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ABSTRACT OF THE DISSERTATION 
 

A VISUALLY-ENHANCED APPROACH TO MULTIVARIATE CALCULUS 

FACILITATED BY A COMPUTER ALGEBRA SYSTEM 

by 

Belarmino Gonzalez 

Florida International University, 2019 

Miami, Florida 

Professor Maria L. Fernandez, Major Professor 

This study investigated the effects of a visually-enhanced approached to the 

teaching of selected multivariate calculus concepts on students’ mathematical 

understanding and visualization. The sample size consisted of 65 undergraduate students 

from Miami Dade College, a large Hispanic Serving Institution in the Southeast. A 

pretest – posttest, nonequivalent group design was used. CAS dynamic worksheets 

containing visualizations and geometric representations were created using a computer 

algebra system and embedded as part of the lecture in the experimental group. Instructor-

developed instruments were used to measure students’ prerequisite knowledge for 

multivariate calculus, and students’ mathematical understanding of selected concepts. 

Furthermore, Yoon (2011)’s Revised PSVT: R was used to measure students’ spatial 

ability. Results from the statistical tests supported the hypothesis that enhancing the 

visual/geometric aspects of selected multivariate calculus concepts have a positive effect 

on students’ mathematical understanding and spatial ability. 
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CHAPTER 1: INTRODUCTION 

 

“Geometry and algebra are the two formal pillars of mathematics… they have 

both been fundamental to mathematics, but they have had an uneasy relationship” 

(Atiyah, 2001, p. 654). Geometry is about space and is very much related to the way we 

comprehend and make sense of the physical world we live in. As we interact with our 

surroundings through our senses, specially our vision, we develop our spatial intuition or 

spatial ability. It is our desire to understand and make sense of the world we see and 

interact with one of the reasons why geometry is such a powerful tool in mathematics; it 

enables us put things in a geometrical perspective thus giving us the ability to use our 

intuition (Atiyah, 2001, p. 658). Algebra on the other hand is concerned with 

manipulations in time, operations performed sequentially, one after another (Atiyah, 

2001, p. 658). These two pillars, one concerned with space while the other existing in 

time, gives us two different points of view in the mathematics world (Atiyah, 2001, p. 

658) and are instrumental in the development of mathematical understanding. 

 Chapter I presents the background to the problem, statement of the problem, 

purpose of the study, research questions, theoretical framework, significance of the study, 

and definition of key terms. The chapter ends with a summary and description of the 

remaining chapters of the dissertation. 

Background of the Problem 
 

To ensure the nation’s continued economic success and national security, the 

National Science Board (2007) recommends: “All American citizens must have the basic 
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scientific, technological, and mathematical knowledge to make informed personal 

choices, to be educated voters, and to thrive in the increasingly technological global 

marketplace” (p. V). Furthermore, it calls for coherence in the nation’s science, 

technology, engineering, and mathematics (STEM) education system across all levels and 

exhorts several federal agencies, including the National Science Foundation (NSF), to 

support and encourage research about effective teaching strategies and the role of 

technology in facilitating learning (National Science Board, 2007). Science and 

engineering have been the foundation of our nation’s innovation and technological 

advances, but in an increasingly global and knowledge-based economy, the National 

Science Board (2007) emphasizes the need for students to develop their capabilities in 

science and engineering to levels higher than previously required. In particular, 

instructions needs to balance students’ acquisition of content knowledge in STEM areas 

with critical thinking and analytical skills and foster in them the ability to make 

connections among concepts and ideas and develop a capacity for life-long learning 

(National Science Board, 2007). In its publication Preparing the Next Generation of 

STEM Innovators: Identifying and Developing our Nation’s Human Capital, the National 

Science Board (2010) called for STEM education to develop and nurture STEM 

“innovators,” individuals with the knowledge and expertise to lead technological 

innovations and scientific breakthroughs. These are individuals whose capabilities “often 

include mathematical and spatial abilities alone or in combination with verbal aptitude, 

along with other factors such as creativity, leadership, self-motivation, and a diligent 

work ethic” (National Science Board, 2010, p. 6). 
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It also acknowledged challenges within the current US STEM education system 

and warns of the danger of a population that “may not know enough about science, 

technology, or mathematics to contribute significantly to, or fully benefit from, the 

knowledge-based economy that is already taking shape around us” (National Science 

Board, 2007, p. 3). According to its latest Science and Engineering Indicators, the 

National Science Board (2018) estimated that 6.4 million college graduates were 

employed in 2015 in STEM related fields, mostly in computer and mathematical sciences 

(48.4%) and engineering (26.6%). Although STEM-related occupations have consistently 

grown at a faster rate than the total workforce (National Science Board, 2018), there is 

concern in the ability of undergraduate education in two-year institutions of higher 

education (IHE) to produce and retain STEM students: “Three years after enrolling in a 

two-year institution in the 2011–12 academic year, about 55% of students had either 

completed an associate’s degree (12%) or remained enrolled in school (at the same or 

another institution) without having earned a degree (43%)” (National Science Board, 

2018, p. 2 | 51). Minority-serving two-year institutions are of particular importance 

because of the role they play educating and training minorities to pursue advanced 

science and engineering (S&E) degrees: “Nearly one in five U.S. citizens or permanent 

residents who received an S&E doctoral degree from 2011 to 2015 had earned some 

college credit from a community or two-year college” (National Science Board, 2018, p. 

2 | 4). 

It is equally worrisome that in minority-serving 2-year institutions, many potential 

homegrown STEM students may go “unrecognized and underdeveloped, and, thus, fail to 

reach their full potential” (National Science Board, 2010, p. 1). Minority-serving two-
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year institutions’ inability to develop STEM students to their full potential is a critical 

issue that needs to be addressed because of the impact it may have in the supply of STEM 

professionals to the increasing global, technological, and knowledge-based economy of 

our nation. One reason for such deficiency in the identification and development of 

potential STEM students is an educational institution’s inability to diagnose and advance 

students’ spatial ability (National Science Board, 2010; Wai, Lubinski, & Benbow, 

2009). Another reason may be students’ view of mathematics as a set of rules and 

procedures that need to be memorized. NCTM (2000) warned that focus on memorization 

of rules and procedures leads to a fragile and incomplete learning of mathematics, and 

instead it urged educators to combine factual knowledge, procedural proficiency, and 

conceptual understanding to develop well-connected, conceptually-grounded 

mathematical ideas that will be easier to remember and apply in different situations. 

“Learning with understanding is essential to enable students to use what they learn to 

solve the new kinds of problems they will inevitably face in the future” (National Council 

Of Teachers Of Mathematics, 2000a, p. 21). Moreover, learning with understanding 

promotes the creation of autonomous learners, critical thinkers, problem solvers, and life-

long learners, which in turn helps make subsequent learning easier (NCTM, 2000; 

National Science Board, 2007) 

At any institution of higher education, students majoring in a STEM field 

(biological and biomedical sciences, computer and information sciences, engineering and 

engineering technologies, mathematics and statistics, and physical sciences and science 

technologies) usually must complete a calculus sequence as part of their required 

coursework. The calculus sequence students must complete varies according to their field 
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of study and the applications relevant to said field. The calculus sequence normally 

includes differential calculus, integral calculus, and multivariate calculus. 

Of the typical three courses in the calculus sequence, multivariate calculus is a 

course of great importance because it is one of the first courses where students learn 

about the geometry of space, the calculus of many variables, and vector fields. It is a 

course where students’ spatial ability and visualization is further developed while 

contributing to their mathematical understanding. According to NCTM (2000), “Spatial 

visualization—building and manipulating mental representations of two- and three-

dimensional objects and perceiving an object from different perspectives—is an 

important aspect of geometric thinking” (p. 41). The ability to visualize and think 

geometrically is one of the pillars of mathematics and one of the components of learning 

with understanding. Therefore, enhancing students’ visualization and spatial ability 

should contribute to the development of students’ geometric thinking, which in turn 

contributes to their mathematical understanding and their ability to represent, interpret, 

and solve problems and real-world situations (National Council Of Teachers Of 

Mathematics, 2000a), an important asset for STEM students.  

As described in the 14th edition of “Thomas’ Calculus Early Transcendentals” 

developed from the original work of George B. Thomas, Jr, and revised by Maurice D. 

Weir and Joel Hass, multivariate calculus is used in several fields such as physics, 

engineering, computer science, chemistry, economics, and meteorology, among others. It 

is employed in the modeling and study of high-dimensional systems that exhibit 

deterministic behavior. In physics and engineering, multivariate calculus is used in 



      
 

6 
 

applications regarding electromagnetic fields, gravitational fields, and fluid flow. In 

computer science, it is used in simulation and graphic modeling. Multivariate calculus is 

also used in the application of thermodynamics to chemistry. In economics, it is used in 

budget constraint, utility function, production function, and cost function. In the 

geosciences, structural geology uses multivariate calculus to measure the orientation of 

planes around the surface of a fold, while tensors (such as stress and strain) are functions 

that relate one vector to another vector. 

At the Hispanic-Serving Institution (HSI) where the study took place, the most 

common approach to teaching multivariate calculus is generally very algebraic because 

of the natural difficulty of representing three-dimensional concepts on a two-dimensional 

board. The visual and geometric components of the different multivariate calculus 

concepts therefore may be minimized and/or not explored in sufficient detail. Enhancing 

the geometric aspect of multivariate calculus during the lecture would require resources 

to circumvent the struggles of dealing with 3D mathematical objects in the traditional 

classroom. The advent of technology spurred the creation of tools and resources capable 

of reducing the complexities of the abovementioned 3D objects. 

Technology has clearly revolutionized the way we see and interact with the world. 

It has made its way into every aspect of our lives and there are continued efforts to 

improve all technology around us. In mathematics education, technology provides 

numerous possibilities on how we teach and learn, delegating the more tedious manual 

tasks and calculations to computers and calculators, allowing the classroom to dedicate 

more time to higher-order tasks (Borchelt, 2004; White, 2003). Proper and responsible 
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use of technology can support classroom instruction and improve students’ understanding 

by providing diverse perspectives of the different mathematical ideas; moreover, 

students’ visualization and spatial reasoning benefit from the inclusion of technology in 

the classroom (National Council Of Teachers Of Mathematics, 2000a). Although 

NCTM’s Principles and Standards for School Mathematics advocates for the use of 

technology to enhance the teaching and learning of mathematics, it also provides a word 

of caution: “Technology should not be used as a replacement for basic understandings 

and intuitions; rather, it can and should be used to foster those understandings and 

intuitions” (p. 25). Following the possibilities that the inclusion of technology offers in 

teaching and learning, and heeding NCTM’s advice, the researcher proposed an 

intentional, visually-enhanced approach to the teaching and learning of selected topics in 

Calculus III. 

Several topics make up Calculus III at the HSI where the study took place. These 

topics include vectors and the geometry of space, derivatives and integrals of functions in 

more than one variable, multiple integrals, and Stoke’s and Green’s Theorem. The 

purpose is for students to develop a reasonable understanding of the different calculus 

concepts to be used in further mathematics and STEM courses. Calculus III is a course 

that is mandatory for students majoring in mathematics and engineering, and the 

population of students that typically enrolls in this course at the HSI is composed of 

mathematics and engineering majors. For the scope of the present study, the concepts that 

were selected as the focus of the proposed instructional strategy are as follows: 

• Planes tangent to surfaces at a given point 
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• Directional derivatives, including partial derivatives 

• Double and triple integrals 

At the HSI, the enrollment limit for a Calculus III course section is typically 35 

students, most of them majoring in mathematics and engineering. Calculus III course 

sections are taught primarily by full-time faculty, and occasionally by adjunct faculty. 

Faculty have the freedom to create their own tests and teach the material in any way they 

like, but all faculty must teach the same set of topics known as course competencies. 

Traditionally, mathematics instructors have used an algebraic approach when 

imparting mathematical knowledge, limiting the visualization and geometric 

representations of mathematical knowledge objects (Hitt, 2002). Instruction lacking 

visualization and geometric representations may be detrimental in multivariate calculus 

because they are inherently important components in the development of mathematical 

knowledge and understanding in multivariate calculus. Both algebra and geometry play 

an important and crucial role in the description and representation of mathematical 

objects, and their use and interplay should be highlighted in the mathematics classroom. 

The present study proposes a technology-enhanced, more visual approach to the teaching 

of selected concepts in multivariate calculus to improve students’ mathematical 

knowledge and spatial ability. Such an approach would not only provide instruction that 

accommodates visual learners but should help foster and develop visualization and spatial 

ability for all other future STEM professionals in the classroom. Such an approach would 

be necessary to foster the geometric thinking that is one of the pillars of mathematics and 

an integral component for understanding. It is important to note the present study does 
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not intend to de-emphasize the algebraic approach commonly used, but rather proposes to 

complement such an approach with its visual-geometric counterpart using technology in 

the form of a Computer Algebra System (CAS).  

Some studies have presented promising findings in technology-infused classroom 

activities. In a study aimed to analyze the use of a CAS as an instructional aid in a 

differential calculus course, Tiwari (1999) found evidence of increased students’ 

understandings and concluded that “adding graphical and numerical viewpoints to the 

traditional symbolic ones gives a clear insight behind the mathematical ideas being 

addressed” (p. 45). July’s (2001) use of a CAS in a geometry classroom yielded positive 

and encouraging results in the development and enhancement of students’ spatial ability 

and geometric thinking. July (2001) conducted a teaching experiment design study over a 

period of 10 weeks to determine the role of Geometer’s Sketchpad (GSP), a dynamic 

geometry visualization software, on developing students’ geometric thinking and spatial 

ability. Qualitative and quantitative data were collected where GSP was used as a tool to 

explore three-dimensional geometric objects in a series of teaching episodes. July found 

evidence that GSP improved students’ geometric thinking and spatial ability, and pointed 

out: “That most of the students could answer post interview tasks about three-

dimensional objects on paper, without the help of GSP, indicates that students were able 

to transfer their experience with GSP into an understanding about the solid that was 

independent of the representation” (July, 2001, p. 223). 

The present study proposes to add to the literature in the field of visualization in 

mathematics and its importance in students’ mathematical understanding of selected 
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multivariate calculus concepts. The research focused on an intentional, visually-enhanced 

approach to the teaching of selected concepts with the help of technology. The 

technology used in the study was Maple, a CAS described as a “powerful mathematics 

engine with an interface that makes it extremely easy to analyze, explore, visualize, and 

solve mathematical problems” (maplesoft.com/company/about). Addressing 

mathematical understanding through multiple representations facilitated by the proper use 

of technology is a topic of great interest. The importance of spatial skill in the learning of 

calculus is a topic that is under-researched (Cromley et al., 2017). Snyder (2006) 

suggested “it would be desirable to gain additional insight into whether a command-

driven CAS that allows for naming expressions, functions, output, and the like, can assist 

students in transitioning to higher mathematical thinking and improve their cognitive 

ability to manipulate mathematical objects” (page 224). Furthermore, “effective 

pedagogy that can enhance the use and power of visualization in mathematics education 

is perhaps the most pressing research concern at this period” (N. Presmeg, 2006, p. 233). 

Statement of the Problem 
 

 At the HSI where the study took place, students completing Calculus III 

frequently struggle with understanding multi-dimensional objects in the traditional 

classroom. The teaching of Calculus III contains an inherent and natural difficulty of 

drawing and visualizing mathematical 3D objects in a 2D format (e.g., white board), 

which may lead professors to often stress the algebraic aspects of some of these concepts 

while paying much less attention to the visual/geometric aspects. This results in students 

often becoming algebraically proficient but deficient in spatial ability and geometrical 

thinking. Lack of spatial visualization becomes a problem for students’ mathematical 
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comprehension because of the absence of another perspective to complement the 

acquired knowledge. Any problem that requires students to think or work outside of the 

algebraic format in which they are accustomed will create a state of confusion and a 

source of incomprehension related to the change in representation needed to approach the 

problem from a different angle. Such deficiency affects their problem-solving and critical 

thinking skills in a negative way. Tall (1991) proposed that gaps in understanding will 

not be addressed by making the concepts simpler, but rather more complicated while 

infusing visualizations and visual reasoning in the presentation of such concepts: “The 

idea is to appeal to the visual patterning power of the metaphorical right brain, in such a 

way that it lays down appropriate intuitions to service the logical deductivity of the left” 

(Tall, 1991, p. 112). Additionally, technology can be used to enhance visualizations with 

user-controlled dynamic pictures which can provide insights and perceptions of the 

concepts explored (Tall, Smith, & Piez, 2008). However, there is a lack of research on 

whether the enhancement of visualizations and geometrical understandings of the 

different multivariate calculus concepts through the use of technology, such as CAS, 

impacts students’ knowledge of said concepts in a positive way.  

Purpose of the Study 
 

The purpose of the present study was to investigate the effects of a visually-

enhanced approach, facilitated by Maple, on the HSI students’ performance on a 

multivariate calculus concepts test and a visualization test. It focused on multivariate 

calculus concepts (tangent planes, partial derivatives, directional derivatives, double and 

triple integrals) whose visual and geometric understandings are critical to the deep 

learning of said concepts. The population of students that typically enroll in Calculus III 
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at the HSI are STEM students composed mostly of engineers and mathematics majors, 

and although they complete the course with a good algebraic command of these concepts, 

they are usually quite deficient in the visual and geometric understandings. The goal was 

therefore to test whether an intentional, visually-enhanced approach increased students’ 

learning gains in their understanding of the aforementioned concepts, as well as their 

overall spatial ability skill. 

Research Questions 
 

The ability to visualize and geometrically represent objects is a must for any 

critical-thinking, problem-solver STEM professional that is going to partake in our 

global, knowledge-based economy. Learning with understanding contributes to the 

development of life-long self-learners. To explore the HSI students’ spatial ability and 

understanding, this study examined the following questions: 

1. To what extent does prerequisite knowledge, and a visually-enhanced 

approach to instruction facilitated by CAS affect college students’ 

mathematical understanding of multivariate calculus concepts in an 

undergraduate Multivariate Calculus classroom setting at Miami Dade 

College? 

2. To what extent does prerequisite knowledge, and a visually-enhanced 

approach to instruction facilitated by CAS affect college students’ spatial 

ability in an undergraduate Multivariate Calculus classroom setting at Miami 

Dade College? 
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3. Is there a significantly positive relationship between college students’ spatial 

ability and mathematical understanding of multivariate calculus concepts in an 

undergraduate Multivariate Calculus classroom setting at Miami Dade 

College? 

The hypotheses for this study were: 

Ha: The mean mathematical understanding test scores for students being taught 

using a visually-enhanced approach mediated by CAS in a multivariate calculus college 

course will be higher than those who receive a traditional, non-CAS approach in a 

multivariate calculus college course. 

Ha: The mean spatial visualization test scores for students being taught using a 

visually-enhanced approach mediated by CAS in a multivariate calculus college course 

will be higher than those who receive a traditional, non-CAS approach in a multivariate 

calculus college course. 

Ha: There will be a significantly positive relationship between spatial ability and 

mathematical understanding of multivariate calculus concepts. 

Theoretical Framework 
 

 “There is no noesis without semiosis, no mathematical thinking without transformation 

of semiotic representations” (Duval, 2017, p. 22). 

 Drawing from Saussure’s, Peirce’s, and Frege’s contributions to sign analysis and 

the foundation of semiotics, Duval offers his Theory of Registers of Semiotic 

Representations (TRSR) to carry out cognitive analysis of learners’ mathematical 
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activity. The theory is derived from a knowledge analysis scheme articulating three issues 

that refer to either the formation of knowledge or the cognitive functioning of thought: 

access to the objects themselves, systems or structures required to get the objects, and 

nature of the cognitive relationship between these processes and knowledge objects 

(Duval, 2017). 

As opposed to material objects in other sciences, mathematical objects cannot be 

accessed directly by our senses or through instruments. Duval (2006) describes 

mathematical objects as knowledge objects: “the invariant of a set of phenomena or the 

invariant of some multiplicity of possible representations” (p.  129). Representations can 

be either “produced intentionally by mobilizing a semiotic system of representation” 

(semiotic) or “produced automatically in the mind or by an instrument” (non-semiotic) 

(Duval, 2017, p. 18), and mathematical objects in particular can only be accessed through 

semiotic representations. Duval describes a semiotic representation as showing “relations 

or, better, organization of relations between representational units” (Hitt, 2002, p. 321). 

The issue of empirical accessibility is a key difference between mathematical objects and 

objects in other sciences and it is not surprising to understand why: “mathematics begins 

when we do not limit ourselves to what is given concretely or physically any longer, but 

when we put it in the framework of what we can conceive as possible” (Duval, 2017, p. 

25). It is the issue of empirical accessibility of a mathematical object that constitutes a 

source of incomprehension for learners engaged in mathematical activity (Duval, 2017); 

the inability of learners to differentiate when two semiotic representations evoke the same 

mathematical object or two different ones.  
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The cognitive difficulty resulting from recognizing an object from different 

representations which may not have or explicitly show the same features of the object in 

question is easily overcome in other sciences by juxtaposing the representation and the 

object itself, hence learners can verify and acquire new knowledge (Duval, 2017). 

However, in mathematics, putting the representation side by side with the object it 

represents is not possible because mathematical objects are not accessible outside of their 

semiotic representations, thus the acquisition of knowledge for learners is slightly 

different in mathematics than in the other sciences. 

Duval (2017) posits that symbolic knowledge can overcome the limited capacity 

of apprehension by providing unlimited possibilities for indirect access to mathematical 

objects and describes the systems essential to this access. “Signs then fill a cognitive and 

epistemological treatment function to produce new information or establish new 

knowledge” (p. 10). They can be substituted one for another independently of the 

mathematical objects they may evoke.  

As mentioned before, mathematical objects are only accessible through their 

representations, and signs (semiotic productions) are used to evoke these representations. 

The key difference between signs and representations is that the former’s relationship to 

the mathematical objects is referential and not causal (Duval, 2017). Signs are 

intentionally constructed by using semiotic systems while representations are 

automatically produced by physical or neuron systems, and thus there is a cognitive 

difference between them. (Duval, 2017). Signs produced by semiotic systems will be 

labeled semiotic representations, maintaining the phenomenological property of signs, 
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producing as many times as needed and according to the system producing them, some 

aspect of the same mathematical object. Although signs and semiotic representations 

fulfill a common function of “standing for” or “showing”, they differ in two features 

found in semiotic representations and not in signs: “an internal organization that varies 

from one kind of semiotic representation to another” and “several ways to distinguish the 

units of meaning and levels of organization” (Duval, 2017, p. 18).  

Semiotic representations are critical for mathematical learning not only because it 

is the only way we have access to mathematical knowledge objects and allows us to 

surpass our intuition, cognitive load, and immediate memory limitations, but most 

importantly, because of their inherent potential for transformation into other semiotic 

representations, which is at the heart of mathematical work (Duval, 2017).  Furthermore, 

the power of calculation, development of reasoning and mathematical visualization is 

reliant on the semiotic systems and the representation they elicit, and not the 

mathematical objects themselves (Duval, 2017).  

Mathematical activity is driven by the use of semiotic representations and their 

transformation; and its development depends on “the variety of semiotic representations 

that can be used, and the need to produce and consider, alternately or in parallel, 

explicitly or implicitly two different representations of the same object” (Duval, 2017, p. 

43). It is this one-to-one mapping between the meaning units of two semiotic 

representations whose content differs that provides the cognitive access to mathematical 

objects or new properties (Duval, 2017). The semiotic representations at the heart of all 

mathematical activity are produced by “cognitively creative semiotic systems” (p. 56), 
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dubbed registers, whose existence requires the ability to produce representations of 

knowledge objects that are not accessible through our senses or instruments, and 

transform these representations into new ones (Duval, 2017). “Mathematical knowledge 

does not begin with the semiotic representation of ‘concepts’ or of mathematical objects, 

but with the transformations of the semiotic representations denoting mathematical 

objects” (Duval, 2017, p. 49). Mathematical activity necessarily involves the 

transformation of semiotic representations into other semiotic representations to produce 

new information or knowledge, and to solve problems (Duval, 2017). Thus, mathematical 

understanding can be studied through the different operations that can be carried out in 

the registers mobilized in any given mathematical activity. The most common registers 

associated to any mathematical activity are language, Euclidean geometric figures, 

algebra, and analysis (Duval, 2017). 

The two cognitive conditions required to understand and carry out any 

mathematical activity involve the transformation of representations: treatments and 

conversions (Duval, 2006, 2017).  Treatments are procedures in a given semiotic register 

that does not mobilize a second register, but rather changes a semiotic representation into 

a new one through an operation recognized from its inventory of accepted operations 

(Duval, 2017). Conversions are procedures that convert a semiotic representation into 

another representation of a second, mobilized register. Consequently, any mathematical 

activity requires, either implicitly or explicitly, the mobilization and coordination of at 

least two registers (Duval, 2017). Mathematical understanding, or “semiosis,” can then be 

defined as “the synergistic activation of at least two registers in the production and 

transformation of semiotic representations” (Duval, 2017, p. 71). Essentially, 
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mathematical understanding for learners involves the ability to change mathematical 

objects from one form of representation to another when warranted, aware of the 

characteristics and information of each representation register. The ability to perform 

conversions gives learners the understanding required to apply concepts outside of the 

contexts in which they learned them. 

Significance of Study 
 

To ensure our nation’s continued economic success and national security, the 

NSB (2007, 2008, 2010) calls for the improvement and coherence of STEM education 

vertically and horizontally in the K-20 education system, with emphasis on learning with 

understanding, and proper recognition and development of spatial ability along with 

verbal and mathematical abilities. Advances in technology have stirred up questions 

regarding its use in the mathematics classrooms to improve students’ understanding, 

reasoning, and spatial abilities. Technology like Maple and other CAS appeal to 

educators and researches alike for its computational and visualizing capabilities, which 

have the potential to positively impact learning and instruction of STEM-specific courses 

such as multivariate calculus. 

There have been some studies concerning the use of technology and visualization 

(Samuel, 2010; White, 2003; Habre, 2001; July 2001), and the effects of technology on 

mathematical understanding in calculus (Tiwari, 1999; Palmiter, 1991; Heid, 1988; 

Meagher, 2005; Borchelt, 2004). However, there are no studies exploring the effects of a 

visually-enhanced approach to teaching supported by a CAS to enhance students’ 

mathematical understandings and spatial visualization in selected multivariate calculus 
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concepts as proposed by this research. The present study is not proposing the use of a 

CAS as the main driver of instruction as other studies have done, but rather a visually-

enhanced approach to the traditional teaching mediated by the CAS due to the natural 

complexities of the concepts in the course.  

The present study is important because its results could impact the way some 

concepts are taught in multivariate calculus. The use of CAS allows for faster and more 

accurate geometric visualizations than those created by instructors by hand. It is 

important to note that drawing inside the classroom and teaching students to draw 3D 

objects is important because the act of drawing the 3D objects requires a mental picture 

of the objects themselves and helps develop spatial skills and geometric representations 

(Newcomer, Raudebaugh, McKell, & Kelley, 1999). For more complex mathematical 3D 

objects, however, manually drawing the object can be time consuming and overall a 

difficult task to do. Instead of spending time manually doing the geometric 

representations and making sure the visual is accurate enough to discuss the mathematical 

idea being presented, instructors will be able to spend more time in the development and 

relationship of the different representations; the interweaving of the algebraic and 

geometric aspects of the concepts.  

The abilities to visualize and to move between different representations are 

related to learning with understanding, critical thinking, and problem-solving skills, 

which are highly desired for any STEM professional ready to partake in our globalized, 

knowledge-based economy. In a critical evaluation of research concerning visualization 

and working memory as it pertains to problem solving, Carden & Cline (2015) conclude: 
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“the literature reviewed suggests that visualisation is an important tool in problem 

solving, and that it is probably currently under-used. It is associated with reduced 

demands on the working memory system and can be an economical and flexible way of 

retaining and organising data” (p. 245).  

Definition of Key Terms 
 

Mathematical understanding refers to “the synergistic coordination of at least two 

registers of representation” (Duval, 2017, p. 89).  

Mathematical object refers to “the invariant of a set of phenomena or the invariance of 

some multiplicity of possible representations” (Duval, 2006, p. 129). 

Treatments refer to “transformations of representations that happen within the same 

register” (Duval, 2006, p. 111). 

Conversions refer to transformation of representations that consist of changing a register 

without changing the object being denoted (Duval, 2006, p. 112). 

Representation registers refer to semiotic systems that allow a transformation of 

representation (Duval, 2006). 

Visualization refers to “processes of constructing and transforming both visual mental 

imagery and all of the inscriptions of a spatial nature that may be implicated in doing 

mathematics” (N. Presmeg, 2006, p. 206).  

Visual image is a “mental scheme depicting visual or spatial information” (N. C. 

Presmeg, 1986). 
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CAS dynamic worksheets refer to the researcher-made Maple worksheets containing 

multivariate calculus concepts and their dynamic visualizations. 

Summary 
 

The chapter stated the need for our nation to have, now more than ever, a stream 

of STEM professionals with critical thinking and problem-solving skills; dedicated life-

long learners not only capable of meeting the demands, but able to thrive and contribute 

to our increasingly global, knowledge-based economy. This chapter also introduced the 

research questions explored in this study, and the theoretical framework used to approach 

the problem described.  

Chapter 2 presents a review of the literature relevant to this research project in the 

field of mathematics education related to the teaching of calculus for understanding, the 

role of technology in the teaching and learning of calculus, and research about 

visualization and the robust influence it has in individuals pursuing s STEM career. 

Chapter 3 presents a description of the research design and methods. It includes 

the research questions and the statistical tests performed to answer the questions. It 

describes the student population of the participating HSI and the sample that partook in 

the study. The chapter also describes the instructional strategy and instruments used in 

the study. 

Chapter 4 presents the results of the statistical tests used to test the alternative 

hypotheses and any descriptive statistics performed to satisfy the assumptions of the 

statistical tests.  
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Chapter 5 presents a summary of the research questions and the findings. It also 

presents the implications of the results, reports the limitations and delimitations of the 

study, and provides recommendations for future research.   
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CHAPTER 2: REVIEW OF LITERATURE 

Introduction 
 

After summarizing years of research on visualization in the teaching and learning 

of mathematics and recent trends, Presmeg (2006) proposed a list of “Big Research 

Questions” which she believed to be of major significance in the field. Two of those 

questions are closely related to the goals of the present study: 

• How can teachers help learners to make connections between visual and 

symbolic inscriptions of the same mathematical notions? 

• How do visual aspects of computer technology change the dynamics of the 

learning of mathematics? 

Helping students make the connection between the visual and symbolic 

representations of the same mathematical concepts is in line with Duval’s (2017) 

assertation that semiosis, or mathematical understanding, is associated to the synergy, or 

connection, between at least two registers of semiotic representation, such as the 

geometric and algebraic registers. To make such visualizations and connections clearer, 

advanced software such as CAS may be used to infuse the teaching and learning of 

mathematics in the classroom with dynamic figures that may be otherwise prove too 

difficult to produce inside the classroom. Visualization and mathematical understanding 

are some of the pillars that aid in the creation of the future STEM professionals that will 

thrive and innovate tomorrow and contribute to the continued development of our 

nation’s economy.  
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Calculus and Mathematical Understanding 
 

Learning with understanding has always been an issue in the teaching and 

learning of mathematics, and recent psychological and educational research has provided 

strong support for understanding as an important component of mathematical proficiency 

(National Council Of Teachers Of Mathematics, 2000a). Good mathematical 

understanding goes beyond developing skills or being able to carry out mathematical 

procedures; it speaks of a learner’s ability to apply his/her knowledge in situations and 

circumstances outside of those learned in the classroom. Good mathematical 

understanding is related to problem solving, a critical skill for STEM students who wish 

to become STEM professionals.  

The teaching of calculus came under fire in the 1980s for several reasons: 

concerns over students perceived lack of understanding of the subject, high failure rates 

particularly for women and minority students, and technological advances (Hallet, 2000). 

More importantly, students were unable to recognize mathematical ideas that were 

presented in different ways: 

For example, the minimization of average cost is done symbolically in 

mathematics, if at all, whereas it is usually done graphically in economics. 

Similarly, line integrals and the divergence of a vector field are defined 

symbolically in most mathematics courses the line integral using a parameterization 

and the divergence using partial derivatives. In physics and electrical engineering, 

however, students are expected to know from a diagram whether a line integral or 
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divergence is positive or negative. This requires a level of visualization seldom 

expected in calculus courses in the middle 80s (Hallet, 2000, p. 53). 

Many mathematical objects, including those in a multivariate calculus course, can 

be represented in different forms including algebraically and geometrically. Without tools 

or resources to support instruction, natural complexities associated with the mathematical 

objects explored tend to steer instruction towards an algebraic approach, de-emphasizing 

much of the geometrical understanding of said concepts as quoted above. Some studies 

(Dreyfus, 1991; Goldenberg 1995) reported that while instructors recognized the 

importance of visual thinking, actual classroom implementation comprised mostly of 

symbolic expressions and algebraic manipulation (Habre, 2001). In multivariate calculus, 

the visual representation of mathematical objects becomes more complex for students as 

they must transition from objects in the plane to objects in the space. Some studies have 

approached mathematical understanding in multivariate calculus by using frameworks 

analyzing multiple representations such as the Onto-Semiotic Approach (Montiel & 

Wilhelmi, 2009), APOS Theory (Martínez-Planell, Gaisman, & McGee, 2015; Martínez-

Planell, Trigueros Gaismán, & McGee, 2017), and Duval’s TRSR (McGee & Martinez-

Planell, 2014; McGee & Moore-Russo, 2015).  

McGee & Martinez-Planell (2014) and McGee & Moore-Ruso (2015) conducted 

similar qualitative studies at the University of Puerto Rico Mayaguez investigating 

students’ understanding of some multivariate calculus concepts after incorporating 

materials created under Duval’s TRSR framework to explore the concepts in terms of 

treatments and conversions between the registers associated to these concepts. McGee & 

Martinez-Planell (2014) used researcher-made worksheets with static figures to 



      
 

26 
 

complement the textbook with some omitted representations while McGee & Moore-

Ruso (2015) used 3D manipulatives to make the visualizations of tangent planes 

accessible to students. Data were collected in the form of classroom observations 

(experimental group only), semi-structured interviews (experimental group only), 

common exam questions (both experimental and control groups), and additional exam 

questions (experimental group only). Both studies show evidence of the experimental 

group’s ability to perform the treatments and conversions associated with the selected 

concepts, and better performance than the control group in the common exam questions. 

These findings support instruction that explicitly incorporates the synergy of the different 

registers of representation and the treatments and conversions associated to mathematical 

concepts to enhance students’ learning and understanding. However, these studies did not 

use CAS to make the geometric representations intentional and limited themselves to one 

specific topic in the multivariate calculus course. The advantage of CAS is the rendering 

visual power and dynamic feature of the visualizations. For the study, the visual 

representations associated to the selected multivariate calculus concepts were enhanced 

by CAS dynamic worksheets to facilitate the synergy between the algebraic and the 

geometric representations during the lecture. The CAS dynamic worksheets were created 

in conjunction with the instructors to guarantee ease of use and integration with their 

traditional lecture routine. 

An interesting study was conducted by Bagley (2014) as part of his dissertation 

titled “Improving Student Success in Calculus: A Comparison of Four College Calculus 

Classes,” in which the author examined four different approaches to the teaching of 

differential calculus in terms of students’ conceptual and procedural achievement, 
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persistence, and attitudes and beliefs about mathematics. The study took place at a large 

public university in the southwestern United States and the four participating classes 

consisted of a traditional lecture-based instruction, lecture with discussion, lecture with 

discussion and technology, and the inverted approach. The traditional lecture approach 

classroom had 180 students and met three times a week for 50 minutes and had a 50 

minute per week recitation component. The lecture with discussion class had 60 students 

and contained more student interaction with their peers and instructor. It met 105 minutes 

twice a week with no recitation component. The lecture with discussion and technology 

class had 120 students and met three times a week for 50 minutes each and a 50-minute 

recitation component. It was similar to the lecture with discussion class, but Geometer’s 

Sketchpad applets were included in the lectures to promote students’ intuition of the 

concepts explored. Finally, the inverted class had 100 students and met two times a week 

for 105 minutes each and no recitation component. Content was delivered outside the 

class via Khan Academy videos and class time was used for small group work. Teaching 

Assistants (TAs), and not the instructor, were present during class time to facilitate 

students’ group work.  

Results from Bagley (2014)’s study showed students in the inverted classroom 

scored significantly lower than some of their peers on some items of the measure of 

beliefs and attitudes about mathematics, while students in the lecture with discussion and 

technology were significantly more likely to memorize instead of make sense than their 

traditional lecture peers. Furthermore, students in the traditional lecture demonstrated less 

increase in interest in mathematics than their peers in the lecture and discussion 

classroom. Students in the traditional lecture and lecture with discussion and technology 
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performed better on the common final exam than their peers, with students in the 

traditional lecture outperforming all their peers in procedural items while students in the 

lecture with discussion and technology outperforming their peers on conceptual items. 

The results show some merit for the traditional lecture and the potential for technology to 

augment students’ understandings.  

Technological advances such as CAS have opened the door to new ideas and 

conceptions about calculus instruction. The use of technology in the classroom seemed 

like a panacea to students’ apparent lack of understanding by helping facilitate lengthy 

computational tasks and better incorporating the visual and geometric aspects of 

mathematics in the classroom. As a consequence of the types of knowledge in 

multivariate calculus (vectors and geometry of the space, the calculus of functions of 

several variables, and different three-dimensional coordinate systems), studies exploring 

visualization in the learning of calculus require the incorporation of some sort of 

visualization technology, typically a CAS.  

Role of Technology in the Teaching and Learning of Calculus 
 

The advent of calculators and computers in the second half of the 20th century 

transformed the teaching and learning of mathematics but their use was not widespread 

because of their cost and limited capabilities (Lavicza, 2007). As technology continues to 

improve, its availability in the classroom for learning purposes increases the possibility to 

engage students in activities that may not have been previously possible as a result of 

their complexity or cognitive demands (Snyder, 2006).  
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Analysis of empirical research regarding the inclusion of technology (calculators, 

CAS) in the classroom shows mixed results (Tall et al., 2008). In their review of doctoral 

theses investigating the use of technology in the calculus classroom, Tall, Smith & Piez 

list studies showing that: technology used incorrectly makes no significant difference 

(Barton, 1996; Fredenberg, 1994; Melin-Conejeros, 1992), partial evidence for 

technology producing changes (Castillo, 1998; Parks, 1994), evidence that technology-

integration produces measurable gains (Schrock, 1990; Cooley, 1996; Porzio, 1995; Hare, 

1997; Connors, 1995; Estes, 1990; Fitzsimmons, 1995; Ramey, 1997; Rich, 1996; 

Ellison, 1994), and some partial counter-evidence to technology-integration producing 

measurable gains (Roddick, 1998; Soto-Johnson, 1998; Meel, 1996; Crocker 1993). Then 

Tall et. al. summary of the abovementioned dissertations presented salient themes useful 

when considering integrating technology in the calculus classroom. Technology used 

incorrectly or with very little structure behind its use in the classroom usually produces 

no measurable gains in student learning; however, a well-designed integration can lead to 

positive gains in conceptual understanding, regardless of brand or type of technology 

(Tall et al., 2008). Although it is more important how technology is used as opposed to 

which technology is used, there is no doubt that CAS have more capabilities than 

calculators and would be therefore prime candidates for integration in the calculus 

classroom.  

These mixed findings are supported by other research studies (Bagley, 2014; 

Borchelt, 2004; Heid, 1988; Meagher, 2005; Mendezabal & Tindowen, 2018; Palmiter, 

1991). Heid’s (1988) subjects sample consisted of 39 students enrolled in two sections of 

a first semester applied calculus course (experimental sections) at a large public 
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university; most students were majoring in business, architecture, and life science. The 

experimental class used the computer for 12 weeks to explore several calculus concepts, 

followed by three weeks of skill acquisition. Comparison information was gathered from 

a large lecture calculus section. Heid collected data from audio-tapes, student 

assignments including exams, field notes, and questionnaires and found that students in 

the experimental classes performed almost as well in the final exam as students in the 

comparative class, but they showed greater understanding of the calculus concepts.  

Mendezabal & Tindowen (2018) conducted a quasi-experimental study in 

Differential Calculus examining the effects of Microsoft Mathematics on students’ 

attitudes, conceptual understanding, and procedural skills. The participants consisted of 

two groups of 30 Electrical Engineering students, one control and one experimental. The 

control group as taught in a traditional, lectured-based approach, while the experimental 

group was taught using “technology-based activity sheets” (p. 387). These activity sheets 

were created with Microsoft Mathematics, which is described by the authors as a full-

featured scientific calculator with extensive graphing capabilities. The activity sheets 

were designed with a student-centered methodology in mind coordinating different forms 

of representations (graphical, numerical, and analytical). A pretest and posttest on 

conceptual understanding and procedural skills were given to the two groups, as well as 

the Mathematics and technology Attitude Scale (MTAS). The findings of the study 

suggest students in the experimental group learned just as much as their peers in the 

control group, as measured by the conceptual understanding and procedural skills 

instrument. 
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Palmiter’s (1991) sample consisted of 78 students (39 experimental group, 39 

control group) enrolled at a large university. However, in contrast with Heid’s (1988) 

research, students in the study were mostly engineering majors and the course in question 

was the second course in the calculus sequence. Like Heid’s study, students in the 

treatment class actively used the CAS, becoming a main component of their learning. 

Palmiter found that students in the treatment class did significantly better than the control 

group on conceptual and computational exams. Furthermore, on subsequent calculus 

courses, students in the treatment class did as well or better than students in the control 

group class. It is important to point out that the computational exam given to students in 

the treatment class allowed for them to use a CAS to perform the computational tasks. 

Although no partial credit was given for syntax errors while using the CAS, the test may 

be interpreted as being more about the proper syntax use of a CAS to solve computational 

exercises and less about paper-and-pencil skills. 

Borchelt (2004) conducted an ethnographic case study to investigate the effects of 

a computer tool (MathCAD) on students’ cognitive demand in an undergraduate calculus 

course. The study was conducted at a four-year state university in the southeastern United 

States with volunteer students enrolled in a first-semester calculus course. All students 

had access to their own computer in the classroom and were required to install MathCAD 

as part of their course. Participants were purposely placed in cooperative groups of four 

and data were gathered through student surveys, interviews, audio and video recordings. 

Of all participating students, in-depth analysis was conducted only in one of the groups. 

Borchelt found that CAS’s capability to perform numeric and symbolic calculations 

allowed students to focus less on the algebraic manipulations and more on the 
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interpretations of the results; furthermore, the CAS allowed students to combine 

algebraic, graphical representations, and written responses in the same worksheet. “In 

general, MathCAD provided support for developing conceptual fluency, aided in 

mathematical exploration, and allowed for the analyzing of different mathematical 

representations” (Borchelt, 2004, p. 108). However, he noticed most of the times students 

were trying to solve the problems without making full use of the available technology and 

proposed special care to be taken when trying to implement the technology efficiently.  

Meagher (2005) conducted a qualitative study designed to research the impact a 

CAS can have on student learning on a day-to-day basis and across the entire length of a 

calculus course. The study took place in a large Midwestern university where students 

have the option of taking a traditional first-semester calculus course or a computer-based 

calculus course taught with the aid of Mathematica (CAS) with a CD interactive textbook 

which required self-directed learning on the students’ part. Students worked in groups of 

three and had access to a lecturer and teaching assistant in the computer lab that 

responded to students’ questions rather than lecture the content. Meagher conducted a 

case study of three students in the computer lab as individuals and as a group. Data 

consisted of audiotapes and video-capture of students’ computer screens of group 

discussions and learning episodes, along with interviews, survey, and analysis of 

students’ responses. Data analysis points to Mathematica overpowering the calculus 

learning experience of the students, making them focus more on the CAS and less on the 

calculus itself. Meagher’s study took place in classes where a more student-centered 

approach to learning was used, with technology playing a stronger, central role in the 

learning process. Findings from Meagher’s study are less promising with technology 
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seemingly becoming a distraction while students attempt to make sense of the calculus 

concepts.  

Both Heid’s (1988) and Palmiter’s (1991) studies took place around the calculus 

revolution where technology is seen as a tool capable of spurring new ways of teaching 

mathematical content. Both studies use available technology at the time to replace paper-

and-pencil computations and dedicate more time to understanding and interpretation. 

Borchelt’s (2004) and Meagher’s (2005) studies come later using newer, more powerful 

technology as it pertains to multiple representations and understanding. The more recent 

study by Mendezabal & Tindowen (2018) shows that the inclusion of technology allows 

for more student interaction and exploration, although it did not show statistically 

significant differences in learning between the experimental and control groups. The 

results clearly show that the complexities associated with the integration of more 

powerful technologies and its use by teachers and learners without proper training can 

hinder the potential benefits of said technology, results consistent with those summarized 

by Tall et. el. (2008). 

Computer Algebra Systems have expanded the way computers can be used in the 

classroom and opened new possibilities in teaching and learning (Marshall, Buteau, 

Jarvis, & Lavicza, 2012; Snyder, 2006). They can be defined as technology that helps us 

surpass our mind’s limitations in thinking, learning, and problem-solving activities.  

Computer Algebra Systems may play a role in the mathematics curriculum that 

can be categorized as amplifiers or reorganizers (Pea, 1987; Snyder, 2006). When used as 

amplifiers, CAS do not fundamentally change the curriculum, but rather they enhance the 
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teaching and learning by simplifying some of the tedious tasks done by hand that are 

usually part of the curriculum and leaving higher-order thinking to humans (Snyder, 

2006; White, 2003). When used as reorganizers, CAS change the curriculum in terms of 

the nature and priority of topics, the way these topics are taught and learned, and even the 

inclusion of activities that might not have been possible or feasible in the traditional 

classroom (Snyder, 2006). Computer Algebra Systems such as Maple and Mathematica, 

among others, have the likelihood to become tools not only for learning, allowing for 

mathematical exploration, integration of different representations and development of 

conceptual fluency (Pea, 1987), but also part of students’ professional careers in STEM 

fields. When integrating a CAS into the learning environment of the classroom, one must 

consider the many ways a teacher and his/her students can interact with the technology 

(Habre, 2013; Tall et al., 2008; Thomas, M. & Hong, 2004). Therefore, careful 

consideration must be given to questions regarding how to and when to use the CAS, and 

the goals to be accomplished.  

Although there are mixed results when it comes to the inclusion of technology in 

the classroom, its use in the teaching and learning of mathematics will continue to grow 

as technology improves. Furthermore, students are getting increasingly more comfortable 

with technology and its use inside and outside of the classroom. However, we need to 

keep in mind that the choice of including technology in the classroom should not be made 

as a fad, but rather special attention should be paid to the design and pedagogical 

consequences of such choice (de la Villa, García, García, & Rodríguez, 2017) 
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The CAS dynamic worksheets were used as an amplifier that allowed the 

exploration of several multivariate calculus concepts through its visualization and 

computational features, supporting integration of different representations and 

contributing to students’ mathematical understanding. The CAS dynamic worksheets 

were used as an enhancing supplement to the traditional, lecture-based instruction. Maple 

is a software package that is widely used in university mathematics classrooms and it is 

explicitly fashioned to carry out mathematical operations (Lavicza, 2007). 

To maximize the use of lecture time in the classroom, visualizations relevant to 

the selected concepts were developed beforehand by the researcher in conjunction with 

the professors. The visualizations in the CAS dynamic worksheets were saved on 

OneDrive where the faculty from the experimental group had access. The CAS dynamic 

worksheets would typically be loaded on the computer using Maple Player before the 

class would officially start, and they were video-muted in the projector until the professor 

would need them as part of the lecture. 

Maple 
Maple was used as the technology of choice for the present study. Maple was 

initially designed to help researchers perform quick symbolic manipulations much like a 

calculator can perform quick arithmetic operations. Because of its popularity and 

demand, improvements were made in its user-interface and eventually Maple found its 

way into the mathematics classroom. “Maple documents seamlessly combine numeric 

and symbolic calculations, explorations, mathematical notation, documentation, buttons 

and sliders, graphics, and animations that can be shared and reused” (Zotos, 2007, p. 

1247). It is used today by scientists, mathematicians, engineers, and by several colleges 
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and universities throughout North America, Europe, and Australia for educational 

purposes (Snyder, 2006). 

Schrock’s (1990) study (as summarize in Tall et al., 2008) compared students in a 

conceptually focused, Maple-integrated, differential calculus course with students in a 

traditional calculus course. Schrock found that students in the experimental class did 

better on conceptual understanding, and equally well in hand calculations. The results 

from Schrock’s study provide incentive to integrate Maple in a multivariate calculus. 

Snyder (2006) conducted a collective case study to better understand student’s use 

of Maple in a multivariate calculus course at the University of Detroit Mercy. The 

students that participated in the study were chosen purposely from the data gathered from 

two surveys measuring computer confidence and mathematical confidence. Data gathered 

by Snyder included structured interviews, observations, video-tape computer work, and 

weekly student logs. Snyder results suggests the use of Maple as the main tool for 

student’s learning and conceptual understanding of mathematics suffers from the added 

complexity of the Maple command language.  

Snyder’s findings, along with other aforementioned studies, informed the present 

study by using Maple software not as the main component of the classroom instruction, 

but rather a supplemental resource for instructors to explore the visual and geometric 

aspects of selected concepts and integrate different representations to enhance student’s 

learning and understanding of the mathematical concepts. Since students were not 

responsible for the use of the software in the classroom, the added complexity of Maple 

software syntax did not interfere with their learning. The researcher, along with the 
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instructors, were responsible for the integration of CAS into the lesson plans as a visual 

enhancement to the traditional lecture method.  

Spatial Ability and Visualization 
 

Spatial Ability 
 

Geometry is about space and is very much related to the way we comprehend and 

make sense of the physical world we live in. As we interact with our surroundings 

through our senses, we develop our spatial intuition or spatial ability. There is evidence 

that spatial ability has a robust influence in STEM domains and constitutes an asset for 

individuals who wish to pursue a STEM career (Wai et al., 2009).  

Various studies centered around spatial ability have summarized authors’ major 

contributions to the salient spatial factors that represent spatial ability (Yoon, 2011; July, 

2001). After an extensive review of factor analytic studies, McGee (1979) concluded 

there was ample evidence that points to two broad spatial factors: spatial visualization 

and spatial orientation (July, 2001; Yoon, 2011). Spatial visualization alluding to: 

“The ability to mentally manipulate, rotate, twist, or invert pictorially presented 

visual stimuli. … involve a process of recognition, retention, and recall of a 

configuration in which there is movement among the internal parts of the 

configuration, or of an object manipulated in three-dimensional space, or the 

folding or unfolding of flat patterns” (Per McGee (1979) as quoted by Yoon (2011), 

p. 15; July (2001), p. 23). 

McGee (1979) summarized spatial orientation as “ability that involves the comprehension 

of the arrangement of elements within a visual stimulus pattern, the aptitude for 
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remaining unconfused by the changing orientation in which a configuration may be 

presented” (As quoted by Yoon (2011), p. 15; July (2001), p. 23).  

Four years later, reviewing and summarizing his own works, Bishop (1983) puts 

forward two factors for spatial abilities: interpreting figural information (IFI) and visual 

processing (VP); definitions which according to Bishop refine and extend those posed by 

McGee and are more attuned to mathematics education (July, 2001). According to Bishop 

(1983) as quoted by July (2001): 

The ability for interpreting figural information (IFI). This ability involves 

understanding the visual representations and spatial vocabulary used in geometric 

work, graphs, charts, and diagrams of all types. Mathematics abounds with such 

forms and IFI concerns the reading, understanding, and interpreting of such 

information. It is an ability of content and of context, and relates particularly to the 

form of the stimulus material. 

The ability for visual processing (VP). This ability involves visualization and the 

translation of abstract relationships and nonfigural information into visual terms. It 

also includes the manipulation and transformation of visual representations and 

visual imagery. It is an ability of process, and does not relate to the form of stimulus 

material presented (p. 185). 

Linn and Petersen (1985) on the other hand described three factors associated 

with spatial ability: spatial perception, mental rotation, and spatial visualization; a slight 

difference from the works of McGee (1979) and Bishop (1983), considering mental 

rotation a separate factor from spatial visualization (Yoon, 2011). Carroll (1993) used 
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factor analysis with huge datasets and concluded five first-order factors for spatial ability, 

two of them similar to previously defined factors: spatial visualization and spatial 

relations (Yoon, 2011).  

All the studies above identified spatial visualization as an important factor of 

spatial abilities, although Bishop (1983) labeled it visual processing (VP). Bishop’s VP 

definition is more attune to the abilities this study sought to improve through CAS-

enhancement of instruction because it describes not only mental manipulation, but 

transformation and translation of visual representations and visual imagery. However, 

spatial visualization is a term widely used in the literature. Therefore, for the present 

study, the term spatial visualization was used to refer to Bishop’s VP. 

Two main approaches to fostering and developing students’ spatial visualization 

may be taken in the teaching and learning of mathematics. One approach may use 

technology and its visual-rendering power to produce visualizations which can then be 

interpreted by students. Another approach is hands-on sketching and graphing of the 

visualizations related to the concepts of study. Leopold, Gorska, and Sorby (2001) 

conducted a study to compare spatial ability of engineering students entering their three 

universities by using the Mental Rotations Test, the Mental Cutting Test, and the 

Differential Aptitude Test: Space Relations. The students were enrolled in an 

introductory descriptive geometry course. Two of the universities primarily used 

computer-aid design to solve spatial tasks related to descriptive geometry concepts while 

sketching was mostly used at the third university. Their findings suggested that students 

enrolled in the descriptive geometry course that stressed hand-on sketching and drawing 
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improve their spatial skills more than the courses that used computer-aid approach. The 

present study takes into account the benefits of hand-on drawing and sketching for the 

development of students’ spatial skills and includes the use of technology as an 

enhancement to instruction to facilitate visualization of simple and more complex 3D 

mathematical objects.  

Visualization 
 

Drawing from the works of Zimmerman & Cunningham (1991), and 

Hershkowitzs et al. (1989), Arcavi (1999) proposed that: 

"Visualization is the ability, the process and the product of creation, 

interpretation, use of and reflection upon pictures, images, diagrams, in our 

minds, on paper or with technological tools, with the purpose of depicting and 

communicating information, thinking about and developing previously unknown 

ideas and advancing understandings." (p. 270). 

Visualization is strongly related to spatial ability and it plays a key role in 

mathematics education and the cognition of mathematical objects through multiple 

representations. To visualize in mathematics education is to create or make connections 

between a mathematical object and the internal or mental image representation of the 

mathematical object, which can be made visible through computer software or paper-and-

pencil (Sheikh, 2015). Furthermore, visualizations can facilitate or foster analytical 

thinking and lend critical aid to problem-solving (Carden & Cline, 2015; Sheikh, 2015; 

Zazkis, 2013). 
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Following on the steps of research interest in spatial abilities and the calculus 

revolution that was taking place in the late 1980’s, research on visualization and its 

importance in mathematics education started to rise in the early 1990’s. Behaviorism and 

its influence in education was challenged by constructivism, which opened the doors for 

more qualitative studies and a renewed interest in topics regarding visual thinking in the 

teaching and learning of mathematics (N. Presmeg, 2006). At the 15th Annual Conference 

of the International Group for the Psychology of Mathematics Education (PME-15) in 

1991, Imagery and Visualization was considered for the first time as a category by itself, 

drawing 10 research reports, three poster sections, and two plenary talks (N. Presmeg, 

2006); a significant difference compared to previous years. In 1998, at the North 

American Chapter of PME, the Working Group on Representations and Mathematical 

Visualization is formally constituted, with a focus on representations and visualization 

and their role in students’ learning of mathematics (Hitt, 2002, p. xvii).  

“An important objective of our working group on Representations and Mathematics 

Visualization is to promote an open discussion of the relevant theoretical 

orientations endorsed by different authors, and their influence in empirical research 

that intend to improve our understanding of the learning of mathematics. 

Particularly, there is interest in discussing how these research results can be 

interpreted and finally applied into classroom settings.” (Hitt, 2002, p. 2). 

The 21st century has seen a continued interest in visualization and student learning 

in regards to curriculum development and particular content areas, gender differences in 

mathematics visualization, students’ reluctance to visualize, semiotics and representation, 
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and more importantly, the influence of CAS and dynamic computer environments (N. 

Presmeg, 2006). 

Some studies have investigated the use of technology in the classroom as it 

pertains to visualization (July, 2001; Karakus & Aydin, 2017; Samuel, 2010; White, 

2003). White (2003) conducted a cyclical research design over the course of five terms at 

the University of Oklahoma from 1999 to 2002 to explore some effects of CAS use on 

students’ ability to visualize in multivariate calculus. He used questionnaires and 

interviews to gather data focusing on specific patterns that arose from data gathered in 

previous terms. While White found no significant differences between CAS 

(Mathematica) and non-CAS student’s visualization ability, student’s exposure to 

Mathematica in the treatment classes was not structured and relatively low. White’s study 

included some lab sessions where students were provided some limited instruction in the 

use of the CAS and a sheet with tips and examples. White’s study suggests care be taken 

when implementing the use of technology in the classroom, especially if the technology 

requires a learning curve to fully exploit its capabilities in the teaching and learning of 

mathematics. An improvement to White’s study would include clearly defining the way 

technology would be used in the classroom in terms of structure and frequency. 

July (2001) conducted a teaching experiment in a 10th-grade geometry class over 

a 10-week period to uncover how students constructed knowledge and developed 

visualization and spatial skills in a classroom environment where technology was used as 

the main instructional tool. Data gathered included videotape of class sessions, field 

notes, student work, and student interviews. July (2001) found evidence of technology’s 
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(GSP) influence in students’ progress of their geometric thinking and in creating a 

supportive environment for students’ development of visualization and spatial skills. 

Although the results are promising, the participants of this study had been together as a 

group for more than three years and had ample experience in using GSP, conditions that 

are not typical in the mathematics classroom at the HSI.  

Samuel (2010) used a case study to investigate student learning for 28 students in 

a first-semester calculus course emphasizing visualization using a “mathlet,” or java 

applet for mathematics instruction, at an urban community college. Students meet with an 

instructor three times a week for 14 weeks, nine out of which were lab sessions where 

they worked on pre-made lab activities in a computer. Samuel used surveys to measure 

student’s spatial ability, representation preference, and attitudes on mathematics and 

technology, as well as test scores, interviews, and recordings of lectures to measure 

content knowledge. Samuel found that students “demonstrated robust conceptions of the 

derivative” and “overwhelming improvement in attitudes for a small group of students 

with high spatial ability” (pp. 182-183). Noting the positive results observed, Samuel 

proposes an experimental study to be conducted to examine students’ understanding 

using a more visual approach to the teaching of some calculus concepts, particularly, 

derivatives and local linearity.   

Karakus and Aydin (2017) conducted a study to determine the effects of using a 

CAS in students’ spatial visualization skills in a multivariate calculus course and whether 

spatial visualization was a predictor for student academic success in the course. A one-

group pretest-posttest design was used to assess gains in spatial visualization as measured 
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by Guay’s (1976) PSVT: R. Students were trained how to use basic commands in Maple 

during the first week followed by instruction in a computer-lab setting with guiding 

worksheets. The findings suggest the CAS-based instruction had a positive impact in 

students’ development of spatial visualization. Moreover, the study found that students’ 

spatial visualization skills can be a predictor for success in the course. One limitation of 

the study is the lack of a control group to assess whether the gains would be significantly 

higher for the group using CAS-grounded instruction versus a group not using CAS-

grounded instruction.    

The result of these studies and their limitations provided ideas for direction and 

further research. Samuel’s (2010) and July’s (2001) qualitative studies providing some 

evidence to the usefulness of technology for visualization and conceptual fluency of 

students, along with White’s (2003) lack of structure and frequency of technology use 

and Karakus and Aydin (2017) lack of a control group indicated the need for a more 

rigorous, experimental design regarding the use of technology in the classroom to 

improve students’ visualization and mathematical understanding. Furthermore, research 

on the importance of spatial skills and their relation to students’ learning of multivariate 

calculus concepts is scarce (Cromley et al., 2017). 

Observing the opportunities that technology offers while acknowledging some of 

its drawbacks as discussed above, the present study made use of the technology as a 

visual enhancement tool for the faculty in their delivery of the multivariate calculus 

content. Two factors of importance are pointed out. First, the students did not have to 

face the added complexity the CAS syntax brings, rather the researcher and the 
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instructors were responsible for the creations of dynamic figures relevant to the concepts 

to supplement the instruction. Second, since the CAS was available for the instructor to 

teach but not for the students to use, students had to sketch and graph by hand the 

visualizations associated with the different concepts which may be associated to higher 

learning gains in spatial visualization (Leopold, Gorska, & Sorby, 2001).  

Visualization and Mathematical Understanding in Calculus 
 

Differential Calculus 
 

In a recent study, Cromley et al. (2017) investigated the relation of spatial skills to 

calculus proficiency using 77 calculus and pre-calculus students from two suburban high 

schools and 11 undergraduate students from a large urban university. In terms of spatial 

skills, students were measured in a test of rigid transformations in 3D (Mental Rotation 

Test), a test of non-rigid transformations in 3D (Paper Folding test), and a test of guided 

attention in 2D (Hidden Figures Test). Students were also given an assessment to 

measure their ability to coordinate multiple representations (Coordinating Multiple 

Representations Test), AP Calculus exam items, and a researcher-made calculus concepts 

test (Calculus Conceptual Knowledge) composed of multiple-choice items with no 

calculation, only questions to measure knowledge of relationships among concepts. After 

conducting simple linear regressions, results from the study showed that the Mental 

Rotation Test (MRT) scores and the Coordinating Multiple Representations (CMR) Test 

scores were strong predictors of the AP Calculus exam items scores, the MRT scores 

were significantly correlated with CMR scores, and the CMR was a strong predictor of 

the Calculus Conceptual Knowledge (CCK) scores. Cromley et al. (2017) concluded that 

“spatial skills training might help some students succeed better in calculus” (p. 63). 
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However, the study was a correlational study where no treatment took place. There were 

no intentional efforts to affect spatial ability and mathematical understanding, but rather 

just describe the relationship between spatial skills and calculus proficiency in the group 

of participants. Furthermore, the measures of calculus proficiency used in the study, both 

AP Calculus exam items and the researcher-made CCK were based on differential 

calculus and not multivariable calculus. 

Zazkis (2013) conducted a qualitative study to learn about the effect of a 

Geometer’s Sketchpad applet used to enhance the teaching and address students’ 

difficulties in relating the graph of a function and the graph of its derivative. The slope-

widget applet was used to visualize the tangent line of the graph of a function at a point 

and the value of the derivative of the function at that point. Three students were video-

recorded during work group and interviewed without to ascertain their learning. The 

students completed a series of problems without the help of the Geometer’s Sketchpad 

applets. Zazkis (2013) proposes the applet fostered and enhanced the participants’ 

thinking when solving the given problems in terms of using strategies that incorporated 

both the analytical and graphical reasoning.  

Multivariate Calculus 
 

Not many studies have examined the use of technology to enhance visualization 

and its relation to understanding in multivariate calculus. In one of the earlier ones, Habre 

(2001) conducted an observational study in a multivariate calculus course section of 26 

students where the instructor emphasized the visual aspects of the course. The instructor 

met with the students in a traditional classroom two times a week for 50-minutes each 
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and once a week in a computer-lab setting. Students were assigned weekly problems, 

applications, and visualization assignments often requiring the use of graphic programs. 

The data collected included observations, copies of students’ assignments and exams, and 

questionnaires. Some students reported appreciation for the technology being useful to 

illustrate the geometric aspect of some of the multivariate calculus concepts and helping 

them realize the relationship between algebra and geometry, while others still preferred 

the analytical approach (Habre, 2001). 

More recently, in a PhD dissertation, Sheikh (2015) investigated the role of 

visualization in the mathematical understanding and problem-solving skills of a 

multivariate calculus and dynamic systems course. Treatment in the experimental group 

consisted of activities to facilitate visualization of 3D objects that took place in a 

computer-lab setting additional to the traditional lectures, while the control group 

received the traditional lecture as well as some tutorial instruction. The activities 

facilitating visualization utilized MATLAB and consisted mostly of recognizing surface 

features and properties of 3D objects, and generating, rotating, and sketching 3D objects 

and their projections. The same instructor taught both the experimental and control group 

sections, and all class notes, assignments, and other relevant course materials were 

virtually the same for both groups. Both groups had access to CalcPlot3D and 

Mathematics Visualization Toolbox on the internet, and data collected on both groups 

included three tests, interviews, assignments, and six laboratory worksheets.  

Shiekh’s finding showed no statistically significant differences in the scores of 

Test 1 and Test 2 between the experimental and control group. However, the study found 
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statistically significant differences in the performance of Test 3 between both groups, 

providing evidence of the complementing role visualizations play with analytical thinking 

to enhance understanding in multivariate calculus. The interview data showed students’ 

learning experience in the lab was positive overall, and there were suggestions for more 

sessions and more time in the future. There were also some negative comments including 

the cognitive load of students having to learn the math and the software at the same time. 

Sheikh’s research study provides support to the visual-enhancement of traditional lectures 

to improve students’ understanding of the topic discussed in multivariate calculus. 

Moreover, care must be taken when infusing the technology in the classroom as to no 

create a cognitive overload on the students’ learning. 

Gaps in the Research 
 

 Review of some of the literature on the teaching and learning of calculus and the 

role of technology showed the potential for technology-integration in the calculus 

classroom. Although the results are mixed when it comes to technology in the classroom, 

there is a salient theme to inform educators and researchers when considering the 

inclusion of technology for teaching and learning: some technologies might be better than 

others, but it is more important to consider how to and when to include technology in the 

teaching and learning of mathematical concepts (Borchelt, 2004; Habre, 2013; Meagher, 

2005; Tall et al., 2008; Thomas, M. & Hong, 2004). The literature on spatial ability and 

visualization shows a growing interest in paying attention to and purposely developing 

these abilities for STEM students, which coupled with good understanding should lead to 

better critical thinking and problem-solving skills (Sheikh, 2015).  
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Research on students’ understanding in a first-semester calculus course is 

abundant, and although some studies in multivariate calculus have investigated students’ 

understanding of directional derivative, partial derivative of two-variable functions, 

tangent planes (Martínez-Planell et al., 2017), different coordinate systems and double 

and triple integrals (Montiel & Wilhelmi, 2009), they are fewer and qualitative in nature. 

There are many studies exploring the intentional use of visualizations in the classroom to 

improve students’ understanding of calculus (July, 2001; Samuel, 2010; White, 2003), 

however they addressed differential calculus concepts and not multivariate calculus.  

Sheikh (2015)’s PhD dissertation is one of the very few studies done investigating 

the use of intentional visualization on students’ understanding using technology. 

Acknowledging this, Sheikh (2015) suggests: “Given the increasing availability and use 

of technology, more research is needed on technology-enhanced techniques that aid with 

visualization and representations, and the conditions under which they are effective” (p. 

174). There is a need for research exploring spatial ability and visualizations in 

multivariate calculus enhanced by technology and its relation to students’ understanding 

of the different multivariate calculus concepts. This research is important considering 

how important mathematical understanding and spatial ability are to the development of 

“STEM innovators” (National Science Board, 2010). 

Summary 
 

 This literature review aimed to present research relevant to spatial ability and 

mathematical understanding of undergraduate college students enrolled in a multivariate 

calculus course. It explored some of the research that has been done in calculus to 
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improve students’ conceptual learning and mathematical understanding, with or without 

the use of technology. The literature review also explored some of the research fostering 

and developing students’ spatial ability and visualization in mathematics courses 

facilitated with the use of technology. Finally, it looked at research exploring 

visualization and mathematical understanding in multivariate calculus courses enhanced 

by technology. The next chapter will describe the research methodology and design that 

was used to answer the research questions for the present study. 
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CHAPTER 3: METHODOLOGY 
 

Research Methodology and Design 
 

In this chapter the methodology and research design for this study will be 

presented. The chapter will include the population, sample, sampling design, 

instrumentation, and instructional strategy. Attention will be given to the development of 

the instruments to assess pre-requisite knowledge and mathematical understanding. The 

purpose of the present study was to determine whether a more visual approach to the 

teaching of several concepts in multivariate calculus improves students’ mathematical 

understanding and spatial ability. The participating students were enrolled in a 

multivariate calculus course section at a large HSI in the South.  

The present study followed a quantitative methodology. Quantitative research is 

originally rooted in positivism, a philosophical view that proposes the social world is 

governed by general principles and laws much like the physical world, and through 

objective data gathering and hypothesis testing, researchers can arrive at systematic, 

generalizable, and replicable findings (Ary, Jacobs & Sorensen, 2010). It employs a 

deductive approach to study relationships using large samples and preselected 

instruments, and employs statistical analysis of numerical data (Ary, Jacobs & Sorensen, 

2010).  

The study explored an instructional strategy in an undergraduate classroom setting 

at a two-year HSI in the Southeastern United States. Research in educational settings like 

the one the present study conducted usually lack randomization of subjects. Because 

whole intact classes were used and therefore randomization of subjects was impossible, 
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the overall research design for the present quantitative study was a quasi-experimental 

design.  

Quasi-experimental designs are similar to randomized experimental designs in 

that descriptive causal hypothesis about controlled causes are tested but differ in the 

ability to randomly assign subjects (Ary et al., 2010; Shadish et al., 2002). Structural 

details in quasi-experimental designs include the frequent presence of control groups and 

pretests measures, and although full control is not possible, they are still considered 

worthwhile because they allow for reasonable conclusions to be reached (Ary et al., 

2010; Shadish et al., 2002). Among the quasi-experimental designs, the design that fits 

best for this study is the Nonrandomized Control Group, Pretest-Posttest Design. In the 

Pretest-Posttest design, groups are given the pretest before treatment, and then after 

treatment is completed (Ary, Jacobs, Sorensen, Walker, & Razavieh, 2010; Shadish, 

Cook, & Campbell, 2002). For the present study, the experimental and control groups 

were chosen by the researcher in conjunction with the participating faculty.  All 

participating course sections received a pretest on mathematical understanding and spatial 

ability constructs in the beginning of the semester. Treatment was then implemented in 

the experimental group, followed by a posttest on both mathematical understanding and 

spatial ability constructs at the end of the semester, administered to both groups.  

The research questions for the study were as follows: 

1. To what extent does prerequisite knowledge, and a visually-enhanced 

approach to instruction facilitated by CAS affect college students’ 

mathematical understanding of multivariate calculus concepts in an 
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undergraduate Multivariate Calculus classroom setting at Miami Dade 

College? 

2. To what extent does prerequisite knowledge, and a visually-enhanced 

approach to instruction facilitated by CAS affect college students’ spatial 

ability in an undergraduate Multivariate Calculus classroom setting at Miami 

Dade College? 

3. Is there a relationship between college students’ spatial ability and 

mathematical understanding of selected multivariate calculus concepts in an 

undergraduate Multivariate Calculus classroom setting at Miami Dade 

College? 

The hypotheses for this study were: 

1. Ha: The mean mathematical understanding test scores for students being 

taught using a visually-enhanced approach mediated by CAS in a multivariate 

calculus college course will be higher than those who receive a traditional, 

non-CAS approach in a multivariate calculus college course. 

2. Ha: The mean spatial visualization test scores for students being taught using a 

visually-enhanced approach mediated by CAS in a multivariate calculus 

college course will be higher than those who receive a traditional, non-CAS 

approach in a multivariate calculus college course. 

3. Ha: There will be a significantly positive relationship between spatial ability 

and mathematical understanding of multivariate calculus concepts. 
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To address the first question, a Mixed-Effect, Repeated Measures, One-Way 

Analysis of Covariance (ANCOVA) design was to be used. As a result of the lack of 

randomization and the fact the study contains one independent variable and one 

dependent variable, a One-Way ANCOVA was to be used to ameliorate the effect of 

extraneous variables that affect the dependent variable and provide more power to the test 

of group differences on mathematical understanding. The covariate envisioned was pre-

requisite knowledge. However, after testing and failing some of the assumptions for the 

One-Way ANCOVA, the researcher changed the covariate variable into a second 

independent variable to consider because its interaction with the first independent 

variable. Therefore, the statistical run to answer the first question was changed to a 

Repeated Measures, Two-Way Mixed Analysis of Variance (ANOVA). The pretest-

posttest design was employed to measure students’ mathematical understanding on both 

the control and the experimental groups, thus between-groups and within groups (time) 

factors were measured as well as between-within interactions, explaining the repeated 

measures, mixed-effects design.  

The same design was employed to address the second question. Although pre-

requisite knowledge was not envisioned as a covariate for spatial ability, because of its 

change from covariate to independent variable made the researcher include pre-requisite 

knowledge in the test conducted. Therefore, Repeated Measures, Two-Way Mixed 

ANOVA was used as well. To address the third question, a Pearson product moment 

correlation was carried out. The Pearson coefficient is an appropriate measure of the 

relationship between two variables of interest that are normally distributed and measured 
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on an interval or ration scale (Ary et al. 2010), and thus, was suitable for the present 

study.  

Population and Sampling 
 

 The population for the current study were undergraduate students enrolled in a 

multivariable calculus course section at a large HSI in the Southeast Region. Participants 

were recruited from Miami Dade College (MDC), who has the largest undergraduate 

enrollment of any college or university in the country, with 92,085 students enrolled in 

credit courses at MDC (2014-2015), and most of them Hispanic (71%) and Black Non-

Hispanic (17%) (mdc.edu/about/facts.aspx). Calculus III (Multivariate Calculus) at MDC 

is a course typically aimed at STEM students, and its population mirrors that of the 

school in general.  

For this study, Calculus III sections at MDC Eduardo J. Padron (formerly 

InterAmerican), Wolfson, and Kendall campuses were selected because of faculty willing 

to participate in the study and integrate Maple in their lectures to provide a more visual 

approach to the teaching of the concepts discussed earlier. The faculty who volunteered 

to participate in the experimental sections were familiar with Maple software and how it 

was going be used for the present study. Furthermore, CAS dynamic worksheets 

consisting of dynamic features were developed by the researcher in conjunction with the 

faculty in the experimental groups to seamlessly integrate the use of Maple in the lesson 

plans of the proposed concepts.  

The study took place during spring 2019 at the campuses mentioned above. 

Eduardo J. Padron Campus offered two multivariate calculus course sections, one in the 
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morning and one in the evening. Each section was capped at 35 seats, but student 

enrollment only reached 17 students for each course section. Wolfson Campus was 

offering only one multivariate calculus course section during the midday which filled 

with 38 students. Kendall Campus offered two sections of multivariate calculus, one 

section during the midday and the other in the evening. Both sections had enrollment of 

23 students each. 

Sample 
 
 The sample size for the current study was calculated with G-power 3.1.9.2 

software (Faul, Erdfelder, Lang, & Buchner, 2007) . The statistical test selected was an F-

test ANCOVA: fixed effects, main effects and interactions.  The test requires six input 

parameters to determine total sample size a-priori: effect size f, α error probability, power 

(1 - β error probability), numerator df, number of groups, and number of covariates.  

Effect size is “a measure of the magnitude of a relationship, specific instances of 

which include the standardized mean difference statistic, the odds-ratio, the correlation 

coefficient, the rate difference, and the rate ratio” (Shadish et al., 2002, p. 507). It 

indicates the strength of the relationship between the independent variable and the 

dependent variable, and it is considered an important statistic for evaluating quantitative 

studies (Ary et al., 2010). Effect size is categorized as small (0.10), medium (0.25), and 

large (0.40) in the G-power software for the ANCOVA statistical test, and for this study 

the effect size chosen was 0.25. 

The significance level α refers to the probability of rejecting the null hypothesis 

when the null hypothesis is true, and in the behavioral sciences the most commonly used 



      
 

57 
 

significance level is α = 0.05 (Ary et al., 2010). Rejecting the null hypothesis when the 

null hypothesis is true may lead to changes and expenditure in terms of time and money 

that is not warranted. For that reason, the significance level for the present study was 

chosen to be α = 0.05. Power refers to “the ability to reject a null hypothesis when it is 

false” (p. 169); it is calculated as 1 – β, where β stands for the probability of failing to 

reject the null hypothesis when the null hypothesis is false (Ary et al., 2010). For the 

current study, failing to reject the null hypothesis would lead to no changes in the 

traditional instruction of Calculus III, and although not a desirable outcome, it was 

considered less severe than proposing changes that are not warranted. For this reason, the 

power for this study was chosen to be 0.70 (β = 0.30). 

 For the remaining parameters, the numerator df = 1, the number of groups = 2 

(treatment and control), and the number of covariates = 1 (pre-requisite knowledge). The 

total sample size based calculated a-priori using the parameters explained above resulted 

in 101; this included the number of students in both the treatment and control classes. 

 The final sample size for this study was 65, well below the calculated a-priori 

sample size of 101 for the parameters described above. The reasons for such a small 

sample size are largely associated with time constrains, and the fact that multivariate 

calculus course sections are few and do not typically have high enrollment at the HSI 

where the study took place. An inadequate sample size has a negative effect on the 

statistical power of the study and the researcher is aware of the limitation imposed by the 

small sample size. 
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Sampling Design 
 
 To obtain the sample of students to participate in the study, the researcher 

contacted several instructors at MDC in fall 2018 who were scheduled to teach 

multivariate calculus in spring 2019. Five faculty agreed to participated in the study, 

providing a total of 118 enrolled students who could theoretically participate in the study. 

The researcher met with the participating instructors and it was agreed to give extra credit 

to the students as an incentive to participate in the study.  

Out of the two faculty that participated in the experimental group, one of them 

was a tenured faculty (5 years of experience at HSI) with an earned M.S. in Mathematics 

who had been consistently teaching multivariate calculus every academic year. The 

second faculty did not have tenure (two years of experience at HSI) and recently started 

teaching the course. The second faculty had earned M.S. in Curriculum and Instruction 

and had complete 18 graduate math credits. Both instructors had experience with the 

CAS and had knowledge of the content of the CAS dynamic worksheets and their 

proposed use before using them in the actual classroom. Both instructors had attended a 

training workshop about the CAS used in the study. Furthermore, both instructors had 

experience using a CAS during their studies.   

Out of the three faculty that participated in the control group, two were tenured 

faculty (15 years and 7 years of experience at HSI), while the third faculty did not have 

tenure yet (4 years of experience at HSI). The more experienced faculty had been 

consistently teaching multivariate calculus every academic year while the other two 

faculty did not teach the course in a consistent manner. All participating course sections 
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covered the same topics (See Appendix A) and met face-to-face 200 minutes every week 

for 16 weeks.  

 Once all the IRB approvals were obtained, the researcher approached the course 

sections and informed and explained all the rights and responsibilities of the students as 

participants. Students who were under 18 years old were identified by a question in the 

consent form and did not form part of the data of the study although they could complete 

the assessments to obtain the extra-credit points as it was written in the description of the 

study. No other reason disqualified students from participating in the study.  

Ethical Considerations 
 
 All participants were treated in accordance to the ethical guidelines of the 

Institutional Review Board (IRB) of Florida International University (FIU) and MDC. All 

potential participants were given a printed consent form (See Appendix B) and time to 

read it. Furthermore, its contents were described and explained, and time was devoted for 

possible questions. Only the students who signed the consent form acknowledging their 

rights and responsibilities and agreeing to participate in the study were considered as 

subjects for the study.  

 In all research involving human subjects and the collection of data with 

identifiers, confidentiality of the participants is very important. Because of the Pretest-

Posttest design of the study, participants needed to be identified to link their pretest and 

posttest scores. The researcher achieved confidentiality of the participants by creating a 

special student ID for each student and securely keeping all collected assessment in a 

locked cabinet. The electronic file with the student data has only the researcher-created 
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special id as identifier. Nonetheless, the data are password protected until the completion 

of the project where all confidential data will be safely disposed of through physical and 

electronic shredding.  

Instrumentation 
 

Mathematical understanding and prerequisite knowledge were measured using 

criterion-based assessments created by the researcher. The mathematical understanding 

assessment tested students’ ability to perform transformations within a semiotic register, 

and conversions between registers, while the prerequisite knowledge assessment 

measured basic mathematical content learned in courses before multivariate calculus, 

namely Precalculus, Trigonometry, Calculus I, and Calculus II. When standardized tests 

are not available or they are not appropriate for the particular objectives of a research 

study, it is better to create one’s own test paying attention to issues of validity and 

reliability of the instrument (Ary, Jacobs, & Sorensen, 2010).  

The prerequisite knowledge was measured using the Diagnostic Assessment. The 

assessment was created with 19 multiple-choice questions each containing the correct 

answer and three distractors, and one show-your-work question. The questions chosen 

evaluate knowledge of different topics related to Precalculus (functions, conic sections), 

Trigonometry (trigonometric functions), Calculus I (limits, continuity, differentiability, 

derivatives), and Calculus II (integrals). “Evidence based on content is mainly the result 

of a logical examination or analysis by content experts that shows whether the instrument 

adequately represents the content and objectives making up the domain” (Ary et al., 

2010, p. 227). Content validity was addressed through a panel of experts, who evaluated 
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the instrument and provided feedback to the researcher to improve the instrument in 

terms of the questions being asked, and the clarity and conciseness of the questions. The 

panel of experts was made up by mathematics faculty from Miami Dade College and 

Florida International University, all of them with a Ph.D. in Mathematics. None of the 

instructors participating in the study were part of the panel of experts. Using the panel’s 

feedback, changes were made to the instrument by the researcher and feedback was 

elicited again. The process of eliciting feedback and making changes accordingly was 

repeated until there was consensus among the experts that the instrument was good 

enough to measure prerequisite knowledge.  

“The reliability of a measuring instrument is the degree of consistency with which 

it measures whatever it is measuring” (Ary et al., 2010, p. 236). Reliability of the 

prerequisite knowledge assessment was addressed using test-retest on a sample size of 19 

MDC students who completed all prerequisite courses to Calculus III. The test-retest 

reliability coefficient is an indication of the consistency of a person’s performance on the 

given test and it assumes there is no practice effect or memory effect (Ary et al., 2010). 

The practice effect refers to changes on the retest score based on learning that may have 

taken place by the subjects taking the test the first time (Ary et al., 2010). The memory 

effect refers to subjects answering the questions in the retest based on what they 

remember answering in the initial test (Ary et al., 2010). To ameliorate these effects, the 

retest was given two weeks after the initial test. The results were run in SPSS and a 

significant Pearson correlation score of 0.874 was obtained at the α = 0.01 level (see 

Table 1). 
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Table 1 Test – Retest Correlations 

Correlations 

 TEST RETEST 

TEST 1 .874** 

Pearson Correlation   

Sig. (2-tailed)  <.001 

N 19 19 

RETEST .874** 1 

Pearson Correlation   

Sig. (2-tailed) .000  

N 19 19 

Note. **. Correlation is significant at the .01 level (2-tailed) 

Mathematical understanding was measured using the Knowledge Assessment. 

The assessment was created with 10 multiple-choice questions each containing the 

correct answer and four distractors, and the same process as the pre-requisite knowledge 

was followed to establish content validity. The instrument was revised and sent to the 

same panel of experts described above for feedback until consensus was reached. None of 

the faculty participating in the study were part of the panel of experts. The questions 

chosen elicited understanding of the selected concepts (planes tangent to surfaces, 

directional derivatives, and double/triple integrals) as defined by the theoretical 

framework used in this study.  

Although consensus was reached to establish content validity, the researcher was 

not able to evaluate the assessment for reliability using test-retest design because of the 
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lack of participating students. Split-half reliability was not possible because there were 

not enough test items measuring the same construct for split-half testing. 

Spatial visualization was assessed using the Yoon’s (2011) Revised Purdue 

Spatial Visualization Test – Rotations (subsequently known as Revised PSVT-R). 

Several explanations were given in a summary of research regarding the prevalence of 

Guay’s (1976) PSVT-R in STEM areas including “strong reliability and validity 

evidence,” “necessary complexity and difficulty of items to differentiate STEM student’s 

degree of spatial ability,” “free to use and readily available… relatively easy to score due 

to its multiple choice format,” and “strongest measure of spatial visualization ability of 

mental rotation for individuals who incorporate the holistic or gestalt spatial thinking 

process and are the least likely to use the analytic or analogical spatial thinking process” 

(Yoon, 2011, pp. 36–37). However, as a result of some figural errors and lack of 

literature on construct validity and item level characteristics of the PSVT-R, Yoon (2011) 

revised and tested the new instrument (Revised PSVT-R) for construct validity, 

reliability, and item level characteristics. The Revised PSVT-R has 30 multiple-choice 

items ordered depending on the level of difficulty. Analysis showed good internal 

consistency reliability (Cronbach’s α = .862, N = 1022), and factor analysis showed 

consistent fit indexes providing evidence of construct validity (Yoon, 2011). Yoon 

recommended the test be used as provided (permission and a copy of the test was 

obtained by the researcher (see appendix E) with no changes to the order of the questions 

to preserve its validity and reliability. 
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A paper-and-pencil demographic survey was given to the students after their 

consent was obtained, and during the pretest data collection phase. The demographic 

survey included major, college year, honors college, sex, age, and ethnicity.  

Instructional Strategy 
 

 For the current study, participants were divided into two groups: 

traditional lecture-based group (control) and visually-enhanced lecture-based group 

(experimental). The experimental group was composed of two multivariate calculus 

course sections, one that met Tuesdays and Thursdays, 10:40am – 12:20pm, while the 

other met Mondays and Wednesdays, 8:20pm – 10:00pm. The sections were taught 

following Thomas’ Calculus Early Transcendentals 14th Edition. The chapters of the 

book associated with the course competencies are: Vectors and the Geometry of Space, 

Vector-Value Functions and Motion in Space, Partial Derivatives, Multiple Integrals, and 

Line Integrals and Vector Fields. The schedule followed by the treatment group including 

the collection phase of the assessments can be seen in Appendix D. All content 

throughout the semester was taught lecture-based in the experimental group, same as the 

traditional group, but any visualization typically done by hand in the control group course 

sections for selected topics (See Appendix C) was presented using CAS dynamic 

worksheets created by the researcher using the CAS of choice, Maple.  

The CAS dynamic worksheets were created in conjunction with the experimental 

group’s instructors to ensure ease of use and integration in their normal lecture routine. 

The examples used and relevant features in the CAS dynamic worksheets were agreed 

upon at least one week before the lesson to allow the investigator time to develop the 
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worksheet. Although the CAS dynamic worksheets contained dynamic figures to enhance 

visualization of the selected mathematical objects, some static examples of the CAS 

dynamic worksheets can be found in appendix G. Thus, Maple was integrated in the 

classroom as part of the lecture for the experimental group in the form of CAS dynamic 

worksheets which contained dynamic figures. Some of the visualizations were presented 

as the concepts were introduced, while other visualizations were presented as the 

instructor showed examples of the concept. The use of the worksheet involved the 

projector, which was video-muted until the visualizations were needed. Treatment took 

place from Week 7 – Week 15, and a total of 12 CAS dynamic worksheets enhancing 

visualizations were used by each faculty of the experimental group. The topics included 

in each worksheet are listed below. All the visualizations presented in each one of the 12 

CAS dynamic worksheets described below were dynamic in nature. 

• CAS dynamic worksheet #1: The Cartesian Coordinate System. The worksheet 

shows the different ways Maple shows the Cartesian Coordinate System. The idea 

behind this worksheet was to familiarize students with the 3D coordinate system 

and how it is visualized in maple. 

• CAS dynamic worksheet #2: Vector-Valued Functions. The worksheet contains 

three animations: two animations are related to the graph of two different vector-

valued functions, while the third animation shows the tangent vector along the 

curve of a vector-valued function. 
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• CAS dynamic worksheet #3: Functions of Several Variables. The worksheet 

contains visualizations of some basic functions of two variables and their level 

curves. 

• CAS dynamic worksheet #4: The sphere. The worksheet contains visualizations 

of a sphere. It is an example of an object that is not a function of two variables, 

and it was used in conjunction with CAS dynamic worksheet #3.  

• CAS dynamic worksheet #5: Partial derivatives. The worksheet is a modified 

version of an existing Maple-document in Maple created in 2001 by Gregory 

Moore which contains a geometric view of partial derivatives. 

• CAS dynamic worksheet #6: Directional derivative and gradient. The worksheet 

contains step-by-step algebraic procedure for finding a directional derivative and 

its related visualization. It also contains the visualization of the gradient vector of 

a function at a point.  

• CAS dynamic worksheet #7: Tangent plane. The worksheet contains the 

visualization of the tangent plane of a surface at a point, and the tangent line of 

intersecting surfaces at a point. 

• CAS dynamic worksheet #8: Extreme values and saddle points. The worksheet 

contains four visualizations containing extreme values and saddle points of some 

surfaces. 

• CAS dynamic worksheet #9: Double integrals over rectangular regions. The 

worksheet contains three visualizations of double and iterated integrals of selected 

functions over rectangular regions. 
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• CAS dynamic worksheet #10: Double integrals over general regions. The 

worksheet contains three visualizations of double integrals of selected functions 

over general regions (non-rectangular). 

• CAS dynamic worksheet #11: Area by double integration and regions of 

integration of double integrals. The worksheet contains two visualizations of area 

by double integration, and three visualizations of regions of integration for 

selected double integrals. 

• CAS dynamic worksheet #12: Triple integrals in rectangular coordinate system. 

The worksheet contains the visualizations of two triple integrals in rectangular 

coordinates. 

For the control group, one section met Mondays and Fridays, 12:00pm – 1:40pm, 

and it was also taught following Thomas’ Calculus Early Transcendentals 14th Edition 

with chapters listed above. The other two sections, one Tuesdays and Thursdays, 6:00pm 

– 7:40pm, and the other Mondays and Wednesdays, 2:20pm – 4:00pm, were taught 

following Anton’s Calculus Early Transcendentals, 11th Edition. The chapters of the book 

associated with the course competencies are: Three-Dimensional Space and Vectors, 

Vector-Valued Functions, Partial Derivatives, Multiple Integrals, and Topic in Vector 

Calculus. Although some of the chapters may differ slightly in the name, the content is 

the same for both books utilized in the study. Furthermore, the content at every campus is 

chosen based on the same set of college-wide competencies, therefore ensuring same 

content. The instructors for the control group did not use the CAS dynamic worksheets 

created by the researcher. Rather, the instructors for the control group used hand-drawn 
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visualizations for some of the multivariate calculus concepts. Similar homework was 

assigned throughout the semester for both the experimental and control groups, none of 

them required the students to use CAS.  

Fidelity of Treatment 
 

To ensure fidelity of treatment, the researcher met with the instructors of the 

experimental group before a CAS dynamic worksheet was to be used, and after use. 

Weekly meetings with the instructors were easy to do because the office of the instructors 

and the researcher are on the same floor of the same building, no more than 50 feet apart. 

The discussions before the use of a CAS dynamic worksheet would comprise of the 

examples to be included in the CAS dynamic worksheet and what visualizations would fit 

the instructor’s lesson plan. Once the CAS dynamic worksheet was created, the 

researcher would meet again with the instructors to show the examples of the CAS 

dynamic worksheet and the possible manipulations of the dynamic figures. Furthermore, 

the faculty from the experimental group were given access to the OneDrive folder were 

all the CAS dynamic worksheets were saved.  

The discussion after the use of the CAS dynamic worksheet would include the 

instructor’s feedback of the students’ interest, and their perception on the helpfulness of 

the visualizations, and the instructor’s feedback on possible improvements or extensions 

to the CAS dynamic worksheets. The feedback after use was mostly positive, with the 

faculty expressing their interest in using the worksheets in future course sections. 
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Data Analysis 
 

 The data collected from the demographic survey, diagnostic assessment, 

knowledge pretest and posttest, and visualization pretest and posttest were input into a 

single Statistical Procedures for Social Sciences (SPSS) file. Exploratory analysis 

consisting of descriptive statistics was conducted for all variables as measured in each 

group in the study. The analysis included tests of normal distribution and the presence of 

outliers. It was hypothesized for research questions 1 and 2 that students in the treatment 

group would exhibit statistically significant gains in spatial ability and mathematical 

understanding compared to students in the control group. Additionally, it was 

hypothesized for research question 3 that students’ spatial ability and mathematical 

understanding would be positively strongly correlated. All tests were carried out at a 

significance level of .05. 

Research Questions 
 

Before running the theorized statistical test for each research question, the 

researcher tested all the assumptions associated to each statistical test. If some of the 

assumptions for any test failed, the researcher decided on whether to run the test as is and 

be aware of the limitations of the results, or modify the statistical test as recommended by 

Cohen (2008). The assumptions for any changes or modifications to statistical tests were 

verified to ensure the results of the test can be trusted and interpreted. Full results and 

statistical tests are presented in Chapter 4. 
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CHAPTER 4: RESULTS 

 

The goal of the present research was to determine empirically whether the 

purposeful inclusion of CAS dynamic worksheets aimed at visualizing selected 

multivariate calculus concepts in experimental multivariate calculus course sections 

would make a significant difference in students’ spatial ability and learning of said 

concepts versus students who participated in traditional multivariate calculus course 

sections at a large HSI. Furthermore, the current study investigated whether students’ 

spatial ability and knowledge of selected multivariate calculus concepts were correlated. 

It was hypothesized that students in the experimental group would exhibit significant 

gains in the knowledge of selected concepts taught throughout the semester, as well as 

significant gains in spatial ability. Moreover, because of the nature of the content 

knowledge of this course, it was hypothesized that students’ spatial ability and 

knowledge acquired would be strongly positively correlated.  

Data Collection 
 

Students from five different Calculus and Analytical Geometry III (MAC2313) 

courses were approached during class time to seek their participation in the study, 

totaling 118 individuals. Out of the 118 students, 101 provided their consent to 

participate in the current study, however, one of those students was a minor. Since the 

IRB consent form requested and approved was for adult students, the minor in question 

was not considered as a participant in the study. Out of the 100 consenting adult students, 

85 completed all the pretest assessment, and only 65 out of the 85 students who had 

completed the pretest also completed the posttest assessment. The reasons for the attrition 
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include students who withdrew from the course, students who were dropped for not 

attending class, and students who completed only one round of assessments. Therefore, 

the sample size for the present quasi-experimental study was 65 students, 26 of them 

being part of the experimental group, and the other 39 students belonging to the control 

group. 

To describe and compare the student population for both the experimental and the 

control groups, survey data were collected for the following demographic items: major, 

college year, honor’s college, sex, age, and ethnicity.  

Students from both groups were comprised mostly of self-declared engineering 

and math majors (84.6% for the treatment group, and 74.3% for the control group). A 

Fisher’s exact test was carried out to determine statistically significant difference of 

student’s self-declared major as described above by treatment. A Pearson’s Chi-Square 

Test could not be used since one of the cells (treatment*other majors) had a count of four 

(4) and Pearson’s Chi-Square Test assumes five (5) or higher. The test revealed there is 

no statistically significant difference between the experimental and control groups 

regarding declared majors (Fisher’s exact test, p = 0.373).  

Students from both the experimental and control groups were mostly sophomore 

and juniors (84.6% for the treatment group, and 82.1% for the control group). A Fisher’s 

exact test was conducted, and the results indicate that there is no statistically significant 

difference between the two groups regarding the number of sophomore & juniors 

(Fisher’s exact test, p = 1). In terms of composition of “honor students” and “non-honor 

students” in both the experimental (76.9% regular students) and control groups (94.7% 
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non-honor students), a Fisher’s exact test was carried out and the results indicate no 

statistically significant difference between experimental and control groups in terms 

number of honor students at the 0.05 level (Fisher’s exact test p = 0.054).  

Regarding the sex composition of the experimental (57.7% male) and control 

(66.7% male) groups, a Pearson’s Chi-Square revealed no statistically significant 

differences among the two groups (X2(1) = 0.539, p = .463). Age was dichotomized (18 – 

25 versus 26 – 33) and frequencies show both experimental (76.9%) and control (89.7%) 

groups to be composed mostly of students under 25-years old. A Fisher’s exact test was 

carried out and results indicated that there was no significant statistically significant 

difference between experimental and control groups (Fisher’s exact test, p = 0.181). 

Ethnicity was also dichotomized into Hispanic/Non-Hispanic and a Fisher’s exact test 

revealed no statistically significant differences between both experimental (84.6%) and 

control (84.6%) in terms of Ethnicity (Fisher’s exact test, p = 1).  

We can describe both experimental and control groups’ population of 

participating students as mostly Hispanic, ages 18 – 25, majoring in Engineering/Math, 

and in their second or third year of study. Table 2 shows the students demographics. 
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Table 2 Student Demographics 

Descriptive Statistics for the Demographic Characteristics of the Population by Class 

 Experimental Control 
Major N % N % 

Engineering & Mathematics 22 84.6 29 74.4 
Other 4 15.4 10 25.6 
Total 26 100 39 100 
     

College Year     
Freshmen 0 0 3 7.7 
Sophomore 16 61.5 20 51.3 
Junior 6 23.1 12 30.8 
Senior 4 15.4 4 10.2 
Total 26 100 39 100 
     

Honors College     
Honor Students 6 23.1 2 5.1 
Non-Honor Students 20 76.9 36 92.3 
Unspecified 0 0 1 2.6 
Total 26 100 39 100 
     

Sex     
Male 15 57.7 26 66.7 
Female 11 42.3 13 33.3 
Total 26 100 39 100 
     

Age     
18 – 25 20 76.9 35 89.7 
26 – 33  6 23.1 4 10.3 
Total 26 100 39 100 
     

Ethnicity     
Hispanic 22 84.6 33 84.6 
Non-Hispanic 4 15.4 6 15.4 
Total 26 100 39 100 
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Measured Variables 
 

Diagnostic Assessment 
 

The Diagnostic Assessment was comprised of 20 questions from the previous 

mathematics courses, mostly differential and integral calculus: 19 multiple-choice 

questions and one show-work question. Both the treatment and control groups were given 

the Diagnostic Assessment to measure their pre-requisite knowledge for multivariate 

calculus. The Diagnostic Assessment score was originally meant to be used as a covariate 

for a Repeated-Measures One-Way ANCOVA statistical test to answer RQ #1.  

When testing the assumptions for the statistical test, independence, normal 

distribution, homogeneity of variance, and linear relationship between covariate and 

dependent variable were all satisfied. The boxplot of the Diagnostic Assessment scores 

for the control group showed an outlier above the top whisker (Appendix F). There are 

some alternatives when dealing with outliers, including trimming and data transformation 

(Cohen, 2008), but for the current study all outliers were kept as is because they represent 

the diversity of skills and knowledge that the population brings to the multivariate 

calculus course. Furthermore, the homogeneity of regression assumption was violated 

because its significant interaction with the independent variable (See Table 3). 

The violation of the homogeneity of regression assumption is an indication that 

ANCOVA should not be performed (Cohen, 2008). The pre-requisite knowledge 

variable, Diagnostic, was therefore changed to an independent variable with two levels. 

On the basis of their score, each student was categorized either as “Low” (score < 50) or 

“High” (score >= 50).   
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Table 3 Homogeneity of Regression Test 

Test of Between-Subjects Effects 
 

Source Type III 
Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta 

Squared 

Intercept 8052.564 1 8052.564 34.197 <.001 .355 

Treatment*Diagnostic 6351.364 2 3175.682 13.486 <.001* .303 

Error 14599.405 62 235.474    

Note. *p < .05 

 
The instrument was scored using the correctness of the student’s answer to each 

question and had a minimum possible score of zero, and a maximum possible score of 

100. Out of the 39 students in the control group, 20 scored low and 19 scored high in the 

diagnostic assessment. In the treatment group, 13 scored low and 13 scored high in the 

diagnostic assessment (See Appendix F, page 131). 

Knowledge Pre-Test 
 
 Students’ mathematical understanding of specific multivariate calculus concepts 

was measured using a 10-question, multiple choice instrument that was administered to 

both the experimental and control groups before treatment took place. The results show 

that all four groups have Kurtosis and Skewness between -1 and 1, which are usually 

good indicators for normal distribution. Although Shapiro-Wilk < 0.05 for the 

control*low group, the histogram shows fairly normally distributed data for the 

dependent variable (See fig. 1). The other three groups are considered normally 

distributed by all measures. (See Table 4).  
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Figure 1. Histogram of Knowledge Pretest scores in the group Control*Low 

 
Table 4 Knowledge Pretest Group Data indicators 
 
Mean, Standard Deviation, Kurtosis, Skewness, and Shapiro-Wilk Test by Group 

Groups M SD Kurtosis Skewness Shapiro-Wilk 

Control*Low 25.5 17.0 -.084 .797 .046* 

Control*High 30.5 17.8 -1.035 .243 .102 

Experimental*Low 29.2 13.8 -.702 .384 .060 

Experimental*High 34.6 7.8 .196 .150 .062 

Note. *p < .05 

 
Knowledge Post-Test 
 

Students’ mathematical understanding of specific multivariate calculus concepts 

was also measured at the end of the semester, after treatment, using the same knowledge 

instrument that was administered to both the experimental and control groups before 
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treatment. The results show that all four groups have Skewness between -1 and 1, and 

two (Control*Low, Exper*High) of them have Kurtosis between -1 and 1, and the other 

two are slightly outside this range. However, the histograms show all four groups roughly 

normally distributed, with the Control*High group deviating more from normal 

distribution, but the Shapiro-Wilk test for all four of them indicate the data are normally 

distributed for all groups (See Table 5). Full descriptive statistics results, and tables, can 

be seen in Appendix H. 

Table 5 Knowledge Posttest Group Data Indicators 

Mean, Standard Deviation, Kurtosis, Skewness, and Shapiro-Wilk Test by Group 

Groups M SD Kurtosis Skewness Shapiro-Wilk 

Control*Low 34.5 15.4 -.985 .104 .209 

Control*High 51.6 19.8 -1.347 .100 .073 

Experimental*Low 52.3 14.8 1.329 .284 .470 

Experimental*High 57.7 13.0 -.954 .035 .229 

 
 
Spatial Ability Pre-Test 
 

Yoon (2011)’s Revised PSVT:R was used to measure students’ spatial ability 

before treatment. The Revised PSVT:R contains 30 multiple-choice questions and it was 

scored using the correctness for each question. The instrument has a possible minimum 

score of zero and a possible maximum score of 30. The results show that all four groups 

have Kurtosis and Skewness between -1 and 1, and all but one (Control*High) have non-

statistically significant Shapiro-Wilk p-values (See Table 6). In looking closely to 

Control*High data, the histogram deviates from a normal distribution having some heavy 
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distribution to the right, however, “the F test for ANOVA is not very sensitive from 

departures from normal distribution” (Cohen, 2008). Full descriptive statistics results, 

and tables, can be seen in Appendix I. 

Table 6 Spatial Ability Pretest Group Data Indicators 

Mean, Standard Deviation, Kurtosis, Skewness, and Shapiro-Wilk Test by Group 

Groups M SD Kurtosis Skewness Shapiro-Wilk 

Control*Low 16.9 5.7 -.141 -.724 .119 

Control*High 22.3 6.0 -.731 -.753 .024 

Experimental*Low 16.8 6.1 -.636 .301 .851 

Experimental*High 20.5 3.1 -.073 .653 .450 

Note. *p < .05 

Spatial Ability Post-Test 
 

Yoon (2011)’s Revised PSVT:R was also used to measure students’ spatial ability 

after treatment. The results show that all groups have Kurtosis and Skewness between -1 

and 1 except for Control*High, and again all but one (Control*High) have non-

statistically significant Shapiro-Wilk p-values (See Table 7). Furthermore, in looking 

closely to Control*High data, the histogram deviates from a normal distribution having 

some heavy distribution to the right, however, the F test for ANOVA is robust to 

deviations from normal distribution (Cohen, 2008). Full descriptive statistics results, and 

tables, can be seen in Appendix J.  
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Table 7 Spatial Ability Posttest Group Data Indicators 

Mean, Standard Deviation, Kurtosis, Skewness, and Shapiro-Wilk Test by Group 

Groups M SD Kurtosis Skewness Shapiro-Wilk 

Control*Low 15.9 6.5 -.778 .092 .491 

Control*High 20.6 7.5 1.302 -1.518 .001* 

Experimental*Low 19.6 5.8 -.552 -.350 .523 

Experimental*High 22.2 4.1 .825 -.707 .610 

Note. *p < .05 

Research Questions 
 

Research Question #1 
 

• To what extent does existing knowledge and a more visually-enhanced approach 

to instruction facilitated by CAS affect college students’ mathematical 

understanding of multivariate calculus concepts in an undergraduate Multivariate 

Calculus classroom setting at Miami Dade College? 

Originally, the question posed was: To what extent does a visually-enhanced 

approach to instruction facilitated by CAS affect college students’ mathematical 

understanding of multivariate calculus concepts in an undergraduate Multivariate 

Calculus classroom setting at Miami Dade College after controlling for prerequisite 

knowledge? A Repeated-Measures, One-Way ANCOVA was going to be used, 

measuring the difference between the Knowledge Pre-Test Assessment and Knowledge 

Post-Test Assessment scores, and using the Diagnostic Assessment score as covariate. 

The results from the Repeated-Measures, One-Way ANCOVA indicated treatment was 

statistically significant (F = 7.141, p = 0.01). However, because a violation of 
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homogeneity of regression and a significant interaction between the independent and the 

covariate variables, the recommendation is to consider running a randomized-blocks 

design instead of the ANCOVA (Cohen, 2008). “The covariate is turned into a second 

factor in the ANOVA by dividing it into categories” (Cohen, 2008, p. 657). Therefore, a 

new categorical variable was created to differentiate students in terms of their Diagnostic 

Assessment score (High: score >= 50, Low: score < 50), and the covariate variable 

(diagnostic) was changed to an independent variable. The question was then addressed 

with a Repeated Measures, Two-Way Mixed ANOVA, and several assumptions 

associated with the statistical test were checked (Cohen, 2008). 

Assumption #1 Independent Random Sampling 

Random sampling was not achieved since the study is working with intact groups 

of students who self-registered into the different course sections and thus the reason why 

the study was classified as quasi-experimental in Chapter 3. However, the assumption of 

independence of groups is satisfied since no student was enrolled in more than one of the 

course sections, and no student appeared in more than one group (Control*Low, 

Control*High, Experimental*Low, Experimental*High). 

Assumption #2 Normal Distributions 

The dependent variable, understanding of specific multivariate calculus concepts, 

is being measured by the Knowledge Assessment which contains ten multiple-choice 

questions, with a possible minimum score of zero and possible maximum score of 100. 

The dependent variable is continuous and satisfies the interval/ratio scale property that is 

needed to perform parametric tests. In the ‘Knowledge Post-Test’ section, the dependent 
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variable had normal distribution among all four groups as shown by their respective 

Shapiro-Wilk test p-values.  

Assumption #3 Homogeneity of Variance 

Levene’s Test of Equality of Error Variances for the Knowledge Post-Test is not 

significant (p > 0.05), indicating the error variance of the dependent variable is 

considered equal across all groups. Levene’s Test of Equality of Error Variances for the 

Knowledge Pre-Test is significant (p = 0.022), indicating there are some differences in 

the error variance of the dependent variable across all groups (see Table 8). 

Table 8 Homogeneity of Variance 

Levene’s Test of Equality of Error Variances  

 F df1 df2 Sig. 

Knowledge Pretest 3.439 3 61 .022* 

Knowledge Posttest 2.571 3 61 .062 

Note. *p < .05 

Assumption #4. Homogeneity of Covariance Across Groups 

Box’s Test of Equality of Covariance matrices test whether the observed covariance 

matrices are equal across all groups. Based on the results from Table 9, it is concluded 

this assumption is met. 
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Table 9 Equality of Covariance Matrices 

Box’s Test of Equality of Covariance Matrices 

Box’s M F df1 df2 Sig. 

12.127 1.263 9 24092.473 .251 

 

Assumption #5 Test for Sphericity 

Sphericity is “the same as requiring that the variance of the difference scores will be the 

same no matter which pair of treatment levels you look at” (Cohen, 2008, p. 506). Since 

the repeated measure contained only two levels the sphericity assumption was met, 

because there is only one pair and therefore there is no comparison of the variance of the 

difference scores for different pairs. 

Repeated Measures, Two-Way Mixed ANOVA 
 
 The statistical test was run in SPSS under the General Linear Model: Repeated 

Measures. Time was defined as the Within-Subjects factor with two levels: Knowledge 

Pre-Test and Knowledge Post-Test, and two Between-Subjects factors: Treatment and 

HighLow (diagnostic level). Table 10 contains the results of the test, which show the 

main effect of treatment on knowledge was significant such that students in the 

experimental group obtained higher scores in the knowledge assessment than those in the 

control group (F = 7.415, p = 0.008). The results also show that the main effect of 

diagnostic level on knowledge was significant such that students at the high level of the 

diagnostic obtained higher scores in the knowledge assessment than those at the low level 
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of the diagnostic (F = 7.954, p = 0.006). However, the test shows no significant 

interaction between treatment and diagnostic level (F = 0.946, p = 0.335).  

Table 10 Results of Repeated-Measures, Two-Way Mixed ANOVA for Knowledge 

Tests of Between-Subjects Effect 

Source Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta 

Squared 

Intercept 194608.118 1 194608.118 734.693 <.001 .923 

Treatment 1964.077 1 1964.077 7.415 .008* .108 

Diagnostic 2106.874 1 2106.874 7.954 .006* .115 

Treatment*Diagnostic 250.520 1 250.520 .946 .335 .015 

Error 16157.895 61 264.884    

Note. *p < .05 

` Table 11 displays the within-subjects tests, which show the main effect of time on 

knowledge was significant such that students obtained higher scores in the Knowledge 

Posttest versus the Knowledge Pretest (F = 48.442, p < 0.001). However, the test shows 

no significant interaction between time and treatment (F = 2.163, p = .147), no significant 

interaction between time and diagnostic level (F = 1.212, p = .275), and no significant 

interaction between time and treatment and diagnostic level (F = 1.212, p = .275). 
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Table 11 Results for Repeated-Measures, Two-Way Mixed ANOVA for Knowledge 

Tests of Within-Subjects Contrasts 

Source Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta 

Square
d 

Time 11321.50
4 

1 11321.50
4 

48.44
2 

<.001
* 

.443 

Time*Treatment 505.403 1 505.403 2.163 .147 .034 

Time*Diagnostic 283.194 1 283.194 1.212 .275 .019 

Time*Treatment*Diagnosti
c 

283.194 1 283.194 1.212 .275 .019 

Error (Time) 14256.39
7 

6
1 

233.711    

Note. *p < .05 
 
Research Question #2 
 

• To what extent does prerequisite knowledge and a more visually-enhanced 

approach to instruction facilitated by CAS affect college students’ spatial ability 

in an undergraduate Multivariate Calculus classroom setting at Miami Dade 

College? 

Initially, the question posed was: To what extent does a visually-enhanced approach 

to instruction facilitated by CAS affect college students’ spatial ability in an 

undergraduate Multivariate Calculus classroom setting at Miami Dade College? The 

question was going to be addressed with a Mixed-Effect, Repeated-Measures, One-Way 
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ANOVA, however, because of violations to the homogeneity of variance and 

homogeneity of covariance assumptions, the statistical test was changed to a Repeated 

Measures, Two-Way Mixed ANOVA, with one within-subjects factor (Time: Visual Pre-

Test, Visual Post-Test) and two independent factors (Treatment: Experimental, Control; 

Diagnostic: High level, Low level). Several assumptions needed to be checked before 

using the statistical test (Cohen, 2008).  

Assumption #1 Independent Random Sampling 

Random sampling was not achieved since the study is working with intact groups of 

students who self-registered into the different course sections and thus the reason why the 

current study was denominated quasi-experimental in Chapter 3. However, there is 

independence of groups since no students was enrolled in more than one of the course 

sections, and no student appeared in more than one group (Control*Low, Control*High, 

Exper*Low, Exper*High). 

Assumption #2 Normal Distributions 

The dependent variable, spatial ability, was measured by the Yoon’s PSVT:R instrument 

which contains 30 multiple-choice questions, and a maximum score of 30 pts. Spatial 

ability is continuous and satisfies the interval/ratio scale property that is needed to 

perform parametric tests. In the ‘Visual Post-Test’ section, the dependent variable had 

normal distribution among all groups, except for one. However, the F test tends to be 

robust for normal distribution if most groups are normally distributed and they do not 

differ by much from each other, which was corroborated by the histograms of each 

respective group. 
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Assumption #3 Homogeneity of Variance 

Levene’s Test of Equality of Error Variances tests the null hypothesis that the error 

variance of the dependent variable is equal across groups. Levene’s test for the Visual 

Post-Test is not significant (F = 2.177, p = 0.286), indicating the error variance of the 

dependent variable is considered equal across all groups. Levene’s test for the Visual Pre-

Test is also not significant (F = 1.291, p = 0.100), indicating there are no differences in 

the error variance of the dependent variable across all groups (See Table 12).  

Table 12 Equality of Variances for Spatial Ability 

Levene’s Test of Equality of Error Variances 

 F df1 df2 Sig. 

Visual Pretest 2.177 3 61 .100 

Visual Posttest 1.291 3 61 .286 

 

Assumption #4. Homogeneity of Covariance Across Groups 

Table 13 Equality of Covariance Matrices 

Box’s Test of Equality of Covariance Matrices 

Box’s M F df1 df2 Sig. 

15.989 1.665 9 24092.473 .091 

Assumption #5 Test for Sphericity 
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Box’s Test of Equality of Covariance matrices test whether the observed 

covariance matrices are equal across all groups. Based on the results from Table 13 

shown above, we can conclude this assumption is met. 

As explained for the test for sphericity for research question #1, the sphericity 

assumption is met since the repeated measured contain only two levels. 

Repeated-Measures, Two-Way Mixed ANOVA 
 
 The statistical test for spatial ability was run in SPSS under the General Linear 

Model: Repeated Measures. Time was defined as the Within-Subjects factor with two 

levels: Visual Pre-Test and Visual Post-Test, and two Between-Subjects factors: 

Treatment (Control and Experimental) and Diagnostic (Low Level and High Level).  

Table 14 Results of Repeated-Measures, Two-Way ANOVA for Spatial Ability 

Tests of Between-Subjects Effect 

Source Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta 

Squared 

Intercept 46700.119 1 46700.119 786.630 .000 .928 

Treatment 22.266 1 22.266 .374 .543 .006 

Diagnostic 531.073 1 531.073 8.911 .004* .127 

Treatment*Diagnostic 29.495 1 29.495 .495 .484 .008 

Error 3635.272 61 59.595    

Note. *p < .05 

The test results (See Table 14 above) show the main effect of Diagnostic on Spatial 

Ability was significant such that students in the high level of the diagnostic assessment 

scored better in the visualization assessment than those in the low level (F = 8.911, p = 
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0.004). However, the test shows the main effect of Treatment on Spatial Ability was not 

significant (F = 0.374, p = 0.543). Furthermore, the interaction of Treatment and 

Diagnostic was not significant either (F = 0.495, p = 0.484).  

Table 15 Results of Repeated-Measures, Two-Way Mixed ANOVA for Spatial 
Ability 

Tests of Within-Subjects Contrasts 

Source Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta 

Squared 

Time 6.899 1 6.899 .738 .394 .012 

Time*Treatment 105.305 1 105.305 11.259 .001* .156 

Time*Diagnostic 5.708 1 5.708 .610 .438 .010 

Time*Treatment*Diagnostic .382 1 .382 .041 .840 .001 

Error (Time) 70.528 61 9.353    

Note. *p < .05 

The test results (See Table 15 above) for the within-subjects factors indicate that 

the main effect of Time on Spatial Ability was not significant (F = .738, p = .394). The 

test also showed that the interaction effect of Time and Treatment was significant (F = 

11.259, p = 0.001), indicating that students in the experimental group, the Visual Posttest 

scores were higher than the Visual Pretest scores. For the students in the control group, 

there were no differences between the Visual Posttest and Visual Pretest scores. 

Moreover, the test showed that the interaction between Time and Diagnostic was not 

significant (F = .610, p = .438), nor the interaction between Time, Treatment, and 

Diagnostic (F = .041, p = 0.840). 
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Simple Main Effects Analysis 
 
 As a result of the interaction between time and treatment, test for simple main 

effects were run to determine effect of time when treatment is hold fixed at a level, and to 

determine the effect of treatment when time is hold fixed at a level. The results of the 

pairwise comparison from the simple main effects can be seen in Table 16 and Table 17.  

The results from Table 16 show no statistically significant difference in spatial 

ability between the experimental and the control group at the pretest (Time 1). It also 

shows no statistically significant difference in spatial ability between the experimental 

and control group at the posttest (Time 2). 

Table 16 Results of Simple Main Effects for Treatment 

Pairwise Comparisons 

   

Main 
Difference 

(I – J) 

  95% Confidence 
Interval 

Time (I)Treatment (J)Treatment Std. 
Error 

Sig. Lower 
Bound 

Upper 
Bound 

1 Control Experimental .993 1.379 .474 -1.765 3.750 

Experimental Control -.993 1.379 .474 -3.750 1.765 

2 Control Experimental -2.682 1.587 .096 -5.856 .491 

Experimental Control 2.682 1.587 .096 -.491 5.856 

 

 The results from Table 17 show no statistically significant difference in spatial 

ability between the pretest (Time 1) and the posttest (Time 2) for the control group. 
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However, it shows statistically significant difference between the pretest (Time 1) and the 

posttest (Time 2) for the experimental group. 

Table 17 Results of Simple Main Effects for Time 

Pairwise Comparisons 

   

Main 
Difference 

(I – J) 

  95% Confidence 
Interval 

Treatment (I)Time (J)Time Std. Error Sig. Lower 
Bound 

Upper 
Bound 

Control 1 2 1.367 .693 .053 -.018 2.752 

2 1 -1.367 .693 .053 -2.752 .018 

Experimental 1 2 -2.308 .848 .008* -4.004 -.612 

2 1 2.308 .848 .008* .612 4.004 

Note. *p < .05 

Research Question #3 
 

Is there a significantly positive relationship between students’ spatial ability and 

mathematical understanding of selected multivariate calculus concepts? 

To address this question, a Pearson’s Correlation Coefficient was be calculated 

between the groups’ knowledge score and spatial ability score before treatment and after 

treatment. There are some assumptions associated with Pearson’s r (Cohen, 2008). 

Assumption #1 Independent Random Sampling 

Random sampling was not achieved since the study is working with intact groups 

of students who self-registered into the different course sections and thus the reason why 
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the present study was denominated quasi-experimental in Chapter 3. However, there is 

independence of groups since no students was enrolled in more than one of the course 

sections, and no student appeared in more than one group. 

Assumption #2 Interval/Ratio Scale and Normal Distribution 

All four variables (Knowledge Pretest, Knowledge Posttest, Visual Pretest, and 

Visual Posttest) are measured on interval/ratio scale. Both knowledge variables have a 

range from 0 – 100, while the visual variables have a range from 0 – 30. The tests for 

normality are shown in Table 18. 

Table 18 Normality for Knowledge (Pretest and Posttest), and Visual (Pretest and 
Posttest) 

Mean, Standard Deviation, Kurtosis, Skewness, and Shapiro-Wilk Test by Variable 

Population M SD Kurtosis Skewness Shapiro-Wilk 

Knowledge Pretest 29.539 15.251 -.627 .271 .005* 

Knowledge Posttest 47.692 18.352 -.767 -.117 .023* 

Visual Pretest 19.169 5.859 -.394 -.370 .156 

Visual Posttest 19.277 6.592 -.305 -.746 .001* 

Note. *p < .05 

To satisfy assumption #2, all the variables need to be normally distributed in the 

population. According to the Shapiro-Wilk test, only Visual Pretest is normally 

distributed with a non-significant p-value (p = .156). However, for all four variables, 

Kurtosis and Skewness are between -1 and 1, which are typically considered good values 

to describe normal distribution of a set of data points. Furthermore, upon analysis of their 
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histogram (See Fig. 2, Fig. 3, and Fig. 4, respectively), we can conclude that Knowledge 

Pretest, Knowledge Posttest, have roughly a normal distribution in the population. Visual 

Posttest deviates more than the other variables from a normal distribution. 

 

Figure 2. Histogram from Population's Knowledge Pretest 

 

Figure 3. Histogram for Population's Knowledge Posttest 



      
 

93 
 

 

Figure 4. Histogram for Population's Visual Posttest 

 

Assumption #3 Linearity and Homoscedasticity 

Since Pearson’s r measures the strength of linear association between two 

variables, it is important to check whether the two variables in question are related in a 

linear or nonlinear manner. Moreover, for interpreting the significance of Pearson’s r 

correlation coefficient, the set of data points must show homoscedasticity. To test these 

assumptions, a scatter/dot diagram was used for each pair of variables.  

The scatter/dot plot to observe the linearity and homoscedasticity for visual 

pretest-visual posttest indicate that there is some linearity between the two variables. 

Furthermore, we can some heteroscedasticity (See Fig. 5). 
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Figure 5. Scatter/Dot Chart of Visual Pretest - Visual Posttest 

 

The scatter/dot plot to observe the linearity and homoscedasticity for visual 

pretest-knowledge pretest indicate that there is no linearity, if any, between the two 

variables. Furthermore, we can see some heteroscedasticity (See Fig. 6). 

 

Figure 6. Scatter/Dot Chart for Visual Pretest - Knowledge Pretest 
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The scatter/dot plot to observe the linearity and homoscedasticity for visual 

pretest-knowledge posttest indicate that there is no linearity, if any, between the two 

variables. Furthermore, we can see some heteroscedasticity (See Fig. 7).

 

Figure 7. Scatter/Dot Chart for Visual Pretest - Knowledge Posttest 

 

The results for the linearity and homoscedasticity for visual posttest-knowledge 

pretest indicate that there is no linearity between the two variables, and some 

heteroscedasticity (See Fig. 8). 
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Figure 8. Scatter/Dot Chart for Visual Posttest - Knowledge Pretest 

 

The results for the linearity and homoscedasticity for visual posttest-knowledge 

posttest indicate that there is not much linearity between the two variables, and some 

heteroscedasticity (See Fig. 9). 

 

Figure 9. Scatter/Dot Chart for Visual Posttest - Knowledge Posttest 
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The results for the linearity and homoscedasticity for knowledge pretest-

knowledge posttest indicate that there is no linearity between the two variables, and some 

homoscedasticity (See Fig. 10).          

 

Figure 10. Scatter/Dot Chart for Knowledge pretest - Knowledge Posttest 
 

Outliers 

Although there was one outlier, the data point will be considered in the analysis 

because it represents the diversity of the population in multivariate calculus in terms of 

skills and knowledge. 
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Pearson’s r Correlations Test 
 

To investigate the relationship between students’ spatial ability and knowledge of 

selected multivariate calculus content, a Pearson’s r correlation was used. Pearson’s r can 

be used to describe the linear relationship between two continuous variables where “a 

coefficient of +1 represents perfect positive correlation, -1 represents perfect negative 

correlation, and 0 represents a total lack of correlation” (Cohen, 2008, p. 256). 

Furthermore, Cohen (2008) characterizes correlations as small (r = 0.1), medium (r = 

0.3), and large (r = 0.5). The results of the test can be seen in Table 19. Since there are 

four scores for the two variables being investigated, knowledge and spatial ability, there 

are then six pairs of scores displayed in the Pearson’s r correlation Test. For the purpose 

of this study, only the correlation between Knowledge Posttest scores and Visual Posttest 

scores (Pair #5) were used for interpretation, but the correlation of all possible pairs is 

reported below. 

Pair #1 Visual Pretest – Visual Posttest 

 According to Pearson’s r Correlation test, the Visual Pretest scores and Visual Posttest 

scores have a significant, large strength of association (r(65) = .731, p = .000).  

Pair # 2 Visual Pretest – Knowledge Pretest 

According to Pearson’s r Correlation test, the Visual Pretest scores and Knowledge 

Pretest scores have a non-significant, low strength of association (r(65) = .200, p = .110). 

Pair #3 Visual Pretest – Knowledge Posttest 

According to Pearson’s r Correlation test, the Visual Pretest scores and Knowledge 

Posttest scores have a significant, low strength of association (r(65) = .264, p = .034). 
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Pair #4 Visual Posttest – Knowledge Pretest 

According to Pearson’s r Correlation test, the Visual Posttest scores and Knowledge 

Pretest scores have a significant, medium strength of association (r(65) = .315, p = .011). 

Pair #5 Visual Posttest – Knowledge Posttest 

According to Pearson’s r Correlation test, the Visual Posttest scores and Knowledge 

Posttest scores have a significant, medium strength of association (r(65) = .419, p = 

.001). 

Pair #6 Knowledge Pretest – Knowledge Posttest 

According to Pearson’s r Correlation test, the Knowledge Prettest scores and Knowledge 

Posttest scores have a non-significant, low strength of association (r(65) = .152, p = 

.225). 
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Table 19 Pearson's r Correlations  

Correlations for Knowledge Pretest, Knowledge Posttest, Visual Pretest, Visual Posttest 
 

 Visual Pre Visual Post Knowledge Pre Knowledge 
Post 

Visual Pretest     

Pearson Correlation 1 .731** .200 .264* 

Sig. (2-tailed)  .000 .110 .034 

     

Visual Posttest     

Pearson Correlation .731* 1 .315* .419* 

Sig. (2-tailed) .000  .011 .001 

     

Knowledge Pretest     

Pearson Correlation .200 .315* 1 .152 

Sig. (2-tailed) .110 .011  .225 

     

Knowledge Posttest     

Pearson Correlation .264 .419* .152 1 

Sig. (2-tailed) .034* .001 .225  

Note. 
**p < .01,  
*p < .05 
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CHAPTER 5: DISCUSSION 

Introduction 
 

This chapter is divided into five sections which provide a summary of the findings 

and a discussion of the results, as well as the study’s limitations and recommendations. 

The first section is a summary of the research problem, research questions, and findings 

of the study. The second section provides an examination of the findings and their 

implication in the practice and field of study. The third section will address the 

limitations and delimitations within the context of the study. The fourth section provides 

recommendations for future research. Lastly, the fifth section delivers the conclusion of 

the study as framed by the theoretical framework and the literature. 

Summary of the Research Problem, Research Questions, and Findings 
 

Multivariate Calculus is one of the first courses where students learn about the 

geometry of space, the calculus of many variables, and vector fields. It is a course where 

students’ spatial visualization is further developed while contributing to their 

mathematical understanding. Learning with understanding promotes the creation of 

autonomous learners and makes subsequent learning easier (NCTM, 200). Tall (1991) 

proposed that gaps in understanding will not be addressed by making the concepts 

simpler, but rather more complicated while infusing visualizations and visual reasoning 

in the presentation of such concepts: “The idea is to appeal to the visual patterning power 

of the metaphorical right brain, in such a way that it lays down appropriate intuitions to 

service the logical deductivity of the left” (Tall, 1991, p. 112). Additionally, technology 

can be used to enhance visualizations with user-controlled dynamic pictures which can 

provide insights and perceptions of the concepts explored (Sheikh, 2015; Tall et al., 
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2008). Furthermore, enhancing students’ spatial visualization is critical because it 

contributes to the development of students’ geometric thinking, which in turn contributes 

to their ability to represent, interpret, and solve problems and real-world situations 

(NCTM, 2000). A little over 10 year ago, Presmeg (2006) stated: “Effective pedagogy 

that can enhance the use and power of visualization in mathematics education is perhaps 

the most pressing research concern at this period” (p. 233). More recently, a similar 

sentiment has been echoed: “Given the increasing availability and use of technology, 

more research is needed on technology-enhanced techniques that aid with visualization 

and representations, and the conditions under which they are effective” (Sheikh, 2015, p. 

174) 

The purpose of the study was to investigate the effects of a visually-enhanced 

approach, facilitated by Maple, on students’ performance on a multivariate calculus 

concepts test and a visualization test at a Hispanic Serving Institution. The study took 

place in five undergraduate classrooms of Multivariate Calculus chosen by convenience 

sampling. The research design followed a quasi-experimental design with non-equivalent 

groups where pretest and posttest data for each dependent variable was collected via 

validated, researcher-made instruments. Some demographic data was collected from the 

population via a survey. The population was split into two groups: experimental and 

control. Faculty in the experimental group consisted of two professors who had attained 

an MS and were familiar with Maple, while the three faculty in the control group had 

attained PhDs. Although the faculty in the experimental group did not have doctoral 

degrees like their counterparts in the control group, they were very enthusiastic in using 
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technology as an aid to their instruction, and their familiarity with the software facilitated 

its use in the classroom.  

 Three research questions were posed by the researcher. First, to what extent does 

prerequisite knowledge, and a visually-enhanced approach to instruction facilitated by 

CAS affect college students’ mathematical understanding of multivariate calculus 

concepts in an undergraduate Multivariate Calculus classroom setting at an HSI? Second, 

to what extent does prerequisite knowledge, and a visually-enhanced approach to 

instruction facilitated by CAS affect college students’ spatial ability in an undergraduate 

Multivariate Calculus classroom setting at an HSI? Third, is there a significant 

relationship between college students’ spatial ability and mathematical understanding of 

selected multivariate calculus concepts in an undergraduate Multivariate Calculus 

classroom setting at an HSI? 

Research Question #1. 
 
 To answer this question, a Repeated Measures, Two-Way, Mixed ANOVA was 

run with two independent, categorical variables (Treatment, Diagnostic Level) and one 

dependent variable (Knowledge) measured at two time points (before treatment and after 

treatment). The alternative hypothesis posited that there would be significant differences 

between the students’ gain in understanding of selected multivariate calculus concepts as 

measured by the researcher-made knowledge assessment.  

The results of the test indicated that students in the treatment group experienced 

statistically significant gains in understanding of selected multivariate calculus concepts 

versus students in the control group. The finding would suggest that intentionally 
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enhancing the visual aspects of some multivariate calculus concepts leads to an 

improvement in students’ understanding of said concepts. Improving student’s 

understanding by enhancing the visual/geometric aspects of the concepts taught in 

multivariate calculus aligns with Duval’s (2017) TRSR where mathematical 

understanding is understood as the synergy of two or more registers of semiotic 

representation, with geometric shapes/visualizations being elements of the geometric 

register. The intentional emphasis on the geometric register coupled with the traditionally 

emphasized algebraic register should provide the basis for students’ improvement in 

understanding. Such an outcome is echoed in the results found by Cromley et al. (2017) 

and Shiekh (2015). Although the Cromley et al. (2017) study was conducted with 

participants who had some knowledge of differential calculus and not multivariate 

calculus which is the setting for the present study, they found that spatial skills and 

multiple representations were significant predictors of calculus proficiency as measured 

by some AP Calculus exam items. Furthermore, multiple representations were strongly 

correlated with spatial skills and conceptual knowledge as measured by the researcher-

made CCK test. Additionally, Shiekh’s (2015) investigation in a multivariate calculus 

and dynamic systems course provided evidence of the complementing role visualizations 

play with analytical thinking to enhance students’ understanding of multivariate calculus. 

The results of the statistical test performed also indicated that students who scored 

higher (score >= 50) in the Diagnostic Assessment experienced statistically significant 

gains when compared with those who scored lower (score < 50). This finding echoes 

Sheikh’s (2015) findings. It is a validation to the general understanding that students who 

enter a multivariate calculus course better prepared tend to do better than those who are 
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under-prepared. However, the interaction effect between Treatment and Diagnostic was 

not statistically significant. This outcome would suggest that the differences observed in 

terms of understanding in students with high level diagnostic scores versus low level 

diagnostic scores in the experimental was also observed in students with high level 

diagnostic scores versus low level diagnostic scores in the control group.  

The results of the statistical test performed also indicated that time was a 

significant within-subjects factor. The finding is not surprising, and it is congruent with 

our notion of schooling that students acquire knowledge over time, showing more 

understanding towards the end of a course than they could have shown at the beginning 

of the course.  

The results from research question #1 support the use of a visually-enhanced 

approach facilitated by CAS dynamic worksheets for the teaching and learning of 

selected multivariable calculus concepts in an undergraduate multivariate calculus course 

of an HSI.  

Research Question #2. 
 
 To answer the second question, a Repeated Measures, Two-Way, Mixed ANOVA 

was run with two independent, categorical variables (Treatment, Diagnostic Level) and 

one dependent variable (Spatial Ability) measured at two time points (before treatment 

and after treatment). The alternative hypothesis posited that there would be significantly 

positive differences between the students’ gains in spatial ability as measured by Yoon’s 

(2011) PSVT: R. The results showed that students who scored higher (score >= 50) in the 

Diagnostic Assessment experienced statistically significant gains versus those who 
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scored lower (score < 50). The finding may seem intuitive. It is a validation to the general 

understanding that students who enter a multivariate calculus course better prepared tend 

to do better than those who are under-prepared. 

The results of the statistical test performed also showed no statistically significant 

differences in students’ gains in spatial ability in the treatment group versus students in 

the control group, indicating that the visually-enhanced approach produced no 

significantly different gains in terms of spatial ability compared to the traditional 

teaching. However, the statistical test performed showed a statistically significant 

interaction between time and treatment, and further tests confirmed a statistically 

significant difference in the spatial ability scores between the pretest and the posttest for 

students in the experimental group, and a marginally statistically significant difference 

for students in the control group but in the opposite direction suggesting a decline (see 

Table 17, page 76). The observed result from the experimental group would be desirable 

because treatment happened from the first time point to the second time point, therefore 

observing differences between students’ spatial ability from the experimental group 

versus students from the control group as time changes from time point 1 to time point 2 

is precisely the kind of outcome this study was expecting. Furthermore, it is a 

confirmation of an informal result from Shiekh’s (2015) research study where, although 

no proper statistical test was used, there were statistically significant differences in 

students’ achievement towards the end of the study (Test 3) that were not observed at 

earlier time points (Test 1 and Test 2). In the present study, the marginally statistically 

significant difference in the opposite direction between the pretest and the posttest for 
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students in the control group suggests that without an intentional effort to enhance the 

visualizations of the multivariate calculus concepts, students’ spatial ability may decline.  

Additionally, the results of the statistical test indicated that the interaction 

between Treatment and Diagnostic produced no statistically significant differences in 

spatial ability. The finding would suggest that the differences observed in terms of spatial 

ability in students with high level diagnostic scores versus students with low level 

diagnostic scores in the experimental group was also observed between students with 

high level diagnostic scores versus students with low level diagnostic scores in the 

control group. The results of the statistical test also indicated no main effect of time on 

spatial ability suggesting that differences in students’ visual posttest scores and visual 

pretest scores is not significant. There was also no interaction effect between time and 

diagnostic assessment. This finding would suggest that the differences observed in terms 

of spatial ability scores in the visual pretest between students with high level diagnostic 

scores versus students with low level diagnostic scores was also observed in the visual 

posttest between students with high level diagnostic scores versus low level diagnostic 

scores.  

The results from research question #2 supports the notion that the use of an intentional, 

visually-enhanced approach facilitated by CAS dynamic worksheets for the teaching and 

learning of selected multivariable calculus concepts has a positive effect on students’ 

spatial ability as measured by Yoon’s (2011) PVST: R.  
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Research Question #3. 
 

To answer this question, a Pearson’s Correlation Coefficient was calculated 

between the groups’ knowledge score and spatial ability score before treatment 

(Knowledge Pretest – Visual Pretest) and after treatment (Knowledge Posttest – Visual 

Posttest). The alternative hypothesis posited that there would be a significant linear 

relationship between understanding of selected multivariate calculus concepts and spatial 

ability. The results of the statistical test showed a non-significant, positive, small strength 

of association between Knowledge Pretest and Visual Pretest, indicating that student’s 

spatial ability varied across the different levels of their understanding when entering the 

Multivariate Calculus classroom. The result would not be surprising because 

visualizations in the space are not seen in previous math courses. It is precisely 

Multivariate Calculus one of the first courses where spatial visualizations are 

intentionally taught in relation to the concepts presented during the course.  

The results of the statistical test also showed a significant, positive, medium 

strength of association between Knowledge Posttest and Visual Posttest, indicating that 

students who did better in the Visual Posttest assessment tended to do better in the 

Knowledge assessment. The finding is expected because of a students’ completion of a 

multivariate calculus course should improve their understanding and spatial ability for the 

reasons explained above. With the already strong algebraic nature of the traditional 

teaching and learning of multivariate calculus concepts, the intentional development of 

visualizations and geometric thinking and the synergy of these two representations, 

should provide the basis for mathematical understanding, or as Duval (2017) dubbed it: 

“semiosis”.  



      
 

109 
 

Implications 
 

 The results of the present study support the hypothesis that mathematical 

understanding of selected multivariate calculus concepts can be improved through an 

intentional, visually-enhanced approach facilitated by CAS dynamic worksheets for the 

teaching and learning of said concepts. It provides empirical-based evidence that 

instruction of multivariate calculus that intentionally enhances the visual/geometric 

representations of some multivariate calculus concepts to complement the analytical and 

algebraic representations of said concepts can be beneficial to students’ learning and 

understanding (Cohen & Hegarty, 2012; Mendezabal & Tindowen, 2018; Sheikh, 2015). 

Special attention must be paid to how the technology is integrated to benefit learning 

without creating an unintentional cognitive overload that may limit learning (Borchelt, 

2004; Meagher, 2005; Sheikh, 2015). 

Although students’ spatial ability showed no statistically significant improvement 

based on treatment, the interaction effect of time and treatment had a significant impact 

on students’ spatial ability. In particular, a statistically significant difference was found in 

the experimental group in terms of spatial ability from the pretest score to the posttest 

score versus no statistically significant differences between the pretest scores and the 

posttest scores in the control group. The result provides empirically-based evidence 

supporting the implication that if there is an intentional effort to enhance the 

visual/geometric representations in multivariate calculus, there could be a growth over 

time of students’ spatial abilities and overall improvement in students’ learning and 

understanding. The proposed suggestion is in line with the results found in other studies 

(McGee & Martinez, 2014; McGee & Moore-Ruso, 2015). Furthermore, there was 
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evidence of positive, medium strength of association between visualization and 

knowledge in the undergraduate Multivariate Calculus classrooms of the HSI.  

 Multivariate Calculus is a course with strong visual and geometric components, 

and efforts should be made to enhance these components to foster and develop students’ 

spatial ability and geometric thinking and create the synergy with other representations, 

such as the algebraic, required to understand concepts taught in the course. Technological 

advances, including but not limited, to CAS technologies have made it possible to 

circumvent the natural difficulties associated with visualizing 3D objects in the 2D board 

found in the typical college mathematics classroom. These newer technologies have the 

capability of enhancing the visual/geometric aspects of mathematics learning, and 

instructors should be aware of the possible benefits associated with such use. However, 

efforts must be made to ensure the proper use of technology in the multivariate calculus 

classroom. These efforts will require institutional support and professional 

development/training for faculty, particularly if institutional systematic change affecting 

the teaching and learning of all students is sought.  

Limitations and Delimitations 
 

Limitations 
 
 Limitations are potential weaknesses or constrains that affect a study which are 

mostly beyond the researcher’s control (Simon & Goes, 2013). Just like for any other 

study, the existing limitations in this investigation affected its design and results.  

 One limitation for the current study was the lack of peer-reviewed, valid and 

reliable instruments to measure pre-requisite knowledge and knowledge for multivariate 
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calculus. As a result, the instruments were researcher-made and although there was an 

attempt by the researcher to guarantee validity (panel of experts) and reliability (test-

retest) of the instrument, it is possible the data obtained using the instrument did not 

efficiently measure the variables in question, diagnostic and knowledge. 

 Another limitation for the study was the sample size which was used to conduct 

the study. Several factors played a role in limiting the sample size. First, the number of 

multivariate calculus course sections available in any given semester is limited because of 

the specialized content nature of the course and the number of majors required to take it. 

Secondly, the study was carried out during one semester, thus limiting the number of 

participating course sections and therefore the number of students available for 

participation. Third, although the researcher made every attempt to describe the nature of 

the study, its importance, and the protection of the data and information collected from 

the participants, some students chose not to participate in the study. Fourth, for those 

students who chose to participate, absence and attrition played a key role in limiting the 

participants completion of the necessary assessments.  

 Another limitation for this study was the use of intact course sections and thus, 

the lack of random assignment to the experimental and control groups. As a result, 

causation cannot be claimed for this study. Therefore, the present research is a 

correlational study. Related to the issue of intact course sections and the limited 

availability of multivariate calculus course sections, another limitation for this study was 

the presence of different instructors for both the experimental and control groups.  
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Another limitation for the current study might be the participants completion of 

the assessments in terms of effort and honesty. Although extra-credit points were offered 

for participation and effort, it may be possible that some participants did not provide their 

best and honest effort and answered in a random manner to complete the assessment as 

soon as possible.  

Delimitations 
 

“The delimitations of a study are those characteristics that arise from limitations 

in the scope of the study (defining the boundaries) and by the conscious exclusionary and 

inclusionary decisions made during the development of the study plan” (Simon & Goes, 

2013, p. 4). Delimitations are the boundaries and constraints imposed by the researcher 

on the study through conscious, and sometimes, unconscious decisions. Every study has 

delimitations and this one is no exception. Besides the researcher’s decisions about 

research questions, variables, theoretical framework, and population, other delimitations 

have played a role in the results of the study. 

One delimitation for the study was the choice of concepts selected to be measured 

by the mathematical understanding instrument. The concepts were chosen based on their 

geometrical implications and perceived importance of the visual component to its 

understanding as a mathematical object. 

Another delimitation for the current study was the researcher’s decision to include 

outliers in the analysis of the data. Outliers can skew the result of statistical tests, 

however, for this study, the researcher felt they were accurately representing the 

population faculty encounters in a multivariate calculus course. The variability of 
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students’ skills and knowledge in the classroom is not an “outlier” for the HIS where the 

study was conducted. 

Another delimitation for the present study was the violation of some assumptions 

of the statistical tests used in the study and the researcher’s decision to use the test 

nonetheless. A description of the statistical test assumptions, along with any violation and 

decision made about how to handle the violation, are fully described in Chapter 4.  

Recommendations for Future Research 
 

 There are several recommendations proposed for future studies. One 

recommendation would be to create validity-tested and reliability-tested instruments to 

measure the pre-requisite knowledge students bring into the multivariate calculus course, 

and measure students’ knowledge of the multivariate calculus concepts taught. The study 

can then be replicated to see if it yields the same results.  

Another recommendation would be to increase the sample size, either by 

including more course sections and/or by running the study for at least one academic 

year, to improve some of the metrics and the internal validity of the different statistical 

tests performed in this study. Another recommendation would be to control for the 

instructor factor, either by having the same instructor teach all course sections in the 

study (might not be feasible) or by rotating the groups assigned to the participating 

instructors so that all of them have the chance of being part of the control and the 

experimental group. The last suggestion can be achieved if the same instructors teach the 

same course sections throughout the semesters.  
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Another recommendation for future research would be to investigate whether 

there is a significant difference in students’ gain in mathematical knowledge and spatial 

visualization in a group taught using dynamic visualizations versus a group taught using 

static visualizations.  

Another recommendation would be to research the institutional support 

requirements, and faculty development/training required to support faculty wishing to 

incorporate a CAS to visually-enhance their current approach to the teaching of 

multivariate calculus. 

 

Conclusion 
 

 The current research study contributed to the field of visualization in the teaching 

and learning of mathematics by providing empirical-based evidence of the important role 

that visualizations play in mathematical understanding. The results suggest that the 

intentional use of a visually-enhanced approach facilitated by CAS dynamic worksheets 

for the teaching of multivariate calculus is positively associated to better improvements in 

students’ spatial ability and mathematical understanding when compared to a traditional 

approach. Although there are limitations in the study, its results ratify the findings made 

by other studies about the importance of visualization/geometry and its complementary, 

synergistic effect with algebra in the teaching and learning of calculus. 
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APPENDIX A 

Course Competencies: 

 

Course Competencies: 
 

Competency 1:  The Student will demonstrate knowledge of three-dimensional 
vectors and surfaces by                         

                                                                                                                      

a. computing sums, differences, scalar multiples, and magnitudes 
of three-dimensional vectors 

b. computing dot products and cross products of three-
dimensional vectors 

c. solving applied problems using dot and cross products 
d. determining equations of lines and planes in three dimensions 
e. determining equations of quadric surfaces 
f. representing points and surfaces in cylindrical and spherical 

coordinates 
 

Competency 2:  The Student will demonstrate knowledge of curves in space by                                                 

                                                                                                                       

a. representing curves as vector-valued functions 
b. representing curves parametrically 
c. representing curves as intersections of two surfaces 
d. computing limits, derivatives and integrals of vector-valued 

functions 
e. computing the velocity and the acceleration of a particle 

moving along a curve in three-space 
 

Competency 3:  The Student will demonstrate knowledge of partial differentiation 
by                                         

                                                                                                                       

a. computing partial derivatives of any order of functions of two 
or more variables 

b. applying appropriate chain rules to compute partial derivatives 
and total derivatives 

c. computing gradients of functions of two or more variables 
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d. computing directional derivatives of functions of two or more 
variables 

e. determining the direction in which the directional derivative of 
a function at a point is maximized or minimized 

f. determining equations of tangent planes and normal lines to a 
surface at a given point of the surface 

g. finding extrema of functions of two or more variables 
 

Competency 4:  The Student will demonstrate knowledge of multiple integration by                                                         

                                                                                                                       

a. evaluating double and iterated integrals in rectangular and 
polar coordinates 

b. solving applied problems involving double integrals 
c. evaluating triple and iterated integrals in rectangular, 

cylindrical, and spherical coordinates 
d. solving applied problems involving triple integrals  

  
 

Competency 5:  The Student will demonstrate knowledge of vector calculus by                                                  

                                                                                                                       

a. computing the divergence and curl of a vector field 
b. determining the potential function of a conservative vector 

field 
c. computing line integrals over oriented curves 
d. solving applied problems involving line integrals 
e. determining whether a line integral is independent of path 
f. evaluating line integrals using Green’s Theorem 
g. evaluating surface integrals 
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APPENDIX B 

 

ADULT CONSENT TO PARTICIPATE IN A RESEARCH STUDY 

 

A VISUALLY-ENHANCED APPROACH TO TEACHING MULTIVARIABLE 
CALCULUS FACILITATED BY A COMPUTER ALGEBRA SYSTEM 

 

PURPOSE OF THE STUDY 

You are being asked to be in a research study. The purpose of this study is to investigate 
whether a visually-enhanced approach to the teaching of selected multivariable calculus 
(MAC2313) concepts improves students’ spatial ability and mathematical understanding.  
 

NUMBER OF STUDY PARTICIPANTS 

If you decide to be in this study, you will be one of 100 people in this research study. 
 

DURATION OF THE STUDY 

This study will last for the entire semester and will require no more than 175 minutes of 
your time in the following manner:  

1. In the ninth week of class you will need to complete a demographic survey (no 
more than 5 minutes), the Spatial Visualization Pretest (no more 30 minutes), 
Prerequisite Knowledge Test (no more than 50 minutes), and Mathematical 
Understanding Pretest (no more than 30 minutes).   
 

2. In the last week of classes you will need to complete the Spatial Visualization 
Posttest (no more than 30 minutes), and Mathematical Understanding Posttest (no 
more than 30 minutes). 
 

You will receive extra credit for completing the assessments. If you choose not to 
participate in the study, alternative assignments requiring the same amount of work and 
the same content will be provided to you to earn the same extra credit. 
 

PROCEDURES 

If you agree to be in the study, we will ask you to do the following things: 

1. In the ninth week of class you will need to complete the Spatial Visualization 
Pretest, the Prerequisite Knowledge Test, and the Mathematical Understanding 
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Pretest 
 

2. In the last week of class you will need to complete the Spatial Visualization 
Posttest and the Mathematical Understanding Posttest. 

 

 

RISKS AND/OR DISCOMFORTS 

There are no foreseeable risks or unique discomforts to you for participating in this study.   
 

BENEFITS 

The following benefits may be associated with your participation in this study:  

1. Add to the literature and the body of knowledge about students’ visualization and 
mathematical understanding in multivariable calculus at a 2-year institution of 
higher education (IHE). 

2. Provide evidence for institutions when making decisions regarding the use of a 
computer algebra system (Maple) to enhance the teaching and learning of selected 
multivariable calculus concepts. 
 

ALTERNATIVES 

There are no known alternatives available to you other than not taking part in this study.  
However, any significant new findings developed during the course of the research which 
may relate to your willingness to continue participation will be provided to you. 
 

CONFIDENTIALITY 

The records of this study will be kept private and will be protected to the fullest extent 
provided by law. In any sort of report we might publish, we will not include any 
information that will make it possible to identify a subject.  Research records will be 
stored securely and only the researcher will have access to the records.  However, your 
records may be reviewed for audit purposes by authorized University or other agents who 
will be bound by the same provisions of confidentiality. 
 

COMPENSATION & COSTS 

There are no compensations associated with this study. You will not be responsible for 
any costs to participate in this study.  
 

RIGHT TO DECLINE OR WITHDRAW 

Your participation in this study is voluntary.  You are free to participate in the study or 
withdraw your consent at any time during the study.  Your withdrawal or lack of 



      
 

125 
 

participation will not affect any benefits to which you are otherwise entitled.  The 
investigator reserves the right to remove you without your consent at such time that they 
feel it is in the best interest. 
 

RESEARCHER CONTACT INFORMATION 

If you have any questions about the purpose, procedures, or any other issues relating to 
this research study you may contact Belarmino Gonzalez by phone (305) 237-6216 or via 
e-mail bgonzal7@mdc.edu. You may also contact Dr. Maria L Fernandez by phone (305) 
237-6216.   

IRB CONTACT INFORMATION 

If you would like to talk with someone about your rights of being a subject in this 
research study or about ethical issues with this research study, you may contact the FIU 
Office of Research Integrity by phone at 305-348-2494 or by email at ori@fiu.edu. 
 
 
PARTICIPANT AGREEMENT 

I have read the information in this consent form and agree to participate in this study.  I 
have had a chance to ask any questions I have about this study, and they have been 
answered for me.  I understand that I will be given a copy of this form for my records. 

 

________________________________           __________________ 

Signature of Participant      Date 

 

________________________________ 

Printed Name of Participant 

 

________________________________    __________________ 

Signature of Person Obtaining Consent    Date 

 

  

mailto:bgonzal7@mdc.edu
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APPENDIX C 

Thomas’s Calculus Early Transcendentals 14th Edition 

Relevant chapter contents and marked sections (*) with proposed enhanced visualization. 

Chapter 12 Vectors and the Geometry of Space 

1. Three-Dimensional Coordinate Systems 

2. Vectors 

3. The Dot Product 

4. The Cross Product  

5. Lines and Planes in Space  

6. Cylinders and Quadric Surfaces 

Chapter 13 Vector-Valued Functions and Motion in Space 

1. Curves in Space and Their Tangents  

2. Integrals of Vector-Valued Functions; Projectile Motion 

3. Arc Length in Space  

4. Curvature and Normal Vectors of a Curve  

5. Tangential and Normal Components of Acceleration 

6. Velocity and Acceleration in Polar Coordinates 

Chapter 14 Partial Derivatives 

1. Functions of Several Variables (*) 

2. Limits and Continuity in Higher Dimensions 

3. Partial Derivatives (*) 
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4. The Chain Rule 

5. Directional Derivatives and Gradient Vectors (*) 

6. Tangent Planes and Differentials (*) 

7. Extreme Values and Saddle Points (*) 

8. Lagrange Multipliers 

Chapter 15 Multiple Integrals 

1. Double and Iterated Integrals over Rectangles (*) 

2. Double Integrals over General Regions (*) 

3. Area by Double Integration (*) 

4. Double Integrals in Polar Form 

5. Triple Integrals in Rectangular Coordinates (*) 

6. Moments and Center of Mass 

7. Triple Integrals in Cylindrical and Spherical Coordinates (*) 

Chapter 16 Integrals and Vector Fields 

1. Line Integrals 

2. Vector Fields and Line Integrals 

3. Path Independence, Conservative Fields, and Potential Functions 

4. Green’s Theorem in the Plane 

5. Surface Integrals 

6. Stokes’ Theorem 
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APPENDIX D 

Experimental and Control Group: Spring 2019 

  

Week 1 Students’ Entry Point,  

 

Week 1 – Week 4. Vectors and the Geometry of Space,  

Vector-Valued Functions and Motion in Space 

Week 5 – Week 8 Prerequisite Knowledge Test,  

Spatial Visualization Pretest, Mathematical Understanding Pretest  

Partial Derivatives 

Week 9 – Week 

12. 

Partial Derivatives 

Multiple Integrals 

Week 13 – Week 

16 

Multiple Integrals 

Integrals and Vector Fields 

Week 16 Spatial Visualization Posttest, 

Mathematical Understanding Posttest 

Students’ Exit Point 
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APPENDIX E 

From: So Yoon Yoon soyoon@tamu.edu 
Sent: Tuesday, October 9, 2018 3:07 PM 
To: Gonzalez, Belarmino (InterAmerican) 
Subject: RE: About the  Revised Purdue Spatial Visualization Test: Visualization of 
Rotations (Revised PSVT:R) 

Attachments: Yoon2011.Revised PSVT-R+AswrSheet.V4.pdf; Yoon2011.Revised 
PSVT-R.DemographicSurvey for Undergraduate Students.doc 

 

Dear Professor Belarmino Gonzalez, 

I appreciate the introduction about the research project. Now, I understand the need of  

the Revised PSVT:R for your research. 

Attached is the final version of the Revised PSVT:R with the answer key. You can also  

create an online version of the Revised PSVT:R using this paper-and-pencil based  

version. Based on the three-parameter IRT modeling, the 30 items were ordered from  

the easiest to hardest, so please do NOT consider any modification or altering of the  

Revised PSVT:R in your project to warrant its’ validity and reliability evidence.  

 

The use of the Revised PSVT:R is limited to the intended project as you informed to  

me. Please do not distribute the test to others and keep the copies of the test strictly  

confidential after your administration of the test. This is for the integrity of future  

projects by other researchers.  

 

If you agree on the condition for the use of the Revised PSVT:R, then reply back to  

me.  

Here is the citation for the instrument. 

Yoon, S. Y. (2011). Revised Purdue Spatial Visualization Test: Visualization of 
Rotations  

(Revised PSVT:R) [Psychometric Instrument].  

  

mailto:soyoon@tamu.edu
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APPENDIX F 

 

Treatment 

 

Case Processing Summary 

 

Treatment 

Cases 

 Valid Missing Total 

 N Percent N Percent N Percent 

Diagnostic Control 39 100.0% 0 .0% 39 100.0% 

Experimental 26 100.0% 0 .0% 26 100.0% 

 

 

Tests of Normality 

 

Treatment 

Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

Diagnostic Control .085 39 .200* .959 39 .171 

Experimental .119 26 .200* .956 26 .317 

a. Lilliefors Significance Correction 

*. This is a lower bound of the true significance. 
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Descriptives 
 Treatment Statistic Std. Error 
Diagnostic Control  Mean 48.2692 2.97900 

95% Confidence 
Interval for Mean 

Lower Bound 42.2386  
Upper Bound 54.2999  

 5% Trimmed 
Mean 47.3718  

Median 45.0000  
Variance 346.103  
Std. Deviation 18.60385  
Minimum 20.00  
Maximum 100.00  
Range 80.00  
Interquartile 
Range 25.00  

Skewness .652 .378 
Kurtosis .478 .741 

Experimental  Mean 50.9615 3.86074 
95% Confidence 
Interval for Mean 

Lower Bound 43.0102  
Upper Bound 58.9129  

 5% Trimmed 
Mean 51.6453  

Median 47.5000  
Variance 387.538  
Std. Deviation 19.68600  
Minimum 5.00  
Maximum 80.00  
Range 75.00  
Interquartile 
Range 28.75  

Skewness -.193 .456 
Kurtosis -.365 .887 
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Diagnostic 

Histograms 
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Boxplot 

 

 
 

Treatment * HighLow Crosstabulation 

Count 

  HighLow 

Total 

  Low(Diagnostic < 

50) 

High (Diagnostic 

>= 50) 

Treatment Control 20 19 39 

Experimental 13 13 26 

Total 33 32 65 
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APPENDIX G 
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