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ABSTRACT OF THE DISSERTATION 

MEASURING COLLAGEN ARRANGEMENT AND ITS RELATIONSHIP WITH 

PRETERM BIRTH USING MUELLER MATRIX POLARIMETRY 

by 

Joseph Chue-Sang 

Florida International University, 2019 

Miami, Florida 

Professor Jessica Ramella-Roman, Major Professor 

Preterm birth (PTB) is defined as delivery prior to 37 weeks of gestation. It is the leading 

cause of infant death worldwide, responsible for infant neurological disorders, long-term 

cognitive impairment, as well as chronic health issues involving the auditory, visual, 

digestive, and respiratory systems.   

Current diagnosis methodologies of PTB include ultrasound imaging of cervical length and 

fetal fibronectin assay but have low positive predictive power. Compared to the markers 

targeted by current diagnosis methodologies, collagen content in the cervix changes more 

drastically throughout the course of gestation due to its link to changes in load bearing 

capacity that occur during the phases of pregnancy. Mueller matrix polarimetry is capable 

of characterizing changes in collagen without making contact with patients and may prove 

to be an improvement to current diagnosis methodologies. A commercial colposcope was 

modified to contain Mueller matrix polarimetric capabilities so that patients could be 

imaged in-vivo during a normal checkup procedure in a much more expedient process 

compared to work that has been done with optical coherence tomography and second 

harmonic generation microscopy. A clear difference is seen in collagen orientation between 
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nonpregnant and pregnant patients. This observation was made by comparing the 

alignment of collagen between the two populations. A statistically relevant loss of 

alignment for this small study was seen in the pregnant patients, more so for the patients 

with past pregnancies. Three of these patients had PTB. 

The development of a new imaging modality aimed at assessing early changes in collagen 

arrangement in the cervix may improve risk determination of PTB and reduce the morbidity 

of the condition. Earlier prediction of PTB could improve outcomes by allowing longer 

intervention times to prolong gestation time for the infant in the womb. A more reliable 

quantitative predictor may also lead to development of more treatment options. 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Polarization 

Polarization of light is characterized by the orientation of the electric field perpendicular 

to the direction of propagation of the light wave. Different states of polarized light can be 

considered as separate Ey and Ex components of the resultant electric field. When all 

components of the electric field present are in phase the light wave is considered to be 

linearly polarized and the resultant electric field vector is the orientation of that linear 

polarization. As the phases of different components of the electric field become out of sync, 

ellipticity of polarization is created.  Typically, ellipticity is created when polarized light 

traverses through a birefringent structure. Birefringence is a material property describing a 

change in refractive index depending on the polarization and incidence angle of light 

passing through the material. This difference in refractive index results in a greater phase 

delay of certain electric field components compared to others creating elliptic polarization 

as seen in Figure 1.1 where polarized light passes through a retarder and cause the Ey and 

Ex components of the electric field to become out of phase with each other.  

 
Figure 1.1 Depolarization, retardation, and diattenuation 
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Having equal Ey and Ex components with a phase difference of 45° between them 

creates a special state of elliptical polarization called circular polarization. Circular 

polarization has been used to investigate deeper into biological tissue compared to purely 

linear polarization due to its ability to generate a greater count of backscattered photons. 1 

A graphical representation of depolarization and diattenuation can also be seen in Figure 

1.1. Depolarization is the randomization of polarization most commonly caused by high 

scattering materials such as biological tissue. This results in a scrambling of the orientation 

of the electric field due to the random scattering of light in different directions. 

Diattenuation is a material’s propensity to transmit certain orientation’s of linearly 

polarized light over others. This property is often associated with measuring small 

molecules where changes are observable unlike in bulk tissue where the effects of 

diattenuation are negligible compared to depolarization and retardance. 

Optical activity can be attributed to a myriad of species characteristics ranging from 

molecular composition and spatial arrangement to thickness, turbidity, as well as texture. 

Polarized light is especially sensitive to structural components and materials with strong 

birefringence; making its use particularly fitted for the investigation of the extracellular 

matrix of several biological environments, including the skin, the eye’s cornea, connective 

tissue, and many more. The goal of optical equipment in clinical diagnostic tools is 

becoming increasingly focused on differentiating tissue microstructures and offering 

noninvasive imaging and in-depth assessment of biological tissues. Such progression is 

partly due to the advent of polarimetry in optical methods which can elucidate structural 

morphologies of underlying tissues and enable clear visualization of intermediate 

superficial tissue layers.  
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Polarized light imaging has been used in the biomedical field for many years 2. It 

has been applied to reveal the border of skin cancer and improve image resolution via 

removal of multiply scattered light through a degree of polarization (DOP) imaging scheme 

3-5 as well as removing multiply scattered light and surface reflection by combining co- and 

cross-polarized images 6. Polarization imaging has been combined with spectroscopy in 

order to image tissue below the surface by discriminating the difference in penetration 

depth associated with different wavelengths of light. Similar principles have been used to 

enhance surface capillary contrast 7, 8. Circularly polarized light has been used to 

investigate the concentration and size of scattering particles in a medium based off of the 

backscattered light that is retrieved and modeled in a Poincaré sphere using Stokes vectors 

9. Polarization sensitive Monte Carlo simulations have been developed to model polarized 

light travel through scattering and birefringent media 9-11.  

Birefringent proteins such as collagen fibrils and muscle fibers are often found 

preferentially aligned in bundles when serving as load-bearing structures 12, 13. In contrast, 

in the case of healthy epidermis, collagen is randomly aligned 14, 15, 17. Significant changes 

in optical anisotropy and thus birefringence can point to damage or disorder of the normal 

structure of these tissues 18, 19. It has been shown that the degree of circular polarization 

(DoCP) is particularly sensitive to the dominant orientation of birefringent bundles such as 

collagen 16. In depth information on a material’s effects on polarized light can also be 

inferred from the calculation of its Mueller matrix 20. 

Applications of polarimetry can be observed in various disciplines, such as the 

chemical industry where unknown substances are identified using their known optical 

properties. In retinal imaging, the human eye is studied for information regarding its 
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birefringent characteristics. The use of polarization illumination and filtering towards 

clinical and medical application starts with R. Anderson in 1991 21  and others 22-24 to 

enhance surface contrast for dermatologic application.  

Groner et al. 25 used cross-polarization to highlight superficial vascular contrast in intravital 

microscopy, and applied this technique in studies of brain perfusion, pancreatic and hepatic 

microcirculation among others 25-30 . DeHoog et al.31 used Stokes vector polarimetry in a 

fundus ophthalmoscope. Ghassemi et al.32 studied the rough surface of skin cancer through 

out of plane polarimetry. De Martino et al. used Mueller Matrix polarimeters to image 

colon and cervical cancer. 18, 19, 33-39 34. Precancerous cancer cells were studied through 

polarized light sensing40-46. Vitkin et al., used Mueller Matrix polarimetry for determining 

the local structural disorders of the bladder47 and myocardium48 as well as other more 

fundamental studies with Ghosh et al.20, 44, 49-52 

1.2 Polarimetry 

Mathematically, the polarization state of light can be written as a Stokes vector (S). Stokes 

vectors contain four elements describing four different characteristics of polarized light – 

S0 is the magnitude of the intensity of light, S1 is the state of linear of polarization (0/ ±90°), 

S2 is the state of diagonal polarization (±45°), and S3 is the state of circular polarization 

(right/left) shown in Equation 1.1. Stokes vectors are usually normalized by S0 so that 1.0 

in any of the S1-S3 elements describes perfect polarization in that state. Because of this, 

calculating the magnitude of these three elements should equate to the normalized S0 for 

the Stokes vector to be feasible.   
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𝑺 = (

𝑺𝟎
 𝑺𝟏
𝑺𝟐
𝑺𝟑

) = 

(

 

𝑰𝒙 + 𝑰𝒚
𝑰𝒙 − 𝑰𝒚

𝑰𝟒𝟓° − 𝑰−𝟒𝟓°
𝑰𝒓𝒄𝒑 − 𝑰𝒍𝒄𝒑 )

 (1.1) 

Ij represents the intensity of light, and rcp and lcp represent right circularly polarized and 

left circularly polarized, respectively. Because the elements of a Stokes vector cannot be 

measured directly it is necessary to take intensity measurements of a polarized light source 

through a polarization analyzer and solve backwards. This is due to different polarization 

states of light having similar measures of intensity unless an analyzer is used to 

differentiate between the states. In the case of the calibration method used in this thesis this 

is done using Equation 1.2: 

𝑺 = 𝑾 ∙ 𝑰 (1.2)  

Where I is the six intensity measurements taken through a polarization analyzer shown in 

Equation 1.3: 

𝑰 = (𝑰𝒙 𝑰𝒚 𝑰𝟒𝟓° 𝑰−𝟒𝟓° 𝑰𝒓𝒄𝒑 𝑰𝒍𝒄𝒑)
𝑻

(1.3) 

 and W is a data reduction matrix defined in Equation 1.4 after optimization53: 

𝑾 =

(

 
 

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑
𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏 −𝟏)

 
 

(1.4) 

Equation 1.4 is an example of an ideal, optimized data reduction matrix as shown by 

Boulbry et al.53 so that the matrix’s condition number is reduced to a minimum value of 

square root of 3. The condition being a measure of a system’s linear independence between 

columns and rows. The smaller the condition number the greater the system’s linear 
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independence and the less loss there is in precision measured by the ratio between the 

largest and smallest singular value decomposition of the matrix.54 

Calibrating using this methodology requires that a data reduction matrix W is 

calculated with a condition close to the minimum so that the stokes vector S in Equation 

1.2 can be solved given that I is the measured experimental intensities. Because the input 

polarization states are known during calibration, S and I in Equation 1.2 are accounted for 

and can be expanded as 

[𝑺𝟏 𝑺𝟐…𝑺𝑴] = 𝑾 ∙ [𝑰𝟏 𝑰𝟐…𝑰𝑴] (1.5) 

where S is a 4 x M matrix, M is the number of different input polarization states; and I is 

a N x M matrix where N is the number of different analyzer configurations. Solving for 

Equation 1.2 we get: 

𝑾 = 𝑺 ∙ 𝑰−𝟏 (1.6) 

The issue here lies in calculating the right pseudoinverse of I to solve for W. Singular value 

decomposition (SVD) can be used to calculate the pseudoinverse of I and better optimize 

towards the ideal data reduction matrix. SVD decomposes the N x M matrix I into the 

product of three separate matrices – U (N x N), V (M x M), and D (N x M), where U and 

V are real orthogonal matrices and D is a real diagonal matrix (seen in Equation 1.7). 

𝑰 = 𝑼 ∙ 𝑫 ∙ 𝑽𝑻 (1.7) 

Further manipulation of the pseudoinverse of I can be carried out to simplify the SVD 

process by setting small singular nonzero values to zero to help mitigate the noise from the 

intensity measurements before solving for W as shown by Boulbry et al.53  

 In the case of the calibration used for the work in this thesis, the number of different 

analyzer configurations N was equal to six, and the number of different reference 
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polarization states, M was 38 split between two different configurations. The two 

configurations differ in the order that the linear polarizer and quarter wave plate are placed 

in between the light source and polarization analyzer (see Figure 1.2).  

 

Figure 1.2 Imaging polarimeter calibration setup: The Quarter wave plate and linear polarizer in between liquid crystal 

retarder (LCR) 1 and the illumination port (IP) change position with each other for the two different calibration 

configurations. 

The linear polarizer and quarter wave plate optical axes are aligned to be both horizontal 

or vertical (0° or 90°) at the starting reference point for the calibration procedure. The 

“before” and “after” configurations for the calibration refer to the position of the polarizer 

being before or after the quarter wave plate. There were 19 reference polarization states 

used for each configuration which were generated by rotating the linear polarizer using an 
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electronically-controlled rotational mount. The references states created by this process are 

shown in Equation 1.8 where θ = 0°-180° with a step size = 10°. 

𝑺𝒃𝒆𝒇𝒐𝒓𝒆(𝜽) = [𝟏  𝒄𝒐𝒔𝟐𝜽  𝟎  𝒔𝒊𝒏𝟐𝜽]𝑻 (1.8)

𝑺𝒂𝒇𝒕𝒆𝒓(𝜽) = [𝟏  𝒄𝒐𝒔𝟐𝜽  𝒔𝒊𝒏𝟐𝜽  𝟎]𝑻
 

Because both configurations contain the same number of interfaces for the incident light to 

travel through it is assumed that the loss of light due to reflection is equal, and the 

maximum intensity should be constant. LCR 1 and 2 are electronically-controlled liquid 

crystal retarders which are used to reproduce the six analyzer configurations (N) for every 

input reference polarization state (M) determined by the polarizer angle and “Before” and 

“After” setup. An example of raw calibration data is shown in Figure 1.3 where there are 

separate intensity curves for each of the six analyzer configurations.  

 

Figure 1.3 Raw calibration data in the “Before” and “After” configurations based on the order of the polarizer relative to 

the quarter wave plate. The different line colors refer to the six different analyzer states (N) created by the two LCRs in 

front of the camera. As the linear polarizer rotates, the intensity recorded by each analyzer state should return to its 

starting point since 0°=180°. 

After a calibration matrix W is successfully created with a low condition number, 

the W matrix can be used to calculate Stokes vectors from the data collected. An example 

of these results is shown in Figure 1.4, where separate calibrations were performed for 

different light source wavelengths for the same polarimeter. The four Stokes parameters 
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are plotted between both calibration configurations as the polarizer rotated. Note that in the 

“After” plots the S3 parameter is constant at 0 as there should be no elliptical/circular 

polarization state when a linear polarizer is the last polarization element in the calibration 

setup. Similarly, there can be no horizontal or vertical linear state in the “Before” setup 

where the polarization is being rotated by a quarter wave plate as the last polarization 

element in the setup. Because Stokes vectors are usually normalized to the intensity of the 

light, S0 is constant at 1.  

 

Figure 1.4 Stokes vectors calculated from successful calibration (W) using same calibration data. Calibrations for four 

different LED wavelengths are shown. All wavelength Stokes vectors are below 4% error of each other.55 

1.3 Mueller matrix 

Mueller matrix imaging is the most informative of all polarimetry techniques as the 4 x 4 

Mueller Matrix completely characterizes the polarimetric properties of a sample 19 56. MM 

decomposition is used to extract constituent polarization properties of an unknown 

complex system. The decomposition of the Mueller matrix M, whose terms are shown in 

Equation 1.9 (as proposed by Lu-Chipman 57) can be experimentally calculated as shown 

in Equation 1.10. Where the first letter indicates the PSG polarization state and the second 

letter indicates the PSA polarization state of a polarimeter. After decomposition, a Mueller 
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matrix can yield three canonical matrices of Equation 1.11, a diattenuator matrix MD 

includes the effects of linear and circular diattenuation, MΔ accounting for the depolarizing 

effects of the material, a retarder matrix MR for the effects of the material linear 

birefringence and optical activity. By decomposing M we are able to isolate different 

light/tissue interaction mechanism, such scattering, absorption, chirality, cumulative 

retardance and so on.  Furthermore, the resulting matrices can be analyzed to yield 

quantitative medium properties that have a demonstrated 7, 34, 37 useful diagnostic power 

and will be used in this study. These parameters are: depolarization, linear retardance 

(birefringence), optical Rotation, slow axis orientation  (the direction of polarization with 

the larger optical index) and diattenuation D. Depolarization is caused by multiple 

scattering events and is prominent in biological tissue58. It results in the randomization of 

the polarization of light that travels through scattering media. 

𝑴 = [

𝒎𝟏𝟏 𝒎𝟏𝟐 𝒎𝟏𝟑 𝒎𝟏𝟒

𝒎𝟐𝟏 𝒎𝟐𝟐 𝒎𝟐𝟑 𝒎𝟐𝟒

𝒎𝟑𝟏 𝒎𝟐𝟑 𝒎𝟑𝟑 𝒎𝟑𝟒

𝒎𝟒𝟏 𝒎𝟐𝟒 𝒎𝟒𝟑 𝒎𝟒𝟒

] (1.9)  

 

𝑴 =
𝟏

𝟐
[

𝐻𝐻 + 𝐻𝑉 + 𝑉𝐻 + 𝑉𝑉 𝐻𝐻 + 𝐻𝑉 − 𝑉𝐻 − 𝑉𝑉 𝑃𝐻 + 𝑃𝑉 −𝑀𝑃 −𝑀𝑀 𝑅𝐻 + 𝑅𝑉 − 𝐿𝐻 − 𝐿𝑉
𝐻𝐻 − 𝐻𝑉 + 𝑉𝐻 − 𝑉𝑉 𝐻𝐻 − 𝐻𝑉 − 𝑉𝐻 + 𝑉𝑉 𝑃𝐻 − 𝑃𝑉 −𝑀𝐻 −𝑀𝑉 𝑅𝐻 − 𝑅𝑉 − 𝐿𝐻 + 𝐿𝑉
𝐻𝑃 −𝐻𝑀 + 𝑉𝑃 − 𝑉𝑀 𝐻𝑃 −𝐻𝑀 − 𝑉𝑃 + 𝑉𝑀 𝑃𝑃 − 𝑃𝑀 −𝑀𝑃 +𝑀𝑀 𝑅𝑃 − 𝑅𝑀 − 𝐿𝑃 + 𝐿𝑀
𝑉𝑅 + 𝐻𝑅 − 𝐿𝐿 − 𝑅𝐿 𝑉𝐿 + 𝐻𝑅 −𝐻𝐿 − 𝑉𝑅 𝑀𝐿 + 𝑃𝑅 − 𝑃𝐿 −𝑀𝑅 𝑅𝑅 + 𝐿𝐿 − 𝐿𝑅 − 𝑅𝐿

]  

  (1.10) 

𝑴 = 𝑴∆𝑴𝑹𝑴𝑫 (1.11) 

These parameters can be used to identify tissue changes due to injury or disease 59. 

Equation 1.11 is one of six possible decompositions and the most commonly used in 

biomedical applications. In the case of Lu-Chipman’s decomposition which is used in this 
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dissertation, M D is calculated directly from the experimental Mueller matrix M. The other 

two matrices are solved for afterwards. Despite these many applications and some 

interesting computational work polarized light imaging has had limited commercial 

success in the Biomedical field due to a number of factors: light polarization is quickly lost 

in heavy-scattering media such as biological tissue, analyzing and extracting meaning from 

heterogeneous tissue is complicated, and there are still limited amounts of data describing 

polarization properties of tissues. 2, 20, 60, 61 

1.4 Preterm Birth 

Preterm birth (PTB) is the leading cause of infant death worldwide, having an incidence of 

over 11% in the United States and 15% 62 in developing countries. PTB rates are greater at 

18.1%  in Miami-Dade County, FL, possibly due to inadequate prenatal care and nutrition 

63. PTB is defined as labor prior to 37 weeks of gestation and is responsible for infant 

neurological disorders 64, long-term cognitive impairment 65, as well as chronic health 

issues involving the auditory, visual, digestive, and respiratory systems 66. In expectant 

mothers, causes for PTB can include infection, inflammation 67, vascular disease, 68 short 

intervals between pregnancies 69, multiple gestations 70 and genetic factors 71.  

The early identification of at-risk pregnancies allows the employment of tocolytics, 

antenatal corticosteroids, and hormones such as terbutaline, betamethasone and 

progesterone and the performance of cervical cerclage to delay the start of labor 

contractions and increase the development time in utero. Cerclage can also be performed 

to mechanically seal the cervix to delay birth. Current diagnosis of PTB is based on tactile 

and visual inspection of the cervix to determine dilation, ultrasound of cervical thickness 

72, and fetal fibronectin (fFN) immunoassay 73, which all have low positive predictive 
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power. The lack of positive predictive power of the current PTB diagnosis modalities 

means that it is difficult for physicians to decide on whether any intervention should be 

performed. A more reliable diagnosis method could allow physicians to work on delaying 

birth earlier to give the fetus more development time. This issue also increases the difficulty 

of developing and testing new treatments. Thus, the development of diagnostic modalities 

that can identify risk of PTB holds great potential in reducing the morbidity of the 

condition.  

Preterm labor has many causes but irrespective of its etiology68 mechanical cervical 

failure or change in the cervix extracellular matrix is a common endpoint. Recent work has 

highlighted the role of collagen in PTB 74-76. The collagen of the cervix provides the 

structure necessary to hold the baby within the uterus during gestation. Numerous 

researchers have studied the collagen of the cervix to determine how this structure 

maintains its integrity during pregnancy. 77-84 Aspden et al. found the structure of collagen 

is oriented in three unique areas surrounding the cervical canal, the anisotropic alignment 

of the collagen differing within each area. The cervical fibrils are aligned both around and 

along the canal for increased strength. 12, 85-88 Fibrillar collagen is the major structural 

protein in the cervix that determines its load bearing capabilities.  With progression of 

pregnancy, the cervix undergoes changes in the collagen structure and corresponding 

mechanical strength. Structural defects in the cervix result in preterm birth as exemplified 

in women with cervical insufficiency. Several human and animal studies have suggested 

that atypical changes in the extracellular matrix of the cervix precede SPB 74-76, 88, 89. Thus, 

the development of diagnostic modalities that could identify premature abnormal cervical 
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remodeling holds great potential as a tool for early and accurate assessment of cervical 

disease. 

Optical measurement of cervical remodeling throughout pregnancy via changes in 

collagen arrangement and density may be able to predict the occurrence of pre-term labor. 

Polarization sensitive techniques can be used to target the fibrous ultrastructure of the 

cervix. Studies have shown the ability of Mueller matrix polarimetry to identify colorectal 

and cervical cancer. 19, 38, 90  

We developed a PReterm IMaging System (PRIM) based on a standard 

colposcope, with high sensitivity to cervical ultrastructure using Mueller matrix 

polarimetry. This methodology was used to measure differences in collagen structure 

between nonpregnant and pregnant cervixes in order to determine if changes in collagen 

could be linked to progression of pregnancy and preterm birth. It was first tested using 

excised porcine cervixes and validated using images produced by optical coherence 

tomography (OCT) before being used to image nonpregnant and pregnant human cervixes 

in-vivo. 91 

1.5 Cervix Physiology 

A cartoon representation of the cervix is shown in Figure 1.5. The cervix is an 

extension of the lower part of the uterus comprising a portion of the female reproductive 

system. It is cylinder shaped, approximately 3 to 4 centimeters long and 2.5 centimeters in 

diameter, with a central canal through its entirety.  The cervical canal serves as the entrance 

canal, via the vagina, for sperm for reproduction and the exit canal, via the uterus, for 

childbirth. The two ends of the canal are termed the internal and external orifice (os) 

depending on whether they are present in the uterus or vagina, respectively. The portion of 
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the cervix visible from the vagina canal can be further divided into two regions due to their 

cellular differences - the ectocervix and endocervix. The ectocervix is the stiff structure 

protruding from the anterior vaginal wall and is comprised of a stratified squamous 

epithelium, containing several cell layers of differing morphological characteristics as well 

as collagen and smooth muscle. 92 The cell layers of the epithelium are subdivided into 

classes relating to their maturation and include one layer of basal cells, two layers of 

parabasal cells and numerous layers of both intermediate cells and superficial cells. The 

thickness of the epithelial layer is between 200 and 500 microns. 93, 94 The endocervix is 

made of a single layer of mucus secreting columnar (glandular) epithelial cells lining the 

cervical canal. Where the ectocervix and endocervix meet at the center of the external OS 

is called the transformation zone and is the location where glandular epithelium is replaced 

by squamous epithelial cells.95 Any changes in cervical structure, morphology, and color 

may be indicative of disease96-99. Non-invasive imaging techniques may provide important 

diagnostic information with less discomfort for the patient. Recent work in cervical 

imaging has shown great promise96, 100-104. 

 

Figure 1.5 The cervix 
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For example, De Martino et al. used Mueller Matrix Polarimetry to differentiate 

between cancerous and non-cancerous cervical samples by measuring depolarization and 

retardation of excised human cervixes.105, 106 Richards-Kortum et al. used confocal 

microscopy to identify differences between normal, pre-cancerous and cancerous cervical 

tissues. 107-110 Ramanujam et al. engineered means for cervical imaging for low-resource 

settings 111, as did Levitz et al.112 Recently, Hendon et al. 102, 113-115  used optical coherence 

tomography to identify collagen orientation of human ex-vivo cervixes to investigate 

differences in collagen angular distribution between pregnant and non-pregnant cervixes. 

Finally, Second Harmonic Generation imagery has been used to observe changing collagen 

architecture in the cervix to provide detailed images of fibrous collagen structure. 79, 101, 116-

120  

1.6 Collagen in the cervix 

Collagen is one of the most abundant types of molecules in vertebrate species. It is an 

important part in creating the scaffolding which gives tissues and organs their structure as 

well as establishing the necessary environment required for cell-extracellular matrix 

(ECM) interactions which are important for signaling various cellular functions. There are 

29 different types of collagen known currently. These different types of collagen are 

assembled into supramolecular structures to provide different functions within the ECM. 

121 Collagen type numbers are designated based on chronological order of discovery; Type 

I being the most abundant form of collagen by far at 90%. Type I collagen makes up striated 

collagen fibrils and is the main component in providing mechanical strength and structure 

for most tissues in the body. 
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 The deciding factor in differing between collagen types is the difference in genes 

that code for a collagen polypeptide, otherwise known as alpha chains. There are currently 

45 distinct alpha chains known. All collagen molecules are trimers consisting of three alpha 

chains wound around each other. Most known collagen types are made of three of the same 

alpha chain. Depending on how many collagen molecules are wound together the structure 

can go from being a procollagen (one trimer with the alpha chains loosely wound together) 

to a collagen fibril where multiple collagen molecules are wound together and finally a 

collagen fiber consisting of multiple fibrils wound together. All types of collagen must 

contain at least one triple helix domain and noncollagenous domain. The triple helix is a 

peptide structure unique to collagen trimers which creates the stiffness necessary loading 

bearing structures in the body. The noncollagenous domain is much more loosely wound 

than the triple helix and are sites of binding and activity for noncollagenous molecules such 

as endothelial cells. There can be any number of suprastructures that make up the ECM 

and ultimately the tissue structures; its function is ultimately determined by the 

composition of different collagen types as well as the noncollagenous macromolecules 

present. Because minor molecules which only make up a small fraction of a polymer can 

give it unique functionality, collagen suprastructures are often responsible for giving 

different tissues their specific structure and functional properties according to Birk-

Bruckner.121 

Collagens I-III are majorly responsible for the creation of the collagen fibers that 

will studied in this thesis using polarimetry. Collagen that is destined to form fibrils is first 

synthesized as procollagens which are trimers containing three alpha chains wound 

together. The amino acid composition of the alpha chains depends on the type of collagen. 
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Procollagen contains two distinct propeptide domains known as a C-terminal and a N-

terminal. Propeptides are precursors to proteins that are inactive in function. Post-

translational modification is required to activate the protein. This is most commonly 

achieved through removal of a section of amino acids, or addition of molecules in order to 

achieve proper protein folding and activation of its function. Propeptides are important for 

proteins that can be potentially harmful if left freely active. Collagen is such a protein in 

that freely synthesized and activated fibrillar collagen will create scar tissue and would be 

dangerous if it was not properly targeted in areas such as wounds or when building the 

scaffolding ECM for tissue. The C-terminal is completely noncollagenous, while the N-

terminal contains several noncollagenous domains around a short collagenous domain. C-

propeptides are post-processed by BMP-1 and tolloid proteinases as well as furin while N-

propeptides are post-processed using ADAMTS 2,3, and 14 and BMP-1 enzymes. In the 

case of the fibrillar collagens I and II, there is a central triple helical domain surrounded by 

short noncollagenous terminals named telopeptides. The triple helix provides the 

mechanical strength needed for the collagen fibril and the telopeptides create the 

functionality needed to adhere to other collagen or molecules. After the propeptides that 

make up the collagen I-III molecules have been processed they self-assemble and fold to 

become striated fibrils with a 67 nm periodicity.121 Collagen molecules are arranged 

longitudinally in a staggered pattern so that the end of each molecule does not overlap with 

the adjacent molecules. It is this structure that creates the striated appearance of fibrillar 

collagen and provides resistance against torsion and tension. Collagens V/XI act as 

regulators of collagen fibril organization that result in tissue-specific differences in 

collagen fibril and are present in minor amounts wherever collagen I-III assembles.  
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Like most proteins, collagen molecules undergo a similar production cycle. Fibril 

collagen is synthesized, processed, assembled from three polypeptides [alpha chains], and 

folded into its functional state within the endoplasmic reticulum. The finished product is 

then transported in vesicles from the Golgi through the cell before being excreted from the 

cell membrane. This process allows for intracellular regulation of what collagens and 

noncollagenous molecules are assembled together and packaged for secretion to create 

different kinds of ECM for tissues of varying functions. Examples of noncollangenous 

molecules that can be secreted to affect ECM function include procollagen processing 

enzymes, fibril-binding molecules, adhesive glycoproteins, and fibronectin.121 ECM 

assembly begins in compartments made within the developing matrix. Protofibrils are 

assembled from procollagen inside the cytoplasm of fibroblasts but near to the cell 

membrane before they are secreted by into the aforementioned compartments. From these 

compartments the protofibrils are deposited into much larger nearby spaces in the 

developing matrix where the fibrils combine to create collagen fibers. This assembly is 

promoted and stabilized by interaction with regulatory molecules such as the small leucine-

rich proteoglycan (SLRPs) and fibril-associated collagens with interrupted triple helices 

(FACITs) that are similarly secreted into this space by other compartments in the 

developing matrix. As more and more fibers aggregate adjacently in the space, the fiber 

bundle increases in diameter from ~20 nm in protofibrils to upwards of 500 nm in mature 

tissues in the case of fibrous tissue like tendon.122 The promotion of what forms of 

collagenous tissue is assembled in the compartments is regulated by which enzymes and 

other molecules are secreted and stored inside the compartments to interact with the 

collagen during the maturation process and is tissue specific. Paramount to this collagen 
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fiber maturation process in the activity of lysyl oxidase which creates covalent crosslinking 

between fibrils, increasing the collagen length, diameter, stability, and ultimately the 

mechanical strength of the connective tissue it is developing. Depending on what molecules 

are present during ECM formation, connective tissues formed from collagen can be 

categorized into different categories such as cartilage and tendon.   

An ECM lies under the epithelium of the cervix, separated by the thin basal lamina 

layer of collagen type IV fibers 93, and consists mainly of collagen, approximately 10-15% 

smooth muscle cells 123-125 and a mixture of biomolecules. The ECM of the cervix is mainly 

comprised of two types of collagen - approximately 70 % is collagen type I and 30 % 

collagen type III. 126, 127 In addition, the ground substance of the ECM contains 

glycoprotiens elastin and fibronectin, glycosaminoglycan (GAGS) decorin, buglycan, 

chondroitin sulfate, keratan sulfate, and dermatan sulfate, hyaluronic acid and water. 123, 

125, 128-130  

The role of the cervix is to serve as a barrier in order to maintain the fetus in utero 

until gestation is complete and to preserve the fragile environment of the uterus required 

for proper development. The abundance of collagen in the cervix and its organization 

provides the necessary mechanical strength to keep the fetus inside this environment.86 As 

the pregnancy moves towards labor, the cervix loses stiffness allowing the external os to 

expand so that the baby can exit the uterus. Numerous researchers have studied the collagen 

of the uterus to determine how this structure maintains its integrity during pregnancy. 77-84 

Aspden et al. found that the anisotropic alignment of collagen has a preferred orientation 

in three regions surrounding the cervical canal. The most inner and outer regions of the 

ectocervix contain collagen fibrils aligned in the direction of the cervical canal, while the 
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region between these two has collagen oriented circumferentially around the cervical canal. 

These alignments are shown as in Figure 1.2. 12, 85-87 A MRI study has shown that the 

circumferential alignment of collagen is preserved throughout the entire cervix between 

the external and internal OS.131 This is important since full field imaging polarimetry does 

not have depth resolution but instead gives a summary of polarization information from its 

probing photons. The alignment of collagen being preserved throughout the cervix helps 

this depth limitation.  

 

 

Figure 1.6 Alignment of collagen fibers in human cervix in three anisotropic zones 

The cervix undergoes dramatic changes between the initial pregnant state and delivery of 

a baby. In both women and animal models the phases of cervical remodeling can be 

described as cervical softening, ripening, dilation and postpartum repair. Research by 

Myers and others 12, 89, 132-135 has shown how these phases relate strongly to changes in the 

cervical collagen and fibrous tissue directionality and dispersion. In early pregnancy 

collagen remains in an organized fibrous structure, as gestational age advances, the 

woman’s cervix becomes softer 135, 136 which translates into structural reorganization of 
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collagen in the cervix 137-139. In pre-term-labor these phases do not change but their duration 

is shortened 140, 141 so that the cascades of events leading to parturition is dramatically 

accelerated. Many of these changes are not yet well understood, nor the physiological 

factors which cause these changes.  

 

Figure 1.7 Cervical stiffness throughout phases of pregnancy.142 Cervical collagen remodeling causes the cervix to lose 

its structural integrity when nonpregnant in preparation for dilation during child birth. Time scale depicted is for mice, 

however a similar model can be applied for most mammals. 

The physiological properties of the cervix are altered by a cascade of micro-

environmental events in each of these phases. Cervical softening begins within one month 

of the initiation of pregnancy and the cervix undergoes increased vascularity and edema. 81 

Softening is a longer, steadier phase than the others, progressing through the 33rd week of 

pregnancy. The collagen of the stroma becomes less organized and the cervix becomes 

pliable and begins shortening. Timmons et al. states this as a maintenance of tissue 

competence occurring while increasing tissue compliance. 143  The ripening phase begins, 

after softening, and as House et al. points out, this predominantly deals with the cervix 

changing roles from a load-bearing function to a birthing canal. 124 By the end of cervical 

ripening, when dilation begins, some researchers have found there is a 30-70% decrease of 
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collagen 128, 130, 136 since the onset of pregnancy, although Myers et al. believe there is a 

decrease in crosslinking but not in actual collagen content. This is purported to be due to 

increased solubility in weak acids rather than change in collagen content. 12  In addition, 

there is also a decrease in specific glycosaminoglycans (chondroitin sulfate and dermatan 

sulfate) 144, and an increase in the hydrophilic glycosaminoglycan 145, hyaluronic acid 139 

and thus, an increase in water (5 – 10%).124 146 147 Researchers have also found there occurs 

a shift from insoluble to soluble collagen 128, 148 with as much as 90% soluble collagen by 

the third trimester124. Dilation follows ripening and involves an influx of leukocytes, 124 

similar to an inflammatory response, which may serve to cause an increase in the matrix 

metalloproteinase, collagenase.  81 149 150 Collagenase causes the breakdown of collagen 

cross links and allows the cervix to weaken 12, 79, 151 and open thereby radically changing 

shape by shortening and effacing in preparation for delivery of the baby.  

Polarization imaging has been used to study collagen as a method of identifying different 

diseases such as skin cancer3, colon cancer18, and atherosclerosis152 by measuring changes 

or disruptions in the  healthy arrangement of collagen in these different tissues. It may also 

prove useful in measuring the changes in collagen during pregnancy. 

Current diagnostic of PTB is based on tactile and visual inspection of the cervix to 

determine dilation, ultrasound of cervical thickness 72, and fetal fibronectin (fFN) 

immunoassay 73. The strengths of ultrasound and fFN immunoassay lie in their high 

negative predicting power for PTB within the next 7 days after measurement. However, 

their positive prediction power for PTB is low. 73 89. The role of collagen has been 

emphasized in PTB 74-76. The strength of the cross-linked cervical collagen fiber network 

is integral to maintaining gestation. Forceful contractions in a rigid, closed cervix will not 
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result in delivery, while a weakly structured cervix is susceptible to preterm birth without 

contractions88. Optical measurement of cervical remodeling throughout pregnancy via 

changes in collagen arrangement and density may be able to predict the occurrence of pre-

term labor. Polarization sensitive techniques can be used to target the fibrous ultrastructure 

of the cervix due to collagen’s strong birefringence. Birefringence describes a sample’s 

change in refractive index depending on the incident angle of polarized light with the 

sample’s anisotropic axis. Polarized imaging modalities can detect change in a birefringent 

material by measuring its response to incident polarized light. Several experiments were 

designed to test the feasibility of detecting the orientation of collagen fibers of human 

cervixes in vivo. 

1.7 Experimental Timeline 

The experiments within this thesis can be broken down into three major milestones. 

Initially, it was important to establish that full field imaging Mueller matrix polarimetry 

can successfully capture changes in birefringent tissue. This was done by first designing 

and constructing a benchtop Mueller matrix polarimeter combined with a polarization 

sensitive optical coherence tomographer (PS-OCT). The instrument was tested by 

measuring the density of collagen in baboon heart valve leaflets via use of collagenase 

activity and was corroborated using the PS-OCT. This work was published in the Journal 

of Biomedical Optics (JBO) in 2016. 153 

 After deciding to pursue a more specialized parameter that can be measured from 

collagen using Mueller matrices, it was decided to focus on collagen [retarder axis] 

orientation. This was in response to pursuing research in the domain of PTB where full 

field imaging of the cervix had not been done. Until then, images had been tiled together 
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from second harmonic generation (SHG) microscopy79, 87, 142 and OCT102, 115. A Mueller 

matrix polarimeter integrated with a colposcope would allow images of the entire cervix to 

be taken from outside the vagina and without making contact with the patient. To 

accomplish this, the previously used benchtop Mueller matrix polarimeter was used to 

examine the collagen structure in ex-vivo porcine nonpregnant cervixes in comparison to 

OCT images acquired via a methodology used by Gan et al. 102 The comparison was done 

to show the efficacy of MMP in this setting and was published in JBO in 2017.91  

 After showcasing the benchtop system’s ability to capture the collagen organization 

of collagen in excised cervixes in was decided to move on to imaging in-vivo human 

cervixes. To accomplish this a colposcope was heavily modified to incorporate a Mueller 

matrix polarimeter of the same design as the benchtop system. The Mueller matrix 

colposcope was used to image nonpregnant volunteers at the Nicole Wertheim College of 

Nursing under the supervision of Dr. Nola Holness before the eventual imaging of pregnant 

women at Jackson Memorial Hospital. The preliminary comparison between nonpregnant 

and pregnant patients was published in JBO in 2018.154  

 A study on a smaller scale than the previous three was conducted to look at the 

effect of light source wavelength on the quality of results acquired using MMP. To 

accomplish this the benchtop MMP system was reconstructed with the light source being 

replaced with a white light lamp that could be filtered to produce 4 different wavelengths 

with 10 nm bandwidths. It was observed that the lower wavelengths produced less noisy 

orientation images. This was reported in a proceeding for SPIE Photonics West BIOS 

2018.55 
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 The emphasis of this dissertation lies in translating Mueller matrix polarimetry 

technology to a clinical setting in a manner that allows patients to be imaged non-invasively 

and without contact, and so that the healthcare provider is minimally affecting during their 

routine work. These design inputs were paramount in creating the colposcope used in 

Chapter 4. A Preliminary analysis was also done for this this small study. 
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Abstract: 

Mueller matrix polarimetry and Polarization Sensitive Optical Coherence Tomography 

(PS-OCT) are two emerging techniques utilized in the assessment of tissue anisotropy. 

While PS-OCT can provide cross-sectional images of local tissue birefringence through its 

polarimetric sensitivity, Mueller Matrix polarimetry can be used to measure bulk 

polarimetric properties such as depolarization, diattenuation, and retardance. To this day 

true quantification of PS-OCT data can be elusive, partly due to the reliance on inverse 

models for the characterization of tissue birefringence and the influence of instrumentation 

noise. Similarly for Mueller Matrix polarimetry calculation of retardance or depolarization 

may be influenced by tissue heterogeneities that could be monitored with PS-OCT. Here 

we propose a novel instrument that combines Mueller Matrix polarimetry and Polarization 

Sensitive Optical Coherence Tomography. Through the co-registration of the two systems 

we aim at achieving a better understanding of both modalities. 

                                                 
1 This chapter was accepted for publication by the Journal of Biomedical Optics Special Issue on Polarized 

Light (July 2016). 10.1117/1.JBO.21.7.071109 

mailto:jchue001@fiu.edu
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2.1 Introduction 

Polarized light imaging has been used in the biomedical field for many years 2. It has been 

applied to reveal the border of skin cancer and improve image resolution via removal of 

multiply scattered light through a degree of polarization (DOP) imaging scheme 3-5 as well 

as removing multiply scattered light and surface reflection by combining co- and cross-

polarized images 6. Polarization imaging has been combined with spectroscopy in order to 

image tissue below the surface by discriminating the difference in penetration depth 

associated with different wavelengths of light. Similar principles have been used to 

enhance surface capillary contrast 7, 8. Circularly polarized light has been used to 

investigate the concentration and size of scattering particles in a medium based off of the 

backscattered light that is retrieved and modeled in a Poincaré sphere using Stokes vectors 

9. Polarization sensitive Monte Carlo simulations have been developed to model polarized 

light travel through scattering and birefringent media 9-11.  

Birefringent proteins such as collagen fibrils and muscle fibers are often found 

preferentially aligned in bundles when serving as load-bearing structures 12, 13.  

In contrast, in the case of healthy epidermis, collagen is randomly aligned 14, 15, 17. 

Significant changes in optical anisotropy and thus birefringence can point to damage or 

disorder of the normal structure of these tissues 18, 19. We have shown that the degree of 

circular polarization (DoCP) is particularly sensitive to the dominant orientation of 

birefringent bundles such as collagen 16. In depth information on a material’s effects on 

polarized light can also be inferred from the calculation of its Mueller matrix 20. Mueller 

matrix imaging is possibly the most useful of all polarimetry techniques as the 4 x 4 Mueller 
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Matrix completely characterizes the polarimetric properties of a sample 19 including  its 

cellular size distribution and refractive index 56. MM decomposition is used to extract 

constituent polarization properties of an unknown complex system. The decomposition of 

the Mueller matrix M, whose terms are shown in Equation 2.1 (as proposed by Lu-

Chipman 57) yields three canonical matrices of Equation  2.2, a diattenuator matrix M 

includes the effects of linear and circular diattenuation, MΔ accounting for the depolarizing 

effects of the material, a retarder matrix MR for the effects of the material linear 

birefringence and optical activity, and a depolarizer matrix MD includes the effects of 

linear and circular diattenuation. By decomposing M we are able to isolate different 

light/tissue interaction mechanism, such scattering, absorption, chirality, cumulative 

retardance and so on.  Furthermore, the resulting matrices can be analyzed to yield 

quantitative medium properties that have a demonstrated 7, 34, 37 useful diagnostic power 

and will be used in this study. These parameters are: depolarization, linear retardance 

(birefringence), optical Rotation, slow axis orientation  (the direction of polarization with 

the larger optical index) and diattenuation D. Depolarization is caused by multiple 

scattering events and is prominent in biological tissue58. It results in the randomization of 

the polarization of light that travels through scattering media. 

 

𝑀 = [

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

] (2.1) 

 

𝑀 = 𝑀∆𝑀𝑅𝑀𝐷 (2.2) 



29 

 

                                                                                 

These parameters can be used to identify tissue changes due to injury or disease 59. 

Equation 2.2 is one of six possible decompositions and the most commonly used in 

biomedical application. Despite these many applications and some interesting 

computational work polarized light imaging has had limited commercial success in the 

Biomedical field due to a number of factors: light polarization is quickly lost in heavy-

scattering media such as biological tissue, analyzing and extracting meaning from 

heterogeneous tissue is complicated, and there is still limited amounts of data describing 

polarization properties of tissues 2, 20, 60, 61 

Optical coherence tomography (OCT) is a noncontact, noninvasive interferometric 

technique allowing cross-sectional imaging of tissues at the micron level. OCT has been 

explored in many applications over the past decade, including ophthalmology, 

cardiovascular, oncology, and dermatology 155-158 as well as embryogenesis, angiogenesis, 

tissue engineering 159-163. Polarization sensitive OCT (PS–OCT) 164-167, as a functional 

extension of OCT, uses the information encoded in the polarization state of the recorded 

interference fringe intensity to provide additional contrast. In birefringent materials a phase 

delay between the two orthogonally polarized wave components is caused by the difference 

of the refractive indices no and ne of the ordinary and extraordinary wave n= no-ne, 

resulting in different phase velocities of both wave components 168-170. In general, the delay 

causes an elliptical polarization state, a measure of the internal birefringence. The 

ellipticity of the signal is recorded by the two detectors measuring the horizontally and 

vertically polarized interference signal. The double-pass phase retardance between the two 

components can be calculated through the amplitude ratio of both detected signals  
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𝜙(𝑥, 𝑧) = 𝑎𝑟𝑐𝑡𝑎𝑛
|𝑎2(𝑥,𝑧)|

|𝑎1(𝑥,𝑧)|
(2.3) 

a1 and a2 denote the intensity of the horizontal and vertical components of the interference 

signal respectively.  denotes the wrapped phase retardance and could be exploited to 

generate a retardance image. PS–OCT provides high resolution of spatial information 

pertaining to imaged tissues otherwise not discernible using existing diagnostic optical 

methods. Nevertheless PS-OCT results are highly susceptible to low signal to noise ratio 

171-174, and values of birefringence obtained with these systems still rely on ad-hoc models 

168, 175. 

To study the effect of polarized light transfer in heterogeneous biological media we 

have developed a system integrating Mueller Matrix Polarimetry (MMP) and PS-OCT. The 

multimodal combination of MMP with PS-OCT will provide comprehensive information 

about optical properties of tissue. Correlation of bulk properties obtained from MMP and 

detailed structure information from PS-OCT will enhance our interpretation and analysis 

of imaging data from the targeted tissues, and will refine our understanding of polarized 

light propagation through turbid media. 

2.2 Materials and Methods 

A schematic of the combined PS-OCT and MMP system is shown in Figure 2.1. The 

experimental setup of the high resolution PS-OCT system is based on a free-space 

Michelson interferometer and is detailed with the red light path. The system has a 

resolution of 3.3 µm in air and 2.5 µm in tissue. The laser light source is a broadband 

Superluminescent Diode (Bayspec, San Jose, CA) with 840-nm central wavelength and 50-

nm full width half maximum (FWHM). Light from the source is split into the sample arm 
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and the reference arm by a 50/50 cube beam splitter. Along the sample path the light then 

passes through a quarter-wavelength plate (QWP) @ 45° and a telecentric scan lens 

(LSM03-BB, Thorlabs, Newton, NJ) focuses signal light onto the sample and collects the 

backscattered light. A galvanometer-mounted mirror on the sample arm enables transverse 

beam scanning on the sample. After the beam splitter the beam passes through a QWP @ 

22.5 and a scan lens and is then reflected by a reference mirror. A variable attenuator is 

placed in front of the reference mirror to attenuate light returning from the reference arm. 

The attenuator is adjusted to optimize the modulation depth of the raw OCT interference 

term. 

Subsequently, both the probe and the reference beams enter a polarization beam 

splitter (PBS), which spatially separates the horizontal and vertical polarization 

components of these two beams. The spectrum of these two components is simultaneously 

detected by two custom-made spectrometers consisting of a collimating lens with a focal 

length of 75 mm (Edmund Optics, Barrington, NJ), a 1800 lines/mm volume holography 

transmission grating (Wasatch Photonics Logan, UT), an assembly of triple lenses with an 

effective focal length of 150 mm, and a line array CCD camera (spL4096-140k, Basler, 

Highland, IL). The acquired interference spectrum data is transferred to a computer system 

using a National Instrument image acquisition card (PCI 1433). Data processing algorithm, 

control and display software are developed using LabView (National Instruments, Austin, 

TX). During lateral scanning of the illumination beam on the sample, multiple A-scans are 

acquired and processed. At the end of the scanning cycle, an intensity-based cross-sectional 

image (B-scan) of the sample is reconstructed and displayed on the computer screen. 
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Figure 3.1 Combined PS-OCT and Mueller Matrix polarimeter schematic 

In Figure 2.1, the Mueller Matrix system is detailed with the blue light path. A CCD 

camera (Evolve Delta, Photometrics, Tucson, AZ) with a 0.60X microscope lens 

(HRD060-NIK, Diagnostic Instruments) attached, was secured above the sample objective 

to allow focusing on the height adjustable stage. A linear polarizer (Prinz, Northbrook, IL) 

and two liquid crystal retarders (LCR) (Meadowlark Optics, Frederick, CO) between the 

lens and sample objective form the PSA of the polarimeter. Employing the same sample 

objective for the two imaging systems ensures they are imaging the same region of interest. 

IP in Figure 2.1 indicates the light source arm for the MMP. A 530 nm LED (M530L, 

Thorlabs, Newton, NJ) was oriented to illuminate the sample at an incident angle of 45° 

and collimated with a 30 mm diameter tube and a 25 mm diameter plano-convex lens 

(Newport, Irvine, CA). The incident light was linearly polarized (LPVIS100, Thorlabs, 

Newton, NJ) and then retarded using two LCRs before reaching the sample to create four 
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different polarization states. These four different states were then used to calculate the 

Mueller matrix of the sample. Matlab (Mathworks, Natick, MA) was used to control the 

devices and analyze the data acquired by the MMP which had a field of view of 3 mm and 

a resolution of 5.8 µm using the shared sample objective.  

2.2.1 Calibration of PS-OCT-Mueller Matrix and co-registration of images 

The calibration of the MMP system follows a standard methodology utilized by our group 

in several applications 176, 177. An Ag-coated mirror was tilted beneath the sample objective 

on the stage and adjusted so that the maximum intensity of light was reflected from the 

source into the analyzer above the objective. For calibration, the IP was adjusted to contain 

a motor-controlled linear polarizer and a QWP in series after the LED light source. Six 

images were taken with the polarimeter using six different retardances programmed into 

the LCRs as the linear polarizer’s optic axis was rotated between 0° and 180° with a step 

size of 10°. Four images with different retardances are the minimum required to generate 

a 4-element Stokes vector, however, six images were used in order to increase the accuracy 

of the calibration matrix generated after the imaging process. The order of the linear 

polarizer and the QWP was then reversed before repeating the same imaging process. The 

imaging process and the algorithm for calibrating the MMP using the images taken are 

discussed in detail in a previous publication 53.  

In order to validate the Mueller matrix function of the MMP, air was used as the standard. 

The same imaging process used previously for the MMP calibration was again used before 

constructing a Mueller matrix. Similar to constructing Stokes vectors, four Stokes vectors 

are the minimum amount of data required to construct a 16-element Mueller matrix. Having 

more information as the imaging process used did allow for more accurate results. The 
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Mueller matrix of air calculated from images taken from the MMP system are shown 

below. The error is 0.40% from the ideal Mueller matrix of air.  

 

[

0.997 −0.000 0.001 −0.005
0.004 1.000 0.010 −0.001
−0.001 0.004 0.991 0.002
0.001 −0.002 0.009 0.999

] 

 

To evaluate our PS-OCT system and to test its effect on the polarization of light returning 

to the spectrometers, we placed a QWP in front of a mirror onto a rotational stage. The 

optic axis of the QWP was varied from 0° to 180° in steps of 10°. Its phase retardance was 

calculated at each position. Figure 2.2 shows the plot of phase retardance as the optic axis 

of the QWP was rotated. The standard deviation of the measured phase retardances was 

0.89° which demonstrates the system’s insensitivity to sample axis rotation in the plane 

perpendicular to ranging of the laser light.  

 

Figure 3.2 Plot of measured retardance as a function of fast Axis orientation. 

The shared objective lens ensures that the PS-OCT and MMP systems are imaging the 

same region of interest. The co-registration of the systems was validated by constructing 

OCT en-face images and comparing them to the MMP system. C-scans of 4×4×1.5 mm 
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(256×256×520 pixels) were generated by ImageJ (National Institutes of Health, Bethesda, 

MD) using a stack of B-scan OCT images collected at different lateral positions from the 

sample. En face images were then generated by extracting and summing signals within a 

constant depth (2mm) of the three-dimensional data. Orientation of CCD camera for MMP 

and scanning voltage for PS-OCT is finely adjusted for the purpose of co-registration. 

Figure 2.3 shows the images from PS-OCT (a) and MMP (b). In this example the number 

3 from a ruler was displayed at the same position in both images, demonstrating the 

spatially co-registration of two systems in a single platform. All images were smoothed 

with a 3x3 Gaussian Filter. 

 

Figure 3.3 Co-registration image of engraved industrial plastic: a) MMP, b) PS-OCT. 

2.2.2 Biological Samples  

Heart leaflets were excised from baboon hearts donated from the Mannheimer Foundation 

which had previously euthanized the animals for reasons unrelated to our study. The hearts 

were stored in a -80°C freezer as tissue awaiting disposal before being acquired. Heart 

valve leaflets are highly birefringent due to their abundance of collagen fibrils. Changes in 

the concentration, or orientation of collagen fibrils within the leaflets, may cause alteration 

of the birefringence signature. Collagenase was selected in order to cause structural damage 
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to the tissue. Chemical damage was induced by incubating a portion of the leaflet (2 mm × 

2 mm × 0.5 mm) for 20 min in a solution of 0.14g collagenase powder dissolved in 2.8 mL 

phosphate-buffered saline (PBS), 0.3 mL fetal bovine serum (FBS), and 0.3 mL anti-

microbial solution at 37o C. The experiment was used to demonstrate the sensitivity of PS-

OCT-MMP to varying birefringence resulting from collagen contained in the leaflet. 

Birefringence maps were generated from the PS-OCT images, while Mueller matrix 

decomposition was performed on images taken by the MMP. 

In a second set of experiments, freshly excised bovine tendons, obtained from the local 

abattoir, were extracted from the posterior side of the hind limbs. Tendon pieces were cut 

into strips measuring approximately 4 mm × 4 mm × 2 mm. Ultimately, change in the 

tendon structure was induced through thermal damage. A metal rod was heated at 260oC 

and then put in-contact with a tendon sample for a period of 2 seconds and for less than 0.5 

sec to achieve lower damage. The tendon samples were imaged to allow both the burned 

and the healthy sections to be visible simultaneously. Finally tendon from the same animal 

was arranged on a rotational stage so that the axis of the sample could be rotated. Images 

were taken at -20 and +60 degrees from the principal axis of our system, measured 

retardation was then compared within both systems.  
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2.3 Results and Discussion 

 

Figure 3.4 Mueller matrix of chicken tendon 

An example of a Mueller matrix image generated by our system is shown in Figure 2.4 

from imaging chicken tendon and shows similar patterns in Mueller matrix elements as 

presented by recent Mueller matrix polarimetry of birefringent tissues. This can be seen as 

a symmetric pattern around the diagonal of the Mueller matrix with certain elements having 

reverse signs as discussed by He et al. and Sun et al. 100, 178.  
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2.3.1 Heart valve leaflet 
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Figure 3.5 Fresh leaflet: a) CCD image, b) PS-OCT B-scan phase retardance, c) MM Retardance, d) Depolarization, e) 

Diattenuation. Deteriorated leaflet: f) CCD image, g) PS-OCT B-scan, h) MM Retardance, i) Depolarization, j) 

Diattenuation.  

 

Figure 3.6 Total attenuation (solid), DOPU (dot dashed line), Total Depolarization (crosses): a) Fresh leaflet, b) Damaged 

leaflet 

Results of the Mueller Matrix decomposition and PS-OCT imaging of heart valve leaflets 

are shown in Figure 2.5. The black-dotted line indicates the location of the PS-OCT B-

scans, and the dark spots oriented diagonally in Figure 2.5e are water droplets located on 

the stage as seen in Figure 2.5a. Clear differences in the birefringence of the leaflet was 

observed between the fresh and collagenase deteriorated samples shown in Figure 2.5. The 

depolarization values of the fresh leaflet is greater when compared with that of the 

deteriorated leaflet as shown on a scale of 0-1.0 in Figures 2.5d and 2.5i, 1.0 indicating a 

complete depolarization of the incident polarized light. The decrease in depolarization can 

be correlated with Figures 2.5b and 2.5g which show PS-OCT b-scan images of the fresh 

leaflet and deteriorated leaflet, respectively. The PS-OCT image in Figure 2.5b shows a 

half oscillation (i.e, the full oscillation is shown by a color change from red to blue and 
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again to red), indicating a phase shift of ≈90o this is in contrast with Figure 2.5g in the 

collagenase treated sample, where the retardance is highly uniform throughout the 

deteriorated leaflet. This may be attributed to the loss of anisotropy and birefringence due 

to the randomization and destruction of collagen fibrils via collagenase activity. The 

destruction of the oscillatory pattern in phase retardance caused by loss of birefringence 

may explain the decrease in the depolarization effect of the tissue and can also be correlated 

with a loss of collagen content due to collagenase activity 179-181. There is negligible 

difference between the Mueller matrix decomposed diattenuation between leaflet samples 

while in the retardance images some heterogeneous changes can be noticed particularly in 

the top portion of the figure.  Calculation of the total depolarization obtained with Mueller 

Matrix polarimetry are finally related to the Degree of Polarization Uniformity (DOPU) 

introduced by Götzinger et al. 182. DOPU is expressed mathematically as resembling the 

expression for the Degree of Polarization (DOP) often used in optics2. Since PS-OCT is 

based on coherent light detection the DOP is always equal to unity. The DOPU expression 

instead yields values <=1, the main hypothesis being that by spatial averaging the local 

Stokes vectors of a sample concomitant speckles are also averaged. 

 

The calculation of the DOPU is achieved with a two-dimensional sliding average window 

in (x , z) directions. In our case the window was 10 pixels x 10 pixels, similarly to what 

used by others 183. The total depolarization of the treated and untreated sample relate 

positively to the DOPU, as both metrics are higher in the untreated sample. While the total 

depolarization is cumulative the DOPU can be studied over depth as shown in Figure 2.6.  

Similarly we may calculate the attenuation coefficient for the samples. This is done 

DOPU = Q
mean

2
+U

mean

2
+V

mean

2
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utilizing the intensity image and then calculating the loss of intensity over depth, 50 pixels 

in the x directions were averaged to increase the signal to noise ratio (SNR). The data was 

ultimately fit with an exponential function of the form I ≈ √(e-2µ
tot

L) where µtot is the total 

attenuation coefficient and L is the depth of the sample, 2 is added to account for the round-

trip travel 184. In the figure only the fitted data is shown (solid lines). In Figure 2.6 we 

summarize the results of our quantitative analysis. Higher attenuation is expected to 

influence the total depolarization calculated through Mueller Matrix polarimetry. For the 

samples shown the total attenuation coefficient was µtot= 9.6 mm-1 for untreated leaflet and 

µtot= 0.6 mm-1- for the treated leaflets. DOPU is lost at a higher rate in the untreated sample 

than the treated ones, indicating a higher depolarization ability of this sample, this is 

ultimately reflected in the Mueller Matrix assessment of Total Depolarization (crosses in 

Figures 2.6a, and 2.5d) which is higher for untreated than treated samples. 

2.3.2 Tendon 

Fresh tendon is highly birefringent due to its collagen structure, its birefringence can be 

decreased through thermal damage. When the collagen in the tendon denatures due to 

heating, or other injuries, a decrease in birefringence can be observed.  
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Figure 3.7 Fresh bovine tendon: a) MM Retardance, b) OCT en face, c) OCT B-scan, d) PS-OCT B-scan. Superficially 

burned bovine tendon: e) MM Retardance, f) OCT en face, g) OCT B-scan, h) PS-OCT B-scan. 

In PS-OCT of fresh tendon seen in Figure 2.7d, the banded structure, indicative of 

birefringence, is clearly visible to a depth of 750 microns and making full oscillations 

between 90° and 0° as polarized light travels deeper into the tissue. This is expected in 

tendon, which has high optical anisotropy. Figure 2.7a is a retardance image taken of fresh 

tendon by the MMP and shows some areas of greater retardance in an image with 

retardance mostly between 60°-100°. Figure 2.7b is an en face image of the surface of the 

fresh tendon. The black-dotted line indicates the location of the PS-OCT b-scan in the 

MMP and OCT en face images. A strong and uniform pattern of phase retardance 

consistent with undamaged tendon can be seen around the burn site in Figure 2.7h. The 

image clearly shows a disappearance in the birefringence at the center of the burned zone. 

For comparison, Figure 2.7g shows OCT image of the total backscattered intensity of the 

burned tendon. Less backscattered light from the burned area is observed. The colored 

bands changing around the burned area in Figure 2.7h reveal important structural 

information not evident in the OCT B-scans of either tendon sample. 
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Figure 3.8 Burned bovine tendon: a) CCD image, b) Diattenuation, c), Depolarization, d) MM Retardance, e) PS-OCT 

B-scan. 

Figure 2.8 shows the tendon that was burned for 2 seconds while the superficially burned 

tendon is seen in Figure 2.7. There is a clear difference between the samples. Seen in 

Figure 2.8a, the darkened area at the center of the image and the area towards the bottom 

right of that section represent the locations where heat was applied. There is substantial 

increase in the diattenuation of the tendon in Figure 2.8b where the darkened burn marks 

are present in the raw image. The actual burns themselves show a decrease in diattenuation 

compared to the rest of the image in focus and illuminated. Note that diattenuation relates 

to a material’s favorable absorption of linearly polarized light in a specific orientation. The 

constriction of collagen fibers between the burns may factor in the area of heightened 

diattenuation. In the PS-OCT image of Figure 2.8e, a section of uniform phase retardance 

can be seen towards the right of the oscillating pattern typically exhibited by tendon. This 
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section indicates the burned tissue similar to how the burned tendon in Figure 2.7. Figure 

2.8c shows that there is a decrease in depolarization at the center of the burns.  

Finally, Fig. 9 shows the results obtained with a chicken tendon sample oriented at 

two different orientations. The dotted-line on the PS-OCT B-scans indicates where the data 

for the local phase retardation calculations were taken. 

 

Figure 3.9 a) Chicken Tendon MM Retardance orientation 600, b) Cumulative phase retardation c) Local phase retardation 

data and model d) Chicken Tendon MM Retardance orientation -200, e) Cumulative phase retardation f) Local phase 

retardation data and model. The model fitted to the data is plotted in red. 

 

The chicken tendon showed in Figure 2.9 reveals little change in the Mueller matrix 

decomposed retardance as the tendons orientation is changed beneath the sample objective 

shown in Figures 2.9a and 2.9c. This is also shown in the PS-OCT and corroborated in 

other work involving axis orientation and retardance 185. The PS-OCT images of retardation 

show the typical oscillatory pattern, as the other bovine tendon samples.  Local retardation 

was ultimately calculated with the algorithm by Jiao et al. 167 and proposed by others 168. 
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The results of the fit to the cumulative data are shown in Figure 2.9. Using this approach 

the sample is modeled as a stack of retarders within the imaging apparatus. The 

determination of the modeling retarder retardation and spacing is critical to this approach. 

In our calculation the local retardation for the sample was calculated as 25 degrees with 

each retarder being ~ 30 µm in thickness. In comparison the cumulative retardation 

obtained with the Mueller Matrix is in the range of 25 to 35 degrees. Further work remains 

to be done to truly understand how the two measurements relate to each other. 

2.4 Conclusion 

We have introduced a combined PSOCT-MMP and illustrate how this multimodal imaging 

technique can provide structural information of tissues using heart valve leaflets and 

tendon. Damage of leaflet structure with collagenase was identified by decomposing the 

depolarization parameter of the Mueller matrix, showing that the tissue had less of a 

randomizing (lower attenuation coefficient) effect on polarized light backscattered from 

the leaflet. Several authors are using the Degree of Polarization Uniformity for automatic 

segmentation of the Retinal Pigmented Epithelium (RPE) 182, 183 and other depolarizing 

structures. This seems counter-intuitive, as the Jones calculus does not account for 

depolarization yet these authors consider the random polarization state of the resulting 

speckle as causing the DOP to be lower than 1. With our approach the true depolarizing 

property of a sample, calculated through the decomposition of the Mueller Matrix was 

related to the PS-OCT DOP. Not only the DOP and DOPU were consistent for the samples 

under study, but their behavior seems to relate to the attenuation coefficient and the 

scattering property of the material that can be extrapolated through PS-OCT.  We 

acknowledge the fact that on layered structures such as the retina the localization of the 
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depolarization is not feasible without a robust inverse model nevertheless this is a first 

attempt at relating the DOPU and DOP directly.  

Areas of thermal damage to tendon were also observed by decomposing the 

diattenuation and depolarization components of the Mueller matrix in the deeper burned 

sample. Changes in the normal retardance pattern of tendon were identified where large 

changes in depolarization and diattenuation were seen in the more severely burned tendon. 

It was expected that significant damage to birefringent tissue would change its effect on 

polarized light as normal structure and scattering profile is lost. This experiment shows 

how PS-OCT could be used to corroborate Mueller Matrix results as they could show 

changes in material properties at different depth that are not visible through wide field 

imaging. Finally, the last example in Figure 2.8 shows another potential application of this 

approach. Both Mueller Matrix polarimetry (in back reflectance) and PS-OCT can provide 

measurement of cumulative retardation of a sample and birefringence. In PS-OCT models 

have been proposed to convert the cumulative retardation into local retardation 166 yet true 

quantification of this parameter seems elusive. The combined approach could be utilized 

to refine models of local retardation, particularly as many models rely on the measurement 

of the surface retardation as a starting point for the model 168. Naturally this would require 

a clear understanding of the Mueller Matrix sampling depth, as well as uniform and well-

calibrated samples ultimately combined with a computational approach. In conclusion we 

believe that this combined approach is a starting point in obtaining more quantifiable PS-

OCT measurement and at the same time we believe that PS-OCT could be used in this 

combined system to better understand Mueller Matrix decomposition results. Further work 

is needed to achieve both goals. 
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Abstract: 

Preterm birth (PTB) presents a serious medical heath concern throughout the world. There 

is a high incidence of PTB in both developed and developing countries ranging from 11%-

15%, respectively. Studies have shown there may be numerous precursors to PTB 

including infections, genetic predisposition, nutrition and various other morbidities which 

all lead to a premature disorganization in the cervical collagen resulting in the weakening 

of the structure designed to keep the fetus in utero. The changes in cervical collagen 

orientation and distribution may prove to be a predictor of PTB. Polarization imaging is an 

effective means to measure optical anisotropy in birefringent materials such as those rich 

in collagen as the cervix is. Non-invasive, full-field Mueller Matrix polarimetry (MMP) 

imaging methodologies and optical coherence tomography (OCT) imaging were used to 
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assess cervical collagen content and structure in non-pregnant porcine cervixes. The OCT 

imaging was used to verify the efficacy of the MMP in assessing changes in collagen 

orientation. 

Keywords: anisotropy, birefringence, collagen, polarized light imaging, Mueller matrix, 

OCT 

3.1 Introduction 

The cervix is an extension of the lower part of the uterus comprising a portion of the female 

reproductive system. It is cylinder shaped, approximately three to four centimeters long 

and three centimeters in diameter and has a central canal through its entirety.  Changes in 

cervical structure, morphology, and color may be indicative of disease96-99. Non-invasive 

imaging techniques may provide important diagnostic information non-invasively and for 

this reason, and recent work in cervical imaging has shown great promise96, 100-104. 

For example, De Martino et al. used Mueller Matrix Polarimetry to differentiate 

between cancerous and non-cancerous cervical samples by measuring depolarization and 

retardation of excised human cervixes.105, 106 Richards-Kortum et al. used confocal 

microscopy to identify differences between normal, pre-cancerous and cancerous cervical 

tissues. 107-110 Ramanujam et al. engineered means for cervical imaging for low-resource 

settings 111, and so did Levitz et al.112 Recently, Hendon et al. 102, 113-115  used optical 

coherence tomography to identify collagen orientation of human ex-vivo cervixes to 

investigate differences in collagen angular distribution between pregnant and non-pregnant 

cervixes. Finally, Second Harmonic Generation imagery has been used to observe changing 

collagen architecture in the cervix providing exquisite images of fibrous and fibrillary 

collagen structure. 79, 101, 116-120  
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In this paper, we focus on collagen arrangement in the cervix. We propose a 

combined OCT Mueller Matrix approach to image the cervix. Our intent is to highlight the 

ordered structure of the cervix through MM decomposition focusing particularly on the 

orientation of the collagen bundle fast axis and compare them to OCT imaging which has 

been shown to be able to measure the ultrastructure of the cervix. This imaging modality 

can potentially be done non-invasively in the clinic through the modification of existing 

colposcopes to function as MM polarimeters. 

3.1.1 The Cervix 

A cartoon representation of the cervix is shown in Figure 3.1. The cervical canal 

serves as the entrance, via the vagina, for sperm in reproduction and as an exit canal, via 

the uterus, for childbirth. The two ends of the canal are termed internal orifice (os) 

connecting to the uterus and external OS at the vagina. The cervix is divided into two 

regions due to their cellular differences, the ectocervix, and the endocervix. The ectocervix, 

the lower area, is visible through the vaginal opening and is comprised of a stratified 

squamous epithelium, having several cell layers of differing morphological characteristics. 

92 The cell layers of the epithelium are subdivided into classes relating to their maturation 

and include one layer of basal cells, two layers of parabasal cells and numerous layers of 

both intermediate cells and superficial cells. The thickness of the epithelial layer is between 

200 and 500 microns. 93 94 The endocervix is lined with a single layer of mucus secreting 

columnar (glandular) epithelial cells. The area of intersection of the ectocervix and 

endocervix is called the transformation zone and in this location, glandular epithelium is 

being replaced by squamous epithelial cells.95  
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3.1.2 Collagen in the cervix 

An extracellular matrix (ECM) lies under the epithelium of the cervix, separated by 

the thin basal lamina layer of collagen type IV fibers 93, and consists mainly of collagen, 

approximately 10-15% smooth muscle cells 123, 124 125 and a ground mixture of 

biomolecules. 

 

Figure 5.1 The cervix 

Two types of collagen comprise the cervical ECM, approximately 70 % is collagen type I 

and 30 % collagen type III. 126, 127 In addition, the ground substance of the ECM contains 

glycoprotiens elastin and fibronectin, glycosaminoglycan (GAGS) decorin, buglycan, 

chondroitin sulfate, keratan sulfate, and dermatan sulfate, hyaluronic acid and water. 123, 

125, 128-130  

The role of the cervix is to serve as a barrier, to maintain the baby in utero until 

gestation is complete and to preserve the fragile environment of the uterus. When childbirth 

is near, the cervix softens and opens to allow the baby to exit the uterus. During pregnancy, 

the epithelial layer of the cervix may thicken. 186 Mechanically, the cervix must be strong 

to hold the fetus throughout gestation. The collagen of the cervix provides this necessary 

strength.86 



52 

 

Numerous researchers have studied the collagen of the uterus to determine how this 

structure maintains its integrity during pregnancy. 77-84 Aspden et al. found the structure of 

collagen is oriented in three unique areas surrounding the cervical canal, the anisotropic 

alignment of the collagen differing within each area. The cervical fibrils are aligned both 

around and along the canal for increased strength as shown in Figure 3.2. 12, 85-87  

 

 

Figure 5.2 Alignment of collagen fibers in human cervix in three anisotropic zones 

The cervix undergoes dramatic changes between the initial pregnant state and delivery of 

a baby. Many of these changes are not yet well understood, nor are all the factors which 

cause these changes. The cervix’s state during a post pregnancy has been categorized into 

four phases: cervical softening, ripening, dilation and repair (postpartum). 130,81, 143  

The physiological properties of the cervix are altered by a cascade of micro-

environmental events in each of these phases. Cervical softening begins within one month 

of the initiation of pregnancy and the cervix undergoes increased vascularity and edema. 81 

Softening is a longer, more steady phase than the others, progressing through the 33rd week 

of pregnancy. The collagen of the stroma becomes less organized and the cervix becomes 
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pliable and begins shortening. Timmons et al. states this as a maintenance of tissue 

competence occurring while increasing tissue compliance. 143  The ripening phase begins, 

after softening, and as House et al. points out, this predominantly deals with the cervix 

changing roles from a load-bearing function to a birthing canal. 124 By the end of cervical 

ripening, when dilation begins, some researchers have found there is a 30-70% decrease of 

collagen 128, 130, 136 since the onset of pregnancy, although Myers et al. believe there is a 

decrease in crosslinking but not in actual collagen content. This is purported to be due to 

increased solubility in weak acids rather than change in collagen content. 12  In addition, 

there is also a decrease in specific glycosaminoglycans (chondroitin sulfate and dermatan 

sulfate) 144, and an increase in the hydrophilic glycosaminoglycan 145, hyaluronic acid 139 

and thus, an increase in water (5 – 10%).124 146 147 Researchers have also found there occurs 

a shift from insoluble to soluble collagen 128, 148 with as much as 90% soluble collagen by 

the third trimester124. Dilation follows ripening and involves an influx of leukocytes, 124 

similar to an inflammatory response, which may serve to cause an increase in the matrix 

metalloproteinase, collagenase.  81 149 150 Collagenase causes the breakdown of collagen 

cross links and allows the cervix to weaken 12 79 151 and open thereby radically changing 

shape by shortening and effacing in preparation for delivery of the baby.  

3.2 Materials and Methods 

A combined optical coherence tomography and Mueller matrix polarimetry (OCT-MMP) 

system introduced in previous work153 was modified to a fiber based OCT shown in Figure 

3.3. The system is based on a Michelson interferometer. The laser light source is a 

broadband superluminescent diode (Bayspec, San Jose, CA) with 840 nm central 

wavelength and 50 nm full width at the half-maximum (FWHM) bandwidth. A telecentric 
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scan lens (LSM03-BB, Thorlabs, Newton, NJ) focuses the light onto the sample and 

collects the backscattered light. Galvanometer-mounted mirrors (GVS012, Thorlabs, 

Newton, NJ) on the sample arm enable transverse beam scanning on the sample. A custom-

made spectrometer detects and measures the interference signal between reference arm and 

sample. The spectrometer consists of a collimating lens with a focal length of 75 mm 

(Edmund Optics, Barrington, NJ), an 1800 lines/mm volume holography transmission 

grating (Wasatch Photonics Logan, UT), an assembly of triple lenses with an effective 

focal length of 150 mm, and a line array CCD camera (spL4096-140k, Basler, Highland, 

IL). Data processing algorithm, control and display software are developed using 

MATLAB (Mathworks, Natick, MA). The images produced by the system have a 

theoretical resolution in depth of 5 µm per pixel, and an axial resolution of 20 µm per pixel.  

 

Figure 5.3 Combined OCT and Mueller matrix system schematic (Red light-OCT, Green-dashed-MMP). The OCT’s 

components are traced by the red light  

The co-registered Mueller matrix system shown in Figure 3.3 is traced by the dashed green 

line and consists of a CCD camera (Lu175, Lumenera, Ottawa, ON) with a Computar 
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MLH-10X 1/2-inch 13-130mm f5.6 10X Macro Zoom lens. The camera was secured above 

the sample objective to allow focusing on the height adjustable stage. A linear polarizer 

(Prinz, Northbrook, IL) and two liquid crystal retarders (LCR) (Meadowlark Optics, 

Frederick, CO) between the lens and sample objective form the polarization state analyzer 

(PSA) of the polarimeter. Employing the same sample objective for the two imaging 

systems ensures they are imaging the same region of interest. The illumination port (IP) in 

Figure 3.3 indicates the light source for the MMP. A 530 nm LED (M530L, Thorlabs, 

Newton, NJ) was oriented to illuminate the sample at an incident angle of 45° and 

collimated with a 30 mm diameter tube and a 75 mm focal length plano-convex lens 

(Newport, Irvine, CA). Two LCRs were mounted after the light source and a linear 

polarizer using a cage system to form the polarization state generator (PSG). The 

calibration of the MMP system follows a standard methodology utilized by our group in 

several applications 176, 187 and resulted in a condition number of 2. A Mueller matrix of 

Air was also acquired and showed an error well below 1%. 

3.2.1 Mueller matrix Decomposition  

Mueller matrix imaging is a useful polarimetry technique as the 4 x 4 Mueller matrix 

completely characterizes the polarimetric properties of a sample 19 56. Mueller matrix 

decomposition is often used to extract constituent polarization properties from a Mueller 

matrix of any unknown complex system. The decomposition of the Mueller matrix (M) (as 

proposed by Lu-Chipman57) yields three canonical matrices M = MΔMRMD: a MΔ 

accounting for the depolarizing effects of the material, a retarder matrix MR for the effects 

of the material linear birefringence and optical activity, and a diattenuator matrix MD 

includes the effects of linear and circular diattenuation. By decomposing the Mueller 
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matrix, we are hence able to isolate different light-tissue interaction mechanism. 20, 57, 179, 

188  Furthermore, the resulting matrices can be analyzed to yield quantitative medium 

properties that have a demonstrated 7 useful diagnostic power and they are used in this 

study.  We have identified two such parameters as relevant to this study – these are linear 

retardance  birefringence which relates to the abundance of collagen in the cervix, and 

slow axis orientation , which is directly related to the orientation of the collagenous 

structures in the tissue. The orientation calculation used was derived by Ma et al 178. 

Another parameter that may be of interest is depolarization, with which we can observe 

changes in the extracellular matrix such as shortening and thickening of collagen. Because 

the information decomposed from a Mueller matrix is contained in each pixel of the image, 

no processing is required afterwards to generate parameters of interest. As an example, 

retardation axis orientation is directly calculated from the Mueller matrix at each pixel to 

generate the orientation images. The MMP images show a resolution of 12.0 µm/pixel.  

Circular statistics 189, 190 is a subset of statistics for data that can be shown on a unit 

circle such as directions where the sign of values is determined by the direction of rotation. 

The periodicity of such data requires a departure from normal arithmetic statistics, which 

would give a faulty representation of the mean of the data set. Circular statistics was applied 

to the orientation data decomposed from the Mueller matrix in order to calculate directional 

parameters. This method requires that the data first be transformed into unit vectors with 

two-dimensional data as shown in Equation 3.1. Equation 3.2 is the mean resultant vector 

𝑟̅ of the data set. The mean angular direction 𝛼̅ can be calculated using the four quadrants 

inverse tangent of 𝑟̅. 
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𝑟𝑖 = (
cos 𝛼𝑖
sin 𝛼𝑖

) (3.1) 

  

𝑟̅ =
1

𝑁
∑𝑟𝑖
𝑖

(3.2) 

Kurtosis and mean angle were calculated in our study. Circular kurtosis is the 

measurement of outliers in a distribution, the distribution’s propensity to produce outliers, 

and is associated with the weight of the tails in a data set 191. It is useful as a measurement 

of how uniform a distribution of angles is in a data set, which can be confounded in mean 

calculations where a wide array of values can equal a certain mean angle depending on 

their frequency. An equal distribution of angles will give a kurtosis of 0, while a narrow 

distribution of angles will move towards 1.  

3.2.2 OCT image processing 

In previous work Gan et al.102 utilized unpolarized spectral domain OCT to determine the 

distribution of collagen in the cervix. Their algorithm uses pre-processing of images to first 

promote edge detection of fibers in different depth planes of the OCT acquired 3D stack, 

before determining the orientation of sub-sections in the planes. This is done over selected 

regions in the sample. The orientation information across different regions can then be 

stitched together to create a more complete orientation map of the entire region that was 

imaged. We aim to mimic their approach to measuring the orientation of birefringent tissue 

using OCT, and to compare it with Mueller matrix polarimetry (MMP), which should 

generate orientation information inherently summed across all depths in the sample for the 

entire field of view.    
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Our approach pre-processed and averaged the en face data in a similar manner suggested 

by Gan et al. The determination of orientation, however, was calculated using our own 

method, which applies the Radon transform and calculation of the projection angle SNR as 

shown in Figure 3.4. The radon transform projects the sum of image intensities along the 

different orientation angles inputted into the transformation. It is useful for calculating 

which angles are represented in an image.192 

 

 

 

Figure 5.4 OCT processing pipeline.  

Five X-Y images (c-scans) were first averaged in the Z-direction to improve the orientation 

measurements. The c-scans were then smoothed with a 3x3 median filter to remove speckle 

noise. The resultant matrix was then convolved with a 3x3 Sobel filter to generate an image 

with emphasized edges in order to detect contours in the sample. This matrix was sectioned 

into 20x20 pixel areas and Radon transformed. The SNR of all projection angles was 

calculated for the Radon transformed section using Equation 3 to produce a graph such as 

in Figure 3.5. SNR is defined here as the quotient of the standard deviation of a projected 

angle with the standard deviation of the entire image section. The peak projection angle 

SNR is denoted by a triangle and selected to be overlaid over the section of the enface 
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image of the sample as a line. This peak corresponds to the orientation of the sample as is 

calculated for sections throughout an enface image of the sample 192.  

𝑆𝑁𝑅 =
𝜎𝑅(𝜃)

𝜎1
(3.3) 

  

 

Figure 5.5 Radon transform of section of silicon phantom 

The orientations measured by both imaging techniques were superimposed over the images 

they were calculated from as oriented lines. OCT was used as a standard for testing the 

effectiveness of MMP in this application. 

3.2.3 Anisotropic Test Samples  

Two test samples were used to verify the efficacy of the OCT-MMP’s orientation 

measurements. The first sample is an extruded silicon phantom. The extrusion process 

creates striations oriented in a single direction, which are easily observed by eye and 

measured by protractor creating a highly anisotropic sample with a known retardation axis. 

Its low scattering and absorbing properties as a mostly transparent material ensured that 
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there would be minimum loss of polarization in the light returning to the MMP. It produced 

the best measure of orientation out of all the samples used. Porcine tendon was another test 

sample with high anisotropy that was investigated. Highly ordered collagen in tendon has 

a strong and uniform birefringence, which is the basis for the MMP’s calculation of 

retardance and orientation. Both orientation samples were rotated on the OCT-MMP 

sample stage and then imaged.  

3.2.4 Cervical Samples 

Fresh porcine cervixes were obtained from the abattoir ranging from 1 cm to 2 cm in 

diameter. They were then fixed in 4% paraformaldehyde (PFA) and embedded in paraffin 

for preservation. Tissue fixation with paraformaldehyde and paraffin embedding has been 

shown to cause small increases in depolarization and retardation 193-195, however there is 

no significant effect on sample birefringence. The embedding process first began with 

dehydrating the tissue with successive washes of ethanol (EtOH) from 50-100% 

concentration in steps of 10% for 10 minutes each wash. The washing was repeated with 

solutions of EtOH:Citrisolve in concentrations of 2:1, 1:1, 1:2, and then three washes of 

100% Citrisolve. Lastly, Citrisolve was exchanged for paraffin in vacuum oven set between 

54-58°C. First washes of 2:1, 1:1, and 1:2 Citrisolve:paraffin were done for 30 minutes 

each before using 100% paraffin for 1-2 hours and then leaving it overnight in 100% 

paraffin. The cervixes were then put in place before the paraffin was set to harden. 10 

cervixes in total were imaged; the images reported are representative of the samples. 
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3.3 Results and Discussion 

3.3.1 Test samples - Silicon Phantom and Tendon 

All images shown are of the Y-X plane of the cervix denoted in Figure 3.2. Orientation of 

0° is parallel to the X axis and a positive Δ  is considered counterclockwise from 

horizontal.  The silicon phantom was measured first. Its weak attenuation can be seen in 

the low depolarization value of the phantom seen in Figure 3.6b, the uniform value of 

retardation in Figure 3.6c. The dashed line box in Figure 3.6a is the region where 

orientation was compared between OCT and MMP in Figure 3.7. 

 

Figure 5.6 Silicon phantom Mueller matrix decomposition: a) CCD image, b) Mueller matrix decomposed depolarization, 

c) Mueller matrix decomposed retardation, d) Mueller matrix decomposed orientation. 

The circular statistics shown in Figures 3.7b and 3.7d were calculated from the regions 

encased by the dashed line squares in Figures 3.7a and 3.7c. It is important to note that 

unlike the MMP images which are taken at the surface of the sample, the OCT images are 

taken below the surface of the sample as they are c-scans averaged in depth. This is why 

striations can be seen by both imaging modalities in the silicon phantom which was 

completely uniform in structure throughout the sample but not in the tissue samples. Both 

imaging modalities had kurtosis values in the 90-percentile range indicating a tight 

distribution of angles around a mean angle of 68° and 65° for the OCT and MMP, 

respectively. After the orientation measurements were confirmed to properly change as the 
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phantom was rotated on the sample stage, we moved to tendon as a biological sample which 

would attenuate light due to scattering and absorbing more than the silicon phantom but 

still have high anisotropy which would be seen in the orientation measurements. 

 

Figure 5.7 Silicon phantom OCT-MMP orientation comparison: a) OCT c-scan, c) Mueller matrix decomposed 

orientation, b/d) Orientation histogram circular statistics (k = kurtosis, µ= mean angle).  

The greater attenuation of the tendon is evidenced the much greater depolarization value 

in Figure 3.8b as compared to the silicon phantom. Despite its high anisotropy, tendon 

does not exhibit retardation as uniform as the silicon phantom. The changes in morphology 

and roughness of the tendon’s superficial layers compared to the silicon phantom can be 

seen as deviations in the orientations calculated by OCT and MMP in Figures 3.9a and 

3.9c.  

 

Figure 5.8 Tendon Mueller matrix decomposition: a) CCD image, b) Mueller matrix decomposed depolarization, c) 

Mueller matrix decomposed retardation, d) Mueller matrix decomposed orientation.  
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A breakdown in the Mueller matrix orientation is highlighted by a phase wrapping of 

orientation angle from +70° to -70°. Regardless, the tendon produced high kurtosis values 

with both imaging modalities around a mean angle of -74° in the selected area.  

 

Figure 5.9 Tendon OCT-MMP orientation comparison: a) OCT c-scan, c) Mueller matrix decomposed orientation, b/d) 

Orientation histogram circular statistics (k = kurtosis, µ= mean angle). 

3.3.2 Ex-vivo porcine cervix 

Once both imaging techniques had been tested on the anisotropic test samples, we imaged 

the paraffin embedded cervixes in order to see whether the circumferential alignment of 

cervical collagen [birefringent material] could be resolved by the techniques. The inner and 

outer regions of the cervix contain collagen oriented in the z-direction which cannot be 

resolved with polarimetry of the sample’s surface. Because of this we are interested in the 

region between the os and the outer edges of the cervix because it contains collagen 

circumferentially aligned around the os which can be resolved noninvasively with 

polarimetry of the surface. Two different cervixes are shown using OCT in Figures 3.11a 

and 3.13a.102 Similarly, the orientations calculated by MMP also rotate around the os of 

the cervixes shown in Figures 3.11c and 3.13c. 
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Figure 5.10 Paraffin embedded cervix 1 Mueller matrix decomposition: a) CCD image, b) Mueller matrix decomposed 

depolarization, c) Mueller matrix decomposed retardation, d) Mueller matrix decomposed orientation. 

The dashed line box in Figure 3.12a designates the region that was used to measure the 

orientation shown in Figure 3.13 for both imaging modalities. Circular statistics were 

applied to the OCT orientation and Mueller matrix decomposed orientation in the same 

subsections. The selected subsections of the cervixes are denoted by the dashed line square 

boxes in Figures 3.11 and 3.13.  

 

Figure 5.11 Paraffin embedded cervix 1 OCT-MMP orientation comparison: a) OCT c-scan, c) Mueller matrix 

decomposed orientation, b/d) Orientation histogram circular statistics (k = kurtosis, µ= mean angle). 

The kurtosis values calculated from the selected cervix region are between 0.74 and 0.78 

in comparison to the more ideal values of 0.92 and 0.99 in the non-depolarizing silicon 

phantom. This is expected due to the strong depolarization effect of biological tissue3, 105, 

153 because of its many constituents and the more complex arrangement of collagen in the 

cervix as opposed to tendon. Another cervix is shown in Figure 3.12; as this sample was 
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large only a section was imaged with OCT, whose field of view is about ~5 mm while the 

Mueller Matrix system can measure the full cervix.   

 

Figure 5.12 Paraffin embedded cervix 2 Mueller matrix decomposition: a) CCD image, b) Mueller matrix decomposed 

depolarization, c) Mueller matrix decomposed retardation, d) Mueller matrix decomposed orientation. 

The dashed line box in Figures 3.13a and 3.13c are the regions selected for the 

circular statistics calculated in Figures 3.13b and 3.13d, respectively.  

 

Figure 5.13 Paraffin embedded cervix 2 OCT-MMP orientation comparison: a) OCT c-scan, c) Mueller matrix 

decomposed orientation, b/d) Orientation histogram circular statistics (k = kurtosis, µ= mean angle). 

A summary of the circumferential fiber alignment of collagen in the middle of the 

cervix samples is shown in Figure 3.14. Eight regions around the os of the cervix were 

selected from both the Mueller matrix and OCT data. The mean orientation and percentage 

error between the two modalities is plotted for comparison. The mean orientation rotates 

fully around the cervix and flips sign in the vertical axis [north position]. We propose that 

in-vivo measurements of collagen orientation could be used to identify these areas of 
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disruption and lead to diagnosis of abnormal or early collagen disruption in the pregnant 

cervix.  

 

Figure 5.14 Summary statistics of cervix orientation between MMP and OCT. 

3.4 Conclusion 

Orientation of the optical axis of birefringent material is important in the diagnosis of 

abnormal conditions in tissues with large amounts of ECM. Tissues that rely on collagen 

and other common ECM components for mechanical strength align the proteins in various 

orientations depending on the application.196 The circumferential orientation of collagen in 

the cervix is important in maintaining the fetus in the uterus by not allowing passage 

through the os and can be measured quickly within one set of images using Mueller matrix 

polarimetry. To our knowledge this is the first report that focuses uniquely on polarization 

derived collagen orientation in the mammal cervix. Gan et al as well as Zhang et al have 

shown that cervical collagen alignment can be measured using OCT and second harmonic 

generation (SHG) microscopy, respectively102, 119. Yet Mueller Matrix polarimetry is more 

adaptable to cervical imaging studies than those modalities due to its ability to capture the 

entire cervix at a distance outside the vagina compared to the much greater difficulties in 
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performing OCT imaging or SHG microscopy in-vivo and without contact with the sample. 

Current modalities for diagnosing pre-term labor involve direct contact with the cervix 

during a pelvic ultrasound72 or fibronectin discharge collection73. 

Depolarization and retardation were also decomposed from the Mueller matrices and 

showed little variation throughout the different samples measured due to their structural 

uniformities that make them ideal test samples and the use of healthy collagenous tissue. 

Mueller matrix decomposed orientation was compared to and found to be in agreeable with 

measurements made using optical coherence tomography for the region samples using 

circular statistics to calculate kurtosis and mean orientation angle. Further studies of 

collagen orientation in cervixes under different conditions are needed to understand if 

Mueller matrix polarimetry can effectively measure the changes in collagen orientation 

that should occur when the normal ECM alignment is disrupted by pregnancy or disease. 

An in-vivo study of pregnant human cervixes is currently underway using a colposcope 

outfitted with a MM polarimeter of the same design as reported here and will be useful in 

establishing the diagnostic power of this technique in the determination of risk for preterm 

labor. 
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Abstract: 

Annually, about 15 million preterm infants are born in the world. Of these, due to 

complications resulting from their premature birth, about 1 million would die before the 

age of five. Since the high incidence of preterm birth is partially due to the lack of effective 

diagnostic modalities, novel methodologies are needed to determine risk of preterm birth. 

In the present study, we propose a noninvasive tool based on polarized light imaging aimed 

at measuring the organization of collagen in the cervix. Cervical collagen has been shown 

to remodel with the approach of parturition. In this study, we used a novel full-field Mueller 

Matrix polarimeter (MMP) to assess and compare cervical collagen content and structure 
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in non-pregnant and pregnant women in vivo. Local collagen directional azimuth was used 

and a total of eight cervixes were imaged.  

Keywords: anisotropy, birefringence, collagen, Mueller matrix, cervix, colposcopy. 

4.1      Introduction 

With the  incidence rate exceeding 11% in the United States and 15%62 in the developing 

countries, preterm birth (PTB), defined as labor prior to 37 weeks of gestation, is the 

leading cause of infant death worldwide. PTB is reported to be responsible for infant 

neurological disorders,64 long-term cognitive impairment,65 as well as chronic health issues 

involving the auditory, visual, digestive, and respiratory systems.66 In expectant mothers, 

causes for PTB can include infection, inflammation,67 vascular disease,68 short intervals 

between pregnancies,69 multiple gestations,70 and genetic factors. 71 

For an early identification of at-risk pregnancies, as well as to delay the start of 

labor contractions and thus increase the development time inside the mother, tocolytics, 

antenatal corticosteroids, and hormones, such as terbutaline, betamethasone, and 

progesterone, are used. A mechanical approach to delay birth is cerclage, which is used to 

seal the cervix. Among the current approaches to diagnose PTB are tactile and visual 

inspection of the cervix to determine dilation, ultrasound examination of cervical 

thickness,72 and fetal fibronectin (fFN) immunoassay.73 However, all these approaches  

have a low positive predictive power, making it difficult for physicians to decide whether 

or not any intervention should be performed and complicating the development and testing 

of new treatments. In this context, a more reliable PTB diagnostic method could allow 

physicians to earlier start intervention to delay birth, so that to give the fetus more 
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development time. Thus, the development of new diagnostic modalities to identify risk of 

PTB has a great potential in reducing the morbidity of the condition.  

Regarding PTB, recent research has highlighted the important role of the collagen of the 

cervix74-76 which provides the structure necessary to hold the baby within the uterus during 

gestation. Numerous studies have investigated the collagen of the cervix to determine how 

this structure maintains its integrity during pregnancy.77-84 For instance, Aspden et al. 

found that the structure of collagen is oriented in three unique areas surrounding the 

internal cervical os, with the anisotropic alignment of the collagen varying within each of 

the areas. The cervical fibrils are aligned both around and along the cervix os for increased 

strength.12, 85-88 While the cervix os and outer regions of the cervix are made of collagen 

aligned in the direction of the cervical canal, the area in-between these regions contains 

collagen oriented circumferentially around the canal. In the present study, this angular 

measurement of collagen orthogonal to the light path was defined as the collagen azimuth.  

Optical measurement of cervical remodeling throughout pregnancy based on the 

observation of the changes in collagen arrangement and density in the cervix os can help 

predict the occurrence of pre-term labor. To target the fibrous ultrastructure of the cervix, 

polarization sensitive techniques, such as Mueller matrix polarimetry, can be used. 

Relevant research has demonstrated the ability of Mueller matrix polarimetry to identify 

colorectal and cervical cancer.19, 38, 90 In a previous study, we developed a PReterm 

IMaging System (PRIM) based on a standard colposcope, with a high sensitivity to 

cervical ultrastructure (see Figure 4.1). This methodology was tested on excised porcine 

cervixes, and the results were compared to images produced by optical coherence 

tomography (OCT) before being used to image human cervixes in vivo.91 Ex-vivo porcine 



71 

 

cervixes were imaged using OCT and MMP. The OCT was used as a comparison due to 

its use in cervix by another group102 which we replicated as a standard. The results were 

compared, and both modalities (OCT and MMP) were found to show similar circularly 

aligned collagen around the internal cervical os.   

 In the present study, we targeted the change in collagen alignment around the os 

for three different reasons. Firstly, the Mueller matrix polarimetry modality takes images 

of the surface of the cervix and thus provides a summation of the birefringence media 

beneath that surface. It has been shown that the circumferential alignment of collagen 

present at the vaginal end of the cervix is preserved going towards the uterus end of the 

structure using MRI.131 It is this direction of collagen orientation that our system is capable 

of characterizing. Secondly, the majority of the cervix’s volume consists of collagen 

oriented circumferentially around the os rather than the inner and outer boundaries which 

contain collagen aligned along the os. The PRIM will be able to characterize the collagen 

in the largest amount of surface area available to be imaged. Lastly, the exposed portion of 

the cervix that can be imaged in pregnant and nonpregnant patients does not have present 

changes sufficient enough in their depth or curvature so as to cause PRIM to lose focus 

between different areas of the cervix. The small outer region of the cervix which is not part 

of the stiffer structure around the os in non-pregnant patients is not considered in the 

images. This stiff structure flattens as pregnancy progresses and becomes less of an issue 

for imaging.197 A previous study using MRI has demonstrated that, as pregnancy 

progresses, the vaginal end of the cervix increases in its surface area, and this change does 

not occur predominantly in one direction. The uniform increase in circular area means that 
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the os is not strongly stretched in any one direction, which can skew orientation 

alignment.198 

 

4.2      Materials and Methods 

 

Figure 8.1 PReterm IMaging System (PRIM). Variable liquid crystal retarder (VLCR), polarizer (P), lens (L), polarizing 

beam splitter (PBS), eye piece (EP), light source (LS). 

 

In reported elsewhere199, the PRIM builds on a standard colposcope (Seiler Instruments) 

with the addition of polarization optics. Images are acquired with a sCMOS camera 

(pco.edge, pco., Kelheim, Germany), with lenses L1-L3 being standard to the colposcope 

for directing the reflected light from the sample on to the eyepieces and the camera port. A 

565 nm LED (M565L3, Thorlabs, Newton, NJ) light source is mounted vertically in the 

illumination port, replacing the fiber optic cable connected to the original white light lamp 

source. A linear polarizer (Thorlabs, Newton, NJ) and two variable liquid crystal retarders 

(VLCR1) are mounted after the light source to form the polarization state generator (PSG). 
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Two liquid crystal retarders (VLCR2) (Meadowlark Optics, Frederick, CO) and a 

polarizing beam splitter (PBS) between the camera and L1 form the polarization state 

analyzer (PSA). In essence, this is the reverse configuration of the PSG. Other groups have 

used different approaches to polarimetry, such as Vitkin’s use of four photoelastic 

modulators.200-203  

In the present study, a total of 16 images were acquired to create a full Mueller 

Matrix following the dual LCVR (variable liquid crystal retarder) approach.37, 91, 105, 153 To 

this end, the LCVR of the PSG were activated sequentially at four different voltage levels 

to create four different input polarization states—namely, 0°, 45° 90°, and elliptical 

polarization. For each PSG value, a set of four images was acquired by activating the PSA 

LCVR set at different voltage levels. Calibration of the MMP system was performed by a 

standard methodology previously used by our group176, 187 and resulted in the condition 

number of 3.32. The Mueller matrix of air was constructed with the error below 1%. 

4.2.1      Mueller Matrix Decomposition  

Mueller matrix decomposition extracts constituent polarization properties from a Mueller 

matrix of any unknown complex system.19, 56 As proposed by Lu-Chipman,57 the 

decomposition of the Mueller matrix (M) yields three canonical matrices accounting for 

(1) material depolarization (MΔ); (2) retardance due to linear birefringence, and (3) optical 

activity (MR), and diattenuation (MD) (see Equation 4.1). 

𝑀 = 𝑀∆𝑀𝑅𝑀𝐷 (4.1) 

Following Ma et al.,178 we identified two such parameters relevant to the present study: (1) 

abundance of birefringent collagen  (retardance) and (2) slow axis orientation , related 

to the orientation of collagen bundles in the tissue. Information decomposed from a Mueller 
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matrix was calculated for each pixel; therefore, we generated parameters of interest of an 

area after using a median filter on the image. Our MMP resolution was 12.5 µm/pixel with 

the CCD size of 2560 x 2160 pixels, allowing for the 2.7-cm field of view.   

4.2.2      Image Processing 

In order to improve the quality of the orientation images, nine post-processing steps were 

performed (see Figure 4.2). First, the movement artefact in an in-vivo experiment was 

considered using the PRIM (Step 1). During the 6-second acquisition time, large 

movements were not commonly observed, as the patient was still sitting down with her feet 

in stirrups from the prior gynecological exam. When a movement occurred, it was mostly 

in the lateral directions, as it would be caused by the patient’s waist adjusting on the seat. 

In these cases, ImageJ (NIH, Bethesda, MD) was used to co-register the image stack 

without changing the intensity. After imaging with the PRIM, the orientation and 

depolarization data were calculated from the Mueller matrix constructed from the raw 

intensity images (Step 2). A 3 x 3 median filter was then applied to smooth out the noise 

from the orientation data and to create a more gradual transition of angles around the cervix 

by mitigating the effect of outlier pixels with a shift in the orientation value (Step 3). 

Thereafter, to ensure that the regions farther away from the cervix os were not cut off with 

the image rotation, the orientation and depolarization images were zero padded with 500 

pixels at each boundary in preparation for rotation around the cervix os (Step 4). After 

manually setting the boundaries of the cervix os, subsections around the cervix were 

automatically selected by an algorithm. This algorithm creates a center point for the cervix 

from the weighted centroid of the os. From this center point, 50 x 50-pixel subsections 

were then generated in the vertical and horizontal directions (Step 5). Doing so allowed to 
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automatically generate histograms of the distribution of collagen azimuth and other 

statistical analyses without bias in selecting the data, as well as facilitated differentiation 

of where data points were located relative to the landmarks in the cervixes, such as the os. 

During this process, the cervix os and the area surrounding the cervix were excluded from 

the actual cervix data. The images were rotated 10° each iteration until the complete 360° 

rotation was completed. Steps 6 and 7 were performed on the same set of orientation data. 

Therefore, the entirety of the cervix could be analyzed using different methods with the 

same subsections (datasets) (see Section 2.3 for further detail on circular statistics). The 

orientation images were analyzed at each iteration by first applying a mask over the data, 

so that pixels corresponding to a depolarization value less than 0.5 were not considered in 

the final analysis (Step 8). This removed the areas of saturation caused by specular 

reflectance from the calculations of the orientation lines that were later projected over the 

images and allowed no lines to be present in the areas of low depolarization. A retardance 

threshold mask was also applied in order to remove the areas of dense mucus (a white 

buildup in the pregnant cervix, see Figure 4.4) from the calculations. 

 

Figure 8.2 The MMP image processing pipeline 



76 

 

Thereafter, following Jan et al.,204 a third mask was then applied to the orientation data. 

The parameter calculated was used to create what Jan et al.204 referred to as a weighted 

polarization “energy” mask, for each pixel depending on its response to the changes in 

incident polarized light. Pixels with a high energy are generally those with strong 

birefringence (i.e. higher collagen content) due to their strong response to polarized light. 

By using this parameter as a gradient mask, it was possible to highlight the areas of strong 

birefringence while shading areas with progressively less response from the incident 

polarized light. The areas around spots of low depolarization (saturated pixels) were also 

shaded by this energy mask. After reducing the noise in the orientation data using the 

depolarization mask, the originally sized 2560 pixels x 2160 pixels orientation image was 

sectioned into 50 pixels x 50 pixels areas and then averaged to calculate the mean angle 

used to generate their representative lines and overlaid over a grayscale image of the 

sample. The orientation lines were calculated from the 50 x 50-pixel regions to give a 

summary graphic of the mean distribution of the collagen azimuth. The color representation 

of collagen azimuth in the orientation images already showcased the highest resolution 

possible for the PRIM system on the pixel-by-pixel basis. Finally, the kurtosis image was 

then calculated from the orientation data. 

4.2.3      Circular Statistics 

Circular statistics189, 190 is a subset of statistics for the data that can be shown on a unit 

circle where the sign of values is determined by the direction of rotation, such as in the 

case of vector coordinates. In this kind of data, 10° is synonymous to 190°. Normal 

arithmetic statistics with these two values would yield a mean of 100° when they are in 

fact the same azimuth angle. Therefore, errors in calculation such as this can skew the 
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interpretation of the angular data away from the real retardation axis present. The 

periodicity of such data requires a departure from the normal arithmetic statistics which 

would give a faulty representation of the mean of the dataset. In the present study, circular 

statistics was applied to the orientation data decomposed from the Mueller matrix to 

calculate the directional parameters of the cervical ultrastructure. This method requires that 

the data are first transformed into unit vectors with two-dimensional data (see Equation 

4.2), where θ is the retardation orientation calculated per pixel from the Mueller matrix.  

Equation 4.3 is the mean resultant vector 𝑟̅ of the dataset. The mean angular direction 𝜃̅ 

can be calculated using the four-quadrant inverse tangent of 𝑟̅. 

𝑟𝑖 = (
cos 𝜃𝑖
sin 𝜃𝑖

) (4.2) 

  

𝑟̅ =
1

𝑁
∑𝑟𝑖
𝑖

(4.3) 

 In the present study, we computed kurtosis and mean angle. Circular kurtosis is the 

measurement of outliers in a distribution, the distribution’s propensity to produce outliers, 

and is associated with the weight of the tails in a dataset191. It is useful as a measurement 

of how unfluctuating a distribution of angles is in a dataset which can be confounded in 

mean calculations. A flat distribution of angles where all angles are equal in frequency 

indicates randomness of orientation and will give a kurtosis of 0, while a narrow 

distribution of angles with few outliers (a small tail) indicates a strongly aligned structure 

and the kurtosis value will move towards 1. Kurtosis images were generated similarly to 

how the orientation lines were, but from smaller moving windows of the 5 pixels x 5 pixel 

areas of the orientation images. In this way, a kurtosis image can be generated from the 
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entire cervix with the same dimensions of the depolarization and orientation images 

calculated from the Mueller matrix. At the same time, kurtosis was also calculated in the 

50 pixels x 50 pixels regions of the orientation data sectioned in the vertical and horizontal 

directions centered on the os. An example of these sections can be seen in Figure 4.4a 

where the blue sections have a kurtosis above 0.6. This calculation was performed at every 

10° rotation of the image. The ratio of high to low kurtosis sections (KI) was calculated 

over 360°. 

4.3      Results and Discussion 

To test the ability of our system to ascertain collagen distribution in the live cervix, two 

different studies were conducted. Study 1 was conducted at the Simulation Teaching and 

Research Center (STAR Center) at FIU and focused on healthy non-pregnant women. In 

this study, the aim was to obtain normative data for further comparison. Approval for in-

vivo imaging of human patients was granted by Florida International University’s Internal 

Review Board (IRB-15-0466-CR01). Study 2 was conducted in the triage unit of Jackson 

Memorial Hospital, Miami. IRB approval (IRB-16-0244) was obtained both at FIU and 

Jackson. In Study 1, inclusion criteria were non-pregnant woman aged between 18 and 59 

years old. Women who were menstruating were excluded because of the difficulty in 

analyzing the images due to menstruation discharge. Women with abnormal cervixes and 

women who reported themselves to be pregnant were also excluded. In Study 2, inclusion 

criteria o were pregnant patients past 24 weeks of gestation and who self-referred 

themselves to the hospital for the possibility of going into labor. Patients with any kind of 

pathology in the vagina, such as yeast infection, were excluded. 
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The imaging procedure followed a standard colposcopic examination. The colposcope was 

positioned at about 10 cm from the patient. The cervix was accessed through a speculum 

by a nurse, allowing the operator to focus the modified colposcope through the eye pieces. 

The field of view of the digital images and the eye pieces were co-registered. Up to five 

sets of images were taken per patient. Each acquisition lasted 6 seconds. If the patient 

started to feel discomfort for any reason at any time, the examination was canceled, and 

the imaging ended. Representative images are shown in Figure 4.3. Orientation of 0° is 

parallel to the horizontal axis and a positive Δ  is considered counterclockwise from 

horizontal. The circular color bar in the lower right corner of the orientation images 

corresponds to this change in the retardation axis angle. The white lines overlaid on the 

image are a summary graphic of these angles calculated per pixel. 
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Figure 8.3 In-vivo non-pregnant human (top) and pregnant (bottom) cervixes raw image and MMP decomposed 

orientation. Circular color bar refers to the retarder orientation calculated from the Mueller matrix of the cervix. 

An example of collagen orientation calculated from in-vivo images taken from a non-

pregnant and pregnant human cervix is shown in Figure 4.3. An appropriate shift in 

orientation angle around the cervical os is designated by the color map. There is a greater 

resolution of orientation shown by the false color in the non-pregnant cervix compared to 

the pregnant cervix. This more gradual change in orientation will be shown as higher 

kurtosis. Mueller Matrix decomposition and kurtosis of more samples of human cervixes 

in vivo are shown in Figures 4.4 and 4.6. 
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Figure 8.4 In-vivo non-pregnant and pregnant human cervixes: a) B/W CCD image with orientation lines: Blue 

subsections > kurtosis = 0.6 > red subsections, b) Kurtosis, c) Mueller matrix decomposed orientation. KI = % of kurtosis 

values > 0.6 across the entire sample. Circular color bar refers to the retarder orientation calculated from the Mueller 

matrix of the cervix. 

A non-pregnant cervix can be seen in the first row of Figure 4.4. The areas of low 

depolarization correspond to specular reflectance and were disregarded from the 

calculation of orientation lines using the depolarization threshold mask described in 

Section 4.2.2. This can be seen when comparing the saturated pixels in the grayscale image 

with the kurtosis image of the sample. There are no lines present over the saturated pixels 

which correspond to the blacked-out areas in the kurtosis. The kurtosis values calculated 

for the non-pregnant cervixes mostly range from 0.80 and above as shown by their red 

color in Figure 4.4b. The areas of lower kurtosis can be found around specular reflectance; 

however, the kurtosis is generally higher in the non-pregnant sample as compared to the 

pregnant sample. This is reflected in the 30 percentile difference in the KI value between 
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the two samples. KI was calculated as the ratio between the subsections with kurtosis above 

0.6, indicating a strong alignment, and the total number of subsections of the cervix. The 

single frame shown at 0° itself shows a large discrepancy in the areas with a kurtosis over 

0.6, which indicate a better alignment. This can be seen from the color of the subsections. 

The blue squares indicate the areas where kurtosis exceeds 0.6 as compared to the red 

squares which are the areas of a low collagen alignment. A comparison of the orientation 

data between these non-pregnant and pregnant in-vivo human cervixes is shown in Figure 

4.5. 

 

Figure 8.5 In-vivo non-pregnant and pregnant human cervixes. The arrows in the grayscale image indicate the subsections 

on the histogram. Blue subsections > kurtosis = 0.6 > red subsections. X-axis histograms use the subsections going from 

the left to the right. Y-axis histograms use the subsections going from the top to the bottom. Kurtosis of non-pregnant 

sample (KNP); kurtosis of pregnant sample (KP). KI = % of kurtosis values > 0.6 across the entire sample. There is a 

poorer collagen alignment in the pregnant cervix as compared to the non-pregnant cervix, as shown by a lower kurtosis 

and a broader distribution of angles. 

The arrows in the grayscale image indicate the 50 pixels x 50 pixels sections where the 

histograms were calculated going from the left to the right and from the top to the bottom 

for the x and y axis directions, respectively. While the first row of histograms is in the x 

direction, the second row is in the y direction, as denoted by their titles. In order to visualize 
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how the orientation distributions compare to each other, non-pregnant and pregnant cervix 

histograms were plotted together in the same regions from the os. The non-pregnant data 

are in the black color, and the pregnant data are in the red color. In general, the non-

pregnant cervix collagen orientation shown in the black color is more aligned with a tighter 

distribution of angles and fewer outliers shown by the higher kurtosis and smaller tails in 

the orientation histogram. This difference in kurtosis is congruent with the expectation, as 

pregnant cervixes should have less collagen fiber alignment over gestation, as well as an 

increased vascularity, as changes in the cervix occur in preparation to delivery.  

 

Figure 8.6 In-vivo non-pregnant and pregnant human cervixes: a) B/W CCD image w/ orientation lines: Blue subsections 

> kurtosis = 0.6 > red subsections, b) Kurtosis, c) Mueller matrix decomposed orientation. KI = % of kurtosis values > 

0.6 across the entire sample. Circular color bar refers to the retarder orientation calculated from the Mueller matrix of the 

cervix. 

 A different set of non-pregnant and pregnant samples can be seen in Figure 4.6. 

Similarly to the set shown in Figure 4.5, the areas with specular reflectance were ignored 
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in the calculation of orientation lines, as shown by the gaps in the overlaid lines and the 

darkened areas in the kurtosis image. Most non-pregnant cervix images show a much 

higher kurtosis as compared to those of the pregnant sample. This is represented by the 40-

percentile difference in kurtosis values above 0.6 between the two samples. Histograms of 

selected subsections between the non-pregnant and pregnant cervixes shown in Figure 4.7 

provide further evidence in support of the trend of broader distributions of angles in the 

pregnant cervix that creates a low kurtosis value.  

 

Figure 8.7 In-vivo non-pregnant and pregnant human cervixes: The arrows in the grayscale image indicate the subsections 

on the histogram. Blue subsections > kurtosis = 0.6 > red subsections. X-axis histograms use the subsections going from 

left to right. Y-axis histograms use the subsections going from top to bottom. Kurtosis of non-pregnant sample (KNP); 

kurtosis of pregnant sample (KP). KI = % of kurtosis values > 0.6 across the entire sample. There is a poorer collagen 

alignment in the pregnant cervix compared to the non-pregnant cervix, as shown by a lower kurtosis and a broader 

distribution of angles. 

The results of a one-sided T-test on the kurtosis subsections between the non-pregnant and 

pregnant cervixes showed that the mean kurtosis of the non-pregnant subjects was 

significantly higher than that of the pregnant subjects at the significance level of 95%. After 

disregarding the subsections that were removed due to the applied masks, the sample size 
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of non-pregnant kurtosis subsections was 918 and 918, while that of the pregnant 

subsections was 882 and 846.  

 

 

Figure 8.8 Kurtosis mean and standard deviation of non-pregnant (NP) and pregnant (P) cervixes. One sided T-test 

between both groups showed than mean kurtosis of non-pregnant cervixes was significantly higher than that of pregnant 

cervixes, with  significance level. 

The mean and standard deviation of the entire cervixes are presented in Figure 4.8 and 

shows a 20-percentile difference in mean between the two categories. The kurtosis standard 

deviation is also shown to be greater in the pregnant cervixes, likely due to their more 

randomized arrangement of collagen. 

4.4      Conclusion 

Optical axis orientation of birefringent materials is essential for the diagnosis of abnormal 

conditions in tissues with large amounts of ECM. Depending on the application, tissues 

that rely on collagen for mechanical strength align the protein in various orientations. 

Unlike OCT that can yield in-depth image-specific cross-sections below the surface of the 

cervix, MMP thoroughly considers the summation effect of the birefringent material at the 
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surface. Therefore, in the present study, we investigated the changes in collagen 

circumferentially aligned around the cervix os which makes up a large volume of the cervix 

and can be investigated non-invasively using MMP. In previous research, this 

circumferential alignment of collagen was found to begin at the surface and continue 

deeply into the cervix using MRI.131 Collagen is important for load bearing in the 

endocervical canal and can be quickly measured within a set of 16 images needed to create 

a Mueller matrix. In the present study, on introducing an instrument capable of 

noninvasively imaging the cervix in vivo, we determined the collagen orientation within 

the cervix using Mueller Matrix decomposition and several filtering steps. The results of 

the kurtosis analysis showed an increase in collagen ultrastructure disorganization between 

non-pregnant and pregnant patient samples. One limiting factor when conducting the 

measurement was the presence of mucus discharge covering a portion of the cervix. An 

example of this effect is shown in Figure 4.4, where a white film can be seen along the 

bottom edge of the pregnant cervix. These pixels were excluded, as their retardance and 

orientation values differed considerably for the areas of the uncovered cervix. The use of 

different incident wavelengths may reduce this artifact and will be explored in future work; 

in the present study, the cervix was swabbed with a sterile gauze to eliminate the discharge. 

Further research on collagen orientation in cervixes at different time points during 

remodeling are needed to better understand if Mueller matrix polarimetry can effectively 

measure changes in cervical collagen orientation in pregnancy or disease.  
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Abstract: 

Mueller matrix polarimetry (MMP) can be utilized to determine optical anisotropy in 

birefringent materials. Many factors must be optimized to improve the quality of 

information collected from MMP of biological samples. As part of a study on pre-term 

birth (PTB) that relied on measurement of the orientation and distribution of collagen in 

the cervix, an optimal wavelength for MMP to allow more accurate characterization of 

collagen in cervical tissue was sought. To this end, we developed a multispectral Mueller 

matrix polarimeter and conducted experiments on ex-vivo porcine cervix samples 

preserved in paraffin. The Mueller matrices obtained with this system were decomposed to 

generate orientation and retardation images. Initial findings indicate that wavelengths 

below 560 nm offer a more accurate characterization of collagen anisotropy in the porcine 

cervix.  

Keywords: anisotropy, birefringence, collagen, polarized light imaging, Mueller matrix, 

cervix, colposcopy 
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5.1      Introduction 

Early identification of at-risk pregnancies is important for successful medical intervention. 

Recently cervical collagen orientation has been proposed as a discriminant for preterm 

labor 75, 76, 205. We have developed a PReterm IMaging (PRIM) system based on a 

standard colposcope. This system offers high sensitivity to the collagenous cervical 

ultrastructure through a polarization-sensitive imaging modality known as Mueller matrix 

polarimetry. Due to its high birefringence, a wavelength-dependent property, collagen is 

the primary cervical constituent PRIM detects to calculate orientation. PRIM was tested on 

excised porcine cervixes before being used in vivo to examine the cervixes of non-pregnant 

and pregnant human participants using a 565-nm Light Emitting Diode (LED) source. In 

an effort to optimize the system, we developed a benchtop multispectral Mueller matrix 

polarimeter to evaluate the differences in orientation contrast due to illumination 

wavelength.  

5.2      Materials and Methods 

 

Figure 11.1 Schematic of the multispectral Mueller matrix polarimeter. Liquid crystal retarder (LCR), Illumination port 

(IP). 
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The multispectral Mueller matrix system, a modification of an MMP used in previous work 

91, is shown in Figure 5.1. A CCD camera (DCC3260M, Thorlabs, Newton, NJ) with a 

Computar MLH-10X 1/2-inch 13-130mm f5.6 10X Macro Zoom lens attached, was 

secured above the sample objective to allow focusing on the adjustable stage. The MMP 

offers a field of view of 1.2 cm and a resolution of 10.9 µm/pixel using the sample 

objective. A linear polarizer (Prinz, Northbrook, IL) and two liquid crystal retarders (LCR) 

(Meadowlark Optics, Frederick, CO) between the lens and sample objective form the 

polarization state analyzer (PSA) of the polarimeter. A 150-watt white lamp (LRL-410K, 

Leeds, Minneapolis, MN) was used as the illumination source and was oriented to 

illuminate the sample at an incident angle of 45° with a metal-sheathed fiber optic cable. It 

was collimated with a 30-mm-diameter tube and a 25-mm-diameter plano-convex lens 

(Newport, Irvine, CA). The four different polarization states required for the Mueller 

matrix polarization state generator (PSG) were created using a motorized filter wheel 

(FW103, Thorlabs, Newton, NJ) with three linear polarizers mounted at 0°, 45°, and 90° 

with the PSA polarizer and a circular polarizer. These four different states were then used 

to calculate the Mueller matrix of the sample. A second filter wheel mounted after the PSG 

contained 500-nm, 550-nm, 600-nm, and 650-nm center wavelength bandpass filters, each 

with 10-nm bandwidth. This second filter wheel allowed easy transition between different 

spectra while imaging. MATLAB (Mathworks, Natick, MA) was used to control the 

devices and analyze the data.  

The polarimeter was calibrated at each wavelength using a previously published 

method 53. Figure 5.2 shows the Stokes vector results of the calibrations for each 

wavelength; each plot’s horizontal axis represents the orientation of a linear polarizer as it 
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was rotated and imaged by the polarimeter. Each element of the Stokes vectors has a 

standard deviation of less than 1.0 between all wavelengths, showing that the MMP was 

properly calibrated and provided similar results at each wavelength. 

 

Figure 11.2 Stokes vectors calculated from polarimeter calibrations at four different wavelengths as a sample linear 

polarizer is rotated: a) linear polarizer alone, b) quarter wave plate in-line after linear polarizer. 

5.2.1      Mueller matrix decomposition 

Mueller matrix decomposition extracts constituent polarization properties from a Mueller 

matrix of any complex system 19,56. The decomposition of the Mueller matrix (M) as 

proposed by Lu-Chipman 57 yields three canonical matrices accounting for material 

depolarization (MΔ), retardance due to linear birefringence and optical activity (MR), and 

diattenuation (MD). 

 

𝑀 = 𝑀∆𝑀𝑅𝑀𝐷 (5.1) 

 

The focus of this study was retarder fast axis orientation  as derived by Ma et al. 178, 

which corresponds to collagen bundle orientation in the tissue. We utilized circular 
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statistics 189, 190 to represent data on a unit circle rather than using the arithmetic mean. 

Since certain angles are equivalent to each other, i.e. 10° is synonymous with 190° or -

170° based on direction of rotation, the periodicity of orientation angles requires a 

departure from arithmetic statistics, which misrepresent the mean of a region. Directional 

parameters were calculated by applying circular statistical methods to the orientation data 

decomposed from the Mueller matrix. This method required that data first be transformed 

into unit vectors with two dimensions, as shown in Equation 4.2. Equation 4.3 is the mean 

resultant vector 𝑟̅ of the data set. The mean angular direction 𝛼̅ can be calculated using the 

four-quadrant inverse tangent of 𝑟̅. 

𝑟𝑖 = (
cos 𝜃𝑖
sin 𝜃𝑖

) (4.2) 

  

𝑟̅ =
1

𝑁
∑𝑟𝑖
𝑖

(4.3) 

Circular kurtosis was used as a measure of alignment of collagen bundles detected by the 

MMP with different wavelengths of light. Kurtosis describes the number of outliers in a 

set of directional data 189, 191, and is associated with the weight of tails in a distribution. A 

narrow distribution of angles with small tails corresponds with high alignment and results 

in kurtosis approaching 1, while a distribution dominated by its tails shows more 

randomness and an unaligned distribution and will result in kurtosis approaching 0.  

5.2.2      Anisotropic test samples 

Two test samples were used to verify the efficacy of the multispectral MMP’s orientation 

measurements. An extruded polymer phantom with low scattering and absorption was 

chosen to obtain a highly aligned measure of orientation as a benchmark; this benchmark 
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served to check if the polarimeter could correctly identify changes in a sample with a 

known retarder axis. Ex-vivo porcine cervix samples—well-characterized and used in 

previous studies 91, 206, 207—were imaged using the MMP to compare orientation data 

between the four wavelengths.  

5.3      Results and Discussion 

An orientation of 0° is parallel to the horizontal axis and a change in angle 

counterclockwise from horizontal is considered positive Δ . Grayscale images of the 

polymer phantom at two different orientations can be seen in Figure 5.3; the top row shows 

the sample at a 60° and the bottom row a 160° orientation; lines representing the average 

orientation within of sections of the image are overlaid on each. All orientation data 

displayed were obtained through a 5 x 5-pixel median filter.  

 

Figure 11.3 Mueller matrix retarder axis orientation for the polymer phantom. Top row: 60°-oriented phantom, Bottom 

row: 160°-oriented phantom. 
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Figure 11.4 Mueller matrix depolarization (top) and retardance (bottom) for the polymer phantom. 

The variance of the orientation calculated from the Mueller matrices of the phantom 

increased as longer wavelengths of incident light were used. This can be seen in the 

increase in the amount of colors displayed in Figure 5.3 and the decrease in kurtosis in 

Figure 5.5.  

Kurtosis was calculated using a traveling 5 x 5-pixel window across the orientation data. 

The kurtosis index (KI) shown is a ratio of the total number of pixels in the image to the 

number that have a kurtosis greater than 0.6. A high KI means there is little variance in the 

orientation, that the sample is highly aligned. As wavelength increased there was an 

increase in the variance in the distribution of orientation. A possible explanation for this 

may be illustrated in Figure 5.4; there is an increase in depolarization as incident 

wavelength increases. This is likely due to the increased optical length in the sample, which 

causes more scattering and thus greater depolarization.  
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Figure 11.5 Images of kurtosis for the polymer phantom. Top row: (60°-oriented phantom), Bottom row (160°-oriented 

phantom). (KI = % of kurtosis values > 0.6). 

These observations are corroborated by the mean and standard deviation of the orientation 

data (Figure 5.6). The longer wavelengths show an increase in standard deviation, and an 

increase in the difference between the orientation mean calculated compared to the polymer 

phantom’s actual orientation.  

 

Figure 11.6 Polymer phantom mean angle and standard deviation: a) 60°-oriented phantom, b) 160°-oriented phantom. 

Data points represent the mean orientation angle, errors bars represent one standard deviation. 
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After imaging the weakly scattering polymer phantom, excised cervixes were imaged with 

the multispectral MMP. It was expected that a similar trend would appear, that longer 

wavelengths of incident light would result in orientation data with greater variance and 

thus less kurtosis. This can be seen in Figure 5.7, where, as expected, longer wavelengths 

lead to increased variability in orientation and less contrast in orientation as it rotated 

around the cervix. This is due to the increased noise in pixels averaging out to the same 

value, while the smaller variance in the lower wavelengths allowed for a much more 

gradual change in average angle, as would be expected in a structure like the cervix, in 

which collagen rotates circumferentially. 

 

Figure 11.7 Mueller matrix retarder axis orientation and kurtosis in an ex-vivo cervix (KI = % of kurtosis values > 0.6). 

The same trend in depolarization that occurred in the polymer phantom also occurred with 

the cervical tissue samples (Figure 5.8). Depolarization is inherently greater in this sample 

due to biological tissue being a highly scattering media.  



97 

 

 

Figure 11.8 Mueller matrix depolarization (top) and retardance (bottom) in an ex-vivo cervix. 

A second excised cervix exhibited the same trends in multispectral polarimetry (Figures 

5.9 and 5.10). The mean and standard deviation of kurtosis for this sample is plotted in 

Figure 5.11. Kurtosis was plotted rather than orientation due to the circumferential 

arrangement of collagen in the cervix. Ideally all angles should be represented as the 

collagen rotates around the cervical opening (os), causing mean orientation to shift. As a 

measure of alignment, kurtosis can characterize the shift in orientation around the entire 

cervix.  

 

Figure 11.9 Mueller matrix retarder axis orientation and kurtosis in an ex-vivo cervix (KI = % of kurtosis values > 0.6). 
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High contrast in orientation shift will lead to high kurtosis, whereas a more abrupt shift in 

orientation will lead to low kurtosis in those areas. This result is shown by the lower mean 

and higher standard deviation of kurtosis at longer wavelengths shown in Figure 11. 

 

Figure 11.10 Mueller matrix depolarization and retardance in an ex-vivo cervix. 

 

Figure 11.11 Mean kurtosis for ex-vivo cervixes; error bars represent one standard deviation. a) Sample shown in Fig. 

5.7, b) Sample shown in Fig. 5.9. 

5.4      Conclusion 

Biological structures with strong retarder properties are highly birefringent, a property that 

varies with the wavelength of light. Initial findings suggested that wavelengths below 560 
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nm offered a more accurate characterization of collagen anisotropy in the cervix. To better 

understand the wavelength dependency of retarder axis orientation in the collagenous tissue 

of the cervix, a multispectral Mueller matrix polarimeter (MMP) was constructed. This 

represented part of an effort to improve an ongoing clinical study using an MMP-modified 

colposcope. It was observed that the variance in retarder axis orientation calculated using 

Mueller matrix polarimetry increased with an increase in the wavelength of incident light. 

These observations were obtained by imaging a weakly scattering polymer phantom and 

excised porcine cervixes. Kurtosis was used as another measure of variance in the 

orientation data due to its ability to measure the number of outliers in a distribution; low 

kurtosis denotes a random distribution. As orientation variance increased, kurtosis 

decreased, and as a result smaller mean orientation angles were calculated compared to the 

known retarder axis of the polymer phantom. There was also an increase in depolarization 

as incident wavelength increased. Based on these trends, wavelengths below 560-nm were 

most effective in characterizing collagen anisotropy in the cervix. 
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Abstract: 

Calibration, quantification, and standardization of the polarimetric instrumentation, as well 

as interpretation and understanding of the obtained data, require the development and use 

of well-calibrated phantoms and standards. We have reviewed the status of tissue phantoms 

for a variety of applications in polarimetry, more than 500 papers are considered. We have 

divided the phantoms into five groups according to their origin (biological/nonbiological) 

and fundamental polarimetric properties of retardation, depolarization, and diattenuation. 

We found that while biological media is generally depolarizing, retarding, and 

deattenuating, only one of all the phantoms reviewed incorporated all these properties, and 

few considered at least combined retardation and depolarization. Samples derived from 

biological tissue, such as tendon and muscle, remain extremely popular to quickly ascertain 

a polarimetric system but do not provide quantifiable results aside from relative direction 

of their principal optical axis. Microspheres suspensions are the most utilized phantoms for 

depolarization and combined with theoretical models can offer true quantification of 
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depolarization or degree of polarization. There is a real paucity of birefringent phantoms 

despite the retardance being one of the most interesting parameters measurable with 

polarization techniques. Therefore, future work should be directed at generating truly 

reliable and repeatable phantoms for this metric determination. Diattenuating phantoms are 

rare and application-specific. Given that diattenuation is considered to be low in most 

biological tissues, the lack of such phantoms is seen as less problematic. The heterogeneity 

of the phantoms reviewed points to a critical need of this field for standardization. 

Ultimately, all research groups involved in polarimetric studies and instruments 

development would benefit from sharing a limited set of standardized polarimetric 

phantoms as is done earlier in the round robin investigations in ellipsometry. 

Keywords: Polarization, scattering, anisotropy, tissue phantoms, retardation, 

depolarization, diattenuation 

 

6.1      Introduction 

The use of polarized light in clinical and preclinical applications is expanding and several 

recent reviews by Tuchin 208, Ghosh and Vitkin 2, Qi 209, de Boer 210 and Baumann 211 have 

illustrated the fast progress of this approach in the medical field.  

 As polarimetric techniques reach the clinical and commercial stage there is a need 

to validate them with replicative systems that could serve as biological proxies and mimic 

the characteristic trends of typical biological observations. Over the past several decades, 

a variety of such systems—commonly referred to as phantoms—have been implemented 

for the use of general optical imaging and sensing, Pogue et al. illustrated these tools in an 

exhaustive review212. Here we focus uniquely on phantoms used for polarimetry in 
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biomedicine; these phantoms were not included in previous reviews and are relevant for 

scientists and engineers working on polarimetric applications.  

 Three dominant mechanisms influence polarized light as it travels through a 

biological media: depolarization, retardation, and diattenuation. Scattering is a primary 

contributor to the process of depolarization. Loss of polarization is mainly due to the 

disarrayed changes of amplitude and phases of the scattered electromagnetic field reaching 

a detector 213.  

Scattering is generally very high in biological media due to the high density and 

large variety of sub- and extracellular components (such as organelles, nuclei, collagen 

fiber bundles, cell membrane, to name a few). Different polarization states of incident 

radiation—linear, circular or elliptical—depolarize at different rates. As for the 

mathematical representation of depolarization, its theoretical premise is generally 

supported by the Mueller matrix of an intrinsic (or diagonal) depolarizer (Eq.(1a)) 

satisfying the covariance conditions (Eq.1b). 214 

 

𝑀∆ = 𝑑0 (

𝟏
𝟎
𝟎
𝟎

    

𝟎
𝒂
𝟎

𝟎
𝟎
𝒃

𝟎 𝟎

    

𝟎
𝟎
𝟎
𝒄

) , 𝟎 < 𝑑0 < 1, |𝒂|, |𝒃|, |𝒄| ≤ 𝟏     (1𝑎)  

 

−𝒂 − 𝒃 − 𝒄 ≤ 𝟏, −𝒂 + 𝒃 + 𝒄 ≤ 𝟏,     𝒂 − 𝒃 + 𝒄 ≤ 𝟏,   𝒂 + 𝒃 − 𝒄 ≤ 𝟏    (1𝑏)  

It follows from Eq(1a), that 1 − |𝑎| 𝑎𝑛𝑑 1 − |𝑏| represent the linear depolarization power 

(horizontal-vertical and ±45° frameworks). Similarly, 1 − |𝑐| specifies the power of 

circular depolarization.  

From this, the total depolarization power Δ can be calculated using Eq. (2).  

 

∆ = 1 −
|𝑎| + |𝑏| + |𝑐|

3
= 1 −

|𝑡𝑟(𝑴∆) − 1|

3
, 0 ≤ ∆≤ 1 (2) 
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In birefringent media light experiences changes in propagation speeds for its 

different polarization components, which leads to phase differences (also called 

retardation) between those components. Linear retardation is the phase shift between two 

orthogonal linear polarization states (for example, 0° and 90°, or +45° and -45°). Circular 

retardation (also referred to as optical rotation) is the difference in phase between the right 

and the left circular polarized components of light, which happens due to circular 

birefringence (optical activity). The Mueller matrix of a linear retarder (see Eq. (3)) 

depends on its phase difference parameter  and on the azimuth  of its fast axis.  

 

𝑅=

(

 
 
1
0
0
0

 

0
𝑐𝑜𝑠2(2𝜃)+ 𝑠𝑖𝑛2(2𝜃)𝑐𝑜𝑠𝛿
  𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃(1−𝑐𝑜𝑠𝛿)

𝑠𝑖𝑛2𝜃 𝑠𝑖𝑛𝛿

    

0
𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃(1−𝑐𝑜𝑠𝛿)

𝑠𝑖𝑛
2
(2𝜃)+𝑐𝑜𝑠2(2𝜃)𝑐𝑜𝑠𝛿
−𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝛿

 
  0
−𝑠𝑖𝑛2𝜃𝑠𝑖𝑛𝛿
 𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝛿 
𝑐𝑜𝑠𝛿 )

 
 

(3)

   

  

The retardation (δ) property of a uniaxial medium is frequently expressed through 

its birefringence and can be written as shown in Eq. (4), where 𝑛𝑒 and 𝑛𝑜 are extraordinary 

and ordinary refractive indices of a birefringent material, 𝑑 is the distance travelled by light 

(wavelength 𝜆0) through the birefringent medium, 𝛥𝑛 = 𝑛(𝜃) − 𝑛𝑜, where 𝑛(𝜃) is 

refractive index seen by the photon propagating in the direction 𝒖(𝑢𝑥, 𝑢𝑦, 𝑢𝑧). Angle θ is 

the angle between the direction 𝒖 and extraordinary axis of birefringent material defined 

as 𝒆(cos 𝜂 , sin 𝜂  , 0). 

    𝛿 =
2𝜋𝑑∆𝑛

𝜆
 (4) 

𝑛(𝜃) =
𝑛𝑜𝑛𝑒

(𝑛𝑒
2cos2𝜃 + 𝑛𝑜

2sin2𝜃)0.5
(5) 

𝜃 = cos−1 (
𝑢𝑥 cos 𝜂 + 𝑢𝑦 sin 𝜂

(𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2)
0.5) (6) 
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Birefringence itself can be divided into intrinsic birefringence and form 

birefringence.208 Typically, biological tissues rich in extra cellular matrix (ECM) fibers, 

for example skin, cornea, sclera, tendon, uterine cervix, and cardiac tissue, exhibit 

retardation. 

Mueller Matrix polarimetry208, 2, 209 and Polarization Sensitive Optical Coherence 

tomography (PS-OCT) are techniques capable of quantifying many of the aforementioned 

parameters of interest. Calculation of the Mueller Matrix requires the modulation of both 

light source and detector into a minimum of four different polarization states for a total of 

sixteen measurements. Once the Mueller Matrix is determined it can be decomposed57 as 

a sequence of elementary polarization components: a diattenuator, a retarder and a 

depolarizer. PS-OCT is an extension of OCT, a technique based on low-coherence 

interferometry that can provide high-resolution cross-sectional imaging of biological tissue 

and it too can be used to quantify birefringence, diattenuation and depolarization index, a 

parameter related to depolarization. 

 Diattenuation, also called dichroism, is generally considered to have the smallest 

impact on polarized light propagating in biological media. Diattenuation arises from 

polarization-selective attenuation of the electrical field. Related to diattenuation is the 

property of optical activity, also known as circular birefringence, which is characterized by 

the rotation of the polarization plane of linearly polarized light about the axis of 

propagation.208 This property is prevalent for chiral molecules such as glucose, proteins, 

and nucleic acids. 2 

 The use of polarimetry in monitoring biological tissue often focuses on 

quantification of the tissue preferential azimuth (i.e. the orientation of optical axis of 

uniaxial birefringent medium) related to the arrangement of a collagenous extracellular 
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matrix or other cellular assembly. Skeletal muscle and cardiac tissue are both strongly 

depolarizing and birefringent due to cellular components and layered structure. 

Collagen, animal cornea, retina, and optic nerves have all been shown to have large 

birefringence and preferential alignment through Polarization Sensitive Optical Coherence 

Tomography and polarized light microscopy.204, 215, 216 Several studies using PS-OCT 

imaging on articular cartilage, which is rich in oriented collagen fibers, have shown 

changes in collagen retardation in depth.217-220 Nerves have also been shown to yield 

retardation with polarization sensitive spectroscopy.221 Since birefringence is the most 

common source of retardation and signal for this modality, in general most retardance 

phantoms can be used as PS-OCT phantoms. 

 Microtubules made from extracted elements of the porcine brain and axonemes 

prepared from sea urchin have been examined using polarized light microscopy, where 

fibers can be visualized.222 The ECM of the cervix is composed of about 70% collagen and, 

therefore, has shown to have a significant retardation. Chue-Sang et al. used Mueller matrix 

polarimetry to calculate retardance, depolarization, and collagen fiber azimuth of ex-vivo 

porcine cervix samples (seen in Figure 1).223 De Martino et al. used wide-field multi-

wavelength Mueller matrix polarimeters to image cervical neoplasia and colon cancer.18, 

19, 33-39 
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Figure 13.1 Mueller matrix derived parameters (Lu-Chipman decomposition57) of an ex-vivo porcine cervix: (a) CCD 

image, (b) depolarization power, (c) scalar retardation, and (d)   azimuth of optical axis. Darkened area in the center of 

the image is the cervical os. Overlaid lines are calculated from the mean of  subsections of the azimuth depicted by the 

false color. 223 Mueller matrix derived parameters (Lu-Chipman decomposition) of healthy human cervical specimen: (e) 

CCD image, (f) depolarization power, (g) scalar retardation, and (h) azimuth of optical axis.105 

Vitkin et al, used Mueller polarimetry to determine the local structural disorders of 

the bladder 47 and myocardium48. Enhancement of superficial structure by eliminating deep 

penetrating scattered photons is also a common use of polarimetry in medicine. Groner et 

al. 25 used cross-polarization to highlight superficial vascular contrast in intravital 

microscopy, applying this technique, among others, to study brain perfusion and pancreatic 

and hepatic microcirculation 25-30.  

Polarized light imaging has been used extensively to enhance surface contrast for 

dermatologic applications 21. Demarcation of margins of skin cancers, not visible to the 

naked eye has been conducted by several researchers, starting with setups focusing on 

linear depolarization to other systems 22-24, 224 utilizing full Stokes vector polarimetry and 

out-of-plane approaches 32, 225, 226.  The skin stratum corneum has been shown to be highly 

scattering hence producing strong depolarization227, 228. Changes in retardation have been 

associated with the presence of collagen in the dermis. For this reason scars have a strong 
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response to polarized light as collagen in wounds recombines in the direction of local 

forces. 226 

 

6.2      Optical Phantoms 

We have categorized all phantoms by their dominant polarization property—namely, 

depolarization, retardation, diattenuation or optical activity. We have also introduced a 

separate table for biological tissues used as phantoms. Many phantoms exhibit more than 

one property, hence they may appear in more than one table, these repeated phantoms are 

identified by an asterisk (*). The retardation phantoms table includes an Induced 

Retardation column. This column is included to differentiate phantoms which are 

inherently birefringent due to their structure from phantoms that are mechanically stressed, 

strained or otherwise manipulated in order to change their birefringence. Many of the 

phantoms cited in this review have been used by the same investigators in multiple journals, 

for simplicity we have not cited all the articles using the same phantoms and limited the 

review to the ones that were substantially different to each other. 

 

6.2.1      Biological phantoms 

The construction of polarimetric phantoms is a complex process, hence, biological samples 

are commonly used in polarization sensitive optical modalities, Table 1. Collagen rich 

tissues, for example tendons or rat tails, are the most commonly used in polarimetry. As 

most biological tissues, collagen scatters (and, consequently, depolarizes); more 

importantly, collagen introduces a phase shift between orthogonal polarization states of 

incident polarized light208 due to its strong birefringence. Since many healthy collagen-rich 
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tissues behave as uniaxial birefringent media, the azimuth of optical axis of linear 

retardation related to collagen alignment can often be measured.37, 38, 154, 199, 223, 229, 230 

 Chicken or cow tendons have been used by many groups 50, 174, 177, 231-234 to validate 

polarization based optical instruments. Azimuth angle is calculated 16, 50, 165, 166, 174, 177, 185, 

231-237  as well as an increase in scalar retardance due to birefringence. Similar to tendon, 

murine tails also contain collagen fibers which are strongly aligned. Since the azimuth of 

the collagen fibers preferential orientation can be directly observed, a typical validation 

test for polarimeters includes positioning a tendon or rat tail at predetermined angles and 

then measuring samples at different and well-known angular positions.16, 153, 223  

 While muscle tissue can be used for the same purposes as collagen-based phantoms, 

the interpretation of the results is less straightforward due to the increased cellularity of 

these tissues15.  Studies of myocardium muscle22, 48, 50, 175, 178, 193, 194, 238-240 have been 

conducted by several investigators showing loss of retardation and local order for infarcted 

tissue. For this reason, samples of myocardium have been used to validate different 

polarimetric systems. Ghosh et al. used Mueller Matrix decomposition to calculate 

depolarization, diattenuation, and retardance of fixed rat myocardial tissue.188  

Heart valve leaflets are another highly collagenous and anisotropic tissue that have 

been used as a depolarization and retardation phantom.233 As in previous example the 

azimuth of collagen fibers preferential orientation can be detected and used for instrument 

characterization. Changes in depolarization can also be observed by treating the sample 

with collagenase.153, 237  

 Artificial skin models grown from epidermal keratinocytes forming a multilayered 

epidermis on top of collagen I hydrogel with dermal fibroblasts have also been used to 
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mimic the interaction of polarized light with the skin.241 Unstained cuts of fixed skin 

equivalents of varying thickness (range: 5μm - 30μm) were measured in transmission with 

Mueller microscopy and the values of retardation and depolarization parameters were 

extracted using logarithmic decomposition242 of the measured Mueller matrices. The 

measurements confirmed parabolic dependence of depolarization and linear dependence of 

retardation on thickness, as follows from differential Mueller matrix formalism.  

 

Tissue type Preparation 

Polarization 

property 

Transmission 

/Reflectance Ref. 

Axonemes (Sea 

urchin) 

Extraction from sea urchin 

sperm and purification steps 

Retardation R 222 

Bladder 

(Porcine) 

Excised, fresh Depolarization, 

Retardation, 

Diattenuation 

R 243 

Brain (Porcine) Phosphate-buffered saline 

solution (0.02 M) 

Depolarization R 50 

Cartilage 

(Animal) Excised, fresh 

Depolarization, 

Retardation R 217-220 

Cartilage 

(Porcine) 

Excised, fresh Retardation, 

Depolarization, 

Diattenuation 

T   244 

Cervix 

(Porcine) 

Fixed in 4% 

paraformaldehyde and 

embedded in paraffin 

Depolarization, 

Retardation 

R 199 

Eye (Cornea) Excised, fresh Retardation R 215, 216 

Eye (Optic 

nerve) Cryosectioned Retardation R 204 

Eye (Retina) Excised, fresh Retardation R 216 

Fibroblast (Rat) Suspension Depolarization R 41, 245 

Heart 

(myocardium) Excised, fixed 

Depolarization, 

Retardation R 

48, 178, 

193, 238 

Heart (Porcine 

myocardium) 

Phosphate-buffered saline 

solution (0.02 M) 

Depolarization R 50 

Heart (Rat 

myocardium) 

10% formalin and cut into 1 

mm slices 

Retardation, 

Diattenuation, 

Depolarization 

R 188 
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Heart (valve 

leaflet) Excised, fresh 

Depolarization, 

Retardation R 153, 237 

Heart (Porcine 

valve) 

Excised, fresh Retardation R 233, 237 

Heart (Porcine 

aorta) Excised, fresh Retardation R 15 

Heart (Bovine 

right ventricle) 

Cut into 2 cm x 2 cm x 1 cm 

sections 

Retardation, 

Diattenuation 

R 169 

Heart (Swine 

right ventricle) 

Excised, fresh Retardation R 246 

Heart (Rabbit 

right ventricular 

wall) 

3.7% formaldehyde for one 

day and 20% sucrose 

solution for an additional 

two days 

Retardation R 240 

Kidney Cortex Phosphate-buffered saline 

solution (0.02 M) 

Depolarization R 50 

Liver 

Phosphate-buffered saline 

solution (0.02 M) Depolarization R 22, 50 

Melanin 

granules Suspension 

Depolarization, 

Retardation R 247 

Microtubules  Extraction from porcine 

brain and purification steps 

Retardation  R 222 

Nerve (Lobster 

leg) Excised, fresh 

Depolarization, 

Retardation R 221 

Skeletal muscle Excised, fresh 

Depolarization, 

Retardation R 

22, 48, 

50, 175, 

178, 

193, 

194, 

238-240 

Skin In-vivo 

Depolarization, 

Retardation R 

227, 

228, 248 

Skin (Calf) Excised, fresh Retardation T 249 

Skin equivalent 

model 

Fixed and cut into few µm 

slices 

Depolarization, 

Retardation T 241 

Tail (Rat) Frozen and thawed 

Depolarization, 

Retardation R 16 

Tendon Excised, fresh 

Depolarization, 

Retardation R 

50 231 
174 232 
177, 233 

234 

Yeast cells Suspension Depolarization R 245 
Table 13.1 Biological tissues used as polarization phantoms 
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6.2.2      Depolarizing phantoms  

Several authors have studied the effect of particle size, density, and index of 

refraction on the polarization of scattered light250, 251. As suggested by the results of these 

studies, the main scatterers in biological tissues are nuclei, organelles, and bulk tissue 

structures that limit the photon penetration depth and depolarize light travelling through 

these media245. The cell nuclei and organelles are frequently modeled as spherical 

scattering particles60 of refractive index varying between 1.33 and 1.47. The components 

of extracellular matrix, such as collagen and elastin, have been represented by spherical10 

or cylindrical35 structures.  

 Work by MacKintosh et al. showed that circular polarization was maintained for 

longer depths as compared to linearly polarized light in Mie scattering regime (scatterer 

size ≥ light wavelength in the medium).252 In one of the relevant studies, Monte Carlo 

simulations supported this finding by showing that  mean penetration depth was 

approximately 2 mean free paths (MFP) for linearly and 10 MFP for circularly polarized 

light in Mie scattering regime251. 

 Suspensions of microspheres and other small particles are commonly used to create 

phantoms with scattering properties, Table 2. The amount of scattering can be adjusted 

depending on the size and concentration of the microspheres based on the Mie scattering 

theory. On a smaller scale, nanoparticles have also been widely used to create scattering 

phantoms in Rayleigh scattering regime. These particles can also be embedded in solid host 

media, such as gels or polymers, to ensure scattering properties of those materials. In 

addition, India ink, hemoglobin, and dyes are commonly added to influence the absorbing 

characteristics.  
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 Several studies, such as Antonelli, Rakovic et al., and Cote et al., have used 

aqueous polystyrene microsphere suspensions as backscattering polarization phantoms.44, 

45, 232 In order to measure the change in scattering (i.e. depolarization power) calculated for  

different suspensions, microsphere diameter was varied.22, 34, 44, 45, 245, 253 This class of 

phantoms has also been shown to depolarize linear polarization less with smaller-diameter 

microspheres as compared to circular polarization, while, with an increase of the 

microsphere diameter, circular polarization has been reported to be better preserved as 

compared to linear polarization.253 

 While purely aqueous mono-dispersed suspensions of microspheres are most 

commonly used in scattering experiments, intralipid has also been used to create 

depolarizing phantoms208, 245. Intralipid is commonly used as a nutrition supplement and is 

an emulsion of fatty micelles; therefore, scattering is due to multi-dispersed spherical 

structures. Aqueous intralipid suspensions with different dilution factors starting at 1:500 

to 1:1 have been used to test depolarization with reflectance polarimetry.9, 245, 248 An 

example of such experiment can be seen in Figure 2 where loss of elliptical polarization is 

measured as a function of depth in an intralipid suspension as reported by Sridhar et al. 248 

While intralipid suspension exhibits monotonic dependence of depolarization on light 

wavelength, the use of gold nanoparticles suspended in intralipid creates more complicated 

depolarization behavior254  
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Figure 13.2 Image from reference 248. (a) ruler placed obliquely in a tank containing Intralipid® solution, (b) elliptical 

channel image at 45 deg after subtraction method 1, (c) elliptical channel image at 45 deg after subtraction method 2. (b) 

and (c) have a common colorbar represented at the right edge of the figure. Yellow-dotted line represents the Intralipid®–

air interface. Each graduation on the ruler (i.e., 1 mm) corresponds to 0.35 mm in actual depth. Wavelength: 633 nm. 

Text is from 248 

Titanium dioxide (TiO2) is another material commonly used to produce scattering 

in optical phantoms. TiO2 particles have been used in solid host media, such as 

polydimethylsiloxane (PDMS) or polyurethane, where, before the curing process, these 

particles are mixed into the polymer. Adjusting the concentration of TiO2 makes it possible 

to change the amount of depolarization.33,212 Zinc oxide (ZnO) is also commonly mixed 

into polymers.255,256 Melanin suspensions of rising concentrations can be used to test 

depolarization with PS-OCT and model the same phenomenon in the retinal pigmented 

epithelium. As demonstrated by Baumann et al., the change in depolarization based on 

melanin concentration has a linear relationship with degree of polarization uniformity 

(DOPU). 247 

Depolarizing agent 

Embedding 

Material 

Tissue 

Mimicking 

Phantom 

Thickness 

Transmission 

/Reflectance 

Ref. 

Gold nanoparticles 

(50 nm) Intralipid Contrast agent 

Semi-

infinite R 254 
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Intralipid* Water, India ink Bladder wall 

Semi-

infinite R 243 

Intralipid Water 

Turbid 

biological 

media 

Semi-

infinite R 

9, 245, 

248 

Intralipid or 

polystyrene 

microspheres 

Water, 

Naphthol Green  

Porcine liver 1 µm, 1.4 

µm 

R 49 

Kapton tape 

(Stacked)* 

Layered against 

a rigid base 

Theoretical 

standard 

Semi-

infinite 

R 257 

Mylar (biaxially-

oriented 

polyethylene 

terephthalate)* 

Laid against a 

plexiglass base 

Theoretical 

standard 

Semi-

infinite 

R 257 

Polystyrene 

microspheres  Water 

Turbid 

biological 

media 

Semi-

infinite R 

22, 34, 

44, 45, 

245, 

253, 258 

Polystyrene 

microspheres Intralipid 

Turbid 

biological 

media 

Semi-

infinite R 245 208  

Polystyrene 

microspheres 

Polyacrylamide, 

Sucrose 

Turbid 

biological 

media 

1 cm3 T 2 

Polystyrene 

microspheres (0.5 

µm) and fiber 

glass*  

Polyacrylamide Anisotropic 

sample 

1x2x4 

cm3 

T 259 

Polystyrene 

microspheres and 

silk fibers* Water 

Anisotropic 

sample 2.1 cm R 10, 260 

Quartz plate 

(Wedged)* None N/A 3 mm T 261 

Melanin granules* Water 

Retina/Retinal 

pigment 

epithelium 

Semi-

infinite R 247 

Silicon phantom 

(Extruded) 

Air between 

layers 

Anisotropic 

sample 

2 mm R 199 

Silicon 

(Amorphous)* 

None Theoretical 

polarization 

standard 

Semi-

infinite 

R 257 

Silicon (Poly-)* None Theoretical 

standard 

Semi-

infinite 

R 257 

Silicon grating Silicon wafer Theoretical 

standard 

Semi-

infinite 

R 262 
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TiO2 nanoparticles 

(530 nm) 

PVC-based 

transparent 

material 

Biopsy 

samples 

1 mm T 33 

TiO2 Wax Skin 2 mm, 5 

mm  

R 32 

ZnO nanoparticles 

(340 nm) 

PVCP stock 

solution 

Human skin 0.2 mm - 

2 mm 

T 255 256 

Table 13.2 Depolarizing phantoms. *Denotes phantoms that were also tested for other polarization properties in 

corresponding reference paper. 

6.2.3      Retarding Phantoms  

Polymer-based materials are a common source of retardation. Due to their molecular 

structure or preparation process, many polymers possess intrinsic birefringence (i.e. behave 

as uniaxial crystals).263 Others can be induced to become birefringent by applying 

mechanical stress to the material.2, 20 Many of these polymers are transparent, hence 

scattering particles such as microspheres can be added to better simulate biological media. 

Electrospun polymer fibers, fabricated by charging droplets of polymer at high voltages 

which creates an interconnected network of small fibers 264, were used by Goth et al. to 

determine the degree of anisotropy of the overall structure. 233 The anisotropic biological 

elements in the extracellular matrix (particularly collagen and elastin) have been simulated 

with several materials including silk10, 260 and glass fibers259, 265. An example of fibrous 

phantom is shown in Figure 3. Here the phantom is composed of polystyrene microspheres 

and well-aligned glass fibers embedded in polyacrylamide (glass fibers have a 10-μm 

diameter and 1.547 refractive index). 
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Figure 13.3 Image from reference 265 Figure (a) cylinder model; (b) sphere-cylinder model (SCM); and (c) spherecylinder 

birefringence model. 

Phantoms for PS-OCT require a strong backscattering to generate a high image 

contrast and have ideally well-defined layers with homogeneous yet different values of 

birefringence, Table 3. Accordingly, Liu et al. have used a phantom consisting of a long 

birefringent polymer band laid over four smaller bands of differing birefringence. The 

optical axes of bottom four bands were oriented at 45° with the optical axis of top layer 

allowing for a depth dependent change in retardation.266 An example of this retarding 

phantom is shown in Figure 4. 
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Figure 13.4 Image from reference 266. Intensity, birefringence and DOP images of the slab (a-c) and cylindrical (d-e) 

phantoms. (a) Representative cross-sectional images of the birefringence phantom for galvanometer-scanning system. 

(b) & (c) En-face images at different depths as indicated by the dashed red lines in (a). Horizontal and vertical scale bars 

for (a-c): 2 mm and 250 μm, respectively. (d) Representative images obtained from one rotational scan with the catheter. 

Scale bar: 1 mm. (e) Longitudinal sections obtained from a pull-back data set, with its corresponding location indicated 

by the dashed red line in (d). Radial and horizontal scale bars: 250 μm and 1 mm, respectively. (Text from Liu et al. 266) 

Ghosh et al. induced changes in retardation by stretching a polyacrylamide 

phantom. Moreover, changing birefringence, and mixing polystyrene microspheres and 

sucrose into the polymer, produced phantoms that could be used to characterize retardance, 

depolarization, and diattenuation.2 200, 259. Extruded silicon, silicon wafers with gratings, 

and other types of silicon (poly and amorphous), as well as different tapes (e.g., Kapton 
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and Mylar) normally used in solar panels, have been used to create phantoms containing 

different combinations of diattenuation, depolarization, and retardation properties. 199, 257, 

262 Figure 5 shows an example of an experimental setup used to induce birefringence in a 

polymer through mechanical strain by Wood et al. 7 

 

Figure 13.5 Image from reference 7. Apparatus to create birefringent phantoms. 

In order to account for different geometries and extract geometry-independent metrics of 

anisotropy, retardance measurements have been taken using a 8 mm diameter polystyrene 

sphere of known anisotropy axis azimuth.267 Fan et al. imaged a plastic cap to determine 

its retardation with PS-OCT.234  

 

Retardation 

material 

Embedded 

Material 

Induced 

Retardation 

Tissue 

Mimicking 

Phantom 

Thickness 

Transmission 

/Reflectance Ref. 

Birefringent 

film 

Intralipid, 

India ink Structure 

Extracellul

ar matrix 

Semi-

infinite R 243 

Electrospun 

fibers (0.6-

1.0 µm) 

None Structure Heart valve 

leaflet 

Semi-

infinite 

R 233 

Human hair None Structure 

Human 

hair 

N/A 

R 217 

Kapton tape 

(Stacked) 

Layered 

against a 

rigid base 

Structure 

(layers) 

Theoretical 

standard 

Semi-

infinite 

R 257 

Mylar 

(biaxially-

Laid 

against a 

Structure Theoretical 

standard 

Semi-

infinite 

R 257 



119 

 

oriented 

polyethylen

e 

terephthalat

e)  

plexiglass 

base 

Plastic cap* None Structure 

Theoretical 

standard 

Semi-

infinite R 234 

Polycarbona

te None 

Longitudina

l stretch 

(heating and 

cooling) 

Turbid 

biological 

tissue 

250 µm 

R 266 

Polyacrylam

ide polymer 

(elastic) 

None 4 mm 

stretch 

Turbid 

biological 

tissue 

 

4 mm 

R 200 

Polyacrylam

ide gels 

Polystyren

e 

microsphe

res, 1 M 

sucrose 

Stretching Turbid 

biological 

tissue 

1x1x4 

cm3 

T 20 

Polyacrylam

ide* 

Sucrose, 

polystyren

e 

microsphe

res 

Stretching Turbid 

biological 

tissue 

1x1x1 

cm3 

T 2 

Polyacrylam

ide* 

Polystyren

e 

microsphe

res and 

well-

aligned 

fiber glass 

Stretching 

(1-5 mm), 

Birefringenc

e = 0 – 10-5 

Turbid 

biological 

tissue 

1x2x4 

cm3 

T 259, 
265 

Polyethylen

e (Low 

density) None 

Bending (up 

to 2.5 MPa) 

Turbid 

biological 

tissue 1 mm R 268 

Polystyrene 

sphere 

None Structure  Infarcted 

myocardiu

m 

8 mm 

diameter 

T 267 

 

Polystyrene 

microsphere

s 

Water Structure Turbid 

biological 

media 

Semi-

infinite 

R 258 
269 
232 

Polyurethan

e 

Particle 

filled 

polypropy

lene 

Longitudina

l stretch 

Theoretical 

standard 

1 mm R 270 
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Silicon 

(Extruded) 

Air 

between 

layers 

Structure Theoretical 

standard 

2 mm R 199 

Silicon 

(Amorphous

) 

None Structure  Theoretical 

standard 

Semi-

infinite 

R 257 

Silicon 

(Poly-) 

None Structure Theoretical 

standard 

Semi-

infinite 

R 257 

Silk fibers* Water Structure 

Anisotropic 

sample 

Semi-

infinite R 10, 260 
Table 13.3 Retardation phantoms. The “Induced Retardation” column is for differentiating between phantoms which 

inherently exhibit their birefringence due to their structure and phantoms that are mechanically stressed, strained or 

otherwise manipulated in order to change their birefringence. *Denotes phantoms that were also tested for other 

polarization properties in corresponding reference paper. 

6.2.4      Diattenuating Phantoms 

The asymmetry of a molecule can result in selective transmission of an incident state of 

polarized light. Swami et al. measured diattenuation as a means to identify the general 

shape of gold nanoparticles (GNPs)271, Table 4. Differently shaped GNPs displayed 

different spectroscopic diattenuation results. Chen et al. 272 and Lung et al. 273 used a 

quarter wave plate and a polarizer to test the performance of an analytical model for low 

diattenuating optical components as they were rotated from 0 to 150° with a step of 30°. 

Moreover, these authors also used a polymer polarizer baked at 150° C as a sample with 

both diattenuating and birefringent properties. Chenault and Chipman used a rotating 

sample polarimeter to find linear diattenuation and retardance of the sample calculated 

from intensity modulation.274 

Diattenuation 

agent 

Solvent/Preparation Tissue 

mimicking 

Phantom 

Thickness 

Transmission/ 

Reflectance 

Ref. 

Gold 

Nanoparticle

s (non-

spherical 

shapes) 

CTAB-coated 

GNPs  

Theoretica

l standard 

Semi-

infinite 

T 271 

Kapton tape 

(Stacked)*  

Layered against a 

rigid base 

Theoretica

l standard 

Semi-

infinite 

R 257 
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Mylar 

(biaxially-

oriented 

polyethylene 

terephthalate

)* 

Laid against a 

plexiglass base 

Theoretica

l standard 

Semi-

infinite 

R 257 

Polarizer None Theoretica

l standard 

21.59 

mm 

T 272, 273 

Polarizer 

(Baked) 

150°C for 80 

minutes 

Theoretica

l standard 

N/A T 272, 273 

Polarizer 

(Rotating) 

None Theoretica

l standard 

N/A T 274 

Quarter wave 

plate 

None Theoretica

l standard 

N/A T 272, 273 

Silicon 

(Amorphous)

* 

None Theoretica

l standard 

Semi-

infinite 

R 257 

Silicon 

(Poly-)* 

None Theoretica

l standard 

Semi-

infinite 

R 257 

Table 13.4 Diattenuation phantoms. *Denotes phantoms that were also tested for other polarization properties in 

corresponding reference paper. 

6.2.5      Circular Retardation Phantoms 

The measurement of circular birefringence is frequently associated with chiral molecules 

275  such as glucose. The aggregation of chiral molecules in media causes the rotation of 

polarization plane of linearly polarized light as it travels through that volume. Manhas et 

al., Ortega-Quijano et al., and Ossikovski et al. added glucose to a polystyrene microsphere 

mixture in order to induce chirality and provide optical activity properties to the 

phantom258,269,276, Table 5.  

Cote et al. developed several ocular models to investigate the feasibility of 

measuring glucose in the eye aqueous humor with polarization-based techniques 277, Figure 

6. The model shown also accounts for the cornea birefringence utilizing a PMMA based 

phantoms overlaying a chamber mimicking the aqueous humor. A similar approach was 

used by Rawer 278. 
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Other intralipid suspension liquid phantoms can be made with absorbers, such as dye, and 

optically active molecules such as glucose and L-lysine to test optical activity in samples.46, 

220 Antonelli used honey to calculate the optical activity of the sample.232 Pham et al. and 

Cheng et al. studied the concentration of glucose by measuring the optical rotation angle 

of circular birefringence (optical activity) in human blood plasma and porcine cartilage 

samples 249.  

 

Figure 13.6 Optical phantom from Malik et al. 277 The custom-built ocular model. Glucose concentration in the anterior 

section is varied through the two infusion tubes. 

Optical 

Activity agent 

Solvent/Preparation Tissue 

mimicking 

Phantom 

Thickness 

Transmission/ 

Reflectance 

Ref. 

Glucose (L-

lysine) 

Distilled water, β-

alanine, intralipid 

suspension, trypan 

blue dye 

Turbid 

biological 

media 

Semi-

infinite 

R 46 

Glucose (D-) Water, 2 µm 

polystyrene 

microspheres 

lipofundin 

blood plasma 

SiO2 nanoparticles 

Turbid 

biological 

media 

 

 

40 mm 

R/T 258  269 
276 

279 249 
280 
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Glucose  Water Eye 

acquous 

humor 

 

Semi-

infinite 

 

 

R 277, 278 
281 

Glucose  Water Eye 

acquous 

humor 

 

1x1 cm2 

 

T 282 

Honey None Turbid 

biological 

media 

Semi-

infinite 

R 232 

Sucrose Polyacrylamide, 

polystyrene 

microspheres 

Turbid 

biological 

tissue 

1x1x1 

cm3 

T 2 

L−(+) -

arabinose  

M. Racemic 

 

 

Water and 

polystyrene 

microspheres 

 

Turbid 

biological 

tissue 

1x1x1 

cm3 

Side T 275 

Table 13.5 Optical Activity phantoms 

6.3      Conclusions 

Optical phantoms that can be used for the calibration and benchmarking of polarimetric 

techniques and for mimicking the optical response of tissues have been used by several 

investigators.  

 It is to be noted that polarimetric optical phantoms are often unique to each research 

group and, aside from tests conducted on depolarization with microspheres suspensions, 

no standardization has been attempted. To our knowledge only one company offers 

birefringent phantoms for polarized microscopy (NBS 1963A Birefringent Resolution 

Target by Thorlabs). As the biomedical applications of polarimetric techniques moves 

towards quantification of directionality and retardation more standardized phantoms are 

necessary. The PS-OCT phantoms proposed by Liu et al. 266 are a good example of such 

approach. The measurements of PS-OCT’s two core parameters, namely, retardation and 

azimuth of optical axis can be easily reproduced, and different instruments can be 
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benchmarked using such standardized phantoms. These mixed properties phantoms, 

particularly ones that include both depolarization and retardation are needed for many 

applications. Phantoms that have birefringence of form rather than just intrinsic 

birefringence are also needed to simulate fibrous tissues such as the cervix, cardiac tissue, 

or muscle. Nevertheless, the task of creating general use phantoms is complicated by the 

heterogeneity of tissues, the complexity of polarized light tissue interaction and the strong 

wavelength dependence of polarization-based techniques. 

 For these reasons the use of biological tissue as measurement standards is very 

common in polarimetric applications, but unless these samples are well known or measured 

with an alternative modality (for example PS-OCT or Second Harmonic Generation) the 

scientific rigor of these experiments remains limited. 

New fabrication modalities such as 3D printing and lithography are becoming 

available to researchers worldwide, we propose that a collaborative effort in the 

development of a standardized optical phantom for polarimetry could truly benefit the 

scientific community. 

The future work on the development of standardized optical phantoms for 

polarimetry should be envisaged to make them available for circulation among the research 

groups involved in polarimetric research and instruments development for benchmarking 

their experimental results and calibrating the instruments, as was done earlier in the round 

robin investigations in ellipsometry.283 
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14 CHAPTER 7 

15  

16 Conclusions 

Polarization-based imaging can be a powerful tool for investigating biological 

tissues with a high amount of extracellular matrix (ECM). The protein that constitutes the 

vast majority of the ECM, collagen, can be isolated from the surrounding media using 

techniques such as polarized light imaging and polarization sensitive optical coherence 

tomography (PSOCT). For this reason, pathologies characterized by changes in collagen 

architecture in a tissue are prime targets for study and diagnosis using polarization-based 

imaging methodologies. These structural changes can include collagen crosslinking and 

density tied to depolarization and retardation, as well as preferred orientation of collagen 

fiber alignment. Depolarization, retardation, and preferential orientation can be calculated 

using Mueller matrix polarimetry by means of a mathematical decomposition and were 

investigated in this thesis. Decreases in depolarization was measured in Chapter 2 to 

characterize loss of collagen crosslinking resulting from incubating heart valve leaflets in 

collagenase. A combined and co-registered PSOCT-MMP was introduced in Chapter 2 and 

used to image heart valve leaflets and tendon - collagen-rich tissues. Damage of heart valve 

leaflets with collagenase was corroborated between both modalities with decreases in 

attenuation coefficient and DOPU found with PSOCT, and decreases depolarization found 

MMP, which was reported in Figure 2.6. The behavior of these parameters before and after 

collagenase treatment appeared to relate to the change in attenuation coefficient caused by 

the decrease in scattering profile of the tissue caused by less collagen crosslinking that was 

calculated using PSOCT. 
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In addition, Mueller matrix decomposed depolarization and diattenuation showed 

changes as tendon was thermally damaged. The typical cyclical retardance pattern of 

tendon of PSOCT B-scans was disrupted where large changes in depolarization and 

diattenuation were seen in the more severely burned tendon. The combined approach could 

potentially be utilized to refine models of retardation, particularly due to many models 

relying on measuring of the surface retardation as a starting point for the model 168. 

Ultimately, this study was important in designing and validate the Mueller Matrix 

polarimeter that would be used through the rest of this dissertation. 

Chapters 3-4 dealt predominantly with investigating the preferred orientation of 

collagen alignment within the cervix between normal conditions and pregnancy. 

Chapter 3 began the investigation into orientation of the optical axis of birefringent 

material as a possible diagnosis tool for abnormal conditions in collagenous tissues. 

Typically, load-bearing tissues align collagen and other ECM proteins in preferred 

orientations for increased strength depending on their purpose.196 In the cervix, collagen is 

preferably aligned circumferentially to maintain a strong load-bearing structure as shown 

by Myers et al.12, 114 The Mueller matrix polarimeter that was used in Chapter 2 was used 

for this study with the exception of a new camera. The OCT system was also repurposed 

to replicate a cervical collagen study published by Gan et al.102 that would be used to 

validate polarimeter. Chapter 3 showed that this complex alignment can be measured with 

one set of images using Mueller matrix polarimetry. MMP offers advantages over using 

OCT and SHG to measure collagen alignment due to its ability to capture the entire cervix 

positioning instrumentation outside the vaginal canal whereas the other two modalities 

have much shallower working distance as well a limited field of view (~ 1cm for OCT and 
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1 mm for SHG).  This aspect is particularly problematic because imaging of the entire 

cervix would require multiple acquisitions and the creation of a mosaic in post-processing. 

The co-registration process of images in three dimensions adds further complications that 

need to be accounted for. Finally, Mueller Matrix polarimetry can be readily integrated in 

a colposcope which is routinely used for cervical inspection in the clinical setting, the 

acceptance and familiarity of this device from the medical personnel is believed to improve 

the clinical translation of this technique. 

Besides, birefringent axis orientation, depolarization and retardation were also 

decomposed from Mueller matrices. The silicon phantom used to validate the system 

showed low variation in these parameters due to the small amount of scattering in the 

sample corroborated by its transparency and low depolarization. The Mueller matrix 

decomposed orientation was found to be statistically similar to measurements made using 

optical coherence tomography using circular statistics to calculate kurtosis and mean 

orientation. Further studies of collagen orientation in cervixes under different conditions 

are needed to understand if Mueller matrix polarimetry can effectively measure the changes 

in collagen orientation that should occur when the normal ECM alignment is disrupted by 

pregnancy or disease. Towards this goal, a preliminary in-vivo study of pregnant human 

cervixes was conducted using a colposcope outfitted with a Mueller matrix polarimeter of 

the same design as reported here and was discussed in Chapter 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

The ability to identify the optical axis orientation of birefringent materials is a 

powerful tool for the diagnosis of abnormal conditions in ECM rich tissues. Past studies 

using MRI have shown that the circumferential alignment of collagen begins at the surface 

and continues deeply towards the distal end of the cervix.131 This suggests that changes in 
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collagen structure at one end of the cervix may be indicative of the other side as the entire 

cervix ripens towards labor. The modified colposcope introduced in Chapter 4 is capable 

of noninvasively imaging the cervix in vivo and determining the collagen orientation within 

the cervix using Mueller Matrix decomposition. We have utilized a measurement of the 

peakedness of the collagen angular orientation distribution to quantify the degree of 

organization of the local collagen in small regions of interest as well as the entire cervix 

(kurtosis analysis). The results of the kurtosis analysis showed an increase in collagen 

ultrastructure disorganization between non-pregnant and pregnant patient samples.  

 A brief study was also conducted on excised cervix tissue to determine the optimal 

wavelength for kurtosis analysis in the cervix. To this end a multispectral MMP was 

constructed. This represented part of an effort to improve the ongoing clinical study using 

the MMP-modified colposcope reported in Chapter 4. The initial findings suggested that 

wavelengths between 500-560 nm offered higher signal to noise ratio when representing 

collagen anisotropy in the cervix. It was observed that the variance in retarder axis 

orientation calculated using Mueller matrix polarimetry increased as the wavelength of 

incident light increased in a polymer phantom as well as excised porcine cervixes. The 

increase in retarder orientation variability was shown in more detail by calculating kurtosis 

images of the cervixes. These images showed a decrease in kurtosis[alignment] as 

orientation variance increased and the distribution of orientation values became more 

random. Curiously, there was also an increase in depolarization as incident wavelength 

increased. This may be due to the increase in probing depth due to longer wavelengths 

causing more scattering events and further randomizing the probing polarized light. Based 
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on this, it was decided to continue to use the 560 nm wavelength light source that was 

currently in use by the Mueller Matrix polarimetry capable colposcope. 

 Mueller Matrix polarimetry was shown to be capable of discerning fiber axis 

orientation and alignment in-vivo. This was done non-invasively and through one set of 

images at large (3 cm) field of view, avoiding the use of image mosaicking of other 

competing optical techniques.  

The arrangement of collagen was observed by calculating kurtosis to be statistically 

different between nonpregnant and pregnant patients using a T-test at the end of the short 

preliminary colposcopy study using Mueller Matrix polarimetry to diagnosis PTB. Power 

analysis of the study was also performed to calculate whether the current sample size and 

standard deviation was satisfactory to return a significant probability that the two 

populations are different. This was done with alpha = 0.05, and a two-tailed calculation 

which resulted in an 84.72% probability that the difference in kurtosis observed between 

nonpregnant and pregnant patients was present. Ultimately, there was a significant loss of 

collagen alignment observed in pregnant patients. The lower end of the standard deviation 

marked a patient with multiple past pregnancies and who later had PTB, while the higher 

end of the standard deviation was a young woman with her first pregnancy. Similarly, the 

lower end of the collagen alignment for the nonpregnant patients was a middle-aged 

woman who has gave birth to children. Continuation of the study will be necessary to 

elucidate if a more definitive marker can be found in diagnosing PTB.  

 In order to draw more substantial conclusions regarding the changes in cervical 

collagen during pregnancy and its relationship with preterm birth a larger sample size is 

required compared to the preliminary study reported on in this dissertation. Further analysis 
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of data is needed to find a parameter which may better correlate with onset of delivery. 

There is an ongoing effort to develop more Mueller matrix polarimetry capable 

colposcopes for use in new studies with access to larger patient populations. The designs 

of these new colposcopes may also be improved on to further decrease acquisition time or 

improve portability for possible studies in low-resource settings by using different 

polarimetry methodologies.  
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18 APPENDICES 

Organization 

Matlab codes are added as they were used in each chapter. If no significant changes were 

made to a code that was reused in a later chapter then the code is not relisted. 

 

Chapter 2 Matlab code - Use of combined polarization-sensitive optical coherence 

tomography and Mueller matrix imaging for the polarimetric characterization of 

excised biological tissue 

 

Mueller matrix polarimeter imaging 
%camera 
hardware_camera='PVCAM'; 
hardware_camera_name='Camera-1'; 
import mmcorej.*; 
mmc = CMMCore; 
mmc.loadSystemConfiguration ('C:\Program Files\Micro-Manager-

1.4\MMConfig_demo.cfg'); 
mmc.setExposure(200); 
width = mmc.getImageWidth(); 
height = mmc.getImageHeight(); 
pixelType = 'double'; 

  

%r2 is liquidcrystal 
r2 = serial('COM4'); 
r2.BaudRate = 38400; 
r2.Parity   = 'none'; 
r2.DataBits = 8; 
r2.StopBits = 1; 
r2.Terminator ='CR'; 
fopen(r2) 

  
%Main Program 
clear ImgData; 
for j = 1:4; 
fprintf(r2, sprintf('ver:?')); 
fscanf(r2); 
fprintf(r2, sprintf('ld:2,?')); 
fscanf(r2); 
fprintf(r2, sprintf('ld:4,?')); 
fscanf(r2); 

  
fprintf(r2, sprintf('ld:2,%d',round(0*6553.6))); 
fscanf(r2); 
fprintf(r2, sprintf('ld:4,%d',round(0*6553.6))); 
fscanf(r2); 

  
% InputVol1 = [4.7987 4.7987 4.7987 0.9987]; 
% InputVol2 = [4.7987 2.0159 1.0059 2.0027]; 

  
InputVol1 = [9.7987 2.5987 9.7987 0.9987]; 
InputVol2 = [9.7987 2.0159 1.0059 2.2027]; 
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        InputL1      = round(InputVol1(j)*6553.6); 
        InputL2      = round(InputVol2(j)*6553.6); 

  
        fprintf(r2, sprintf('ld:2,%d',InputL1)); 
        fscanf(r2); 
        pause(0.5); 
        fprintf(r2, sprintf('ld:4,%d',InputL2)); 
        fscanf(r2); 
        pause(0.5); 

  
fprintf(r2, sprintf('ver:?')); 
fscanf(r2); 
fprintf(r2, sprintf('ld:1,?')); 
fscanf(r2); 
fprintf(r2, sprintf('ld:3,?')); 
fscanf(r2); 

  
fprintf(r2, sprintf('ld:1,%d',round(0*6553.6))); 
fscanf(r2); 
fprintf(r2, sprintf('ld:3,%d',round(0*6553.6))); 
fscanf(r2) 
    cnt=0; 
 Vol1=  [4.7987     4.7987      2.4758   2.4758    4.7987   4.7987]; 
 Vol2=  [2.6827     1.5908      2.6827   1.5908    5.0792   2.0159]; 

  
            cnt    = cnt+1; 
for i=1:length(Vol1); 
    pause (0.5); 

  
        %Polarimeter LCR 

  
        L1      = round(Vol1(i)*6553.6); 
        L2      = round(Vol2(i)*6553.6);  

  
        fprintf(r2, sprintf('ld:1,%d',L1)); 
        fscanf(r2); 
        pause(0.5); 
        fprintf(r2, sprintf('ld:3,%d',L2)); 
        fscanf(r2); 
        pause(0.5); 

  
%         'take a measurement' 
        mmc.snapImage(); 
b = mmc.getImage();  % returned as a 1D array of signed integers in row-

major order 
b = typecast(double(b), pixelType);      % pixels must be interpreted as 

unsigned integers 
b = reshape(b, [width, height]); % image should be interpreted as a 2D 

array 
%b = transpose(b); 
        ImgData(i,:,:) = b(:,:,1); 
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end 
    % Save the image file 
    save(sprintf('OPP_imageS%d',j),'ImgData') 
end 
run StokeResults.m 

  
%Preview 
mmc.snapImage(); 
b = mmc.getImage();  % returned as a 1D array of signed integers in row-

major order 
b = typecast(double(b), pixelType);      % pixels must be interpreted as 

unsigned integers 
b = reshape(b, [width, height]); % image should be interpreted as a 2D 

array 
% b = transpose(b); 
imagesc(b);colorbar    
%Save 
save Preview b;imagesc((b));colormap(gray);axis('square') 

 

Chapter 3 Matlab code - Use of Mueller matrix Polarimetry and Optical Coherence 

Tomography in the characterization of cervical collagen anisotropy 

 

Mueller matrix polarimeter imaging  
if 0 
%camera 
LucamConnect(1) 
LucamSetGamma(1, 1) 
LucamSetFrameRate(1,1); 
LucamSetGain(1,1) 
LucamSet16BitCapture(true,1); 
LucamSetExposure(50,1); 
LucamShowPreview(1); 
pause(2) 

  
%r2 is liquidcrystal 
r2 = serial('COM8'); 
r2.BaudRate = 38400; 
r2.Parity   = 'none'; 
r2.DataBits = 8; 
r2.StopBits = 1; 
r2.Terminator ='CR'; 
fopen(r2) 
end 

  
%Main Program 
clear ImgData; 
for j = 1:4; 
    j 
fprintf(r2, sprintf('ver:?')); 
fscanf(r2); 
fprintf(r2, sprintf('ld:3,?')); 
fscanf(r2); 
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fprintf(r2, sprintf('ld:4,?')); 
fscanf(r2); 

  
fprintf(r2, sprintf('ld:3,%d',round(0*6553.6))); 
fscanf(r2); 
fprintf(r2, sprintf('ld:4,%d',round(0*6553.6))); 
fscanf(r2); 

  
%%%%JJ2 
% InputVol1 = [4.6527 2.0206 2.7313 2.6313]; 
% InputVol2 = [5.0954 5.0954 2.6763 5.0954]; 

  
%%%%JJ2 Tweak 
InputVol1 = [5.2527 2.2206 2.9313 2.8313]; 
InputVol2 = [5.0954 5.0954 2.8763 5.2954]; 

  
%%%%750nm2 
% InputVol1 = [7.6527 4.6527 2.6313 4.0527]; 
% InputVol2 = [7.0954 3.6954 1.6954 5.0954]; 

  
%%%%735nm2 
% InputVol1 = [5.6527 1.8527 2.6313 2.2527]; 
% InputVol2 = [5.0954 2.6954 1.8954 5.0954]; 

  
        InputL1      = round(InputVol1(j)*6553.6); 
        InputL2      = round(InputVol2(j)*6553.6); 

  
        fprintf(r2, sprintf('ld:3,%d',InputL1)); 
        fscanf(r2); 
        pause(2); 
        fprintf(r2, sprintf('ld:4,%d',InputL2)); 
        fscanf(r2); 
        pause(2); 

  
fprintf(r2, sprintf('ver:?')); 
fscanf(r2); 
fprintf(r2, sprintf('ld:1,?')); 
fscanf(r2); 
fprintf(r2, sprintf('ld:2,?')); 
fscanf(r2); 

  
fprintf(r2, sprintf('ld:1,%d',round(0*6553.6))); 
fscanf(r2); 
fprintf(r2, sprintf('ld:2,%d',round(0*6553.6))); 
fscanf(r2) 
    cnt=0; 

  
%Boulbry Voltages 
Vol1=  [5.079     5.079     2.871     2.871     5.079     5.079]; % this 

is LC1 (boulbry) at 0 
Vol2=  [5.079     2.095     1.719     2.731     2.731     1.719]; % This 

is LC2 at -45 
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            cnt    = cnt+1; 
for i=1:length(Vol1); 
    pause (0.5); 

  
        %Polarimeter LCR` 

  
        L1      = round(Vol1(i)*6553.6); 
        L2      = round(Vol2(i)*6553.6);  

  
        fprintf(r2, sprintf('ld:1,%d',L1)); 
%         fscanf(r2); 
        pause(1); 
        fprintf(r2, sprintf('ld:2,%d',L2)); 
%         fscanf(r2); 
        pause(1); 

  
          a = double(LucamCaptureFrame(1));b=a(:,:,1); 

  
        ImgData(i,:,:) = b(:,:,1); 

  
end 
    % Save the image file 
    save(sprintf('OPP_imageS%d',j),'ImgData') 
end 
% run StokeResults.m 

  
if 0 
%Preview 
a = double(LucamCaptureFrame(1));b=a(:,:,1);imagesc(b);colorbar;hold on; 
%Save 
save Preview b;imagesc((b));colormap(gray);axis('square') 
end 

Mueller matrix Image Post-processing 
clear all;close all 
load orient;load MR;load Mdepol;load Preview;load energy 
% Mdepol(Mdepol<0.7)=0; 
energy=1-(energy./5000);%max(max(energy))); 
A(:,:) = energy; 

  
dx=50; 
MR=abs(MR-(pi/2)); 

  
bb = medfilt2((bb),[3 3])*pi/180; 
for y = dx:dx:size(bb,1)-dx 
for x = dx:dx:size(bb,2)-dx 
    a=bb(y:y+dx,x:x+dx); 
     if mean2(Mdepol(y:y+dx,x:x+dx))<=0.5; %mask lines less than given 

depolarization 
       min(min(Mdepol(y:y+dx,x:x+dx))); 
       angle(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  NaN; %Creating 

angle index between 1:50 rather than 10:10:500 
%     elseif mean2(MR(y:y+dx,x:x+dx))*180/pi>45;  
%        min(min(Mdepol(y:y+dx,x:x+dx))); 
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%        angle(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  NaN; 
    else 
    [mu kappa] = circ_vmpar(a(:)); 
    angle(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  (mu*180/pi);  
    MMA(y:y+dx,x:x+dx)=(mu*180/pi); 
end 
end 
end 
[x,y]=meshgrid(dx:dx:size(bb,2)-dx,dx:dx:size(bb,1)-dx); 

  
u=cosd(angle+0); 
v=sind(angle+0); 
figure(1);clf; 
% load cut;load cutouter;bb = bb.*(cut-1).*-cutouter;MR = abs(MR.*(cut-

1).*-cutouter);Mdepol = abs(Mdepol.*(cut-1).*-cutouter); 
load cutouter;load 

cut;cutouter=double(cutouter);cutouter(cutouter==0)=NaN;cut=double(abs(

1-cut));cut(cut==0)=NaN; 
h1=imagesc(medfilt2(-bb.*180/pi,[4 

4])+0);colormap(hsv);axis('square');caxis([-180 

180]);cmap=colormap;colormap(cmap); 
mm=cmap;jet_wrap = 

vertcat(flip(mm),flip(mm));colormap(jet_wrap);phasebarJRR('location','s

w','size',.1); 
set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white');%cb=co

lorbar;set(cb,'FontSize',15);ylabel(cb,'Orientation [°]'); 
hold on;set(h1,'alphadata',A.*cutouter.*cut);set(gca,'color','black'); 
hold on;p = 

quiver(x,y,u,v,'k','ShowArrowHead','off');set(p,'color','black','Linewi

dth',1.5,'AutoScaleFactor',0.3); 

  
% figure(2);clf 
% imagesc(MMA,[-180 180]);cb=colorbar;colormap(hsv);axis('square'); 
% 

set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white');set(cb

,'FontSize',15);ylabel(cb,'Orientation [°]'); 
% hold on;p = 

quiver(x,y,u,v,'k','ShowArrowHead','off');set(p,'color','black','Linewi

dth',2); 

  
% figure(3);clf 
% imagesc((b),[0 

10000]);colormap(gray);axis('square');%cmap=colormap;cmap(32,:) = 

0;colormap(cmap); 
% % hold on;p = 

quiver(x,y,u,v,'k','ShowArrowHead','off');colorbar;set(p,'color','black

','Linewidth',2); 
% % set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white'); 
%  
% figure(4);%set(gca,'position',[0 0 1 1],'units','normalized'); 
% imagesc(medfilt2(Mdepol,[8 8]));cp=colormap(jet);cp(1,:) = [0 0 

0];colormap(cp);axis('square'); 
% cb=colorbar;caxis([0 

1]);set(cb,'FontSize',15);set(gca,'xtick',[]);set(gca,'ytick',[]);ylabe

l(cb,'Depolarization') 
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% % hold on;p = 

quiver(x,y,u,v,'k','ShowArrowHead','off');set(p,'color','black','Linewi

dth',2); 
%  
% figure(5)%;set(gca,'position',[0 0 1 1],'units','normalized') 
% imagesc(((medfilt2(real(MR*180/pi)+0,[8 

8]))));colormap('jet');axis('square'); 
% cb=colorbar;caxis([0 

90]);set(cb,'FontSize',15);set(gca,'xtick',[]);set(gca,'ytick',[]);ylab

el(cb,'Retardance [°]'); 
% cmap=colormap;cmap(1,:) = 0;colormap(cmap); 
% % hold on;p = 

quiver(x,y,u,v,'k','ShowArrowHead','off');set(p,'color','black','Linewi

dth',2); 

Mueller matrix Decomposed orientation histogram plotting 
close all;clear;clc;load orient;%load Preview;%load cut;bb = bb.*cut; 

  
bb = medfilt2((bb),[3 3]); 
figure(2);imagesc((bb));colormap(jet);axis('square');[a rect] = 

imcrop();[m n] = size(a); 
%%%% rect = [xstart ystart width height] %%%% 

  
figure(3);h = 

rose((a(:)+90)*(pi/180),90);axis('square');set(gca,'FontSize',15);view(

0,90); 
set(h,'linewidth',3,'color','k');th = 

findall(gcf,'Type','text');xlabel('Angle 

(°)');set(gca,'xaxislocation','top'); 
for i = 1:length(th), 
    set(th(i),'FontSize',20) 
end 
ab=(a+0)*pi/180; 
[mu kappa]=circ_vmpar([ab]); 
[b b0] = circ_skewness(ab(:)); 
[k k0] = circ_kurtosis(ab(:)); 
% b 
k 
mu*180/pi+90 

  
% bb = medfilt2((bb),[3 3]); 
% figure(2);imagesc((bb));colormap(jet);axis('square');a = imcrop();[m 

n] = size(a); 
% aa = reshape(a,m*n,1); 
%  
% figure(3);h = 

rose((aa+90)*(pi/180),50);axis('square');set(gca,'FontSize',15);view(90

,-90); 
% set(h,'linewidth',3,'color','k');th = 

findall(gcf,'Type','text');ylabel('Angle 

(°)');set(gca,'yaxislocation','right'); 
% for i = 1:length(th), 
%     set(th(i),'FontSize',20) 
% end 
% ab=(a+0)*pi/180; 
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% [mu kappa]=circ_vmpar([ab]); 
% [b b0] = circ_skewness(ab(:)); 
% [k k0] = circ_kurtosis(ab(:)); 
% b 
% k 
% mu*180/pi 

 

Optical coherence tomography imaging 
if 1 
    % 2.2 Generate waveforms for Galvo 
    %slow x scan waveforma 
    pixelx=250;   % determine the steps of xscanning;1 
    pixely=250;   % determine the steps of yscanning; 
    xrange=1.0;     % determine the range of xscanning; 
    yrange=1.0;     % determine the range of yscanning; 
    xx = xrange*2*repmat([1:pixelx 

fliplr(1:pixelx)],[1,pixely/2])/pixelx-xrange; 
    iter = 1; % # of iterations for averaging 

     
    % generate triangle wave for x scanning: min(xx)=-0.98 v, max(xx)=1 

v if xrange=yrange=1, and pixelx=100=pixely 
    % xrange determines the angle of the whole scanning. 
    %slow y scan waveform 
    a = (-(pixely-1):2:(pixely-1))*yrange/(pixely-1);  %-1 : 1/99 : 1 
    b = repmat(a,pixelx,1); 
    yy = reshape(b,[1,(pixely)*(pixelx)]); 

     
    %rotated waveforms if you designed different scanning, or set theta 

to be 0. 
    theta=0; 
    rotatedx=(xx*cos(theta)-yy*sin(theta))';%+xoffset; 
    rotatedy=(xx*sin(theta)+yy*cos(theta))';%+yoffset; 

     
    dataa=[rotatedx rotatedy]; 
%     plot(rotatedx,'ro') 
    %pause 
    % 2.4 %Initialization of NI Cards and closing shutters 
    %set NI cards 
    daq.getDevices 
    %load data for single scan with default scan parameters;and start the 

ao, 
    %set the Glov in the zero position; 
    s = daq.createSession('ni'); 
    d = daq.createSession('ni'); 
    s.Rate = 10000; 
    addAnalogOutputChannel(s,'Dev2','ao2','Voltage'); 
    addAnalogOutputChannel(d,'Dev2','ao3','Voltage'); 

  
    %s.startForeground(); 
    % s.TerminalConfig = 'SingleEnded' 
    % Construct a video input object associated 
    %   imaqhwinfo 
    % Acquire and display a single image frame: 
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    obj = imaq.VideoDevice('ni', 1); 
    frame = step(obj); 
    % TriggerConfiguration: 'external0/fallingEdge 
end 

  
tic 
FFsum(pixelx,1:4096,pixely)=0; 
for k = 1:iter 
    k 
    for z=1:pixely 
        d.outputSingleScan(a(1,z)); 
        for i=1:pixelx 
            frame=0; 
            s.outputSingleScan(dataa(i,1)); 
            frame=step(obj); 
            FFsum(i,:,z) = FFsum(i,:,z)+frame(1,:); 

%FF(x,pixels,y,iterations) 
        end 
    end 
end 
toc 
clearvars -except FFsum iter pixelx pixely 
% FFavg = FFsum./iter; 
save Cervix4 FFsum pixelx pixely iter 

Optical coherence tomography interpolation 
% clear all; 
close all; 
% clearvars -except FFsum pixelx pixely 
% load DC 
% load Xi 
load Xi2048 
C0=792.2709; 
C1=.09642887484; 
C2=1.5926911e-6; 
C3= -1.72575e-10; 
lambda= (1:2048); %Pixels 
X=1000./(C0+C1*(lambda-1)+C2*(lambda-1).^2); 

  
for z=1:pixely 
    for i=1:pixelx 
        interpA(i,:,z)=interp1(X,(FFsum(i,:,z)),Xi(1,:)); %interpolation 

after DC subtract; -DC(i,:) -(FF(i,:,z)) 
        FFTY(i,:,z)=abs(fftshift(fft(interpA(i,:,z), 2^12))); 
    end 
end 
clearvars -except FFTY FFsum iter pixelx pixely 
 figure(1); 
 imagesc(sqrt((FFTY(:,1:2048,125))'),[0 5]);colormap(gray) 
for i=1400:2000 
%     

figure(2);imagesc(rot90(sqrt((squeeze(FFTY(:,i,:)+FFTY(:,i+1,:)+FFTY(:,

i+2,:)+FFTY(:,i+3,:)))),3));colormap(gray) 
    figure(1);imagesc(log(squeeze(FFsum(:,i,:)))');colormap(gray) 
   title(i) 
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    pause 
end 

  
k = 1400:2000; 
for i=1:250 
%     

figure(2);imagesc(rot90(sqrt((squeeze(FFTY(:,k,i)+FFTY(:,k,i+1)+FFTY(:,

k,i+2)+FFTY(:,k,i+3)))),3));colormap(gray) 
    figure(1);imagesc(sqrt(squeeze(FFTY(:,k,i)))');colormap(gray) 
   title(i) 
    pause 
end 

  
img = 0; 
for k = 1706:1712 
    img = img + FFTY(:,k,:); 
end 
imagesc(rot90(sqrt((squeeze(img))),3));colormap(gray);%caxis([0 10]); 

  
save ParaffinCervix1-2-1890 img 

Chapter 4 Matlab code - Use of Mueller matrix colposcopy in the characterization 

of cervical collagen anisotropy 

 

Mueller matrix decomposed orientation kurtosis image calculation 
clear all;close all;clc 
load orient;load MR;load Preview;load Mdepol; 
%load energy;energy=1-(energy./15000); 

  
% for i=1:size(bb,1) 
%     for j=1:size(bb,2) 
%         if bb(i,j)<0 
%             bb(i,j)=bb(i,j)+180; 
%         else 
%             bb(i,j)=bb(i,j); 
%         end 
%     end 
% end 

  
dx=5; 
MR=abs(MR-(pi/2)); 
load cutouter;load cut; 
cutouter=double(cutouter);cutouter(cutouter==0)=NaN; 
cut=double(abs(1-cut));cut(cut==0)=NaN; 
% A(:,:) = energy.*cutouter.*cut; 
% A(:,:) = energy; 

  
bb = medfilt2((bb).*cutouter.*cut,[3 3])*pi/180; %Median filter 
% bb = medfilt2((bb),[5 5])*pi/180; %Median filter 

  
for y = dx:dx:size(bb,1)-dx 
for x = dx:dx:size(bb,2)-dx 
    a=bb(y:y+dx,x:x+dx); 
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     if mean2(Mdepol(y:y+dx,x:x+dx))<=0.1; %mask lines less than give 

depolarization 
       kurt(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  NaN; %Creating 

angle index between 1:50 rather than 10:10:500 
%     elseif mean2(MR(y:y+dx,x:x+dx))*180/pi>45;  
%        min(min(Mdepol(y:y+dx,x:x+dx))); 
%        angle(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  NaN; 
    else 
    [k k0] = circ_kurtosis(a(:)); 
    kurt(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) = abs(k);  
%%%%%standard deviation 
%     k = std2(a(:)); 
%     kurt(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  k;     
end 
end 
end 

  
[x,y]=meshgrid(dx:dx:size(kurt,2)-dx,dx:dx:size(kurt,1)-dx); 

  
% 

set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white');set(cb

,'FontSize',15);ylabel(cb,'Orientation [°]'); 
% hold on;p = 

quiver(x,y,u,v,'k','ShowArrowHead','off');set(p,'color','black','Linewi

dth',2); 
figure(1);clf; 
h1=imagesc(medfilt2(kurt,[3 3]));colormap(jet);axis('square');caxis([0 

1]);cmap=colormap;cmap(1,:) = 0;colormap(cmap); 
set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white');cb=col

orbar;set(cb,'FontSize',15);ylabel(cb,'Kurtosis'); 

  
sum(kurt(:)>.6)/sum(sum(sum(abs(isnan(kurt)-1)))) 
nanmean(nanstd(kurt)) 

 

Image rotation and subsection generation around cervix os for statistical 

comparison 
clear all;close all;clc 
load orient;load MR;load Preview;load Mdepol;%load energy 
% energy=1-(energy./15000); 
current=pwd; 
mkdir FramesBW;mkdir FramesColor;mkdir FramesKurtosis; 
% mkdir FramesBW2;mkdir FramesColor2;mkdir FramesKurtosis2; 

  
dx=50; 
MR=abs(MR-(pi/2)); 
load cutouter;load cut;s=regionprops(cut); 
cutouter=double(cutouter);cutouter(cutouter==0)=NaN; 
cut=double(abs(1-cut));cut(cut==0)=NaN; 
% A(:,:) = energy.*cutouter.*cut; 
% A(:,:) = energy.*cutouter; 
dy=dx; 
% c=zeros(size(bb)); 
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% c(:,round(s.Centroid(1))-dy/2:round(s.Centroid(1))+dy/2)=1; 
% c(round(s.Centroid(2))-dy/2:round(s.Centroid(2))+dy/2,:)=1; 
% A=A.*c;A(A==0)=NaN; 
% A(:,:) = energy; 

  
% load cut2;cut2=double(abs(1-cut2));cut2(cut2==0)=NaN; 
bb = medfilt2((bb).*cutouter.*cut,[3 3])*pi/180; %Median filter 
% bb = medfilt2((bb.*cut),[3 3])*pi/180;%Median filter 
% load cutouter2;b =  b.*cutouter; 

  
%%%% Bins for radii of concentric circule region %%%% 
% cx = round(s.Centroid(1)/dy); %center bin in x direction 
% cy = round(s.Centroid(2)/dy); %center bin in y direction 

  
pad = 500; % # of pixels for padding 
padbb = padarray(bb,[pad pad],'both');%imagesc(padbb);axis('square') 
padb = padarray(b,[pad pad],'both');%imagesc(padb,[0 

10000]);axis('square') 
padMdepol = padarray(Mdepol.*cutouter.*cut,[500 

500],'both');%imagesc(padMdepol,[0 1]);axis('square') 
padMR = padarray(MR.*cutouter.*cut,[500 500],'both'); 

  
c=zeros(size(padbb)); 
c(:,round(s.Centroid(1)+pad)-dy/2:round(s.Centroid(1)+500)+dy/2)=1; 
c(round(s.Centroid(2)+pad)-dy/2:round(s.Centroid(2)+500)+dy/2,:)=1; 

  
cx = round(s.Centroid(1)+pad); %center bin in x direction 
cy = round(s.Centroid(2)+pad); %center bin in y direction 

  
f=0; 
% f=19; 
for jj = 0:10:350 
    f=f+1; 
    bbrot = 

rotateAround(padbb,round(s.Centroid(2)+pad),round(s.Centroid(1)+pad),jj

,'bicubic');bbrot(bbrot==0)=NaN; 
    brot = 

rotateAround(padb,round(s.Centroid(2)+pad),round(s.Centroid(1)+pad),jj,

'bicubic');brot(brot==0)=NaN; 
%     Arot = 

rotateAround(A,round(s.Centroid(2)),round(s.Centroid(1)),jj,'bicubic'); 
    Mdepolrot = 

rotateAround(padMdepol,round(s.Centroid(2)+pad),round(s.Centroid(1)+pad

),jj,'bicubic'); 
    MRrot = 

rotateAround(padMR,round(s.Centroid(2)+pad),round(s.Centroid(1)+pad),jj

,'bicubic'); 
i = [1:dy:size(bbrot,2)-dy]; 
j = [1:dy:size(bbrot,1)-dy]; 

  
clear KK; 
z=0; 
for yy=j 
    z=z+1; 
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    a=bbrot(yy:yy+dy,round(s.Centroid(1))-

dy/2+pad+1:round(s.Centroid(1))+dy/2+pad-1); 
    [k k0]=circ_kurtosis(a(:));[mu kappa] = circ_vmpar(a(:)); 
    KK(z,1)= k;clear a;muu(z,1) = mu*180/pi; 
end 
z=0; 
for xx=i 
    z=z+1; 
    a=bbrot(round(s.Centroid(2))-

dy/2+pad+1:round(s.Centroid(2))+dy/2+pad-1,xx:xx+dy); 
    [k k0]=circ_kurtosis(a(:));[mu kappa] = circ_vmpar(a(:)); 
    KK(z,2)= k;clear a;muu(z,2) = mu*180/pi; 
end 

  
kurtyx(:,:,f) = KK; 
muyx(:,:,f) = muu; 

  
for y = dx:dx:size(bbrot,1)-dx 
    for x = dx:dx:size(bbrot,2)-dx 
        a=bbrot(y:y+dx,x:x+dx); 
        if mean2(Mdepolrot(y:y+dx,x:x+dx))<=0.5; %mask lines less than 

give depolarization 
            angle(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  NaN; 

%Creating angle index between 1:50 rather than 10:10:500 
                elseif mean2(MRrot(y:y+dx,x:x+dx))*180/pi>60; 
                   angle(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  NaN; 
        else 
            [mu kappa] = circ_vmpar(a(:)); 
            angle(y -((y/dx)*(dx-1)),x - ((x/dx)*(dx-1))) =  (mu*180/pi); 
        end 
    end 
end 

  
[x,y]=meshgrid(dx:dx:size(bbrot,2)-dx,dx:dx:size(bbrot,1)-dx); 

  
dk=5; 
for y2 = dk:dk:size(bbrot,1)-dk 
    for x2 = dk:dk:size(bbrot,2)-dk 
        a=bbrot(y2:y2+dk,x2:x2+dk); 
%         if mean2(Mdepolrot(y2:y2+dk,x2:x2+dk))<=0.5; %mask lines less 

than give depolarization 
% kurt(y2 -((y2/dk)*(dk-1)),x2 - ((x2/dk)*(dk-1))) =  NaN;  
%         else 
            [k k0] = circ_kurtosis(a(:)); 
            kurt(y2 -((y2/dk)*(dk-1)),x2 - ((x2/dk)*(dk-1))) =  k; 
        end 
    end 
% end 

  
[x2,y2]=meshgrid(dk:dk:size(kurt,2)-dk,dk:dk:size(kurt,1)-dk); 

  
u=cosd(-angle+0); 
v=sind(-angle+0); 
% imagesc(u);axis('square');cutquiver=roipoly();save cutquiver cutquiver 
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% load cutquiver;cutquiver=abs(1-

cutquiver);u=u.*cutquiver;v=v.*cutquiver; 
figure(1);clf; 
h1=imagesc(medfilt2(-bbrot.*180/pi+0,[3 

3]));colormap(hsv);axis('square');caxis([-180 

180]);cmap=colormap;colormap(cmap); 
mm=cmap;jet_wrap = 

vertcat(flip(mm),flip(mm));colormap(jet_wrap);phasebarJRR('location','s

e','size',.2); 
cmap=colormap;cmap(1,:) = 0;colormap(cmap); 
set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white');%cb=co

lorbar;set(cb,'FontSize',15);ylabel(cb,'Orientation [°]'); 
% hold on;viscircles([round(s.Centroid(1)) round(s.Centroid(2))],300); 
% viscircles([round(s.Centroid(1)) round(s.Centroid(2))],700) 
% hold on;set(h1,'alphadata',A); set(gca,'color','black') 
% hold on;p = 

quiver(x(1:1:end),y(1:1:end),u(1:1:end),v(1:1:end),'k','ShowArrowHead',

'off','AutoScaleFactor',0.5);set(p,'color','black','Linewidth',1.5); 
z=0; 
for yy=j 
    z=z+1; 
    if isnan(KK(z,1)) 
        hold on;rectangle('Position',[round(s.Centroid(1)+pad)-

dy/2,yy,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    elseif KK(z,1)<.6 
        hold on;rectangle('Position',[round(s.Centroid(1)+pad)-

dy/2,yy,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    else 
        hold on;rectangle('Position',[round(s.Centroid(1)+pad)-

dy/2,yy,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','b'); 
    end 
end 
z=0; 
for xx=i 
    z=z+1; 
    if isnan(KK(z,2)) 
        hold on;rectangle('Position',[xx,round(s.Centroid(2)+pad)-

dy/2,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    elseif KK(z,2)<.6 
        hold on;rectangle('Position',[xx,round(s.Centroid(2)+pad)-

dy/2,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    else 
        hold on;rectangle('Position',[xx,round(s.Centroid(2)+pad)-

dy/2,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','b'); 
    end 
end 
figure(2);clf 
h2=imagesc((brot),[0 

10000]);colormap(gray);axis('square');%cmap=colormap;cmap(32,:) = 

0;colormap(cmap); 
set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white'); 
hold on;p = 

quiver(x(1:1:end),y(1:1:end),u(1:1:end),v(1:1:end),'ShowArrowHead','off

','AutoScaleFactor',0.5);set(p,'color','white','Linewidth',2); 
% hold on;viscircles([round(s.Centroid(1)) round(s.Centroid(2))],300); 
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% viscircles([round(s.Centroid(1)) round(s.Centroid(2))],700) 
% hold on;set(h2,'alphadata',A); set(gca,'color','black') 
z=0; 
for yy=j 
    z=z+1; 
    if isnan(KK(z,1)) 
        hold on;rectangle('Position',[round(s.Centroid(1)+pad)-

dy/2,yy,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    elseif KK(z,1)<.6 
        hold on;rectangle('Position',[round(s.Centroid(1)+pad)-

dy/2,yy,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    else 
        hold on;rectangle('Position',[round(s.Centroid(1)+pad)-

dy/2,yy,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','b'); 
    end 
end 
z=0; 
for xx=i 
    z=z+1; 
    if isnan(KK(z,2)) 
        hold on;rectangle('Position',[xx,round(s.Centroid(2)+pad)-

dy/2,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    elseif KK(z,2)<.6 
        hold on;rectangle('Position',[xx,round(s.Centroid(2)+pad)-

dy/2,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','r'); 
    else 
        hold on;rectangle('Position',[xx,round(s.Centroid(2)+pad)-

dy/2,dy,dy],'LineWidth',2,'LineStyle','-','EdgeColor','b'); 
    end 
end 

  
figure(3);clf; 
h3=imagesc(medfilt2(kurt,[3 3]));colormap(jet);axis('square');caxis([0 

1]);cmap=colormap;cmap(1,:) = 0;colormap(cmap); 
set(gca,'xtick',[]);set(gca,'ytick',[]);set(gcf,'color','white');cb=col

orbar;set(cb,'FontSize',15);ylabel(cb,'Kurtosis'); 
% pause 
jj 
cd(current);cd FramesColor;saveas(h1,sprintf('color%d.tif',f)); 
cd(current);cd FramesBW;saveas(h2,sprintf('bw%d.tif',f)); 
cd(current);cd FramesKurtosis;saveas(h3,sprintf('kurt%d.tif',f)); 
close all 
end 
cd(current); 
save kurtyx kurtyx 
save muyx muyx 
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