
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

7-27-2001 

A master-slave architecture for parallel speaker recognition A master-slave architecture for parallel speaker recognition 

Sunil Kumar Godavarthi 
Florida International University 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Godavarthi, Sunil Kumar, "A master-slave architecture for parallel speaker recognition" (2001). FIU 
Electronic Theses and Dissertations. 4003. 
https://digitalcommons.fiu.edu/etd/4003 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4003&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F4003&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4003?utm_source=digitalcommons.fiu.edu%2Fetd%2F4003&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A MASTER-SLAVE ARCHITECTURE FOR PARALLEL SPEAKER RECOGNITION

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Sunil Kumar Godavarthi

2001



To: Dean Arthur W. Herriott
College of Arts and Sciences

This thesis, written by Sunil Kumar Godavarthi, and entitled A Master-Slave 
Architecture for Parallel Speaker Recognition, having been approved in respect to style 
and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Shu-Ching Chen

Masoud Milani

Marie Roch, Major Professor

Date of Defense: July 27, 2001

The thesis of Sunil Kumar Godavarthi is approved.

Dean Arthur W. Herriott 
College of Arts and Sciences

Dean Douglas Wartzok 
Graduate School

Florida International University, 2001

u



ACKNOWLEDGMENTS

I would like to thank Dr. Marie Roch, my advisor, for having the faith and 

confidence in me to do this project and for her constant guidance and support throughout 

the thesis. I also thank her for reading through my thesis for all those corrections. This 

thesis could not have been completed without her help. I would also like to express my 

gratitude and appreciation to the following people:

To my thesis committee members, Dr. Chen and Dr. Milani. To my colleagues

and friends at CADSE and HPDRC Manish Mahajan, Suresh Cheggi Reddy, and George 

McGivan for their constant support, motivation and encouragement. To my roommates 

and friends here in Miami for being my personal cheerleading squad. To my parents and

brother for their constant support and their trust in me.

iii



ABSTRACT OF THE THESIS

A MASTER-SLAVE ARCHITECTURE FOR PARALLEL SPEAKER RECOGNITION

by

Sunil Kumar Godavarthi

Florida International University, 2001

Miami, Florida

Professor Marie Roch, Major Professor

Speaker recognition is one of the popular research interests in speech processing. 

A speaker recognition system receives the speech signal (data) and determines who the 

speaker is from a known set of speakers. This process involves the task of matching the 

input speech signal to the models for all the speakers enrolled in the system. Important 

factors that determine the success of these systems are response time and accuracy.

The objective of my thesis is to optimize response time by dividing the task of 

recognition into a number of sub tasks and to execute these individual tasks on load- 

balanced multiple processors. There has been limited research in improving the response 

time with the use of parallelism. This idea has been implemented by using a master-slave 

model in which the master divides the recognition tasks and initiates their parallel 

processing on multiple slaves. Tests performed showed that the response time achieved is 

better than those obtained from the conventional system, which does not involve any 

parallel processing. This thesis justifies that a parallel processing approach can be used to 

optimize the response time of a speaker recognition system.
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1. Introduction

A popular research interest for speech signals is speech and speaker recognition. 

Speech recognition is the process of deciphering the speech signal by a machine to 

recognize the sequence of words a person is saying, whereas speaker recognition is the 

process of identifying the speaker by a machine. Some topics involve both these 

technologies (recognizing which speaker is saying what in a group)[l].

A typical speaker recognition system consists of a set of N models trained for a 

set of N speakers (one model per speaker). This kind of system permits efficient adding, 

deleting and adapting of speakers to the system as opposed to a single monolithic system 

which requires the data used to train the previous models and large computation time. 

The recognition can be in set or out of set. In-set recognition refers to the process in 

which the speakers to be recognized are from the set of models that were used to train the 

system. The out-of-set recognition refers to the process in which the speakers to be 

recognized may or may not be from the set of models that was used to train the system.

Speaker recognition can be text dependent or text independent. In text-dependent 

speaker recognition the identification can only be done for a specific phrase to which the 

system was trained whereas text-independent recognition is independent of the training 

speech. The speaker recognition system receives the speech signal (data) and determines 

who the speaker is from a set of speakers. This process involves the task extracting 

relevant parts of the speech to obtain the feature data and matching this data to all the 

trained models in the system. One of the most popular feature extraction techniques is the
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cepstrum [12]. A series of complex operations such as framing, windowing functions, 

fourier and logarithmic transformations are involved in the cepstrum process. The 

matching process would be a computation performed on the feature data and the model. 

This computation depends on model characterization which can be in many forms such as 

template matching, hidden Markov models (HMMs) or vector quantization. Thus, the

time taken by the system increases with the number of speakers. This increase is linear in 

the case of single classification but in the case of classifying an entire group it becomes 

exponential. The increase in the computation time means an increase in the response time 

of the system. This increase may not be desirable in most commercial applications.

1.1 Purpose

Many practical speaker recognition applications have large number of speaker sets

(i.e. large model sets). The most important factors that determine the success of these 

systems would be response time and accuracy. Optimal response time makes speaker 

recognition system used in most practical identification and verification applications. 

Response time has been of major interest for many researchers in speaker recognition. 

This has triggered a quest for speaker recognition techniques whose response time is less 

dependent on the number of models in the system. An intuitive way of increasing the 

computation speed is to use multiple processors, which gives birth to the idea of 

implementing the system on parallel processors.
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1.2 Previous Work

There has been little work using parallelism in this area and most of the work that 

has been done, is in the field of speech recognition. Some of the relevant works in speech 

recognition are:

Mitchell et al. [3] proposed a method to model state duration in HMMs. Due to 

the increased complexity associated with this model, they used a parallel implementation 

to decrease the computation time that would make the testing of large systems in optimal 

time feasible. Kwong et al. [2] proposed a parallel genetic algorithm for training. This 

genetic algorithm achieved global maxima for HMM model parameters in training. 

Kobayashi et al. [4] proposed a method by combining two techniques. They used spectral 

subtraction for initial hypothesis and parallel HMM for probability calculations. Noda et 

al. [5] proposed a parallel technique using Markov random fields (MRFs). This method

makes use of local parallel operations to be performed on speech frames over time to

estimate the optimal state sequence, which speed up the recognition process.

1.3 Objective

An alternative and similar kind of solution for a speaker recognition system would 

be to perform the process in parallel on multiple processors with load-balancing. There is 

currently less interest in parallel implementations of speech or speaker recognition. The 

most likely reason for this is due to the fact that good pruning techniques can yield better 

performance than the parallel computation technique [7]. Pruning techniques decrease the 

computational load by reducing the number of models on which the computation needs to
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be performed. Thus, less interest was generated on alternative techniques such as parallel 

processing. In large-scale applications where a large number of speakers are being 

classified, the situation may require more than good pruning techniques alone to reduce 

computational time. This drives the need for exploring additional techniques such as 

parallel processing, which would permit the use of more sophisticated, accurate and 

slower recognition models to be used. The purpose of this thesis is to implement a 

working model of a parallel speaker recognition system, which would be a solution for 

large-scale speaker recognition systems. This study would also reveal the factor by 

which the response time would be enhanced by parallelism.

The objective of this thesis can be summarized as follows:

1. To study the characteristics of the speaker recognition process in order to be able to 

apply parallel algorithms.

2. To study different load-balancing algorithms and implement the most suitable to the 

parallel speaker recognition problem.

3. To parallelize the speaker recognition process to reduce throughput time.

4. To study the factors that contributed to the improvement of throughput time.

1.4 Research Methodology

A working version of a serial text-independent speaker recognition system is in 

existence as a result of Dr. Roch’s research work. This system implements vector 

quantization, HMM, and integral decode HMM recognition [12]. The majority of this
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system is developed in Matlab with bottleneck sections coded in portable C. The idea of 

my thesis is to make this speaker recognition system to run in parallel on multiple 

processors. This extension of the system is primarily developed in Java and C, as Matlab 

has interfaces to both these languages. The reason Java was selected to implement the 

parallel speaker recognizer is due to the fact that Java provides a modular, platform 

independent solution with TCP/IP sockets for communicating between the parallel

processes.

A semi-distributed approach has been adopted for implementing the parallel 

recognizer. This parallel recognizer has a central processor called the controller that 

distributes and balances load among the node processors. The node processors perform 

the computations and return the results to the controller. The controller frees the node

processes when the processor on which it is executing is overloaded and moves the load

associated with them to other node processors that are not overloaded. The average

number of jobs in the run queue over a five minute period are taken to determine the load

of the processor.

1.5 Significance of the thesis

Although speaker recognition is a well-studied problem, there has not been much

work done on solving the long response time associated with large systems. This thesis 

provides algorithms, which would help the on-going research on reducing the execution 

time associated with large speaker sets. Thus this is an implementation of a low-cost, 

high-efficient mechanism for quick response of speaker recognition problems.
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The interface between the different languages used in this parallel speaker 

recognition system provides the ideas for interfacing with new technologies and also 

makes the system portable and flexible. The idea of implementing parts of the system 

with different technologies and interfacing between them will be studied in detail. One 

other issue that is given significant thought will be the passing of model data between 

different technologies. Since Java is being used for implementing the parallel and load­

balancing part, this section of the system would be architecture, operating system and 

platform independent. Communication and data passing between various languages will

also be studied in detail.

1.6 Feature Extraction

The input data to a speaker recognition system is a pulse-code modulated speech 

signal. In its raw form this speech data is of little help in the process of pattern 

recognition, thus we exploit this input signal to get the important parts (features) which 

will help the process of pattern recognition. Many types of feature extraction techniques 

are in existence; one of the most popular and effective one is the cesptrum. Derivation of 

the cesptrum is a multi-step procedure. The process starts with endpointing the input 

speech signal. This is done to eliminate silence, sporadic external sounds and other 

sounds from the mouth of the speaker such as non speech related sounds produced by the 

movement of lips. This process is usually done using a finite state machine with

transitions based on signal energy. The finite state machine changes to a high-energy 

state when the energy of the input signal is above a threshold and remains in that state as
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long as the signal energy is above the threshold. All the signal parts that make the finite 

state machine stay in the high energy states for more than a certain time interval are taken 

as speech signal and the rest of the signal part is assumed not a part of the speaker 

speech.

After endpointing, the signal is broken into little byte size chunks called frames;

typically these chunks overlap. Then a windowing function is applied to each of the 

frames. There are a number of windowing functions with different properties, some of the 

most popular ones are the hanning and hamming. The cepstrum uses the hamming 

window function, which is basically a point-by-point multiplication applied to the signal. 

Figure 1 below is an example of a 128 point hamming window. The hamming window 

process shrinks the signal at the beginning and end of each frame. This avoids large 

discontinuities. This elimination of large discontinuities is done because Fourier 

transforms on these frames assume that these frame signals repeats infinitely and large 

discontinuities are interpreted as huge amount of energy, but this energy in reality does

not exist.
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Figure 1. Hamming Window Function

The next step involves applying a Fourier transform to each of the frames. Now in 

the frequency domain, we multiply the signal with its complex conjugate to get the 

squared magnitude signal, and at this point we lose the phase information. This loss is 

acceptable because most speech scientists are interested in how things are heard and 

perceived, and it is believed that the phase information in not important. The last steps 

are to take the logarithm of the squared magnitude signal and to apply an inverse Fourier 

transform which brings the signal back to the time domain, but it is not the same exact 

signal as logarithms were taken. The reason this is effective is that it makes the separation 

of the two sounds from two sources, the signal from the lungs and vocal folds and the
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vocal tract. The pressure from the lungs passing through the vocal folds of the speaker 

creates the impulse stream and the vocal tract is the other, which comprises of the sounds 

produced by the nasal and mouth cavities and articulators such as lips and tongue. In the 

feature extraction process we are more interested in the vocal tract, thus this process 

makes the separation of the source and the vocal tract easier.

1.7 Speech Database - King Corpus

To test the recognition system there is a need of a speech database consisting of 

speech samples from a set of speakers. Such a database used to model the speaker’s 

speech is usually termed as corpus. A corpus known as the king95 corpus [10] was used 

to train and test the recognition system. The king corpus was created from all male 

speakers at two different locations for research purposes. The speech was recorded in ten

different sessions. Each session being taken place in different time intervals and the 

topics to be spoken were changed from session to session.

All the sessions were recorded on two channels, namely wide-band and narrow- 

band. In each session the speaker is locked inside a quiet (not a sound proof) room with a 

headset to listen to the questions asked by other person located outside the room. The 

speaker hears the questions through the headset and answers. The response of the speaker 

is then recorded using two different microphones, a high quality and a normal telephone 

microphone. The speech recorded through the high-quality microphone corresponds to a 

wide-band channel. The narrow-band channel corresponds to the speech that has been 

received by a normal telephone and passed through the telephone exchanges and lines
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just as a normal long distance telephone call. In our experiments this narrow band portion 

of the corpus is being used.

1.8 Speaker Modeling - Hidden Markov Model (HMM)

The modeling of the speakers is done using Hidden Markov Models (HMM)[6].

A hidden Markov model is created for each speaker in the system. A HMM is a 

probabilistic finite state machine. HMMs are extensions of Markov models. A Markov 

model is a set of state transition probabilities for each instance of time, where states are 

observable events. This Markov model is extended to the hidden Markov model by taking 

the observable events to be probabilistic function of the state rather than as an observable 

event. It is called hidden because each state of the HMM is hidden, and is only visible by 

an other probabilistic function as the states in the HMM’s are probabilistic functions. 

Formally, HMM is defined by Rabiner [6] as a two-fold stochastic process in which one 

stochastic process is hidden and is observable only by an other stochastic process. There 

are three basic problems associated with the HMM’s:

• Given an observation sequence O and a model X how do we efficiently compute 

the probability of the observation sequence.

• Given an observation sequence O and a model X how do we choose the optimal

state sequence q.

• How to maximize an observation sequence by adjusting the model parameters.
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The solutions to these problems are explained in detail by Rabiner [6]. Below is the 

outline of these solutions. The same naming conventions have been followed for clarity.

The first problem of computing the probability of the observation sequence O = (oi 02

03.......Ot), has recursive methods called the forward and backward procedures. The

forward procedure follows on the concept of calculating the probabilities of all paths into 

a particular state at time t summed into a unit and this is taken as the probability of 

reaching that state. This sum of probability is again used to calculate the probability of 

reaching the succeeding states at time t+1. This is done upto a time T, and the 

probabilities of all states are summed at time T. The sum of all these probabilities gives 

the probability of the observation sequence over the model. The backward procedure is 

the same as the forward, expect for the fact that the probabilities of reaching different 

state at time T-l is calculated first and the process goes in reverse direction.

The solution to the second problem is the Viterbi algorithm. The is the algorithm 

used during parallel computing. This algorithm gives the best state sequence q = (qi q2 q3

.......qT) for a given observation sequence O = (01 o2 03.........oT). In order to find this best

state sequence we define §t (i) such that after t observations in the given observation 

sequence, the highest probability is to reach the state i. To keep these highest probability 

states and form the best state sequence we need to maintain another array denoted by 

Tt(_j) for all t (2<= t <= T), such that it gives the probability of the best path into state j at

time t.

Thus the St (j) and ^(j) are §iven bYthe expressions:

8t (j) = max 1 <=i<=N [St-i 0) aij] t>j(ot),
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^(j) = arg max 1<=i<=N [§t-i (i) ay], where 2<= t <= T and l<=j<=N

ay - is the probability of moving from the ith state to the jth state and bj(ot) - is the 

probability of being in state j at the observation ot in the observation sequence. All the Tt 

for t = T-l, T-2,..... , 1. give the optimal observation sequence.

The third problem of adjusting the model parameters is related to the process of 

training the models for the recognition system. The expectation-maximization method is 

used as a solution for this problem. First a good initial guess is made on the model 

parameters. Next the model is adapted to the to best suit the training data. This adaptation 

is done by adjusting the model parameters around the mean of the model data that is 

being used for training. The above process iterates for the number of mixtures specified. 

This algorithm guaranties convergence to a load maximum.

12



2. Architecture

2.1 Overview

The proposed architecture for a parallel speaker recognizer is based on a master- 

slave mechanism. The basic concept is that the master distributes the recognition tasks to 

the slaves and the slaves perform the tasks and return the result to the master when the 

computation is completed. The goal is to decrease recognition time by breaking up the 

task into smaller units and executing them in parallel on different processors.

2.2 Interface to the Existing System

The existing system is a serial implementation of the speaker recognition system.

This system thus runs on a single processor that determines which feature data needs to

be tested against the models and calls C code to perform the scoring of each model. The

C code is used to compute the likelihood of observing the feature data with respect to the 

models. The speech utterances which make up the feature data, and the model data which 

corresponds to the speakers are sent to the C code for the HMM likelihood calculations. 

This process of likelihood calculation needs to be performed for each of the segments of 

an utterance with respect to the models determined by the system. As a result, a large 

number of computations are generated on a single processor. Thus a parallel system is 

designed to execute these computations on multiple processors in parallel.
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The new parallel system interfaces with the existing one at the point where the 

testing process for the speakers begins. The master is hosted on the processor as a Matlab 

processor and the model and feature data are registered with the master. Upon creation, 

the master invokes slaves on different processors by using remote shell. Then the Matlab

process determines for each speaker which utterances (feature data) needs to be tested. 

For each of these test utterances, the Matlab process determines which segments (tokens) 

of the utterance needs to be tested with what models. Every test token and model pair 

requires a call to the C function. The Matlab process encapsulates these tasks by 

registering jobs on the master. Each job consists of a token and a set of models that need 

to be tested with respect to the token. Thus at this point there exist a number of jobs to be 

performed per speaker, as the likelihood calculation of the feature data need to be 

performed over a set of models. Now the master distributes these jobs to the slave 

processes and sends the required data to the slaves for job processing. The slave 

processes perform the jobs and return the likelihood calculations to the master, which in

turn returns them to the Matlab process.

2.3 Parallel Architecture

Figure 2 below shows the parallel architecture for the speaker recognition that is 

based on a master-slave model. The architecture assumes one master and a group of co­

operating slave running on different processors. The master runs on the same processor as 

the Matlab process. The slaves run on different processors and connect to the master. The

master creates a connection handler for each of the connected slaves. Once the master has

14



connected slaves it distributes the jobs to the slave. The master and the slaves use a 

message object to communicate. The slaves perform the jobs by calling a native C 

method and return the results of each job as they are processed to the master. The master 

collects these results and makes them available to Matlab only when the results of all the 

distributed jobs are available. Then a new set of jobs for the next utterance are created by 

Matlab and passed on to the master for distribution and the cycle continues till all the 

utterances to be tested are completed.
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2.4 Master Architecture

The master acts as a controller, which initiates the parallel process by starting the 

slave processes. The primary tasks of the master are load balancing and load distribution 

among the slaves besides gathering results from the slaves. A separate thread of

communication called the connection handler is created on the master for each initialized

slave. TCP sockets are used by the connection handler for communication between the

slaves and the master to ensure a reliable means of communication.

Once the slaves register themselves with the master along with the current load of 

their processors on with they are executing, the master does the initial load distribution. 

Depending on the load distribution algorithm used the master may or may not take the 

loads of the slaves processes into consideration for load distribution. The various load 

distribution algorithms are discussed below in the algorithms section. The master

distributes the data of all the models on to the connected slaves and then distributes the

jobs. After the distribution of the jobs the master listens to the slaves through the 

connection handlers by receiving message objects. The message objects encapsulate all 

the necessary information.

The master may receive one of the following messages: an overloaded message, a 

feature data request message, a deleted load message or a result message. When the 

master receives an overloaded message the master calls the load-balancing algorithm to 

adjust the load among processors. The various load-balancing algorithms that have been 

used to test the system are described in detail in the algorithms section. The basic concept 

of these load-balancing algorithms is to check if there exists at least one slave process,
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which is below the overload threshold. If an under loaded slave exists, then some or all

jobs (depending on the algorithm) from the overloaded slave are removed and added to 

the under loaded one. When a feature data request is received the master identifies which 

feature data is requested with the help of the feature identifier in the incoming message, 

and sends a message back to the slave with the feature data. When a deleted load 

messages is received the master saves the deleted job identifier in its own deleted jobs 

queue for distributing it to under-loaded slaves. The last type of message the master can 

receive is the result message, when a result message arrives the master saves the result in

one data structure.

The types of messages that the master sends out to slave are; delete load message 

and add load message. Both these messages are a result of the load balancing process. 

When a load-balancing algorithm decides to remove the load from the overloaded slave 

the master sends a delete load message with the number of jobs to be deleted. The 

identities of the specific jobs to be deleted are left to the discretion of the slave. The add 

load message is sent when the master decides to add the deleted jobs of an overloaded

slave to an under-loaded slave.

The master makes the results available to the Matlab process once all the distributed 

job results are computed by the slaves. Once the results are available the Matlab process 

accesses them and assigns new jobs to the master (if more utterances exit). This cycle 

continues till the Matlab process explicitly shuts down the master when the testing 

process on the utterances is complete.
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The master from time to time poles to accept connections from slaves, which could 

not connect previously. When a new slave connects to the master at a later time, the 

master assigns the deleted jobs to this slave if any. Otherwise a fraction of jobs from the 

slave that has the highest load at that instance are removed and assigned to the new slave. 

This fraction depends on the load of the highly loaded slave.

2.5 Slave Architecture

The primary task of the slave is to perform the jobs assigned to it by the master. 

The slave invokes a separate thread for monitoring load on the processor on which it 

runs. This load information is sent to the master if the slave successfully connects to the 

master. The initial load distribution process of the master may use this load information 

to distribute the existing jobs by populating the job queues of the slaves.

The slave process executes the jobs from the queue on a first-in first-out manner. 

Before dispatching a new job the slave checks the load on the processor on which it is 

running. If the load is above a threshold value it enqueues the job and sends an 

overloaded message to the master and waits for the master’s reply. Depending on the 

master’s reply the slave removes some or all jobs or continues processing without 

removing any jobs. If the master sends a delete jobs message the slave dequeues the 

specified number of jobs form the beginning of its job queue and sends the job identifiers 

of these deleted jobs to the master to inform it about which jobs have been deleted. If the 

slave processor is not overloaded the slave dequeues the job from its job queue and 

checks if the required feature data are locally cached or not. If the required feature data is
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not cached on the slave, a feature data request message is send to the master and the job 

is enqueued. When the feature is locally cached the slave processes the job and sends the 

result to the master. The slave may also receive an add load message from the master. 

When this message is received the slave enqueues the new jobs on to its job queue. When 

all the jobs assigned to the slave are completed it waits for the master to send new jobs.

2.6 Protocols

All the communication between the master and the slave is through the 

connection handlers, which run as separate threads on the master’s processor. The 

communication is strictly through the exchange of message objects over the connection

handlers. The list of different kind of messages are shown in Table 1. The slave

communicates with the native function using JNI (Java Native Interface).

The slaves invoke a native method in C (that resides on the same processor) for 

the hidden Markov model likelihood calculations for the respective models assigned if

the feature data is available. The result of the likelihood calculation of each model over a

particular feature data is then sent to the master in an appropriate message format. The

slave periodically reads a load variable that is updated by the monitor load thread that 

determines the load on the processor on which the slave is running. If the load exceeds a 

threshold value, a message is sent to the master indicating the overloaded state. Upon the 

arrival of overload messages from one or more slaves, the master performs load 

balancing by removing some jobs from the overloaded slaves and reassigning them to the 

ones that are not overloaded. For this process of load-balancing the master sends a delete
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jobs message to the overloaded slave to remove a specified number of jobs, the slave 

return the job identifiers of the deleted jobs. These deleted job identifiers are then stored 

on the master, which reassigns to the slaves that are not overloaded depending of their

load information

Index Message Type Description

1. Message Basic message type. Used to by the master to add jobs and

to request the deletion of jobs to slaves. The slaves use it

for reporting overload state and sending deleted jobs.

2. Feature Request

Message

Used by the slave to request feature data from the master.

3. Feature Data Used by the master to send requested feature data to the

Message slave.

4. Result Message Used by the slave to return the model likelihood scores.

Table 1. Types of Messages

2.6.1 Job Processing

Each job in the job queue assigned to the slave consists of a feature data and a set

of models with which the feature data needs to be scored. Each model is to be scored 

individually with the feature data which needs a native function call. Therefore each job
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consists of sub-jobs that need to be processed individually. A sub-job has one feature

identifier and one or more of model identifiers. The slave uses the model and feature

identifiers as keys to obtain the model and feature data respectively from the slave 

repositories. Building function calls for each of them with the appropriate model and 

feature data processes the sub-jobs. The result of each function call of a sub-job are 

packed and sent to the master as result message for a job.

2.6.2 Slave Master Communication protocol

Figure 3 below shows the basic communication protocol between the master and

the slaves. Each slave connects to the master’s socket and registers itself by passing its

machine name and the load of the processor on which it is executing. The master creates 

a connection handler for the connected slave and assigns a unique identifier to the slave.

The master now sends the model data to the slave over the socket. The jobs registered on

the master are distributed to according to the load distribution algorithm. A job queue 

consisting of the assigned jobs to the slave is built and sent over the socket. Each job in 

the queue is a collection of sub-jobs. The detailed description of the job processing is 

described in section 2.7.2. The slave dequeues a job from the job queue, identifies the 

sub-jobs and processes them by passing the appropriate data to the native C function 

using JNI. The slave checks whether a copy of the required feature data to process the job 

is locally cached or not. If it is not cached, then a request is sent to the master in the form 

of a feature data request for the desired feature data by passing the feature identifier. 

When the master receives a feature data request message it uses the feature identifier
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from the message as a key to retrieve the feature data from its feature data repository. 

This feature is sent to the requesting slave. When the feature data arrives, the slave stores 

it in its repository with feature identifier as its key. Once all the sub-jobs within a job are 

complete the result of all the sub-jobs are packed sent to the master as a single result

message.

Master Slave

registering with name and load

assigns identifier

sends model data

sends the job queue

feature data request

feature data

◄.................

result

job queue empty

Figure 3. Slave - Master Communication Protocol
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2.6.3 Slave Processor Overloaded

Figure 4 below shows the communication protocol when the slave enters an 

overloaded state. Every slave has a load threshold level associated with it. When a slave 

exceeds this threshold it sends an overloaded message to the master. The master upon 

receiving such a request, checks for a lightly loaded slave exists and the number of slaves 

which are already in overload state. If such a lightly loaded slave exists and the number

of slaves in overloaded state are less than half the number of slaves connected, then the

master sends a delete load message with the some or all jobs to be removed from the 

overloaded slave. This number is directly proportional to the current load of the 

overloaded slave. If a lightly loaded slave does not exist in the system a delete load 

message is send to the slave with zero number of jobs to be deleted.

Upon receiving a delete load message, the slave checks the number of jobs to be 

deleted in the message. If this number is zero, then the slave continues processing jobs. If 

the number is greater than zero, the slave dequeues the requested number of jobs to be 

deleted from its job queue and sends the identifiers of the dequeued jobs to the master in 

the form of deleted jobs message. Upon receiving a deleted load message, the master 

reads the job identifiers that have been deleted and stores the identifiers in its deleted job 

identifier data structure for distributing them to the lightly loaded slaves.
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Master Overloaded Slave

overloaded message

delete load message

deleted job Ids

Figure 4. Slave Processor Overloaded

2.6.4 Slave Processor receiving additional load

Figure 5 below shows the communication protocol of the master distributing 

deleted jobs (received from the overloaded slave) to a lightly loaded slave. When the 

master processes a non-empty deleted job identifies data structure, it uses these identifiers 

as keys to obtain the jobs from its job repository and build up a queue of all the deleted 

jobs. The master now empties the deleted job identities data structure. The built deleted 

job queue is then send to the lightly loaded slave in the form of an add load message.
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Upon receiving such a message the slave enqueues the jobs in the message to its job 

queue, and continuos processing jobs from the queue.

Master Lightly Loaded Slave

registers with name and load

assignsidentifier

sends model data

sends the job queue

feature data request

feature data

result

add load message with job queue

Figure 5. Slave Process receiving additional load
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3. Algorithms

3.1 Overview

The proposed algorithm for the parallel speaker-recognition system is based on

master-slave architecture. The existing serial system had a single Matlab process that 

called library C functions to calculate the HMM likelihood’s. The testing process

involves a number of utterances, which contain one or more tokens to be tested for HMM

likelihood calculations against a number of models in the system. The algorithm starts by 

checking if the user has requested parallel or serial execution. If the user chooses not to

run in parallel then the serial system is allowed to execute or else a master is created and

the model data is registered on the master. Once the master is registered the Matlab

process continues and determines the models that need to be tested against each of the

tokens. Based on this information the jobs are created and registered on the master. Each

job represents a token and a number of models that need to be tested against it. The job

also requires other values associated with the token for the HMM likelihood 

computations. The Matlab process computes these values for each of the tokens that need 

to be tested and then the jobs on the master are updated with these values.

The master uses the load distribution algorithms to distribute the jobs. The various 

load distribution algorithms are discussed in the section 3.3. If the load of the processor 

on which the slave is running goes above a certain threshold, the master uses the load 

balancing algorithm to balance the system’s work load. The load-balancing algorithm is 

discussed in the 3.4. The purpose of these algorithms is to speed up these calculating by
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performing the HMM likelihood calculations in parallel on multiple processors, which 

would result in the improvement of over all throughput of the recognition system.

3.2 Assumptions

There are certain assumptions that are made regarding the system. These 

assumptions do not weaken the algorithms but are necessary for its successful working. 

The system has been implemented with the following assumptions:

1. The master assigns a unique identifier to each slave that has successfully of 

connected to it. The assignment of these identifiers is in sequentially 

increasing order.

2. The master and the slave communicate only by using a message object after

initialization.

3. Messages between the master and the slave are never lost.

4. The master contains information about all the slaves but the slaves do not

contain any information about each other.

5. A remote file copy is required to copy the slave file if the processor on which 

the slave is executing has a different file system from the master.
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3.3 Load Distribution Algorithms

The load distribution algorithm used by the master is to distribute the jobs that 

have been registered by the Matlab process. Job queues are built for each of the slaves 

and sent over the socket for processing. The load distribution algorithms determine the

number of jobs in each slave’s queue. Three different algorithms have been evaluated.

3.3.1 Processor load based distribution

This algorithm uses the load of the processor on which the slave is executing. The 

number of jobs assigned is inversely proportional to the load. The load used is the 

average load of the processor over the past 5 minutes. This load figure corresponds to the 

average number of jobs in the run queue of the processor over the past 5 minutes. The 

number of jobs assigned to an ith machine ( M(i)) is given by the formula:

M(i) no_ofjobs = ((I L(i) - L(i)) / I L(i) )* no.ofjobs

Where L(i) is the load of the ith machine.

3.3.2 Processor Clock speed based distribution

This algorithm uses the clock speed of the machine processors on which the slave 

is executing. The speed used is the clock frequency of the processors. Speeds of all 

processors of the machine are added and this value as a whole is taken as a basis for 

distribution. The number of jobs assigned is directly proportional to the value. This value
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is termed as the processing power of the machine. The number of jobs assigned to an ith 

machine is given by the formula:

M(i) no_ofJobs = M(i) / x M(i) * no_of_Jobs

Where M(i) is the processing power of the ith machine.

3.3.3 Computation speed based distribution

This algorithm finds the number of floating point operations per second that can 

be performed by the processor. The number of jobs assigned is directly proportional to 

the number of floating point operations per second. This algorithm has not been 

implemented, as this information was not available with the system administrators.

3.4 Load-balancing Algorithms

The load-balancing algorithm used by this architecture is based on a sender- 

initiated load-balancing technique. When the slave load exceeds a certain threshold a 

message is sent to the master to inform its state. The master then performs the load­

balancing by sending a message to the overloaded slave to delete some assigned jobs. 

The number of jobs deleted from the slave depends on the current load of the slave. The 

slave deletes the requested number of jobs and sends them to the master. The slave then 

proceeds with the processing of the remaining jobs. If the slave is highly overload the 

master sends a delete all jobs message and halts the slave. The deleted jobs are stored on

the master. The master then assigns these to other slaves, which are not overloaded.
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3.5 Theoretical Efficiency

The efficiency of the parallel speaker recognition system with respect to the 

conventional speaker recognition system with no parallelism can be evaluated by 

estimating the time taken by the parallel system. The various factors in evaluating the 

parallel speaker recognition system are:

• The time taken by the master to start and have the slaves connect and establish

communication channel.

• The computation time taken by the Matlab process to convert the model data 

to Java objects.

• The communication time for the master to send model data to the slaves.

• The computation time taken by the Matlab process to convert the feature data 

to Java objects for all the phases for each test utterance.

• The computation time taken by the Matlab process to create the job table.

• The computation time taken by the master to distribute load using the load­

balancing algorithm and to build the job queue.

• The communication time for the master to send job queues to the slaves.

• The computation time taken by the slaves to identify sub-jobs and data 

requirements.

• The communication time taken by the slaves to request uncached feature data

and receives it.
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• The communication time for the slaves to call the native C function using JNI

and receive the likelihood scores.

• The communication time for the slaves to send the result to the master.

• The computation time taken by the master to group all results and make it 

available to the Matlab process in an appropriate format.

• Delays involved in starting and stopping communication for each new phase

and test utterance.

The above points clearly illustrate that both extra communication and 

computation are required for a parallel speaker recognizer. For obtaining a performance 

improvement the time taken by the actual computation should be greater than the extra 

communication and computation. Communication over the sockets is expensive therefore 

the actual computation task given to the slave should be large enough to make this 

communication over head small. Therefore considerable thought has to be given to the 

size of jobs assigned to the slaves.

The efficiency of the parallel system is given by [8]:

Efficiency - Execution time using one processor * processor clock speed 
Execution time using multiprocessor * processor speed (i)

Where processor speed(i) is the speed of the ith machine (slave) used
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4. Results

4.1 Input Parameters

A number of tests are performed to evaluate the performance of the system. These 

tests are the basis of the proof of concept, which is to show that parallelism increases the

throughput of a recognition system. The tests are first run in the serial mode on the fastest 

machine that will be used in the parallel tests. The results thus obtained are stored for 

later comparisons with the parallel output. Then the same tests are run in parallel on

machines that are equal or slower in speed to the machine that was used for the serial

testing.

Primarily three types of tests are performed. The first one uses Viterbi decoding 

of single-state 48 mixture HMMs, which were trained with 90 seconds of speech. The 

next two tests involve Viterbi integral decodes, one of them uses Error modeling and the 

other Asymptotic upper bound. These two methods differ in the procedure by which they 

find the integral decode around the observation point. The Error model is dependent of 

the feature data being tested, whereas the Asymptotic is independent of it. These two 

basic types of integral decodes are in use by the serial system to evaluate the integral 

decode around the observation point. The details of these methods are beyond the scope 

of this thesis. All the above tests are repeated for one, three and five second tokens. The 

token length corresponds to the length used to divide the 30 seconds speech sample into

small chunks to obtain the tokens. Therefore we have different number of tokens for the

same speech data with varying token length. The smaller the token length the greater the
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computation required as the number of segments which can be obtained from the 30 

second sample increase.

4.2 Expected Results

It is expected that the parallel test throughput is better than that of the serial. Also 

the throughput of the parallel tests must improve as the number of slaves increases upto a

certain number of slaves, and deteriorate as the number of slaves are decreased.

The throughput of the parallel system is not always better than the serial 

throughput. For the parallel system to obtain better throughput the computation time of 

the jobs distributed by the parallel system should be greater than the communication time 

plus the extra computation time to execute the system in parallel. The greater the 

difference between the job computation time and the sum of communication and extra

computation of the parallel system, the better throughput achieved. Thus a performance 

improvement is not expected for first kind of test that uses Viterbi decoding of single­

state 48 mixture HMMs, as the communication time plus the extra computation time 

exceeds the computation time of the job itself. The performance improvement is expected 

in all the cases where integration is involved, irrespective of the method and utterance

length used.
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4.3 Functional and Reliability testing

These tests are performed for testing the parallel system for functionality 

correctness and reliability. The functionality correctness test includes the testing of the 

load balancing function of the system when one or more slaves entered the overloaded 

state and the load balancing function which distributes the load (jobs) among slaves. 

Forcing the machine of on which the slave is executing to the overload state by 

consuming its processor cycles by executing programs with infinite loops tests the load 

balancing functionality. This will increase the load on the machine, which in turn

increase the load and send the slave into the overload-state. One or more slaves are made

to enter the overload-state in the manner described above and the behavior of the system 

is analyzed. The load balancing algorithms are tested one at a time. Starting slaves on

machines that are loaded at different levels to test the processor load based load­

balancing algorithm. In a similar way starting slaves on varying clock speed processors 

tests the processor clock speed based load-balancing algorithm.

The stress testing are performed to analyze the reliability of the system. This test 

involves the killing one or more of the slaves explicitly by the user and observing the 

behavior of the system. Adding a new slave and restarting a killed slave is also done it

this test.

4.4 Performance Improvement

The serial and parallel results below in tables 2, 3 & 4 show how well the parallel 

system has improved the performance. The first table shows the results from the serial
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tests. The test identifier, machine name, elapsed time, number of speakers, token size and 

the method for the tests are specified for these serial tests. The token size corresponds to 

the length of the token utterance and the method specifies the type of test performed.

Test No. Machine Name Elapsed Time No.
Speakers

Token

Size

Method

1. Mozart lmin 26sec 9 5 sec Viterbi
decoding

2. Mozart lmin 25sec 9 3 sec Viterbi
decoding

3. Mozart lmin 27sec 9 1 sec Viterbi
decoding

4. Mozart 4hrs 22mins 9 5 sec Error model

5. Mozart 4hrs 29mins 9 3 sec Error model

6. Mozart 4hrs 40mins 9 lsec Error model

7. Mozart 6hrs 19mins 9 5 sec Asymptotic

8. Mozart 6hrs 28mins 9 3 sec Asymptotic

9. Mozart 6hrs 36mins 9 lsec Asymptotic

Table 2. Serial Test Results

The results of the same tests that are run in parallel are given in the parallel test 

results table with the same test identifier. In the parallel test results table additional fields 

for slave machine names, time gain with respect to the serial tests, efficiency and master 

machine name have been created. Efficiency has been calculated using the formula on 

page 33. The processor speeds are obtained from table 4, the list of available machine 

configurations. Fields, time gain and efficiency gives the performance improvement of

the system with respect to the serial execution.
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Test
No.

No. of
Slaves & 
Machine 
Name

Time
Elapsed

Time

Gain

Efficie
ncy

Toke
n
Size

No. of
Speakers & 
Method

Master

1. 2 Mozart
1 Weasel

16 mins
19 secs

-14 mins
53 secs

0.035 5 sec 9, Viterbi 
decoding

Goliath

2. 2 Mozart
1 Weasel

17 mins
34 secs

-16 mins
09 secs

0.032 3 sec 9, Viterbi 
decoding

Goliath

3. 2 Mozart
1 Weasel

61 mins

0 secs

-59 mins

33 secs

0.009 lsec 9, Viterbi 
decoding

Goliath

4. 2 Mozart

1 Weasel

1 Bach

lhrs
48mins

2hrs

34mins

0.82 5 sec 9, Error 
model

Goliath

5. 2 Mozart

1 Weasel

1 Bach

2hrs
01 mins

2hrs
28mins

0.75 3 sec 9, Error 
model

Goliath

6. 2 Mozart

1 Weasel

1 Bach

2hrs
27mins

2hrs

13mins

0.65 lsec 9, Error 
model

Goliath

7. 2 Mozart

1 Weasel

1 Bach

2hrs
41 mins

3hrs

35mins

0.80 5 sec 9,
Asymptotic

Goliath

8. 2 Mozart
1 Weasel
1 Bach

2hrs
45mins

3 hrs
43mins

0.80 3 sec 9,
Asymptotic

Goliath

9. 2 Mozart
1 Weasel
1 Bach

3hrs
14mins

3hrs
42mins

0.69 lsec 9,
Asymptotic

Goliath

Table 3. Speed Based Distribution - Parallel Test Results
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Test
No.

No. of
Slaves &
Machine 
Name

Time
Elapsed

Time
Gain

Efficie
ncy

Toke
n
Size

No. of
Speakers & 
Method

Master

1. 2 Mozart
1 Weasel
1 Bach

13 mins
59 secs

-12 mins
23 secs

0.040 5 sec 9, Viterbi 
decoding

Goliath

2. 2 Mozart
1 Weasel
1 Bach

21 mins
10 secs

-19 mins
45 secs

0.026 3 sec 9, Viterbi 
decoding

Goliath

3. 2 Mozart

1 Weasel
1 Bach

52 mins
06 secs

-50 mins
39 secs

0.011 lsec 9, Viterbi 
decoding

Goliath

4. 2 Mozart

1 Weasel

1 Bach

2hrs
05mins

2hrs

21 mins

0.71 5 sec 9, Error 
model

Goliath

5. 2 Mozart

1 Weasel

1 Bach

2hrs
24mins

2hrs
05mins

0.63 3 sec 9, Error 
model

Goliath

6. 2 Mozart

1 Weasel

1 Bach

2hrs
44mins

lhrs

56mins

0.58 lsec 9, Error 
model

Goliath

7. 2 Mozart

1 Weasel
1 Bach

3 hrs
09mins

3hrs
lOmins

0.68 5 sec 9,
Asymptotic

Goliath

8. 2 Mozart
1 Weasel
1 Bach

3 hrs
50mins

2hrs
38mins

0.57 3 sec 9,
Asymptotic

Goliath

9. 2 Mozart
1 Weasel

1 Bach

4hrs
21 mins

2hrs
35mins

0.52 lsec 9,
Asymptotic

Goliath

Table 4. Load Based Distribution - Parallel Test Results
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Index Processor Name No. of Processors Processor’s Speed

1. Bach.cs.fiu.edu 1 300 MHz

2. Dizzy.cs.fiu.edu 1 167 MHz

3. Goliath.cs.fiu.edu 2 400 MHz, 400 MHz

4. Grads.cs.fiu.edu 2 148 MHz, 148 MHz

5. Mozart.cs.fiu.edu 2 750 MHz, 750 MHz

4. Weasel.aul.fiu.edu 2 400 MHz, 400 MHz

Table 5. Available Machines Configuration

4.5 Analysis and Contributing Factors

Our results show that there is an improvement in throughput when error modeling 

and asymptotic methods of integral decode is being used. This proves that the concept of 

parallelism works for reducing the throughput of a speaker recognition system. These 

tables also show a decrease in the throughput when the Viterbi decoding with single-state 

48 mixture HMMs was performed as expected.

The primary contributing factor for the improvement in the throughput time is 

clearly due to executing the jobs in parallel for both error model and asymptotic tests. 

The jobs associated with these tests needed large computation time. The performance 

improvement is due to the fact that this computation time exceeded the time for extra 

computation to run the system in parallel plus the communication time with the slaves.
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The efficiency for these tests in most cases show that with 3 to 4 slave machines, less 

than 25% of the processing time is spend on communication and extra computation to run 

the system in parallel. Thus as a large fraction of the total processing time is used for 

processing the jobs (likelihood scores calculations) there is a good increase in throughput.

The tables also show that the efficiency obtained using the speed-based load

distribution is better than the load- based distribution. This is due to the fact that, in load- 

based distribution the load gets distributed evenly when all the machines are lightly 

loaded. This results in larger number of jobs processed on lower speed machines.

There is a decrease in performance improvement in the case when Viterbi

decoding with single-state 48 mixture HMMs is used because the jobs associated with it 

required less processing time. The computation time associated with these jobs was less 

than the communication time and extra computation time. The communication time per 

first phase remains constant irrespective to the type of method, thus this time had an 

adverse affect on the efficiency of the system in this case. This shows that an 

improvement in throughput can be achieved only when good amount of computations a 

can be given to the slaves. Both error modeling and asymptotic also use the Viterbi 

decoding, but along with integration. This makes the jobs associated with these methods 

have large computation time. Thus we see an increase in performance.

4.6 Reliability and Robustness

This system has a high degree of robustness with respect to the slave side,

but is less a low robust at the master side. The events of slaves crashing and recovering
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are handled gracefully. The system can stand most of the unexpected interrupts on the 

slave side. But in the event of the master crash the system does not recover. As the master 

and the Matlab process runs on the same processor, the recovery of the master in the 

event of a crash is not of any help as the Matlab process itself dies. This is clearly due to 

the fact that the Matlab process runs on a single processor and is not an architectural 

flaw. The architecture of the system has the normal limitations of slave master

architecture - the centralized control that is not reliable.

Tests were performed for measuring the reliability of the system. The system was 

able to recover from the explicitly killed slaves. The jobs of the killed slave were 

assigned to other running slaves in the system. In the event when the slave was restarted 

the master accepted the slave and assigned it new jobs. Thus the reliability of the system 

with respect to the slaves side has been proved to be good.
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5. Conclusions

5.1 Contributions

Parallelism has not been used till date to increase the throughput of a speaker 

recognition system. This concept of the parallel speaker recognizer proves that 

parallelism can be used to increase the throughput of the recognizer. This thesis is a step 

towards large-scale speaker recognition system which does the recognition process on 

multiple speakers in parallel. Such large-scale speaker recognition systems have many 

applications, some of them being an automated telephone call bank, a credit card 

verification process done by the merchant over the telephone and many more of such 

kind. The large-scale systems cannot be dependent on good pruning techniques for an 

optimum throughput as multiple speaker use the system at the same time, processing one 

speaker a time will delay the processing of other speakers in queue. Parallelism seems to 

be one of the better ways and this has been proposed here with this thesis. The results 

obtained can be used to compare performance of other techniques.

5.2 Future Work

As mentioned in section 5.1, this thesis is a step towards the large-scale speaker 

recognizer. The primary task of the future work would be to extend the system to handle 

more than one recognition process at any given time, and processing these tasks in 

parallel.
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Other future tasks are to optimize the existing system. The processing of the 

message form the slaves can be handled at the connection handler’s level that would 

avoid the bottleneck at the master. The slaves can be kept busy all the time by populating 

there job queues as soon as they are empty, to avoid the loss of computation time. Jobs of 

only one utterance are distributed at a time and the Matlab process waits until all the 

results of the jobs return, as of the present design. A better throughput could be achieved 

by distributing jobs of more than one utterance at a time. This would result in larger jobs

to be distributed at once, which decreases the communication overhead. More

sophisticated load distributing and load balancing techniques can be used distribute the 

jobs to use the better available computing processors. The system can be decentralized 

and made more reliable by having multiple masters.
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