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ABSTRACT OF THE THESIS

MALWARE ANALYSIS WITH MACHINE LEARNING FOR EVALUATING

THE INTEGRITY OF MISSION CRITICAL DEVICES

by

Robert Heras

Florida International University, 2019

Miami, Florida

Professor Alexander Pons, Major Professor

The rapid evolution of technology in our society has brought great advantages, but

at the same time it has increased cybersecurity threats. At the forefront of these

threats is the proliferation of malware from traditional computing platforms to the

rapidly expanding Internet-of-things. Our research focuses on the development of a

malware detection system that strives for early detection as a means of mitigating

the effects of the malware’s execution.

The proposed scheme consists of a dual-stage detector providing malware detec-

tion for compromised devices in order to mitigate the devices malicious behavior.

Furthermore, the framework analyzes task structure features as well as the system

calls and memory access patterns made by a process to determine its validity and

integrity. The proposed scheme uses all three approaches applying an ensemble tech-

nique to detect malware. In our work we evaluate these three malware detection

strategies to determine their effectiveness and performance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Malware is often attributed as the cause for loss of data, data integrity, and finan-

cial damage for a company or institution. Due to the nature of malware and their

individual uniqueness, the determination of a compromise or infection can be daunt-

ing and difficult as well as challenging to determine exactly how much damage will

transpire because of it. There have been many advances in the industry including

the rise of the prominent internet-of-things (IoT). IoT includes sensors, actuators,

vehicles, home appliances and just about any device that are embedded with elec-

tronics in order to interconnect and exchange data. The increasing popularity of

these devices makes them inevitable targets for malicious corruption.

With the emergence and rising popularity of IoT and ubiquitous embedded sys-

tems it is increasingly common for them to be infected. Many IoT devices are

intended to be deployed to serve their function with little to no maintenance and

overhead required. Once deployed, many of these devices do not have enough bat-

tery or processing power to perform complex operations much less use standard

signature or heuristic methods to detect whether or not they have been infected and

compromised as it is too inefficient and costly to monitor at the device.

We propose a framework which uses an embedded low overhead agent in each

device to extract key feature data as the device is executing its tasks. This approach

allows our machine learning algorithms to make a determination as to whether a

device has been maliciously compromised by using behavioral analysis on extracted

features.
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The embedded agents connect to our remote framework in order to transfer

the harvested information and our models analyze this information to determine

the stability and integrity of each device. The analysis is done remotely and is

specific to each device so it is persistent and is dynamic enough that we can detect

various types of malware as they are executing even if the malware has attempted to

delay its execution. [RTWH11] These IoT devices typically maintain an operating

system, such as Android, and our system augments the OS with an agent that

collects execution features of running tasks in order to transmit them for analysis.

Other operating systems include Windows, Mac, and specific agents per operating

system would have to be generated. These agents have an inherent impact delay in

application execution as once the agent runs and at a specific rate, it will impact

the native application on the device. This process is conducted on an ongoing basis,

with the frequency and amount of information transmitted dependent on situational

conditions. Once the malicious activity is detected the device can be halted or the

task suspended from functioning within the network in order to prevent further

execution and the possible spread of the malware. Furthermore, our framework is

intended to work with as little overhead and interruption on the end devices. Figure

1.1 depicts an overview of our framework. The framework’s models are constructed

and maintained from features that are extracted from benign processes as they are

executing to provide an understanding of typical executions.

Novel research into new ways of detecting malicious activity is needed and it

is needed for a wide range of devices and device types. Researchers have looked

into the use of machine learning models in order to create anomaly detectors and

malware classifiers. [CLM01] Specifically the use of feature extraction, system call

extraction, and the observance of memory access patterns in order to train models
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that use algorithms such as Support Vector Machines, Random Forests, Logistic

Regression, and Naive Bayes.

From a Forensics standpoint, infected devices pose a myriad of difficulties. De-

vices can have their data altered, erased, or hidden. [UGPL18b] Forensics investi-

gators must now also account for the rise of the prominent internet-of-things (IoT)

such as smart fridges and smart home air conditioning (AC) units.

Figure 1.1: Overview of our proposed framework depicting agents, IoT devices, and
remote classifier

To combat malware in both home and enterprise environments, we will attempt

to use machine learning via anomaly detection and decision tree classifier algorithms

to determine if a process is benign or malicious. The frameworks models are con-

structed and maintained from extracted task structure features, system calls, and

memory access patterns harvested from benign and malicious processes as they are

executing to provide an understanding of typical executions. The framework will

analyze this information to determine the stability and integrity of each device.
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Once malicious activity is detected the device can be halted or the task suspended

from functioning in order to prevent further execution and the possible spread of the

malware. Furthermore, our framework is intended to work with as little overhead

and interruption on the end devices.
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CHAPTER 2

METHODOLOGY

Our framework functions by analyzing extracted features using a sliding window

approach for maximized accuracy. The values of our chosen task structure features,

system calls, and memory access patterns are harvested, combined into individual

vectors for the current sliding window, and then individually analyzed by our frame-

work. While a malware may obfuscate what system calls it makes, it may not also

attempt to cloud what memory access patterns occur or forge its task structure

feature values. Using statistical probably built on the results of all three individual

models, our framework can accurately determine a processes nature with high true

positive rates and low false positives. This ensemble approach offers the maximum

coverage of a system and its processes and increases the likelihood of our framework

detecting malicious activity.

Our framework uses machine learning to analyze extracted features for the real

time detection of malware in deployed devices. We have seen the success of task

structure based feature extraction within a Windows [UGPL18a] and Linux environ-

ment [UGPL18b]. It has been shown that cloud-based services can provide security

to mobile phone devices with limited resources [DA13] and that behavioral based

malware detection systems can be used to detect anomalous activity [XZSZ10].

Hybrid approaches for anomaly detection with Hidden Markov Models and naive

Bayes models have also been explored and shown to be successful [DA13] [AHHT13]

[RTWH11], [XLQZ12].

Our approach differs from other tested approaches as we intend our framework to

use an ensemble of features, analyzed via a sliding window in order to be an accurate

and dynamic approach, focused on deployed devices. By extracting features from a

processes task structure and by observing the system calls [RRL+14] [FHSL96] and
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the memory access pattern [CCL+09] made, our framework can analyze a devices

behavior for anomalies. By observing all three features of a process, our framework

offers dynamic detection of malware. Through the use of sliding windows of vectors

created from these extracted features, we have increased accuracy for our models.

Furthermore, if an anomaly is detected then a more in-depth analysis occurs. Thus

far we have performed these extractions on Linux Kernel 4.10, Windows, and intend

to further test on Android and various IoT devices. The selection of the Linux

operating system as our target is based on the widespread use of Linux dialects for

many IoT devices.

Ubiquitous embedded systems or as they’re more commonly known, IoT devices,

are devices with the ability to transfer data over a network without requiring human-

to-human or human-to-computer interaction. They have sensors and tend to collect

data or act on received information. Such devices are perfect targets for malicious

activity. Due to the nature of our framework, a potential application of the basic

technology works well for deployed IoT devices. Most IoT devices run command-

line interface (CLI) applications and therefore this study aims to build a malware

detector for these types of application, as GUI based applications that exist for

user interactions are not the norm for IoT devices. IoT devices will also have a

minimal number of applications, if not only one. We can focus on verifying one

application or a minimal number of applications in an IoT device being monitored.

Furthermore, as we know what application(s) are running on an IoT device type,

we can develop the anomaly detection models and use them to detect an attack

(prior to the device being deployed) since we know the processes running on that

specific IoT device. Figure 2.1 depicts the numerous phases of the classification

process. Through the frameworks use of drivers, the feature data is first observed
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and extracted. Then the extracted data is formatted for the model and the classifier

performs its classification.

Figure 2.1: A flow diagram depicting the numerous phases of the classification
process

2.0.1 Task structure Feature Extraction

For the purposes of malware detection with machine learning via feature extraction,

a feature is a system property which should deviate greatly when observed from a

benign process versus a malicious process. Each process is manifested in the OS

through a data structure called task structure that maintains on an ongoing bases

all information associated with the process, like open files, network activity, memory

region, time spent in user and kernel space and many more. All of the information
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that is required to move a process from a running state to a waiting state and

at a later time to the running state without affecting the process execution. By

observing and cataloging the values of these task structure features, we can map the

normal operating procedure the system has and observe any deviations as possibly

malicious. The research performed in [SBSF11] determined 11 out of 118 feature

which can discriminate between a benign and malicious process with high accuracy,

as depicted in Figure 2.2. Within a Linux operating system, a feature logger was

used which periodically dumped 118 fields of task structure data every millisecond

for 15 seconds. The results of the experiments performed show that a classification

decision can be made within the first 100 instances as the process’s execution enters

a steady state afterwards. The classification power of using task structures for

malware analysis is shown as the results were 93% accuracy with minimal overhead,

from 50 to 70 microseconds after every millisecond [SBSF11].

For our framework, we opted to extract the eleven identified features every mil-

lisecond over the course of fifteen seconds. The eleven features selected showed the

most discrepancy between benign and malicious activity out of the identified 118

features. Extractions at a rate less than one millisecond didn’t contain enough dis-

crepancy when compared to extractions performed at a rate of one millisecond but

caused more overhead due to more extractions over the given 15 second window.

Extractions at a rate over one millisecond began to lose their discrepancy and thus

resulted in less accuracy. Furthermore, we compared the extracted features of com-

mand line interface applications against graphical user interface applications. Due

to the event based nature of graphical user interface applications, the models lost

accuracy when they were trained on mostly command line interface applications and

vice versa. To ensure consistent accuracy, a broad spectrum of applications must be

used to train the models.
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Figure 2.2: Eleven identified task structure features with the greatest disparity when
Benign vs. Malicious [SBSF11]
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Of the extracted features, one to note is map count which is an integer value

depicting the number of memory regions. Figure 2.3 clearly denoted the disparity

between the map count value of a benign and malicious program execution. The

feature hiwater rss is the high-water of resident set size usage which is used to show

how much memory is allocated to that process and is in random access memory.

The utime feature depicts how much time a process spends in user space where

as the stime feature represents how much time a process spends in kernel space.

Each feature in a processes task structure has a purpose and value which can de-

note its maliciousness. In order to achieve our observations depicted in Figure 2.3,

we observed the task structure of various benign processes and various malicious

processes and harvested all eleven features. For each benign and malicious process,

we graphed the average map count value at each interval of extraction resulting in

Figure 2.3; denoting that the map count value for a benign process deviates from

the standard map count value for a malicious process. It is worth noting that our

other ten extracted features behaved similarly and support the research performed

in [SBSF11].

We determined 11 out of 118 task structure feature which can discriminate

between a benign and malicious process with high accuracy [SBSF11]. The fea-

tures we have identified are extracted using a device driver or through introspection

[UGPL18b] [SBSF11] and used to train and test our model. These features are then

used to audit the running system and perform monitoring on system performance

[ZZSL15]. Table 2.1 depicts twelve possible features that can be extracted of the

identified 118 in [SBSF11]. Utime for instance is the amount of time that a process

spends in userspace. Conversely, stime is the amount of time a process spend in

kernelspace. Map count is an integer value depicting the number of memory regions

used by the process. Each feature serves a specific purpose within the task structure
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Figure 2.3: Time series statistics of the map count task structure feature of a Benign
vs. Malicious process

of a process and the features value can denote whether that process is benign or

malicious. The observations of such features offers a basis for the behavioral analysis

of a deployed device.

Table 2.1: Twelve possible Task Structure Features as identified by [SBSF11]

exec vm fscount hiwater rss hiwater vm
map count min flt nlvcsm nr ptes
nvcsm stime total vm utime

In [ZZSL15], a Feature Extraction and Selection Tool (FEST) was developed

which used a feature-based machine learning approach for malware detection and

tested on Android platforms. The researchers developed a means to look at the

permissions, API actions, IP, and URLs within an android apk and using statistical

analysis, collect the features they wish to use. The data-set contained 7972 apps with

50% being malware and the rest being benign. From their research, they discovered

that the performance of the Naive Bayes (NB) algorithm is the worst of all algorithms
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because of its strictly independence limitation and continued further testing with

the K-Nearest Neighbor (KNN) and the Support Vector Machines (SVM) algorithms

which displayed increased accuracy.

Researchers have also compared the performance of Naive Bayes (NB), Random

Forests (RF), and Support Vector Machines(SVM) and determined that the Ran-

dom Forest algorithm had better classification of malware [JS17]. This was tested

with 10-fold cross validation over a sample set of 25 benign and 84 malicious sam-

ples. The detection rate for their approach was calculated using five metrics, True

Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall, and Accuracy.

For static analysis, the Random Forest classifiers had an accuracy of 69.72% and

was closely followed by Naive Bayes classifiers with an accuracy of 68.23%. With

dynamic analysis, the Random Forest classifiers provided 63.3% accuracy and while

the closest other classifier was the Support Vector Machines (SVM) with 60.55%

accuracy. Overall, SVM was showed to have a better accuracy than Naive Bayes

and Random Forest had the most accuracy among all the classifiers tested.

Evasion of feature extraction based detection might seem possible, however can

be quite difficult. [SBSF11] found that the accuracy of their model is unacceptable

once eight features are forged, however each parameter depends on a particular

configuration of the system - cache, RAM, paging, etc. The values can change

from one host to another so a malicious actor must first estimate the values for

a particular system and to do so would require the execution of a malware which

hooks into sample fields for benign processes. In Linux, this is only allowed to super

user processes and as such, a malicious process would be unable to easily evade a

feature extraction based malware analysis.

12



2.0.2 System Call Extraction

Instead of using feature extraction for task structure, researchers have focused on

analyzing system calls as an alternative. System calls allow user level applications to

interact with the kernel and benign processes interact with the kernel differently than

malicious ones. By observing the system calls a process makes, we can determine

if it is operating within normal functionality or if it acting in a malicious manner.

Such research as in [CMK15b] compares the accuracy of n-gram analysis to that

of bag-of-n-grams as well as ordered and unordered 2-gram representations of the

system call trace.

The conclusion of the [CMK15b] showed that the best extraction techniques used

a minimum system call trace length of 1,000 ordered 3-grams chosen using recursive

feature elimination (RFE). Recursive feature elimination (RFE) is a feature selection

method that fits a model and removes the weakest features until the specified number

of features are reached. The algorithms with the highest accuracy were Logistic

Regression (LR) and Support Vector Machine (SVM) which outperformed signature-

based detectors. For classification, the Random Forest (RF), K-Nearest Neighbor

(KNN), and Logistic Regression (LR) algorithms provided the highest accuracy,

outperforming Naive Bayes (NB) and Nearest Centroid Classifier (NCC).

Along side task structure features, we observe the system calls executed by a pro-

cess. System call extraction has been explored on various platforms such as Hadoop

[LHC11], QEMU [BSM13], Android [XLQZ12] [JMJ18], and within Linux using

a Loadable Kernel Module (LKM) [SN08] to protect against kernel level rootkits

[DGSTG09]. Our framework uses a form of introspection, similar to the extraction

of task structure features, in order to extract the system calls made by a process.

After testing, we have opted to format our extracted system calls into 3-gram chunks

instead of using an approach like bag-o-words for a higher accuracy within our sliding

13



window [CMK15a] [CMK15b] [FT17]. Figure 2.4 depicts the fundamental difference

between 1-gram (unigrams), 2-gram (bigrams), and 3-gram (trigrams).

Figure 2.4: Depiction of the fundamental differences in n-gram sizes

The program we use to collect system calls is strace which is a diagnostic and

debugging utility for Linux. It is used to monitor and tamper with interactions

between processes and the Linux kernel. The strace output is a list of system calls

made by a running process for a given duration. Each line in the trace contains the

system call name, followed by its arguments in parentheses and its return value. For

example ”open(”/dev/null”, O RDONLY) = 3” is one of the outputs of the open

system call when I ran the command ”cat /dev/null”. For our purposes, we need

the system call made and not the parameters or the return value. This is list of

calls is then formatted into 3-grams. Figure 2.5 depicts the 3-gram formatting of

extracted system calls into vectors that are used by the machine learning models.

These overlapping system calls provide a depiction of the systems running state and

by observing them in order, we can determine behavioral patterns.

Within [CMK15a], more exploration was done including Naive Bayes, SVMs, de-

cision trees, and neural networks. System calls extracted and compiled into 3-gram

with a trace length of 1500 calls and compared against a LR, RF, and SVM classi-

14



Figure 2.5: Depiction of 3-gram Formatting of extracted System Calls

fier. According to the results, the worst performing classifiers were Naive Bayes and

nearest centroid conversely nearest neighbor and random forest classifiers providing

nearly identical performance. The LR classifier performed similarly to the nearest

neighbor and the random forest classifier, however the LR performance degraded

significantly when the feature reduction techniques singular value decomposition

(SVD) and linear discriminant analysis (LDA) were used. Classifier accuracy was

shown to improve when n was increased, in particular there was a large increase in

performance when moving from 1-gram to 2-gram indicating that the frequency in-

formation about system calls alone is insufficient for classification. At a trace length

of 1500, the average execution time of the studied processes was 205 ms. This result

indicates that high classification accuracy was achievable during the initial execu-

tion of the malware samples. As noted by the author, for a production deployment
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of a classification system, the LR classifier is preferred to the random forest and

nearest neighbor.

Research into system calls is an ever expanding niche. [CMK15b] tested bag-

of-2-gram representations of system call traces with the use of sliding windows.

The ordered 2-gram representation considers the local ordering of the calls within

the sliding window, whereas the unordered 2-gram representation ignores the local

ordering. For n size 2, 3, and 4 the LR and SVM detectors offered significantly

improved detection performance while LR and SVM detectors peaked around 1000

system calls for n sizes of three and four indicating that the studied malware sampled

were detected during the early stages of their execution. The research further shows

the results of testing a LR detector trained with 10-fold cross validation and n-gram

sizes of three, containing 3,500 ordered system calls. Figure 2.6 shows the maximum

true positive rate (TPR) as varying sequence lengths.

Figure 2.6: Maximum True Positve Rate and False Positive Rate at a sequence
length of {1, 2, 3, 4} and system call trace lengths [250, 1500][CMK15b]
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Malware analysis on Windows and Linux has been explored however in [LHC11]

the Hadoop platform was tested. Using a system calls analysis method with MapRe-

duce, the Hadoop platform is used to analyze the system calls on a server rather

than on the clients side. The author also proposes a more universal and persistent

model to correlate system calls among modules. Some limitations with this research

is if a persistent malware’s behavior is completed without the use of system calls

then the approach fails to detect the malware. Another limitation is that the cost

of data transmission required to have the server analyze the collected system calls

has not been measured. The research demonstrated the ability to improve upon

previous research which resulted in a 28% increase in detection rate.

Within [BSM13], we see the use of QEMU-emulated sandbox’s virtual hard drive

where the program Procmon was responsible for collecting system call information

for all processes. Once collected, the system calls were analyzed and compared two

at a time in a sliding window format. Specifically, the research used Jaccard distance

due to good results and clear semantics. However, some limitations encountered was

with the restrictions of a virtualized sandbox. Because some of the malware samples

were unable to connect to the internet, some of their behavior may have gone unseen

and at times malware may even terminate early resulting in insufficient traces which

could lead to poorer results.

In [SN08], the researchers develop a lightweight monitoring infrastructure which

extracts runtime information from the Linux kernel for the purpose of enhancing

system reliability. The loadable kernel module titled KOMI observes the guest OS

and intercepts system calls’ to collect information from the kernel and suggests

strategies to audit and protect the kernel with minimal CPU overhead. The re-

searchers found the monitoring service easy to customize with minimal penalty to
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Table 2.2: [SN08] System Call Interception Overhead from KOMI

System Calls
Linux

(microsec)
KOMI

(microsec)
null 4.0172 4.0173
read 4.4833 4.4833
write 4.2613 4.2615

performance allowing for easy integration into existing embedded systems. The

interception overhead between Linux and KOMI is depicted in Table 2.2.

In [ZLK+07], a Loadable Kernel Module (LKM) is proposed as part of a secure

auditing system in which system calls are intercepted in order to suggest strategies

to audit and protect the kernel. Within [DGSTG09], a system is proposed with

the intention of protecting the OS kernel from rootkits which hide their respective

running processes and threads. This is done by generating signatures for the kernel’s

data structure and building a profile using this observed data. Twenty applications

were tested and 221 fields were observed, 32 of which were never accessed during the

execution of the profiled applications. The research encourages a systematic way of

determining which features should be used when determining a data structure for

research which extends to machine learning based applications.

With the expansion of embedded systems, smartphones are at risk as well. In

[JMJ18], dynamic analysis was performed on an android device using system call

extraction. System calls for twenty normal applications and forty malicious ap-

plications were recorded for thirty seconds and then sixty seconds while the total

amount of times in which the system calls were made was observed and recorded.

For example, the epoll wait operation was called 2613 times by a benign applica-

tion conversely to 4703 times from a malicious application. Similarly, clock gettime

was called 3796 times by a benign application and 17,251 times by a malicious one.

Of note, malicious applications also request high-level permission from users in or-
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der to compromise the system by exploiting the granted permission. The research

shows that observed system calls made by malicious applications can be used to

create a signature to detect malware and although this research does not include

machine learning components, it proved that the analyzing of system calls can aid

in determining whether a system has been exploited.

In a similar research, [XLQZ12], a Hidden Markov Model was used with system

call extraction and key press patterns in order to attempt malware detection on a

smartphone; which showed promise. Specifically, 108 system calls were obtained

and graphed as shown in Figure 2.7 where y1=zp is the benign process and y2=yp is

the malicious process, showing that system calls can be used to accurately classify

a process using a Hidden Markov Model (HMM).

2.0.3 Memory Access Pattern

While feature and system call extractions have been shown to accurately detect

whether a process is benign or malicious, other researchers have begun to explore the

same functionality using memory access patterns. Memory access patterns are the

patterns in which a system reads and writes data to secondary storage and random

access memory. Our framework focuses specifically on virtual memory access rather

than physical memory access. By observing what virtual memory access is done by

a process and analyzing what portions of virtual memory are interacted with, we

can determine if a process has been tampered with. The collected data is compiled,

similar to the 3-gram approach of our system calls, and then passed to our first

stage detector.

An epoch is the date and time relative to which a computer’s clock and times-

tamp values are determined. Virtual memory is divided into memory regions based
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Figure 2.7: Results of Malware detection using a Hidden Markov Model [XLQZ12]

on the systems epoch which are used to build the systems memory model accord-

ing to the type and frequency of access within these memory regions. Operating

systems use pages which are the smallest fixed-length contiguous blocks of virtual

memory possible. These pages are allocated together into a page frame which is the

smallest fixed-length block of physical memory to which the pages are mapped to.

[XRSM17]

In this case, memory addresses are observed for changes that deviate from the

norm in order to classify the process invoking the memory access. In [XRSM17],

a novel framework is developed which includes techniques for collecting and sum-

marizing memory access patterns. The framework also functions on a two-level
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Table 2.3: Details of the performance of our memory access patterns model

Precision Recall F1-score Support
Benign 0.40 0.02 0.03 93
Malware 0.89 1.0 0.94 777
Average/Total 0.84 0.89 0.85 866

classification architecture and observes kernel rootkits vs user-level malware and

contains epoch-based monitoring. Thus far, ten rootkits have been observed using

QEMU with the machine learning algorithms having been trained on four of those

rootkits and asked to detect six rootkits it has never seen before. The two algo-

rithms tested were Random Forest and Logistic Regression and both showed great

accuracy and demonstrated the framework could detect new malware.

For our purposes, we use a program called Perf to observe memory access. The

output contains references such as “LFB hit” or L1 or L2 hit” or “Local RAM hit”.

These ”hits” are memory access events that occur for both read and write events.

Observing their order and occurrence gives us a standard for normal behavior when

observing benign processes. We also observe whether these memory access patterns

occur in userspace vs. kernel space. Each type of ”hit” is given a correlating

numerical value (”LFB hit” = 1, ”L1 or L2 hit” = 2, etc) and this formatted output

is used to train our models. Because of the limited number of occurrence types that

exist (”LFB hit”, ”L1 or L2 hit”, etc), it is viable to observe these for behavioral

analysis.

2.0.4 Data Extraction Process

For task structure feature extraction, we used a loadable kernel module which hooked

into the kernel and intercepted task structure features when a process was executing.

These features were stored in a buffer as the process was observed in its running
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state and then the buffer was saved to a file. The resulting feature values were

stored as a comma-delimited file and compiled together to train our task structure

models. Because each process that is observed creates it’s own output file, there is

a resulting abundance of data files. As part of our framework we also developed a

program to compile all the extracted task structure feature files into one file which

could be used to train our machine learning models. Table 2.4 depicts six of the

eleven task structure features we extracted using our loadable kernel module. The

rows are a sampling of the values these features can have which create a vector that

is then analyzed by our models, {F1, F2, . . . , Fn}. Table 2.4 denotes the first three

sampled vectors of a benign process while Table 2.5 denotes the first three sampled

vectors of a malicious process. A comparison of both tables depicts the disparity

between a benign and malicious process.

Table 2.4: First three task structure feature values from a benign process as ex-
tracted using our loadable kernel module

Class map count hiwater rss hiwater vm total vm exec vm nr ptes
Benign 1 0 0 33 0 1
Benign 8 1 1052 546 503 5
Benign 16 1 1865 1865 770 8

Table 2.5: First three task structure feature values from a malicious process as
extracted using our loadable kernel module

Class map count hiwater rss hiwater vm total vm exec vm nr ptes
Malware 37 188 3948 6484 1251 16
Malware 42 192 4143 6484 1256 16
Malware 48 202 4258 6484 1261 32

In order to extract the system calls performed by a process we used a program

called strace. Strace is a diagnostic and debugging userspace utility for Linux which

is used to monitor and tamper with interactions between processes and the kernel

via system calls. Strace is a intercepts and records the system calls made by a
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process and the signals which are received as a result. The name of the system

call, its arguments, and its return value are all printed to data files. The extracted

system calls must be parsed and our framework does this by iterating through each

line in the data files and extracting each call. The calls are then compiled into a

vector of three calls per vector as depicted in Figure 2.5.

The memory access patterns of the benign cli application and malicious exe-

cutable listed in Table 2.3, are obtained using an application called Perf. This tool

is a performance analyzing utility within Linux which provides a number of sub-

commands that allow statistical profiling of the entire system. The commands used

in conjunction with this tool recorded both read and write memory access events

and outputted them to text files for further processing/formatting. These memory

accesses were captured with their parameters and were outputted one per line. Ta-

ble 2.6 depicts three lines of extracted memory access patterns though we have only

included seven of the thirteen available data columns that are outputted by Perf.

The symbol column describes if the memory hit is occurring in userspace as depicted

by ”[.]” or in kernelspace as depicted by ”[k]”. The object column can inform us

if a memory access event is occurring in the heap or the stack. The last column,

”TLB access” describes the unique hits that occur to the translation lookaside buffer

(TLB) which is a memory cache that is used to reduce the time taken to access a

memory location.

Table 2.6: Example extracted memory access patterns for a benign application

Access Type Overhead Samples Local Weight Memory Access Symbol Object TLB access
read 1.41% 1 2516 LFB hit [.] anon L1 or L2 hit
read 1.37% 1 2444 LFB hit [.] [heap] L2 or L3 hit
write 0.53% 1 940 Local RAM hit [k] [kernel.kallsyms] L1 or L2 hit

Our framework formats and compiles all the memory accesses into readable data

for our model. The formatter within our framework iterates through each line of
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the file created from the extraction phase and first adds necessary spacing in order

to distinguish between features/columns. It then formats each column in the file by

representing each possible value for each parameter by a number ranging from 1 to

n, with n being the total number of possible values that parameter can take. Once

each value has been replaced with a corresponding number, the script continues to

iterate through the remaining lines in the file and performs the same actions on

the data. The formatted file is then input to the machine learning models to make

predictions as to whether or not a specified process is malicious. It operates by

creating numerous decision trees during training.

2.0.5 Machine Learning Models

Figure 2.8: Two dimensional depiction of a Support Vector Machine (SVM) algo-
rithm
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A Support Vector Machine (SVM) is a discriminating classifier which separates

occurrences into two spaces. In two dimensional space, this can be described as a

line dividing a plane in two parts where each class lays on either side of the line.

Figure 2.8 is a two dimensional depiction of a Support Vector Machine algorithm,

it’s margins, and it’s decision boundaries, as well as where class data and outliers

occur. Support vector machines are supervised learning models that can be used

to analyze data, recognize patterns, and can be used for both classification and

regression tasks. This model is particularly useful where there is much benign data

and not much anomalous activity that you are trying to detect, often the case for

malware. A fine example of when to use a support vector machine is to detect

fraudulent transactions where you might not have many examples of fraud but you

can train your classification model on an abundance of good transactions. This is

useful for anomaly detection because the scarcity of training examples are exactly

what define an anomaly: that is, something that deviates from what is standard,

normal, or expected.

A Random Forest algorithm is another type of supervised learning classifier

which creates a forest of decisions by some way and randomizes it. There is also a

direct correlation between the number of trees and the classifiers accuracy with a

larger number of trees resulting in a more accurate model. A few advantage of using

the Random Forest algorithm are that the classifier won’t overfit the model, the

algorithm can handle missing values well, it can be modeled for categorical values,

and it can be used for both classification and regression tasks. Figure 2.9 depicts

the decision tree classifier of a Random Forest algorithm.

Logistic Regression is a technique originating from the field of statistics. It is a

classification algorithm used to assign observations to a discrete set of classes. The

Logistic Regressions algorithm transforms its output using a sigmoid function and
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Figure 2.9: Depiction of a decision tree classifier of a Random Forest algorithm

returns the probability value which can be mapped to two discrete classes. Often it

is a go-to method for problems with only two classes such as benign and malicious,

also known as a binary classification problem. The algorithm is depicted as an S-

shaped curve, otherwise known as the boundary, where values are mapped to either

side of the curve. Figure 2.10 depicts a Logistic Regression algorithm, it’s boundary,

as well as true and false samples.

K-fold cross-validation is a statistical method used to estimate the skill of ma-

chine learning models. When applied to models it often results in estimates are

generally less biases than other methods. The original sample is randomly parti-

tioned into k equal sizes of sub-samples, in our case ten. Of these ten sub-samples,

a single sample is kept as the validation data for testing the model while the re-

maining nine samples are used as training data. The cross-validation process is then

repeated ten times with each of the ten sub-samples used exactly once as validation

data. The ten results are then averaged to produce a single estimation of the models
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Figure 2.10: Depiction of Logistic Regression algorithm including the boundary and
true/false samples

accuracy. The advantage of this technique over repeated random sampling is that

all the samples are used for both training and validation and each sample is used

only once for validation. Furthermore, in repeated cross-validation the data is ran-

domly split into k folds several times. The performance of the model can therefore

be averages over several runs. The goal is also to test a models ability to predict

new data that was not used in estimating it in order to indicate problems such as

over-fitting or selection bias and to give insight into how the model will indepen-

dently generalize a dataset. Due to the aforementioned details of cross-validation,

we used 10-fold cross-validation as our validation technique for our Random Forest
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Figure 2.11: Depiction k-fold cross validation and training for machine learning
models

and Logistic Regression models. Figure 2.11 depicts k-fold cross-validation as it

is used to validate machine learning models such as Random Forest and Logistic

Regression.

2.0.6 Ensemble Comparison

Our framework uses feature extraction of task structure properties, system calls, and

memory access patterns in order to facilitate a multi-pronged approach to malware

detection and analysis. The task structure of a process describes the shared resources

used such as an address space or open files. The kernel stores the list of processes

in a linked list and each process contains a task structure which contains all the

information about that specific process. System calls are the fundamental interface

between an application and the Linux kernel and are invoked to perform an action.
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Some common system calls are read, write, and open. A memory access pattern is

the pattern with which a system or program reads and writes memory to secondary

storage.

We have identified various features within a Linux environment whose values

deviate sufficiently over time when they are benign or malicious. These features

consist of the smallest subset possible to provide detection of malware [SBSF11]

[CMK15b] [XRSM17]. These features were selected after much testing and observa-

tion to determine their deviance in value when they were benign or malicious. Thus

far we have performed these extractions on Linux Kernel 4.10, and intend to further

test on Windows, Android, and various IoT devices. The selection of the Linux

operating system as our target is based on the widespread use of Linux dialects for

many IoT devices.

Our task structure, system call, and memory access features are harvested in-

dividually and across different system times. A vector is a collection of extracted

features of a given feature type (task structure, system calls, memory access). Each

vector has a given formatting requirement given which feature type it belongs to.

For instance, task structure and memory access vectors are a collection of extracted

features {F1, F2, . . . , Fn} while system calls are 3-gram representations of extracted

system call features {Call1, Call2, Call3}. These vectors are independent of each

other and there is a respective support vector machine, random forest, and logistic

regression model for each feature type as they cannot be classified with a shared

model. When sufficient vectors of a given feature type are collected, the vectors are

passed to our models for analysis, regardless of the status of other feature type vec-

tors. This results in independent collection time and data sampling for each feature

type. If all feature types return a benign classification for their respective vectors

then a device is considered to be benign. If any of the vectors are classified as
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malicious, then the device is exhibiting suspicious behavior. It is worth noting that

a malware may attempt to spoof one of its feature types such as its task structure

but may not attempt to spoof all three feature types at the same time resulting in

a more resilient IoT device.

2.0.7 Dual-Stage Classification

Dual-level classification architectures have been shown to be successful in classifying

malware [XRSM17] [Yua17]. Besides classifying many aspects of a process, our

framework uses a dual-stage approach. Our first stage is an anomaly detector which

has been trained solely on benign data and is highly sensitive. Our second stage

occurs if the sliding window is found to be anomalous after being analyzed by our

anomaly detector (first stage). It is passed to our classifier which has been trained on

both benign and malicious data. This classifier attempts a more in-depth analysis

to further assess the window as benign or malicious and makes a decision. Our

first stage can mark a task as suspicious, limiting its execution, while the second

stage will perform a more in-depth analysis to fully determine the intent of the

task. Figure 2.12 is a workflow diagram of our ensemble features using a dual-stage

analysis approach. Our framework contains a one-class support vector machine, a

random forest, and a logistic regression model for each of our feature types (task

structure, system calls, and memory access patterns) which analyze independently

of each other. A vector is first passed to the one-class support vector machine and

if the vector is determined not to be benign, the vector is passed to both of our

random forest and logistic regression models for comparison. The one-class support

vector machine is trained solely on benign datasets and the random forest and
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logistic regression models are trained on the same dataset containing both benign

and malicious samples.

Once a stage-one alert is identified the agent will be notified to extract more

data and to monitor more features in an effort to pass the additional information to

stage-two before final determination is taken. A Quasi-malware state is a state in

which a device has limited performance and network impact while it in in an inter-

mediate evaluation state. The agent on the deployed device can be informed after

a stage-one alert in order to restrict or modify various aspects of the device (Quasi-

malware state) prior to the stage-two determination in order to prevent further

malicious behavior or the propagation of malware. If stage-two finds no malware

the agent is informed to return to normal operations. Throughout the process a

visual representation of the networked devices is maintained denoting the health of

these devices. A key feature of our dual stage approach is its ability to be diverse

enough to accommodate the varying degrees of configuration of deployed devices.

This diverse nature enables our first stage to function with a different sliding win-

dow size and threshold than our second stage. The first stage can be configured to

analyze a sliding window and threshold that has been shown to be overly sensitive

while our second stage can be configured for accuracy.

2.0.8 Sliding Windows and Thresholds

Sliding window validation is the process of backtesting time series models by dividing

the whole cross-sectional dataset into different training windows by specifying the

width of these windows. The model is trained using the training window and applied

the testing window in order to compute the performance of the first run. The

training window slides to a new set of training records and the process is repeated
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Figure 2.12: Flow chart of ensemble approach including dual-stage classification
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until all training windows are used. Using this technique for training, the average

performance metric can be calculated across the entire dataset. The performance

metric derived through the use of sliding window validation is generally more robust

than split validation testing. Because of the improved robustness and accuracy of

this mathematical technique, we implement sliding windows in the testing of our

extracted features.

To improve the accuracy and robustness of our analysis, our framework imple-

ments sliding windows in its analysis of data. The values of our chosen features are

harvested, combined into a vector for the current sliding window, and then trans-

mitted to our framework. The sliding window is comprised of a set of vectors {V1,

V2, . . . , Vn} where n determines the size of the window. Now, each vector Vx is

composed of a set of features {F1, F2, . . . , Fm} where m denotes the last feature

extracted from the defined feature set. The threshold within the sliding window

is what percentage of the sliding window must be determined in order to make a

determination for the entire window. For example a sliding window of size ten with

a threshold of eighty percent requires eight of the ten vectors to be of a certain type

before making the determination that the sliding window is of that type.

If we intent to use a sliding window of size ten for our task structure features we

would include ten vectors, in other words ten rows of {F1, F2, . . . , Fn}. For system

calls with 3-grams it would be ten rows of {Call1, Call2, Call3} and for memory

access it would be ten rows of memory hits {Hit1, Hit2, . . . , Hitn}. The sliding

window sizes can also be independent of each other, in other words, task structure

analysis can have a sliding window size of ten while system calls use a sliding window

size of five. Figure 2.13 depicts a sliding window vector over time.

The accuracy of a sliding window correlates to the selected window size and

the selected threshold. A window size that is too large with a low threshold may
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Figure 2.13: Attribute vector summarizing a sliding time window of frames

be too quick to make a determination for such a large window. This can result in

inaccuracies especially with delayed malware which displays its execution later in the

sliding window. Similarly a large sliding window with a high threshold must classify

many vectors in order to make a determination. Classifying many vectors requires

more processing time and such a high threshold may result in the determination

being made late into the window. Comparably a sliding window that is too small

may lack the required size to make an accurate determination of the devices running

state. We have found that varying window sizes have different accuracy with various

thresholds as shown in Figure 2.14 which demonstrates the accuracy for various

sliding window sizes and thresholds when tested for our task structure.

34



Figure 2.14: Accuracy of our various tested sliding window sizes and thresholds

2.0.9 Framework Validation

To validate our proposed framework we implemented our feature extraction within

an x86 Linux environment and referred to [UGPL18b][UGPL18a] For the imple-

mentation of our framework the deployed devices not only have an embedded agent

installed but the machine learning models would be trained at the manufacturer

level. Before the device is deployed the devices would be run and analyzed in a

secure environment and a map of their standard operating procedures would be

developed. Our framework would be trained on this map for that device model so

when the device is deployed it is ready to function with a model specific to it. In

[UGPL18a] the authors showed success with various traditional machine learning

algorithms such as support vector machines, random forest, and logistic regression.

Because of this in our x86 Linux environment we used a one-class support vector
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machine as the model for our anomaly detection within our first stage. Within our

second stage we used a random forest and logistic regression classifier to do our

in-depth analysis.

A key feature of our dual stage approach is its ability to be diverse enough to

accommodate the varying degrees of configuration of deployed devices and various

classification algorithms. This allows a wide range of classification algorithms to be

configured as many have been shown to have varying degrees of success for malware

detection dependent on the devices environment [SBSF11] [Yua17] [JS17].

In order to combat malware, our methods of detection must improve. One pos-

sible approach is to use a dual stage classifier. The RansHunt framework shown in

[Yua17] works on static and dynamic features and includes a multi-stage approach

with a Support Vector Machine based algorithm. The framework is trained with

10-fold cross validation and uses Cuckoo Sandbox in the back-end for dynamic mal-

ware analysis. In the preliminary results, the Deep learning model with 2-tuple

inputs achieved 94.83% accuracy. To improve detection time, system call traces

were compressed and in all cases the RansHunt framework performed better than

most anti-malware methods.

Similarly, [XRSM17] includes a two-level classification architecture which ana-

lyzes kernel rootkits versus user-level malware and uses n-gram attribute similarity

(AS). Feature vectors of byte code are extracted and arranged into n-grams and

tested against various algorithms for their accuracy and true positive rate (TPR).

The researchers tested three data sets, the first of which was collected in 2014

and contained 88 malwares and 84 benigns. The second dataset is from 2015 and

contained 200 malwares and 168 benigns while the third dataset consisted of 1000

malwares and benigns from the Open Malware Benchmark. The first data set was
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Table 2.7: [XRSM17] Experiment Results of Dataset 2

True Positive (%) Accuracy (%)
AS 95.4 92.61
C4.5 90.7 91.30
Naive Bayes 89.95 91.00
BayesNet 91.65 91.66
SVM 82.15 88.78

Table 2.8: [XRSM17] Experimental Results of Dataset 3

True Positive (%) Accuracy (%)
AS 86.69 81.07
C4.5 58.64 59.7
Naive Bayes 37.63 68.31
BayesNet 52.15 74.67
SVM 42.9 70.93

used for training and the second and third datasets were used as test data, the

results of which are detailed in Table 2.7 and Table 2.8.
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CHAPTER 3

RESULTS AND DISCUSSION

Due to our ensemble approach, our framework relies on various machine learning

models, specifically one-class support vector machine, random forest, and logistic

regression. The one-class support vector machine is our anomaly detector and as

such was trained solely on benign data. Our random forest and logistic regression

models are our classifiers trained using 10-fold cross-validation and were trained on

the same set of benign and malicious processes.

For task structure features, the random forest model had a model result mean

of 99.98% and an accuracy of 100%. The task structure logistic regression model

had a model result mean of 65.98% and an accuracy of 65.35%. Table 3.1 displays

the classification report of the task structure random forest model while Table 3.2

displays the classification report of the task structure logistic regression model.

Table 3.1: Details of the Task Structure Random Forest model.

Precision Recall F1-score Support
Benign 1.00 1.00 1.00 481
Malware 1.00 1.00 1.00 890
Average/Total 1.00 1.00 1.00 1371

Table 3.2: Details of the Task Structure Logistic Regression model.

Precision Recall F1-score Support
Benign 0.50 1.00 0.66 471
Malware 1.00 0.47 0.64 900
Average/Total 0.83 0.65 0.65 1371

For system calls, the random forest had a result mean of 99.40% and an accuracy

of 99.42% while the logistic regression had a result mean of 98.82% and an accuracy

of 98.92%. The classification report for system calls of both the random forest and

the logistic regression models can be found on Table 3.3 and Table 3.4, respectively.
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Table 3.3: Details of the System Call Random Forest model.

Precision Recall F1-score Support
Benign 0.99 1.00 1.00 6143
Malware 1.00 0.46 0.63 67
Average/Total 0.99 0.99 0.99 6210

Table 3.4: Details of the System Call Logistic Regression model.

Precision Recall F1-score Support
Benign 0.99 1.00 0.99 6143
Malware 1.00 0.48 0.64 67
Average/Total 0.98 0.99 0.98 6210

For memory access pattern analysis, the random forest model displayed a re-

sult mean of 87.64% and an accuracy of 89.14%. The logistic regression model for

the memory access pattern approach displayed a result mean off 87.67% and an

accuracy of 89.26%. Table 3.5 demonstrates the classification report of the memory

access pattern based random forest model while Table 3.6 demonstrated the logistic

regression model.

Table 3.5: Details of the Memory Access Patterns Random Forest model.

Precision Recall F1-score Support
Benign 0.49 0.02 0.04 93
Malware 0.89 1.00 0.94 773
Average/Total 0.84 0.89 0.85 866

When classifying a process as a whole, on average across all three techniques,

our one-class support vector machine had an accuracy of 86% served as our anomaly

detector. Due to our dual-stage approach, the remaining 14% of unknown or mali-

cious occurrences were passed to our random forest and logistic regression models

for further classification at which point either model came to its own respective

classification for the tested data. In total, our random forest and logistic regression

models showed overall more accuracy than our one-class support vector machine
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Table 3.6: Details of the Memory Access Patterns Logistic Regression model.

Precision Recall F1-score Support
Benign 0.40 0.02 0.03 93
Malware 0.89 1.00 0.94 773
Average/Total 0.80 0.89 0.84 866

model however required more time to classify the data. By using our anomaly de-

tector as a first stage, we reserved in-depth classification and overhead to only the

processes that truly required it.

Table 3.7 lists some benign and malicious processes which were used for the

testing of our models. We attempted to use processes which produced a minimum

of 1000 task structure vectors, 100 system call vectors, 100 memory access vectors.

On average we have 500 task structure vectors, 500 system call vectors, and 200

memory access vectors per process.

Table 3.7: Example benign and malwares that were used to the accuracy of our
framework

Tested Benign Tested Malwares
Ack-grep, grep, bmon, cat,
cbm, ethstatus,htop, ls, top,
htop, wget, fzf, fortune, bc, task

Backdoor c, dofloo,
linux.worm.lupper, sotdas, kaiten

Due to our ensemble approach, our framework relies on various machine learning

models, specifically one-class support vector machine, random forest, and logistic

regression per feature type. Using the same malware and benign processes, Table

3.8 compares the accuracy of each of our individual model using the same dataset

in order to demonstrate how our selected machine learning algorithms perform.

These results are the averages of each feature type (task structure, system calls, and

memory access) for each respective model.
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Table 3.8: Comparison of the accuracy of our models for each of our extracted
feature types

Task Structure
Accuracy

System Call
Accuracy

Memory Access
Accuracy

One-Class SVM 84% 93% 83%
Random Forest 98% 99% 89%
Logistic Regression 65% 98% 89%

Table 3.9 depicts the total average accuracy and speed of each of our machine

learning model algorithms over all three feature types. We took our benigns and

malwares and observed the average accuracy of each feature type for each given

model. We further recorded the average speed it took to make a determination. The

short time to determination we observed with the one-class support vector machine

supports our use of that machine learning model as a first stage classifier as the first

stage is required to be a rapid and robust anomaly detector. The increased accuracy

of the random forest supports our use of it as a in-depth classifier.

Table 3.9: Average accuracy and speed of our models over all three techniques

Average Accuracy Average Milliseconds
One-Class SVM 85.67% .0451
Random Forest 95.33% .0858
Logistic Regression 84.51% .0902

To improve upon our frameworks accuracy and robustness, rather than classify-

ing a process as a whole, we implemented the use of sliding windows. These sliding

windows consist of chunks of our extracted features of a process and are passed

in similar fashion to our one-class support vector machine and anomalies are then

passed to our two classification models. By classifying a process in chunks rather

than as a whole, we were able to make earlier determinations as to whether a pro-

cess was benign or malicious. Furthermore, delayed execution of malicious activity
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eventually fell into a sliding window as we iterated through the extracted features

and registered as anomalous, increasing our chances of detecting malicious activity.

The use of sliding windows also allows us to continuously monitor an executing ap-

plication and classify smaller chunks of data rather than a process as a whole which

results in less computation.

Each sliding window can also have a threshold with which judgement is made

upon the window as a whole. For instance, a sliding window of ten records can be

said to have a threshold of 80% if eight evaluated records are determined to be benign

and thus the whole window determined to be benign. We tested varying window

sizes while testing each with a threshold of percent benign to percent malware within

each window. The sliding window sizes tested were five, ten, twenty, fifty, and one

hundred. The thresholds tested were ninety, eighty, seventy, and sixty. This means

that if the percent of benign vectors within the sliding window was determined to

exceed the threshold then that whole sliding window is now classified as benign

due to the prevailing percentage. An excerpt of this is shown in Figure 3.1 which

depicts the varying accuracy depending on threshold for sliding window sizes five,

ten, twenty, fifty, and one hundred. In other words, different sliding windows are

more accurate with certain thresholds. The results depicted in Figure 3.1 are the

averages from all three of our feature types (task structure, system calls, and memory

access) using the same benign and malicious processes in Table 3.7 in order to test

the overall accuracy of various sliding window sizes and thresholds. We tested our

benigns and malwares using a sliding window of five with the various thresholds and

averaged the results of our models. We repeated our tests over the same dataset but

with different thresholds and window sizes in order for the dataset to remain our

constant. Figure 3.1 demonstrates that the accuracy of a sliding window is affected
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by the threshold selected for that sliding window and that each sliding window must

be carefully analyzed to determine its best accuracy setting.

Figure 3.1: Threshold Comparison for Varying Sliding Window Sizes

Each of our individual models proved to be accurate in classifying a malicious

process. Although our framework requires more training and testing, using proba-

bilistic analysis, all three techniques are accounted for and a final determination can

be achieved. Coupled with the use of sliding windows and a dual-stage approach

for further accuracy, our framework shows great promise in determining when a

device is compromised. Table 3.10 depicts the average accuracy of all three of our

approaches for a given set of benign and malicious processes. Of note, the malware

sotdas was determined to be unknown by all three of our models and for the security

and integrity of our device, if a process if unknown or anomalous it is assumed to

be malicious.
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Table 3.10: Average accuracy of our models over our three feature types for two
benign and three malicious processes

Class Ensemble OC-SVM Ensemble Random Forest Ensemble Logistic Regression Average Detection
bmon Benign 97.58% benign 96.72% benign 96.39% benign Benign
ethstatus Benign 98.42% benign 97.68% benign 96.33% benign Benign
kaiten Malware 89.85% unknown 93.94% malware 92.12% malware Malware
linux.worm.lupper Malware 87.37% unknown 91.94% malware 88.01% malware Malware
sotdas Malware 98.96% unknown 86.41% malware 85.73% malware Malware

IoT devices tend to run a single CLI application on a dialect of Linux and as

such, our focus was on CLI applications. However, we further tested our models

against various popular graphical user interface applications within a our x86 Linux

system such as Chrome a web browser, VLC an audio player, Gimp a photo ed-

itor, and Skype a communications platform to ensure our models were accurate

when introduced to new applications. Our models exceeded our expectations and

accurately identified each of these as benign. However, a model trained purely on

command line interface (CLI) applications will have a more difficult time classifying

a benign graphical user interface (GUI) application as benign due to the difference

in behavior between a CLI and GUI application. For instance, GUI applications are

event driven whereas a CLI application usually performs their function once exe-

cuted. This inherent difference in behavior results in models requiring more training

depending on their intended target application type, CLI or GUI.

Past research has shown that the individual use of task structure, system calls,

and memory access patterns are viable and effective approaches to the detection of

malicious activity [SBSF11] [CMK15b] [XRSM17]. Each individual approach has

its benefits and merits, however we explore the possible synergy of these approaches

to augment their benefits and increase the work required by a malicious actor to

circumvent each technique. Furthermore, we present this ensemble approach as a

dual-stage classification framework which uses a highly sensitive first stage and a

more in-depth analytical secondary stage.
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A promising factor of our approach is that it is dynamic enough to allow for

different window sizes and thresholds per deployed device for further usability in

distributed networks that run varying device models. In other words, device types

will have their own dual-machine learning system, customized to their respective

window size and threshold value.

To further improve our framework, we propose exploring other available task

structure features and system calls which can be used to train our model. Android

based devices should also be tested [XLQZ12] as well as windows based operating

systems [UGPL18a] and a complete cloud based solution for intrusion and compro-

mise detection [HZB11].
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CHAPTER 4

CONCLUSION

Malware is proving to be more dangerous than ever before and with the ubiq-

uity of deployed IoT devices it is increasingly difficult to determine which devices

have been maliciously compromised. We propose a framework which uses a dual

stage behavioral analysis approach with increased accuracy of detection by com-

bining the observance of task structure features, system calls, and memory access

patterns into an ensemble approach. Coupled with a dual-stage anomaly detector

and classifier, our framework offers high accuracy and malware detection to deter-

mine the integrity of an IoT device. These approaches show success on a variety

of devices such as Windows, Linux, and Android. Various algorithms such as Sup-

port Vector Machines, Random Forest, and Logistic Regression have been tested

with varying yet promising accuracy when compared to Naive Bayes and Nearest

Centroid algorithms.

Furthermore, these machine learning based malware detectors have been shown

to require more work by a malicious actor in order to circumvent their detection.

Our model showed great accuracy with limited training data. This approach allows

a device to contain an embedded agent and extract key process data as the device

executes its tasks. Furthermore, the data could be transmitted as a collected vector

to a cloud framework for processing.

Within a multi-stage framework, the first, sensitive, anomaly detection stage

flags malicious executions and passes them to a secondary stage for a more in-depth

analysis and classification. Once the malicious activity is detected a device can

be halted or the task suspended from functioning within the network in order to

prevent further execution. Furthermore, once refined, this approach may work with

little overhead and interruption on the end device. This near real-time detection
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would detect various kinds of malware and could stop them before they complete

their execution even when a malware attempts to delay its execution to obfuscate

itself.

Our approach shows promise as it can be combined with other approaches for

more accuracy and a higher detection rate while also maintaining low battery and

CPU costs. It is our hope that as the rapid evolution of technology in our so-

ciality increases so does our defensive and countermeasure capabilities. Malware

is attributed as the cause of massive data and integrity loss. Due to the dynamic

and aggressive nature of Malware we require dynamic, vigorous, and progressive

approaches to defend against such attacks.
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