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ABSTRACT OF THE THESIS

CENTRALIZED AND DISTRIBUTED DETECTION OF COMPROMISED

SMART GRID DEVICES USING MACHINE LEARNING AND

CONVOLUTION TECHNIQUES

by

Cengiz Kaygusuz

Florida International University, 2019

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

The smart grid concept has further transformed the traditional power grid into a

massive cyber-physical system that depends on advanced two-way communication

infrastructure. While the introduction of cyber components has improved the grid,

it has also broadened the attack surface. In particular, the threat stemming from

compromised devices pose a significant danger: An attacker can control the devices

to change the behavior of the grid and can impact the measurements or damage

the grid equipment. In this thesis, to detect such malicious smart grid devices, we

propose a novel machine learning and convolution-based framework, named Power-

Watch, that can run in centralized and distributed settings. After gathering library

and system calls, the framework is able to identify how close the observed device

is behaving with respect to its normal operations, with mispredictions implying

compromise. We evaluated the framework through a state-machine-based computa-

tional model of the smart grid devices that explore a wide variety of possible cases

that may occur in grid operations: attaining 95.1% accuracy at 0.03% false positive

rate over 37500 experiments. The framework was then further tested on a realistic

smart grid testbed, where it was able to successfully detect the compromised device

in every attack scenario considered in the threat model.

v



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 System and Library Calls . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. INVESTIGATION OF CALL LIST PATTERNS . . . . . . . . . . . . . . 15
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Direct Use of Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Statistical Use of Distance Metrics . . . . . . . . . . . . . . . . . . . . . 18
4.4 Completeness of Hamming Distance . . . . . . . . . . . . . . . . . . . . . 18

5. THE ARCHITECTURE OF POWERWATCH FRAMEWORK . . . . . . 22
5.1 Trace Analysis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Detailed Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1 Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Cloud-Assisted Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 Distributed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6. EVALUATION OF POWERWATCH . . . . . . . . . . . . . . . . . . . . 37
6.1 Methodology of State Machine-Based Experiments . . . . . . . . . . . . 37
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Detecting Attacks in a Real Testbed . . . . . . . . . . . . . . . . . . . . 41
6.4 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4.1 CPU Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4.2 Network Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



LIST OF FIGURES

FIGURE PAGE

3.1 An example of operation of smart grid devices. . . . . . . . . . . . . . . 10

3.2 The generalization of smart grid devices as a state machine. Two states
for voltage and circuit breaking is given as an example. Many more
states may be present in a grid device. . . . . . . . . . . . . . . . . . 11

3.3 A selection of system calls for Windows and Linux operating systems. . 12

3.4 An example of library calls taken by: strlen, sendto, malloc, and more. . 14

5.1 Flowchart for the call list analysis algorithm. . . . . . . . . . . . . . . . 23

5.2 An example of ltrace output. . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Standalone deployment scheme of PowerWatch. . . . . . . . . . . . . . . 28

5.4 Cloud-assisted deployment scheme of PowerWatch. . . . . . . . . . . . . 30

5.5 Information flow in distributed deployment scheme of PowerWatch. . . . 31

5.6 In decentralized deployment, rich devices monitor limited devices. . . . . 32

6.1 PowerWatch’s performance per bucket size. . . . . . . . . . . . . . . . . 40

6.2 PowerWatch’s performance per window size. . . . . . . . . . . . . . . . . 40

6.3 Required processor times per bucket and window sizes. . . . . . . . . . 40

6.4 Topology of the testbed which attacks were conducted. . . . . . . . . . . 41

6.5 Activity signals generated by devices under various attacks. . . . . . . . 42

6.6 For overhead analysis, two rich devices were monitoring 40 limited devices. 43

6.7 CPU utilization with respect to device and its state. . . . . . . . . . . . 44

vii



CHAPTER 1

INTRODUCTION

The ability to sense and react to what is happening in the power grid by smart

devices in real time has revolutionized the power industry; by measuring the grid

parameters, smart grid devices can control the electrical grid much more safely and

efficiently than ever before [FMXY12, YQST13]. Indeed, the introduction of smart

devices into the power grid has been a good step in the name of modernization. How-

ever, it has also brought challenging security problems that threaten the availability

of such a critical infrastructure [WL13].

One of the most vital security problems in the power domain involves compro-

mised smart grid devices [MKB+12]. A compromised device is a device operating

in a smart grid environment, the behavior of which is altered in an unauthorized

fashion. The damage a compromised device may inflict can be summarized as an

unauthorized modification causing undefined behavior, inflicted by either an insider

or outsider party. Within the context of the smart grid, undefined behavior directly

implies a severe risk of unavailability of electricity, a threat which must be addressed.

Dangers of compromised devices are best exemplified through a malicious actor.

Attacks conducted by such entities to the grid devices may yield dire consequences:

A compromised device with sensors that measure the behavior of the power grid may

send false information that may cause the control device to raise the voltage, possibly

overloading and knocking the grid out in case of a coordinated attack. Similarly,

a malicious activity on a control device may accomplish the same hazard directly,

again, making electricity unavailable [GBG+11, BAU17]. To ensure a healthy supply

of such a critical resource, the devices must be ensured to behave as expected.

On the other hand, compromised devices may operate in the grid even without

explicitly malicious actions: a counterfeit device swapped in place of an original one
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may also be considered a compromised device. Since this device has not been verified

for correct behavior, it may behave differently in certain situations compared to its

authentic counterpart. In more extreme cases, the device may even fail altogether.

The modern computation takes place over an operating system (OS). The OS

as a whole provides an abstraction layer which presents a uniform interface to the

applications and programs, allowing the same logic to be run across multiple devices

with zero to minimal modification. This abstraction is great in breadth as any

meaningful action such as communication over a network, or requesting space on

memory must be accomplished through the OS. The procedures requested from the

OS is named as system calls. In a similar vein, a program logic often calls procedures

from another corpus of logic called libraries for arbitrary computation to allow for

more efficient development. The use of individual pieces of logic in another library

is named as library call. Indeed, the oft use of the library and system calls enables

one to characterize a program; utilizing this data for intrusion detection has been a

subject of research since Kosoresow’s initial work [KH97].

To address the problem of compromised devices using the insight provided by

call lists, in this paper, we propose a novel framework, named PowerWatch, to detect

compromised devices in a smart grid environment. After collecting the system and

library call lists from a monitored device, the framework attempts to predict the

next call using calls preceding it. The result of this process is then convoluted by an

overlapping integral kernel of a predefined size, a technique inspired by convolutional

neural networks [Sch15]. The convolution step yields a value named as activity

signal, intuitively indicating how close the observed device is behaving to the ground

truth. The signal is then merely subjected to a configurable threshold: if the signal

exceeds the threshold at any given point, then it is decided that the device has been

compromised.
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We tested and evaluated the framework through a finite-state machine based

computational model of the smart grid devices. This model is established with the

critical observation that smart grid devices operate in repetitive behavior that is

triggered periodically or events such as measurement report or actions to control

the grid. The identified state machine is then utilized to generate call lists that are

representative of the behavior of grid devices. A total of 37500 experiments were

conducted with different parameters such as variables dealing with framework con-

figuration, and ones that represent scenarios that may arise during the operations

of the smart grid devices. This corpus of data was both used to analyze how the

framework’s performance are varying with respect to its configurable values. The

results of the extensive evaluation have yielded 95.1% accuracy at 0.03% false pos-

itive rate. The framework was further tested to detect attack scenarios on a smart

grid testbed where it was successful in detecting different attacks while being able

to pinpoint when the devices have become compromised.

To account for the different use cases that may arise in the monitoring of the

smart grid, the framework is proposed to be deployed in three distinct configurations.

In stand-alone mode, the detection framework runs on the kernelspace of the device

itself, suitable for monitoring singular devices. In centralized mode, collected call

lists are sent to a dedicated, centralized cloud environment, offering high reliability

and low overhead on grid devices. In distributed mode, devices with low computation

capacity send their call lists to devices with high computation capacity, suitable

for grid devices that have extra computational power, enabling PowerWatch to be

operational without any additional hardware costs.
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CHAPTER 2

RELATED WORK

The related work chapter is divided into three sections: smart grid security, host-

based anomaly detection, and distributed systems. The layout of this section is also

representative of the s

The current research concerning the safety of the smart grid focused on protec-

tion against specific threats. Proposed solutions mostly focus on the mitigation of

false data injections, though there are also a few studies conducted on the behavioral

analysis of smart grids.

The general theme of detecting false data injections is through conducting anomaly

analysis over data that is sent back and forth between auxiliary data-collecting units

and central decision-making devices. Liang et al. [LZL+17] has made a review of

such attacks. In [SG14], authors examine how an automatic generation control

(AGC) unit can be overloaded through erroneous data, and propose a solution that

operates by measuring the divergence from the forecast. In [KT13], authors consider

an adversary model that is based on misleading the control center into operating in

a different grid topology than what is deployed, through man-in-the-middle attacks;

it is mitigated by comparing and contrasting data obtained from various devices in

the grid. In [LED+14], a solution based on sparse matrix optimization is proposed,

acting on the insight that individual measurements tend to correlate, whereas mali-

cious ones stand on their own. In [KP11], rather than proposing a detection scheme,

authors show that it is possible to make the grid immune to data injection attacks

if a particular subset of measurement units are guaranteed to send authentic data.

Moghaddass et al. conducts anomaly analysis through distribution fitting over the

data that comes from smart grid infrastructure [MW18]. Matthews et al. propose

a large scale analysis of phase measurements using MapReduce techniques [ML18].
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Manandhar et al. detected false data injections into the grid using Kalman filters

[MCHL14]. In [CBLM17], a network-based anomaly detection scheme, is proposed

using off-the-shelf IoT devices in the grid. Wang et al. focus solely on detecting

anomalies arising from PMU’s using statistical methods [WLX+17].

We acknowledge that protection against false data injections is of utmost im-

portance, though it is a partial answer to the compromised device problem. An

adversary can conduct a false data injection by altering the behavior of the mea-

surement units, which can only detect compromised measurement devices, leaving

central devices out. The compromise of the central devices is a non-negligible pos-

sibility, and it is self-evident that they cannot be detected by inspecting the data

they receive.

As mentioned before, a multitude of studies has been conducted using behavioral

analysis. An artificial neural network based solution is proposed to detect malicious

acts of voltage control [Kos16] by using photovoltaic power production and weather

data, though the corpus of data and the techniques used are specific to solar power

production plants. In [SGLL13], researchers employ a rule-based detection mecha-

nism, where rules are determined manually by humans, which is an erroneous source

that can be eliminated. Berthier et al. use a particular device’s specifications to

construct a detector [BS11], which is a solution that does not easily generalize into

different devices. The solution proposed by Hong et al. [HLG14] utilizes host-

based information in addition to the network, though the host-based information

depends on events that could be recorded on the device and, again, cannot be easily

generalized into different classes of devices.

Differences from existing work: To the best of our knowledge, the proposed

framework, PowerWatch is the first work to tackle the compromised device problem

in smart grids in a holistic manner focusing on the behavior of the devices with
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system call sequencing, ML, and convolution techniques. Some of the prior art on

the smart grid security touches this problem without identifying it; as a result, their

solutions do not generalize to a wide variety of circumstances that are considered

in this study. In addition to the generalization advantage, our proposed framework

utilizes machine learning algorithms and convolution mechanisms in a novel way.
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CHAPTER 3

PRELIMINARIES

This chapter provides the background information about the problem domain,

smart grid, the adversary model, and the approach to remedy them along with its

assumptions.

3.1 Smart Grid

The term Smart Grid refers to the enhanced version of the electrical grid that

improves on its efficiency flexibility. It does not refer to a new invention that replaced

the existing traditional grid in a short timespan, but rather smoothly evolved from

the previous mechanisms that were in place. Table 3.1 gives a good overview of the

differences between the traditional and the form of a grid that is dubbed as smart.

Table 3.1: A comparison of traditional and smart grid. [Far10]

Concept Traditional Grid Smart Grid

Control Electro-mechanical Digital
Communication One-Way Communication Two-Way Communication

Power Generation Centralized Generation Distributed Generation
Structure Hierarchical Network
Sensing Few Sensors Sensors Throughout

Awareness Blind Self-Monitoring
Recovery Manual Restoration Self-Healing
Flexibility Failures and Blackouts Adaptive and Islanding

Testing Manual Check/Test Remote Check/Test
Customer Options Few Customer Choices Many Customer Choices

The advent of the electrical grid predates computation devices by more than

half a century. Before the availability of such devices, the grid was managed by

electro-mechanical means. Each entity within the grid was operating independently

and blindly. Any anomaly that happened within the grid affected a large portion of

it, required human intervention, which is slow compared to electronic devices.
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Many of the improvements to the grid that are listed in the later entries in the

Table 3.1 has been possible as a result of the improvements in the former entries;

namely, the digitization, two-way communication structure made possible by the in-

troduction of the computer networks. However, it also introduced previously known

security problems associated with the digital devices into the grid. While this trade-

off has been to the benefit of the grid, the introduced security problems must be

appropriately addressed to ensure the grid is always operational.

The scholarly investigation of smart grid weaknesses has been a busy topic, so

that novel attacks are discovered continuously. In [TSS+18], authors discovered a

novel attack that a handful of strategically manipulated measurement results could

drastically alter electricity pricing. Chung et al. [CLY+18] propose an attack that

combines both cyber and physical aspects of the smart grid to mask line outages

and alter the grid topology information in the central systems. A particular attack

proposed in 2014 [LCZ+14] makes use of multiple compromised circuit switches to

cascade a local failure in the grid.

3.2 Adversary Model

We consider an adversary that can perform unauthorized modification of a device.

The space of all such threats are vast enough not to permit individually addressing

them; however, we hypothesize that all of them, by, definition, involves the modifi-

cation of the logic in execution, hence could be discovered by spotting anomalies in

the execution. To serve as an example, the space of all threats can be grouped into

three categories:

• Direct grid control with specific commands: A compromised command and

control device such as an IED (Intelligent Electronic Device), may allow the

8



attacker - internal or external - to issue commands directly to affect the state

of the grid. Hijacking the control of an IED is an example of such an attack.

• Indirect grid control via fake measurements: A compromised measurement

unit may send fake measurements to exert control over the smart grid indi-

rectly. Poisoning measurements are one way to accomplish this kind of effect.

• Surveillance of sensitive data: A compromised device may allow an insider

or external third-party to gather sensitive, confidential data; namely, leak

information about the state of the grid by using the communication capabilities

of the devices.

The adversary may modify a device by the following means:

• Online: The adversary may remotely connect to a device and modify it.

• Offline The adversary may physically interact with the device to modify it.

These examples illustrate what an adversary may achieve by unauthorized mod-

ification. We ultimately assume that any unauthorized modification is potentially

malicious and compromises the smart grid device.

3.3 Device Model

A key observation about smart grid devices is that certain parts of the programs

they are running are repetitively executed [TBAC11, BAU17]: They respond to the

events they receive in the smart grid in a deterministic fashion. Figure 3.1 gives

an example of the operations of an IED represented as a state machine. The figure

exemplifies the fact that the device stays idle for most of the time: on detecting a

frequency anomaly, the device conducts necessary computation to trip the circuit

9



Figure 3.1: An example of operation of smart grid devices.

breaker. Likewise, on detecting higher than nominal voltage, the device again does

the computation to lower the voltage; essentially behaving in a ”reactive” fashion.

Such a reactive nature is inherent in all kinds of devices capable of computation that

operate for extended periods and can be generalized into other smart grid devices

as well. Figure 3.2 presents a generalization of these smart grid devices as a state

machine. The number of states represents a different kind of actions a device can

take. This abstract model of smart grid devices is used both in the call trace analysis

and evaluation extensively.

Another observation is that in ordinary operation, the device strictly operates in

known deterministic states; in other words, the capabilities and tasks of a smart grid

device are well known a priori. If a smart grid device is compromised, a previously

unknown state is added to the device.

In the first sight, it is not evident that previously unknown behavior - however

it is measured - would imply the device had been compromised. Unknown behavior

implies a compromised device in a specific context. Such an event is similar to a

user running a previously unknown program on her personal computer. The same

logic cannot be applied in such a situation to detect whether the user’s computer is

compromised; the main difference lies in the fact that a user may run an arbitrary

10
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Figure 3.2: The generalization of smart grid devices as a state machine. Two states
for voltage and circuit breaking is given as an example. Many more states may be
present in a grid device.

program in her computer, while the smart grid environment does not offer such

a feature. In the case of smart grid devices, since the logic executed in smart

grid devices are well known before they are operational, and this logic is strictly

controlled by the utility or an authorized device vendor, any code execution profile

that diverges from the known implies the device has been compromised.

The framework also assumes that the known behavior is deterministic: It trans-

lates well into the context of this study as, known states output known call lists.

The determinism is one of the fundamental concepts that enable a device to be en-

gineered in the first place: if the device would respond chaotically to stimuli, then

it cannot be used to achieve a task, e.g., controlling the voltage level.

Non-determinism in computer logic is nearly always the result of multithreading,

and in rare cases, the presence of quantum phenomena [LJL+10] which can be safely

disregarded as smart grid devices does not exhibit quantum behavior. The multi-

threaded non-determinism must be considered as grid devices may be implemented

in such a fashion, in which case the obtained call lists will be out-of-order and

lose most of its characteristic information. Fortunately, this problem can easily be

circumvented if we consider individual threads, which are strictly deterministic.
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Figure 3.3: A selection of system calls for Windows and Linux operating systems.

3.4 System and Library Calls

The modern computation takes place through an operating system (OS). An OS

is a gigantic abstraction layer that orchestrates a device’s operation and provides

a unified and standardized interface for utilizing device resources, such as disk,

network, memory, and many others. Figure 3.3 gives a list of example system calls

and their functionality for two operating systems.

It is unfeasible to not use system calls, as making any kind of action other than

pure computation such as reading a file from disk, allocating-deallocating additional

memory, communicating with other devices on the network, and using abstractions

such as memory sharing, communicating with other processes etc. require a system

call to be made. It is essential for authentic programs as well as adversarial actors

to use system calls; a program that is disallowed to use them are necessarily only

12



capable of performing arithmetic operations at the machine level. Such programs

could be safely ignored as the connected nature of the smart grid at least requires

a device to use its networking capabilities, which mandates the use of system calls.

Library calls, as its name suggests, are function calls that are made to use the

functionality of a shared library, a collection of commonly used operations. The

most commonly used shared library is the standard C library, which provides func-

tionalities like comparing byte segments, mathematical functions, and operations

such as sine, cosine, and square root, and the means of receiving input and giv-

ing output. Conceptually, a program may not use any shared library to operate.

In practice, however, shared libraries are one of the staple practices that help to

deliver fast and maintainable software. Besides, it is also a standard practice to

use the standard C library to invoke system calls as for many of them; numerous

data structures must be instantiated, which is tedious and error-prone. The shared

libraries are used widely in practice, and the mandating the use of them bear no

constraints on the viability of library calls.

The system and library call lists (collectively to be referred to as call lists here-

after) are artifacts that could be utilized to map a program to the abstract state

machine depicted in Figure 3.2. The critical observation to be made here is that,

since system and library calls have to be utilized in order for a device to do any

meaningful computation, the states can be identified by the calls they make. An ex-

ample of a trace of library calls belonging to a program implemented in libiec61850

is given in Figure 3.4. It can be seen that after the initialization period, the program

executes strlen, sendto, and usleep repeatedly in a recognizable pattern.

The states need not be uniquely identifiable as it is not the ultimate goal of

this study. Instead, we are interested in whether the device has operated in a state

that has not been present before, and it is assumed that the state is potentially

13



Figure 3.4: An example of library calls taken by: strlen, sendto, malloc, and more.

malicious. At this point, it is natural to ask what happens if the malicious state

outputs the same type of call lists. In this case, the malicious state is strictly

constrained to imitate one of the constrained states. For example, in the example

given in Figure 3.4, an adversarial agent cannot establish a connection to a remote

server to receive commands, which requires a socket or equivalent system call to

be made, which would be detected right away.
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CHAPTER 4

INVESTIGATION OF CALL LIST PATTERNS

Two call lists are finite sequence of symbols which could be compared element-

by-element to establish their equivalence. However, direct equivalence is of little

use since a device’s computation history may differ from observation to another a

multitude of factors, such as time of observation, device’s initial state, and events

within the real world. However, if we measure the same device unaltered, there are

some similarities in the patterns of computation.

Even though exact equality cannot be used, the categories of equality can be

used to extract statistical information to form a basis of similarity between two

call lists. The equality of call lists can be broken down into three categories: type,

number, and order of calls. In this chapter, we aim to formally define the metrics

of type, number, and order of call lists, and reason how they can be utilized in

detecting anomalies in them.

4.1 Definitions

SD

(
∣∣∣∣∣∣∣∣∣∣∣∣∣

malloc

malloc

free

free

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣
malloc

free

∣∣∣∣∣∣∣
)

= 0. (4.1)

Set Distance SD(L1, L2) is the measure of how two call lists are different from

each other according to the type of calls they inhibit. Let A be the set of calls in

L1, and B the set of calls in L2. The function SD(L1, L2) is simply the number of

unique elements (cardinality) that is contained in A, but not in B. Formally stated,

SD(L1, L2) = |A−B|. Note that SD(L1, L2) 6= SD(L2, L1). Equation 4.1 gives an

example where SD = 0.
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LD

( ∣∣∣∣∣∣∣∣∣∣
malloc

malloc

malloc

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
free

free

free

∣∣∣∣∣∣∣∣∣∣
)

= 0. (4.2)

Length Distance LD(L1, L2) is simply the difference of number of system calls

contained by two call lists. LD = 0 indicates two call lists are of the same length,

while LD 6= 0 indicates one list is longer than another by given amount, without

specifying which one it is. Equation 4.2 gives an example where LD = 0. Note that

LD(L1, L2) = LD(L2, L1).

ED

(
∣∣∣∣∣∣∣∣∣∣∣∣∣

malloc

malloc

free

free

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣

malloc

free

malloc

free

∣∣∣∣∣∣∣∣∣∣∣∣∣

)
= 0. (4.3)

Euclidean Distance ED(L1, L2) is a measurement unit that intermixes both

type and length difference between two call lists. vLi
is an N dimensional vector

where each dimension is mapped to total number of calls made to that particular

system or library function belonging to call list Li. With this definition, ED(L1, L2)

is simply equal to |vL1 − vL2|, or ED(L1, L2) = |vL1 − vL2|. Equation 4.3 gives an

example where ED = 0.

HD

(
∣∣∣∣∣∣∣∣∣∣∣∣∣

malloc

malloc

free

free

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣

malloc

free

malloc

free

∣∣∣∣∣∣∣∣∣∣∣∣∣

)
= 2. (4.4)

Hamming Distance HD(L1, L2) is simply the number of operations required

to be undertaken in order to make two call lists identical. Note that HD(L1, L2) = 0

implies two lists are identical. Equation 4.4 gives an example where HD = 2.
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4.2 Direct Use of Distance Metrics

An obvious insight is to use these metrics directly to spot differences in the call

lists; however, this is not possible due to problems with device determinism. While

the devices themselves are strictly deterministic, it is not possible to predict all of

the real world situations in a deterministic fashion. For example, it is well defined

what an IED will do if it spots a phase anomaly, or receives a data packet from a

particular sensor, but it is not feasible to calculate ahead-of-time the order of these

events happening (if they happen at all), and the direct use of these metrics require

a rigid determinism as in the example.

The state machine given in Figure 3.2 can be used to clearly illustrate the prob-

lems with direct use. Suppose that the machine operates under the following terms:

• The machine operates in turns.

• At each turn, the machine transitions to one of the states except the initial

and the terminal state.

• After the transition, the state machine outputs a call list.

• On performing a certain number of turns, the machine halts by transitioning

to the terminal state.

To permit direct use, one must possess two pieces of critical information: the

total amount of turns the machine is going to operate, and all of the states which

the machine is going to transition at each turn, both of which are not possible to

predict reliably.

17



4.3 Statistical Use of Distance Metrics

The effect of the individual computing states exerts a bias in the call list produced

by the machine that could be measured using statistical methods. For example,

if we consider two states, one of which produces double the amount of one of the

particular call, and the activation probabilities of those two states are the same,

then the state machine which has the mentioned state will contain the call more on

average. Following is a list of difference metrics and their explanations:

• SD(LM , LC) 6= 0: A call list contains a type of call that is not contained in

the other call list.

• LD(LC , LM) 6= 0: Two call lists inhibit the same type of calls, but differing in

length.

• ED(LC , LM) 6= 0: Two call lists are of the same length and contain the same

type of calls, but their internal distributions are different.

• HD(LC , LM) 6= 0 Two call lists are of the same length, contain the same

type of calls, their internal distributions are the same, but their orders are not

identical.

Two call lists created by the states differing by the first three different cases can

be differentiated by calculating the average of the call counts for each type of call

that may happen. The last case, however, eludes this scheme, as in this case, two

call lists differ only in the order of the calls and harbor no statistical difference.

4.4 Completeness of Hamming Distance

Indeed, the Hamming Distance is complete, in a sense that this metric can calculate

a difference that may be spotted by all of the other methods, in addition to the
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differences that could only be spotted by this metric. We will now provide proof for

this claim.

Assume that L is the set containing all possible non-empty finite call lists, with

Li, i ∈ N indicating the ith call list of L. Note that for the purposes of this proof,

we are only interested in the fact that ∀i, j ∈ N : i 6= j =⇒ Li 6= Lj.

Lemma 4.4.1 For all pairs of call lists, if their HD is zero, then all other metrics

are also zero:

∀i, j ∈ N HD(Li, Lj) = 0 =⇒ SD(Li, Lj) = 0, (4.5a)

∀i, j ∈ N HD(Li, Lj) = 0 =⇒ LD(Li, Lj) = 0, (4.5b)

∀i, j ∈ N HD(Li, Lj) = 0 =⇒ ED(Li, Lj) = 0. (4.5c)

Proof. It is sufficient to simply make the following statement:

∀i, j ∈ N HD(Li, Lj) = 0 ⇐⇒ i = j. (4.6)

It means the hamming distance is zero only when two lists are equal. Since the

distance of a call list with itself is zero by all metrics, the propositions hold true.

Lemma 4.4.2 For all metrics other than HD (namely, ED, SD, LD) there exist

pairs of call lists such that their distances are 0 under that metric, and greater than

0 in HD.

∃i, j ∈ N : SD(Li, Lj) = 0 ∧ HD(Li, Lj) > 0. (4.7a)

∃i, j ∈ N : LD(Li, Lj) = 0 ∧ HD(Li, Lj) > 0. (4.7b)

∃i, j ∈ N : ED(Li, Lj) = 0 ∧ HD(Li, Lj) > 0. (4.7c)
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Proof. We shall prove each proposition individually, with a generic approach where

we will show in each set whose elements are zero with respect to a metric other than

HD, there exist pairs of call lists which their distance are non-zero under HD.

To prove 4.7a, let Si be the set of all possible non-empty call lists, with Si
j is the

j th call list in the set, where members of the set Si have a set distance of 0 to Li:

Si = {Si
j : ∀j ∈ N SD(Si

j, Li) = 0}. (4.8)

The set of Si is of infinite size. Recall that it contains all possible call lists, of

which the only constraint is that they contain at least one type of call that is present

in Li. Since there is not an upper limit on the number of a specific call, it follows

that the set is infinite. Among these call lists of Si, by Equation 4.6 there is only

one call list that HD is zero, and for all others, it yields a nonzero value; hence

Proposition 4.7a holds.

For Proposition 4.7b, we follow a similar procedure. Let Gi be the set of all

possible non-empty call lists, with Gi
j is the j th call list of Gi, where members of

the set Gi has a length distance of 0 to Li:

Gi = {Gi
j : ∀j ∈ N LD(Gi

j, Li) = 0}. (4.9)

Let Ti ∈ N be the length of Li, and Oi ∈ N be the number of types of calls of Li.

The following equation

|Gi| = Ti
Oi , (4.10)

where |.| describes the size of the set Gi. Since both Ti > 1 and Gi > 1, the value

|Gi| = Ti
Oi > 0. By Equation 4.6, for only one member of the set Gi yields HD = 0;

hence the equation 4.7b holds.
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For Equation 4.7c, let Ei be the set of all possible call lists with Ei
j is the j th

call list of Ei, where all members of the set Ei have an euclidean distance of zero to

Li:

Ei = {Ei
j : ∀j ∈ N ED(Ei

j, Li) = 0} (4.11)

Recall that vi ∈ NOi , where each dimension indicates the total amount of calls made

by that particular type of call. The size of the set Ei can be described as a well-

known combination problem, concerned with the number of all possible orderings

of a total of
∑

i vLi elements, with each element belonging to an element class,

calculated as shown in the following equation.

|Ei| = (
∑

i vLi)!∏
i(vLi!)

(4.12)

It is easy to see |Ei| > 1 barring trivial cases. By Equation 4.6, only one member

of the set yields HD = 0; thus, the proposition holds.

To summarize the two lemmas: the first lemma indicates if the hamming distance

is zero (i.e., two call lists are of the same pattern), then, it implies they are equal and

cannot be distinguished by any metric. The second lemma indicates there exist call

lists that could only be distinguished by hamming distance, i.e., pattern analysis.

These two indicate that a pattern analysis algorithm can distinguish between every

pair of call lists where such differentiation is possible.

In light of this information, in the next chapter, we describe the detection frame-

work.
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CHAPTER 5

THE ARCHITECTURE OF POWERWATCH FRAMEWORK

This chapter describes the PowerWatch, a framework that processes call traces

with the purpose of identifying compromised devices. The core trace analysis algo-

rithm is described first, followed by the operation modes of PowerWatch, developed

to address different infrastructure requirements.

5.1 Trace Analysis Algorithm

5.1.1 Overview

The general architecture of the framework is given in Figure 5.1. Two principal

phases of the algorithm are described below, followed by the detailed description of

the individual steps.

Training

In this phase, the device is run while being guaranteed not to be compromised, and

its call lists are harvested. These call lists are then pre-processed by a procedure

called bucketing. Using this data, the machine learning model is then trained. An-

other training step is then conducted to compute the activity index threshold, where

the entire algorithm is run against an authentic device, and the maximum value of

the activity signal is picked as the threshold.

Monitoring

In this phase, the device is deployed into the field and is being monitored through its

call lists. After an adequate amount of calls are harvested, it is first pre-processed

to be fed into the machine learning model. The model is principally used to predict
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Figure 5.1: Flowchart for the call list analysis algorithm.

a call in the list by looking at calls immediately preceding to it. The results of the

predictions are then analyzed; for each call, if the prediction was successful, it is

marked 0, if not, it is marked 1. This array of binary values are then convoluted by

an integral kernel, which sums its values within the convolution window of interest.

If there is a value within the convoluted signal that exceeds the threshold, it is

decided that the device has been compromised.

5.1.2 Detailed Steps

In this section, we detail the major steps given in Figure 5.1.

Harvesting Call Traces

As its name suggests, library and system call lists are harvested at the first stage.

Since the framework records no information other than the type of the call, a call

list can be thought as a sequence of symbols. An extensive study on collecting call
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Figure 5.2: An example of ltrace output.

lists can be found in Lopez’s work [LBAU17]. In this study, we opted to use ltrace,

one of the standard programs when it comes to collecting system or library calls

in the Linux operating system. An example of the ltrace output can be found in

Figure 5.2.

Both system and library calls are traced by ltrace with the invocation of a par-

ticular system call, ptrace, which is a mnemonic for process tracing. This system

call is used by ltrace to attach itself to the monitored process, which enables ltrace

to insert a special instruction that temporarily halts the program and notifies an

external process (this instruction is 0xCC in case of Intel architectures). On the no-

tification that the monitored process has been halted, ltrace examines the memory

contents of the process, records the system and library call, and lets the operating

system resume the process.
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Algorithm 1: Bucketing (Preprocessing) Stage

input : system or library call list
output: bucketed call list

1 begin
2 Sbucket ← configure()
3 Swindow ← configure()
4 T ← configure()
5 for i← 1 to input.length - Sbucket do
6 for j ← 1 to Sbucket - 1 do
7 R[i][j] ← input[i + j - 1]

8 R[i].last ← input[i + Sbucket - 1]

9 return R

Bucketing (Pre-processing)

After the framework obtains the raw data which is a sequence of symbols, they are

arranged in a way that the sequence predictor accepts. The number of calls to be

inspected, i.e., the look-behind value is named as bucket size. In the preprocessed

dataset, each row has bucket size columns, where the last column is the target call,

and the previous columns are previous calls, respectively. The optimal bucket size

value is determined experimentally in the evaluation section. Algorithm 1 outlines

this procedure.

Prediction

At this point, the machine learning model is fed with the preprocessed data, which

then begins to predict each call by looking at previous calls. For each call, if the

prediction was successful, it emits 0, if it fails, 1 is emitted. This process is described

in Algorithm 2.

The choice of specific numbers – 0 for valid predictions, and 1 for invalid pre-

dictions – is not intuitive at first sight, since traditionally 0 and 1 represent false

and true, respectively. In our case, PowerWatch essentially measures the diver-
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Algorithm 2: Prediction Stage
input : Bucketed Call List
output: Raw Prediction Signal

1 begin
2 Sbucket ← configure()
3 T ← configure()
4 for i← 1 to R.length do
5 Ctarget ← R[i].last
6 Cpredict ← predict(R[i])
7 if Cpredict = Ctarget then
8 P[i] ← 0
9 else

10 P[i] ← 1

11 return P

gence of the program logic execution, with the aim of higher values representing

greater divergence. The numerical value is obtained in the convolution step, which

its explanation will help in understanding this design decision better.

Convolution

Algorithm 3: Convolution Stage
input : Raw Prediction Signal
output: Activity Signal

1 begin
2 TA ← input
3 for i← 1 to TA.length− Swindow do
4 TB[i] ← sum from TA[i] to TA[i + Swindow]

5 return TB

As the last step before the decision, the binary signal obtained from the predic-

tion stage is sum-convoluted by an overlapping integral kernel of size called window

size. In other words, the binary signal is iterated through a sliding window of size

window size, wherein each iteration, every element within the window is summed.

Result of this operation is named as activity signal, and each element in the signal
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is called activity index. The mentioned index can also be thought of as an index of

corruption and has a simple and useful property that having a high index indicates

suspicious activity. The optimal window size value is determined experimentally in

the evaluation section. Algorithm 3 outlines this procedure.

Thresholding

The last step is straightforward: if any element within the activity signal exceeds a

threshold, then it is decided that the device is compromised. The threshold is picked

by running the framework on a corpus of call lists that are known to be coming from

an authentic device, but not used to train the sequence predictor.

5.2 Operational Modes

This section discusses the different methods of how PowerWatch may be used. We

propose three different setups: stand-alone, centralized, and decentralized deploy-

ment. Different deployment cases are proposed in order to satisfy possible monitor-

ing requirements efficiently, listed as follows:

• Stand-Alone Mode: In this mode, all the tracing steps - from call list harvesting

to thresholding - is done on a device. This is the simplest use case and effective

for monitoring single devices, however, the tracing logic induces an overhead

to the device, and each monitored device is needed to be managed separately.

• Cloud-Assisted Mode: The harvested data is sent to the cloud for processing,

dedicated to this task. This mode induces the least amount of overhead to a

given device, as gathering data and sending it over the network has been found

to be efficient. In addition, a dedicated server cluster ensures the availability of

processing power for the monitoring task, increasing PowerWatch’s reliability.
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Figure 5.3: Standalone deployment scheme of PowerWatch.

These perks come at the cost of increased economic expenses for the cloud

service.

• Distributed Mode: This mode utilizes the binary classification of smart grid

devices, namely resource-rich and resource-limited devices (referred as rich

and limited devices hereafter). The devices which are incapable of running

the tracing logic (limited) send their call lists to rich devices, which possess

adequate resources to handle such a task. As this mode utilizes already existing

devices within the network to conduct the analysis, no additional hardware

expenses are required, however, depending on the resource utilization of the

grid devices, it may not be feasible to use this mode without diminishing the

capabilities of the grid devices.

5.2.1 Stand-Alone Mode

Figure 5.3 outlines the stand-alone operation mode. In this scheme, the module

that conducts the call trace analysis is placed on the device that is being monitored.

Elements of this scheme is explained as follows:

• Monitored Process : As the name clearly indicates, this is the program that is

being monitored. It runs in the userspace, without superuser privileges.
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• Tracer : This module records both the system and library calls from a device.

This module must be implemented at the operating system level (kernelspace)

as the operating system is fool-proof in terms of tracing system calls: no

program without compromising the operating system itself may conceal the

system calls it is making.

• Call List Analyzer : This module executes the call list analysis algorithm de-

scribed in Chapter 5.

Since the analyzing module is placed on the same device that its integrity is in

question, it is natural to ask why such a setup is employable. Recall that the operat-

ing system integrity was one of the assumptions that were made in Chapter 3. The

breach of the operating system is much more complicated than modifying userspace

programs, and once done, it requires hardware-assisted detection methods [WL13]

that requires replacement of the working devices, which our solution is trying to

avoid. Within a device, a small, trusted segment that is capable of computation is

adequate to monitor the rest of the system, which in our case, this segment is the

operating system.

5.2.2 Cloud-Assisted Mode

In this setup, the gathered data is sent from a monitored device to a centralized

cloud system for processing. The details of this scheme is given in Figure 5.4.

The main advantage of the cloud setup is reliability and availability by dedicating

a cluster of hosts specifically for analyzing the call list traces. Its design follows

service-oriented architecture (SOA) [EAA+04] patterns. It can be described as a

computation cluster that is accessible behind a reverse-proxy server. The entities

present in the Figure 5.4 are explained as follows:
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Figure 5.4: Cloud-assisted deployment scheme of PowerWatch.

• Device: This is the device that its monitoring is of interest. Differently, from

the stand-alone deployment, it does not processes the call list traces on itself

but sends it to a remote server.

• Detection Cluster : This is a collection of hosts that conducts the call list

analysis.

• Receiver : The reverse-proxy server that is intended as an entry-point to the

analysis system. It can be thought as an application-layer router that forwards

the incoming connection to the relevant subsystem (only the relationship with

the message queue is shown for brevity) or rejects the connection altogether.

• Message Queue: This entity basically distributes the analysis jobs (messages in

terminology) to the processing cluster, and allows for asynchronous processing

for various tasks which improves the responsivity of the system and is a typical

in service-oriented software architectures [EAA+04].

• Processing Cluster : Contains the hosts that are dedicated to the call list anal-

ysis, and other logic that need to be executed periodically or asynchronously.
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Figure 5.5: Information flow in distributed deployment scheme of PowerWatch.

• Service Cluster : This cluster is dedicated for human access to the state of the

monitoring system. Its resources are completely isolated from the processing

cluster to ensure the system state can be accessed at all times.

• Database: As its name indicates, it holds and persists all the information

relevant to the analysis task, and ordinary application data.

The two clustered parts – service and processing – are done so in order to ensure

availability of computation power. For example, if there is not enough capacity

for call list trace analysis, the near-real-time property of the system is lost, and

a compromised device may be noted much later after its occurrence. In a similar

fashion, if the service cluster is not available, the computed activity index values

may not be able to read from the system, making its purpose nullified.

5.2.3 Distributed Mode

The cloud-assisted deployment scheme requires additional hardware to be functional.

The distributed deployment scheme aims to evade dealing with extra hardware by

utilizing an existing device’s computation power to conduct call trace analysis. More

specifically, the devices are classified into two: resource-rich and resource-limited

(to be referred as rich and limited devices hereafter), with the distinction that rich

devices are capable enough to monitor limited devices. Figure 5.5 illustrates the
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Figure 5.6: In decentralized deployment, rich devices monitor limited devices.

information flow in both between the devices and within the device itself. Figure 5.6

illustrates the idea of rich devices monitoring limited devices.

The distributed scheme requires each device to be able to function independently

(e.g., a rich device should be able to monitor itself and any other limited device

connected to itself even though it knows nothing about other devices), however, the

system still needs to be configurable. To achieve this goal, we intend any rich device

to serve as an entry point to PowerWatch, holding all relevant information to access

the other rich devices in the network.

Before revealing any more information about the details, a shortlist of terminol-

ogy is given below:

• Resource-Rich Devices : Abbreviated as rich devices, these are computationally

capable devices that are able to carry the monitoring load. Examples of these

devices include IED’s and remote terminal units (RTU’s).

• Resource-Limited Devices : Abbreviated as limited devices, these devices do

not have the computational capability to monitor its own processes and must

send their call lists to a rich device. Simple sensors and logging devices are

examples of limited devices, such as phase measurement units and smart me-

ters.
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• Registry : The distributed database that holds which rich devices are within

the network. A complete copy of this database is shared by all of the rich

devices.

• Peer Server : The peer server is the default server which rich devices synchro-

nize with by default.

• Parent : Every limited device (child) chooses a suitable rich device (parent) so

that they send their call lists to their parent, to have them analyzed for an

anomaly.

• Parent Discovery : Refers to the procedure of finding a suitable parent.

• Synchronization: Refers to the synchronization procedure of rich devices.

• Merge: In the case of partitioning, two or more networks are merged back

together the network problem is solved.

The actions to be taken within the network are as follows:

Peer Discovery refers to the mechanism that enables rich and limited devices

to be aware of its surrounding peers. It is the collection of the two procedures used

by rich and limited devices respectively: synchronization and parent discovery. The

objective of the former is for a rich device to join the rich device network so that

limited devices may discover and choose it as its parent, and for the latter, to find

a parent to send the call lists.

Algorithm 4 describes the selection of a suitable peer for synchronization. A rich

device needs to be synchronized with the rest of the network before it can operate

PowerWatch’s logic, hence synchronization continues as an endless loop until its suc-

cessful, as can be seen on line 2. The device attempts to synchronize with the peer

server with lines 3 and 4. On line 5, the procedure is terminated if synchronization

were successful. If not, the device attempts to obtain a list of rich devices that are
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Algorithm 4: Synchronization for Rich Devices
input : none
output: successful synchronization

1 begin
2 while no synchronization do
3 peer server ← default peer server
4 synchronize(peer server)
5 if synchronization successful then
6 return

7 local rich peer list ← discoveryBroadcast()
8 rich peer ← randomly select a peer from peer list synchronize(rich peer)
9 if synchronization successful then

10 return

11 exponentialBackoff()

within the same broadcast domain on line 7, randomly selects one of them with line

8, and attempts to synchronize with it on line 9, terminating if the synchronization

is successful on line 10. In case the device is still not synchronized with the Power-

Watch deployment, it waits for a period that is exponentially increasing with each

failed synchronization attempt, as shown with line 11.

The exponential backoff algorithm is the standard algorithm for waiting for a pre-

defined amount of time after failure until the attempted operation succeeds. After

each failed operation, the device waits for a time period that increases exponentially

with respect to the number of failures. For this study, it is recommended to wait

for 2n seconds where n is the total number of failures. For example, a device failing

to connect for the 3rd, 4th, and 5th times would wait for 8, 16, and 32 seconds,

respectively, before attempting for connection again. The maximum value for n is

also recommended to be 7 (27 = 128), which limits the maximum waiting time to

a little more than two minutes.

Algorithm 5 describes the procedure for the selection of a suitable parent. Lim-

ited devices first seek a parent within the same broadcast domain as choosing the
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Algorithm 5: Parent Discovery for Limited Devices
input : none
output: chosen parent

1 begin
2 while a parent is not found do
3 rich peer list ← initializeEmptyList()
4 rich peer list.append(localRichDiscovery())
5 rich peer list.append(localLimitedParentDiscovery())
6 rich peer list.append(peerListFromDefaultServer())
7 for i← 0 to rich peer list.length do
8 rich peer ← rich peer list[i]
9 chooseParent(rich peer)

10 if parent choosing successful then
11 return

12 exponentialBackoff()

13 return parent

closest parent would put the smallest overhead to the network. If no parent could

be found, the device then asks the parents of limited devices within the same broad-

cast domain. If this also fails, it attempts to communicate with the default peer

server. The limited device exponentially backoffs before attempting to begin the

same procedure again.

Algorithm 5 describes the procedure for the selection of a suitable parent. The

device first collects the list of suitable parents in three sources: from devices within

the broadcast domain, the parents of the limited devices within the broadcast do-

main, and finally, from the peer list obtained from the default server, as seen in lines

from 4 through 6. From line 7 to 11, the device goes through the rich device list in

the order they are obtained, and attempts to choose one as a parent. If the selection

is successful, the procedure terminates, and the device begins sending the call lists

to the parent device. In case to selection happens, the device idles as can be seen on

line 12, for a time period that is exponentially increasing with every idling period,

similar to the peer discovery procedure.
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Synchronization specifically refers to the process that a new rich device inher-

iting the common database. The principal purpose of this database is to serve as a

registry for rich devices. The specifics of this distributed database is left to the im-

plementation, though in our tests we used rqlite, a distributed version of sqlite that

uses Raft consensus protocol [OO14], which is found in most common distributed

databases.

Merging Partitions is a need arises when a distributed system is divided due

to network error and start to operate as two or more independent systems. After

the error is fixed, the independent clusters need to be joined together to operate as

one again: this process is named as partition merging.

Merger operation is rather straightforward: as the unreachable rich peers are

eliminated from the registry, the remaining records in both clusters are simply joined

together.
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CHAPTER 6

EVALUATION OF POWERWATCH

Evaluation of the trace analysis framework was conducted in two parts: the first

part is based on a state-machine-based model of smart grid devices. This scheme

allowed us to test the framework over a total of 37500 experiments collectively

representing different device and attack complexities that may appear during the

operation of smart grid devices. Using data resulted from the state-machines, we also

determined the optimal values for bucket and window sizes. We further implemented

a realistic smart grid testbed conforming to IEC61850 standards and compromised

a device in three distinct ways while attempting to detect it.

6.1 Methodology of State Machine-Based Experiments

The evaluation of the framework’s performance was conducted on the finite state

machine model of smart grid devices, as shown in Figure 3.2. The model machine

is defined in more depth to allow for experimentation: It is comprised of an initial

and a halting state, a bounded amount of states that were marked as benign, and

optionally, a state that was marked as malicious.

The principles of the state machine operation are stated as follows: The machine

starts at the initial (or idle) state. At each turn, the machine randomly transitions

to any state, except the initial and halting state, with respect to the state transition

probabilities and outputs a call list assigned to that state. After a certain amount

of turns (detailed below), the machine transitions into the halting state, and halts

without outputting any call lists. The benign states had a cumulative state tran-

sition probability of 99%, and the malicious state, if present, had the transition

probability 1%. For example, if there were 4 benign states and 1 malicious state,

each benign state has a transition probability of 99
100
· 1
4
. Furthermore, if the malicious
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state is present, it is ensured that the malicious state has been transitioned to at

least once.

In each experiment, a total number of 45 runs were conducted: 15 runs for a

benign machine the results of which were used for training the detector, additional

15 runs for the benign machine, the results of which were used solely for testing the

detector, and final 15 runs for the malicious state machine, namely a state machine

that contained all the states of the benign machine, in addition to a malicious state.

Each run took a total of 500 turns, with a total turn count of 500 × 45 = 22500

turns.

The state machines were randomly generated with respect to 5 parameters which

model a big portion of all possible device and attack complexity that may be realized

during the operation of the smart grid devices and are described as follows:

• Benign state count : Represents how many uniquely identifiable computations

a device may conduct in a non-compromised situation. The benign state

machine inhibits as many states as this parameter indicates.

• Benign state call count : Represents how many calls a benign state may make.

This parameter is sampled separately for every benign state.

• Benign state call dictionary : Represents the diversity in types of calls a benign

state may make, e.g., a benign state call dictionary value of 3 indicates a benign

state makes only 3 different types of calls. Note that this value was an upper

bound: the unique number of calls may be lower than that since the list itself

was also randomly generated.

• Malicious state call count : The same as its benign counterpart, but it was

used solely for the malicious state.
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• Malicious state call dictionary : Again, the same as its benign counterpart,

but it was used solely for the malicious state.

Table 6.1 describes the parameters used in generating the state machine. Each

experiment receives the range of every parameter which it should sample from to

generate the state machine. For every possible combination of parameter ranges, an

experiment was run. The total number of experiments conducted was 37500.

Table 6.1: Parameters for State Machine Generation

Parameter name Ranges

Benign state count [1, 5) [5, 10) [10, 15) [15, 20) [20, 25)
Benign state call count [1, 5) [5, 10) [10, 15) [15, 20) [20, 25)

Bucket size [2, 8) [8, 32) [32, 128)
Window size [20, 40) [60, 80) [90, 100) [150, 200)

Benign state call vocabulary [1, 5) [5, 10) [10, 15) [15, 20) [20, 25)
Malicious state call count [1, 5) [5, 10) [10, 15) [15, 20) [20, 25)

Malicious state call vocabulary [1, 5) [5, 10) [10, 15) [15, 20) [20, 25)

6.2 Results

This subsection is dedicated to interpreting the data obtained from state-machine-

based smart grid devices. There are two questions to be answered: can the frame-

work successfully detect compromised devices, and if so, what are the best values

for bucket and window sizes?

To assess whether the framework can accomplish its task, Figures 6.1(a) and 6.2(a)

must be examined. In both cases, the framework consistently produces true positive

and true negative values with low false positive and false negatives, which implies

that the framework, indeed, can detect the compromised devices.

Figure 6.1 presents a collection of figures that show the performance of Power-

Watch the by bucket size. Figure 6.1(b) clearly illustrates that for each bucket size
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(a) (b)

Figure 6.1: PowerWatch’s performance per bucket size.

(a) (b)

Figure 6.2: PowerWatch’s performance per window size.

(a) (b)

Figure 6.3: Required processor times per bucket and window sizes.
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Figure 6.4: Topology of the testbed which attacks were conducted.

value, the framework produced higher activity signal peaks for the compromised

devices (higher activity index implies compromise). Figure 6.1(a) presents the clas-

sification performance of the framework: the detection rates stay consistently very

high for all the bucket size values except abnormally low ones. Figure 6.3(a) re-

quired computation power scales linearly with the bucket size. Since bigger bucket

sizes require more time, and the detection rate does not change by bucket size ex-

cept for very low values, the lowest possible bucket size that does not yield inferior

performance must be selected, which in this case, we recommend the value of 10.

On the other hand, Figure 6.2 contains a collection of figures that present the

performance of the framework by the window size. Figure 6.2(b) indicates that

for every tested window size, the framework produced higher activity signal peaks

for compromised devices. Figure 6.2(a) presents the classification performance: the

detection rates slightly tank as the window size grows. Figure 6.3(b) shows the

required computation power scales linearly with the window size in the worst case;

though, even at its worst, it is negligibly low. Since higher window sizes imply

inferior detection rate and increased computation power, a low window size value

must be chosen: in this case, we recommend the value of 25.

6.3 Detecting Attacks in a Real Testbed

The state-machine-based testing and evaluation have allowed us to efficiently enu-

merate and run our framework against a wide variety of cases that can possibly
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Figure 6.5: Activity signals generated by devices under various attacks.

appear during the operation of smart grid devices. We now present how well the

framework performs under concrete attack scenarios.

This assessment was done under a representative testbed of smart grid devices

which comprised of two devices: a command-and-control (C&C) device, and a mea-

surement device in communication using GOOSE messages. An illustration of this

setup is given in Figure 6.4. These devices were programmed so that the mea-

surement unit supplied data to the (C&C) server, implemented by using the open-

source libiec61850 library which provided automatic IEC61850 conformance. For

the command-and-control unit, a control hijacking attack was implemented. The

measurement unit was compromised in two distinct ways: In the first case, the

attacker altered the measurements, and in the second case, the attacker sent the

measurement values to an external server, leaking the sensitive and valuable mea-

surement information to outsiders.

The obtained results are shown in Figure 6.5 for both C&C and measurement

units. In each figure, its activity indexes in both uncompromised and compromised

states are given. As expected, when the device is not compromised, its activity
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Figure 6.6: For overhead analysis, two rich devices were monitoring 40 limited
devices.

index stays zero at all times. Compromising both C&C and measurement units

in each attack scenario produced an activity index that is significantly higher than

zero, indicating PowerWatch is successful in detecting compromised devices.

6.4 Overhead Analysis

The trace analysis algorithm is expected to increase both the computational load

of the devices and the network utilization. It is necessary to quantify this increase

in order to determine whether the algorithm is feasible to deploy. The overhead

analysis is conducted in the decentralized mode as its results can be generalized into

both stand-alone and centralized mode.

The illustration of the device topology for overhead analysis is given in Figure 6.6,

where two rich devices were monitoring a grand total of 40 limited devices, each

individually monitoring 20 devices. Both rich and limited devices were run under

a container using Docker [Ber14]. The rich devices were allowed to use 2 CPU

cores to its full extent, while limited devices were allowed to use 1 CPU core at

2% capacity. Both rich and limited devices were running a program implemented

using libiec61850, with limited devices acting as a sensor unit, and publishing data
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Figure 6.7: CPU utilization with respect to device and its state.

to one of the rich devices. Note that, in this test, limited devices send both GOOSE

messages, which is related to the grid operations, and call list traces for monitoring.

6.4.1 CPU Overhead

Figure 6.7 summarizes the CPU usage percentages, sampled at one-second interval

of the devices during their various configurations, explained below:

• Rich - Normal : Rich devices during their normal operation (no monitoring),

• Rich - Monitoring : Rich devices during monitoring 20 devices,

• Limited - Normal : Limited devices during their normal operation,

• Limited - Monitoring : Limited devices while they are monitoring themselves,

• Limited - Sending : Limited devices while they are sending call traces to rich

devices.

44



From the figure, it can be seen that rich devices almost have no load when not

monitoring, and have 2̃0% CPU utilization when monitoring limited devices, which

implies the device can easily monitor devices in addition to its normal duties.

Similarly, in the case of limited devices, their load on normal operations were

measured to be around 4̃0% utilization. When attempting to monitor themselves,

the operation of its normal duties was disrupted, and unprocessed call lists were

piling up. However, sending the call lists to a remote host induced an acceptable

overhead while enabling the device to resume its duties without disruption.

6.4.2 Network Overhead

Network overhead strictly depends on the rate of calls that are being generated by

the grid devices. In the implemented testbed, each device was producing approx-

imately 6 calls per second. The application layer data size was calculated as 61

bytes. Multiplying it with 40 by device number yielded 2440 Byte/s. Considering

the network infrastructure is comprised of gigabit ethernet, the proposed scheme

consumes 1.95× 10−5% of the total bandwidth, which is a minuscule number. This

figure shows a commodity network equipment can handle 105 = 10000 devices until

the network usage (approximately 2%) is noticeable.
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CHAPTER 7

CONCLUSION

The transformation of smart grid to include digital devices has introduced the

compromised devices problem, where an adversary may perform arbitrary modi-

fication on a device. We proposed to detect such devices by means of anomaly

detection using system and library call lists. We have formally analyzed the capa-

bility of call list analysis for this task, proposed a novel algorithm that measures

call list similarity, devised a Monte-Carlo experiment to assess how it behaves in

different circumstances and implemented it to work in a real smart grid testbed.

Our results show that the proposed algorithm is successful in detecting anomalies

in call list patterns and also succeeded in detecting compromised devices in a con-

crete setting. Lastly, we described how the proposed method could be deployed in

three different setups: stand-alone, where the detection algorithm is operated on

the device, centralized, where the call lists are processed in a centralized server, and

decentralized, where surrounding devices with high computation capacity monitors

the devices with low computation capacity.

The vision of this thesis was to achieve a generalizable detection method for

monitoring smart grids, and the experimental data implies this is accomplished with

a very low false-positive ratio. On a theoretical basis, the detection potential of the

methods presented here are superior to what has been reported in the literature,

since it encompasses a wide variety of vulnerabilities instead of addressing individual

security problems. The investigation of the impact of this theoretical reasoning into

the practice can be accomplished by directly applying the methods of this thesis to

the vulnerabilities that have been reported in the literature. Doing so requires a

significant engineering effort, however, and it is the reason of its omission as we have
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decided focus on the development of the method and its associated experiments.

7.1 Future Work

The concepts introduced within this study can be expanded by the following:

• Utilizing the parameters of system and library calls : Within the scope of this

study, we considered only the name of the system or library call, and omit-

ted the parameters. Even though the results are satisfactory, the usage of

parameters may open new avenues in developing a better detector.

• Data Sources : PowerWatch is a data-driven framework. We utilized system

and library calls to conduct detection; however, the data sources that could be

utilized are not limited to these: any sequential data that is deterministically

generated by the program execution logic may be used as a data source. A

few examples of such data is given below:

– jmp instructions : On the assembly level, system and library calls are

implemented by changing the instruction pointer by either an interrupt

or a call instruction. The jmp family of instructions work in a very

similar fashion, differing only in being simpler as it does not affect the

call stack or processor registers. Tracing jumped address values may offer

higher resolution in tracing a program.

– Instruction Pointer : The values of instruction pointers may be traced to

obtain an even higher resolution data.

– Trace Injection: A program may be injected with code that produces a

specific symbol upon execution. The system and library calls produce a

symbol only upon their invocation; however, the strategic placement of

trace-generating code does not limit the data generation to the locations
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of the system and library calls within the code; the relaxation of this con-

straint may be examined for positive impact on detection performance.

– System Resource Utilization: The peripheral units of a device may be

traced individually, e.g., by tracing the network interface and the display

of the device separately. Logging discrete actions taken on these devices

improve over system calls as they only contain partial information on how

these devices are used exactly.

• Static Analysis : PowerWatch utilizes a dynamic analysis method - it runs the

program - to obtain the call list patterns. A static analysis approach may be

used to obtain a formal grammar of the call lists, which then could be used

to analyze the call list traces.
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