
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

10-24-2019 

A Privacy Framework for Decentralized Applications using A Privacy Framework for Decentralized Applications using 

Blockchains and Zero Knowledge Proofs Blockchains and Zero Knowledge Proofs 

David Gabay 
Florida International University, dgaba002@fiu.edu 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Computer and Systems Architecture Commons, Data Storage Systems Commons, Digital 

Communications and Networking Commons, Information Security Commons, and the Other Computer 

Engineering Commons 

Recommended Citation Recommended Citation 
Gabay, David, "A Privacy Framework for Decentralized Applications using Blockchains and Zero 
Knowledge Proofs" (2019). FIU Electronic Theses and Dissertations. 4348. 
https://digitalcommons.fiu.edu/etd/4348 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 









Figure 3.2: Attack Model for our Application: Eve the adversary can see all
blockchain transactions, she can also be part of the EVSPs organization.

22



CHAPTER 4

PROPOSED TOKEN-BASED APPROACH

In this chapter, we describe our proposed token-based framework in detail. This

approach is one of two approaches we deploy and we first start this chapter with an

overview and then move onto its components.

4.1 Overview

To protect the EVs’ privacy, we propose a novel framework that combines the zk-

SNARKs and the Ethereum distributed ledger. The idea is to integrate the zero-

knowledge proof process in Protocol 1 to the blockchain environment. Specifically,

the elements of Protocol 1 are mapped to EV charging setting as follows: The Prover

is the EV, the TTP is the EVSP, and the Verifier is the Blockchain which holds

smart contracts. In our case, we assume Ethereum-based smart contracts for our

approach.

Briefly, the process works as follows: The EVSP creates a secret function and

passes it along with a proving key to the EVs. An EV solves the secret function to

create a witness, then uses the proving key and witness to generate a proof to show

that it knows the secret function EVSP created. The EV then contacts a Blockchain

authentication contract and presents the proof. Once the contract verifies the proof,

it generates a Service-token for the EV to be used for scheduling charging. This

service-token is spent in scheduling and the EV uses a returned charging token at

any charging station. In this way, the EV does not need to authenticate itself to

the EVSP.

23



4.2 Registration of EVs

We assume that the EVs will register with the EVSP in advance. Basically, the EV

identifies itself to the EVSP where it is looking to use the services of the EVSP. This

registration is much like the registration of any web services where the EV would

provide information such as name, address, EV model, etc. Registration information

is not used during scheduling or charging as the EVs will remain anonymous to the

EVSP. Basically, it assures the user is a legitimate EV, and once registered the EV

will obtain the necessary information for charge scheduling, outlined in the next

section.

4.3 Setup Phase

Once the EVs are registered, the rest of the process starts with the Setup phase

where the EVSP generates two elements to be given to the registered EV users and

one element for writing to the blockchain as summarized in Figure. 4.1.

First, the EVSP generates a secret function, f(x), to be shared with the regis-

tered users so that they can generate a witness and a proof to authenticate them-

selves and schedule EV charging later. f(x) might employ a series of conditions

for its input variables including arithmetic operators and flow control statements.

Algorithm 1 provides an example of such a secret function where X is a list of 3

inputs. In this function, the 3 inputs are accumulated into a variable sum which

is eventually compared to another variable tot. If sum is greater or equal than tot,

the function returns sum, else it terminates. Note that finding the variables that

satisfy the conditions of the secret function is called witness which happens in the

Attestation generation phase as will be detailed next.

24



Figure 4.1: Setup Phase: EVSP distributes proving keys, and the secret function
to authorized users. EVSP also creates an Authentication smart contract with the
verifying key embedded.

In the Setup phase, the EVSP also creates Proving and Verifying keys from

a Common Reference String (CRS) which will be used to create and verify proofs.

While the Proving key is sent to EV users, the Verifying key is sent to a Blockchain

smart contract which is created for EV Authentication. This smart contract, which

is shown as Authentication Contract in Figure. 4.1 is public on the Ethereum net-

work and is used for authenticating the EV.

During the Setup phase, the EVSP deploys two tokens, service-token and charge-

token from a pool of tokens maintained by it. These tokens will be used in the next

phases.

25



Algorithm 1 Secret Function 1

Require: X.length() = 3
1: procedure main(X)
2: sum = 0
3: tot = 10
4: for each integer i in X do
5: sum = sum+ i

6: if sum ≥ tot then return sum
7: else
8: terminate

4.4 Attestation Generation

Once an EV user is registered and receives the authentication elements, it starts the

Attestation generation phase where the EV generates a proof which attests its

knowledge of the secret function, f(x).

The EV begins this process by assigning a set of variables that will satisfy the

parameters of the f(x). It is assumed that the EV knows f(x) and thus can provide

satisfying values. This assignment of variables is called generating a witness. If we

consider the f(x) portrayed in Algorithm 1, a witness for this f(x) will be any 3

variables whose sum is greater than or equal to 10 (e.g., 2, 3, 5). The witness also

includes the return value (i.e., the output) based on the selected parameters, in this

case, 10. Although Algorithm 1 is a simple function, we provide it as an example

for making it easier for the reader to understand the concept.

Next, using the witness along with the proving key, the EV generates a proof,

namely π, attesting to its knowledge of the f(x). We also append a timestamp as

public input to the proof to prevent potential replay attacks. The reason for making

the timestamp a public input is to allow it to act as a plaintext input to the smart

contract.

26



Figure 4.2: Proof Generation: EV computes a witness using values that satisfy
the secret function and a public inputs. With the witness and proving key, the EV
generates a proof.

This process is shown in Figure. 4.2. Note that all of the steps except the de-

ployment of the Authentication contract up to now are performed off-chain, meaning

they are not written to the blockchain. The Authentication smart contract is created

on the blockchain for achieving our goal of distributed authentication.

27



4.5 Verification for Authentication

Upon possessing the valid proof, π, for f(x), the EV submits his π to the Au-

thentication smart contract on Ethereum for authenticating itself. The EV uses his

pseudonym address, to interact with the contract. Importantly, the EV will generate

a new pseudonym address each time it wishes to schedule a charging service with the

EVSP. Generating new pseudonym addresses is easy (performed almost instantly),

free of cost, and done off-chain. Along with π, an array of public inputs including

the output of f(x) (given the witness values), and optional public parameters to

f(x), are also passed to the Blockchain. Once the authentication is successful, the

smart contract issues a service-token that belongs to the EV. Note that this token

is assigned to the same pseudonymous address that was used to interact with the

smart contract by the EV. The authentication process is shown in Figure. 4.3.

4.6 Charging Scheduling

The service-token received after authentication is later used by the EV for schedul-

ing the charging on another smart contract which is referred to as scheduling smart

contract. Basically, the EV submits the service-token as well as its desired avail-

able time slots to the scheduling smart contract on Ethereum. The address used

to submit this service-token is by default the address which received it from the

authentication smart contract.

The scheduling information is sent encrypted with the public key of the EVSP

to hide the charging details from the public which is depicted as λ in Figure. 4.4.

EVSP also interacts with the scheduling smart contract and hence can receive the

encrypted scheduling information to properly schedule a time slot for the spender of

that service-token. The scheduling smart contract returns a new charging-token to

28



the EV, which can be spent during its scheduled charging slot for charging. During

this phase, the EV also sends a deposit fee in the form of Ethereum which serves the

purpose of a security deposit for charging. The deposit fee is the same for everyone,

this way there can be no pattern tracing to identify a specific EV. Without this

fee, scheduling would be almost free and this could be abused by malicious EVs to

schedule a large number of fake charging appointments. This process is shown in

Figure. 4.4.

4.7 EV Charging Station Verification

When the EV arrives at the charging station at it’s allocated charging time slot, the

charging station will receive the charging-token at its own address. Then the EV

charging station verifies with the EVSP that the EV which submitted the charging-

token is the currently scheduled EV. Basically, it contacts the smart contract with

the token and receives the information about the ID and time (encrypted) to make

a comparison.

Note that with the charging-token, the EV also makes a payment (in addition

to deposit fee) in the form of Ether cryptocurrency to the charging station. Using

the proposed blockchain framework allows the EV to pay anonymously in this step

which is important for privacy. Following the verification of the charging-token and

sufficiency of funds, the EV will proceed to charge and send a message to EV. We

assume there will be a communication channel (i.e., cable or wireless) that will run

the protocol between the EV and the charging station to send this approval message.

The charging fee paid by the EV in this phase represents payment for the amount

of charging it needs. Figure. 4.5 demonstrates this charging verification process.

29



Figure 4.3: Authentication: EV submits a proof to the Authentication smart con-
tract. If the input is valid, then the smart contract returns a service-token to the
EV’s pseudonym address.

30



Figure 4.4: Scheduling: EV spends its service-token on a scheduling contract to
receive a charging-token for EV charging.

31



Figure 4.5: Charging: EV uses his charging-token at a charging station during its
allotted period.

32



CHAPTER 5

PEDERSON COMMITMENT APPROACH

The aforementioned approach provides zero-knowledge and anonymity when

scheduling charging for EVs. However, there is still some overhead associated with

the use of tokens in performing authentication, scheduling and charging on Ethereum

in terms of efficiency and transactions costs.

Therefore, as an alternative to tokens, we propose adapting Pederson commit-

ment scheme which is a method of sharing a secret that is both binding and hiding.

In our privacy framework, we propose using this commitment scheme to allow an

EV to commit to a scheduled charging slot. This improves the efficiency of the

framework and reduces the cost by reducing the transactions performed on-chain,

including the removal of the scheduling, and charging contract completely. In the

following sections, we describe the changes needed at each step in the proposed

framework.

5.1 Setup Phase

The Pederson Commitment parameters along with f(x), and proving key are given

to registered EVs, as shown in Figure. 5.1. For the this approach, it is necessary for

the EVSP to generate the required parameters for a Pederson Commitment scheme.

That is, the EVSP will perform the setup phase of the Pederson Commitment scheme

which is described in section 3.4. The outcome of this setup step will be the public

Pederson Commitment parameters, namely p, q, g, h. These parameters are sent to

registered EVs to be used in generating a commitment that contains the requested

schedule for charging.

In this approach, we implement a different f(x) which can be proven to be

difficult enough that it is cryptographically secure for our use case. In this case, we

33



Figure 5.1: Improved Setup: EVSP distributes proving keys, the secret function
and the Pederson Commitment parameters p, q, g, and h to authorized users. EVSP
also creates an Auth Contract with the verifying key embedded.

use an f(x) that requires the prover to prove his/her knowledge of the preimage of

a hash function. Thus, the difficulty of providing an invalid input to solve the secret

function lies in the difficulty of generating an X ′ such that:

X ′ 6= X

&

H(X ′) == H(X)

.

The new f(x) is shown in Algorithm 2. It accepts a private input X, and returns

a boolean value, true or false. It is true if the hash of a user’s input, hash image1,

is equal to the hash of a secret value, hash image2, known only to the EVSP and

authorized EVs.

34



Algorithm 2 Secret Function 2

1: procedure main(private X) returns (bool result))
2: hash image1 = H(X)
3: hash image2 = b94d27b9934...
4: if hash image1 == hash image2 then return 1
5: else return 0
6: terminate

During the setup phase, the EVSP also deploys a single smart contract, called

Auth contract for brevity. The Auth contract performs the following functions in

order:

1. Performs authentication of zkSNARK π granting access to authorized EVs.

2. Accepts a Pederson Commitment containing a scheduled charging slot chosen

by the EV.

3. Accepts a message encrypted with the public key of the EVSP that states the

desired charging slot.

4. Accepts payment in the form of Ethereum for the associated charging appoint-

ment.

The Auth contract posts an event whenever an EV authenticates and schedules

charging, from which the EVSP uses the private key to decrypt the message and

book the charging slot for the EV who can provide the secrets to open the Pederson

Commitment. The setup phase ends when the EVSP sends the Pederson Commit-

ment parameters along with the f(x), and proving key to registered EVs, as shown

in Figure 5.1.

35



5.2 Attestation Generation

Next, the EV must attest his knowledge to f(x) and the parameters of the Pederson

Commitment. In this case attesting knowledge to f(x) means he/she knows the

preimage of hash image using H(.). The EV inputs the preimage to f(x) and if the

H(input) == hash image

then the EV will receive a witness. It is important to note that the input is private

and not made public during the authentication on-chain. In this approach, we again

utilize the notion of a public input that is a timestamp to avoid the reuse of the

same proof. Combining the generated witness and the proving key received from the

EVSP during setup, the EV will generate a proof, π. The proof generation process

is shown in Figure 4.2.

Additionally, the EV must attest his knowledge of the Pederson Commitment

parameters and thus be able to use these parameters for creating his own commit-

ment. A security benefit of the Pederson Commitment is that even if the parameters,

namely p, q, g, h, were to be released to the public or published on a public site, an

adversary cannot use this information for an attack on the commitment. For our

sake, the EVSP sends the Pederson Commitment parameters along with the prov-

ing key and f(x) as the combined size of the parameters is only 188 bytes and thus

does not introduce heavy overhead. The EV uses equation 3.1 to create a commit-

ment. In this case m, the secret, is a unsigned integer representing the charging

slot chosen. Additional digits are appended to represent the charging station where

the EV wishes to schedule the charging. The other input to a commitment is a

random value, r, which is randomly generated by the EV and stored for opening

the commitment in a later period. Using m, r, p, q, g, and h the EV calculates a

commitment, c1, of order q using Equation 3.1.

36



5.3 Authentication and Commitment

At this point, the EV has a π, and a commitment, c1. Additionally, the EV knows

what charging slot it would like to schedule, as this is contained within c1. Knowing

the charging slot, the EV writes a message, λ, and encrypts it using the public key

of the EVSP. This message is designed to allow the EVSP to book the charging

station for that charging period. Now possessing these three parameters, the EV

uses a pseudonym address to send them to the auth contract. The EV also includes

any payment in the form of Ethereum that is required for the charging, as well as

public inputs and the output to f(x).

Assuming the EV has provided a valid π, he/she would have committed to that

charging slot and no longer needs to interact with the blockchain. The process of

authenticating and committing to a EV charging schedule is shown in Figure 5.2.

5.4 Scheduling

The auth contract verifies the π triggering an event, passing λ and c1 to the EVSP.

The EVSP decrypts λ to book the charging station for that period and associates

it with the c1 and the payment. For maintaining the commitments and associated

charging details, we store them off-chain in a database called EVSP commitment

store. The charging station will retrieve the commitments from this storage for use

in authenticating the EV for charging.

5.5 Charging Station Verification

The final step to this approach is verifying the EV when it arrives for charging

during its assigned period. When the EV arrives to the charging station, it uses a

37



secure channel to transmit the secrets to open the Pederson Commitment, that is

m and r which will open c1. Using m and r, the EVSP creates a new commitment

c2 using Equation 3.2 and compares it to c1 that is associated with that charging

time using Equation 3.3. If the commitments are equal then the EVSP is sure the

EV that has arrived is the same one that committed to that charging slot when it

authenticated using the auth contract. During this step the EVSP also verifies that

the current c1 represents the scheduled EV. This process is shown in Figure 5.3.

38


