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quisition systems and values given by respective product vendors, manufacturers, and the

utility partners.

System M has 4, 480 modules and 46 smart string inverters that can either be con-

nected to consumer loads or fed directly into the grid [132, 137]. The dataset consists

of four attributes: irradiance (measured in W/m2, the amount of solar power incident per

square meter of PV modules), ambient temperature (measured in ◦F), module temperature

(also measured in ◦F, temperature of PV modules), and PV generation (measured in kW,

the aggregate amount of power generated by the modules). All these values are recorded

in real-time for one year in 15 minute intervals. System D comprises 6 arrays of 4, 200

PV modules and has a mix of 8 types of daisy-chained string inverters. In Fig. 1.3, each

grey-colored circle at the end of each array represents the aggregated energy output from

all daisy-chained inverters along that array, which are then summed and sent to the main

AC panel box. The other system-level parameters used in the study are summarized in

Figure 1.3: High-level architecture of the 3 PV systems to collect and visualize real-time
data
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Table 1.2: Parameters of PVM, D, and K
Parameter SystemM System D System K

Location Miami Daytona Daytona

Latitude-Longitude 25.76◦ N, 80.36◦ W 29.18◦ N, 81.05◦ W 29.18◦ N, 81.05◦ W

Elevation (ft) 10 33 33

DC size (MW) 1.412 .1282 0.356

AC size (MW) 1.104 1.035 0.326

No. of Inverters 46 36 8 string + 583 micro

No. of PV modules 4, 480 4, 420 1, 163

Type of Inverters M-Inv1 (24kW each) 5 36kW D-Inv1, 5 36kW D-Inv2, 5
27kW D-Inv3, 5 29kW D-Inv4, 4
29kW D-Inv5, 2 23kW D-Inv6, 5
30kW D-Inv7, 5 27.6kW D-Inv8

8 20kW K-Inv1 (string), 583
247W K-Inv2

(micro-inverter)

Inverter topology String String String + Micro

No. of inverter models 1 8 2

CEC inverter efficiency
(pinverter)

0.98 0.975-0.986 0.975-0.986

Module efficiency (%) 16.5 16.5 16.5

No. of strings in series
× no. of arrays

56 × 4 35 × 6 1 × 583 + 583

Modules per string 20 20 19, 19.5, 20

Tilt, Azimuth of array 5◦, 268◦ 5◦, 268◦ 5◦, 268◦

Soiling derate factor
(pdirt)

0.9 0.9 0.9

Cabling loss factor
(pcable)

0.99 0.99 0.99

Temperature
coefficient (%tempcoeff )

-0.5 -0.5 -0.5

Module mismatch
factor (pmismatch)

0.97 0.97 0.97

Table 1.2. Specifically, nameplate rating of the inverters of System D ranges between 23

kW and 36 kW, and those in SystemM are sized at 24 kW.

Whereas Systems M and D use string inverters, System K uses a combination of

micro-inverters and string inverters [10]. Each system has its a weather station that mea-

sures irradiance, ambient temperature, and module temperature. Data acquisition systems

(DAS) capture the energy production of individual inverters as well as that of the entire

system, and weather data in 15 and 1-minute intervals and send them via secure Global

System for Mobile channels to structured query language-based databases hosted by a

software as a service cloud model. Application service providers exist for interfacing

clients with the processed and stored time-series data, where clients might access data us-
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ing desktop, web, or mobile applications. The PV modules have a conversion efficiency

of 16%. Revenue grade production meters are used to record the net energy generated,

beyond which the point of interconnection to the grid’s feeders exist.

1.3.2 CS2: Utility-scale PV on IEEE Transmission System (U-PV)

To implement and evaluate the different ACOPF solvers, 5 standard IEEE transmission

systems (with 5, 14, 30, 57 and 118 buses) are considered. The maximum number of

buses for this study is decided based on the observation that most of the related works

in the literature consider a maximum of 118 buses in their studies, with an exception of

very few works that consider 300 bus systems at transmission level [138–141]. Each sys-

tem denotes a higher scale and hence, complexity. In each of these systems, one of the

generators is modeled as PV with its generation profile mirroring that shown in Fig. 1.4.

While the topology of the systems are retained, only one of the synchronous generators is

Figure 1.4: Sample of the U-PV generation profile vs. Load curve for Miami between
11 AM and 1 PM
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Table 1.3: Statistics about the Partial Solar Eclipse for SystemsM and K
Value (from 2 PM to 3 PM) SystemM System K

Location Miami Daytona

Time at Lowest Reading 3:00 PM 2:45 PM

Drop in Power (kW) 503.4 (70.8%) 140.64 (84%)

Drop in Irradiance (W/m2) 469.99 (70.8%) 56.3 (87.4%)

Drop in Ambient Temperature (◦F) 3.48 (3.8%) 6.92 (7.4%)

Drop in Module Temperature (◦F) 13.52 (13.1%) 25.4 (21.8%)

Change in Power Performance Index (PPI) 1.5% 0.3%

replaced by PV [142]. Further, the generation capacity and profile are adjusted based on

the average load profiles observed for a specific region in Miami, Florida. The adjustment

is such that the penetration level of the PV into that bus is at least 60% of the observed

average peak load, thus constituting a futuristic high penetration scenario. This modifi-

cation ensures the chapter’s simulation results are brought closer to the real-world. The

load profile is constructed by averaging profiles for 3 months over a period of 2 hours,

from 11:00AM through 1:00PM. For this particular case, the average load (in blue) re-

mains constant at around 21MW, but installed PV generation increases from 21 to 36MW

between 11:00 and 11:15AM. It again drops from 36 to 4.8MW in the next 15 minutes. It

is this kind of fluctuation that requires the use of the proposed solution. Simulations are

performed multiple times with same settings and after refreshing the caches of the soft-

ware and the average of their values was used as the final result to minimize if not remove

the inconsistencies in the processing power and speed of the system. It is important to

reiterate that the data represent only the average profiles for a particular region in Miami,

not the values for any specific date or month.
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1.3.3 CS3: The Eclipse of August 21, 2017 (Eclipse)

The total solar eclipse of August 21, 2017 was the first to be observed in twenty-six

years from the USA. It was first observed in Oregon at 10:15 AM (Pacific Time) and

last observed in North Carolina at 2:49 PM (Eastern Time). During the short period of

the eclipse at each location, the utilities were reported to have taken their PV systems

offline, wherein a surge in load was also expected. In the State of Florida, the eclipse

was only partial. SystemsM and K considered in this case study experienced an average

coverage of about 80% and 89% respectively, as illustrated in Fig. 1.5. Table 1.3 and Fig.

1.6 summarize the key changes observed in net generation, average irradiance, average

temperature and average PPI of the two PV systems. It can be observed that System

K experienced a greater fluctuation in module temperature, ambient temperature, and

irradiance, but recorded a lower fluctuation in its instantaneous performance which is

measured using the PPI. This metric is discussed in detail in Section 6.2.

Figure 1.5: The statistics of the partial solar eclipse at the 2 locations.
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Figure 1.6: Generation profiles of SystemsM (blue) and K (red) during the peak of the
solar eclipse.

1.4 Research Objectives and Original Contributions

(1) Conceptual cybersecurity frameworks for PV situation awareness: A holistic

multidimensional framework in collaboration with the National Renewable Energy Lab-

oratory (NREL) for PV asset cybersecurity at device, communications, and application

levels. A tri-modular human-on-the-loop framework to reduce cognitive gap and improve

situation awareness of NOC/SOC analysts in a time-constrained environment.

(2) LASSO-Elastic Net and MLP-PSO for PV generation forecasting: A combinato-

rial model using LASSO-Elastic Net regularizations for feature shrinkage, non-parametric

regression to capture dependencies, and MLP trained with particle swarm optimization

(PSO) to predict PV generation. The model reduced the likelihood of overfitting and

improved generalization when compared to using raw inputs.

(3) PDLB-IPM to improve ACOPF convergence and ensure solution optimality: A

unique application of PDLB-IPM to convexify and linearize the NP-hard ACOPF prob-
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lem for accelerated convergence without compromising solution optimality. PDLB-IPM

improved the convergence time of ACOPF by 0.7 and 6 times that of the deterministic

models used in the industry.

(4) Adapting big data standards and capability maturity models for PV: This ob-

jective elaborates how the emerging standards and CMM in the big data domain can be

adapted to PV. In doing so, this work provides a useful starting point for researchers and

industry members developing standards and CMM assessments for smart grids and PV.

(5) KNN and random forests to impute missing values in PV data: A robust method-

ology to understand missingness mechanism in PV data and use the imputed values in

MLP to predict and compare PV generation with observed values. Random forests and

KNN improved the accuracy on an average by 86% and 96%, respectively.

(6) Hybrid Data-Model Method to estimate PV generation: Using HDMM to ap-

proximate PV generation with better accuracy by modeling the system parameters and

historical data. Application of energy performance index (EPI) and power performance

index (PPI) to better capture performance of PV systems. HDMM performed better on an

average by 75% for System D and 10% for SystemM. At a given point in time, System

M is likely to perform better than System D.

1.5 Dissertation Organization

Chapter 2 presents an overview of the concepts used in the dissertation to achieve PV

operational visibility and situation awareness. First, the tests for statistical significance,

homoscedasticity and stationarity are described. Next, supervised learning using feedfor-

ward neural networks and key performance evaluation metrics are discussed.

Chapter 3 adapts the big data standards and CMM to the domain of PV by discussing

the big data attributes and lifecycle stages, then identifying the gaps in existing stan-

22



dards and CMM for PV, and finally filling the identified gaps using the existing big data

standards and CMM. Chapter 4 proposes descriptive analytics that include exploratory

analysis of the PV data, identifying the missingness mechanism in the attributes, and a

roadmap to identify the appropriate missing value imputation technique to determine the

most likely missing values. Chapters 5 and 6 propose diagnostic analytics, where BEM

and HDMM are described, followed by an evaluation of system performance. Chapter

7 proposes the prediction of PV generation using LASSO-Elastic Net regularizations of

features and an MLP trained using PSO. Chapter 8 proposes the unique application of

PDLB-IPM to accelerate the convergence of ACOPF for a network with high penetration

of PV. The proposed approach is described, followed by validation. Chapter 9 proposes a

conceptual, holistic multidimensional framework for modeling the security of PV. It de-

scribes the different dimensions of information assurance, followed by the dimensions of

the proposed framework that covers the device, communications, and applications-level

vulnerabilities. A tri-modular human-on-the-loop framework to reduce the cognitive gap

between analysts at utility NOC/SOC and automated tools in-place for active prevention

of threats is also introduced to address cognitive-level vulnerabilities.

Chapter 10 summarizes the dissertation outcomes, provides high-level conclusions of

this research, and makes recommendations on the future directions of related research.
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CHAPTER 2

STATISTICAL AND MACHINE LEARNING CONCEPTS, TECHNIQUES

This chapter presents an overview of fundamental statistical and machine learning tech-

niques applied to achieve an enhanced PV operational visibility and situation awareness.

The discussions involve a high-level overview, relevant model formulation details, and

associated pseudocodes. Table maps each model with the chapter where they are used.

2.1 Pearson Correlation

In Chapter 5, Pearson correlation analysis is conducted to build a correlation matrix.

Given a sample pair of values (xi, yi) such that i ∈ [1, n],∀i ∈ Z+, where n is the

total number of samples, the correlation coefficient, ρ, is calculated using the following

equation [143], where ρ ∈ [−1,+1].:

Table 2.1: Mapping Models to Chapters where they are Used
Model Objective Chapter

Pearson correlation 1: Tri-modular human-on-the-loop framework for
NOC/SOC situation awareness

10

Non-parametric regression 2: Forecasting PV generation 7

Null Hypothesis Test 3: Numerical estimation of PV generation 5

Test for Homoscedasticity 5: Imputing missing values in PV data 4

AIC and ADF Test for Stationarity 2: Forecasting PV generation 7

Kurtosis and Skewness 5: Imputing missing values in PV data 4

Size Effect Measures using Cohen’s Distance 5: Imputing missing values in PV data 4

K-Means Clustering 1: Tri-modular human-on-the-loop framework for
NOC/SOC situation awareness

10

CART-based Regression 1: Tri-modular human-on-the-loop framework for
NOC/SOC situation awareness

10

LASSO and Elastic Net Regularization 2: Forecasting PV generation 7

Multilayer Perceptron Trained with Adam
Optimizer

5: Imputing missing values in PV data 4

Multilayer Perceptron Trained with PSO 3: Forecasting PV generation 7
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∑
xiyi) +

∑
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yi√
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∑
xi)2

√
n
∑
y2i − (

∑
yi)2

(2.1)

2.2 Linear Regression

A linear regression model is generically represented by: y = α + βx + ε, where α

denotes the intercept, β represents the slope, also called the variable’s coefficient, and ε

the error [144]. α and β are together called regression coefficients. Linear regression

models are built in Chapter 5 such that y takes on the PV generation values while x

represents weather parameters, considered one at a time. The resulting models, six in

total, have been tested for statistical significance using the null hypothesis test.

2.3 Null Hypothesis Test

The null hypothesis considered in Chapter 5 is that there is no relationship between each

weather parameter and PV generation, considering a predetermined statistical significance

level of 0.05. The model’s statistical significance is denoted by the p-value that is calcu-

lated using the set of equations in Eq. (2.2) [145] for a given standard deviation, σ, and

standard error, SE. A smaller p-value implies a greater statistical significance and in-

creases the likelihood that the null hypothesis is incorrect [145]. This implies that the

null hypothesis might be rejected on grounds of a p-value lower than 0.05 (the default

threshold). However, p-value is not a measure of probability that the null hypothesis is

true, or that the null hypothesis can be rejected with certainty. The low p-values, consid-

ered in conjunction with the patterns observed in boxplots and correlation matrix, could

provide suitable grounds for the rejection of null hypothesis and conclude that there is a

significant likelihood for the weather parameters to impact PV generation.
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SE =
σ√
n
, t− value =

β − α
SE

, p− value = P (> |t− value|) (2.2)

2.4 Test for Homoscedasticity

Hawkin’s test is used in Chapter 4 to explore the missingness mechanism, normality, and

homoscedasticity. The test, proposed in [146], tests for MCAR missingness. The dataset

with missing values is split into three batches to reduce the amount of memory required

for processing, where the first two batches comprise 10, 000 cases each, and the third has

9, 831 cases. In all runs, the test first imputes values using the method prescribed in [147]

that considers a case-based independence of values with linearly related variables, and

assumes their cumulative distribution functions to be continuous. For each batch, the

approach applies a modified Hawkins test on the imputed set that uses Neyman’s test

for uniformity shown in Eq. (2.3) [148], the rejection of which (at large values of Nij)

prompts a non-parametric test. Rejection of the second test implies rejecting the null

hypothesis (H0) that data is MCAR.

Nij =
4∑
j=1

[
1
√
ni

ni∑
l=1

Fj(Xil)],∀i ∈ [1, G], i ∈ Z+ (2.3)

where, G is the number of missing pattern groups, j is the number of degrees of

freedom of the central chi-squared distribution for Nj under the hypothesis H0, Fj(·) is

the jth normalized Legendre polynomial orthogonal on the interval [0, 1] [149], ni is the

number of cases of missing values such that
∑G

i=1 ni is the total number of missing values

in the data’s batch, and Xil is the lth case of observations in the ith group.
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2.5 Kurtosis and Skewness

In Chapter 4, kurtosis and skewness are used as measures to identify the statistical prop-

erties of original and imputed datasets. These two parameters are chosen because it is

important to see if the given data fit to a particular distribution. Kurtosis and skewness are

two parameters that help in determining the likelihood fitness of a dataset to standard the-

oretical distributions such as normal, uniform, exponential, beta, logistic, lognormal, and

delta. If the imputation technique performs well, it should not alter the statistical proper-

ties of the dataset, and therefore the kurtosis and skewness for original and imputed data

should be similar. While kurtosis is a measure of how heavy-tailed the distribution of a

given dataset is, skewness is a measure of its symmetry. For example, the PDF of an ideal

normally distributed data has a Skewness of 0 and a kurtosis of 3.

2.6 Size Effect Measures using Cohen’s Distance

The statistical tests of hypotheses can be supplemented using Cohen’s distance test, also

called h-test, that qualifies as a measure of effect size. When measured between two sam-

ple distributions,X and X̂ , the distance measure could be used to explore the difference in

proportions using the standard rule of thumb: h = 0.2 implies a small difference, h = 0.5

implies a medium difference, and h = 0.8 means a large difference. This measure is used

to compare the performance of missing value imputation techniques in Chapter 4 and is

computed by ẋ = JH ′(x);x(0) = x(T ).

h =
MX −MX̂
SDXX̂

, SDXX̂ =

√
SD2

X + SD2
X̂

2
(2.4)

where, MX and MX̂ are the sample means of X and X̂ , respectively; SDX and SDX̂

the respective standard deviations.

27



2.7 LASSO, Elastic Net, and Ridge Regularizations

To reduce overfitting and improve the ordinary least squares estimates of a linear re-

gression model of the form defined in Section 2.2, two types of penalization techniques

are used: ridge regularization to minimize the residual sum of squares with respect to

the L2 norm of the coefficients that keeps all predictors in the model, and least absolute

shrinkage and selection operator (LASSO) regularization to minimize the residual sum of

squares contingent on the L1 norm of the coefficients through continuous shrinkage and

automatic variable selection. In datasets with high correlation between the predictors,

LASSO’s variable selection performs poorly. Also for datasets where the dimensional-

ity, p, is very less when compared to the number of observations n, ridge regularization

outperforms LASSO.

An elastic net is a combination of ridge and LASSO regularization techniques that

applies an elastic net penalty. Given the tuning parameter λ that controls the penalty’s

magnitude, the model solves the objective function, F (·) defined in Eq. (2.5) over its

entire grid space. Let f(y, η) denote the negative log-likelihood function for the ith record.

If the response is of type Gaussian, then f(y, η)= (y−η)2
2

. The variable α controls the elastic

net penalty, with α=0 denoting ridge, α=1 denoting LASSO, and α ∈ (0, 1) denoting

elastic net.

F (·) := min
β0,β

1

N

N∑
i=1

wif(yi, β0 + βTxi) + λ[(1− α)||β||22 + α||β||1] (2.5)

A K-fold cross-validation with K=10 is also used to train the regression model with

step-wise α values (from 0 to 1 in steps of 0.1) to determine the cross-validated model(s)

with the least MSE. The K-fold cross-validation for an input matrix of xtrain and target

vector of ytrain is outlined in Algorithm 1.
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Algorithm 1 K-fold Cross Validation Method
1: Define the number of folds or subsets, K
2: Define the dataset (xtrain, ytrain)
3: for k in 1 : K do
4: predictorstrain := Split xtrain into k and K-k subsets, respectively
5: targettrain := Split ytrain into k and K-k subsets, respectively
6: model := F (·) defined in Eq. (2.5) with MSE as loss function
7: Define valerror [0]n×K ; valerror ∈ R+; n is number of samples in targettrain
8: predictederror := model(targettrain, . . . )
9: valerror := Error between predictederror and targettrain

10: Compute the mean absolute error from valerror to give a 1×K vector
11: Compute average of K entries in valerror to give a single value
12: Return

2.8 Multilayer Perceptron

These are the neural networks in which the connections between the neurons across layers

are unidirectional and not cyclic. This dissertation uses the MLP model in two instances:

once in Chapter 4 to predict PV generation using imputed features, and another time in

Chapter 7 to predict PV generation using forecasts of weather as features. In the former

case, the model is trained using backpropagation with adaptive learning rate and mo-

mentum, whereas in the latter case, it is trained using PSO. MLP is one of the simplest

feedforward neural networks that comprises one or more hidden layers, an input layer,

and an output layer.

For Chapter 4, the MLP model is designed to predict PV generation using irradi-

ance, ambient temperature, and module temperature as features. The model’s architecture

is designed on a trial and error basis with a combination of hyperparameters that yields

the most accurate prediction. The model comprises 1 input layer with 3 units, each repre-

senting a feature, 3 hidden layers with 25, 11, and 6 units, and an output layer with 1 unit

whose output is the target, PV generation. Each layer, l, has a specific activation function,

with weights initialized to samples drawn from Xavier uniform distribution [150] for the

first hidden layer (l=2) and uniform distribution [151] for subsequent layers (l=3, 4, 5):

tanh activation [152] for l=2, sigmoid [153] for l=3, tanh for l=4, and softplus [154] for
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Algorithm 2 Holdout Method for Validation

1: [train, test] := Split dataset X̂observed through random assignment of cases
2: Define valerror [0]m×1, where valerror ∈ R+ and m is the number of samples in test
3: model := f(train, . . . ), where f(·) is the function approximator and . . . are addi-

tional arguments
4: [X̂predicted,valerror] := model(test, . . . )
5: Compute the mean absolute error from valerror
6: Evaluate model using the mean absolute error of valerror
7: Return model

l=5. MSE is used as the loss function, defined as L(ŷ(l), y(l)) = 1
m

∑m
k=1(ŷ

(l)
k − y

(l)
k )2,

where l is the index of MLP layers, m is the number of samples, y = X̂observed and

ŷ = X̂predicted. To train the model, backpropagation is used, with an improvement to the

traditional stochastic gradient descent by calculating individual adaptive learning rates

from the first and second moment estimates of the gradients for each parameter [155].

Since the use of MLP is secondary to the objective of this chapter, the model was vali-

dated using holdout method summarized in Algorithm 2. It is for the same reason that

this validation method was used despite its drawback of inducing high variance.

For Chapter 7, the MLP model has 7 layers, with 3, 15, 10, 6, 3, 3, and 1 units,

respectively. The dataset is split into a training-development-testing ratio of 8:1:1, and

the validation done using the holdout method as well. This model uses PSO, described in

Algorithm 3, for training and updating its weights.

PSO is an evolutionary optimization that simulates the behavior of bird flocks to share

information. The swarm comprises a set of particles, denoted by P , each of which (p)

has its own best-achieved position (posbestp) and a best position achieved by the entire

swarm (posbestglobal). Each particle has a current position vector, pos, and a velocity

vector, v. The weight update involves modifying the pos and v values per particle per

iteration (i) and minimizing the loss function (mean square error, denoted by L(·)). The

trained model is obtained by applying the function approximator f(·) over the train set

and updated weights w that make up the final position values for the swarm’s particles.
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Algorithm 3 Particle Swarm Optimization to Train MLP model

1: [train,test] := Split X̂observed
2: Define the number of particles P , total number of weights w
3: Initialize w weights for P particles using uniform distribution
4: Assign weight and bias values to each layer in model
5: Initialize global best position posbestglobal
6: for p in 1 : P do
7: Initialize position pos and velocity v
8: Initialize best position posbestp
9: Define loss function, mean square error, L(·) and objective function to minimize

it
10: model := f(train, w, P, pos, v, posbestp, posbestglobal)
11: for i in iter do
12: for p in 1 : P do
13: v := w × v + 1.5 × rand(·)(posbestp - pos) + 1.5 × rand(·)(posbestglobal -

pos)
14: for p in 1 : P do
15: pos := pos + v
16: Update posbestglobal if posbestp for particle p < posbestglobal
17: for p in 1 : P do
18: Compute the minimized loss function L(·) using updated values
19: model := f(train, w, P, pos, v, posbestp, posbestglobal,L(·))
20: Return model, which is now trained

2.9 Key Error Metrics for Performance Comparison

There are standard metrics available in the literature to compare the performance of adap-

tive models. Specific metrics are used for two broad purposes: imputation of missing

values and predictive models.

In Chapter 4: Five standard metrics available in the literature are used here to com-

pare the performance of the imputation methods: root mean squared error (RMSE),

mean squared error (MSE), mean absolute error (MAE), mean absolute percentage er-

ror (MAPE), and R-squared (R2) [135]. Consider the following for each attribute in the

dataset. Let the original values of the attribute beX={Xil, Xobs} such that i ∈ [1, G], ∀i ∈

Z+ and l ∈ [1, ni], ∀l ∈ Z+, and Xobs is the number of complete cases. Also let the same

attribute of the dataset with missing values imputed be X̂={X̂il, Xobs}, where X̂il is the

imputed value of the lth missing case in the ith group. If ·̄ denotes the mean of ·, the
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metrics can then be calculated using Eq. (2.6).

RMSE =

√∑G
i=1

∑ni
l=1(X̂il−Xil)2

ni

G
,MSE = (RMSE)2,

MAE =

∑G
i=1

∑ni
l=1 |X̂il−Xil|

ni

G
,MAPE =

∑G
i=1

∑ni
l=1 |

X̂il−Xil
Xil

|
ni

G
× 100,

R2 =
1−

∑G
i=1

∑ni

l=1(Xil − X̂il)2

1−
∑G

i=1

∑ni

l=1(Xil − X̄il)2

(2.6)

In Chapter 5: The values of R2 and adjusted R2 values provide information on how

much of the variations in PV generation values are captured by the linear regression model

described in Section 2.2. They are calculated by [145]:

SSE =
n∑
i

(yi − ŷi)2, SST =
n∑
i

(yi − ȳ)2, R2 = 1− SSE

SST
(2.7)

MSE =
SSE

(n− q)
,MST =

MST

(n− 1)
, AdjustedR2 = 1− MSE

MST
(2.8)

where, ŷi is the fitted value for yi and ȳ is the sample mean. As shown in Eq. (2.7),

SSE is the sum of squared errors and SST the sum of squared total. Similarly, MSE is the

mean squared error, MST the mean squared total, and q the number of coefficients in the

linear model. Higher values of R2 and adjusted R2 are preferred.

In Chapter 7: To compare the performance of the proposed model, three metrics avail-

able in the literature are used. These are the root mean square error (RMSE), mean square

error (MSE), and the mean absolute error (MAE) [156]. Let yi denote the ith observation

of the observed dataset and ŷi denote the corresponding observation from the predicted

dataset ∀i ∈ Z+, where i = [1, 2, . . . , n]. Here, n denotes the total number of observa-

tions. If ·̄ denotes the mean of ·, the metrics can then be calculated using Eq. (2.9).

RMSE =

√∑n
i=1(ŷi − yi)2

n
,MSE = (RMSE)2,MAE =

∑n
i=1 |ŷi − yi|

n
(2.9)
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CHAPTER 3

ADAPTING BIG DATA STANDARDS AND CAPABILITY MATURITY

MODELS TO P.V. DOMAIN

The organization of this chapter is shown in Fig. 3.1. The text in this chapter has been

reprinted, with permission, from [8]. It is imperative to understand the significance of big

data and cybersecurity in the application domain of smart grids, specifically for PV. Sec-

tion 3.2 describes the relationship between big data attributes and lifecycle stages (Section

3.3), application domains and categorization groups (Section 3.4). Sections 3.5 and 3.6

critically analyze the existing and emerging standards and CMM for big data. Gaps in

existing standards and CMM for PV are identified in Section 3.7.1, and the adaptability

of the big data standards and CMM to meet these gaps are summarized in Section 3.7.2.

3.1 Overview

The deployment of sensors and other intelligent devices across smart grids has increased

the complexity of interconnected systems, leading to the advent of big data as defined

Figure 3.1: The organization of this chapter.
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