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ABSTRACT OF THE DISSERTATION 

 

CONSEQUENCES OF NON-PHYSIOLOGICAL LIGANDS BINDING TO DREAM 

ON ITS SECONDARY AND TERTIARY STRUCTURES AND INTERACTIONS 

WITH INTRACELLULAR PARTNERS.  

                                                                     by 

Samiol Azam 

Florida International University, 2019 

Miami, Florida 

Professor Jaroslava Miksovska, Major Professor 

          Downstream regulatory antagonist modulator (DREAM) is 29 kDa neuronal calcium 

sensor (NCS) protein which is expressed in the hippocampus of the brain. The DREAM is 

involved in a wide spectrum of biological processes, including regulation of potassium 

current in brain, modulation of pain, presenilin-1 processing, regulation of memory and 

learning. Exposure to toxic metals such as lead (Pb2+) and cadmium (Cd2+) have been 

associated with different types of neurodegenerative diseases. However, how these toxic 

metals induce neurotoxicity remains an active area of research. In the present study, 

utilizing a combination of spectroscopic and calorimetric techniques, we demonstrated 

binding of these toxic metals to DREAM. We showed that Pb2+ and Cd2+ bind to EF-hands 

in DREAM and binding of these toxic metals alters DREAM secondary and tertiary 

structure. Lead and cadmium association to DREAM also modulates DREAM interactions 

with FITC-labeled peptides that mimic binding sites of DREAM effector proteins, 

presenilin 1 and Kv channel in a similar way as Ca2+ binding. Considering the high 



 

 

vii 

 

sequence homology between DREAM and other NCS proteins, Pb2+ and Cd2+could bind 

to other NCS proteins and interactions of Pb2+ and Cd2+ to with NCS proteins could provide 

novel insight into the molecular mechanism of Pb2+ and Cd2+-induced neurotoxicity.  

           Lithium (Li+) has been used for the treatment of mental disorders for more than six 

decades. Increasing evidences from in vivo and in vitro studies have implicated that Li+ is 

a drug candidate for the treatment of neurogenerative diseases. However, the molecular 

mechanism through which Li+ exerts its therapeutic action has not elucidated yet. Here we 

investigated whether Li+ directly binds to DREAM and impact its structural and functional 

properties. We demonstrated that Li+ binding triggers structural rearrangement of DREAM 

and enhances DREAM interactions with site-1 and site-2 of the voltage-gated potassium 

channel. Results from this study suggest that DREAM and probably other NCS proteins 

are molecular targets of Li+ and binding of Li+ to DREAM could provide a novel insight 

into the molecular mechanism of Li+ therapeutic action.  
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Figure 3.6. Frequency-domain intensity decay of 40 μΜ 1,8-ANS binding to 40 

μΜ DREAM(Δ64) in presence of EDTA (squares), Ca2+ (circle), Pb2+ 

(up triangle), and Ca2+Pb2+ (down triangle). The phase delay is shown as 

solid symbols and modulation ratio as empty symbols. Solid lines 
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LIST OF ABBREVIATIONS AND ACRONYMS 

 

ABBREVIATION    FULL NAME 

 

1,8-ANS    1-anilinonaphthalene-8-sulfonic acid 

 

aMD    Accelerated molecular dynamics 

 

Ca2+    Calcium ion 

 

CaBP                                       Calcium binding protein 

 

CaM     Rat calmodulin 

 

cMD     Classical molecular dynamics  

 

Cd2+                                          Cadmium ion 

 

CD      Circular dichroism 

 

DREAM    Downstream regulatory element antagonist modulator 

 

EDTA 2-({2-[Bis(carboxymethyl)amino]ethyl}    

(carboxymethyl)amino)acetic acid 

 

EFX     EF-hand X 

 

FITC                                        Fluorescein isothiocyanate  

 

ITC                                          Isothermal titration calorimetry  

 

IMPase                                    Inositol monophosphatase  

 

IPTG    Isopropyl β-D-1-thiogalactopyranoside 

 

InsP3R                                     Inositol triphosphate receptors  

 

KChIP    Potassium channel interaction protein 

 

λmax    Emission maxima 

 

Li+                                           Lithium ion 

 

LTD                                        Long-term depression  
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Mg2+    Magnesium ion 

 

NAIP                                       Neuronal apoptosis inhibitor protein 

 

NCS                                        Neuronal calcium sensor 

 

Pb2+                                          Lead ion 

 

PKC                                        Protein Kinase C 

 

POPOP                                   1,4-bis(5-phenyloxazol-2-yl)-benzene 

 

PS1-CTF                                 Presenilin-1 carboxy-terminal fragment  

 

PS1HL9                                  Helix-9 of presenilin-1 

 

ROCs                                      Receptor-operated ion channels  

 

RMSD    Root mean square deviation 

 

RYR                                        Ryanodine receptors  

 

SASA               Solvent accessible surface area 

 

SMOCs                                   Secondary messenger operated Ca2+ channels   
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PREFACE 

This dissertation is an accumulation of research studies conducted by Samiol Azam 

from August 2015 to June 2019. During this time, chapter 3 (Azam, Miksovska 2018)  and 

4 (Azam, St Luis et al. 2019) have been published in the peer-reviewed journals ACS 

Chemical Neuroscience and Metallomics, respectively. Chapter 5 has been submitted to 

ACS Chemical Neuroscience for publication.             
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1. INTRODUCTION 

1.1 General principle of calcium signaling 

               Calcium (Ca2+) is a universal intracellular signaling ion that binds to a wide 

spectrum of calcium-binding proteins (CaBPs) and regulate numerous cellular functions, 

including muscle contraction, fertilization, gene transcription, exocytosis, energy 

metabolism, neurotransmitter secretion, activity of ion channels, and signal transduction 

(Gifford, Walsh et al. 2007, Berridge, Lipp et al. 2000, Carafoli, Santella et al. 2001). 

Dysregulation of calcium signaling could result in cancer, manic depression, hypertension, 

heart disease, and Alzheimer’s disease (Gifford, Walsh et al. 2007, Berridge, Bootman et 

al. 2003). In the resting cells, intracellular Ca2+ concentration is about 100 nM, while 

concertation of extracellular Ca2+ is about 2 mM (Vogel 1994, Clapham 2007).  Such an 

enormous difference between intracellular Ca2+ and extracellular Ca2+ (10,000 fold) 

generates a chemiosmosis force that facilitates the influx of Ca2+ into the cell. The ATP-

dependent pump maintains intracellular Ca2+ concentration by pumping excess Ca2+ out of 

the cells or into internal stores such as mitochondria, endoplasmic and sarcoplasmic 

reticulum (Gifford, Walsh et al. 2007, Clapham 2007). Intracellular calcium binds to a wide 

array of CaBPs that regulate a wide range of cellular processes.  Consequently, the Ca2+ 

signal is translated into diverse biochemical responses by triggering different intracellular 

pathways (Carafoli, Santella et al. 2001, Berridge, Bootman et al. 2003, Clapham 2007). 

           The regulation of a wide range of cellular processes by a single Ca2+ ion emphasizes 

the versatility of this ion in cellular function (Berridge, Lipp et al. 2000). The question 

remains how Ca2+ regulates so many cellular processes? The versatility of calcium 

signaling could be explained by its wide range of spatial and temporal signals, speed and 
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amplitude (Berridge, Lipp et al. 2000). The versatility is achieved through the use of an 

extensive Ca2+ signaling toolkit. The calcium-signaling toolkit comprises voltage-operated 

channels, receptor-operated channels, calcium pumps and exchangers, calcium buffer 

proteins, Ca2+ effector proteins, receptor proteins, transducer proteins, transcriptional 

factors, endoplasmic reticulum (ER), sarcoplasmic reticulum (SR), Golgi apparatus, 

mitochondria, to name a few (Berridge, Lipp et al. 2000, Berridge, Bootman et al. 2003). 

Each cell type utilizes distinctive components from the Ca2+-signaling toolkit and generates 

Ca2+ signals with widely different spatial and temporal properties (Berridge, Bootman et 

al. 2003). Thanks to the flexibility of Ca2+ as a ligand. Although Ca2+ has similar physical 

properties as Mg2+, Ca2+ binding sites have significantly higher affinity for Ca2+ than Mg2+, 

as the coordination chemistry of Ca2+ allows it to bind to the binding site of irregular 

geometry whereas the strict requirement of Mg2+ for octahedral geometry is hard to satisfy 

Figure 1.1. Components of Ca2+ signaling network. Maintenance of intracellular 

Ca2+ concentration is determined by the balance between ON/OFF reaction. Adapted 

from (Berridge, Lipp et al. 2000).     
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within the structure of proteins (Brini, Calì et al. 2014). A common calcium signaling 

network comprises four functional units, where at any moment, the level of intracellular 

Ca2+ is determined by the balance between ON/OFF reaction as shown in Figure 1.1 

(Berridge, Lipp et al. 2000). Calcium signaling is initiated by stimuli such as membrane 

depolarization, extracellular signaling molecules, intracellular messengers, stretch, and 

noxious stimuli, which generates Ca2+ mobilizing signals (Berridge, Bootman et al. 2003). 

Calcium mobilizing signals activate the ON mechanism and extracellular Ca2+ enter the 

cytoplasm through different channels, including voltage-operated ion channels (VOCs), 

store-operated Ca2+ channels (SOCs), receptor-operated ion channels (ROCs), and 

secondary messenger operated Ca2+ channels (SMOCs) (Gifford, Walsh et al. 2007, 

Berridge, Bootman et al. 2003). Additionally, internal storages such as the endoplasmic 

reticulum (ER) and sarcoplasmic reticulum (SR) can also release Ca2+ into the cytoplasm. 

The release of Ca2+ from internal stores is controlled by different channels, including 

ryanodine receptors (RYR) and inositol triphosphate receptors (InsP3R). Calcium itself is 

the activator of these channels. Activation of those channels by Ca2+ is dependent on 

whether stimuli bind to cell surface receptors. For instance, inositol triphosphate (InsP3) 

diffuses into the cells to bind inositol triphosphate receptors (InsP3R) and release Ca2+ from 

ER (Gifford, Walsh et al. 2007, Berridge, Lipp et al. 2000). The Ca2+ that enters the 

cytoplasm during the ON mechanism does not remain unbound. Instead, it interacts with 

different CaBPs. Most of cytoplasmic Ca2+ rapidly binds to calcium buffer proteins, 

whereas a small proportion of it binds to numerous Ca2+ sensor proteins, including 

calmodulin (CaM), recoverin, troponin, and neuronal Ca2+ sensor proteins (NCS) in the 

brain (Gifford, Walsh et al. 2007, Berridge, Bootman et al. 2003). These calcium sensors 
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transduce chemical signals of an increased Ca2+ concentration into biochemical responses 

by triggering diverse signaling pathways (Gifford, Walsh et al. 2007). At last, once Ca2+ 

has completed its signaling functions, it is rapidly removed from the cytoplasm with 

different exchangers and pumps via OFF mechanism. Na+/Ca2+ exchangers and plasma 

membrane Ca2+-ATPase (PMCA) pumps extrude Ca2+ outside of the cells.  Other ion 

channels, including sarco-endoplasmic calcium ATPases (SERCAs), H+/Ca2+ exchangers, 

and Ca2+ uniporters return Ca2+ into the internal stores, such ER, SR, and mitochondria 

(Gifford, Walsh et al. 2007, Berridge, Lipp et al. 2000).  

1.2 Neuronal calcium signaling 

            Calcium plays an important and diversified role in neuronal physiology. For 

instance, Ca2+ impacts both long-term depression (LTD) and long-term potentiation forms 

of synaptic plasticity by controlling the release of neurotransmitter from the presynaptic 

terminal (Bolshakov, Siegelbaum 1994, Christie, Magee et al. 1996, Grover, Teyler 1990, 

Impey, Mark et al. 1996). As a universal secondary messenger, Ca2+ has been demonstrated 

to regulate the process of learning and the formation and consolidation of memory, 

synaptogenesis, membrane excitability, and dendrite development (Brini, Calì et al. 2014, 

Südhof 2004, Redmond, Ghosh 2005, Michaelsen, Lohmann 2010, Tanaka, Nakada et al. 

2008). The intracellular concentration of neuronal cell is in the range 100–500 nM, whereas 

extracellular concentration is 1 mM (Kawamoto, Vivar et al. 2012). Like other cells, 

neuronal cells use different components from the Ca2+ signaling toolkit to generate 

neuronal Ca2+ signals with a wide range of temporal and spatial properties. Neuronal life 

is dependent on the correct functioning of the above processes.  Since Ca2+ plays a 

prominent role in the neuronal function, subtle alteration in Ca2+ homeostasis leads to 



 

 

5 
 

profound functional changes (Brini, Calì et al. 2014, Kawamoto, Vivar et al. 2012). Several 

lines of evidence have demonstrated that perturbation of Ca2+ homeostasis is a causative 

factors of amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, Huntington 

disease, and other neurodegenerative disease (Christie, Magee et al. 1996, Kawamoto, 

Vivar et al. 2012, Bezprozvanny 2009, Bezprozvanny 2007, Mattson 2007, Mattson 2004, 

Rowland, Shneider 2001, von Lewinski, Keller 2005, Lim, Fedrizzi et al. 2008). Alteration 

of Ca2+ homeostasis could be attributed to the decrease in Ca2+ buffering capacity of Ca2+-

buffer proteins, malfunction of membrane channels and mitochondrial Ca2+ controlling 

system (Brini, Calì et al. 2014, Kawamoto, Vivar et al. 2012).  

 1.3 Classification of Ca2+ binding proteins 

              As it is mentioned earlier, Ca2+ that flows into the cell during the ON reaction 

interacts with numerous CaBPs; the human genome encodes more than 200 

CaBPs(Berridge, Bootman et al. 2003). Functionally, CaBPs are divided into two classes:  

Ca2+ buffers and Ca2+ sensors (Brini, Calì et al. 2014). Calcium buffers bind Ca2+ with high 

affinity but Ca2+ association does not lead significant conformational changes. Calcium 

buffers proteins modulate Ca2+ signaling and help maintain Ca2+ homeostasis by releasing 

Ca2+ during the ON reaction and sequestering Ca2+ during OFF reaction (Gifford, Walsh 

et al. 2007, Berridge, Bootman et al. 2003). Another important purpose of Ca2+ buffer is to 

regulate the transmission of Ca2+ signaling throughout the cells by limiting the amplitude 

and duration of Ca2+ signaling (Braunewell, Gundelfinger 1999). Parvalbumin, calbindin 

D-9k, calbindin D-28k, and calretinin are few examples of Ca2+ buffer proteins (Gifford, 

Walsh et al. 2007, Berridge, Bootman et al. 2003). On the other hand, Ca2+ sensors proteins 

undergo significant conformational changes upon Ca2+ association, which enables them to 
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interact with binding partners to regulate a plethora of Ca2+-dependent processes (Gifford, 

Walsh et al. 2007, Braunewell, Gundelfinger 1999). Recoverin, calmodulin, troponin C, 

calcineurin B, and myosin light chain are well-studied examples of Ca2+ sensing proteins 

(McCue, Haynes et al. 2010). Some proteins have both Ca2+ buffering and sensing 

capability; CaM is one classic example of such proteins (Brini, Calì et al. 2014).  All CaBPs 

comprise one of the three types of Ca2+ binding structural motifs: the C2-domain, the 

annexin domain and the EF-hand domain.  

1.4 Ca2+ binding motif: C-2 domain. 

               The C2-domain is a conserved functional domain that is composed of 

approximately 130 amino acid residues. Structural studies demonstrated that C2-domain 

comprises eight β strands; 4 pairs of antiparallel β strands are connected through flexible 

loops as shown Figure 1.2 (Essen, Perisic et al. 1996, Nalefski, Falke 1996). These flexible 

 Figure 1.2. Three-dimensional structure of synaptotagmin-1 with Ca2+ 

bound to C2B domain (PDB: 1tjx). Cartoon representation of protein is 

shown as purple blue; Ca2+ is shown as red spheres. 
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loops provide Asp residues for Ca2+ coordination. Each Ca2+ is hepta-coordinated in C2-

domain; five of the coordinating ligands come from Asp residue of the flexible loop and 

two of them are supplied by the water molecule (Nalefski, Falke 1996). It has been shown 

Ca2+ binding to C2-domain facilitates C2domain-containing protein interaction with 

phospholipid membranes and other proteins (Scott, White et al. 1990, Newton 1995). 

Modulation of interaction between C-2 domain protein and binding partners by Ca2+ can 

be explained by the exposure of hydrophobic residues as well as exposure of charged 

residues which can form electrostatic interaction with phosphate groups of phospholipid 

membranes (Scott, White et al. 1990, Newton 1995). 

1.5 Ca2+ binding motif: annexin.  

             The annexin family of proteins possess a highly variable N-terminal region, 

conserved core domain and C-terminal region (Figure 1.3) (Ortlund, Chai et al. 2004). The 

core domain contains a characteristics annexin repeat formed by a 70-residue-long 

Figure 1.3. Three-dimensional structure of Ca2+ bound annexin V (PDB: 1yii).  

Protein is represented with purple blue cartoon; Ca2+ is represented with red 

spheres. 
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segment. Typically, four of such annexin repeats are present in the core domain of annexin 

proteins. Because of the compact packing of the central core, the overall structure of the 

protein looks like a disc with a slight curvature forming a convex and concave surface on 

the top and bottom of the protein surface, respectively (Ortlund, Chai et al. 2004, Weng, 

Luecke et al. 1993). Core domain concave side comprises the Ca2+ binding site. Annexin 

has been shown to interact with phospholipid membranes in a Ca2+-dependent manner 

(Weng, Luecke et al. 1993). Annexin interacts with the phospholipid membrane as follows: 

convex surface faces towards the membrane and concave surface points away from the 

membrane (Weng, Luecke et al. 1993). In the apo-form of the protein, the N-terminal 

domain has an irregular structure that integrates into the central domain. Ca2+ association 

exposes the N-terminal domain and facilitates annexin interaction with other proteins, 

including S100 proteins (Weng, Luecke et al. 1993). Annexins have been implicated in the 

regulation of different biological processes, such as endocytosis, exocytosis, membrane 

organization, and signal transduction (Rescher, Gerke 2004, Gerke, Moss 2002, Moss, 

Morgan 2004, McNeil, Rescher et al. 2006).  

1.6 Ca2+ binding motif: the EF-hand.  

               The EF-hand is by far mostly used Ca2+ binding motif, having more than 250 

proteins in the superfamily (Braunewell, Gundelfinger 1999).  The EF-hand Ca2+ binding 

motif was first observed in the Ca2+ buffer protein parvalbumin (Kretsinger, Nockolds 

1973, Moews, Kretsinger 1975). The name EF-hand was proposed on the basis of the 

observation that E and F helices of parvalbumin are oriented around the Ca2+ binding loop 

in such a way that resembles the thumb and index finger of a hand. After the first discovery 

on EF-hand motif in parvalbumin, this motif was found in troponin C (Collins, Potter et al. 
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1973), myosin light chains (Collins 1974), calmodulin (Stevens, Walsh et al. 1976) , and 

recoverin (Flaherty, Zozulya et al. 1993), to mention a few. Most protein contains even 

number of EF-hands, with number four being the most prevalent. The canonical EF-hand 

motif comprises a helix-loop-helix structural unit, where a 9-residue entering α-helix and 

an 11-residue exiting α-helix is bridged by a 9-residue Ca2+ chelating loop (Figure 1.4) 

(Gifford, Walsh et al. 2007). Ca2+ is hepta-coordinated in most EF-hand protein with 

pentagonal bipyramidal geometry (Grabarek 2006). Because of the geometric and space 

constrain helices and sheets provide only few ligands for Ca2+ coordination. The  9-residue 

long flexible loop provides five oxygen ligands for Ca2+ coordination; the rest two oxygen 

ligands come from the side chain of a bidentate carboxylate ligand glutamic acid, which is 

Figure 1.4. Single canonical EF-hand of parvalbumin (PDB: 1b8r). Entering 

and exiting helices are shown as cyan; Ca2+ chelating loop is shown as 

magenta; Ca2+ ion is shown as green sphere, β-sheet is shown as red.   
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located in the exiting helix (Gifford, Walsh et al. 2007). The coordination sphere of the 

canonical EF-hand loop is shown in Figure 1.5.  Most of the residues in the EF-hand loop 

have individual roles for maintaining stability and folding of the loop: The first residue 

defines stereochemical rearrangement of the loop through various intraloop hydrogen 

bonds. The oxygen atoms of the side chains of  Asp residues at positions 1, 3, 5, and 9 and 

backbone carbonyl group at position 7 provide five ligands for Ca2+ coordination. Less 

sterically hindered amino acid residue glycine is conserved in the 6th position, which allows 

90˚ turn of the loop that enables remaining oxygen atoms to take coordinating positions. 

Hydrophobic amino acid residues are conserved in the 8th position; main chain NH and CO 

groups face away from Ca2+ binding site and form a short antiparallel β-sheet in this 

position. Aspartate residue in position 9 of the EF-hand loop can coordinate Ca2+ both 

Figure 1.5. Schematic diagram of the coordination sphere of 

canonical EF-hand loop. Blue represents coordinating ligands, 

coordinating water molecule is shown in dark blue. Light green 

represents conserved glycine residue which allows bending of 

the loop. Entering and exiting helices are shown in red. Figure 

adapted from (Gifford, Walsh et al. 2007).  
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directly and through bridging water. Glutamic acid, supplied by the C-terminal exiting 

helix, is present at the 12th position of the canonical EF-hand loops and provides the 

remaining two oxygen atoms for Ca2+ coordination (Gifford, Walsh et al. 2007). The 

location of the amino acid residue at the 12th position of the loop is critical as it determines 

the structure and function of the loop and specificity of the EF-hand. For instance, when 

glutamic acid is present in the 12th position, it can donate two ligands to fulfill the hepta-

coordination of Ca2+ and EF-hand binds Ca2+ selectively. On the contrary, when aspartate 

is present in the 12th position, because of its smaller size, it can provide only one ligand, 

which can satisfy the hexa-coordination of Mg2+, but not the hepta coordination of Ca2+ 

and EF-hand binds Mg2+ preferentially. Besides coordinating the calcium ion as described 

above, the EF-hand loop possesses an extensive network of hydrogen bonds between 

chelating and non-chelating residues which stabilizes the loop (Gifford, Walsh et al. 2007).  

1.7 EF-hand structural reorganization. 

            The EF-hand proteins that are Ca2+-sensors undergo structural rearrangement upon 

Ca2+ binding. The question is how does Ca2+ binding trigger structural reorganization in 

the EF-hand protein? As noted above, Ca2+ binding sites are located in the flexible loop 

that is located between entering and exiting helices of EF-hand. Residues 1, 3, 5, 7, and 9 

of the loop provide five ligands for Ca2+ coordination. The rest two ligands are provided 

by the 12th position of the loop (glutamic acid) which is located in the exiting helix. 

Glutamate residue at the 12th position is far away to chelate the Ca2+. To complete the 

coordination sphere of Ca2+, the exiting helix is repositioned by  ̴ 2 Å and consequently, 

glutamic acid donates two ligands and fulfills the pentagonal bipyramidal geometry of 

Ca2+. Movement of the exiting helix leads to the conformational change in that EF-hand 
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which is transmitted to other parts of the protein. Ca2+ induced structural reorganization 

can be exemplified by comparing the structure of ubiquitous Ca2+ binding protein 

calmodulin (CaM), which contains four EF-hands, in the Ca2+ bound form and in Ca2+-free 

form (Figure 1.6). In the metal-free form of the CaM, entering and exiting helices are 

antiparallelly oriented (interhelical angle  ̴ 140˚) and both helices experience extensive 

hydrophobic contacts (Figure 1.6, left); this conformation is known as closed 

conformation. Upon Ca2+ binding, helices become perpendicular and interhelical contact 

between the helices is lost; this conformation is called open conformation (Figure 1.6, 

right). This conformation change exposes the buried hydrophobic cavities, which enables 

CaM to interact with a wide range of targets. However, the extent by which EF-hand 

proteins undergo structural reorganization varies among proteins and within EF-hands of 

the same protein. For example, Ca2+ binding to metal-free recoverin, a protein associated 

Figure 1.6. Structural reorganization of the EF-hands of CaM. Left) EF-1 in apo 

and Ca2+ bound forms are shown as firebrick color and slate colors, respectively. 

Right) EF-3 in apo and Ca2+-bound forms are shown as lime green and cyan, 

respectively. In both cases, Ca2+ is shown as magenta sphere. Ca2+ binding 

reorganizes both EF-hands from antiparallel to perpendicular orientation. PDB 

code of apo-CaM: 1cfc; PDB code of Ca2+-CaM: 1cll. 
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with vision, does not lead to the pronounced structural reorganization; however, Ca2+ 

association leads to domain organization which exposes buried myristoylated group and 

enables recoverin to associate with the membrane (Figure 1.7). EF-hand proteins that act 

as calcium buffers, for example, parvalbumin and calbindin D-9k, undergo minimum 

structural reorganization upon Ca2+ association.  

1.8 Binding of non-physiological metals to EF-hand proteins. 

                In addition to the binding of physiological ligands Ca2+ and Mg2+, EF-hand 

proteins have been shown to bind non-physiological ligands. A wide spectrum of studies 

has demonstrated that Pb2+ interacts with EF-hand protein CaM and modulates its 

interaction with intracellular partners which might contribute to Pb2+-induced neurotoxicity 

Figure 1.7. Structural reorganization of the EF-hands of recoverin. A) EF-1 in apo and 

Ca2+ bound forms are shown as firebrick and slate, respectively. B) EF-3 in apo and Ca2+-

bound forms are shown as lime green and cyan, respectively. In both cases, Ca2+ is shown 

as magenta sphere. Ca2+ binding does not lead to significant structural reorganization in 

the protein. PDB code of apo-recoverin: 1iku; PDB code of Ca2+-recoverin: 1jsa. 
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(Gorkhali, Huang et al. 2016). For instance, Pb2+ displaces Ca2+ that is bound to EF-hands 

of CaM and Pb2+:CaM complex stimulates myosin light chain kinase and 

phosphodiesterase (Habermann, Crowell et al. 1983). Lead also has been shown to bind 

sites other than EF-hands, which could disrupt multiple downstream activities and induce 

neurotoxicity (Kern, Wisniewski et al. 2000, Goldstein, Ar 1983). Statistical analysis of 

Pb2+-bound proteins that were obtained from the protein data bank (PDB) have shown that 

negatively charged amino acid residues such as Asp and Glu provide ligands for Pb2+ 

coordination; the geometry of Pb2+-bound EF-hands is analogous to Ca2+-bound EF-hands 

as both Pb2+ and Ca2+ are coordinated by same binding ligands. Because of the 

preponderance of negatively charged amino acid residues in the EF-hand loop of EF-hand 

proteins, Pb2+ is a molecular target of a wide range of  EF-hand proteins (Kirberger, Yang 

2008).   

                Analogous to Pb2+ binding, Cd2+ also displaces Ca2+ from the EF-hand of 

CaM (Forsén, Thulin et al. 1980, Andersson, Forsen et al. 1983) which facilitates CaM 

interaction with  myosin light chain kinase and phosphodiesterase (Suzuki, Chao et 

al. 1985, Chao, Bu et al. 1995, Mazzei, Girard et al. 1984). It has been proposed that 

competition between Cd2+ and Ca2+ for EF-hand of CaM is crucial for determining 

CaM toxicity at the molecular level (Suzuki, Chao et al. 1985, Mazzei, Girard et al. 

1984). Few other studies have demonstrated that Cd2+ displaces Ca2+ from the EF-

hand of troponin C, a protein that regulates muscle contraction (Ellis, Strang et al. 

1984, TELEMAN, DRAKENBERG et al. 1983). Cadmium shares similar properties 

with Ca2+ with ionic radii of 0.97 Å and 0.99 Å and charge/radius ratio 2.06 e/Å and 2.02 

e/Å, respectively (Choong, Liu et al. 2014). Computation studies have shown Cd2+ also has 
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the tendency to be coordinated by negatively charged amino acid residues Asp and Glu 

(Friedman 2014, Jesu Jaya Sudan, Sudandiradoss 2012). So, both similar size and tendency 

of being coordinated by similar ligands support Cd2+ binding to EF-hands. In addition to 

divalent metal ions binding, trivalent lanthanide ions (e.g. Tb3+, La3+, and Lu3+) have also 

shown to interact with EF-hand protein (Edington, Gonzalez et al. 2018, Gonzalez, Ramos 

et al. 2016). It has been demonstrated that lanthanide binding slightly distorts the geometry 

of the EF-hand loop as evidenced by the fact that lanthanide-bound CaM exhibits greater 

conformation flexibility and larger structural fluctuation than Ca2+-bound-CaM (Edington, 

Gonzalez et al. 2018). Using fluorescence and calorimetric techniques, it was shown that 

Tb3+ associates to neuronal calcium sensor (NCS) protein DREAM (Gonzalez, Ramos et 

al. 2016). Binding of monovalent ions to EF-hand protein is unlikely; however, one study 

has shown that monovalent ion Na+ and K+ can occupy EF-hand of parvalbumin which 

attenuates Ca2+ affinity for parvalbumin (Henzl, Larson et al. 2004b).  

1.9 Neuronal calcium sensor (NCS) proteins 

             The neuronal calcium sensor (NCS) group is a subgroup of the EF-hand 

superfamily. Most members of this group are expressed in the brain and retina. The human 

genome comprises 14 NCS proteins, and the amino acid sequence of those members are 

highly conserved, especially in the EF-hand loop region (Ames, Lim 2012). These proteins 

regulate diverse neuronal processes, such as Ca2+ channel regulation, short-term synaptic 

plasticity,  neuronal growth, neurotransmission regulation, light adaption (recoverin), anti-

apoptosis (hippocalcin), memory and learning (calsenilin, neuronal calcium sensor protein-

1), recycling and activation of guanylyl cyclase  (visinin-like proteins 1 and 2, neurocalcin-

δ), potassium channels regulation (potassium channel interacting proteins (KChIP1–4),  
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modulation of pain (KChIP3),  and presenilin processing (KChIP 3 and 4) (Ames, Lim 

2012, Burgoyne, Weiss 2001, Burgoyne 2007, Pongs, Lindemeier et al. 1993). Regulation 

of diverse neuronal processes could be explained by the fact that each NCS protein 

generates a unique Ca2+ signal that varies in duration, magnitude, and localization 

(Burgoyne, Weiss 2001, Burgoyne 2007). Additionally, regulation of the above processes 

depends on the localization of NCS proteins, the affinity of NCS proteins for Ca2+, and the 

interaction of NCS proteins with interacting partners (Burgoyne 2007). All NCS family 

members comprise four EF-hands and two distinct domains: EF-1 and EF-2 constitute the  

N-terminal domain; EF-3 and EF-4 constitute the C-terminal domain (Figure 1.8). In all 

NCS proteins, EF-hands always occur in pairs. Paired EF-hands in NCS proteins 

communicate through a short antiparallel β-sheet and because of this pairing protein 

display positive cooperativity for Ca2+ binding, that is, protein needs less Ca2+ to reach the 

Figure 1.8. NMR structure of NCS-1 protein (PDB: 2lcp). EF-hands 1, 2, 3, 

and 4 are shown as firebrick, slate, lime green, and cyan, respectively; Ca2+ 

ions are shown as magenta spheres; and rest of the protein is shown as orange. 

EF-1 and EF-2 constitutes N terminus; EF-3 and EF-4 constitutes C-terminus. 

In each terminus, paired EF-hands communicate through a short antiparallel 

β-sheet.  
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saturation (Ames, Lim 2012, Burgoyne, Weiss 2001).  Four EF-hands of NSC proteins 

have distinct metal-binding properties: EF-1 is inactive in all members of the family as the 

presence of sterically hindered residue proline and cysteine in the EF-hand loop  (conserved 

CPxG sequence, x any residue) distort Ca2+ binding geometry; EF-2 and EF-3 binds Ca2+ 

with micromolar or submicromolar affinity in all members; and EF-4 is active in some 

members (Gifford, Walsh et al. 2007, Braunewell, Gundelfinger 1999, Ames, Lim 2012, 

Burgoyne, Weiss 2001, Haynes, Sherwood et al. 2007). Even though EF-1 of NCS proteins 

does not bind any Ca2+, some members contain a buried palmitoyl or myristoyl group near 

this EF-hand. Calcium binding to the C-terminus of some members has been shown to 

expose the prosthetic group which facilitates membrane association of those prosthetic 

groups (Figure 1.9) (Zozulya, Stryer 1992, Hughes, Brzovic et al. 1995, Ames, Tanaka et 

al. 1996). Each member of the NCS family has different Ca2+ affinity which depends on 

Figure 1.9. Left: NMR structure of Ca2+-free recoverin (PDB code: 1iku). Right: 

NMR structure of Ca2+-bound recoverin (PDB code: 1jsa). In both cases, EF-hands 

1, 2, 3, and 4 are shown as firebrick, slate, lime green, and cyan, respectively. Rest 

of the protein is shown as cyan.  Ca2+ ions are shown as magenta sphere. Myristoyl 

group is shown as pink. Myristoyl group is buried in Ca2+-free recoverin, but Ca2+ 

binding exposes the myristoyl group.  
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amino acid sequence variation of each EF-hand (Burgoyne 2007). The NCS proteins have 

a flexible structure in the Ca2+-free form but become more ordered in Ca2+-bound form 

(Burgoyne, Weiss 2001). Burgoyne et al. classified NCS proteins into five classes 

(Burgoyne, Weiss 2001). Class A has only one member named frequenin. Frequenin is 

alternatively known as neuronal calcium sensor protein 1 (NCS-1). The NCS-1 contains a 

buried myristoyl group inside a hydrophobic moiety formed by the EF-3 and EF-4 in the 

C-terminus. In most NCS proteins, Ca2+ association exposes the buried myristoyl group, 

but in NCS-1, the extrusion of the myristoyl group is independent of Ca2+ association 

(O'Callaghan, Ivings et al. 2002). However, it has been shown that NCS-1 associates with 

lipid bilayer membrane strongly in the presence of Ca2+ (Handley, Lian et al. 2010). Class 

B comprises three members, named hippocalcin, neurocalcin-δ protein, visinin-like 

proteins (VILIP 1, 2, and 3).  Biological properties of the members of class B are not well 

known as Ca2+ affinity and interactions of these proteins with binding partners vary 

(Braunewell, Szanto 2009). Class C contains only recoverin; it is first discovered NCS 

protein (Dizhoor, Ray et al. 1991). Recoverin is exclusively expressed in rod 

photoreceptors where it regulates vision processes through the inhibition of rhodopsin 

kinase in a Ca2+-dependent manner (Calvert, Klenchin et al. 1995, Makino, Dodd et al. 

2004). In contrast to NCS-1 protein, where myristoyl group is sequestered in the 

hydrophobic cavity in the C-terminus, in recoverin, myristoyl group is buried inside the 

hydrophobic moiety formed by EF-1 and EF-2 in the N-terminus (Tanaka, Amest et al. 

1995). It has been shown that binding of one Ca2+ at EF-3 is not sufficient for exposing the 

myristoyl group, but binding of two Ca2+ at EF-2 and EF-3 leads to an exposure of the 

myristoyl group from the hydrophobic cavity which facilitates the association of myristoyl 
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group to the membrane as shown in Figure 1.9 (Ames, Lim 2012). Class D possesses 

guanylate cyclase-activating proteins (GCAPS) 1, 2, and 3.  These proteins are exclusively 

expressed in the photoreceptor cells and play important roles in vision processes by 

activating retinal guanylate cyclase at low Ca2+ concentration and inhibiting it at high Ca2+ 

concentration (Ames, Lim 2012, Dizhoor, Lowe et al. 1994). In contrast to other NCS 

proteins, Ca2+ association with GCPAs causes small conformational changes and therefore 

does not release the buried myristoyl group (Lim, Dizhoor et al. 2014). Additionally, EF-

2 and EF-3 of GCAPS are capable of binding both Ca2+ and Mg2+, but EF-3 binds Ca2+ 

selectively (Peshenko, Dizhoor 2006). The molecular mechanism of Ca2+ and Mg2+ binding 

to GCAP-1 has been resolved, but the mechanism of Ca2+ and Mg2+ binding to GCAPs 2 

and 3 has not been deciphered yet. In metal-free form, GCAP-1 shows a flexible/disordered 

structure and does not interact and activate retinal guanylate cyclase (Peshenko, Dizhoor 

2004, Lim, Peshenko et al. 2009). Magnesium (Mg2+) binds at EF-2 of GCAP-1 and 

stabilizes the tertiary structure of GCAP-1, and the stabilization enables GCAP-1 to interact 

with retinal guanylate cyclase and subsequently activate it.  Binding of three Ca2+ ions at 

EF-2, EF-3, and EF-4 of GCAP-1 leads to a distinct conformation that allows inhibition of 

retinal guanylate cyclase (Dizhoor, Lowe et al. 1994, Lim, Dizhoor et al. 2014, Peshenko, 

Dizhoor 2006). Class E contains four types of potassium channel interacting proteins 

(KChIPs) which are the latest member of the NCS family. These proteins are called 

potassium channel interacting proteins because they have been shown to interact with 

voltage-gated potassium channels (An, Bowlby et al. 2000). Each member of KChIPs has 

different isomers (five for KChIP-1, nine for KChIP-2, three for KChIP-3, and five for KChIP-

4) (Patel, Campbell et al. 2002). Experimental results from a northern blot study have unveiled that 
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KChIP-1 is expressed in the brain, KChIP-2 is expressed in brain and heart, KChIP-3 is expressed 

in the brain and heart (An, Bowlby et al. 2000). The KChIP-4 was discovered from the database 

search of the proteins that have high sequence similarity with the first three members of the group 

(Holmqvist, Cao et al. 2002). All member of this group has high sequence homology in the C-

terminus but differ each from other in the N-terminus (Patel, Campbell et al. 2002). Each member 

of the family has been shown to interact with the N-terminus of voltage-gated potassium channels 

(Kv channels) and control the fast ITO and ISA currents in the heart and brain, respectively. It has 

been shown that KChIP-1, KChIP-2, and KChIP-3 associate with KV4 channels expressed in 

xenopus oocytes which causes rise in current density, slower inactivation kinetics, and acceleration 

of recovery from inactivation (An, Bowlby et al. 2000). All twenty-two isomers of the group 

interact with Kv4 channels in many different combinations which lead to a wide spectrum of 

Figure 1.10. Representation of the amino acid residues of KChIP1 involved in 

interaction with N-terminus of Kv4.3 channel (PDB: 2nz0).  N terminus of the 

protein is shown in firebrick, C-terminus is shown in slate. Residues involved 

in first interface is shown in cyan sticks, residues involved in the second 

interface is shown in lime green sticks.  
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potassium channel tuning (Bourdeau, Laplante et al. 2011, Liss, Franz et al. 2001, Kunjilwar, Qian 

et al. 2013). The X-ray crystallography study has demonstrated that KChIP-1 forms an octameric 

complex with  Kv4.3, in which each KChIP-1 monomer interacts with two adjacent  Kv4.3 N-

termini in a 4:4 manner (Pioletti, Findeisen et al. 2006, Wang, Yan et al. 2007b). Two contact 

interfaces are involved in KChIP-1: Kv4.3 interaction (Wang, Yan et al. 2007b). The most 

significant interaction occurs between hydrophobic cavities on the KChIP-1 surface and the 

hydrophobic α-helix of the Kv4.3 channel. There are two hydrophobic cavities on the KChIP-1 

surface. The N terminus residues of KChIP-1, Gly 59, Phe 60, Phe 74, Ile 77, Tyr 78, Leu94, Phe 

111, Leu 115, and Leu 118, interact with Trp8 and Phe 11 of Kv4.3 channel (shown in cyan stick 

on firebrick background in Figure 1.10). The C-terminus residues, Tyr 134, Ile 150, Val 151, Ile 

154, Tyr155, His174, and Phe178, interact with Trp19 of Kv4.3 channel (shown in cyan stick on 

slate background in Figure 1.10) (Wang, Yan et al. 2007b). The second contact interface is formed 

between residues 70–78 Kv4.3 channel and entering helix of EF-1 on KChIP-1 (Wang, Yan et al. 

2007b). In the interface, Leu 39, Leu 42, Leu43, Tyr57, and Phe108 of KChIP-1 interacts with 

Phe73 of Kv4.3 channel through stacking interactions (shown in lime green stick on firebrick 

background in Figure 1.10). Furthermore, the interaction is stabilized by two salt bridge formations 

between Lys50 of KChIP-1 and Glu77 of Kv4.3 channel and between and Arg51 of KChIP-1 and 

Asp78 of Kv4.3 channel (Wang, Yan et al. 2007b).  

            Although all members of the KChIPs interact with voltage-gated potassium channels, only 

the structure of  KChIP-1:Kv4 is available. On the basis of high sequence homology of KChIPs, 

especially the residues involved in the formation of the complex, other KChIPs could interact with 

Kv channel in an analogous manner (Liang, Wang et al. 2009). 
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1.10 Calsenilin/DREAM/KChIP3 

               Interestingly, KChIP-3 has three different names. This protein was 

discovered by three independent groups and each group named it differently. On the 

basis of the fact that this protein interacts with presenilin and controls the activity of 

γ- secretase complex, one research group named it calsenilin (Buxbaum, Choi et al. 

1998).  Later, another group named it as Downstream regulatory element antagonist 

modulator (DREAM) because the protein interacts with downstream regulatory 

element (DRE) and directly modulate transcription of downstream genes (Carrion, 

Link et al. 1999). Finally, the protein was renamed as KChIPs as it has high sequence 

similarity with KChIP-1 and KChIP-2 (An, Bowlby et al. 2000). I will use the name 

DREAM throughout. The DREAM is a 29 kDa NCS protein that is expressed in the 

brain and heart and has been shown to control a wide spectrum of cellular processes 

(An, Bowlby et al. 2000, Buxbaum, Choi et al. 1998, Carrion, Link et al. 1999). The 

DREAM is the only Ca2+ binding protein that directly binds to DNA sequence 

(DRE) and represses transcription of genes (prodynorphin and c-fos genes) (Carrion, 

Link et al. 1999). In the Ca2+-free state, DREAM associates with DRE of human 

prodynorphin and c-fos genes and inhibit their transcription, but Ca2+ binding 

induces conformation change in the protein that prevents binding of DRE and 

subsequently reactivates the transcription (Carrion, Link et al. 1999, Cheng, Pitcher 

et al. 2002). Prodynorphin and c-fos genes have been shown to regulate pain 

modulation, cell homeostasis, and apoptosis (Dace et al. 2005, Osawa, Tong et al. 

2001). The fact that DREAM represses transcription of DRE emphasize role of this 

protein regulating those processes (Costigan, Woolf 2002, Fontán-Lozano, Romero-
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Granados et al. 2009). In addition to direct regulation of gene expression, DREAM 

protein has been shown to indirectly regulates gene expression through interactions 

with CREB and α-CREAM proteins. Interaction between DREAM and CREB enables 

regulation of genes that have promoters different than DRE (Ledo, Kremer et al. 2002). 

                 In the cytoplasm, DREAM associates with carboxy-terminal fragment (CTF) of 

presenilin-1 (PS1) and presenilin-2 and stimulates the activity of γ- secretase complex in 

a calcium-dependent manner and eventually overproduces Aβ42 peptide, a peptide 

which has been linked to Alzheimer’s disease (Buxbaum, Choi et al. 1998, Jo, Jang 

et al. 2005). The DREAM protein also interacts with the T1 domain of potassium 

channels and plays a prominent role in the regulation of fast ITO and ISA current in 

the heart and brain, respectively. The aforementioned interaction also facilitates the 

translocation of the channel to the membrane and alters the gating properties of the 

channel (An, Bowlby et al. 2000). Recently, Rashid et al. postulated that DREAM 

protein could be involved in the mechanism of nicotine treatment-prevented learning 

and memory impairment in REM sleep-deprived rats by altering its expression level 

in the hippocampus (Abd Rashid, Hapidin et al. 2017). It was also demonstrated that 

Ca2+-bound DREAM interacts with CaM and DREAM:CaM complex formation 

abolishes DREAM interaction DRE sites and promotes activation of calcineurin 

(Gonzalez, Arango et al. 2015, Ramachandran, Craig et al. 2012).  

               DREAM protein includes 256 amino acid residues. The structure of the first 77 

residues of the DREAM has not been resolved yet because the  poor solubility of the full-

length DREAM (residue 1-256) prevented structural determination of those residues by 

NMR study (Lusin, Vanarotti et al. 2008). After deletion of the first 64 residues, the 
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solution structure of Ca2+DREAM (residue 65-256) was resolved by Ames group (Lusin, 

Vanarotti et al. 2008). The DREAM protein remains fully functional after deletion of N- 

terminal 64 residues as evidenced by the fact that DREAM (residue 65-256) interacts with 

DNA, Kv.4 channel and the deletion does not impact Ca2+ induced oligomerization of the 

protein (Lusin, Vanarotti et al. 2008).  The three-dimensional NMR structure of Ca2+-

bound DREAM (residue 78-256) is shown in Figure 1.11. Like other NCS proteins, the 

DREAM protein contains two domains, and each domain possesses two EF-hands. The 

EF-1 (residue 90-119) and EF-2 (residue 128-157) coupled with  a short N- terminus -

helix constitute the N–terminal domain, whereas the EF3 (residue 163-192) and EF4 

(residue 211-240) and C-terminal helix that is not part of the EF-hand constitute the C-

terminal domain (Lusin, Vanarotti et al. 2008). The four EF-hands of DREAM protein 

differ in terms of metal binding property (Gifford, Walsh et al. 2007). The EF-hand 1  is 

Figure1.11. Cartoon representation of Ca2+-bound DREAM(78-256) (PDB: 

2jul). EF-hands 1, 2, 3, and 4 are shown in orange, red, green, and magenta, 

respectively. Ca2+ ions are shown in cyan spheres. Rest of the protein is 

shown in blue. For clariy, structure of first 77 residues were not resolved.  
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not functional as the presence of sterically hindered amino acid residues in the EF-hand 

loop (CPXG sequence) perturb metal-binding geometry. Because of the presence of Asp 

in the 12th position of the EF-hand loop instead of glutamate, the EF-2 binds Mg2+ 

preferentially. It has been shown that Mg2+ binding to EF-2 stabilizes the tertiary structure 

of DREAM and facilities DNA binding. The EF-hand 3 and EF-hand 4 bind Ca2+ 

preferentially with Kd of 1–10 µM (Gifford, Walsh et al. 2007, Lusin, Vanarotti et al. 

2008, Osawa, Dace et al. 2005, Osawa, Tong et al. 2001). Research from our lab 

demonstrated that EF-3 and EF-4 in DREAM bind non-physiological metal Tb3+ with 

higher affinity than Ca2+ (Gonzalez, Ramos et al. 2016). 

The N- and C-terminal domain is connected through a central hydrophobic patch formed 

by the residues of α4 (Y130, F133, and A137), α6 (W169, L173), and α7 (I190, and M197) 

(Figure 1.12). Furthermore, hydrophobic residues of EF-3 (L167, A170, M191, and L194), 

Figure 1.12. The central hydrophobic  patch of the DREAM that 

communicate between N- and C- teriminal domain is shown in stick 

(PDB: 2jul). EF-hands 1, 2, 3, and 4 are shown in diffuse firebrick, slate, 

lime green, and cyan, respectively. Rest of the protein is shown in 

orange. Ca2+ ions are shown in magenta spheres.  
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EF-4 (F218, and M222), and α10 (M246, M249, F252, and I256) constitute another 

hydrophobic patch at the C-terminal domain (Figure 1.13). The aforementioned 

hydrophobic patches play a prominent role in DREAM interaction with KV4.3 channels 

and hydrophobic molecules, including arachidonic acid and NS5806 (Gonzalez, 

Miksovska 2014, Gonzalez, Pham et al. 2014).  

                  In the absence of any metal, DREAM exists as a tetramer, but Ca2+ binding 

triggers conformation changes in the protein that dissociates the tetramer into two dimers 

if the concentration of protein is above 150 µM. When the concentration of protein is above 

250 µM DREAM is tetramer in both metal-free forms and Ca2+ bound form (Osawa, Dace 

et al. 2005). However, to the best of my knowledge, the molecular mechanism of DREAM 

oligomerization has not been conclusively established yet. Lusin et al. proposed a model 

dimer structure in which N-terminus leucine residue region (Leu 155, Leu 158, Leu 159) 

Figure 1.13. The C-terminal hydrophobic patch of DREAM is shown 

in stick (PDB: 2jul). EF-hands 1, 2, 3, and 4 are shown in diffuse 

firebrick, slate, lime green, and cyan, respectively. Rest of the protein 

is shown in orange. Ca2+ ions are shown in magenta spheres.  
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of one monomer interacts with C-terminus Leu 251 of the second monomer in a head-to-

tail fashion (Lusin, Vanarotti et al. 2008) (Figure 1.14: left panel). Docking study of our 

group has demonstrated that in addition to hydrophobic interaction, dimer could be 

stabilized through a salt bridge formation between positively charged amino acid residues  

(Arg 200 and Arg 207) of one monomer and negatively charged amino acid residue (Glu 

103) of another monomer (Figure 1.14: right panel). The study of Lusin et al. also revealed 

a cluster of basic amino acid residues (Lys87, Lys90, Lys91, Arg98, Lys101, Arg160, and 

Lys166) at the N-terminus of DREAM (Figure 1.15). They proposed that these amino acid 

residues could be the potential DNA binding sites. The fact that many of that residue 

(Lys87, Lys90, Lys91, Lys101) are not conserved in the NCS proteins that do not bind 

DNA support their hypothesis. In the model dimer structure, the cluster of basic amino acid 

Figure 1.14. Model structure of DREAM dimer based on the NMR structure of 

DREM monomer (PDB entry 2JUL). Left panel shows hydrophobic interactions 

between Leu 155, 159 and 251 and right panel show a salt bridge between Arg 

200,  Arg 207 (in blue)  and Glu 103 (in red).  The two dimers were docked 

using Autodock and the initial structure of the dimer was refined in 50 ns 

molecular dynamic simulation. 
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residues is sterically blocked, which might explain why Ca2+ binding abolishes DREAM 

interaction with DNA (Lusin, Vanarotti et al. 2008).  

 

 

 

 

 

 

 

 

 

 

Figure 1.15. Cartoon representation of the N-terminus of 

DREAM (PDB: 2jul). Cluster of basic amino acid residues 

that are proposed to interact with DNA is shown as stick.  
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1.11 Objectives 

Objective 1:  

               Lead exposure has been associated with neurological and psychological 

disorders. Especially, children and seniors are vulnerable to Pb2+ exposure because Pb2+ 

exposure has been implicated with cognitive deficiencies and learning difficulties. It has 

been shown that Pb2+ displaces physiologically relevant ligands,  such as Ca2+, Mg2+, and 

Zn2+, from binding sites, which is believed to be one of the possible mechanisms of Pb2+ 

toxicity. Especially, Ca2+ binding proteins are molecular targets of Pb2+-induced toxicity. 

Lead has been shown to displace Ca2+ from the EF-hand of ubiquitous calcium-binding 

protein CaM. Displacement of physiological ligand Ca2+ by Pb2+ was suggested to interfere 

with CaM interactions with downstream partners, and each interference represents a 

potential mechanism of Pb2+ induced toxicity. However, the exact mechanism through 

which Pb2+ induces toxicity has not been demystified yet. Statistical analysis of Pb2+- and 

Ca2+- bound protein has revealed that Pb2+ and Ca2+ are coordinated by analogous binding 

ligands (Asp, Glu) and Pb2+ binding does not distort the geometry of the EF-hand. Pb2+ 

exposure has been shown to impact the hippocampus region, the part of the brain that 

regulates memory and learning processes. On the basis of the fact that DREAM protein 

possesses a cluster of negatively charged amino and residues in the EF-hand regions, 

DREAM protein contains four EF-hands analogous to CaM, and DREAM protein is 

expressed in the hippocampus, we postulated that DREAM protein is a molecular target of 

Pb2+. Using spectroscopic techniques (fluorescence, CD), we investigate whether Pb2+ 

addition induces the secondary and tertiary structural rearrangement of the DREAM and 

alters DREAM interactions with binding partners. We determine the affinity of Pb2+ for 
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DREAM using isothermal titration calorimetry and fluorescence titration. Our results 

provided conclusive evidence of Pb2+ binding to DREAM. Because the DREAM protein 

shares high sequence homology with NCS proteins, other NCS proteins could bind Pb2+ 

with high affinity and explain the causes of Pb2+-induced toxicity.   

Objective 2:  

              Cadmium exposure has been implicated with different types of cancers, 

neurodegenerative diseases. Children, pregnant women, and seniors are more susceptible 

to Cd2+ intoxication. It has been proposed that Cd2+ induces toxicity through interfering 

with Ca2+-and Zn2+-dependent processes, generating reactive oxygen species, inducing 

apoptosis, to name a few. But the exact mechanism of Cd2+-induced toxicity remains an 

active area of research. Previously, it has been shown that Cd2+ is capable of displacing 

Ca2+ from the EF-hand of CaM and troponin C and Zn2+ from protein kinase C. Because 

Cd2+ binds to EF-hands of CaM and troponin C and DREAM is an EF-hand protein, we 

hypothesize that Cd2+ could bind to EF-hand of DREAM and displace the Ca2+. Utilizing 

spectroscopic techniques and analyzing data of four different DREAM mutants, we 

investigate whether Cd2+ is capable of displacing Ca2+ from the EF-hand, whether Cd2+ 

binding triggers structural rearrangement in the DREAM, and whether Cd2+ association 

impacts DREAM interaction with intracellular partners. We employ ITC and fluorescence 

titration for determining the affinity constant of Cd2+ for DREAM. Our results provide 

evidence of Cd2+ binding to DREAM for the first time, which could provide insight into 

Cd2+-induced toxicity. Our study could form the basis of NMR and X-ray crystallography 

on Cd2+-bound NCS proteins to provide atomic-level insight into the mechanism of Cd2+ 

interactions with NCS proteins.  
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Objective 3:  

               Lithium has been used extensively for the treatment of psychological disorders 

for more than six decades. Increasing evidence from in vivo and in vitro studies in humans 

and rodents have implicated that Li+ is a drug candidate for the treatment of 

neurogenerative diseases such as Parkinson’s disease, Alzheimer’s disease, and 

Huntington’s disease. Despite having numerous clinical applications for treating 

devastating diseases, the exact mechanism through which Li+ exerts its therapeutic action 

has not been resolved yet. Several mechanisms have been proposed. Among them, 

inhibitions of inositol monophosphatase (IMPase) is considered the most relevant 

mechanisms of action. Lithium treatment has been shown to inhibit IMPase by displacing 

native cofactor Mg2+. Lithium has been shown to associates with EF-hand protein neuronal 

calcium sensor-1 and alters its interaction with interacting partners. Lithium administration 

has been shown to alter the expression of voltage-gated potassium channel 4.2 (Kv4.2) and 

potassium channel-interacting protein  (KChIP-1). Since Li+ binds to NCS-1 protein, which 

is homologous to DREAM, and impact the expression of KChIP-1, we investigate whether 

Li+ directly binds to DREAM. Molecular dynamics simulation from our collaborator has 

identified potential Li+ binding sites on DREAM. Using fluorescence spectroscopy and 

circular dichroism, we investigate whether Li+ addition triggers structural rearrangement 

of DREAM, whether Li+ addition impact DREAM interactions with binding partners. Our 

results provided the binding of monovalent ion to DREAM protein for the first time. 

Results from the study suggest that DREAM and probably other NCS proteins are the 

molecular targets of Li+. 
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Objective 4:  

The aMD data indicate the presence of a salt bridge between Lys87 and Asp 165 of 

DREAM that couples the loop between helix-1 and helix-2 in the N- terminal domain with 

the EF-3 in the C- terminal domain. We postulate that the salt bridge could be involved in 

the propagation of calcium-triggered structural changes between the C- terminal and N- 

terminal domain. To determine the role of Lys87 to the interdomain communication Lys87 

was mutated to Ala and the consequence of the mutation on DREAM secondary and tertiary 

structures and DREAM interactions with interacting partners were probed. 

Objective 5:  

The Ca2+ binding protein DREAM binds Ca2+ at EF-3 and EF-4.  We and other researchers 

demonstrated that Ca2+ binding causes secondary and tertiary structural rearrangements of 

the protein and consequently alters DREAM interaction with intracellular partners. But 

exact mechanism of Ca2+-triggered structural rearrangements of DREAM and modulation 

of interactions with binding partners remains unknown. In the present study, we mutated 

glutamate residue at 12th position of EF-3 (DREAM(E186Q)) and EF-4 (DREAM(E234Q)) 

to glutamine for making these EF-hands Ca2+ insensitive and investigated whether 

mutations impact Ca2+-induced secondary and tertiary structural rearrangements of the 

protein and whether mutations impact Ca2+-induced modulation of DREAM interaction 

with T-1 domain of Kv channel.    
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2. MATERIALS AND METHODS 

2.1 Methods used in chapter 3 

2.1.1 General 

               The Pb(CH3COO)2.3H2O was purchased from Fisher Scientific. The Pb2+ stock 

was prepared in 20 mM Tris pH 7.4 (prepared in decalcified ultrapure 18 MΩ water). The 

hydrophobic fluorescent probe 1,8-ANS was purchased from Invitrogen and was used 

without further purification. Peptides with sequences corresponding to the sequence of the 

site-1 (FITC-AAGVAAWLPFARAAAIGWMPV) and site-2 ((FITC-

LLGSTEKEFFFNEDTKEYFFD) of human KV4.3 were purchased from Think Peptides 

and received at higher than 98% purity. The synthetic peptide derived for helix-9 of 

presenilin-1 “PS1HL9” (residues 445FYFATDYLVQPFMDQLAFHQFYI467) of human 

PS1-CTF with FITC covalently attached to the amino-terminus was purchased from 

ProImmune (Sarasota, FL, USA). All other chemicals were obtained from Sigma-Aldrich 

and Fisher Scientific unless stated otherwise.  

2.1.2 Isolation and purification of DREAM(64) and DREAM (160) 

                  Recombinant mouse DREAM(64) (residues 65–256) and DREAM(160) 

(residues 161–256) with the C-terminus His-tag were expressed in E. coli BL21 (DE3) 

cells and purified according to previously published procedures with minor modifications 

(Osawa, Tong et al. 2001). Briefly, plasmids encoding for the his-tagged mouse 

DREAM(64) and his-tagged DREAM (160)  were purchased from GeneCopoeia and 

transformed in E. coli BL21(DE3) competent cells and grown in TB medium at 37°C in 

the presence of 100 μg/mL ampicillin until reaching an optical density of  0.8 at 600 nm. 

Protein expression was induced by adding 0.5 mM IPTG. The medium was placed back in 
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the shaker at 250 rpm for an additional 12 hours at room temperature followed by the 

harvesting of the cells by centrifugation for 20 minutes at 5000 rpm. The cell pellet was 

resuspended in lysis buffer (100 mM Tris buffer pH 8.0, 0.5 M NaCl, 1 mM CaCl2, 5 mM 

MgCl2, 5 mM imidazole, 1.0 % Triton-X100, 0.5 % Tween 20, and 10% glycerol), 

supplemented with 20 μg/mL DNAse, and 200 μg/mL lysozyme and sonicated in an ice 

bath for 30 cycles at 30% duty cycle. The cell lysate was centrifuged at 5000 rpm for 4 

hours, and the supernatant was loaded to a Ni-NTA column equilibrated with buffer A (20 

mM Tris pH 7.4, 300 mM NaCl, 0.5 mM CaCl2, and 5mM imidazole). The Ni-NTA column 

loaded with DREAM was washed extensively with buffer A and an increasing 

concentration of imidazole (5-40 mM). Protein was eluted in buffer A and 250 mM 

imidazole. Selected fractions were loaded onto a DEAE-Sepharose anion exchange column 

previously equilibrated with 20 mM Tris pH 7.4, washed with 20 mM Tris pH 7.4 and 50 

mM NaCl, and then eluted with 20 mM Tris pH 7.4 and 200 mM NaCl. After anion 

exchange, the protein was dialyzed twice against two liters of 20mM Tris pH 7.4 for 12 

hours. The purified protein was stored in 20 mM Tris pH 7.4. The purity of all protein 

constructs was assessed using SDS-PAGE. The proper secondary structure and tertiary 

structure of all protein constructs were confirmed by using the known far-UV CD transition 

of DREAM protein as well as changes in tryptophan fluorescence upon calcium binding 

(Gonzalez, Arango et al. 2015, Osawa, Dace et al. 2005, Osawa, Tong et al. 2001). 

 2.1.3 Sample preparation  

                   Protein samples were prepared from stock in 20 mM Tris pH 7.4. Protein 

concentrations were measured by UV-VIS spectrophotometry using ε
280nm = 19,000 M-1cm-

1
 

for DREAM (64) and ε
280nm = 10,544 M-1cm-1

 

for DREAM (160). The concentrations 
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of 1,8-ANS and KV4.3(2–22) “site-1”, KV4.3(70–90) “site-2” and helix-9 of presenilin-1 

“PS1HL9” were measured by using ε
350nm

= 4999 M−1 cm−1 and ε
493nm

= 75000 M−1 cm−1, 

respectively. Ca2+, Pb2+, EDTA, 1,8-ANS, KV4.3(2–22) “site-2”, KV4.3(70–90) “site-2”, 

and helix-9 of presenilin-1 “PS1HL9” were added to the sample to obtain the desired 

concentration.  

 2.1.4 Steady-state emission spectra 

                  Steady-state emission spectra were measured at room temperature (20°C) in a 0.2 

x 1-cm path length quartz cuvette with excitation along the 0.2-cm path using a custom 

ChronosFDspectrofluorometer (ISS, Champaign IL). For the Trp emission measurement, 

samples were excited at 295 nm, whereas for 1,8-ANS emission measurement, samples 

were excited at 350 nm. To determine the equilibrium dissociation constant for Pb2+ 

binding to apoDREAM, small aliquots of Pb2+ stock solution (500 μM Pb(CH3COO)2 

dissolved in 20 mM Tris pH 7.4) was added to 20 µM DREAM(64) in the presence of 

100 µM Ca2+, 20 mM Tris buffer pH 7.4. The fraction of Pb2+-bound protein (fb) was 

determined from the decrease in Trp emission intensity at 329 nm using Equation 1. 

       fb  =  
(Fi - F0)

(Fmax - F0)
       …………………………………………...   (1) 

Where Fi is the fluorescence intensity in different concentrations of Pb2+; Fo is the 

fluorescence intensity in the absence of Pb2+, but in the presence of 100 μM Ca2+; and Fmax 

is the saturation fluorescence intensity due to Pb2+ addition. The equilibrium dissociation 

constants (Kd) were determined using single site binding model (Equation 2).  

 fb  =  
(Kd + [nPt] + [Lt]) -√(Kd + [nPt] + [Lt])

2
- 4[nPt][Lt]

[n𝑃𝑡]
  ………………...(2) 
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where Pt is total protein concentration, Lt is the total ligand concentration, and n is the 

number of binding sites. For direct titration data such as 1,8-ANS binding to Pb2+-

DREAM(64) and peptide binding to Pb2+-DREAM(64), Kd in Equation 2 corresponds 

to the equilibrium dissociation constant. In the case of displacement studies, Kd represents 

Kapp for Pb2+ binding to Ca2+-DREAM(64. The reported Kapp or Kd value represents the 

mean and standard deviation from three independent measurements. Based on the apparent 

dissociation constant for Pb2+ binding to Ca2+ bound DREAM,  the dissociation constant 

(Kd) for Pb2+ binding to Ca2+ free DREAM  was calculated using Equation 3 (Kirberger, 

Wong et al. 2013). 

 Kd  =  
KappKdCa2+

(KdCa2+ + [Ca2+]T)
   ……………………………………..’. (3) 

where Kd is the dissociation constant of Pb2+ binding to apoDREAM, Kapp is the apparent 

dissociation constant of Pb2+  binding to Ca2+DREAM, KdCa2+  is the equilibrium 

dissociation constant for Ca2+, which was reported previously to be 1 μM (Osawa, Dace et 

al. 2005); [Ca2+]T is the total concentration of Ca2+, which is 100 µM.  

To determine the affinity for 1,8-ANS binding to Pb2+-bound DREAM(64), 10 µM 1,8-

ANS was prepared in 20 mM Tris in the presence of 40 µM Pb2+. Stocks of DREAM(64) 

were prepared with 40 µM Pb2+ and 10 µM 1,8-ANS. Aliquots of  DREAM(64) stock 

were added to 10 µM 1,8-ANS and the emission spectra were recorded. The increase in 

emission intensity at the emission maximum of 466 nm was used to calculate the fraction 

of 1,8-ANS bound to protein by Equation 1, and data were fitted to Equation 2 to determine 

the dissociation constant for 1,8-ANS.  
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2.1.5 Circular dichroism 

               Circular dichroism measurements were carried out using a J-810 Jasco CD 

spectrometer at room temperature (20°C). For far-UV CD, 20 µM DREAM(64)  in 20 mM 

Tris pH 7.4 and 1 mM EDTA, 1 mM Ca2+, or 40 µM Pb2+ was placed in a quartz cuvette (1 

mm x 10 mm) and data were collected through 1 mm path from 200 to 250 nm. Amount of 

secondary structure content was obtained using secondary structure prediction tool K2D3 

program. For near UV CD, 40 µM DREAM(64)  in 5 mM phosphate pH 7.4 in the presence 

of 1 mM EDTA, 1mM Ca2+, or  40 µM Pb2+ was placed in a   quartz cuvette (1 mm x 10 

mm) and data were recorded through 1 cm path from 250 nm to 330 nm. The baseline was 

subtracted from each spectrum. 

2.1.6 Fluorescence lifetime measurements  

              Frequency-domain fluorescence lifetime measurements were performed at room 

temperature (20°C) using a ChronosFDspectrofluorometer (ISS, Champaign IL). 1,8-

ANS:DREAM complex was excited with the output 300 nm laser diode through 305 nm 

bandpass filter and emission were collected through 400 nm long pass and 600 nm short-

pass filter. For Trp lifetime measurements, samples were excited using an output of 280 

nm laser diode and emission was collected through 320 nm long-pass filter. 1,4-bis(5-

phenyloxazol-2-yl)benzene (POPOP) in ethanol was used as a reference in lifetime 

measurements(τ = 1.35 ns). For 1,8-ANS:DREAM complexes lifetime measurements, 

modulation-phase data were analyzed using three discrete exponential decay component, 

whereas for Trp lifetime measurements, data were fitted by using a sum of a Gaussian 

distribution model and a single exponential decay model in Global software. For Trp 
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lifetime data, discrete lifetime τ2 was used as a linked variable in the Global Analysis. The 

2 parameter and residuals were used as a criterion for the goodness of the fit. 

2.1.7 ITC measurements 

              Isothermal calorimetry titrations were used to determine the thermodynamics of 

displacement of Ca2+ from DREAM(64) by Pb2+. Titrations were carried out using a VP-

ITC isothermal calorimeter (Microcal Inc. Northampton, MA). Protein solutions were 

prepared in (5 mM Tris pH 7.4, 100 μM CaCl2) buffer and dialyzed overnight three times 

in the same buffer. Pb2+ stock solutions were prepared in an ITC dialysate buffer. The 

reaction cell was loaded with ~20 µM protein solution in 5 mM Tris pH 7.4, 100 μM CaCl2 

buffer, and the protein concentration was determined spectrophotometrically prior to the 

ITC experiment. The concentration of Pb2+ in the syringe was 400 µM; 30 aliquots (6 µL 

each) of 400 µM Pb2+ stock were titrated into 20µM DREAM(64). The  ITC experiments 

were conducted three times at 25 ˚C. Thermodynamic parameters were obtained by fitting 

the isotherms with the sequential model (2 sets of sites) using the Microcal ITC analysis 

plug-in Origin 7.0. Overall apparent dissociation constant was obtained from individual 

association constants using Equation 4 (Aravind, Chandra et al. 2008). 

      Kapp  =  
1

√K1K2
      ……………………………………….(4) 

Where Kapp represents the overall apparent dissociation constant for Pb2+ binding to 

Ca2+DREAM(64), whereas K1 and K2 represent apparent association constants of Pb2+ 

binding to  Ca2+DREAM(64). 
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2.1.8 Steady-state polarization measurements 

               The steady-state polarization measurements were carried out in a 

ChronosFDspectrofluorometer (ISS, Champaign IL). To investigate the interaction between 

DREAM(64) and FITC-labeled PS1HL9, FITC-labeled site-1, and FITC-labeled site-2, 

the samples were excited at 493 nm, and the emitted light was collected through a 500 nm 

long-pass filter. Binding of site-1, site-2, and PS1HL9 to Pb2+-bound DREAM(64) were 

probed by an increase in anisotropy. The fraction of site-1, site-2, and PS1HL9 bound to 

Pb2+-bound DREAM(64) were calculated using Equation 1. Dissociation constants 

between the titration of Pb2+DREAM(64) and site-1, site-2, and PS1HL9 were determined 

by using a single-site binding model, Equation 2. All experiments were repeated three 

times; average Kd values determined from 3 independent measurements are reported in 

Table 4, and the standard deviations are shown as errors. 

2.2 Methods used in chapter 4 

2.2.1 General 

             CdCl2 and 1-anilinonaphthalene- 8-sulfonic acid (1,8-ANS) were purchased 

from Sigma-Aldrich and Invitrogen, respectively, and used without further 

purification. CdCl2 and 1,8-ANS stocks were prepared in 20 mM Tris pH 7.4 using 

decalcified water. The synthetic peptide corresponding to the helix-9 of presenilin-

1 (PS1HL9), residues 445FYFATDYLVQPFMDQLAFHQFYI467 of the human 

presenilin-1 C-terminal fragment with FITC covalently attached to the amino-

terminus was purchased from ProImmune (Sarasota, FL, USA). A FITC labeled 

peptides corresponding to residues 2-22 (FITC-

AAGVAAWLPFARAAAIGWMPV) and residues 70-90 (FITC-
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LLGSTEKEFFFNEDTKEYFFD) of human Kv4.3 and labeled site 1 and site 2, 

respectively, were obtained from Think Peptides and received at more than 98% 

purity. Unless noted otherwise, all other chemicals were purchased from Sigma-

Aldrich or Fisher Scientific. 

2.2.2 Isolation and purification of DREAM constructs 

                Expressions and purifications of recombinant mouse WTDREAM(64) 

(residue 65–256), WTDREAM(160) (residue 161–256), DREAM(E186Q) 

(residue 65–256 with mutation at position 12 in the loop of EF3), and 

DREAM(E234Q) (residue 65–256 with mutation at position 12 in the loop of EF4) 

constructs were carried out following published protocols (Osawa, Tong et al. 2001, 

Gonzalez, Pham et al. 2014). The purified protein stock solutions were stored in 20 

mM Tris pH 7.4. SDS-PAGE was employed for assessing the purity of all DREAM 

constructs.  

2.2.3 Sample preparation  

              Protein samples were prepared diluting concentrated protein stock in 20 

mM Tris pH 7.4 and final protein concentrations were determined using ε280nm = 

19,000 M-1cm-1for WTDREAM (64), DREAM(E186Q) and DREAM(E234Q) and 

using ε280nm = 10,544 M-1cm-1 for WTDREAM (160). The concentrations of 1,8-

ANS was determined using ε350nm = 4,999 M−1cm−1, whereas concentrations of site-

1, site-2, and PS1HL9 were determined using ε493nm  = 75,000 M−1 cm−1.To prepare 

ApoDREAM samples, protein stock was solubilized in 20 mM Tris pH 7.4. 2 mM 

EDTA was added to prepare metal-free samples. Ca2+ or Cd2+DREAM samples were 

prepared by adding 2 mM Ca2+ and 100 µM Cd2+, respectively. Cd2+Ca2+DREAM 
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was prepared by adding 100 µM Cd2+ to DREAM in the presence of 2 mM Ca2+. 

For the titration measurements, concentrated stocks of site-1, site-2, and PS1HL9 

were diluted in 20 mM Tris pH 7.4 to have the final concentration of 0.5 µM.  

2.2.4 Steady-state emission spectra 

             Steady-state emission spectra were recorded at room temperature (20°C) 

using Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies). 

Tryptophan emission spectra were measured using 295 nm excitation along the 0.2 

cm path of a 0.2 x 1.0 cm path length quartz cuvette, 1,8-ANS emission spectra were 

measured using 350 nm excitation light along the 0.2 cm path of a 0.2 x 1.0 cm path 

length quartz cuvette. The emission spectra were normalized to 1 at the maximum 

emission wavelength for the apoprotein in Fig. 2 and for Ca2+DREAM:1,8-ANS 

complex in Figure 4. The equilibrium dissociation constant for 1,8-ANS association 

to Cd2+-bound DREAM was obtained by titrating Cd2+-bound WTDREAM(64) 

into 10 µM 1,8-ANS. The increase in emission intensity at an emission maximum 

of 468 nm was recorded and data were fitted to the single-site binding model 

according to  Equation 1. 

F = 
(Kd + [nPt] + [Lt])-√(Kd + [nPt] + [Lt])

2
- 4[nPt][Lt]

[nPt]
 …………………………………….........  (1) 

where F is the change in fluorescence intensity, Kd is the equilibrium dissociation 

constant, n is the number of binding sites, Pt is the total concentration of the protein, 

and  Lt is the total concentration of the ligand. Three independent measurements 

were carried out to determine the average value of F. 
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2.2.5 Circular dichroism 

                Far-UV circular dichroism measurements were conducted at room 

temperature (20°C) using a J-810 Jasco CD spectrometer through the 2 mm path of 

a (2 mm x 10 mm) quartz cuvette. Data were collected from 200 to 250 nm. 

Secondary structure prediction tool K2D3 was used for calculating the percentage 

of secondary structure content of DREAM constructs (Louis‐Jeune, Andrade‐Navarro 

et al. 2012).  

2.2.6 Fluorescence lifetime measurements  

              Frequency-domain fluorescence lifetime measurements were carried out at 

20°C using a ChronosFD Spectrofluorometer (ISS, Champaign IL). The fluorescence 

lifetime of 1,8-ANS–WTDREAM(64) complexes were determined using the 305 

nm laser diode output as excitation light and emission was recorded using the 

combination of a 400 nm long-pass filter and a 600 nm short-pass filter (Andover 

Corp., Salem, NH). To measure Trp lifetimes, samples were excited with 280 nm 

laser diode output and emission was recorded using a 320 nm long-pass filter. 1,4-

bis(5-phenyloxazol-2-yl)benzene (POPOP) in ethanol was used as a reference for 

lifetime measurements (τ = 1.35 ns). The lifetime modulation-phase data were 

analyzed using Vinci analysis software. The goodness of the fit was determined 

based on 2 values and residuals. 

2.2.7 Thermodynamics of Cd2+ displacement of Ca2+ from EF-hand of DREAM 

             Thermodynamic parameters for Cd2+ association to DREAM were 

determined using a VP-ITC isothermal calorimeter (Microcal Inc. Northampton, 

MA). DREAM protein stock in 20 mM Tris was diluted to prepare 10 µM DREAM 
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protein solution in 5 mM Tris pH 7.4, 100 mM NaCl and 100 μM CaCl2 and dialyzed 

overnight three times against the buffer described above. After dialysis, the 

concentration of protein solution was determined and the protein solution was 

loaded in the reaction cell. 1 mM Cd2+ stock solution prepared in the dialysate buffer 

was used as the titrant. ITC experiments were performed three times at 25 ˚C by 

adding 30 aliquots (6 µL each) of 1 mM  Cd2+ stock into 10 µM WTDREAM(64) 

and 10 µM WTDREAM(160). Data were fitted with the sequential model (2 sets 

of sites) using the Microcal ITC analysis plug-in Origin 7.0 The overall apparent 

dissociation constant (Kapp) for Cd2+ binding to Ca2+DREAM was calculated based 

on individual association constants according to Equation 2 (Aravind, Chandra et al. 

2008). 

     Kapp = 
1

√K1K2
    …………………………………………………………………….. (2) 

where K1 and K2 are apparent association constants for Cd2+ binding to 

Ca2+DREAM. 

The overall equilibrium dissociation constant (Kd) for Cd2+ binding to apoDREAM 

was calculated from the overall apparent dissociation constant using Equation 3 

(Kirberger, Wong et al. 2013). 

    Kd = 
KappKdCa2+

(KdCa2+ + [Ca2+]T)
   ………………………………………………………………. (3) 

where KdCa2+  represents the equilibrium dissociation constant for Ca2+ binding to 

apoDREAM, which was previously reported to be 1 μM (Osawa, Dace et al. 2005); 

[Ca2+]T is the total concentration of Ca2+, which is 100 µM. 
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2.2.8 Steady-state anisotropy measurements 

              The steady-state anisotropy measurements were conducted at room 

temperature (20°C) using a ChronosFD spectrofluorometer (ISS, Champaign IL). To 

investigate whether FITC-tagged PS1HL9, FITC-tagged site-1, or FITC-tagged site-

2 binds to Cd2+-bound DREAM, Cd2+-bound DREAM constructs were titrated into 

0.5 µM PS1HL9, 0.5 µM site-1, or 0.5 µM site-2 peptides. Samples were excited at 

470 nm and emitted light was recorded through a 500 nm long-pass filter (Andover 

Corp., Salem, NH). Three independent measurements were carried out and average 

values of anisotropy change were plotted as a function of Cd2+DREAM 

concentration and analyzed using  Equation 1.  

2.3 Methods used in chapter 5 

2.3.1 General 

           The LiCl was purchased from Sigma-Aldrich and used as received. 100 mM LiCl 

stock was prepared by dissolving LiCl in 20 mM Tris buffer pH 7.4. To eliminate residual 

Ca2+, 20 mM Tris buffer was prepared in decalcified ultrapure 18 MΩ deionized water. 

Peptides with a sequence corresponding to the site-1 and site-2 binding sites from T1 

domain of Kv channel with a FITC fluorescence probe attached to the N- terminus (FITC-

site-1 of human KV4.3) (FITC-AAGVAAWLPFARAAAIGWMPV) and (FITC-site-2 of 

human KV4.3) (FITC-LLGSTEKEFFFNEDTKEYFFD) were purchased from Think 

Peptides and received at higher than 98 % purity. The synthetic peptide derived for helix-

9 of presenilin-1 (FITC-445FYFATDYLVQPFMDQLAFHQFYI467) of human PS1-CTF 

was purchased from ProImmune (Sarasota, FL, USA). All other chemicals were purchased 

from Sigma-Aldrich or Thermo Fisher unless stated otherwise. The concentration of 
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peptides mimicking site-1, site-2, and helix-9 of presenilin-1 were measured by using 

ε
493nm

= 75000 M−1 cm−1 (Crabtree, Shammas 2018). 

2.3.2 Isolation and purification of DREAM constructs 

              In the present study, a truncated form of DREAM protein that carries residues 65- 

256 (DREAM(64)) was used, as the full-length protein readily forms inclusion bodies. 

Recombinant mouse DREAM(64), DREAM(160), DREAM(E168Q), and 

DREAM(E234Q) constructs were expressed in E. coli BL21 (DE3) cells and purified 

according to published procedures(Osawa, Tong et al. 2001, Gonzalez, Pham et al. 2014). 

Briefly, corresponding mouse DREAM plasmid was transfected in E. coli BL21(DE3) 

competent cells and grown in Terrific Broth medium at 37°C in the presence of 100 μg/mL 

ampicillin. Protein expression was induced by adding 0.5 mM IPTG. Cells were grown for 

an additional 12 hours at room temperature and harvested by 20 min centrifugation at 5000 

RPM and 4 oC.  The cell pellet was resuspended in lysis buffer (100 mM Tris buffer pH 

8.0, 0.5 M NaCl, 1 mM CaCl2, 5 mM MgCl2, 5 mM imidazole, 1.0 % Triton-X100, 0.5 % 

Tween 20, and 10% glycerol, 20 μg/mL DNAse, and 200 μg/mL lysozyme) and sonicated 

in an ice bath for 30 cycles at 30% duty cycle. The cell lysate was centrifuged at 5000 rpm 

for 4 hours and the supernatant was loaded to a Ni-NTA column equilibrated with buffer 

A (20 mM Tris pH 7.4, 300 mM NaCl, 0.5 mM CaCl2, and 5mM imidazole). The Ni-NTA 

column was loaded with DREAM and then washed extensively with buffer A and 

increasing concentration of imidazole (5-40 mM) and protein was eluted in buffer A and 

250 mM imidazole. Selected fractions were loaded onto a DEAE-Sepharose anion 

exchange column previously equilibrated with 20 mM Tris pH 7.4, washed with 20 mM 

Tris pH 7.4 and 50 mM NaCl, and then eluted with 20 mM Tris, pH 7.4 and 200 mM NaCl. 
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After anion exchange, the protein was dialyzed twice against two liters of 20 mM Tris pH 

7.4 for 12 hours. The purified protein was stored in 20 mM Tris pH 7.4. The purity of all 

protein constructs was assessed using SDS-PAGE. Protein concentration was determined 

by UV-VIS spectrophotometry using ε
280nm = 19,000 M-1cm-1

 

for DREAM (64) and ε
280nm 

= 10,544 M-1cm-1
 

for DREAM (160) (Pham, Dhulipala et al. 2015). Apoprotein samples 

were prepared by dialyzing the isolated protein three times against 20 mM Tris buffer that 

was prepared using decalcified water. The absence of Ca2+ bound DREAM in apoDREAM 

samples was confirmed based on the emission spectra of apoDREAM in the 

absence/presence of EDTA.  Li+DREAM samples were prepared by adding 50 µM or 1 

mM LiCl to 20 µM protein in 20 mM Tris pH 7.4, Mg2+DREAM samples were prepared 

by the addition of 5 mM MgCl2 and 1 mM EGTA to 20 µM protein in 20 mM Tris pH 7.4, 

and Ca2+ DREAM samples were prepared by adding 1 mM CaCl2 to 20 µM protein in 20 

mM Tris pH 7.4. 

2.3.3 Isolation and purification of rCaM 

              Rat calmodulin (rCaM) plasmid was a kind gift from J. P. Davis (The Ohio State 

University, Columbus, OH). The plasmid was subcloned in BL21(DE3) cells and purified 

using phenyl sepharose chromatography as previously described (George, Su et al. 1993). 

2.3.4 Steady-state emission spectra measurements 

             Emission spectra for a single Trp residue in DREAM constructs were measured in 

a 0.2 x 1-cm path length quartz cuvette with 295 nm excitation along the 0.2-cm path using 

a custom ChronosFDspectrofluorometer (ISS, Champaign, IL). The concentration of 

DREAM constructs was 20 µM. The equilibrium dissociation constant for Li+ binding to 
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apoDREAM was determined by adding small aliquots of Li+ stock solution to 20 µM 

apoDREAM(64) in 20 mM Tris buffer pH 7.4.  

The apparent equilibrium dissociation constant, Kd was obtained according to Eq.1. 

ΔF= 
(Kd + [nPt] + [Lt]) -√(Kd + [nPt] + [Lt])

2
- 4[nPt][Lt]

n𝑃𝑡
 …………………….. (1) 

where Kd is the dissociation constant, Pt is total protein concentration, n is the number of 

binding sites, Lt is the total ligand concentration. The experiment was repeated three times 

and the average fluorescence intensity values were used to construct the titration curve.  

2.3.4 Circular dichroism measurements 

            Far UV-CD spectra were recorded using a J-810 Jasco CD spectrometer. 20 µM 

DREAM in 20 mM Tris buffer, pH 7.4 and 1 mM Ca2+ and/or 50  µM Li+,  were placed in a 

quartz cuvette (1 mm x 10 mm) and data were collected from 200 nm to 250 nm.  

2.3.5 ITC measurements 

           Isothermal calorimetry titrations were used to determine the thermodynamics of Li+ 

binding to DREAM constructs. Titrations were carried out using a VP-ITC isothermal 

calorimeter (Microcal Inc. Northampton, MA). Protein solutions were dialyzed against 5 

mM Tris, pH 7.4, prepared in decalcified water for 12 hours. Water was decalcified using 

Chelex-100 . The buffer was exchanged three times during the dialysis. 100 mM Li+ stock 

solution was prepared by dissolving LiCl in an ITC dialyzate buffer. The reaction cell was 

loaded with ~20 µM protein solution in 5 mM Tris, pH 7.4. The concentration of Li+ in the 

syringe was 1000 µM; 30 aliquots (6 µL each) of Li+ stock solutions were titrated into 20 

µM DREAM constructs at 25 ˚C. Three independent ITC experiments were conducted. 

Thermodynamic parameters were obtained by fitting the isotherms with the sequential 
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model (two sets of sites) using the Microcal ITC analysis plug-in Origin 7.0. Overall 

dissociation constant was obtained from individual association constants by using Equation 

2 (Aravind, Chandra et al. 2008). 

Kd = 
1

√K1K2
             ………………………… (2)    

where Kd represents overall dissociation constant for Li+ binding to apoDREAM 

constructs, whereas K1 and K2 represent association constants of Li+ binding to 

apoDREAM constructs. 

          To determine whether Li+ binds to Ca2+DREAM, we titrated 30 aliquots (6 µL each) 

of 100 mM Li+ into 20 µM DREAM(64) in the presence of 100 µM Ca2+ at 25 ˚C.  

2.3.6 Molecular Dynamics  

             The protein structure of DREAM was taken from the Protein Data Bank (PDB ID: 

2JUL) (Lusin, Vanarotti et al. 2008). We considered residues 76 to 256 of the DREAM 

monomer for the molecular simulations. The CHARMM-GUI web-server was used to set 

up the system for molecular dynamics simulation (Jo, Kim et al. 2008). The Ca2+ ions 

bound to the protein in the crystal structure were removed and lithium ions were placed 

randomly in the solution. The system was solvated using TIP3 water molecules and 

neutralized by counterions. All-atom molecular dynamics simulations were performed 

using NAMD 2.12 with CHARMM36m force field at 300 K temperature (Phillips, Braun 

et al. 2005). The system was minimized for 10,000 steps and equilibrated for 200 ps with 

backbone and side chain restraints, followed by a 200-ns production run using 2 fs time 

step. The SHAKE algorithm was used for constraining covalent bonds and particle mesh 

Ewald method was employed for long-range electrostatic interactions. Langevin 
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temperature coupling with a friction coefficient of 1 ps was used to control the temperature. 

Analysis of the trajectory as well as visualization of accessible surface area was done with 

VMD (Humphrey, Dalke et al. 1996). 

2.3.7 Fluorescence lifetime measurements  

               Frequency-domain fluorescence 1,8-ANS lifetime measurements were 

performed using a ChronosFDspectrofluorometer (ISS, Champaign IL). Samples were 

excited using an output of 300 nm laser diode and emission was collected through a 

combination of 400 nm long-pass filter and 600 nm short-pass filter (Andover Corp.). 1,4-

bis(5-phenyloxazol-2-yl) benzene (POPOP) in ethanol was used as a reference in lifetime 

measurements (τ = 1.35 ns). Experimental data were fitted by using a three exponential 

decay model in Vinci software (ISS, Champaign IL). The 2 parameters and residuals were 

used as a criterion for the goodness of the fit. 

2.3.8 Steady-state polarization measurements 

          The steady-state polarization measurements were carried out in a 

ChronosFDspectrofluorometer (ISS, Champaign IL). To investigate the interaction between 

DREAM(64) and FITC-labeled peptides, samples were excited at 493 nm and the emitted 

light was collected through a 500 nm long pass filter (Andover Corp).  For anisotropy 

measurements, 20 µM DREAM was added to 0.5 µM FITC labeled peptides in the 

absence/presence of 1 mM Li+ or 1 mM Ca2+. The presented anisotropy values represent 

the average values of 3 independent measurements. 
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2.4 Methods used in chapter 6 

2.4.1 General 

       Barium chloride, strontium chloride, arsenic pentoxide, and mercuric oxide were 

purchased from Sigma-Aldrich. Manganese chloride tetrahydrate was purchased from 

Fisher Scientific. 1,8-ANS was purchased from Invitrogen. 

2.4.2 Isolation and purification of DREAM 

      Recombinant mouse DREAM(64) was expressed and purified following 

published protocols (Osawa, Tong et al. 2001, Gonzalez, Pham et al. 2014). SDS-

PAGE gel electrophoresis was used for evaluating the purity of the protein. 

2.4.3 Sample preparation  

             Concentrated DREAM(64) protein stock was diluted into 20 mM Tris pH 

7.4 to get 20 µM DREAM(64). Protein concentration was determined using ε280nm 

= 19,000 M-1cm-1. 1,8-ANS concentration was determined using ε350nm = 4,999 

M−1cm−1. 1 mM of Ba2+, Sr2+, As5+, Hg2+, or Mn2+ was added to DREAM(64) or 

DREAM(64):1,8-ANS complex both in the absence and presence of 1 mM Ca2+ to 

investigate impact of these metals addition on Trp emission and 1,8-ANS emission 

spectrum.  

2.4.4 Steady-state emission spectra 

                Steady-state emission experiment was conducted at room temperature 

(20°C) employing Cary Eclipse Fluorescence Spectrophotometer (Agilent 

Technologies). Samples were excited with 295 nm excitation light through the 0.2 

cm path of a 0.2 x 1.0 cm path length quartz cuvette to obtain tryptophan emission 

spectra.1,8-ANS emission spectra were obtained by exciting the samples with 350 
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nm excitation light through the 0.2 cm path of a 0.2 x 1.0 cm path length quartz 

cuvette.  

2.5 Methods used in chapter 7 

2.5.1 Isolation and purification of DREAM(K87A) 

                Expressions and purifications of recombinant mouse DREAM(K87A) 

were executed following published protocols (Osawa, Tong et al. 2001, Gonzalez, 

Pham et al. 2014). Concentrated protein stock solutions were stored in 20 mM Tris 

pH 7.4. The purity of the protein was assayed by SDS-PAGE gel electrophoresis. 

2.5.2 Sample preparation  

             Protein samples were prepared by diluting concentrated stock in 20 mM Tris 

pH 7.4 and final protein concentrations were determined using ε280nm = 19,000 M-

1cm-1. The concentrations of 1,8-ANS was determined using ε350nm = 4,999 M−1cm−1, 

whereas concentrations of site-1, site-2, and PS1HL9 were determined using ε493nm  

= 75,000 M−1 cm−1. For Trp emission, 1,8-ANS study, CD study, and lifetime 

studies, the concentration of DREAM(K87A) was 20 µM. apoDREAM(K87A) was 

prepared by adding 1 mM EDTA to protein solution. Ca2+DREAM(K87A) samples 

were prepared by adding 1 mM Ca2+ to protein solution in the absence of EDTA or 

EGTA. Mg2+DREAM(K87A) was prepared by adding 5 mM Mg2+ to protein 

solutions in the presence of 1 mM EGTA. Ca2+Mg2+DREAM(K87A) was prepared 

by adding 5 mM Mg2+ to DREAM(K87A) in the presence of 1 mM Ca2+. For the 

titration measurements, concentrated stocks of site-1, site-2, and PS1HL9 were 

diluted in 20 mM Tris pH 7.4 to get the final concentration of 0.5 µM.  
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2.5.3 Steady-state emission spectra 

             Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies) was 

employed at room temperature (20°C) to record steady-state emission spectra. For 

tryptophan emission, samples were excited with 295 nm excitation light along the 

0.2 cm path of a 0.2 x 1.0 cm path length quartz cuvette. For 1,8-ANS emission, 

samples were excited through 350 nm excitation light along the 0.2 cm path of a 0.2 

x 1.0 cm path length quartz cuvette.  

2.5.4 Circular dichroism 

              A J-810 Jasco CD spectrometer was employed at room temperature (20°C) 

to measure far-UV circular dichroism measurements through the 2 mm path of a (2 

mm x 10 mm) quartz cuvette. Data were recorded from 200 to 250 nm. The 

percentage of secondary structure content was obtained using secondary structure 

prediction tool K2D3 (Louis‐Jeune, Andrade‐Navarro et al. 2012).  

2.5.5 Fluorescence lifetime measurements  

              Frequency-domain fluorescence lifetime measurements were conducted at 

room temperature (20°C) utilizing a ChronosFD Spectrofluorometer (ISS, 

Champaign IL). The fluorescence lifetime of 1,8-ANS–DREAM(K87A) complexes 

were measured by exciting the samples through 305 nm laser diode output and 

emission was collected using a combination of a 400 nm long-pass filter and a 600 

nm short-pass filter (Andover Corp., Salem, NH). For Trp lifetimes, 280 nm laser 

diode output was used to excite the samples and emission was recorded using a 320 

nm long pass filter. 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) in ethanol was 

the reference for lifetime measurements (τ = 1.35 ns). Vinci analysis software was 
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employed to analyze the modulation-phase data. 2 values and residuals of the fit 

was used to evaluate the goodness of the fit. 

2.5.6 Steady-state anisotropy measurements 

              The steady-state anisotropy measurements were carried out at room 

temperature (20°C) employing a ChronosFD spectrofluorometer (ISS, Champaign 

IL). To investigate whether mutation of Lys87 to Ala impacts DREAM interactions 

with binding partners, DREAM(K87A) samples were added to FITC-tagged peptide 

helix 9 of presenilin-1 (PS1HL9) and FITC-tagged site-1 and site-2 of T-1 domain 

of Kv4 channel. Samples were excited through 493 nm excitation light and emitted 

light was collected through a 500 nm long-pass filter (Andover Corp., Salem, NH). 

200 µM DREAM(K87A) in the presence of 1 mM Ca2+ or 1 mM EDTA was added 

to 0.5 µM PS1HL9. Corresponding wild-type DREAM (DREAM(64)) was also 

added to the same peptide in the same day as a control experiment. Similarly, 100 

µM and 200 µM of DREAM(K87A) were respectively added to 0.5 µM site 1 and 

site 2 peptides of the T1 domain of Kv4 channel in the presence of Ca2+ or EDTA. 

DREAM(64) was added to both site 1 and site 2 peptides on the same day as a 

control. 

2.6 Methods used in chapter 8 

2.6.1 Isolation and purification of DREAM constructs 

               Recombinant mouse DREAM(64), DREAM(160), DREAM(E186Q), 

and DREAM(E234Q) were expressed and purified following published protocols 

(Osawa, Tong et al. 2001, Gonzalez, Pham et al. 2014). SDS-PAGE gel 

electrophoresis was employed for assessing the purity of the protein. 
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2.6.2 Sample preparation  

             Concentrated protein stock was diluted into 20 mM Tris pH 7.4 to get the 

desired concentration. For DREAM(64), DREAM(E186Q), and 

DREAM(E234Q), protein concentrations were determined using ε280nm = 19,000 M-

1cm-1. For DREAM(160), protein concertation was determined using ε280nm = 

10,544 M-1cm-1. 1,8-ANS concentration was determined using ε350nm = 4,999 

M−1cm−1; site-1 and site-2 concentrations were determined using ε493nm  = 75,000 

M−1 cm−1. For Trp emission, 1,8-ANS emission, circular dichroism, and lifetime 

studies, the concentration of each DREAM protein construct was 20 µM. 

apoDREAM samples were prepared by adding 1 mM EDTA to protein solutions 

that were stored in 20 mM Tris. Ca2+DREAM samples were prepared by adding 1 

mM Ca2+ to protein solutions that were stored in 20 mM Tris. For the titration 

measurements, 0.5 µM site-1, site-2, and PS1HL9 were prepared by diluting 

concentrated stock into 20 mM Tris pH 7.4. 

2.6.3 Steady-state emission spectra 

                Steady-state emission spectra were obtained at room temperature (20°C) 

utilizing Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies). 

Samples were excited through 295 nm excitation light through the 0.2 cm path of a 

0.2 x 1.0 cm path length quartz cuvette to obtain tryptophan emission spectra. 

Samples were excited with 350 nm excitation light through the 0.2 cm path of a 0.2 

x 1.0 cm path length quartz cuvette to obtain 1,8-ANS emission spectra.  
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2.6.4 Circular dichroism 

              Far-UV circular dichroism spectra were recorded employing a J-810 Jasco 

CD spectrometer through the 2 mm path of a (2 mm x 10 mm) quartz cuvette. Data 

were collected from 200 to 250 nm. Secondary structure prediction tool K2D3 was 

used to determine the percentage of secondary structural content of the protein. 

(Louis‐Jeune, Andrade‐Navarro et al. 2012).  

2.6.5 Fluorescence lifetime measurements  

              Frequency-domain fluorescence lifetime measurements were recorded at 

room temperature (20°C) employing a ChronosFD Spectrofluorometer (ISS, 

Champaign IL). The fluorescence lifetime of 1,8-ANS–DREAM complexes were 

measured by exciting the samples with 305 nm laser diode output and emission were 

recorded using a combination of a 400 nm long-pass filter and a 600 nm short-pass 

filter (Andover Corp., Salem, NH). A 280 nm laser diode output was used to excite 

the samples and emission was recorded using a 320 nm long-pass filter for 

determining the lifetime of tryptophan. The reference for lifetime measurements was 

1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) in ethanol (τ = 1.35 ns). Vinci 

analysis software was utilized to analyze the modulation-phase data. 2 values as 

well as residuals of the fit was used to evaluate the goodness of the fit. 

2.6.6 Steady-state anisotropy measurements 

              The steady-state anisotropy measurements were conducted at room 

temperature (20°C) utilizing a ChronosFD spectrofluorometer (ISS, Champaign IL). 

100 µM DREAM(E186Q) and 100 µM DREAM(E234Q) samples were added to 

FITC-tagged site-1 and site-2 of the T-1 domain of Kv4 channel both in the presence 
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and absence of Ca2+. Samples were excited with 493 nm excitation light and emitted 

light was collected through a 500 nm long-pass filter (Andover Corp., Salem, NH). 

Corresponding 100 µM wild-type DREAM (DREAM(64)) was also added to the 

same peptide in the same day as a control experiment both in the presence and 

absence of Ca2+.  
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3. LEAD BINDS TO DREAM AND MODULATES ITS INTERACTIONS WITH 

BINDING PARTNERS: A LINK BETWEEN NEURONAL CALCIUM SENSORS 

AND LEAD NEUROTOXICITY. 

3.1 Background and significance  

               Pb2+ is an anthropogenic toxicant and has been viewed as a global health concern 

(Deibler, Basu 2013). The chronic and acute exposure to Pb2+ cause neurophysiological 

and psychological deficiencies through altering the development of the neuronal system or 

through direct interactions with neuronal proteins (Mason, Harp et al. 2014). Especially 

children are sensitive to  Pb2+ exposure as  Pb2+ intoxication leads to learning difficulties, 

IQ drop and cognitive deficiencies (Canfield, Henderson Jr et al. 2003, Weisskopf, Hu et 

al. 2004). Several metal-binding proteins have been identified as targets for Pb2+ 

neurotoxicity as Pb2+ displaces physiological ligands such as calcium and zinc; however, 

the mechanism of Pb2+ induced toxicity remains obscure. It was reported that at 

subnanomolar concentrations, Pb2+ activates protein kinase C (PKC), a family of proteins 

that mediate central nervous system development and cell proliferation, by replacing a Ca2+ 

ion bound to the C2 domain (Markovac, Goldstein 1988, Long, Rosen et al. 1994, Morales, 

Lasagna et al. 2011). Pb2+ was also shown to directly inhibit the constitutive kinase activity 

of PKC through binding to a lower affinity site in the catalytic domain. Several studies 

have demonstrated that  Pb2+ interacts with calcium-binding protein calmodulin (CaM), 

and modulate interactions between CaM and its downstream partners what may play a 

considerable role in Pb2+-induced neurotoxicity (Gorkhali, Huang et al. 2016). For 

example, Habermann et al.(Habermann, Crowell et al. 1983) reported that Pb2+ replaces 

Ca2+ bound to EF-hands in CaM and Pb2+:CaM complex activates calcium-dependent 
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phosphodiesterase and myosin light chain kinase. Pb2+ can also bind to sites other than EF-

hands, which may disrupt multiple downstream activities and therefore contribute to lead 

neurotoxicity (Kern, Wisniewski et al. 2000, Goldstein, Ar 1983). Statistical analysis of 

the structures of Pb2+-bound proteins available from the protein data bank (PDB) showed 

that an oxygen atom from amino acids (mainly Glu and Asp) represents the prominent 

binding ligand for Pb2+, followed by oxygen from water, sulfur, and nitrogen (Kirberger, 

Yang 2008). The basic geometry of Ca2+-bound EF-hand was found to be conserved in  

Pb2+-bound EF-hand, as both metals, Ca2+ and Pb2+, use the same binding ligands, 

(Kirberger, Yang 2008) suggesting that Pb2+ could tightly bind to  EF-hands of other 

neuronal calcium-binding proteins (CaBPs). Indeed, the multitude of symptoms associated 

with Pb2+ poisoning points towards multiple molecular targets in neuronal tissue.  

               Neuronal Calcium Sensor (NCS) is a subgroup of EF-hand superfamily, which 

includes frequenin (NCS1), recoverin, GCAP, neurocalcin, and potassium channel-

interacting protein 1–4 (Burgoyne 2007). NSC proteins are predominantly expressed in 

brain and retina, where they regulate diverse intracellular processes, including vision 

transduction, DNA expression, neurotransmission, neuron development, cognitive 

functions, potassium voltage channel kinetics, etc. (Ames, Lim 2012, Burgoyne, Weiss 

2001, Burgoyne 2007). Although NCS proteins have relatively low sequence homology 

with CaM, NCS proteins comprise four EF-hands analogous to CaM. Similarly, NCS 

proteins are sensitive to increased intracellular Ca2+ concentration and bind Ca2+ with ~ 10 

times higher affinity than CaM (McCue, Haynes et al. 2010).  

               Downstream regulatory element antagonist modulator (DREAM), alternatively 

known as calsenilin or potassium channel-interacting protein 3 (KChIP3), is a 29 kDa  NCS 
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protein, which  is  involved in numerous biological processes, such as gene apoptosis, pain 

sensation, memory and learning processes, and modulation of Kv4 voltage channels 

expression and kinetics (An, Bowlby et al. 2000, Buxbaum, Choi et al. 1998, Carrion, Link 

et al. 1999). In the nucleus, it regulates the expression of prodynorphin and c-fos gene by 

binding to the DRE (downstream regulatory element) sequence in a calcium-dependent 

manner (Carrion, Link et al. 1999, Cheng, Pitcher et al. 2002). In the absence of Ca2+, 

DREAM associates to the DRE promoter region and consequently inhibits gene 

transcriptions. These genes have been found to be involved in cell homeostasis, apoptosis, 

and pain modulation (Costigan, Woolf 2002, Fontán-Lozano, Romero-Granados et al. 

2009). In the cytoplasm, DREAM interacts with the carboxy-terminal fragment (CTF) of 

presenilin-1(PS1) and facilitate the production of the Aβ42 peptide, a peptide involved in 

Alzheimer’s disease (Buxbaum, Choi et al. 1998). DREAM also binds to the T1 domain of 

potassium channels and regulates their translocation to membrane and gating kinetics (An, 

Bowlby et al. 2000). The role of DREAM in memory retention, learning, pain sensing, and 

Alzheimer’s disease emphasizes the multifunctional nature of this protein (Buxbaum, Choi 

et al. 1998, Costigan, Woolf 2002, Fontán-Lozano, Romero-Granados et al. 2009). In the 

absence of interacting partners, DREAM does not possess an enzymatic activity, and thus 

its ability to regulate diverse biological processes arises from interaction with different 

binding partners.  

               The three-dimensional NMR structure of Ca2+-bound DREAM (residue 78-256) 

is presented in Figure 3.1 (Lusin, Vanarotti et al. 2008). DREAM contains two domains, 

and each of the domains is composed of two EF-hands (Figure 3.1). A short N- terminus 

-helix together with EF1 (residue 90-119) and EF2 (residue 128-157) form an N–terminal 
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domain, whereas EF3 (residue 163-192) and EF4 (residue 211-240) and a 13 residue long 

C-terminal -helix form a C-terminal domain. Both domains are arranged in a tandem array 

and form a flexible structure with the solvent-exposed hydrophobic groove (Lusin, 

Vanarotti et al. 2008). The four EF-hands have the distinct metal binding property (Gifford, 

Walsh et al. 2007). EF-hand 1  does not bind metal because sterically hindered amino acid 

residues  in the EF-hand loop (Cys 104 and Pro 105) prevent binding of metal; EF-2 binds 

Mg2+ selectively due to  the presence of Asp in the 12th position of the EF-loop instead of 

usual glutamate; and EF-hand 3 and EF-hand 4 bind Ca2+ selectively (Gifford, Walsh et al. 

2007, Lusin, Vanarotti et al. 2008, Osawa, Dace et al. 2005, Osawa, Tong et al. 2001). In 

addition, we have recently shown that EF-hands in DREAM are capable of binding non-

physiological metal Tb3+ with higher affinity than Ca2+ (Gonzalez, Ramos et al. 2016). 

               DREAM protein is expressed in the hippocampus, the part of the brain involved 

in learning and memory consolidation (Carrion, Link et al. 1999, Fontán-Lozano, Romero-

Granados et al. 2009). The hippocampus region is strongly impacted by Pb2+ as the Pb2+ 

exposure alters the expression of 167 hippocampus genes in rats (Schneider, Anderson et 

al. 2011) and chronic exposure to Pb2+ leads to cell death (Weisskopf, Hu et al. 2004, Chao, 

Moss et al. 2007). Also, Pb2+ poisoning leads to a decrease in neuronal density in the 

hippocampus (Weisskopf, Hu et al. 2004). Because DREAM is expressed in the 

hippocampus and Pb2+ strongly binds to EF-hands in calmodulin, we hypothesize that 

DREAM may represent a  molecular target for Pb2+ poisoning. In this report, we implement 

a combination of fluorescence and calorimetric techniques to show that Pb2+ binds at the 

EF-hands in the C-terminal domain of DREAM. Then, we investigate whether Pb2+ binding 

to DREAM modulates the interaction between DREAM and intracellular partners. We 
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report that Pb2+ binds to two  EF-hands in DREAM with equilibrium affinity constant 

higher than that determined for Ca2+. Pb2+association triggers changes in the DREAM 

secondary and tertiary structures that are analogous to the Ca2+ association, including 

increased exposure of hydrophobic cavities on the DREAM surface. Such structural 

reorganization results in increased affinity for small hydrophobic molecules such as  1,8-

ANS. Pb2+association also modulates interactions between DREAM and model peptides 

that correspond to binding sites of intracellular partners Kv channels and presenilin. These 

results indicate that DREAM, and other NCS, may represent molecular targets for Pb2+, 

and association of Pb2+ to the members of the NCS subfamily may lead to 

neuropathological conditions attributed to Pb2+ neurotoxicity. 

 

 

Figure 3.1 Structure of Ca2+ bound DREAM (PDB entry 

2JUL). The four EF-hands of DREAM are colored in orange 

(EF-hand 1), green (EF-hand 2), blue (EF-hand 3), and red 

(EF-hand 4). The helix-1 and helix-10 are shown in cyan. Ca2+ 

ions bound to EF-hand 3 and EF-hand 4 are shown as yellow 

spheres. 
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3.2 Results and discussion  
 

3.2.1 Pb2+ Association Alters the Secondary and Tertiary Structure of DREAM. 

                   

                  Tryptophan emission is a popular tool to probe structural transitions in proteins. 

Ca2+ binding to DREAM protein that lacks first 64 amino acid residues (DREAM(64)) 

triggers structural changes that lead to a decrease in the emission intensity of the tryptophan 

residue W169, which is located between the N- and C- terminal domain (Pham, Dhulipala 

et al. 2015, Carrion, Mellstrom et al. 1998). The emission spectra of DREAM(64) in the 

presence of Ca2+, Pb2+, Ca2+Pb2+ and in the apoform are shown in Figure 3.2A. The 

emission intensity of Trp decreases by ~24% at 335 nm upon binding of Pb2+ to the 

apoprotein, pointing towards analogous structural rearrangement at the interface between 

EF-hand 2 and EF-hand 3 as observed upon Ca2+ binding. Interestingly, the quenching of 

Trp emission intensity in Pb2+-bound DREAM(64) is more pronounced compared with 

Ca2+-bound DREAM(64). Addition of Pb2+ to Ca2+ bound DREAM(64) results in the 

emission spectrum that is nearly superimposable with the emission spectrum of Pb2+-bound 

DREAM(64), suggesting that  Pb2+ effectively displaces Ca2+ from the EF-hands, 

pointing towards a higher affinity of Pb2+ for the Ca2+ binding sites in DREAM. To 

determine the equilibrium dissociation constant for Pb2+ interactions with DREAM, Pb2+ 

was titrated into Ca2+-bound DREAM(64) and the fraction of Pb2+ bound to the protein 

was calculated from the decrease in the Trp emission intensity at 329 nm according to 

Equation 1 (Figure 3.2B). Data were fitted to Equation 2  and the apparent dissociation 

constant was determined to be 2.0 ± 0.2  µM (Figure 3.2B). Using the Kd value previously 
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Figure 3.2. Fluorescence emission spectra of 20 μM DREAM(Δ64) in the metal 

free form and in the presence of Ca2+ and/or Pb2+. Conditions: 20 mM Tris buffer 

(pH 7.4),  1mM EDTA, 1 mM Ca2+, 40 μM Pb2+, and 1mM Ca2+and 40μM Pb2+; 

samples were excited at 295 nm and experiments were carried out at 20 °C (A). 

Titration curve for Pb2+ binding to Ca2+DREAM. The fraction bound was 

determined based on decrease in Trp169 emission intensity at increasing Pb2+ 

concentration. Conditions: 20 μM DREAM(Δ64) in 5 mM Tris, pH 7.4 and 100 

μM Ca2+. Experimental points correspond to the averadge value determined from 

three independent measurments. The solid line represents the fit using Equation 

2; the standard deviations are shown as error bars (B). Fluorescence emission 

spectra of 20 μM DREAM(Δ160). Conditions as described for Figure 3.2A (C). 
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determined for Ca2+ binding to apoDREAM(64) (Kd = 1 μM), (Osawa, Dace et al. 2005) 

the equilibrium dissociation constant for the Pb2+ association to DREAM(64) was found 

to be 20 ± 2 nM (Equation 3), indicating that Pb2+ binds to EF-hands in DREAM with 50 

times higher affinity than Ca2+. This is consistent with the previous study for Pb2+ titration 

to CaM, in which a 10-times higher affinity for Pb2+ binding to the N-terminal domain of 

CaM compared with Ca2+ was reported (Kirberger, Wong et al. 2013).  

Among four EF-hands found in the DREAM structure, only EF-hand 3 and EF-

hand 4 in the C- terminal domain bind Ca2+ with the high affinity. To probe that Pb2+ 

replaces Ca2+ from the EF-hand located in the C-terminal domain, we measured the 

emission spectra of DREAM construct that corresponds to the C-terminal domain, 

DREAM(160), under conditions identical to those for DREAM(64) (Figure 3.2C). Pb2+ 

association to DREAM(160) shows an analogous decrease in emission intensity as 

observed for Ca2+ binding in agreement with Pb2+ binding to  EF-3, EF-4, or both. The Trp 

emission spectra are slightly red-shifted in DREAM(160) (λmax for apo and Pb2+ 

DREAM((160) are 341 nm and 335 nm, respectively) compared with DREAM(64 (λmax 

for apo and Pb2+ DREAM((64) are 335 nm and 329 nm, respectively)), which could be 

explained by an increased solvent exposure of Trp side chain in this construct.  

Pb2+association to DREAM(64) is further supported by CD data. Far-UV CD data reveals 

that CD signal at 208-222 nm decreases upon Pb2+ binding (Figure 3.3A). Interestingly, the 

CD spectrum of Pb2+-bound DREAM(64) is intermediate between the signal for apo and 

Ca2+DREAM(64). The decrease in CD signal in Ca2+- or Pb2+-bound DREAM(64) can 

be attributed to an increase of -helical content as well as rearrangement of -helices. The 
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addition of Pb2+ to Ca2+DREAM(64) leads to a CD spectrum that is identical with Pb2+-

bound DREAM(64), providing further evidence of Ca2+ displacement by Pb2+. Analysis 

of the far-UV CD data using secondary structure prediction tool K2D3 shows that -helical 

property of the protein increases from 64% in apoDREAM(64)  to 72% in Pb2+ 

DREAM(64) and Ca2+Pb2+ DREAM(64)  and 74% in Ca2+DREAM(64). Contrary to 

far-UV CD data, near-UV CD signal increases upon Ca2+ and Pb2+ binding (Figure 3.3B). 

The peaks between 256–272 nm could be attributed to phenylalanine residues, whereas the 

peak near 292 nm is likely due to the tyrosine residue. The comparable increase in the near-

UV CD-signal upon Ca2+ and Pb2+ binding suggest that the tertiary structure of Pb2+-bound 

DREAM(64) is analogous to Ca2+-bound DREAM(64). The near-uv CD spectrum of 

Pb2+-DREAM(64)  is identical with Ca2+Pb2+-DREAM(64) corroborate far-UV CD data 

and fluorescence data that Pb2+ displaces Ca2+ from the EF-hand. 

Figure 3.3. (A) Far-UV CD spectra of 20 μM DREAM(Δ64) in  the presence 

of 1mM EDTA, 1mM Ca2+, 40 µM Pb2+, and (1mM Ca2+ and 40 μM Pb2+) in 

20 mM Tris (pH 7.4). (B) Near-UV CD spectra of 40 μM DREAM(Δ64) in  

the presence of 1mM EDTA, 1mM Ca2+, 40 µM Pb2+, and (1mM Ca2+ and 40 

μM Pb2+) in 5 mM phosphate (pH 7.4). 
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               We have also determined the Trp169 lifetime in phase modulation measurements 

(Figure 3.4 and Table 3.1). The data were analyzed using a sum of a Gaussian distribution 

model and a discrete exponential decay. Two lifetimes were observed for both apo and 

metal-bound DREAM(64) and were previously attributed to the presence of two Trp 169 

rotamers (t and g+) (Pham, Dhulipala et al. 2015).  G+-rotamer corresponds to more 

solvent-exposed Trp 169 side chain and thus displays the longer lifetime, whereas being 

more efficiently quenched by nearby amino acid residues, the t-rotamer exhibits a shorter 

lifetime (Pham, Dhulipala et al. 2015). Upon binding of Pb2+, the average lifetime of Trp 

169 decreases from 4.4 ± 0.1 ns to  3.8 ± 0.1 ns, which is due to a decrease in the fractional 

intensity contribution associated with the longer lifetime and slightly faster Gaussian decay 

(from 2.1 ± 0.1 ns for apoDREAM to 1.6 ± 0.2 ns for Ca2+ or Pb2+DREAM) (Table 3.1). 

These data are consistent with the steady-state emission data, suggesting that the 

association of Pb2+ to DREAM triggers a structural transition that is analogous to that 

triggered by Ca2+ association to EF-hand 3 and EF-hand 4. 
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Figure 3.4. Frequency-domain intensity decay of 20 µM apo (squares), 

Ca2+(circle), Pb2+ (up triangle), and Ca2+Pb2+(down triangle)DREAM(64) in 

20 mM Tris (pH 7.4). The phase delay is shown as solid symbols and 

modulation ratio as empty symbols. Solid lines represent data fitting using a 

(one Gaussian distribution and single exponential decay) model. 
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Table 3.1. Fluorescence decay parameters for DREAM(64) as a function of Ca2+/Pb2+ binding to EF-hands. 

Samples 
 

τ1 (ns) 1(%) τ2 (ns) 2(%) f1(%) f2(%) w1 <τ> (ns) 2 

apo  2.1 ± 0.1 17.1 ± 0.2 5.9 ± 0.1 82.9 ± 0.2 41.2 ± 0.4 59.8 ± 0.4 1.1 ± 0.1 4.4 ± 0.1 2.9 

Ca2+  1.6 ± 0.2 15.9 ± 0.4 5.9 ± 0.1 84.1 ± 0.4 49.3 ± 0.3 51.7 ± 0.3 1.0 ± 0.1 3.8 ± 0.1 1.6 

Pb2+  1.6 ± 0.2 15.8 ± 0.3 5.9 ± 0.1 84.2 ± 0.3 49.6 ± 0.4 51.4 ± 0.4 1.0 ± 0.1 3.8 ± 0.1 1.6 

Ca2+Pb2+ 1.6 ± 0.2 15.8± 0.5 5.9 ± 0.1 84.2 ± 0.5 50.5 ± 0.5 49.5 ± 0.5 1.0 ± 0.1 3.8 ± 0.2 1.6 

Recovered from global analysis of the phase and modulation data using a (one Gaussian distribution and discrete single 

exponential decay) model. 1 is the decay time of the Gaussian distribution with a width of distribution w1; 2 is the lifetime 

of the discrete single exponential term; 1 and 2 are pre-exponential decays; f1 and f2 are exponential decay fraction. 2 

represents the goodness of the fit. Lifetime parameters represent average of three independent measurements; standard 

deviations are shown as errors.  Phase and modulation errors were set at ≤ 0.2° and ≤ 0.004 respectively. 
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3.2.2 Pb2+ Binding promotes DREAM Interactions with Hydrophobic Molecule 1,8-ANS.  

               We have previously shown that Ca2+ modulates DREAM affinity for small 

organic molecules such as 1,8-ANS and arachidonic acid (Gonzalez, Miksovska 2014). To 

investigate whether Pb2+ binding influences DREAM interactions with hydrophobic 

molecules, we have monitored Pb2+-bound DREAM interactions with 1,8-ANS. This probe 

offers a spectroscopic approach for assessing the hydrophobicity of the protein surface due 

to its increase in the emission intensity upon the association to hydrophobic patches on the 

protein surface. 1,8-ANS emission intensity increases in the presence of apoDREAM(Δ64) 

because of  1,8-ANS binding to the protein. The further increase in the emission of Pb2+ or 

Ca2+-bound DREAM(Δ64) compared with the apo form suggest that 1,8-ANS associates 

to the hydrophobic cavities on the DREAM (Δ64) surface with a higher affinity in the 

presence of Ca2+ or Pb2+ (Figure 3.5A). The emission spectrum of Pb2+-bound 

DREAM(Δ64):1,8-ANS complex is identical with Ca2+Pb2+-DREAM(Δ64), suggesting 

that Pb2+ binds to DREAM(Δ64) with higher affinity and displaces Ca2+ from EF-hand, 

which is consistent with CD and Trp emission data. DREAM(160):1,8-ANS complexes 

show emission spectra that are analogous to DREAM(Δ64):1,8-ANS complexes (Figure 

3.5B). We determined the affinity of the 1,8-ANS probe for DREAM by titrating the 

constant amount of 1,8-ANS against DREAM(Δ64) (Figure 3.5C). The fraction of 1,8-

ANS bound to protein was calculated from the increase in emission intensity at 466 nm 

(Equation 1), and binding isotherm (Figure 3.5C ) was analyzed according to Equation 2. 

The Kd value obtained for 1,8-ANS binding to Pb2+-bound DREAM(Δ64) is  87 ± 4 µM 

(Figure 3.5C ), which is similar to the Kd value obtained for Ca2+-bound DREAM(Δ64) 

(107±11 µM) (data not shown), suggesting that  Ca2+- and Pb2+-bound DREAM(Δ64) have 
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similar affinity for 1,8-ANS. The affinity of Pb2+ DREAM (Δ64) for 1,8-ANS complex is 

approximately two times higher compared with the value previously determined for the 

apo form (195±20 µM) (Gonzalez, Miksovska 2014), which is consistent with an increased 

accessibility of the 1,8-ANS binding sites in Pb2+ bound protein. 

 

             The 1,8-ANS fluorescence lifetimes are also sensitive to structural changes 

associated with Ca2+ binding to DREAM(Δ64). To investigate whether Pb2+ binding to 

DREAM influences the lifetime of 1,8-ANS, we measured the lifetime of 

DREAM(Δ64):1,8-ANS complexes (Figure 3.6). 1,8-ANS bound to apoDREAM exhibits 

two fluorescent lifetimes (1 = 4.8 ± 0.1 ns and 2 = 17.2 ± 0.1 ns), which can be attributed 

to 1,8-ANS associated to at least two 1,8-ANS binding sites on DREAM surface (Table 

Figure 3.5. Emission spectra of (A) 1,8-ANS:DREAM(Δ64) 

and (B) 1,8-ANS:DREAM(Δ160) complexes as a function 

of Pb2+ or Ca2+ binding to the protein. Conditions: 20 µM 

DREAM(Δ64) and 20 µM 1,8-ANS; excited at 350 nm. (C) 

Titration of 10 µM 1,8-ANS with Pb2+DREAM(Δ64). The fit 

of the experimental data using Equation 2 is shown as a solid 

line. Inset: 1,8-ANS structure.  
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3.2). Previously, we used AutoDock software version 4.2 to identify 1,8-ANS binding sites 

on DREAM surface (Gonzalez, Miksovska 2014, Morris, Huey et al. 2009). One binding 

site was found between the helix 8 and helix 9 (EF-hand 4). This binding site is partially 

solvent-exposed and 1,8-ANS bound to this side was associated with a shorter lifetime. 

The second site was identified between the EF-hand 3 and EF-hand 4. This is a more 

hydrophobic side and 1,8-ANS bound to this site is likely to exhibit a longer lifetime. 

Addition of  Pb2+ to apoDREAM(Δ64):1,8-ANS complex leads to an increase in the longer 

lifetime (2 = 18.4 ± 0.2 ns) and an approximately two-fold increase in the corresponding 

pre-exponential parameter α2 compared with the apoprotein, suggesting Pb2+ association to 

EF-hand 3 and EF-hand 4 increases the affinity for 1,8-ANS binding to the DREAM and 

Figure 3.6. Frequency-domain intensity decay of 40 μΜ 1,8-

ANS binding to 40 μΜ DREAM(Δ64) in presence of EDTA 

(squares), Ca2+ (circle), Pb2+ (up triangle), and Ca2+Pb2+ 

(down triangle). The phase delay is shown as solid symbols 

and modulation ratio as empty symbols. Solid lines represent 

data fitting using three-exponential decay model. 
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leads to an increased accessibility of the hydrophobic cavity in the C-terminal domain. 

Individual 1,8-ANS lifetimes are moderatedly  changed by Pb2 to DREAM (Δ64), which 

is consistent with 1,8-ANS binding to identical binding sites in Ca2+-free, Pb2+-, and Ca2+-

bound protein.  
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Table 3.2. Fluorescence decay parameters for DREAM(64)–1,8-ANS complexes as a function of 

Ca2+ and/or Pb2+ binding to EF-hands. 

1,8-ANS 1 (ns) 1(%) 2 (ns) 2(%) f1(%) f2(%) 2 

apoDREAM(64) 4.8 ± 0.1 11.3 ± 0.8 17.2 ± 0.1 16.2 ± 0.7 14.3 ± 0.5 80.9 ± 0.6 2.0 

Ca2+DREAM(64) 5.1 ± 0.2 15.1 ± 0.7 18.3 ± 0.2  34.5 ± 0.5 8.9 ± 0.4 88.5 ± 0.8 1.8 

Pb2+DREAM(64)  5.1 ± 0.3 15.1 ± 0.6 18.4 ± 0.2  33.2 ± 0.4 9.1 ± 0.3 88.3 ± 0.6 1.7 

Pb2+Ca2+DREAM(6

4) 

5.0 ± 0.2 15.2 ± 0.5 18.4 ± 0.3  35.3 ± 0.6 9.3 ± 0.4 88.1 ± 0.5 1.1 

Data recovered from Globals software using a sum of three discrete exponential decays with fixed 1,8-

ANS lifetime (0 = 0.28 ns). Lifetime parameters represent average of three independent 

measurements; standard deviations are shown as errors. Phase and modulation errors were set at ≤ 0.2° 

and ≤ 0.004 respectively. 
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3.2.3 Pb2+ Binding to DREAM is Entropy Driven.  

To complement the results from fluorescence experiments, ITC studies were 

carried out to determine thermodynamic parameters for the Pb2+ association to 

Ca2+DREAM(64) and Ca2+DREAM(160) (Figure 3.7A,B). Isothermal calorimetry data  

reveal that displacement of Ca2+ from DREAM is endothermic and can be modeled as a 

sequential process with two binding sites. Satisfactory fits were obtained using both a one-

set of sites model and sequential process with two sites. Because we used the sequential 

model previously to analyze Tb3+ binding to Ca2+DREAM (Gonzalez, Ramos et al. 2016), 

a sequential model with two sites was employed here and the thermodynamic parameters 

are listed in Table 3.3. Two Pb2+ ions bind to Ca2+DREAM(64) with Kapp values  2.63  ± 

Figure 3.7. ITC isotherms for Pb2+ displacement of Ca2+ from (A) DREAM 

(Δ64) and (B) DREAM (Δ160). The upper panels of the profile reflect the 

thermal power expressed in units of microcalories per second, whereas the 

lower panel represents integrated reaction heats (ΔH) expressed in units of 

kilocalories per mole. The solid line represents the best fitting curve with 

parameters listed in Table 3.3. 
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0.18 µM and 8.74 ± 0.02  µM, respectively. The profile of the ITC isotherm for Pb2+ 

displacement of Ca2+ bound to DREAM(64) is similar to binding isotherm for Tb3+ 

displacement of Ca2+ bound to DREAM(64) (Gonzalez, Ramos et al. 2016), points 

towards a similar mechanism for Ca2+ displacement from DREAM(64) by Pb2+ and Tb3+ 

(Table 3.3). The calorimetric study for the Pb2+ displacement of  Ca2+ bound at the EF-

hands of DREAM(160) under conditions identical to those for the Pb2+ displacement of 

Ca2+ bound at the EF-hands of DREAM(64) (Figure 3.7B) provides thermodynamic 

parameters that are nearly identical to the parameters for Pb2+ displacement of Ca2+ bound 

from DREAM(64) (Table 3.3). These results suggest that the first 160 amino acid residues have a 

negligible role in modulating Pb2+ interactions with EF-hands in the DREAM C-terminal domain in 

the presence of Ca2+. In both protein constructs, Pb2+ associates to two binding sites with a relatively 

high affinity (see below). However, we cannot eliminate the potential presence of additional sites for 

Pb2+ of lower affinity in the DREAM N- or C- terminal domain as precipitation of Ca2+-bound 

DREAM at increased Pb2+concentrations (above 50 μM) prevented detection of those sites.  

                   Pb2+ displacement of Ca2+ from the EF-hand of the DREAM(64) is associated with  G 

of -14.48 ± 0.08 kcal mol-1, which is identical to the Pb2+ displacement of the Ca2+ from the EF-hand 

of the DREAM(160) G= -14.52 ± 0.05 kcal·mol-1. Using the overall Kapp value obtained from 

ITC measurements (4.81 ± 0.06 µM), we determined the Kd value for Pb2+ binding to apo-

DREAM to be 47 ± 0.6 nM, which is similar to the value obtained from fluorescence titration 

data (Kd = 20 ± 2 nM). The reaction is entropy-driven as positive reaction enthalpy and positive 

entropy change are associated with the Pb2+ binding to Ca2+ DREAM. The entropy gain 

cannot be attributed to release of the water molecule(s) to the bulk solvent as the hydration 
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sphere of Ca2+ consists of eight water molecules (Jalilehvand, Spångberg et al. 2001), whereas 

six molecules were found the first hydration sphere of  Pb2+ (Marcus 1991). Kirberger and 

Yang (Kirberger, Yang 2008) have analyzed the X-ray structures of Ca2+-bound CaM and 

Pb2+-bound CaM and reported a marginal change in the EF-hand geometry, suggesting that 

observed entropy-driven for Pb2+ binding to Ca2+DREAM may originate from subtle 

changes in the DREAM conformation. This is in agreement with the spectroscopic data 

presented here which shows decreased Trp emission intensity in Pb2+DREAM compared 

with Ca2+DREAM.  
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Table 3.3. ITC parameters recovered for Tb3+ and Pb2+ displacement of Ca2+ from EF hands of DREAM using a 

sequential model. 

 
  Kapp1 

(µM) 

Kapp2 

(µM) 

H1  

(kcal/mol) 

H2 

(kcal/mol) 

TS1  

(kcal/mol) 

TS2 

(kcal/mol) 

DREAM(64) + Pb2+ 2.63 ± 0.18 8.74 ± 0.02 6.58 ± 0.39 6.10 ± 0.55 14.15 ± 0.47 13.01 ± 0.55 

DREAM(160) + Pb2+ 2.94 ± 0.41 8.72 ± 0.01 6.92 ± 0.07 6.64 ± 0.09 14.45 ± 0.03 13.53 ± 0.08 

DREAM(64) + Tb3+  4.5 12 13 ± 9 18 ± 6 20 ± 9 24 ± 0.4 

All Experiments conducted in triplicate at 25 °C, errors are standard deviations.  Data for the Tb3+ association to DREAM 

are from ref (Gonzalez, Ramos et al. 2016). 
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3.2.4 Pb2+ Association to DREAM Facilitates DREAM’s Interactions with Intracellular 

Partners. 

                  Jo et al. (Jo, Jang et al. 2005) previously reported that DREAM binds to the C-

terminal of presenilin-1 (PS1-CTF) in the presence of Ca2+ and stimulates γ- secretase 

activity which facilitates the generation of Aβ42 in Alzheimer’s disease. To determine 

whether Pb2+ association to DREAM modulates  DREAM affinity for presenilin, the 

equilibrium binding constant for helix-9 of presenilin-1 (PS1HL9) association to DREAM 

was measured. We used PS1HL9 as a model for presenilin-1 since pull-down studies have 

shown that DREAM interacts with residues from helix-9 (Buxbaum, Choi et al. 1998, 

Pham, Miksovska 2016). FITC-labeled PS1HL9 was titrated with Pb2+-bound 

DREAM(64) and the change in the anisotropy was probed (Figure 3.8A,B). The fraction 

of DREAM bound to PS1HL9 was then plotted as a function of Pb2+-bound DREAM(64) 

concentration and the dissociation constant was recovered using Equation 2 (Table 3.4  and 

Figure 3.8A,B). Titration data shows that Pb2+DREAM binds PS1HL9 with a four-time 

lower affinity compare to Ca2+-bound DREAM(64)  (Kd = 2.56 ± 0.23 µM and 0.6 ± 0.1 

Figure 3.8A,B. Titration of 0.5 μM PS1HL9 with Pb2+DREAM (64). Left 

panel represents raw anisotropy data. Right panel shows fraction bound 

that was calculated using Equation 1. In both cases, solid lines correspond 

to fit of the experimental data using Equation 2. 
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µM, respectively). However, the affinity of Pb2+DREAM and Ca2+DREAM for PS1HL9 is 

enhanced compared to apo DREAM(64) (Kd = 183 ± 12 µM) (Table 3.4) (Pham, 

Miksovska 2016). Several studies demonstrated that an early life exposure to Pb2+ 

promotes  developmental reprogramming of  APP gene expression, leading to an 

augmented expression of amyloid precursor protein during adulthood (Huang, Bihaqi et al. 

2011, Wu, Basha et al. 2008, Basha, Murali et al. 2005, Basha, Wei et al. 2005). The 

interaction between Pb2+-bound DREAM and PS1HL9 observed here suggest that elevated 

concentrations of Pb2+ may directly impact the proteolytic processing of the β-amyloid 

precursor protein.  

               In addition to binding to presenilin, DREAM and other KChIPs are integral 

auxiliary subunits of A-type potassium voltage channels and the formation of Kv4–KChIP 

complex has been shown to result in modulation of gating properties, surface expression 

and subunit assembly of Kv4 channels (An, Bowlby et al. 2000, Gonzalez, Pham et al. 

2014, Bahring, Dannenberg et al. 2001, Scannevin, Wang et al. 2004). Although DREAM 

binds to Kv channels in a Ca2+-independent manner, the presence of Ca2+ modulates 

kinetics of Kv channel inactivation (Patel, Campbell et al. 2002). Crystallographic studies 

demonstrated that the T-1 domain at the N-terminus of Kv4 interacts with  KChIPs (An, 

Bowlby et al. 2000, Pioletti, Findeisen et al. 2006, Bahring, Dannenberg et al. 2001, 

Scannevin, Wang et al. 2004). Two binding sites were found to be involved in binding of 

Kv4.2 to KChIP1, namely site-1, which is comprised of non-polar residues 2–22 and site-

2, containing more polar residues 70–90 (Callsen, Isbrandt et al. 2005). Our previous 

research showed that both site-1 and site-2  interact with DREAM in a calcium-dependent 

manner (Gonzalez, Pham et al. 2014). To determine whether Pb2+ binding to DREAM EF-
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hands modulates interactions between DREAM and  site-1 and site-2, we titrated  FITC-

tagged site-1 and site-2 with Pb2+-bound DREAM(64) in anisotropy measurements 

(Figure 3.9A,B and 3.10A,B). The equilibrium dissociation constants were determined 

analogously as described above for PS1HL9 (Table 3.4 and Figure 3.9A,B and 3.10A,B). 

The titration data show that Pb2+-bound DREAM has 50-times higher affinity for “site-2” 

(Kd = 10.61 ±0 .40 µM) and 12-times higher affinity for “site-1” (Kd = 5.9 ± 0.6 µM) 

Figure 3.9A,B. Titration of 0.5 μM Kv4.3 (2–22) “site-1” with 

Pb2+DREAM(64). Right panel shows fraction bound that was calculated 

using Equation 1. In both cases, solid lines correspond to fit of the experimental 

data using Equation 2. 

 

Figure 3.10A,B. Titration of 0.5 μM Kv4.3 (70–90) “site-2” with 

Pb2+DREAM(64). Right panel shows fraction bound that was calculated 

using Equation 1. In both cases, solid lines correspond to fit of the 

experimental data using Equation 2. 
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compared with the previously determined dissociation constant  for metal-free DREAM 

(Table 3.4) (Gonzalez, Pham et al. 2014)48. Analogous Kd values for Ca2+-bound 

DREAM(64) and Pb2+-bound DREAM(64) association to site-1 and site-2  indicate that 

in the absence of Ca2+, Pb2+ association to DREAM may impact the deactivation kinetics 

of Kv channels complexes in a manner analogous to Ca2+ association. Considering the 

implication of Kv channels in hippocampus-dependent learning and memory (Lugo, 

Brewster et al. 2012), the Kv channels:KChIP complexes may represent a molecular target 

contributing to Pb2+ induced memory and learning deficiencies. Previously, Gorkhali et al. 

(Gorkhali, Huang et al. 2016) have proposed that neuronal calcium sensor 1 (NCS-1) may 

be a plausible target for Pb2+ neurotoxicity. NCS-1 was associated with numerous neuronal 

processes, including regulation of neurotransmission, nuclear Ca2+ regulation, cognitive 

functions, and neuron development through interactions with various downstream partners, 

including the dopamine receptors, calcineurin, and phosphatidylinositol-4 kinase-IIIb 

(Gorkhali, Huang et al. 2016, Boeckel, Ehrlich 2018). Considering high sequence identity 

of the C-terminal domain of neuronal calcium sensors (Ames, Lim 2012) and significant 

amount of Pb2+ in the brain (0.52–4 ppm) due to occupational and environmental exposure 

to the Pb2+ (Barry, Mossman 1970, Grandjean 1978), especially in the hippocampus 

(Grandjean 1978), other members of NCS family are likely to bind Pb2+ with higher affinity 

than that for Ca2+ and be involved in Pb2+-induced neurotoxicity. 
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Table 3.4. Equilibrium dissociation constants for presenilin-1 helix 9 “PS1HL9”, Kv4.3(2-22) 

“site-1”, and Kv4.3(70-90) “site-2” binding to DREAM constructs. 

 PS1HL9  

Kd (μM) 

Site-1 

Kd (μM) 

Site-2  

Kd (μM) 

apoDREAM(Δ64) 183 ± 12  70 ± 3 ~500 

Ca2+DREAM(Δ64) 0.6 ± 0.1  2.7 ± 0.1 10 ± 1  

Pb2+DREAM(Δ64) 2.56 ± 0.23  5.9 ± 0.6 10.61 ± 0.40 

Determined using steady-state anisotropy change. Data were fitted to Equation 2. Data for 

apoDREAM(Δ64) and Ca2+DREAM(Δ64) are from reference (Pham, Miksovska 2016) and 

(Gonzalez, Pham et al. 2014), respectively. Titrations of Pb2+DREAM(Δ64) with PS1HL9, site-1 

and site-2 were conducted in triplicate. Average Kd values are  reported and standard deviations are 

shown as errors. 
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3.3 Summary 

               In this report, we demonstrate that Pb2+ binds to EF-hands in DREAM for the first 

time. Based on fluorescence emission, circular dichroism, ITC, and fluorescence lifetime 

data, we provide compelling evidence that Pb2+ is able to induce structural changes 

analogous to Ca2+ binding. Pb2+ binding to DREAM also alters DREAM interaction with 

intracellular partners, such as presenilin-1 and site-1 and site-2 of potassium voltage 

channel. These results imply that DREAM and possibly other neuronal calcium sensors 

bind Pb2+ with a high affinity in vivo, and Pb2+ interactin with neuronal calcium sensors 

could explain lead-induced neurotoxicity. 
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4. CADMIUM ASSOCIATION TO DREAM PROMOTES DREAM 

INTERACTIONS WITH INTRACELLULAR PARTNERS IN A SIMILAR 

MANNER AS ITS PHYSIOLOGICAL LIGAND, CALCIUM. 

4.1 Background and significance  

               Cd2+ has been recognized as one of the most toxic environmental and 

industrial pollutants which exerts adverse health effects in general population 

because of its prolonged half-life in human (15–20 years) and low rate of excretion 

from the human body (Järup, Åkesson 2009, Roels, Bernard et al. 1993, Satarug, Moore 

2004, Jin, Lu et al. 1998). It has been assigned as class I carcinogen by the 

International Agency for Research on Cancer (IARC Working Group on the 

Evaluation of the Carcinogenic Risk of Chemicals to Humans 1993). Occupational 

and as well as non-occupational exposure, including consumption of tobacco 

products, food, and dietary intake (Satarug, Moore 2004, IARC Working Group on 

the Evaluation of the Carcinogenic Risk of Chemicals to Humans 1993, IPCS 1992) 

to Cd2+ has been associated with different cancers, including stomach, testis, renal 

and others (Waalkes 2000, Pesch, Haerting et al. 2000, Joseph, Muchnok et al. 

2001). The central nervous system is also susceptible to Cd2+ toxicity (Cao, Chen et 

al. 2009, Lopez, Figueroa et al. 2003), especially in children, elderly people, and 

pregnant women. Elevated concentration of Cd2+ has been reported in children with 

mental retardation and learning difficulties compared with a reference group (Pihl, 

Parkes 1977, Marlowe, Errera et al. 1983, Capel, Pinnock et al. 1981). Other studies 

have shown that Cd2+concentration in hair is inversely related to the intelligent 

quotient (Thatcher, Lester et al. 1982, Thatcher, McAlaster et al. 1984). An 
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increasing number of clinical investigations have suggested that Cd2+ intoxication is 

a probable etiological factor of neurodegenerative diseases, such as Parkinson’s 

disease, Huntington’s disease, and Alzheimer’s disease (Okuda, Iwamoto et al. 

1997, Johnson 2001, Panayi, Spyrou et al. 2002). The mechanism through which 

Cd2+ exerts its toxic effects remains unresolved. Oxidative stress, interference with 

Ca2+- and Zn2+-dependent processes, epigenetic modification, apoptosis induction, 

and effects on neurotransmitters were proposed to be the underlying mechanism 

(Wang, Du 2013, Méndez-Armenta, Rios 2007). Animal model studies have shown that 

Cd2+ exposure has been associated with increased production of reactive oxygen 

species which in turns results in increased lipid peroxidation, altered calcium 

homeostasis, and DNA damage (Méndez-Armenta, Villeda-Hernández et al. 2003, El‐

Maraghy, Gad et al. 2001, Kumar, Agarwal et al. 1996, Lopez, Arce et al. 2006, Manca, 

Ricard et al. 1991). Even at relatively low concentrations, Cd2+ inhibits all known 

pathways of Ca2+ influx and thereby interferes with the Ca2+ homeostasis (Méndez-

Armenta, Rios 2007). Yoshida (Yoshida 2001) has shown that Cd2+-exposed neurons 

have a dose-dependent elevated concentration of cytoplasmic and nuclear Ca2+. 

Another study has shown that 50 μM Cd2+ inhibits Ca2+ influx into hepatocytes 

through receptor-operated Ca2+-channels (Thevenod, Jones 1992). The central 

nervous system is highly sensitive to Cd2+ exposure as 24-hour exposure to Cd2+ 

results in a decrease in dopamine, serotonin, and norepinephrine concentration 

(Lafuente, Gonzalez-Carracedo et al. 2003, Lafuente, Fenández-Rey et al. 2001). 

Additionally, experimental studies on rabbits and newborn rats exposed to an 

elevated Cd2+ concentration have demonstrated extensive hemorrhages in the 
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cerebral and cerebellar cortices, neuroglial cells with cytolysis, altered Purkinje 

cells, and several pyramidal cells with pyknotic nuclei (Gabbiani, Baic et al. 1967, 

Wong, Klaassen 1982). Studies on mice have demonstrated that Cd2+ exposure 

impairs hippocampus-dependent memory and learning (Wang, Zhang et al. 

2017). Rigon et al. (Rigon, Cordova et al. 2008) and Kanter et al. (Kanter, Unsal et 

al. 2016) have shown that Cd2+ administration causes a decrease in cell vitality and 

neuronal apoptosis in the hippocampus in a rat model. 

                Cd2+ has been shown to occupy Ca2+ binding site of CaM (Forsén, Thulin et 

al. 1980, Andersson, Forsen et al. 1983) and promotes CaM association and activation 

of phosphodiesterase and myosin light chain kinase (Suzuki, Chao et al. 1985, Chao, 

Bu et al. 1995, Mazzei, Girard et al. 1984). Suzuki et al. (Suzuki, Chao et al. 1985) 

and Mazzei et al. (Mazzei, Girard et al. 1984) postulated that Cd2+competition with 

Ca2+ for EF-hands on CaM is the key of CaM toxicity at the molecular level. Studies 

on protein kinase C have shown that Cd2+ binding to protein kinase C, displaces Zn2+ 

from the regulatory domain and facilitates binding of protein kinase C to a nuclear 

protein (Block, Freyermuth et al. 1992). Other studies have shown that Cd2+ can 

displace Ca2+ from its binding sites in troponin C, the calcium-binding subunit of 

the muscle protein complex troponin (Ellis, Strang et al. 1984, TELEMAN, 

DRAKENBERG et al. 1983). 

              Neuronal calcium sensor (NCS) is a subgroup of EF-hand superfamily that 

includes potassium channel-interacting protein 1–4, recoverin, NCS-1, GCAP, and 

neurocalcin. These proteins are mainly expressed in the brain and retina where they 

transduce Ca2+ signals and regulate a myriad of intracellular processes (Ames, Lim 



 

 

87 
 

2012, Burgoyne, Weiss 2001, Burgoyne 2007). Even though NCS proteins share 

comparatively low sequence similarity with CaM, they are composed of four EF-

hands analogous to CaM and are sensitive to changes in intracellular Ca2+ 

concentration (McCue, Haynes et al. 2010). Downstream regulatory element 

antagonist modulator (DREAM), also known as potassium channel-interacting 

protein 3 (KChIP3) or calsenilin, is a 29 kDa NCS protein that is expressed in the 

hippocampus and has been shown to regulate numerous cellular processes. DREAM 

is the first Ca2+-regulated transcriptional repressor (Carrion, Link et al. 1999). In the 

Ca2+-free state, DREAM binds to the downstream regulatory element (DRE) of 

human prodynorphin and c-fos genes and consequently represses transcription, 

whereas Ca2+ binding alters protein oligomerization resulting in decreased affinity 

for DRE sequence (Carrion, Link et al. 1999, Cheng, Pitcher et al. 2002). 

Prodynorphin and c-fos genes have been associated with apoptosis, pain modulation, 

and cell homeostasis (Costigan, Woolf 2002, Fontán-Lozano, Romero-Granados et al. 

2009). It has been demonstrated that in the presence of Ca2+, DREAM interaction 

with carboxy-terminal fragment (CTF) of presenilin-1 (PS1) and presenilin-2 (PS2) 

stimulates the activity of γ- secretase, which facilitates cleavage of amyloid 

precursor protein and eventually overproduces Aβ42 peptide, a peptide associated 

with Alzheimer’s disease (Buxbaum, Choi et al. 1998, Jo, Jang et al. 2005). DREAM 

also associates with the T1 domain of potassium channels and regulates their 

translocation to the membrane, K+ current, and gating properties (An, Bowlby et al. 

2000). DREAM has been linked to memory and learning processes by acting as a 

transcriptional repressor of CREM in a calcium-dependent fashion (Fontán-Lozano, 
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Romero-Granados et al. 2009). Study of Rashid et al. (Abd Rashid, Hapidin et al. 

2017) proposed that DREAM protein may participate in the mechanism of nicotine 

treatment-prevented learning and memory impairment in REM sleep-deprived rats 

by changing its expression level in the hippocampus. Recent studies have shown that 

Ca2+ bound DREAM binds to CaM and the formation of DREAM:CaM complex 

eliminates nonspecific interaction between DREAM and DRE sites and increases 

activation of calcineurin (Gonzalez, Arango et al. 2015, Ramachandran, Craig et al. 

2012).  

              The three-dimensional NMR structure of N-terminal truncated Ca2+-bound 

DREAM (residue 78-256) (Lusin, Vanarotti et al. 2008), shown in Figure 4.1, 

reveals that DREAM possesses two domains, with each domain comprising of two 

EF-hands. EF-1 (residue 90-119) and EF-2 (residue 128-157) along with a short N- 

Figure 4.1. NMR structure of Ca2+-bound DREAM monomer (PDB entry 

2JUL). The four EF-hands of DREAM are shown in raspberry (EF-hand 

1), slate (EF-hand 2), teal (EF-hand 3), and firebrick (EF-hand 4); Ca2+ 

ions are shown as magenta spheres; W169 is shown as limon stick; and 

rest of the protein is shown in limon. 
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terminus -helix form an N–terminal domain, whereas EF-3 (residue 163-192) and 

EF-4 (residue 211-240) combined with a 13-residue long C-terminal -helix form a 

C-terminal domain. Among four EF-hands of DREAM, EF-hand 1 is not functional 

because the presence of the CPXG sequence at the EF-hand loop distorts Ca2+-

binding geometry. The presence of Asp at the 12th position of the EF-2 loop makes 

this EF-hand specific for Mg2+ and EF-3 and EF-4 bind Ca2+ with a Kd of 1–10 µM 

(Gifford, Walsh et al. 2007, Osawa, Dace et al. 2005, Osawa, Tong et al. 2001). We 

have recently shown that the EF-3 and EF-4 do not exclusively bind Ca2+ as they 

can also bind non-physiological metals Tb3+ and Pb2+ with an affinity that is superior 

to that for Ca2+ (Azam, Miksovska 2018, Gonzalez, Ramos et al. 2016). 

4.2 Results and discussion 

4.2.1 Cd2+ binding promotes the structural reorganization of DREAM.  

               A single tryptophan residue (W169) in WTDREAM(64) sequence is 

located between the N- and C-terminal domain and its emission properties can be 

used to probe inter-domain structural changes associated with the metal binding to 

DREAM. It has been shown previously that in the presence of Ca2+, W169 emission 

intensity decreases and the emission spectrum undergoes a concomitant shift to the 

lower wavelength of 330 nm (Pham, Dhulipala et al. 2015). Close inspection of 

WTDREAM(64) and WTDREAM(160) structures reveals that four charged 

amino acid residues (K168, N172, E165, and E253) are located within 6 Å of the 

indole ring of W169 and may serve as Trp emission quenchers. The decrease in 

emission intensity can be explained by a model in which Ca2+ binding causes 

structural rearrangement of the protein that brings the quencher amino acid 
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residue(s) closer to the indole ring of W169 resulting in a decrease of tryptophan 

emission intensity. The blue shift of emission maximum upon Ca2+ binding is 

indicative of tryptophan being located in a less polar environment in the Ca2+ bound 

state. To investigate whether Cd2+ binds to WTDREAM(64), we measured 

emission spectra of WTDREAM(64) in the presence of Cd2+ (Figure 4.2A).  Trp 

at the emission maximum of 335 nm decreases by ~25% upon addition of Cd2+ and 

the emission maximum shifts to 329 nm, suggesting structural reorganization at the 

interface of EF-2 and EF-3 analogous to rearrangements triggered by the Ca2+ 

binding. Interestingly, Cd2+ association with WTDREAM(64) leads to a more 
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Figure 4.2. Effects of Ca2+ and Cd2+ on emission properties of 

W169 in (A) DREAM(Δ64), (B) DREAM(Δ160), (C) 

DREAM(E186), and (D) DREAM(E234Q). Conditions: 20 µM 

protein in 20 mM Tris pH 7.4, 2 mM EDTA or 2 mM Ca2+, and/or 

100 µM Cd2+. Emission spectra were recorded using 295 nm 

excitation light.
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pronounced decrease in emission intensity than observed for Ca2+ association. The 

addition of Cd2+ to Ca2+bound WTDREAM(64) results in an emission spectrum 

identical to Cd2+ bound WTDREAM(64), indicating Cd2+ binds to DREAM with 

a higher affinity and displaces Ca2+ from the EF-hands. 

              Because the EF-3 and EF-4 of DREAM bind Ca2+, it is expected that the 

EF-3 and EF-4 may also bind Cd2+ as Cd2+ shares similar physical properties with 

Ca2+. To investigate whether Cd2+ binds at EF-3 and EF-4, first, we measured 

emission spectra of WTDREAM(160), a protein construct that lacks EF-1 and EF-

2, under identical conditions as for WTDREAM(64) (Figure 4.2B). Cd2+ 

association causes a decrease in emission intensity analogous to Ca2+ binding, 

suggesting that Cd2+ binds at EF-hand in the C- terminal domain. The bathochromic 

shift of the emission maximum in WTDREAM(160) (λmax = 353 nm) construct 

compared to WTDREAM(64) (λmax = 335 nm) indicates that W169 sidechain in 

WTDREAM(160) is located in the more polar environment due to the absence of 

the N terminal domain. 

               To provide additional insight into Cd2+ interaction with DREAM, we 

prepared DREAM(E186Q) and DREAM(E234Q) constructs with EF-3 and EF-4, 

respectively, being nonfunctional due to the replacement of Glu residue at the 12th 

position of EF-hand loop. Upon Cd2+ addition to DREAM(E186Q), the emission 

intensity decreases in a similar way as observed for WTDREAM(64) and 

WTDREAM(160), suggesting that Cd2+ binds at EF-4 and triggers structural 

changes that modulate emission properties of W169 (Figure 4.2C). Interestingly, the 
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emission spectrum of Cd2+ bound DREAM(E234Q) is nearly identical to that for 

apoDREAM(E234Q) (Figure 4.2D). Although these results may suggest that EF-4 

does not bind Cd2+, at least at metal concentrations probed here, this interpretation 

is inconsistent with the data obtained for Cd2+ binding to DREAM(234Q):1,8-ANS 

complex and with the ITC results as shown below. The nearly identical emission 

spectra of apoDREAM(E234Q) and Cd2+DREAM(E234Q) suggest that Cd2+ 

association to EF-3 does not promote structural changes that impact the emission 

properties of W169. This is consistent with the molecular dynamic data (Pham, 

Dhulipala et al. 2015) as the superposition of MD simulations structures of 

apoDREAM and Ca2+DREAM monomer reveals that the EF-3 undergoes a minor 

reorientation upon Ca2+ association, whereas Ca2+ binding to EF-4 leads to 

repositioning of α-helices from a perpendicular to parallel orientation and 

displacement of α-helix 10. The decrease in the emission intensity of W169 upon 

Ca2+ or Cd2+ association can be explained with a model in which Ca2+ or Cd2+ 

binding to EF-4 bring the residue E253, located in α-helix 10, closer to the indole 

ring of W169, resulting in more efficient quenching of W169 emission. 

           To determine the dissociation constant for Cd2+ binding to DREAM, Cd2+ 

stock was titrated into DREAM(64) protein in the presence of 100 μM Ca2+ (Figure 

4.3). Data were fitted to Equation 1 which reveals that Cd2+ binds to DREAM protein 

with an apparent dissociation constant 8 ± 1 μM. Substituting the value of apparent 

dissociation constant in Equation 3, equilibrium dissociation constant for Cd2+ 

binding to DREAM protein determined to be 80 nM. 
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Figure 4.3. Emission spectra of DREAM(64) as a function of increasing 

concentration of Cd2+. Conditions: 20 μM WTDREAM(64) in 20 mM Tris 

in presence of 100 μM Ca2+. The emission spectra were recorded using 295 

nm excitation (A). The decrease in the emission intensity of DREAM(64)  

due to the Cd2+ binding to Ca2+DREAM. The experimental data were fitted 

using Equation 1 for obtaining equilibrium dissociation constant (B). 
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Figure 4.4. Far-UV CD spectra of (A) 20 µM DREAM(Δ64), (B) 20 µM 

DREAM(Δ160), (C) 20 µM DREAM(E186), and (D) 20 µM 

DREAM(E234Q). Conditions as described in Figure 4.2. 
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             The structural reorientation of DREAM upon Cd2+ association was also 

determined by far-UV CD spectroscopy. CD data presented in Figure 4.4 show that 

that CD signal at 208-222 nm decreases upon Cd2+ binding to WTDREAM(64), 

WTDREAM(160), and DREAM(E186Q) (Figure 4.4A–C).  The decrease in the 

CD signal at 220 and 208 nm indicates an increase in an α-helical content and/or 

reorganization of α-helices. Similar CD spectra of WTDREAM(64) constructs in 

Ca2+- and Cd2+-bound form suggests that binding of both metals causes analogous 

secondary structural rearrangement, which is consistent with Trp emission results. 

Also, the CD signal of DREAM(E234Q) is not affected by Cd2+ association to the 

apo-protein (Figure 4.4D). Far-UV CD data have been analyzed using secondary 

structure prediction tool K2D3 (Louis‐Jeune, Andrade‐Navarro et al. 2012) and results 

reveal that Cd2+ increases the -helical property of the protein by ~ 6% in 

WTDREAM(64) and DREAM(E186Q) and by ~10 % in  WTDREAM(160). 

             In addition to steady-state emission properties of W169, we have 

characterized W169 fluorescence in frequency-domain measurements (Figure 4.5 

and Table 4.1). Modulation-phase data were analyzed using a three discrete 

exponential decay model. Such multi-exponential decay of the single W169 residue 

can be attributed to the presence of multiple rotamers of the indole side chain and/or 

by the presence of multiple conformational states as proposed in Ref (Pham, 

Dhulipala et al. 2015). The average lifetime of W169 decreases from 3.8 ns in 

apoWTDREAM(64) to 3.1 ns and 3.2 ns in Ca2+ and Cd2+ bound protein, 

respectively. The decrease in the average lifetime can be attributed to the decrease 
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of the individual lifetimes and a concomitant increase in the pre-exponential factor 

1 upon Ca2+ or Cd2+ binding to the protein (Table 4.1). Fluorescence decay 

parameters observed for Cd2+WTDREAM(64) closely resembles 

Ca2+WTDREAM(64), pointing towards a similar environment of W169 in Cd2+ 

and Ca2+ bound DREAM.  

 

Figure 4.5. Frequency-domain intensity decay of 20 µM 

apoDREAM(64) (square), Ca2+DREAM(64) (circle), 

Cd2+DREAM(64) (up triangle), and Cd2+Ca2+DREAM (64)  (down 

triangle). Solid symbols represent phase delay, whereas empty symbols 

represent modulation ratio. Solid lines correspond to the fitting of the 

data using a sum of three exponential decay model. 
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Table 4.1.  Fluorescence decay parameters of WTDREAM(64) in the presence and absence of 

Ca2+ and Cd2+. 
 

Samples τ1 

(ns) 

τ2  

(ns) 

τ3  

(ns) 

f1  

(%) 

f2 

 (%) 

f3  

(%) 
1  

(%) 

2 

 (%) 

3 

(%) 

<τ> 

(ns) 
2 

apo 0.24 ± 

0.03 

2.5 ± 

0.1 

7.1 ± 

0.3   

17.3 ± 

0.8 

45.4 ± 

3.0 

37.3 ± 

0.3 

75.1 19.2 5.9 3.8 1.5 

Ca2+ 0.16 ± 

0.02  

1.9 ± 

0.1    

6.3 ± 

0.2    

22.0 ± 

0.9 

37.5 ± 

2.0 

40.5 ± 

2.0 

84.5 12.1 3.3 3.1 0.9 

Cd2+ 0.16 ± 

0.02  

1.9 ± 

0.1  

6.3 ± 

0.2  

22.3 ± 

0.2  

37.3 ± 

2.0 

40.4 ± 

2.0 

84.6 12.0 3.2 3.2 0.6 

 Cd2+Ca2+ 0.16 ± 

0.02  

2.0 ± 

0.1  

6.3 ± 

0.3  

22.5 ± 

0.9 

37.5 ± 

2.0 

40.0 ± 

2.0 

83.9 12.3 3.6 3.2 0.9 

Recovered from Vinci analysis software using a sum of three discrete exponential decays.  Phase 

and modulation errors were respectively set at ≤ 0.2° and ≤0.004.  τ1, τ2, and τ3 represent lifetimes 

of the three discrete exponential decays; f1, f2and f3 are exponential decay fractions; 1, 2, and 3 

represent pre-exponential factors. 2 represents the goodness of the fit. 
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4.2.2 Cd2+ regulates DREAM affinity for 1,8-ANS 

                We have shown previously that Ca2+ association increases DREAM 

affinity for small hydrophobic molecules such as 1,8-ANS and arachidonic acid 

(Gonzalez, Miksovska 2014). To probe whether Cd2+ association impacts DREAM 

affinity for 1,8-ANS, the emission spectra of WTDREAM(Δ64):1,8-ANS complex 

in the metal-free form and in the presence of Ca2+ or Cd2+ were determined. 1,8-

ANS has been extensively used for evaluating hydrophobicity of the protein surface 

as 1,8-ANS is nearly non-fluorescent in aqueous solutions and its emission intensity 

increases upon the association to hydrophobic cavities on the protein surface 

(Cardamone, Puri 1992). The effect of Cd2+ binding on DREAM affinity for 1,8-

ANS is shown in Figure 4.6. The rise in the emission intensity of 1,8-ANS in the 

presence of apoWTDREAM(Δ64) is indicative of 1,8-ANS binding to hydrophobic 

patches on the protein surface. The fluorescence intensity increases further upon 

Cd2+  addition to WTDREAM(Δ64), due to an additional binding of 1,8-ANS to the 

protein (Figure 4.6). Interestingly, the emission intensity of 

Cd2+WTDREAM(Δ64):1,8ANS complex is lower than that measured for 

Ca2+WTDREAM(Δ64):1,8ANS. These results suggest that overall structural 

changes triggered by Cd2+ binding to DREAM are somewhat limited and do not 

include a full exposure of the hydrophobic surface as observed in the case of Ca2+ 

binding. Analogous increase in emission intensity is observed for Cd2+ binding to 

metal-free DREAM(E186Q):1,8-ANS and DREAM(E234Q):1,8-ANS complex, 

indicating, that both EF-3 and EF-4 binds Cd2+ and the metal association to either 

EF-hand increases the accessibility of the 1,8-ANS binding sites. The emission 
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intensity of the Cd2+DREAM (Δ160):1,8-ANS complex is comparable to that for 

Ca2+DREAM(Δ160):1,8-ANS. The emission maxima for both complexes are red-

shifted with respect to the emission maxima observed for Cd2+ and Ca2+ bound 

WTDREAM(64) likely due to the large solvent exposure of the hydrophobic cavity 

in DREAM(Δ160) construct. To determine the equilibrium affinity constant for 1,8-

ANS binding to DREAM, we titrated WTDREAM(Δ64) into a constant amount of 

1,8-ANS and analyzed the experimental data using Equation 1 (Figure 4.7). 

Equilibrium dissociation constant recovered for 1,8-ANS binding to 

Cd2+WTDREAM(Δ64) (Kd = 84 ± 4 µM) is two-fold lower than that previously 
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Figure 4.6. Emission spectra of (A) 1,8-ANS:DREAM(Δ64), (B) 1,8-

ANS:DREAM(Δ160), (C) 1,8-ANS:DREAM(E186), and (D) 1,8-

ANS:DREAM(E234Q) complexes. Conditions: Conditions: 20 µM protein in 

20 mM Tris pH 7.4, 20 µM 1,8-ANS, 2 mM EDTA or 2 mM Ca2+, and/or 100 

µM  Cd2+ . Emission spectra were recorded using 350 nm excitation light. 
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determined for 1,8-ANS binding to apoWTDREAM(Δ64) (195 ± 20 µM) 

(Gonzalez, Miksovska 2014), supporting the idea that Cd2+ association with 

DREAM leads to increased exposure of hydrophobic cavities. However, the Kd 

value for 1,8-ANS binding to Cd2+WTDREAM(Δ64) (84 ± 4 µM) is higher than the 

value previously determined for ANS binding to Ca2+WTDREAM(Δ64) (Kd = 62 ± 

4 µM) (Gonzalez, Miksovska 2014). This is in agreement with the steady-state 

emission spectra that show lower emission intensity of Cd2+WTDREAM(64):1,8-

ANS compare to Ca2+WTDREAM(64):1,8-ANS.  

               To corroborate the findings of the WTDREAM(Δ64):1,8-ANS steady-

state emission study, we measured the lifetime of WTDREAM(Δ64):1,8-ANS in 

metal-free form and in the presence of Cd2+ or Ca2+ (Figure 4.8 and Table 4.2). The 

fluorescence decay parameters for 1,8-ANS bound to WTDREAM(64) are 

sensitive to metal-induced structural rearrangement. 1,8-ANS in 20 mM Tris shows 

Figure 4.7. Titration curve for 1,8-ANS binding to 

Cd2+DREAM(Δ64). The solid line represents the best 

fit of the experimental data using Equation 1. Standard 

deviations are shown as error bars. 
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a single lifetime of 0.28 ns, but upon binding to metal-free WTDREAM(Δ64) two 

additional lifetimes (1 = 4.1 ns and 2 =  16.9 ns) were resolved, which can be 

attributed to 1,8-ANS association to two distinct 1,8-ANS binding sites on DREAM 

surface. Previously, we used a molecular docking approach to identify 1,8-ANS 

binding sites (Gonzalez, Miksovska 2014) and attributed the shorter lifetime (1 = 

4.1 ns) to 1,8-ANS association to a partially solvent-exposed binding site between 

the EF-3 and EF-4. The longer lifetime (2 = 16.9 ns) can be assigned to 1,8-ANS 

binding to a nonpolar solvent restricted binding site between helix-8 and helix-9 of 

EF-4. Cd2+ addition to metal-free WTDREAM(Δ64):1,8-ANS results in an increase 

Figure 4.8 Frequency-domain intensity decay of 40 μΜ 1,8-ANS:54 

μΜ DREAM(Δ64) complexes  in the  presence of EDTA (squares), 

Ca2+ (circle), Cd2+ (up triangle), and Cd2+Ca2+ (down triangle). Solid 

symbols represent phase delay, whereas empty symbols represent 

modulation ratio. Solid lines represent the fitting of the data using 

three-exponential decay model. 
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in the longer lifetime (2 = 17.8 ns) and the 2 parameter increases from 21.9% for 

metal-free WTDREAM(Δ64):1,8-ANS complex to 36.7% for 

Cd2+WTDREAM(Δ64):1,8-ANS complex (Table 4.2). Also, Ca2+ binding to metal-

free WTDREAM(Δ64):1,8-ANS complex leads to more pronounced increase in pre-

exponential factor 2  than Cd2+ association, in agreement with the results from the 

emission data that show higher emission intensity of WTDREAM(Δ64):1,8-ANS 

complex in the presence of Ca2+ with respect to Cd2+ (Table 4.2). The small 

alteration of individual WTDREAM:1,8-ANS complex lifetimes upon Ca2+ or Cd2+ 

association compare to metal-free WTDREAM(Δ64) is indicative of 1,8-ANS 

binding to identical binding sites in metal-free, Cd2+-, and Ca2+-bound protein (Table 

4.2). 
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Table 4.2. Fluorescence decay parameters of WTDREAM(64):1,8-ANS complexes. 

Samples 1 (ns) 1 (%)  f1 (%)  2 (ns) 2 (%)  f2 (%)   0 (%) 2 

apo 4.1 ± 0.1    15.5 15.4 ± 0.9   16.9 ± 0.2    21.9 83.0 ± 1.0 62.6 0.9 

Ca2+ 4.3 ± 0.2   16.9 9.7 ± 0.6     18.0 ± 0.1   42.7 88.9 ± 0.5  40.3 0.9 

Cd2+ 4.3 ± 0.3     15.9 9.6 ± 0.6    17.8 ± 0.2    36.7 88.8 ± 0.6 47.4 0.8 

Cd2+Ca2+ 

 
4.3 ± 0.2   15.9 9.8 ± 0.6   17.9 ± 0.1   36.8 88.9 ± 0.5 47.2 0.9 

Data recovered from Vinci analysis software using a sum of three discrete exponential decays with fixed 1,8-

ANS lifetime (0 = 0.28 ns).  Phase and modulation errors were respectively set at ≤ 0.2° and ≤0.004.  0, 1, 

and 2 represent lifetimes of the three discrete exponential decays; f0, f1and f2 are exponential decay fractions; 

0, 1, and 2 represent pre-exponential factors. 2 represents the goodness of the fit.  
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4.2.3 Cd2+ associates with DREAM through an entropy-driven process. 

                The thermodynamic parameters associated with Cd2+ binding to 

Ca2+WTDREAM(64) and Ca2+WTDREAM(160) were determined using ITC 

(Figure 4.9). The binding isotherms were analyzed using a sequential model with 

two binding sites and the fitting parameters are listed in Table 4.3. Cd2+displacement 

of Ca2+ from EF-hands of WTDREAM(64) is an entropy-driven process as 

evidenced by a positive change in enthalpy (Htotal = 25  5 kcal mol-1). Two Cd2+ 

ions associate with Ca2+WTDREAM(64) with apparent association constants of 22 

± 4 M-1 and 7 ± 1 M-1. Slightly lower affinity constants were measured for 

WTDREAM(160), K1 = 18 ± 2 M-1 and K2 = 5 ± 2 M-1, in agreement with Cd2+ 

Figure 4.9. ITC isotherms for the displacement of Ca2+ by Cd2+ from 

EF-hand of (A) DREAM (Δ64) and (B) DREAM (Δ160). The upper 

panels of the profiles represent the thermal power expressed in 

µcal.s-1, whereas the lower panels show integrated reaction heats 

(ΔH) expressed in kcal. mole-1. The solid lines represent the best 

fitting curve using sequential model (2 sites). Thermodynamics 

parameters recovered from the model are listed in Table 4.3. 
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binding to the C- terminal domain. Based on these results we can not unambiguously 

assign the affinity constants to the individual EF-hands in the C- terminal domain. 

Using Equation 2 and 3, the overall apparent dissociation constant for Cd2+ binding 

to Ca2+WTDREAM(64) was determined to be 9 ± 1 μM and the overall 

dissociation constant for Cd2+ binding to metal-free WTDREAM(64) was found to 

be 89 ± 10 nM, which is in agreement with the value obtained from fluorescence 

titration (80 ± 10 nM). These results show that apoDREAM binds Cd2+ with 

approximately 10-fold higher affinity than Ca2+. This is somewhat surprising, as 

another EF-hand protein, calmodulin, binds Cd2+ with 3-fold lower affinity than its 

physiological ligand Ca2+ (Milos, Schaer et al. 1989).  

                    The Cd2+ association to both EF-hands shows a positive reaction 

enthalpy and entropy change. The gain of entropy over enthalpy cannot be explained 

in term of a water molecule(s) release as previous Raman and computational study 

suggested [Cd(OH2)6]
2+ clusters to be thermodynamically stable (Rudolph, Pye 

1998), whereas a first hydration sphere of Ca2+ ion can include up to 8 water 

molecules (Jalilehvand, Spångberg et al. 2001, Marcus 1991). The X-ray structures of 

skeletal troponin C shows only small differences in the coordination of Cd2+ 

compared to Ca2+ with both metals adopting distorted pentagonal bipyramidal 

coordination (Rao, Satyshur et al. 1996). On the other hand, in the X-ray structure 

of the N- terminal domain of cardiac troponin C, Cd2+ bound to EF-1 exhibit non-

canonical coordination with a Cys residue serving as a coordinating ligand (Fulcher 

2015). Unlike Ca2+, Cd2+ is a soft metal and forms a covalent bond with thiol ligands 

(Choong, Liu et al. 2014).  In the sequence of mouse DREAM, Cys 181 is located 
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in the EF-3 loop and thus may participate in Cd2+ metal coordination. However, 

structural studies are necessary to conclusively identify which residues participate 

in Cd2+ coordination.  
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Table 4.3. Thermodynamic parameters determined for displacement of Ca2+ by Cd2+ from EF hands of 

DREAM.                                                                                                                                                               

 
K1 x 104 

(M-1) 

K2 x 104 

( M-1) 
H1 

(kcal mol-1) 

H2 

(kcal mol-1) 

TS1 

(kcal mol-1) 

TS2 

(kcal mol-1) 

DREAM(64) + Cd2+ 22 ± 4 7 ± 1 9 ± 5 17 ± 2 16 ± 5 23 ± 2 

DREAM(160) + Cd2+ 18 ± 2 5 ± 2 10 ±3 16 ± 4 17 ± 3 22 ± 4 

All experiments were conducted three times at 25 °C. Data were fitted with a sequential model (2 sites); 

errors represent standard deviations from three independent measurements. 
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4.2.4 Cd2+ Modulates DREAM Interactions with Binding Partners. 

               It has been shown previously that Ca2+ association facilitates DREAM 

interaction with C-terminal domain of presenilin-1  which stimulates the activity of 

γ- secretase and consequently facilitates the generation of Aβ42, a peptide that has 

been linked to Alzheimer’s disease (Jo, Jang et al. 2005). To investigate whether 

Cd2+ binding impacts DREAM affinity for presenilin, the equilibrium dissociation 

constant for DREAM association with PS1HL9 has been determined. We have 

chosen PS1HL9 as a model for presenilin-1 as earlier studies have shown that 

DREAM interacts with the residues from helix-9 of presenilin-1 (Buxbaum, Choi et 

al. 1998, Pham, Miksovska 2016). Cd2+DREAM was titrated into the solution of 

FITC-tagged PS1HL9 and the change in the anisotropy was determined and plotted 

as a function of Cd2+DREAM concentration (Figure 4.10). The equilibrium 

Figure 4.10 Titration of 0.5 μM PS1HL9 against Cd2+-bound 

DREAM constructs.  The solid lines represent the fits of the 

experimental data using Equation 1; standard deviations are 

shown as error bars.  
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dissociation constant was obtained by fitting the titration data to Equation 1. 

Cd2+WTDREAM(64) has 10-fold lower affinity for PS1HL9 (Kd = 6 ± 1 µM) than 

Ca2+WTDREAM(64) (Kd = 0.6 ± 0.1 µM, respectively) and about 30-times higher 

affinity for PS1HL9 than apoWTDREAM(64)  (Kd = 183 ± 12 µM) (Table 4.4), 

suggesting Cd2+ association modulates DREAM interaction with presenilin-1. 

PS1HL9 binds to Cd2+WTDREAM(160) with a Kd similar to 

Cd2+WTDREAM(64) confirms that N-terminal doesn’t have any role in PS1HL9 

binding (Table 4.4). To determine Cd2+ binding to which EF-hand regulates 

DREAM interactions with PS1HL9, we investigated PS1HL9 binding to 

Cd2+DREAM(E186Q) and Cd2+DREAM(E234Q). Both Cd2+DREAM(E234Q) and 

Cd2+DREAM(E186Q) have a lower affinity for PS1HL9 (Table 4.4). This finding is 

consistent with our previous finding that Ca2+DREAM(E186Q) has a lower affinity 

for PS1HL9 than Ca2+DREAM(E234Q) (Pham, Miksovska 2016). It has been 

shown in transgenic mice model that Cd2+ treatment increases the level of Aβ42 and 

aggravates behavioral symptoms of Alzheimer’s disease (Li, Lv et al. 2012). The 

observed Cd2+ modulation of DREAM interaction with PS1HL9 indicates that at 

high concentration Cd2+, the formation of Cd2+DREAM complex might facilitate of 

β-amyloid precursor protein cleavage to produce Aβ42 and contribute to 

Alzheimer’s disease 

               DREAM, as well as other members of KChIPs, are integral auxiliary 

subunits of A-type potassium voltage channels and binding of KChIPs to Kv4 

channels has been shown to  result in regulation of fast component of  ITO current in 

heart and ISO current in brain, modulation of gating properties, increased surface 
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expression and  facilitation of subunit assembly of Kv4 channels (An, Bowlby et al. 

2000, Bourdeau, Laplante et al. 2011, Gonzalez, Pham et al. 2014, Bahring, 

Dannenberg et al. 2001, Scannevin, Wang et al. 2004, Niwa, Nerbonne 2010). 

Although binding of DREAM to Kv channels is Ca2+ independent, the presence of 

Ca2+ alters the kinetics of Kv channel inactivation (Patel, Campbell et al. 2002). 

Crystallographic studies have shown that Kv4 interacts with KChIPs through its N-

terminus of T1 domain and resulting Kv4–KChIPs complex is octamer (4:4 manner) 

in which each KChIPs molecule simultaneously interacts with two Kv4.3 molecules 

(Pioletti, Findeisen et al. 2006, Wang, Yan et al. 2007a). Two binding sites are 

involved in the formation of Kv4–KChIPs octamer. Site-1 of Kv4 channel is 

composed of non-polar residues 2–22 and it binds to the deep hydrophobic pocket 

on the surface of KChIPs, whereas site-2 (residue 70–90) of Kv4 channel is 

composed of predominately polar residues and interacts with N-terminal helix-2 of 

KChIPs through the salt bridge and hydrophobic interaction (Pioletti, Findeisen et 

al. 2006, Callsen, Isbrandt et al. 2005, Wang, Yan et al. 2007a). Previous research 

in our group has demonstrated that Ca2+ and Pb2+ modulate the interaction between 

DREAM and site-1 and site-2 (Azam, Miksovska 2018, Gonzalez, Pham et al. 

2014). To investigate whether Cd2+ association with DREAM alters DREAM 

interactions with site-1 and site-2, Cd2+DREAM constructs were titrated into FITC-

labeled site-1 and site-2 and the change in FITC-labeled peptide anisotropy was 

monitored (Figure 4.11 and 4.12). Equilibrium dissociation constants were obtained 

by fitting the data to Equation 1 and the values are listed in Table 4.4. Titration 

results reveal that Cd2+WTDREAM(64) has seven-fold higher affinity for site-1 
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(Kd = 10 ± 1 µM) than apoDREAM(64) (Kd = 70 ± 1) µM), and  its affinity for 

site-1 is approximately four-times lower than that of Ca2+WTDREAM(64) (Table 

4.4). Considering that a hydrophobic site-1 binds to the hydrophobic cavity on 

DREAM surface, these results are consistent with WTDREAM(64):1,8-ANS 

emission data that demonstrate a lower exposure of hydrophobic surface for Cd2+-

bound protein compared to Ca2+-bound protein that may result in a lower affinity for 

site-1 (Table 4.4). DREAM(E186) and DREAM(E234Q) did not show any binding 

to site-1 in metal-free form and in Cd2+-bound form. Inactivating EF-3 in 

DREAM(E186Q) or EF-4 in DREAM(E234Q) might trigger structural 

reorganizations in the protein which disturb the hydrophobic cavity and 

consequently abolish binding of site-1. Site-2 shows relatively weaker binding to 

Cd2+DREAM(64) than  Ca2+WTDREAM(64), but the affinity of site-2 binding  

Figure 4.11. Titration of 0.5 μM Kv4.3 (2–22) “site-1” against 

Cd2+-bound DREAM constructs.  The solid lines represent the 

fits of the experimental data using Equation 1; standard 

deviations are shown as error bars.  
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Cd2+WTDREAM(64) is 15-times higher than site-2 binding to metal-free 

DREAM(64), indicating Cd2+ binding may promote DREAM interactions with 

site-2 (Table 4.4). Cd2+DREAM(E186) and Cd2+DREAM(E234Q) bind to site-2 

with an affinity comparable to site-2 association with Cd2+WTDREAM(64), 

suggesting binding of Cd2+ to a single EF-hand is sufficient to promote the site-2 

association to DREAM (Table 4.4). Taken together, the above results suggest that 

Cd2+ binding to DREAM may impact the deactivation kinetics of Kv channels 

complexes. Kv channel–KChIP complexes may represent a molecular target for 

Cd2+-induced memory and learning deficiencies as Kv channels have been 

Figure 4.12. Titration of 0.5 μM Kv4.3 (70–90) “site-2” against Cd2+-

bound DREAM constructs.  The solid lines represent the fits of the 

experimental data using Equation 1; standard deviations are shown as 

error bars.  
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implicated in hippocampus-dependent memory and learning (Lugo, Brewster et al. 

2012). Considering high sequence homology of the neuronal calcium sensors 

(Ames, Lim 2012)  and involvement of Cd2+ in different types of cancers (Waalkes 

2000, Pesch, Haerting et al. 2000, Joseph, Muchnok et al. 2001) and 

neurodegenerative diseases, (Okuda, Iwamoto et al. 1997, Johnson 2001, Panayi, 

Spyrou et al. 2002)  other members of NCS family could bind  Cd2+ with high 

affinity and contribute to Cd2+-induced toxicity.  
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Table 4.4. The equilibrium dissociation constants for PS1HL9, site-1 site-2 binding to DREAM 

constructs. 

 

DREAM constructs  PS1HL9 Site-1 Site-2 

 Kd (µM) Kd (µM) Kd (µM) 

DREAM(64)    

apo 183 ± 12 70 ± 3 ̴500 

Ca2+ 0.6 ± 0.1 2.7 ± 0.1 10 ± 1 

Cd2+ 6 ± 1 10 ± 1 34 ± 1 

DREAM(160)    

apo no binding ̴450 n.d. 

Ca2+ 11 ± 1 24 ± 1 n.d 

Cd2+ 7 ± 1 16 ± 1 n.d 

DREAM(E186Q)    

apo 149 ± 22 no binding n.d. 

Ca2+ 32 ± 1 no binding n.d. 

Cd2+ 16 ± 1 no binding 43 ± 2 

DREAM(E234Q)    

apo 146 ± 14 no binding n.d. 

Ca2+ 8 ± 1 no binding n.d. 

Cd2+ 10 ± 1 no binding 36 ± 2 

Data for DREAM(64), DREAM(160), DREAM(E186Q), and DREAM(E234Q) interactions 

with PS1HL9 in apo and Ca2+-bound form are taken from reference (Pham, Miksovska 2016); data 

for DREAM(64) and DREAM(160) interactions with site-1 and site-2  in apo and Ca2+-bound 

form are taken from reference (Gonzalez, Pham et al. 2014). 
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4.3 Summary  

In this article, using a combination of spectroscopic and calorimetric techniques we 

first time report Cd2+ binding to EF-hands in DREAM. We also show that Cd2+ 

association with DREAM modulates DREAM interactions with interacting partners, 

such as site-1 and site-2 of potassium voltage channel and presenilin-1. Interestingly, 

despite the fact that Cd2+ ion has similar ionic radii and charge/radius ratio values as 

Ca2+, the association of Cd2+ to EF-3 and EF-4 leads to a conformational transition 

that is somewhat restricted compared to that determined for the binding of the 

physiological ligand, Ca2+. This is evident by 1,8-ANS emission data as well as by 

lower affinity constants for binding of peptides that mimic physiological effector 

proteins presenilin and T1 domain of Kv channels. However, the superior affinity of 

Cd2+ for DREAM suggest that under conditions of acute or chronic exposure to Cd2+, 

Cd2+ may bind to DREAM and probably other neuronal sensors and these 

interactions may provide insight into molecular basis of Cd2+ induced neurotoxicity. 

We hope this study will encourage future NMR and X-ray crystallography on Cd2+-

bound neuronal calcium sensors to provide atomic-level insight into the mechanism 

of this neurotoxic metal’s interactions with neuronal calcium sensors.  
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5. BINDING OF THE NEUROPROTECTIVE AGENT LITHIUM TO NEURONAL 

CALCIUM SENSOR PROTEIN DREAM: A NEW INSIGHT INTO LITHIUM 

THERAPY.  

5.1 Background and significance 

                   

            Li+-based compounds have been used extensively for the treatment of severe mental 

disorders for more than six decades (Cade 1949, Marmol 2008, Vosahlikova, Svoboda 

2016). However, the molecular mechanism of how lithium works remain one of the greatest 

challenges in modern psychology. Recent in vivo and in vitro studies in humans and rodents 

demonstrated the neuroprotective role of Li+ and proposed  its  probable application for 

treatment of neurogenerative diseases such as Parkinson’s disease, Alzheimer’s disease 

(AD), and Huntington’s disease (De Ferrari, Chacon et al. 2003, Youdim, Arraf 2004, Wei, 

Qin et al. 2001, Senatorov, Ren et al. 2004, Forlenza, De-Paula, Vanessa de Jesus Rodrigues 

et al. 2014). Despite numerous clinical applications of Li+ in psychopharmacology for 

treating devastating diseases, the exact mechanism through which Li+ exerts its therapeutic 

effects has not been elucidated yet. Several mechanisms have been proposed and its 

molecular targets remain unknown. Inhibitions of inositol monophosphatase (IMPase) and 

glycogen synthase kinase-3 beta (GSK-3β) are the most relevant mechanisms of action 

(Forlenza, De-Paula, Vanessa de Jesus Rodrigues et al. 2014, Williams, Harwood 2000, 

Brown, Tracy 2013). IMPase is overexpressed in bipolar disorder patients and this 

overexpression causes inositol level increase (Dudev, Mazmanian et al. 2018, Haimovich, 

Eliav et al. 2012). According to the inositol depletion hypothesis, Li+ treatment inhibits 

IMPase by displacing native cofactor Mg2+ and eventually decreases the level of inositol 
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(Harwood 2005, Hallcher, Sherman 1980). Experimental studies in transgenic mice models 

overexpressing GSK-3β and in other animal models of Alzheimer’s disease (AD) have 

demonstrated that chronic Li+ administration causes a remarkable decrease in tau 

phosphorylation (Engel, Goñi‐Oliver et al. 2006, Leroy, Ando et al. 2010, Noble, Planel et 

al. 2005). Similarly, it has been shown that chronic lithium administration reduces Aβ42 

(overproduction of this peptide has been associated with AD) production through inhibition 

of GSK-3β and through modulation of the amyloid precursor protein (APP) (Rockenstein, 

Torrance et al. 2007, Su, Ryder et al. 2004). Multiple lines of studies have demonstrated 

that chronic Li+ administration prevents or reverses neuronal cell death and thus  Li+ can 

act as a neuroprotective agent by up-regulating cell survival molecules, including brain-

derived neurotrophic factor (BDNF), cyclic   AMP-responsive element binding protein 

(CREB),  β-catenin, and brain grey matter volume, but by down-regulating  pro-apoptotic 

activities, such as excitotoxicity, Bax, caspase, cytochrome c release (Wada, Yokoo et al. 

2005). 

              Increased expression of neuronal calcium sensor protein-1 (NCS-1) and reduced 

gamma band activity has been reported in the brain of bipolar disorder patient (Koh, Undie 

et al. 2003, Özerdem, Güntekin et al. 2011). NCS-1 overexpression is considered 

responsible for the decrease in gamma-band activity (D'Onofrio, Kezunovic et al. 2015). 

Li+ treatment has been shown to treat mood disturbances seen in bipolar disorder patients 

by inhibiting the interaction between NCS-1 and inositol 1,4,5-triphosphate receptor 

protein (Schlecker, Boehmerle et al. 2006a). Stasia D’Onofrio et al. (D'Onofrio, Hyde et 

al. 2017) have demonstrated that lithium treatment reduces the effects of overexpression 

of NCS-1 and thereby prevents the decrease of gamma-band activity, eventually restoring 
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the normal level of gamma oscillation. Lithium-pilocarpine administration has been shown 

to alter the expression of voltage-gated potassium channel 4.2 (Kv4.2) and potassium 

channel-interacting protein  (KChIP1) and to alter calcium homeostasis in rat hippocampus 

(Su, Cong et al. 2008). A recent computation study based on competition between Na+ and 

Li+ in various neurotransmitters and G-protein coupled receptors Na+ binding sites has 

revealed that neutral protein ligands such as Thr/Ser hydroxyl group preferentially bind 

Na+, whereas negatively charged ligands such as Asp/Glu carboxylate favor Li+ (Dudev, 

Mazmanian et al. 2018). 

                Decades of research have shown that monovalent ion K+ activates enzymes 

including pyruvate kinase, tryptophanase, tyrosinase, and Na+ activates thrombin, β-

galactosidase, and tryptophan synthase (Page, Di Cera 2006, Gohara, Di Cera 2016). The 

highest affinity for K+-protein interaction reported to be 0.08-0.6 mM range (Gohara, Di 

Cera 2016). It has been shown that Na+ binds to thrombin with Kd 110 mM and Na+-bound 

form of thrombin is responsible for the blood procoagulant function of the enzyme (Page, 

Di Cera 2006). Na+ also can occupy the EF-hand of parvalbumin and attenuates affinity of 

Ca2+ for parvalbumin (Henzl, Larson et al. 2004a). Li+ shares more similarity with Ca2+ 

than Na+ and K+, with charge/ionic radii ratio 1.47, 2.02, 1.03, 0.75 e/Å, respectively, 

suggesting Li+ has more likelihood  to occupy Ca2+ binding site than Na+ and K+ (Page, Di 

Cera 2006). 

             Downstream regulatory element antagonist modulator (DREAM), also known as 

calsenilin, or potassium channel-interacting protein 3 (KChIP3), is a 29 kDa neuronal 

calcium sensor (NCS) protein, which is expressed in the hippocampus of the brain (Carrion, 

Link et al. 1999). DREAM is a multifunction protein that has been linked to pain sensing, 
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memory and learning process, AD, and modulation of Kv4 expression and kinetics (An, 

Bowlby et al. 2000, Buxbaum, Choi et al. 1998, Cheng, Pitcher et al. 2002, Costigan, Woolf 

2002, Fontán-Lozano, Romero-Granados et al. 2009, Jo, Jang et al. 2005, Abd Rashid, 

Hapidin et al. 2017). DREAM contains two domains, with each domain composed of two 

EF-hands. Nonfunctional EF-1 (residue 90-119) and EF-2 (residue 128-157) together with 

a short N- terminus -helix form an N–terminal domain, whereas calcium-binding EF-3 

(residue 163-192) and EF-4 (residue 211-240) along with a 13-residue long C-terminal -

helix form a C-terminal domain (Lusin, Vanarotti et al. 2008). Among four EF-hands of 

DREAM, EF-1 is non-functional due to the presence of Cys 104 and Pro 105 at the EF-

hand loop, which distorts Ca2+-binding geometry; EF-2 selectively binds Mg2+ because of 

the presence of Asp at the 12th position of the EF-loop rather than usual glutamate; and the 

canonical EF-3 and EF-4 preferentially bind Ca2+ with a Kd 1–10 µM (Gifford, Walsh et al. 

2007, Osawa, Dace et al. 2005, Osawa, Tong et al. 2001). We have recently reported that 

EF-hands in DREAM are not calcium specific but can also bind lanthanide Tb3+ and toxic 

metal Pb2+ with an affinity that is superior to affinity for Ca2+ (Azam, Miksovska 2018, 

Gonzalez, Ramos et al. 2016). Based on the rationale of Li+ induced alteration of 

expression of  KChIP1 (a protein homologous to DREAM), propensity of Li+ binding 

through negatively charged amino acid residues, impact of Li+ on hippocampus, and 

preponderance of negatively charged amino acid residues at EF-hand of DREAM, we 

postulate that DREAM is a molecular target of Li+. Our hypothesis is supported by our 

computation data which shows three potential lithium binding sites.  In this 

Communication, using multiple lines of evidence, we first time demonstrate that Li+ bind 
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at EF-hand of DREAM; Li+ binding leads to secondary and tertiary structural 

rearrangement of the protein; and Li+ modulates DREAM interaction with Kv4 channel.  

5.2 Results and discussion 

          To test the hypothesis that Li+ binds to DREAM, our first approach was to probe the 

impact of Li+ on emission spectra of DREAM(64) construct that contains residues 65–

256. Emission spectra reveal that Li+ addition to metal-free DREAM(64) causes  ̴20% 

decrease in emission intensity, which is identical to a decrease observed for Ca2+ 

association to DREAM(64), suggesting that both  Li+ and Ca2+ induce analogous 

Figure 5.1. Impact of Li+ binding on tryptophan emission of (A) DREAM(Δ64), 

(B) DREAM(Δ160), (C) DREAM(E186Q), and (D) DREAM(E234Q). In each 

case, 20 µM protein samples in 20 mM Tris were excited at 295 nm; 

concentrations of EDTA, Ca2+, and Li+ in each DREAM construct were 2 mM, 

2 mM, and 50 µM, respectively; Ca2+Li+DREAM constructs were prepared by 

adding 2 mM Ca2+ to DREAM constructs in the presence of 50 µM Li+. 
 



 

 

120 
 

rearrangement in the protein tertiary structure resulting in the modification of the W169 

surrounding (Figure 5.1A) and pointing towards the possibility that Li+ may bind to the 

EF-hands. Also,  no change in emission spectra was observed upon Li+ addition to 

Ca2+DREAM(64) and vice versa indicating that Ca2+ and Li+ may bind to identical 

binding sites. The addition of Li+ to Mg2+DREAM(64) leads to a comparable decrease in 

emission intensity, suggesting that the occupation of EF-2 by Mg2+ does not impact Li+ 

interaction with DREAM. Analogous decrease in the emission spectra was observed upon 

Li+ addition to the isolated C-terminal domain (DREAM(160)). In addition, the emission 

spectrum of DREAM(160)  shifts from 351 nm in the absence of Li+  to 348 nm in the 

presence of metal (Figure 5.1B) pointing towards the Li+ binding site being located in the 

C-terminal domain. The longer wavelength emission maxima observed for DREAM(160)  

is indicative of a more polar environment of W169 in this construct. To provide further 

insight into the location of Li+ binding site, we measured emission spectra of 

DREAM(E186Q) and DREAM(E234Q) which have glutamate in the 12th position of the 
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Figure 5.2. Impact of Li+ binding to DREAM(65-256) in the presence of 100 mM 

Na+ or 100 mM K+. Condition: 20 µM DREAM(65-256), 2 mM Li+, excited at 295 

nm. 
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calcium-binding loop in EF-hand 3 or EF-hand 4, respectively, replaced by glutamine 

(Figure 5.1C,D). Emission spectra unveil that Li+ or Ca2+ addition to DREAM(E186) 

results in a comparable decrease in emission intensity as observed for DREAM(64),  

whereas emission spectra of Li+DREAM(E234Q) and Ca2+DREAM(E234Q) are 

superimposable to the spectrum for apoDREAM. This is consistent with the fact that Li+ 

or Ca2+ association to EF-4 triggers structural rearrangement which leads to a more 

efficient W169 emission quenching. The identical emission spectra for 

apoDREAM(E234Q) in the absence or presence of Ca2+ or Li+ suggest an absence of 

Figure 5.3. Impact of Li+ binding on far-UV CD spectra of (A) 20 µM 

DREAM(Δ64), (B) 20 µM DREAM(Δ160), (C) 20 µM 

DREAM(E186Q), and (D) 20 µM DREAM(E234Q) in 20 mM Tris. 

Concentrations of EDTA, Ca2+, and Li+ in each DREAM construct 

were 2 mM, 2 mM and 50 µM, respectively; Ca2+Li+DREAM 

constructs were obtained adding 2 mM Ca2+ to DREAM constructs in 

the presence of 50 µM Li+. All experiments were conducted at 18°C 

using a J-810 Jasco CD spectrometer through the 2 mm path of a (2 

mm x 10 mm) quartz cuvette. 
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conformational change affecting the W169 emission due to the metal binding to this EF-

hand. To eliminate non-specific interactions between Li+ and DREAM,  emission spectra 

were also recorded in the presence of 100 mM NaCl or 100 mM KCl (Figure 5.2). The 

addition of Li+ to DREAM in the presence of monovalent salts leads to the analogous 

emission decrease, eliminating the contribution of the non-specific Li+ binding to DREAM. 

              To gain insight into the impact of Li+ binding on protein secondary structure, we 

measured the far-UV CD spectra of DREAM constructs (Figure 5.3 A–D). CD spectra 

unveil that ellipticity decreases analogously upon Li+ and Ca2+ binding to DREAM 

constructs. The decrease in ellipticity could be attributed to an increase in -helices, 

Figure 5.4. ITC isotherms for Li+ binding to EF-hand of metal-free A) 

DREAM(Δ64) and B) DREAM(Δ160). 30 x 6 μL of 1 mM Li+
 were titrated into 20 

μM DREAM.Contribution of buffer was corrected. Thermal power expressed in 

µcal.s-1  is shown in the upper panels of the profiles, whereas integrated reaction 

heats (ΔH) expressed in kcal.mole-1 is shown in the lower panels. The solid lines 

correspond to the best fitting curve using sequential model with two sites; 

thermodynamics parameters obtained from the model are listed in Table 1. 
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rearrangement of -helices, or both. Similar CD spectra of Li+DREAM and Ca2+DREAM 

can be interpreted bythe fact that Li+ association triggers secondary structural 

rearrangement analogous to Ca2+ association.      

                Thermodynamic parameters for Li+ binding to apoDREAM(64) were 

characterized in ITC study (Figure 5.4A and Table 5.1).  Analysis of binding isotherms for 

Li+ association to apoDREAM(64)  using a two side sequential binding model reveals 

presence of two binding sites with association constants of  9.3 ± 1.7 x 104 M-1 and 9 ± 1 

x103 M-1  and comparable association constants were measured for Li+ binding to 

apoDREAM(160) (Figure 5.4B and Table 5.1).  Li+ binding to the higher affinity site is 

an endothermic reaction with a negligible change in enthalpy whereas association to the 

lower affinity site displays a positive enthalpy and entropy change. The apparent 

equilibrium dissociation constant (Kd) for Li+ association to metal-free DREAM(64) and 
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Figure 5.5. A) Emission intensity of 20 µM metal-free DREAM(Δ64) upon Li+ 

addition; DREAM(Δ64) was prepared in 20 mM Tris, excited at 295 nm B) Titration 

curve for Li+ binding to metal-free DREAM(Δ64). ΔF was calculated based on 

decrease in Trp169 emission intensity at emission maximum. Solid line represents fit 

of the data using Equation 2. 
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DREAM(160) is 34 ± 4 μM and 50 ± 4 μM, respectively, indicating one order of 

magnitude lower affinity of  EF-hands for Li+ than for its physiological ligand calcium 

(Equation 1). The analogous Kd value was obtained by observing changes in the Trp 

emission upon Li+ titration into apoDREAM sample (Figure 5.5). The titration curve was 

analyzed using a single binding site model, (Equation 2) and provided an equilibrium 

dissociation constant of 31 ± 5 μM in a good agreement with the ITC results.  We have also 

measured binding isotherms for Li+ association to DREAM in the presence of 100 µM 

Ca2+. The titration resulted in a negligible signal confirming that Li+ does not associate to 

Ca2+-bound DREAM either due to the occupation of binding sites by Ca2+ or Li+ binding 

sites does not overlay with binding sites for Ca2+, but are inaccessible in Ca2+ bound 

DREAM. 

 

 

 



 

 

125 
 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Thermodynamics parameters recovered for Li+ binding to EF-hand of metal-free DREAM. 

 

Samples K1 X 104 

(M-1) 

K2 X 104 

(M-1) 
   H1 

 (kcal/mole) 

   H2  

(kcal/mole) 

TS1 

(kcal/mole) 

TS2 

(kcal/mole) 

DREAM(64) + Li+ 9.3 ± 1.7 0.9 ± 0.1 8.8 ± 0.4 - 8.6 ± 0.2 15.5 ± 0.3 - 3.2 ± 0.3 

DREAM(160) + Li+ 7.3 ± 0.6 0.6 ± 0.1 7.8 ± 0.8 3.3 ± 0.8 14.3 ± 0.8 8.0 ± 1.1 

ITC experiments were performed three times at 25°C; parameters represent average of three independent 

measurements, standard deviations are shown as errors.  
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The 200 ns molecular dynamic (MD) simulation of Li+DREAM complex structure revealed 

several Li+ binding sites on the protein surface (Figure 5.6). Li+, as a hard atom, 

preferentially interacts with oxygen atoms. One Li+ binding site on DREAM surface is 

formed by sidechain residues that coordinate Ca2+ in the EF-hand 4, namely Ap 223 and 

Glu 234. Another binding site is formed by side chains of residues Asp134 and Asp 141 

that belongs to the Mg2+ binding EF-hand 2. Li+ ions were also found to bind to other 

negatively charged residues, namely Asp242 and Glu243 at the C- terminus and Glu164 

and Asp 134 at the N-terminal domain. However, these interactions are likely to be transient 

and unlikely to contribute to the observed changes in the DREAM secondary and tertiary 

structure. Interestingly, Li+ association to the protein leads to the stabilization of the protein 

structure as evident from the decreased root mean square fluctuation of backbone atoms 

during the last 50 ns of the simulation with respect to the initial 20 ns.  Previous data 

showed that the lithium cation is coordinated with 4 to 6 oxygen atoms in complex with 

carboxylic acids (Olsher, Izatt et al. 1991). A survey of the protein data bank reveals 29 

protein structures with bound Li+ ion. In the majority of cases, Li+ is coordinated to the 

protein through two to four oxygen atoms, predominantly from the side chains of aspartic 

acid residue and from carbonyl oxygen in agreement with the MD data presented here.  

             As calmodulin (CaM) and parvalbumin were previously shown to bind monovalent 

cations Na+ and K+ albeit with a millimolar affinity (Henzl, Larson et al. 2004b), we tested 

if Li+ associates to rat CaM and trigger changes in the protein secondary or tertiary 

structure. The CD spectrum of rat CaM in the presence of Li+ overlays with that for 

apoCaM, whereas upon Ca2+ addition, the CD signal decreases which are consistent with 

Ca2+ binding to apoCaM suggesting that Li+ does not bind to CaM or its association does 
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not cause changes in the protein secondary structure (Figure 5.7A). The absence of Trp 

residue in CaM sequence allows for monitoring CaM structural change associated with 

metal binding to the N- terminal domain using intrinsic Phe emission and binding of metal 

to the C- terminal domain using intrinsic Tyr emission (VanScyoc, Sorensen et al. 2002). 

The emission spectrum of apoCaM using 250 nm excitation shows an emission maximum 

at 300 nm that corresponds to the emission of Phe residues located in the N- terminus ( 

Figure 5.7B). The emission intensity increases upon the addition of 2 mM Ca2+, but no 

Figure 5.6. (a) Lithium ions strongly bound to DREAM protein as revealed by the molecular 

simulations. One of the binding sites (right) is also a calcium binding site. b) Other transient 

binding sites observed during the simulations. (c) Root mean square fluctuation of backbone 

atoms in protein for the first 50 ns (black) and the last 50 ns (red) of simulation. Protein 

conformational flexibility is significantly reduced upon biding with lithium ions. (d) Root 

mean square deviation of protein with respect to time, showing a stable protein-Li+complex. 
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increase was observed upon the addition of 2  mM Li+. The 277 nm excitation leads to the 

emission spectrum with a maximum at 304 nm (Figure 5.7C). Addition of 2 mM Li+ to 

apoCaM does not result in changes in the emission spectrum of Tyr residues located in the 

C- terminal domain whereas addition of  2 mM Ca2+ increases the emission intensity at 304 

nm in agreement with Ca2+ binding to the EF-hand 3 and 4 in the C- terminal domain. 

These results suggest that Li+ does not bind to EF-hand of CaM or its binding does not 

cause structural changes that are analogous to those triggered by Ca2+ association. Thus 

Figure 5.7. Impact of Li+ binding on secondary structure of 20 µM rCaM in 20 mM Tris 

(A). Consequence of Li+ binding on the  phenylalanine emission (B) and  tyrosine 

emission (C) of the same protein in the same condition. Samples were excited at 250 nm 

and 277 nm for Figure (B) and (C), respectively. Concentrations of EDTA, Ca2+ and Li+ 

were 2 mM, 2 mM, and 2 mM, respectively. 
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unlike CaM, the EF-hands in the DREAM are able to bind Li+ at submillimolar 

concentration, suggesting that Li+ binding to EF-hands may be specific for DREAM and 

possibly other NCS proteins. This is supported by a previous result that demonstrated a 

decrease in the Trp residue emission upon Li+ binding to neuronal calcium sensor 1 (NCS-

1), although no further characterization of Li+ interactions with isolated NCS-1 protein 

(Schlecker, Boehmerle et al. 2006b).  

              Previous studies from our group have shown that binding of  Ca2+ or toxic metals 

such as Cd2+ or Pb2+ alters DREAM interaction with hydrophobic molecule 1,8-ANS 

(Azam, Miksovska 2018, Gonzalez, Miksovska 2014). 1,8-ANS has been widely used for 

assaying hydrophobicity of protein surface as emission intensity of 1,8-ANS increases 

upon binding to hydrophobic cavities on the protein surface. Utilizing AutoDock software 

version 4.2, we identified probable 1,8-ANS binding sites on the DREAM surface 

(Gonzalez, Miksovska 2014, Morris, Huey et al. 2009).  One binding site was identified 

between then helix-8 and helix-9 of EF-4, while another site was found between EF-3 and 

EF-4. To investigate whether Li+ association impacts DREAM affinity for 1,8-ANS, we 

measured emission spectra of DREAM–1,8-ANS in the presence of Ca2+, Li+, and in the 

metal-free form (Figure 5.8).  Increase in emission intensity of 1,8-ANS upon binding to 

apoDREAM confirms 1,8-ANS binding to DREAM(64). Compared with 

apoDREAM(64)–ANS, higher emission intensity is observed for Li+DREAM(64)–

ANS, suggesting Li+ binding exposes the hydrophobic cavity on the DREAM surface, 

which facilitates 1,8-ANS binding. However, Li+DREAM(64)–ANS has a lower 

emission intensity than Ca2+DREAM(64)–ANS, indicating Ca2+ association to DREAM 

exposes the hydrophobic cavity more than Li+ association. DREAM(160)–ANS 
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complexes follow the same trend as DREAM(64)–ANS, providing additional evidence 

that Li+ binds to the C- terminal domain and its interaction with protein exposes the 

hydrophobic cavity of DREAM. To corroborate the finding of emission study, we 

determined lifetimes of    DREAM(64)–ANS complexes utilizing frequency domain 

fluorometry (Figure 5.9 and Table 5.2). 1,8-ANS bound to metal-free DREAM shows two 

fluorescent lifetimes (1 = 4 ns and 2 = 16.8 ns), which is consistent with 1,8-ANS binding 

to two distinct binding sites on DREAM surface (Table 5.2). Li+ association with metal-

free DREAM(Δ64):1,8-ANS leads to an increase in longer lifetime (2 = 17.9 ns) and an 

increase in the pre-exponential factor  2 from 21.2% in metal-free DREAM(Δ64):1,8-

ANS to 35.8% in Li+DREAM(Δ64):1,8-ANS, bolstering the findings of emission study 

that Li+ binding  to DREAM induces  structural reorganization in the protein that exposes 

the hydrophobic cavity. Additionally, Ca2+ association with metal-free DREAM(Δ64):1,8-

Figure 5.8. Consequences of Li+ binding on emission spectra of (A) 1,8-

ANS:DREAM(Δ64), (B) 1,8-ANS:DREAM(Δ160complexes. Conditions: 20 µM 

DREAM, 20 µM 1,8-ANS; excited at 350 nm. Concentrations of EDTA, Ca2+, and Li+ 

were same as tryptophan emission. 
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ANS causes further increase in 2, which is consistent with additional changes in the 

protein structure.  
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Figure 5.9. Frequency-domain intensity decay of 40 μΜ 1,8-ANS:54 μΜ 

DREAM(Δ64) complexes in 20 mM Tris and in the presence of 2 mM EDTA 

(squares), 2 mM Ca2+ (circle), 50 µM Li+ (up triangle), and (2 mM Ca2+ and 

50 µM Li+) Ca2+Li+ (down triangle). Phase delay and modulation ratio are 

respectively shown as solid and empty symbols. Solid lines correspond to the 

fitting of the data using three-exponential decay model. 
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Table 5.2. Fluorescence decay parameters for Li+ and/or Ca2+ binding to DREAM(64)–1,8-ANS complexes. 

 

Samples τ1 (ns) τ2 (ns) 0 (%) 1 (%) 2 (%) f1 (%) f2 (%) 2 

apoDREAM(64) 4.0 ± 0.1   16.8± 0.2 62.4 15.4 21.2 15.1 ± 0.9 83.2 ± 1.0 1.0 

Ca2+DREAM(64) 4.2 ± 0.2 18.1 ± 0.1 41.2 16.5 42.3 9.8 ± 0.6 89.1 ± 0.5 0.9 

Li+DREAM(64) 4.1 ± 0.2 17.9 ± 0.2 48.6 15.6 35.8 9.6 ± 0.5  89.2 ± 0.5 0.9 

Ca2+Li+DREAM(64) 4.2 ± 0.2 18.1 ± 0.1 41.0 16.8 42.2 9.7 ± 0.5 89.1 ± 0.5 0.9 

Data obtained from Vinci analysis software using a sum of three discrete exponential decays with fixed 1,8-ANS lifetime 

(0 = 0.28 ns). 0, 1, and 2 represent lifetimes of the three discrete exponential decays; f0, f1and f2 are exponential decay 

fractions; 0, 1, and 2 represent pre-exponential factors. 2 represents the goodness of the fit.  Phase and modulation 

errors were respectively set at ≤ 0.2° and ≤0.004.   
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It has been shown previously that Ca2+ modulates DREAM interactions with Kv4 channels 

and presenilin-1 (An, Bowlby et al. 2000, Jo, Jang et al. 2005, Gonzalez, Pham et al. 2014, 

Pham, Miksovska 2016). Recent studies from our group have shown that Pb2+ and Cd2+ 

also modulate the aforementioned interactions (Azam, Miksovska 2018). To investigate 

whether Li+ association to the protein also alters DREAM interactions with Kv4 channel, 

we measured changes in the anisotropy of  FITC-labeled peptides  that correspond to 

residues 2–22  and 70–90  of Kv4.3 upon addition  100 µM DREAM(64) and  200 µM 

DREAM(64), respectively  (Figure 5.10A,B). Anisotropy of Kv4.3(2–22) increases from 

0.063 ± 0.008  to 0.099 ± 0.007, 0.229 ± 0.014, and 0.218 ± 0.010 upon addition of metal-

free DREAM(64), Ca2+DREAM(64), and Li+DREAM(64), respectively, and 

anisotropy of Kv4.3(70–90) increases from 0.074 ± 0.005 to 0.116 ± 0.004, 0.193 ± 0.012, 

and 0.186 ± 0.009 upon addition of metal-free DREAM(64), Ca2+DREAM(64), and 

Li+DREAM(64), respectively. Significantly higher anisotropy of Kv4.3(2–22)–Li+ 

DREAM(64) and Kv4.3(70–90)–Li+DREAM(64) compared with the corresponding 

apo-form indicates an increased affinity of Li+DREAM for Kv4.3(2–22) and Kv4.3(70–

90. Similar anisotropy values of Kv4.3(2–22)–DREAM(64) and Kv4.3(2–22)–

DREAM(64) in the presence of Li+ and Ca2+suggest that Li+ increases affinity between 

DREAM and Kv4 channel in a manner analogous to Ca2+.  We have also probed if Li+ 

impacts on DREAM interactions with presenilin-1. A FITC-tagged peptide corresponds to 

helix-9 of presenilin-1(PS1HL9) were titrated with a saturation concentration of 

DREAM(64) (100 µM) (Figure 5.10C). Anisotropy value of PS1HL9 increases from 

0.068 ± 0.004 in the absence of protein to 0.095 ± 0.003 in the presence of apoDREAM 
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and 0.252 ± 0.009 in the presence of Ca2+DREAM, and 0.097 ± 0.009 upon binding to 

Li+DREAM(64). Similar anisotropy values of metal-free DREAM(64)–PS1HL9  and 

Li+DREAM(64)–PS1HL9 indicate that Li+  association to DREAM doesn’t enhance 

DREAM interaction with presenilin-1.  Although additional studies are necessary, these 

results are consistent with the fact that Ca2+  association to DREAM facilitates DREAM 

interaction with presenilin-1, resulting in an increase in the accumulation of Aβ42, a 

peptide whose overproduction has been linked to Alzheimer’s disease, whereas Li+ 

administration has been shown to decrease Aβ42 production (Jo, Jang et al. 2005, 

Figure 5.10. Impact of Li+ association with DREAM on DREAM 

interactions with interacting partners. 100 µM, 200 µM, and 100 µM 

DREAM(Δ64) were respectively added to FITC-labeled A) 0.5 μM Kv4.3-

(2–22). B) 0.5 μM Kv4.3-(70–90), and C) 0.5 μM PS1HL9. Samples were 

excited at 470 nm; emission was recorded through 500 nm long-pass filter. 

Concentrations of EDTA, Ca2+, and Li+ were same as Trp emission study.  
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Rockenstein, Torrance et al. 2007, Su, Ryder et al. 2004).  These results may provide a first 

molecular insight into the neuroprotective role of Li+.  

5.3. Summary  

        Utilizing a combination of fluorescence and calorimetric techniques, we first time 

comprehensively demonstrate that Li+ binds at EF-hand of DREAM; Li+ also modulates 

DREAM interaction with Kv4 channel. Our findings could open up a new avenue for NMR 

and X-ray crystallographic studies for obtaining detailed structural information of 

Li+DREAM. Our study also encourages in vivo study in an animal model for investigating 

the impact of Li+ administration on DREAM expression and the impact of  Li+  treatment 

on DREAM interactions with interacting partners. Our findings also re-emphasized the 

potential of Li+ for the treatment of manic disorders and neurodegenerative diseases. 
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6. INVESTIGATION OF FEW OTHER METALS BINDING TO DREAM. 

6.1 Background and significance  

            Mn2+ is a transitional metal which is a cofactor of various enzymes. It is essential 

to support basic physiological function in the cells (Martinez-Finley, Gavin et al. 2013). 

However, overexposure to Mn2+ leads to its accumulation in the brain, which causes 

neurotoxicity to several brain regions, including the hippocampus, frontal cortex, 

substantia nigra, and striatum (Robison, Zakharova et al. 2012, Tuschl, Mills et al. 2013).  

Studies have suggested that elevated Mn2+ level has been associated with Alzheimer's 

disease (Tong, Yang et al. 2014). Studies on non-human primate brain demonstrated that 

chronic Mn2+ exposure leads to aggregation of amyloid-β in the frontal cortex, indicating 

overexposure to Mn2+ might be related to cognitive and memory deficits (Guilarte 2010). 

But the underlying mechanism of  Mn2+-induced neurotoxicity has not been resolved yet.  

Mn2+ accumulation could influence the homeostasis of the brain microenvironment and has 

been implicated in cognitive impairment, developmental disorders and neurodegenerative 

diseases (Yu, Zhou 2018, Lucchini, Placidi et al. 2017). Mn2+ can replace Mg2+ from the 

active center of different enzymes including DNA-polymerase, RNA-polymerase, 

adenylate and guanylate cyclases (Bähre, Danker et al. 2014, Lakhin, Efremova et al. 2013, 

Lakhin, Tarantul et al. 2014). Displacement of Mg2+ from the active center of enzyme is a 

probable mechanism of Mn2+ intoxication. Besides the alteration of brain 

microenvironment homeostasis, the promotion of oxidative stress and the generation of 

reactive oxygen species are considered the possible mechanism of action (Milatovic, Yin 

et al. 2007, Gunter, Gavin et al. 2006, Archibald, Tyree 1987). It has been shown that Mn2+ 

binds to  EF-hands in Ca2+ binding protein calmodulin and EF-hand protein calprotectin, 
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which is a heterodimer of S100A8 and S100A9 (Senguen, Grabarek 2012, Gilston, Skaar 

et al. 2016). Interestingly, calprotectin has a higher affinity for Mn2+ in the presence of Ca2+ 

compared with the corresponding metal-free form (Brophy, Nolan 2015, Damo, Kehl-Fie 

et al. 2013). Since Mn2+ impacts the hippocampus region of the brain and associates to EF-

hand proteins and DREAM is located in the hippocampus and it’s an EF-hand protein, we 

investigated whether Mn2+ binds to DREAM and alters its tertiary structural 

rearrangements and impacts interaction with hydrophobic molecule both in the presence 

and absence of Ca2+. 

                     Chronic arsenic exposure from groundwater is considered one of the worst 

environmental disorders in the world. More than 100 million people in the world, especially 

South Asian countries Bangladesh and India, are at risk of cancers and other arsenic-related 

diseases (Jain, Ali 2000, von Brömssen, Jakariya et al. 2007, Argos, Kalra et al. 2010). The 

United States Environmental Protection Agency (EPA) and International Agency for 

Research on Cancer (IARC) have classified arsenic as a human carcinogen. Chronic arsenic 

exposure also has been associated with noncancerous effects (Chen, Wang et al. 2007, 

Chen, Graziano et al. 2011). It is widely considered that inorganic arsenate, a molecular 

analog of phosphate, can replace phosphate in some biochemical reactions (Hughes 2002). 

For instance, the substitution of phosphate with arsenate could inhibit the generation of 

adenosine 5′-triphosphate (ATP) during oxidative phosphorylation (Hughes 2002). 

Trivalent arsenic species have been shown to associate with protein due to high affinity for 

sulfhydryl groups (Summers 2009, Kitchin, Wallace 2005, Zhao, Chen et al. 2012). Arsenic 

binding to a particular protein could alter its conformation and interaction with interacting 

partners which could be a possible mechanism of arsenic toxicity. Arsenic binding to 
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protein has been associated with inactivation of about  200 enzymes, including  glutathione 

S-transferase, glutathione peroxidase, glutathione reductase, thioredoxin reductase, 

thioredoxin peroxidase, pyruvate kinase galectin-1 (Ratnaike 2003, Webb 1966, Müller, 

Walter et al. 1995, Chouchane, Snow 2001, Lu, Chew et al. 2007, Chang, Lee et al. 2003, 

Lin, Huang et al. 2006). Trivalent arsenic species also have been demonstrated to inhibit 

the activities of various DNA repair proteins such as formamidopyrimidine-DNA glycosy-

lase (Fpg) and xeroderma pigmentosum group A protein (XPA). Each of these proteins 

comprises a zinc finger DNA binding domain (Walter, Schwerdtle et al. 2007, Hartwig, 

Blessing et al. 2003).The association of arsenic compounds with these repair proteins 

resulted in the release of zinc. On the other hand, arsenic compounds have been used as 

drugs for more than 2400 years (Doyle 2009, Waxman, Anderson 2001). Particularly, As203  

has been used for the treatment of patients suffering from acute promyelocytic leukemia 

(APL), probably because of arsenic association with  cysteine residues in zinc fingers of 

the aberrant promyelocytic leukemia-retinoic acid receptor (PML-RAR) fusion protein 

expressed by these patients (Zhang, Yan et al. 2010, Jeanne, Lallemand-Breitenbach et al. 

2010). Since our study demonstrated toxic metals such as lead and cadmium bind to 

DREAM (Azam, Miksovska 2018, Azam, St Luis et al. 2019), in this case, we investigated 

whether As5+ binds to DREAM and triggers tertiary structural rearrangements.   

              Mercury is a very toxic metal, which naturally presents in the environment 

(Clarkson 2002). It exists in three different forms, namely, elemental mercury (0), inorganic 

mercury (I, II), and organic mercury. Among them, organic mercury is considered super-

toxic (Park, Zheng 2012, Carocci, Rovito et al. 2014). After exposure, mercury is 

translocated to the bloodstream and important organs, ultimately causing kidney, 
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cardiovascular, gastrointestinal, immune, and nervous system malfunction (Clarkson 

2002). The toxic effect exerted by numerous mercury compounds could be best explained 

by binding of Hg2+ to cysteine-thiol and seleno-cysteine residues of critical enzymes (Jan, 

Ali et al. 2011, Branco, Canário et al. 2012, Carvalho, Chew et al. 2008, Clarkson, Magos 

2006). Mercury binding causes dramatic changes to the SH group as mercury is much 

larger than the H that it displaces. If the SH is essential for enzyme activity, binding of Hg2+ 

causes inhibition of that activity. For instance, binding of mercury causes inhibition of 

protein kinase C activity (Saijoh, Inoue et al. 1988). Binding of mercury to the SH group 

of protein can also lead to unfolding, precipitation, and aggregation of the protein 

(Konyaeva, Myshkin 1998a, Khromova, Myshkin 2000). In addition to binding to cysteine 

residues, Hg2+ has been shown to bind to non-cysteine residues of some proteins, including 

hemoglobin and chymotrypsin. Binding of Hg2+ to non-cysteine residues protects 

hemoglobin against aggregation (Konyaeva, Myshkin 1998c, Konyaeva, Myshkin 1998b, 

Stratton, Ericksen et al. 2017, Myshkin, Khromova 2000). In the absence of inaccessible 

cysteine residues, Hg2+ binds to histidine residues of digestive enzyme chymotrypsin, 

which causes denaturation of the enzyme (Stratton, Ericksen et al. 2017). Considering the 

similar ionic radii of Pb2+, Cd2+, and Hg2+ and the previously reported binding of Hg2+ to 

calcium binding sites on CaM (Vig, Nath et al. 1989), we set forth to determine whether 

heavy metal Hg2+ binds to DREAM and induces tertiary structural rearrangements both in 

the presence and absence of Ca2+. 

              Alkaline earth metals Sr2+  and Ba2+ have been shown to bind to EF-hand protein 

CaM and calcium-binding protein-1 from Entamoeba histolytica (EhCaBP1) (Kursula, 

Majava 2007, Kumar, Ahmad et al. 2012). Among different EF-hands of DREAM, Mg2+ 
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binds to EF-2 selectively, whereas EF-3 and EF-4 bind Ca2+ preferentially.  Since Sr2+ and 

Ba2+ have similar ionic radii (1.21 and 1.38Å, respectively ) as Ca2+ (1.06Å) (Gu, Cooper 

2000), we set out to determine whether Sr2+ and Ba2+ bind to EF-hand of DREAM and 

trigger tertiary structural rearrangement of the protein.                    

6.2 Results and discussion 

                  Tryptophan emission is a widely-used tool to probe structural rearrangement of 

the proteins. Our previous studies have shown that DREAM undergoes structural 

rearrangement upon binding of Ca2+, Pb2+, Cd2+, and Tb3+ in the EF-hand of the protein 

and emission intensity of tryptophan decreases upon binding of above metals (Azam, 

Miksovska 2018, Azam, St Luis et al. 2019, Gonzalez, Ramos et al. 2016, Pham, Dhulipala 

et al. 2015). We have also demonstrated that hydrophobic cavities of DREAM become 

more accessible to hydrophobic molecules 1,8-ANS in the presence of above metals 

compared with metal-free form. Consequently, the emission intensity of DREAM:1,8-ANS 

is higher in the presence of above metals compared with corresponding metal-free form 

(Azam, Miksovska 2018, Azam, St Luis et al. 2019, Gonzalez, Ramos et al. 2016, 

Gonzalez, Miksovska 2014). To investigate whether As5+, Hg2+, Mn2+, Ba2+, or Sr2+ binds 

to DREAM, we added 1 mM of barium chloride, strontium chloride, arsenic pentoxide, 

mercuric oxide and manganese chloride into DREAM(64) protein and 

DREAM(64):1,8-ANS complex both in the presence and absence of Ca2+ (Figure 6.1–

6.5A–D). Our results show that addition of As5+, Hg2+, Mn2+, Ba2+, or Sr2+ doesn’t alter 

emission intensity of DREAM(64) or  emission intensity of DREAM(64):1,8-ANS, 

suggesting either As5+, Hg2+, Mn2+, Ba2+, or Sr2+ does not bind to DREAM(64) or binding 

of As5+, Hg2+, Mn2+, Ba2+, or Sr2+ does not trigger structural rearrangements of DREAM.  
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Figure 6.1.  Impact of 1 mM Mn2+ addition on Trp emission of metal-free and Ca2+-bound 

DREAM(64)  (A,B) and emission of metal free and Ca2+-bound  DREAM(64):1,8-

ANS (C,D).   
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Figure 6.2.  Impact of 1 mM As5+ addition on Trp emission of metal-free and Ca2+-bound 

DREAM(64)  (A,B) and emission of metal free and Ca2+-bound  DREAM(64):1,8-ANS 

(C,D).   
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Figure 6.3.  Impact of 1 mM Hg2+ addition on Trp emission of metal-free and Ca2+-bound 

DREAM(64)  (A,B) and emission of metal free and Ca2+-bound  DREAM(64):1,8-ANS 

(C,D).   
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Figure 6.4.  Impact of 1 mM Ba2+ addition on Trp emission of metal-free and Ca2+-bound 

DREAM(64)  (A,B) and emission of metal free and Ca2+-bound  DREAM(64):1,8-ANS 

(C,D).   
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Figure 6.5.  Impact of 1 mM Sr2+ addition on Trp emission of metal-free and Ca2+-bound 

DREAM(64)  (A,B) and emission of metal free and Ca2+-bound  DREAM(64):1,8-

ANS (C,D).   
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6.3. Summary  

            Encouraged by the fact that toxic metals Cd2+ and Pb2+ bind to DREAM, we 

investigated whether toxic metals Mn2+, As5+, and Hg2+ bind to DREAM. Additionally, we 

investigated whether alkaline earth metals Ba2+ and Sr2+ bind to DREAM. On the basis of 

the fact that addition of As5+, Hg2+, Mn2+, Ba2+, or Sr2+ did not change the emission intensity 

of DREAM(64) or DREAM(64):1,8-ANS complexes, we conclude that either As5+, 

Hg2+, Mn2+, Ba2+, or Sr2+ does not bind to DREAM or addition of As5+, Hg2+, Mn2+, Ba2+, 

or Sr2+ does not trigger structural rearrangements of DREAM.     
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7. ROLE OF LYS RESIDUE AT POSITION 87 OF DREAM IN ALLOSTERIC 

REGULATION OF DREAM INTERACTIONS WITH INTERACTING 

PARTNERS.  

7.1 Background and significance 

             Downstream regulatory element antagonist modular (DREAM), alternative 

known as KChIP3/calsenilin, is a 29kDa NCS protein which is expressed in the brain 

and heart and regulate a wide spectrum of  biological processes (An, Bowlby et al. 

2000, Buxbaum, Choi et al. 1998, Carrion, Link et al. 1999). DREAM is the only 

Ca2+ binding protein that can directly interact with DNA sequence (DRE) of genes 

(prodynorphin and c-fos genes) and represses transcription of these genes (Carrion, 

Link et al. 1999). In the absence of Ca2+, DREAM  interacts with DRE of human 

prodynorphin and c-fos genes and inhibit transcription of these genes, but Ca2+ 

association induces conformation change in the protein that prevents binding of 

DRE and consequently reactivates the transcription (Carrion, Link et al. 1999, 

Cheng, Pitcher et al. 2002). Prodynorphin and c-fos genes have been linked to pain 

modulation, cell homeostasis, and apoptosis. Repression of the transcription of DRE 

by DREAM highlights its role in the regulation of the above processes (Costigan, 

Woolf 2002, Fontán-Lozano, Romero-Granados et al. 2009).  

           In the cytoplasm, DREAM interacts with carboxy-terminal fragment (CTF) of 

presenilin-1 (PS1) and presenilin-2 and stimulates the activity of γ- secretase complex in 

a Ca2+-dependent manner, which facilitates production of amyloid-beta plaques  of 

Alzheimer’s disease (Buxbaum, Choi et al. 1998, Jo, Jang et al. 2005). DREAM also 

associates with the T1 domain of voltage-gated potassium channels and plays a 
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crucial role in the regulation of fast ITO and ISA current in the heart and brain, 

respectively. The above interaction also promotes the translocation of the channel to 

the membrane and modulates the gating properties of the channel (An, Bowlby et 

al. 2000). It has been shown recently that DREAM protein might be involved in the 

mechanism of nicotine treatment-prevented learning and memory impairment in 

REM sleep-deprived rats by modulating its expression level in the hippocampus 

(Abd Rashid, Hapidin et al. 2017).  

               DREAM protein contains 256 amino acid residues. 3-D structure of the full-

length DREAM is not known yet because its poor solubility prevented structural 

determination of the first 77 residues by NMR-studies (Lusin, Vanarotti et al. 2008). After 

the deletion of the first 64 residues, the solution structure of Ca2+DREAM (residue 65-256) 

was resolved  (Lusin, Vanarotti et al. 2008). That’s why in our study we used DREAM 

protein that possesses residues 65-256. DREAM protein contains four EF-hands. Each EF-

hand has a distinct metal binding property. EF-1 doesn’t bind any metal because it has 

sterically hindered proline residues in the EF-hand loop. EF-2 binds Mg2+ preferentially as 

it has aspartate residue in the 12th position of the EF-hand loop. EF-3 and EF-4 bind Ca2+ 

selectively because glutamate residue is present in the 12th position of the EF-hand loop 

(Osawa, Dace et al. 2005, Osawa, Tong et al. 2001). Recently, we have shown that EF-

hands of DREAM are also capable of binding heavy metals Pb2+ and Cd2+(Azam, 

Miksovska 2018, Azam, St Luis et al. 2019)  

           Our previous studies demonstrated that DREAM undergoes tertiary structural 

rearrangement upon Ca2+, Tb3+, Pb2+, or Cd2+ binding. We also have shown hydrophobic 

cavities of DREAM that binds hydrophobic molecule 1,8-ANS becomes more accessible 
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to 1,8-ANS in the presence of Ca2+, Tb3+, Pb2+, or Cd2+ association, compared with metal-

free form (Azam, Miksovska 2018, Azam, St Luis et al. 2019, Gonzalez, Ramos et al. 2016, 

Gonzalez, Miksovska 2014). Additionally, we demonstrated that helix-9 of presenilin-1 is 

involved in DREAM–presenilin-1 interaction and site-1 (residues 2–22) and site-2 

(residues 70–90) peptides of T-1 domain of Kv4.3 channel are involved in DREAM– Kv4.3 

channel interaction (Pioletti, Findeisen et al. 2006, Gonzalez, Pham et al. 2014, Pham, 

Miksovska 2016, Wang, Yan et al. 2007a). We have used accelerated molecular dynamics  

to get insight about the mechanism of allosteric regulation of DREAM  

 

interactions with intracellular partners. Unlike the NMR structure of DREAM, aMD data 

indicate the presence of a salt bridge between Lys87 and Asp 165 that couples the loop 

between helix-1 and helix-2 in the N- terminal domain with the EF-3 in the C- terminal 

domain (Figure 7.1). We hypothesize that the salt bridge involved in the propagation of 
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Figure 7.1. Left: aMD   structure   of Ca2+DREAM. EF-hands are shown in different 

colors: EF-hand 1, yellow; EF-hand 2, blue; EF-hand 3, green; EF-hand 4, red; rest 

part of the protein is shown in cyan; two Ca2+ are shown as green spheres; Trp169, 

Glu165, and Lys87 are show as sticks. Right: Distance between Lys87 and Glu165 

side chains determined from 100 ns accelerated molecular simulation of 

DREAM(64). 
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calcium-triggered structural changes between the C- terminal and N- terminal domain. To 

determine the contribution of Lys87 to the interdomain communication Lys87 was mutated 

to Ala and the impact of the mutation on DREAM secondary and tertiary structures and 

DREAM interactions with interacting partners were investigated.  

7.2 Results and discussion 

7.2.1 Impact of Lys87 to Ala mutation on DREAM secondary and tertiary structures.  

              It has been well established from our previous study that emission maximum of 

wild-type DREAM (64) in metal-free form is 335 nm and emission maximum shifts to 

329 nm upon Ca2+ binding (Azam, Miksovska 2018, Gonzalez, Ramos et al. 2016, Osawa, 

Tong et al. 2001). Emission maximum of Trp169 in DREAM(K87A) is 5 nm red-shifted 

compared with corresponding wild-type protein, suggesting Trp169 is more solvent 

exposed in DREAM(K87A) (Figure 7.2A). The increase in solvent accessibility can be 

explained by the fact that the absence of salt bridge destabilizes the protein structure. Ca2+ 

binding to DREAM(K87A) leads to decrease in ellipticity which is similar to Ca2+ binding 

to corresponding WTDREAM(64) (Figure 7.2B). Analyzing of the far-UV CD data with 

secondary structure prediction tool K2D3 reveals that DREAM(K87A) contains 53%, 

Figure 7.2. (A) Intrinsic fluorescence of 20 µM DREAM(K87A) in the 

presence of 1 mM EDTA, 5 mM Mg2+, and 1 mM Ca2+; excited at 295 nm. (B) 

Far-UV CD spectra of DREAM(K87A) under identical condition.  
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54%, 63%, and 65% -helical character in apo, Mg2+, Ca2+, and Ca2+Mg2+-bound form, 

respectively. Interestingly, both metal-free and metal-bound form of DREAM(K87A) show 

about 10% less  -helical character than corresponding WTDREAM(64), suggesting that 

the disruption of the salt bridge makes the protein more flexible. Analogously, emission 

spectra of 1,8-ANS in the presence of DREAM(K87A) is 10 nm red-shifted compared with 

corresponding wild-type protein, indicating the hydrophobic cavity that binds 1,8-ANS is 

more solvent exposed in DREAM(K87A) (Figure 7.3). However, the decrease in emission 

intensity of Trp and increase in emission intensity of 1,8-ANS upon calcium addition to 

metal-free DREAM(K87A) are analogous to calcium addition to metal-free wild-type 

protein, suggesting that the mutation of Lys to Ala does not prevent Trp transition and 1,8-

ANS binding to DREAM. Alteration of tertiary structure of the protein is further confirmed 

by the lifetime data. Analogous to WTDREAM(64), W169 residue of DREAM(K87A) 

exhibits three different lifetimes (Figure 7.4, Table 7.1), which could be due to the presence 

of multiple rotamers of the indole side chain as well as multiple conformational states 

Figure 7.3. Fluorescence emission of DREAM(K87A):1,8-

ANS complex. Condition: 20 µM DREAM(K87A), 20 µM 1,8-

ANS, excited at 350 nm. 
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(Pham, Dhulipala et al. 2015). Similar to WTDREAM(64),  upon Ca2+ binding the 

average lifetime of W169 in DREAM(K87A) decreases by 0.3 ns, compared with 

corresponding apo-form, which supports emission data. Analogous to WTDREAM(64), 

1,8-ANS binds to two different binding sites on DREAM(K87A) surface as evident from 

two distinct lifetimes of 1,8-ANS in 1,8-ANS:DREAM(K87A) complexes (Figure 7.5, 

Table 7.2).  While the mutation did not change the individual lifetimes of 1,8-ANS 

significantly, it decreased the affinity for 1,8-ANS, as evident by smaller 1 and 2 values 

compared with wild-type protein, likely due to the lower accessibility of the 1,8-ANS 

binding sites.  

 

 

 

Figure 7.4. Frequency-domain intensity decay of 20 

µM DREAM(K87A) in apo (square), Mg2+ (circle), 

Ca2+ (upper triangle), and Ca2+Mg2+ (lower triangle) 

bound form. Solid symbols correspond to phase delay; 

empty symbols correspond to modulation ratio. Solid 

lines represent data fitting using a sum of three 

exponential decays model. 
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Figure 7.5. Frequency-domain intensity decay of 

DREAM(K87A):1,8-ANS in apo (square), Mg2+ 

(circle), Ca2+ (upper triangle), and Ca2+Mg2+ (lower 

triangle) bound form. Solid symbols correspond to 

phase delay; empty symbols correspond to modulation 

ratio. Solid lines represent data fitting using a sum of 

three exponential decays model. 
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Table 7.1: Fluorescence decay parameters of DREAM(K87A) in the presence and absence of metals. 

Sample

s 

τ1  

(ns) 

τ2  

(ns) 

τ3  

(ns) 

f1  

(%) 

f2  

(%) 

f3  

(%) 
1  

(%) 

2  

(%) 

3  

(%) 

< τ> 

(ns) 
2 

Apo 0.32 ± 

0.03 

2.7 ±  

0.1 

7.2 ± 

0.3 

8.9 ± 

0.1 

52.4 ± 

0.3 

38.1 ± 

0.2 

53.2 36.9 10.1 4.2 1.9 

Mg2+ 0.30 ± 

0.02 

2.6 ± 

0.1 

7.2 ± 

0.4 

8.4 ± 

0.1 

51.3 ± 

0.1 

40.1 ± 

0.3 

53.4 36.4 10.2 4.2 2.1 

Ca2+ 0.28 ± 

0.03 

2.4 ± 

0.1 

7.1 ± 

0.2 

10.5 ± 

0.1 

49.6 ± 

0.2 

38.8 ± 

0.2 

56.3 34.5 9.1 3.9 1.7 

Ca2+M

g2+ 

0.29 ± 

0.03 

2.4 ± 

0.1 

7.1 ± 

0.1 

10.7 ± 

0.1 

49.8 ± 

0.3 

39.1 ± 

0.2 

56.1 34.8 8.9 3.9 1.8 

Recovered from Vinci analysis software using a sum of three discrete exponential decays. Phase and modulation errors 

were set at ≤ 0.2° and ≤0.004, respectively. 1, 2, and 3 are lifetimes of the three discrete exponential decays; f1, f2and f3 

represent exponential decay fractions; 1, 2, and 3 are pre-exponential factors.    
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Table 7.2: Fluorescence decay parameters of DREAM(K87A):1,8-ANS complexes. 

DREAM(K87A):1,8-ANS τ1  

(ns) 

τ2  

(ns) 

f0  

(%) 

f1  

(%) 

f2  

(%) 
0  

(%) 

1  

(%) 

2  

(%) 

2 

apo 4.0 ± 

0.1  

16.4 ± 

0.2  

8.9 ± 

0.1 

33.4 ± 

0.8 

58.1 

± 0.7 

72.6 19.3 8.1 1.2 

Mg2+ 3.9 ± 

0.1 

16.2 ± 

0.2 

9.0 ± 

0.1 

33.1 ± 

0.8 

58.5 ± 

0.7 

72.8 18.9 8.3 1.3 

Ca2+ 4.1 ± 

0.1 

16.9 ± 

0.2 

4.7 ± 

0.1 

21.8 ± 

0.6 

74.0 ± 

0.6 

63.3 20.3 16.4 1.1 

Ca2+Mg2+ 4.1 ± 

0.1 

16.9 ± 

0.2 

4.7 ± 

0.1 

21.1 ± 

0.6 

74.9 ± 

0.6 

63.1 20.1 16.8 1.1 

Recovered from Vinci analysis software using a sum of three discrete exponential decays with 1,8-

ANS lifetime fixed to 0.28 ns. Phase and modulation errors were set at ≤ 0.2° and ≤0.004, respectively. 

0, 1, and 2 are lifetimes of the three discrete exponential decays; f0, f1and f2 represent exponential 

decay fractions; 0, 1, and 2 are pre-exponential factors.    
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7.2.2 Consequence of Lys87 to Ala mutation on DREAM interactions with intracellular 

partners.  

               Previous studies have shown that KChIP1, a protein with high sequence 

homology with DREAM, interacts with the T-1 domain of Kv.4 channel through two 

contact interfaces and this interaction has been demonstrated to result in increased surface 

expression, alteration of gating properties, and subunit assembly facilitation of Kv4 

channels (Bourdeau, Laplante et al. 2011, Pioletti, Findeisen et al. 2006, Wang, Yan et al. 

2007b, Bahring, Dannenberg et al. 2001, Scannevin, Wang et al. 2004).  Site 1(residues 1-

20) of T1 domain of Kv4 channel interacts with N- and C- terminal hydrophobic cavity of 

KChIP1. Site-2 (residue 70-78) of T1 domain of Kv4 channel interacts with KChIP1 

through both stacking and salt bridge interaction (Pioletti, Findeisen et al. 2006, Wang, Yan 

Figure 7.6. Anisotropy change associated with Kv4.3 site 

1 (residues 2-22) (A), Kv4.3 site 2 (residues 70-90) (B) 

and presenilin 1 helix 9 (PS1HL9) (C) binding to 

DREAM(K87A) in the presence and absence of Ca2+.  
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et al. 2007a). Our previous result demonstrated that DREAM interacts with site 1 (residues 

2-22) and site 2 (residues 70-90) of the T-1 domain of Kv channel. To investigate whether 

Lys to Ala mutation at position 87 alters DREAM affinity for site 1 and site 2 of T-1 domain 

of Kv channel, we titrated DREAM(K87A) into FITC-tagged 0.5 μM site-1 and  site-2 

peptide (Azam, Miksovska 2018, Azam, St Luis et al. 2019, Gonzalez, Pham et al. 2014) 

(Figure 7.6A,B). Anisotropy value did not change upon the addition of saturation 

concentration of metal-free and Ca2+-bound form of DREAM(K87A) to site 1 and site 2 

peptides. As a control experiment, we added the corresponding metal-free and Ca2+-bound 

form of WTDREAM(64) to site 1 and site 2 peptides. In this case, anisotropy value 

increased significantly, especially in the presence of Ca2+, which is in agreement with our 

previous study. Altogether, the above results suggest that disrupting interdomain 

communication between N- and C- terminal of DREAM by mutating Lys87 to Ala inhibits 

DREAM interactions with site 1 and site 2 of T1 domain of Kv channel. This result is 

consistent with the notion of 1,8-ANS lifetime data where DREAM shows a weaker affinity 

for hydrophobic molecule 1,8-ANS. We postulate that disrupting interdomain 

communication disrupts the hydrophobic cavities that are involved in the binding of site 1 

and site 2.    

                     Previous studies have shown that DREAM interacts with the carboxy-

terminal fragment of presenilin-1 and stimulates the activity of ɣ-secretase complex which 

in turn facilities production of Aβ42, a peptide associated with Alzheimer’s disease (Jo, 

Jang et al. 2005). Previous results of our group have shown that DREAM interacts with 

presenilin-1 of helix-9 (PS1HL9) in a calcium-dependent manner; DREAM interacts with 

PS1HL9 through cation–π interaction, salt bridge, and hydrophobic interaction. More 
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specifically, D450 and D458 of PS1HL9 form a salt bridge with R207 of DREAM; R200 

of DREAM forms a cation–π interaction with F465 of PS1HL9; and F462 and F465 of 

PS1HL9 forms hydrophobic interaction with F252 of DREAM (Pham, Miksovska 2016). 

To investigate whether Lys to Ala mutation at position 87 influences the interaction 

between DREAM and PS1HL9, we titrated DREAM(K87A), in metal-free form and in the 

presence of Ca2+, into 0.5 μM PS1HL9. Interestingly, our results show that the anisotropy 

value of PS1HL9 does not increase at all upon the addition of saturation concentration of 

DREAM(K87A), both in apo and Ca2+-bound form. On the other hand, under identical 

conditions, the anisotropy value of PS1HL9 increases significantly upon the addition of 

corresponding WTDREAM(64), indicating mutation of Lys to Ala at position 87 inhibits 

DREAM interactions with PS1HL9. We hypothesize that disrupting interdomain 

communication allosterically inhibits hydrophobic interaction between DREAM and 

PS1HL9 as supported by 1,8-ANS lifetime data where DREAM shows a weaker affinity 

for hydrophobic molecule 1,8-ANS.  

7.3 Summary 

          In this study, we have demonstrated that disrupting interdomain communication 

between N- and C- terminal of DREAM by mutating Lys87 to Ala leads to solvent 

exposure of Trp169 and DREAM-bound 1,8-ANS molecule as supported by emission data; 

less accessibility of hydrophobic cavity of DREAM for 1,8-ANS association as evident 

from lifetime data; and inhibition of DREAM interactions with site 1 and site 2 peptide of 

T-1 domain of Kv channel and helix 9 of presenilin-1 based on anisotropy measurements.  
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8. IMPACT OF EF-3 OR EF-4 INACTIVATION OF DREAM ON ITS SECONDARY 

AND TERTIARY STRUCTURES AND INTERACTION WITH T-1 DOMAIN OF 

KV CHANNEL.  

8.1 Background and significance 

                         Downstream regulatory element antagonist modulator (DREAM) is 

a 29kDa protein that is expressed in the hippocampus of the brain (Carrion, Link et 

al. 1999). Interestingly, this protein has three different names. It was discovered by 

three independent research groups and each group named it differently. On the basis 

of the fact that this protein interacts with presenilin and regulates the activity of γ- 

secretase complex, one research group named it calsenilin (Buxbaum, Choi et al. 

1998). Later, another group named it as downstream regulatory element antagonist 

modulator (DREAM) as this protein interacts with downstream regulatory element 

(DRE) and directly modulate transcription of downstream genes (Carrion, Link et 

al. 1999). Finally, this protein was renamed as KChIPs as it has high sequence 

similarity with KChIP-1 and KChIP-2 (An, Bowlby et al. 2000). DREAM is a 

member of EF-hand superfamily; it also belongs to the neuronal calcium sensor 

family. DREAM is a multifunctional protein that regulates numerous biological 

processes, including gene apoptosis, pain sensation, and memory and learning 

processes (An, Bowlby et al. 2000, Buxbaum, Choi et al. 1998, Carrion, Link et al. 

1999).  

        DREAM has been associated with Alzheimer’s disease. It interacts with presenilin-1 

(PS1) and presenilin-2 and stimulates the activity of γ- secretase complex in a calcium-

dependent manner and facilitates the generation of amyloid beta plaques in 
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Alzheimer’s disease (Buxbaum, Choi et al. 1998, Jo, Jang et al. 2005). DREAM also 

associate with the T1 domain of potassium channels and play a predominant role in 

the modulation of fast ITO and ISA current in the heart and brain, respectively. 

DREAM binding to the T1 domain of potassium channels also promotes 

translocation of the channel to the membrane and alters the gating properties of the 

channel (An, Bowlby et al. 2000). Ca2+-bound DREAM interacts with CaM and 

DREAM:CaM complex formation inhibits DREAM interaction DRE sites and 

facilitates activation of calcineurin (Gonzalez, Arango et al. 2015, Ramachandran, 

Craig et al. 2012).  

               DREAM protein comprises 256 amino acid residues. It also contains four EF-

hands. The four EF-hands of  DREAM differ in terms of metal binding property. EF-hand 

1  doesn't bind any metal as the presence of sterically hindered amino acid residue proline 

in the EF-hand loop (CPXG sequence) destroys metal-binding geometry. EF-2 binds Mg2+ 

selectively because of the presence of Asp at the 12th position of the EF-hand loop instead 

of the usual glutamate. It has been demonstrated that Mg2+ binding to EF-2 stabilizes the 

tertiary structure of DREAM  which facilities DNA binding. EF-hand 3 and EF-hand 4 

bind Ca2+ preferentially with Kd of 1–10 µM as glutamate is present at the 12th position 

of the EF-hand loop (Gifford, Walsh et al. 2007, Lusin, Vanarotti et al. 2008, Osawa, 

Dace et al. 2005, Osawa, Tong et al. 2001). Our recent studies have shown that heavy 

metals Pb2+ and Cd2+ and lanthanide Tb3+ bind to EF-hand of DREAM with affinity higher 

than that of Ca2+ (Azam, Miksovska 2018, Azam, St Luis et al. 2019, Gonzalez, Ramos et 

al. 2016)  In the absence of any metal, DREAM exists as a tetramer, but Ca2+ binding 

triggers conformation changes in the protein that dissociates the tetramer into two dimers 
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if the concentration of protein is below 150 µM. When the concentration of protein is above 

200 µM, DREAM is tetramer in both metal-free forms and Ca2+ bound form (Osawa, Tong 

et al. 2001). 

                It is well established that Ca2+ binding causes secondary and tertiary structural 

rearrangements of the protein and subsequently modulates DREAM interaction with 

binding partners (Osawa, Dace et al. 2005, Osawa, Tong et al. 2001, Pham, Dhulipala et 

al. 2015). Our previous studies have also demonstrated that DREAM interacts with 

hydrophobic molecule 1,8-ANS through hydrophobic cavities of its surface and 

hydrophobic cavities that bind 1,8-ANS becomes more accessible to 1,8-ANS in the 

presence of Ca2+ as evidenced by the fact that emission intensity of DREAM:1,8-ANS is 

higher in presence of Ca2+ compared with corresponding metal-free form (Gonzalez, 

Miksovska 2014). But the underlying mechanism of Ca2+-triggered structural 

rearrangements of DREAM and modulation of interactions with binding partners is not 

resolved yet. In this study, we mutated glutamate residue at 12th position of EF-3 

(DREAM(E186Q)) or EF-4 (DREAM(E234Q)) to glutamine for making these EF-hands 

incapable of binding Ca2+ and investigated whether mutations impact Ca2+-triggered 

secondary and tertiary structural rearrangements of the protein and whether mutations 

impact Ca2+-induced modulation of DREAM interaction with hydrophobic molecule 1,8-

ANS and T-1 domain of Kv channel.    
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8.2 Results and discussion 

8.2.1 Consequence of EF-3 or EF-4 inactivation of DREAM on Its Secondary and Tertiary 

Structure  

                 The previous study demonstrated that Ca2+ binding triggers tertiary structural 

rearrangements of DREAM and emission intensity decreases upon Ca2+ binding to 

DREAM(64) and C-terminal of the DREAM, DREAM(160)(Gonzalez, Ramos et al. 

2016, Pham, Dhulipala et al. 2015). It is also well established from the previous study that 

Ca2+ binds to EF-3 and EF-4 at the C-terminal of the protein. As a control experiment, we 

measured emission spectra of DREAM(64) and DREAM(160) both in the presence and 

absence of Ca2+ (Figure 8.1A,B). Emission intensity decrease upon Ca2+ binding to both 

DREAM(64) and DREAM(160), which is in agreement with previous studies. Then we 

measured emission spectra of the DREAM(E186Q), a DREAM construct that is not 

Figure 8.1. Steady-state Trp emission spectra of 20 µM DREAM(64), 

DREAM(160), DREAM(E186Q), and DREAM(E234Q) in the absence 

and presence of 1 mM Ca2+; excited at 295 nm.  
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expected to bind Ca2+ and other metals at EF-3 due to glutamate to glutamine mutation at 

position 186, and DREAM(E234Q), a DREAM construct that is not anticipated to bind 

Ca2+ at EF-4 due to glutamate to glutamine mutation at position 234 (Figure 8.1C,D). The 

emission intensity decreases upon Ca2+ binding to DREAM(E186Q), a DREAM construct 

with EF-3 inactive, but EF-4 active, suggesting Ca2+ binding to EF-4 could trigger 

structural rearrangement that causes the decrease in emission intensity. Interestingly, 

emission spectrum of DREAM(E234Q), DREAM construct with EF-4 inactive, but EF-3 

inactive, is the same in the presence and absence of Ca2+, indicating binding of Ca2+ at EF-

4 might not cause Ca2+-triggered tertiary structural rearrangement. The emission study is 

supported by Trp lifetime study (Figure 8.2A,B and Table 8.1). The lifetime of Trp 169 is 

sensitive to structural rearrangement. The average lifetime of Trp169 in DREAM(64) 

decreases from 3.8 ns to 3.1 ns upon Ca2+ binding. Like DREAM(64), the average lifetime 

of Trp169 in DREAM(E186Q) decreases from 4.2 ns to 3.6 ns upon Ca2+ addition, but the 

average lifetime of Trp169 in DREAM(E234Q) remains same (4.3 ns) upon Ca2+ addition, 

which bolster finding of  Trp emission study. To get insight about Ca2+ triggered secondary 

Figure 8.2. Frequency-domain intensity decay of 20 µM DREAM(E186Q) (A) and 

DREAM(E234Q) (B) in apo (square) and Ca2+ (circle) bound form. Solid symbols 

represent phase delay; empty symbols represent modulation ratio. Solid lines 

represent fitting of the data using a sum of three exponential decays model. 
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structural rearrangement we measured far-UV CD spectra of all four DREAM constructs 

(Figure 8.3A-D). We calculated percentage of -helix using online program K2D3 and 

results show that Ca2+ binding causes ~ 6 increase in -helical content in DREAM(64) 

and DREAM(E186Q) and ~ 10% increase in -helical content of DREAM(160) but -

helical content of DREAM(E234Q) remains same upon Ca2+ addition. Above far-UV CD 

data is in agreement with the notion of Trp emission and Trp lifetime data.  

 

 

 

 

 

Figure 8.3. Far-UV CD spectra of DREAM(64) (A), DREAM(160) 

(B), DREAM(E186Q) (C), and DREAM(E234Q) (D) in the absence 

and presence of 1mM Ca2+.   
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Table 8.1: Fluorescence decay parameters of DREAM constructs in the presence and absence of metals. 

Samples τ1  

(ns) 

τ2  

(ns) 

τ3  

(ns) 

f1  

(%) 

f2  

(%) 

f3  

(%) 
1  

(%) 

2  

(%) 

3  

(%) 

< τ> 

(ns) 
2 

ApoDREAM

(64) 

0.24 ± 

0.03 

2.5 ±  

0.1 

7.1 ± 

0.3 

17.3 ± 

0.8 

45.4 ± 

3.0 

37.3 ± 

0.3 

75.1 19.2 5.9 3.8 1.5 

Ca2+DREAM

(64) 

0.16 ± 

0.02 

1.9 ± 

0.1 

6.3 ± 

0.1 

22.0 ± 

0.9 

37.5 ± 

2.0 

40.5 ± 

2.0 

84.5 12.1 3.3 3.1 0.9 

apoDREAM(

E186Q) 

0.56 ± 

0.06 

2.5 ± 

0.2 

6.4 ± 

0.3 

7.5 ± 

1.0 

44.4 ± 

3.0 

49.1 ± 

4.0 

34.2 46.1 19.6 4.2 1.6 

Ca2+DREAM

(E186Q) 

0.48 ± 

0.04 

2.4 ± 

0.1 

6.2 ± 

0.3 

10.9 ± 

1.01 

49.4 ± 

3.0 

39.4 ± 

4.0 

45.3 41.9 12.8 3.6 1.4 

apoDREAM(

E234Q) 

0.27 ± 

0.03 

2.6 ± 

0.2 

6.9 ± 

0.3 

8.6 ± 

0.5 

46.6 ± 

3.0 

44.7 ± 

3.0 

56.2 32.2 11.5 4.3 1.5 

Ca2+DREAM

(E234Q) 

0.27 ± 

0.03 

2.6 ± 

0.1 

6.9 ± 

0.3 

8.5 ± 

8.4 

48.4 ± 

3.0 

42.9 ± 

3.0 

56.5 32.6 10.8 4.3 1.9 

Recovered from Vinci analysis software using a sum of three discrete exponential decays. Phase and modulation errors were 

set at ≤ 0.2° and ≤0.004, respectively. 1, 2, and 3 are lifetimes of the three discrete exponential decays; f1, f2and f3 represent 

exponential decay fractions; 1, 2, and 3 are pre-exponential factors.    
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8.2.2 Effects of EF-3 or EF-4 inactivation of DREAM on Its interaction with hydrophobic 

molecule 1,8-ANS.  

                Hydrophobic molecule 1,8-ANS has been widely used for probing 

hydrophobicity of protein surface as 1,8-ANS is almost non-fluorescence in solution but 

fluorescence intensity increases by many-folds upon association with hydrophobic patches 

of protein surface (Cardamone, Puri 1992). Our previous study has demonstrated that 

DREAM is capable of binding 1,8-ANS in metal-free form but Ca2+ association to 

DREAM increases its affinity for 1,8-ANS. In this case, we investigated whether 

inactivation of either EF-3 or EF-4 impacts 1,8-ANS (Gonzalez, Miksovska 2014). As a 

control, we measured emission intensity of DREAM(64):1,8-ANS and 

DREAM(160):1,8-ANS complexes (Figure 8.4A,B) both in the presence Ca2+ and in 

metal-free form and the result is consistent with previous studies; that is, the emission 

Figure 8.4. Fluorescence emission of DREAM(64):1,8-ANS (A),  

DREAM(160):1,8-ANS (B), DREAM(E186):1,8-ANS (C), and  

DREAM(E234):1,8-ANS complexes in metal-free form and in the presence of 1 mM 

Ca2+.  Condition: 20 µM DREAM constructs, 20 µM 1,8-ANS, excited at 350 nm. 
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intensity of 1,8-ANS increases significantly upon binding to these protein constructs in 

metal-free form and the emission intensity of both DREAM(64):1,8-ANS and 

DREAM(160):1,8-ANS complexes are higher in the presence of Ca2+ compared with 

corresponding metal-free form. Like above complexes, the emission intensity of 

DREAM(E186Q):1,8-ANS and DREAM(E234Q):1,8-ANS complexes (Figure 8.4C,D) 

increase significantly upon Ca2+ association compared with corresponding metal-free form, 

suggesting binding of one Ca2+ in either EF-3 or EF-4 is good enough for increasing the 

accessibility for 1,8-ANS binding site.  

              To support the above emission studies, we also measured the lifetime of the above 

complexes in metal-free form and in the presence of Ca2+ (Figure 8.5A,B, Table 8.2). 

Previously we showed that 1,8-ANS binds to two distinct binding sites on the DREAM 

surface (Gonzalez, Miksovska 2014). Modulation-phase data for all complexes were best 

Figure 8.5. Frequency-domain intensity decay of DREAM(E186Q):1,8-ANS 

(A) and DREAM(E234Q):1,8-ANS (B) in apo (square) and Ca2+-bound form 

(circle). Solid symbols represent phase delay; empty symbols represent 

modulation ratio. Solid lines represent fitting of the data using a sum of three 

exponential decays model. 
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fitted by a three exponential decay model with 1,8-ANS lifetime fixed to 0.28 ns. Faster 

lifetime τ1 could be attributed to 1,8-ANS binding to the partially solvent-exposed binding 

site on DREAM, whereas longer lifetime τ2 can be assigned to 1,8-ANS binding to non-

polar solvent restricted binding site on DREAM. Inactivating EF-3 or EF-4 did not 

significantly alter individual lifetimes, but 1 and 2 values are smaller in 

DREAM(E186Q):1,8-ANS and DREAM(E234Q):1,8-ANS complexes both in the 

presence of Ca2+ and in metal-free form compared with corresponding DREAM(64):1,8-

ANS (Table 8.2), suggesting that inactivating either EF-3 or EF-4 decreases DREAM 

affinity for 1,8-ANS. Interestingly, the value of  2  did not change significantly upon Ca2+ 

binding to DREAM(E186Q):1,8-ANS and DREAM(E234Q):1,8-ANS complexes, but the 

value of 2 increased by 2-folds upon Ca2+ binding to metal-free DREAM(64):1,8-ANS 

(Table 8.2). It is possible that binding of one Ca2+ to DREAM(E186Q):1,8-ANS and 

DREAM(E234Q):1,8-ANS complexes may not fully expose the hydrophobic cavities that 

bind 1,8-ANS.  
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Table 8.2: Fluorescence decay parameters of DREAM:1,8-ANS complexes. 

DREAM:1,8-ANS τ1  

(ns) 

τ2  

(ns) 

f1  

(%) 

f2  

(%) 
0  

(%) 

1  

(%) 

2  

(%) 

2 

apoDREAM(64) 4.1 ± 0.1 16.9 ± 

0.2 

15.4 ± 

0.5 

83.0 ± 

1.0 

62.6 15.5 21.9 0.9 

Ca2+DREAM(64) 4.3 ± 0.2 18.0 ± 

0.2 

9.7 ± 0.6 88.9 ± 

0.5 

40.4 16.9 42.7 0.9 

apoDREAM(E186Q) 3.5 ± 0.1  17.2 ± 

0.1  

12.3 ± 

0.4 

83.3 ± 

0.4 

68.9 13.0 18.1 1.5 

Ca2+DREAM(E186Q) 3.7 ± 0.1 17.0 ± 

0.1 

10.1 ± 

0.8 

88.6 ± 

0.5 

60.7 13.5 25.8 1.2 

apoDREAM(E234Q) 3.6 ± 0.1 16.1 ± 

0.1 

16.4 ± 

0.5 

75.3 ± 

0.5 

76.1 11.8 12.1 1.8 

Ca2+DREAM(E234Q) 3.9 ± 0.1 16.7 ± 

0.1 

13.2 ± 

0.6 

82.7 ± 

0.6 

67.7 13.1 19.2 1.7 

Recovered from Vinci analysis software using a sum of three discrete exponential decays with 1,8-ANS lifetime 

fixed to 0.28 ns. Phase and modulation errors were set at ≤ 0.2° and ≤0.004, respectively. 0, 1, and 2 are 

lifetimes of the three discrete exponential decays; f0, f1and f2 represent exponential decay fractions; 0, 1, and 2 

are pre-exponential factors.    
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8.2.3 Impact of EF-3 or EF-4 Inactivation of DREAM on Its Interaction with T-1 Domain 

of Kv Channel.  

               Previous studies have demonstrated that KChIP1, a protein with high sequence 

similarity with DREAM, interacts with the T-1 domain of Kv.4 channel through two contact 

interfaces and this interaction has been shown to cause  modulation of gating properties, 

enhancement of surface expression, and  facilitation of subunit assemblies of  Kv4 channels 

(Bourdeau, Laplante et al. 2011, Pioletti, Findeisen et al. 2006, Wang, Yan et al. 2007b, 

Bahring, Dannenberg et al. 2001, Scannevin, Wang et al. 2004).  Residues 1-20 (site-1) of 

the T1 domain of Kv4 channel interacts with N- and C- terminal hydrophobic patches of 

KChIP1. Residue 70-78 (site-2) of the T1 domain of Kv4 channel interacts with KChIP1 

through both stacking and salt bridge interaction (Pioletti, Findeisen et al. 2006, Wang, Yan 

et al. 2007a). Our previous result showed that DREAM interacts with site 1 (residues 2-22) 

and site 2 (residues 70-90) of T-1 domain of the Kv channel (Azam, Miksovska 2018, 

Azam, St Luis et al. 2019, Gonzalez, Pham et al. 2014). To investigate whether EF-3 or 

EF-4 inactivation of DREAM modulates DREAM affinity for site 1 and site 2 of the T-1 

domain of Kv channel, we titrated DREAM(E186Q) and DREAM(E234Q) into FITC-

tagged 0.5 μM site-1 and site-2 peptide (Figure 8.6A,B). Anisotropy value did not increase 

upon the addition of saturation concentration DREAM(E186) or DREAM(E234Q) to site 

1 peptide both in the presence and absence of Ca2+. As a control experiment, we added 

corresponding wild-type DREAM(64) to site peptides both in the presence and absence 

of Ca2+. In this case, anisotropy value increased significantly, especially in the presence of 

Ca2+, which is similar to our previous study. Site 1 binds to N- and C- terminal hydrophobic 
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patches on DREAM surface. We postulate that inactivating either EF-3 or EF-4 disturbs 

big hydrophobic patches in the C-terminal of DREAM and subsequently prevents 

interaction between DREAM and site-1. DREAM(E186Q) and DREAM(E234Q) addition 

to site-2 show an increase in anisotropy, which is similar to wild-type DREAM(64) 

addition site-2, suggesting inactivating either EF-3 or EF-4  may not modulate DREAM 

interaction with site-2 of T-1 domain of Kv4 channels. The site-2 binding site is located at 

the N-terminus of DREAM. Inactivating EF-3 or EF-4 at the C-terminus of DREAM may 

likely not have impact on site-2 binding at the N-terminus.   

8.3 Summary  

                     In this study, we have shown that Ca2+ binding to EF-4 triggers secondary and 

tertiary structural rearrangements of DREAM based on CD-data, Trp emission, and Trp 

lifetime data. Inactivation either EF-3 or EF-4 decreases DREAM affinity for hydrophobic 

molecule 1,8-ANS based on 1,8-ANS lifetime data. Lastly, inactivating EF-3 prevents 

DREAM interaction with site-1 of the T-1 domain of K+ channel.     

 

Figure 8.6. Anisotropy change associated with Kv4.3 site-1 (residues 2-22) (A) 

and Kv4.3 site- 2 (residues 70-90) (B) association with DREAM(E186Q) and 

DREAM(E234Q) in the presence and absence of Ca2+.  
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9. CONCLUSIONS  

                  Exposure to toxic metals such as Cd2+ and Pb2+ has been associated with 

learning difficulties, IQ drop, and cognitive deficiencies in children and different 

types of cancers and neurodegenerative diseases, but the molecular mechanism 

through which these metals induces toxicity remains unexplored. DREAM is 

expressed in the hippocampus, the part of the brain regulates memory consolidation 

and learning. Cd2+ and Pb2+ have been shown to strongly impact the hippocampus 

region. These metals also have been shown to bind to EF-hand of calmodulin (CaM) 

and troponin C (TnC) with a higher affinity that physiological ligand Ca2+. Binding 

of these toxic metals modulates CaM interactions with downstream partners, which 

is considered one of the possible mechanisms of Pb2+-induced neurotoxicity. 

Considering the facts that Pb2+ and Cd2+ impact hippocampus region and bind to EF-

hand protein and DREAM is an EF-hand protein and expressed in the hippocampus, 

we investigated whether Cd2+ and Pb2+ bind to DREAM. In chapter 3, we 

demonstrated the binding of Pb2+ to DREAM protein for the first time. We showed 

that Pb2+ binds to EF-hand on DREAM with a higher affinity than Ca2+ and capable 

of displacing Ca2+. Using fluorescence titration, we determined the dissociation 

constant for Pb2+ binding to DREAM to be 20 ± 2 nM. Pb2+ association induces the 

secondary and tertiary structural rearrangement of this protein that is analogous to 

Ca2+ association as evidenced from Trp emission and circular dichroism data. Pb2+ 

binding exposes the hydrophobic patches of the DREAM and subsequently 

facilitates the binding of hydrophobic molecule 1,8-ANS. From the fluorescence 

titration, we determined that 1,8-ANS associates to DREAM with a 2-fold higher 
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affinity in the presence of Pb2+ compared with the metal-free form. Isothermal 

titration calorimetry experiments provided thermodynamics insight of the Pb2+ association 

to DREAM.  ITC data reveal two Pb2+ ions bind to DREAM protein with dissociation 

constants 26 nM and 86 nM, respectively and binding of Pb2+ to DREAM is entropy-

driven as evidenced by positive enthalpy and positive entropy change. Most 

interestingly, we demonstrated that the Pb2+ association alters DREAM interaction 

with intracellular partners based on anisotropic titration of DREAM protein with 

peptide-based model systems. More specifically, we determined that DREAM 

interacts with Kv4.3(2–22) and Kv4.3(70–90) peptides of T-1 domain of  Kv channel with 

about  7-fold and 50-fold  higher affinity, respectively, in the presence of Pb2+, compared 

with the corresponding apo-form. Considering the implication of Kv channels in 

hippocampus-dependent memory and learning processes, Kv channel:KChIP complexes 

may rerpesent molecular target contributing to Pb2+ induced memory and learning 

deficiencies. Also, DREAM interacts with helix 9 of presenilin-1 (PS1HL9) with about 70 

times higher affinity than correspoding metal-free form. Several studies demonstrated that 

an early life exposure to Pb2+ promotes  developmental reprogramming of  APP gene 

expression, leading to an augmented expression of amyloid precursor protein during 

adulthood. The interaction between Pb2+-bound DREAM and PS1HL9 observed here 

suggest that elevated concentrations of Pb2+ may directly impact the proteolytic processing 

of the β-amyloid precursor protein. Considering high sequence identity of the C-terminal 

domain of neuronal calcium sensors and significant amount of Pb2+ in the brain (0.52–4 

ppm) due to occupational and environmental exposure to the Pb2+, especially in the 
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hippocampus, other members of NCS family are likely to bind Pb2+ with higher affinity 

than that for Ca2+ and be involved in Pb2+-induced neurotoxicity. 

      In chapter 4, we demonstrated Cd2+ binding to DREAM. We show Cd2+ binding 

triggers secondary and tertiary structural rearrangement of the DREAM based on 

Trp emission and CD spectra. From the emission and CD spectra of DREAM protein 

in which either EF-3 or EF-4 is inactivated, we found that Cd2+ binding at EF-4 

could trigger structural rearrangement of DREAM. We determined that Cd2+ binds 

to DREAM with a dissociation constant 89 ± 10 nM, which is about 5-times weaker 

than Pb2+ binding to DREAM. Interestingly, although Cd2+ ion has similar ionic radii 

and charge/radius ratio values as Ca2+, the association of Cd2+ to EF-3 and EF-4 

triggers a conformational transition that is somewhat restricted compared to that 

determined for the binding of the physiological ligand, Ca2+. This is substantiated 

by 1,8-ANS emission data as well as lower affinity constants for binding of peptides 

that mimic physiological effector proteins presenilin and T1 domain of Kv channels. 

Isothermal titration calorimetry data unveiled that Cd2+ association with DREAM is 

accompanied with a positive change in entropy and enthalpy, suggesting the reaction is 

entropy-driven. Considering high sequence similarity of DREAM with other NCS proteins, 

Cd2+ could bind to other NCS proteins and these interactions could provide insight into the 

molecular basis of neurotoxicity. 

         In chapter 5, we determined Li+ binding to DREAM. Although Li+-based compounds 

have been used as a first line therapy for the treatment of severe mental disorders for more 

than six decades and have a wide range of applications in psychopharmacology, the 

molecular mechanism of Li+ action remains largely unknown. Inhibitions of inositol 
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monophosphatase (IMPase) and glycogen synthase kinase-3 beta (GSK-3β) were proposed 

as molecular mechanisms of Li+ action with Li+ inhibiting IMPase by displacing the native 

cofactor Mg2+. Recent in vivo and in cellular studies demonstrated that chronic Li+ 

administration provides a protective effect against neurodegenerative diseases including 

Alzheimer, Parkinson and Huntington disease. However, the exact mechanism through 

which Li+ exerts its therapeutic action remains an active area of research. We report that 

neuroprotective agent Li+ binds to DREAM with an equilibrium dissociation constant of 

34 ± 4 μM and impacts DREAM structural and dynamic properties in a similar manner as 

observed for its physiological ligand, Ca2+. The results of fluorescence spectroscopy and 

molecular dynamics are consistent with Li+ binding at the chelating loop of the EF-hands. 

In the Li+ bound form, DREAM association to peptides mimicking DREAM binding sites 

in voltage-gated potassium channel is enhanced compared to the apoprotein, whereas 

DREAM affinity for presenilin binding site, helix-9, is impeded. The reduced affinity of 

Li+DREAM for helix-9 compared with Ca2+DREAM is in line with in vivo results showing 

that Li+ administration decreases levels of soluble Aβ42 in transgenic mouse model of 

Alzheimer’s disease. These results suggest that DREAM and possibly other members of 

neuronal calcium sensor family belong to Li+ intracellular targets and interactions between 

Li+ and NCS provide a molecular basis for Li+ neuroprotective action. 

              In chapter 6,  we investigated whether toxic metals As5+, Hg2+, and Mn2+ and other 

alkaline metals such as Ba2+ and Sr2+ bind to DREAM. Based on tryptophan emission and 

1,8-emission study we conclude that either As5+, Hg2+, Mn2+, Ba2+, or Sr2+  does not bind 

to DREAM or binding of As5+, Hg2+, Mn2+, Ba2+, or Sr2+ does not trigger structural 

rearrangements.  
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        In chapter 7, we investigated impact of Lys87 to Ala mutation on DREAM secondary 

and tertiary structures and interaction with intracellular partners. Accelerated molecular 

dynamics data indicate the presence of a salt bridge between Lys87 and Asp 165 that 

couples the loop between helix-1 and helix-2 in the N- terminal domain with the EF-3 in 

the C- terminal domain  We postulated that the salt bridge involved in the propagation of 

calcium-triggered structural changes between the C- terminal and N- terminal domain. To 

determine the contribution of Lys87 to the interdomain communication, we mutated Lys87 

to Ala in order to break the salt bridge and investigated the impact of the mutation on 

DREAM secondary and tertiary structures and DREAM interactions with interacting 

partners. Our data reveal that the emission maximum of Trp169 in DREAM(K87A) is 5 

nm red-shifted compared with corresponding wild-type protein, suggesting Trp169 is more 

solvent exposed in DREAM(K87A). The increase in solvent accessibility can be explained 

by the fact that the absence of salt bridge destabilizes the protein structure. Also disrupting 

the interdomain coummunication by mutating Lys87 to Ala prevents DREAM interaction 

with PS1HL9 and site-1 and site-2 peptides of the T-1 domain of Kv channel. This result 

is consistent with the notion of 1,8-ANS lifetime data where DREAM shows a weaker 

affinity for hydrophobic molecule 1,8-ANS. 

       In chapter 8, we mutated glutamate residue at 12th position of EF-3 (DREAM(E186Q)) 

or EF-4 (DREAM(E234Q)) to glutamine for destroying Ca2+ binding properties of these 

EF-hands and investigated impact of mutations on Ca2+-triggered secondary and tertiary 

structural rearrangements of the protein and Ca2+-induced modulation of DREAM 

interaction with T-1 domain of Kv channel. On the basis of CD, Trp emission, and 1,8-

ANS emission data, we conclude that Ca2+ binding in EF-4 causes secondary and tertiary 
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structural rearrangement of the proteins. We also demonstrated that EF-3 or EF-4 

inactivation inhibits DREAM interaction with Kv4.3(2–22)  peptides of T-1 domain of  Kv 

channel, but EF-3 or EF-4 inactivation doesn’t impact DREAM interaction with Kv4.3(70–

90) peptides of T-1 domain of  Kv channel. Kv4.3(2–22) binds to N- and C- terminal 

hydrophobic patches on DREAM surface; inactivating either EF-3 or EF-4 might disturb 

big hydrophobic patches in the C-terminal of DREAM and subsequently prevents 

interaction between DREAM and Kv4.3(2–22). Kv4.3(70–90) binding site is located at the 

N-terminus of DREAM. Inactivating EF-3 or EF-4 at the C-terminus of DREAM may 

likely not have impact on Kv4.3(70–90) binding at the N-terminus.   
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