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ABSTRACT OF THE DISSERTATION 

 

GRAPHENE FOAM-REINFORCED 

SHAPE MEMORY POLYMER EPOXY COMPOSITES 

by  

Adeyinka Taiwo Idowu 

Florida International University, 2019 

Miami Florida 

Professor Arvind Agarwal, Co-Major Professor 

Professor Benjamin Boesl, Co-Major Professor 

Shape memory polymer (SMP) epoxy has received growing interest due to its 

facile processing, low density, and high recoverable strain. Despite these positive 

attributes, SMP epoxy has drawbacks such as slow recovery rate, and inferior mechanical 

properties. The slow recovery rate restricts the use of SMP epoxy as a functional structure.  

The aim of the present work is to explore the capabilities of three-dimensional 

(3D) graphene foam (GrF) and graphene nanoplatelet (GNP) as reinforcements in SMP 

epoxy to overcome their slow recovery and improve the mechanical properties. GrF and 

GNP based SMP epoxy composites are fabricated by mold-casting approach and 3D 

printing techniques, respectively. They are investigated for their thermal, shape recovery, 

and mechanical behaviors. 0.13 wt.% GrF addition results in 19% increase in the glass 

transition temperature (Tg) of mold-cast SMP epoxy. GrF-based SMP epoxy composite 

displays thermal conductivity of 0.296 W mk-1 at 70oC, which is 57% greater than that of 

SMP epoxy. The addition of GrF results in excellent thermal and electrical conductivity of 

SMP epoxy by providing a continuous network of graphene for phonon and electron flow, 
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respectively. Thus, thermal and electrical stimulation are employed to actuate shape 

recovery in GrF-reinforced SMP epoxy composite. Maximum shape recovery ratio is 

achieved for thermally actuated GrF-based SMP epoxy composite with a 23% 

improvement in the recovery rate. GrF addition transforms a non-electrically conductive 

SMP epoxy to an electrically conductive polymer. Moreover, 0.5 wt.% GrF integration 

enhances tensile strength and elastic modulus of SMP epoxy by ~6% and 20%, 

respectively which is attributed to excellent stress transfer from matrix to GrF 

reinforcement. Damping behavior of SMP-0.5 wt.% GrF epoxy is also improved by 180%.  

SMP epoxy-GNP composite is successfully 3D printed using a slurry-based 

extrusion technique. 3D printed composites exhibit complete shape recovery. A mere 0.1 

wt.% GNP addition resulted in enhanced tensile strength (30%) and elastic modulus (17%) 

than that of SMP epoxy. Damping behavior of 3D printed of SMP epoxy-GNP composite 

is also improved by ~50% (below its Tg) as compared to 3D printed SMP epoxy.  This 

study demonstrates that graphene-based reinforcements endow SMP epoxy with 

multifunctional capabilities; thereby paving the way for a new generation of advanced 

shape memory polymer composite, finding potential applications in electro-mechanical 

systems, micro-robots and morphing wing of an aircraft.
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Chapter I: Introduction 

The aim of this study is to fabricate GrF-reinforced shape memory epoxy composites. The 

motivation is to develop a smart polymeric composite that addresses the downsides of 

shape memory epoxy, such as low thermal conduction, poor electrical conduction, low 

recovery stress, by integrating GrF reinforcement in shape memory epoxy. A thorough 

analysis of shape memory effect, thermal and mechanical properties of the newly 

developed composites are shown to attest to its superior performance over shape memory 

epoxy. 

1.1 Shape Memory Polymers and Their Applications – Advantages, Drawbacks and 

Solution 

The growing interest and demand on innovative materials have led to continuous 

development of smart materials within the past two decades [1]. Smart materials are 

responsive materials that can change its physical properties when activated by a specific 

external stimulus. Appreciable progress in the actuation of these materials has been attained 

in this research field [2]. The progress has enabled other stimuli sources (electricity, light, 

magnetic field), other than heat, to trigger response from smart materials [3],[4]. The 

Technological importance of these materials in the past decade became noticeable due to 

their wide range of applications. The broad utilization of smart materials ranges from 

conventional applications in electronics [5], textiles [6] and packaging [7] to elegant 

applications presently developed in biomedicine [8] , automotive and aerospace [9]. Smart 

materials are based on different material systems. These material systems are classified as 

magnetostrictive, chromogenic and piezoelectric, hydrogels, electroactive polymers, shape 

memory alloys and shape memory polymers (SMP) systems [10], [11].  
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SMP is one of the most extensively used smart materials, engineered from 

conventional polymers to stimulus-responsive systems. As emerging class of advanced 

polymers, they possess the ability to change their shape when appropriately stimulated. 

Once fabricated into their original, permanent shape, SMP can be deformed and retained 

as a temporary shape. The temporary shape is fixed till it is induced by an external stimulus, 

resulting to recovery of the original shape. This phenomenon is termed shape memory 

effect (SME), meaning that SMP can be deformed into temporary shape (shape fixity) and 

triggered to memorize or remember its shape (shape recovery). SME in SMP can be 

combined successfully with other functional properties such as thermal and electrical 

conductivity, biocompatibility and biodegradability, thus resulting in multifunctional SMP 

[12]. Recently, SMP epoxy has received more attention primarily due to its facile 

fabrication, low cost and light weight [13]–[15]. SMP epoxy possess additional advantages 

such as its high recoverable strain, robust structural versatility, synthetic flexibility, 

environmental durability and industrial viability [16], [17]. These advantages have made 

SMP epoxy to be highly considered as a matrix component for composite system ahead of 

its shape memory alloy counterpart, in some specific applications.  

Nevertheless, SMP have some downsides which have limited its ability and 

constrained its application boundaries from being expanded into new area of possibilities. 

The limitations associated with SMP mainly includes poor thermal conductivity (<0.3 

W/mk)[18], low storage modulus (1.4 – 2.5 GPa) [19], [20], and low recovery stress (1 – 

3 GPa) [21]. It construes that poor intrinsic stiffness of SMP epoxy accounts for the low 

recovery stress generated during shape recovery. Poor heat transfer leads to slow thermal 
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diffusion through the SMP epoxy. This translates to slower recovery rate and longer 

recovery period for the SMP epoxy to attain its permanent shape. A possible approach to 

eliminate the drawbacks is by adding a reinforcement material. Addition of mere low 

content of the reinforcement can pose great influence on the structure-property 

characteristics of the SMP epoxy matrix [22]. It is therefore pivotal that such reinforcement 

possesses remarkable capabilities. These capabilities can be used to imbue certain desirable 

attributes, such as enhanced shape recovery, stiffness, and thermal and electrical 

conductivity, into SMP epoxy.   

1.2 Graphene Reinforcement – Its Capabilities to Shape Memory Polymers  

Graphene, a basic building block of carbon-based nanomaterial, is a single layer of 

sp2 bonded carbon atoms organized in a hexagonal, two-dimensional honeycomb lattice 

[23]. Atomic configuration of graphene has enabled it to exhibit remarkable elastic 

modulus (1 TPa), tensile strength (130 GPa) [24], thermal conductivity (5000 W/mK) [25], 

temperature stability of up to 1500oC, and electrical conductivity (72 S/cm) [26] . All these 

promising behaviors have designated graphene to be highly preferred as a versatile filler, 

reinforcing the three main material matrices (ceramic, metal and polymers). In a 

conventional polymers system, graphene reinforcement has been able to augment the 

elastic modulus, fracture toughness and tensile strength of the polymers [27]. In addition, 

it has demonstrated great ability to improve glass transition and thermal conduction 

coupled with a boost in electron mobility within the polymers. 
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1.2.1 Challenges Associated with Graphene Reinforcement 

 Graphene’s exceptional properties have great potential to boost the material 

properties of the polymers. The transformation would thereby create a new breed of highly 

advanced polymeric composites. However  graphene addition in  polymers has not lived 

up to desired expectations in improvement in the properties [28]. The inability to fully 

harness its properties can be traced to the intrinsic nature of graphene. Graphene has s high 

surface energy (78.9±3.1 mJ/m2) s [29] resulting in  the non-homogeneous dispersion of 

graphene sheets [30], weak interfacial interaction between polymers [31], and high inter-

sheet junction contact resistance [32]. Due to the presence of weak intermolecular forces, 

graphene sheets reaggregate when dispersed in polymer matrices. This makes its uniform 

dispersion burdensome and poses a serious challenge for processing of polymer 

composites. Besides the processing challenge, graphene agglomeration can serve as stress 

concentrators, which can lead to failure of the resultant composites.  

Graphene reinforcement in polymers tends to have discontinuity zones, thereby 

affecting the performance of polymer composites. The discontinuity zones are formed due 

to make-up of the graphene structure. From the atomic and molecular perspective, 

graphene planes consist of carbon atoms. These atoms are held together by aromatic bonds. 

The bonds account for graphene inertness and chemical stability [31]. Graphene therefore 

has no other alternative than to relate with polymers through weak intermolecular forces. 

Thus, the interfacial bond strength formed between the reinforcement and matrix can act 

as a weak link in the composites. In addition, surface chemistry between polymer 

molecules and between graphene sheets creates low surface energy between the two 

components. It construes that covalent bond in the polymer molecules and the weak 
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intermolecular forces between graphene layers account for the low surface energy. 

Graphene reinforcement thus experiences poor wettability by polymers due to the low 

surface energy [33].  

1.3 3D Graphene Foam: Suitable reinforcement to shape memory polymer epoxy 

The challenges associated with graphene require an efficient, suitable reinforcement 

to SMP epoxy. The suitable reinforcement should possess properties like graphene as well 

as ability to resolve agglomeration issues in graphene. Graphene foam (GrF) has the 

capacity to act as an alternative. GrF is a carbon-based nanomaterial, consisting of two-

dimensional graphene sheets arranged into a three-dimensional architecture. It is an 

interconnected 3D continuous framework of nodes and branches. It displays ultralow 

density (<0.005 g/cm3), high surface energy and large specific surface area (850 m2/g) 

elastic modulus (69.9 GPa) and specific tensile strength (1.2 Pa.m3/Kg) [34]. These 

interesting properties position GrF as a potential reinforcement for SMP epoxy.  

The 3D GrF architecture allows for flexibility and elasticity, enabling it to withstand 

multiscale mechanical deformation and exhibit great damping characteristics. The branch-

node morphology of GrF creates electron and thermal flow paths that facilitate its high 

electrical and thermal conductive properties. GrF ability to exhibit these attributes makes 

it a very attractive multifunctional reinforcement in polymer/ceramic/metal matrices [23]. 

Particularly, these multifunctional properties of GrF can be fit for advanced polymers, such 

as in shape memory epoxy, for several applications. Such applications include aerospace 

field (flexibility of aircraft wings), electronic purposes (nano and micro-electromechanical 

systems) and biomedical area (wearable sensor and nerve tissue generation). 
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1.4 Objectives of Current Research 

The overall aim of this research is to enhance the shape memory response of graphene 

and GrF-reinforced SMP epoxy composites for structural applications. The overall 

objective could be accomplished through the following specific objectives: 

• Reinforce SMP epoxy with GrF and GNP using mold casting approach and syringe-

based extrusion 3D printing, respectively 

• Understand the free flow infiltration of SMP epoxy in GrF and role of GrF uniform 

distribution in SMP epoxy matrix  

• Influence of GrF-SMP epoxy interface behavior on the overall performance of the 

composite. 

• Effect of GrF on glass transition temperature, thermal expansivity characteristics and 

conductivity of SMP epoxy. 

• Role of GrF and GNP reinforcement in the shape recovery of thermally responsive 

SMP epoxy composite 

• Influence of GrF reinforcement in the shape recovery of electrically stimulated SMP 

epoxy composite 

• Examine mechanical properties in terms of elastic modulus, tensile strength, storage 

modulus, and loss tangent of GrF and GNP-based SMP epoxy composites. 

The research work conducted in this study has been organized into chapters, sections, 

and subsections of this dissertation. Chapter II presents an exhaustive literature review on 

this research topic. It also features the growing interest of this topic in the scientific 

community. Chapter III conveys a detailed description of materials and methodology 
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employed in the preparation, characterization and evaluation of GrF-reinforced SMP epoxy 

composites. In-depth discussion and scientific analysis of the results in line with the aim 

of this research are provided in chapters IV, V and VI. Chapter VII gives the main points 

of the study, summarizing key outcomes. Future research work and recommendations 

about graphene based SMP composites are highlighted in chapter VIII. 
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Chapter II: LITERATURE REVIEW 

 
2.1 Graphene-Based Polymer Composites 

The significant attention that carbon-based polymer composites has received over the 

past two decades is largely due to its light weight, high strength-to-weight ratio, ease of 

processing and usefulness in many engineering applications [35]–[37]. Intrinsic properties 

of the carbon nanofillers, such as high aspect ratio (1000-1272) [38], [39], specific surface 

area (150-2600 m2/g) [40]–[42], etc., have considerably accounted for the improvements 

in the behavior of the composites [43], [44]. Thus, it has facilitated tremendous progress in 

the study of carbon-based fillers, including graphene, in polymer composites [45]–[47]. 

Graphene is a two-dimensional monolayer of sp2 bonded carbon atoms organized in a 

hexagonal lattice. Graphene reinforcement in different polymer matrices has increasingly 

gained attraction after its discovery in 2004 [48]. The attraction is due to its remarkable 

mechanical, thermal and electrical properties.  Nevertheless, its fascinating properties have 

not been fully harnessed in polymer matrices. The constraints associated with the 

completely utilizing graphene properties by different polymers can be attributed to inherent 

behavior of graphene. Main challenges in graphene reinforced polymer composites 

(GRPC) include: (i) weak interfacial interaction between graphene and polymer matrices, 

(ii) non-uniform distribution of graphene sheets within the polymer, and (iii) high inter-

sheet junction contact resistance. 

2.1.1 Interfacial interactions between graphene filler and polymers 

Polymers reinforced with graphene have different discontinuity zones or interfaces 

which significantly influence the overall behavior of polymer composites. Properties of the 
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polymer matrix and graphene filler are two key determining factors for the compatibility 

and adhesion of the interfaces formed in GRPC. Moreover, graphene structural make-up 

and behavior at the interface of the composite influence the interactions between 

polymer/graphene interface [49]. From the atomic and molecular point of view, the carbon-

carbon bonds within the graphene planes are aromatic. The aromaticity has accounted for 

graphene chemical stability and inertness [31]. It consequently left graphene with the only 

option of interacting with the polymer chains through weak intermolecular forces. This 

results in low interfacial bond strength between the graphene and polymers [50]. The 

wrinkled or pristine surface of graphene can create presence or absence of physical 

interlocking positions respectively with polymers, which has affected the interfacial 

properties. While pristine graphene indicates that integrity of its overall properties is 

untouched, the absence of physical interlocking of graphene with the polymer chains does 

not allow very good interface formation [51]. Property trade-off is thus required to attain 

excellent interfacial interaction. Wetting behavior of graphene, which stems from 

graphene's surface chemistry, has also affected the interface behavior in GRPC [52]. Due 

to the covalent bonds between polymer molecules and weak intermolecular forces between 

graphene layers, low surface energy dominates between the two components. This creates 

poor wettability of graphene by the polymer. 

2.1.2 Dispersion of graphene within the polymers 

To achieve isotropic properties in GRPC, dispersion of graphene within a polymer 

matrix is an essential factor to be considered. The dispersive behavior of graphene remains 

a germane concern to achieve suitable reinforcement in GRPC. High specific surface area 

(2630 m2/g) and physical attraction between graphene sheets owing to its high surface 
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energy have created leverage for graphene sheets to agglomerate. Its high aspect ratio 

makes the sheets to be susceptible to restacking, thereby preventing the homogenous 

distribution within the entire polymer matrix [53]. Also, the presence of weak physical 

forces such as intermolecular interactions (very significant at nanoscale) have considerably 

accounted for graphene sheets reaggregation [54]. 

2.1.3 High inter-sheet junction contact resistance 

Interfacial contacts, such as plane-to-plane, plane-to-edge, and edge-to-edge, can 

occur among small-sized graphene sheets incorporated within a polymer matrix [55]. These 

contacts are, however, not completely achieved due to polymer chains in between or 

covering the low content of graphene filler. This hinders the percolation limit from being 

reached and results in poor electrical and thermal conductivities. The presence of functional 

groups between the functionalized graphene platelets and polymers can initiate high inter-

sheet junction contact resistance among the graphene platelets [32]. Long range of 

connected graphene sheets is thus inhibited. Percolation of electrons and phonons between 

graphene sheets is also restrained. This culminates in overall decrease of electrical and 

thermal conduction in the resultant polymer matrix composites (PMC).  

Different approaches have been adopted to resolve the challenges precluding the full 

expression of graphene properties within polymers. Such approaches can be mainly 

grouped into two: (i) assembling and (ii) functionalization techniques. Assembly approach 

is primarily used to prevent graphene sheet agglomeration. Different types of graphene 

sheet assemblies are vertically oriented graphene sheets and deformed graphene sheets 

which includes curved graphene, folded graphene, crumpled graphene and spaced 

graphene nanosheets [56]. Functionalization of graphene sheets is employed to improve 
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interactions between the polymers and graphene. This can be achieved by properly 

functionalizing its edges and surface with chemical groups which have a strong affinity for 

side chain polymers [57], [58]. While the approaches have facilitated improvements in 

GRPCs, more of graphene remarkable properties can still be explored using the 3D 

graphene-based architecture, such as graphene foam. 

2.2 Graphene Foam: Alternative to Graphene 

Graphene foam is considered as a great substitute to graphene for reinforcing 

polymers for structural and multi-functional applications. The design of graphene to a 

three-dimensional framework has great capabilities to minimize constraints associated 

graphene when integrated in polymers. Detailed description about GrF nanomaterial, its 

synthesis and its influence as reinforcing agent in property enhancement of polymer 

composites are presented in the following subsections.    

2.2.1 What is Graphene Foam? 

Graphene foam (GrF), one of the types of 3D graphene architectures, is a three-

dimensional (3D) nano-carbon material. It is a macro-porous, continuous 3D network of 

graphene sheets. GrF framework has pore size of 580 𝜇𝑚. The graphene sheets network 

consists of hollow branches and node junctions. The hollow branch has diameter of 50 𝜇𝑚. 

GrF branch-node anatomy enables seamless pathways of phonons, electrons and stress 

transfer. Its architecture thus boosts graphene foam capacity to serve as a multi-functional 

reinforcing agent. GrF macro-porous framework enables it to have an ultra-low density of 

4 𝑚𝑔 𝑐𝑚3⁄ . This makes GrF a desirable alternative for light weight reinforcement in 

conventional and smart polymer composites. GrF has large specific surface area (850 m2/g) 

and can exhibit remarkable electrical conductivity (125 S/cm) [48], thermal conductivity 
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(0.26 – 1.7 W m-1K-1) [49], elastic modulus and other mechanical properties [50]. Figure 1 

conveys the increasing trend in the number of publications on GrF and GrF-reinforced 

composites for the past 9 years. GrF-polymer matrix composites (PMC) has a obvious 

increase in its number of publications compared to GrF-based metal and ceramic 

composites. The noticeable attention towards GrF-PMC can be primarily attributed to the 

simple synthesis of polymer composites. It does not demand high temperature and pressure 

conditions for its fabrication, which is needed in the processing of metal and ceramic 

composites. 

 

Figure 1: Number of publications on GrF properties, ceramic/polymer matrix-GrF 

composites during 2011 to date [23]. 
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2.2.1.1 Fabrication of 3D Graphene Foam  

3D graphene-based frameworks can be classified into aerogels/hydrogels and foam-

based structures as shown in figure 2. The approaches used to synthesis hydrogels and 

aerogels include freeze-drying [51], non-template approach [52]–[54], electrochemical 

reduction [55], sugar blowing approach [56], sol-gel reaction [57] and template assembly 

of graphene oxide [58]–[60], assembly of graphene oxide (GO) [61]–[63] (including self-

assembly of graphene oxide), cross-linking agent [64], 3D printing [65], commercial 

graphite paper technique [66] and chemical vapour deposition (CVD).  

                       

Figure 2: Classification of 3D Graphene-based frameworks [23]. 

Typical fabrication of 3D GrF is based on the template-directed CVD technique [67]. The 

technique begins with the selection of nickel foam (a porous, interconnected 3D scaffold 

of nickel) as a pattern for the GrF growth. Then decomposition of CH4 at 1000𝑜𝐶 under 

ambient pressure provides and releases carbon source onto the nickel foam. Next step is 

the precipitation of graphene films, where the wrinkle formation is observed [68], [69]. 
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Then, an attenuated layer of poly (methyl methacrylate) on the graphene film surface is 

deposited, precluding the disintegration of graphene network during nickel removal. 

Subsequently, HCl (or FeCl3) was subsequently used to etch away the nickel foam, as 

shown in figure 3 Acetone was finally employed to cautiously remove PMMA, resulting 

in a monolith interconnected 3D graphene network. Graphene foam continuous network 

and high porosity (99.7%) that are created facilitates uniform dispersion in composite 

matrices. 

 

Figure 3: Synthesis of Graphene foam: (a and b) CVD growth of graphene films (Ni-G, b) 

using a nickel foam as scaffold. (c) as-grown graphene film after coating a thin PMMA 

supporting layer (Ni-G-PMMA). (d) Graphene foam coated with PMMA (GrF-PMMA) 

after etching the nickel foam with FeCl3/HCl solution. (e) Free-standing GrF after PMMA 

dissolution with acetone [67]. 

 

2.2.2  Free Standing Graphene Foam Properties 

GrF macroporous framework offers promising properties that can be harnessed by 

polymer-based systems. Studies have shown that GrF node-branch anatomy plays a pivotal 

role in the mechanical behavior of free standing of GrF and GrF-based polymer composites 

[34]. GrF architecture exhibits structural coherence to effectively transfer load throughout 
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the framework during its tensile deformation. Furthermore, comparison of GrF elastic 

modulus in tension and compression are evaluated using nanoindentation technique [34]. 

GrF wall tensile elastic modulus is four order of magnitude greater than when its 

compressive modulus. The remarkable elastic modulus can be ascribed to high in-plane 

mechanical behavior of graphene sheets during tension. Presence of deformation 

mechanisms could also contribute to the impressive mechanical properties of GrF. 

Deformation mechanisms such as GrF branch flexibility [70] and crack deflection [71]; 

vibration effect of GrF hollow wall [72]; sliding, rotation and rippling of graphene sheets 

can enhance the energy absorption, fracture toughness, damping behavior of GrF.  

Schematic illustration in figure 4. also conveys insights into deformation of GrF in 

multiscale dimensions. It provides spatial and temporal understanding by featuring defects 

initiation, defects propagation and failure strain in multi-scale dimensions. In agreement 

with Nieto et al.’s investigation on GrF deformation, Pan. D et al. investigated uniaxial 

tensile behavior and fracture mode of 3D GrF expanded from 2D graphene mesoscopic 

model (figure 5) [73]. 2D graphene meso-structure transformation to 3D GrF points out the 

physical mechanisms during GrF tensile deformation. The mechanisms include squeezing 

of graphene flakes and formation and fading of graphene ripples, as tensile strain increases. 

The bonds breakage noticed between graphene flakes can be ascribed to rotation and 

slippage of graphene flakes. These mechanisms justify for the ductile fracture display of 

3D GrF. Further investigation on mechanics of 3D graphene assembly elucidate that 3D 

graphene has outstanding high strength at comparably high density. In order words, its 

strength is 10 times as high as mild steel while its density is 4.6% of mild steel density 

[74]. 
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Free standing GrF can also exhibit additional properties such super-hydrophobic 

properties [75], electrochemical characteristics [76] and microwave absorption properties 

[77]. 

 

Figure 4: Insitu, multiscale, and dynamic analysis for determination of properties and 

failure mechanisms of free-standing GrF [23]. 
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Figure 5:  Meso-structure evolution during tensile deformation. (a) Beginning state of 

GrF in uniaxial tension (b) End state of GrF uniaxial tensile deformation; Yellow color 

represents local graphene flakes. (c-f) four sequential thermodynamic states of 

mesostructures during tensile deformation [73]. 

 
 

2.2.3 Processing of Graphene Foam-Based Polymer Composites 

The structure-property behavior of GrF-based polymer matrix composites (GrF-

PMC) relies on its fabrication approach. The types of fabrication techniques for GrF-PMC 

include dip coating, casting, electrostatic spray deposition, vacuum infiltration, natural 

sedimentation and centrifugal assisted method. 
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2.2.3.1 Dip coating 

Dip coating technique is a suitable processing approach when liquid polymer 

precursor as the matrix for the fabrication of the composite. The method basically involves 

the immersion of pristine GrF in the liquid polymer and varying the parameters that would 

determine the quality and formation of the coating and composites, respectively. Such 

parameters include dipping time and GrF content with the variation in time of dipping 

resulting in different thicknesses in the coating.  

Curing of the polymer-GrF system takes place under specific time and temperature 

conditions after the completion of the dip coating. Figure 6 presents a schematic showing 

dip coating process of graphene foam in the polymer. Figure 6 shows the gradual dipping 

and holding of GrF in the liquid polymer, using a control apparatus, respectively. After 

complete immersion of GrF, the polymer-GrF is removed from the precursor. It is finally 

cured using UV light or heat source in Figure 6.  The technique was adopted by Embrey et 

al. to fabricate epoxy-GrF multifunctional composite, where the composite was 

successfully synthesized [78]. 

               

Figure 6: Schematic showing dip-coating process involving polymer-GrF coating process 

[23]. 
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2.2.3.2 Casting approach 

Casting is another fabrication method used in processing GrF-reinforced polymer 

composites. It involves pouring the polymer into a mold containing GrF. This technique 

allows GrF to be completely infiltrated with the polymer solution. The polymer infiltrates 

through the pore and coats the nodes and branches of the GrF. Subjected to heat source, 

the polymer containing the embedded GrF polymerizes and forms a resultant GrF based 

polymer composite [78].  

 

2.2.3.3 Electrostatic spray deposition 

Electrostatic spray deposition technique has also been adopted for the fabrication of 

carbon-based composites. Bakshi et al. successfully employed this approach in the 

synthesis of ultrahigh molecular weight polyethylene-carbon nanotube composites 

(UHMWPE-CNT) [79]. Since CNT and GrF belong to the same carbon filler family, 

electrostatic spray can be employed to fabricate GrF-based composites.  

Electrostatic spray uses spraying technique to deposit polymer matrix in the powder 

form on the GrF for the formation of GrF-based polymer composites. Figure 7 

demonstrates electrostatic spray coating deposition process. The GrF connects to an 

electrically conductive metal foil, which aids in the capture of the sprayed powder particles. 

Then, the spray gun applies an electrostatic charge to the polymer powder particles that 

attract to the GrF substrate. The polymer powder forms a uniform thin layer on GrF. 

Processing variables of spray time and distance can be tailored to obtain specified thickness 

of polymer deposition on the GrF. The polymer powder particles are in solid state before 

being put in the oven for melting and curing. After curing, the polymer forms a continuous 
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thin layer on GrF if it has a good wettability with GrF. Curing of these components at its 

curing time and temperature produces consolidated GrF-PMC composite. 

 

                          Figure 7: Schematic of electrostatic spray coating process [23]. 

2.2.3.4 Vacuum infiltration technique 

Vacuum infiltration approach can be used in the development of GrF-based polymer 

composites. This technique involves infusion of the polymer into GrF inside a vacuum 

chamber. It has been adopted in the fabrication of GrF-based polydimethylsiloxane 

(PDMS) composite [80]. Consolidation of PDMS with GrF takes place under vacuum, 

where the PDMS infiltrates through the macroporous architecture of the GrF, as air pulled 

out from the vacuum chamber. This is thereafter cured at 80oC to form a solid GrF-PDMS 

composite. 

 

 



 

21 

 

2.2.4 Properties of Graphene Foam-Based Polymer Composites 

2.2.4.1 Mechanical Properties  

Noticeable enhancement in the mechanical behavior of GrF-based polymer 

composites can be traced to synergistic contribution from the polymer and GrF. Examples 

of polymer solutions which are integrated with GrF for improvement in their mechanical 

properties include PDMS [81]–[84], epoxy [71], [78], [85], polyimide [70], polyurethane 

[86], polylactic acid-poly ε caprolactone [87]. Synthesis methods of GrF-based polymer 

composites discussed in the preceding section are important to achieve high performance 

in the properties of these polymers. Schematic in figure 8. portrays the processing (either 

dip coating or casting) of GrF-PMC in which interface defects such as delamination could 

occur. However, occlusion of the defect growth happens after loading; defects are filled 

owing to the hierarchical structure of GrF in the polymer matrix. 

 

Figure 8: Schematics showing failure mechanisms and influence of processing on the 

behavior of graphene foam-based polymer composites fabricated by coating and casting 

[23]. 
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 Hierarchical GrF architecture allows load transfer between the matrix and node-

branch framework of GrF. This consequently results in the polymer infiltrating the 

interface defects or delaminated areas, during and after loading. It thereby leads to defect 

closure in GrF-based polymer composites. Impressive GrF mechanical behavior as 

highlighted section 2.2.2 positively impact polymer composites. Addition of 0.13 and 0.6 

wt.% of GrF results in 12% increase in ultimate tensile strength and 10% enhancement in 

the flexural stress of the epoxy composites, respectively [78]. K. Siva et al. also showed 

the boost in mechanical properties (elastic modulus, peak stress, and absorption energy) of 

GrF-PDMS compared with GrF, carbon nanotube (CNT) and CNT/PDMS [83]. The tuned 

porosity and continuous GrF network, which fosters stress transfer, could be attributed for 

these improvements. GrF role in flexible, stretchable, and sensitive strain sensors has also 

been displayed in GrF/PDMS and fragmented GrF/PDMS composites. Investigation on 

GrF/PDMS composite as strain sensor exhibited a high gauge factor of 98.6 under 5% 

applied strain. It was also 30% stretchable of its original length [88]. The mechanism 

behind the strain sensor behavior during stretching is graphene sheets slippage. The 

slippage makes cracks to occur due to breaking of the pi-piconjugated interaction within 

the graphene sheets. Crack reconnection is the mechanism that occurs during relaxation 

cycles. Fragmented GrF/PDMS has higher sensitivity with a gauge factor range 15-29 than 

GrF/PDMS with a gauge factor 2.2 [89]. This can be attributed to its resistance change 

increase owing to large contact area between the adjacent fragmented graphene foam. 

Fragmented GrF/PDMS also has high durability and stretchability of over 70% strain and 

more than 1000 stretching-releasing cycles. Another investigation on GrF/PDMS displayed 

improvement in its Young modulus, tensile and compressive strains. The improvement was 
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ascribed to brilliant mechanical properties of GrF [90]. GrF addition to PDMS in figure 10 

displayed peak modulus of GrF/PDMS (50 MPa) compared with pristine graphene foam 

(8.57 MPa) in figure 9. Figure 10 points out the synergistic influence of GrF and PDMS 

on the polymer composite.  

                            

Figure 9: Stress-strain graph of Graphene Foam. i) black line – 70% loading strain; ii) 

red line – 60% loading strain; iii) blue line e 40% loading strain; iv) purple line – 20% 

loading strain [83]. 

 

                           

Figure 10:  Stress-strain graph of GrF/PDMS. i) black line – 70% loading strain; ii) red 

line 60% loading strain; iii) blue line 40% loading strain; iv) purple line 20% loading 

strain [83]. 
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Polylactic acid-poly ε caprolactone (PLC) and polyimide (PI) are among other 

polymers that could also serve as matrices in GrF-based composites. A. Nieto et al. 

explained that GrF-PLC could be a robust support-structure for human mesenchymal stem 

cells (hMSCs). This is due to superior strength and ductility of the GrF-PLC scaffold. The 

bio-mimetic mechanical properties of GrF-PLC, coupled with the ability to support human 

stem cells differentiation, makes it suitable for tissue engineering applications such as 

growth of cartilage extracellular matrix (ECM) [87]. Furthermore, Nautiyal et al. 

demonstrated how mixture PI and GrF could exhibit remarkable damping properties [70]. 

The work reveals 300% enhancement in the damping characteristics of PI (0.12) after 

1.5wt. % GrF addition at room temperature. Impressively, the damping capacity of PI-GrF 

(0.36) is retained after its exposure to high temperature (4000oC) which is Tg of PI. It 

portrays that PI-GrF nanocomposites are desirable for exposure to extreme thermal 

conditions experienced by aircrafts and space vehicles. All these studies point to the impact 

of graphene foam reinforcement on the mechanical properties of polymer composites. 

2.2.4.2 Electrical properties 

The synergy of polymers and GrF nano-reinforcement has demonstrated boost in the 

electrical behavior of 3D GrF-based polymer composites. In fact, GrF excellent electrical 

properties have received credit for improvement in the electrical conduction of polymer 

composites. For instance, Jia et al. probed into the electrical characteristics of GrF-epoxy 

composites [71]. His group observed excellent electrical conductivity of 3 S/cm after 0.2 

wt.% GrF addition. The electrical performance can be ascribed to seamless pathway of GrF 

network for charge carriers. Similarly, G. Chen et al. noticed the output of 2.5 vol.% GrF-

epoxy composite. The composite displayed remarkable peak conductivity of 196 S/cm 
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which points to the GrF inherent capactity to significantly enhanced electrical properties 

of the polymer composites [91].  

Different from GrF-epoxy investigation, X. Sun et al. conducted a study on electrical 

conductivity of GrF/PDMS and GrF/CNT/PDMS [92][]. The result showed that 

GrF/PDMS and GrF/CNT/PDMS exhibit enhanced electrical conductivity values of 6.74 

and 31.5 S/cm, respectively. Increase in graphene and CNT concentration results in 

complete percolation in PDMS. The complete percolation facilitated PDMS to display 

more electrical conductivity. It indicates that effective synergy between CNT and GrF 

electron conduction occured. This portrays GrF as potential filler that could efficiently 

mingle with other carbon filler. Y. Jun et al. also examined study of in-plane and through-

plane conductivities of GrF/PDMS. The GrF were made from large and small graphene 

oxide foams (graphene flakes) [93]. Comparison of the in-plane electrical conductivity of 

the GrF/PDMS (graphene flakes) and GrF/PDMS was provided. Results, as depicted in 

figure 11a, showed that lower graphene content for large graphene flakes gives higher in-

plane conductivity than the standard conductivity. This can be attributed to the bigger size 

of graphene sheets. Its large size, in addition to its network structure, creates more surface 

area for efficient pathway for electron transfer. Figure 11b also illustrates the behavior of 

through-plane conductivity and normal conductivity of GrF/PDMS. It was observed that 

the through-plane conductivity was higher than the average conductivity of increased 

graphene content for small graphene flakes. This could be due to more electron percolation 

through increased content of the small graphene flakes. It can, therefore, be attested that 

GrF infiltration with polymers enables the tailoring and improvement of electrical behavior 

of GrF/PDMS composites.  
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Figure 11: (a). Electrical conductivities of GrF/PDMS (in-plane) vs Graphene wt.%. (b) 

Electrical conductivities of GrF/PDMS (through-plane) vs Graphene wt.% [23]. 

Furthermore, figure 12 shows the comparison of electrical conductivity behaviors of 

GrF/PDMS [92] and GrF/Epoxy [93]. Starting at 0.5 wt.% GrF loading, GrF epoxy 
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composite has higher conductivity than GrF-PDMS composite. It points out that below 0.5 

wt.% filler loading, GrF does not bring about adequate percolation in the epoxy matrix for 

appreciable electron conduction. Electrical conductivity increases above 0.5 wt.% GrF. It 

is also noticed that after 0.6 wt.% of GrF filler in PDMS, GrF attained its percolation 

threshold. This is revealed in the steady electrical conductivity value of GrF-PDMS 

composite, as shown in figure 12. Meanwhile, GrF-epoxy composite attained percolation 

limit after 2.0 wt.% GrF loading in epoxy (more than thrice of GrF loading in PDMS). This 

could be due to the viscosity behavior of epoxy. Epoxy viscosity, which is higher than that 

of PDMS, requires more GrF loading to arrive at its percolation threshold. It thus attests 

that choice of polymer matrix can considerably influence the electrical conductivity of the 

GrF reinforcement in polymer matrices. More importantly, electrical property of GrF in 

epoxy and PDMS helps in tailoring and improving their composites.  

               

Figure 12: Electrical conductivities of GrF/PDMS & GrF/Epoxy vs Graphene foam 

wt.% [23]. 
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GrF incorporation in other polymers, such as polyvinylidene fluoride (PVDF), 

polycaprolactone (PCL) and polypyyrole (PPy), have also shown noticeable improvement 

in their electrical properties. PVDF/GrF & PCL/GrF composites scaffolds indicate that 

their electrical conductivities were maintained at 0.07± 0.02 S/cm and 0.13± 0.06 S/cm, 

respectively compared with pristine GrF conductivity (0.36 ± 0.11 S/cm). The ability to 

retain such conductivities was ascribed to the free flow of electrons from the electrodes to 

the graphene foam network due to micro cracks within the polymer coatings [94]. 

Besides, results from GrF-PPy composites pointed to remarkable cycle life of GrF 

and PPy- GrF electrodes. Initial capacitances are preserved after 10000 and 6000 charge-

discharge cycles, respectively. It was touted that the hierarchical structure of GrF and its 

density on the flexible electrode are responsible for the enhanced capacitance stability [95]. 

Research on polyimide and polyaniline nanofiber sponge (PANI-NFS) composites 

substantiated GrF as electrical reinforcement. M. Loeblein et al. asserted that 3D graphene-

infused polyimide (PI) could exhibit a higher electrical conductivity of large 10 orders of 

magnitude than PI [96]. Also, examination of PANI-NFS/GrF conductivity displayed 

conductance (>10.8 S/cm) greater than normal PANI-NFS (3.5 S/cm) [97]. The outcome 

was due to efficient electronic transport of GrF scaffold having a pore size of 100-500 𝜇m. 

GrF hierarchical pore structures when combined with PANI-NFS (100-500 nm pore size) 

contribute to extremely high volumetric and gravimetric capacitances of the composite. 

Overall, improvements in electrical behavior of the composites were primarily due to the 

seamlessly interconnected porous structures of the graphene foam, which supplied more 

efficient path for electron transfer inside the polymers. 
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2.2.4.3 Thermal behavior 

Numerous studies have investigated distinct thermal properties of some filler 

materials, such as graphite, carbon nanotube, in polymer matrices. These reinforcing agents 

have accounted for enhancement in the thermal performance of polymer nanocomposites 

[81], [98], [99]. Recent research works on impregnation of polymers with graphene foam 

have demonstrated greater thermal property enhancements of the polymer composites. The 

scheme in figure 13 portrays thermal-electron transport process that normally occurs in 

polymer matrices reinforced with GrF, 2D, and 1D carbon-based nanomaterials. Phonons 

and electrons are galvanized from a heat source which radiates into the carbon-based 

composites. It results in thermal energy transfer, with GrF showing consistent performance 

in electronic thermal conduction within the composites. 

                  

Figure 13: Scheme of thermal and electron transport in composites reinforced with 1D, 

2D and 3D GrF [23]. 
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Pettes et al. observed increase in GrF thermal conductivity from 0.26 to 1.7 Wm-1K-

1 after using different etchants for nickel foam [100]. The thermal conductivity of pure GrF 

improved as the temperature increased above room temperature [101]. GrF also has a low 

thermal interfacial resistance of 0.04 cm2 KW-1, which is ten times lower than conventional 

thermal paste and grease used as thermal interface materials [102]. With its unique thermal 

properties, combination of GrF reinforcement with polymers (mostly PDMS) [81] has great 

potential to enhance thermal properties of polymer composites. GrF/PDMS composite has 

very low thermal resistance 14 mm2 KW-1 compared with commercial polymer metal 

composite (silver particles in epoxy) [103]. This is due to the interconnected distributed 

structure of GrF [104]. Some studies have probed GrF thermal behavior infiltrated with 

polyimide and polyamide [96], [105]. Displayed in figure 14, bare Polyimide thermal 

conductivity (0.2 Wm-1K-1) received a boost in its conductivity (1.85 Wm-1 K-1) at 150oC 

after mere 0.1 wt.% GrF addition. It suggests that the node-branch network of GrF allowed 

increased phonon flow within the PI/GrF composite. Furthermore, the comparison of 

PDMS/GrF and PI/GrF highlighted that PI/GrF possessed higher thermal conductivity and 

stability than PDMS/GrF composites. This could be due to smaller interface area exposure 

of PI/GrF to air, unlike that of PDMS.  
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Figure. 14: Graph of thermal conductivity vs temperature of PI and 0.35 wt.% GrF/PI at 

150oC, and PDMS and 0.7 wt.% GrF/PDMS at 85oC [23]. 

Figure 15 presents thermal conductivity behavior of polymer composites with 

varying GrF and flakes filler contents. Polyamide/GrF [105] displayed better thermal 

conductivity than multi-graphene flakes (MGf) in PDMS [106]. This indicates that 

hierarchical structure of GrF is conducive for thermal conduction. Interestingly, the 

combination of MGf and GrF in PDMS (with a small increase in GrF content) gave higher 

thermal conductivity values compared to that of more GrF content in polyamide. The 

combined effort of GrF with other filler materials, such as carbon fiber (CF), carbon black 

(CB) and graphene flakes, has also stepped up the thermal behavior of polymer 

nanocomposites. This is due to large pathways of heat conduction made by the connection 

of CB and CF with the GrF branches. It was observed that the loading of 8 wt.% CB into 

PDMS/GrF (0.5 wt.%) enhanced the thermal conductivity by 72% in comparison to 
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PDMS/GrF (figure 15) [107]. When GrF and CF are combined in PDMS matrix, it also 

revealed appreciable improvement in the thermal behavior of CF/GrF/PDMS. There are 

41% and 162% increase in thermal conductivity of CF/GrF/PDMS than in GrF/PDMS and 

PDMS, respectively. It suggests that formation of a combined conductive network of CF 

within and GrF could have accounted for the significant thermal conductivity 

enhancement. These results thus indicate that GrF could synergize excellently with CB and 

co-contribute electron transfer with CF. 

            

Figure 15: Graph of thermal conductivity vs filler content of Polyamide/GrF, 

Multigraphene flakes/PDMS, Multigraphene flakes/GrF/PDMS [23]. 

2.2.4.4 Additional Properties of Graphene Foam  

GrF-reinforced polymer composites can exhibit additional properties including biological, 

acoustic, and chemical. A.Nieto et al. examined biocompatibility and bio-tolerant 

properties of GrF with copolymer when used as a scaffold in the culturing of human 
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mesenchymal stem cells (hMSCs) [87]. Cellular studies conducted showed that the hMSCs 

survived and proliferated on the GrF reinforced composite. In another study, polydopamine 

PDA/GrF composite was synthesized for enzyme immobilization. GrF served as a bio-

electrode in the immobilization of horseradish peroxidase [108]. A recent study discovered 

that GrF/Tungsten (W)/Epoxy composite could produce improved acoustic performance 

[85]. GrF hierarchical and mesoporous structure is employed in the epoxy composite to 

provide a confined space that would allow dense packing of the tungsten spheres within 

GrF pores. The compactness among epoxy, tungsten spheres, and GrF would result in a 

reduction of air that can propagate acoustic wave. This would lead to high acoustic 

impedance and increased acoustic attenuation, which is required for excellent backing 

material. Corrosion behavior of 3D GrF-nickel foam polymer after exposure to 3.5% NaCl 

was also examined. It displayed decreased corrosion with increasing graphene thickness 

[109]. The observation suggests that when graphene film applies itself as corrosion 

protective coating for long-term, its compactness is very essential. It implies that when the 

graphene is sandwiched between nickel and PDMS, it could impede ion or oxygen 

diffusion to the nickel surface if its thickness is increased. This would consequently result 

in decreased corrosion of the composite.  

Based on this comprehensive review on GrF, GrF has thus been able to enrich conventional 

polymers with its great properties. To broaden the horizon where GrF can serve as 

reinforcing agent in polymers, this study further examines advanced polymer systems 

namely shape memory polymers. 
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2.3 Shape Memory Polymer Epoxy  

Shape memory polymer (SMP) is a smart polymeric material that has great scientific 

and technological significance [110]. SMP has capability to retain a temporarily deformed 

shape and to restore the deformed shape to its permanent original shape when actuated by 

an external stimulus. As an intelligent system, it can respond to diverse stimuli. Such 

stimuli can be in form of magnetic [111], ultrasound [112], direct heat [113], indirect heat 

(electricity) [114], irradiation (light at different wavelengths) [115], chemical environment 

(pH, Water/solvent ions, redox conditions) [116]. However, most SMP are thermally 

actuated since they are engineered from traditional polymers which have temperature-

sensitive properties.  

SMP can be divided into two main categories: i) physically cross-linked SMP 

(thermoplastics) and ii) chemically crosslinked SMP (thermosets) [110] . Thermoset SMP 

are amorphous polymers. They have received more attention than thermoplastic SMP 

primarily due to its versatile application purpose [117]. A foremost example of thermoset 

SMP is SMP epoxy [118]. SMP epoxy is an amorphous polymer that can be made by 

polymerization of liquid monomers with crosslinkers. It consists of two different epoxy 

monomers and a curing agent. Typical epoxy resins include Diglycidyl ether bisphenol A 

(DGEBA) and Neopentyl glycol diglycidyl ether (NGDE).  Jeffamine D230, decylamine, 

etc., serve as curing agents for the precursors. Chemical structures of the resins are shown 

in figure 16a-d: 
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a)                                                                      b)  

                          

c)                                                                                  d)  

Figure 16:  Chemical Structures of SMP epoxy components (a) Diglycidyl ether bisphenol 

A (DGEBA); (b) Neopentyl glycol diglycidyl ether (NGDE); (c) Jeffamine D-230 (n~2.5); 

(d) decylamine [118]. 

The increasing interest in SMP epoxy can be ascribed to its good attributes. Such 

attributes include facile processing, low shrinkage during curing, availability of the 

monomers, good thermomechanical stability of the polymer and versatility in chemical 

structures [16]. Its structural flexibility allows it to have high recoverable strain and exhibit 

desirable shape memory performance. These attributes have made SMP epoxy to be considered 

for structural and other multiple applications [119]. Nevertheless, SMP epoxy has some 

inherent limitations that cannot be overshadowed by its advantages. Limitations include low 

elastic modulus (1.4 – 2.5 GPa) [19], [20], poor thermal conduction (<0.3 W/mk) [18], low 

recovery stress (1 – 3 GPa) [21], and slow recovery time. Its low intrinsic stiffness accounts 

for low recovery stress generated during shape recovery. Poor heat transfer also leads to 

slow thermal diffusion through SMP epoxy. Low thermal diffusivity translates to longer 

recovery time for SMP epoxy to attain its permanent shape. It is believed that reinforcement 

addition to create SMP epoxy composites is a feasible solution [22]. The composites can 
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propel SMP epoxy matrix to operate at optimum level of performance. Research efforts 

have thus been geared towards addressing the drawbacks in SMP epoxy using conventional 

inorganic and carbon-based fillers.  

           

 

Figure 17: Number of publications on SMP reinforced with carbon-based fillers during 

2015-date. 

 

Figure 17 conveys the number of publications on carbon-based SMP composites and 

graphene based SMP epoxy composites. Compared with SMP-1D carbon fillers, SMP-

graphene and SMP epoxy-graphene composites have increased number of publications. 

Though one-dimensional carbon fillers have brought a bit of improvement, their 

morphology (as stress initiators) and anisotropy property in the resultant composites could 
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serve as drawbacks. This explains a few interests shown in them; hence, the shift to 2D 

graphene fillers. It construes that the drawbacks in 1D carbon fillers can be further 

addressed by reinforcing SMP epoxy with graphene-based fillers to boost shape memory 

performance of SMP epoxy. 

2.3.1 Graphene-Reinforced Shape Memory Epoxy Composites 

The brilliant properties of graphene have stirred up attention for it to be adopted as 

reinforcement in SMP epoxy composites. Its extraordinary high elastic modulus (1 TPa) 

has potential to boost recovery force of SMP epoxy [120].  High tensile strength of 

graphene can further improve the mechanical behavior of SMP epoxy composites. High 

thermal and electrical conductivity of graphene reinforcement is also a great advantage to 

SMP. It can help provide effective thermal stimulus, improving SMP actuation output 

[121]. Strong anisotropic bonding and low mass of carbon atoms can be attributed to its 

easy phonon flow behavior that supply heat conduction [122]. Graphene electrical property 

can also enable it serve as an alternative stimulus for non-electrically conductive SMP. The 

delocalized 𝜋 electrons within the conduction band accounts for electron flow in graphene 

sheet [122]. Based on the impressive highlighted properties, adopting graphene-based 

fillers is promising for SMP epoxy performance in structural applications. 

2.3.2 Synthesis of Graphene-Reinforced Shape Memory Epoxy Composites 

The preparation of SMP epoxy-graphene is grouped into two subsections. The first 

section focuses on graphene dispersion. The second section considers the processing of the 

SMP epoxy-graphene composites. These fabrication approaches are pivotal to property-

performance characteristics of the composites. 
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2.3.2.1 Graphene Dispersion Technique 

It is important for graphene to be well dispersed for it to serve as an effective 

reinforcement in SMP epoxy. Graphene can be subjected to different dispersion methods. 

Typical dispersion approach used for graphene reinforcement in SMP is ultrasonication. 

Ultrasonication is simply a process that harness sound energy at high frequencies to break 

apart particle aggregates by cavitation, bubble expansion and implosion in the solvent 

[123]. 

Few studies have used this approach to prepare graphene filler for SMP. E. Wang et 

al. synthesized graphene oxide (GO) short fibers [124]. The GO fibers dispersed in 

deionized water with the aid of ultrasonicating machine to give uniform flocculent 

dispersion for GO paper formation, as shown in the schematic (figure 18). C. Huang as 

well fabricated homogenous GO aqueous suspensions by ultrasonication. It was later freeze 

dried and obtained as scaffold that was infiltrated by SMP epoxy [125]. GO could also be 

ultrasonicated in N-Methyl-2-Pyrrolidone (NMP) solvent for preparation of reduced GO 

which was integrated in SMP epoxy.  

Furthermore, mechanical stirring is another approach which can be used to disperse 

graphene. The approach is largely combined with sonication. For instance, Z. Yu 

synthesized GO by first mechanically stirring a solution containing graphite powder, 

KMn04, NaNO3 and deionized water. Then, ultrasonication process is followed [126]. 
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Figure 18: Preparation procedures of RGO/WEP/RGO sandwich structure composite film 

[124]. 

2.3.2.2 Processing of SMP-graphene Composites 

As excellent dispersion of graphene plays a key role, graphene integration with SMP 

epoxy is also important. Different techniques used in fabricating SMP epoxy-graphene 

would be briefly described. Such techniques include resin transfer molding [127], mini-

calendering [128], vaccum infusion[129], sonication and mechanical stirring[130], [131] , 

and casting [125].   

Resin transfer molding  

The reinforcing agent (reduced GO paper) was first preloaded into the botton surface of 

the mold. The polymer mixture containing SMP epoxy resin and hardener was injected into 

the mold. SMP mixture filled the mold and was left to room-cure [127]. 
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Mini-calendering 

Calendering is a manufacturing processing of compressing or smoothing material by 

passing the material through several heated rolls. A study adopted mini-calendering 

technique to fabricate SMP epoxy-graphene composite [128]. Three-roll mill was initiaally 

heated. The SMP-graphene material was passed through it, with step-by-step reduction in 

the roll gaps. This was performed to achieve uniform distribution of the fillers. 

Sonicating and Mechanical Stirring 

SMP epoxy-graphene composites can be fabricated by ultrasonicating. In some 

instances, mechanical stirring can be added after sonication. A study by E. Wang et al. 

fabricated SMP epoxy with hybrid filler of GO and CNT by solution mixing [130]. They 

added CNT/GO aqueous solution to waterborne epoxy and ultrasonicated it for 30 minutes. 

This was further freeze dried to give resultant powder and was used as SMP composite 

film. Y. Wang et al. combined ultrasonication and mechnanical stirring to prepare their 

composites [131]. Graphene solution was first added to SMP epoxy mixtures by magnetic 

stirring (200 rpm) and subjected to ultrasonication for 20 minutes. The mixture was further 

heat to 60oC to remove the solvent and stirring was increased to 300 rpm. The sample 

mixture was heated to 80oC for 10 hr and poured into the mold for curing. Furthermore, C. 

Huang et al. fabricated nacre-like SMP epoxy-graphene composites by freeze casting 

(schematic shown in figure 19) after preparing GO aqueous suspension by ultrasonication 

[125]. Frozen GO suspension was put in a freeze dryer for 2 days. The resultant GO 

scaffolds obtained were heated for 1 hour at 800°C in nitrogen. It was further filled with 

SMP epoxy and cured for 2 hours at 130°C. 
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Figure. 19: Schematic of the fabrication of E-G composites. (a) Preparation of GO aqueous 

suspension with THF, then freezing by bidirectional freeze-casting (b). The lamellar GO 

scaffold was obtained after freeze drying (c). Subsequently, heating was applied to reduce 

the GO scaffold, forming an rGO scaffold (d). Finally, the E-G composite was produced 

by infiltrating with shape memory EP and (e) curing [125]. 

Casting 

Like casting technique adopted in the fabrication of GrF based polymer technique, 

SMP-graphene composites can be prepared by the approach. Z. Yu et al. prepared SMP 

epoxy-graphene mixture at 60oC for 3 hours and put in vaccum drying box at 80oC for 12 

hours [126]. The mixture was finally cast into the mold and cured at room temperature for 

another 12 hours. Similarly, X. Xiao synthesized SMP-based epoxy composite by casting 

[132]. They mixed Epon 826, NGDE and Jeffamine D230 together, by hand, in the ratio of 

1.3/0.7/1 for 10 seconds. The sample mixture was cast into an aluminum mold, followed 

by curing at 100oC for 1 hour and post-curing at 130oC for addition 1 hour.  

The processing techniques highlighted indicate robustness in the fabrication of SMP 

epoxy-graphene composites for smart-based applications. 



 

42 

 

2.3.3 Properties of Graphene-Reinforced Shape Memory Epoxy Composites 

2.3.3.1 Shape Recovery Behavior 

Graphene-reinforced SMP epoxy composite is an emerging smart polymer 

composite. Presently, few studies have investigated graphene influence on shape memory, 

mechanical and thermal properties of SMP epoxy. Y. Wang et al. examined shape memory 

performance of graphene-hydro epoxy (H-EP) composite [131]. They revealed that 

increase in graphene content from 1 to 3 wt.% resulted in increase in shape recovery ratio 

from 95.6 to 96.4%. Furthermore, 3 wt.% graphene addition enhance the recovery speed 

of SMP epoxy by 25%. Increasing graphene content causes increase in stiffness and themal 

conductivity, improving the shape recovery ratio and recovery speed. In another study, W. 

Wang constructed electrically driven SMP epoxy-based composite [127]. They found out 

that shape recovery speed of RGO-SMP epoxy composites increased as the applied voltage 

increased. In order words, the recovery speed five times faster at 4 V than at 6 V. The shape 

recoverability was nearly 100% at 6 volts and 5 seconds. It suggests that electrical 

induction could save more energy than thermal actuation of SMP.  

Also, L. Chen et al. incorporated different dimensions of nanocarbon (carbon black, 

CNT, graphene and functionalized graphene sheet (FGS)) in microwave responsive SMP 

epoxy [128]. FGS reinforced SMP epoxy exhibited shortest recovery time (250 seconds) 

compared to that of carbon black-based composite (600 seconds).  The quick heat diffusion 

could be attributed to large BET surface area of FGS (385.7 m2/g). Strong interface 

adhesion between the FGS and SMP epoxy could also minimize the heat diffusion 

resistance. Further, X. Xiao et al evaluated recovery or self-healing of SMP epoxy-based 

composites by performing scratch test using Vickers indenter [132]. Addition of nanolayer 
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graphene enhances the SMP scratch resistance. Qualitatively, neat SMP epoxy showed 

large cracks along the crack direction. Meanwhile, under similar scratching conditions, 

only small cracks were observed in the first SMP epoxy-graphene sample and no visible 

cracks were seen on the second SMP epoxy-graphene sample (figure 20). It suggests that 

improvement improvement in scratch resistance is ascribed to the remarkable in-plane 

fracture strength of the graphene sheets. Weak interlayer interactions between the 

nanolayers could also engender easy interlayer movement. This enables energy absorption, 

preventing further crack formation or propagation. 

             

Figure 20: Surface images of the as scratched and recovered surfaces. The optical images 

in the left two columns represent samples after scratch testing. The optical images in the 

third column are the recovered samples after heating [132].  
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2.3.3.2 Uniaxial and Dynamic Mechanical properties 

Effect of graphene on mechanical and thermal behavior SMP epoxy points to the 

possibility in performance enhancement of SMP epoxy composites. To illustrate, Z. Yu et 

al. investigated the uniaxial properties of SMP epoxy-graphene composites [126]. The 

tensile fracture stress of the composites was approximately 35% greater than the SMP 

epoxy resin (figure 21a). This can be attributed to good interface, resulting in more 

interaction between the filler and matrix. Improvement in dynamic mechanical analysis 

(DMA) properties was also noticed after GO addition. Storage modulus of the SMP epoxy 

composite increased at 0.4 and 0.8 wt.% graphene by roughly 35% at 75oC than that of 

SMP epoxy (shown in figure 21b). This could be due to increase stiffness from the 

graphene and interfacial stress transfer from the SMP epoxy to the graphene. 

         

(a) 
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Figure 21: (a) Stress-strain curves (b) DMA curves of storage of GO-toughened epoxy 

resin composites [126]. 

 

Similarly, another study from X. Liu et al. probed the DMA properties of electroactive 

SMP epoxy-graphene/CNT composite [129]. Below glass transition temperature (Tg), the 

storage modulus of the composite is greater than that of the epoxy matrix. Restriction of 

the matrix chains by graphene and CNT could account for increase in composite’s storage 

modulus. However, low storage modulus of the composite above the Tg could be due to 

weakened cross-linking density. Additional properties such thermal conductivity was also 

considered. E. Wang examined the thermal conductivity of SMP epoxy-GO/CNT 

composite [130]. Compare to SMP epoxy, thermal conductivity coefficients of SMP 

epoxy-GO and SMP epoxy-GO/CNT composite are180% and 375% higher, respectively. 

These remarkable phenomena could be justified from the physical properties of the hybrid 

fillers. Synergistic effect between GO and CNT could give these significant conductivity 

(b)  



 

46 

 

increase. Also, combination of GO and CNT could form a 3D conductive network 

framework. The framework creates large surface area between the fillers and the epoxy. 

This further creates more available pathway for phonon diffusion and and limit thermal 

interfacial resistance.   

2.3.4 Potential Applications of Graphene-Based Polymer and SMP Composites 

The excellent properties of graphene reinforcement and SMP matrix system make the 

composite an eye-catching candidate for science and industrial-based communities. 

Graphene-based polymer and SMP composites can fit into different applications, ranging 

from aerospace and automobile to biomedical and electronics [119]. Electronic industry 

can use the emerging graphene based SMP composites in flexible electronics, 

electrochemical biosensors, super-capacitors, strain sensors [133], [134] etc. The sensivity, 

flexibility and stability of graphene reinforced SMP composites bring up its usefulness in 

structural health monitoring [135]. Similarly, the stretching and relaxation movements of 

SMP epoxy-based composites can help in motion detection of the human body, serving as 

wearable biosensors [136]. Some of these SMP composites can also find its use as 

electrochemical sensing such as in detection of bases and enzymes [137]. Graphene based 

SMP composites could provide high-performance super-capacitors with the improved 

cyclic stability [138]. Furthermore, for its thermal applications, graphene based SMP 

composites demonstrated high potentials in thermal management of microelectronics 

devices. Thermal properties of graphene-SMP composites offer enough capacity for the 

composites to serve as thermal interface materials (TIM) for semiconductor chips, 

supplying low thermal resistance and high thermal conductivity [139]. 
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It is important to note, again, that despite the improvements in the shape memory behavior 

of 2D graphene reinforced epoxy SMPs, the challenges such as weak interfacial interaction 

and graphene sheet aggregation still remain. Report from Wang et al. also highlighted that 

graphene restacking can result in lower epoxy SMP storage modulus to produce low shape 

recovery force of the epoxy SMP [131]. Hence, the need to incorporate 3D graphene foam 

reinforcement in SMP epoxy to completely harness graphene properties. 
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Chapter III: Materials and Methods 

 

This chapter presents materials and methods used in synthesizing GrF reinforced 

SMP epoxy composites. The characterization techniques and experimental setup employed 

to obtain information on the microstructure, mechanical, thermal, and shape memory 

properties are also described.  

3.1 Materials 

Two forms of epoxy resins and a diamine component were used as SMP matrix in 

this study. The two epoxies are diglycidyl ether of bisphenol A (DGEBA) and neopentyl 

glycol diglycidyl ether (NGDE). The diamine component is poly(propylene glycol)bis(2-

aminopropyl) ether. Graphene Foam was used as a reinforcement or filler component to 

primarily improve shape recovery behavior of the SMP matrix. In the subsequent 

subsections, the properties of these materials would be provided.  

3.1.1 SMP Epoxy Components 

3.1.1.1 Diglycidyl ether of bisphenol A  

Diglycidyl ether of bisphenol A (DGEBA) is a commercial epoxy resin, synthesized 

by Hexion Specialty Chemicals (Columbus, OH, USA). It is produced by reacting 

bisphenol A with epichlorohydrin. It has a trademark name known as EPON 826. DGEBA 

is aromatic. It is a colorless liquid, with a density of 1.16 g/ml. DGEBA has low viscosity 

of 0.64 - 0.95 cP at 25oC, with a molecular weight of 340 g mol-1.  
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3.1.1.2 Neopentyl glycol diglycidyl ether  

Neopentyl glycol diglycidyl ether (NGDE) is an ether epoxide derivative. It is 

obtained from Sigma Aldrich (St. Louis, Missouri, USA). It is a long-chain epoxide, having 

two epoxide groups at the end of the chain. NGDE is aliphatic and is colorless liquid. It 

also has a low viscosity of 10 - 30 cP at 25oC. Its density and molecular weights are 1.04 

g/ml and 216.28 g mol-1, respectively. 

3.1.1.3 Poly(propylene glycol)bis(2-aminopropyl) ether 

Poly(propylene glycol)bis(2-aminopropyl) ether belongs to the family of polyamines. 

It synthesized by Huntsman Corporation (Woodlands, Texas, USA).  Its trademark name 

is known as Jeffamine D230. The backbone chain of Jeffamine D230 consists of repeated 

oxypropylene units. It is a difunctional, primary amine and has an average molecular 

weight of approximately 230. The primary amine groups are situated on secondary carbon 

atoms at the end of the aliphatic polyether chain. Like EPON 826 and NGDE, Jeffamine 

D230 is colorless liquid and has an ammoniacal odor. It's relative density and dynamic 

viscosity at 20oC are 0.9476 and 10.3 cP. 

3.1.2 3D Graphene Foam 

The GrF selected for reinforcement of the shape memory epoxy matrix is procured 

from Graphene Supermarket (Calverton, NY, USA). Figure 22a shows an SEM image of 

the hierarchical structure of the as-received GrF. The manufacturer from Graphene 

Supermarket synthesized graphene foam using the template-directed CVD approach, 

which was described in the literature review. Free standing graphene foam has a pore size 

of 580 µm and 1-2 mm thickness. Due to its approximately 99.7% high porosity, graphene 
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foam has an ultra-low density of 4 𝑚𝑔 𝑐𝑚3⁄ . Its hollow branch diameter is 50 µm. The 

foam architecture consists of 5-7 thin interconnected layers of graphene sheets.        

3.1.3 Graphene Nanoplatelets 

Graphene Nanoplatelets (xGNP-M-5) were procured from XG Sciences, Lansing, 

MI, USA. It has a thickness of 6-8 nm [140]. This implies that an average GNP particle 

consist of about 20 graphene sheets as an individual pair of graphene layers has ~ 0.35 nm 

thickness [141]. Having an average diameter of 15 µm, GNP particles exhibits a relative 

surface area of 120-150 m2/g [140]. GNPs contains some functional groups at its edges, 

consisting of approximately 0.03% hydroxyl groups, 0.035% carboxyl and 0.075% ether 

[140]. Figure 22b shows the SEM image of wrinkled and folded GNPs. 

 

          

       

(a) 
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Figure 22: SEM micrograph of (a) as-received GrF made by chemical vapor deposition 

(CVD) [78] (b) SEM image of as-received graphene nanoplatelets (xGNP-M-5) were 

obtained from XG Sciences [158] 

 

3.2 Experimental Procedure  

3.2.1 Preparation of SMP Epoxy  

SMP epoxy consists of a mixture of three components: Diglycidyl ether of bisphenol 

A (or EPON 826), neopentyl glycol diglycidyl ether and poly(propylene glycol)bis(2-

aminopropyl) ether. Volume ratio for SMP epoxy formulation from the three components 

was selected as 1:1:1. The selection was preferred because it would give optimum good 

(b) 
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shape memory behavior for SMP epoxy [118]. Subsequently, EPON 826 was first weighed 

(2.98 ml) into a ceramic cup and melted by heating in an oven preset at 70oC for 15 min. 

This was followed by pouring the melted EPON 826 along with the weighed Jeffamine 

D230 and NGDE into a cylindrical plastic container. The three components were stirred 

and shaken vigorously by hand for about 10 s to mix them thoroughly. The volume of each 

component was obtained by determining the reacting mass from the ratio of number moles 

and respective molecular weights; then the volume was known from the ratio of their 

reacting mass to respective densities.  

3.2.2 Mold Casting of SMP Epoxy-GrF Composite 

3.2.2.1 Fabrication of Rectangular Shape Samples 

Aluminum pan was used as the mold to fabricate rectangular samples of the 

composite. Free standing GrF of dimensions of 40 mm in length, 2 mm in width and 1.2 

mm in thickness was in-situ inside the pan. The mixed liquid resin was poured into the pan 

at room temperature, infiltrating GrF till it is fully covered with SMP epoxy. The samples 

were placed in the oven for it to polymerize. For it to polymerize, samples were thermally 

cured in the oven at 100oC for 1.5 hours and post-cured at 130oC for 1 hour. After complete 

polymerization, the samples were demolded and cut into rectangular shapes (1 x 3 x 50 

mm) for shape recovery and DMA characterization. The same fabrication process was 

performed for the neat SMP epoxy samples. A schematic to describe the fabrication process 

is shown in Figure 23. 
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Figure 23: Schematic of a Mold Cast Thermal Responsive SMP-GrF Composite 

 3.2.2.2 Fabrication of Dog-Bone Shape Samples 

SolidWorks CAD software was utilized to design a reverse impression dog-bone 

mold fixture. The reverse impression fixture was manufactured using aluminum material, 

as shown in Figure 24. The aluminum mold is used to create a silicone dog-bone mold 

(which was employed to produce dog-bone SMP epoxy composites). The silicone mold 

was coated with mold release agent and allowed to air dry. GrF were cut into three-strip 

pieces having dimension 30 x 4 mm. Each piece was weighed individually. A syringe was 

used to dispense a layer of SMP epoxy into the bottom of the casting silicone mold. The 

GrF strips were placed over the epoxy into the gauge length of the mold (figure 25). The 

samples were placed in the oven at 100oC and cured for 1.5 hours and post cured at 130oC 

for 1 hour. The same procedure was adopted to fabricate the control samples. All the 

samples were demolded after complete curing for uniaxial tensile testing. 
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                    Figure 24: Reverse impression dog-bone mold fixture 

 

 

 

 

             

Figure 25: Schematic of SMP epoxy-GrF mold cast Composite 

 

3.2.2.3 Fabrication of Electrically Responsive SMP Epoxy-GrF Composites 

Same dimensions of GrF used in section 3.2.2.1 was connected to a platinum wire (Pt) of 

0.1 mm diameter (Surepure Chemetals, LLC, Florham Park, NJ) using a conductive Pelco 

colloidal silver paste (Clovis, CA). The schematic is shown in figure 26. Addition of the 

silver paste between the interface of the Pt wire and GrF allows contact resistance to be 
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minimized during current-induced heating of GrF. The silver paste was cured at 100°C for 

30 min. Premixed SMP epoxy was cast, infiltrating the graphene foam-wire connection 

laid in flat pan aluminum mold. The new configuration of SMP epoxy-GrF composite 

sample was similarly cured and post-cured at 100oC for 1.5 hours and 130oC for one h, 

respectively. 

                      

Figure 26: Schematic of a fabricated Electrically Responsive SMP-GrF Composite   

3.2.3 3D Printing of SMP Epoxy and Graphene-Based SMP Epoxy Composites 

3D printing of dog-bone shape of SMP epoxy and its graphene-based counterpart was 

performed using a Hyrel System 30M printer with syringe dispensing system (SDS) 

extruder. Settings considered for the SDS extruder include software for the stepper motor, 

nozzle diameter and “start/end” G-code. The 3D dog-bone models for printing were 

designed using SolidWorks CAD software. All STL files obtained from SolidWorks were 

processed by an open source free software Slic3r (http://slic3r.org/), an open-source 3D 

printing toolbox. Slic3r sliced the files into 200 μm thick layers to generate G-code 

Platinum wire 
Silver paste 
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instructions for the 3D printer. The G-code was created using the spiral option in the Slic3r 

software. The G-code was sent to the printer using Repetrel software, a proprietary 3D 

printer host software suite designed by Hyrel 3D company.  

Before 3D printing, a glass slide was placed on the printer bed. The glass slide serves 

as the plate where the material would be directly printed. Also, the viscosity of SMP epoxy 

resin and the epoxy-graphene solution was determined using a viscometer. SMP Epoxy has 

a viscosity 730 cP, and it was drawn into a 60 mL plastic syringe. It was then capped with 

an 800 μm-ID 0.75″ stainless steel deposition tip (Nordson EFD). The syringe was mounted 

into the SDS extruder of the 3D printer. Extruder nozzle was positioned at the bottom center 

of the printer bed, and the Z-position of the printer bed was set to zero position for the 

printing of the dog-bone shape samples. Printing occurred at a typical speed of 20 mm/s, 

taking 2.5 minutes to print each sample. During printing, freeze spray aerosol was sprayed 

on the extruded material. This was done to prevent material smudging because SMP epoxy 

is temperature-sensitive. After printing, the glass slide containing the printed samples were 

placed in the refrigerator. The printed samples were subjected to a low temperature of 10°C 

for 24 hours to prevent further any smudging that could occur, helping the material to retain 

the dog-bone shape configuration. The SMP epoxy-based samples were then allowed to 

cure for an additional 72 hours at room temperature. The rigid prints were demolded and 

gently removed from the glass slide at 40°C.  
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3.3 Microstructural Characterization 

3.3.1 Scanning Electron Microscopy: Powder Morphology and Microstructure of 

Composites  

JEOL JSM-633OF field emission scanning electron microscope (FE-SEM) operating 

at 15kV was used for the characterization of SMP epoxy powder, cured SMP epoxy and 

SMP epoxy-GrF composites. The primary use of FE-SEM was in investigating the fracture 

surface of tensile specimens made from casting and 3D printing techniques. SEM deep 

depth of field and large depth of focus at low magnifications enable it to be a robust 

technique to extract information from smooth and rough fracture surfaces on the failure 

mechanisms of SMP epoxy-based samples. Fracture surfaces were prepared by subjecting 

the samples under a tensile load till breakage point and examined the broken surfaces 

within the gauge length region of the samples. Samples were sputter-coated with gold for 

50 sec before examining in SEM to avoid artifact due to charging. Fracture surfaces of the 

cast and 3D printed samples were observed under SEM to analyze the infiltration of GrF 

its bonding with SMP matrix and graphene dispersion in the matrix, respectively. Also, the 

low magnification top view of the samples was shown with a digital microscope (Dino-

Lite, Dunwell Tech, Inc., Torrance, CA, USA) during tensile testing. 

3.3.2 Raman Spectroscopy 

Raman spectroscopy is a very important surface characterization technique for 

probing molecular vibrations. They are based on the interaction of electromagnetic 

radiation with vibrating modes of a molecule. Raman spectroscopy is specifically based on 

inelastic scattering of monochromatic incident radiation when the radiation interacts with 

the vibrating molecules vibrational modes of a molecule [142]. Raman spectroscopy was 
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conducted to show characteristics plot for all specific type of bonds present in the samples. 

This could be construed as the presence of a chemical compound. Raman spectroscopy on 

SMP epoxy-based specimens was performed using a Spectra-Physics (Model 3900S, CA) 

equipped with Ti sapphire crystal (514 nm) as the target. The Spectra-Physics also consists 

of a detector with 4 cm−1 spectral resolution from Kaiser Optical Systems, Inc. (Michigan, 

USA), a laser power (18 mW) and spot size of 6 μm. 

3.3.2 Fourier Transform Infrared (FTIR) Spectroscopy 

FTIR is also an essential technique to reveal surface functionalities of a material. It 

is the study of the interaction between electromagnetic fields and matter within the infrared 

region, showing the properties of the matter. The interaction of IR radiation with a 

molecule can make the molecule to absorb radiation and excite to a higher vibration state. 

In order words, if the energy of the photon coincides with the molecule’s vibrational energy 

of the molecule, a frequency will be strongly absorbed. It gives fingerprint information on 

the chemical composition of the sample. FTIR spectra of SMP epoxy-based composite 

samples were recorded using FT/IR 4000 type spectrophotometer (JASCO FT/IR, 4100, 

Tokyo, Japan) within a range from 4000 to 400 cm-1. 

3.4 Thermal Characterization 

3.4.1 Differential Scanning Calorimetry (DSC) 

DSC is one of the most used thermal analysis techniques to evaluate heat flows that 

are involved in a material transition as a function of temperature and time. It provides 

qualitative and quantitative information about chemical and physical changes during a 

change in heat capacity of the material. The changes point to glass transition temperature 
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(Tg) for materials such as thermoset polymers. DSC measurements of SMP epoxy and 

SMP epoxy-GrF composite were performed using SDT Q600 from TA Instruments (New 

Castle, DE, USA). 8 mg of sample was enclosed in an aluminum pan and subjected to 

heating rate of 10oC/min from room temperature to 175oC. It was under an argon 

atmosphere and a purge gas flow rate of 50 mL min-1. The inflection temperatures obtained 

in the DSC thermogram curves are the glass transition temperatures of SMP epoxy and 

SMP epoxy-GrF composites. 

3.4.2 Thermal Conductivity  

A flash thermal conductivity technique (LFA 467, NETZSCH, Germany) was 

employed for evaluation of the thermal diffusivity (α, mm2/s) and the size of each measured 

circular sample at 25oC is 12.7 mm in diameter, 0.792 mm in thickness (for SMP epoxy) 

and 1.09 mm in thickness (SMP epoxy-graphene). The thermal conductivity (λ, W/mK) of 

SMP epoxy composites and SMP epoxy was then calculated as; 

                                         λ = α × ρ × Cp                                                                    Eqn 3.1 

α is the thermal diffusivity, ρ is the density and Cp is the specific heat capacity 

Thermal diffusivity of the samples within the temperature range of 25 to 70oC was 

obtained, and its thermal conductivity was determined at 25oC and 70oC. 

3.4.3 Dilatometry 

Dilatometry is a widely adopted technique for the determination of the coefficient of 

linear thermal expansion of specimens, particularly polymeric materials. In this approach, 

the sample is placed inside a dilatometer consisting of a furnace, push rod and high 

resolution linear variable differential transformer (LVDT) (as a sensor unit). The core of 
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LVDT is joined to the sample through the pushrod and move-in coordination to specimen 

expansion during heating. Then after heating, thermal expansion is obtained. Dilatometry 

measurement of SMP epoxy samples was performed with the aid of DIL 802/802L 

differential horizontal dilatometer under air at 10oC/min from room temperature to 40oC. 

Dimensional change and coefficient of linear thermal expansion of the samples were 

obtained. 

3.5 Shape Memory Characterization 

3.5.1 Thermally Stimulated SMP Epoxy-GrF Composite 

Rectangular samples of SMP epoxy-GrF composite having dimensions 50 x 3 x 1 

mm was prepared, as highlighted in section 3.2.2.1. The sample was placed on a hot plate 

at 70oC for 5 s. Then, it was manually deformed into a temporary ‘U’ shape with a radius 

of 3 mm in its rubbery state, after it was immediately removed from the hot plate. Promptly, 

the sample was dipped in the sample in a cold-water bath (20oC) for 6 s while the external 

constraint was maintained. This is done to lock the elastic deformation energy and retain 

the deformed shape. The deformed ‘U’ shape sample was returned to the hot plate at70oC 

for 5 s, recovering to its original rectangular shape.  

3.5.1.1 Qualitative and Quantitative Evaluation of Shape Recovery of SMP Epoxy-

GrF Composite 

Qualitative evaluation of shape recovery of the composite samples was performed 

with the aid of a Nikon D3500 DSLR camera. The camera was used to record videos and 

take images of how the deformed shape returns to its original shape. Shape recovery time 

was obtained from the videos. Image J was employed to quantify the shape recovery of the 

samples. Image J is an open-source Java-based image processing program tailored for 
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scientific dimensional images. Shape recovery angles of the samples concerning time were 

measured with the Image J software, and shape recovery ratio and the rate were calculated 

from the recovery angle and time. 

3.5.1.2 Electrically Stimulated SMP Epoxy-GrF Composite 

Electrical actuation based on current-induced heating was applied to the bent pre-

deformed GrF-based SMP epoxy samples described in section 3.2.2.3 to recover to its 

original flat shape. The current-induced heating was performed by supplying a direct 

current through the composite. Current was produced by a four-point probe technique, 

using a Keithley 2401 digital source meter (Cleveland, OH, USA). Two pairs of probes, 

connected to the DC source for current supply, were attached to the platinum wire 

electrodes of 0.1mm diameter (Surepure Chemetals, LLC, Florham Park, NJ) in contact 

with the SMP epoxy-GrF composite. Flow of electric current through the GrF embedded 

in the SMP epoxy matrix induces heat generated to the temperature of 700C. The heat is 

enough to restore the bent shape to original flat shape. Similar approach using the camera 

and Image J is used to quanitify the recovery of the electrical responsive SMP epoxy-GrF 

composite. 

3.5.3 Thermal Imaging of Electrically Triggered SMP Epoxy-GrF Composite 

Thermal imaging was performed when current-induced heating propagates through 

the composite. This was conducted by using FLIR T620 High-Resolution Infrared Thermal 

Imaging camera (Wilsonville, OR). The camera served two functions concomitantly. It 

observed the surface temperature changes of the samples. It also recorded and revealed 

heat transport or distribution through the GrF to the entire SMP epoxy matrix.  
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3.6 Evaluation of Mechanical Behavior 

3.6.1 Uniaxial Tensile Test 

Tensile strength of cast and 3D printed samples was determined by conducting 

uniaxial tensile testing using a mechanical testing stage (SEMtester 1000, MTI 

Instruments, Inc., Albany, NY, USA), shown in figure 27. The mechanical testing stage 

load cells (4400 and 440 N) were used to perform tensile testing for casting, and 3D printed 

samples, respectively. The stage is controlled using MTEST Quattro software (ADMET, 

Norwood, MA, USA). The tests were performed by holding the sample between the grip 

fixtures and applying a force that stretched the sample gauge length to a failure at a rate of 

1 mm/min. Load-displacement data and plot is obtained from the software after the test is 

completed. 

                  

   Figure 27: Image showing mechanical MTI testing stage used for tensile testing [162] 

To determine the accurate representation of the material property, the load-

displacement result is normalized. Load data is normalized with a cross-sectional area of 



 

63 

 

the sample while displacement is normalized with the sample’s gauge length. The 

standardization of data gives the stress-strain result of the sample, as indicated in the 

following equations:  

                                  𝜎 = 𝐹

𝐴
                                                   Eqn 3.2 

          where 𝜎 = tensile stress; 𝐹= force applied and 𝐴= cross-sectional area 

                          𝜀 = ∆𝐿

𝐿
                                                                             Eqn 3.3 

           where 𝜀= tensile stress; ∆𝐿= force applied and 𝐿= original length 

This means that stress is obtained by the basic calculation of dividing the applied force by 

sample cross-sectional area. The strain calculations are based on strain analysis using 

DLTdv packages in MATLAB platform. DLTdv package is a direct linear transformation 

for digitizing (2D motion) videos containing strain data. After digitizing, the package 

provides information on  ∆𝐿
𝐿
, which is plotted against stress to give a stress-strain plot of the 

SMP epoxy-based samples. 

3.6.2 Dynamic Mechanical Analysis (DMA) 

Dynamic mechanical performance was conducted using Electroforce 3100 from TA 

Instruments (New Castle, DE, USA) and DMA 242 Artemis from NETZSCH Instruments 

(Burlington, MA, USA) in tensile, bending and multifrequency modes.  The Electroforce 

is run by WinTest software, which contains the DMA application, and interfaces with 

TRIOS software. An external MTI heater unit (SEMtester 1000, MTI Instruments, Inc., 

Albany, NY, USA) was added and positioned beneath the tensile fixture of the Electroforce 
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3100 instrument. This was done because the instrument does not have an in-built furnace 

that can subject the material above room temperature.  

Rectangular samples of SMP epoxy-GrF with dimensions of 10 mm long, 8 mm wide 

and 1.38 mm thick were used. Using the Electroforce with a force transducer of 1000 gram, 

the samples were placed within the tensile grip fixtures. As the sample is subjected under 

displacement control, an amplitude load range (50-5 𝜇𝑚) and a frequency sweep (10 – 100 

Hz) was applied on it. This was carried at different temperatures (from 25–70oC). The 

temperature range was based on the environmental temperature for some structural 

applications. The TRIOS software provides the output results containing the tan delta of 

the samples. 

SMP-epoxy-GrF sample was further subjected to bending deformation using DMA 

242 Artemis. The sample was placed in a 3-point bending deformation fixture and enclosed 

in a furnace. The control type selected is mixed control. A constant static force is not 

applied to the sample as the force would change as the sample greatly softens during the 

glass transition. A static preload is therefore set by setting the proportional factor (PF) of 

1.1. Thus, static preload can be determined as; 

          FStatic preload = 𝑃𝐹 𝑥 𝐹𝐷𝑦𝑛𝑎𝑚𝑖𝑐                                                                   Eqn 3.4  

A dynamic load of 2 N and specific amplitudes of 50, 100, and 200 𝜇𝑚 are applied within 

the temperature range from 25–100oC at heating rate of 3K/min and 1 Hz. After test 

completion, the storage and loss moduli and tan delta curves are obtained using the DMA 

242 software. 
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Chapter IV: Results and Discussion 

The overall goal of this research is to enhance the shape recovery ability of GrF-

reinforced shape memory epoxy composites, which can be used to make low density, 

flexible, and morphing structures. To accomplish the objective, structure-processing-

property of the composite is significantly considered. Micro-structural characteristics of 

the composite are elucidated to portray good interfacial interaction between GrF 

reinforcement and SMP epoxy matrix. Shape recovery behavior is evaluated to confirm 

enhancement in recovery performance of the GrF-based composites fabricated by a cast 

and 3D printed samples. Thermal studies are undertaken for understanding GrF influence 

in Tg and expansion behavior of SMP epoxy. Mechanical performance of the 

reinforcement in the matrix is pursued to explain the role played by fundamental 

mechanisms in the matrix property enhancement. These findings are thoroughly explained 

in the following sections. 

4.1 Morphology of SMP Epoxy-GrF Composites prepared by Mold Casting 

GrF, which is employed to reinforce SMP epoxy, is a macro-porous framework of 

interconnected graphene sheets. Figure 22 shows the hierarchical structure of the as-

received GrF exhibiting branch-node architecture. Integration of SMP epoxy-GrF 

composite requires that SMP epoxy permeates through the interconnected nano-pores and 

wets the branches and nodes of GrF. Its infiltration characteristics control permeation of 

SMP epoxy. This is further contingent on SMP epoxy viscosity and GrF pore size. SMP 

epoxy in this study has low viscosity (25.6 cP), which easily percolates through the GrF 
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pores (580 μm). An infiltration factor (If) equation proposed by our group was used to 

determine the infiltration behavior of SMP epoxy through GrF [78]: 

If = 
d

μ
                                                 eqn 4.1 

                         where d is GrF cell size and μ is SMP epoxy viscosity. 

The high value of this factor indicates an excellent infiltration behavior. The SMP epoxy-

GrF composite in this study demonstrated infiltration factor of ~23 μm/cP. The free-flow 

infiltration of SMP epoxy through GrF makes facile processing of GrF-based SMP epoxy 

composites possible. Figures 28a and b show fractured surface features of SMP epoxy-GrF 

composites at low and high magnifications. Figure 29a display a cured roughened surface 

of the composite. Curing of SMP epoxy with diamine crosslinker can influence the 

interface of GrF and SMP epoxy during and after its polymerization. Effective addition 

reaction between the reactive groups of the epoxies and diamine allows for complete 

crosslinking. This is reflected in the interfacial appearance between the SMP epoxy and 

GrF. Some regions in the SMP epoxy-GrF composite revealed average interfacial spacing 

of 1.32 μm (figure 29b). The presence of interfacial spacing can be due to observed volume 

shrinkage of epoxy during its curing, where long monomer chains adjust into short polymer 

chains of SMP epoxy.  

However, figure 29a reveals that SMP epoxy percolates through the pores of the GrF. This 

shows the capability of SMP epoxy in filling through the entire hierarchical, macro-porous 

architecture of GrF. GrF infiltrated with SMP epoxy shows slight bending of its branch, 

without a change in its branch-node configuration. This depicts that GrF framework has 

good structural integrity, making it a suitable sturdy carbon filler in polymer composites. 
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Some regions in figure 29 also show SMP epoxy adhering to the GrF branches. The SEM 

micrographs thus indicate the possibility of phonons and electron transfer SMP to improve 

shape memory behavior for both the thermally and electrically stimulated GrF reinforced 

SMP epoxy composites. The ability for SMP epoxy to wet and adhere to interconnected 

graphene sheets network is necessary to facilitate easy phonons and electrons transfer for 

its enhanced shape memory response. 

  
 

Figure 28: Fracture surface of SMP epoxy-GrF composites revealing wrinkled graphene 

surface and graphene flake-like structure at (a) low and (b) high magnifications 

                                

4.2 Phase and Bonding Characteristics 

Micro Raman spectroscopy study was conducted on SMP epoxy-GrF composites to 

mainly examine the interaction of graphene sheets with SMP epoxy chain molecules. 

Figure 29 shows the Raman measurement of pristine GrF, displaying three major 

characteristics signatures of graphene sheets. The signatures include sp2 carbon-carbon 

bonds in-plane vibrations (G band), out of plane vibrations due to structural defects (D 

band), and second disorder band also known as an overtone of D-band (2D band). The 

significantly low intensity of D compared with intensity of G indicates that the graphene 

Wrinkled surface of 

graphene  

Graphene flake-like 

structure 
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sheets are free of defects, as confirmed in previous studies on Raman of graphene [34]. The 

Raman shift of the 2D peak of pristine GrF used in this study (2704.35 cm-1) is comparable 

to the 2D peak of typical GrF. It establishes that pristine GrF consists of a network of multi-

layer graphene sheets. Like pristine GrF, the graphitic signature arising from the stretching 

of C-C bond remains 1577.04 cm-1 after SMP epoxy infiltrated the graphene foam. It 

suggests that the bond length of the C-C bond that gives graphene identity is intact and 

physical interaction mainly exists between SMP epoxy and infiltrated GrF. The D and 2D 

peaks (disorder and second disorder band) of pristine GrF are found at 1315.64 and 

2704.35 cm-1, respectively. However, impregnation of GrF with SMP epoxy considerably 

shifted the D and 2D peaks to the right with an assigned value of 1343.24 and 2709.32 cm-

1, respectively. This implies that there is physical interaction of the back-bone chain of 

SMP epoxy with a network of graphene sheets. Such interaction could have led to an 

adjustment in bond length of the SMP epoxy molecules. Fourier transforms infrared (FTIR) 

analysis further confirms the bond length adjustment in SMP epoxy after GrF addition. 

Figure 30 shows the FTIR spectra of SMP epoxy, GrF, and SMP epoxy-GrF composite. 

Absorption peaks in SMP epoxy spectrum are revealed at 3348, 2970, 1535, and 1100 cm-

1  which are attributed to stretching and bending vibrations from O-H, C-H, N-H, and C-

O, respectively [143]. The spectrum of GrF shows characteristics peaks of some 

functionalities such as C-O at 1100 cm-1; C-H at 2970 cm-1 and O-H at 3348 cm-1 [144]. 

SMP epoxy-GrF absorption band shows that SMP epoxy peaks are pronounced, 

overshadowing the weak peaks of GrF. From the FTIR spectra, it could be seen that 

interfacial intermolecular interactions occur between functionalities on GrF and SMP 

epoxy. The O-H group from graphene, which can easily be attached to graphene edges, 
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initiate electrostatic attractions with O-H and N-H groups from SMP epoxy. This creates 

hydrogen bonding, a form of intermolecular force between the graphene and SMP epoxy. 

Hydrogen bonding interactions between hydroxyls and hydroxyl-amide group result in the 

formation of hydrogen bond strengths. Typical intermolecular hydrogen bond strength 

between hydroxyl and amide groups is 29 kJ/mol, and hydrogen bond between two 

hydroxyl and hydroxyl groups is 21 kJ/mol [145]. Thus, these strong hydrogen bond 

attractions between these functionalities could account for the good interfacial bonding 

witnessed in SMP epoxy-GrF composites.  

             

Figure 29: Raman spectrum of GrF and SMP epoxy-GrF Composite revealing peaks 

characteristics of GrF and peak shifts in the composite 
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Figure 30:  FTIR spectra of GrF, SMP epoxy and SMP epoxy-GrF composite confirming 

possibility in interfacial interactions between functional groups on SMP epoxy and GrF 

4.3 Thermal characteristics 

Figure 31 presents the thermal transition characteristics of SMP epoxy-GrF 

composites. Tg of SMP epoxy displayed in figure 31 is 42oC. GrF filler in SMP epoxy 

increased the Tg of 0.13 wt.% SMP epoxy-GrF sample to 50oC. This implies that GrF 

addition increases the Tg of SMP epoxy-GrF sample composites by 19% over epoxy SMP. 
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Figure 31:  Differential Scanning Calorimetry of SMP epoxy and SMP epoxy-0.13 wt.% 

GrF composite displaying their glass transition behaviors 

3D interconnected framework that GrF provides within SMP epoxy matrix initiates 

entanglement of the terminal hydroxyl group in the side chains of SMP epoxy. This 

consequently immobilizes the surrounding chains of SMP epoxy molecules around its 

terminal group, preventing its chain crosslinking [71]. More physical interaction of SMP 

epoxy terminal group with the 3D graphene sheets network causes the backbone SMP 

epoxy chain to wrap around the branches and nodes of GrF. The interaction leads to more 

obstruction in the degree of movement of the individual SMP epoxy chain past one another. 

Consequently, it requires greater thermal energy to drive the mobility of the confined SMP 

epoxy chains from its glassy state to a rubbery state. The physical crosslinking results in 

enhanced Tg of SMP epoxy-GrF composites. Increase in Tg is very necessary because Tg 

of SMP epoxy needs to be higher than typical environmental temperature. This helps to 
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prevent untimely trigger of shape recovery of SMP epoxy. It could also preclude shape 

recovery deterioration of SMP epoxy after thermal cycling. It is important to note that 

higher or lower Tg value is desirable based on the type of application. For aerospace and 

structural applications such as morphing of wing and microrobots [117], [146], higher Tg 

is needed for robust integrity of the component and to survive typically higher operating 

temperature. 

Besides this, SMP epoxy as an amorphous polymer exhibited a broad width of Tg on 

the DSC curves (figure 31). However, dramatic narrow Tg was revealed with 0.13 wt.% 

GrF addition into SMP epoxy. The sudden change in the thermal transition (Tg) width of 

SMP epoxy-GrF composites depends on the chain conformations of SMP epoxy [147]. 

Integration of the GrF in SMP epoxy matrix results in a change in the orientations of SMP 

epoxy chains. This is due to the chain entanglements of SMP epoxy within the 

interconnected network of graphene sheets. The chain entanglements restrict the formation 

of branched chains, thereby decreasing the relaxation time distributions associated with the 

mobility of the SMP epoxy chains. Reduced relaxation time distributions of SMP epoxy 

lead to sharp width of the thermal transition of SMP epoxy-GrF composites. The thermal 

transition width can influence shape recovery behavior of SMP epoxy and the composite. 

In order words, broad transition temperature of SMP epoxy can give rise to its incomplete 

shape fixing and slower shape recovery. A narrow transition temperature of SMP epoxy-

GrF, on the other hand, can result in maximum shape recovery rate of the composite. Thus, 

it suggests that the narrow thermal transition of SMP epoxy-GrF can bring about the faster 

recovery rate of the composite. This is further corroborated in section 4.4.2.  
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4.4 Thermal actuation of SMP epoxy-GrF composites  

 Direct heating using a hot plate, is one of the most recognized stimuli methods to 

thermally activate SMP epoxy [148]. Hot air from a heat gun was also employed to directly 

heat and actuate SMP epoxy. Shape memory behavior of SMP epoxy actuated by direct 

heating is based on dual-component mechanism of SMP epoxy [149]. Figure 32a and b 

show schematics which describe the shape memory effect of SMP epoxy at the molecular 

level. SMP epoxy, made up of a structural combination of EPON and NGDE, is heated 

from room temperature, T1, to above the triggering temperature, T2. Stress is applied at T2 

> Tg. This results in the elastic deformation of NGDE chains and storage of energy within 

the EPON stiff phase.  

               

                 

Figure 32: (a) Illustration of the Dual Component Mechanism (DCM) in SMP Epoxy (b) 

Dual Component mechanisms of enhanced performance for 2D Graphene addition, (c) the 

mechanisms of improved performance for 3D graphene foam-based additions. 
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The temperature of SMP epoxy is then cooled below Tg (T3 < Tg), and the applied stress 

is removed. The temperature drop, T3, in the SMP epoxy reflects in the cooling of the 

NGDE polymer segments. The polymer chains, having micro-Brownian motion, are frozen 

at this stage and allows for the distorted, temporary shape of SMP epoxy. SME of SMP 

epoxy is afterward triggered when T3 > Tg. This is because the EPON phase propels the 

full recovery of the distorted polymer molecules when NGDE is reheated (where frozen 

micro-Brownian motion reactivates). Evaluation of the shape recovery behavior of SMP 

epoxy-based samples in terms of temporal and thermal gradients is further considered. 

4.4.1 Temporal Gradient Behavior of SMP epoxy-GrF Composite 

Temporal gradient of the SMP epoxy samples are qualitatively assessed when subjected to 

direct heating source from the hot plate (Figure 33). Figure 33a and b present fold-deploy 

shape recovery test of SMP epoxy and SMP epoxy-0.75 wt.% GrF composite, respectively, 

at 70oC.  

 

Figure 33: Shape recovery images of (a) SMP epoxy and (b) SMP epoxy-0.75 wt.% GrF 

composite triggered by direct heating from the hot plate. 

(a) 25 s 55 s 

0 s 25 s 50 s (b) 

0 s 
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It is observed that the SMP epoxy composite shows higher temporal gradient than SMP 

epoxy. Further, based on the shape recovery ratio equation (eqn 4.2),  temporal gradient of 

the SMP epoxy samples are quantified in terms of their recovery angle. It is given as: 

 Shape recovery ratio: 𝑅𝑟 = 
𝜃𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 − 𝜃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝜃𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
 x 100                                 eqn 4.2 

                      𝜃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =   residual angle during recovery state 

                      𝜃𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = angle of bending deformation 

Figure 34, deduced from the shape recovery ratio, shows the temporal gradient of fold-

deploy test of SMP epoxy-GrF composites. The plot illustrates that SMP epoxy and its 

composite exhibit complete shape recovery behavior. The recovery angle as a function of 

time provides insight about temporal gradients (Figure 34). It can be observed that from 

fold-deploy test, SMP epoxy-GrF composite displays higher temporal gradients (recovery 

rate of 4.93 degree/s) compared with that of SMP epoxy (4.0 degree/s). This is due to 

seamless phonon and electron transfer offered by branch-node framework of GrF.  
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Figure 34: Shape recovery angle as a function of time for SMP epoxy and SMP epoxy-

0.75 wt.% GrF composite subjected under direct heating from the hot plate 

Thus, SMP epoxy-0.75 wt.% GrF demonstrates a faster recovery rate than SMP epoxy by 

0.4°/𝑠. A t-test was further conducted to establish significance between SMP epoxy and 

SMP-GrF composite samples. The t value obtained was 38.4. Computation of p-value for 

the shape recovery rate characteristics of the two groups reveals that p-value < 0.05. It 

indicates that results obtained from recovery rate analysis of the two groups are statistically 

significant. It further confirms that our research hypothesis that GrF addition enhances 

shape recovery behavior of the SMP epoxy composites.  

Furthermore, figure 35a and b show recovery images of bent shapes of SMP epoxy and its 

composite when stimulated by hot air from heat gun having a temperature of 70oC. SMP 
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epoxy and its composite return to their original shape in the recovery time frame of 36 secs 

when stimulated above their Tg.  

 

Figure 35: Shape recovery demonstration of thermally actuated (heated air) (a) SMP epoxy 

and (b) SMP epoxy-0.75 wt.% GrF composite stimulated by heated air from the heat gun. 

From figure 36, SMP epoxy and its composite exhibited average recovery rates of 7.6°/𝑠 

and 8.0°/𝑠, accordingly. The higher recovery rates of the samples when triggered by hot 

air suggest uniform heat distribution on the samples than their recovery behavior when 

subjected to the hot plate. Also, SMP epoxy-GrF displays faster shape recovery rate 

(0.4°/𝑠) than SMP epoxy. This thus indicates that when different approaches of direct 

heating of samples are employed, SMP epoxy-GrF has the greater and faster shape 

recovery characteristics than SMP epoxy.  The stiff EPON phase determines the recovery 

of the SMP epoxy to its permanent, original shape. Its sturdy net-points provide the energy 

needed to recover SMP epoxy from its temporary shape to its permanent shape. Rigid back 

bone chain and side chain covalent interactions between the amine and epoxide groups of 

the EPON segment provide SMP epoxy the capacity that makes it display 97.35% shape 
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recovery. However, the 100% shape recovery in SMP epoxy-0.75 wt.% GrF sample 

demonstrate the influence of GrF addition in SMP epoxy.  

 

Figure 36: Shape recovery angle as a function of time for SMP epoxy and -SMP epoxy-

0.75 wt.% GrF composite injected with hot air from the heat gun 

Since graphene sheets network makes up the framework of GrF, high modulus of graphene 

sheets can provide more stiffness to the net-points in SMP epoxy. Uniform dispersion of 

GrF allows the stiffness to be distributed through the entire SMP epoxy matrix. This is due 

to the good interfacial interaction of the graphene sheets with the SMP epoxy. Existing van 

der Waals attractive forces between the graphene layers also create spring-like action 

between the graphene sheets. The attractive intermolecular behavior consequently allows 
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GrF to exhibit a capacity for energy storage within the SMP epoxy when deformed into its 

temporary shape. The energy stored in the GrF is released after actuating the frozen NGDE 

chain segments. This indicates that GrF contributes to the maximum recovery noticed in 

the SMP epoxy-GrF composite. Simultaneous influence of net-point of EPON segment and 

GrF stiffness and energy storage thus enable the 100% shape recovery of SMP epoxy-GrF 

composite.  

4.4.2 Spatial Control of SMP epoxy-GrF Composites via Direct heating 

Like temporal gradient of the SMP epoxy samples, thermal gradients were quantified based 

on the spatial control via direct heating of the samples (Figure 37a-c). Figure 37 shows 

Thermal Flir images of direct heat flow through the control (pure SMP) and composite 

(SMP-GrF) samples at 70oC from point A (1.0 cm from the marked origin) to B (2.5 cm 

from the marked origin)) at 0, 5, 10 and 20 s. Quantitative evaluation of the SMP and its 

composite is further presented in Figure 37b & Table 1.0 and Figure 1c & Table 1.1 of this 

response file, respectively. SMP shows highest thermal gradient from 1 to 2.5 cm at 20 s 

(4oC/cm) whereas SMP-GrF composite exhibits highest thermal gradient at 15 s 

(5.3oC/cm).  It is clearly observed that heat propagates faster in GrF reinforced sample than 

SMP matrix. This is attributed to uninterrupted pathway created by branch-node 

framework of GrF. It is important to note that faster heat propagation through GrF 

framework enables the composite temperature from point A to B to move towards 

equilibrium after 10 s while SMP epoxy still displays thermal gradient after 10 s (Figure 

1d).  
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                            Table 4.0. Thermal gradient of direct heating of SMP epoxy  

 

 

 

 

 

 

 

At time, t (s) 𝒅𝑻

𝒅𝒙
 (oC/cm) 

0 0 

5 2 

10 2.7 

20 4 

0 s 5 s 10 s 20 s 

. . . . . . . . 
. . . . . . . . 

B A 

b) 

0 5 10 15 20

45

50

55

60

65
SMP epoxy

 Point A (1.0 cm)

 Point B (2.5 cm)

 

 

 

 

Time (s)

T
em

p
er

a
tu

re
(o

C
)



 

81 

 

                                 

                           Table 4.1. Thermal gradient of direct heating SMP epoxy-GrF 

 

 

 

 

 

                                                

 

Figure 37. Thermal Flir imaging of SMP-GrF samples. a) stimulated by direct heating (hot 

plate); thermal gradient of b) direct heating of SMP; c) direct heating of SMP-GrF 
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composite showing special control via GrF filler d) Thermal gradient of thermally 

stimulated SMP Epoxy and SMP Epoxy-GrF Composite as a function time, at 70oC 

 

 

Also, thermal conductivities of SMP epoxy and SMP epoxy-GrF composite at 70oC were 

obtained from flash diffusivity method. The conductivity values of SMP epoxy and SMP 

epoxy-0.5 wt.% GrF are 0.189 W/m-k and 0.296 W/m-k, respectively (figure 38). It implies 

that the composite has thermal conductivity value which is approximately 57% greater than 

that of SMP epoxy.  The higher thermal conductivity of the composite further accounts for 

its 0.3°/𝑠 increase in recovery rate than that of SMP epoxy. The conductivity results thus 

establish that the thermal conductivity of GrF provides a higher recovery rate of SMP 

epoxy-GrF composite.   

                              

Figure 38: Thermal conductivity behavior of SMP Epoxy and SMP epoxy-0.5 wt.% GrF 

at 25 and 70oC 
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4.4.3 Effect of switching temperatures on the shape recovery rate of SMP epoxy and 

SMP epoxy-GrF composite 

Switching temperatures for shape recovery refers to Tg and temperatures around the 

Tg region. They are essential parameter in the thermal actuation of SMP epoxy and SMP 

epoxy-GrF composite. Figure 39 reveals the evolution and trend of the shape recovery rate 

of SMP epoxy and SMP epoxy-GrF at different switching temperatures. It is notable that 

for all the switching temperatures, the recovery rate of SMP epoxy-GrF is faster than the 

SMP epoxy. This attests that GrF addition in SMP epoxy-GrF allows heat conduction in 

the SMP epoxy-GrF composite due to phonon transfer across the node-branch 

interconnected network. GrF provides efficient heat transfer that contributes to the 

unlocking of NGDE chain molecules. The heat conduction within the graphene foam 

enables the stored energy in both GrF and EPON molecules to drive the shape recovery of 

graphene foam-epoxy SMP composite. Comparison of recovery rates of SMP epoxy and 

SMP epoxy-GrF composite for the switching temperatures is presented in figure 39. Figure 

39 reveals that the highest recovery rate is obtained at the switching temperature of 

Tg+20oC.  It suggests that the injection of thermal energy at Tg+20oC provides enough 

heat distribution needed to trigger shape recovery in SMP epoxy and its composite. This 

positions the switching temperature, Tg+20oC, to be the required trigger temperature for 

shape recovery of SMP epoxy-GrF and SMP epoxy-GrF composite.  
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Figure 39: Shape recovery rate of SMP epoxy and SMP epoxy-0.5 wt.% GrF as a function 

of switching temperatures  

 

Furthermore, the narrow Tg width of SMP epoxy-GrF shown in figure 31 also influences 

the recovery rate of SMP epoxy-GrF in figure 39. Restriction in the mobility of the soft 

segment NGDE chains can bring about short relaxation time distribution, leading to narrow 

glass transition width. GrF does not only physically crosslink with the net-points; it can 

also impede the movement of NGDE chains and limit its overall chain length for 

interaction. Consequently, graphene foam addition in SMP epoxy-GrF displays narrow 

width of Tg transition. This thereby contributes faster shape recovery behavior in SMP 

epoxy-GrF composite than SMP epoxy-GrF. 
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4.4.2 Influence of thermo-mechanical cycles on the glass transition of SMP epoxy-0.5 

wt.% GrF composite 

Figure 31 has previously shown that integration of GrF in SMP epoxy-GrF can 

increase the Tg of SMP epoxy-GrF composite. T-M cycling can also influence the Tg of 

the composite. Figure 40 reveals that Tg behavior of the composite is controlled by applied 

T-M cycles.  

 

Figure 40: Glass transition behavior of SMP epoxy-0.5 wt.% GrF as a function of T-M 

cycles 

 

1st to 30th applied T-M cycles do not show a change in Tg. However, the 47th T-M cycle 

demonstrates an increase in Tg from 50oC to 58oC. This indicates that the Tg of the 

composite increase by 16%. The constant Tg of SMP epoxy-0.5 wt.% GrF observed from 

1st to 40th T-M cycles could be due to constrained entanglements of GrF with sidechains 

of SMP epoxy. As the T-M cycle increases, it facilitates more physical interaction of GrF 

with the backbone chain of SMP epoxy. The increased physical interaction confines the 

internal rotation of the backbone chain at 47th T-M cycle. This leads to the 16% increase 
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GrF composite can thus enable the tailoring the Tg of the composite. This allows the 

temperature range to be widened for SMP epoxy composite applications.  

4.5 Electrical actuation of epoxy SMP and graphene foam-epoxy SMP composite 

The use of the direct thermal source for actuation of shape change in SMP epoxy 

limits its practical applications. Induction of heat through electricity (indirect heating) as 

an alternative trigger method in epoxy SMP is essential. Graphene, as a carbon-based filler, 

has been considered to electrically trigger epoxy SMP [150]. However, graphene’s high 

electrical conductivity can be compromised because of its high inter sheet contact 

resistance and restacking issues. Hence, 3D GrF filler is considered to electrically stimulate 

SMP epoxy for improved shape memory behavior of the composite.  

Indirect heating of SMP epoxy and SMP epoxy-GrF composite are conducted to 

examine their shape recovery behavior and to determine is temporal (figure 41) and thermal 

gradients (figure 42). SMP epoxy and its composite subjected to Joule heating at applied 

currents of (0.1-0.4 A). Thermal Flir images, as shown in figure 42, demonstrates the 

qualitative evaluation of the shape recovery of the electrically actuated samples. No shape 

recovery is observed in SMP epoxy. Complete shape recovery is noticed in SMP epoxy-

GrF composite at 0.4 A. Figure 41 presents quantification of the temporal gradient of the 

electrically actuated SMP epoxy samples at 0.4 A. No temporal gradient was shown during 

electrical actuation of SMP epoxy. The composite, however, showed recovery rate of 5.67 

degree/s between recovery time 2 and 8 s. Absence of heat flow through current-induced 

SMP epoxy is further confirmed from the infra-red (IR) thermal image (figure 42a). The 

images shows constant surface temperature of SMP epoxy from 0 to 25 s. This attests that 

no heat is generated from the 0.4 A current. In order words, current-induced heat is absent 
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within the SMP epoxy. It suggests that it is impossible to electrically induce SMP epoxy 

to exhibit shape recovery because it is non-electrically conductive. GrF addition, however, 

enables SMP epoxy to be actuated by an electrical means. GrF reinforcement serves as a 

pathway that allows conduction of current-induced heat in SMP epoxy matrix. Applied 

currents at 0.1-0.4 A are injected through GrF embedded in SMP epoxy. This is illustrated 

in figure 26 (materials and method section). GrF acts as a resistive element when current 

passes through it. The resistive heating generated in GrF is induced to the surrounding 

NGDE and EPON molecular segments of the SMP epoxy matrix. The induced heat from 

GrF reactivates the micro-Brownian motion of the NGDE molecules. It also agitates the 

EPON aromatic molecules to discharge the energy stored in the pre-deformed shape. 

Changes in SMP epoxy chain conformations, due to the heat, drive the recovery of SMP 

epoxy from its temporary shape to its original shape.  

                 

Figure 41. Temporal gradients of fold-deploy tests of SMP epoxy-GrF composites. a) 

stimulated by direct heating (hot plate); b) triggered by indirect or electrical heating at 0.4 
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4.4.2 Spatial Control of SMP epoxy-GrF Composites via electrical (Indirect) heating 

To elaborate on the thermal gradient of electrical heating of SMP epoxy-GrF 

composite, spatial control via electrical heating is carried out at 0.1-0.4 A (figure 42 b-e 

and Table 2.0). Thermal Flir images in figure 42b demonstrates current-induced heating 

through the GrF filler from point A (1 cm from the marked origin) to point B (5 cm from 

the marked origin) at 0, 10 and 25s. GrF spatially controls heat propagation through 

distance AB when dose of currents (0.1 - 0.4 A) is applied. This is noticed from change in 

heat intensity (GrF glow) along distance AB, at the applied currents. Heat is gradually and 

increasingly transported through the GrF to the epoxy SMP at the applied currents. The 

amount of applied electric current injected into GrF in epoxy SMP determines the intensity 

of heat propagation through GrF and from GrF to the SMP epoxy matrix. SMP epoxy-GrF 

composite exhibits lowest thermal gradient (1.38 oC/cm) from point A to B, at 25 s and 

applied current of 0.1 A. The composite also shows highest thermal gradient (31.3 oC/cm) 

at 25 s and 0.4 A, as shown in figure 42f and Table 2.0. The propagation of heat in GrF can 

be attributed to the branch-node anatomy of the GrF. GrF interconnected framework 

provides seamless pathways for electron flow and phonon transfer. It is observed that 

electrical heating of the composite shows greater temperature values at 0.3 and 0.4 A 

(figure 42d and e) than direct heating of the composite (figure 37a). This can be due to heat 

localization created by electrical heating through GrF, whereas direct heating transport heat 

to a larger body mass of SMP. 
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                 Table 4.2. Thermal gradient of direct heating SMP epoxy-GrF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Thermal Flir images of SMP epoxy actuated by indirect (electrical) heating at 

a) 0.4 A and SMP epoxy-GrF samples at b) 0.1 A c) 0.2 A d) 0.3 A e) 0.4 A f) thermal 

gradient of fold-deploy tests of electrical heating of SMP composite showing spatial 

control via GrF filler 

 

It is important to note that for most applications, both spatial and temporal gradients are 

important as shape recovery should happen throughout the component and in a rapid 

manner. This includes example of unmanned aircraft wings and electrically stimulated 
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crawling robot.  Spatial control is determined by the uniform dispersion of GrF whereas 

temporal control is largely dictated by the excellent conductivity of GrF.  

As seen earlier, electrical heating results in a significantly high spatial control in SMP 

epoxy-GrF composite as compared to pure SMP. Whereas, it is already determined that for 

pure SMP, electrical heating does not result in recovery, hence; temporal control is 

irrelevant. However, it is noted that change in the shape is dictated by the change in the 

transformation temperature.  Thus, a faster rate to achieve the desired temperature in a 

specific location would always have an edge. Therefore, while spatial and temporal 

gradients are both very important, temporal gradient has a slight edge for rapid actuation. 

It is also important to highlight that a good interface between GrF and SMP epoxy also 

plays good role in the spatial and temporal gradient behavior. Good interface could 

facilitate thermal boundary conductance of the composite. This could contribute to heat 

transfer from graphene foam to the epoxy SMP. Further, interfacial thermal resistance 

(ITR) between GrF and SMP epoxy could influence the shape recovery of SMP epoxy-GrF 

composite. A simple thermal equation that can be used to determine the ITR between GrF 

and SMP epoxy is shown below [151]: 

                                                   R = 
∆𝑇𝐴

𝑄
                                            eqn 4.3 

Where R is the resistance at the interface; ∆𝑇 is temperature drop across the interface; A is 

the cross-sectional area, and Q is the total heat transfer across the interface. Determination 

of parameter R would influence the control of the heat transport across the SMP epoxy-

GrF interface. The ITR can cause phonon vibrational mismatch and scattering at SMP 

epoxy-GrF interface during phonon transfer at the interface. It thus suggests that nano-



 

92 

 

scale contact area between GrF and SMP epoxy accounts for shape recovery of electrically 

actuated SMP epoxy-0.75 wt.% GrF composites.  

4.6. Proof of concepts of SME in graphene foam-epoxy SMP shapes and bird 

composites 

Structural versatility of SMP epoxy and its composites can make it a highly 

demanded smart polymer in engineering applications. Its large strain deformation enables 

it to be fabricated into different facile shapes; yet, it does not lose its shape memory 

behavior. SMP epoxy and SMP epoxy-GrF composites are engineered into simple S, L, 

and inverted U shapes, and accordion shapes. The basic S, L shapes of epoxy SMP and an 

inverted U-shape of SMP epoxy-GrF sample were stretched out to its temporary shape and 

triggered back to its original shape by hot water (figure 43a-c). Also, the accordion shapes 

made of SMP epoxy and SMP epoxy-GrF were fabricated. These shapes were triggered by 

both hot water and hot air (figure 44a-c and figure 45a and b). The shape designs 

demonstrate that SMP epoxy and SMP epoxy-GrF composite have very high flexibility 

and adaptability when above its glass transition temperatures. SMP epoxy-GrF accordion 

shapes further exhibited faster recoverability (approximately two seconds faster) than that 

of SMP epoxy due to strong thermal and mechanical capabilities of GrF. This suggests that 

SMP epoxy-GrF composite can be greatly useful in actuators and piezoelectric devices, 

deployable reflectors and masts, and offer considerable potentials in morphing wing of 

aircraft owing to its high shape deformability.  
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Figure 43: a) Images of epoxy SMP fabricated to S-shape, deformed to thin rectangular 

shape and recovered back to S-shape under the influence external heat stimulus; b) Images 

of epoxy SMP designed to L-shape. deformed into rectangular shape and recovered back 

to L-shape when subjected to heat trigger; c) Images of graphene foam-epoxy SMP made 

into inverted U-shape deformed into irregular rectangular shape and recovered back to 

inverted U-shape when stimulated by heat 
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    Original shape                           Temporary shape                   Original Shape 

Figure 44: a) Images of epoxy SMP fabricated into accordion-like shape, stretched out into 

temporary shape and restored to its original shape under the influence external heat from 

hot water; b) Images of graphene-epoxy SMP made into accordion-like shape, deformed 

into temporary shape and recovered to its original shape when triggered by thermal 

actuation; c) Images of graphene-foam-epoxy SMP composite made into accordion-like 

shape, deformed into temporary shape and recovered to its original shape when stimulated 

under heat 

a 

b 
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       Original shape                           Temporary shape                   Original Shape 

Figure 45: a) Images of epoxy SMP fabricated into accordion-like shape, stretched out into 

temporary shape and restored to its original shape under the influence hot air; b) Images of 

graphene foam-epoxy SMP made into accordion-like shape, deformed into temporary 

shape and recovered to its original shape when triggered by hot air 

Furthermore, the good shape deformability of SMP epoxy and high recoverability of 

SMP epoxy-GrF composites can offer huge potentials in aerospace applications, such as in 

the morphing wing of aircraft. Inspired by wing of a bird, we fabricated stimulus-

responsive SMP epoxy and SMP epoxy-GrF composite birds. Figure 46a and b show pre-

deformed bird wing of SMP epoxy and its composite, respectively. The birds demonstrated 

highly flexible wings during its deformation above Tg (70oC). The wings retained their 

deformed shape when cooled below its Tg to room temperature. To stimulate the deformed 

bird wings to recover its original shape, hot water at 70oC is used as a trigger source. Hot 

water provides a steady source of heat during immersion of SMP epoxy and its composite. 

The recovery of the SMP epoxy and SMP epoxy-GrF bird wings to their original shape is 

shown in figure 46c and d, respectively. The recovery time of SMP epoxy-GrF bird wing 

was approximately 1 sec ahead of its pure SMP epoxy bird wing. This is due to the added 
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energy storage from GrF in SMP epoxy, which propelled quicker wing recovery of GrF 

reinforced SMP epoxy bird.  

Also, figure 46e illustrates that several T-M cyclic wing deformation of graphene 

foam-epoxy composite bird revealed surface crack opening on the wing. It is, however, 

note-worthy that crack closure occurs during recovery of the birds wing to its original shape 

under heat stimulant (figure 46f). The phenomenon suggests that that structural and 

dynamic factors contribute to the crack closure behavior of the SMP epoxy-GrF composite. 

During the formation of surface cracks on the wing of SMP epoxy composite bird, the 

integrity of the net-points from the EPON phase of SMP epoxy remains intact. This is 

because the GrF filler serves as a crack-bridging agent, thereby restricting the 

disintegration of the SMP epoxy net-points. Energy used to initiate crack surface is also 

transferred through the GrF branch and node hierarchical anatomy. It prevents failure of 

the wing of SMP epoxy-GrF bird. 

Moreover, the dynamic factor of heat causes an adjustment in chain conformations 

of EPON phase located around the crack region of the wing of SMP epoxy-GrF bird. The 

chain conformation adjustment of the EPON phase unlocks the stored energy with the 

EPON phase. Release of stored energy within the EPON segment contributes to the 

recovery of its original bird wing shape. Conserved energy within the GrF also is released 

to the crack surface of the SMP epoxy, during the adjustment of EPON chain conformation. 

The release of store energy helps to drive the crack closure of SMP epoxy-GrF bird 

composite. SMP epoxy composite bird, as proof of concept, thus points out that SMP 

epoxy-GrF composite is promising towards the design of morphable wings of aircraft. 

Furthermore, the concept of reinforcing a shape memory polymer with GrF could be 

b 
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extended to a biopolymer such as SMP polyurethane (PU), which is biodegradable and 

biocompatible. Thermoplastic SMP-PU can find application as neurovascular stent to 

deliver drug locally which can treat ischemic stroke. The application leverage on shape 

memory feature during neurovascular stent deployment (stent expansion) to deliver the 

drug. This is done by using laser to selectively heat the local area and trigger the shape 

memory function [115]  

                   
 

Figure 46: (a) Images of deformed (temporary shape) wings of SMP epoxy-GrF bird and 

(b) SMP epoxy-GrF bird at 25°𝐶; (c) Images of recovery of the deformed wings of SMP 

epoxy bird and (d) SMP epoxy-GrF SMP bird (e) Image of cracked-open wing of 

biomimetic SMP epoxy-GrF bird after 15th T-M cyclic deformation.; (f) Images of the 

crack-closed wing of SMP epoxy-GrF bird 
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Chapter V: Mechanical Behavior of SMP Epoxy-GrF Composite 

It has been established in the preceding section that SMP epoxy-GrF composite exhibit 

shape memory effect when triggered by thermal and electrical stimuli. The mechanical 

properties of the composite are a pivotal factor for it to exhibit a shape memory effect. 

SMP epoxy matrix is selected as a matrix for this study primarily due to its robust aliphatic 

and aromatic epoxides, and low curing shrinkage [16].  This chapter describes the static 

and dynamic mechanical properties of SMP composites after GrF addition.  

Static mechanical properties of SMP epoxy-GrF composite include ultimate tensile 

strength, elastic modulus, and fracture strain. The composite dynamic mechanical 

properties primarily consist of storage modulus, loss modulus, and loss tangent. These 

properties could provide further insight into additional mechanical behaviors such as shear 

modulus, recovery force, etc. The knowledge of the static and dynamic mechanical 

properties would help in the prediction of structural behavior, which would ensure the 

safety and accuracy control of engineering components. 

5.1 Uniaxial Tensile Properties 

Uniaxial tensile properties can be identified as a form of static mechanical properties 

of a material, derived from its stress-strain behavior. The stress-strain curves of mold-cast 

SMP epoxy-based samples were calculated and derived from the measured force-

displacement curves, as highlighted in the materials and methods section (equations 3.2 

and 3.3). The stress-strain curves and Young modulus of SMP epoxy with and without GrF 

reinforcement are shown in figure 47a and b. The corresponding mechanical properties 

deduced from tensile tests are listed in Table 5.1. 
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Figure 47: (a) Uniaxial tensile stress-strain curves for SMP epoxy and mold cast composite 

of 0.5 wt.% GrF content (b) Comparison of Young modulus (elastic modulus) of SMP 

epoxy and composite of 0.5 wt.% GrF content. 
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   Table 5.1. Tensile Properties of SMP Epoxy and SMP Epoxy-0.5 wt.% GrF Composite 

Sample Elastic Modulus 

(GPa) 

Ultimate Tensile 

Strength (MPa) 

Strain at 

failure (%) 

Modulus of 

Toughness 

(MJ/m3) 

SMP Epoxy 1.543±0.077 37.87±1.89 4.8 1.22 

SMP Epoxy-GrF 1.860±0.093 42.05±2.10 3.6 1.84 

 

It is noticed that elastic modulus of SMP epoxy-GrF nanocomposite is enhanced by 20%, 

as compared to SMP epoxy sample. The nanocomposite also experienced 6% improvement 

in ultimate tensile strength (UTS) of the nanocomposite than that of SMP epoxy. The 

composite ductility was, however, restricted (failure strain of 3.6%) as compared to SMP 

epoxy (failure strain of 4.7%). The high in-plane elastic modulus of graphene sheets though 

accounts for limited failure strain displayed by the composite; GrF node-branch 

configuration enables it to induce strengthening mechanisms that allow stress transfer from 

matrix to the reinforcement.  Also, the area under stress-strain curve is a measure of fracture 

toughness of SMP epoxy and SMP epoxy-GrF composites.  

Area under the curve = UT = ∫ σ dϵ
ϵf

0
 

An approximation of the modulus of toughness (UT) is obtained by dividing the stress-

strain curve into triangular section and rectangular section. A 50% improvement in 

toughness behavior of SMP epoxy-GrF composite is attributed to mechanical resistance 

offered by the network of graphene foam.  Figures 48a-d reveal the fracture surface of the 

SMP epoxy-GrF composite. 
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Figure 48: SEM images of the fracture surface of SMP epoxy-GrF composite. (a) GrF 

branch-node anatomy retaining its integrity in SMP epoxy after curing (b) shrinkage of 

SMP epoxy leading to the interfacial spacing between GrF and SMP epoxy (c) distinct 

surface features of GrF and SMP epoxy showing higher magnification of the interfacial 

spacing (d) close view of good interface regions between GrF and SMP epoxy. 

 

Figure 48a clearly shows that GrF has robust structural integrity because it retained is 

branch-node anatomy after tensile fracture of SMP epoxy composite. Remarkable in-plane 

stiffness of graphene sheet can be attributed to its preserved frame-work [24]. This attribute 

supports the strengthening mechanism during the tensile deformation of the composite. 

Further magnifications as shown figures 48b and c reveal interfacial spacing region 

(~2 𝜇m) between SMP epoxy and GrF. This is due to shrinkage of the polymer during cthe 

uring process. The spacing, however, did not limit GrF to reinforce the matrix stiffness. 

(a) 

(d) (c) 

Interfacial spacing due to 

volume shrinkage of SMP 

epoxy 

(b) 
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This is because GrF reinforcement has la arge surface area which enables more interaction 

with SMP epoxy chain in other regions of the composite (figure 48d). Figure 48 thus 

portrays that despite the interfacial spacing between the two components, the composite 

still exhibits higher tensile strength than the matrix. This suggests that SMP epoxy-GrF 

composite has great potential to improve the tensile strength if interfacial spacing is 

significantly minimized. The tensile deformation behavior of SMP epoxy-GrF can also be 

explained using thermodynamics concept as explained below.  

 

5.1.1 Thermodynamic Response of Mechanical Behavior of SMP epoxy-GrF 

The amount of stretching demonstrated by a tensile specimen for most materials, 

when subjected to the small applied load, is influenced by the stiffness of the chemical 

bonds or enthalpic response at the atomic level. Nevertheless, the stiffness of some 

materials – particularly rubber, polymer or plastic – stems not from bond stiffness. It arises 

from entropic factors [152]. This construes that an ideal polymer, under tensile force, is the 

one that gives a complete entropic response with negligible internal energy changes. Thus, 

polymers with coiled conformation have high entropy or many possible microstates. 

Polymers chains with extended conformation have low entropy or very few microstates.  

Schematics of polymer chains at high entropy state (before stretching) and low entropy 

state (after stretching) are shown in figure 49a and b, respectively. 
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    junction               

 Figure 49: Schematics showing a) Stretching of entangled polymers chains at high 

entropy state; b) stretched, aligned polymer chains at low entropy state [152] 

Deformation of SMP epoxy chains during tensile loading (figure 47a) can thus be 

interpreted in terms of entropy concept. The entropic response of the polymer chains is 

theoretically analyzed using Boltzmann equation and strain data from tensile deformation 

of the samples. The entropy of mixing of the three epoxy resins component is first 

calculated from the Boltzmann equation used in statistical thermodynamics; 

                                                               S = k ln 𝛺                                                     eqn 4.4 

                                   where k is Boltzmann constant = 1.38 𝑥 10−23 

Based on equation 4.4, the entropy of mixing for the epoxy resins is; 

                           ∆𝑆mix = - k[𝑛𝑎 ln 𝑛𝑎 + 𝑛𝑏 ln 𝑛𝑏 + 𝑛𝑐 ln 𝑛𝑐 ]                        eqn 4.5 

   where 𝑛𝑎, 𝑛𝑏, 𝑎𝑛𝑑 𝑛𝑐are the mole fractions of resin component 𝑎 (EPON 826), 𝑏 

(NGDE), and 𝑐 (Jeffamine D230). 

Mole fractions (𝑛𝑎, 𝑛𝑏, 𝑎𝑛𝑑 𝑛𝑐) are 0.38889 moles. 0.3914 moles, 0.2197 moles. The 

calculated ∆𝑆mix obtained from equation 4.4 is 1.5097 𝑥 10−23 J/K. The positive entropy 

value suggests that the initial state of SMP epoxy polymer chains when mixed before 

a b 
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curing and deformation is in a highly randomly coiled position as shown in the schematic 

(figure 50). 

                                          

                                                        

                                         Epon 826     NGDE   Jeffamine D230 

Figure 50: Schematic portraying the highly randomly coiled position of SMP epoxy after 

mixing the three epoxy resins component without curing and chain deformation. 

Furthermore, the entropic effect on the deformation of the polymer chains after curing can 

be determined from the insights provided by Helmholtz free energy as indicated in equation 

4.6;  

                                                           A = U – TS                                                       eqn 4.6 

This means that mechanical work, dW, done by a force F acting through a differential 

displacement dL will produce an increase in free energy as shown in equation 4.7 and 4.8; 

                                             F dL = dW                                                            eqn 4.7 

                                            dW = dU – TdS                                                     eqn 4.8 

where U is the internal energy of a system, T is the temperature, and S is the entropy. 

To obtain force, 

𝐹 =  𝑑𝑊

𝑑𝐿
=  [𝑑𝑈

𝑑𝐿
− 𝑇

𝑑𝑆

𝑑𝐿
]                       eqn 4.9 

 

                        
M  
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Consider SMP Epoxy as an ideal elastomer (rubbery material), the internal energy change, 

dU, is negligible; so, the force is related directly to the temperature and the change in 

entropy dS produced by force. To determine the force-deformation relationship, we need 

to consider how entropy changes with deformation. And based on statistical 

thermodynamics, changes in configurational probability are related to corresponding 

changes in thermodynamic entropy by the Boltzmann relation in equation 4.10; 

                                                    ∆𝑆 = 𝑘 ln 𝛺2
𝛺1

                                                            eqn 4.10 

  where 𝛺1and 𝛺2 represents the configurational probability of 

the polymer chain in unpertubed and perturbed states  

The relative change in probabilities between the perturbed and unperturbed states can now 

be written as,                       

                                              ln 𝛺2
𝛺1

 = − 1

2
(𝜆𝑥

2 +  𝜆𝑦
2 +  𝜆𝑧

2)                                         eqn 4.11 

Since deformation or stretching in SMP epoxy and its composites can be described in terms 

of extension ratios, which are the ratios of stretched to original dimensions, ∆𝐿

𝐿𝑜
, stretches in 

𝑥, 𝑦 and 𝑧 directions are denoted by 𝜆𝑥, 𝜆𝑦, 𝑎𝑛𝑑 𝜆𝑧 respectively. 

                                    Thus, ∆𝑆 = − 𝑘

2
(𝜆𝑥

2 +  𝜆𝑦
2 +  𝜆𝑧

2)                                           eqn 4.12 

It is important to note that SMP epoxy and SMP-epoxy-GrF samples are considered as two 

separate systems during the deformation. For deformation of SMP epoxy, 𝜆𝑥 (0.0315), 

𝜆𝑦 (−0.0106), 𝑎𝑛𝑑 𝜆𝑧(−0.01) are obtained from strain data used in the stress-strain 

curves (figure 47a). The strain data were analyzed using direct linear transformation 

(DLTdv) package in MATLAB platform. Basically, tensile test videos of the samples are 

loaded into the DLT package, where the sample displacements are evaluated from pixel 
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movthe ement of the tensile test video. The package analyzes the pixel movement and 

converts it to strain data.  Imputing these values in equation (4.12) gives − 8.31 𝑥 10−27 

J/K as the entropy change (∆𝑆) of SMP epoxy after deformation. Stretching or deformation 

of SMP epoxy-GrF composite can be also computed in the same manner. Values obtained 

for the extension ratios for the composite are 𝜆𝑥 (0.02302), 

𝜆𝑦 (−0.01508), 𝑎𝑛𝑑 𝜆𝑧(−0.01). The computed result indicated that entropy change (∆𝑆) 

of the composite is − 6.02 𝑥 10−27 J/K. Negative entropy values of SMP epoxy and SMP 

epoxy-GrF samples confirm that stretching decreases the entropy of the polymer  chains 

compared to when unstretched (figure 51) 

                                                        

Figure 51: Schematic portraying (a) highly stretched SMP epoxy chain and (b) SMP 

epoxy-GrF samples after curing and deformation. 

Furthermore, it is observed that the entropy value of the composite system is slightly more 

positive that SMP epoxy. This suggests that GrF addition in thermoset SMP epoxy causes 

more chain disorder. Node-branch configuration of GrF along the pathway of stretched 

polymer chains could result in randomly coil chains within individual GrF pores and 

around its branches.  

The thermodynamic analysis has fundamentally explained the behavior of SMP 

epoxy molecular chains during tensile deformation. In order words, the more randomly 

a b 
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coiled chains in the composite system (higher entropy than the matrix), the less stretching 

of the chains and vice-versa. It thus attests that the stiffness behavior of SMP epoxy and 

composite largely stems from the entropic response of the molecular chains.  

5.2 Dynamic Mechanical Analysis 

Dynamic mechanical analysis (DMA) is a technique that reveals the change of 

molecular motion in viscoelastic materials (polymers and SMPs) when influenced by 

frequency and temperature. It is a straightforward method to obtain viscoelastic properties 

(storage modulus, loss modulus, and tan delta), which contain the in-phase and out-of-

phase components. The storage modulus of SMP epoxy is the in-phase component, 

representing the elastic portion. It measures the ability of the polymer to store energy 

during deformation. The polymer loss modulus is the out-of-phase component, signifying 

the viscous portion. It measures energy dissipated as heat. The relationship between these 

components and phase lag 𝛿 (which is the angle at which the strain (𝜀0) lags the stress (𝜎𝑜) 

are given by; 

                                                   𝜎′ =  𝜎𝑜 𝑐𝑜𝑠𝛿                                                      4.13 

                                                  𝜎′′ =  𝜎𝑜 𝑠𝑖𝑛𝛿                                                       4.14   

where 𝜎′ 𝑎𝑛𝑑 𝜎′′are in-phase and out-of-phase stress components 

Dynamic moduli for the components can be written  

                                                        𝐸′ = 𝜎′

𝜀0
= 𝐸∗𝑐𝑜𝑠𝛿                                                    4.15 

                                                        𝐸′′ = 𝜎′′

𝜀0
= 𝐸∗𝑠𝑖𝑛𝛿                                                  4.16 

The angle 𝛿 allows characterizing the dynamic moduli in terms of complex notation; 

𝐸∗ = 𝐸′ + 𝑖𝐸′′ 
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where 𝐸∗is the complex modulus and 𝐸∗ = 𝜎𝑜
𝜀0

 

The ratio of loss modulus to storage modulus yields loss tangent also known as tan 𝛿, as 

shown in equation 4.17 

                                               𝐸′′

𝐸′ =
{
𝜎𝑜
𝜀0

(𝑠𝑖𝑛𝛿)}

{
𝜎𝑜
𝜀0

(𝑐𝑜𝑠𝛿)}
= tan 𝛿                                 eqn 4.17 

Higher values of loss tangent (tan δ) point to a higher ratio of viscous to elastic response 

in the polymer. This construes that tan δ value can be used to characterize damping of the 

material. Dynamic mechanical properties of SMP epoxy and its composites were obtained 

using Electroforce 3100 and DMA 242 Artemis.  

5.2.1 Loss Tangent Behavior of SMP Epoxy Composite Samples under Tensile 

Deformation 

High-resolution transducer of the Electroforce 3100, which contains 1000 g force 

transducer was used for the DMA analysis. In a tensile deformation mode, the samples 

were subjected to mulitple cycles (1200-12000) under an amplitude load range (50-5 𝜇𝑚), 

at a temperature range (25-70oC), and heating rate of 3oC/min to reveal its loss tangent 

behaviors. Figures 52a-c show loss tangent behavior of SMP epoxy and SMP epoxy-0.5 

wt.% GrF composite as a function of cycles at 25oC and function temperatures at low 

frequency (30 Hz) and high frequency (100 Hz), respectively. SMP epoxy samples 

subjected to multiple cycles (1200- 12000) at 25oC are shown in Figure 52a. The data 

shows that loss tangent (i.e. measure of damping) of SMP epoxy samples decrease with an 

increase in the number of cycles. SMP epoxy-GrF exhibits higher loss tangent than that of 

the matrix.  
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Compared to that of SMP epoxy, SMP epoxy-0.5 wt.% GrF composite displays 

higher loss tangent at 30 and 100 Hz.  At 30 Hz, loss tangent peaks occur at 60oC for SMP 

epoxy and 50oC for the composite (figure 52b). Meanwhile, loss tangent peak of all the 

SMP epoxy-based samples at 100 Hz appears at the same temperature (60oC). It is observed 

that the loss tangent peak of the composite at 50oC is approximately 12.5% greater than 

that of SMP epoxy at 60oC. 
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Figure 52: Plot of loss tangent versus of SMP Epoxy and SMP Epoxy-0.5 wt.% GrF  a) as 

a function of number of cycles; as a function temperature at b) 30 Hz; c) 100 Hz 
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Repeated fatigue cycles as shown in figure 52a could facilitate SMP chain stiffening, 

explaining the increase the elastic portion of the matrix and composites as the number of 

cycles increase. Mechanisms such as ripple formation and propagation accounts for the 

increase in the viscous portion in SMP epoxy-GrF composite. Figures 52b and c show an 

increase in loss tangents of SMP epoxy-based samples below glass transition (Tg) region, 

which attain its peaks within the Tg region. Above the Tg region, the loss tangents decrease. 

It construes that as the temperature increases gradually towards the glass transition region 

(within 45–60oC), molecular frictions between the polymer chains are initiated. This leads 

to heat dissipation, which contributes to loss tangent increase experienced below Tg. 

Furthermore, internal structural changes begin to occur in SMP epoxy and its composite. 

Molecular structure of SMP epoxy-based samples changes from frozen Brownian motion 

of the polymer chains to mobile segmental chains. Chain mobility activates the viscous 

portion of SMP epoxy to start gaining momentum ahead of its elastic part, resulting in loss 

tangent increase of the samples. The cooperative segmental movement of SMP epoxy 

chains at Tg region gives rise to loss tangent peak. The decrease in loss tangent above Tg 

region is mainly due to decreasing in molecular chain frictions of SMP epoxy as the 

temperature increases. 

It is important to highlight at both 30, and 100 Hz, SMP epoxy-0.5 wt.% GrF 

composite exhibits a higher loss tangent peak than that of the matrix. This portrays the role 

GrF addition plays in SMP epoxy. It has been established that GrF exhibits excellent 

damping behavior [70], [86]; thus, GrF reinforcement can be attributed to loss tangent 

enhancement of SMP epoxy composite. The remarkable GrF behavior stems from the 

occurrence of a couple of physical mechanisms. Such mechanisms include van deer Waals 
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interactive forces between the graphene sheets and formation and propagation of graphene 

ripples [86]. With the increment in frequency to 100 Hz, loss tangent peak of SMP epoxy-

GrF composite shifts towards higher temperature (figure 52c) compared to its peak at 30 

Hz. This indicates that structural changes are not only dependent on temperature; frequency 

can also influence chain conformation of the SMP epoxy composite. Higher frequency of 

100 Hz does not allow complete relaxation of polymer chains, thereby gradually restraining 

molecular motion. It further causes slight stiffness in the chains [153]. 

Consequently, molecular relaxation can only occur at a higher temperature. This 

accounts for the shift in the loss tangent peak at 100 Hz. The decrease in loss tangent peak 

value of the composite from 0.92 to 0.84 also establishes the chain stiffness when the 

frequency is increased. 

5.2.2 Storage Modulus and Loss Tangent Behavior of SMP Epoxy-GrF under 

Bending Deformation 

Like Electroforce 3100, DMA 242 E Artemis is also employed to examine the DMA 

properties of the samples. DMA 242 Artemis is considered for dynamic mechanical 

characterization of SMP epoxy as it provides 3-point bending deformation mode. 

Electroforce 3100 does not have this feature. DMA 242 Artemis also has an in-built furnace 

compartment, unlike Electroforce which requires an external heater unit to subject the 

material above room temperature. Using DMA 242, the SMP epoxy-based samples are 

subjected to 3-point bending deformation, amplitude load of 50, 100 and 200 𝜇𝑚 are 

applied within the temperature range from 25–100oC at hea ating rate of 3K/min and 1 Hz. 

Figures 53a and b show storage modulus and loss tangent dependence on temperature and 

amplitude.  
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Figure 53: Plot of storage modulus versus temperature of SMP epoxy and SMP epoxy-0.5 

wt.% GrF at an amplitude of (a) 50 𝜇𝑚 (b) 100 𝜇𝑚 and (c) 200 𝜇𝑚 

In figure 53, a decreasing trend in the storage modulus of SMP epoxy with increasing 

amplitude is observed on the one hand. On the other hand, the SMP epoxy-GrF sample 

shows an increasing trend in its storage modulus (from 2000 to 2470 MPa) below 35oC.  

At amplitude load of 50 and 100 𝜇𝑚, the storage modulus of SMP epoxy was higher than 

its composite counterpart at all the given temperatures (figures 53a and b). However, far 

below the Tg region (25–38oC), SMP epoxy-GrF composite shows higher storage modulus 

than the matrix at amplitude load of 200 𝜇𝑚 (figure 53c). It is also noticed that above the 

Tg region (above 60oC), storage moduli of both the SMP epoxy and SMP epoxy-GrF 

samples appear to be the same value, reducing to almost zero. Figure 54 displays the loss 

tangent behavior of SMP epoxy-based samples. Like the data trend obtained from 
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Electroforce instrumentation technique, SMP epoxy and SMP epoxy-GrF samples show 

incran ease in loss tangent up to Tg region. This is subsequently followed by height 

depression of the loss tangent peak. 
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Figure 54: Plot of loss tangent versus temperature of SMP epoxy and SMP epoxy-0.5 

wt.%GrF at amplitude of (a) 50 𝜇𝑚 (b) 100 𝜇𝑚 and (c) 200 𝜇𝑚; (d) Plot of distance points 

against inversion temperature of SMP Epoxy and SMP Epoxy-0.5 wt.% GrF  
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At 50oC, SMP epoxy-GrF composite demonstrated approximately 180% increase in loss 

tangent than SMP epoxy at the three amplitude loads. Above the Tg region, loss tangent 

gradually assumes the near-zero value. As stated in section 5.2.1, the loss tangent decrease 

is mainly due to a decrease in energy dissipation due to reduction in frictions between the 

molecules. 

Furthermore, distance points (𝜇𝑚) corresponding to loss tangent peak positions of 

the samples can be extracted from loss tangent curves of the samples (figures 54a-c) after 

bending deformation using DMA 242 Artemis. These points can be used to observe shifts 

in the peak position of loss tangent curves of SMP epoxy and its composite samples at the 

peak temperatures. Figure 54d reveals distance points (𝜇𝑚) corresponding to loss tangent 

peak position as a function of temperature at loss tangent peak. It is observed that as the 

amplitude load increases from 50 to 200 𝜇m, the distance points corresponding to the peak 

position of SMP epoxy and SMP epoxy-GrF composite increases. Compared with that of 

SMP epoxy, the distance points increase more for the composite (figure 54d). 

5.3 Mechanisms involved in Storage Modulus Behavior  

The displayed results in figure 53 and 54 embody the microscopic response and 

macroscopic representation of the thermomechanical behavior of SMP epoxy and SMP 

epoxy-GrF composite. Temperature increase above 25oC at 50 𝜇𝑚 initiates reorganization 

of the molecular structure of the samples. The reorganization starts with local motion of 

SMP epoxy chain. As the free volume of the chains increases, larger segments move [154]. 

The movement corresponds to the bending of side groups and back-bone chain rotation. 

This results to coordinated large scale chain motions around the Tg region. In figure 53a 
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and b, SMP epoxy-GrF composite shows a slight decrease in storage modulus than that of 

SMP epoxy at 50 and 100 𝜇𝑚. Physical mechanism such as possible slippage of graphene 

sheets during polymer chain relaxation could be attributed to this behavior. Few tiny air 

pockets in between the graphene sheets and SMP epoxy could also contribute to the lower 

composite storage modulus behavior (figure 53). It is, however, important to note that as 

the amplitude load increases, the storage modulus of the composite increases below the Tg 

region (figure 53a and b). At 200 𝜇𝑚, the composite exhibits higher storage modulus than 

its counterpart (figure 53c). With the higher amplitude load of 200 𝜇𝑚, more interaction 

volume of GrF with SMP epoxy occurs (since the average distance between GrF and epoxy 

surface is approximately 150 𝜇𝑚). More interaction volume could enable the spring-like 

effect of GrF. The in-plane stiffness of graphene could also contribute to higher storage 

modulus behavior from the composite.  

5.4 Mechanisms involved in Loss Tangent Behavior 

It is critical to highlight that two couples of phenomena come into play to explain the 

loss tangent behavior of SMP epoxy-based samples in figure 54. The first couple is GrF 

and free volume effects. GrF effect dominates and is accountable for higher loss tangent 

demonstrated by SMP epoxy-GrF composite than that of the matrix below Tg (25–58oC) 

at the applied amplitude loads. This effect is simply the influence of the energy dissipation 

capability of GrF. At this temperature range, energy dissipation mechanisms in GrF are 

activated. Friction between the SMP epoxy molecules and GrF; van deer Waals opposing 

forces between the graphene layer and GrF branch flexibility are some of the physical 

mechanisms that explain higher loss tangent behavior of the composite [86](schematically 

shown in figure 55a and b).  
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Intermolecular friction among the SMP epoxy molecules (arising from covalent bond 

interaction) and frictional between SMP epoxy chains and graphene sheet (stemming from 

physical interaction) could contribute to heat dissipation. This, in turn, facilitates 

dissipation of energy. van deer Waals intermolecular forces between graphene sheets could 

also increase loss tangent behavior of the composite (figure 55a). The intermolecular 

opposing forces are mobilized due to compressive forces from 3-point bending, which 

decrease the graphene sheet interlayer distance. This makes impact energy to absorbed 

between the layers, thereby promoting loss tangent characteristics of the composite. 

Further, the flexural load could cause GrF branch to bend. Branch flexibility also causes 

energy to be absorbed (figure 55b). These mechanisms enable to SMP epoxy-GrF 

composite to display higher loss tangent than SMP epoxy at temperature range (25–58oC) 

and all applied amplitude loads. 

            

 

Figure 55: (a) van deer Waals interactions between graphene sheets, and (b) bending of 

GrF branch during applied load from 3-point bending test [86] 
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Above this temperature range, the free volume mechanism plays a role in the loss 

tangent behavior of the samples. Free volume is the space or gap that is left between SMP 

polymer chains. GrF filler in SMP epoxy matrix can occupy the spaces, influencing the 

polymer chain packing. Above 58oC, molecular resistance of the polymers is overcome, 

resulting in more chain mobility. However, chain mobility in SMP epoxy-GrF composite 

is limited due to GrF addition compared with SMP epoxy. Hence, the lower loss tangent 

of the composite is demonstrated.  

The second phenomenon is competing factors of thermal strain and amplitude load 

in the SMP epoxy-based samples. Thermal strain in terms of different coefficients of 

thermal expansion (CTE) is first explained. To illustrate, thermal strain investigation on 

thermal expansivity study is conducted on SMP epoxy and SMP epoxy-GrF samples using 

a dilatometer. Figure 56 shows the CTE behavior of SMP epoxy-based samples at these 

temperatures (26–39oC). SMP epoxy exhibited higher CTE compared with SMP epoxy-

GrF composite. This indicates that GrF interaction with SMP epoxy has resulted in lower 

CTE behavior of the composite in comparison to that of the matrix. Since CTE is associated 

with bonding [155], the CTE results suggest bonding interaction between GrF and SMP 

epoxy chains. As highlighted from Raman and FTIR results of the SMP epoxy-GrF 

composites (figure 30a and b), CTE results in figure 56 further corroborates that strong 

physical (chain entanglements) and weak chemical bonding (OH and NH bonding) exist 

between GrF and SMP epoxy chain. This thus implies that GrF reinforcement can minimize 

the thermal expansion of SMP epoxy. 
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Figure 56: Plot of Coefficient of thermal expansion vs. temperature of SMP epoxy and 

SMP-0.5 wt.% GrF Composite 

Based on the CTE results in figure 56, investigation of thermal expansion of GrF 

reinforcement is considered. Figure 57 shows the CTE results of a unit and multiple cells 

of GrF.  
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Figure 57: Plot of Coefficient of thermal expansion vs. temperature of GrF (a) 1 cell; (b) 

4 cells and (c) Bulk cells 

It is observed that as temperature increases from 25 to 200oC, GrF CTE linearly increases 

for the unit and multiple cells. At 200oC, CTE of the GrF unit cell, four cells, and bulk cells 

are 3×10-5, 2×10-5 and 1×10-5/oC, respectively. The result depicts that CTE decreases from 

unit to bulk cells of GrF. This could be attributed to the presence of air, which has poor 

thermal conduction, in between the GrF pores. GrF CTE (1×10-5/oC) result corroborates 

nearly three times decrease in CTE experienced by CTE of SMP epoxy after GrF addition, 

as shown in figure 57. CTE mismatch of SMP epoxy and GrF can thus lead to thermal 

strain in the composite material.  
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At low temperature for all amplitude load (50, 100 and 200 𝜇m), thermal strain effect 

is not significant. This makes the amplitude load dominate and contribute to the loss 

tangent behavior of the samples. That is, amplitude load creates a compressive force on the 

composite, further triggering dissipative mechanisms (graphene sheet ripples, branch 

bending, sheet sliding). However, as the temperature increases under these amplitude loads, 

thermal strain due to CTE mismatch becomes considerably active. This thermal strain is in 

the form of tensile nature (stretching). The stretching could lead to the alignment of some 

portion of SMP epoxy chains, making that region to have elastic nature. Consequently, this 

mechanism could contribute to the decrease in loss tangent of the composite than SMP 

epoxy. 

Furthermore, it is essential to briefly consider a slight change in the peak shift of the 

loss tangent of the SMP epoxy matrix and composite as a function of temperature at loss 

tangent peaks (figure 54d). Increase in the loss tangent peak position of the composite can 

be attributed to a combination of multiple factors. It could be due to synergy of GrF 

dissipation mechanisms, structural relaxation of the SMP epoxy chain, and amplitude load 

(which causes more interaction chain volume of the polymer). These factors enable the 

viscous character of the composite to be active, influencing loss tangent peak position. 

Additional studies, however, would need to be conducted to fully ascertain the cause of the 

peak shift of loss tangent curves of SMP epoxy and its composite system. 

Besides the detailed knowledge of mechanical properties of SMP epoxy samples by mold 

cast approach, 3D printing of SMP epoxy-based samples is conducted as another promising 

fabrication technique. 
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 Chapter VI: 3D Printing of SMP Epoxy-Graphene Nanoplatelets Powder 

Composites by Slurry-Based Extrusion 

 This chapter provides details about processing, structure and properties of SMP 

epoxy-graphene composites by 3D printing technique. Three-dimensional (3D) printing, 

an additive manufacturing process, involves putting a model design into CAD file and 

translating it into a three-dimensional physical object through layer-by-layer printing 

fashion. Fabrication of the composites by this approach presents a feasible route to further 

explore the capabilities of the shape memory epoxies. 

Among the types of 3D printing techniques known [156], this study employed the 

extrusion-based method. In order words, this study presents 3D printing of SMP epoxy by 

slurry-based extrusion using Print head (figure 58) that is attached to Hyrel printer. 

Furthermore, SMP epoxy is also reinforced with graphene nanoplatelets (GNP). GNP has 

shown great ability to serve as an excellent mechanical and thermal reinforcement in 

polymers and SMP. SMP epoxy-GNP composite is 3D printed by the same method for the 

first time, and characterization is performed on the samples. 

                      

Figure 58: Print head syringe for low viscosity polymers respectively  

                      (http://www.hyrel3d.com/core-suystems/system-30m) 

 

 

6.1 SMP Epoxy Precursor for 3D Printing: challenge and solution 

It is infeasible to use SMP epoxy in its as-prepared state as 3D printing precursor. 

As-prepared SMP epoxy is simply a mixture of three liquid resins (two epoxy composition 
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and one curing agent). The infeasibility of using the resin mixture as a printing material is 

due to its viscosity, a fundamental material property. The epoxy mixture, in its liquid state 

at 25oC, has a viscosity of 25.6 cP. The low viscosity of SMP makes it highly flowable 

material out of the syringe nozzle during printing. Three different approaches used to 

address the viscosity issue are further highlighted. However, only one of the approaches 

comes out successful. 

6.1.1 Mixing of SMP liquid and its powder   

             First approach or trial, which was used to increase SMP epoxy viscosity, involves 

mixing SMP epoxy liquid and powder. SMP epoxy powder is prepared by chopping a cured 

monolith SMP epoxy to large particles. Liquid nitrogen is added to the particles to make it 

brittle to be crushed into powdery form. The ball-milling machine is then used to finally 

process them to fine powders for 20 min. Figure 59a shows SEM micrograph of the SMP 

epoxy powder where its size is measured. Powder size distribution reveals a particle 

diameter ranging between 2 to 109.99 μm (figure 59b). The distribution indicates that 

particle size diameter mostly falls within 30 -39.99 μm from the cumulative distribution. 

This indicates that the SMP epoxy powder size is far less than the nozzle size; hence, no 

clogging issue at nozzle tip would exist during 3D printing of the SMP epoxy precursor. 
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Figure 59: (a) SEM micrograph showing varying sizes of SMP epoxy powder processed 

by ball milling technique, (b) particle size distribution of SMP epoxy powder. 
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It is important to highlight that appropriate viscosity of SMP epoxy paste is required for 

efficient extrudability of the precursor from the syringe nozzle. Achieving the SMP 

extrusion with the appropriate nozzle diameter would result in good printing resolution. 

Thus, the SMP epoxy powder is mixed with its liquid counterpart in the ratio of 3:1 for 30 

s to attain significantly higher viscosity (~730 cP as comparable with some traditional 

epoxies in the literature) than that of only SMP liquid (25.6 cP) at 25oC. It is observed that 

the mixing of colorless SMP epoxy liquid and white SMP epoxy powder produced a 

greyish slurry color (figure 60). This could be due to a chemical reaction between the SMP 

powder (functionalized with liquid nitrogen) and the SMP liquid. The prepared precursor 

was used for 3D printing out of syringe nozzle size (800 μm, inner diameter), printing 

velocity of 30 mm/sec, and a layer height of 200 μm. More details of the 3D printing are 

provided in the materials and methods chapter (section 3.2.3).  

3D printed dog-bone shape sample obtained from the described precursor smudges 

almost immediately after printing (figure 60). This construes that the printed sample could 

not retain the dog-bone shape sample. The smudging noticed after printing is due to shear-

thinning behavior of the SMP epoxy precursor as it comes out of the nozzle. Consequently, 

the first approach is not considered for 3D printing of SMP epoxy and SMP epoxy-GNP 

samples. 
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Figure 60: Image showing 3D printed dog-bone shape sample using a mixture of SMP 

epoxy liquid and powder 

6.1.2 Partial curing of SMP liquid at room temperature  

Partial curing of SMP liquid at room temperature is the second approach considered 

to overcome the smudging challenge during extrusion-based 3D printing of SMP epoxy. 

After mixing the resin components, the SMP epoxy liquid is left to partially cure at 25oC 

for 36 hours to achieve a viscosity (~ 800 cP). The viscosity is slightly higher than the 

thickness used in the first approach (~ 730 cP) due to reduced shear-thinning between the 

SMP epoxy precursors itself and between the SMP epoxy and the walls of the extruder 

nozzle during printing. Using the same printing conditions for the first approach, the SMP 

precursor is used to 3D print dog-bone shape sample. The printed sample retained the dog-

bone shape sample for approximately 30 minutes at room temperature before it started 

smudging (indicated in figure 61a and b).  
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Figure 61: Image of 3D printed dog-bone shape sample using partial cured SMP epoxy 

precursor. (a) immediately after printing (retaining the dog-bone shape geometry); (b) 30 

minutes after printing (revealing smudging of SMP epoxy and not maintaining the shape 

geometry) 

 
6.1.3 Partial curing of SMP epoxy liquid at room temperature (placed under a nearly 

cryogenic condition after 3D printing) 

Like the second approach, the SMP epoxy precursor is prepared by partial curing the 

SMP epoxy liquid at 25oC for 36 hours, maintaining the previous viscosity (~ 800 cP). 

However, to overcome shear thinning behavior of the precursor, an additional process is 

added during and after 3D printing the dog-bone shape sample. The process is in two 

stages: (i) freeze spraying (10oC) on the dog-bone shape sample during and after 3D 

printing, using freeze spray component consisting of tetrafluropropene, and (ii) subjecting 

the dog-bone sample to nearly cryogenic condition (-10oC) for 24 hrs by placing it in a 

refrigerator.  

Insight is drawn from SME phenomenon (discussed in section 4.1) to consider this 

process. Since shape fixity requires subjecting SMP epoxy far below the Tg (~20oC) to 

(a) (b) 
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retain its temporary shape, then this condition is borrowed and used on SMP epoxy 

precursor for 3D printing. After 24 hrs, the 3D printed sample successfully retained the 

dog-bone geometry after removing it from the refrigerator and left under room temperature 

to be completely cured. The complete curing took another four days after removal from the 

refrigerator. This is indicated in figure 62a. Based on the successful extrusion of SMP 

epoxy samples, the third approach is employed to 3D print SMP-epoxy with 0.1 wt.% GNP 

(figure 62b). The viscosity of SMP increases to 12300 cP after 0.1 wt.% GNP addition. 0.1 

wt.% GNP is considered because higher weight percent of GNP can lead to agglomeration 

and result in nozzle clogging. This could further lead to poor printing resolution.  

 

                              

(a) 
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Figure 62: Images of 3D printed dog-bone shape sample placed under nearly cryogenic 

condition. a) SMP epoxy b) SMP epoxy-0.1 wt.% GNP  

Also, good printing of dog-bone shape of SMP epoxy-GNP is influenced by control 

process parameters associated with extrusion 3D printing. Such primary parameters 

include nozzle scanning speed during extrusion, build-plate temperature, and gap between 

build layer and nozzle tip. Table 2 shows the parameter values for the 3D printing of SMP 

epoxy dog-bone shape parts. Selection of these parameter values is very critical in 

obtaining a good quality print. For instance, nozzle speed can greatly affect dimensional 

accuracy. It is observed that high nozzle speed can lead to vibration of 3D printer, resulting 

in a relative error of printed components. As a result, the printing parameter values used in 

this study agrees with the literature study on 3D printing of low viscous conventional 

polymers [157]. 

 

 

(b) a 
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Table 6.1. Printing parameters of 3D printed SMP epoxy-0.1 wt.% GNP Composites 

Parameters Values 

Nozzle scan speed while extruding (mm/s) 
30 

Bedplate temperature (oC) 22 

The gap between the first layer and the nozzle tip 

(mm) 
0.2 

Print infill density (%) 100 

6.2 Morphology of 3D printed SMP epoxy-graphene nanoplatelets powder (GNP) 

The morphology of 3D printed SMP epoxy and SMP epoxy-0.1 wt.% GNP 

composites is examined from their top and side view surfaces (figure 63). Figures 63a and 

b show SEM micrographs of top surfaces of SMP epoxy. SEM micrographs of side view 

surface of SMP epoxy are displayed at low and high magnifications (figures 63c and d). 

SMP epoxy (control sample) reveals smooth surface with stripes that could have stemmed 

from the infilling pattern at 45o (figure 63a). At higher magnification, SMP epoxy further 

revealed directionality at almost 45o of the non-crystalline or amorphous arrangement of 

epoxy chains oriented. It could also possibly be due to influence of the infilling of the gauge 

length (filled at 45o) during 3D printing. Figures 63c and d show smooth and slightly rough 

surface regions of SMP epoxy. Higher magnification micrograph shows that there exist 

largely smooth surface regions in between the rough surface regions. This typical surface 

characteristics of thermoset epoxy consisting of disordered chains. 
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Figure 63: SEM micrographs of cross-section of 3D printed dog-bone shape specimen 

from SMP epoxy top view surface (a) at lower magnification (150×); (b) at higher 

magnification (1500× and 5000× [𝑖𝑛𝑠𝑒𝑡]) and side view surface (c) at lower magnification 

(100×) and (d) at higher magnification (750×) 
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Figure 64: SEM micrographs of cross-section of 3D printed dog-bone shape specimen 

from SMP epoxy-0.1 wt.% GNP (a) at lower magnification (150×); (b) at higher 

magnification (1500× and 5000× [𝑖𝑛𝑠𝑒𝑡]) and SMP epoxy-0.1 wt.% GNP (c) revealing 

rough surfaces and (d) interface between graphene and SMP epoxy 

Furthermore, figures 64a-d show the top and side view surfaces of 3D printed dog-

bone shape SMP epoxy-0.1 wt.% GNP composite. Unlike that of the SMP epoxy sample, 

the top surface of the composite sample shows dendritic patterns (figure 64a) due to GNP 
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powders added into the polymer matrix. The top surface of SMP epoxy-GNP composite 

shows graphene dispersed in some regions having a rough surface. Few regions show 

smooth surfaces. It indicates that uniform GNP dispersion is noticed in some regions of 

SMP epoxy matrix and non-uniform GNP distribution in a few other regions. It also shows 

that the amount of GNP added is suitable for the nozzle inner diameter (800 𝜇m) and print 

speed (30 mm/s) to perfectly extrude the precursor. This is because higher GNP weight 

percent can cause nozzle clogging, largely resulting in non-uniform GNP distribution in 

the printed sample. Tiny air bubbles and non-directionality in the epoxy chains was also 

observed at higher magnification (figure 64b). The air bubbles could be the air trapped 

during mixing of SMP epoxy and GNP powders, and during partial curing of the 

composite. The inset at higher magnification (5000×) clearly shows some regular arrays 

of SMP epoxy chain within its overall disoriented system after GNP addition. This 

indicates that GNP reinforcement partially aids in the alignment of the chain molecules of 

SMP epoxy. 

The significant irregular protuberances or rough surfaces observed on the side view 

surface (figure 64c) could be attributed to the embedded GNP that is strongly bonded with 

SMP epoxy, with no nanolayer pull out. Figure 64d shows SMP epoxy well coated on the 

GNP and less graphene pull out from the matrix. This indicates excellent interface between 

SMP epoxy and GNP. This results in strong physical bonding that can influence the 

mechanical property of SMP epoxy-GNP composite. Additional SEM fractographs are 

shown in the section of mechanical property of the 3D printed samples (section 6.6.1).                                                                 
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6.3 Phase and Bonding Characteristics 

Raman and FTIR spectra results are obtained from the microstructural characterization to 

understand phase and bonding characteristics of the 3D printed SMP epoxy-based samples 

(figure 65a-c). Figure 65a shows Raman spectra of GNP powder obtained from previous 

work in our group [158]. Like GrF Raman spectra discussed in section 4.1, figure 65a 

unveils the three typical graphene peaks representing graphene molecular fingerprints. The 

D, G, and 2D peaks are observed at 1360, 1580 and 2700 cm-1, respectively. Figure 63b 

and c present Raman spectra of SMP epoxy, SMP epoxy-0.1 wt.% GNP and SMP epoxy-

0.25 wt.% GNP samples at wavenumber 1000 – 1800 cm-1 and 2000 – 4000 cm-1. SMP 

epoxy peaks are recognized at wavenumbers of typical epoxy peaks [159]. Some of the 

noticeable peaks are at 1113, 1162, 1318, 1460, 1580, and 1608 and 3069 cm-1.            

                    

(a) 
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Figure 65: Raman spectrum of (a) GNP powder [158]; Raman spectra of SMP epoxy, SMP 

epoxy-0.1 wt.% GNP and SMP epoxy-0.25 wt.% GNP at (b) wavenumber 1000 – 1800 

cm-1; (c) at wavenumber 2000 – 4000 cm-1. 

At these respective peaks, strong C-O-C epoxy ring, C-H waggings, CH3 bending, CH2 

deformation vibration, shoulder, and strong aromatic rings stretch are observed. It is 

important to note that the shoulder aromatic signature from SMP epoxy appears at 1580 

cm-1, which is almost the same graphitic signature from GNP.  

Figure 65b reveals Raman spectra of SMP epoxy-0.1 wt.% GNP at wavenumber 1000 

– 1800 cm-1. Graphitic signature (G peak) is not detected though shoulder band was noticed 

at 1580 cm-1, which is similar to the Raman spectrum for SMP epoxy. G peak cannot be 

confirmed because the shoulder bands from the Raman spectra of SMP epoxy and SMP 

epoxy-0.1 wt.% GNP has the same peak intensity. To detect the G peak, GNP content is 

increased from 0.1 to 0.25 wt.%. With increased GNP content, SMP epoxy-0.25 wt.% GNP 

(b) (c) 
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Raman band reveals graphitic signature (G peak) at 1581 cm-1. The detection of the G peak 

is confirmed based on the peak intensity increase at the shoulder band (1581 cm-1). The 

ratio of the peak intensity of the shoulder peak (at 1580 cm-1) to strong aromatic peak (at 

1608 cm-1) for Raman spectrum of SMP epoxy is 0.85; whereas, the peak intensity ratio 

for Raman spectrum of SMP epoxy-0.25 wt.% GNP is 0.96 (12% increase in peak 

intensity). The broad hump of D peak was not visible. It suggests that extremely low 

thermal treatment could facilitate the defect-free region in the graphene by coalescing of 

nanographene islands [86]. Good dispersion of graphene also prevents defect due to 

agglomeration, thereby accounting for invisible D peak.  The wavenumber shift in G peak 

of GNP (figure 65b) could be attributed to slight shrinkage that occurs during 

polymerization of the SMP epoxy chains. Presence of 2D peak could be observed in 0.25 

wt.% GNP composition, as shown in figure 65c. The 2D peak intensity at this composition 

is slightly higher than at 0.1 wt.% GNP and SMP epoxy. 

In addition to the Raman studies, FTIR spectra of the 3D printed SMP epoxy and 

SMP epoxy-0.1 wt% GNP composite is shown (figure 66). The absorption bands at 3348 

and 2970 cm-1 are ascribed to saturated O-H and C‐H stretching vibrations. Bending 

vibration of ether C=O corresponds to the characteristic absorbance peak at 1100 cm-1 

while the peak at 1535 cm−1 can be attributed to stretching vibration of N-H. High peak 

intensity displayed by C-H and N-H is due to greater change in dipole moment concerning 

distance than that of O-H and C-O functional groups. It is observed that the peak width of 

SMP epoxy-0.1 wt% GNP decreased at absorption band 3348 cm−1 and slightly increased 

at absorption band 1535 and 2970 cm-1 compared with that of SMP epoxy. 
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Figure 66: FTIR spectra of SMP epoxy and SMP epoxy-0.1 wt.% GNP composite 

confirming the possibility of interfacial interactions between functionalities on SMP epoxy 

and graphene 

This construes that less hydrogen bonding or interaction occurs at 3348 cm−1 and some 

intermolecular interactions at 1535 and 2970 cm-1. Furthermore, FTIR results of cast 

sample of SMP epoxy-GrF and 3D printed sample SMP epoxy-GNP are compared. Cast 

sample displayed higher peak intensity than its 3D printed counterpart. This could be 

attributed to more concentration of molecules in the cast sample, which has higher 

thickness (3 mm) than 3D printed sample (0.6 mm). Wider peak widths assigned to C-H 

and N-H of the cast samples indicates more hydrogen bond interactions of C-H and N-H 

bond of GrF with C-H and N-H bond of SMP epoxy.  
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6.4 Thermal Characteristics 

Glass transition (Tg) behavior of 3D printed SMP epoxy-based samples is 

investigated, using SDT Q600 instrument, after completely curing the 3D printed dog-bone 

shape room temperature. Figure 67 presents the Tg of the 3D printed samples, which is 

subjected to the heating rate of 10oC/min from room temperature to 175oC.  

           

Figure 67: Differential Scanning Calorimetry (DSC) curves of 3D printed SMP epoxy and 

SMP epoxy-0.1 wt.% GNP Composite 

The DSC thermogram curves of SMP epoxy and SMP epoxy-GNP of both the samples 

showed inflection at around 45 and 44oC, respectively. The inflection region is the Tg 

region. It also represents the small endothermic peak which can be attributed to enthalpy 

relaxation of the amorphous SMP epoxy from unfavorable chain orientations towards a 

more stable chain conformation. Figure 67 shows that SMP epoxy-GNP has a marginal Tg 

decrease than SMP epoxy sample. GNP addition could occlude crosslinking of the SMP 

epoxy chains. 
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Further, low GNP content and non-uniform dispersion in some regions of the sample do 

not provide enough physical interaction with the SMP epoxy.  Hence, these factors could 

result in lower Tg of the composite. Compared with Tg of mold cast SMP epoxy sample 

(42oC) (figure 31), the 3D printed SMP epoxy has higher Tg (45oC). This can be attributed 

to curing time (4 days) given to the 3D printed SMP epoxy (which is part of successful 

printing conditions). The timing enables the SMP polymer chains to find energetically 

favorable orientations to crosslink with neighboring polymer chains.  Shear thickening 

behavior during 3D printing could also possibly cause enhanced intramolecular 

interactions that can influence the curing of the printed samples [160]. Layer height and 

print infill pattern are factors that could affect the Tg of the 3D printed sample. They could 

control the orientation of the GNP in the example. This construes that increased layer 

height could create an avenue for different GNP orientations. The sample layer height in 

this study is 0.6 mm, which could be thin or thick depending on the applications. The height 

was preferred because it contributes to retaining the dog-bone shape geometry and no 

smudging of the SMP epoxy precursors. The layer height of the sample as an important 

parameter could allow for GNP orientation, but this does not significantly affect the 

composite Tg due to low GNP content.  

6.5 Shape Memory Behavior of 3D Printed SMP Epoxy-GNP Composite 

SMP epoxy-GrF samples fabricated by the mold-casting method have shown great 

capability to be thermally stimulated to exhibit shape recovery (highlighted in section 4.1). 

However, 3D printing of SMP component offers additional advantages such as 

customization, cost, and time. It is thus insightful to investigate thermal actuation and shape 
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recovery performance of 3D printed SMP epoxy samples. Influence of 3D printing process 

parameters on the printed quality of SMP epoxy-based samples is also considered. 

Investigation of shape recovery of 3D printed SMP epoxy would portray the robustness of 

SMP epoxy resins as precursors for multiple fabrication techniques in the design of smart 

materials.  

6.5.1 Thermal Actuation  

Thermal stimulation of printed SMP epoxy and SMP epoxy-GNP samples with 

dimensions (48 x 1.1 x 0.4 mm) is performed by using hot plate heating source at a 

temperature of 70oC. The stimulation propels deployment of the sample from its temporary 

bent shape to its permanent flat shape. Qualitative and quantitative evaluation of shape 

recovery of the samples is obtained from the fold-deploy tests (figure 68a and b). Figure 

68a and b show the qualitative evaluation in terms of shape recovery images of bent shapes 

of SMP epoxy and SMP epoxy-GNP composite, respectively. The images are captured 

from recorded shape recovery videos of the samples during thermal stimulation. 

 

Figure 68: Shape recovery images of pre-deformed samples actuated by direct heat from 

hot plate (a) SMP epoxy and (b) SMP epoxy-0.1 wt.% GNP composite  

0 s 15 s 

15 s 

40 s 

33 s 0 s 

(a) 

(b) 
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It is noticed that both SMP epoxy and its composite recover entirely to their original 

shape. The recovery images thus attest that any object printed with SMP epoxy prepared 

in our lab through syringe-based extrusion technique can exhibit shape recovery property. 

Moreover, at recovery temperature of 70oC and 15 s, the printed composite displays larger 

recovery angle compared with that of SMP epoxy. The larger recovery angle experienced 

by the composite can be attributed to excellent thermal conduction and high stiffness of 

GNP reinforcement in the SMP epoxy matrix. This implies that the composite has a faster 

recovery rate than the SMP epoxy. Quantification of the samples’ recovery angles is further 

carried out (figure 69) with the aid of Image J software (version 6). Figure 69 shows the 

recovery angle profile concerning recovery time for the 3D printed SMP epoxy and its 

composite. The slope of the profile represents the recovery rate of the samples. It is 

observed that the slope of SMP epoxy-0.1 wt.% GNP is higher than that of SMP epoxy. 

This is corroborated with the values of recovery rates between recovery time range of 10 

and 25 s (as marked on the profile). 
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Figure 69: Shape recovery images of pre-deformed SMP epoxy and SMP epoxy-0.1 wt.% 

GNP composite samples actuated by direct heat from the hot plate heat source  

Recovery rates of SMP epoxy and SMP epoxy-GNP composites are 4.3 and 5.0 

degree/s, respectively. This indicates that recovery rate performance of the composite is 

~16% higher than that of SMP epoxy. Also, shape recovery ratios of the printed samples 

are obtained from the shape recovery equation (highlighted in section 4.1). Like that of the 

mold-cast samples, the printed SMP epoxy-GNP sample exhibited 100% shape recovery. 

It thus portrays that 3D printed samples can also demonstrate full shape recovery.  

Like GrF reinforcement, mere 0.1 wt.% GNP addition in SMP epoxy enhances the 

shape recovery rate of the 3D printed composite. It shows the efficacy of graphene-based 

reinforcement in 3D printed SMP generally. GNP efficacy can be ascribed to its intrinsic 

property, such as its high thermal conductivity and stiffness. Also, less agglomeration of 

GNP helps in improving heat transfer within the matrix system, contributing to recovery 

rate improvement of SMP epoxy-GNP system. It is important to highlight that GNP 
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addition synergizes well with the SMP epoxy precursor viscosity and process parameters 

values to produce printed parts of good quality. Achieving good quality 3D print by 

extrusion technique provides near-net-shape SMP parts. This is a boost over a mold-cast 

approach, which sometimes does not produce a near-net-shape components. Overall, like 

mold-casting, 3D printing of SMP epoxy-based samples by syringe extrusion can exhibit 

shape recovery behavior. This makes 3D printing technique to offer additional option over 

mold-casting approach when it comes to manufacturing of thin SMP parts such as thin 

sheets for kirigami or origami design for aerospace and electronic purposes. 

6.6 Static and Dynamic Mechanical Properties 

6.6.1 Uniaxial Tensile Behavior 

Static mechanical behavior of 3D printed SMP epoxy-based samples is investigated. 

3D printed dog-bone shape samples of SMP epoxy and GNP reinforced 

(19 𝑥 0.4 𝑥 0.6 𝑚𝑚) are used for the tensile tests. Images of the 3D printed SMP epoxy 

and GNP-based samples are shown in figure 70a and b. Tensile properties of the dog-bone 

shape samples are obtained from the stress-strain plot, which are deduced from load-

displacement curves.  
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Figure 70: Images of 3D printed dog-bone shape samples fabricated by using syringe 

extruder and room-temperature cured (a) SMP epoxy and (b) epoxy-GNP.  
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Figure 71: (a) Uniaxial tensile stress-strain curves for mold-cast SMP epoxy and SMP 

epoxy composite of 0.1 wt.% GNP content (b) Comparison of Young modulus of SMP 

epoxy and composite of 0.1 wt.% GNP content 

Figure 71a and b show the stress-strain profile and Young modulus comparison of the 

printed SMP epoxy and SMP epoxy-0.1 wt.% GNP specimens, respectively. The 

corresponding mechanical properties deduced from the tensile test are displayed in Table 

6.3. 

Table 6.3. Tensile Properties of SMP Epoxy and SMP Epoxy-0.1 wt.% GNP Composite 

Sample Elastic Modulus 

(GPa) 

Ultimate Tensile 

Strength (MPa) 

Strain at 

failure (%) 

SMP Epoxy 1.22±0.061 31.20±1.56 3.22 

SMP Epoxy-GNP 1.63±0.082 41.85±2.09 3.18 

SMP epoxy sample receives approximately 17% boost in its elastic modulus after GNP 

addition. SMP epoxy-GNP composite also demonstrates approximately 30% enhancement 
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in the ultimate tensile strength compared to SMP epoxy. Strain to failure of SMP epoxy-

0.1 wt.% GNP relatively remain unchanged, having a marginal increase than the control 

sample. In addition to results of the stress-strain response, SEM evaluation of fracture 

surfaces of printed SMP epoxy-GNP tensile sample is conducted. The fractographs are 

useful to examine the influence of the printing process parameters and strengthening 

mechanisms on the surface feature of the printed samples (figure 72). Figure 72 shows the 

SEM fractograph of 3D printed SMP epoxy taken on the planes parallel to the layer 

deposition axis. A smooth surface is revealed, indicating that splitting occurs along a 

definite plane. Similarly, smooth surface features from the cleavage of the plane are 

observed when taken on the planes perpendicular to the layering axis. It implies that in 

both parallel and perpendicular direction, the print infill angle (45oC) to the layering axis 

does not influence or alter the brittle surface characteristics of SMP epoxy.  

                                                                    

Figure 72: SEM micrographs of a cross-section of 3D printed SMP epoxy revealing 

smooth surface feature 
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Figures 73a and b present SEM fractographs of 3D printed SMP epoxy-GNP taken on the 

planes perpendicular and parallel to the layer deposition axis, respectively. Good interface 

bonding of GNP with the matrix is noticed from irregular protuberances of SMP epoxy-

GNP fracture surface (figure 73a). The good interface facilitates excellent stress transfer 

from the matrix to the GNP. This prevents early matrix failure (in terms of crack initiation 

and propagation) while withstanding the applied tensile load. During 3D printing, 

appropriate distance (0.2 mm) between build layer and nozzle tip of the syringe extruder 

could also contribute to the good interface achieved. Appropriate distance would prevent 

the nozzle from scratching the build layer as this can create additional microvoids between 

GNP and SMP epoxy, resulting in weak interface. Figure 73b, obtained from the 

perpendicular plane, shows a feather marking feature of GNP coated with SMP epoxy. The 

feature also contains step-like line patterns. Print infill angle (45oC) could influence GNP 

orientation, giving it bowing line patterns (figure 73b). The bowing lines suggest the 

occurrence of crack pinning of the matrix, accounting for UTS increase experienced by the 

composite. 

 

Figure 73: SEM fractographs of SMP epoxy-GNP composite. (a) image taken from 

perpendicular planes to the layer deposition axis, with 2200× [𝑖𝑛𝑠𝑒𝑡] (b) image taken from 

parallel plane to the layer deposition axis, with 750× [𝑖𝑛𝑠𝑒𝑡] 

Crack pinning 

(a) (b) 
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Furthermore, figures 74a and b reveal GNP positioning in SMP epoxy. GNP serves as a 

crack bridging agent to SMP epoxy marked with propagated crack. High in-plane stiffness 

of GNP holds the structural integrity together of SMP epoxy and prevents the complete 

fracture of SMP epoxy. This portrays the great potential of GNP in SMP composite 

fabricated by 3D printing through syringe extruder. 

 

Figure 74: SEM images of the fracture surface showing the crack-bridging mechanism in 

SMP epoxy-GNP composite. (a) low magnification of 1500× and (b) high magnification 

of 5000× 

 

6.6.2 Dynamic Mechanical Properties 

DMA characterization is performed on 3D printed SMP epoxy-based samples with 

dimensions (10.70 𝑥 6.78 𝑥 0.48 𝑚𝑚). The samples are subjected to tensile deformation 

mode because of its small thickness, which is unsuitable for 3-point bending deformation. 

A small amplitude load of 5 𝜇𝑚 is applied within temperature range from 24–80oC at 

heating rate of 3K/min and 1 Hz. Figure 75a and b shows the dynamic storage moduli and 

loss tangent of SMP epoxy (~300 𝑀𝑃𝑎; 0.9) and SMP epoxy-0.1 wt.% GNP composite 

printed (~1400 𝑀𝑃𝑎; 1.5) at infill angle (45o), in rectilinear pattern and infill density 

(a) (b) 
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(100%), respectively. The plot of storage moduli and loss tangent of the printed SMP 

epoxy-based samples are like dynamic mechanical properties profile of the mold-cast 

samples. Storage moduli of the samples display typical steep decrease from 24 to 80oC 

(figure 75a). Printed SMP epoxy-0.1 wt.% GNP composite exhibits higher storage modulus 

(5 times greater) than that of the SMP epoxy. Loss tangent of the samples shows a bell 

curve profile; it increases to the peak and decreases to zero value (figure 75b). Higher loss 

tangent is also displayed by SMP epoxy-0.1 wt.% GNP compared with SMP epoxy.     
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Figure 75: Plot of (a) storage modulus and (b) tan delta of SMP epoxy and SMP epoxy-

0.1 wt.% GNP composite at amplitude load of 5 𝜇𝑚 

The steep decrease in the storage moduli of the printed samples, as temperature 

increases, is due to an increase in mobility of the polymer chain molecules [154]. 

Incorporation of GNP in SMP epoxy matrix accounts for higher storage modulus of the 

composite. GNP, which has functionalized edges (carbonyl and hydroxyl groups, as shown 

in figure 66), creates excellent adhesion at the epoxy-GNP interface. The interface allows 

GNP to transfer its in-plane stiffness to the corresponding matrix [161]; hence an 

approximately five times increase in storage modulus of the composite between 24–34oC. 

Also, printing a dog-bone shape part (<1 mm thickness) makes it possible for the composite 

to receive appreciable GNP response during tensile loading. Like the behavior of mold cast 
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samples, at higher temperature, more cooperative segmental mobility is activated and 

dominant more than the GNP contribution. This leads to zero storage modulus value above 

40oC.   

Furthermore, high loss tangent demonstrated by the composite can be attributed to 

the regions that showed fair GNP dispersion and (functionalized graphene) in SMP epoxy 

to achieve fair interface. This bonding enables elastic energy in the matrix to be transferred 

to graphene membrane where dissipation mechanisms (such as ripple formation and 

propagation, intermolecular interaction between layers and interlayer slippage) are 

mobilized [73]. Tan delta peak shift is observed from the SMP epoxy curve at 43oC to SMP 

epoxy-0.1wt.% GNP at 36oC in figure 75b. The shift is noticeable compared with that of 

mold-cast samples, and it can be as a result of the curing process of the precursors. The 

mold-cast samples are cured with relatively high temperature (100oC); whereas, the 3D 

printing precursor is cured at room temperature (100oC). Typically, room curing of 

polymers has weakened crosslinking (since it is not heat-induced) compared with that of 

oven curing. Thus, curing of 3D printing SMP epoxy precursors at room temperature 

results is not as strong as that of oven-cured samples. This accounts for reason tan delta 

peak temperatures (36 and 45oC) for 3D printed SMP samples are lower than that of mold-

cast SMP epoxy samples. This is further reflected and attested in the Tg values of 3D 

printed SMP epoxy composite sample at 45oC (figure 67), which is lower than that of mold-

cast SMP epoxy composite at 50oC (figure 31). Also, GNP integration in some regions of 

the SMP epoxy matrix can also prevent crosslinking of the SMP resin monomers. This 

further reduces the crosslinking density; hence, the left shift of tan delta peak. 
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Chapter VII: Conclusions 

This dissertation presents a detailed analysis of thermal, mechanical, and shape 

memory properties of GrF-reinforced shape memory epoxy (SMP) composites. 

Investigations on mold-cast and 3D printed graphene-SMP epoxy composites show 

considerable improvement in their thermal conductivity and diffusivity. Static and dynamic 

mechanical behaviors of the composites reveal an increase in ultimate tensile strength, 

elastic moduli, loss tangent, and storage moduli with GrF and GNP reinforcements. 

Investigation of shape memory performance of the composites unveils enhancement in its 

shape recovery response after GrF addition. Key findings in this work positions GrF as a 

suitable reinforcement in SMP epoxy for structural and multifunctional applications, such 

as morphable aircraft wings, deployable solar array, stretchable piezoelectric sensor. SMP 

epoxy-GrF composites is a promising material for the highlighted application primarily 

due to its improved stiffness and enhanced recovery rate. Major conclusions on the 

processing-property-performance of SMP epoxy-GrF are summarized below: 

• SMP epoxy easily percolates through the macroporous, hierarchal structure of GrF 

to form a robust and smart composite material. Since SMP epoxy has a higher 

infiltration factor than conventional polymers, facile mold-cast fabrication of SMP-

GrF composites can be easily achieved.   

• Incorporation of 0.13 wt.% GrF in SMP epoxy matrix introduces new architecture 

to the existing molecular framework, which is capable of tailoring glass transition 

temperature of the polymer. GrF integration increases the glass transition of SMP 

epoxy from 42 to 50oC, resulting in 19% enhancement of glass transition of SMP 
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epoxy matrix. Glass transition increase is due to enhanced physical interactions of 

the polymer chain molecules with GrF anatomy. 

• Poor heat conduction of mold-cast SMP epoxy is greatly transformed to highly 

thermal conductive smart composite after GrF addition. SMP epoxy-0.5 wt.% GrF 

system exhibits 67% improvement in thermal conductivity and 63% increase in 

thermal diffusivity at recovery temperature (70oC). The enhancement in the thermal 

properties is due to seamless phonon transfer from GrF interconnected framework 

to the matrix. 

• Shape recovery characteristics of mold cast SMP epoxy-0.75 wt.% GrF and 3D 

printed SMP epoxy-0.1 wt.% GNP outperformed its SMP epoxy counterpart. SMP 

epoxy and GrF reinforced SMP epoxy composite displays complete shape recovery 

from its preform to the original shape. Furthermore, SMP epoxy and SMP epoxy-

GrF composite can be programmed into simple and complex geometry shapes due 

to its high recoverable strain characteristics. 

• The shape recovery rate of the mold-cast and 3D printed graphene-based epoxy 

composites is 23% and 16% faster than the neat SMP epoxy. High intrinsic thermal 

and mechanical properties of GrF reinforcement primarily accounts for the 

improvement in the shape memory performance. 

• SMP epoxy-GrF composite by mold-casting demonstrates 23% faster self-healable 

behavior which is due to its robust, versatile structure and its response to dynamic 

factors such as heat. 
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• Mold-cast SMP-GrF sample displays 6% and 20% enhancement in ultimate tensile 

strength and elastic modulus, with mere 0.5 wt.% GrF addition.  GrF branch 

capacity to withstand load is a proof of effective stress transfer in the composite.  

• SMP epoxy has enough time space between its gel point and completes crosslinking 

that allows appropriate viscosity required for quality 3D printing of parts, using 

SMP epoxy precursor. 

•  3D printed SMP epoxy-0.1 wt.% GNP exhibits 30% and 17% appreciable 

improvement in tensile strength and elastic modulus, respectively. A strong 

interface and high in-plane stiffness of graphene are accountable for these 

improvements. 

The specific conclusions listed above have established that processing of graphene-based 

SMP composite is highly feasible using mold casting and 3D printing techniques. The 

study also demonstrates that with the addition of graphene-based reinforcement, SMP 

epoxy can receive a considerable boost in its thermal, mechanical, and shape memory 

properties. This can make the SMP epoxy composites to serve as multifunctional smart 

materials that can be employed in several applications.  SMP epoxy-GrF properties can be 

further improved by making modifications in the processing. Thus, recommendations for 

future work have been made to expand the boundaries  of GrF reinforced SMP polymer 

composites (such as improvement in the fabrication quality (excellent resolution 3D print) 

and enhancing material property (mechanical characteristics) limit of SMP epoxy-GrF 

composite for aerospace wing morphing application and smart composite coatings). 
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Chapter VIII: Recommendations for the Future Work 

Based on the discussion and conclusions presented in the previous chapters, the following 

recommendations are made to further improve the properties of SMP epoxy-graphene 

composites and answer the new challenges.  

8.1 Optimizing GrF in mold-cast SMP Epoxy Composites 

The present work is performed with largely two compositions of GrF filler (0.5 and 

0.75 wt.%) in SMP epoxy. Optimizing GrF content would have a considerable effect on 

the mechanical and thermal performance of the composite. Property characterization of 

multiple graphene contents of the composites would enable researchers to determine the 

percolation limit of GrF in SMP epoxy cast composites. In order words, it would allow the 

scientific community to know the maximum amount of GrF addition after which there is 

no change in SMP epoxy property. This is needed to fully harness the thermomechanical 

properties of GrF reinforcement in the SMP matrix before degradation of the composite 

properties. 

8.2 Surface treatment of GrF reinforcement 

Though SMP epoxy easily wets GrF, interfacial spacing is observed in some regions 

of the composite. To fully harness in-plane stiffness of graphene sheets, the surface 

modification should be performed on GrF. The modification can be in the form of surface 

treatment such as low plasma treatment or creating more functionalized GrF. 

8.3 Optimizing GNP content in 3D printed SMP Epoxy Composites 

This research considers only 0.1 wt.% GNP filler for the 3D printed SMP epoxy 

composite to examine GNP role in improving shape memory properties of epoxy. 0.1 wt.% 
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GNP is considered because more weight percent GNP could lead to agglomeration and 

result in nozzle clogging (where the nozzle size is 400 μm). This could further lead to poor 

printing resolution. Also, lower GNP weight percent than 0.1 wt.% might not produce the 

minimum mechanical and thermal reinforcement efficiency needed by SMP epoxy matrix. 

Thus, 3D printing of SMP epoxy-GNP composites with varying GNP contents would 

provide insights about the maximum GNP weight percent addition needed before clogging 

of the syringe nozzle. Optimized GNP content amount for shape memory and mechanical 

performance of epoxy would likewise be known. 

8.4 Control Process Parameters Optimization for 3D printing of SMP Epoxy-GNP 

Composite 

In addition to optimizing the content of graphene-based fillers, 3D printing process 

parameters should also be optimized. Appropriate process parameters are pivotal in 

obtaining excellent resolution 3D print of SMP epoxy composites. Though the printing 

parameters used in this study are based on our recent experiments and literature, a detailed 

parametric study should be performed to examine if the print resolution can be maximized. 

From the 3D printing of SMP epoxy, it has been observed that nozzle speed, bed plate 

temperature, print infill density, and layer height are the most important parameters to be 

considered for excellent resolution. A design of experiment containing an experimental 

matrix of these parameters would make the researcher make an informed decision about 

parameter values that would make up the excellent 3D print resolution of SMP epoxy-

based composites. 
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8.5 Modifications on SMP epoxy precursor and 3D Printing Instrumentation 

Challenge about more than one build layer of SMP epoxy, experienced in this study, 

should be addressed. Modification in the chemistry of SMP epoxy is needed to overcome 

the smudging issue of SMP epoxy precursor when used to print above one build layer. This 

would be important in using SMP epoxy for 3D printing of miniaturized components. Also, 

an external component which houses freeze sprayer is required. The freeze spray liquid is 

applied on thermal sensitive polymers like SMP epoxy to prevent smearing of the 

precursor. 

8.6 Fabrication of Kirigami-based SMP Epoxy Composites 

An interesting future work that is worth considering is mechanical functionalization 

of thin sheets of SMP epoxy-graphene based system to create kirigami smart material. 

Kirigami design transforms a 2D material to 3D structure. Using kirigami concept, thin 

sheets of SMP epoxy-graphene composite be patterned or designed by a laser machine. 

This process transforms SMP epoxy-graphene based system to a multifunctional advanced 

composite, capable of shape recovery and be transformed into 3D configuration. Such a 

new generation of the advanced composite can find application in aerospace components, 

electronics (supercapacitors), and biomedical components. 
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