a Triac signal at t =0.5542 sec. This triac signal triggers a reconfiguration process

connecting the point L2 to point 0" to connect the redundant branch to phase (b).
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Figure 9.10 The behavior of grid-tie inverter topology with switch S4 short circuit
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Figure 9.11 The behavior of grid-tie inverter topology with switch S3 short circuit
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e Switch S6 Short Circuit

As shown in Figure 9.12, the inverter works in regular operation until the time (t = 0.52
Sec). Att=0.52 Sec, a short circuit fault occurs in switch S6. As described before, switch
S3 is short-circuited. The fault produces DC components as same as the DC component
from the DC component of the three-phase current in case of the S1 short circuit. Based on
the same sequence taken in the previous case, the detection algorithm detects the faulty
case at t = 0.5242 sec, identifies the faulty branch at t = 0.5342 sec when the current of
phase (a) became zero and sends a Triac signal which trigger reconfiguration process

connecting the redundant branch to phase (a).

In the entire previous fault cases, after the reconfiguration of the inverter return to

normal operation mode, the injecting power became stable.
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Figure 9.12 The behavior of grid-tie inverter topology with switch S6 short circuit
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9.6 Conclusion

This work has demonstrated the validity of the proposed fault detection strategy used
to detect open or short circuit faults occurring on inverter switches and validates applying
a modified inverter circuit such as the proposed inverter topology. This provides
continuous feeding energy to the utility grid after a fault occur on one of the inverter
switches even with a complete loss of one of the converter branches. The fault
compensation is achieved by reconfiguring the power converter topology by using Triac
switches, which are generally open. While one of them is closed to redefine the converter
topology. In the proposed type of grid-connected inverter topology, a redundancy branch
was added as hardware redundancy and the Triac switches are used to replace the faulty

branch.

The proposed inverter topology may add quite a bit of complexity to the original grid-
tie inverter system. Nevertheless, from another side higher rates of the inverter failure result
in repeated shutdown events. These unwanted shutdowns in a bulk generation unit may
result in the reproduction of fault, thereby affecting the overall grid stability that means
reduced the overall reliability and efficiency of the power grid. So using this fault-tolerant
circuit topology for the grid-tie inverter and the proposed detection algorithm will result in
avoiding the repeated shutdown periods for the system, which increases the efficiency and

the reliability of the system.

The approach of this work shows an increase in the reliability of the conventional
power inverter used in the grid-connected PV system by adding a redundancy branch. The

work also presents a detection control algorithm that has an essential effect in avoiding a
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power stability problem in the case of a fault occurring on one of the inverter switches

leading to disconnection of the PV microgrid.
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Chapter 10 EXPERIMENTAL SETUP OF THE MICRO/NANO GRID TO

INVESTIGATE THE DEMAND SIDE MANAGEMENT SCHEMES

10.1 Introduction

This chapter presents the construction of the developed hybrid AC/DC Smart
Building (Micro/Nano grid) infrastructure. This Micro/Nano grid is implemented to
investigate the developed techniques for the demand-side response of a smart building to
the utility needs. The Experimental setup constructed at the Energy Systems Research
Laboratory, Florida International University. The main construction of the Micro/Nano
grid includes PV Emulator, DC/DC boost converter for PV_MPPT, Programmable DC
Power Supply, DC/AC grid-tie converter, synchronous generator, Load Emulator (fixed-
step control loads, Variable step control loads), energy storage devices such as Flywheel
and batteries.
10.2  Source Components of the Micro/Nano grid
10.2.1 PV Emulator

Installation of a PV system needs an accurate design and evaluation test for the
performance of its modules before using it in a system. This could be fulfilled with high
accuracy in the laboratory without using commercial PV modules by using a PV emulator.
The PV emulator introduces a suitable tool which easily permits emulating PV system
component with different parameters, teaching its characteristic and training researchers in
this field.
In this work, a 6 kW programmable PV emulator is designed that has the capability of

emulating commercial PV modules with different parameters and under different
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environmental conditions (irradiance or temperature change), constructing a PV array
based on the series and parallel numbers of modules. The PV emulator is implemented
using a real-time algorithm representing the PV array mathematical model and generating
the reference output power from a programmable DC power supply. The PV model is
simulated in MATLAB and interfaced with the real world through dSPACE using an
evolution graphic user interface (GUI). This laboratory PV emulator is tested with real-
time execution of the PV model for the steady-state and dynamic operating conditions. The
block diagram representation of the proposed PV emulator is shown in Figure.2.1. It mainly
consists of a programmable DC power supply (Programmable Magna Power Supply XR
series), Matlab/Simulink package, dSPACE1104 with control desk software installed on a

personal computer (PC) and resistive load with different values.

Programmable Magna

Power Supply XR sires Rasistiva Load

Figure 10.1 Block diagram for the proposed PV Emulator.
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The emulator GUI, shown in Figure.10.2, is developed in the dSPACE ControlDesk and
allows real-time control of the environmental conditions, i.e., solar irradiance, temperature
and the PV module parameter which allows emulating diverse of PV modules. It allows
constructing a PV array within the available power of the Programmable DC power

supply.it gives the user an intuitive feel as to how a real solar panel would react to changes

in temperature, irradiance and loads.

) . e ——
Wb Bovod BW & yf ahi o @ RAA 45 rK
GFu =N i

2| | ] L } L W
Figure 10.2 GUI of the PV emulator Using Matlab-Control Desk.

It consists of three major sections, the PV module parameter, PV module characteristics,
and PV module measurement. First, module parameter section in which several numerical
control buttons allow the user to change the temperature, irradiance, and module
parameters such as a number of series cells per module, open-circuit voltage, short circuit

current, current at maximum power, the voltage at maximum power and maximum power.
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Figure 10.3 PV emulator’s Matlab-Simulink model.
It gives two modes of control for the irradiance through the irradiance mode button. The
user can select between two mode manual mode and programmable mode. In the case of
manual mode, the user can change the irradiance manually through the irradiance button.
In the case of programmable mode, the irradiance will be changed automatically in
sinusoidal variation. The variation limits can be controlled by the controlled button,
irradiance offset and irradiance magnitude. It is allowable to control the rate of change
through the irradiance frequency button. Second, the PV module characteristics section in
which the theoretical curves of the current-voltage and power-voltage for the PV array are

displayed depending on the input parameters. The operating point is displayed through the
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blue cross on the curves, depending on the load power. Last, the PV module measurement
section in which the reading of the total voltage, current, power and efficiency for the PV
array are displayed.
Figure 10.3. represent the Simulink model of the PV, in which the PV model represented
with the Matlab function block. All the parameters changing the characteristic of the PV
output are input reference to the PV model to allow changing all of them to represent
different PV modules.
In order to run the system, the following steps should perform:

I- Open the Matlab model shown in figure 10.3. which exists at C:\ desktop \

PV_simulink.

2- Build the model from the MatLab taskbar.

3- Open the control desk program.

4- Open the GUI, as shown in figure 10.2.

5- Put the GUI in the running mode.

6- Run the programmable DC power supply shown in figure 10.4.

7- Change the parameter of the model from the GUI and notice the change at the PV

characteristics.
10.2.2 Programmable DC Power Supply
The DC power supply used shown in Figure.10.4. It is XR Series Magna Power Supply,
and the input voltage is three phases 208 volt AC, the rated output power 6 KW, the

rated output current 15.9 Amp, and the rated output voltage 375 Volt.
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T
Figure 10.4 Programmable DC Power Supply.
10.2.3 Synchronous Generator
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Figure 10.5 Synchronous generator at the ESRL Smart Grid Testbed.

A 13.8-kVA, 60-Hz, 208-V, and 1800 Rpm AC are representing the specification of the
synchronous generator generation unit. The generator is equipped with a half-wave phase-
controlled thyristor-type automatic voltage regulator. The generating station has five
different types of motor drives acting as five different prime movers to enable the
implementation of various generation control strategies. The frequency drive part follows
“vector speed control” that serves to maintain the frequency stable. In order to keep the

power-voltage buses, the prime mover of the generator is operated by a torque-controlled
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frequency drive, which adjusts the active power of the generation station to keep the
voltage signal within the accepted value. A PLC controls the speed reference and the torque
of the frequency machine. The specifications of the synchronous generator are shown in
Table 10.1. Figure 10.5. Indicates the synchronous generator set for the frequency machine

and the voltage regulator.

Table 10.1 Synchronous generator parameters.

Component Parameter Specification
SN 3 kVA
Synchronous VN 208 V
Generator Fn 60 Hz
Xt, Rs 6.87 mH, 1.45 Q)

10.2.4 Energy Storage
A wide variety of energy storage technologies and ratings are used in the testbed.

10.2.4.1 Lead-Acid battery

The lead-acid battery bank storage, shown in Figure.10.6. Has a 10-110 Ah capacity
(approximately 13.2 KW) and is equipped with a unique BMS which individually manages,
balances, and conducts diagnostics on each battery module using hall-effect sensors of
voltage and current. The BMS not only monitors the batteries but also extracts the defective
battery and compensate its loss through the distribution of the load on other resources using
power electronic converters (e.g., buck/boost converter). This system is expandable to any

chemistry and quantity of batteries based on its modular characteristics. This system is

197



capable of data logging and advanced protection to limit the current and voltage of each
battery. The system also controls the charging profile with independent frequency, duty

cycle, and magnitude.

Figure 10.6 Battery Bank Stored Safely in a Closed Cabinet.

10.2.4.2 Lithium-Ion battery
Five lithium-ion battery banks are used to emulate the behavior of five individual PEVs
in the smart building’s car park. The lithium-ion battery bank module is shown in Figure.10.7.
Each single battery bank consists of 14 lithium-ion battery cells connected in serial, with 51.8V

terminal voltage and 21Ah capacity.
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Figure 10.7 Lithium-ion battery bank module.

10.2.4.3 Flywheel

A large rotating mass coupled to a DC machine constitutes a Flywheel Energy Storage
System, which works under three operating modes: charging mode, stand-by mode, and
discharging mode. This setup is used to perform several studies. To name some: the power
failures and outages, mitigation of pulse loads, power quality improvements, and design

and performance of flywheel systems.

10.3 Load Components of the Micro/Nano grid
10.3.1 Fixed step Controllable Loads

The load module is consists of ten steps changes between 0-3 KW in the step of 300
W at normal voltage. These resistances can be controlled by PLC, which represented [2 x
72 Q + 4 x 144 Q]. In order to maintain the frequency within the accepted range, the

inductance loads are implemented based on constant inductance to avoid the derivation in
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the frequency signal. Solid-State relays are used with the ratings of 530 V and 25 Amps.
PLC with 3-32 DC voltage can control the operation of On/Off status.
10.3.2 Variable step Controllable Loads

The configuration of the proposed load emulator is simple and consists of a
combination of resistances with different values in a particular arrangement. The adopted
topology is depicted in Figure.10.8. It can be seen that eight resistances are used with

different values (60 Q, 50 Q, 40 Q, 20 Q, 20 Q and 1 Q).

60 0} m

g, A A A
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Figure 10.8 Configuration of the variable step controllable loads

The control system is implemented in a LabVIEW environment. Also, a user-friendly GUI
is developed to ease the control of the system. The control signals are sent in an 8x1 vector
with binary elements. Three nested loops with case structures are adopted to allow the user
to select which load pattern to emulate.
10.4 Interface Components of the Micro/Nano grid
10.4.1 Transmission line Model

The transmission line models are composed of series inductors and parallel
capacitors and arranged in medium length n-type. Figure 10.9. Shows the transmission line

models.
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Figure 10.9 Transmission Line models.

10.4.2 Bus Models

The test-bed setup has 14 bus model emulator to control the switching action and
emulate real power system dynamics. These modules can switch up to 15 amps per phase.

The hardware implementation of the bus model is shown in Figure 10.10.
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Figure 10.10 Bus models.

10.4.3 DC/DC Converter
A PCB based DC-DC boost converter is designed for the laboratory scaled PV

emulator. The DC-DC boost converter hardware is shown in Figure 10.11. It contained an
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SK45GB063 IGBT module, and the power rating is 3kW. The capacity of the capacitor on
the high voltage side is 3600uF, and the inductance of the coupled inductor is 3mH. This

DC-DC converter is operated with a 5 kHz switching frequency.

Figure 10.11 DC-DC Boost Converter.

10.4.4 DC/AC Converter

The bi-directional AC/DC converter can take control of the AC side frequency and
voltage amplitude. The DC bus voltage is regulated by controlling the charging and
discharging of the battery banks, which also means controlling the current flow through
the bidirectional DC/DC converter. The DSP-based embedded dSpace control platform is
used to control the inverter-based DER model. The DC/AC IGBT-based converter is shown

in Figure 10.12.
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Figure 10.12 The DC/AC 1GBT-based converter.

10.5 Hybrid DC-AC operation and experiment’s guideline steps

10.5.1 Hybrid DC-AC grid operation
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Figure 10.13 The hybrid AC/DC microgrid.
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Figure 10.13 shows the electric circuit of the DC-AC inverter that is connected to the
main grid. Considering regular operational mode, the DC-AC inverter's main duty is to
maintain the DC bus voltage level within desirable limits. This is achieved via proper
regulation of the flowing direct current that establish the operation of the DC part of the
grid as a large and pure resistive load at unity power factor, on the other hand, considering
islanding mode, the slack generator that is located in the AC side of the hybrid microgrid
with the DC-AC inverter operating at current control mode. Utilizing the battery bank state
of charge (SOCs), we deploy an aggregator to oversee the transfer power signals through
the bidirectional converter with a task to regulate the flow of energy between the two sides
of the hybrid microgrid. It should be noted that not accounting for the slack generator at
the AC side due to any potential faults or misoperation, and the converter assumes the
responsibility to manage the hybrid grid in what is known as frequency regulation mode in
order to help the AC side regulate its frequency limit and voltage levels with the absence

of the slack generator.

In order to validate our proposed control methodology for the operation and energy
management of the hybrid microgrid, we perform our study using hardware-in-the-loop
implementation to provide experimental verification to our work. This hardware testbed is
scaled down to ensure better accuracy and representation of the results. Figure 10.14.

shows the hardware configuration of the testbed.

The system contains two induction generators, labeled G1 and G2. The first generator
is attached to bus 1 and considered as the system’s slack generator that has the mission of

regulating the frequency of the AC side of the hybrid grid. On the other hand,
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Figure 10.14 The hybrid AC/DC microgrid.

the second generator, as seen from the figure, is connected to bus 2 operating as a voltage-
regulator bus, which yields only constant power. A 750W constant load is attached at bus
3, with another 600W pulsed load attached at bus 4. Moving away from the AC to the DC
side of the hybrid grid, an interlinking bidirectional converter is connected to ensure proper
and safe sharing of power between the two sides. One of the aspects that the established
test bed allowed us to measure is the level of contribution the DC part could provide to the
operation of the AC side of the hybrid grid as well as to the overall hybrid grid performance
as well. Specifically, we presented in one of this dissertation’s work, namely the vector-
decouple control algorithm presented in chapter 2, the methodology of how can the DC
side of the grid is used in an effective manner to regulate the frequency of the AC side
while maintaining a secured within limits voltage levels at the hybrid microgrid as a whole.

The vector-decoupled control allows us to recognize the kind of frequency deficiency in
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the system operation and indicate whether it comes from the slack generator disconnection
from the microgrid, as shown in Figure 10.15. (a) presents the level of power received by
the microgrid from its two synchronous generators during such a case. Figure 10.15. (b)

show the frequency variation as a result of sudden increase of pulsed loads on the system.

Foerof Coreachon

(a)

(b)
Figure 10.15 Hybrid microgrid operation performance under the severe condition: a)
Correspodnet system frequency, b) power received at the microgrid.
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10.5.2 Experiment’s guideline steps

10.5.2.1 AC side operation guide

DESCRIPTION:

It has four generators, automatic synchronizer, loads, and measurements (data
acquisition).

- Labview controls the system operation.

- There is an emergency switch in front of each desk for the communication. If
some switches get stuck and not responding, we can use this switch. Push it and

then push again to restore to its original position.

There is an emergency switch for the whole testbed beside the door.

LOCATIONS:

- On nain testbed computer.
- Use testbed account with password: powerlab.

- On the desktop,>> Open testbed2016 LabVIEW file on the desktop.

OPERATION:

Check the components:

- Check all the components first (checking the microcontroller) using (self-check)
o Tool menu >> measurements and automation explorer
o In automatic explorer window>> click the left arrow (expand) of Device
and interface >> network devices >> right-click (RC) on NICDAQ-

9188 (CDAQ9188.vi) >> self-test.
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o On top of the window, a message appears that the test is successful unless
there will be a problem.

o Make a self-test for the upper three files (Devl, Dev2, and Dev3) by RC
and self-test.

o Then close the checking window.

Hint:

- In the main window (testbed2016.vi), there are four main windows:
o DAQ window: It shows all the measurements.
o SCADA window: it shows the switches of all the generators, lines, and
loads.
o Generator control window: for generators and loads manual control.
o Dynamic brake window: for synchronization.
- Each window you need to make it RUN from the button on the left top of the page

(RUN), and the dynamic brake make it (continuously RUN).

2- Show the SCADA window:

- Double click on SCADA.vi.

3- Show the DAO window:

- Double click on DAQ.vi and press RUN on the DAQ window.
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- Show all the figures using a visible graph switch in the middle of the window,
but close it as it consumes memory space.

- Check all the measurements to be logical.

4- Running the first generator (G1) as a slack generator and loading it with L.1 and
L2.
- Turn the generator ON from the station manually.
- Double click on the generator control.vi to open the generator control window.

- In generator control. Vi window, we can see the following for each generator.

auto manual

Unlock: This means sending the password to the generator driver to be able to receive any

command.

Start: means running the associated generator.

Stop: means OFF the associated generator.

Power: to show the measurements of the generator.

Synch: to show the synchronization window

Auto: it can be used for automatic synchronization (it will try only).

Manual: is used for synchronizing the generator with the bus manually (very important).
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a. Running generator steps:

- In generator control. Vi window.

O

Run the window from the RUN button.

Press unlock G1 and put G1 speed = 600 (60 Hz)).

Check the command status at the bottom of the same window: the
command and the response box need to be the same, if not try to press
the switch again unless there will be a communication problem.

Press G1 start, you suppose to hear the sound of G1, if not try to increase
600 by one step from the left switch and then put 600 again.

Press manual, to connect G1 with the bus.

Check the synchronizer switch to be red (the four switches on the right of

the dynamic brake).

b. Feeding the first load steps:

(@)

In the SCADA window, switch all the switches in the bath from G1 to L1.
Moreover, check the response of each switch physically by the red light.
Then increase the first load L1 step by step (each step represents 300 W).
Increase it until 900 W and see the current and the power increase in the

measurements.
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Feeding the second load steps:

o Inthe SCADA window, switch all the switches in the bath from G1 to L2.
and check the response of each switch physically by the red light.

o Then increase the first load L2 step by step (each step represents 300 W).

o Increase it until 900 W and see the current and the power increase in the

measurements.

Synchronizing G2 with G1:

The synchronization will be done using the dynamic brake (variable resistance).
Feed each load L1 and L2 by 600 W, in order to make the load big enough to
make G2 loaded after synchronization directly.

Unlock G2.

Set the G2 torque reference to 21 N.m, which is suitable for synchronization.
Press G2 start, you suppose to hear it is sound, if not increase the torque by one
step and decrease it again.

Wait until the frequency of G2 reaches 62 Hz which is the maximum of the
driver.

Open the synchronization window G2 by pressing the synch button on the
generator control window.

Go to dynamic brak.vi window.

Press RUN continuously to run the window.

Click G2.
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By observing the synchronization window, you can see the voltage of the bus and
the generator. The difference between these voltages need to be small (perfect 122
Vand 117 V).
If the difference is significant, you can decrease it by two ways:

o Decreasing the load L2 manually.

o Increasing the G2 torque.
Keep watching the synchronization window, until the two long bars become full
of green.
Then, press the manual of G2. You can see how hard was the synchronization
from the power figures.
Once the synchronization is done:

o Off dynamic brake.

o Put G2 torque = 23.

o Increase manual load by one step.

o Put G2 torque = 25.

o Increase the manual load by another step.

o Close the dynamic brake window.

If the synchronization takes a long time, try to decrease the manual loads.

Connecting to the DC microgrid setup

Check that the DC setup is ready with larer= 3.
Close the switch S0C.

After synchronization, makes laref= 5.
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Islanding mode: means disconnecting G1 and making G2 and microgrid working

properly without frequency drop, by applying V2G mode on the inverter control.

Increase torque reference of G2 until the power coming from G1 to be less than
300 W.

Check that the microgrid has a DC load connected to the DC bus.

Open 320C or 380A switches to isolate G1.

Once the switch is opened, activate V2G mode with ref frequency 60 Hz.

Shut down the system

Decrease the power flow between G1 and G2 by decreasing L2 or increasing G2
torque.

Make 380A switch OFF.

Stop G2.

Press manual switch of G2.

Stop G1.

Press manual switch of G1.

Put all loads at 0, then close all loads switches.

Close all windows.

Turn off the generators manually from the station.
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10.5.2.2 DC side operation guide

DESCRIPTION:

It has DC supply, and DC loads are connected directly to the DC bus.

- The DC bus is connected to the AC side through the three-phase inverter, and the
controller is implemented on DSPACE.

- A three-phase transformer is used between the inverter and the grid (50-208 V).

- The inverter controller can work in two modes:

o The energy transfer mode in which the DC microgrid can exchange the
active power with the AC side, using manually sit Larer. In this mode, the
PWM switch controls the synchronization and needs to be 0.

o When lareris negative, this means injecting power to the ac side and the
positive means of absorbing power from the AC side. It ranges from 2 to
5.

o The frequency regulation mode: In which the reference frequency is given,
and the system changes the power transfer to get the required frequency in

islanding mode. In this mode V2G on a need to be active.

LOCATIONS:

- The inverter control folder exists on Desktop >> energy conversion project >>
AC_to_DC_VS5 (simulink file).
- The layout file (for the control desk) exists in the same folder with the same name

(AC_to_DC_V5).
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For active power injection operation:

- Put the DC supply for 200 V.

- Ask hazar to connect his setup (close switch S0C on SCADA window).

- Put larer to -3 (5 means transferring about 300 watts and this is the max) and then
increase it to 5.

Put the PWM button on 0.

For frequency regulation operation:

- Put the DC supply for 200 V.
- Connect the Microgrid bus with the AC voltage (close switch 50C on Labview).
- Decrease ldarer to 3 such that the power coming from the DC side to be almost 200 W.

- Check the microgrid ON button.
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Chapter 11 Conclusions and Recommendations for Future Work

11.1 Conclusions

Demand-side management has a vital role in supporting the demand rise in smart grid
infrastructure. Since the innovations at different power system infrastructures’ levels
facilitate the integration of new smart grid ideas. Therefore, these new architectures of the
smart grid add an extra burden on the grid regarding complexity and uncertainty. Besides,
the increased penetration of renewable energy, Electric Vehicles (EVs), and time-varying
loads in the distribution system, the grid will be vulnerable to unusual, challenging
experiences for utility-customer interactions. Household loads represent a significant
percentage of electrical energy consumption. The households’ demand-side response
(DSR) enables active participation of these loads in the grid, enhancing power system

stability and quality.

This dissertation provided management and control strategies to make the best use of
demand-side management in the power systems. The management and control satisfy the
customer and the operator preferences, the system technical constraints, and the involved
economic issues. In this paradigm, the deployment of smart homes which allows active
load participation are appropriate solutions that can reduce the drawbacks of the massive
penetration of renewable energy, Electric Vehicles (EVs), and time-varying loads in the

distribution system.

The innovations at different power system infrastructures’ levels facilitate the
integration of new smart grid ideas. However, new architectures of the smart grid add an

extra burden on the grid regarding complexity and uncertainty. As a result of the increased
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penetration of renewable energy, Electric Vehicles (EVs), and time-varying loads in the
distribution system, the grid will be vulnerable to unusual, challenging experiences for
utility-customer interactions. Household loads represent a significant percentage of
electrical energy consumption. The households’ demand-side response (DSR) enables

active participation of these loads in the grid, enhancing power system stability.

Consequently, the forecasting of household energy consumption is crucial for
household DSR programs. Precise short-term load forecasting (STLF) has a significant
effect on the accuracy of the household DSR. However, STLF is challenging at this level
of the grid due to uncertainty and volatility in load consumption originating from customer

behavior, which is too stochastic to predict.

Firstly, I developed an innovative methodology to enhance household demand
forecasting based on energy disaggregation for Short Term Load Forecasting. This
approach is constructed from Feed-Forward Artificial Neural Network forecaster and a pre-
processing stage of energy disaggregation. This disaggregation technique extracts the
individual appliances’ load demand profile from the aggregated household load demand to
increase the training data window for the proposed forecaster. These proposed algorithms
include two benchmark disaggregation algorithms; Factorial Hidden Markov Model
(FHMM), Combinatorial Optimization in addition to three adopted Deep Neural Network,
long short- term memory (LSTM), Denoising Autoencoder, and a network which regress
start time, end time, and average power. The proposed load forecasting approach

outperformed the currently available state-of-the-art techniques, namely, root mean square
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error (RMSE), normalized root mean square error (NRMSE), and mean absolute error

(MAE).

Also, the real-time operation of the energy management system (RT-EMS) is one of
the vital functions of Microgrids (MG). In this context, the reliability and smooth operation
should be maintained in real-time regardless of load and generation variations and without

losing the optimum operation cost.

In this dissertation, I developed a real-time operation energy management system (RT-
EMS) at the residential Microgrid level. This work presents a design and implementation
of an RT-EMS based on Multiagent system (MAS) and the fast converging developed
algorithm to minimize the MG operational cost and maximize the real-time response in
grid-connected MG. The RT-EMS has the main function to ensure the energy dispatch
between the distributed generation (DG) units that consist of this work of a wind generator,
solar energy, energy storage units, controllable loads, and the main grid. The MAS has
features such as peer-to-peer communication capability, a fault-tolerance structure, and
high flexibility, which make it convenient for the MG context. Each component of the MG
has its managing agent. While the MG operator (MGO) is the agent responsible for running
to ensure the seamless operation of the MG in real-time, the MG supervisor (MGS) is the

agent that intercepts sudden high load variations and computes the new operating point.

In addition, the proposed RT-EMS develops integration of the MAS platform with the
Data Distribution Service (DDS) as a middleware to communicate with the physical units.
In this work, the proposed algorithm minimizes the cost function of the MG as well as

maximizes the use of renewable energy generation; then, it assigns the power reference to
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each DG of the MG. Experimental validation in an MG testbed was conducted to verify
the performance of the proposed system. Results show the reliability and effectiveness of
the proposed multiagent based RT-EMS. Various scenarios were tested, such as normal

operation as well as sudden load variation.

Also, the microgrids offer an essential solution to enable a resilient grid infrastructure
since they can continue operating in case of a utility outage. The futuristic distribution
system, which is one of the fundamental smart grid concepts, can be viewed as a cluster of
microgrids, and each microgrid can be considered to be a cluster of distributed energy
resources DERs. Microgrids mostly depend on intermittent renewable resources. This
configuration may introduce severe stability problems, especially during the islanded
operation. Therefore, I proposed a hybrid residential microgrid system for future city
houses. It is composed of both AC and DC networks tied together through an interlinking
bidirectional AC/DC converter (IC). The DC network contains the DC loads and the
distributed energy sources (DES) such as Photovoltaic (PV) and battery storage. The AC
network includes the AC loads and a synchronous AC generator as the only AC source in
islanding operation in this system. The islanding operation at this level of the grid, prone
the network to be more vulnerable to stability issues. Therefore, it is essential to obtain the
best control parameters for the IC controller, which ensures sufficient power exchange and

stable operation between the DC/AC networks.

Consequently, a Genetic Algorithm (GA) has been used to tune the vector decoupling
control parameters of the IC controller to find the best parameter combination to improve

the hybrid grid performance. The proposed scheme maintains system stability during
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various conditions such as variable or pulsed demand and uncertain renewable power-
sharing. The tuned vector decoupling controlled sinusoidal pulse width modulation
(SPWM) technique has been used to not only allow the IC to maintain stable voltage and

frequency but also tracks the active and reactive power setpoints.

In addition, I developed a control methodology to facilitate the smart integration of a
DC Microgrid to Neighborhood Low Voltage Distribution Network (NLVDN). The DC
Microgrid connected to the NLVDN through a three-phase voltage source inverter (VSI).
In which, the VSI works as Distribution Static Compensator (DSTATCOM), and the DC
link provides an integration point for the PV and the DC native loads. The proposed
technique is capable of compensating reactive power, unbalance, and harmonics demanded
by three-phase non-linear loads and unbalanced connected to the distribution side improves
the power quality. Besides, it can prevent the source from getting overloaded by providing

active power support to the load.

11.2 Recommendations for Future Work

This dissertation covered several aspects related to the management and control
strategies to make the best use of demand-side management in the power systems. The
provided solutions in this dissertation are critical because it offers valuable answers for
many issues that are related to the active participation of the load consumption sector in
power grids stability. Moreover, the studies provide a practical energy management
framework and control algorithm that can lead to the optimal control and operation of
individual customers in the distribution level and thus bringing benefits to the environment,

customers, and system operators.
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Despite the provided solutions in this dissertation, the design of a smart grid as an
integrated cyber-physical system is needed. Several issues related to system modeling,
scalability, interoperability, and security need to be covered in future research. In addition,
developing anomaly detection for smart grid monitoring and control systems that utilize
both cybersecurity rules and physical system characteristics is needed. This research should
also address the interoperability and system expandability challenges in modern energy

systems by working on a unified data model and utilization of a data-centric approach.

Another issue that needs to be adequately addressed is the interaction of the stochastic
natures of EVs, renewable energies, especially wind and solar energy, with the energy
storage and the conventional unit commitment. Due to the stochastic nature of renewable
energies and EVs, old traditional methods for an optimal unit commitment should be re-
adapted to consider these stochastic entities to ensure the optimal and reliable operation of

the power grid.

Finally, a very pressing problem that needs to be investigated and analyzed thoroughly
is the modeling of the different kinds of attacks on the power system, and more importantly,
is how the power system can be controlled to mitigate or reduce the damage of these

attacks.
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