
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

11-6-2019 

Twitter Activity Of Urban And Rural Colleges: A Sentiment Twitter Activity Of Urban And Rural Colleges: A Sentiment 

Analysis Using The Dialogic Loop Analysis Using The Dialogic Loop 

Eugene H. Pons 
Florida International University, epere222@fiu.edu 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Communication Technology and New Media Commons, Educational Technology 

Commons, Mass Communication Commons, and the Social Media Commons 

Recommended Citation Recommended Citation 
Pons, Eugene H., "Twitter Activity Of Urban And Rural Colleges: A Sentiment Analysis Using The Dialogic 
Loop" (2019). FIU Electronic Theses and Dissertations. 4342. 
https://digitalcommons.fiu.edu/etd/4342 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=digitalcommons.fiu.edu%2Fetd%2F4342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1415?utm_source=digitalcommons.fiu.edu%2Fetd%2F4342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1415?utm_source=digitalcommons.fiu.edu%2Fetd%2F4342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/334?utm_source=digitalcommons.fiu.edu%2Fetd%2F4342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1249?utm_source=digitalcommons.fiu.edu%2Fetd%2F4342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4342?utm_source=digitalcommons.fiu.edu%2Fetd%2F4342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


 

 

FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

 

TWITTER ACTIVITY OF URBAN AND RURAL COLLEGES: A SENTIMENT 

ANALYSIS USING THE DIALOGIC LOOP 

 

 

 

A dissertation submitted in partial fulfillment of the  

requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

CURRICULUM AND INSTRUCTION 

by 

Eugene H. Pons 

 

 

 

2019 



ii 

 

To: Dean Michael R. Heithaus 

       College of Arts, Science and Education 

This dissertation, written by Eugene H. Pons and entitled Twitter Activity of Urban and 

Rural Colleges: A Sentiment Analysis Using the Dialogic Loop, having been approved in 

respect to style and intellectual content, is referred to you for judgement. 

We have read this dissertation and recommend that it be approved.  

         

_______________________________________ 

Leonardo Ferreira 

 

_______________________________________ 

Maria Lovett 

 

_______________________________________ 

Thomas Reio 

 

_______________________________________ 

M. O. Thirunarayanan, Major Professor 

 

Date of Defense: November 6, 2019 

The dissertation of Eugene H. Pons is approved. 

 

 

_______________________________________ 

Dean Michael R. Heithaus 

College of Arts, Sciences and Education 

 

 

_______________________________________ 

Andrés G. Gil 

Vice President for Research and Economic Development 

and Dean of the University Graduate School 

 

 

Florida International University, 2019 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2019 by Eugene H. Pons 

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

 

 

DEDICATION 

This dissertation  is  dedicated  to my  mother Angela D. Pons and my aunt Angela M. 

Cruz, who encouraged me to advance my studies to the point of obtaining a doctoral 

degree. It is also dedicated to my brother, Alexander Pons, my wife, Jennifer Coccaro-

Pons, and my children Sabrina and Nicholas, whose support and motivation pushed me to 

complete this journey. 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

ACKNOWLEDGMENTS 

I would like to thank my brother, Alexander Pons, for his support through the 

difficult points of this challenging endeavor. Also my wife, Jennifer Coccaro-Pons, who 

convinced me to continue my studies and pursue a doctoral degree. They both provided 

emotional support throughout the entire process, sat through countless hours of 

discussion, provided extensive feedback, and helped me through the meticulous editing 

process. Without their invaluable backing and guidance, the completion of this endeavor 

would have been impossible.  

Also, my sincerest appreciation goes to Dr. M. O. Thirunarayanan for always 

providing valuable input and guidance, Dr. Leonardo Ferriera, Dr. Maria  Lovett, and Dr. 

Thomas Reio for the time spent in reading this dissertation and providing valuable 

feedback. 



vi 

 

ABSTRACT OF THE DISSERTATION 

TWITTER ACTIVITY OF URBAN AND RURAL COLLEGES: A SENTIMENT 

ANALYSIS USING THE DIALOGIC LOOP 

by  

Eugene H. Pons 

Florida International University, 2019  

Miami, Florida  

Professor M. O. Thirunarayanan, Major Professor  

The purpose of the present study is to ascertain if colleges are achieving their 

ultimate communication goals of maintaining and attracting students through their 

microblogging activity, which according to Dialogic Loop Theory, is directly correlated 

to the use of positive and negative sentiment. The study focused on a cross-section of 

urban and rural community colleges within the United States to identify the sentiment 

score of their microblogging activity. The study included a content analysis on the 

Twitter activity of these colleges. A data-mining process was employed to collect a 

copious of the tweets associated with these colleges. Further processing was then applied 

using data linguistic software that removed all irrelevant text, word abbreviations, 

emoticons, and other Twitter specific classifiers. The resulting data set was then 

processed through a Multinomial Naive Bayes Classifier, which refers to a probability of 

word counts in a text. The classifier was trained using a data source of 1.5 million tweets, 

called Sentiment140 that analyzed the corpus of these tweets, labeling them as positive 

and negative sentiment. The Multinomial Naive Bayes Classifier distinguished specific 

wording and phrases from the corpus, comparing the data to a specific database of 
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sentiment word identifiers. The sentiment analysis process categorized the text as being 

positive or negative. Finally, statistical analysis was conducted on the outcome of the 

sentiment analysis.  

A significant contribution of the current work was extending Kent and Taylor's 

(1998) Dialogic Loop Theory, which was designed specifically for identifying the 

relationship building capabilities of a Web site, to encompass the microblogging concept 

used in Twitter. Specifically, Dialogic Loop Theory is applied and enhanced to develop a 

model for social media communication to augment relationship building capabilities, 

which the current study established as a new form for evaluating Twitter tweets, labeled 

in the current body of work as Microblog Dialogic Communication. The implication is 

that by using Microblog Dialogic Communication, a college can address and correct their 

microblogging sentiment. 

The results of the data collected found that rural colleges tweeted more positive 

sentiment tweets and less negative sentiment tweets when compared to the urban 

colleges’ tweets.  
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CHAPTER I: INTRODUCTION  

 The Dialogic Loop Theory attests that an organization must continuously interact 

effectively and ethically with its public to form long lasting relationships that will benefit 

the long-term goals of the organization (Kent & Taylor, 2002). The Dialogic Loop 

concept was furthered by Agozzino (2015) who considered dialogic communication as a 

means to establish strategic relationships by counting the number of followers a social 

media microblogging page contained as their interactions. Further research considered 

Dialogic Loop Theory as a way to establish relationships by conducting two-way 

communication in the form of comments, likes, following, and reposting (McAllister, 

2013; Muckensturm, 2013; Watkins, 2017). Kent and Taylor (1989) designed a dialogic 

approach, incorporating the Dialogic Loop Theory, to building relationships that was 

applied to the World Wide Web (WWW), identifying five principles that needed to be 

integrated into a website to promote the ever-so-desired relationship building between an 

organization and its public.  Several academic studies have been conducted that utilize 

Kent and Taylor's dialogic approach as the foundation for the research (Agozzino, 2015; 

Bortree & Seltzer, 2009; Lim & Lee-Won, 2017; Lovejoy, 2012; McAllister-Spooner 

2009; McAllister, 2013; Muckensturm, 2013; Rybalko & Seltzer, 2010; Waters & Jamal, 

2011; Watkins, 2017).  Much has changed in the WWW and the Internet since the late 

1990s when Kent and Taylor developed their theory-formulated framework. Primarily, 

the social media revolution of Facebook and Twitter from 2005 to 2010 dynamically 

changed the perspective of online interaction and relationship building. Given the change 

of online interaction and relationship building, there exists a gap in the literature to 

address to use of Dialogic Loop Theory within the framework of today's social media 
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environment of microblogging. Specifically, Kent and Taylor's theory-formulated 

framework using a dialogic approach to building relationships and the five principles of 

dialogic communication for designing websites have not been accurately tested or 

modified for the microblogging social media interaction of the current Internet 

environment. The purpose of the present study is to extend Kent and Taylor's Dialogic 

Loop Theory to the microblogging concept used in Twitter. The study develops specific 

standards that examine the relationship between Twitter and Microblog Dialogic 

Communication, establishing precise principles for relationship building within the 

microblogging concept of social media.  

 Although Dialogic Loop Theory has been applied to the relationship building 

capabilities of websites, there is no significant understanding of dialogic loop applied to 

microblogging. The current research provides a perspective on the Dialogic Loop Theory 

and its use to effectively generate relationship building capabilities through 

microblogging. Relationship building capabilities through microblogging are 

accomplished through the principles developed for the Microblog Dialogic 

Communication framework.  

 Furthermore, the research provides an appropriate way for universities to use 

Twitter as a means to generate relationship building strategies that further their 

interactions with potential students, current students, alumni, the community and 

stakeholders. For example, a university can structure microblog messages that use gender 

inclusive words, that consider and promote some event occurring at the university, that 

call for some form of feedback, and that provides a visual intriguing image or video 

which can trigger sharing and/or tagging of the message. The above mentioned 
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relationship building strategies originate from the Microblog Dialogic Communication 

framework and are applied to all communication created in every microblogging activity.  

 The current study considered if colleges are applying proper Microblog Dialogic 

Communication to maintain and attract students through their use of Twitter. The current 

research analyzed a cross-section of urban and rural community colleges within the 

United States, identifying a sentiment score using the positive and negative sentiment of 

their microblogging activity. Depending on the sentiment score obtained, a college can 

determine if their microblogging activity is favorable or not in relationship building 

aspects. The sentiment score allows colleges to modify their microblogging 

communication by incorporating the Microblog Dialogic Communication framework 

presented in the present work to obtain attainable constructive communication goals.  

 A significant contribution of the present work is the modification of the original 

Kent and Taylor's (1998) Dialogic Loop Theory to integrate the aspects of today's social 

media communication as a means to establish positive relationship building components. 

The expansion of Kent and Taylor’s theory to include microblogging activity is labeled in 

the current body of work as Microblog Dialogic Communication, which allows a college 

to understand and correct their microblogging sentiment. 

 The use of microblogging has established a significant way for people, businesses 

and academic institutions to interact and communicate with their audiences in a direct 

and efficient manner. The microblogging social media medium, such as Twitter, presents 

the possibility to engage with an audience by allowing real-time feedback and dialog. The 

microblogging environment is one of self-expression with the need to connect with other 

individuals (O'Neil, 2009). Connecting with individuals through microblogging can lead 
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to relationship building aspects through daily communication interactions. A concern of 

social media interaction is the use of ethical language communication. The content 

contained in a college's microblogging activity is intended to reach and interact with its 

student population, including all individuals pertaining to stakeholders, such as alumni, 

the community, and future potential students. Specifically, academic institutions must be 

concerned with ethical issues such as honesty, telling the truth, and the fair treatment of 

individuals (Austin and Jin, 2015) when engaged in microblogging activities. With regard 

to ethical communication, microblogging activity for any college can be impacted by 

various ethical theories. 

 According to the ancient Greek philosopher Epicurus, the theory of Ethical 

Egoists consists of the idea that all communication that is expressed should serve to 

promote one's own interest and perspectives. The theories' concept is that "everyone 

should promote his or her own self-interest" (Mitsis, 1988, p. 458) and stating untruths 

would not be of concern if there is no risk of being detected. In the Ethical Egoists aspect, 

anything said or done, regardless of the truth, is permissible as long as it promotes a self-

interest that results in a pleasurable or beneficial outcome.  

 On the other hand, British philosopher and economist John Stuart Mill presented 

Utilitarianism as an extension to the Epicurean view. Mill's perspective consists of taking 

some type of action or expressing something that is bad or good that is dependent on the 

consequences that will result from the action or statement (Jacobson, 2003). In other 

words, one must seek the greatest happiness for the greatest number as determined by the 

potential outcome. In the Utilitarianism aspect, a truth or lie is dependent on the greater 

good or the consequence of what is said or done. 
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 Finally, German philosopher Immanuel Kant discussed the ethical theory of the 

Categorical Imperative. The theory considers truth to use the demands of reason and 

moral law, in determining if an act is good or bad, right or wrong, regardless of the 

outcome (Bordum, 2002). In the Categorical Imperative perspective, any type of untruth 

is not accepted.  

 The ethical implication of what a college tweets or posts, is a complex and 

difficult issue that most likely displays a combination of the above-mentioned theories. 

The ethical implication of a college's communication activities are particularly relevant 

with social media in general since it dominates the way in which people in the new 

century exchange opinions, ideas, and thoughts. It has transformed communication, the 

way individuals use verbal, nonverbal, and written messages to express musing across 

continents. Today's culture expects and demands communication interaction to be 

immediate, brief, and continuous. It allows users to receive a message, comment and 

provide feedback or input, and propagate the message by forwarding or linking to it, thus 

extending the interaction among end users and audiences. Although traditional blogging 

web sites, which are rooted in the web logs of the mid-1990s where people established 

online journals or diaries that contained extensive thought, commentary and experiences 

(Paulus, 2008), provided viable outlets for communication, it lacked the immediacy and 

spontaneity of microblogging.  Microblogging allows individuals to communicate their 

thoughts in brief blasts of information to friends and followers (Devoe, 2009). A common 

microblog is Twitter, which allows individuals to share or "tweet" their ideas in no more 

than 280-characters. Twitter was built on the standard text messaging service concept 

known primarily as a short message service (SMS), where the standard character limit is 
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160-characters. Twitter originally allowed a 140-character limit that followed the SMS 

limit, leaving 20 characters for the username, therefore tweets could stay within the 

constraints of one text message (Gartner, 2012). As of November 2017, Twitter increased 

the character limit to 280-characters "so that every person around the world could express 

themselves easily in a Tweet" (Rosen, 2017, p. 1). Tweets appear as a continuous 

newsfeed combined with comments from other subscribers. Individuals can also directly 

respond to the message sender or retweet the message in their own microblog newsfeed 

to further propagate the message (Mills & Chandra, 2011). Hence, microblogging is part 

blog and part instant messaging, allowing an individual, business, or academic institution 

to build or further relationships with its audiences while attracting new audiences. Its 

appeal stems from two main attributes: it allows easy communication among individuals 

in succinct manner through the use of brief thoughts intended to keep the reader and 

audiences engaged, and it allows simple filtering of content most likely to interest the 

follower (Grove, 2009).  

 Of particular interest when considering Twitter and its 280-character message, is 

the sentiment analysis of the message. Specifically, Twitter sentiment analysis is a 

research process of data-mining words, language, and text analysis using computational 

linguistics (Hennessy, 2014) to determine if a message is positive, negative, or neutral in 

regard to a particular topic (Jhaveri et al., 2015). The message attitude or sentiment is of 

concern, since organizations, such as academic institutions, use microblogging to 

continuously interact with its audiences or students.  

 The communication topics promoted by a college establishes an image of what 

the academic institution represents and promotes. Branding, reputation management, and 
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creating an academic identity is crucial for recruiting and increasing student enrollment, 

improving student retention, and fostering an integrative communication platform for a 

college's stakeholders (Laws, 2014). According to the leading international higher 

education directory and search engine uniRank, there are 6,415 out of 13,146 colleges 

and universities or 48.8% that have adopted an official Twitter page (uniRank, 2018) to 

market higher education and help connect them with their students, staff, alumni, and 

stakeholders. Colleges and universities use social media platforms to interact with 

students far beyond the standard of sharing campus photos or school events. The top 

social media colleges and universities implement the power of branding and digital 

marketing to attract students while keeping them engaged with informative content 

throughout their academic journey and beyond (BestColleges, 2018). The top colleges 

and universities that use social media effectively are Harvard University with 853,000 

Twitter followers and over five million Facebook followers, Stanford University with 

609,000 Twitter followers and 1.2 million Facebook followers, and Yale University with 

404,000 Twitter followers and 1.3 million Facebook followers (See Table 1). These 

colleges social media activity highlight issues from faculty achievements, pictures of 

prominent individuals at campus, general campus events, to information on artificial 

intelligence, healthy eating suggestions, and self-help videos (BestColleges, 2018).  
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Table 1  

Top Eight Universities Using Social Media 

 

Note: Retrieved from https://www.bestcolleges.com/features/best-college-social-media/ 

 

The messages communicated through microblogging media are an important factor that 

can shape the enrollment and economic future of colleges. Understanding the sentiment 

analysis of messages can provide vital measurements and insights to continue or change 

the communication topics of an institution (Abdelrazeq et al., 2015). Furthermore, 

student engagement through microblogging can serve as a key performance indicator for 

a college or university.  

Pilot Study – Tweeter Sentiment Analysis 

 Since the nature of social media, specifically for colleges, is to propagate a 

message that engages its audience in continued discourse, a plethora of activity or tweets 

are generated on a regular basis by these institutions. To evaluate expeditiously the large 

volume of corpus that is obtained through microblogging, it is possible to apply a 

classification model that has the capability to analyze the sentiment of a college's 

microblogging activity. A key component of the sentiment analysis process involves 

Rank University/College Twitter Followers Facebook Followers 

1 Harvard University  853,000 Over 5 million 

2 Stanford University  609,000 1.2 million 

3 Yale University  404,000 1.3 million 

4 Massachusetts Institute of Technology  945,000 1.0 million 

5 University of Michigan - Ann Arbor  203,000 750,000 

6 Ohio State University  307,000 700,000 

7 Texas A&M University  258,000 611,808 

8 University of Florida  181,000 673,439 
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training a machine learning system with previously evaluated tweets to analyze the 

sentiment of the targeted study, in the present case, the college tweets corpus. Figure 1 

illustrates a summary overview of the sentiment classification process, including the 

machine learning stages used in building the model to applying it to the targeted data for 

tweet sentiment classification.  

 As a means to verify the accuracy and functionality of the sentiment analysis 

process, a pilot study was conducted as part of the research prior to commencing the 

formal study to evaluate the sentiment analysis process. The pilot study incorporated an 

existing corpus of tweets that have already been categorized as positive or negative called 

Sentiment140 to train the classification model. Sentiment140 is a Twitter sentiment 

analysis tool created by computer science graduate students at Stanford University that 

contains 1.5 million tweets which have been analyzed for positive and negative sentiment 

(Kumar, 2014; Sentiment140, 2018). It is a robust sentiment analysis tool used to train a 

sentiment classifier in identifying or tagging words in a tweet as positive or negative 

words. Examples on the sentiment lexicon for Sentiment140 of positive words include 

words such as great, beautiful, nice, good, and honest. Examples for Sentiment140 of 

negative words include words such as terrible, shame, bad, ugly, and negative 

(Kiritchenko, et. al. 2014). 

 The sentiment analysis process consists of two stages 1) build the classification 

model to perform Sentiment Analysis, and 2) Analyze the tweets from a college. 



11 

 

 

 Data Filtering  

 Data Features Extraction 

 

 Sentiment Classifier Training 

 Build Naive Bayes algorithm  

 

Comprises data used 

to statistically analyze 

targets Twitter 

sentiment 

 Apply Classification Model 

 Yields sentiment results for each tweet from the corpus data 

Corpus Training 

Process for Sentiment 

Analysis using existing 

data (Sentiment140) 

 Data Filtering  

 Data Features Extraction 

 

Targeted Data 

Collection 

 

 Establish trained Classification Model  

 Apply 10-fold process to validate model accuracy 

Figure 1. Sentiment Classification Process Summary Overview. 

Build Classification Model to perform Sentiment Analysis 

 The classification model is trained using the Sentiment140 data source, which 

consists of over 1.5 million tweets that have been tagged as positive or negative. In other 

words, 1.5 million tweets have been labeled or tagged for sentiment that is used to train 

the classification models. I have selected the Naïve Bayes classifier as the classification 

model to build since the academic literature mentions it as the most effective model in 

performing text classification, which includes tweets. Before using the tweets from 

Sentiment140, some preprocessing is performed (which was also done for the tweets 

from the college) that cleans up the tweets.  
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 The data cleansing includes various components that are not necessary for the 

sentiment analysis process, such as the Twitter tags, markup language, retweets, links, 

punctuations, abbreviations, stop-words, stemming, and repeated letter spellings. Once 

the set of tweets has been cleaned, the classification model is then built using the open 

source scikit-learn Machine Learning library in Python. The result is a classifier that has 

been trained with over 1.5 million tweets using Naïve Bayes that can be used to 

determine the sentiment of a set of tweets from any source, but in the present study, 

tweets from the respective colleges. Figure 2 illustrates the classification model design 

process, indicating the training and building aspects used to establish the sentiment 

classification model. 

Figure 2. Sentiment Analysis Classification Model Design. 

Analyze the tweets from a college 

 A random college was selected from the search list of colleges presented by the 

web site Campus Explorer. No specific criterion was used in the selection other than that 

the college selected had to have an active Twitter page. For the purpose of the pilot study, 

the college selected was called SampleTest-A. The next step in the process was to capture 

the tweets that have been posted by SampleTest-A on Twitter.  
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 Twitter provides access to tweets associated with any entity,  like a college 

through its Twitter API (Application Programming Interface). An open source computer 

software known as Tweepy was used to capture the tweets from Twitter for the specific 

identifier SampleTest-A. Tweepy extracts all related data source tweets into an Excel 

spreadsheet. The data-mining process is employed to collect a copious of the tweets 

associated with the college.  

 The next step was to prepare the corpus data by cleaning or removing all 

irrelevant information. The data cleansing included removing various components that 

were not necessary for the sentiment analysis process, such as the Twitter tags, markup 

language, retweets, links, punctuations, abbreviations, stop-words, stemming, and 

repeated letter spellings (the same process was followed during the classification model 

training). The SampleTest-A corpus was essentially reduced to a set of words that contain 

the main significance of the tweets.  

 With the trained model and the set of cleaned tweets from the college, called 

SampleTest-A, the classification model can then receive each tweet from SampleTest-A 

and obtain a sentiment for that tweet. As the complete SampleTest-A corpus was 

submitted to the classification model, corresponding sentiments were collected, which 

comprised the sentiment classification process that yielded the results used to evaluate the 

data from the college. Figure 3 illustrates the tweet analysis process, indicating the data 

processing and applying the trained classification model to obtain the necessary 

sentiment analysis results. 

 The SampleTest-A consisted of 6340 tweets. Once these tweets were evaluated 

through the Naïve Bayes classification model, it was determined that there were 2372 
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positive, 1945 negative and 2023 neutral tweets. These results comprise the data that 

were used to statistically analyze tweets across various colleges. 

Figure 3. Tweet Analysis Process. 

Purpose Statement 

 A college's microblogging is significant in maintaining student's academic 

commitments, increased student involvement in the institution’s activities, and 

establishing a sense of student pride and satisfaction for belonging to an institution that 

furthers their professional values and beliefs after graduation, which enhances alumni 

involvement and contributions. Since the aforementioned key performance indicators are 

impacted through the positive or negative perception of its constituents and stakeholders, 

the assessment of social media sentiment is a key factor that needs to be addressed.   

 The present study focuses on how a college uses social media, in particular the 

microblogging application known as Twitter, to communicate messages to its students 

and stakeholders in a way that fosters relationship building. In particular, the current 

research considers two principle factors: (a) the microblogging messages of a college are 

viewed through the lens of sentiment analysis applying data-mining techniques and 
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linguistic analysis, and (b) Dialogic Loop Theory is considered given the outcome of the 

sentiment analysis to obtain insight on the relationship building capabilities of messages 

when interacting with the college audience such as students, parents, and stakeholders. 

 Colleges and universities communicate messages through the use of Twitter to 

students regarding a plethora of issues. The microblogging interaction and the sentiment 

expressed in the messages could have a serious impact on the student's academic 

perspective in how they perceive the institution, what type of information is 

communicated, and the relevancy toward their academic future. Colleges and universities 

need to incorporate special care in using appropriate wording that is well received, that 

includes supportive language, and that does not connote an unconstructive sentiment. 

Furthermore, colleges and universities must be aware of the potential negative aspects 

that can arise from a college's microblogging activity because of the nature of social 

media. A college or university that utilizes social media can experience negative 

feedback, derogatory comments, anonymous insults or wording unbecoming of an 

academic institution, and public ridicule through the sharing, re-tweeting or re-posting, 

hashtagism, comments, and the propagating of messages, that could minimize the 

intended purpose of their social media activity.  

 Regardless, communication has evolved from the spoken word in dyadic 

interaction to the use of succinct messages broadcast globally via microblogging. The 

sentiment analysis of these microblog messages are founded on the initial beliefs and 

concepts of the forms of rhetoric and dialog, and the efficacy of words and messages 

(McCornack, 2016; McNally, 1970). 
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Background 

 The forms of rhetoric and dialog date back to 2200 B.C.E. with possibly the 

oldest book ever written, the Precepts of Ptah-hotep. The Egyptian sage Ptah-hotep, is 

known as the earliest-known author and the oldest-known teacher in the world. Ptah-

hotep was the teacher of a young prince, the son of King Assa of the Fifth Dynasty, who 

provided his writings and instruction to explain his philosophy of life (Horne, 1917). 

McCornack (2016) explains that the Precepts of Ptah-hotep postulated that people should 

be truthful and kind in their communication, urging active listening skills and most 

importantly emphasize mindfulness in their choice of words. The art of effective 

communication was furthered with the notion of rhetoric. Socrates, 469-399 B.C., viewed 

rhetoric as a practical skill that people could develop through experience, while his 

student Plato, 427-347 B.C., argued that communication skills could be used in both 

ethical and unethical ways to manipulate its audiences (McCornack, 2016). Rhetoric 

henceforth has been defined in various ways, primarily it is the ability to influence others, 

or at least an attempt at persuading, whether successful or not, through the use of 

language and visual ability. It is seen as a distinctive communication mode, which can be 

admirable or deplorable, and is present as soon as one person addresses another (Wardy, 

1998). Henceforth rhetoric can be considered the art of adapting discourse, written or 

spoken communication, to its end (McNally, 1970). The perspective on rhetoric as the 

ability to influence others is of significance to Dialogic Loop Theory and the aspects of 

sentiment analysis, since it establishes the foundation for persuasive communication 

within the microblogging messages used on Twitter by colleges and businesses. 

Beneficial and ethical communication should be the central focus for all academic 
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institutions incorporating social media deployment as a means to interact with its 

audiences or students, parents, alumni, and stakeholders. 

 The development of the Internet, web 2.0 technologies such as Facebook, Twitter, 

Second Life, and YouTube, and the popularity and relevance of microblogging have 

taken the form of traditional rhetoric and communication to new heights and levels of 

concern. The information shared through these microblogging environments are transient, 

collaborative, and free-flowing (Mackey, 2011). The concept of the social network within 

the context of microblogging is defined as a web-located service that allows an individual 

or organization to interact among a group of individuals that have chosen to follow or 

accept to receive communication messages attributed to a shared sense of interest. Boyd 

(2007) defines social network sites as web-based services that allow individuals to (a) 

construct a public or semi-public profile within a bounded system, (b) communicate with 

a group of other users with whom they share a connection, and (c) view and traverse their 

list of connections and those made by others within the system. A 2016 Pew Research 

Center study found that a majority of Americans receive their news from social media 

outlets such as Facebook, Twitter, and Reddit (Gottfried & Shearer, 2016), with 

approximately 71% of Internet users using social networking sites regularly (Number of 

social media users worldwide from 2010 to 2021 (in billions), 2017). It is estimated that 

in 2017, there are 2.46 billion social media users worldwide, with 596 million users in 

China, 208 million users in the United States, and 196 million users in India (Number of 

social network users in selected countries in 2017 and 2022 (in millions), 2017). The 

microblog social media sites such as Twitter, rely on rapid and limited communication as 

the main form of interaction. Microblogs are considered part blog and part instant 



18 

 

messaging, allowing users to share small elements of information in the form of short 

sentences or phrases, individual images, and video links (Grove, 2009). The main 

difference of a microblog from a traditional blog is the size of the post, which cannot 

exceed 280 characters for most microblogging services (Ntaflos, 2013). Some common 

microblog sites are Twitter, Plurk, Tumblr, Sin Weibo, and Soup io. Of particular interest 

is Twitter, which accounts for a substantial amount of activity with 357 million users 

worldwide. Twitter is a free, private microblogging service started in 2007 that allows 

users to post information or tweet initially within a 140-character limit, currently 280 

characters, and allows users to follow other users without reciprocation. In other words, a 

user can follow any other user, unless they are blocked, and the user being followed does 

not require a connection or relation to that user. A key component of Twitter is its 

spontaneous nature that empowers individuals to share and/or augment discussions or 

threads as fast as they can think about a thought. There are many factors that need to be 

considered in making a post of such a limited size, such as what will the message 

communicate, what tone is used in the message, what types of limited words can best 

communicate the complete message, and how will the message be received. It is 

imperative that messages are formulated and structured effectively, so that they will be 

received as they were intended, clearly and with no ambiguity. Clearly structured 

messages minimize the possibility of a miss-interpretation and increases the 

understanding and outreach of the communication.  

 Posted messages have a specific lexicon that includes: retweets, mentions or 

replies which require a @  (at sign) followed by a user identifier address, that allows 

users to reply to someone else's tweets and/or allows the message to be sent to any user 
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regardless if they are followers or being followed; and a categorization method that 

requires a # (hashtag)  followed by a relevant keyword or phrase to make those tweets 

searchable and to propagate those messages under a specific category or tag (Kwak et al., 

2010).  The Twitter hashtag element is a public reference that is searchable to include all 

messages with the similar tag. Twitter users use hashtags to target specific topics within 

their messages, target specific audiences that are interested in such keywords, to augment 

the possibility of being retweeted by joining popular Twitter conversations, and to boost 

follower counts and popularity (Dugan, 2011). Hashtags place the tweets in front of 

potential followers, resulting in an increase in acceptability and recognition. The 

categorization of tweets is a relevant attribute for the intent or effectiveness of the 

message.  

 The significance of a categorized tweet extends beyond the simple classification 

of a message. Rather, individuals, businesses, and organizations consider the success or 

acceptance of a Twitter message as a sought out commodity. Followers view messages 

that are of interest to their values, beliefs, and general knowledge. These messages need 

to be relevant, thought provoking and expanding, and convey the proper attitude for 

maximum effectiveness. The attitude or sentiment of a Twitter message can also 

influence the perception of existing followers as well as would-be followers. Twitter 

sentiment is defined as a method that analyzes how opinions, reactions, impressions, 

emotions and perspectives are expressed in a language (Abdelrazeq et al., 2015). The 

tweets are essentially categorized as either being a positive or negative sentiment. It is 

essential to analyze the information generated by an academic organization through its 

microblogging communication since it defines the social media face of that organization. 
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It is the digital representation of that organization, the means by which its audience will 

perceive and evaluate the entity. It will dictate the type of word-of-mouth communication 

generated by its followers. More importantly, given the explosion of social media 

microblogging and the ease in which a tweet can be reposted or retweeted and shared, the 

message can be propagated instantly across the Internet, even reaching the significance of 

going viral. The term "going viral" has its foundations rooted in viral marketing, which 

refers to a broad array of online word-of-mouth strategies designed to encourage both 

online and peer-to-peer communication about a brand, product or service (Eckler & 

Rodgers, 2010). When a message or tweet goes viral, the tweet becomes so popular that it 

is shared repeatedly from person to person throughout the Internet. Messages or content 

that are deemed positive in nature, are more likely to be emailed, shared, or go viral 

(Berger & Milkman, 2011). Henceforth, it is in the best interest for academic institutions 

to manage the social media microblogging in a meticulous manner, considering the 

contents significance on audience's perception and behavior. 

Significance of the Study 

 The relevance of effective communication, sending out or tweeting positive 

messages or messages that are perceived as positive, is a significant characteristic that 

colleges and universities need to adhere to in their microblogging activities. Social media 

microblogging, specifically through Twitter, has the unique quality of interactive 

communication between the provider of a message and its audience. When a college puts 

forth a message through a microblog, an exchange of ideas or dialogue commences 

between the creator of the message, known as the sender in communication models, and 

its audience or public, known as the receiver in communication models. In the past, 
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information or messages presented through an academic institution's web page was 

considered a linear form of communication. In the Linear Communication Model, 

communication is considered one directional, flowing from sender to a passive receiver 

(McCornack, 2016). Microblog style communication is applicable to two-way flow of 

communication, like interactive communication, where both the sender and the receiver 

are active participants in the communication process. Microblog style communication is 

analogous to the Transaction Model of Communication, in which "communication is 

viewed as being reciprocal, with participants continuously engaged in the sending and 

receiving of messages" (Velentzas & Broni, 2014, p. 127; West & Turner, 2010, p. 11).  

The microblogging concept facilitates two-way flow of interaction with participants 

switching between the roles of sender and receiver (Taylor, 2013). Thus, a dialogue is 

established through the microblog tweets from the academic institution and its audience.  

 Microblogging dialogue communication engages an organizations audience with 

the opportunity to analyze messages and provide feedback through comments, and/or 

forward the message to other individuals through reposting or retweeting. Therefore, 

Microblog Dialogic Communication facilitates a negotiated exchange of ideas and 

opinions allowing the public to query an organization and, more importantly, offer the 

organization an opportunity to respond to comments, questions, and concerns (Kent & 

Taylor, 1998). These are the foundations to build and maintain relationships with an 

organization's audience.  Colleges need to establish effective Microblog Dialogic 

Communication to attract students, redefine their relationship with students and the 

communities they serve, and proactively build ongoing new relationships (McAllister & 

Spooner, 2008).  
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 Since the desired objectives of institutions are to maintain favorable relationships 

with its audiences, and microblogging is used to directly interact and propagate messages 

that are relevant to the college and its followers, it is imperative that colleges apply 

beneficial and ethical communication through the discourse released on social media. 

Specifically, colleges need to consider conducting dialogic communication with its public 

as a means to building relationships (Kent & Taylor, 2002). The form of dialogic 

communication refers to a two-way exchange; it is both asynchronous and synchronous. 

Therefore, microblogging on Twitter can obtain a comment or a retweet instantaneously 

at the moment of the tweet or many hours apart, resulting in a dialogue that can be either 

asynchronous or synchronous (Muckensturm, 2013). Several other studies have identified 

a direct association between blogs and relationship-building outcomes attributed to 

dialogic practices (Kerstetter, 2014). Kent and Taylor (2002) defined five dialogic 

principles to facilitate relationship building through mediated, two-way, dialogic 

communication. These principles include "(1) mutuality, or the recognition of 

organization–public relationships, (2) propinquity, or the temporality and spontaneity of 

interactions with publics, (3) empathy, or the supportiveness and confirmation of public 

goals and interests, (4) risk, or the willingness to interact with individuals and public on 

their own terms, and (5) commitment, or the extent to which an organization gives itself 

over to dialogue, interpretation, and understanding in its interactions with publics" (Kent 

& Taylor, 2002, p. 24).  

 The notion that dialogue can facilitate relationship building when it is embedded 

into an organization’s Internet interactions originated from a research titled "Building 

Dialogic Relationships Through the World Wide Web" and conducted by Kent & Taylor 
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(1998). The study yielded five dialogic communication principles which a website must 

contain for it to promote relationship building. These principles are summarized as 

follows: 1) The Dialogic Loop - relationship building commences with reliable 

information offered through the Internet, 2) The Usefulness of Information - 

organizations must strive to provide valuable information that is relevant to their publics, 

3) The Generation of Return Visits - the organizations public needs to be motivated to 

frequently return to the website for current content, 4) The Intuitiveness/Ease of Interface 

- having a clear and easy to navigate Web sites, and 5) The Rule of Conservation of 

Visitors - preserving the visitors of a web site by minimizing external links that drive 

visitors away (Kent & Taylor, 1998). A college should consider these basic principles 

when engaging in their microblogging activities, thus facilitating a dialogic loop, a 

continual exchange of feedback and interaction between the sender and the receiver, to 

enhance relationship building. Specifically, a college should apply the strategies of the 

Microblog Dialogic Communication framework identified in the current study when 

conceptualizing their microblogging activities.  

 The final aspect of consideration for colleges implementing the dialogic loop 

concept for the purpose of developing and improving relationships with its students, 

alumni, community, and stakeholders, is the sentiment of the messages propagated 

through their microblogging. Messages posted on Twitter, and for that matter, across all 

social media platforms used by the college, should reflect a positive attitude with choice 

words and statements that communicate a favorable perception of the college among its 

existing followers and/or would-be followers. The process of sentiment analysis allows a 

college to evaluate the overall attitude of its microblogging activities through a 
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categorization system that designates messages as positive or negative. The sentiment 

analysis process provides colleges with a performance measurement mechanism for 

improvement and adjustment plans upon their microblogging, which directly reflects on 

student considerations and decision-making process for joining or continuing with a 

college to proceed with their studies (Abdelrazeq et al., 2015). The combined postings in 

social media microblog sites such as Twitter are central to its audiences’ activities as it 

can impact their behaviors and influence their decision-making process (Beigi et al., 

2016). Therefore, the sentiment of a microblog message plays a significant part for 

establishing a favorable and ethical microblogging activity that is targeted toward 

improving relationships with all the constituents of a college. 

 The aforementioned expresses the significance of positive communication when 

colleges use social media to interact with their audiences, in particular the concept of 

Microblog Dialogic Communication which requires a deliberate action in structuring 

messages that are positive in nature within the 280-character constraint for the sole intent 

of establishing an interaction with followers and would-be followers, directed toward 

forming an affinity that leads to long-term relationships. As noted in the inception on the 

use of communication, from the development of the first book by Ptah-hotep and leading 

to current times, communication comprises a powerful and significant mechanism to 

influence and establish specific sentiments. Much of the research conducted on positive 

communication focuses on applying the public relations concept of dialogic theory as 

developed by Pearson (1989) and further expanded by Kent and Taylor (1998, 2002) to 

an organization’s communication objectives. The theory has been subsequently applied to 

interactions on the World Wide Web (Kent & Taylor, 1998) using traditional web pages, 
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and online communication on the Internet and its social media portals (Bortrec & Seltzer, 

2009; Kent et al., 2003; Lee, et al., 2014; Ryba1ko & Seltzer, 2010) such as Facebook 

and Twitter. Given the significance on the unique capabilities of the medium known as 

social networking and microblogging, it is imperative to investigate the use of favorable 

communication through Microblog Dialogic Communication. Specifically, the use of 

Twitter as a microblogging vehicle to broadcast messages. The Twitter microblogging 

application limits the postings to 280 characters or one image or a video link, which if not 

formulated and/or even formatted properly, could impact the conveyance of the actual 

message to the audience, possibly affecting existing and future relationships. 

 Applying Kent and Taylor’s model for relationship building through the World 

Wide Web to the microblogging activity on Twitter forces the concept of establishing 

specific guidelines and rules to social interactions, which are labeled as Microblog 

Dialogic Communication in the present study. Incorporating Kent and Taylors five 

dialogic communication principles (1998) as the foundation for Microblog Dialogic 

Communication gives rise to the following strategies:  

 1) Social Media Looping - communication generated in the form of tweets or any 

other social media interaction as a means to interact with the public should cause 

feedback or a response from the intended audience in the form of comments and/or 

produce likes or approval of the original message;  

 2) Information Relevancy - all interactions posted or tweeted by the organization 

will provide new, relevant, constructive, trustworthy, and engaging content that is 

intended to inform its public with relevant information and/or entertain its public in a 

captivating light-hearted manner;  
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 3) Instigating Reaction - posts or tweets must provide communication that is 

interesting or engaging to the extent that it is propagated in the form of a re-post, re-

tweet, or email forwarding to further circulate the original message. Social media, like no 

other broadcast medium, has the unique characteristic of furthering the delivery of a 

message to an endless amount of viewers. All communication generated by an 

organization through microblogging must be created with the intent that it will be re-

posted or re-tweeted. Therefore, any message that obtains the qualities of being 

redistributed by its public has acquired its goal within the social media spectrum;  

 4) Use of Classifiers and Direct Messages  - any content that is posted or tweeted 

in the social media networks of an organization should adhere to specific levels of 

accurate information that are straightforward and simple to process. Messages must 

include appropriate hashtag (#) references which serve to categorize the message within 

an intended topic. Using appropriate hashtags facilitate search capability and promotes 

hashtag activism and/or support for social causes. Furthermore, tweets should contain 

direct message lexicon which require a @ (at sign) followed by a user identifier address, 

that allows users to reply to someone else's tweets and/or allows the message to be sent to 

any user; 

 5) Perceived Informational Authority - communication created through Twitter 

and other social media outlets should include images and video links that strengthen the 

message tweeted. Images displayed and video links serve to enhance the intended 

purpose of the message and further the understanding of the information communicated, 

often serving as a valuable resource of additional information beyond the original tweet. 

The use of external links in social media is seen as a means to extend the content of the 
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tweet, taking full advantage of the social or interactive aspect that social media facilitates. 

External links also enhance the distribution of the tweet to reach other peripheral 

followers. The tweet source is considered the information tree root that leads to branches 

of additional knowledge, while the root continues to be the source of information 

authority.  

 An organization or an academic institution or college should consider the above 

mentioned principles defined by Kent and Taylor and extended in the current study for 

microblogging as fundamental guidelines when implementing Microblog Dialogic 

Communication framework. These principles establish the foundation for effective 

relationship building, not only for creating a Web site, but also for any interactive means 

of online communication through microblogging and other social media outlets. For the 

purpose of the present study, the above mentioned Microblog Dialogic Communication 

strategies are used as a measuring structure on the Twitter data analysis of urban and 

rural community colleges. 

 Furthermore, it is necessary to mention the demographic composition of the 

colleges being analyzed, specifically the ethnicity of the student population. As an 

example, one of the urban college's student population consists of 69.1% 

Hispanic/Latino, 15.0% Black/African-American, and 6.0% White (College Factual, 

2018), while one of the rural college's student population consists of 67.6% White, 11.2% 

Hispanic/Latino, and 6.4% Black/African-American (College Data, 2018). Waller, 

Tiejen-Smith, Davis and Copeland (2008) conducted a study that compared the student 

demographics by gender and ethnicity composition for urban versus rural community 

colleges. The study revealed that "town and rural colleges enrolled higher percentages of 
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white non-Hispanic students than their sister institutions in city and suburban areas. City 

colleges served higher percentages of black enrollments than their town counterparts. 

City and suburban institutions were closely linked and indicated higher percentages of 

Hispanic, Asian/Pacific Islander, unknown, and non-resident alien enrollments than town 

and rural colleges" (Waller et. al., 2008, p. 5). The study noted that student ethnicity 

among urban colleges consisted of a diverse student population including a greater 

portion of minority students compared to rural colleges with more of a homogeneous 

student population that is primarily white non-Hispanic. 

 The current study considered the sentiment analysis of a cross-section of urban 

and rural community colleges, given that urban colleges consist of a diverse student 

population that includes a greater portion of minority students compared to rural colleges 

with more of a homogeneous student population that is primarily white American. The 

study compares these urban and rural college groups independently of each other and 

comparing between the groups to evaluate if the size of the college has an impact on their 

Twitter activity. 

 The intent of the present research is to provide a guide or training mechanism on 

the ways a college can structure its Microblog Dialogic Communication that promotes a 

positive sentiment, fostering relationship building aspects. The Microblog Dialogic 

Communication would enhance colleges’ opportunities in improving its image and 

augmenting student retention and recruiting efforts. 

 The sentiment expressed through the Microblog Dialogic Communication should 

be of concern for colleges. Student perception and attitude towards their attending college 

could be adversely affected if improper Microblog Dialogic Communication is used by 
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the college. Furthermore, recruitment of future students could also be hindered given the 

Microblog Dialogic Communication sentiment, specifically since most microblog posts 

are easily shared with friends or are commented on by recipients, further propagating the 

message. Finally, alumni, prospective parents, and existing college community 

participants could be influenced by the Microblog Dialogic Communication if the 

sentiment is not properly structured to benefit the college's appearance.  

Research Questions 

 The section explains the significance of the dissertation. The first part details the 

research questions that are addressed by the current work, and the second presents the 

hypotheses raised by the research questions. 

 The present study conducted a content analysis comparing the Microblog Dialogic 

Communication of a cross-section of urban and rural community colleges within the 

United States. The research performed a sentiment analysis on the microblogging 

messages of these colleges, using data-mining techniques, linguistic analysis, and 

Dialogic Loop Theory to measure if the messages are positive or negative, thus providing 

a perspective on the messages. The significance of the study, as mentioned above, 

analyzes the microblogging activity of a cross-section of urban and rural community 

colleges in the United States to see if they are using the Dialogic Loop Theory model of 

creating positive messages in their Twitter postings to engage their public in a favorably 

relationship building interaction, which could have a direct impact on student retention 

and future recruiting.  
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For the purpose of the present study, the following research questions are considered. 

1. What is the microblogging sentiment of an urban college that interacts with a 

diverse ethnic student population? (Hypothesis 1) 

2. What is the microblogging sentiment of a rural college that interacts with a 

homogeneous student population? (Hypothesis 2) 

3. How does the microblogging activity of urban colleges differ from rural colleges 

with regard to their microblogging sentiment? (Hypothesis 3) 

 According to Kent and Taylor (2002), it is essential for an organization to perform 

dialogic communication with its public as a means to building relationships. Therefore, 

analyzing and knowing if the microblog activity of a college's tweets contain a positive or 

negative sentiment is an essential component to successfully engage in dialogic loop 

communication.  

4. How does the microblogging activities of a college instigate positive outcomes 

with regard to the sentiment of retweets and comments? (Hypothesis 4 and 5) 

 Kerstetter (2014) and Muckensturm (2013) mention that relationship-building is 

obtained through dialogic practices, which result in an interaction between an organization 

and its public. The interaction occurs in the form of a retweet, comment, or any form of 

feedback enacted by the public. Thus, it is necessary to obtain a quantitative analysis on 

the activity associated with each tweet from the colleges. The analysis furthers the 

Dialogic Loop Theory of establishing meaningful interaction between an organization and 

its public (Kent & Taylor, 1998, 2002). 

 Dialogic Loop Theory contends that positive interactions with an organization’s 

public promote greater relationship-building capabilities (Kerstetter, 2014). To further 
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consider the relationship-building capabilities of microblogging, the current study 

conducted a sentiment analysis on the plethora of retweets and comments associated with  

urban and rural colleges’ Twitter activity.  

5. How well does the Microblog Dialogic Communication framework explain 

differences that exist on relationship building capabilities in the Twitter activity 

between urban colleges and rural colleges? (Hypothesis 6) 

 The Microblog Dialogic Communication framework establishes specific measures 

for an organization to produce social media communication, in particular Twitter tweets, 

in such a way to maximize relationship building capabilities. The current study 

considered the five elements defined in the Microblog Dialogic Communication 

framework when analyzing the sentiment analysis of the tweets associated with a cross-

section of urban and rural community colleges. The analysis resulted in descriptive 

statistics comparing the use of Microblog Dialogic Communication within the urban and 

rural colleges Twitter activity. 

Hypotheses 

The main hypothesis claimed by my dissertation are as follows: 

Hypothesis 1 - An urban college's positive tweets do not surpass its negative 

tweets. 

Hypothesis 2 - A rural college's positive tweets do not surpass its negative tweets. 

Hypothesis 3 - The average number of negative tweets among urban colleges does 

not surpasses the average number of negative tweets of rural colleges. 

Hypothesis 4- A college’s positive sentiment tweets are not greater than its 

negative sentiment tweets. 
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Hypothesis 5 - The total positive sentiment tweets that received a retweet did not 

exceed the college's negative sentiment tweets that received a retweet. 

Hypothesis 6 – The average number of negative tweets of urban colleges do not 

surpass the average number of negative tweets of rural colleges when analyzed 

using the Microblog Dialogic Communication framework. 

Assumptions 

The assumptions of the present content analysis study on the sentiment of 

college's Twitter activity to establish dialogic communication are as follows: 1) that a 

college utilizes Twitter and all communication posted on the Twitter microblogging site 

as a means to formulate an outreach program of information with the intent of 

establishing credible and reliable interaction with its publics; 2) that a college has 

knowledgeable employees or department that are responsible for the Twitter postings and 

conduct themselves in a professional matter; and 3) that a college's public regularly 

receives, interacts, provides feedback, retweets or reposts, and are active participants of 

the college's Twitter activity. 

Delimitations 

The current study is delimited by the following possible issues: 1) additional 

colleges could have been analyzed beyond the selected college's to obtain a broader 

perspective of the Twitter dialogic loop activity of academic institutions; 2) other social 

media activities of the colleges could have been considered, such as referencing the 

Facebook activity to further consider the dialogic loop communication established 

outside of the Twitter activity; 3) a questionnaire could be applied to the college's student 

population to obtain a qualitative analysis on Twitter activity perspectives; and 4) other 
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data analysis tools could have been applied to the corpus beyond the Naive Bayes 

Classifier such as Support Vector Machines and Maximum Entropy as alternatives to  

classifying the Twitter data set for sentiment. 

Summary 

A college's microblogging activity can have a direct impact on how a college is 

perceived by its public, including current students, perspective students, alumni, parents, 

donors, and, stakeholders. A sentiment analysis assesses a college's microblogging 

activity, specifically the dialogic communication or interaction that a college engages to 

establish favorable relationship communication through its Twitter activities. The 

objective of the present study is to obtain an understanding of the attitudes and 

perceptions of a college's public from its Twitter activity and its ability to establish 

credible relationship building communication. Also, establishing a way to interact in a 

positive manner on social media such as Twitter by identifying the Microblog Dialogic 

Communication framework as an extension of Kent and Taylor's (1998) Dialogic Loop 

Theory for Web sites. 

The significance of the study is to analyze the Microblog Dialogic 

Communication exhibited by a cross-section of urban and rural community colleges 

within the United States through a sentiment analysis which determines if the Twitter 

activity is perceived as positive or negative. The current study permits colleges to assess 

if its Twitter messages are developed in a favorable or positive orientation on behalf of 

the college, which could have an impact on increased student engagement and support, 

the college's retention and enrollment, and further future recruiting efforts. The present 

content analysis study includes a literature review on previous and existing research 
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conducted in the areas of Dialogic Loop Theory, content analysis, sentiment analysis, and 

social media and microblogging. The study also includes research questions, 

assumptions, and delimitations. 

Definition of Terms 

 Content Analysis - A research method that examines patterns in communication 

artifacts, such as texts, pictures, audio or video (Macnamara, 2003). Neuman (1997) lists 

content analysis as a research methodology used for gathering and analyzing the content 

of text such as to words, meanings, pictures, symbols, ideas, themes, or any message that 

can be communicated in the form of anything written, visual, or spoken that serves as a 

medium for communication.  

 Dialogic Loop Theory - A dialogic communication approach to the process of 

relationship building between an organization and their publics. Kent and Taylor (1998) 

proposed five dialogic principles which could guide organizations to establish dialogic 

relationships with public through websites. McAllister (2008) defined it as a theory-

based, strategic framework to facilitate relationship with public through the World Wide 

Web. 

 Machine Learning - A field of computer science that uses statistical techniques 

to give computer systems the ability to learn with data, without being explicitly 

programmed. Machine learning approach makes use of training data set to correctly 

identify the emotions of each word (Suchdev et al., 2014). 

 Microblog Dialogic Communication - The present study establishes as a new 

form for evaluating Twitter tweets, enhancing Dialogic Loop Theory to develop a model 

for social media communication. The study extends Kent and Taylor's 1998 Dialogic 
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Loop Theory and its five dialogic principles to a current model for social media 

communication through microblogging, incorporating five specific microblogging 

strategies. 

 Microblogging - A type of broadcasting aspect that is similar to text messaging, 

that lets users share brief blasts of information (usually in less than 200 characters) to 

friends and followers from multiple sources including web sites, third-party applications, 

or mobile devices. Popular microblogging applications include Twitter, friendfeed, Jaiku, 

Yammer, Tumblr, and Plurk (DeVoe, 2009). 

 Naive Bayes Classifier - is a machine learning term belonging to a family of 

simple probabilistic classifiers that apply Bayes' theorem with strong independence 

assumptions between features (Vidhya & Aghila, 2010). 

 Sentiment140 - A Twitter sentiment analysis tool that contains 1.5 million tweets 

which have been analyzed for positive and negative sentiment, used to train the machine 

learning classifier (Kumar, 2014; Sentiment140, 2018). 

 Twitter - An online news and social networking service on which users post and 

interact with messages no bigger than 240 characters long, known as tweets (Kwak, 

2010). Twitter is the most widespread microblogging platform on social media, which 

was created in 2006 and that allows users to send and read text-based messages. It is used 

by people to express their opinions about a variety of topics (Grosse, 2012). 

 Twitter API - Also called Twitter application programming interface, is a means 

in which Twitter provides companies, developers, and users with programmatic access to 

Twitter data. Twitter API allows developers to look up tweets containing a specific word 

or a phrase, limited by Twitter to 1500 tweets at a time (Jhaveri et al., 2015). 
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 Uniform Resource Locator - Also known as a URL or a web address, the 

uniform resource locator is a reference to the location of a web resource on a specific 

computer network, rather than identifying the resource by name or by some other 

attribute(s) of that resource (Berners-Lee et al., 1998). 

  



37 

 

CHAPTER II. LITERATURE REVIEW 

 Microblog Dialogic Communication refers to the concept of generating concise 

messages using positive oriented word choices with the intent of formulating lasting 

online favorable relationships with a user’s public through standard microblogging 

applications such as Twitter. The complexity of the microblogging method is the need to 

generate a message within specific communication constraints. Primarily, microblogging 

places a restriction on the quantity of characters used in generating a message, such as 

Twitter that limits a posting to 280-characters. The character limitation places 

tremendous responsibility on the sender of a message to utilize specific selective words 

that convey the proper message with the adequate sentiment. The spontaneous nature of 

microblogging, such that senders of messages are constantly interacting with their 

audiences, posting information and replying to comments or re-posting of other 

information, further complicates the Microblog Dialogic Communication concept. For 

the purpose of effective Microblog Dialogic Communication, the sentiment of all these 

types of messages need to be considered prior to sending them out through various social 

media channels, specifically Twitter.  

 A microblogger user's image and reputation can severely be impacted negatively 

if the proper Microblog Dialogic Communication isn't considered. Once a message is 

thrust into the ever-reaching space of social media, its content is seen, shared, and 

commented on by all followers and any other subsequent re-posted followers of that 

message. Sharing, commenting, and re-posting is an ongoing chain reaction of 

cumulative events triggered from the original post. A misguided or improperly word 

chosen message can have substantial repercussions against the creator of the message. 
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The issue should be of great concern for colleges, since their microblogging and social 

media activities are critical to maintaining their student populations engaged in college-

wide activities, attitudes, and values. Furthermore, a college’s microblogging activities 

have tremendous outreach and influence on student retention, student recruitment efforts, 

and alumni relations. The microblogging activity can also influence ongoing future 

financial support, parent attitudes and awareness on the college, community involvement, 

and overall stakeholder interest and support. The image set forth through a college's 

Microblog Dialogic Communication determines the long-term relationships that the 

college will have with all of its constituents.  

 The current research serves as a point of consideration on the sentiment that 

colleges incorporate into their microblogging activities with the intent of peering through 

a social media window, specifically Twitter, considering the attitudes expressed in these 

activities. Initially, a greater understanding of the Dialogic Loop Theory is covered to 

augment the significance of relationship importance through social media. An 

understanding of content analysis research is presented to substantiate the methodological 

approach incorporated for the purpose of the present study. The concept of Sentiment 

Analysis is also discussed to provide an understanding on the issues of positive and 

negative messages when sending out posts through microblogging applications. Finally, a 

detailed analysis on Social Media and Microblogging is also included, providing in-depth 

details on this type of communication medium.  

Dialogic Loop Theory 

 Dialogic Loop Theory or dialogic communication is a public relations concept for 

establishing strategic relationships through the use of continuous interaction. The main 
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premise for Dialogic Loop Theory is that an organization needs to effectively and 

ethically interact with its publics, establishing two-way communication in a manner that 

is honest, truthful, and trustworthy. Two-way communication fosters meaningful 

relationships that will garnish prolonged and reliable interactions, which are beneficial 

towards an organization’s long-term goals. The concept of dialogue theory is attributed to 

Pearson's 1989 unpublished dissertation "A Theory of Public Relations Ethics." Pearson 

presented the idea that a managed interpersonal dialectic is necessary, in which an ethical 

dialogic system is mandated over monologic policies (Kent & Taylor, 2002). An ethical 

dialogic system is an open and honest communication type that is void of manipulation, 

disconfirmation, or exclusion, and that is continuous with the intent of establishing solid 

relationships through interactive communication. 

 Kent and Taylor (1989) proposed a theory-formulated framework using a dialogic 

approach to building relationships through the World Wide Web (WWW). They viewed 

the Internet, formerly known as the WWW, as a multi-channel environment that 

facilitates interactive communication that can be used to improve relationships among the 

various participants in the process. Interactive communication is the essence of dialogic 

communication, defined as a relationship building process between an organization and 

its public (Kent & Taylor, 1998). The concept of dialogic communication is further 

described as a relational interaction when there is an existing relationship, considering the 

attitudes held by all the participants, in a communication transaction. Furthermore, Kent 

and Taylor (1998) state that a dialogue must be created between the organization and its 

public to formulate effective dialogic relationships. The Internet and online environments 

such as microblogging sites provide organizations the opportunity to create dynamic and 
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lasting relationships by incorporating dialogic loop concepts into their Internet 

communication strategies. 

 The researchers assert that "relationships between public and organizations can be 

created, adapted, and changed" through the Internet (Kent & Taylor, 1998, p. 326). They 

identified five principles that need to be integrated into website development with a 

dialogic communication approach that promotes relationship building. These principles 

are as follows: 

 Principle One: The Dialogic Loop - The aspect of relationship building 

commences with reliable information offered through the Internet presence of an 

organization. Relationship building includes a firm commitment of resources and 

individuals to adequately and timely respond to questions, concerns and problems. Kent 

and Taylor (1998) state that for dialogic communication to occur, an organization must 

dedicate specific well-trained personnel to correctly respond and interact efficiently with 

its public through the various online media such as email, social media, and 

microblogging. 

 Principle Two: The Usefulness of Information - Kent and Taylor (1998, p. 327) 

emphasize that "content is what should drive an effective Web site, and not the smoke 

and mirrors and fancy graphics." Thus, for the purpose of dialogic communication, 

organizations must strive to provide valuable information that is relevant to their publics, 

thereby cultivating a relationship by addressing the interests, values, and concerns of their 

public (Kent & Taylor, 1998).  

 Principle Three: The Generation of Return Visits - Dialogic relationships are 

enhanced through updated information, featured content, interactive forums, and question 
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and answer sessions. These features maintain a Web site dynamic, giving off the need for 

visitors or the organizations public to frequently return for current content (Kent & 

Taylor, 1998). 

 Principle Four: The Intuitiveness/Ease of Interface - Kent and Taylor (1998) 

stress the significance of having clear and easy to navigate Web sites, with substantial 

relevant content that is informational, and containing minimal graphics. They mention 

that "text loads faster than graphics, and well typeset pages can actually be more effective 

attention getters than a graphic" (Kent & Taylor, 1998, p. 329). For the purpose of 

dialogic communication, the speed and ease in which information and a web site can be 

navigated, are key factors in formulating positive online relationships 

 Principle Five: The Rule of Conservation of Visitors - The final principle focuses 

on preserving the visitors of a web site by minimizing third-party links such as 

advertisements that can drive visitors away from the organizations site. Once a visitor 

leaves the site through another link he or she may never come back. Kent and Taylor 

(1998, p. 330) indicate that "if the goal of public relation is to create and foster 

relationships with publics, Web site should include only essential links with clearly 

marked paths for visitors to return."  

 An organization or an academic institution or college should consider the above 

mentioned principles defined by Kent and Taylor as fundamental guidelines when 

considering Microblog Dialogic Communication. These principles establish the 

foundation for effective relationship building, not only for creating a Web site, but also 

for any all interactive means of online communication including microblogging.  



42 

 

 Agozzino (2015) considered the role of dialogic communication in regard to the 

most followed organizations that use a microblogging digital bulletin board known as 

Pinterest. The current research notes that the primary function of public relations is to 

establish strategic relationships with an organization’s stakeholders by using two-way 

communication. Agozzino study on Pinterest, which is a microblogging site that consists 

of images rather than text, further defined dialogic loop as a discussion between an 

organization and their online users. The dialogic loop relationship aspect originated from 

the "opportunity for users to comment, opportunity for users to 'like' pins, and an 

opportunity for users to engage with pins through repining, posting, playing games, 

voting on pictures, and participating in contests" (Agozzino, 2015, p. 8). 

 McAllister (2013) conducted a content analysis study on the status of dialogic 

relationship-building tactics incorporated by community colleges in New Jersey through 

their respective Web sites. For the purpose of the present study, dialogic communication 

was considered as a means to relationship building within the practice of fundraising for 

nonprofit organizations and higher educational nonprofit settings. The study considers 

two-way symmetrical or dialogic model as the preferred communication strategy for 

nonprofits to "manage conflict, improve understanding, and build relationships with 

publics" (McAllister, 2013, p. 264). The research notes that dialogic communication 

fosters transparency, public involvement, trust, and understanding. These characteristics 

are aspects critical to the relationship building process that colleges need to implement 

with their Microblog Dialogic Communication objectives. McAllister stressed that 

dialogic communication involves intricate dedication and work, which is both time 

consuming and laborious. Although, the results can produce "greater organizational 
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rewards, increased public support, enhanced image/reputation, and decreased 

governmental interference" (McAllister, 2013, p. 265). 

 In another study, Muckensturm conducted a content analysis on the use of 

dialogic communication by the accommodation sector, which refers to the hospitality and 

tourism industry, specifically through the social media activity on Facebook. The author 

contends that it is essential to consider dialogic communication as it relates to social 

media since "social networks have the same amount of influence on consumers as 

television and more influence than newspapers" (Muckensturm, 2013, pg 3). 

Muckensturm (2013) mentioned that dialogue is two-way communication that can be 

both asynchronous and synchronous, as it relates to blogging, since an interactive 

communication can occur at the moment a post is made or many hours after the post was 

made. Muckensturm notes that dialogue is an important aspect of an organizations 

customer relationship management, and that the accommodation sector's social media 

activity on Facebook needs to employ the principles of dialogic communication for 

effective interaction with its public.  

 Watkins (2017) used a content analysis to determine if dialogic communication 

increased relations, interaction, and positive attitudes between professional athletes and 

their public. The study considered the five principles defined by Kent and Taylor (1998) 

through the social media microblogging site known as Twitter. The author contends that 

two-way communication refers to the communication between an organization and its 

public, both of which are seeking mutual benefits. Furthermore, Watkins defines dialogue 

as an outcome that is generated by the interaction between an organization and its public. 

Thus, social media provides the communication outlet that facilities interactivity, while 
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the relationship building interaction is obtained through the dialogue created in the 

microblogging process (Watkins, 2017). The research noted that despite there being 

limited dialogic communication, the process of posting tweets with useful information 

(one-way communication) served as a viable means in engaging the public in relationship 

building activities. 

 Much of the research conducted on dialogic communication and the opportunities 

that exist on Web sites and social media venues focus on the ample possibilities for 

relationship building, as noted by the previously mentioned studies. The research is 

mostly founded on the relationship building potential established by Kent and Taylor, 

which uses five dialogic principles as a guideline to foster dialogic communication 

between an organization and its public (Kent & Taylor, 1998). Other researchers have 

conducted studies on Web sites and social media activity, specifically Twitter and 

Facebook, for the sole purpose of analyzing the effectiveness of an organizations ability 

to generate two-way communication through these online components (Agozzino, 2015; 

Bortree & Seltzer, 2009; Lim & Lee-Won, 2017; Lovejoy, 2012; McAllister-Spooner 

2009; McAllister, 2013; Muckensturm, 2013; Rybalko & Seltzer, 2010; Waters & Jamal, 

2011; Watkins, 2017). 

 McAllister-Spooner (2009) conducted a ten-year survey on Kent and Taylor's 

dialogic Internet principles and its ability to extend dialogic theory to relationship 

building via Web sites. McAllister-Spooner's extensive research suggests that Web sites 

underutilize dialogic theory for relationship building functions by limiting the interactive 

potential of the Internet. Furthermore, Bortree and Seltzer (2009) noted that 

"organizations are not adequately utilizing the Web to generate dialogic communication; 
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there are gaps between organizational relationship-building goals, implementation of 

online strategy, and actual dialogic engagement" (p. 317). They considered social media 

to conduct a content analysis on 50 Facebook profiles to determine to what degree 

advocacy organizations effectively used dialogic strategies that generated actual dialogue 

between the organization and its stakeholders. The study noted that most of the advocacy 

organizations use social media to inform its public, rather than taking advantage of the 

potential relationship building dialogic strategies present in social networking. The 

findings by Bortree and Seltzer on the effectiveness of dialogic communication on social 

media were similar to the findings by the McAllister-Spooner study on Web site dialogic 

communication.  

 Another study conducted by Waters and Jamal, focused on how nonprofit 

organizations were using microblogging to communicate with their public. A content 

analysis was conducted on the Twitter tweets posted by 81 nonprofit organizations. The 

study found that nonprofit organizations were more likely to engage in asymmetrical 

communication, primarily using Twitter to convey one-way messages. Waters and Jamal 

(2011) state that nonprofit organizations are not benefiting from the "interactive nature 

and dialogic capabilities of the social media service, rather using Twitter as a means of 

sharing information instead of relationship building" (p. 323). A similar study was also 

conducted by Lovejoy (2012) in which a content analysis of 73 nonprofit organization's 

Twitter feeds were analyzed for dialogic communication. The study found that nonprofit 

organizations are not using Twitter to maximize stakeholder involvement, rather they use 

social media as a one-way communication channel. 
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 Lim and Lee-Won (2017) recognized that research showed that "organizations 

tend to use Twitter primarily in a one-way, monologic manner" (p. 422) limiting the 

dialogic communication component of the microblogging capabilities. Thus, the authors 

conducted a study to investigate the persuasive effect of an organization’s dialogic 

retweeting (the reposting of other Twitter users' messages). The study found that when an 

organization engaged in dialogic retweets, it expanded the conversation to additional 

publics, generated favorable attitudes toward the organization, and extended the 

organization's dialogic loop (Lim & Lee-Won, 2017). 

 Rybalko and Seltzer conducted a content analysis on the Twitter profiles of 

various Fortune 500 companies for the use of dialogic features. The research attempted to 

find an understanding of the dialogic potential of the microblogging site Twitter, noting 

that online communication was a perfect venue for organizations to nurture dialogue 

(Rybalko & Seltzer, 2010). The authors mention that organizations are not using Twitter 

for dialogic communication at its full potential.  Rybalko and Seltzer's findings are 

similar to the findings of other studies which noted that organizations use social media to 

communicate through one-way messages and with limited dialogic communication 

activities (Bortree & Seltzer, 2009; Lim & Lee-Won, 2017; Lovejoy, 2012; McAllister-

Spooner, 2009; Waters & Jamal, 2011).  Although, the research revealed that 

"corporations seem to use their Twitter feeds more effectively than their websites in 

facilitating a dialogic loop" (Rybalko & Seltzer, 2010, p. 340). The findings also seem to 

indicate that organizations use the dialogic feature of conservation of visitors, or an 

attempt to encourage its public to stay or revisit a web site often, through Twitter to 

develop dialogic communication. Organizations attempted to keep users engaged by 
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frequently posting new tweets within 24 hours, thereby fostering relationship building 

behavior with its public.  

 Dialogic communication has been defined by various studies to mean the ethical 

interaction between an organization and its public that is honest, truthful, and trustworthy 

with the intent to foster prolonged relationships. The ethical interaction concept was 

considered in several studies within various social media outlets such as Pinterest 

(Agozzino, 2015), Internet web sites (McAllister-Spooner 2009; McAllister, 2013), 

Facebook (Bortree & Seltzer, 2009; Muckensturm, 2013), and Twitter (Lim & Lee-Won, 

2017; Lovejoy, 2012; Rybalko & Seltzer, 2010; Waters & Jamal, 2011; Watkins, 2017) 

among others. Each of these studies has used similar methodologies, primarily content 

analysis, and has found some common results in regard to an organization’s use of social 

media when applying dialogic communication for the purpose of relationship building. 

Content Analysis 

 The research methodology used in the present study is a quantitative content 

analysis process that evaluates the overall attitude of a message or of the sender of the 

message on the microblogging site Twitter. The process is known as a sentiment analysis, 

which evaluates the specific words and phrases of a corpus. The term content analysis 

refers to a research process used to study a body of text for its use of words and phrases. 

Researchers use a content analysis to evaluate the intent and meaning of corpus by 

labeling and categorizing specific words and phrases. These words and phrases are coded 

following predetermined criteria for a semantic relation. The results are statistically 

tabulated to obtain a quantitative outcome on the specific use of words and or phrases as 

determined by the study (Rose et al., 2015). Content analysis yields significant and 
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valuable results when applied to the microblogging activity on Twitter. The relational 

analysis component of a quantitative content analysis is an ideal process for the objective 

of evaluating the use of a college's microblog activity on Twitter in regard to it 

communicating positive or negative messages to establish favorable relationship 

outcomes.  

 The present study conducts a quantitative analysis on the microblogging activity 

of a cross-section of urban and rural community colleges within the United States. A 

significant aspect of the current research is the application of machine learning, which is 

trained using a data source of 1.5 million tweets, called Sentiment140 that has analyzed 

the corpus of these tweets labeling them as positive and negative sentiment. The content 

analysis component, the use of Sentiment140 for the quantitative research used in the 

current study, is a common denominator across other studies in the sentiment analysis 

field, which allows the current study and future work to be linearly compared with other 

similar studies on sentiment analysis. 

 The technique of content analysis has existed since 1927, when introduced by 

Harold Lasswell to study propaganda (Newbold et al., 2002). It has been used to study 

text from a broad range of data sources from transcripts of interviews and discussions to 

the narrative and form of films, TV programs and the editorial and advertising content of 

newspapers and magazines. Media content analysis has been a primary research 

methodology to understand and study social issues in television and film (Macnamara, 

2003). During the 1920s and 1930s, it became very popular to investigate the rapidly 

expanding communication content of movies. During the 1950s the investigation 

migrated toward the study of mass communication, and it continues today as a means to 
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examine content of all forms including Internet communication (Chaffee & Metzger, 

2001; Macnamara, 2003). 

 Content analysis operates on the notion that verbal behavior is a part of human 

behavior and that symbols are a part of events, thus it is a technique that describes with 

objectivity and simplification, what is said on a given subject in a given place at a given 

time (Lasswell et al., 1952). A content analysis is a systematic analysis that classifies 

parts of a text through a structured, methodical coding scheme from which conclusions 

can be drawn about the message (Rose et al., 2015). A content analysis can be conducted 

on different types of corpora, including text from speeches, letters or articles whether 

digital or in print, as well as social media text such as from the microblog site Twitter. 

Content analysis is also applicable to text in the form of pictures, video, film or any other 

visual media. "Content analysis provides a structured way of analyzing data that are 

typically open-ended and relatively unstructured" (Rose et al., 2015, p. 195). The aim of a 

content analysis is to describe the features of the message content, such as in the study 

conducted by Adams and McCorkindale (2013) in which a content analysis was 

conducted on the Twitter pages of the 2012 presidential candidates to determine the 

candidates use of Twitter, if meaningful dialogue was done, and the level of transparency.  

Another example is Waters and Jamal (2011) content analysis study on how nonprofit 

organizations use Twitter. In their research, randomly selected organizations that use 

Twitter were analyzed by acquiring the text data for a specific period of time. Additional 

information was obtained from Twitter such as the number of followers and quantity of 

tweets. The tweets for each organization analyzed were then coded by two-coders to 

conduct statistical study and generate a description of the text. 
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 A content analysis researcher uses an objective and systematic study of counting 

and recording events to produce a quantitative description of the symbolic content in a 

text (Neuman, 1997). A quantitative content analysis collects data from a large corpus 

such as from a newspaper publication, broadcast television or movie, and/or postings 

from a microblog site, determined by key words in context, and consider the circulation, 

frequency, and volume of the corpus to analyze. Quantitative content analysis analyzes 

the positive and negative words and phrases of the corpus to identify the tone, which is 

then processed using statistical methods in a quantitative approach. Qualitative content 

analysis examines the relationship between the text and its likely audience-derived 

meaning, recognizing that a text is polysemic or that it can have multiple different 

meanings to different audiences. Therefore, a qualitative content analysis tries to 

determine the likely meaning of texts to audiences. It pays attention to audience and 

contextual factors – not simply the text. Qualitative analysis of texts is necessary to 

understand the semantics of the information and audience interpretations, which is the 

paramount objective of a content analysis. Therefore, researchers and academics view 

quantitative content analysis as being a part of analyzing texts to discern the text’s likely 

meanings to and impact on audiences (Curran, 2002; Gauntlett, 2002; Newbold et al., 

2002).  

 The design aspect of a content analysis research involves several key stages. 

Rose, Spinks and Canhoto (2015) present a detailed layout of the process, which 

includes, "when appropriate, the formulation of a hypothesis in response to a research 

question" (p. 3). The next step involves identifying and obtaining the material to be 

analyzed, in other words, what is the source for the corpus material. To conduct a reliable 
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content analysis of a material, a sampling method is necessary. The process of sampling 

to conduct a content analysis is listed as: (a) consisting of selecting the media form to be 

analyzed, such as print, radio, television, film, blog, or microblog; (b) selection of a 

specific period, such as issues or dates to be analyzed; and (c) sampling of appropriate 

and significant content from within those media (Newbold et al., 2002). The most 

appealing method of sampling content for analysis is to conduct a census, which selects 

all possible items to measure. A census is preferred since it provides the most 

comprehensive representation of the items under consideration, but it is often impractical 

or not possible since a very large volume of corpus or media has to be analyzed 

consisting of a study over a long range period of many months or years. When a census is 

not possible, a copious or sample of the text/media to analyze must be selected as a 

representative sample of the overall population of items. The manner in which sampling 

is performed requires that items be selected in an objective and unbiased manner to 

ensure the reliability of the results obtained from the study. There are several methods of 

sampling for content analysis. Random sampling is a process of selecting every nth unit 

from the total population; while purposive sampling is a process that selects from key 

media only and not from less important media (Newbold et al., 2002). Other methods are 

quota sampling in which a selection of a proportion of articles from several regions or 

areas of either geographic, demographic, psycho graphic, or subject categories; and 

stratified composite sampling where a process of randomly selecting units for analysis is 

conducted from certain days or weeks over a period (Newbold et al., 2002). 

 The next step in the content analysis process is to decide what will be coded from 

the corpus material. The coded material can include words, phrases, sentences, 
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paragraphs, whole documents, images, audio, or visual data. As part of the coding 

process, a coding scheme is developed, or the process of establishing classification rules 

to assign the body of text. The coding scheme specifies the systematic manner in which a 

corpus is classified, which allows for future replicable coding of the data. It details how 

and what will be coded, assuring that each category is exhaustive and mutually exclusive 

(Rose et al., 2015). Once a coding scheme has been developed, multiple coders can be 

used to conduct the coding or textual data can be coded by using computer software 

programs that support text analysis. The results are then analyzed with statistical methods 

such as descriptive statistics or inferential statistics to "summarize the findings and /or 

test any hypothesis that have been formulated" (Rose et al., 2015, p. 5). 

 The above mentioned process defines the various steps taken in conducting a 

typical quantitative content analysis. The process is used to analyze large sets of 

documents or corpus with the objective of testing theoretical issues and obtaining a 

greater understanding of the data. It is a research method for "making valid inferences 

from data, attaining a condensed and broad description of the corpus, with the outcome 

serving as a categorized description of the issue being observed" (Elo & Kyngas, 2008, p. 

108). As such, a quantitative content analysis can be applied to a wide variety of text with 

the purpose of obtaining a greater understanding of the material being observed. 

Specifically, a type of content analysis, called sentiment analysis, can be used to analyze 

the type of emotion expressed in the microblog site Twitter. For the purpose of the 

present study, a sentiment analysis is conducted on the Twitter feed of a cross-section of 

urban and rural community colleges. The process is described in the following section. 
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Sentiment Analysis 

 Sentiment analysis refers to a process whereby specific words and phrases are 

systematically evaluated for their intent (Beigi et al., 2016). Sentiment analysis attempts 

to determine the overall attitude of a message or of the sender of the message within the 

contextual framework of the communication. The analysis criteria are derived from 

specific word choices within a message that can either make a message appear to be 

positive or negative in regard to the attitude expressed. The analysis process is typically 

conducted by using data analytics tools and software that evaluate specific words in a 

large database of messages to identify patterns and establish word associations. The 

evaluation provides an insight into the communication style of a message, surmising the 

message attitude being communicated. Sentiment analysis is a widely used process that 

provides a systematic method of examining message content for its attitude, emotion, or 

opinion. Many businesses and organizations incorporate sentiment analysis to evaluate 

customer attitudes toward a product line or marketing objective, also applying it to 

examining social media interactions on Facebook or Twitter. The sentiment expressed 

through social media networks can have a direct impact on the customer relations with a 

business or organization. It is imperative that businesses and organizations regulate the 

types of messages communicated through social media networks such as Twitter to 

establish favorable relationships with its stakeholders.  

 The term sentiment analysis was defined by Nasukawa and Yi (2003) as a 

"technique to detect favorable and unfavorable opinions toward specific subjects within 

large numbers of documents" (p. 1). The authors create a distinction from previous work 

on sentiment analysis, which focused on identification of sentiment expressions and their 
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polarities, and their application of sentiment analysis. Primarily, past work considered the 

sentiment expressions applied to a document as a whole, while the authors considered the 

relationships between the sentiment expression and the subject. Therefore, specific text 

fragments are analyzed to identify a sentiment on a subject within a document (Nasukawa 

& Yi, 2003). The authors mention the importance for organizations to detect and analyze 

favorability within online documents since they often can influence public opinion and 

impact relationships.  

 Beigi, Hu, Maciejewski, and Liu (2016) classified sentiment analysis as an area of 

study that includes "sentiment classification, opinion mining, subjectivity analysis, 

polarity classification, and affect analysis" (p. 3). The term is further defined as a process 

used to extract subjective information from a given text for the purpose of analyzing its 

sentiments, attitudes, emotions and opinions using natural language processing and data 

analytics. The authors note that sentiment is categorized into positive or negative 

categories for the purpose of business intelligence, politics, sociology and the study of 

human opinions and attitudes (Beigi et al., 2016).  The analysis can be applied to social 

networking sites, microblogs, Web applications, and videos since all express opinions on 

various topics and events (p. 1).  

 Jhavaeri, Chaudhari, and Kurup (2015) conducted a study on the sentiment 

analysis of two significant e-commerce websites in India by extracting the sentiments 

from their Twitter feed. The authors defined sentiment analysis as "a line of research that 

harnesses people's opinions and attitude in relation to different topics, products, events 

and attributes" (p. 14). The analysis considered the "opinionated word or phrase in the 

text and labeling it as positive, negative or neutral" (p. 14). The research was conducted 
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on Twitter because of 1) the number of messages that are shared on a daily basis, 2) the 

synchronous communication aspect of Twitter tweets, and 3) the 280 character limitation 

of Twitter that stresses the importance of using specific words to convey a message 

(Jhavaeri et al., 2015). The above mentioned reasons make Twitter a perfect candidate for 

sentiment analysis due to the unique nature of the messages and the ability to apply data 

analytics and natural language processing (NPL), or the processing of large structured set 

of texts. 

 In another study conducted to analyze social media content as an evaluation tool 

for universities, the aspect of an opinion derived from communication medium, such as 

Twitter, is an essential component. "Twitter is one of the most opinion-rich resources, 

where huge amounts of opinions on different topics are expressed" (Abdelrazeq et al., 

2015, p. 49). The researchers used sentiment analysis tools to analyze the social media 

content of nine universities in Germany since the sentiment expressed through the 

microblog activities on Twitter can support university rankings, provide universities with 

a performance measurement mechanism for improvements, and facilitate student 

information on deciding to attend or choosing a specific university for their academic 

studies (Abdelrazeq et al., 2015). They define sentiment analysis as "a method used to 

analyze opinions, reactions, impressions, emotions and perspectives" (p. 52). A search 

routine and filter called Twitter API was used to extract the specific tweets associated 

with the search criterion established for the study. The search resulted in a data set of 

tweets matching the used keyword list. The data set of tweets were then passed through a 

filtering process to remove all irrelevant text, word abbreviations, emoticons, and other 

Twitter specific classifiers. The final step in the sentiment analysis approach is to pass the 
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filtered data set through a sentiment classifier that distinguishes the specific wording in 

the filtered tweets as being positive, negative, or neutral. The authors applied the Naive 

Bayes Classifier, which is "a probabilistic classifier applying Bayes' theorem with the 

assumption that features are conditionally independent from each other given a specific 

class" to categorize the text (Abdelrazeq et al., 2015, p. 56). 

 Dodd (2014) conducted a sentiment analysis on the opinions expressed on Twitter 

regarding a specific television program. The goal of the study was to discover perceptions 

on the television program, labeling the sentiment either positive or negative, while 

evaluating different machine learning algorithms. The authors placed an emphasis on 

evaluating different machine learning algorithms that can effectively realize a Twitter 

sentiment analysis. A significant aspect for the study was that the microblogging 

activities in Web 2.0 culture produces "massive amounts of data containing consumer 

sentiment that is predominantly unstructured text" (p. 1). To analyze such large data sets, 

the authors used a computational process of extracting information from a data set that 

structures the data and discovers patterns, called data mining. They also applied 

sentiment analysis, also known as opinion mining, which also discovers patterns in data 

that is analyzed to classify the sentiment in that text (Dodd, 2014). Since much of the 

sentiment in a Twitter feed is unstructured, it is necessary to use natural language 

processing techniques to "transform raw data into a form that can be processed efficiently 

by a computer" (p. 3). The study concluded that the use of natural language processing 

techniques was an effective method for conducting a sentiment analysis on the 

unstructured data set provided in a microblogging site such as Twitter. 
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 Kumar (2014) defined sentiment analysis as a task finding process used to 

discover people's opinions and affinity towards a specific topic. These views are posted 

on social media sites such as Facebook and Twitter, which can be categorized into 

various types of sentiments like positive and negative. The objective of the study was to 

determine which text classifier produced the best results in classifying the sentiment of a 

substantial Twitter data set. The main obstacle in the classification process is that the data 

contains an abundance of noise in the form of slang, short words, acronyms, hashtags, 

emoticons and special characters, which makes it difficult to achieve good accuracy in 

the sentiment analysis process (Kumar, 2014).  The author used various data 

preprocessing steps including Naive Bayes, Support Vector Machines (SVM) and 

Maximum Entropy (MaxEnt) to sort and classify the Twitter data set. Naive Bayes refers 

to a basic text classification algorithm that is derived from the Bayes theorem that 

considers the probability of an event and makes naive independent assumptions of the 

feature variables. The SVM is a classifier that constructs a hyperplane of analyzed data 

with a maximized separation that maps data into a category. The MaxEnt is a 

discriminative classifier used in Natural Language Processing, Speech and Information 

Retrieval problems which classifies the text (tweet, document, review) to a particular 

category, given a contiguous sequence of items from a given sequence of text in the form 

of a unigrams (single words), bigrams (two- word sets) or other n-gram features (Kumar, 

2014). The study concluded that the text classification process incorporating these 

methods obtained higher performance results with the SVM data processing technique, 

followed by MaxEnt and Naive Bayes respectively.  
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 Other studies have extended the sentiment analysis processing methods to 

generate further precise analysis results. Zhang and Lee (2011) state that the popularity of 

the microblog site Twitter makes it a valuable source to obtain public opinion for 

business marketing and social studies. The study performs a sentiment analysis on 

specific topics within a posted tweet using a pre-process lexicon-based approach, 

followed by an additional analysis using a sentiment classifier. The lexicon-based 

approach uses an opinion lexicon dictionary which consists of words that are commonly 

used to express positive or negative sentiments. The sentiment classifier used was 

Support Vector Machines which was the additional algorithm that categorized Twitter 

specific lexicon extracted from the initial preprocess such as emoticons, colloquial 

expressions, abbreviations, and unique spelled words (Zhang & Lee, 2011). The multi-

tiered process generated improved sentiment analysis results, extending the learning-

based sentiment analysis approaches currently used in most sentiment analysis studies. 

Machine Learning Classifiers 

 The issue of classifying text by sentiment classification using machine learning 

techniques such as Naive Bayes, Maximum Entropy, and Support Vector Machines was 

considered by researchers Pang, Lee and Vaithyanathan (2002). They conducted a 

sentiment analysis using movie review data to determine if the overall sentiment was 

positive or negative. The objective of the study was to examine the effectiveness of 

applying machine learning techniques to the sentiment classification problem, which 

refers to the fact "topics are often identifiable by keywords alone, sentiment can be 

expressed in a more subtly manner, thus sentiment requires further comprehension than 

the traditional topic-based classification" (Pang et al., 2002, p. 1). According to the study, 
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machine learning techniques compared favorably over the human-generated baseline, 

with the Support Vector Machines process outperforming MaxEnt and Naive Bayes, 

although the differences were marginal (Pang et al., 2015, p. 6).  

 The machine learning algorithms most commonly used in the sentiment analysis 

process for text classification are Naive Bayes, Maximum Entropy, and Support Vector 

Machines.  

Naive Bayes 

 The Naive Bayes classifier is a simple probabilistic classifier that applies Bayes' 

theorem with strong naive independence assumptions. Bayes' theorem dates back to the 

1700s, when an English Reverend named Thomas Bayes attempted to compute a 

probability parameter, wanting to know how to infer causes from effects (Lesswrong, 

2011). His work was published posthumously in 1764 by Richard Price and expanded 

upon in 1812 by Pierre-Simon Laplace who published the modern formulation in 

"Théorie analytique des probabilités" (Stigler, 1983; Stigler, 1986), although it has been 

argued that Nicholas Saunderson had discovered the theorem prior to Thomas Bayes. The 

theorem was widely rejected by mathematicians because of its simplistic approach and 

did not gain any real significant acceptability until the mid-1950s (Lesswrong, 2011). 

Despite the controversy, the Bayes' theorem is named after Thomas Bayes (Stigler, 

1983). 

 Bayes' Theorem is a probability theory that describes the likelihood of an event, 

using prior knowledge of conditions related to the event. For example, if a ball is 

randomly dropped on a flat table, the location of the ball is noted. As additional balls are 

dropped on the table, their positions are also noted. The more balls are dropped, the better 
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the position of the first ball is predicted. Thus, a learning process ensues that permits an 

accurate probability to be determined (Bayesian, 2018; Berkson, 1930). The assuming 

nature of the model in the conditional independence within each class has caused a 

variety of names for the theorem, such as Idiot’s Bayes, Naive Bayes, Simple Bayes, and 

Independence Bayes. These names commonly refer to the fact of its basic simplicity in 

that it ignores the interactions which might almost always be expected to exist (Hand & 

Yu, 2001). 

 Vidhya and Aghila (2010) provide an explanation of Naive Bayes machine 

learning approach as follows: 

Naïve Bayes Model works with the conditional probability which originates from well-

known statistical approach “Bayes Theorem”, where as Naïve refers to “assumption” that 

all the attributes of the examples are independent of each other given the context of the 

category.  In this context of text classification, the probability that a document d belongs 

to class c is calculated by the Bayes theorem as follows: 

 

 

 

 

The estimation of P (d/c) is difficult since the number of possible vectors d is too high. 

This difficulty is overcome by using the naïve assumption that any two coordinates of the 

document is statistically independent. Using this assumption the most probable category 

'c' can be estimated. (p. 206) 

 

 

 Furthermore, Danso, Atwell and Johnson (2013) offered a description on Naive 

Bayes as a simple machine learning technique that analyzes "the relationship between 

each feature and the class for each instance to derive a conditional probability for the 

relationship between feature values and the class" (p. 3). 

 Naive Bayes is calculated using the joint probabilities of features that 

estimate the probability that a given set of text is associated to a specific Class, 

such as the sentiment being considered as positive or negative. In the graph 

    P(c)P(d | c) 

P(d)  
P(c | d) = 
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above, the Feature quality would represent the probability that a specific text has 

been associated with a given Class or sentiment. 

Multinomial Naive Bayes 

 A Naive Bayes model assumes that each of the features it uses are conditionally 

independent of one another given some class, in order to predict the category of a given 

sample. It is a probabilistic classifier, therefore Naive Bayes will calculate the probability 

of each category using the Bayes theorem, and the category with the highest probability 

will be output.  

 The term Multinomial Naive Bayes simply lets us know that each observed 

feature is a multinomial distribution, rather than some other distribution. The multinomial 

distribution works well for data which can easily be turned into counts, such as word 

counts in text. 

 In summary, Naive Bayes classifier is a general term which refers to conditional 

independence of each of the features in the model, while Multinomial Naive Bayes 

classifier is a specific instance of a Naive Bayes classifier which uses a multinomial 

distribution for each of the features (Vidhya & Aghila, 2010). For the purpose of the 

present study, the terms Naive Bayes and Multinomial Naive Bayes are used 

synonymously.  

Maximum Entropy 

 Another probability distribution estimation technique used in machine 

learning algorithms is Maximum Entropy (MaxEnt). The MaxEnt approach is 

"used for a variety of natural language task such as language modeling, part-of-

speech tagging, and text segmentation" all-of-which are sentiment analysis 
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components (Nigam, Lafferty, & McCallum, 1999, p. 1). The Maximum Entropy 

approach was described by Kumar (2014) as follows: 

The MaxEnt classifier uses a model very similar to the Naive Bayes model but it does not make 

any independence assumption, unlike Naive Bayes. The MaxEnt classifier's goal is to classify the 

text (tweet, document, reviews) to a particular class, given unigrams, bigrams or others as features. 

If w1;w2....wm are the words that can appear in a document, according to bag-of-words model, each 

document can be represented by 1s and 0s indicating if the word wi is present in the document or 

not. 

The parametric form of the MaxEnt model can be represented as below: 

 

 

 

 

 
Here, c is the class to be predicted, d is the tweet, and       is the weight vector. The weight vector 

defines the importance of a feature. (p. 4) 

 

 

 According to Pang et al.,(2002), the MaxEnt classification is "an alternative 

technique which has proven effective in a number of natural language processing 

applications. Additionally, unlike Naive Bayes, MaxEnt makes no assumptions about the 

relationships between features, therefore MaxEnt might potentially perform better when 

conditional independence assumptions are not met" (p. 4). 

Support Vector Machines 

 Support Vector Machines (SVM) is a classification technique that is highly 

effective at traditional text classification, generating better results than Naive Bayes and 

MaxEnt, since it is capable of handling noisy and sparse data sets (Danso et al., 2013; 

Pang et al., 2002). The SVM approach was described by Joachims (1998) as follows: 

Support vector machines are based on the Structural Risk Minimization principle from 

computational learning theory. The idea of structural risk minimization is to find a hypothesis h 

for which we can guarantee the lowest true error. The true error of h is the probability that h will 

make an error on an unseen and randomly selected test example. An upper bound can be used to 

connect the true error of a hypothesis h with the error of h on the training set and the complexity of 

H (measured by VC-Dimension), the hypothesis space containing h. Support vector machines find 

the hypothesis h which (approximately) minimizes this bound on the true error by effectively and 

efficiently controlling the VC-Dimension of H. (p. 2) 
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 The main idea of SVM is to select a hyper-plane that separates the positive and 

negative examples while maximizing the minimum margin (Kumar, 2014; Zhang & Lee, 

2003; Pang et al., 2002; Joachims, 1998). "SVM employs a technique of ‘maximal-

margin-hyper-plane’, where the maximum linear distance between Classes in the features 

space is estimated and separated from each other (Danso et al., 2013, p. 3). Support 

Vector Machines is suitable for text classification and out performs other machine 

learning algorithms since 1) it is capable of handling large text features; 2) it is able to 

limit irrelevant text features; 3) it is well suited for problems with dense concepts and 

sparse instances; and 4) can effectively find linear separators in corpus, which tends to be 

linearly separated (Joachims, 1998). 

 As expressed by the research, sentiment analysis is a comprehensive process that 

involves computational and natural language processing to identify and characterize large 

corpus in terms of emotion or attitude. A machine learning algorithm, such as Naive 

Bayes, Maximum Entropy, or Support Vector Machines, is used to classify a data set of 

text into a specific class, positive or negative as noted in various studies (Abdelrazeq et 

al., 2015; Danso et al., 2013; Dodd, 2014; Jhavaeri et al., 2015; Joachims, 1998; Kumar, 

2014; Pang et al., 2002; Vidhya & Aghila, 2010; Zhang & Lee, 2003; Zhang et al., 2011). 

In particular, sentiment analysis is used to study attitudes and opinions expressed through 

various social media sites, primarily the microblog site Twitter. The results of a Twitter 

sentiment analysis for an organization can have a direct impact on the organization's 

communication output as it attempts to regulate effective interaction with its public while 

trying to establish favorable relationships. 
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Social Media and Microblogging 

 The Dialogic Loop Theory and sentiment analysis previously discussed is applied 

to the method of communication conducted on social media, in particular the 

microblogging site Twitter. Of specific concern for the present study is the intent and 

types of interaction that occur through social media. Therefore, it is necessary to identify 

the origins of social media as it developed as a derivative of the communication 

uniqueness created by the Internet, along with the emerging technology and 

communication reach in regard to Twitter.  

 In particular, the social media activity of colleges, specifically Twitter, is relevant 

to the present study, given the significant outcomes that social media can generate. There 

are several colleges and universities that use social media as a means to interact with their 

public. According to uniRank (2018), an international higher education directory and 

search engine, 48.8% of the colleges and universities in their directories, or 6,415 out of 

13,146, use an official Twitter page to interact with their students, staff, alumni, and 

stakeholders. BestColleges (2018) ranks the top colleges and university that use social 

media: Harvard University with 843,000 Twitter followers and over five million 

Facebook followers, Stanford University with 609,000 Twitter followers and 1.2 million 

Facebook followers, and Yale University with 404,000 Twitter followers and 1.3 million 

Facebook followers. Colleges and universities increasingly see their presence, visibility 

and footprint on the social media as central to their reputation and international standing 

(Corren, Nelson & Weigle, 2017). Social media has provided a ubiquitous 

communication method that is incessant in nature, which captivates our attention and 

provides a voice to all that aspire to express their opinion or commentary. It has changed 
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social behavior and the way individuals interact on a daily basis. Its origin is structured 

on how individuals communicated using technology. Miller, Costa, Haynes, McDonald, 

Nicolescu, Sinanan, Spyer, Venkatraman and Wang (2016) mention that individuals 

communicated using media in two distinct ways 1) using public broadcasting such as 

television, radio and newspapers to reach a broad audience with a message, or 2) dyadic 

communication or communication between two people in the form of a conversation such 

as in a face-to-face interaction using a telephone, or using party line telephony in a group-

based interaction manner. During this time, it was a difficult task for a single individual 

to extend a message to a specific attentive group of individuals, which could effectively 

interact and provide feedback to the original message. The development of the Internet 

and the use of email merged these two methods of communication, allowing individuals 

to broadcast an email or message to small or large groups of people via bulletin boards, 

specialized forums, chat rooms and blogging sites (Miller et al., 2016). Furthermore, the 

development of text messaging and the concept of instant messages being shared by 

groups of people, along with the rise of the smartphone, propelled the possibility of social 

interactions with groups of individuals that shared a common interest in a specific topic.   

 From a global perspective, social media commenced in Korea with the launching 

of the Cyworld platform in 1999. The Cyworld platform required users to establish a 

relation, which implied that they were "socially bound to the principles of reciprocity, 

such as commenting upon each other in a manner that evoked kin relationships" (Miller 

et al., 2016, p. 13). In terms of North America, the first social media platform that 

established similar interactive properties was MySpace, which was founded in 2003. 
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Since then several other popular social media platforms have been conceived, such as 

Facebook (2004), Twitter (2006), Instagram (2010), and Snapchat (2011). 

 Smits and Mogos (2013) define social media in reference to a transitional stage in 

the Internet, in which Internet content went from manager generated to user generated. 

The transitional period was labeled Web 2.0 by Tim O'Reilly in 2001 and refers 

specifically to the Internet activities associated with social media. These activities include 

"an emphasis on collaborative learning as well as on user engagement through 

participation, and one which allows immediate publication and wide distribution of user 

generated content" (Smits & Mogos, 2013, p. 3). The authors also mention the 

importance of the volume of users that interact and communicate within the social media 

platforms, continuously creating and sharing content in a collaborative way. 

 Ruhi (2014) defined social media as "a variety of online channels and platforms 

that facilitate collaborative creation and dissemination of information" (p. 2). The 

objective of social media, according to Ruhi, is to allow individuals to be creative, share 

their experiences, observations, and comments, and interact with other like-minded 

individuals.  These activities are associated to an individual's activity stream and occur 

among established online relationships and their social network of friends, followers and 

fans, which Ruhi labels as "their social graph of connections" (2014, p. 2). 

 Social media is also defined as a medium that allows ordinary individuals, as 

opposed to professional journalists, to create user-generated news. Additionally, it 

encourages and assists public interaction, sharing of information, and collaboration 

(Murthy, 2012). Another element of social media is its ability to disseminate information 

and news. Individuals that use social media "often consume media produced by people 
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they have found of interest, leading to interactions with strangers" (p. 1061). Thus, social 

media interactions lead to an expansion of friends and relationships, beyond the 

personally known networks of people. 

 Therefore, it can be noted that social media is a venue which allows individuals to 

interact in a communal manner, expressing their feelings, thoughts, ideas, comments, 

experiences, and news to friends, acquaintances, and like-minded individuals. The 

interactive nature of social media provides a relational component through direct 

feedback from the message recipients, while facilitating the ability to propagate these 

messages to extended networks of individuals through re-posts and re-tweets. It is 

essential to note that the significance of a social media interaction is not founded on the 

platform utilized to share messages, rather on the content being shared. Miller et al., 

(2016) noted that "it is the content rather than the platform that is significant when it 

comes to why social media matters" (p. 1). It is precisely what is shared or communicated 

in a post or a tweet that generates the activity within a social media network. The post or 

tweet shared is particularly of interest to the current study since the sentiment analysis 

conducted on a Twitter feed for a specific community college can determine if the 

college's audiences are receiving positive or negative messages. Audiences will formulate 

a favorable or unfavorable opinion of these social media interactions, which could have 

an impact on the college's ability to establish effective relationships with its publics.  

 For the purpose of the present study, I consider the social media platform of 

Twitter as a means of communication and interaction. Twitter is a microblogging 

platform that allows users to send and read text-based messages of up to 280 characters. 

These messages or tweets enable individuals to express their opinion about different 
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topics, as well as mark those tweets with character identifiers or descriptors that are either 

hashtags (#) and/or at sign (@) (Grosse et al., 2012). Twitter messages are comprised of 

several descriptors since the platform developed its own markup language used in the 

posting, forwarding, and relationship building aspect of a message (Kwak, 2010). The 

"RT" indicates a retweet, which refers to forwarding or reposting a message; the "#" 

refers to a hashtag, which are added to a tweet and are used to classify and sort tweets 

according to specific topics or categories; the "@" used in conjunction with a user name 

(Ex: @username0), refers to a message being directed specifically as a reply to another 

user; emoticons or emojis, refer to small digital images or icons used to express an idea 

or an emotion; semantic identifiers or colloquial expressions that use informal words, 

phrases, or spellings, including slang words or exaggerated spelled words such as "SMH 

for shaking my head", "TBH for to be honest", "IMO for in my opinion", ":-)", 

"perrrrreeeect", and "lovvvve"; and external web links (Balahur, 2013; Jhavaeri et al., 

2015; Moss, 2013; Zhang et al., 2011). 

 Weller, Bruns, Burgess, Puschmann, and Mahrt, (2014) mention that "Twitter is 

an Internet-based communication technology that allows users to distribute short 

messages (tweets) of 280 characters or fewer on the World Wide Web or through 

smartphone apps" (p. 5). Other features include picture upload and display, and the 

abbreviation of URLs to assist in the 280 character limitation. Of particular importance is 

Twitter's dependency on the social connections, established through shared messages. A 

"sender-audience" relationship is established through the concept of "following" a user or 

subscribing to another individuals Twitter feed, thus their tweets or posted messages will 

appear alongside those of other followed individuals in a reverse-chronological timeline 
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of messages (Weller et al., 2014, p. 5). Unlike other social media platforms which require 

a reciprocal connection when being followed, Twitter users can follow any other user, 

while the user being followed does not need to accept, approve, or follow back the user 

(Kwak, 2010; Lee, Park, & Moon, 2010; Weller et al., 2014). According to Lee, De 

Zuniga, Coleman, and Johnson (2014), Twitter's "simple one-way subscription concept 

enables Twitter to combine the aspects of both social networking and news media within 

a single structure" (p. 793). The feature extends the communication reach of tweets 

beyond the known social networks of a user, expanding on the relationship building 

aspect of Twitter.  

 Alivídrez and Rodríguez (2016) state that Twitter as part of social media is used 

for creating and maintaining interpersonal relationships. Twitter is a communication tool 

that "is used to attract the attention of users, create emotional bonds with followers, and 

mobilize people to undertake concrete actions" (Alivídrez & Rodríguez, 2016, p. 90). 

Additionally, Lee et al., (2014) state that social media is dialogic, expanding ways for 

information-sharing and relationship building practices. The authors contend that the 

information flow within social media is "multidirectional, interconnected, and difficult-

to-predict, with content that is transformed into shared data objects that is freely 

accessible, searchable, and traceable to anyone" (p. 793). These characteristics, along 

with the ability to retweet or forwarding of another users tweets to their own followers 

generates bidirectional relationship building aspects along with the broadcast of the 

message. 

 Of significance is the ability to analyze these messages for opinion and/or 

emotion expressed. Twitter, being the most popular microblogging communication tool, 
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serves as an adequate venue to assess public opinion on a variety of different issues. "As 

the audience of microblogging platforms and services grows every day, data from these 

sources can be used in opinion mining and sentiment analysis tasks" (Grosse et al., 2012, 

p. 2). Zhang et al., (2011) also view Twitter as a popular and rapidly growing 

microblogging platform in which "an increasing number of people are willing to post 

their opinions" (p. 2). Thus, Twitter is considered a valuable online source for measuring 

public opinion in regard to business marketing, social studies, and sentiment analysis. 

Jhavaeri et al., (2015) view Twitter data as a valuable source of information for analysis 

on opinion-related data that can provide productive insight in regard to a company's 

marketing strategies and decision making process. The authors use sentiment analysis as 

a means to capturing individual's collective opinions and attitudes through Twitter's 

publicly accessible application programming interface (API). The Twitter API facilitates 

the data-mining process by "allowing developers to search through Twitters database of 

tweets for specific words or phrases" (Jhavaeri et al., 2015, p. 15). The availability of the 

Twitter API, a searchable database of all tweets, provides an ample setting to gather the 

collective opinions and attitudes expressed by individuals, businesses, and organizations. 

The searchable database characteristic makes Twitter a valuable source of information for 

research across various levels of analytics, particular sentiment analysis, which is the 

focus of the present study. 

Summary 

 The current study consists of several distinct areas of research. An extensive 

literature review was conducted covering the theoretical framework used to evaluate the 

research questions of the present study. The research noted that the Dialogic Loop Theory 
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has been incorporated in several studies attempting to show the two-way communication 

interactions between an organization and its audience, with the intent to foster 

meaningful relationships through microblogging. Furthermore, the quantitative content 

analysis methodology was defined as a systematic process used to evaluate the overall 

attitude of a corpus by labeling and categorizing specific terms within the corpus. As part 

of the content analysis methodology, a sentiment analysis process was identified as a 

process specifically used to evaluate the meaning of a message, if positive or negative in 

regard to the attitude expressed in the microblogging site Twitter. Several studies were 

cited which used a content analysis type of methodology in the research process for a 

Twitter analysis. Within the analysis, it was noted that the studies used data analytic tools 

and software such as Naive Bayes, Support Vector Machines (SVM) and Maximum 

Entropy (MaxEnt) to sort and classify the Twitter data set. Of particular concern for the 

current study is the communication interaction that occurs in social media, specifically 

the microblogging site Twitter. The literature research identified the origins of social 

media and the significance of the emerging technology of the microblogging site Twitter. 

The research revealed the specific components of Twitter and provides several examples 

of studies that consider the communication reach in regard to Twitter, its relevance to 

communication, and the potential relationship building aspects.  

 These areas of research serve as the foundation for the study being conducted, 

which is to conduct a sentiment analysis comparing the Microblog Dialogic 

Communication of a cross-section of urban and rural community colleges within the 

United States.  The study uses data-mining techniques, linguistic analysis, and Dialogic 

Loop Theory to measure the relationship capability of their Twitter messages along with 
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the attitudes expressed through these messages. The process provides a perspective on the 

effectiveness of the college’s Twitter communication. The current study should be of 

great concern for colleges since the messages posted on Twitter create a perception 

among their public and are critical to maintain their student populations engaged in 

college wide activities, attitudes, and values. 
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CHAPTER III. METHODOLOGY 

 The purpose of the present study is to conduct a sentiment analysis on the Twitter 

activity from a cross-section of urban and rural community colleges within the United 

States. The current research uses the Dialogic Loop Theory to analyze the college's 

Twitter activity as a means to establish favorable relationships with its public as 

determined by the positive or negative sentiment of the posted messages. The current 

research uses content analysis of the Twitter activity from the selected community 

colleges.  Berelson (1952) defines content analysis as "a research technique for the 

objective, systematic, and quantitative description of the manifest content of 

communication" (p. 18) with the intention of being able to describe the basic 

characteristics of a particular content. Therefore, a set of procedures can be used to infer 

the sentiment of content or text (Weber, 1985). A content analysis is appropriate for the 

current study since it is suitable for conducting analysis on large quantity of data 

(Kerstetter, 2014). Since Twitter generates large quantities of desirable corpus, a content 

analysis is the most appropriate methodology.  

 The research process employed consists of using a data-mining search routine and 

filter associated with the Twitter API (Application Programming Interface) that allows 

the capture of a copious of the Twitter activity from a cross-section of urban and rural 

community colleges in the United States. These Twitter capabilities captured tweets from 

specific colleges and for a specific time span. Once a collection of raw tweets is 

downloaded and archived, it must be preprocessed to remove any irrelevant text, 

abbreviations, and other Twitter specific annotations. Once the data set of tweets is 

stripped of unnecessary content, the features were extracted and used for the training and 
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classification process using a machine learning approach towards a sentiment classifier. 

A sentiment classifier is trained from unigram and bigram, and other features extracted 

from tweets obtained from a training corpus. Once the sentiment classifier has been 

trained with the training data, the actual college tweets underwent a similar process of 

filtering and feature extraction before passing them through a sentiment classifier that 

categorized each tweet as being positive or negative. The final step in the machine 

learning process uses Naive Bayes as the sentiment classifier. The Naive Bayes Classifier 

computes the probability of each tweet's sentiment using the defined features. The Naive 

Bayes employs supervised learning in which the samples provided (tweets) must be 

tagged or labeled using the class they belong to, such as positive or negative. The tagging 

process requires manually performing this task or using an existing set of tagged tweets, 

such as Sentiment140, which contains over 1.5 million tagged tweets.  

 A significant component of utilizing a machine learning algorithm is the training 

phase, which requires a balanced number of samples associated with positive and 

negative tweets to avoid model over fitting. The model constructed using the Naive 

Bayes algorithm needs to represent a wide-range of positive and negative tweets to avoid 

the model skewing the classification process towards favoring one class over the other. 

Once the results have been obtained associated with the sentiment classification process, 

then statistical analysis is applied to evaluate the significance of the classification 

process. Figure 4 illustrates the general process described, indicating the various stages 

and transitions in building the model and utilizing it for tweet sentiment classification 

applied in the present study. 
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Figure 4. Sentiment Classification Process 

Data Source 

 The microblogging Twitter platform served as the data source for the present 

study.  It consists of the tweet universe from which I obtained the data from to conduct 

the research. The focus is college’s microblogging sentiment and, as such, I selected a 

cross-section of urban and rural community colleges to perform the analysis. The 
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selection of these college consists on colleges that are associated with an active social 

media engagement strategy. According to Kent and Taylor's (1998) Dialogic Loop 

Theory, an organization must invest in having a dedicated well-trained staff to 

continuously interact with its public to engage in relationship building. The colleges 

selected both have an active marketing department that promotes institutional awareness 

and brand management across several media platforms, including their online media 

activity such as Twitter. Specifically, the National Center for Educational Statistics was 

searched along with the web site Campus Explorer, which is a free online service offering 

college rankings and data on over 8,500 US colleges, to obtain a list of the top five 

largest community college's in the Unites States. Three urban area colleges were 

randomly selected from the list. Additionally, the web site College Data was used to 

identify the best small colleges from the United States. A list of rural area colleges was 

extracted, using a 500 to 10,000 student population criteria. Three rural area colleges 

were randomly selected from the list. The Twitter activities associated with these colleges 

were electronically captured using the Twitter API to conduct the sentiment analysis.  

Data Set - Twitter API - Twitter Data Collection 

 The objective of the present study is to analyze the sentiment of tweets associated 

with a cross-section of urban and rural community colleges. Twitter is a microblogging 

social network platform where users share messages with a maximum size of 280 

characters. These short messages or tweets establish an extensive repository of data in 

regard to each Twitter user. For the purpose of the study, it is necessary to data mine the 

tweets associated with these institutions. To perform data-mining on Twitter, an 

automated manner must be developed to efficiently acquire a copious of the tweets 
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associated with these institutions. First, an account was registered in the Twitter website 

to gain access to the Twitter API. Similar to Abdelrazeq et al., (2015), Pak and Paroubek 

(2010),  and Zhang et al., (2011), the Twitter API was used to search and acquire all of 

the tweets associated with a specific identifier (name, id, etc.). For the present study, the 

identifier information for the college's being analyzed was used as the search criteria. 

Additionally, an application program is used to interface with Twitter to extract all of the 

tweets and import the extensive data source to an excel spreadsheet for further analysis. 

These steps are detailed to provide support for future research and extending the present 

work. 

Register Data Extraction Application with Twitter - SpeechBusComm 

 To obtain access to the Twitter API, it is necessary to establish a Twitter account. 

Once the Twitter account was activated, it is required to create an application or app 

called SpeechBusComm that interacts with the Twitter API, covered in section 3.3, Data 

Extraction Application. The initial action is to register the Data Extraction Application by 

accessing the Twitter developer website https://dev.twitter.com/ as in Figure 5 and 

clicking on My App link on the top of the page. A page that allows an application to be 

registered with Twitter is obtained, click the “Create New App” button, which requires 

additional information as shown in Figure 6 to define the application for Twitter. Once 

these steps are completed, Twitter will provide four pieces of information that are 

incorporated into the Data Extraction Application to authenticate the app with Twitter. 

Access to the Twitter API is then obtained where different data operations can be 

performed. Figure 7 shows the information, since this is a live Twitter application, the 

actual codes that authenticate and identify the application to Twitter have been redacted. 



78 

 

The codes are the Consumer Key (API Key), Consumer Secret (API Secret), Access 

Token, and Access Token Secret, which are used in the Data Extraction Application. 

These key value strings must be kept private since they provide the application access to 

Twitter on behalf of the account. The default permissions are read-only. The next step is 

to proceed with the data extraction from Twitter for the focused organizations.  

 Another aspect to consider when extracting data using Twitter API are the rate 

limits imposed by Twitter. Rate limits refers to the Twitter restrictions on the amount of 

Twitter information that can be downloaded using Twitter’s API to prevent downloadable 

data sets (Rate limiting, 2017). For the purpose of the present study, the Twitter data was 

acquired in blocks of 3000 tweets by executing the Data Extraction Application in 

different 15-minute windows. Twitter imposes time limits to download bulk data of 

tweets, before throttling it off at around 3000 tweets. Therefore, data collection for all of 

the tweets associated with the targeted organization were obtained by executing the 

application various times, using a cumulative starting point to augment previously 

acquired tweets with the next 3000 block of tweets until obtaining a copious of tweets for 

each organization. 
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Figure 5. Twitter Developer Website 

 

 

 

Figure 6. Twitter Application Creation 
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Figure 7. Application Customer Key and Token 

 

SpeechBusComm - Data Extraction Application  

 The application implemented uses Twitter’s Representational State Transfer 

(REST) APIs to interact with their service. The application utilizes Tweepy, which is a 

Python library that enables Python code to interact with Twitter. The application is built 

using Python scripting language. Tweepy is an open-sourced library that is hosted on 

GitHub (Tweepy: Twitter for Python, 2018), a repository of developer code, which 

enables Python to communicate with the Twitter platform and use its API. Once Tweepy 

is installed, it is then possible to use the Python program to extract the tweets. The system 

used to execute the python code runs the operating system Ubuntu 16.04. To install 

Tweepy, the following command was executed: sudo apt-get install python-tweepy 

 The application is called tw_csv_dump.py and is written in python. It was written 

with comments to make it readable for future use. For every tweet obtained, there are 

over 250 data items that can be extracted from a status object (Tweet data dictionary, 
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2018), what Twitter calls information returned from a tweet. It consists of information 

like, Geographic location, user ID, source, and many more. The items selected are 

Tweet_ID, Tweet_Created_At, and Tweet_Text and are illustrated in Figure 8, which 

shows a few obtained items from the extracted file. The comma separated fields 

correspond respectively to the previously mentioned items extracted from the Status 

Object. The name of the file will have the corresponding organization or college name, 

for example an organization called Student College will have a file named 

StudentCollege_tweets.csv. 

 

Figure 8. Sample extracted tweets 

 

The program is started as: 

 > python tw_csv_dump.py StudentCollege 

 Since the Twitter API limits the number of tweets extracted to 3000 for a rate 

limiting window every 15 minute, the Tweet ID of the last obtained tweet is used to run 

the application again from the point the application left off to obtain the subsequent 3000 

tweets. The process continues until all the tweets for the organization have been 

extracted. The application would be started in as follows: 

 > python tw_csv_dump.py StudentCollege 895695684149678084   
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 The tweet extraction does not begin at the top of the tweet list or the latest tweet, 

but at the tweet located at 895695684149678084 (the value is not an actual location, but 

the number represents the relative position of other tweets in the tweet chain. The code 

will read tweets in blocks of 200 until 3000 are reached or the end of the tweets are 

reached. Figure 9 illustrates the code for the program. 
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Figure 9. Python Program Code 

 

 

#!/usr/bin/env python 
# encoding: utf-8 
 
import tweepy #https://github.com/tweepy/tweepy 
import csv 
import sys 
 
#Twitter API credentials – need to be filled in from Twitter Application registration page 
#consumer_key = "" 
#consumer_secret = "" 
#access_key = "" 
#access_secret = "" 
 
maxid = '' 
 
def get_all_tweets(screen_name): 
   #Twitter only allows access to a users most recent 3240 tweets with this method 
 
   #authorize twitter, initialize tweepy 
   auth = tweepy.OAuthHandler(consumer_key, consumer_secret) 
   auth.set_access_token(access_key, access_secret) 
   api = tweepy.API(auth) 
  
   #initialize a list to hold all the tweepy Tweets 
   alltweets = []  
   new_tweets = [] 
   outtweets = [] 
  
   #make initial request for most recent tweets (200 is the maximum allowed count) 
   if maxid == '':  
      new_tweets = api.user_timeline(screen_name = screen_name,count=200) 
   else: 
      new_tweets = api.user_timeline(screen_name = screen_name,count=200,max_id=maxid) 
 
   #save most recent tweets 
   alltweets.extend(new_tweets) 
   #save the id of the oldest tweet less one 
   oldest = alltweets[-1].id - 1 
   #keep grabbing tweets until there are no tweets left to grab 
   while len(new_tweets) > 0: 
      print "getting tweets before %s" % (oldest) 
      #all subsiquent requests use the max_id param to prevent duplicates 
      new_tweets = api.user_timeline(screen_name = screen_name,count=200,max_id=oldest) 
      #save most recent tweets 
      alltweets.extend(new_tweets) 
      #update the id of the oldest tweet less one 
      oldest = alltweets[-1].id - 1 
      print "...%s tweets downloaded so far" % (len(alltweets)) 
      #transform the tweepy tweets into a 2D array that will populate the csv  
      outtweets = [[tweet.id_str, tweet.created_at, tweet.text.encode("utf-8")] for tweet in alltweets] 
      #write the csv  
      with open('%s_tweets.csv' % screen_name, 'wb') as f: 
 writer = csv.writer(f) 
 writer.writerow(["id","created_at","text"]) 
 writer.writerows(outtweets) 
 pass 
 
if __name__ == '__main__': 
 #pass in the username of the account you want to download 
   if len(sys.argv) < 2: 
      print 'Must specify a twitter account name' 
   else:  
      if len(sys.argv) > 2 and sys.argv[2] != '': 
         maxid = sys.argv[2] 
      get_all_tweets(sys.argv[1]) 
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SpeechBusComm – Load CSV Files into Excel  

 The previous described process generates several CSV files per organization, if 

the total number of tweets is greater than 3000 tweets. These files are imported into Excel 

and constitute the collective tweets or copious of tweets from each of the college's being 

analyzed for the present study. Once the datum has been imported into an Excel 

spreadsheet format, it is ready for the preprocessing phase of sentiment analysis. Figure 

10 depicts the layout and composition of a few of the tweets loaded into Excel. 

  

Figure 10. Excel Tweet Layout and Composition Sample 

 

Data Preprocessing  

 The next step in the sentiment analysis process is to prepare the obtained corpus 

data for the analysis. The preprocessing phase is essentially a cleaning of the data, 

removing all information that is considered irrelevant to the sentiment of the message. 

The cleaning of the data is one of the most significant components of developing an 

effective analyzer, since it scrubs each tweet to contain the main essence of its meaning, 
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removing superfluous text or symbols, while rendering a set of words. There are several 

components to a Twitter tweet which do not provide any useful information for the 

sentiment analysis process and thus must be removed or extracted from the data. Some of 

these components are:  

 Retweets which are messages that have been reposted or forwarded on Twitter are 

removed from the data set. These messages are prefixed with a \RT acronym and 

create data redundancy.  

 Twitter tags that serve as replies or mentions do not provide any value to the 

sentiment analysis and therefore are removed. These are typically tagged with the 

prefix of an ampersand sign (@) followed by a username, such as "@username1", 

and serve to identify the target of the message. 

 Hashtag (#) markup language such as "#BeHappy" is used to identify keywords, 

topics, and organize tweets according to specific categories within Twitter. 

Hashtags are an essential part of the Twitter language, allowing tweets to be 

searchable. These tags possibly contain valuable information for the sentiment 

analysis, thus the prefix # symbol is removed from the tweets, leaving only the 

word. 

 Web links in the form of an active URL such as "http://a.co/fDeawsB", are 

commonly used to redirect the Twitter user to an external URL source and other 

general links to images, blogs or documents are removed from the data set.  

 Repeated letters that exceed two similar letters are filtered out of the tweets. Due 

to Twitters character limitations, users often over emphasize words by repeating 

letters such as "Happyyyyy". The two letter constraint replaces the exaggerated 
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word spelling with a more accurate spelling "Happyy" while allowing for word 

spellings that have repeated letters such as the word "cool". 

 Punctuations and other miscellaneous data such as exclamation marks (!), 

question marks (?), numbers (123), quotes (""), semicolons (;), colons (:), commas 

(,) and other unique symbols are not considered applicable for the sentiment 

analysis and are removed from all tweet data. 

 Emoticons are often sources of abbreviated symbols used to represent an emotion 

on Twitter. User often express a happy feeling with a smiley emoticon such as :-), 

;-), :), or ;) and express unhappy feelings with a sad emoticon such as :-( or :(. 

These emoticons serve as a user sentiment representation thus the specific symbol 

combinations replaced by a word interpretation of the symbol combination of 

"happy" and "unhappy" respectively.  

 Word abbreviations such as "bc" representing the word "because" and acronyms 

like "lol" meaning laughing-out-loud, are both popular forms of expression on 

Twitter are not considered relevant to the sentiment analysis and are removed 

from all tweets data. 

 Stop-words are commonly used words such as "the", "and", "or", "while", etc. that 

are used as conjunctions in sentences. These words do not contribute to the 

sentiment of the tweet and are removed from the data. A python program is used 

to extract the stop-words using a stop-words corpus obtained from the Natural 

Language Tool Kit (NLTK, http://www.nltk.org/) at the URL location 

https://pythonspot.com/nltk-stop-words/. Some stop-words were removed from 

the 153 stop-words corpus since they represented an important part in identifying 
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negative sentiment, such as "nor", "not", and "neither". These words were not 

removed from the tweet data. 

 Stemming refers to the process of reducing inflected or derived words to its word 

stem or root form. For example the words "talking, talker, and talked" are 

converted to the root word "talk".  Stemming increases the probability of the word 

since all derived iterations of a specific word point to the same root form word. 

The NLTK package for stemming used for this task was the LancasterStemmer 

(or PorterStemmer).  

 

 A clean data set is obtained once all tweets have been purged of inconsistencies 

and irrelevant information. A clean data set improves the quality of the data allowing for 

further analysis. 

Feature Extraction  

 A very significant component in the construction of a machine learning classifier 

is the selection of features that serve as the input to the classifier algorithm. The goal of 

the feature selection phase was to establish a set of features that are the most effective 

during the classification process. The properties extracted from tweets serve as the source 

for feature selection, i.e., the words composing a tweet, the size of a tweet, hashtags, 

lexicons, emoticons, etc. These features are the input for the classifier. The different 

feature selection approaches can be associated to the manner in which the tweet sentences 

are analyzed to correlate them to the tweet sentiment (positive or negative). For example, 

the words composing a tweet can be viewed as a Bag-Of-Words, if they are used as 

single words, then they are considered as unigram, if they are combined as double-words, 
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then they are referred to as bigrams or trigrams as three combined words (Go et al., 

2009). In addition, other features consist of part-of-speech tags and lexicons (Kouloumpis 

et. al, 2011) and hashtags and emoticons (Davidov et al., 2010). The significance of using 

n-grams, where n=1, compared to n ≥ 2 is that it can cover a greater range of different 

tweet text applied to different areas. These unigrams can be used in different situations to 

capture more general sentiment. Unigrams lack the ability to capture sentiment 

expression patterns as is possible with n-grams, where n ≥ 2, such that as n becomes 

greater, more specific sentiment is achievable (Abdelrazeq et al., 2015). The motivation 

to use a specific n-gram is linked to research that has shown that n ≥ 2 can capture 

domain specific sentiment as intended in the current study that focuses on the college 

domain. From the literature, unigrams have shown effective outcomes in sentiment 

classification of specific domains, i.e. movie reviews (Pang & Lee, 2008) and bigrams 

and trigrams have been effective in product review polarity classification (Dave et al., 

2003).  

 The approaches adopted consist of a combination of both of these schemes as 

tweet features, since the unigrams’ coverage of the data and the bigrams’ ability to 

capture the sentiment expression patterns have demonstrated the most effective outcome 

(Pak & Paroubek, 2010). According to published results, using part-of-speech reduces the 

performance of the sentiment classifier (Go et al., 2009) while converting emoticons to 

their text sentiment leads to better classification (Kouloumpis et al., 2011). Therefore, the 

features used to build the sentiment classifier consisted of both unigram and bigrams, 

encompassing the emoticon converted into text. 
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Sentiment Classifier 

 The literature yielded various alternatives to using Twitter sentiment classifiers as 

a means to perform an automated analysis. These approaches have primarily deployed 

supervised classifiers, which require a training dataset that consist of the tagged or 

labeled tweets. The three most popular or common classifiers used from the machine 

learning field consist of Naïve Bayes, Support Vector Machines and Maximum Entropy. 

Among these classifiers, Naïve Bayes has more often demonstrated better performance 

when applied to a broader class of domains (Go et al., 2009).  As such, I used the Naïve 

Bayes classifier as it is a proven method used for text classification. It is a probabilistic 

classifier applying Bayes’ theorem which makes the assumption that its features are 

conditionally independent of each other when computing the classification probability.  

The algorithm computes the probability of having a tweet with the sentiment, either 

positive or negative, if it contains a specific feature. It is calculated according to the 

probability of the feature’s existence in all tweets, and the probability of finding the 

feature in the tweets that belongs to that specific sentiment. 

Training Data 

 The classifier is only as effective as the training data utilized. It is necessary to 

expose the algorithm to a broad set of manually tagged or labeled tweets so that the 

classifier can learn what feature values are most probabilistically associated with the 

sentiment classes of positive and negative.  As such, I adopted a training dataset which 

has been previously tagged and is sufficiently large to train the classifier and sufficiently 

robust to handle the quantity of tweets from the domain of college tweets. In addition, I 

must be careful of over fitting the classifier, where the training data, if not balanced, 
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could skew the classifier to one class over the other, generating low accuracy.  Therefore, 

I used the training dataset Sentiment140 (Sentiment140, 2018) which consists of over 1.5 

million tweets that have been manually tagged to positive or negative.  From the 

Sentiment140 dataset, I extracted the positive and negative sentiment samples of equal 

proportions, referred to as the basic dataset. From the basic dataset, two datasets are 

extracted, one for training and the other for classifier validation, known respectively as 

the training dataset and the testing dataset.  

 To perform classifier validation, a 10-fold cross validation was employed to 

evaluate the effectiveness of the Naïve Bayes classifier. For a 10-fold cross validation, 

the basic dataset is divided into 10 equal parts of tweets, nine of the parts are selected as 

the training dataset and one of the parts is the testing dataset (Refaeilzadeh, 2009). The 

results obtained are recorded, which indicate the performance of the classifier for that one 

test. Then, another training dataset is created which selects a different nine parts of the 

basic dataset and another one part is used for testing. The process is conducted 10 times, 

each time selecting a previously not used part for testing and the remaining nine parts 

become the training dataset. The final results are the average of the 10 classifier 

evaluation results. Thus, 10-folds means 90% of full data is used for training (and 10% 

for testing) in each fold or part test. The process is a compromise motivated by the fact 

that 90% is a large portion of the basic dataset which should produce good results as it is 

close to 100% of the basic dataset. The use of other fold sizes, for example 5, would lead 

to less data being used to train the model, 80% and a fold of 20 would increase the 

percentage of the training dataset, but would require far more computation resources as I 

would have to compute the performance 20 times. Therefore, a common technique that is 
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adopted for the current study is to perform 10-fold cross validation to evaluate the 

effectiveness of the classifier since it uses a higher percentage for training. The results 

after each iteration in the 10-fold cross validation is a confusion matrix that quantifies 

false-positive and true-negative thus misclassified data, which would indicate the number 

of positive tweets and negative tweets incorrectly classified. These were utilized in 

evaluating the classifier performance.   

Statistical Analysis 

 Once the results were obtained from the sentiment classification process, 

statistical tests were conducted to evaluate the significance of the classification process. 

The Twitter data was obtained through the use of a software acquisition process. These 

data were subsequently coded using a machine learning process that applied a data source 

of 1.5 million tweets which had previously been analyzed for sentiment. Three separate 

data analysis classifiers were then used to code the data using the sentiment. The coding 

identified tweets as positive sentiment tweets or negative sentiment tweets for each of the 

three urban colleges and three rural colleges. Further data analytics included retweets, 

likes, and the various social media components on the inclusion of URLs, at signs (@), 

and hashtags (#), within the tweet population.  

The independent variable considered for the current study was the college type, 

which was categorized as either urban or rural, and the dependent variable was the 

sentiment type, or positive sentiment and negative sentiment, obtained from the tweet 

population. Subsequently, statistical tests were run to see if the tweet sentiment were 

associated with the urban or rural colleges. The quantitative data were entered into SPSS 

and analyzed for findings (Morgan et al, 2007). Descriptive statistics, frequencies and 
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cross tabulations were used for comparing counts and percentages, and Pearson’s chi-

square test and Phi were used for testing the hypotheses. The p level was set at .05 which 

is the standard significance level.  
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CHAPTER IV: RESULTS 

Participants 

 The participants for the Twitter analysis in the current research were selected 

from two separate lists. The first list presented large colleges located in urban areas in the 

United States. The list was obtained from the National Center for Educational Statistics 

and a college ranking online web site called Campus Explorer. The second list presented 

small colleges located in rural areas in the United States. The second list was obtained 

from a college search and admission assistance web site called College Data. From these 

two lists, three urban area and three rural area colleges were selected.  

 The urban colleges were labeled U1, U2, and U3, and the rural colleges were 

labeled R1, R2, and R3, respectively. As seen in Table 2 below, the student enrollment 

for the urban colleges averaged 82,848 enrolled students for a given academic year, with 

U1 having 85,759 students enrolled for the 2016-17 academic year, U2 having 89,130 

students for the Fall 2018 academic year, and U3 having 51,190 student enrollment for 

the 2017-18 academic year. The rural colleges considered for the current research had an 

average student enrollment of 3,493, with R1 having 2,042 enrolled students for the 

2016-17 academic year, R2 having 6,571 enrolled students for the 2018 academic year, 

and R3 having 1,828 student enrollment for the 2018-19 academic year. 
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Table 2 

Student Enrollment Totals by Gender 

SOURCE:  

https://www.mdc.edu/ir/Fact%20Book/FB_Credit_Student_Enrollment_Profile.pdf 

http://www.lonestar.edu/about-us-institutional-research.htm 

http://www.lonestar.edu/images/OD%20FA18%20Enrollment%20Report.pdf 

https://www.nvcc.edu/oir/_files/factbooks2013-2018.pdf 

https://provost.williams.edu/files/williams_cds_1617.pdf 

https://www.dartmouth.edu/~oir/data-reporting/factbook/enrollment.html 

https://www.bowdoin.edu/ir/pdf/common-data-set-2018-19.pdf 

 

 The gender demographic of the urban schools were predominantly composed of 

female students, with U1 consisting of 57.4% female and 42.5% male, U2 consisting of 

60.5% female and 39.4% male, and U3 consisting of 51.5% female and 48.5% male. The 

results were in sharp contrast to the rural schools which were predominantly composed of 

male students. The rural school demographic consisted of R1 with 51.5% male and 

48.5% female, R2 with 51.3% male and 48.7% female, and R3 with a narrow exception 

of 50.6% female and 49.4% male (See Table 2).  

 One of the key components considered by the current research was in the area of 

the ethnic composition between the urban and rural colleges. It was anticipated that 

ethnic differences existed between the student bodies of urban colleges when compared 

to rural colleges. As was predicted, most of the participants from the U1-college were 

Hispanic, Table 3. According to the Credit Student Enrollment Profile generated by the 

 Male % Female % Unreported % Total Enrolment 

U1 36,484 42.5 49,191 57.4 84 0.1 85,759 

U2 35,150 39.4 53,980 60.5 - - 89,130 

U3 24,807 48.5 26,383 51.5 - - 51,190 

R1 1,051 51.5 991 48.5 - - 2,042 

R2 3,385 51.5 3,186 48.5 - - 6,571 

R3 903 49.4 925 50.6 - - 1,828 
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U1-college, 72.1% of the student population was Hispanic, 16.4% Black Non-Hispanic, 

6.6% White Non-Hispanic, 1.2% Asian, and 3.7% other or unreported (U1 Fact Book, 

2018). The ethnic analysis of U2 for Fall 2018 also registered a majority of Hispanic 

students, with 40.2% being Hispanic, 30.8% White Non-Hispanic, 14.8% Black Non-

Hispanic, 7.7% Asian/Pacific Islander, and 6.5% other or unreported (U2 Fast Facts, 

2018). The ethnic analysis for the U3-college was different with 37.6% students being 

White Non-Hispanic, 23.2% Hispanic, 16.5% Asian, 15.9% Black Non-Hispanic, and 

6.8% other or unreported (U3 Fact Book, 2017). 

Table 3 

Ethnic Demographic on Urban Colleges 

 

Regarding the ethnic composition of rural colleges, a majority of White Non-

Hispanic student population was expected. As foreseen, the three rural colleges registered 

high in the percentage of White Non-Hispanic. Table 4. Student enrollment for the R1-

college was 53.2% White Non-Hispanic, 12.2% Hispanic, 7.3% Black Non-Hispanic, 

12.7% Asian, and 14.6% other or unreported (R1 Common Data Set, 2018). The ethnic 

analysis of R2 also registered a majority of White students, with 51.3% being White Non-

Hispanic, 9.6% Hispanic, 6.2% Black Non-Hispanic, 20.4% Asian, and 12.5% other or 

unreported (R2 Fact Book, Fall 2018). The ethnic analysis for the R3-college was 60.6% 

  U1 U2 U3 

  # % # % # % 

White Non-Hispanic 5,620 6.6% 27,465 30.8% 19,272 37.6% 

Hispanic 61,872 72.1% 35,875 40.2% 11,855 23.2% 

Black Non-Hispanic 14,068 16.4% 13,152 14.8% 8,150 15.9% 

Asian 1,010 1.2% 6,872 7.7% 8,422 16.5% 

Other 643 0.7% 5,766 6.5% 2,633 5.1% 

Unreported 2,546 3.0% 0 0.0% 858 1.7% 

  85,759 100.00% 89,130 100.0% 51,190 100.0% 
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White Non-Hispanic, 10.2% Hispanic, 8.4% Black Non-Hispanic, 7.4% Asian, and 

13.4% other or unreported (R3 Common Data Set, 2018). 

Table 4 

Ethnic Demographic on Rural Colleges 

 

Data Set Analysis 

 As previously mentioned, the objective of the study was to conduct a sentiment 

analysis on the Twitter activity of three urban and three rural community colleges. Once 

the colleges were selected, the acquisition of tweets posted on Twitter from these colleges 

microblogging activity was performed. The Twitter API provided access to the data set of 

tweets associated with a specific entity or Twitter user, for the present study the 

community colleges being analyzed were used, and thus was searched to acquire the 

tweets (Abdelrazeq et al., 2015; Pak and Paroubek, 2010; and Zhang et al., 2011). The 

data set of tweets was saved to a local file and yielded the following results: 

Table 5 

Raw Tweet Acquisition Values 

 

  R1 R2 R3 

  # % # % # % 

White Non-Hispanic 1,104 53.2% 3,371 51.3% 1,109 60.6% 

Hispanic 253 12.2% 631 9.6% 189 10.2% 

Black Non-Hispanic 153 7.3% 408 6.2% 147 8.4% 

Asian 264 12.7% 1,342 20.4% 137 7.4% 

Other 302 14.6% 381 5.8% 234 12.8% 

Unreported 0 0.0% 438 6.7% 12 0.6% 

  2,076 100.0% 6,571 100.0% 1,828 100.0% 

 

College Date Range Activity Duration in 

Months 

Average 

Monthly Tweets 

# of 

Tweets Start           End 

U1 2/24/2016 6/5/2018 28 114.2 3200 

U2 8/8/2013 6/5/2018 58 55.2 3204 

U3 9/4/2015 6/5/2018 33 98.2 3242 

R1 10/8/2014 6/5/2018 44 73 3213 

R2 2/1/2016 6/5/2018 28 115.3 3230 

R3 9/5/2017 6/5/2018 9 359.8 3238 

Total    3221 19327 
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 As noted in Table 5, the total quantity of tweets obtained from the six colleges 

was 19,327 tweets with an average number 3,221 tweets among the three urban and three 

rural colleges. The quantity of tweets acquired was mostly consistent among the colleges, 

although the Twitter activity or time span of tweets posted by the colleges for a similar 

quantity of tweets significantly varied for both the urban and rural colleges. Tweet 

acquisition for urban college U1 was at 3,200 tweets during a time span of 28 months or 

approximately 114.2 tweets per month, U2-college resulted in 3204 tweets during a 58-

month period or approximately 55.2 tweets per month, and U3-college had 3,242 tweets 

during a 33-month period or approximately 98.2 tweets per month. U1-college registered 

the most activity, while U2-college had significantly less Twitter activity than the other 

two urban colleges. 

 Regarding the rural colleges, R1-college had 3,213 tweets during a 44-month 

period or approximately 73 tweets per month, R2-college had 3,230 tweets during a 28 

month period or 115.3 tweets per month, and R3-college had 3,238 tweets during a 9 

month period or approximately 359.8 tweets per month. R3-college had an overwhelming 

activity of tweets given the acquired monthly quantities when compared to all the other 

urban and rural colleges, while both R1 and R2-colleges had comparable tweet activity 

with R2 having slightly more tweet activity. 

Model Building Process 

To conduct a sentiment analysis on the Twitter corpus obtained from the three 

urban and three rural community colleges, it was first necessary to build or prepare a 

sentiment analysis model or classifier. A preprocessing step was performed on the 

training dataset, which refers to the Sentiment140 (2018) data source of 1.5 million 
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tweets that have previously been analyzed for sentiment. Preprocessing is the phase of 

cleaning up the corpus from unnecessary symbols, characters, hashtags, links, repeated 

letters, punctuations, emoticons, word abbreviations, stop-words, stemming, and 

retweets. Once the training dataset was prepared for analysis, the dataset was converted 

into a bag-of-words that was used to build three separate sentiment analysis models. The 

three classifier models generated were unigram, bigram and combogram. The unigram 

classifier is the partitioning of the training dataset into single word sentiments. The 

bigram classifier is the partitioning of the training dataset into double-words or two-word 

phrases. Finally, the combogram classifier is a cohort of the unigram and bigram 

classifiers.  

A critical aspect of the process in establishing these three classifier models was 

the validation step, since it is necessary to validate that the model functions as it is 

intended in analyzing the sentiment of the corpus. The validation was accomplished by 

conducting a 10-fold cross validation on the models.  The 10-fold cross validation 

process partitions the training data into ten different unique parts, and then cycles a 

comparison to verify how each part performs in evaluating the sentiment of all other 

parts. The outcome of the validation step is the average of the ten classified evaluation 

parts.  

 The results after each iteration produces a confusion matrix, which is a table that 

describes the performance of a classification model, used predominantly in the field of 

machine learning to visually evaluate the performance of an algorithm (Visa et al., 2011; 

Fawcett, 2006). The confusion matrix indicates the number of positive tweets and 

negative tweets incorrectly classified with a percentage indicating the overall sentiment 
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prediction accuracy. The percentage or test's accuracy is known as the F1-Score (also F-

score or F-measure). A good F1-Score means that you have low false positives and low 

false negatives (Sasaki, 2007). An F1-Score of 1.0 is considered perfect accuracy or 

100% accuracy. The higher the F1-Score, the better accuracy that the classifier model 

possesses in evaluating the sentiment of a corpus. Table 6 shows the Confusion Matrix 

Accuracy chart. 

Table 6 

Confusion Matrix Accuracy Chart 

 

A confusion matrix with an F1-Score was obtained for each of the classifier 

models being validated. The unigram model demonstrated a 0.76 F1-Score, the bigram 

model had a 0.73 F1-Score, and the combogram model demonstrated the highest 

accuracy with a 0.78 F1-Score, as is observed in Table 7. 

 Predicted Class 

 

Actual  

Class 

 P N 

P True Positives (TP) False Positives (FN) 

N False Positives (FP) True Negatives (TN) 
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Table 7 

Data Confusion Matrix 

 
 

All three classifier models demonstrated a high accuracy rate after the 10-fold 

cross validation step was concluded. Since model validation was obtained, the next step 

was to proceed with the preprocessing and feature extraction to the actual corpus 

obtained from all the urban and rural colleges. Each individual tweet from the corpus was 

then processed through each of the three classifier models: the unigram, bigram, and 

combogram classifiers.  

The classifier models output a tweet sentiment analysis of positive or negative for 

each tweet from the corpus. The first analysis conducted was for the unigram classifier 

and the results generated for each of the three urban and the three rural schools. The same 

 Unigram Model Average F1-Score 

 P N  

P 607244 187964 0.76 

N 197023 597262  

    

 Bigram Model  

 P N  

P 594452 200756 0.73 

N 222672 571613  

    

 Combogram Model  

 P N 0.78 

P 627263 167945  

N 187137 607148  
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analysis was then done using the bigram classifier. Finally, the process was repeated one 

last time using the combogram classifier.  

Unigram Classifier 

Table 8 below highlights the sentiment analysis obtained from applying the 

unigram classifier to the corpus of tweet data for both the urban colleges and rural 

colleges. 

The total quantity of acquired tweets for U1 was 3,200 tweets. The tweet corpus 

was preprocessed, resulting in 3,157 tweets that were applied to the sentiment analysis 

using the unigram classifier. The sentiment analysis obtained for the U1 tweet corpus 

resulted in 2,343 positive tweets and 814 negative tweets. There were 43 other tweets that 

were discarded for lack of contextual data. For the U2 tweet corpus, which consisted of 

3,204 acquired tweets, there were 2,173 positive tweets compared to 954 negative tweets 

out of the 3,127 tweets after the preprocessing phase. A total of 77 other tweets were 

discarded for lack of contextual data. The U3 tweet corpus, which consisted of 3,242 

acquired tweets. There was a total of 3,141 tweets after the preprocessing phase, which 

resulted in 2,190 positive tweets and 951 negative tweets, with 101 other discarded 

tweets for lack of contextual data.  

A review of the data indicates that urban colleges generated significantly higher 

quantities of positive sentiment tweets in comparison to the negative sentiment tweets. 

The outcome was consistent with the concept of relationship-building activities of the 

Dialogic Loop Theory (Kent & Taylor, 1998). 

The same unigram classifier was executed on the rural colleges. The R1 tweet 

corpus, which consisted of 3,213 acquired tweets, yielded a sentiment analysis of 2,636 
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positive tweets and 539 negative tweets from the total 3,175 tweets after the 

preprocessing phase. There was a total of 38 tweets that were discarded for lack of 

contextual data. The R2 tweet corpus, which consisted of 3,230 acquired tweets, resulted 

in 2,595 positive tweets and 566 negative tweets, with 69 other discarded tweets for lack 

of contextual data out of a total 3,161 tweets after the preprocessing phase.  The R3 tweet 

corpus consisted of 3,238 acquired tweets. There was a total of 3,224 tweets after the 

preprocessing phase, which produced 2,681 positive tweets and 543 negative tweets, with 

14 other discarded tweets for lack of contextual data.  

The data analysis indicates that rural colleges also generated significantly higher 

quantities of positive sentiment tweets in comparison to the negative sentiment tweets. 

Rural colleges also outperformed urban colleges in outputting appropriate levels of 

sentiment in their microblogging. Rural colleges demonstrated higher positive sentiment 

tweets and lower negative sentiment tweets than the urban colleges. Therefore, rural 

colleges’ microblogging activities are consistent with Kent and Taylor's (1998) Dialogic 

Loop Theory for establishing relationship-building opportunities. 

Table 8 

Unigram Sentiment Classifier Data 

 

Figure 11 visually presents the sentiment analysis results obtained from the 

unigram classifier for both the urban and rural colleges. The bar chart clearly presents the 

  Positive % Negative % Total Processed 

Tweets 

Acquired 

Tweets 

U1 2343 74.22 814 25.78 3157 3200 

U2 2173 69.49 954 30.51 3127 3204 

U3 2190 69.72 951 30.28 3141 3242 

R1 2636 83.02 539 16.98 3175 3213 

R2 2595 82.09 566 17.91 3161 3230 

R3 2681 83.16 543 16.84 3224 3238 
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high positive sentiment tweet output by both urban and rural colleges, and also highlights 

the tweet output differences in regard to positive and negative tweets between the two 

college types. 

 

Figure 11. Sentiment Analysis per College Unigram 

 

Bigram Classifier 

The bigram classifier was subsequently executed on the college corpus for both 

the urban and rural colleges. Table 9 presents the sentiment analysis results obtained 

using the bigram classifier on all the college tweet corpus.  

The sentiment analysis results of the bigram classifier for the U1 tweet corpus, 

which consisted of 3,200 acquired tweets, resulted in 2,345 positive tweets and 812 

negative tweets, with 43 other discarded tweets for lack of contextual data. The total 

tweets analyzed was 3,157 after the preprocessing phase. There were 3,204 acquired 

tweets for the U2 tweet corpus with 3,127 tweets after the preprocessing phase. The 
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bigram classifier yielded 1,744 positive tweets compared to 1,383 negative tweets with 

77 other discarded tweets for lack of contextual data. The U3 tweet corpus, which 

consisted of 3,242 acquired tweets, resulted in 1,784 positive tweets with 1,357 negative 

tweets out of a total 3,141 tweets after the preprocessing phase. There was also 101 other 

tweets that were discarded for lack of contextual data.  

The sentiment analysis data for the urban colleges using the bigram classifier 

demonstrated a consistent pattern regarding positive sentiment and negative sentiment 

tweets for urban college U1 when compared to the unigram classifier results. Although, 

the bigram classifier yielded significantly lower positive sentiment tweets and significant 

higher negative sentiment tweets for the U2 and U3-colleges when compared to the 

unigram classifier results. 

The bigram classifier results for the rural colleges, yielded a sentiment analysis 

for the R1 tweet corpus, which consisted of 3,213 acquired tweets, of 1,935 positive 

tweets and 1,240 negative tweets from the total 3,175 tweets after the preprocessing 

phase, with 38 other discarded tweets for lack of contextual data. The R2 tweet corpus, 

which consisted of 3,230 acquired tweets, resulted in 1,908 positive tweets and 1,253 

negative tweets out of a total 3,161 tweets after the preprocessing phase, with 69 other 

discarded tweets for lack of contextual data. The R3 tweet corpus, which consisted of 

3,238 acquired tweets, produced 2,026 positive tweets with 1,198 negative tweets out of a 

total 3,224 tweets after the preprocessing phase, with 14 other discarded tweets for lack 

of contextual data.  

The sentiment analysis outcome using the bigram classifier for the rural colleges 

resulted in significantly lower positive sentiment and significantly higher negative 



105 

 

sentiment tweets for all the rural colleges when compared to the unigram classifier 

results. 

Table 9 

Bigram Sentiment Classifier Data 

 

The sentiment analysis data for each urban and rural college is presented in Figure 

12. The bar chart presents a balanced outcome comparison for the sentiment of all 

colleges with comparable high positive sentiment and high negative sentiment tweet 

output by both urban and rural colleges. 

 

Figure 12. Sentiment Analysis per College Bigram 

 

 Positive % Negative % Total Processed 

Tweets 

Acquired 

Tweets 

U1 2345 74.28 812 25.72 3157 3200 

U2 1744 55.77 1383 44.23 3127 3204 

U3 1784 56.80 1357 43.20 3141 3242 

R1 1935 60.94 1240 39.06 3175 3213 

R2 1908 60.36 1253 39.64 3161 3230 

R3 2026 62.84 1198 37.16 3224 3238 
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Combogram Classifier 

The final step in the sentiment classification process was to run the combogram, 

which is the union of both the unigram and bigram, against the college corpus. The 

results of the urban and rural college sentiment analysis using the combogram classifier is 

presented in Table 10.  

The sentiment analysis results for the U1 tweet corpus, which consisted of 3,200 

acquired tweets, was 2,188 positive tweets and 969 negative tweets out of a total 3,157 

tweets after the preprocessing phase, with 43 other discarded tweets for lack of contextual 

data. The U2 tweet corpus, which consisted of 3,204 acquired tweets, yielded 2,142 

positive tweets compared to 985 negative tweets out of the 3,127 tweets after the 

preprocessing phase, with 77 other discarded tweets for lack of contextual data. The U3 

tweet corpus, which consisted of 3,242 acquired tweets, resulted in 2,213 positive tweets 

with 928 negative tweets out of a total 3,141 tweets after the preprocessing phase, with 

101 other discarded tweets for lack of contextual data.  

The sentiment analysis outcome using combogram classifier for the urban 

colleges resulted in similar results to the sentiment analysis outcome using the unigram 

classifier. With the combogram classifier analysis, the urban colleges generated 

significantly higher quantities of positive sentiment tweets in comparison to the negative 

sentiment tweets. 

The results for the rural colleges from the combogram classifier generated a 

sentiment analysis for the R1 tweet corpus. There were 3,213 acquired tweets, with a 

total of 3,175 tweets after the preprocessing phase. The sentiment analysis resulted in 

2,605 positive tweets and 570 negative tweets, with 38 other discarded tweets for lack of 
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contextual data. The R2 tweet corpus, which consisted of 3,230 acquired tweets, resulted 

in 2,569 positive tweets and 592 negative tweets out of a total 3,161 tweets after the 

preprocessing phase, with 69 other discarded tweets for lack of contextual data. The R3 

tweet corpus, which consisted of 3,238 acquired tweets, produced 2,610 positive tweets 

with 614 negative tweets out of a total 3,224 tweets after the preprocessing phase, with 

14 other discarded tweets for lack of contextual data.  

The combogram classifier yielded similar sentiment analysis outcome for all the 

rural colleges compared to the sentiment analysis outcome using the unigram classifier. 

With the combogram classifier analysis, the rural colleges generated slightly lower 

quantities of positive sentiment tweets and slightly higher negative sentiment tweets in 

comparison to the unigram classifier results. Regardless, the rural colleges generated 

significantly higher quantities of positive sentiment tweets in comparison to the negative 

sentiment tweets. 

Table 10 

Combogram Sentiment Classifier Data 

 

The bar chart in Figure 13 demonstrates the sentiment analysis results obtained 

from the combogram classifier for both the urban and rural colleges. The bar chart 

presents the high positive sentiment tweet and lower negative sentiment tweet output by 

both urban and rural colleges. It should be noted that the chart clearly identifies the 

  Positive % Negative % Total Processed 

Tweets 

Acquired 

Tweets 

U1 2188 69.31 969 30.69 3157 3200 

U2 2142 68.50 985 31.50 3127 3204 

U3 2213 70.46 928 29.54 3141 3242 

R1 2605 82.05 570 17.95 3175 3213 

R2 2569 81.27 592 18.73 3161 3230 

R3 2610 80.96 614 19.04 3224 3238 
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differences between the two college types in regard to the positive sentiment and negative 

sentiment tweet output. 

 

Figure 13. Sentiment Analysis per College Combogram 

 

When considering the sentiment analysis output for the three classifiers: the 

unigram, bigram, and combogram, it is noted that the unigram classifier and the 

combogram classifier performed with similar sentiment analysis results across all the 

urban and rural colleges, with higher values for positive sentiment tweets compared to the 

negative sentiment tweets. It is also apparent that the two-word classifier or bigram 

generated a proportional sentiment analysis output across all the urban and rural colleges, 

with comparable sentiment analysis output for both the positive and negative tweets. 

Table 11 highlights the aforementioned differences among the different classifiers with 

the sentiment analysis output for each urban and rural college. 
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Table 11 

Sentiment Analysis Results by Classifier 

 

Table 12 presents a percentage breakdown of each classifier for the sentiment 

analysis of the college corpus. When only considering the unigram classifier between the 

three urban and three rural colleges, it is noted that the rural colleges consistently had 

significant higher positive sentiment tweets, ranking in the low 80s percentile and 

significant lower negative sentiment tweets that ranked in the tens percentile. The urban 

colleges positive sentiment tweets ranked in the high 60s and low 70s percentile while the 

negative sentiment tweets ranked in the mid-20s and low 30s percentile. 

When considering the bigram classifier, the sentiment analysis among all the 

urban and rural colleges were somewhat consistent in regard to both the positive 

sentiment tweets and the negative sentiment tweets. The U2 and U3-colleges ranked in 

the high 50s percentile, with U1-college ranking in the mid-70s percentile for positive 

sentiment tweets. Regarding negative sentiment tweet ranking, U2 and U3-colleges 

ranked in the mid-40s percentile while U1-college ranked in the mid-20s percentile.  

The rural colleges ranked in the low 60s percentile for positive sentiment tweets, 

with negative sentiment tweets ranking in the high 30s percentile. Although, the rural 

colleges did rank slightly higher in positive sentiment tweets than the urban colleges, 

with the sole exception of urban college U1, which registered a very high percentage of 

 

 Unigram Classifier Bigram Classifier Combogram Classifier 

Positive Negative Total Positive Negative Total Positive Negative Total 

U1 2343 814 3157 2345 812 3157 2188 969 3157 

U2 2173 954 3127 1744 1383 3127 2142 985 3127 

U3 2190 951 3141 1784 1357 3141 2213 928 3141 

R1 2636 539 3175 1935 1240 3175 2605 570 3175 

R2 2595 566 3161 1908 1253 3161 2569 592 3161 

R3 2681 543 3224 2026 1198 3224 2610 614 3224 
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positive sentiment tweets and a much lower negative sentiment tweets than all the other 

urban and rural colleges. 

The combogram classifier produced the most consistent results among all the 

colleges in regard to the positive sentiment tweets and the negative sentiment tweets. All 

the rural colleges ranked in the 80s percentile for positive sentiment tweets while 

registering a negative sentiment tweet in the tens percentile. The urban colleges ranked in 

the high 60s and low 70s percentile for positive sentiment tweets, with negative sentiment 

tweets ranking in the high 20s and low 30s percentile. Similar to the other two classifiers, 

the combogram classifier also registered the rural colleges with a higher positive 

sentiment tweets and lower negative sentiment tweets than all the urban colleges.  

Table 12 

Sentiment Analysis Percentage Results by Classifier 

 

 Another important factor regarding the sentiment analysis of the college corpus 

was to analyze the various Twitter components of tweets. The analysis of the Twitter 

components pertained to research questions 4 and 5. These components refer to the 

retweets, likes, URL (Uniform Resource Locator) links, at signs (@), and hashtags (#) 

used within the tweets. The components are specifically significant for the adoption of 

the relationship building aspect of the Microblog Dialogic Communication framework. 

  

  

Unigram Classifier   Bigram Classifier   Combogram Classifier 

% of 

Positive 

% of 

Negative 

% of 

Positive 

% of 

Negative 

% of 

Positive 

% of 

Negative 

U1 74.22 25.78 74.28 25.72 69.31 30.69 

U2 69.49 30.51 55.77 44.23 68.50 31.50 

U3 69.72 30.28 56.80 43.20 70.46 29.54 

R1 83.02 16.98 60.94 39.06 82.05 17.95 

R2 82.09 17.91 60.36 39.64 81.27 18.73 

R3 83.16 16.84 62.84 37.16 80.96 19.04 
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 The aggregate of each component is listed in Table 13 which contains the 

quantities for each college, while Table 14 provides a percentage analysis of these 

quantities. It is necessary to note that the amounts listed for the Total Count reflects the 

collective quantity of tweets for both the positive sentiment tweets and negative 

sentiment tweets obtained after the preprocessing phase. The tweets for two of the urban 

colleges, U1 and U2, received 4.51 and 5.88 retweets per tweet respectively, while rural 

college R2 was retweeted at 22,142 and received 7.00 retweets per tweet, which was the 

highest retweet frequency over all other colleges. It can be observed that overall, the 

urban colleges obtained higher retweet frequencies when compared to the rural colleges. 

With regard to the “likes” component, two of the rural colleges obtained high quantities 

of “likes” with R2 excelling over all other colleges with 41,154 “likes” or having 13.02 

“likes” per tweet. Only urban college U1 received a high quantity of “likes” with 17,044 

“likes” or 5.40 “likes” per tweet. The rural colleges received higher frequencies of “likes” 

in comparison to the urban colleges when looking at the data as a whole.  

Table 13 

Total Tweet Social Media Components 

 

 

Total 

Count Total Retweets 

Total  

Likes 

Total  

URLs 

Total  

At Signs (@) 

Total 

 Hashtags (#) 

U1 3157 14239 17044 3221 3333 1906 

U2 3127 18391 8970 2862 3925 2523 

U3 3141 9037 5198 2628 2255 2600 

R1 3175 7877 10719 2633 3115 1764 

R2 3161 22142 41154 2763 4072 1730 

R3 3224 7911 8305 2476 3128 1777 
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Table 14 

Total Social Media Component Frequencies 

 

 With regard to the URLs, @ signs, and hashtags used, all of which are critical 

components for relationship building according to the Microblog Dialogic 

Communication framework, all the urban colleges and rural colleges incorporated these 

components in a large portion of their tweet activities for the test group assessed. The 

tweet frequency of use that incorporated URLs was relatively high for all urban and rural 

colleges, with U1 registering the highest at 1.02 URLs per tweet, followed by U2 with 

.92 URLs per tweet. The highest ranking rural college with URL frequency was R2 with 

.87 URLs per tweet.  

 The @ sign use also registered very high for tweets for all urban and rural 

colleges by almost registering an @ sign frequency use of 1.00 per tweet, with the 

exception of U3 which only had .72 @ signs per tweet. The highest registering college 

with @ signs in their tweets was R2, which had 1.29 @ signs per tweet, followed by U2 

and U1 with 1.26 and 1.06 @ signs per tweet respectively.  

 With regard to hashtags in tweets, all the rural colleges registered a frequency use 

in the range of .50 hashtags per tweet. In other words, only one hashtag for every two 

tweets, which was significantly lower than the urban colleges, with U1 registering the 

  Count 

Retweets 

Frequency 

Likes 

Frequency 

Urls 

Frequency 

At Signs (@) 

Frequency 

Hashtags (#) 

Frequency 

U1 3157 4.51 5.40 1.02 1.06 0.60 

U2 3127 5.88 2.87 0.92 1.26 0.81 

U3 3141 2.88 1.65 0.84 0.72 0.83 

R1 3175 2.48 3.38 0.83 0.98 0.56 

R2 3161 7.00 13.02 0.87 1.29 0.55 

R3 3224 2.45 2.58 0.77 0.97 0.55 
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lowest frequency use of hashtags of .60 hashtag per tweet, U2 with .81 hashtags per 

tweet, and U3 with the highest hashtag frequency of .83 hashtags per tweet. 

 Overall, all the urban and rural colleges incorporated most of the social media 

components of URLs, @ signs, and hashtags within their tweets with rural college R2 

registering the highest use of @ signs in their tweets with a quantity of 4,072 or 

frequency of use of 1.29 @ signs per tweet, while also registering the lowest hashtag use 

among all the colleges with a quantity of 1,730 or .55 hashtags per tweet. The use of the 

social media components was proportional among all the urban and rural colleges, with 

minor outlier exceptions. 

Another significant aspect to consider was obtained by factoring in the sentiment 

analysis as part of the tweet component analysis. In Table 15, the retweet component is 

evaluated on the basis of the sentiment where the retweet occurred using the unigram 

classifier. Therefore, when considering urban college U1, it can be noted that the 2,343 

positive sentiment tweets received 10,249 retweets or they were retweeted 4.37 times per 

tweet compared to the 814 negative sentiment tweets that were retweeted 3,903 times or 

4.79 times per tweet.  The majority of urban and rural colleges obtained a proportional 

frequency count of positive sentiment tweets that were retweeted in the 2.00 range of 

retweets per tweet. The exceptions were urban college U1 as previously noted, and rural 

college R2, which registered the highest positive sentiment tweets that were retweeted 

with 17,671 retweets or a frequency of 6.81 retweets per tweet.  
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Table 15 

Percentage of Tweet Social Media Components for Unigram Classifier 

 

Regarding the negative sentiment tweets that were retweeted, urban colleges U2 

and U3 obtained significantly high negative sentiment tweets at 954 and 951 respectively, 

with urban college U2 receiving the highest quantity of retweets at 12,446 or a frequency 

count of 13.05 retweets per tweet, followed by U3 with 4,207 retweets or 4.42 retweets 

per tweet. Urban college U1 had a high quantity of negative sentiment tweets at 814 with 

a moderate quantity of retweets at 3,903, but at a higher frequency count of 4.79 retweets 

per tweet than urban college U3 values. Rural college R2 registered a quantity of 

negative sentiment tweets of 566, which was comparable to the quantities registered for 

R1 and R3 at 539 and 543 respectively, but with a significantly higher quantity and 

frequency count of negative sentiment retweets with 4015 or 7.09 retweets per tweet. The 

other two rural colleges, R1 and R3, both registering low quantities and frequency counts 

of negative sentiment tweets that were retweeted in the 2.00 range of retweets per tweet. 

Table 16 presents the retweet component on the basis of the sentiment where the 

retweet occurred using the bigram classifier. The results for the positive sentiment tweets 

that received a retweet were similar to the unigram classifier outcomes with urban college 

U1 and rural college R2 receiving the highest quantity of retweets at 7,816 or a frequency 

count of 4.29 retweet per tweet and 11,641 or 6.10 retweet per tweet, respectively. All the 

  Unigram 

  Positive Negative 

  Count Retweets Frequency Count Count Retweets Frequency Count 

U1 2343 10249 4.37 814 3903 4.79 

U2 2173 5798 2.67 954 12446 13.05 

U3 2190 4763 2.17 951 4207 4.42 

R1 2636 6544 2.48 539 1273 2.36 

R2 2595 17671 6.81 566 4015 7.09 

R3 2681 6768 2.52 543 1116 2.06 
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other urban and rural colleges registered a proportional frequency count of positive 

sentiment tweets that were retweeted in the 2.00 range of retweets per tweet. 

Table 16 

Percentage of Tweet Social Media Components for Bigram Classifier 

 

Regarding the negative sentiment tweets that were retweeted, both the urban and 

rural colleges had consistent negative sentiment tweets ranging from 1,198 to 1,383. 

Although urban college U2 and rural college R2 obtained significantly high negative 

sentiment retweets with a quantity of 13,076 retweets with a frequency count of 9.46 

retweets per tweet and 10,045 retweets with a frequency count of 8.02 retweets per tweet, 

respectively.  Urban college U1 also registered a high level of negative sentiment 

retweets with 6,336 or 4.74 retweets per tweet, while the other urban college U3 and rural 

colleges R1 and R3 ranged at a quantity of negative sentiment retweets at 3,866, 3,281, 

and 2,724 respectively, all registering with a frequency count in the 2.00 range of 

retweets per tweet. 

Table 17 presents the retweet component on the basis of the sentiment where the 

retweet occurred using the combogram classifier. The positive sentiment tweets for all 

urban and rural colleges were similar in the quantity count, ranging between 2,142 and 

2,610. The results for the positive sentiment tweets that received a retweet were 

significantly higher for urban college U1 with 9,326 or a frequency count of 3.98 

  Bigram 

  Positive Negative 

  Count Retweets Frequency Count Count Retweets Frequency Count 

U1 1821 7816 4.29 1336 6336 4.74 

U2 1744 5158 2.96 1383 13086 9.46 

U3 1784 5104 2.86 1357 3866 2.85 

R1 1935 4536 2.34 1240 3281 2.65 

R2 1908 11641 6.10 1253 10045 8.02 

R3 2026 5160 2.55 1198 2724 2.27 
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retweets per tweet and rural college R2 with 17,345 or a frequency count of 6.75 retweets 

per tweet. The other urban and rural colleges were similar in retweet count and all 

registered a frequency count in the 2.00 range of retweets per tweet.  

Table 17 

Percentage of Tweet Social Media Components for Combogram Classifier 

 

With regard to the negative sentiment tweets, the three urban colleges registered 

high tweet counts with U1 at 812, U2 at 985, and U3 at 925, while the rural colleges 

obtained lower negative sentiment tweets of R1 at 570, R2 at 592, and R3 at 614. Urban 

college U2 obtained the highest level of negative sentiment retweets with 12,355 with a 

frequency count of 12.54 retweets per tweet, followed by U1 with 4,826 retweets or 5.94 

retweets per tweet, and U3 with 4,223 retweets or 4.55 retweets per tweet. The highest 

negative sentiment retweets for the rural colleges was R2 with 4,341 retweets with a 

frequency count of 7.33 retweets per tweet, while the other two rural colleges registered 

much lower retweets with R1 at 1,554 and R3 at 1,282 and a negative sentiment retweet 

frequency count ranging in the 2.00 retweets per tweet.  

 The final aspect considered for the present research, specific to the Microblog 

Dialogic Communication framework, are the social media components for followers, 

friends, and favorites. Table 18 presents the aggregate of each of these components. Most 

all the colleges registered a high follower count, with U1 being the highest for the urban 

  Combogram 

  Positive Negative 

  Count Retweets Frequency Count Count Retweets Frequency Count 

U1 2345 9326 3.98 812 4826 5.94 

U2 2142 5889 2.75 985 12355 12.54 

U3 2213 4747 2.15 928 4223 4.55 

R1 2605 6263 2.40 570 1554 2.73 

R2 2569 17345 6.75 592 4341 7.33 

R3 2610 6602 2.53 614 1282 2.09 
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colleges at 19,437 followers, U2 with 12,140, and U3 with the lowest count of all the 

colleges at 6,851. The rural colleges all ranked higher than the urban colleges. Rural 

college R2 had a significant higher follower count than all other colleges with 60,125, 

while R1 had 15,850 and R3 with 13,035 followers. There was a significant disparity in 

regard to the “friends” component with all urban colleges registering extremely low 

counts with U1 at 163, U2 at 306, and U3 at 543 friends, when compared to the rural 

colleges which all ranked at higher levels with R1 at 2,478, R2 at 2,538, and R3 at 2,168 

friends. The favorites or like component yielded contrasting results among all the 

colleges. The urban colleges ranged from a significantly low 1,699 for urban college U2 

to a very high 10,375 for urban college U1, while U3 had 3,075 favorites. Rural college 

R1 ranked at 2,563, R2 at 7,959, and R3 with the highest quantity than all other colleges 

at 16,689 favorites.   

Table 18 

Total Twitter Social Media Interaction 

 

 The aforementioned data analysis values are all derived from the three different 

sentiment classifiers, which are labeled unigram, bigram, and combogram. When 

considering the sentiment analysis values obtained from these three sentiment classifiers, 

it should be noted that the combogram provided the most consistent results. Although, the 

unigram and bigram both outputted reliable values regarding the positive and negative 

sentiment for the microbloging activity of all the urban and rural colleges. It is noted that 

  Followers Friends Favorites 

U1 19437 163 10375 

U2 12140 306 1699 

U3 6851 543 3075 

R1 15850 2478 2563 

R2 60125 2538 7959 

R3 13035 2168 16689 
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the combogram classifier, which utilizes a combination method that analyzes the data 

with both the unigram and bigram arrangement of words, generated equilibrial values 

considered more reliable and consistent. Thus, the subsequent research analysis is based 

solely on the sentiment analysis values obtained from the combogram classifier. 

 Research Analysis 

 In regard to the research questions for the present study, the sentiment analysis 

data was used to gather a greater understanding of the urban and rural colleges’ ability to 

establish dialogic communication with its public for relationship building purposes. A 

key component is garnished by obtaining the microblog activity sentiment, whether 

positive or negative. The data analysis from the current research was used specifically to 

comprehend the following research questions:  

1. What is the microblogging sentiment of an urban college that interacts with a 

diverse ethnic student population?  

2. What is the microblogging sentiment of a rural college that interacts with a 

homogeneous student population?  

3. How does the microblogging activity of urban colleges differ from rural colleges 

with regard to their microblogging sentiment?” 

4. How does the microblogging activities of a college instigate positive outcomes 

with regard to the sentiment of retweets and comments?  

5. How well does the Microblog Dialogic Communication framework explain 

differences that exist on relationship building capabilities in the Twitter activity 

between urban colleges and rural colleges? 
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Results for Research Question # 1 

The first research question was “What is the microblogging sentiment of an urban college 

that interacts with a diverse ethnic student population?”  

The gender data analysis of the urban college's student enrollment as seen in 

Table 19, revealed that the urban colleges had an average student population of 75,359, 

which consisted of 43.47% male and 56.47% female.  

Table 19 

Urban Colleges Student Enrollment Totals/Averages by Gender 

 
The ethnic composition of the urban colleges was predicted to consist of a diverse 

cultural population, which was demonstrated through the ethnic demographic data in 

Table 20. The student demographic data consisted of a large Hispanic population at 

45.2%, Black Non-Hispanic at 15.7%, White Non-Hispanic at 25.0% and Asian at 8.5%. 

Table 20 

Student Demographic Data by Urban College 

 

 

 

  Male % Female % Unreported % Total 

Enrolment 

U1 36,484 42.5 49,191 57.4 84 0.1 85,759 

U2 35,150 39.4 53,980 60.5 0 0 89,130 

U3 24,807 48.5 26,383 51.5 0 0 51,190 

        Average 32,147 43.47 43,185 56.47 84 0.10 75,360 

 

  U1 U2 U3 Average 

  # % # % # % # % 

White Non-Hispanic 5,620 6.6% 27,465 30.8% 19,272 37.6% 52,357 25.0% 

Hispanic 61,872 72.1% 35,875 40.2% 11,855 23.2% 109,602 45.2% 

Black Non-Hispanic 14,068 16.4% 13,152 14.8% 8,150 15.9% 35,370 15.7% 

Asian 1,010 1.2% 6,872 7.7% 8,422 16.5% 16,304 8.5% 

Other 643 0.7% 5,766 6.5% 2,633 5.1% 9,042 4.1% 

Unreported 2,546 3.0% 0 0.0% 858 1.7% 3,404 1.6% 

Total 85,759 100% 89,130 100% 51,190 100% 226,079 100% 
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Figure 14 presents the demographic population for all the urban colleges. The bar 

chart clearly presents the overwhelming levels of Hispanic students for both U1 and U2-

colleges, along with the other represented demographic levels. 

 
Figure 14. Demographic Data by Urban College 

 

 

 With regard to the microblogging sentiment of urban colleges, a total of 9,425 

tweets were analyzed with 69.42% being of positive sentiment and 30.58% of negative 

sentiment. According to Table 21, the urban colleges registered on average 2,181 positive 

sentiment tweets with 961 negative sentiment tweets. The fact that urban colleges consist 

of a diverse ethnic student population could make it harder to structure microblogging 

messages that are widely accepted or are perceived as positive by a majority of students. 
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The diverse ethnic student population could be the cause for the higher negative 

sentiment tweets that urban colleges demonstrated. In other words, the microblogging 

sentiment of an urban college that interacts with a diverse ethnic student population was 

only 38.84% more positive than negative. 

Table 21 

Urban Colleges Combogram Classifier Tweet Sentiment Totals/Averages 

 
 

Results for Research Question # 2 

 The second research question was “What is the microblogging sentiment of a 

rural college that interacts with a homogeneous student population?”  

 When considering the rural colleges, Table 22, the data analysis revealed that the 

average student population was 3,480, which consisted of 50.80% male and 49.20% 

female.  

Table 22 

Rural Colleges Student Enrollment Totals/Averages by Gender 

 
As predicted, the rural colleges’ ethnic composition was much more 

homogeneous than the urban colleges. As seen in Table 23, there was a majority of White 

  Positive % Negative % Total 

U1 2188 69.31 969 30.69 3157 

U2 2142 68.50 985 31.50 3127 

U3 2213 70.46 928 29.54 3141 

Totals 6543 

 

2882 

 

9425 

% 69.42 

 

30.58 

  Average 2181   961   3142 

 

  Male % Female % Unreported % Total 

Enrolment 

R1 1,051 51.5 991 48.5 0 0 2,042 

R2 3,385 51.5 3,186 48.5 0 0 6,571 

R3 903 49.4 925 50.6 0 0 1,828 

Average 1,780 50.80 1,701 49.20 0 0.00 3,480 
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Non-Hispanic at 55.0%. Other ethnic demographic representations for rural colleges 

included Asian at 13.5%, Hispanic at 10.7%, Black Non-Hispanic at 7.3%, and Other 

ethnicity at 11.1% student populations.  

Table 23 

Student Demographic Data by Rural College 

 

Figure 15 presents the demographic population for all the rural colleges. The bar 

chart clearly presents the overwhelming levels of White Non-Hispanic students for all 

three colleges, along with the other represented demographic levels. 

 

 
Figure 15. Demographic Data by Rural College 

  R1 R2 R3 Average 

  # % # % # % # % 

White Non-Hispanic 1,104 53.2% 3,371 51.3% 1,109 60.6% 5,584 55.0% 

Hispanic 253 12.2% 631 9.6% 189 10.2% 1,073 10.7% 

Black Non-Hispanic 153 7.3% 408 6.2% 147 8.4% 708 7.3% 

Asian 264 12.7% 1,342 20.4% 137 7.4% 1,743 13.5% 

Other 302 14.6% 381 5.8% 234 12.8% 917 11.1% 

Unreported 0 0.0% 438 6.7% 12 0.6% 450 2.4% 

Total 2,076 100.0% 6,571 100.0% 1,828 100.0% 10,475 100.0% 
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With regard to the microblogging sentiment of rural colleges, a total of 9,560 

tweets were analyzed with 81.42% being of positive sentiment and 18.58% of negative 

sentiment. As is noted in Table 24, the rural colleges registered on average 2,595 positive 

sentiment tweets with 592 negative sentiment tweets. Therefore, rural colleges, on 

average, tweeted a significant portion of positive tweets, 81.42%, when compared to 

negative tweets, which was only 18.58%. A possibility for the high percentage of positive 

tweets could be attributed to the homogenous student population that rural colleges 

interact with when microblogging. As a result of the singularity of the student 

demographic, it's feasible that it is easier to structure microblogging messages that are 

better received by the student population, due to minimal ethnic diversity. In other words, 

the microblogging sentiment of a rural college that interacts with a homogeneous ethnic 

student population was 62.84% more positive compared to negative.  

Table 24 

Rural Colleges Combogram Classifier Tweet Sentiment Totals/Averages 

 

Results for Research Question #3 

The third research question was “How does the microblogging activity of urban colleges 

differ from rural colleges with regard to their microblogging sentiment?”  

 The underlining premise for the research conducted in the current study is that the 

sentiment of urban colleges will differ from the sentiment of rural colleges, given the 

  Positive % Negative % Total 

R1 2605 82.05 570 17.95 3175 

R2 2569 81.27 592 18.73 3161 

R3 2610 80.96 614 19.04 3224 

Totals 7784 

 

1776 

 

9560 

% 81.42 

 

18.58 

  Average 2595   592   3187 
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complexity of the multi-cultural aspects and the size of urban colleges. As is noted in 

Table 25, the quantity of tweets analyzed for all urban colleges and all rural colleges was 

analogous with the aggregate of urban college tweets at 9,425 and the aggregate of rural 

colleges at 9,560. The data analysis revealed that on average the rural colleges generated 

higher positive sentiment tweets than the urban colleges. With regard to negative 

sentiment tweets, the rural colleges generated lower negative sentiment tweets than the 

urban colleges.  

 Specifically, the rural colleges averaged 2,595 or 81.42% positive sentiment 

tweets, while the urban colleges averaged 2,181 or 69.42% positive sentiment tweets. 

With respect to the negative sentiment tweets, the rural colleges averaged 592 or 18.58% 

negative sentiment tweets and the urban colleges averaged 961 or 30.58% negative 

sentiment tweets. In other words, the microblogging sentiment of a rural college had 

11.9% more positive tweets than urban colleges. Also, when comparing the difference 

between the positive and negative tweets, rural colleges had 63.84% more positive than 

negative tweets compared to urban colleges, which had 39.84% more positive than 

negative tweets. The comparison demonstrates that rural colleges tended to have higher 

positive tweets compared to negative tweets.  

Table 25 

Urban and Rural College Combogram Classifier Average Sentiment Analysis 

 

  

Total 

Tweets 

Average 

Positive 

Sentiment 

Tweets % 

Average 

Negative 

Sentiment 

Tweets % 

Urban 9425 2181 69.42 961 30.58 

Rural 9560 2595 81.42 592 18.58 
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 A Pearson's Chi-Square analysis was conducted on the college type and the tweet 

sentiment variables. As noted in Table 26, the urban colleges underperformed in regard to 

generating positive sentiment tweets as determined by the chi square expected count, 

while the rural colleges over performed in regard to the positive sentiment tweets. When 

considering the negative sentiment tweets, the urban colleges over performed as 

determined by the chi square expected count, while the rural colleges underperformed in 

negative sentiment tweet category.  

Table 26 

Sentiment Type and College Type Variables Cross Tabulation 

Pearson Chi-Square=365.176, p < .000 (statistically significant) 

 

 Pearson's Chi-Square Test resulted in 365.176 and a statistically significant p 

value of .000 between the college type (urban or rural) and the tweet sentiment (positive 

or negative). Rural colleges tended to have higher positive sentiment tweets compared to 

urban colleges, which tended to have lower positive sentiment tweets. Additionally, rural 

colleges also tended to have lower negative sentiment tweets compared to urban colleges 

that tended to have higher negative sentiment tweets.  

 It is possible that the colleges’ student demographics has a direct association with 

the tweet sentiment generated by the urban or rural colleges. The elevated positive 

 

College Type 

Total  Urban % Rural % 

 Sentiment Positive Count 6528 69.5% 7784 81.4% 14312 75.5% 

Expected  7093 

 

7218 

 

14312 

  

      Negative Count 2867 30.5% 1776 18.6% 4643 24.5% 

Expected  2301 

 

2341 

 

4643 

  

      Total Count 9395 100.0% 9560 100.0% 18955 100.0% 

Expected  9395 

 

9560 

 

18955 
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sentiment tweets of rural colleges may be attributed to a more homogenous student 

population, since the tweets target a larger like-minded student population. The opposite 

is also true for urban colleges, which experienced higher negative sentiment tweets, given 

that urban colleges consist of a diverse student population, which require more inclusive 

style tweets. The results set the groundwork for further research to ascertain if urban 

colleges require more inclusive style tweets. 

In other words, most of the rural colleges have a propensity to tweet more positive 

and less negative sentiment tweets than most of the urban colleges. Below is Figure 16, 

which illustrates the differences that exist between the urban colleges and the rural 

colleges in regard to the positive sentiment and negative sentiment tweets in comparison 

to the expected sentiment tweet counts. 

 
Figure 16. Comparison of Urban vs Rural Tweet Sentiment 

 

 The chart clearly presents the tweet sentiment output differences between the two 

college types. Urban colleges underperformed in regard to the positive sentiment tweets 

while outperformed in regard to the negative sentiment tweets with respect to the 
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expected values. The outcome represents unfavorable microblogging activity for urban 

colleges since the positive sentiment tweets were lower than expected while the negative 

sentiment tweets were higher than expected. Contrary to the urban colleges, rural colleges 

outperformed in regard to the positive sentiment tweets while underperformed in regard 

to the negative sentiment tweets with respect to the expected values. The results 

represents a favorable microblogging activity for rural colleges since the positive 

sentiment tweets were higher than expected while the negative sentiment tweets were 

lower than expected. 

Results for Research Question #4 

The fourth research question was “How does the microblogging activities of a college 

instigate positive outcomes with regard to the sentiment of retweets and comments?”  

 Relationship-building is enacted by dialogic practices through positive interactions 

with an organizations’ public. Within the Twitter capacity, the dialogic aspects are 

identified by the number of retweets, comments, or any form of feedback or interaction 

that is obtained when a tweet is posted. The data analysis revealed that rural colleges 

significantly outperformed the urban colleges. Rural colleges, on average, had higher 

positive sentiment retweets and considerably lower negative sentiment retweets than the 

urban colleges.  

 Specifically, as noted in Table 27, urban colleges tweeted 9,425, of which 6,700 

were ranked as positive sentiment tweets. These positive sentiment tweets received 19,962 

retweets, thus each positive tweet obtained 2.98 retweets. On average, the urban colleges 

tweeted 2,223 positive tweets, which received 6,654 retweets or each tweet received 2.96 

retweets. With regard to negative sentiment tweets, urban colleges had 2,725 tweets that 
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were ranked as negative sentiment. These negative sentiment tweets obtained 21,404 

retweets, thus each negative tweet was retweeted 7.85 times. Overall, the urban colleges 

tweeted 908 negative sentiment tweets, which received 7,135 retweets or each tweet 

received 7.68 retweets.  

Table 27 

Urban Retweet Count 

 

 Table 28 contains details on the rural colleges, which had approximately a similar 

tweet total, with 9,560 tweets, and slightly higher positive sentiment tweet total, with 

7,784 positive sentiment tweets, when compared to the urban colleges. But contrary to 

the urban colleges, the positive sentiment tweets for rural colleges received much higher 

retweets with 30,210 retweets, thus each positive tweet was retweeted 3.88 times. On 

average, the rural colleges tweeted 2,595 positive tweets, which received 10,070 retweets 

or each tweet received 3.90 retweets. The rural colleges had 1,776 negative sentiment 

tweets which obtained 7,177 retweets, thus each negative tweet was retweeted 4.04 times. 

The quantity of negative sentiment tweets that were retweeted for rural colleges was 

much lower than those for urban colleges. Overall, the rural colleges tweeted 592 

negative sentiment tweets, which received 2,392 retweets or each tweet received 4.05 

retweets.  

College 

Type 

Tweet Sentiment and Retweet Count 

Positive Negative 

  

Tweet 

Count Retweets 

Retweet 

Frequency 

Tweet 

Count Retweets 

Retweet 

Frequency 

U1 2345 9326 3.98 812 4826 5.94 

U2 2142 5889 2.75 985 12355 12.54 

U3 2213 4747 2.15 928 4223 4.55 

Totals 6700 19962 2.98 2725 21404 7.85 

Average 2233 6654 2.96 908 7135 7.68 
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Table 28 

Rural Retweet Count 

 

 A Pearson's Chi-Square Test, Table 29, was conducted on the college type (urban 

or rural) and the retweet count sentiment (positive or negative). The test yielded a 

statistical significance between the college type and the tweet sentiments that received 

retweets. The retweet analysis was similar to the tweet sentiment analysis results, with 

rural colleges tending to have higher retweets for the positive sentiment tweets compared 

to urban colleges, which had significantly lower retweets of positive sentiment tweets. 

Even more significant were the analysis for the retweets on the negative sentiment tweets, 

in which rural colleges had considerably lower retweets of negative sentiment tweets than 

the urban colleges that experienced dramatically high retweets of negative sentiment 

tweets.  

College 

Type 

Tweet Sentiment and Retweet Count 

Positive Negative 

  

Tweet 

Count Retweets 

Retweet 

Frequency 

Tweet 

Count Retweets 

Retweet 

Frequency 

R1 2605 6263 2.40 570 1554 2.73 

R2 2569 17345 6.75 592 4341 7.33 

R3 2610 6602 2.53 614 1282 2.09 

Totals 7784 30210 3.88 1776 7177 4.04 

Average 2595 10070 3.90 592 2392 4.05 
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Table 29 

Retweet Count Sentiment and College Type Variables Cross Tabulation 

Pearson Chi-Square=8997.049, p < .000 (statistically significant) 

 

 These outcomes can be attributed to the differences in school size from urban and 

rural colleges. Given that the urban colleges analyzed for the current study had extensive 

student populations when compared to the rural colleges, the tweet composition for the 

urban colleges may consider a cultural diversity component that requires a more inclusive 

type message that is appealing to a broader ethnic student population. Tweets that are less 

inclusive may generate more negative attention from the student population, which in 

turn might garnish an increase level of retweets. The rural colleges target a more 

homogenous student demographic that allows the colleges the opportunity to structure 

their tweets with less inclusive requirements and which are specific to the majority of 

their student population. Furthermore, the college size and location also influence student 

following and participation. It is likely that smaller rural colleges are located in less 

populace areas which have fewer distractions for students, thus the tweets generated by 

rural colleges have a greater influence and garnish greater attention than those by urban 

colleges, which most likely are situated in large cities which have a multitude of events, 

  

CollegeType 

Total 

  

Urban % Rural %   

Retweet Positive Count 19962 48.3% 30210 80.8% 50172 63.7% 

Expected 

Count 
26354 

 

23819 

 

50172 

  

      Negative Count 21404 51.7% 7177 19.2% 28581 36.3% 

Expected 

Count 
15013 

 

13569 

 

28581 

  

      Total Count 41366 100.0% 37387 100.0% 78753 100.0% 

Expected 

Count 
41366 

  
37387 

  
78753 

  

 



131 

 

activities, and other student distractions. Further research could be conducted on the 

aforementioned tweet styles to obtain a better understanding on the urban and rural 

student tweet appeal and retweet trend. 

In other words, most of the rural colleges have a propensity to retweet more 

positive and less negative sentiment tweets than most of the urban colleges. Below is 

Figure 17, which illustrates these differences:  

 
 

Figure 17. Comparison of Urban vs Rural Retweet Sentiment 

 

 The chart presents a comparison of the retweets for positive sentiment tweets and 

negative sentiment tweets between the two college types. The results for the retweet 

counts using sentiment were similar to the tweet sentiment analysis outcomes for both 

college types. Urban colleges underperformed in regard to retweets for positive sentiment 

tweets while outperformed in regard to retweets for negative sentiment tweets with 

respect to the expected values. The outcome means that less people retweeted the positive 

sentiment tweets while more people retweeted the negative sentiment tweets. The results 
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for urban college retweets represent an unfavorable microblogging activity since the 

positive sentiment retweets were lower than expected for positive sentiment tweets while 

higher than expected for the negative sentiment tweets. In direct contrast to the urban 

colleges, rural colleges outperformed in regard to retweets for the positive sentiment 

tweets while underperformed in regard to retweets for the negative sentiment tweets with 

respect to the expected values. The rural college results signify that more people 

retweeted the positive sentiment tweets while less people retweeted the negative 

sentiment tweets. The results indicate a favorable microblogging activity for rural 

colleges since the retweets for the positive sentiment tweets were higher than expected 

while lower than expected for the negative sentiment tweets. 

Results for Research Question # 5 

The fifth research questions was “How well does the Microblog Dialogic Communication 

framework explain differences that exist on relationship building capabilities in the 

Twitter activity between urban colleges and rural colleges?" 

 To maximize the relationship-building capabilities of Twitter, social media 

communication needs to include specific components detailed in the Microblog Dialogic 

Communication framework. As such, the current study considers the elements of social 

media communication for the urban and rural colleges. The data analysis used for the 

Microblog Dialogic Communication framework assessment did not apply any classifier, 

rather the raw data was considered to accurately assess the colleges’ performance.  

  According to Table 30, the analysis revealed that all colleges incorporated the 

necessary social media communication elements that include URL links, at signs (@), 

and hashtags (#) used within the tweets. Specifically, the urban colleges registered 9,425 
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tweets which contained 8,711 URL links, 9,513 "at signs" (@), and 7,029 hashtags (#). 

These tweets obtained a total of 41,667 retweets and 31,212 “likes”. The urban colleges 

had a total of 38,428 followers with 1,012 friends. The rural colleges registered 9,560 

tweets which contained 7,872 URL links, 10,315 "at signs" (@), and 5,271 hashtags (#). 

These tweets obtained a total of 37,930 retweets and 60,178 “likes”. The rural colleges 

had a total of 89,010 followers with 7,184 friends. 

Table 30 

Aggregate Social Media Components by College Type 

 

 Considering the Microblog Dialogic Communication framework, urban colleges 

had higher use of social media communication elements than the rural colleges with 

higher use of URL links and hashtags. It is important to note that hashtags are used 

specifically to categorize or draw attention to a specific topic or theme. The urban 

colleges also had a higher retweet count than rural colleges despite having significantly 

less followers and friends. In contrast, rural colleges used slightly higher "at signs" (@), 

which are used to tag other Twitter account users and specifically notify them of the 

tweet. Rural colleges obtained a significant higher quantity of “likes” than the urban 

colleges and had significantly higher followers and friends.  

Likes Component 

 As noted in Table 31, descriptive statistics obtained from the colleges use of 

social media components revealed that rural colleges had a significant higher “likes” 

frequency count than urban colleges. When considering the colleges separately, the 

  Count Retweets Likes URLS @ # Followers Friends Favorites 

Urban 9425 41667 31212 8711 9513 7029 38428 1012 15149 

          Rural  9560 37930 60178 7872 10315 5271 89010 7184 27211 
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majority of the rural colleges experienced higher “likes” than the urban colleges, with R2 

obtaining a significant frequency count above all the colleges.  

Table 31 

Frequency Totals for Component: Likes by College Type 

Note: Aggregate Percent = Aggregate Frequency / Total Urban & Rural Aggregate Frequency times 100  

 Figure 18 illustrates the aggregate levels using the “likes” social media 

component, while Figure 19 illustrates the frequency count of the “likes” social media 

component by individual college. 

 
 

Figure 18. Comparison of Social Media Likes by Aggregate College Types 

College Type Frequency Percent 

Aggregate  

Frequency 

Aggregate    

Percent 

Urban 1 17044 54.6 

  Urban 2 8970 28.7 

  Urban 3 5198 16.7 

   Total 

  

31212 34.2 

     Rural 1 10719 17.8 

  Rural 2 41154 68.4 

  Rural 3 8305 13.8 

   Total     60178 65.8 

     

Total Urban & Rural   91390 100 
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 Figure 18 chart demonstrates that the aggregate of urban colleges obtain a 

considerable quantity of “likes” compared to the aggregate of rural colleges, which 

obtained a significantly higher quantity of “likes”. 

 

 
 

Figure 19. Comparison of Social Media Likes by College 

 

 When considering the colleges independently of each other, it can be observed in 

Figure 18 that only rural college R2 obtained a disproportionate quantity of “likes” 

compared to all the other colleges. Furthermore, urban college U1 obtained a higher 

quantity of “likes” than the other urban and rural colleges. Urban colleges U2 and U3 and 

rural colleges R1 and R3 obtained a proportional level of “likes” among each other. 

URL Component 

 Table 32 presents the descriptive statistics obtained from the colleges’ use of the 

URL social media component. The analysis revealed that the urban colleges had a 

slightly higher URL count than the rural colleges. When considering the colleges 
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separately, the majority of the urban colleges used a higher frequency of URLs than the 

rural colleges, with U1 obtaining a significant frequency count above all the colleges.  

Table 32 

Frequency Totals for Component: URLs by College Type 

 Note: Aggregate Percent = Aggregate Frequency / Total Urban & Rural Aggregate Frequency times 100  

 Figure 20 illustrates the aggregate levels using the URL social media component, 

while Figure 21 illustrates the frequency count of the URL social media component by 

individual college. 

 

Figure 20. Comparison of Social Media URLs by Aggregate College Types 

College Type Frequency Percent 

Aggregate 

 Frequency 

Aggregate 

Percent 

Urban 1 3221 37.0 

  Urban 2 2862 32.9 

  Urban 3 2628 30.2 

   Total 

  

8711 52.5 

     Rural 1 2633 15.9 

  Rural 2 2763 16.7 

  Rural 3 2476 14.9 

   Total     7872 47.5 

     

Total Urban & Rural   16583 100 
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 The above bar chart presents a slightly higher use of URL's in the microblogging 

activity for the aggregate of urban colleges compared to the aggregate of rural colleges. 

Therefore, it can be determined that urban colleges are using social media to an 

advantage in relationship-building capabilities than the rural colleges. 

 
 

Figure 21. Comparison of Social Media URLs by College 

 

 When considering the colleges independently of each other, it can be observed in 

Figure 21 that only urban college U1 obtained a slightly higher use of URL's in the 

microblogging activity compared to all the other colleges. The other urban colleges, U2 

and U3, and all the rural colleges obtained a proportional level on the use of URL's 

among each other. Therefore, it can be noted that when the analysis is not in aggregate, 

both the urban and rural colleges are using the URL social media component to an 

advantage in relationship-building capabilities. 

Hashtag Component 

 Table 33 presents the descriptive statistics obtained from the colleges’ use of the 

hashtag (#) social media component. The analysis revealed that the urban colleges had a 
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significantly higher hashtag count than the rural colleges. When considering the colleges 

separately, all the urban colleges used a higher frequency of hashtags than the rural 

colleges, with U3 obtaining a significant frequency count above all the colleges. 

Table 33 

Frequency Totals for Component: Hashtags (#) by College Type 

 Note: Aggregate Percent = Aggregate Frequency / Total Urban & Rural Aggregate Frequency times 100  

 Figure 22 illustrates the aggregate levels using the hashtag social media 

component, while Figure 23 contains the frequency count of the hashtag social media 

component by individual college. 

 

Figure 22. Comparison of Social Media Hashtags (#) by Aggregate College Types 

College Type Frequency Percent 

Aggregate  

Frequency 

Aggregate 

Percent 

Urban 1 1906 27.1 

  Urban 2 2523 35.9 

  Urban 3 2600 37.0 

  Total 

  

7029 57.1 

     Rural 1 1764 33.5 

  Rural 2 1730 32.8 

  Rural 3 1777 33.7 

  Total     5271 42.9 

     

Total Urban & Rural   12300 100 
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 The social media hashtags comparison by aggregate analysis demonstrates a 

significantly higher use of hashtags in the microblogging activity for the aggregate of 

urban colleges compared to the aggregate of rural colleges. Consequently, it can be 

determined that urban colleges are using the hashtag social media component to an 

advantage in relationship-building capabilities much better than the rural colleges. 

 
 

Figure 23. Comparison of Social Media Hashtags (#) by College 

 

 It can be observed in Figure 23 that all the urban colleges obtained significantly 

higher use of hashtags in the microblogging activity than all the rural colleges, when 

considering the colleges independently of each other. All the rural colleges obtained a 

proportional level on the use of hashtags among each other. Thus, urban colleges 

significantly use the hashtag social media component to an advantage in relationship-

building capabilities. 
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At Sign Component 

 The final social media component considered is the "at sign" (@) component. The 

descriptive statistics obtained from the colleges use of the "at sign" (@) social media 

component is presented in Table 34. The analysis revealed that the rural colleges had a 

significantly higher "at sign" (@) count than the urban colleges. When considering the 

colleges separately, a majority of the rural colleges used a higher frequency of "at signs" 

than the urban colleges, with R2 obtaining a slightly higher frequency count above all the 

colleges.  

Table 34 

Frequency Totals for Component: At Signs (@) by College Type 

 Note: Aggregate Percent = Aggregate Frequency / Total Urban & Rural Aggregate Frequency times 100  

 

 Figure 24 illustrates the aggregate levels using the "at signs" (@) social media 

component, while Figure 25 illustrates the frequency count of the "at sign" (@) social 

media component by individual college. 

 

College Type Frequency Percent 

Aggregate  

Frequency 

Aggregate 

Percent 

Urban 1 3333 35.0     

Urban 2 3925 41.3 

  Urban 3 2255 23.7 

  Total 

  

9513 48 

     Rural 1 3115 30.2 

  Rural 2 4072 39.5 

  Rural 3 3128 30.3 

  Total     10315 52 

     

Total Urban & Rural   19828 100 
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Figure 24. Comparison of Social Media At Signs (@) by Aggregate College Types 

 

 The above bar chart presents a slightly higher use of "at signs" (@) in the 

microblogging activity for the aggregate of rural colleges compared to the aggregate of 

urban colleges. Therefore, it can be determined that rural colleges are using the "at sign" 

(@) social media component to an advantage in relationship-building capabilities than the 

urban colleges. 

 
Figure 25. Comparison of Social Media At Signs (@) by College 
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 It can be observed in Figure 25 that when considering the colleges independently 

of each other, all the urban colleges and rural colleges obtained a proportional level on 

the use of "at signs" (@) among each other. Thus, both urban colleges and rural colleges 

use the "at sign" (@) social media component to an advantage in relationship-building 

capabilities. 

Research Question # 5 Analysis 

 The analysis revealed that both the urban and rural colleges applied the standard 

use of the social media components on their tweet activity considering the Microblog 

Dialogic Communication framework. Overall, urban colleges had higher use of social 

media communication elements than the rural colleges, with urban colleges including 

more hashtags and URL links than the rural colleges. Rural colleges did rank high on the 

use of the "at sign" (@) component, which could be attributed to the size of the student 

population and the need to directly engage with specific individuals of interest within the 

community or student population, such as parents or decision makers. The elements of 

social media interaction for the purpose of extending relationships and engaging in 

Microblog Dialogic Communication were present in the data, although further study 

could be done on the aforementioned social media components, specifically with larger 

data samples. 
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Hypothesis 

The main hypothesis claimed by my dissertation are as follows: 

 Hypothesis 1 - An urban college's positive tweets do not surpass its 

negative tweets. 

 The data analysis revealed that the urban college's positive sentiment 

tweets which averaged 2181 surpassed their negative tweets that averaged 961 as 

depicted in Table 21, thus hypothesis 1 is rejected. 

 Hypothesis 2 - A rural college's positive tweets do not surpass its negative 

tweets. 

 The data analysis revealed that the rural college's positive sentiment 

tweets which averaged 2595 surpassed their negative tweets that averaged 592 as 

depicted in Table 24, thus hypothesis 2 is rejected. 

 Hypothesis 3 - The average number of negative tweets among urban 

colleges does not surpasses the average number of negative tweets of rural 

colleges. 

 The data analysis revealed that the urban college's negative sentiment 

tweets which averaged 961 did surpass the rural colleges negative sentiment 

tweets that averaged 592 as depicted in Table 25, thus hypothesis 3 is rejected. 

 Hypothesis 4- A college’s positive sentiment tweets are not greater than its 

negative sentiment tweets. 

 The data analysis revealed that the positive sentiment tweets did surpass 

the negative sentiment tweets for all colleges. The average urban positive tweets 

was 2181 while the average urban negative tweets was 961, and the average rural 
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positive tweets was 2595 while the average rural negative tweets was 592 as 

depicted in Table 25, thus hypothesis 4 is rejected. 

 Hypothesis 5 - The total positive sentiment tweets that received a retweet 

did not exceed the college's negative sentiment tweets that received a retweet. 

 The data analysis revealed that the total positive sentiment tweets that 

received a retweet which was 50172 far exceeded the college's negative sentiment 

tweets that received a retweet that was 28581 as depicted in Table 29, thus 

hypothesis 5 was rejected. 

 Hypothesis 6 – The average number of negative tweets of urban colleges 

do not surpass the average number of negative tweets of rural colleges when 

analyzed using the Microblog Dialogic Communication framework. 

 As noted in research question #5, urban colleges had higher use of social 

media communication elements than the rural colleges, according to the 

Microblog Dialogic Communication framework. The data analysis revealed that 

the urban college's negative sentiment tweets which was 21404 did surpass 

significantly the rural colleges negative sentiment tweets that was 7177 as 

depicted in Table 29, thus hypothesis 6 is rejected. 

Summary  

 The results of the content analysis study were presented in this chapter. The 

chapter contained demographic information regarding the colleges used in the study 

along with the statistical analysis used that included descriptive statistics, Pearson’s Chi-

Square and quantitative analysis on the college's Twitter activity, the retweets obtained 
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from the Twitter activity, and the social media components used within the college's 

Twitter activity.  

The overall determination obtained from the data analysis was that rural colleges 

out performed urban colleges in regard to their tweet sentiment production and  are 

appropriately applying the Microblog Dialogic Communication framework when creating 

tweets. Rural colleges are inclined to turn out more positive sentiment tweets while 

generating lower negative sentiment tweets. The rural college tweet production enhances 

the overall colleges’ image and relationship building capabilities. Furthermore, rural 

colleges also experienced higher positive sentiment tweets that were retweeted than the 

urban colleges, indicating that the rural college's messages or tweets obtain a higher 

impact and reached more people than those tweets created by urban schools. Rural 

colleges also had considerably lower retweets of negative sentiment tweets than the urban 

colleges, which experienced much higher retweets of negative sentiment tweets. The 

process of retweeting negative sentiment tweets can also have an unconstructive impact 

on a college's image and relationship-building capabilities. 

The most favorable outcome for the urban colleges that was uncovered from the 

data analysis was the use of the social media components on their tweet activity 

considering the Microblog Dialogic Communication framework. It was observed that 

urban colleges incorporated higher use of social media communication elements such as 

URLs, at signs (@), and hashtags (#) than the rural colleges. The process of relationship-

building, according to Dialogic Loop Theory, is enhanced by the use of these 

components, which was clearly being applied by the urban colleges. Despite the use of 

the social media components in their tweet activity, the urban colleges still obtained 
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lower positive tweets and lower retweets of the positive tweets, while registering higher 

negative tweets and higher retweets of those negative tweets. The urban college's 

outcomes are contrary to what was expected using the Microblog Dialogic 

Communication framework. A possible justification is the urban school's demographic 

diversity, which could make the tweet formation difficult since it must be more inclusive 

with its word choices than the rural colleges that deal with a more homogenous 

demographic.  

The following chapter contains the restatement of the problem, summary of the 

study, discussion of the results, practical implications, limitations, recommendations for 

future research and a conclusion.  
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CHAPTER V: DISCUSSION 

The chapter provides a restatement of the problem, summary of the study, and a 

discussion of the results. In addition, it contains practical implications, limitations, 

recommendations for future research and a conclusion.  

Restatement of the Problem 

Kent and Taylor's (1998) established the importance of relationship-building 

through the use of proper web page development with their Dialogic Loop Theory. Other 

researchers (McAllister, 2013, Muckensturm, 2013; Watkins, 2017) considered Dialogic 

Loop Theory as a way to establish relationships by conducting two-way communication 

in the form of comments, likes, following, and reposting. The gradual evolution of 

technology and the development of Web 2.0 with social media and increased web 

interaction have rendered the Dialogic Loop Theory outdated. Specifically, organizations 

need to establish certain guidelines to appropriately take advantage of the relationship-

building capabilities that social media offers, thus it is necessary to augment the Dialogic 

Loop Theory to compensate for the new social media medium.  

The current research focuses on a cross-section of urban and rural community 

colleges within the United States to identify the sentiment score of their microblogging 

activity, thereby obtaining a greater understanding on their relationship-building 

capabilities. As part of the study, I propose a new framework titled Microblog Dialogic 

Communication, which extends Kent and Taylors' Dialogic Loop Theory to include 

modern day components and expected activity in today’s social media driven 

environment. The study analyzed the Microblog Dialogic Communication exhibited by a 

cross-section of urban and rural community colleges within the United States through a 



148 

 

sentiment analysis conducted on the college’s Twitter activity. The content analysis 

performed used a machine learning system to automatically evaluate the tweet sentiment 

using a classification model that consist of over 1.5 million tweets that have been tagged 

as positive or negative. Furthermore, the Twitter activity of the urban and rural colleges 

was analyzed for their use of social media components. The study permits colleges to 

assess if its Twitter messages are developed in a favorable or positive orientation on 

behalf of the college, to augment their relationship-building capabilities. The Twitter 

activity could have a significant impact on registered student participation, the college's 

retention and enrollment, and further future recruiting efforts.  

Summary of the Study 

 The quantitative content analysis investigated the importance of effective 

communication, sending out or tweeting positive messages or messages that are 

perceived as positive, as a significant characteristic that colleges and universities need to 

adhere to in their microblogging activities to establish relationship-building capabilities. 

Although Dialogic Loop Theory has been applied to the relationship building capabilities 

of websites, there is no significant understanding of dialogic loop applied to 

microblogging. The current research provides a perspective on the Dialogic Loop Theory 

and its use to effectively generate relationship building capabilities through 

microblogging. Relationship building is accomplished through the principles developed 

for the Microblog Dialogic Communication framework.  

 Microblogging communication is viewed as being reciprocal, with participants 

providing retweets and comments, thus continuously engaged in the sending and 
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receiving of messages (Velentzas & Broni, 2014, p. 127; West & Turner, 2010, p. 11).  

Therefore a dialogue is created through the tweets from the colleges and its public.  

Since the main goal of colleges is to maintain beneficial relationships with its 

public, and microblogging or Twitter tweets are used to directly interact with a college's 

followers, it is essential that they implement social media strategies that foster those 

relationship-building opportunities. As part of the social media strategies, it was 

necessary to augment Kent and Taylor’s model for relationship building through the 

World Wide Web to the microblogging activity on Twitter, establishing specific 

guidelines and rules that guide the Microblog Dialogic Communication framework that is 

defined in the present study. It is the intention of the research to provide a training 

mechanism on the ways a college or an organization can structure its Microblog Dialogic 

Communication in a way that fosters greater positive sentiment and amplifies the 

relationship-building capabilities of its social media activities. The research questions 

that were answered as the result of the present study are: 

1. What is the microblogging sentiment of an urban college that interacts with a 

diverse ethnic student population? (Hypothesis 1) 

2. What is the microblogging sentiment of a rural college that interacts with a 

homogeneous student population? (Hypothesis 2) 

3. How does the microblogging activity of urban colleges differ from rural colleges 

with regard to their microblogging sentiment? (Hypothesis 3) 

4. How does the microblogging activities of a college instigate positive outcomes 

with regard to the sentiment of retweets and comments? (Hypothesis 4 and 5) 
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5. How well does the Microblog Dialogic Communication framework explain 

differences that exist on relationship building capabilities in the Twitter activity 

between urban colleges and rural colleges? (Hypothesis 6) 

Discussion of the Results 

The following section provides a brief discussion for each research question and 

summarizes the results of the present study.  

Summary and Discussion of Results for Research Question # 1 

The urban colleges demonstrated a diverse ethnic composition with a majority of 

Hispanic demographic at 45.2%. The student population consisted of a greater percentage 

of female students (56.47%) than male students (43.47%). The microblogging activity for 

the urban colleges was composed of 69.42% positive sentiment and 30.58% negative 

sentiment from a total of 9,425 tweets.  

The results were consisted with the studies expected outcomes. It was predicted 

that urban colleges would primarily have a predominant diverse ethnic student 

population. In regard to the microblogging sentiment, it is essential that tweets are crafted 

with positive sentiment to enhance the relationship-building capabilities of the social 

media environment (Agozzino, 2015; Kent & Taylor, 2002; McAllister, 2013; 

Muckensturm, 2013; Watkins, 2017). Urban colleges propagated positive sentiment 

tweets at a much higher percentage than negative sentiment tweets, thus satisfying the 

microblogging sentiment expectations. 

Summary and Discussion of Results for Research Question # 2 

The rural colleges demonstrated a less inclusive ethnic composition that was 

significantly more homogeneous than the urban colleges with a majority of White Non-
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Hispanic demographic at 55.0%. The student population had a slightly higher percentage 

of male students (50.80%) than female students (49.20%). The microblogging activity for 

the rural colleges consisted of 81.42% positive sentiment and 18.58% negative sentiment 

from a total of 9,560 tweets.  

The results mirrored the studies expected outcomes in regard to ethnicity and 

tweet sentiment for rural colleges. It was forecasted that rural colleges would be limited 

in regard to an ethnic diverse student population. The descriptive statistics confirmed the 

predicted outcome. With regard to the microblogging sentiment, rural colleges highly 

exceeded the expected sentiment outcomes, propagating significantly higher positive 

sentiment tweets and significantly lowers negative sentiment, firmly meeting the 

microblogging sentiment expectations. 

Summary and Discussion of Results for Research Question # 3 

With regard to the microblogging sentiment of the colleges tweet activity, rural 

colleges averaged 81.40% positive sentiment tweets, while urban colleges averaged 

69.50% positive sentiment tweets. Additionally, rural colleges averaged 18.60% negative 

sentiment tweets and the urban colleges averaged 30.50% negative sentiment tweets. The 

statistical analysis revealed that the rural colleges over performed in regard to the positive 

sentiment tweets, while underperformed in the negative sentiment tweets. The urban 

colleges underperformed in regard to positive sentiment tweets and over performed in the 

negative sentiment tweets. 

 The quantitative data analysis demonstrated that on average, rural colleges 

propagated higher positive sentiment tweets and lowers negative sentiment tweets than 
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urban colleges. Therefore, rural colleges exceeded the microblogging sentiment 

expectations when compared to urban colleges. 

Summary and Discussion of Results for Research Question # 4 

The discussion for research question number four centered on the dialogic 

practices of colleges, with positive interactions seen as the essential component for 

relationship-building. With regard to microblogging and Twitter, the dialogic loop is 

ascertained by the retweet count that occurs on the positive sentiment tweets. Urban 

colleges obtained 19,962 retweets of their positive sentiment tweets, resulting in 2.98 

retweets for each positive tweet, while rural colleges experienced 30,210 retweets of their 

positive sentiment tweets, thus each positive tweet was retweeted 3.99 times. The data 

analysis demonstrated that rural colleges, on average, had significantly higher positive 

sentiment retweets and considerably lower negative sentiment retweets than the urban 

colleges. Therefore, rural colleges significantly outperformed urban colleges and 

demonstrated greater capability at establishing better communication feedback than urban 

colleges.  

Summary and Discussion of Results for Research Question # 5 

One of the primary outcomes of the current research is the microblogging analysis 

of the college's tweets to identify if they are incorporating specific social media 

components that enhance relationship-building capabilities.  Specifically, the present 

study aimed to augment Kent and Taylor's Dialogic Loop Theory to include these social 

media components and formulating a new Microblog Dialogic Communication 

framework. Therefore, an analysis was conducted on specific social media components 

that included URL links, at signs (@), and hashtags (#) used within the tweets. 
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 The urban college tweets contained 8,711 URL links, 9,513 "at signs" (@), and 

7,029 hashtags (#), while the rural college tweets contained 7,872 URL links, 10,315 "at 

signs" (@), and 5,271 hashtags (#). The urban colleges had a total of 38,428 followers 

with 1,012 friends and the rural colleges had a total of 89,010 followers with 7,184 

friends. Considering the Microblog Dialogic Communication framework, urban colleges 

had higher use of social media communication elements than the rural colleges, although 

rural colleges had significantly higher followers and friends. Overall, urban colleges out 

performed rural colleges in applying proper use of the social media components to 

increase relationship-building.  

Practical Implications 

The current study has practical implications for colleges and organizations that 

use microblogging or Twitter to interact with their public. When considering the structure 

of microblog messages, the positive image or communication propagated by a college 

when tweeting can increase student engagement, augment student retention rates and 

possibly increase student enrollment through the dialogic loop created by the college's 

tweets. Of particular importance is the use of the Microblog Dialogic Communication 

framework to extend the relationship-building capabilities of the college's tweet activity.  

Considering the quantitative results and the statistics observed, there exist a 

statistical significance between a college's tweet activity and the tweet sentiment. Thus, it 

is important to note that tweets must contain the appropriate social media components to 

create a sense of interaction, relationship-building, and continued support or following. A 

significant contribution of the present work is the modification of the original Kent and 

Taylor's (1998) Dialogic Loop Theory to include these ever so important social media 
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components. The enhancement of the theory, by incorporating social media components 

into the microblogging activity of an organization, is labeled in the current body of work 

as Microblog Dialogic Communication framework. Below is Figure 26 with a visual 

representation of the Microblog Dialogic Communication framework: 

 

Figure 26. Microblog Dialogic Communication Framework 

 

 The Microblog Dialogic Communication framework requires that microblogging 

messages include 1) a way for the receiver of the message to provide feedback in the 

form of a comment or obtain "likes" or approval of the message, 2) will provide new, 

relevant, constructive, trustworthy, and engaging content, 3) that messages are created 

with the intent that it will be re-posted, shared, or re-tweeted in order to extend the 

messages reach beyond its planned target, 4) that messages include social media elements 

such as hashtags (#) and at signs (@) to foster social media interactions, and 5) that 



155 

 

messages include images and/or video links that extend the message's information and 

provide additional resources or facts. The following is an example of a microblogging 

tweet that is successfully using the aforementioned Microblog Dialogic Communication 

framework: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 277. Microblog Dialogic Communication Tweet Example 

 

Finally, all colleges and organizations should be provided with guidance 

regarding their microblogging and social media activity, along with suggestions on how 

to formulate positive oriented messages with the necessary social media components to 

assist in increasing relationship-building functionality. These suggestions, as identified in 

the Microblog Dialogic Communication framework, serve as a guideline to help structure 

proper messages when considering the social media atmosphere that dominates the 

interactions among senders of the message such as a college or an organization, and the 

receivers of the message such as students, parents, or stakeholders. The practical 
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implication is that prospective colleges and organizations should be provided with 

guidance regarding online interactions and properly posting messages. The next section 

contains the limitations of the study.  

Limitations 

The purpose of the present content analysis study was to analyze the sentiment 

score of the microblogging activity of a cross-section of urban and rural community 

colleges within the United States. The study compared the sentiment score among these 

urban and rural college groups independently of each other, comparing to evaluate if the 

size of the college had an impact on their Twitter activity. Furthermore, a new model is 

defined, stating the necessary requirements for creating microblogging activity that 

increases the opportunity for relationship-building. However, there are a few factors that 

may have limited the study.  

1. The study was limited to only colleges. Further analysis can be accomplished by 

expanding the test sample to include other industries such as non-for-profit 

organizations or private businesses that frequently use microblogging to interact 

with their public to determine if proper Microblog Dialogic Communication is 

being applied.   

2. The study was limited in the scope of colleges being considered. Since only three 

urban and three rural colleges were selected for the research, further analysis 

could include a larger test sample of colleges from both spectrums to expand on 

the differences associated with the urban/rural categorization and microblogging 

activities. 
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3. Future studies could include analyzing tweets sent by colleges whose student 

bodies are more culturally diverse.  

4. The study included a juxtaposition between the diverse demographics of urban 

colleges and the homogenous demographic of rural colleges. An analysis that 

expands the college test data using demographic type such as diverse or 

homogenous and the sentiment analysis could further yield a greater 

understanding on a college’s microblogging activity given its targeted 

demographic audience. 

5. A limitation of the present study is that it provided quantitative research. A future 

study could benefit from a mixed method study that includes qualitative research.  

Even though the study contained some limitations, the present content analysis study 

contributed to the knowledge base of a college’s microblogging activity and the field of 

sentiment analysis. Future research should be conducted on the topic.  

Recommendations for Future Research 

Future research should be conducted on other areas beyond the academic realm 

such as non-for-profit organizations or private businesses. Since microblogging or 

Twitter is a main component of the social media movement, many individuals and 

organizations engage in constant microblogging activity. Therefore, future studies could 

focus on other types of entities that frequently use microblogging to interact with their 

public to determine the sentiment being expressed and if the proper Microblog Dialogic 

Communication is being applied.   

Additional research could extend the quantity and sizes of the colleges being 

considered. The current research was focused on three urban and three rural colleges, 
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further study could be done on a larger data set of only urban colleges to specifically note 

the sentiment being expressed in colleges with diverse demographics. Conversely, similar 

studies should be conducted on a greater quantity of rural college's, taking into 

consideration the aforementioned demographic. 

Furthermore, since colleges are expected to play an increase role in civic 

engagement and social justice issues, future research can be conducted to determine if the 

tweets sent out by colleges focus on these topics. A main area of interest could be the 

civic engagement being expressed through the college's microblogging and how they are 

informing or motivating their students along the lines of civic responsibilities, inclusive 

language, and social justice matters.  

Another future study could specifically be done on a retweet sentiment analysis of 

a college's or an organization's microblogging activity. The concept could consider a test 

group incorporating the Microblog Dialogic Communication framework for an extended 

period of time, to determine the quantity of followers and likes obtained through the test 

period. The intended focus for the study would be founded under the Microblog Dialogic 

Communication framework in considering the use of social media components as defined 

by the framework. The study could yield a greater understanding on the relationship-

building capabilities that the Microblog Dialogic Communication framework offers when 

consistently applied. 

Furthermore, the Microblog Dialogic Communication framework could be 

extended to other types of social media platforms such as Facebook, YouTube, 

Instagram, or Pinterest to name a few. Further study could be performed on the use of the 
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framework to generate additional followers and extend relationships with users within 

these mediums.  

Other research can be conducted on analyzing the expansion of Twitters character 

limitation from 140 characters to 280 characters to note the implications, if any, on the 

sentiment analysis process.  

Additionally, a future study could include a mixed method approach where not 

only quantitative data is collected but also qualitative data to obtain a better 

understanding directly from the stakeholders involved.  

Finally, the current study focused on the microblogging sentiment expressed by 

urban and rural colleges, a future study could focus on extending the content analysis 

within similar groups such as comparing urban colleges to urban colleges, or expanding 

the research among urban and rural colleges, such as obtaining a larger corpus, or 

expanding the scope of the groups to obtain a better sample data for the sentiment 

analysis in general.  

Conclusion 

The present content analysis study attempted to conduct a sentiment analysis on 

the microblogging activity of urban and rural colleges to identify if colleges are using 

appropriate language that fosters relationship-building outcomes. Furthermore, other 

microblogging aspects were analyzed to determine if colleges are conforming to the use 

of several social media components beyond Kent and Taylor’s (1998) Dialogic Loop 

Theory. The current research extends the theory to a new framework called Microblog 

Dialogic Communication, updating the theory to encompass the necessary social media 

components.   
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The current study found that rural colleges tweeted more positive sentiment 

tweets and less negative sentiment tweets when compared to the urban colleges tweet. 

Additionally, the rural positive sentiment tweets received more retweets than the urban 

colleges. Rural colleges also had considerably lower negative sentiment retweets that 

were retweeted in comparison to the urban college negative sentiment tweets that 

received significantly higher retweets. The two factors mentioned, positive sentiment 

tweets and the quantity of retweets obtained from the positive sentiment tweets and the 

negative sentiment tweets, are key factors influencing the colleges’ overall image and 

relationship-building capabilities. The results suggest that rural college's Twitter activity 

obtain a higher impact and reach more of its public than the Twitter activity by urban 

colleges. 

Additionally, the study considered the use of social media communication 

elements such as URLs, at signs (@), and hashtags (#) as a form of incorporating the 

Microblog Dialogic Communication framework to augment the relationship-building 

capabilities of Twitter. The research concluded that urban colleges used higher elements 

of social media communication than the rural colleges. Regardless of the social media 

components used by urban colleges, they still obtained lower positive tweets and lower 

retweets of the positive tweets, while registering higher negative tweets and higher 

retweets of those negative tweets. These results opposed the expected outcome for when 

a college utilizes the Microblog Dialogic Communication framework. It was also 

determined that the rural colleges incorporated the Microblog Dialogic Communication 

framework with tweets that contained many of the social media communication elements. 

The rural colleges obtained favorable results in regard to their positive and negative 
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sentiment tweet activity, and the volume of retweet activity on those tweet sentiments, 

respectively.  

In conclusion, colleges should be provided specific guidance and structure in 

integrating the particular elements mentioned as part of the Microblog Dialogic 

Communication framework to enhance the relationship-building capabilities of their 

microblogging activities. Also, colleges should be mindful on the word choices used in 

formulating their microblogging communication to foster more positive sentiment and 

inclusive communication.  
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