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Fig. 3.5 Percent Symbiodiniaceae Community Variation explained by each of 

Species, Genet, and Depth 
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Fig. 3.11 Linear Regression between Growth and Competitive Ability  

 

 

 

Fig. 3.12 Linear Regression between Genet-wide Survivorship and Competitive 

Ability 
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Fig. 3.13 Linear Regression between Genet-wide Growth and Survivorship 

 

 

 

 

 

  

 

 

 

 

 

     

      

        

         

        

 

      

 

      

        

         

        

 

      

        

         

        

 

     
       

 

        

         

        

 

        

         

        

 

     
      

         
 

         

        

 

         

        

 

        

 
 

Fig. 3.14 Genet-wide Ranking by 
Performance: Repeated rank values are the 
results of ties amongst genets. N/A records of 
F23 for growth and competition are a result of 
F23's complete mortality prior to the one year 
sampling point.
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CHAPTER 4: Symbiotic Immuno-suppresion: is Disease Susceptibility the Price of 

Bleaching Resistance? 

 The following chapter was published in PEERJ on 17 April 2018. Its text and 

figures are reproduced here with the permission of me, the copyright owner, Daniel 

Merselis. It was submitted on 19 September 2017 and accepted on 22 February 2018. 

 Symbiotic Immuno-suppresion: is Disease Susceptibility the Price of 

Bleaching Resistance? 

 

Daniel G Merselis1, Diego Lirman2, and Mauricio Rodriguez-Lanetty1 

 

1. Department of Biological Sciences, Florida International University, Miami, USA 

2. Department of Marine Biology and Ecology, University of Miami, Miami, USA 

Running Title: Symbiotic Immuno-Suppresion 

 

4.1 Abstract: 

Accelerating anthropogenic climate change threatens to destroy coral reefs worldwide 

through the processes of bleaching and disease. These major contributors to coral 

mortality are both closely linked with thermal stress intensified by anthropogenic climate 

change. Disease outbreaks typically follow bleaching events, but a direct positive linkage 
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between bleaching and disease has been debated. By tracking 152 individual coral ramets 

through the 2014 mass bleaching in a South Florida coral restoration nursery, we revealed 

a highly significant negative correlation between bleaching and disease in the Caribbean 

staghorn coral, Acropora cervicornis. To explain these results, we propose a mechanism 

for transient immunological protection through coral bleaching: Removal of 

Symbiodinium during bleaching may also temporarily eliminate suppressive symbiont 

modulation of host immunological function. We contextualize this hypothesis within an 

ecological perspective in order to generate testable predictions for future investigation. 

 

4.2 Introduction: 

Anthropogenic climate change threatens to destroy coral reefs globally before the end of 

the century (Hoegh-Guldberg et al., 2007; Hoegh-Guldberg, 2014). Increasing frequency, 

severity, and duration of thermal anomalies have caused increased coral bleaching and 

disease outbreaks (Harvell et al., 1999, 2002; Bruno et al., 2007; Hoegh-Guldberg & 

Bruno, 2010; Ruiz-Moreno et al., 2012; Randall & van Woesik, 2015). Coral bleaching 

represents the breakdown of the obligate mutualism between dinoflagellates of the genus 

Symbiodinium and reef building corals. This breakdown results in decreased coral 

growth, fecundity, and survivorship, as the loss of photosynthetic Symbiodinium deprives 

corals of up to 95% of their energetic budget (Muscatine & Porter, 1977; Glynn, 1983; 

Harriott, 1985; Goreau & Macfarlane, 1990; Szmant & Gassman, 1990; Baird & 

Marshall, 2002). Coral tissue-loss disease outbreaks frequently follow bleaching events 

(Harvell et al., 2001; Muller et al., 2008; Brandt & Mcmanus, 2009; Cróquer & Weil, 
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2009; Miller et al., 2009; Precht et al., 2016; Lewis et al., 2017) and, like bleaching, are 

linked to thermal anomalies (Selig et al., 2006; Bruno et al., 2007; Brandt & McManus, 

2009; Cróquer & Weil, 2009; Ban, Graham & Connolly, 2012; Ruiz-Moreno et al., 2012) 

as well as poor water quality (Haapkylä et al., 2011; Vega Thurber et al., 2014). Many of 

these diseases remain poorly characterized and may represent the invasion of one or more 

opportunistic microbes or viruses (see Lesser et al. 2007 and Bourne et al. 2009). Koch’s 

postulates have been fulfilled for several coral diseases, but some of these same diseases 

have later been induced by alternative etiological agents, indicating that signs of coral 

maladies may constitute syndromes with many potential pathologies rather than a 

singular pathology (Denner et al., 2003; Lesser et al., 2007; Sunagawa et al., 2009; 

Sutherland et al., 2011; Lesser & Jarett, 2014). Like bleaching, coral tissue loss diseases  

can cause coral mortality, reduce coral growth and fecundity, and are recognized as major 

drivers of coral reef decline (Richardson et al., 1998; Harvell et al., 2001; Patterson et al., 

2002; Miller et al., 2006, 2009; Weil, Cróquer & Urreiztieta, 2009) Coral tissue loss 

diseases (as opposed to diseases resultant in discoloration or abnormal growth form) are 

the focus of this study. 

Whether tissue loss disease outbreaks follow bleaching events on a correlational or causal 

basis is a topic of debate (Bruno et al., 2007; Muller et al., 2008; Brandt & McManus, 

2009; Cróquer & Weil, 2009; Ban, Graham & Connolly, 2012). A causal relationship 

between the two conditions is intuitive as starvation induced by bleaching could lead 

towards increased coral host susceptibility. Muller et al. (2008) and others demonstrated 

that a relationship between temperature and disease prevalence could be found during a 

bleaching year as opposed to non-bleaching years and further correlated that mortality 
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due to disease was correlated to temperature in bleached, but not unbleached corals.  

Furthermore, there is a relationship between mean percentage of bleached corals and 

prevalence of several diseases in numerous Caribbean scleractinian genera (Brandt & 

McManus, 2009; Cróquer & Weil, 2009). These relationships correlate bleaching and 

disease, but do not necessarily link them mechanistically. The co-occurrence of bleaching 

and tissue loss diseases is expected even if the two conditions are mechanistically 

independent, because bleaching and tissue loss diseases are both enhanced by thermal 

stress (Glynn & D’Croz, 1990; Bruno et al., 2007; Lesser, 2011). Monitoring at the 

population level can indicate correlation between bleaching and disease, but cannot be 

used to prove a mechanistic link. A causal relationship between bleaching and disease 

would leave a pattern of co-occurrence when monitored at the individual level (i.e., 

bleached individuals should have significantly greater rates of disease). As such, 

monitoring efforts which perform repeated transects without tracking individuals may be 

unable to differentiate a causal or correlational relationship (Cróquer & Weil, 2009). 

Population and community level co-observation between bleaching and disease linked by 

a common environmental driver should not be construed as a dependency between them. 

Contrary to this expected pattern of correlation, white band disease on the Great Barrier 

Reef has had a negative spatial correlation to bleaching events, even though the disease 

was correlated with thermal anomaly (Bruno et al., 2007). Further, geographically 

predictive models for white syndrome outbreaks are not improved by the incorporation of 

information known to accurately predict coral bleaching (Ban, Graham & Connolly, 

2012). This work suggests a correlational rather than causal relationship, because these 

disease outbreaks are not enhanced by prior bleaching. 
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At a physiological level, immunological markers respond to bleaching conflictingly; 

prophenol oxidase and peroxidase activity may increase during bleaching, while phenol 

oxidase, lysozyme-like, and microbial antibacterial activity decline (Ritchie, 2006; 

Mydlarz et al., 2009; Palmer, Bythell & Willis, 2011). The coral mucus layer acts both as 

a physical barrier to infection and a point of first contact/adhesion for an infectious agent 

(Banin et al., 2001; Brown & Bythell, 2005). It is largely produced with resources from 

Symbiodinium, and its production is therefore dependent upon the mutualism between 

Symbiodinium and coral host(Brown & Bythell, 2005). 

In the present study, monitoring for bleaching and tissue loss disease was carried out in 

restoration nursery. Coral nurseries provide a unique opportunity for monitoring, because 

histories of environmental conditions and genetic backgrounds is known in these 

common gardens(Lirman & Schopmeyer, 2016). Mother colonies are often fragmented 

many times, resulting in clonal individual colonies known as ramets ideal for replication. 

The collection of all these clonal ramets descendant from a single mother colony are 

known as a genet, although this is frequently referred to as a genotype in the restoration 

literature (Baums, 2008).  

Individual Acropora cervicornis ramets were monitored during a bleaching event and 

subsequent recovery in an in situ coral nursery located near Miami, Florida, USA to 

elucidate patterns of correlation between bleaching and disease (Lirman et al., 2014). All 

of the ramets tracked had been at the nursery (common garden) for at least 3 years prior 

to the onset of bleaching.  
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We hypothesized that bleached ramets should be more susceptible to disease than their 

unbleached counterparts and that certain coral genets would have genetic pre-dispositions 

towards disease and bleaching resistance or susceptibility. Our results confirmed our 

hypothesis regarding the effect of genet. However, to our surprise, results revealed a 

significant negative correlation between bleaching and disease. These findings lead us to 

postulate a model whereby Symbiodinium may suppress host immunity. According to this 

theoretical framework, bleaching events may be associated with a transient increase in 

host immunological capacity, despite the nutritionally detrimental loss of Symbiodinium. 

 

4.3 Materials and Methods: 

The strong El Niño Southern Oscillation (ENSO) event that occurred in 2014 triggered 

mass coral bleaching events and subsequent disease outbreaks in the Greater Caribbean 

and the Florida Reef Tract (Manzello, 2015; Precht et al., 2016; Lewis et al., 2017). 

Ramets of A. cervicornis propagated since 2007 within the in situ University of Miami 

"North Nursery" at N 25.488; W 80.109 were monitored by the same observer using 

SCUBA at four time points (September and November 2014, January, and March 2015) 

under permits SAL-14-1086-SCRP, BISC-2014-SCI-0018, and BISC-2015-SCI-0018. 

. Within the nursery, multiple ramets belonging to the same genet grow on individual 

pedestals raised off of a common cement block. Each block containing clonal ramets 

belonging to the same genet rests on a sand bottom all within approximately 100 meters 

of each other at an approximate depth of 7 meters. No ramets were in physical contact for 

the duration of the study. During the bleaching event and subsequent recovery, lasting 
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from September 2014 through March 2015, 152 ramets representing 21 A. cervicornis 

genets were tracked. These genets were previously genotyped and identified as 

genetically distinct  using microsatellite markers (Baums, Miller & Hellberg, 2005; 

Baums et al., 2009; Lirman et al., 2014). During every time point, each ramet was 

photographed and scored for presence or absence of bleaching using a calibrated 

colorimetric card as a reference (Siebeck et al., 2006). Any visible presence of disease 

was also recorded when an easily discernible linear boundary between apparently 

normally pigmented (tan to brown) tissue and transparent tissue and visible skeleton was 

observed. Each ramet was then assigned to one of the following categories based upon 

observations: “bleaching without disease”, “bleaching with disease”, “no bleaching 

without disease”, or “no bleaching with disease”. Manifestation of a tissue loss condition 

was noted as disease, because it followed a linear progression of tissue loss from the base 

progressing towards the tips in a manner similar to white band disease. However, our 

study did not fully explore the pathogenesis of this phenomenon and it should properly be 

referred to as a tissue loss disease. The individual history of one ramet throughout the 

entire duration of the study was considered the experimental unit, so that if a ramet 

bleached, recovered, and later experienced disease, it was grouped as “bleaching with 

disease” even though bleaching and tissue-loss conditions never co-occurred.   

 A Fisher's exact test was employed to detect significant effect of genet on 

likelihood of bleaching or disease. To determine which genets were significantly different 

from each other, a Bonferroni corrected pair wise Fisher's exact test was performed. A 

Chi squared test for independence was carried out to determine whether bleaching and 

disease were correlated or independent. Expected values were calculated for each 
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category based upon the null hypothesis that bleaching and disease were fully 

independent as follows: 

O% B= observed % of ramets bleached 

O% D= observed % of ramets with disease 

O% B&D= observed % of ramets bleached and diseased  

Bleaching without disease = (O% B – O% B&D) Χ total ramets 

Disease without bleaching= (O% D – O% B&D) Χ total ramets 

Bleaching with disease= O% B Χ O% D Χ total ramets 

No Bleaching or disease= (1-(O% B&D + O%D + O% B)) Χ total ramets 

Genets (9 of 21) that contained neither a bleached nor a diseased ramet over the entire 

duration of the study were removed from statistical analyses. We reasoned that these 

genets lacking vulnerability to both bleaching and disease are unsuitable for studying the 

interaction of bleaching and disease(Vollmer & Kline, 2008). Expected values for each 

test were calculated based upon the pool of observations inclusive of all those genets 

analyzed by each respective test. Only genets which showed neither bleaching nor 

disease in all of their ramets were removed from analyses. 
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4.4 Results: 

In September 2014, nine ramets were bleached while fourteen ramets were affected by a 

white band-like tissue loss disease. In November 2014, four ramets were bleached, while 

one experienced tissue loss. In January 2014, two ramets were bleached and an additional 

two were afflicted by tissue loss. In March 2015, both bleaching and tissue loss disease 

increased in prevalence to eight and eleven cases, respectively (Fig. 4.1). During the 

entire period, 19 of the 152 (12.5%) A. cervicornis ramets showed signs of bleaching, 

while 28 ramets (18.4%) showed signs of this tissue loss disease. Only one ramet (0.7%) 

showed signs of both bleaching in Sept 2014 and disease recorded in March 2015, though 

pigmentation had recovered prior to the onset of disease. No ramet with simultaneous 

bleaching and disease was ever observed.  

 The tissue loss disease appeared to follow a linear progression from the base 

towards the apical tips of ramets in a manner reminiscent of white band disease (Fig. 4.2). 

However, molecular analyses necessary to confirm the identity of the disease were not 

conducted and the disease we observed is henceforth referred to as a "tissue loss disease". 

Furthermore, preliminary transmission trials bringing unaffected ramets into contact with 

the active lesions were unable to induce transmission although a linear progression of 

tissue loss was apparent. A highly significant negative correlation was detected between 

the presence of bleaching and disease (2=7.14, p=0.0075). In total, nine of the 21 genets 

did not contain a single ramet suffering from either bleaching or disease during the 

monitoring period. There were significant differences between genets' proportion of 

ramets bleached, diseased, neither bleached nor diseased, or both bleached and diseased 
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despite limited statistical power to detect a medium sized effect (p < 0.0001, 1-β=0.31, 

Fig. 4.3)(Cohen, 1992). 

 

4.5 Discussion: 

Focusing on a ramet by ramet basis, our study revealed a negative correlation between 

bleaching and tissue loss disease during the thermal event in 2014 while simultaneously 

documenting a positive temporal relationship between bleaching and disease at a 

population scale (Fig. 4.1). While negative correlation between bleaching and a tissue 

loss disease has been previously documented (Bruno et al., 2007), ours is the first report 

that shows a negative correlation between bleaching and a tissue loss disease in 

individually tracked ramets. 

Previous work has indicated that coral genet identity influences diverse host phenotypes 

such as bleaching susceptibility, disease resistance, growth rate, and morphology (Willis 

& Ayre, 1985; Vollmer & Kline, 2008; Bowden-Kerby & Carne, 2012; Lirman et al., 

2014). Our study further contributes to the body of genotypic response literature, 

suggesting that host genotype is a significant factor to consider for effective conservation 

and restoration. Unfortunately, the limited statistical power of our analyses may have 

contributed to our detection of relatively few significant comparisons (figure 4.3). A 

much larger analysis including 443 ramets equally distributed amongst genets would 

have provided a much greater statistical power of 0.90, but was beyond the scope of the 

current study.  
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 Despite the great importance of coral host genetics in determining both bleaching 

and disease resistance, presence of genets susceptible to only one of the two conditions 

and resistant to the other does not appear to have solely driven the negative correlation 

between  bleaching and disease. This is evident especially in genets A,J,R, and W (Fig. 

4.3) which contain both ramets that suffered from disease and other ramets that suffered 

from bleaching, although never at the same time (recall that the ramet classified as 

bleached and diseased in genet W first bleached and became diseased only after 

recovering from bleaching). Such a pattern suggests that unbleached ramets within these 

genets later suffered increased disease susceptibility relative to their clones.  

 The role of Symbiodinium identity has also been strongly implicated in 

physiological response to bleaching and disease (Baker, 2004; Tchernov et al., 2004; 

LaJeunesse et al., 2009; Silverstein, Cunning & Baker, 2014; Rouzé et al., 2016). Results 

from a representative subset of samples taken from diverse genets indicates that no ramet 

had greater than a minimal (<2%) variance from exclusively hosting type A3 

Symbiodinium (Merselis et al., in prep). Therefore, we suggest that host genetics, not 

Symbiodinium identity is  responsible for observed significant differences between 

genets. Not only do genet dependent differences in physiology inform which genets will 

do best in response to one or two focal stressors, but more importantly, which genets we 

are likely to lose. Given the precipitous decline of Caribbean reefs, and Acropora 

cervicornis in particular, we suggest that surviving genets likely posses anthropogenically 

robust traits, even if a study on any one given stressor indicates susceptibility. These 

differential responses should motivate not only the crossing of very bleaching or disease 
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resistant genets, but also the inclusion of genets clearly at risk, but likely possessing 

unknown resistances to other anthropogenic stressors. 

While increased sample size would have benefited analysis at the genet level and 

probably allowed for the detection of more significant differences (1-β=0.31), physiology 

must be studied at the level of the individual (in this case ramet). Without knowledge of 

the history of an individual gathered over multiple time points, it is not possible to 

ascertain whether an individual was not affected by bleaching or disease, suffered only 

bleaching, suffered only disease, or was afflicted by both bleaching and disease. When 

individuals are not tracked, but the prevalence of bleaching and tissue loss  diseases are 

followed, it is clear that disease and bleaching are linked through time during temperature 

anomalies. (Fig. 4.1 of this study; and Muller et al. 2008). However, because both 

bleaching and many tissue loss diseases are dependent upon temperature as a common 

stressor, it is expected that they should co-occur along spatial and temporal scales (Fig. 

4.1), sharing high incidence where thermal stress has been severe and low incidence 

where thermal stress is mild (Muller et al., 2008). Without data to show that individuals 

and not just populations are first affected by bleaching and then disease, a physiological 

link cannot be supported. As exemplified here, when data is presented on an individual 

basis along a time series, it is possible that those individuals that bleach may be less 

prone to disease despite temporal co-occurrence within the population. We suggest it is 

possible that a negative correlation between bleaching and tissue loss diseases on an 

individual basis may have been overlooked by previous investigations, because 

individuals were not tracked across multiple time points (Cróquer & Weil, 2009).  

Monitoring individual corals (ramets) within a common garden nursery allowed us to 
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control against co-occurrence of bleaching and tissue  loss  diseases as a result of spatial 

variation in environmental conditions while enabling repeated assessment of individuals 

with known bleaching and disease history. 

A possible explanatory mechanism for a negative correlation between bleaching and 

tissue loss diseases may hinge upon the immuno-suppressive nature of intracellular 

symbioses. Intracellular parasites and mutualists modulate host immunological defenses 

in order to facilitate their intracellular lifestyles (Oster, Kenyon & Pedersen, 1978; Fytrou 

et al., 2006; Douglas, Bouvaine & Russell, 2011; Ratzka, Gross & Feldhaar, 2012; 

Zheng, Tan & Xu, 2014). Examples are diverse including Rickettsea (Oster, Kenyon & 

Pedersen, 1978), Walbachea (Fytrou et al. 2006), Buchnera (Douglas et al. 2011), 

Spiroplasma (Herren & Lemaitre, 2011), Sodalis, Wigglesworthia (reviewed in Ratzka et 

al. 2012), and Plasmodium (reviewed in Zheng et al. 2014), a distant relative of 

Symbiodinium that interferes with cellular processes to prevent apoptosis (Kaushansky et 

al., 2013a,b). 

Further evidence is apparent within Symbiodinium - Cnidarian symbioses. Cnidarians 

hosting Symbiodinium express an altered distribution and expression of Rab proteins 

when compared to their apo-symbiotic con-specifics. This alternative regulation of Rab 

proteins preserves the symbiosis by preventing the maturation of the symbiosome, the 

vacuole where the symbiont resides, into a lysosome (Chen et al., 2004; Riesgo et al., 

2014). This same dysregulation mechanism possibly impairs the ability for phagosomal 

degradation of pathogens by cnidarians hosting Symbiodinium. Further, apoptosis, an 

important immune response, is down-regulated in symbiotic versus aposymbiotic sea 

anemones (Rodriguez-Lanetty, Phillips & Weis, 2006; Oakley et al., 2016; Matthews et 
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al., 2017)Medrano et al., in prep), while potential cell adhesion markers facilitating 

pathogen entry are upregulated (Rodriguez-Lanetty et al. 2006; Yuyama et al. 2010; 

Riesgo et al. 2014). This leads us to think that Symbiodinium containing host cells are 

immune-suppressed. 

Symbiodinium may also promote immunological tolerance of their cnidarian hosts.  

Exogenous application of tolerogenic factors both decreases immune response of 

Exaiptasia pallida and prevents it from bleaching under elevated temperatures, while the 

treatment with an anti-tolerogenic factor prevents symbiosis establishment and stimulates 

host immune function (Detournay et al., 2012; Berthelier et al., 2017). Recently, 

anthozoan TGFβ receptor and  other modulators of immune response were proven to be 

regulated by Symbiodinium produced miRNAs in hospite(Baumgarten et al., 2017). 

Likewise, many immunological processes lead to the generation of ROS, a primary 

trigger of coral bleaching (Lesser, 1996), suggesting that corals with high capacity for 

immunological response may be more susceptible to bleaching. Therefore, corals with the 

highest immunological activity at the onset of thermal stress may be at an elevated risk of 

bleaching (Brandt & Mcmanus, 2009). A host previously lacking in Symbiodinium may 

be better prepared to confront invading pathogenic microbes. Conversely, corals better 

prepared to confront invading microbes may be more likely to expel their symbionts as a 

side effect of an immune response. 

Under our proposed model (see Fig. 4.4), bleaching corals gain a transient immunological 

advantage as a result of shedding their symbionts. Despite disparate thermal bleaching 

thresholds both between and amongst species, genotypes, and geographic locations, little 

is known about the "trade-off" or ecological cost for increased bleaching resistance , 
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although a slower growth rate for bleaching resistant genotypes has been supported for 

Acropora cervicornis (Ladd et al., 2017). We suggest that our proposed model is a trade-

off of decreased bleaching resistance in exchange for enhanced immunological function 

and vise versa. 

It is important to note that immunological responses are metabolically costly. Bleaching 

reduces or completely stops the assimilation of Symbiodinium derived nutrition. 

Therefore, the immunological capacity of a bleached coral would eventually be hindered 

by decreasing energetic reserves. The model, which assumes that Symbiodinium density 

is directly related to immune-suppression, illustrates that corals would have evolved to 

consider immunological capacity when setting a bleaching threshold, alongside tolerance 

for oxidative and thermal stress. By setting a high bleaching threshold, corals forego the 

putative immunological advantages of bleaching, but retain Symbiodinium until their 

antioxidant protections against thermal stress become overwhelmed. This strategy would 

maintain higher energetic reserves and may prove more successful under long term 

thermal stress scenarios where energetic reserves may become limiting to the 

maintenance of homeostatic processes and immunological capacity. Conversely, corals 

may set a low bleaching threshold to protect against infectious disease in the short term at 

the risk of susceptibility to starvation if thermal stress is long term and prevents the re-

population of Symbiodinium. Corals exploiting this latter strategy suffer ongoing 

pathogen exposures or thermal stress and may be forced to recover symbiont populations 

in order to prevent starvation. Resultantly, these corals simultaneously suffer the onset of 

Symbiodinium mediated immunological suppression and depleted energetic stores. In 

congruence with field observations, this is perhaps why disease outbreaks may intensify 
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upon the onset of bleaching recovery (Brandt & McManus, 2009). In further agreement 

with field observations, those corals which bleach and are still unable to prevent the onset 

of disease outbreaks would be expected to suffer the greatest tissue loss (Muller et al., 

2008; Brandt & McManus, 2009). These corals lack both the immunological competency 

to prevent infectious disease and the energetic stores to mount a sustained response. Also 

in agreement with field observations, Symbiodinium densities are greater on eutrophied 

reefs which also have greater tissue loss disease prevalence (Muscatine et al., 1989; 

Shantz & Burkepile, 2014; Vega Thurber et al., 2014). It is worth noting that reefs with 

more frequent thermal anomaly are known both for their bleaching resistance and white 

syndrome susceptibility, although it should also be noted that they are more susceptible to 

brown spot disease (Hume et al., 2013; Fine, Gildor & Genin, 2013; Palumbi et al., 2014; 

Randall et al., 2014). 

Here, in addition to proposing a new model for infectious disease susceptibility in the 

context of coral bleaching, we establish a testable hypothesis: Coral bleaching confers a 

transient immunological advantage to the coral host. While the present study's sample 

size is limited and canonical logic has historically supported a causal and positive 

relationship between bleaching and tissue loss diseases, our proposed hypothesis is 

supported by molecular work and alternative interpretations of several field studies. 

Further testing is warranted, especially as reefs are exposed to increasingly frequent and 

intense thermal anomalies. Beyond our proposed hypothesis, this study adds further 

support to numerous works demonstrating the importance of coral host genotype in 

determination of diverse physiological traits. 
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4.7 Figures: 

 

Fig. 4.1: Monthly prevalence of bleached and diseased coral ramets of Acropora 

cervicornis between September 2014 and March 2015 in the ``North Nursery'' at 

Biscayne Bay (N 25.488;W80.109) 
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Fig. 4.2: Images of bleaching and diseased colonies of Acropora cervicornis within the 

North Nursery. Examples of bleaching and diseased colonies of Acropora cervicornis 

within the North Nursery. (A) Several ramets, some of which show normal, healthy 

pigmentation (H), while others are bleached pale (P). (B) One ramet showing signs of 

white band-like white syndrome. Photographs taken by Stephanie Schopmeyer. 

 

 

Fig. 4.3: Frequency of health status in Acropora cervicornis corals as a function of genet 

identity. Genet identity has a significant effect on the probability for each studied health 

status (p < 0:0001). Shared letters between genets indicate no significant difference. Both 

the trend for fewer significant comparisons for those genets with few ramets and low 

overall statistical power 1-β = 0:31 suggest that more significant differences could have 

been detected with a larger sample size. 
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Fig. 4.4: Predicted relative 

immunological vulnerability assuming 

Symbiodinium have an immuno-

suppressive effect on the coral host. (A) 

A coral which does not bleach in 

response to a stress event may see 

immunological vulnerability increase 

until the stress event subsides. (B) A 

coral which bleaches and does not 

recover is free from symbiont 

immunosuppression, but eventually 

becomes immunologically vulnerable 

because of energy store deprivation.  

(C) A coral which bleaches and 

recovers may minimize Symbiodinium 

immunosuppression in the short term, 

but suffer from reduced energy stores 

and immunosuppression of returning 

Symbiodinium upon recovery. 
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4.9 Additional Analyses since Publication 

 At the request of the dissertation committee, I contribute additional analyses to 

the otherwise previously published work in chapter four. Additional analyses recapitulate 

the interpretations reported by the chapter while considering alternative treatments of the 

data. 

 In particular, the committee suggested that disregarding ramets that bleached but 

did not endure the entire study may have selected against a demographic of the surveyed 

population. Ramets could not feasibly be monitored continuously so it was possible that 

ramets that bleached and died had died because of disease without ever being identified 

as diseased.  

In order to address the committee’s concern, I determined that only one ramet had 

been classified as bleached and then died before the end of the study, leading to the 

coral’s exclusion from the original analysis. I then repeated the chi square test for 

independence counting the coral first as bleached and then diseased and second as 

bleached only giving significant results on both occasions (X2= 9.79, p < 0.05 and X2= 

12.561, p < 0.05, respectively). 
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Chapter 5: Overall Conclusions and Synthesis 

5.1 Symbiodiniaceae Assemblage Structuring Factors 

My dissertation detected limited change in Symbiodiniaceae community structure of 

21 different genets of repeatedly bleached Acropora cervicornis without detectable 

physiological significance. At the outset of my project, no deep sequencing approaches 

had yet been applied to Caribbean Acropora.  Our work now adds to a building consensus 

that, even the level of cryptic Symbiodiniaceae, A. cervicornis is a symbiont specialist. 

Through unmeasured mechanisms, the A. cervicornis surveyed in my dissertation resisted 

colonization by exogenous Symbiodiniaceae. The fact that corals bleached visibly 

confirms that greater than 50% of Symbiodiniaceae were lost and yet, despite having a 

pre-bleaching cryptic presence in the summer of 2015, thermally tolerant Durusdinium 

trenchii species was unable to capitalize on the relative absence of competing 

“Symbiodinium fitti” (nomen novum) symbionts. Perhaps the proliferation of exogenous 

symbionts in coral holobionts is hampered not just by competitive interactions with 

native symbionts, but also by host mechanisms biased against hosting exogenous 

colonizers. 

However,  Acropora cervicornis occasionally hosts Durusdinium trenchii or even 

Cladocopium as its dominant symbiont (Baums et al. 2010; Lirman et al. 2014). Can 

these alternative symbionts be explained by their environment? Durusdinium trenchii 

hosts were found in constitutively warmer turbid locations (Baums et al. 2010) or could 

certain developmental stages of even symbiont specialists be susceptible to colonization 

by alternative symbionts? The cellular mechanisms for host-symbiont specificity require 
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further exploration in model systems such as Exaiptasia which has a similar bias against 

Durusdinium trenchii even when bleached (Gabay et al. 2019; Medrano et al. 2019). 

My dissertation further finds no evidence supporting environmental selection acting 

upon Symbiodiniaceae communities associated with ten genets for each of two Orbicella 

species. These species have been identified as symbiont generalists since even before the 

emergence of deep sequencing, owing to great variance even amongst their most 

dominant symbiont species amongst and within colonies. Even in generalist hosts, 

Symbiodiniaceae communities do not substantially restructure to facilitate environmental 

adaptation with a year in the absence of bleaching. 

By exploring the Symbiodiniaceae community of Orbicella species using high 

throughput sequencing, our work further extends the repertoire of symbionts known to 

engage with these symbiotically flexible coral species including Gerakladium 

spongiolum. By identifying the presence of G. spongiolum, chapter three adds an 

additional support to a small, but growing literature hinting that Gerakladium symbionts 

could be coral symbionts (Kimes et al. 2013; Stat et al. 2013; Thomas et al. 2014; 

Bonthond et al. 2018) in addition to their associations with sponges (Hill et al. 2011). 

Further work is needed to determine if cryptic Gerakladium reported here as 

Gerakladium spongiolum is indeed part of the same species that typically associates with 

Clionid sponges or if speciation has occurred to allow adaptation to specific hosts. 

Comparative studies to determine how Gerakladium symbionts have speciated to 

specialize in specific hosts or how it associates with multiple host phyla would be 

enlightening to the ongoing hunt to identify mechanisms of host-symbiont specificity and 

communication. 
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5.2 Adaptive Mechanisms: Conclusions, Limitations, and Future Directions 

My dissertation aimed to ascertain whether bleaching experience could foster the 

development of an inter-annual memory that would increase bleaching resistance but did 

not produce any evidence supporting such a mechanism. Despite the possibility of 

acclimatization influencing, interacting with, and mediating all organismal functions 

through epigenetic underpinnings, very little is understood in non-model organisms under 

forecasted environmental scenarios (Torda et al. 2017; Eirin-Lopez and Putnam 2018). 

Whether epigenetic programs set in place by prior bleaching or thermal experience will 

even have a net positive or negative effect requires experimental attention (Torda et al. 

2017). 

Chapter two is one of just three studies investigating the potential for prior bleaching 

to influence bleaching response in a subsequent year while tracking the Symbiodiniaceae 

community and it is the only study working with corals grown in a common garden. In 

three coral species investigated, Grottolli et al. (2014) only identified an improved 

bleaching response for Porites divaricata, but it also experienced substantial symbiont 

community change. Orbicella faveolata showed improvements in some metrics of 

performance, but losses in others also had substantial Symbiodiniaceae change. Porites 

astreoides fared significantly worse upon the second bleaching exposure and was the 

only coral species without substantial Symbiodiniaceae community change. Manzello et 

al., (2019) identified one of ten sites with improved response to a second bleaching event. 

The lone acclimatizing site was one of several inshore sites, all of which outperformed 

the offshore sites. Inshore Orbicella was dominated by thermally tolerant Durusdinium 

trenchii, and temperatures remained warmer on inshore reefs, so it is unclear whether 
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better bleaching performance in the second year would have been possible without 

consistently warmer conditions. The authors conclude that they are not able to 

disentangle acclimatization vs possible local adaptation explaining differential 

performance on inshore vs offshore reefs. 

 Together these three studies agree that the role for innate acclimatization appears 

limited, but they are far from conclusive.  For example, these three studies all consider 

bleaching as a priming event, rather than using a sub-bleaching thermal stress for 

priming. Perhaps the thermal damage or metabolic losses suffered by corals in all three 

studies outweigh the benefits of acquiring a thermally resistant epigenetic program. 

Consequently, perhaps corals pre-exposed to stressful but sub-bleaching summers prior to 

bleaching inducing summer temperatures would develop thermally resistant phenotypes. 

The punctuated record of thermal mass bleaching up to the present date suggests that 

such a scenario would be a departure from the pattern of warming that has been observed. 

On local scales, acclimatization facilitated through sub-bleaching thermal exposure may 

play a substantial role at inshore reefs where temperatures remain high and thermally 

tolerant epigenetic programs may be more consistently reinforced.  

 

 

 

 Besides the possibility for acclimatization of mature corals, susceptibility to 

epigenetic imprinting is different in germ line cells and at different stages of metazoan 

development. These three studies did not explore the possibility that offspring of these 

surveyed corals or developing larvae and/or recruits experiencing these same thermal 

challenges could not acclimatize to a substantial extent (e.g., Cumbo et al. 2013; Putnam 

and Gates 2015). A critical knowledge-gap remains the longevity of acclimatization and 
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challenges and thusly a source of hope under annual hyperthermal stress scenarios.

 My dissertation did not add further hope for the potential role of Symbiodiniaceae 

community change to facilitate the persistence of coral reefs. However, the project did 

provide further evidence that the cryptic Symbiodiniaceae community is not 

physiologically consequential. Symbiodiniaceae community change clearly structures 

physiology (Ruiz-Moreno et al. 2012; Hume et al. 2013; Manzello et al. 2019), but by 

circumstance, the dissertation did not have an opportunity to measure the full 

physiological potential of Symbiodiniaceae community change because substantial 

community change was not observed.

 The true novelty brought forth in these chapters was the lack of observed 

community change in response to bleaching, disease, and a critically important 

environmental variable: depth. My data challenge the likelihood that Symbiodiniaceae 

community change is likely to occur under A) repetitive bleaching or disease scenarios of 

symbiont specialist corals or B) transplantation across depths- even in symbiont 

generalists. Future work is needed to determine whether symbiont generalists would 

continue to resist changes in community without a bleaching event or whether the time 

scales explored here were insufficient. Trade-offs associated with hosting alternative 

symbionts require continued attention as do a mechanism for how coral holobionts are 

able to accommodate changes in Symbiodiniaceae community.

 Finally, all data chapters of my dissertation identify coral genetic identity as a

source of variability in every measurement of performance taken. The prominent

influence of genetic identity suggests that coral evolution has substantial physiological

whether it is predictive of better performance in trans-annual thermal or disease
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potential. Despite hopeful results, my dissertation does not appraise the likelihood for 

adaptation to occur and so it remains a major knowledge-gap. Evolutionary models 

suggest that corals will evolve, but without much regard for the possibility of continuing 

mass mortality and overall reduction in successful coral reproduction (Matz et al. 2018). 

One study considering a rapidly growing species that quickly reaches sexual maturity (~5 

years) estimated that adaptation could be achieved in 100-250 years in the Great Barrier 

Reef, where thermally tolerant populations are well-connected across the reef tract, 

though the authors keenly note that intervention through coral transplantation may 

accelerate adaptation (Matz et al. 2018). Annual bleaching for virtually all global reefs 

will set in prior to the end of the century (Van Hooidonk et al. 2013). In Florida, coral 

cover is scarce, and reproduction amongst rapidly growing species appears to have 

collapsed a decade before annual bleaching is predicted. It seems dubious that the 

admittedly rapid rate of adaptation can protect the ecological and economic value of coral 

reefs as provided by even the most rapidly growing and reproducing species. Assuming 

the same connectivity, availability of thermally tolerant alleles, and unhindered 

reproductive success, coral species commonly reaching sexual maturity at 10, 15, or 20 

years might expect to adapt in 200-1,000 years. 

 To build on the foundation of Matz et al. (2018) future efforts should focus on 

modelling the likelihood of adaptation in species that are less well-connected and/or 

slower growing with additional consideration for the effects of thermal stress, disease, 

and other synergistic stressors that may greatly reduce population sizes, and reproductive 

potential. 
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5.3 Applications in Restoration and Conservation 

Unlike other mechanisms of acclimatization and adaptation discussed in here, our 

understanding of innate acclimatization without partner change is in its nascent stages. 

Despite uncertainty, further exploration of acclimatization may reveal stress hardening 

protocols for facilitating the emergence of anthropogenically robust phenotypes. 

Therefore, a role for acclimatization by simulating thermal or light stress en masse in 

restoration programs cannot be advised, though small trials must be attempted. Coral 

nurseries should, however, be positioned as close as possible (in-situ) to the reefs that 

they aim to restore, or restoration corals should be brought to a protected in-situ staging 

site for an acclimatization period prior to final out planting to minimize stress at the time 

of out planting (Page et al. 2018). 

Taken together, Chapters two and three suggest Symbiodiniaceae community 

selection may represent a challenge which adult corals may not be able to overcome on 

their own. If the mosaicism of ramets within genets of symbiont generalist species is 

determined to be temporally stable, restoration nurseries should track not just genet, but 

also symbiont identity. Such prior knowledge could facilitate outplanting strategies with 

niche partitioning amongst by ramets of the same genet. Regarding symbiont specialist 

coral species, nurseries should be constructed in locations in order to foster long term 

culture, sexual reproduction, and recruit grow-out in environments known to increase the 

likelihood of anthropogenically robust symbiont colonization of juvenile corals.  

 In order to facilitate adaptation, coral restorationists must make sexual 

reproduction a central part of their programs. The loss of some coral genets to events like 
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warming temperature and increased disease prevalence is predictable. Their genomic 

content must be protected within thermal and disease resistant phenotypes of other 

genets.  

As climate change intensifies, even thermally resistant genets will no longer resist 

bleaching. Besides selective breeding for thermal tolerance and other desirable traits, 

managers and restorationists must seriously entertain assisted gene flow from corals from 

warmer locations to higher latitudes. Assisted gene flow integrates thermally selected 

alleles into local populations and may also extend the lifetime of corals from the warmest 

areas of the world. A restoration model incorporating sexual reproduction might still rely 

largely upon asexual propagation of ramets for out-planting but could include dedicated 

nursery space for the grow-out of sexually mature colonies. For local x foreign cross 

genets to be incorporated into nursery brood stock, ramets should perform well on local 

reefs for a minimum period to prevent genetic swamping and loss of locally adaptive 

alleles. 

 Attempting to leverage acclimatization, Symbiodiniaceae community change, or 

coral evolution all converge on an increased role for sexual reproduction in restoration 

strategy and proximity of nurseries to the reefs they hope to restore. 
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